

Lecture Notes in Artificial Intelligence 3487
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

João Leite Paolo Torroni (Eds.)

Computational Logic
in Multi-Agent Systems

5th International Workshop, CLIMA V
Lisbon, Portugal, September 29-30, 2004
Revised Selected and Invited Papers

1 3

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

João Leite
Universidade Nova de Lisboa, Departamento de Informática
Faculdade de Ciências e Tecnologia
Quinta da Torre, 2829-516 Caparica, Portugal
E-mail: jleite@di.fct.unl.pt

Paolo Torroni
Università di Bologna
Dipartimento di Elettronica, Informatica e Sistemistica
Viale Risorgimento 2, 40136 Bologna, Italy
E-mail: paolo.torroni@unibo.it

Library of Congress Control Number: 2005929660

CR Subject Classification (1998): I.2.11, I.2, C.2.4, F.4

ISSN 0302-9743
ISBN-10 3-540-28060-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-28060-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11533092 06/3142 5 4 3 2 1 0

Preface

The notion of agency has recently increased its influence in the research and de-
velopment of computational logic based systems, while at the same time signifi-
cantly gaining from decades of research in computational logic. Computational
logic provides a well-defined, general, and rigorous framework for studying syn-
tax, semantics and procedures, for implementations, environments, tools, and
standards, facilitating the ever important link between specification and verifi-
cation of computational systems.

The purpose of the Computational Logic in Multi-agent Systems (CLIMA)
international workshop series is to discuss techniques, based on computational
logic, for representing, programming, and reasoning about multi-agent systems
in a formal way. Former CLIMA editions were conducted in conjunction with
other major computational logic and AI events such as CL in July 2000, ICLP
in December 2001, FLoC in August 2002, and LPNMR and AI-Math in January
2004.

The fifth edition of CLIMA was held Lisbon, Portugal, in September 29–30,
2004. We, as organizers, and in agreement with the CLIMA Steering Committee,
opted for co-location with the 9th European Conference on Logics in Artificial
Intelligence (JELIA 2004), wishing to promote the CLIMA research topics in
the broader community of logics in AI, a community whose growing interest in
multi-agent issues has been demonstrated by the large number of agent-related
papers submitted to recent editions of JELIA.

The workshop received 35 submissions – a sensible increase from the previous
edition. The submitted papers showed that the logical foundations of multi-agent
systems are felt by a large community to be a very important research topic,
upon which classical AI and agent-related issues are to be addressed.

In line with the high standards of previous CLIMA editions, the review pro-
cess was very selective, the final acceptance rate being below 50%. A Program
Committee of 24 top-level researchers from 11 countries and 12 additional review-
ers selected 16 papers for presentation, authored by 46 researchers worldwide.
The workshop program featured an invited lecture by Alessio Lomuscio (Univer-
sity College London) on Specification and Verification of Multiagent Systems, as
well as a panel discussion organized by Marina de Vos (University of Bath) on
Logic-Based Multi-agent Systems and Industry. Around 50 delegates attended
the two-day event.

This book contains a selection, based on a second round of reviewing, of ex-
tended CLIMA V papers, and it starts with an invited contribution by Bożena
Woźna and Alessio Lomuscio. The papers are divided into four parts: (i) foun-
dations, (ii) architectures, (iii) interaction, and (iv) planning and applications.
There follows a brief overview of the book.

VI Preface

Foundations. In the first paper of this book, A Logic for Knowledge, Correct-

ness, and Real Time, Woźna and Lomuscio present and exemplify TCTLKD,
a logic for knowledge, correctness and real time interpreted on real-time deon-
tic interpreted systems, and extension to continuous time of deontic interpreted
systems.

In Dynamic Logic for Plan Revision in Intelligent Agents, van Riemsdijk
et al. present, with a sound and complete axiomatization, a dynamic logic for
a propositional version of the agent programming language 3APL, tailored to
handle the revision of plans.

Grossi et al. present in their paper Contextual Taxonomies a characterization
of the notion of a taxonomy with respect to specific contexts, addressing prob-
lems stemming from the domain of normative system specifications for modelling
multi-agent systems.

From Logic Programs Updates to Action Description Updates is where Alferes
et al. propose a macro language for the language EVOLP and provide transla-
tions from some fragments of known action description languages into the newly
defined one.

In Dynamic Logic Programming: Various Semantics Are Equal on Acyclic

Programs, Homola investigates multi-dimensional dynamic logic programming,
establishing some classes of programs for which several known semantics coin-
cide.

Architectures. Declarative Agent Control, by Kakas et al., extends the archi-
tecture of agents based upon fixed, one-size-fits-all cycles of operation by pro-
viding a framework for the declarative specification of agent control in terms of
cycle theories, which define possible alternative behaviors of agents.

In Metareasoning for Multi-agent Epistemic Logics, Arkoudas and Bringsjord
present an encoding of a sequent calculus for a multi-agent epistemic logic in
Athena, an interactive theorem proving system for many-sorted first-order logic,
to enable its use as a metalanguage in order to reason about the multi-agent
logic as an object language.

In Graded BDI Models for Agent Architectures, Casali et al. propose a general
model for a graded BDI agent, specifying an architecture able to deal with the
environment uncertainty and with graded mental attitudes.

Interaction. Dastani et al., in their article Inferring Trust, extend Liau’s logic
of Belief, Inform and Trust in two directions: with questions, and with a for-
malization of topics used to infer trust in a proposition from trust in another
proposition.

In Coordination Between Logical Agents, Sakama and Inoue investigate on the
use of answer set programming for belief representation, namely by addressing
the problem of finding logic programs that combine the knowledge from different
agents, while preserving some properties, useful to achieve agent coordination.

In A Computational Model for Conversation Policies for Agent Communica-

tion, Bentahar et al. propose a formal specification of a flexible persuasion proto-

Preface VII

col between autonomous agents, using an approach based on social commitments
and arguments, defined as a combination of a set of conversation policies.

The last paper of this section is Verifying Protocol Conformance for Logic-

Based Communicating Agents, by Baldoni et al., which describes a method for
automatically verifying a form of “structural” conformance by translating AUML
sequence diagrams into regular grammars and, then, interpreting the problem
of conformance as a problem of language inclusion.

Planning and Applications. In the preliminary report An Application of

Global Abduction to an Information Agent Which Modifies a Plan Upon Fail-

ure, Satoh uses a form of abductive logic programming called global abduction
to implement an information agent that deals with the problem of plan modifi-
cation upon action failure.

In Planning Partially for Situated Agents, Mancarella et al. use an abductive
variant of the event calculus to specify planning problems as the base of their
proposal for a framework to design situated agents capable of computing partial
plans.

Han and Barber, in Desire-Space Analysis and Action Selection for Multiple

Dynamic Goals, use macro actions to transform the state space for the agent’s
decision problem into the desire space of the agent. Reasoning in the latter allows
us to approximately weigh the costs and benefits of each of the agent’s goals at
an abstract level.

Hirsch et al. conclude this book with the article Organising Software in Ac-

tive Environments, in which they show how logic-based multi-agent systems are
appropriate to model active environments. They do so by illustrating how the
structuring of the “agent space” can represent both the physical and virtual
structures of an application.

We would like to conclude with a glance at the future of this workshop series.
The sixth CLIMA edition is being organized by Francesca Toni and Paolo Tor-
roni, and will take place at the City University of London, UK, in June 27–29,
2005, in conjunction with the EU-funded SOCS Project Dissemination Work-
shop. CLIMA VI will feature a tutorial program and a competition, besides the
usual technical content based on the presentation of papers.

We can not miss this opportunity to thank the authors and delegates, who
made of CLIMA a very interesting and fruitful event; our generous Program
Committee members who did not skimp on time to help us put together a very
rich volume after two rounds of reviewing, discussion, and selection; and our
sponsoring institutions, Universidade Nova de Lisboa, Fundação para a Ciência
e Tecnologia, FBA, and AgentLink III.

April 2005 João Leite
Paolo Torroni

Organization

Workshop Chairs

João Leite, New University of Lisbon, Portugal
Paolo Torroni, University of Bologna, Italy

Program Committee

José Alferes, New University of Lisbon, Portugal
Gerd Brewka, University of Leipzig, Germany
Jürgen Dix, Technical University of Clausthal, Germany
Klaus Fisher, DFKI, Germany
Michael Fisher, The University of Liverpool, UK
James Harland, Royal Melbourne Institute of Technology, Australia
Katsumi Inoue, National Institute of Informatics, Japan
Sverker Janson, Swedish Institute of Computer Science, Sweden
João Leite, New University of Lisbon, Portugal
Yves Lespérance, York University, Canada
John-Jules Ch. Meyer, Utrecht University, The Netherlands
Leora Morgenstern, IBM, USA
Wojciech Penczek, Polish Academy of Sciences, Poland
Jeremy Pitt, Imperial College London, UK
Enrico Pontelli, New Mexico State University, USA
Fariba Sadri, Imperial College London, UK
Ken Satoh, National Institute of Informatics, Japan
Renate Schmidt, The University of Manchester, UK
Tran Cao Son, New Mexico State University, USA
Francesca Toni, University of Pisa, Italy
Wiebe van der Hoek, The University of Liverpool, UK
Paolo Torroni, University of Bologna, Italy
Makoto Yokoo, Kyushu University, Japan
Cees Witteveen, Delft University of Technology, The Netherlands

Additional Reviewers

Federico Banti
Thomas Eiter

Ulle Endriss
Ullrich Hustadt

Magdalena Kacprzak
Olle Olsson

X Organization

Inna Pivkina
Chiaki Sakama

Kostas Stathis
Maciej Szreter

Gregory Wheeler
Yingqiang Zhang

Secretariat

Filipa Mira Reis Śılvia Marina Costa

Local Organization

António Albuquerque
Duarte Alvim
Eduardo Barros

Jamshid Ashtari
Joana Lopes
Miguel Mauŕıcio

Miguel Morais
Sérgio Lopes

Steering Committee

Jürgen Dix, Technical University of Clausthal, Germany
João Leite, New University of Lisbon, Portugal
Fariba Sadri, Imperial College London, UK
Ken Satoh, National Institute of Informatics, Japan
Francesca Toni, University of Pisa, Italy
Paolo Torroni, University of Bologna, Italy

Sponsoring Institutions

Table of Contents

Foundations

A Logic for Knowledge, Correctness, and Real Time
Bożena Woźna, Alessio Lomuscio . 1

Dynamic Logic for Plan Revision in Intelligent Agents
M. Birna van Riemsdijk, Frank S. de Boer, John-Jules Ch. Meyer . . . 16

Contextual Taxonomies
Davide Grossi, Frank Dignum, John-Jules Ch. Meyer 33

From Logic Programs Updates to Action Description Updates
José Júlio Alferes, Federico Banti, Antonio Brogi 52

Dynamic Logic Programming: Various Semantics Are Equal on Acyclic
Programs

Martin Homola . 78

Architectures

Declarative Agent Control
Antonis C. Kakas, Paolo Mancarella, Fariba Sadri, Kostas Stathis,

Francesca Toni . 96

Metareasoning for Multi-agent Epistemic Logics
Konstantine Arkoudas, Selmer Bringsjord . 111

Graded BDI Models for Agent Architectures
Ana Casali, Llúıs Godo, Carles Sierra . 126

Interaction

Inferring Trust
Mehdi Dastani, Andreas Herzig, Joris Hulstijn,

Leendert van der Torre . 144

Coordination Between Logical Agents
Chiaki Sakama, Katsumi Inoue . 161

XII Table of Contents

A Computational Model for Conversation Policies for Agent
Communication

Jamal Bentahar, Bernard Moulin, John-Jules Ch. Meyer,

Brahim Chaib-draa . 178

Verifying Protocol Conformance for Logic-Based Communicating Agents
Matteo Baldoni, Cristina Baroglio, Alberto Martelli, Viviana Patti,

Claudio Schifanella . 196

Planning and Applications

An Application of Global Abduction to an Information Agent which
Modifies a Plan upon Failure - Preliminary Report

Ken Satoh . 213

Planning Partially for Situated Agents
Paolo Mancarella, Fariba Sadri, Giacomo Terreni, Francesca Toni . . . 230

Desire-Space Analysis and Action Selection for Multiple Dynamic Goals
David C. Han, K. Suzanne Barber . 249

Organising Software in Active Environments
Benjamin Hirsch, Michael Fisher, Chiara Ghidini, Paolo Busetta 265

Author Index . 281

A Logic for Knowledge, Correctness,
and Real Time�

Bożena Woźna and Alessio Lomuscio

Department of Computer Science,
University College London,

Gower Street, London WC1E 6BT,
United Kingdom

{B.Wozna, A.Lomuscio}@cs.ucl.ac.uk

Abstract. We present TCTLKD, a logic for knowledge, correctness and
real time. TCTLKD is interpreted on real time deontic interpreted sys-
tems, and extension to continuous time of deontic interpreted systems.
We exemplify the use of TCTLKD by discussing a variant of the “railroad
crossing system”.

1 Introduction

Logic has a long tradition in the area of formal theories for multi-agent systems
(MAS). Its role is to provide a precise and unambiguous specification language
to describe, reason about, and predict the behaviour of a system.

While in the early 80’s existing logical formalisms from other areas such as
philosophical logic, concurrency theory, etc., were imported with little of no
modification to the area of MAS, from the late 80’s onwards specific formalisms
have been designed, studied, and tailored to the needs of MAS. Of particular
note is the case of epistemic logic, or the logic of knowledge.

Focus on epistemic logics in MAS began with the use of the modal logic
system S5 developed independently by Hintikka [1] and Aumann [2] in formal
logic and economics respectively. This starting point formed the core basis of a
number of studies that appeared in the past 20 years, including formalisations
of group knowledge [3, 4, 5], combinations of epistemic logic with time [6, 7, 8],
auto-epistemic logics [9, 10], epistemic updates [11, 12], broadcast systems and
hypercubes [13, 14], etc. Epistemic logic is no longer a remarkable special case of
a normal modal system, but has now become an area of study on its own with
regular thematic workshops and conferences.

In particular, combinations of epistemic and temporal logics allow us to rea-
son about the temporal evolution of epistemic states, knowledge of a changing
world, etc. Traditionally, this is achieved by combining a temporal logic for dis-
crete linear time [15, 16, 17] with the logic S5 for knowledge [18]. Various classes

� The authors acknowledge support from the EPSRC (grant GR/S49353), and the
Nuffield Foundation (grant NAL/690/G).

J. Leite and P. Torroni (Eds.): CLIMA V, LNAI 3487, pp. 1–15, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 B. Woźna and A. Lomuscio

of MAS (synchronous, asynchronous, perfect recall, no learning, etc.) can be
identified in this framework, and axiomatisations have been provided [19, 20].
More recently, combinations of branching time logic CTL [21, 22, 23] with the
epistemic logic S5 have been studied, and axiomatisation provided [8].

All efforts above have focused on a discrete model of time, either in its linear
or branching versions. While this is useful and adequate in most applications,
certain classes of scenarios (notably robotics and networking) require a model of
time as a continuous flows of events.

In the area of timed-systems the modal logic TCTL has been suggested as an
adequate formalism to model real time. In this paper we propose a logic (which
we call TCTLKD) combining the temporal aspects of TCTL with the notions
defined by the epistemic logic S5, as well as the correctness notion defined in [24].
This combination allows us to reason about the real time evolution of epistemic
states, the correct functioning of multi-agent systems with respect to real time,
and any combination of these.

Traditionally, the semantics of temporal epistemic logic is defined on variants
of interpreted systems to provide an interpretation to the epistemic modalities.
These use the notion of protocol to provide a basis for the action selection mech-
anism of the agents. Since we are working on real time, here we shall use the
finer grained semantics of timed automata to model the agents’ evolution. We
then synchronise networks of timed automata to provide a general model of a
MAS.

The rest of the paper is organised as follows. In Section 2 we define the
concept of interpreted systems on real time by taking the parallel composition
of timed automata. In Section 3 we define the logic TCTLKD as an extension
to real time of the logic for knowledge and correctness as defined in [24, 25]. In
Section 4 we provide a case study analysis to demonstrate its use in applications.
We conclude in Section 5 by discussing related and future work on this subject.

2 Interpreted Systems over Real Time

Interpreted systems are traditionally defined as a set of infinite runs on global
states [18]. In this model each run is a discrete sentence representing events.
At each global state, each agent selects an action according to a (possibly non-
deterministic) protocol. In this section we extend (discrete) interpreted systems
to real time interpreted systems in two aspects. First, we specify the agents’
behaviour by a finer grained semantics: timed automata. Second, by means of
parallel composition of timed automata, we define a class of interpreted systems
operating on real time.

We begin by recalling the concept of timed automata, as introduced in [26].
Timed automata are extensions of finite state automata with constraints on
timing behaviour. The underlying finite state automata are augmented with a
set of real time variables.

A Logic for Knowledge, Correctness, and Real Time 3

2.1 Timed Automata

Let IR = [0,∞) be a set of non-negative real numbers, IR+ = (0,∞) be a set of
positive real numbers, IN = {0, 1, 2, . . .} a set of natural numbers, and X a finite
set of real variables, called clocks. The set of clock constraints over X is defined
by the following grammar:

cc := true | x ∼ c | cc ∧ cc,

where x ∈ X , c ∈ IN, and ∼ ∈ {≤, <,=, >,≥}. The set of all the clock constraints
over X is denoted by C(X). A clock valuation on X is a tuple v ∈ IR|X |. The
value of the clock x in v is denoted by v(x). For a valuation v and δ ∈ IR, v + δ
denotes the valuation v′ such that for all x ∈ X , v′(x) = v(x) + δ. Moreover,
let X ∗ be the set X ∪ {x0}, where x0 is a clock whose value is always 0, that
is, its value does not increase with time as the values of the other clocks. Then,
an assignment as is a function from X to X ∗, and the set of all the assignments
over X is denoted by A(X). By v[as] we denote the valuation v′ such that for
all x ∈ X , if as(x) ∈ X , then v′(x) = v(as(x)), otherwise v′(x) = 0.

Let v ∈ IR|X |, the satisfaction relation |= for a clock constraint cc ∈ C(X) is
defined inductively as follows:

v |= true,
v |= (x ∼ c) iff v(x) ∼ c,
v |= (cc ∧ cc′) iff v |= cc and v |= cc′.

For a constraint cc ∈ C(X), by [[cc]] we denote the set of all the clock valuations
satisfying cc, i.e., [[cc]] = {v ∈ IR|X | | v |= cc}.

Definition 1 (Timed Automaton). A timed automaton is a tuple TA =
(Z, L, l0,X , E,I), where

– Z is a finite set of actions,
– L is a finite set of locations,
– l0 ∈ L is an initial location,
– X is a finite set of clocks,
– E ⊆ L × Z × C(X) × A(X) × L is a transition relation,
– I : L → C(X) is a function, called a location invariant, which assigns to each

location l ∈ L a clock constraint defining the conditions under which TA can
stay in l.

Each element e of E is denoted by l
a,cc,as−→ l′, where l is a source location, l′

is a target location, a is an action, cc is the enabling condition for e, and as is
the assignment for e.

Note that we deal with “diagonal-free” automata. This is because ultimately we
would like to verify MAS specified in this formalism, and the model checking
methods for real time systems (based on the Difference Bound Matrices [27],
variants of Boolean Decision Diagrams [28, 29], or SAT methods [30, 31, 32]) are
problematic when the components of the systems are modelled by “diagonal
automata”.

4 B. Woźna and A. Lomuscio

In order to reason about systems represented by timed automata, for a set
of propositional variables PV, we define a valuation function VTA : L → 2PV ,
which assigns propositions to the locations.

Definition 2 (Dense State Space). The dense state space of a timed au-
tomaton TA = (Z, L, l0,X , E,I) is a structure D(TA) = (Q, q0,→), where

– Q = L × IR|X | is the set of all the instantaneous states,
– q0 = (l0, v0) with v0(x) = 0 for all x ∈ X , is the initial state,
– → ⊆ Q × (Z ∪ IR) × Q is the transition relation, defined by action- and

time-successors as follows:
• for a ∈ Z, (l, v) a→ (l′, v′) iff (∃cc ∈ C(X))(∃as ∈ A(X)) such that

l
a,cc,as−→ l′ ∈ E, v ∈ [[cc]],v′ = v[as] and v′ ∈ [[I(l′)]] (action successor),

• for δ ∈ IR, (l, v) δ→ (l, v + δ) iff v + δ ∈ [[I(l)]] (time successor).

For (l, v) ∈ Q, let (l, v) + δ denote (l, v + δ). A q-run ρ of a TA is a sequence
of instantaneous states: q0

δ0→ q0 + δ0
a0→ q1

δ1→ q1 + δ1
a1→ q2

δ2→ . . ., where
q0 = q ∈ Q, ai ∈ Z, and δi ∈ IR+ for each i ∈ IN. A run ρ is said to be progressive
iff Σi∈INδi is unbounded. A TA is progressive if all its runs are progressive. For
simplicity of presentation, we consider only progressive timed automata. Note
that progressiveness can be checked as in [33].

2.2 Parallel Composition of Timed Automata

In general, we will model a multi-agent system by taking several timed automata
running in parallel and communicating with each other. These concurrent timed
automata can be composed into a global timed automaton as follows: the tran-
sitions of the timed automata that do not correspond to a shared action are
interleaved, whereas the transitions labelled with a shared action are synchro-
nised.

There are many different definitions of parallel composition. We use a multi-
way synchronisation, requiring that each component that contains a communi-
cation transition (labelled by a shared action) has to perform this action.

Let TAi = (Zi, Li, l
0
i , Ei,Xi,Ii) be a timed automaton, for i = 1, . . . , m. To

define a parallel composition of m timed automata, we assume that Li ∩Lj = ∅
for all i, j ∈ {1, . . . , m}, and i = j. Moreover, by Z(a) = {1 ≤ i ≤ m | a ∈ Zi}
we denote a set of numbers of the timed automata containing an action a.

Definition 3 (Parallel Composition). The parallel composition of m timed
automata TAi is a timed automaton TA = (Z, L, l0, E,X,I), where Z =

⋃m
i=1 Zi,

L =
∏m

i=1 Li, l0 = (l01, . . . , l
0
m), X =

⋃m
i=1 Xi, I(l1, . . . , lm) =

∧m
i=1 Ii(li), and a

transition ((l1, . . . , lm), a, cc, as, (l′1, . . . , l
′
m)) ∈ E iff (∀i ∈ Z(a)) (li, a, cci, asi, l

′
i) ∈

Ei, cc =
∧

i∈Z(a) cci, as =
⋃

i∈Z(a) asi, and (∀j ∈ {1, . . . , m} \ Z(a)) l′j = lj.

Note that in the above any automaton is allowed to set a value of any clock,
including the ones associated with other agents.

Let PVi be a set of propositional variables containing the symbol true, VTAi
:

Li → 2PVi be a valuation function for the ith automaton, where i ∈ {1, . . . , m},

A Logic for Knowledge, Correctness, and Real Time 5

and PV =
⋃m

i=1 PVi. Then, the valuation function VTA : L → 2PV for the par-
allel composition of m timed automata, is defined as follows VTA((l1, . . . , lm)) =⋃m

i=1 VTAi
(li).

2.3 Real Time Deontic Interpreted System

In line with much of the multi-agent systems literature, we use interpreted sys-
tems as a semantics for a temporal epistemic language. For this, we need to
adapt them to work on real time: this is why we take timed automata as the un-
derlying modelling concept (as opposed to the standard protocols of interpreted
systems). To define real time deontic interpreted systems, we first partition the
set of clock valuations as in [34].

Let TA be a timed automaton, C(TA) ⊆ C(X) be a non-empty set containing
all the clock constrains occurring in any enabling condition used in the transi-
tion relation E or in a state invariant of TA. Moreover, let cmax be the largest
constant appearing in C(TA). For σ ∈ IR, frac(σ) denotes the fractional part of
σ, and �σ� denotes its integral part.

Definition 4 (Equivalence of Clock Valuations). For two clock valuations
v and v′ in IR|X |,we say that v � v′ iff for all x, y ∈ X the following conditions
are met:

1. v(x) > cmax iff v′(x) > cmax

2. if v(x) ≤ cmax and v(y) ≤ cmax then
a.) �v(x)� = �v′(x)�,
b.) frac(v(x)) = 0 iff frac(v′(x)) = 0, and
c.) frac(v(x)) ≤ frac(v(y)) iff frac(v′(x)) ≤ frac(v′(y)).

The equivalence classes of the relation � are called zones, and denoted by Z,
Z ′ and so on.

Now we are ready to define a Real Time Deontic Interpreted System that will
be semantics for the logic presented in the next section.

Let AG be a set of m agents, where each agent is modelled by a timed au-
tomaton TAi = (Zi, Li, l

0
i , Ei,Xi,Ii), for i ∈ {1, . . . , m}. Moreover, assume, in

line with [24, 25], that for every agent, its set Li of local locations is partitioned
into “allowed” locations, denoted by Gi, and “disallowed” locations, denoted by
Ri and defined by Ri = Li \ Gi. We shall call these locations green and red re-
spectively. Further, assume that the parallel composition TA = (Z, L, l0, E,X,I)
of all the agents is given1, and that li : Q → Li is a function that returns the
location of agent i from a global state. Then, a real time deontic interpreted
system is defined as follows.

Definition 5 (Real Time Deontic Interpreted System). A real time deon-
tic interpreted system is a tuple Mc = (Q, q0,→,∼K

1 , . . . ,∼K
m, RO

1 , . . . , RO
m,Vc),

where:

1 Note that the set L, which defines all the possible global locations, is defined as the
Cartesian product L1 × . . . × Lm, such that L1 ⊇ G1, . . . , Lm ⊇ Gm.

6 B. Woźna and A. Lomuscio

– Q, q0, and → are defined as in Definition 2,
– ∼K

i ⊆ Q×Q is a relation defined by: (l, v) ∼K
i (l′, v′) iff li((l, v)) = li((l′, v′))

and v � v′, for each agent i. Obviously ∼K
i is an equivalence relation.

– RO
i ⊆ Q × Q is a relation defined by: (l, v)RO

i (l′, v′) iff li((l′, v′)) ∈ Gi, for
each agent i.

– Vc : Q → 2PV is a valuation function that extends VTA as follows Vc((l, v)) =
VTA(l), i.e., Vc assigns the same propositions to the states with the same
locations.

3 The Logic TCTLKD

In this section, we formally present the syntax and semantics of a real time
computation tree logic for knowledge and correctness (TCTLKD), which extends
the standard TCTL [34], the logic for real time, by means of modal operators
for knowledge and correctness.

The language generalises classical propositional logic, and thus it contains the
standard propositional connectives ¬ (not) and ∨ (or); the remaining connectives
(∧ (and), → (implies), ↔ (if, and only if) are assumed to be introduced as
abbreviations in the usual way. With respect to real time temporal connectives,
we take as primitives UI (for “until within interval I”), and GI (for “always
within interval I”); the remaining operators, FI (for “eventually within interval
I”) and RI (for “release within interval I”), are assumed to be introduced as
abbreviations in the usual way. The language also contains two path quantifiers:
A (for “for all the runs”) and E (for “there exists a run”). Further, we assume
a set AG = {1, . . . , m} of agents, and we use the indexed modalities Ki, Oi, and
K̂j

i to represent the knowledge of agent i, the correct functioning circumstances
of agent i, and the knowledge of agent i under assumption of correct functioning
of agent j, respectively. Furthermore, we use the indexed modalities DΓ , CΓ to
represent distributed and common knowledge in a group of agents Γ ⊆ AG, and
we use the operator EΓ to represent the concept “everybody in Γ knows”.

3.1 Syntax of TCTLKD

We assume a set PV of propositional variables, and a finite set AG of m agents.
Furthermore, let I be an interval in IR with integer bounds of the form [n, n′],
[n, n′), (n, n′], (n, n′), (n,∞), and [n,∞), for n, n′ ∈ IN. The set of TCTLKD
formulas is defined inductively as follows:

• every member p of PV is a formula,
• if α and β are formulas, then so are ¬α, α ∨ β, EGIα, and E(αUIβ),
• if α is formula, then so are Kiα, K̂j

iα, and Oiα, for i, j ∈ AG,
• if α is formula, then so are DΓ α, CΓ α, and EΓ α, for Γ ⊆ AG.

The other basic temporal, epistemic, and correctness modalities are defined
as follows:

A Logic for Knowledge, Correctness, and Real Time 7

• EFIϕ
def
= E(trueUIϕ), AFIϕ

def
= ¬EGI(¬ϕ), AGIϕ

def
= ¬EFI(¬ϕ),

• A(αUIβ)
def
= ¬E(¬βUI(¬β ∧ ¬α)) ∧ ¬EGI(¬β),

• A(αRIβ)
def
= ¬E(¬αUI¬β), E(αRIβ)

def
= ¬A(¬αUI¬β),

• Kiα
def
= ¬Ki¬α, Oiα

def
= ¬Oi¬α, K̂j

iα
def
= ¬K̂j

i¬α,

• DΓ α
def
= ¬DΓ¬α, CΓ α

def
= ¬CΓ¬α, EΓ α

def
= ¬EΓ¬α.

3.2 Semantics of TCTLKD

Let AG be a set of m agents, where each agent is modelled by a timed automaton
TAi = (Zi, Li, l

0
i , Ei,Xi,Ii), for i = {1, . . . ,m}, TA = (Z, L, l0, E,X,I) be their

parallel composition, and Mc = (Q, q0,→,∼K
1 , . . . ,∼K

m, RO
1 , . . . , RO

m,Vc) be a
real time deontic interpreted system. Moreover, let ρ = q0

δ0→ q0 + δ0
a0→ q1

δ1→
q1 + δ1

a1→ q2
δ2→ . . . be a run of TA such that δi ∈ IR+ for i ∈ IN, and let fTA(q)

denote the set of all such q-runs of TA. In order to give a semantics to TCTLKD,
we introduce the notation of a dense path πρ corresponding to run ρ. A dense
path πρ corresponding to ρ is a mapping from IR to a set of states2 such that
πρ(r) = si + δ for r = Σi

j=0δj + δ with i ≥ 0 and 0 ≤ δ < δi. Moreover, as
usual, we define the following epistemic relations: ∼E

Γ =
⋃

i∈Γ ∼i, ∼C
Γ = (∼E

Γ)+

(the transitive closure of ∼E
Γ), and ∼D

Γ =
⋂

i∈Γ ∼i, where Γ ⊆ AG.

Definition 6 (Satisfaction of TCTLKD). Let Mc, q |= α denote that α is
true at state s in the model Mc. Mc is omitted, if it is implicitly understood. The
relation |= is defined inductively as follows:

q0 |= p iff p ∈ Vc(q0),
q0 |= ¬ϕ iff q0 |= ϕ,
q0 |= ϕ ∨ ψ iff q0 |= ϕ or q0 |= ψ,
q0 |= ϕ ∧ ψ iff q0 |= ϕ and q0 |= ψ,
q0 |= E(ϕUIψ) iff (∃ ρ ∈ fTA(q0))(∃r ∈ I)

[
πρ(r) |= ψ and (∀r′ < r) πρ(r′) |= ϕ

]
,

q0 |= EGIϕ) iff (∃ ρ ∈ fTA(q0))(∀r ∈ I) πρ(r) |= ϕ,
q0 |= Kiα iff (∀q′ ∈ Q)((q0 ∼K

i q′) implies q′ |= α),
q0 |= Oiα iff (∀q′ ∈ Q)(q0R

O
i q′) implies q′ |= α),

q0 |= K̂j
iα iff (∀q′ ∈ Q)((q0 ∼K

i q′ and q0R
O
j q′) implies q′ |= α),

q0 |= DΓ α iff (∀q′ ∈ Q)((q0 ∼D
Γ q′) implies q′ |= α),

q0 |= EΓ α iff (∀q′ ∈ Q)((q0 ∼E
Γ q′) implies q′ |= α),

q0 |= CΓ α iff (∀q′ ∈ Q)((q0 ∼C
Γ q′) implies q′ |= α).

Intuitively, the formula E(αUIβ) holds at a state q0 in a real time deontic
interpreted system Mc if there exists a run starting at q0 such that β holds in
some state in time interval I, and until then α always holds. The formula EGIα
holds at a state q0 in a real time deontic interpreted system Mc if there exists a

2 This can be done because of the assumption that δi > 0, i.e., δi ∈ IR+.

8 B. Woźna and A. Lomuscio

run starting at q0 such that α holds in all the states on the run in time interval
I. The formula Kiα holds at state q0 in a real time deontic interpreted system
Mc if α holds at all the states that are indistinguishable for agent i from q0. The
formula Oiα holds at state q0 in a real time deontic interpreted system Mc if α
holds at all the states where agent i is functioning correctly. The formula K̂j

iα
holds at state q0 in a real time deontic interpreted system Mc if α holds at all
the states that agent i is unable to distinguish from the actual state q0, and in
which agent j is functioning correctly. The formula EΓ α holds at state q0 in a
real time deontic interpreted system Mc if α is true in all the states that the
group Γ of agents is unable to distinguish from the actual state q0. Note that
EΓ α can be defined by

∧
i∈Γ Kiα. The formula CΓ α is equivalent to the infinite

conjunction of the formulas Ek
Γ α for k ≥ 1. So, CΓ α holds at state q0 in a real

time deontic interpreted system Mc if everyone knows α holds at q0, everyone
knows that everyone knows α holds at q0, etc. The formula DΓ α holds at state
q0 in a real time deontic interpreted system Mc if the “combined” knowledge
of all the agents in Γ implies α. We refer to [34, 18, 24] for more details on the
operators above.

A TCTLKD formula ϕ is satisfiable if there exists a real time deontic in-
terpreted system Mc = (Q, q0,→, ∼K

1 , . . . ,∼K
m, RO

1 , . . . , RO
m,Vc) and a state q

of Mc, such that Mc, q |= ϕ. A TCTLKD formula ϕ is valid in Mc (denoted
Mc |= ϕ) if Mc, q

0 |= ϕ, i.e., ϕ is true at the initial state of the model Mc.
Note that the “full” logic of real time (TCTL) is undecidable [34]. Since

real time deontic interpreted systems can be shown to be as expressive as the
TCTL-structure of a time graph [34], and the fusion [35] between TCTL, S5
for knowledge [18], and KD45i−j for the deontic dimension [24] is a proper
extension of TCTL, it follows that problem of satisfiability for the TCTLKD
logic will be also undecidable. Still, it is easy to observe that given a TCTLKD
formula ϕ and a real time deontic interpreted system Mc, the problem of deciding
whether Mc |= ϕ is decidable. This result is our motivation for introducing
TCTLKD. We are not interested in using the whole class of real time deontic
interpreted systems, but only to study particular examples by means of this
logic. We exemplify this in the next section.

4 Applications

One of the motivations for developing the formalism presented in this paper is
that we would like to be able to analyse what epistemic and temporal properties
hold, when agents follow or violate their specifications while operating on real
time.

As an example of this we discuss the Railroad Crossing System (RCS) [36], a
well-known example in the literature of real-time verification. Here we analyse
the scenario not only by means of temporal operators but also by means of
epistemic and correctness modalities. The system consists of three agents: Train,
Gate, and Controller running in parallel and synchronising through the events:
“approach”, “exit”, “lower”, and “raise”.

A Logic for Knowledge, Correctness, and Real Time 9

approach

x1 := 0

in

out

exit

x1 ≤ 500 x1 ≥ 300

x1 ≤ 500

x1 ≤ 500

x1 ≤ 500

t0

t3

t1

t2

g0

g1

g3

lower
x2 ≤ 100

down

x2 ≤ 100

g2
raise

x2 ≤ 200

100 ≤ x2 ≤ 200

x2 := 0

x2 := 0

up

c0

c1

c2
c3

approach

x3 := 0
x3 ≤ 100

lower

x3 = 100

exit

x3 := 0
x3 ≤ 100

raise

x3 ≤ 100

Train Gate Controller

Fig. 1. Agents Train, Gate, and Controller for the correct RCS system

Let us start by considering what we call the correct RCS, as modelled by
timed automata (Figure 1). The correct RCS operates as follows. When Train
approaches the crossing, it sends an approach signal to Controller, and enters the
crossing between 300 and 500 seconds from this event. When Train leaves the
crossing, it sends an exit signal to Controller. Controller sends a signal lower to
Gate exactly 100 seconds after the approach signal is received, and sends a raise
signal within 100 seconds after exit. Gate performs the transition down within
100 seconds of receiving the request lower, and responds to raise by moving up
between 100 and 200 seconds.

Assume the following set of propositional variables: PV = {p, q, r, s} with
PVTrain = {p, q}, PVGate = {r}, and PVCont = {s}. The proposition p rep-
resents the fact that an approach signal was sent by Train, q that Train is on
the cross, r that Gate is down, and s that Controller sent the signal lower to
Gate. A real time deontic interpreted system MRCS can be associated with the
correct RCS as follows. For the sets L1 = {t0, t1, t2, t3}, L2 = {g0, g1, g2, g3},
and L3 = {c0, c1, c2, c3} of locations for Train, Gate, and Controller respectively,
the set of “green” locations and the dense state space for RCS are defined by
G1 = L1, G2 = L2, G3 = L3, and Q = L1×L2×L3×IR3, respectively. The valua-
tion functions for Train (VTrain : L1 → 2PVT rain), Gate (VGate : L2 → 2PVGate),
and Controller (VCont : L3 → 2PVCont) are defined as follows:

– VTrain(t1) = {p}, VTrain(t2) = {q}, and VTrain(t0) = VTrain(t3) = ∅.
– VGate(g2) = {r}, and VGate(g0) = VGate(g1) = VGate(g3) = ∅.
– VCont(c2) = {s}, and VCont(c0) = VCont(c1) = VCont(c3) = ∅.

The valuation function VRCS : L1×L2×L3 → 2PV , for the RCS system, is built
as follows: VRCS(l) = VTrain(l1) ∪ VGate(l2) ∪ VCont(l3), for all l = (l1, l2, l3) ∈
L1×L2×L3. Thus, according to the definition of the real time deontic interpreted
system, the valuation function VMRCS

: L1 × L2 × L3 × IR3 → 2PV of MRCS is
defined by VMRCS

(l, v) = VRCS(l).
Using the TCTLKD logic, we can specify properties of the correct RCS sys-

tem that cannot be specified by standard propositional temporal epistemic logic.
For example, we consider the following:

10 B. Woźna and A. Lomuscio

AG[0,∞](p → KController(AF[300,∞]q)) (1)
AG[0,∞]KTrain(p → AF[0,200]r) (2)

KController(s → AF[0,100]r) (3)

Formula (1) states that forever in the future if an approach signal is sent by
agent Train, then agent Controller knows that in some point after 300 seconds
later Train will enter the cross. Formula (2) states that forever in the future agent
Train knows that, if it sends an approach signal, then agent Gate will send the
signal down within 200 seconds. Formula (3) states that agent Controller knows
that if it sends an lower signal, then agent Gate will send the signal down within
100 seconds.

All the formulas above can be shown to hold on MRCS on the initial state.
We can also check that the following properties do not hold on MRCS .

AG[0,∞](p → KController(AF[0,300]q)) (4)
KTrain(AG[0,∞)EF[10,90]s) (5)
KController(s → AF[0,50]r) (6)

Formula (4) states that forever in the future if an approach signal is sent
by agent Train, then agent Controller knows that at some point in the future
within 300 seconds Train will enter the crossing. Formula (5) states that agent
Train knows that always in the future it is possible that within interval [10, 90]
the gate will be down. Formula (6) states that agent Controller knows that if
it sends the lower signal, then agent Gate will send the signal down within 50
seconds.

Let us now consider a variant of the RCS system described above, and let us
assume that agent Controller is faulty. Let us assume that because of a fault the
signal lower may not be sent in the specified interval, and the transition to the
faulty state c2 may be triggered. We are allowing for Controller to recover from
the fault once in c2 by means of the action lower (see Figure 2).

approach

x1 := 0

in

out

exit

x1 ≤ 500 x1 ≥ 300

x1 ≤ 500

x1 ≤ 500

x1 ≤ 500

t0

t3

t1

t2

g0

g1

g3

lower
x2 ≤ 100

down

x2 ≤ 100

g2
raise

x2 ≤ 200

100 ≤ x2 ≤ 200

x2 := 0

x2 := 0

up

c0

c3

approach

x3 := 0

lower

x3 = 100

exit

x3 := 0
x3 ≤ 100

raise

x3 ≤ 100

low
er

in

Crash

x3 > 100
faultylower

c2

c1

x3 ≤ 200

x3
≤ 200

c2

x3 ≤ 500

Train Gate Controller

Fig. 2. Agents Train, Gate, and Controller for the faulty RCS system

We examine the scenario by considering the following set of propositional
variables: PV = {p, q, r, s, crash} with PVTrain = {p, q}, PVGate = {r}, and
PVCont = {s, crash}. The propositions p, q, r, and, s have the same meaning as

A Logic for Knowledge, Correctness, and Real Time 11

in the case of the correct RCS system; the proposition crash represents the fact
that Train is on the cross and Gate is still open. A real time deontic interpreted
system MRCS can be associated with the faulty RCS system as follows3.

For the sets L1 = {t0, t1, t2, t3}, L2 = {g0, g1, g2, g3}, and L3 = {c0, c1, c2, c3,
c2, crash} of locations for Train, Gate, and Controller, the set of “green” loca-
tions are defined by G1 = L1, G2 = L2, G3 = {c0, c1, c2, c3}, respectively. The
dense state space for RCS is defined by Q = L1 × L2 × L3 × IR3. The valuation
functions for Train (VTrain), Gate (VGate), and Controller (VCont) are defined as
follows:

– VTrain : L1 → 2PVT rain , and VTrain(t1) = {p}, VTrain(t2) = {q}, and
VTrain(t0) = VTrain(t3) = ∅.

– VGate : L2 → 2PVGate , and VGate(g0) = VGate(g1) = VGate(g3) = ∅, and
VGate(g2) = {r}.

– VCont : L3 → 2PVCont , and VCont(c0) = VCont(c1) = VCont(c3) = VCont(c2) =
∅, VCont(c2) = {s}, and VCont(crash) = {crash}.

The valuation functions VRCS : L1 × L2 × L3 → 2PV , and VMRCS
: L1 × L2 ×

L3× IR3 → 2PV are defined in the same way as in the correct version of the RCS
system.

Using TCTLKD, we can specify the following properties of the faulty RCS
system. These can be checked to hold on the real time deontic interpreted system
for the faulty RCS.

AG[0,∞]KTrainOController(p → AF[0,200]r) (7)
KTrainOController(p → AF[0,200]r) (8)

K̂Controller
Train (p → AF[0,200]r) (9)

AG[0,∞]KTrainOController(¬crash) (10)

AG[0,∞]K̂Controller
Train (¬crash) (11)

AG[0,∞]K̂Controller
Train (p → AF[0,100]s) (12)

Formula (7) states that forever in the future agent Train knows that whenever
agent Controller is functioning correctly, if Train sends the approach signal, then
agent Gate will send the signal down within 200 seconds. Formula (8) states that
agent Train knows that whenever agent Controller is functioning correctly, if the
approach signal was sent by Train, then at some point in the future, within 200
second, Gate will be down. Formula (9) states that agent Train knows that under
the assumption of agent Controller functioning correctly, if the approach signal
was sent by Train, then at some point in the future, within 200 second, Gate
will be down. Formula (10) states that always in the future agent Train knows
that whenever agent Controller is functioning correctly under no circumstances

3 Note that the names of the mathematical objects we use to represent the faulty RCS
are the same as the ones employed previously for the correct RCS. Given that these
appear in different contexts we trust no confusion arises.

12 B. Woźna and A. Lomuscio

there will be a situation in which Train is on the crossing and Gate is open.
Formula (11) states that always in the future agent Train knows that under the
assumption of agent Controller functioning correctly, under no circumstances
there will be a situation in which Train is on the crossing and Gate is open.
Formula (12) states that always in the future agent Train knows that under the
assumption of agent Controller functioning correctly, if the approach signal was
sent by Train, then at some point in the future, within 100 second, the signal
lower will be sent by Controller.

The following formulas can be checked not to hold on the faulty RCS.

KTrain(p → AF[0,200]r) (13)
AG[0,∞]KTrain(¬crash) (14)

AG[0,∞]KTrain(p → AF[0,100]s) (15)

Formula (13) states that agent Train knows that, if it sends the approach sig-
nal, then at some point in the future, within 200 second, Gate will be down.
Formula (14) states that always in the future agent Train knows that under no
circumstances there will be a situation where Train is on the cross and Gate is
open. Formula (15) states that always in the future agent Train knows that, if it
sends the approach signal, then at some point in the future, within 100 second,
the signal lower will be sent by Controller.

5 Conclusions

In the paper we have proposed TCTLKD, a real time logic for knowledge and
correctness. TCTLKD is a fusion of three well known logics: TCTL for real time
[34], S5 for knowledge [18], and KD45i−j for the correctness dimension [24].

Previous attempts of combinations of real time and knowledge have included
[37, 38, 39]. In [37] a technique for determining the temporal validity of shared
data in real-time distributed systems is proposed. The approach is based on
a language consisting of Boolean, epistemic, dynamic, and real-time temporal
operators, but the semantics for these is not defined. In [38] a fusion of the
branching time temporal logic (CTL) and the standard epistemic logic is pre-
sented. The semantics of the logic is given over an interpreted system defined
like in [18] with the difference of using runs defined from real numbers. This
language is used to establish sound and complete termination conditions for mo-
tion planning of robots, given initial and goal states. [39] presents a framework
for knowledge-based analysis of clocks synchronisation in systems with real-time
constraints. In that work a relation of timed precedence as a generalisation of
previous work by Lamport is defined, and it is shown how (inherent) knowledge
about timed precedences can be applied to synchronise clocks optimally. Like
in [38], the semantics consists of runs that are functions over real time. The
epistemic relations defined in this work assume that agents have perfect recall.

Our paper differs from the approaches above by considering quantitative
temporal operators such as EF[0,10] (meaning “possibly within 10 time units”),

A Logic for Knowledge, Correctness, and Real Time 13

rather than qualitative operators EF (meaning “possibly in the future”, but with
no bound), and by not forcing the agents to have perfect recall. In addition, the
logic TCTLKD also incorporates a notion of correctness of execution with respect
to specifications, a concept not tackled in previous works, and associates a set of
clocks to every agent not just to the system as a whole. While the satisfiability
problem for TCTLKD is undecidable, the TCTLKD model checking problem,
i.e., the problem of validity in a given model, is decidable. Given this, it seems
worthwhile to develop model checking methods for TCTLKD in the same fashion
to what has been pursued for the same modalities but on discrete time [42]. In
fact, a preliminary version of the TCTLK4 bounded model checking method is
presented in [40, 41].

References

1. Hintikka, J.: Knowledge and Belief, An Introduction to the Logic of the Two
Notions. Cornell University Press, Ithaca (NY) and London (1962)

2. Aumann, R.J.: Agreeing to disagree. Annals of Statistics 4 (1976) 1236–1239
3. Fagin, R., Vardi, M.Y.: Knowledge and implicit knowledge in a distributed envi-

ronment: Preliminary report. In Halpern, J.Y., ed.: TARK: Theoretical Aspects
of Reasoning about Knowledge, San Francisco (CA), Morgan Kaufmann (1986)
187–206

4. Halpern, J., Moses, Y.: A guide to completeness and complexity for modal logics
of knowledge and belief. Artificial Intelligence 54 (1992) 319–379

5. van der Hoek, W.: Sytems for knowledge and belief. Journal of Logic and Com-
putation 3 (1993) 173–195

6. Halpern, J.Y., Vardi, M.Y.: The complexity of reasoning about knowledge and
time. In: ACM Symposium on Theory of Computing (STOC ’86), Baltimore,
USA, ACM Press (1986) 304–315

7. Halpern, J.Y., Vardi, M.Y.: The complexity of reasoning about knowledge and time
1: lower bounds. Journal of Computer and System Sciences 38 (1989) 195–237

8. van der Meyden, R., Wong, K.: Complete axiomatizations for reasoning about
knowledge and branching time. Studia Logica 75 (2003) 93–123

9. Marek, W., Truszczyński, M.: Autoepistemic logic. Journal of the ACM 38 (1991)
587–618

10. Moore, R.: Possible-world semantics autoepistemic logic. In: Proceedings of Work-
shop on Non-Monotonic Reasoning, The AAAI Press (1984) 344–354

11. Baltag, A., Moss, L.S., Solecki, S.: The logic of public announcement, common
knowledge, and private suspicions. In Gilboa, I., ed.: Proceedings of the 7th Con-
ference on Theoretical Aspects of Rationality and Knowledge (TARK-98), San
Francisco, Morgan Kaufmann (1998) 125–132

12. Lomuscio, A., Ryan, M.: An algorithmic approach to knowledge evolution. Artifi-
cial Intelligence for Engineering Design, Analysis and Manufacturing (AIEDAM)
13 (1999)

13. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Knowledge-based programs.
Distributed Computing 10 (1997) 199–225

4 The TCTLK logic is like TCTLKD but it does not contain the correct functioning
operator, i.e, the operator Oi for i ∈ AG.

14 B. Woźna and A. Lomuscio

14. Lomuscio, A., van der Meyden, R., Ryan, M.: Knowledge in multi-agent systems:
Initial configurations and broadcast. ACM Transactions of Computational Logic
1 (2000)

15. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag (1991)

16. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer-
Verlag (1995)

17. Manna, Z., Pnueli, A.: Completing the temporal picture. In: Selected papers of the
16th international colloquium on Automata, languages, and programming, Elsevier
Science (1991) 97–130

18. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge.
MIT Press, Cambridge (1995)

19. Halpern, J., Meyden, R., Vardi, M.Y.: Complete axiomatisations for reasoning
about knowledge and time. SIAM Journal on Computing 33 (2003) 674–703

20. van der Meyden, R.: Axioms for knowledge and time in distributed systems with
perfect recall. In: Proceedings, Ninth Annual IEEE Symposium on Logic in Com-
puter Science, Paris, France, IEEE Computer Society Press (1994) 448–457

21. Ben-Ari, M., Pnueli, A., Manna, Z.: The temporal logic of branching time. Acta
Informatica 20 (1983) 207–226

22. Emerson, E.A.: Temporal and modal logic. In van Leeuwen, J., ed.: Handbook of
Theoretical Computer Science, Elsevier Science Publishers (1990) 996–1071

23. Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the tem-
poral logic of branching time. Journal of Computer and System Sciences 30 (1985)
1–24

24. Lomuscio, A., Sergot, M.: Deontic interpreted systems. Studia Logica 75 (2003)
63–92

25. Lomuscio, A., Sergot, M.: Violation, error recovery, and enforcement in the bit
transmission problem. Journal of Applied Logic 1(2): 93–116, 2004

26. Alur, R., Dill, D.: Automata for modelling real-time systems. In: Proceedings of the
International Colloquium on Automata, Languages and Programming (ICALP’90).
Volume 443 of Lecture Notes in Computer Science., Springer-Verlag (1990) 322–335

27. Dill, D.: Timing assumptions and verification of finite state concurrent systems. In:
Automatic Verification Methods for Finite-State Systems. Volume 407 of Lecture
Notes in Computer Science., Springer-Verlag (1989) 197–212

28. Behrmann, G., Larsen, K., Pearson, J., Weise, C., Yi, W.: Efficient timed reacha-
bility analysis using clock difference diagrams. In: Proceedings of the 11th Inter-
national Conference on Computer Aided Verification (CAV’99). Volume 1633 of
Lecture Notes in Computer Science., Springer-Verlag (1999) 341–353

29. Wang, F.: Efficient data structure of fully symbolic verification of real-time soft-
ware systems. In: Proceedings of the 6th International Conference on Tools and
Algorithms for Construction and Analysis of Systems (TACAS’00). Volume 1785
of Lecture Notes in Computer Science., Springer-Verlag (2000) 157–171

30. Penczek, W., Woźna, B., Zbrzezny, A.: SAT-based bounded model checking for the
universal fragment of TCTL. Technical Report 947, ICS PAS, Ordona 21, 01-237
Warsaw (2002)

31. Penczek, W., Woźna, B., Zbrzezny, A.: Towards bounded model checking for the
universal fragment of TCTL. In: Proceedings of the 7th International Symposium
on Formal Techniques in Real-Time and Fault Tolerant Systems (FTRTFT’02). Vol-
ume 2469 of Lecture Notes in Computer Science., Springer-Verlag (2002) 265–288

A Logic for Knowledge, Correctness, and Real Time 15

32. Seshia, S., Bryant, R.: Unbounded, fully symbolic model checking of timed au-
tomata using boolean methods. In: Proceedings of the 15th International Confer-
ence on Computer Aided Verification (CAV’03). Volume 2725 of Lecture Notes in
Computer Science., Springer-Verlag (2003) 154–166

33. Tripakis, S., Yovine, S.: Analysis of timed systems using time-abstracting bisimu-
lations. Formal Methods in System Design 18 (2001) 25–68

34. Alur, R., Courcoubetis, C., Dill, D.: Model checking in dense real-time. Information
and Computation 104 (1993) 2–34

35. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Volume 53 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press (2001)

36. Kang, I., Lee, I.: An efficient state space generation for the analysis of real-time
systems. In: Proceedings of International Symposium on Software Testing and
Analysis. (1996)

37. Anderson, S., Kuster-Filipe, J.: Guaranteeing temporal validity with a real-time
logic of knowledge. In: Proceedings of the 1st International Workshop on Data
Distribution for Real-Time Systems (DDRTS’03), ICDCS 2003 Workshop, Provi-
dence, Rhode Island, USA (2003) 178–183

38. Brafman, R.I., Latombe, J.C., Moses, Y., , Shoham, Y.: Application of a logic of
knowledge to motion planning under uncertainty. Journal of the ACM 44 (1997)
633–668

39. Moses, Y., Bloom, B.: Knowledge, timed precedence and clocks. In: Proceedings
of the 13th ACM symposium on Principles of Distributed Computing, ACM Press
(1994) 274–303

40. Woźna, B., Lomuscio, A., Penczek, W.: Verification of deontic and epistemic prop-
erties of multiagent systems and its application to the bit transmission problem
with faults. In: Proceedings of the 2nd Workshop on Logic and Communication in
Multi-Agent Systems (LCMAS’04). (2004)

41. Lomuscio, A., Woźna, B., Penczek, W.: Bounded model checking for knowledge
over real time. In: Proceedings of the International Workshop on Concurrency,
Specification and Programming (CS&P’04). Volume 170 of Informatik-Berichte.
(2004) 398–414

42. Raimondi, F., Lomuscio, A.: Automatic verification of deontic interpreted sys-
tems by model checking via OBDD’s. In: Proceedings of the Sixteenth European
Conference on Artificial Intelligence (ECAI04). (2004)

Dynamic Logic for Plan Revision in Intelligent
Agents

M. Birna van Riemsdijk1, Frank S. de Boer1,2,3, and John-Jules Ch. Meyer1

1 ICS, Utrecht University, The Netherlands
2 CWI, Amsterdam, The Netherlands

3 LIACS, Leiden University, The Netherlands

Abstract. In this paper, we present a dynamic logic for a propositional
version of the agent programming language 3APL. A 3APL agent has
beliefs and a plan. The execution of a plan changes an agent’s beliefs.
Plans can be revised during execution. Due to these plan revision capa-
bilities of 3APL agents, plans cannot be analyzed by structural induction
as in for example standard propositional dynamic logic. We propose a
dynamic logic that is tailored to handle the plan revision aspect of 3APL.
For this logic, we give a sound and complete axiomatization.

1 Introduction

An agent is commonly seen as an encapsulated computer system that is situated
in some environment and that is capable of flexible, autonomous action in that
environment in order to meet its design objectives [1]. Programming these flexible
computing entities is not a trivial task. An important line of research in this area,
is research on cognitive agents. These are agents endowed with high-level mental
attitudes such as beliefs, desires, goals, plans, intentions, norms and obligations.
Intelligent cognitive agents should be able to reason with these mental attitudes
in order to exhibit the desired flexible problem solving behavior.

The very concept of (cognitive) agents is thus a complex one. It is imperative
that programmed agents be amenable to precise and formal specification and
verification, at least for some critical applications. This is recognized by (po-
tential) appliers of agent technology such as NASA, which organizes specialized
workshops on the subject of formal specification and verification of agents [2, 3].

In this paper, we are concerned with the verification of agents programmed
in (a simplified version of) the cognitive agent programming language 3APL1

[4, 5, 6]. This language is based on theoretical research on cognitive notions
[7, 8, 9, 10]. In the latest version [6], a 3APL agent has a set of beliefs, a plan
and a set of goals. The idea is, that an agent tries to fulfill its goals by selecting
appropriate plans, depending on its beliefs about the world. Beliefs should thus
represent the world or environment of the agent; the goals represent the state of

1 3APL is to be pronounced as “triple-a-p-l”.

J. Leite and P. Torroni (Eds.): CLIMA V, LNAI 3487, pp. 16–32, 2005.
�Springer-Verlag Berlin Heidelberg 2005

Dynamic Logic for Plan Revision in Intelligent Agents 17

the world the agent wants to realize and plans are the means to achieve these
goals.

As explained, cognitive agent programming languages are designed to pro-
gram flexible behavior using high-level mental attitudes. In the various lan-
guages, these attitudes are handled in different ways. An important aspect of
3APL is the way in which plans are dealt with. A plan in 3APL can be executed,
resulting in a change of the beliefs of the agent2. Now, in order to increase the
possible flexibility of agents, 3APL [4] was endowed with a mechanism with
which the programmer can program agents that can revise their plans during
execution of the agent. This is a distinguishing feature of 3APL compared to
other agent programming languages and architectures [11, 12, 13, 14]. The idea
is, that an agent should not blindly execute an adopted plan, but it should be
able to revise it under certain conditions. As this paper focusses on the plan
revision aspect of 3APL, we consider a version of the language with only beliefs
and plans, i.e., without goals. We will use a propositional and otherwise slightly
simplified variant of the original 3APL language as defined in [4].

In 3APL, the plan revision capabilities can be programmed through plan
revision rules. These rules consist of a head and a body, both representing a
plan. A plan is basically a sequence of so-called basic actions. These actions can
be executed. The idea is, informally, that an agent can apply a rule if it has a plan
corresponding to the head of this rule, resulting in the replacement of this plan
by the plan in the body of the rule. The introduction of these capabilities now
gives rise to interesting issues concerning the characteristics of plan execution,
as will become clear in the sequel. This has implications for reasoning about the
result of plan execution and therefore for the formal verification of 3APL agents,
which we are concerned with in this paper.

To be more specific, after defining (a simplified version of) 3APL and its
semantics (section 2), we propose a dynamic logic for proving properties of 3APL
plans in the context of plan revision rules (section 3). For this logic, we provide
a sound and complete axiomatization (section 4).

As for related work, verification of agents programmed in an agent program-
ming language has for example been addressed in [15]. This paper addresses
model checking of the agent programming language AgentSpeak. A sketch of
a dynamic logic to reason about 3APL agents has been given in [5]. This logic
however is designed to reason about a 3APL interpreter or deliberation language,
whereas in this paper we take a different viewpoint and reason about plans. In
[16], a programming logic (without axiomatization) was given for a fragment of
3APL without plan revision rules. Further, the operational semantics of plan
revision rules is similar to that of procedures in procedural programming. In
fact, plan revision rules can be viewed as an extension of procedures. Logics
and semantics for procedural languages are for example studied in De Bakker
[17]. Although the operational semantics of procedures and plan revision rules
are similar, techniques for reasoning about procedures cannot be used for plan

2 A change in the environment is a possible “side effect” of the execution of a plan.

18 M.B. van Riemsdijk, F.S. de Boer, and J.-J. Ch. Meyer

revision rules. This is due to the fact that the introduction of these rules results
in the semantics of the sequential composition operator no longer being com-
positional (see section 3). This issue has also been considered from a semantic
perspective in [18, 19]. In [20], a framework for planning in dynamic environ-
ments is presented in a logic programming setting. The approach is based on
hierarchical task network planning. The motivation for that work is similar to
the motivation for the introduction of plan revision rules.

To the best of our knowledge, this is the first attempt to design a logic and
deductive system for plan revision rules or similar language constructs. Consid-
ering the semantic difficulties that arise with the introduction of this type of
construct, it is not a priori obvious that it would be possible at all to design a
deductive system to reason about these constructs. The main aim of this work
was thus to investigate whether it is possible to define such a system and in
this way also to get a better theoretical understanding of the construct of plan
revision rules. Whether the system presented in this paper is also practically
useful to verify 3APL agents, remains to be seen and will be subject to further
research.

2 3APL

2.1 Syntax

Below, we define belief bases and plans. A belief base is a set of propositional
formulas. A plan is a sequence of basic actions and abstract plans. Basic actions
can be executed, resulting in a change to the beliefs of the agent. An abstract
plan can, in contrast with basic actions, not be executed directly in the sense
that it updates the belief base of an agent. Abstract plans serve as an abstraction
mechanism like procedures in procedural programming. If a plan consists of an
abstract plan, this abstract plan could be transformed into basic actions through
the application of plan revision rules, which will be introduced below3.

In the sequel, a language defined by inclusion shall be the smallest language
containing the specified elements.

Definition 1. (belief bases) Assume a propositional language L with typical
formula q and the connectives ∧ and ¬ with the usual meaning. Then the set of
belief bases Σ with typical element σ is defined to be ℘(L).4

Definition 2. (plans) Assume that a set BasicAction with typical element a is
given, together with a set AbstractPlan with typical element p. Then the set of
plans Π with typical element π is defined as follows:

– BasicAction ∪ AbstractPlan ⊆ Π,
– if c ∈ (BasicAction ∪ AbstractPlan) and π ∈ Π then c ;π ∈ Π.

3 Abstract plans could also be modelled as non-executable basic actions.
4 ℘(L) denotes the powerset of L.

Dynamic Logic for Plan Revision in Intelligent Agents 19

Basic actions and abstract plans are called atomic plans and are typically de-
noted by c. For technical convenience, plans are defined to have a list structure,
which means strictly speaking, that we can only use the sequential composition
operator to concatenate an atomic plan and a plan, rather than concatenating
two arbitrary plans. In the following, we will however also use the sequential
composition operator to concatenate arbitrary plans π1 and π2 yielding π1;π2.
The operator should in this case be read as a function taking two plans that
have a list structure and yielding a new plan that also has this structure. The
plan π1 will thus be the prefix of the resulting plan.

We use ε to denote the empty plan, which is an empty list. The concatenation
of a plan π and the empty list is equal to π, i.e., ε;π and π; ε are identified with
π.

A plan and a belief base can together constitute a so-called configuration.
During computation or execution of the agent, the elements in a configuration
can change.

Definition 3. (configuration) Let Σ be the set of belief bases and let Π be the
set of plans. Then Π × Σ is the set of configurations of a 3APL agent.

Plan revision rules consist of a head πh and a body πb. Informally, an agent that
has a plan πh, can replace this plan by πb when applying a plan revision rule of
this form.

Definition 4. (plan revision (PR) rules) The set of PR rules R is defined as
follows: R = {πh � πb | πh, πb ∈ Π,πh �= ε}.5

Take for example a plan a; b where a and b are basic actions, and a PR rule
a; b � c. The agent can then either execute the actions a and b one after the
other, or it can apply the PR rule yielding a new plan c, which can in turn be
executed. A plan p consisting of an abstract plan cannot be executed, but can
only be transformed using a procedure-like PR rule such as p � a.

Below, we provide the definition of a 3APL agent. The function T , taking a
basic action and a belief base and yielding a new belief base, is used to define
how belief bases are updated when a basic action is executed.
Definition 5. (3APL agent) A 3APL agent A is a tuple
〈Rule, T 〉 where Rule ⊆ R is a finite set of PR rules and T : (BasicAction×σ) → σ
is a partial function, expressing how belief bases are updated through basic ac-
tion execution.

2.2 Semantics

The semantics of a programming language can be defined as a function taking a
statement and a state, and yielding the set of states resulting from executing the

5 In [4], PR rules were defined to have a guard, i.e., rules were of the form πh | φ � πb.
For a rule to be applicable, the guard should then hold. For technical convenience
and because we want to focus on the plan revision aspect of these rules, we however
leave out the guard in this paper. The results could be extended for rules with a
guard.

20 M.B. van Riemsdijk, F.S. de Boer, and J.-J. Ch. Meyer

initial statement in the initial state. In this way, a statement can be viewed as
a transformation function on states. In 3APL, plans can be seen as statements
and belief bases as states on which these plans operate. There are various ways
of defining a semantic function and in this paper we are concerned with the
so-called operational semantics (see for example De Bakker [17] for details on
this subject).

The operational semantics of a language is usually defined using transition
systems [21]. A transition system for a programming language consists of a set of
axioms and derivation rules for deriving transitions for this language. A transi-
tion is a transformation of one configuration into another and it corresponds to a
single computation step. Let A = 〈Rule, T 〉 be a 3APL agent and let BasicAction
be a set of basic actions. Below, we give the transition system TransA for our sim-
plified 3APL language, which is based on the system given in [4]. This transition
system is specific to agent A.

There are two kinds of transitions, i.e., transitions describing the execution
of basic actions and those describing the application of a plan revision rule. The
transitions are labelled to denote the kind of transition. A basic action at the
head of a plan can be executed in a configuration if the function T is defined for
this action and the belief base in the configuration. The execution results in a
change of belief base as specified through T and the action is removed from the
plan.

Definition 6. (action execution) Let a ∈ BasicAction.

T (a, σ) = σ′

〈a;π, σ〉 →exec 〈π, σ′〉

A plan revision rule can be applied in a configuration if the head of the rule is
equal to a prefix of the plan in the configuration. The application of the rule
results in the revision of the plan, such that the prefix equal to the head of the
rule is replaced by the plan in the body of the rule. A rule a; b � c can for
example be applied to the plan a; b; c, yielding the plan c; c. The belief base is
not changed through plan revision.

Definition 7. (rule application) Let ρ : πh � πb ∈ Rule.

〈πh;π, σ〉 →app 〈πb;π, σ〉

In the sequel, it will be useful to have a function taking a PR rule and a plan,
and yielding the plan resulting from the application of the rule to this given
plan. Based on this function, we also define a function taking a set of PR rules
and a plan and yielding the set of rules applicable to this plan.

Definition 8. (rule application) Let R be the set of PR rules and let Π be
the set of plans. Let ρ : πh � πb ∈ R and π, π′ ∈ Π. The partial function
apply : (R× Π) → Π is then defined as follows.

apply(ρ)(π) =
{

πb;π′ if π = πh;π′,
undefined otherwise.

Dynamic Logic for Plan Revision in Intelligent Agents 21

The function applicable : (℘(R) × Π) → ℘(R) yielding the set of rules appli-
cable to a certain plan, is then as follows: applicable(Rule, π) = {ρ ∈ Rule |
apply(ρ)(π) is defined}.

Using the transition system, individual transitions can be derived for a 3APL
agent. These transitions can be put in sequel, yielding transition sequences. From
a transition sequence, one can obtain a computation sequence by removing the
plan component of all configurations occurring in the transition sequence. In the
following definitions, we formally define computation sequences and we specify
the function yielding these sequences, given an initial configuration.

Definition 9. (computation sequences) The set Σ+ of finite computation se-
quences is defined as {σ1, . . . , σi, . . . , σn | σi ∈ Σ, 1 ≤ i ≤ n, n ∈ N}.

Definition 10. (function for calculating computation sequences) Let
xi ∈ {exec, app} for 1 ≤ i ≤ m. The function CA : (Π × Σ) → ℘(Σ+) is
then as defined below.

CA(π, σ) = {σ, . . . , σm ∈ Σ+ | θ = 〈π, σ〉 →x1 . . . →xm
〈ε, σm〉

is a finite sequence of transitions in TransA}.

Note that we only take into account successfully terminating transition se-
quences, i.e., those sequences ending in a configuration with an empty plan.
Using the function defined above, we can now define the operational semantics
of 3APL.

Definition 11. (operational semantics) Let κ : ℘(Σ+) → ℘(Σ) be a function
yielding the last elements of a set of finite computation sequences, which is
defined as follows: κ(∆) = {σn | σ1, . . . , σn ∈ ∆}. The operational semantic
function OA : Π → (Σ → ℘(Σ)) is defined as follows:

OA(π)(σ) = κ(CA(π, σ)).

We will sometimes omit the superscript A from functions as defined above, for
reasons of presentation. The example below is used to explain the definition of
the operational semantics.

Example 1. Let A be an agent with PR rules {p; a � b, p � c}, where p is an
abstract plan and a, b, c are basic actions. Let σa be the belief base resulting
from the execution of a in σ, i.e., T (a, σ) = σa, let be σab the belief resulting
from executing first a and then b in σ, etc.

Then CA(p; a)(σ) = {(σ, σ, σb), (σ, σ, σc, σca)}, which is based on the transi-
tion sequences 〈p; a, σ〉 →app 〈b, σ〉 →exec 〈ε, σb〉 and 〈p; a, σ〉 →app 〈c; a, σ〉 →exec

〈a, σc〉 →exec 〈ε, σca〉. We thus have that OA(p; a)(σ) = {σb, σca}.

22 M.B. van Riemsdijk, F.S. de Boer, and J.-J. Ch. Meyer

3 Dynamic Logic

In programming language research, an important area is the specification and
verification of programs. Program logics are designed to facilitate this process.
One such logic is dynamic logic [22, 23], with which we are concerned in this
paper. In dynamic logic, programs are explicit syntactic constructs in the logic.
To be able to discuss the effect of the execution of a program π on the truth of
a formula φ, the modal construct [π]φ is used. This construct intuitively states
that in all states in which π halts, the formula φ holds.

Programs in general are constructed from atomic programs and composition
operators. An example of a composition operator is the sequential composition
operator (;), where the program π1;π2 intuitively means that π1 is executed first,
followed by the execution of π2. The semantics of such a compound program can
in general be determined by the semantics of the parts of which it is composed.
This compositionality property allows analysis by structural induction (see also
[24]), i.e., analysis of a compound statement by analysis of its parts. Analysis of
the sequential composition operator by structural induction can in dynamic logic
be expressed by the following formula, which is usually a validity: [π1;π2]φ ↔
[π1][π2]φ. For 3APL plans on the contrary, this formula does not always hold.
This is due to the presence of PR rules.

We will informally explain this using the 3APL agent of example 1. As ex-
plained, the operational semantics of this agent, given initial plan p; a and initial
state σ, is as follows: O(p; a)(σ) = {σb, σca}. Now compare the result of first “ex-
ecuting”6 p in σ and then executing a in the resulting belief base, i.e., compare
the set O(a)(O(p)(σ)). In this case, there is only one successfully terminating
transition sequence and it ends in σca, i.e., O(a)(O(p)(σ)) = {σca}. Now, if it
would be the case that σca |= φ but σb �|= φ, the formula [p; a]φ ↔ [p][a]φ would
not hold7.

Analysis of plans by structural induction in this way thus does not work for
3APL. In order to be able to prove correctness properties of 3APL programs
however, one can perhaps imagine that it is important to have some kind of
induction. As we will show in the sequel, the kind of induction that can be
used to reason about 3APL programs, is induction on the number of PR rule
applications in a transition sequence. We will introduce a dynamic logic for 3APL
based on this idea.

3.1 Syntax

In order to be able to do induction on the number of PR rule applications in
a transition sequence, we introduce so-called restricted plans. These are plans,

6 We will use the word “execution” in two ways. Firstly, as in this context, we will use
it to denote the execution of an arbitrary plan in the sense of going through several
transition of type exec or app, starting in a configuration with this plan and resulting
in some final configurations. Secondly, we will use it to refer to the execution of a
basic action in the sense of going through a transition of type exec.

7 In particular, the implication would not hold from right to left.

Dynamic Logic for Plan Revision in Intelligent Agents 23

annotated with a natural number8. Informally, if the restriction parameter of a
plan is n, the number of rule applications during execution of this plan cannot
exceed n.

Definition 12. (restricted plans) Let Π be the language of plans and let N
− =

N ∪ {−1}. Then, the language Πr of restricted plans is defined as {π�n | π ∈
Π,n ∈ N

−}.

Below, we define the language of dynamic logic in which properties of 3APL
agents can be expressed. In the logic, one can express properties of restricted
plans. As will become clear in the sequel, one can prove properties of the plan
of a 3APL agent by proving properties of restricted plans.

Definition 13. (plan revision dynamic logic (PRDL)) Let π �n∈ Πr be a re-
stricted plan. Then the language of dynamic logic LPRDL with typical element φ
is defined as follows:

– L ⊆ LPRDL,
– if φ ∈ LPRDL, then [π�n]φ ∈ LPRDL,
– if φ, φ′ ∈ LPRDL, then ¬φ ∈ LPRDL and φ ∧ φ′ ∈ LPRDL.

3.2 Semantics

In order to define the semantics of PRDL, we first define the semantics of re-
stricted plans. As for ordinary plans, we also define an operational semantics for
restricted plans. We do this by defining a function for calculating computation
sequences, given an initial restricted plan and a belief base.

Definition 14. (function for calculating computation sequences) Let
xi ∈ {exec, app} for 1 ≤ i ≤ m. Let Napp(θ) be a function yielding the number
of transitions of the form si →app si+1 in the sequence of transitions θ. The
function CA

r : (Πr × Σ) → ℘(Σ+) is then as defined below.

CA
r (π�n, σ) = {σ, . . . , σm ∈ Σ+ | θ = 〈π, σ〉 →x1 . . . →xm

〈ε, σm〉
is a finite sequence of transitions in TransA where 0 ≤ Napp(θ) ≤ n}

As one can see in the definition above, the computation sequences CA
r (π�n, σ)

are based on transition sequences starting in configuration 〈π, σ〉. The number
of rule applications in these transition sequences should be between 0 and n, in
contrast with the function CA of definition 10, in which there is no restriction
on this number.

Based on the function CA
r , we define the operational semantics of restricted

plans by taking the last elements of the computation sequences yielded by CA
r .

The set of belief bases is empty if the restriction parameter is equal to −1.

8 Or with the number −1. The number −1 is introduced for technical convenience and
it will become clear in the sequel why we need this.

24 M.B. van Riemsdijk, F.S. de Boer, and J.-J. Ch. Meyer

Definition 15. (operational semantics) Let κ be as in definition 11. The oper-
ational semantic function OA

r : Πr → (Σ → ℘(Σ)) is defined as follows:

OA
r (π�n)(σ) =

{
κ(CA

r (π�n, σ)) if n ≥ 0,
∅ if n = −1.

In the following proposition, we relate the operational semantics of plans and
the operational semantics of restricted plans.

Proposition 1. ⋃
n∈ N

Or(π�n)(σ) = O(π)(σ)

Proof. Immediate from definitions 15, 14, 11 and 10.

Using the operational semantics of restricted plans, we can now define the se-
mantics of the dynamic logic.

Definition 16. (semantics of PRDL) Let q ∈ L be a propositional formula, let
φ, φ′ ∈ LPRDL and let |=L be the entailment relation defined for L as usual. The
semantics |=A of LPRDL is then as defined below.

σ |=A q ⇔ σ |=L q
σ |=A [π�n]φ ⇔ ∀σ′ ∈ OA

r (π�n)(σ) : σ′ |=A φ
σ |=A ¬φ ⇔ σ �|=A φ
σ |=A φ ∧ φ′ ⇔ σ |=A φ and σ |=A φ′

As OA
r is defined in terms of agent A, so is the semantics of LPRDL. We use

the subscript A to indicate this. Let Rule ⊆ R be a finite set of PR rules. If
∀T , σ : σ |=〈Rule,T 〉 φ, we write |=Rule φ.

In the dynamic logic PRDL, one can express properties of restricted plans,
rather than of ordinary 3APL plans. The operational semantics of ordinary plans
O and of restricted plans Or are however related (proposition 1). As the seman-
tics of the construct [π�n]σ is defined in terms of Or, we can use this construct
to specify properties of 3APL plans, as shown by the following corollary.

Corollary 1.

∀n ∈ N : σ |=A [π�n]φ ⇔ ∀σ′ ∈ OA(π)(σ) : σ′ |=A φ

Proof. Immediate from proposition 1 and definition 16.

4 The Axiom System

In order to prove properties of restricted plans, we propose a deductive system
for PRDL in this section. Rather than proving properties of restricted plans,
the aim is however to prove properties of 3APL plans. We thus want to prove
properties of the form ∀n ∈ N : [π�n]φ, as these are directly related to 3APL by
corollary 1. The idea now is, that these properties can be proven by induction
on n. We will explain this in more detail after introducing the axiom system for
restricted plans.

Dynamic Logic for Plan Revision in Intelligent Agents 25

Definition 17. (axiom system (ASRule)) Let BasicAction be a set of basic ac-
tions, AbstractPlan be a set of abstract plans and Rule ⊆ R be a finite set of
PR rules. Let a ∈ BasicAction, let p ∈ AbstractPlan, let c ∈ (BasicAction ∪
AbstractPlan) and let ρ range over applicable(Rule, c;π). The following are then
the axioms of the system ASRule.

(PRDL1) [π�−1]φ
(PRDL2) [p�0]φ
(PRDL3) [ε�n]φ ↔ φ if 0 ≤ n
(PRDL4) [c;π�n]φ ↔ [c�0][π�n]φ ∧

∧
ρ[apply(ρ, c;π)�n−1]φ if 0 ≤ n

(PL) axioms for propositional logic
(PDL) [π�n](φ → φ′) → ([π�n]φ → [π�n]φ′)

The following are the rules of the system ASRule.

(GEN)
φ

[π�n]φ

(MP)
φ1, φ1 → φ2

φ2

As the axiom system is relative to a given set of PR rules Rule, we will use the
notation �Rule φ to specify that φ is derivable in the system ASRule above.

The idea is that properties of the form ∀n ∈ N : �Rule [π�n]φ can be proven by
induction on n as follows. If we can prove [π�0]φ and ∀n ∈ N : ([π�n]φ �Rule [π�n+1

]φ), we can conclude the desired property. These premises should be proven using
the axiom system above. Consider for example an agent with a PR rule a � a; a
and assume that T is defined such that [a�0]φ. One can then prove ∀n : [a�n]φ
by proving [a�n]φ �Rule [a�n+1]φ, for arbitrary n.

We will now explain the PRDL axioms of the system. The other axioms and
the rules are standard for propositional dynamic logic (PDL) [22]. We start by
explaining the most interesting axiom: (PRDL4). We first observe that there are
two types of transitions that can be derived for a 3APL agent: action execution
and rule application (see definitions 6 and 7). Consider a configuration 〈a;π, σ〉
where a is a basic action. Then during computation, possible next configurations
are 〈π, σ′〉9 (action execution) and 〈apply(ρ, a;π), σ〉 (rule application) where ρ
ranges over the applicable rules, i.e., applicable(Rule, a;π)10. We can thus analyze
the plan a;π by analyzing π after the execution of a, and the plans resulting
from applying a rule, i.e., apply(ρ, a;π)11. The execution of an action can be

9 Assuming that T (a, σ) = σ′.
10 See definition 8 for the definitions of the functions apply and applicable.
11 Note that one could say we analyze a plan a; π partly by structural induction, as it

is partly analyzed in terms of a and π.

26 M.B. van Riemsdijk, F.S. de Boer, and J.-J. Ch. Meyer

represented by the number 0 as restriction parameter, yielding the first term of
the right-hand side of (PRDL4): [a�0][π�n]φ12. The second term is a conjunction
of [apply(ρ, c;π)�n−1]φ over all applicable rules ρ. The restriction parameter is
n−1 as we have “used” one of our n permitted rule applications. The first three
axioms represent basic properties of restricted plans. (PRDL1) can be used to
eliminate the second term on the right-hand side of axiom (PRDL4), if the left-
hand side is [c;π�0]φ. (PRDL2) can be used to eliminate the first term on the
right-hand side of (PRDL4), if c is an abstract plan. As abstract plans can only
be transformed through rule application, there will be no resulting states if the
restriction parameter of the abstract plan is 0, i.e., if no rule applications are
allowed. (PRDL3) states that if φ is to hold after execution of the empty plan, it
should hold “now”. It can be used to derive properties of an atomic plan c, by
using axiom (PRDL4) with the plan c; ε.

Example 2. Let A be an agent with one PR rule, i.e., Rule = {a; b � c} and let
T be such that [a�0]φ, [b�0]φ and [c�0]φ. We now want to prove that ∀n : [a; b�n]φ.
We have [a; b�0]φ by using that this is equivalent to [a�0][b�0]φ by proposition
3 (section 4.1). The latter formula can be derived by applying (GEN) to [b�0]φ.
We prove ∀n ∈ N : ([a; b�n]φ �Rule [a; b�n+1]φ) by taking an arbitrary n and
proving that [a; b�n]φ �Rule [a; b�n+1]φ. Using (PRDL4) and (PRDL3), we have
the following equivalences. In order to apply (PRDL4) to the conjunct [c�n−1]φ,
n has to be greater than 0. This is however not a problem, as the result was
proven separately for n = 0.

[a; b�n]φ ↔ [a�0][b�n]φ ∧ [c�n−1]φ
↔ [a�0][b�0][ε�n]φ ∧ [c�0][ε�n−1]φ
↔ [a�0][b�0]φ ∧ [c�0]φ

Similarly, we have the following equivalences for [a; b�n+1]φ, yielding the desired
result.

[a; b�n+1]φ ↔ [a�0][b�n+1]φ ∧ [c�n]φ
↔ [a�0][b�0][ε�n+1]φ ∧ [c�0][ε�n]φ
↔ [a�0][b�0]φ ∧ [c�0]φ

4.1 Soundness and Completeness

The axiom system of definition 17 is sound.

Theorem 1. (soundness) Let φ ∈ LPRDL. Let Rule ⊆ R be an arbitrary finite
set of PR rules. Then the axiom system ASRule is sound, i.e.:

�Rule φ ⇒ |=Rule φ.

Proof. We prove soundness of the PRDL axioms of the system ASRule.
(PRDL1) The proof is through observing that Or(π�−1)(σ) = ∅ by definition 15.

12 In our explanation, we consider the case where c is a basic action, but the axiom
holds also for abstract plans.

Dynamic Logic for Plan Revision in Intelligent Agents 27

(PRDL2) The proof is analogous to the proof of axiom (PRDL1), with p for π
and 0 for −1 and using definition 6 to derive that OA

r (p�0)(σ) = ∅.
(PRDL3) The proof is through observing that κ(Cr(ε�n, σ)) = {σ} by definition
14.
(PRDL4) Let π ∈ Π be an arbitrary plan and φ ∈ LPRDL be an arbitrary PRDL
formula.
To prove: ∀T , σ : σ |=〈Rule,T 〉 [c;π�n]φ ↔ [c�0][π�n]φ ∧

∧
ρ[apply(ρ, c;π)�n−1]φ,

i.e.:
∀T , σ : σ |=〈Rule,T 〉 [c;π�n]φ ⇔ ∀T , σ : σ |=〈Rule,T 〉 [c�0][π�n]φ and

∀T , σ : σ |=〈Rule,T 〉
∧
ρ

[apply(ρ, c;π)�n−1]φ.

Let σ ∈ Σ be an arbitrary belief base and let T be an arbitrary belief update
function. Assume c ∈ BasicAction and furthermore assume that 〈c;π, σ〉 →execute

〈π, σ1〉 is a transition in TransA, i.e., κ(CA
r (c�0, σ)) = {σ1} by definition 14. Let

ρ range over applicable(Rule, c;π). Now, observe the following by definition 14:

κ(CA
r (c;π�n, σ)) = κ(CA

r (π�n, σ1)) ∪
⋃
ρ

κ(CA
r (apply(ρ, c;π)�n−1, σ)). (1)

If c ∈ AbstractPlan or if a transition of the form 〈c;π, σ〉 →execute 〈π, σ1〉 is not
derivable, the first term of the right-hand side of (1) is empty.

(⇒) Assume σ |=Rule [c;π�n]φ, i.e., by definition 16 ∀σ′ ∈ OA
r (c;π�n, σ) : σ′ |=Rule

φ, i.e., by definition 15:

∀σ′ ∈ κ(CA
r (c;π�n, σ)) : σ′ |=Rule φ. (2)

To prove: (A) σ |=Rule [c�0][π�n]φ and (B) σ |=Rule

∧
ρ[apply(ρ, c;π)�n−1]φ.

(A) If c ∈ AbstractPlan or if a transition of the form 〈c;π, σ〉 →execute 〈π, σ1〉 is
not derivable, the desired result follows immediately from axiom (PRDL2) or an
analogous proposition for non executable basic actions. If c ∈ BasicAction, we
have the following from definitions 16 and 15.

σ |=Rule [c�0][π�n]φ ⇔ ∀σ′ ∈ OA
r (c�0, σ) : σ′ |=Rule [π�n]φ

⇔ ∀σ′ ∈ OA
r (c�0, σ) : ∀σ′′ ∈ OA

r (π�n, σ′) : σ′′ |=Rule φ
⇔ ∀σ′ ∈ κ(CA

r (c�0, σ)) : ∀σ′′ ∈ κ(CA
r (π�n, σ′)) : σ′′ |=Rule φ

⇔ ∀σ′′ ∈ κ(CA
r (π�n, σ1)) : σ′′ |=Rule φ

(3)

From 1, we have that κ(CA
r (π�n, σ1)) ⊆ κ(CA

r (c;π�n, σ)). From this and assump-
tion (2), we can now conclude the desired result (3).

(B) Let c ∈ (BasicAction ∪ AbstractPlan) and let ρ ∈ applicable(Rule, c;π). Then
we want to prove σ |=Rule [apply(ρ, c;π)�n−1]φ. From definitions 16 and 15, we
have the following.

σ |=Rule [apply(ρ, c;π)�n−1]φ ⇔ ∀σ′ ∈ OA
r (apply(ρ, c;π)�n−1, σ) : σ′ |=Rule φ

⇔ ∀σ′ ∈ κ(CA
r (apply(ρ, c;π)�n−1, σ)) : σ′ |=Rule φ

(4)

28 M.B. van Riemsdijk, F.S. de Boer, and J.-J. Ch. Meyer

From 1, we have that κ(CA
r (apply(ρ, c;π)�n−1, σ)) ⊆ κ(CA

r (c;π�n, σ)). From this
and assumption (2), we can now conclude the desired result (4).

(⇐) Assume σ |=Rule [c�0][π�n]φ and σ |=Rule

∧
ρ[apply(ρ, c;π)�n−1]φ, i.e., ∀σ′ ∈

κ(CA
r (π�n, σ1)) : σ′ |=Rule φ (3) and ∀σ′ ∈ κ(CA

r (apply(ρ, c;π)�n−1, σ)) : σ′ |=Rule

φ (4).
To prove: σ |=Rule [c;π �n]φ, i.e., ∀σ′ ∈ κ(CA

r (c;π �n, σ)) : σ′ |=Rule φ (2). If
c ∈ AbstractPlan or if a transition of the form 〈c;π, σ〉 →execute 〈π, σ1〉 is not
derivable, we have that κ(CA

r (c;π�n, σ)) =
⋃

ρ κ(CA
r (apply(ρ, c;π)�n−1, σ)) (1).

From this and the assumption, we have the desired result.
If c ∈ BasicAction and a transition of the form 〈c;π, σ〉 →execute 〈π, σ1〉 is

derivable, we have (1). From this and the assumption, we again have the desired
result.

In order to prove completeness of the axiom system, we first prove proposition
2, which says that any formula from LPRDL can be rewritten into an equivalent
formula where all restriction parameters are 0. This proposition is proven by
induction on the size of formulas. The size of a formula is defined by means of
the function size : LPRDL → N

3. This function takes a formula from LPRDL and
yields a triple 〈x, y, z〉, where x roughly corresponds to the sum of the restriction
parameters occurring in the formula, y roughly corresponds to the sum of the
length of plans in the formula and z is the length of the formula.

Definition 18. (size) Let the following be a lexicographic ordering on tuples
〈x, y, z〉 ∈ N

3:

〈x1, y1, z1〉 < 〈x2, y2, z2〉 iff x1 < x2 or
(x1 = x2 and y1 < y2) or (x1 = x2 and y1 = y2 and z1 < z2).

Let max be a function yielding the maximum of two tuples from N
3 and let f

and s respectively be functions yielding the first and second element of a tuple.
Let l be a function yielding the number of symbols of a syntactic entity and let
q ∈ L. The function size : LPRDL → N

3 is then as defined below.

size(q) = 〈0, 0, l(q)〉

size([π�n]φ) =
{
〈n + f(size(φ)), l(π) + s(size(φ)), l([π�n]φ)〉 if n > 0
〈f(size(φ)), s(size(φ)), l([π�n]φ)〉 otherwise

size(¬φ) = 〈f(size(φ)), s(size(φ)), l(¬φ)〉
size(φ ∧ φ′) = 〈f(max(size(φ), size(φ′))), s(max(size(φ), size(φ′))), l(φ ∧ φ′)〉

In the proof of proposition 2, we use the following lemma. The first clause spec-
ifies that the right-hand side of axiom (PRDL4) is smaller than the left-hand
side. This axiom will usually be used by applying it from left to right to prove a
formula such as [π�n]φ. Intuitively, the fact that the formula will get “smaller”
as specified through the function size, suggests convergence of the deduction
process.

Lemma 1. Let φ ∈ LPRDL, let c ∈ (BasicAction ∪ AbstractPlan), let ρ range
over applicable(Rule, c;π) and let n > 0. The following then holds:

Dynamic Logic for Plan Revision in Intelligent Agents 29

1. size([c�0][π�n]φ ∧
∧

ρ[apply(ρ, c;π)�n−1]φ) < size([c;π�n]φ),
2. size(φ) < size(φ ∧ φ′) and size(φ′) < size(φ ∧ φ′).

Proof. The proof is simply by applying definition 18.

Proposition 2. Any formula φ ∈ LPRDL can be rewritten into an equivalent
formula φPDL where all restriction parameters are 0, i.e.:

∀φ ∈ LPRDL : ∃φPDL ∈ LPRDL : size(φPDL) = 〈0, 0, l(φPDL)〉 and �Rule φ ↔ φPDL.

Proof. The fact that a formula φ has the property that it can be rewritten as
specified in the proposition, will be denoted by PDL(φ) for reasons that will
become clear in the sequel. The proof is by induction on size(φ).

– φ ≡ q
size(q) = 〈0, 0, l(q)〉 and let qPDL = q, then PDL(q).

– φ ≡ [π�n]φ′

If n = −1, we have that [π�n]φ′ is equivalent with � (PRDL1). As PDL(�),
we also have PDL([π�n]φ′) in this case.

Let n = 0. We then have that size([π�n]φ′) = 〈f(size(φ′)), s(size(φ′)),
l([π�n]φ′)〉 is greater than size(φ′) = 〈f(size(φ′)), s(size(φ′)), l(φ′)〉. By in-
duction, we then have PDL(φ′), i.e., φ′ can be rewritten into an equivalent
formula φ′

PDL, such that size(φ′
PDL) = 〈0, 0, l(φ′

PDL)〉. As size([π�n]φ′
PDL) =

〈0, 0, l([π�n]φ′
PDL)〉, we have PDL([π�n]φ′

PDL) and therefore PDL([π�n]φ′).
Let n > 0. Let π ≡ ε. By lemma 1, we have size(φ′) < size([ε�n]φ′).

Therefore, by induction, PDL(φ′). As [ε�n]φ′ is equivalent with φ′ by axiom
(PRDL3), we also have PDL([ε�n]φ′). Now let π ≡ c;π′ and let L = [c;π′�n]φ′

and R = [c�0][π′�n]φ′ ∧
∧

ρ[apply(ρ, c;π′)�n−1]φ′. By lemma 1, we have that
size(R) < size(L). Therefore, by induction, we have PDL(R). As R and L
are equivalent by axiom (PRDL4), we also have PDL(L), yielding the desired
result.

– φ ≡ ¬φ′

We have that size(¬φ′) = 〈f(size(φ′)), s(size(φ′)), l(¬φ′)〉, which is greater
than size(φ′). By induction, we thus have PDL(φ′) and
size(φ′

PDL) = 〈0, 0, l(φ′
PDL)〉. Then, size(¬φ′

PDL) = 〈0, 0, l(¬φ′
PDL)〉 and thus

PDL(¬φ′
PDL) and therefore PDL(¬φ′).

– φ ≡ φ′ ∧ φ′′

By lemma 1, we have size(φ′) < size(φ′ ∧φ′′) and size(φ′′) < size(φ′ ∧ φ′′).
Therefore, by induction, PDL(φ′) and PDL(φ′′) and therefore size(φ′

PDL) =
〈0, 0, l(φ′

PDL)〉 and size(φ′′
PDL) = 〈0, 0, l(φ′′

PDL)〉. Then, size(φ′
PDL ∧ φ′′

PDL) =
〈0, 0, l(φ′

PDL∧φ′′
PDL)〉 and therefore size((φ′∧φ′′)PDL) = 〈0, 0, l((φ′∧φ′′)PDL)〉

and we can conclude PDL((φ′ ∧ φ′′)PDL) and thus PDL(φ′ ∧ φ′′).

Although structural induction is not possible for plans in general, it is possible
if we only consider action execution, i.e., if the restriction parameter is 0. This is
specified in the following proposition, from which we can conclude that a formula
φ with size(φ) = 〈0, 0, l(φ)〉 satisfies all standard PDL properties.

30 M.B. van Riemsdijk, F.S. de Boer, and J.-J. Ch. Meyer

Proposition 3. (sequential composition) Let Rule ⊆ R be a finite set of PR
rules. The following is then derivable in the axiom system ASRule.

�Rule [π1;π2�0]φ ↔ [π1�0][π2�0]φ

Proof. The proof is through repeated application of axiom (PRDL4), first from
left to right and then from right to left (also using axiom (PRDL1) to eliminate
the rule application part of the axiom).

Theorem 2. (completeness) Let φ ∈ LPRDL and let Rule ⊆ R be a finite set of
PR rules. Then the axiom system ASRule is complete, i.e.:

|=Rule φ ⇒ �Rule φ.

Proof. Let φ ∈ LPRDL. By proposition 2 we have that a formula φPDL exists such
that �Rule φ ↔ φPDL and size(φPDL) = 〈0, 0, l(φPDL)〉 and therefore by soundness
of ASRule also |=Rule φ ↔ φPDL. Let φPDL be a formula with these properties.

|=Rule φ ⇔ |=Rule φPDL (|=Rule φ ↔ φPDL)
⇒ �Rule φPDL (completeness of PDL)
⇔ �Rule φ (�Rule φ ↔ φPDL)

The second step in this proof needs some justification. The general idea is, that
all PDL axioms and rules are applicable to a formula φPDL and moreover, these
axioms and rules are contained in our axiom system ASRule. As PDL is complete,
we have |=Rule φPDL ⇒ �Rule φPDL. There are however some subtleties to be
considered, as our action language is not exactly the same as the action language
of PDL, nor is it a subset (at first sight).

In particular, the action language of PDL does not contain abstract plans or
the empty action ε. These are axiomatized in the system ASRule and the question
is, how these axioms relate to the axiom system for PDL. It turns out, that the
semantics of p�0 and ε�0 (or ε�n, for that matter) correspond respectively to
the special PDL actions fail (no resulting states if executed) and skip (the
identity relation). These actions are respectively defined as 0? and 1?. Filling
in these actions in the axiom for test ([ψ?]φ ↔ (ψ → φ)), we get the following,
corresponding exactly with the axioms (PRDL2) and (PRDL3).

[0?]φ ↔ (0 → φ) ⇔ [0?]φ ⇔ [fail]φ
[1?]φ ↔ (1 → φ) ⇔ [1?]φ ↔ φ ⇔ [skip]φ ↔ φ

Our axiom system is complete for formulas φPDL, because it contains the PDL
axioms and rules that are applicable to these formulas, that is, the axiom for
sequential composition, the axioms for fail and skip as stated above, the axiom
for distribution of box over implication and the rules (MP) and (GEN). The
axiom for sequential composition is not explicitly contained in ASRule, but is
derivable for formulas φPDL by proposition 3. Axiom (PRDL3), i.e., the more
general version of [ε�0]φ ↔ φ, is needed in the proof of proposition 2, which is
used elsewhere in this completeness proof.

Dynamic Logic for Plan Revision in Intelligent Agents 31

5 Conclusion and Future Research

In this paper, we presented a dynamic logic for reasoning about 3APL agents,
tailored to handle the plan revision aspect of the language. As we argued, 3APL
plans cannot be analyzed by structural induction. Instead, we proposed a logic
of restricted plans, which should be used to prove properties of 3APL plans by
doing induction on the restriction parameter.

Being able to do structural induction is usually considered an essential prop-
erty of programs in order to reason about them. As 3APL plans lack this prop-
erty, it is not at all obvious that it should be possible to reason about them,
especially using a clean logic with sound and complete axiomatization. The fact
that we succeeded in providing such a logic, thus at least demonstrates this
possibility.

We did some preliminary experiments in actually using the logic to prove
properties of certain 3APL agents. More research is however needed to establish
the practical usefulness of the logic to prove properties of 3APL agents and the
possibility to do for example automated theorem proving. In this light, incorpo-
ration of interaction with an environment in the semantics is also an important
issue for future research.

References

1. Wooldridge, M.: Agent-based software engineering. IEEE Proceedings Software
Engineering 144 (1997) 26–37

2. Rash, J., Rouff, C., Truszkowski, W., Gordon, D., Hinchey, M., eds.: Formal Ap-
proaches to Agent-Based Systems (Proceedings of FAABS’01). Volume 1871 of
LNAI., Berlin, Springer (2001)

3. Hinchey, M., Rash, J., Truszkowski, W., Rouff, C., Gordon-Spears, D., eds.: Formal
Approaches to Agent-Based Systems (Proceedings of FAABS’02). Volume 2699 of
LNAI., Berlin, Springer (2003)

4. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.J.Ch.: Agent program-
ming in 3APL. Int. J. of Autonomous Agents and Multi-Agent Systems 2 (1999)
357–401

5. van Riemsdijk, M.B., van der Hoek, W., Meyer, J.J.Ch.: Agent programming in
Dribble: from beliefs to goals using plans. In: Proceedings of the Second Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems (AA-
MAS’03), Melbourne (2003) 393–400

6. Dastani, M., van Riemsdijk, M.B., Dignum, F., Meyer, J.J.Ch.: A programming
language for cognitive agents: goal directed 3APL. In: Programming multia-
gent systems, First International Workshop (ProMAS’03). Volume 3067 of LNAI.
Springer, Berlin (2004) 111–130

7. Bratman, M.E.: Intention, plans, and practical reason. Harvard University Press,
Massachusetts (1987)

8. Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. Artificial
Intelligence 42 (1990) 213–261

32 M.B. van Riemsdijk, F.S. de Boer, and J.-J. Ch. Meyer

9. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In
Allen, J., Fikes, R., Sandewall, E., eds.: Proceedings of the Second International
Conference on Principles of Knowledge Representation and Reasoning (KR’91),
Morgan Kaufmann (1991) 473–484

10. van der Hoek, W., van Linder, B., Meyer, J.J.Ch.: An integrated modal approach
to rational agents. In Wooldridge, M., Rao, A.S., eds.: Foundations of Rational
Agency. Applied Logic Series 14. Kluwer, Dordrecht (1998) 133–168

11. Rao, A.S.: AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Lan-
guage. In van der Velde, W., Perram, J., eds.: Agents Breaking Away (LNAI 1038),
Springer-Verlag (1996) 42–55

12. Shoham, Y.: Agent-oriented programming. Artificial Intelligence 60 (1993) 51–92
13. Giacomo, G.d., Lespérance, Y., Levesque, H.: ConGolog, a Concurrent Program-

ming Language Based on the Situation Calculus. Artificial Intelligence 121 (2000)
109–169

14. Evertsz, R., Fletcher, M., Jones, R., Jarvis, J., Brusey, J., Dance, S.: Implementing
Industrial Multi-Agent Systems Using JACK�. In: Proceedings of the first interna-
tional workshop on programming multiagent systems (ProMAS’03). Volume 3067
of LNAI. Springer, Berlin (2004) 18–49

15. Bordini, R.H., Fisher, M., Pardavila, C., Wooldridge, M.: Model checking AgentS-
peak. In: Proceedings of the Second International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS’03), Melbourne (2003) 409–416

16. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.J.Ch.: A programming
logic for part of the agent language 3APL. In: Proceedings of the First Goddard
Workshop on Formal Approaches to Agent-Based Systems (FAABS’00). (2000)

17. de Bakker, J.: Mathematical Theory of Program Correctness. Series in Computer
Science. Prentice-Hall International, London (1980)

18. van Riemsdijk, M.B., Meyer, J.J.Ch., de Boer, F.S.: Semantics of plan revision
in intelligent agents. In Rattray, C., Maharaj, S., Shankland, C., eds.: Proceed-
ings of the 10th International Conference on Algebraic Methodology And Software
Technology (AMAST04). Volume 3116 of LNCS, Springer-Verlag (2004) 426–442

19. van Riemsdijk, M.B., Meyer, J.J.Ch., de Boer, F.S.: Semantics of plan revision in
intelligent agents. Technical report, Utrecht University, Institute of Information
and Computing Sciences (2003) UU-CS-2004-002.

20. Hayashi, H., Cho, K., Ohsuga, A.: A new HTN planning framework for agents in
dynamic environments. In: Proceedings of the Fourth International Workshop on
Computational Logic in Multi-Agent Systems (CLIMA-IV). (2003) 108–133

21. Plotkin, G.D.: A Structural Approach to Operational Semantics. Technical Report
DAIMI FN-19, University of Aarhus (1981)

22. Harel, D.: First-Order Dynamic Logic. Lectures Notes in Computer Science 68.
Springer, Berlin (1979)

23. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. The MIT Press, Cambridge,
Massachusetts and London, England (2000)

24. van Emde Boas, P.: The connection between modal logic and algorithmic logics. In:
Mathematical foundations of computer science 1978. Volume 64 of LNCS. Springer,
Berlin (1978) 1–15

Contextual Taxonomies

Davide Grossi, Frank Dignum, and John-Jules Ch. Meyer

Utrecht University,
The Netherlands

{davide, dignum, jj}@cs.uu.nl

Abstract. We provide a formal characterization of a notion of contex-
tual taxonomy, that is to say, a taxonomy holding only with respect to a
specific context. To this aim, a new proposal for dealing with “contexts
as abstract mathematical entities” is set forth, which is geared toward
solving some problems arising in the area of normative system specifica-
tions for modeling multi-agent systems. Contexts are interpreted as sets
of description logic models for different languages, and a number of op-
erations on contexts are defined. Using this framework, a simple scenario
taken from the legal domain is modeled, and a formal account of the so
called open-texture of legal terms is provided characterizing the notions
of “core” and “penumbra” of the meaning of a concept.

1 Introduction

The motivation of this work lies in problems stemming from the domain of
normative system specifications for modeling multi-agent systems ([1, 2]). In [3,
4, 5] contexts have been advocated to play a central role in the specification of
complex normative systems. The notion of context has obtained attention in AI
researches since the seminal work [6], and much work has been carried out with
regard to the logical analysis of this notion (see [7, 8] for an overview). With this
work, we intend to pursue this research line providing a logical framework for
dealing with a conception of context specifically derived from the aforementioned
application domain. We nevertheless deem that the formal analysis we are going
to present may give valuable insights for understanding contexts in general, also
outside our specific domain of interest.

In general, the purpose of the present work is to propose a framework for
grounding a new formal semantics of expressions such as: “A counts as B ([9])
in institution c”, or “B supervenes A in institution c” ([10]), or “A conventionally
generates B in institution c” ([11]), or “A translates (means) B in institution
c” ([5]). These expressions, known in legal theory as constitutive rules, will be
interpreted essentially as contextualized subsumption relations establishing tax-
onomies which hold only with respect to a specific (institutional) context. We
came to a notion of contextual taxonomy through the analysis of some well known
problems of underspecification, or more technically open-texture ([12]), typical of
legal terminologies. These vagueness-related issues constitute, more concretely,

J. Leite and P. Torroni (Eds.): CLIMA V, LNAI 3487, pp. 33–51, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

34 D. Grossi, F. Dignum, and J.-J. Ch. Meyer

the direct target of the work. We quote here an excerpt from [13] neatly exposing
this type of problems.

[Suppose a] legal rule forbids you to take a vehicle into the public park.
Plainly this forbids an automobile, but what about bicycles, roller skates,
toy automobiles? What about airplanes? Are these, as we say, to be called
“vehicles” for the purpose of the rule or not? If we are to communicate
with each other at all, and if, as in the most elementary form of law, we
are to express our intentions that a certain type of behavior be regulated
by rules, then the general words we use like “vehicle” in the case I consider
must have some standard instance in which no doubts are felt about its
application. There must be a core of settled meaning, but there will be,
as well, a penumbra of debatable cases in which words are neither obvi-
ously applicable nor obviously ruled out. [. . .] We may call the problems
which arise outside the hard core of standard instances or settled meaning
“problems of the penumbra”; they are always with us whether in relation
to such trivial things as the regulation of the use of the public park or in
relation to the multidimensional generalities of a constitution.

Given a general (regional) rule not allowing vehicles within public parks, there
might be a municipality allowing bicycles in its parks, and instead another one
not allowing them in. What counts as a vehicle according to the first municipal-
ity, and what counts as a vehicle according to the second one then? This type
of problems has been extensively approached especially from the perspective
of the formalization of defeasible reasoning: the regional rule “all vehicles are
banned from public parks” is defeated by the regulation of the first municipality
stating that “all vehicles that are bicycles are allowed in the park” and estab-
lishing thus an exception to the general directive. The formalization of norms via
non-monotonic techniques (see [14] for an overview) emphasizes the existence of
exceptions to norms while understanding abstract terms in the standard way (all
instances of bicycles are always vehicles). It has also been proposed to view the
inclusion rules themselves as defaults: “normally, if something is a bicycle, then
it is a vehicle” (for example [15, 5]). We deem these approaches, despite being
effective in capturing the reasoning patterns involved in these scenarios, to be
not adequate for analyzing problems related with the meaning of the terms that
trigger those reasoning patterns. Those reasoning patterns are defeasible because
the meaning of the terms involved is not definite, it is vague, it is -and this is
the thesis we hold here- context dependent1. We propose therefore to analyze
these “problems of the penumbra” in terms of the notion of context: according to
(in the context of) the public parks regulation of the first municipality bicycles
are not vehicles, according to (in the context of) the public parks regulation of
the second one bicycles are vehicles. This reading will be interpreted as follows:
“the subsumption of the concept bicycle under the concept vehicle holds in
the context of the first municipality, but not in the context of the second one”.

1 The issue of the relationship between contextuality and defeasibility has been raised
also in [7].

Contextual Taxonomies 35

A defeasible reasoning analysis leads to a quite different reading, which flattens
the meaning of concepts and handles its variations by means of the notion of ex-
ception: “every exceptional instance of bicycle is not an instance of vehicle”.
Bringing contexts into play will instead allow for a neat characterization of the
notions of “core” and “penumbra” of the meaning of a concept, a characteriza-
tion which is not obtainable via the use of a notion of exception.

The remainder of this paper is structured in accordance with the following
outline. In Section 2 we will introduce the notion of contextual taxonomy making
use of a concrete scenario; in Section 3 we will provide a formal framework based
on a very simple type of description logic which accounts for this concept; in
Section 4 we will provide a formalization of the scenario introduced, and we
will formally characterize the notions of conceptual “core” and “penumbra”; in
Section 5 we will discuss relations with other work; finally, in Section 6, some
conclusive remarks are made.

2 Contextualizing Taxonomies

Let us now depict a simple scenario in order to state in clear terms the example
used in the introduction.

Example 1. (The public park scenario) In the regulation governing access
to public parks in region R it is stated that: “vehicles are not allowed within
public parks”. In this regulation no mention is made of (possible) subconcepts
of the concept vehicle, e.g., cars, bicycles, which may help in identifying an
instance of vehicle. In municipal regulations subordinated to this regional one,
specific subconcepts are instead handled. In municipality M1, the following rule
holds: “bicycles are allowed to access public parks”. In M2 instead, it holds that:
“bicycles are not allowed to access public parks”. In both M1 and M2 it holds
that: “cars are not allowed in public parks”.

In this scenario the concept of vehicle is clearly open-textured. Instances of
car (w.r.t. the taxonomies presupposed by M1 and M2) are “core” instances
of vehicle, while instances of bicycle lay in the “penumbra” of vehicle. We
will constantly refer back to this example in the remaining of the work. In fact,
our first aim will be to provide a formal framework able to account for scenarios
formally analogous to the aforementioned one2.

Since the statement about the need for addressing “contexts as abstract
mathematical entities” in [6], many formalizations of the notion have been pro-
posed (see [7] or [8] for an overview). Our proposal pursues the line of developing
a semantic approach to the notion of context according to what was originally
presented in [16]. In that work contexts are formalized as sets of first order logic
models. They are then connected via a relation called compatibility relation,

2 Note that this scenario hides a typical form of contextual reasoning called “catego-
rization” ([8]), or “perspective” ([7]).

36 D. Grossi, F. Dignum, and J.-J. Ch. Meyer

which requires the sets of models constituting the different contexts to satisfy
sets of domain specific inter-contextual inference rules (bridge rules). This theory
has been variously used in work on specification of agent architectures ([17, 18])
where the stress lies in how contexts influence each other at a proof-theoretical
level rather than at a semantical one (what can can be inferred in this context,
given that something holds in some other context?). We follow the basic intuition
of understanding contexts as sets of models. Nevertheless, since we are mainly
interested in taxonomies, much simpler models will be used here3. Moreover, we
will partly depart from the proposal in [16] trying to characterize also a set of
operations meaningfully definable on contexts. In fact, what we are interested in
is also an articulate characterization of the interplay between contexts: how can
contexts be joined, abstracted, etc. Instead of focusing on bridge rules, which
have to be introduced outside and separately from the contexts, we will define
some operations on contexts such that all possible compatibility relations will
be generated by the semantics of the contexts alone. This will provide intrinsic
boundaries within which other bridge rules may later be defined.

To summarize, we will expose an approach to contexts which is driven by
intuitions stemming from the analysis of normative terminologies, and which is
based on description logic semantics.

3 A Formal Framework

The main requirements of the formal framework that we will develop are the
following ones.

1. It should enable the possibility of expressing lexical differences. A much ac-
knowledged characteristic of contextual reasoning is, indeed, that contexts
should be specified on different languages ([19, 20, 21, 22]). The context of
the national regulation about access to public parks should obviously be
specified on a vocabulary that radically differs from the vocabulary used
to specify the context of regulations about, for instance, immigration law:
public park regulations do not talk about immigrants. Moreover, in Exam-
ple 1, we observed that more concrete contexts make actually use of richer
vocabularies: talking about vehicles comes down to talk about cars, bicycles,
etc. In a nutshell, different contexts mean different ontologies and therefore
different languages.

2. It should provide a formal semantics (as general as possible) for contextual-
ized subsumption expressions, that is to say, for contextual taxonomies.

3. It should enable the possibility of describing operations between contexts.

Following these essential guidelines, a language and a semantics are introduced
in what follows. The language will make use of part of description logic syntax,
as regards the concept constructs, and will make use of a set of operators aimed
at capturing the interplay of contexts. In particular, we will introduce:

3 Basically models for description logic languages without roles. See Section 3.

Contextual Taxonomies 37

– A contextual conjunction operator. Intuitively, it will yield a composition
of contexts: the contexts “dinosaurs” and “contemporary reptiles” can be
intersected on a language talking about crocodiles generating a common less
general context like “crocodiles”.

– A contextual disjunction operator. Intuitively, it will yield a union of con-
texts: the contexts “viruses” and “bacterias” can be unified on a language
talking about microorganisms generating a more general context like “viral
or bacterial microorganisms”.

– A contextual negation operator. Intuitively, it will yield the context obtained
via subtraction of the context negated: the negation of the context “viruses”
on the language talking about microorganisms generates a context like “non
viral microorganisms”.

– A contextual abstraction operator. Intuitively, it will yield the context con-
sisting of some information extracted from the context to which the ab-
straction is applied: the context “crocodiles”, for instance, can be obtained
via abstraction of the context “reptiles” on the language talking only about
crocodiles. In other words, the operator prunes the information contained in
the context “reptiles” keeping only what is expressible in the language which
talks about crocodiles and abstracting from the rest.

Finally, also maximum and minimum contexts will be introduced: these will rep-
resent the most general, and respectively the less general, contexts on a language.
As it appears from this list of examples, operators will need to be indexed with
the language where the operation they denote takes place. The point is that
contexts always belong to a language, and so do operations on them4.

These intuitions about the semantics of context operators will be clarified
and made more rigorous in Section 3.2 where the semantics of the framework
will be presented, and in Section 4.1 where an example will be formalized.

3.1 Language

The language we are interested in defining is nothing but a formal metalanguage
for talking about sets of subsumption relations, i.e., what in description logic are
called terminological boxes (TBoxes). In fact, we consider only TBoxes specified
on very simple languages containing just atomic concepts and boolean opera-
tors5. We decided to keep the syntax of these languages poor mainly for two
reasons: firstly, because the use of boolean concept descriptions alone is enough

4 Note that indexes might be avoided considering operators interpreted on operations
taking place on one selected language, like the largest common language of the
languages of the two contexts. However, this would result in a lack of expressivity
that we prefer to avoid for the moment.

5 In fact, we are going to extend the language of propositional logic. Nevertheless, the
semantics we are going to use in Section 3.2 is not the semantics of propositional
logic, and it is instead of a description logic kind. For this reason we deem instructive
to refer to these simple languages also as description logic languages of the type ALC
([23]) but with an empty set of roles.

38 D. Grossi, F. Dignum, and J.-J. Ch. Meyer

to model the scenario depicted in Example 1; secondly, because this is still a
preliminary proposal with which we aim to show how contextual reasoning and
reasoning about vague notions are amenable to being handled on the basis of
computationally appealing logics. On this basis it will be natural, in future, to
consider also richer languages.

The alphabet of the language LCT (language for contextual taxonomies) con-
tains therefore the alphabets of a family of languages {Li}0≤i≤n. This family
is built on the alphabet of a given “global” language L which contains all the
terms occurring in the elements of the family. Moreover, we take {Li}0≤i≤n to
be such that, for each non-empty subset of terms of the language L, there exist
a Li which is built on that set and belongs to the family. Each Li contains a
non-empty finite set Ai of atomic concepts (A), the zeroary operators ⊥ (bottom
concept) and � (top concept), the unary operator ¬, and the binary operators
� and �6.

Besides, the alphabet of LCT contains a finite set of context identifiers c, two
families of zeroary operators {⊥i}0≤i≤n (minimum contexts) and {�i}0≤i≤n

(maximum contexts), two families of unary operators {absi}0≤i≤n (context ab-
straction operators) and {¬i}0≤i≤n (context negation operators), two families
of binary operators {�i}0≤i≤n (context conjunction operators) and {�i}0≤i≤n

(context disjunction operators), one context relation symbol � (context c1 “is at
most as general as” context c2) and a contextual subsumption relation symbol
“ . : . � .” (within context c, concept A1 is a subconcept of concept A2),
finally, the sentential connectives ∼ (negation) and ∧ (conjunction)7. Thus, the
set Ξ of context constructs (ξ) is defined through the following BNF:

ξ ::= c | ⊥i | �i | ¬i ξ | absi ξ | ξ1 �i ξ2 | ξ1 �i ξ2.

Concepts and concept constructors are then defined in the usual way. The set Γ
of concept descriptions (γ) is defined through the following BNF:

γ ::= A | ⊥ | � | ¬γ | γ1 � γ2 | γ1 � γ2.

The set A of assertions (α) is then defined through the following BNF:

α ::= ξ : γ1 � γ2 | ξ1 � ξ2 | ∼ α | α1 ∧ α2.

Technically, a contextual taxonomy in LCT is a set of subsumption relation
expressions which are contextualized with respect to the same context, e.g.:
{ξ : γ1 � γ2, ξ : γ2 � γ3}. This kind of sets of expressions are what we are in-
terested in. Assertions of the form ξ1 � ξ2 provide a formalization of the notion

6 It is worth stressing again that, in fact, a language Li, as defined here, is just a
sub-language of languages of the type ALC. As we will see later in this section,
to represent contextual TBoxes the subsumption symbol is replaced by a set of
contextualized subsumption symbols.

7 It might be worth remarking that language LCT is, then, an expansion of each Li

language.

Contextual Taxonomies 39

of generality often touched upon in context theory (see for example [6, 24]). In
Section 4.1 the following symbol will be also used “ . : . � .” (within context c,
concept A1 is a proper subconcept of concept A2). It can be defined as follows:

ξ : γ1 � γ2 =def ξ : γ1 � γ2 ∧ ∼ ξ : γ2 � γ1.

A last category of expressions is also of interest, namely expressions repre-
senting what a concept means in a given context: for instance, recalling Example
1, “the concept vehicle in context M1”. These expressions, as it will be shown
in Section 3.2, are particularly interesting from a semantic point of view. Let us
call them contextual concept descriptions and let us define their set D through
the following BNF:

δ ::= ξ : γ.

As we will see in Section 3.2, contextual concept descriptions D play an impor-
tant role in the semantics of contextual subsumption relations.

3.2 Semantics

In order to provide a semantics for LCT languages, we will proceed as follows.
First we will define a class of structures which can be used to provide a formal
meaning to those languages. We will then characterize the class of operations
and relations on contexts that will constitute the semantic counterpart of the op-
erators and relation symbols introduced in Section 3.1. Definitions of the formal
meaning of our expressions will then follow.

Before pursuing this line, it is necessary to recollect the basic definition of a
description logic model for a language Li ([23]).

Definition 1. (Models for Li’s)
A model m for a language Li is defined as follows:

m = 〈∆m, Im〉
where:

– ∆m is the (non empty) domain of the model;
– Im is a function Im : Ai −→ P(∆m), that is, an interpretation of (atomic

concepts expressions of) Li on ∆m. This interpretation is extended to com-
plex concept constructs via the following inductive definition:

Im(�) = ∆m

Im(⊥) = ∅
Im(¬A) = ∆m\ Im(A)

Im(A � B) = Im(A) ∩ Im(B)
Im(A � B) = Im(A) ∪ Im(B).

Out of technicalities, what a model m for a language Li does, is to assign a
denotation to each atomic concept (for instance the set of elements of ∆m that
instantiate the concept bicycle) and, accordingly, to each complex concept (for
instance the set of elements of ∆m that instantiate the concept vehicle � ¬
bicycle).

40 D. Grossi, F. Dignum, and J.-J. Ch. Meyer

3.3 Models for LCT

We can now define a notion of contextual taxonomy model (ct-model) for lan-
guages LCT .

Definition 2. (ct-models)
A ct-model M is a structure:

M = 〈{Mi}0≤i≤n, I〉

where:

– {Mi}0≤i≤n is the family of the sets of models Mi of each language Li. That
is, ∀m ∈ Mi, m is a model for Li.

– I is a function I : c −→ P(M0) ∪ . . . ∪ P(Mn). In other words, this func-
tion associates to each atomic context identifier in c a subset of the set of
all models in some language Li: I(c) = M with M ⊆ Mi for some i s.t.
0 ≤ i ≤ n. Function I can be seen as labeling sets of models on some lan-
guage i via atomic context identifiers. Notice that I fixes, for each atomic
context identifier, the language on which the context denoted by the identifier
is specified. We could say that it is I itself which fixes a specific index for
each atomic context identifier c.

– ∀m′,m′′ ∈
⋃

0≤i≤n Mi, ∆m′ = ∆m′′ . That is, the domain of all models m is
unique. We assume this constraint simply because we are interested in mod-
eling different (taxonomical) conceptualizations of a same set of individuals.

This can be clarified by means of a simple example. Suppose the alphabet of LCT

to be the set of atomic concepts {allowed, vehicle, car, bicycle} and the set
of atomic context identifiers {cM1, cM2, cR}. The number of possible languages
Li given the four aforementioned concepts is obviously 24 − 1. A ct-model for
this LCT language would have as domain the set of the sets of all models for each
of the 24 − 1 Li languages, and as interpretation a function I which assigns to
each cM1, cM2 and cR a subset of an element of that set, i.e., a set of models for
one of the Li languages. We will come back to this specific language in Section
4.1, where we discuss the formalization of the public park scenario.

The key feature of this semantics is that contexts are characterized as sets of
models for the same language. This perspective allows for straightforward model
theoretical definitions of operations on contexts.

3.4 Operations on Contexts

Before getting to this, let us first recall a notion of domain restriction (�) of a
function f w.r.t. a subset C of the domain of f . Intuitively, a domain restriction
of a function f is nothing but the function C�f having C as domain and s.t. for
each element of C, f and C�f return the same image. The exact definition is
the following one: C�f = {〈x, f(x)〉 | x ∈ C}.

Contextual Taxonomies 41

Definition 3. (Operations on contexts)
Let M ′ and M ′′ be sets of models:

�iM
′ = {m | m = 〈∆m′ ,Ai�Im′〉 & m′ ∈ M ′} (1)

M ′ �i M ′′ = �iM
′ ∩ �iM

′′ (2)
M ′ �i M ′′ = �iM

′ ∪ �iM
′′ (3)

−iM
′ = Mi \ �iM

′. (4)

Intuitively, the operations have the following meaning: operation 1 allows for
abstracting the relevant content of a context with respect to a specific language;
operations 2 and 3 express basic set-theoretical composition of contexts; finally,
operation 4 returns, given a context, the most general of all the remaining con-
texts. Let us now provide some technical observations. First of all notice that
operation �i yields the empty context when it is applied to a context M ′ the
language of which is not an elementary expansion of Li. This is indeed very
intuitive: the context obtained via abstraction of the context “dinosaurs” on
the language of, say, “botanics” should be empty. Empty contexts can be also
obtained through the �i operation. In that case the language is shared, but the
two contexts simply do not have any interpretation in common. This happens,
for example, when the members of two different football teams talk about their
opponents: as a matter of fact, no interpretation of the concept opponent can be
shared without jeopardizing the fairness of the match. The following propositions
can be proved with respect to the operations on contexts.
Proposition 1. (Structure of contexts on a given language)
The structure of contexts 〈P(Mi),�i,�i,−i,Mi, ∅〉 on a language Li is a Boolean
Algebra.
Proof. The proof follows straightforwardly from Definition 3. �
Proposition 2. (Abstraction operation on contexts)
Operation �i is surjective and idempotent.
Proof. That �i is surjective can be proved per absurdum. First notice that this
operation is a function of the following type: �i : P(M0)∪. . .∪P(Mn) −→ P(Mi)
with 1 ≤ i ≤ n. If it is not surjective then ∃M ′′ ⊆ Mi s.t. ∀M ′ in the do-
main of �i, �iM

′ �= M ′′. This means that ∀M ′ in the domain of �i, {m | m =
〈∆m′ ,Ai�Im′〉 & m′ ∈ M ′} �= M ′′, which is impossible because we have at least
that �iM

′′ = M ′′. The proof of the equation for idempotency �i(�iM) =�iM is
straightforward. �

These propositions clarify the type of conception of context we hold here:
contexts are sets of models on different taxonomical languages; on each language
the set of possible contexts is structured in a boolean algebra; the operation of
abstraction allows for shifting from richer to simpler languages and it is, as we
would intuitively expect, idempotent (abstracting from an abstraction yields the
same first abstraction) and surjective (every context, even the empty one, can
be seen as an abstraction of a different richer context, in the most trivial case,
an abstraction of itself).

42 D. Grossi, F. Dignum, and J.-J. Ch. Meyer

3.5 Formal Meaning of Ξ, D, and A
In Definition 2 atomic contexts are interpreted as sets of models on some lan-
guage Li for 0 ≤ i ≤ n: I(c) = M ∈ P(M0) ∪ . . . ∪ P(Mn). The semantics of
contexts constructs Ξ can be defined via inductive extension of that definition.

Definition 4. (Semantics of contexts constructs)
The semantics of context constructors is defined as follows:

I(⊥i) = ∅
I(�i) = Mi

I(ξ1 �i ξ2) = I(ξ1) �i I(ξ2)
I(ξ1 �i ξ2) = I(ξ1) �i I(ξ2)

I(¬i ξ) = −iI(ξ)
I(absi ξ) = �iI(ξ).

The ⊥i context is interpreted as the empty context (the same on each language);
the �i context is interpreted as the greatest, or most general, context on Li;
the binary �i-composition of contexts is interpreted as the greatest lower bound
of the restriction of the interpretations of the two contexts on Li; the binary
�i-composition of contexts is interpreted as the lowest upper bound of the re-
striction of the interpretations of the two contexts on Li; context negation is
interpreted as the complement with respect to the most general context on that
language; finally, the unary absi operator is interpreted just as the restriction of
the interpretation of its argument to language Li.

Semantics for the contextual concept description D and for the assertions A
in LCT is based on the function I.

Definition 5. (Semantics of contextual concept descriptions: || . ||M)
The semantics of contextual concept descriptions is defined as follows:

||ξ : γ||M = {D | 〈γ,D〉 ∈ Im & m ∈ I(ξ)}.

The meaning of a concept γ in a context ξ is the set of denotations D attributed
to that concept by the models constituting that context.

It is worth noticing that if concept γ is not expressible in the language of
context ξ, then ||ξ : γ||M = ∅, that is, concept γ gets no denotation at all in
context ξ. This happens simply because concept γ does not belong to the domain
of functions Im, and there therefore exists no interpretation for that concept in
the models constituting ξ. This shows also how Definition 5 allows to capture
the intuitive distinction between concepts which lack denotation (||ξ : γ||M =
∅), and concepts which have a denotation which is empty (||ξ : γ||M = {∅}):
a concept that lacks denotation is for example the concept immigrant in the
context of public park access regulation; in the same context, a concept with
empty denotation is for example the concept car�¬car.

Contextual Taxonomies 43

In what follows we will often use the notation I(ξ : γ) instead of the heavier
||ξ : γ||M.

Definition 6. (Semantics of assertions: |=)
The semantics of assertions is defined as follows:

M |= ξ : γ1 � γ2 iff I(ξ : γ1), I(ξ : γ2) �= ∅ and ∀m ∈ I(ξ), Im(γ1) ⊆ Im(γ2)
M |= ξ1 � ξ2 iff I(ξ1) ⊆ I(ξ2)

M |=∼ α iff not M |= α

M |= α1 ∧ α2 iff M |= α1 and M |= α2.

A contextual subsumption relation between γ1 and γ2 holds iff I(ξ) makes the
meaning of γ1 and γ2 not empty and all models m of I(ξ) interpret γ1 as a
subconcept of γ2. Note that this is precisely the clause for the validity of a sub-
sumption relation in standard description logics, but together with the fact that
the concepts involved are actually meaningful in that context. The � relation
between context constructs is interpreted as a standard subset relation: ξ1 � ξ2

means that context denoted by ξ1 contains at most all the models that ξ2 con-
tains, that is to say, ξ1 is at most as general as ξ2. Note that this relation, being
interpreted on the ⊆ relation, is reflexive, antisymmetric and transitive. In [5]
a generality ordering with similar properties was imposed on the set of context
identifiers, and analogous properties for a similar relation have been singled out
also in [11]. The interesting thing is that such an ordering is here emergent from
the semantics. Note also that this relation holds only between contexts specified
on the same language. Clauses for boolean connectives are the obvious ones.

The satisfaction clause of contextual subsumption relations deserves some
more remarks. We observed that the satisfaction is conditioned to the mean-
ingfulness of the terms involved with respect to the context. This condition is
necessary because our contexts have different languages. Another way to deal
with this would be to impose syntactic constraints on the formation of ξ : γ1 � γ2

expressions, in order to distinguish the well-formed ones from the ill-formed ones.
However, this would determine a dependence of the definition of well-formed ex-
pressions of LCT on the models M of the language itself. Alternatively, the sat-
isfaction relation itself might be restricted to consider only those subsumptions
between concepts that, given the interpretation of the context, are interpreted as
meaningful. Nevertheless, this option too determines a weird dependence, namely
between the definition of the satisfaction relation and the models: the scope of
the satisfaction would vary according to the models8. We chose for yet another
solution, exploiting the possibility that our semantics enables of distinguishing
meaningless concepts from concepts with empty extension (see Definition 5). By
means of this feature it is possible to constrain the satisfaction of ξ : γ1 � γ2

formulas, in such a way that, for them to be true, concepts γ1 and γ2 have

8 Though in a completely different formal setting, this way is pursued in [21, 22].

44 D. Grossi, F. Dignum, and J.-J. Ch. Meyer

to be meaningful in context ξ. Intuitively, we interpret contextual subsumption
relations as inherently presupposing the meaningfulness of their terms.

4 Contextual Taxonomies, “Core” and “Penumbra”

4.1 Formalizing an Example

We are now able to provide a formalization of the simple scenario introduced in
Example 1 based on the formal semantic machinery just exposed.

Example 2. (The public park scenario formalized) To formalize the public
park scenario within our setting a language LCT is needed, which contains the
following atomic concepts: allowed, vehicle, car, bicycle. Three atomic con-
texts are at issue here: the context of the main regulation R, let us call it cR; the
contexts of the municipal regulations M1 and M2, let us call them cM1 and cM2

respectively. These contexts should be interpreted on two relevant languages. A
language L0 for cR s.t. A0 = {allowed, vehicle}; and a language L1 for cM1

and cM2 s.t. A1 = A0 ∪ {car, bicycle} (an abstract language concerning only
vehicles and objects allowed to get into the park, and a more concrete one con-
cerning, besides this, also cars and bicycles). A formalization of the scenario by
means of LCT formulas is the following one:

abs0(cM1) �0 abs0(cM2) � cR (5)
cR : vehicle � ¬allowed (6)
cM1 �1 cM2 : car � vehicle (7)
cM1 : bicycle � vehicle (8)
cM2 : bicycle � ¬vehicle (9)
cM1 �1 cM2 : bicycle � vehicle � allowed. (10)

Formula (5) plays a key role, stating that the two contexts cM1, cM2 are concrete
variants of context cR. It tells this by saying that the context obtained by joining
the two concrete contexts on language L0 (the language of cR) is at most as
general as context cR. As we will see in discussing the logical consequences
of this set of formulas, formula (5) makes cM1, cM2 inherit what holds in cR.
Formula (6) formalizes the abstract rule to the effect that vehicles belong to
the category of objects not allowed to access public parks. Formula (7) states
that in both contexts cars count as vehicles. Formulas (8) and (9) state the two
different conceptualizations of the concept of bicycle holding in the two concrete
contexts at issue. These formulas show where the two contextual taxonomies
diverge. Formula (10), finally, tells that bicycles either are vehicles or should be
allowed in the park. Indeed, it might be seen as a clause avoiding “cheating”
classifications such as: “bicycles counts as cars”.

Contextual Taxonomies 45

It is worth listing and discussing some straightforward logical consequences
of the formalization.

(5), (6) � cM1 : vehicle � ¬allowed
(5), (6), (7) � cM1 : car � ¬allowed
(5), (6), (8) � cM1 : bicycle � ¬allowed

(5), (6) � cM2 : vehicle � ¬allowed
(5), (6), (7) � cM2 : car � ¬allowed

(5), (6), (9), (10) � cM2 : bicycle � allowed

These are indeed the formulas that we would intuitively expect to hold in our
scenario. The list displays two sets of formulas grouped on the basis of the
context to which they pertain. They formalize the two contextual taxonomies
at hands in our scenario. Let us have a closer look. The first consequence of
each group results from the generality relation expressed in (5), by means of
which the content of (6) is shown to hold also in the two concrete contexts: in
simple words, contexts cM1 and cM2 inherit the general rule stating that vehicles
are not allowed to access public parks. Via this inherited rule, and via (7), it
is shown that, in all concrete contexts, cars are also not allowed to access the
park. As to cars then, all contexts agree. Where differences arise is in relation
with how the concept of bicycle is handled. In context cM1, since bicycles count
as vehicles (8), bicycles are also not allowed. In context cM2, instead, bicycles
constitute an allowed class because they are not considered to be vehicles (9)
and there is no bicycle which does not count as a vehicle and which does not
belong to that class of allowed objects (10). In the following section we show in
some more detail how a model for the formalization just exposed looks like.

4.2 A Model of the Formalization

Formulas (5)-(10) constrain ct-models in the following way:

�0I(cM1) ∪ �0I(cM2) ⊆ I(cR)
∀m ∈ I(cR), Im(vehicle) ⊆ ∆1\ Im(allowed)
I(cR : vehicle), I(cR : allowed) �= ∅
∀m ∈ I(cM1) ∪ I(cM2), Im(car) ⊂ Im(vehicle)
I(cM1 �1 cM2 : car), I(cM1 �1 cM2 : vehicle) �= ∅
∀m ∈ I(cM1), Im(bicycle) ⊂ Im(vehicle)
I(cM1 : bicycle), I(cM1 : vehicle) �= ∅
∀m ∈ I(cM2), Im(bicycle) ⊆ ∆1\ Im(vehicle)
I(cM2 : bicycle), I(cM2 : vehicle) �= ∅
∀m ∈ I(cM1) ∪ I(cM2), Im(bicycle) ⊆ Im(vehicle) ∪ Im(allowed)
I(cM1 �1 cM2 : bicycle), I(cM1 �1 cM2 : allowed) �= ∅.

46 D. Grossi, F. Dignum, and J.-J. Ch. Meyer

Besides the ones above, a model of the scenario can be thought of requiring two
more constraints. Although the formal language as it is defined in 3.1 cannot
express them, we show that they can be perfectly captured at a semantic level
and therefore that new appropriate symbols might be accordingly added to the
syntax.

– I(cM1 : bicycle) = I(cM2 : bicycle) = {{a, b}}9 (cM1 and cM2 agree on
the interpretation of bicycle, say, the set of objects {a, b});

– I(cM1 : car) = I(cM2 : car) = {{c}}10 (cM1 and cM2 agree on the interpre-
tation of car, say, the singleton {c}).

Let us stipulate that the models m that will constitute our interpretation of
contexts identifiers consist of a domain ∆m = {a, b, c, d} and let us call the sets
of all models for L0 and L1 on this domain respectively M0 and M1. Given the
restrictions, a ct-model of the scenario can consist then of the domain M0 ∪M1

and of the function I s.t.:

– I(cM1) = {m1,m2} ⊆ M1 s.t. Im1(allowed) = {d}, Im1(vehicle) =
{a, b, c}, Im1(bicycle) = {a, b}, Im1(car) = {c} and Im2(allowed) = ∅,
Im2(vehicle) = {a, b, c, d}, Im2(bicycle) = {a, b}, Im2(car) = {c}.
In cM1 concepts allowed and vehicle are interpreted in two possible ways;
notice that model m2 makes no object allowed to access the park;

– I(cM2) = {m3} ⊆ M1 s.t. Im3(allowed) = {a, b}, Im3(vehicle) = {c, d},
Im3(car) = {c}, Im3(bicycle) = {a, b}.
In cM2, which is constituted by a single model, the concept vehicle strictly
contains car, and excludes bicycle. Notice also that bicycle coincide with
allowed.

– I(cR) = {m | Im(vehicle) ⊆ ∆1\ Im(allowed)}.
In cR, concepts vehicle and allowed get all possible interpretations that
keep them disjoint.

We can now get to the main formal characterizations at which we have been
aiming in this work.

4.3 Representing Conceptual “Core” and “Penumbra”

What is the part of a denotation of a concept which remains context indepen-
dent? What is the part which varies instead? “Core” and “penumbral” meaning
are formalized in the two following definitions.

Definition 7. (Core(γ, ξ1, ξ2))
The “core meaning” of concept γ w.r.t. contexts ξ1, ξ2 on language Li is defined
as:

Core(γ, ξ1, ξ2) =def

⋂
(I(ξ1 : γ) ∪ I(ξ2 : γ)).

9 It might be worth recalling that the meaning of a concept in a context is a set of
denotations, which we assume to be here, for the sake of simplicity (and in accordance
with our intuitions about the scenario), a singleton.

10 See previous footnote.

Contextual Taxonomies 47

Intuitively, the definition takes just the conjunction of the union of the inter-
pretations of γ in the two contexts. Referring back to Example 2, we have that
Core(vehicle, cM1, cM2) = {c}, that is, the core of the concept vehicle coin-
cides, in those contexts, with the denotation of the concept car. The notion of
“penumbra” is now easily definable.

Definition 8. (Penumbra(γ, ξ1, ξ2))
The “penumbra” of concept γ w.r.t. contexts ξ1, ξ2 on language Li is defined as:

Penumbra(γ, ξ1, ξ2) =def

⋃
((I(ξ1 : γ) ∪ I(ξ2 : γ)) \ Core(γ, ξ1, ξ2)).

A “penumbral meaning” is then nothing else but the set of individuals on which
the contextual interpretation of the concept varies. Referring back again to Ex-
ample 2: Penumbra(vehicle, cM1, cM2) = {a, b, d}, that is to say, the penumbra
of the concept vehicle ranges over those individuals that are not instances
of the core of vehicle, i.e., the concept car. Notice that the definitions are
straightforwardly generalizable to formulations with more than two contexts.

5 Related Work

We already showed, in Section 2, how the present proposal relates to work de-
veloped in the area of logical modeling of the notion of context. Contexts have
been used here in order to propose a different approach to vagueness (especially
as it appears in the normative domain). In this section some words will be spent
in order to put the present proposal in perspective with respect to some more
standard approaches to vagueness, namely approaches making use of fuzzy sets
([25]) or rough sets ([26]).

The most characteristic feature of our approach, with respect to fuzzy or
rough set theories, consists in considering vagueness as an inherently semantic
phenomenon. Vagueness arises from the referring of a language to structures
modeling reality, and not from those structures themselves. That is to say, the
truth denotation of a predicate is, in our approach, always definite and crisp,
even if multiple. Consequently, no degree of membership is considered, as in
fuzzy logic, and no representation of sets in terms of approximations is used,
as in rough set theory. Let us use a simple example in order to make this dis-
tinction evident. Consider the vague monadic predicate or, to use a description
logic terminology, the concept tall person. Fuzzy approaches would determine
the denotation of this predicate as a fuzzy set, i.e., as the set of elements with
membership degree contained in the interval]0, 1]. Standard rough set theory
approaches would characterize this denotation not directly, but on the basis of
a given partition of the universe (the set of all individuals) and a lower and
upper approximation provided in terms of that partition. For instance, a trivial
partition might be the one consisting of the following three concepts: tall>2m,
1.60m≤tall≤2m, tall<1.60m. Concept tall person would then be approxi-
mated by means of the lower approximation tall>2m (the elements of a set that

48 D. Grossi, F. Dignum, and J.-J. Ch. Meyer

are definitely also members of the to be approximated set), and the upper ap-
proximation 1.60m≤tall≤2m � tall>2m (the elements of a set that may be also
members of the to be approximated set). In this rough set representation, set
1.60m≤tall≤2m constitutes the so called boundary of tall person. Within our
approach instead, the set tall person can be represented crisply and without
approximations. The key feature is that tall person obtains multiple crisp in-
terpretations, at least one for each context: in the context of dutch standards,
concept tall person does not subsume concept 1.60m≤tall≤2m, whereas it
does in the context of pygmy standards. According to our approach, vagueness
resides then in the contextual nature of interpretation rather than in the concepts
themselves11.

It is nevertheless easy to spot some similarities, in particular with respect to
rough set theory. The notions of “core” and “penumbra” have much in common
with the notions of, respectively, lower approximation and boundary developed
in rough set theory: each of these pairs of notions denotes what is always, and re-
spectively, in some cases, an instance of a given concept. But the characterization
of the last pair is based on a partition of the universe denoting the equivalence
classes imposed by a set of given known properties. The notions of “core” and
“penumbra”, instead, are yielded by the consideration of many contextual inter-
pretations of the concept itself. With respect to fuzzy approaches, notice that
sets Core can be viewed exactly as the sets of instances having a membership
degree equal to one, while sets Penumbra can be viewed as the sets of instances
with degree of membership between zero and one. Besides, sets Penumbra could
be partitioned in sets Xn each containing instances that occur in a fixed number
n of models constituting the “penumbra”, thus determining a total and, notice,

11 A clear position for our thesis can also be found within those analyses of vagueness,
developed in the area of philosophical logic, which distinguish between de re and de
dicto views of vagueness ([27]), the first holding that referents themselves are vague
and therefore that vagueness constitutes something objective, whereas the second
holding that it is the way referents are established that determines vagueness. Fuzzy
set approaches lie within a de re conception of vagueness, while our approach is
grounded on the alternative de dicto view (rough sets approaches have instead more
to do with insufficient information issues). In philosophical logic, a formal theory has
been developed which formalizes this de dicto approach to vagueness, the so called
superevaluationism ([28]). On this view, when interpreting vague terms, we consider
the many possible ways in which those terms can be interpreted:

“Whatever it is that we do to determine the ‘intended’ interpretation of our
language determines not one interpretation but a range of interpretations. (The
range depends on context [...])”([29]).

As it is evident from Section 3.2, this intuition backs also our semantics. What our
approach adds to formal accounts of superevaluationism such as [28, 30] consists in
the explicit use of contexts as specific formal objects clustering the possible ways
terms can be interpreted: contexts are precisely the range of admissible interpreta-
tions of the concepts at issue.

Contextual Taxonomies 49

discrete ordering on membership: instances occurring in only one model in the
“penumbra” will belong to the denotation of the concept at the minimum degree
of membership, while instances occurring in the “core” at the maximum one.

Another relevant feature of our proposal, which we deem worth stressing,
consists in the use of a fragment of predicate logic. This allows, first of all, the
intra-contextual reasoning to be classical. Furthermore, the use of description
logic, even if not yet fully elaborate in this work, allows for its well known inter-
esting computability properties to be enabled at the intra-contextual reasoning
level, thus making the framework appealing also in this respect.

6 Conclusions

Our aim was to account for a notion of contextual taxonomy, and by means
of that, to rigorously characterize the notions of “core” and “penumbra” of a
concept, that is to say, to define what is invariant and what is instead context
dependent in the meaning of a concept. We did this contextualizing of a standard
description logic notion of taxonomy by means of a formal semantics approach
to contexts which provides also an account of a variety of forms of contexts
interactions.

There are a number of issues which would be worth investigating in future
work. First of all, it would be of definite interest to provide formal rigorous
comparisons of our framework with:

– Related work in the area of context logics, like especially the local model
semantics proposed in [16] to which we referred in Section 2.

– Related work in the area of fuzzy or rough sets treatment of conceptual
ambiguities ([26, 25]), which have been informally touched upon in Section
5.

– Related work in the area of logic for normative systems specification, and
in particular [31] where a modal logic semantics is used to account for ex-
pressions such as “A counts as B in context (institution) s”. To this aim, we
plan to apply the notion of contextual subsumption relation to modal logic
semantics in order to contextualize accessibility relations. For example, it
would be interesting to investigate applications to dynamic logic semantics
in order to provide a formal account of the contextual meaning of actions:
raising a hand in the context of a bidding means something different than
raising a hand in the context of a scientific workshop. Some results on this
issue have been presented in [32].

Secondly, we would like to enrich the expressivity of our framework considering
richer description logic languages admitting also attributes (or roles) constructs.
This would allow for a formal characterization of “contextual terminologies” in
general, enabling the full expressive power description logics are able to provide.
A first step along this line has been proposed in [33].

50 D. Grossi, F. Dignum, and J.-J. Ch. Meyer

Acknowledgments

We would like to thank the anonymous reviewers of CLIMA V. Thanks to their
comments, this work has been considerably improved.

References

1. Dignum, F.: Agents, markets, institutions, and protocols. In: Agent Mediated Elec-
tronic Commerce, The European AgentLink Perspective., Springer-Verlag (2001)
98–114

2. Vázquez-Salceda, J., Dignum, F.: Modelling electronic organizations. In V. Marik,
J.M., Pechoucek, M., eds.: Proceedings CEEMAS’03. LNAI 2691, Berlin, Springer-
Verlag (2003) 584–593

3. Dignum, F.: Abstract norms and electronic institutions. In: Proceedings of the
International Workshop on Regulated Agent-Based Social Systems: Theories and
Applications (RASTA ’02), Bologna. (2002) 93–104

4. Vázquez-Salceda, J.: The role of Norms and Electronic Institutions in Multi-Agent
Systems. Birkhuser Verlag AG (2004)

5. Grossi, D., Dignum, F.: From abstract to concrete norms in agent institutions. In
Hinchey, M.G., Rash, J.L., Truszkowski, W.F., et al., eds.: Formal Approaches to
Agent-Based Systems: Third International Workshop, FAABS 2004. Lecture Notes
in Computer Science, Springer-Verlag (2004) 12–29

6. McCarthy, J.: Notes on formalizing contexts. In Kehler, T., Rosenschein, S., eds.:
Proceedings of the Fifth National Conference on Artificial Intelligence, Los Altos,
California, Morgan Kaufmann (1986) 555–560

7. Akman, V., Surav., M.: Steps toward formalizing context. AI Magazine 17 (1996)
55–72

8. Benerecetti, M., Bouquet, P., Ghidini, C.: Contextual reasoning distilled. Journal
of Experimental and Theoretical Artificial Intelligence (JETAI) 12 (2000) 279–305

9. Searle, J.: The Construction of Social Reality. Free Press (1995)
10. Hage, J., Verheij, B.: The law as a dynamic interconnected system of states of

affairs. IJHCS: International Journal of Human-Computer Studies 51 (1999) 1043–
1077

11. Goldman, A.I.: A Theory of Human Action. Princeton University Press, Princeton
(1976)

12. Hart, H.L.A.: The Concept of Law. Clarendon Press, Oxford (1961)
13. Hart, H.L.A.: Positivism and the separation of law and morality. Harvard Law

Review 71 (1958) 593–629
14. Prakken, H.: Logical Tools for Modelling Legal Arguments. Kluwer (1997)
15. Royakkers, L., Dignum, F.: Defeasible reasoning with legal rules. In Nute, D., ed.:

Defeasible Deontic Logic, Dordrecht, Kluwer (1997) 263–286
16. Ghidini, C., Giunchiglia, F.: Local models semantics, or contextual reasoning =

locality + compatibility. Artificial Intelligence 127 (2001) 221–259
17. Parsons, S., Jennings, N.J., Sabater, J., Sierra, C.: Agent specification using multi-

context systems. Foundations and Applications of Multi-Agent Systems (2002)
18. Casali, A., Godo, L., Sierra, C.: Graded bdi models for agent architectures. In this

volume.
19. Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logics or: How we can do

without modal logics. Artificial Intelligence 65 (1994) 29–70

Contextual Taxonomies 51

20. Giunchiglia, F.: Contextual reasoning. Epistemologia, special issue on I Linguaggi
e le Macchine 16 (1993) 345–364

21. Buvač, S.V., Mason, I.A.: Propositional logic of context. Proceedings AAAI’93
(1993) 412–419

22. Buvač, S., Buvač, S.V., Mason, I.A.: The semantics of propositional contexts.
Proceedings of the eight ISMIS. LNAI-869 (1994) 468–477

23. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The
Description Logic Handbook. Cambridge University Press, Cambridge (2002)

24. McCarthy, J.: Generality in artificial intelligence. Communications of the ACM
30 (1987) 1030–1035

25. Wygralak, M.: Vaguely Defined Objects. Kluwer Academic Publishers (1996)
26. Lin, T.Y., Cercone, N.: Rough Sets and Data Mining. Analysis of Imprecise Data.

Kluwer Academic Publishers (1997)
27. Varzi, A.: Vague names for sharp objects. In Obrst, L., Mani, I., eds.: Proceedings

of the Workshop on Semantic Approximation, Granularity, and Vagueness, AAAI
Press (2000) 73–78

28. van Fraassen, B.C.: Singular terms, truth-value gaps, and free logic. Journal of
Philosophy 63 (1966) 481–495

29. Lewis, D.: Many, but almost one. In: Papers in Metaphysics and Epistemology,
Cambridge University Press (1999) 164–182

30. Fine, K.: Vagueness, truth and logic. Synthese 30 (1975) 265–300
31. Jones, A.J.I., Sergot, M.: A formal characterization of institutionalised power.

Journal of the IGPL 3 (1996) 429–445
32. Grossi, D., Meyer, J-J. Ch., Dignum, F.: Modal logic investigations in the semantics

of counts-as. (Submitted)
33. Grossi, D., Aldewereld, H., Vázquez-Salceda, J., Dignum, F.: Ontological aspects of

the implementation of norms in agent-based electronic institutions. To be presented
at NorMAS (2005)

From Logic Programs Updates to Action
Description Updates�

José Júlio Alferes1, Federico Banti1, and Antonio Brogi2

1 CENTRIA, Universidade Nova de Lisboa, Portugal
{jja, banti}@di.fct.unl.pt

2 Dipartimento di Informatica, Università di Pisa, Italy
brogi@di.unipi.it

Abstract. An important branch of investigation in the field of agents
has been the definition of high level languages for representing effects
of actions, the programs written in such languages being usually called
action programs. Logic programming is an important area in the field
of knowledge representation and some languages for specifying updates
of Logic Programs had been defined. Starting from the update language
Evolp, in this work we propose a new paradigm for reasoning about
actions called Evolp action programs.

We provide translations of some of the most known action descrip-
tion languages into Evolp action programs, and underline some peculiar
features of this newly defined paradigm. One such feature is that Evolp
action programs can easily express changes in the rules of the domains,
including rules describing changes.

1 Introduction

In the last years the concept of agent has become central in the field of Artificial
Intelligence. “An agent is just something that acts” [26]. Given the importance
of the concept, ways of representing actions and their effects on the environment
have been studied. A branch of investigation in this topic has been the defini-
tion of high level languages for representing effects of actions [7, 12, 14, 15], the
programs written in such languages being usually called action programs. Action
programs specify which facts (or fluents) change in the environment after the
execution of a set of actions. Several works exist on the relation between these
action languages and Logic Programming (LP) (e.g. [5, 12, 21]). However, de-
spite the fact that LP has been successfully used as a language for declaratively
representing knowledge, the mentioned works basically use LP for providing
an operational semantics, and implementation, for action programs. This is so
because normal logic programs, and most of their extensions, have no in-built

� This work was partially supported by project FLUX (POSI/40958/SRI/2001), and
by the European Commission within the 6th Framework Programme project REW-
ERSE number 506779 (cf. http://rewerse.net).

J. Leite and P. Torroni (Eds.): CLIMA V, LNAI 3487, pp. 52–77, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

From Logic Programs Updates to Action Description Updates 53

means for dealing with changes, something that is quite fundamental for action
languages.

In recent years some effort was devoted to explore and study the problem of
how to update logic programs with new rules [3, 8, 10, 19, 20, 17]. Here, knowledge
is conveyed by sequences of programs, where each program in a sequence is an
update to the previous ones. For determining the meaning of sequences of logic
programs, rules from previous programs are assumed to hold by inertia after
the updates (given by subsequent programs) unless rejected by some later rule.
LP update languages [2, 4, 9, 19], besides giving meaning to sequences of logic
programs, also provide in-built mechanisms for constructing such sequences. In
other words, LP update languages extend LP by providing means to specify and
reason about rule updates.

In [5] the authors show, by examples, a possible use the LP update language
LUPS [4] for representing effects of actions providing a hint for the possibility
of using LP updates languages as an action description paradigm. However,
the work done does not provide a clear view on how to use LP updates for
representing actions, nor does it establishes an exact relationship between this
new possibility and existing action languages. Thus, the eventual advantages of
the LP update languages approach to actions are still not clear.

The present work tries to clarify these points. This is done by establishing a
formal relationship between one LP update language, namely the Evolp language
[2], and existing action languages, and by clarifying how to use this language for
representing actions in general.

Our investigation starts by, on top of Evolp, defining a new action description
language, called Evolp Action Programs (EAPs), as a macro language for Evolp.
Before developing a complete framework for action description based on LP
updates, in this work we focus on the basic problem in the field, i.e. the prediction
of the possible future states of the world given a complete knowledge of the
current state and the action performed. Our purpose is to check, already at
this stage, the potentiality of an action description language based on the Evolp
paradigm.

We then illustrate the usage of EAPs by an example involving a variant
of the classical Yale Shooting Problem. An important point to clarify is the
comparison of the expressive capabilities of the newly defined language with
that of the existing paradigms. We consider the action languages A [12], B [13]
(which is a subset of the language proposed in [14]), and (the definite fragment
of) C [15]. We provides simple translations of such languages into EAPs, hence
proving that EAPs are at least as expressive as the cited action languages.

Coming to this point, the next natural question is what are the possible
advantages of EAPs. The underlying idea of action frameworks is to describe
dynamic environments. This is usually done by describing rules that specify,
given a set of external actions, how the environment evolves. In a dynamic en-
vironment, however, not only the facts but also the “rules of the game” can
change, in particular the rules describing the changes. The capability of describ-
ing such kind of meta level changes is, in our opinion, an important feature of an

54 J.J. Alferes, F. Banti, and A. Brogi

action description language. This capability can be seen as an instance of elabo-
ration tolerance i.e. “the ability to accept changes to a person’s or a computer’s
representation of facts about a subject without having to start all over” [25].
In [15] this capability is seen as a central point in the action descriptions field
and the problem is addressed in the context of the C language. The final words
of [15] are “Finding ways to further increase the degree of elaboration tolerance
of languages for describing actions is a topic of future work”. We address this
topic in the context of EAPs and show EAPs seem, in this sense, more flexi-
ble than other paradigms. Evolp provides specific commands that allow for the
specification of updates to the initial program, but also provides the possibility
to specify updates of these updates commands. We show, by successive elabora-
tions of the Yale shooting problem, how to use this feature to describe updates
of the problem that come along with the evolution of the environment.

The rest of the paper is structured as follows. In section 2 we review some
background and notation. In section 3 we define the syntax and semantics of
Evolp action programs, and we illustrate the usage of EAPs by an example in-
volving a variant of the classical Yale Shooting Problem. In section 4 we establish
the relationship between EAPs and the languages A, B and C. In section 5 we
discuss the possibility of updating the EAPs, and provide an example of such
feature. Finally, in section 6, we conclude and trace a route for future develop-
ments. To facilitate the reading, and given that some of the results have proofs
of some length, instead of presenting proofs along with the text, we expose them
all in appendix A.

2 Background and Notation

In this section we briefly recall syntax and semantics of Dynamic Logic Programs
[1], and the syntax and semantics for Evolp [2]. We also recall some basic notions
and notation for action description languages. For a more detailed background
on action languages see e.g. [12].

2.1 Dynamic Logic Programs and Evolp

The main idea of logic programs updates is to update a logic program by an-
other logic program or by a sequence of logic programs, also called Dynamic
Logic Programs (DLPs). The initial program of a DLP corresponds to the initial
knowledge of a given (dynamic) domain, and the subsequent ones to successive
updates of the domain. To represent negative information in logic programs and
their updates, following [3] we allow for default negation not A not only in the
premises of rules but also in their heads i.e., we use generalized logic programs
(GLPs) [22].

A language L is any set of propositional atoms. A literal in L is either an
atom of L or the negation of an atom. In general, given any set of atoms F , we
denote by FL the set of literals over F . Given a literal F , if F = Q, where Q is
an atom, by not F we denote the negative literal not Q. Viceversa, if F = not Q,

From Logic Programs Updates to Action Description Updates 55

by not F we denote the atom Q. A GLP defined over a propositional language
L is a set of rules of the form F ← Body, where F is a literal in L, and Body
is a set of literals in L.1 An interpretation I over a language L is any set of
literals in L such that, for each atom A, either A ∈ I or not A ∈ I. We say
a set of literals Body is true in an interpretation I (or that I satisfies Body)
iff Body ⊆ I. In this paper we will use programs containing variables. As usual
when programming within the stable models semantics, a program with variables
stands for the propositional program obtained as the set of all possible ground
instantiations of the rules.

Two rules τ and η are conflicting (denoted by τ �� η) iff the head of τ is the
atom A and the head of η is not A, or viceversa. A Dynamic Logic Program
over a language L is a sequence P1 ⊕ . . . ⊕ Pm (also denoted ⊕Pm

i) where the
Pis are GLPs defined over L. The refined stable model semantics of such a DLP,
defined in [1], assigns to each sequence P1 ⊕ . . .⊕Pn a set of stable models (that
is proven there to coincide with the stable models semantics when the sequence
is formed by a single normal [11] or generalized program [22]). The rationale for
the definition of a stable model M of a DLP is made in accordance with the
causal rejection principle [10, 19]: If the body of a rule in a given update is true
in M , then that rule rejects all rules in previous updates that are conflicting
with it. Such rejected rules are ignored in the computation of the stable model.
In the refined semantics for DLPs a rule may also reject conflicting rules that
belong to the same update. Formally, the set of rejected rules of a DLP ⊕Pm

i

given an interpretation M is:

RejS(⊕Pm
i ,M) = {τ | τ ∈ Pi : ∃ η ∈ Pj i ≤ j, τ �� η ∧ Body(η) ⊆ M}

Moreover, an atom A is assumed false by default if there is no rule, in none
of the programs in the DLP, with head A and a true body in the interpretation
M . Formally:

Default(⊕Pm
i ,M) = {not A | � ∃ A ← Body ∈

⋃
Pi ∧ Body ⊆ M}

If ⊕Pm
i is clear from the context, we omit it as first argument of the above

functions.

Definition 1. Let ⊕Pm
i be a DLP over language L and M an interpretation.

M is a refined stable model of ⊕Pm
i iff

M = least

((⋃
i

Pi \ RejS(M)

)
∪ Default(M)

)

where least(P) denotes the least Herbrand model of the definite program [23]
obtained by considering each negative literal not A in P as a new atom.

1 Note that, by defining rule bodies as sets, the order and number of occurrences of
literals do not matter.

56 J.J. Alferes, F. Banti, and A. Brogi

Having defined the meaning of sequences of programs, we are left with the
problem of how to come up with those sequences. This is the subject of LP update
languages [2, 4, 9, 19]. Among the existing languages, Evolp [2] uses a particulary
simple syntax, which extends the usual syntax of GLPs by introducing the special
predicate assert/1. Given any language L, the language Lassert is recursively
defined as follows: every atom in L is also in Lassert; for any rule τ over Lassert,
the atom assert(τ) is in Lassert; nothing else is in Lassert. An Evolp program
over L is any GLP over Lassert. An Evolp sequence is a sequence (or DLP) of
Evolp programs. The rules of an Evolp program are called Evolp rules.

Intuitively an expression assert(τ) stands for “update the program with the
rule τ”. Notice the possibility in the language to nest an assert expression in
another. The intuition behind the Evolp semantics is quite simple. Starting from
the initial Evolp sequence ⊕Pm

i we compute the set, SM(⊕Pm
i), of the stable

models of ⊕Pm
i . Then, for any element M in SM(⊕Pm

i), we update the initial
sequence with the program Pm+1 consisting of the set of rules τ such that the
atom assert(τ) belongs to M . In this way we obtain the sequence ⊕Pm

i ⊕Pm+1.
Since SM(⊕Pm

i) contains, in general, several models we may have different lines
of evolution. The process continues by obtaining the various SM(⊕Pm+1

i) and,
with them, various ⊕Pm+2

i . Intuitively, the program starts at step 1 already
containing the sequence ⊕Pm

i . Then it updates itself with the rules asserted
at step 1, thus obtaining step 2. Then, again, it updates itself with the rules
asserted at this step, and so on. The evolution of any Evolp sequence can also
be influenced by external events. An external event is itself an Evolp program.
If, at a given step n, the programs receives the external update En, the rules
in En are added to the last self update for the purpose of computing the stable
models determining the next evolution but, in the successive step n+1 they are
no longer considered (that’s why they are called events). Formally:

Definition 2. Let n and m be natural numbers. An evolution interpretation
of length n, of an evolving logic program ⊕Pm

i is any finite sequence M =
M1, . . . ,Mn of interpretations over Lassert. The evolution trace associated with
M and ⊕Pm

i is the sequence P1 ⊕ . . . Pm ⊕ Pm+1 . . . ⊕ Pm+n−1, where, for
1 ≤ i < n

Pm+i = {τ | assert(τ) ∈ Mm+i−1}

Definition 3 (Evolving stable models). Let ⊕Pm
i and ⊕En

i be any Evolp
sequences, and M = M1, . . . ,Mn be an evolving interpretation of length n. Let
P1 ⊕ . . .⊕Pm+n−1 be the evolution trace associated with M and ⊕Pm

i . We say
that M is an evolving stable model of ⊕Pm

i with event sequence ⊕En
i at step n

iff Mk is a refined stable model of the program P1 ⊕ . . . ⊕ (Pk ∪ Ek) for any k,
with m ≤ k ≤ m + n − 1.

2.2 Action Languages

The purpose of an action language is to provide ways of describing how an
environment evolves given a set of external actions. A specific environment that
can be modified through external actions is called an action domain. To any

From Logic Programs Updates to Action Description Updates 57

action domain we associate a pair of sets of atoms F and A. We call the elements
of F fluent atoms or simply fluents, and the elements of A action atoms or
simply actions. Basically, the fluents are the observables in the environment and
the actions are, clearly, the external actions. A fluent literal (resp. action literal)
is an element of FL (resp. an element of AL). In the following, we will use the
letter Q to denote a fluent atom, the letter F to denote a fluent literal, and the
letter A to denote an action atom. A state of the world (or simply a state) is
any interpretation over F . We say a fluent literal F is true at a given state s iff
F belongs to s. Given a set (or, by abuse of notation, a conjunction) of fluent
literals Cond we say s satisfies Cond, and write s |= Cond, iff Cond ⊆ s.

Each action language provides ways to describe action domains through sets
of expression called action programs. Usually, the semantics of an action program
is defined in terms of a transition system, i.e. a function whose argument is any
pair (s,K), where s is a state of the world and K is a subset of A, and whose
value is any set of states of the world. Intuitively, given the current state of the
world, a transition system specifies which are the possible resulting states after
simultaneously performing all actions in K.

Two kinds of expressions that are common within action description lan-
guages are static and dynamic rules. The static rules basically describe the rules
of the domain, while dynamic rules describe effects of actions. A dynamic rule
has a set of preconditions, namely conditions that have to be satisfied in the
present state in order to have a particular effect in the future state, and post-
conditions describing such an effect.

In the following we will consider three existing action languages, namely:
A, B and C. The language A [13] is very simple. It only allows dynamic rules of
the form

A causes F if Cond

where Cond is a conjunction of fluent literals. Such a rule intuitively means:
performing the action A causes F to be true in the next state if Cond is true in
the current state. The language B [13] is an extension of A which also considers
static rules. In B, static rules are expressions of the form

F if Body

where Body is a conjunction of fluent literals. Intuitively, such a rule means: if
Body is true in the current state, then F is also true in the current state. A
fundamental notion, in both A and B, is fluent inertia [13]. A fluent F is inertial
if its truth value is preserved from a state to another, unless it is changed by
the (direct or indirect) effect of an action. Hereafter a program written in the
language B will be called a B program.

The semantics of B is defined in terms of a transition system, as sketched
above. For introducing the particular transition function that, given a state s
and a set of actions K, determines the possible resulting states according to B,
we first consider the set D(s,K) of fluents literals that are true as a (direct)
consequence of actions. Any literal F is a direct consequence of state s and
actions K if it is in the head of a dynamic rule A causes F if Cond such that

58 J.J. Alferes, F. Banti, and A. Brogi

A ∈ K and Cond is true in s. Then a state s′ is a possible resulting states from
s iff any fluent literal in s is an element of D(s,K) or is a true literal in s (that
followed by inertia) or is a consequence of a static rule:

Definition 4. Let P be any B program with set of fluents F , let R be the set
of all static rules in P , and let s be a state and K any set of actions. Moreover,
let D(s,K) be the following set of literals

D(s,K) = {F : ∃ A causes F if Cond ∈ P s.t. A ∈ K ∧ s |= Cond}

and let RLP be the logic program:

RLP = {F ← Body : F if Body ∈ R}

A state s′ is a resulting state from s given P and the set of actions K iff

s′ = least(s ∩ s′ ∪ D(s,K) ∪RLP)

where least(P) is as in Definition 1

For a detailed explanation of A and B see e.g. [13].
Static and dynamic rules are also the ingredients of the action language C

[15, 16]. Static rules in C are of the form

caused J if H

while dynamic rules are of the form

caused J if H after O

where J and H are formulae such that any literal in them is a fluent literal, and
O is any formula such that any literal in it is a fluent or an action literal. The for-
mula O is the precondition of the dynamic rule and the static rule caused J if H
is its postcondition. The semantic of C is based on causal theories[15]. Causal
theories are sets of rules of the form caused J if H, each such rule meaning:
If H is true this is an explanation for J . A basic principle of causal theories
is that something is true iff it is caused by something else. Given any action
program P , a state s and a set of actions K, we consider the causal theory T
given by the static rules of P and the postconditions of the dynamic rules whose
preconditions are true in s ∪ K. Then s′ is a possible resulting state iff it is a
causal model of T .

3 Evolp Action Programs

As we have seen, Evolp and action description languages share the idea of a sys-
tem that evolves. In both, the evolution is influenced by external events (respec-
tively, updates and actions). Evolp is actually a programming language devised

From Logic Programs Updates to Action Description Updates 59

for representing any kind of computational problem, while action description
languages are devised for the specific purpose of describing actions. A natural
idea is then to develop special kind of Evolp sequences for representing actions,
and then compare such kind of programs with existing action description lan-
guages. We will develop one such kind of programs, and call them Evolp Action
Programs (EAPs).

Following the underlying notions of Evolp, we use the basic construct assert
for defining special-purpose macros. As it happens with other action description
languages, EAPs are defined over a set of fluents F and a set of actions A.
In EAPs, a state of the world is any interpretation over F . To describe action
domains we use an initial Evolp sequence, I⊕D. The Evolp program D contains
the description of the environment, while I contains some initial declarations, as
it will be clarified later. As in B and C, EAPs contain static and dynamic rules.

A static rule over (F ,A) is simply an Evolp rule of the form

F ← Body.

where F is a fluent literal and Body is a set of fluent literals.
A dynamic rule over (F ,A) is a (macro) expression

effect(τ) ← Cond.

where τ is any static rule F ← Body and Cond is any set of fluent or action
literals. The intuitive meaning of such a rule is that the static rule τ has to
be considered only in those states whose predecessor satisfies condition Cond.
Since some of the conditions literals in Cond may be action atoms, such a rule
may describe the effect of a given set of actions under some conditions. Such an
expression stands for the following set of Evolp rules:

F ← Body, event(F ← Body). (1)
assert(event(F ← Body)) ← Cond. (2)

assert(not event(F ← Body)) ← event(τ), not assert(event(F ← Body))(3)

where event(F ← Body) is a new literal. Let us see how the above set of rules
fits with its intended intuitive meaning. Rule (1) is not applicable whenever
event(F ← Body) is false. If at some step n, the conditions Cond are satisfied,
then, by rule (2), event(F ← Body) becomes true at step n + 1. Hence, at step
n + 1, rule (1) will play the same role as static rule F ← Body. If at step n + 1
Cond is no longer satisfied, then, by rule (3) the literal event(F ← Body) will
become false again, and then rule (1) will be again not effective.

Besides static and dynamic rules, we still need another ingredient to complete
our construction. As we have seen in the description of the B language, a notable
concept is fluent inertia. This idea is not explicit in Evolp where the rules (and
not the fluents) are preserved by inertia. Nevertheless, we can show how to obtain
fluent inertia by using macro programming in Evolp. An inertial declaration over
(F ,A) is a (macro) expression inertial(K), where K ⊆ F . The intended intuitive
meaning of such an expression is that the fluents in K are inertial. Before defining

60 J.J. Alferes, F. Banti, and A. Brogi

what this expression stands for, we state that the above mentioned program I
is always of the form initialize(F), where initialize(F) stands for the set of
rules Q ← prev(Q), where Q is any fluent in F , and prev(Q) are new atoms
not in F ∪ A. The inertial declaration inertial(K) stands for the set (where Q
ranges over K):

assert(prev(Q)) ← Q. assert(not prev(Q)) ← not Q.

Let us consider the behaviour of this macro. If we do not declare Q as an
inertial fluent, the rule Q ← prev(Q) has no effect. If we declare Q as an inertial
literal, prev(Q) is true in the current state iff in the previous state Q was true.
Hence, in this case, Q is true in the current state unless there is a static or dy-
namic rule that rejects such assumption. Viceversa, if Q was false in the previous
state, then Q is true in the current one iff it is derived by a static or dynamic
rule. We are now ready to formalize the syntax of Evolp action programs.

Definition 5. Let F and A be two disjoint sets of propositional atoms. An
Evolp action program (EAP) over (F , A) is any Evolp sequence I ⊕ D, where
I = Initialize(F), and D is any set with static and dynamic rules, and inertial
declarations over (F ,A)

Given an Evolp action program I ⊕D, the initial state of the world s (which,
as stated above, is an interpretation over F) is passed to the program together
with the set K of the actions performed at s, as part of an external event. A
resulting state is the last element of any evolving stable model of I ⊕ D given
the event s ∪ K restricted to the set of fluent literals. I.e:

Definition 6. Let I ⊕ D be any EAP over (F ,A), and s a state of the world.
Then s′ is a resulting state from s given I ⊕D and the set of actions K iff there
exists an evolving stable model M1,M2 of I⊕D given the external events s∪K, ∅
such that s′ ≡F M2(where by s′ ≡F M2 we simply mean s′∩FLit = M2∩FLit).

This definition can be easily generalized to sequences of set of actions.

Definition 7. Let I ⊕ D be any EAP and s a state of the world. Then s′ is a
resulting state from s given I⊕D and the sequence of sets of actions K1 . . . , Kn

iff there exists an evolving stable model M1, . . . ,Mn+1 of I⊕D given the external
events (s ∪ K1), . . . , Kn, ∅ such that s′ ≡F Mn+1.

Since EAPs are based on the Evolp semantics, which in turn is an extension
of the stable model semantics for normal logic programs, we can easily prove
that the complexity of the computation of the two semantics is the same.

Theorem 1. Let I ⊕ D be any EAP over (F ,A), s a state of the world and
K ⊆ A. To find a resulting state s′ from s given I ⊕D and the set of actions K
is an NP-complete problem.

It is important to notice that, if the initial state s does not satisfies the static
rules of the EAP, the correspondent Evolp sequence has no stable model, and

From Logic Programs Updates to Action Description Updates 61

hence there will be no successor state. This is, in our opinion, a good result: The
initial state is just a state as any other. It would be strange if such state would
not satisfy the rules of the domain. If this situation occurs, most likely either
the translation of the rules, or the one of the state, presents some errors. From
now onwards we will assume that the initial state satisfies the static rules of the
domain.

To illustrate EAPs, we now show an example of their usage by elaborating
on probably the most famous example of reasoning about actions. The presented
elaboration highlights some important features of EAPs, viz. the possibility of
handling non-deterministic effects of actions, non-inertial fluents, non-executable
actions, and effects of actions lasting for just one state.

Example 1 (An elaboration of the Yale shooting problem). In the original Yale
shooting problem [27], there is a single-shot gun which is initially unloaded, and
a turkey which is initially alive. One can load the gun and shoot the turkey. If
one shoots, the gun becomes unloaded and the turkey dies. We consider a slightly
more complex scenario where there are several turkeys, and where the shooting
action refers to a specific turkey. Each time one shoots as specific turkey, one
either hits and kills the bird, or misses it. Moreover, the gun becomes unloaded
and there is a bang. It is not possible to shoot with an unloaded gun. We also
add the property that any turkey moves iff it is not dead.

For expressing that an action is not executable under some conditions, we
make use of a well known behaviour of the stable model semantics. Suppose a
given EAP contains a dynamic rules of the form effect(u ← not u) ← Cond,
where u is a literal which does not appear elsewhere (in the following, for repre-
senting such rules, we use the notation effect(⊥) ← Cond). With such a rule, if
Cond is true in the current state, then there is no resulting state. This happens
because, as it is well known, programs containing u ← not u and no other rules
for u, have no stable models.

To represent the problem, we consider the fluents dead(X), moving(X),
hit(X), missed(X), loaded, bang, plus the auxiliary fluent u, and the actions
shoot(X) and load (where the Xs range over the various turkeys). The fluents
dead(X) and loaded are inertial fluents, since their truth value should remain
unchanged until modified by some action effect. The fluents missed(X), hit(X)
and bang are not inertial. The problem is encoded by the EAP I ⊕ D, where

I = initialize(dead(X),moving(X),missed(X), hit(X), loaded, bang, u)

and D is the following set of expressions

effect(⊥) ← shoot(X), not loaded inertial(loaded)
moving(X) ← not dead(X) inertial(dead(X))
effect(dead(X) ← hit(X)) ← shoot(X) effect(loaded) ← load
effect(hit(X) ← not missed(X)) ← shoot(X) effect(bang) ← shoot(X)
effect(missed(X) ← not hit(X)) ← shoot(X) effect(not loaded) ← shoot(X)

Let us analyze this EAP. The first rule encodes the impossibility to execute
the action shoot(X) when the gun is unloaded. The static rule moving(X) ←

62 J.J. Alferes, F. Banti, and A. Brogi

not dead(X) implies that, for any turkey X, moving(X) is true if dead(X) is
false. Since this is the only rule for moving(X), it further holds that moving(X)
is true iff dead(X) is false. Notice that declaring moving(tk) as inertial, would
result, in our description, in the possibility of having a moving dead turkey! This
is why fluents moving(X) have not been declared as inertial. In fact, suppose we
insert inertial(moving(X)) in the EAP above. Suppose further that moving(tk)
is true at state s, that one shoots at tk and kills it. Since moving(tk) is an inertial
fluent, in the resulting state dead(tk) is true, but moving(tk) remains true by
inertia. Also notable is how effects that last only for one state, like the noise
provoked by the shoot, are easily encoded. The last three dynamic rules on the
left encode a non deterministic behaviour: each shoot action can either hit and
kill a turkey, or miss it.

To see how this EAP encodes the desired behaviour of this domain, consider
the following example of evolution. In this example, to lightening the notation,
we omit the negative literals belonging to interpretations. Let us consider the
initial state {} (which means that all fluents are false). The state will remain
unchanged until some action is performed. If one load the gun, the program is
updated with the external event {load}. In the unique successor state, the fluent
loaded is true and nothing else changes. The truth value of loaded remains then
unchanged (by inertia) until some other action is performed. The same applies
to fluents dead(X). The fluents bang, missed(X), and hit(X) remain false by
default. If one shoots at a specific turkey, say Smith, and the program is updated
with the event shoot(smith), several things happen. First, loaded becomes false,
and bang becomes true, as an effect of the action. Moreover, the rules:

hit(smith) ← not missed(smith).
missed(smith) ← not hit(smith).

dead(smith) ← hit(smith).

are considered as rules of the domain for one state. As a consequence, there are
two possible resulting states. In the first one, missed(smith) is true, and all
the others fluents are false. In the second one hit(smith) is true, missed(smith)
is false and, by the rule dead(smith) ← hit(smith), the fluent dead(smith)
becomes true. In both the resulting states, nothing happens to the truth value
of the fluents dead(X), hit(X), and dead(X) for X �= smith.

4 Relationship to Existing Action Languages

In this section we show embeddings into EAPs of the action languages B and
(the definite fragment of) C2. We will assume that the considered initial states
are consistent wrt. the static rules of the program, i.e. if the body of a static
rule is true in the considered state, the head is true as well.

2 The embedding of language A is not explicitly exposed here since A is a (proper)
subset of the B language.

From Logic Programs Updates to Action Description Updates 63

Let us consider first the B language. The basic ideas of static and dynamic
rules are very similar in B and in EAPs. The main difference between the two is
that in B all the fluents are inertial, whilst in EAPs only those that are declared
as such are inertial. The translation of B into EAPs is then straightforward: All
fluents are declared as inertial and then the syntax of static and dynamic rules is
adapted. In the following we use, with abuse of notation, Body and Cond both
for conjunctions of literals and for sets of literals.

Definition 8. Let P be any action program in B with set of fluents F .
The translation B(P,F) is the pair (IB ⊕ DBP ,FB) where: FB ≡ F , IB =
initialize(F) and DBP contains exactly the following rules:

– inertial(Q) for each fluent Q ∈ F
– a rule F ← Body for any static rule F if Body in P .
– a rule effect(F) ← A, Cond. for any dynamic rule A causes F if Cond

in P .

Theorem 2. Let P be any B program with set of fluents F , (IB ⊕ DBP ,F)
its translation, s a state and K any set of actions. Then s′ is a resulting state
from s given P and the set of actions K iff it is a resulting state from s given
IB ⊕ DBP and the set of actions K.

This theorem makes it clear that there is a close relationship between EAPs
and the B language. In practice, EAPs generalize B by allowing both inertial
and non inertial fluents and by admitting rules, rather then simply facts, as
effects of actions.

Let us consider now the action language C. Given a complete description of
the current state of the world and performed actions, the problem of finding
a resulting state is a problem of the satisfiability of a causal theory, which is
known to be

∑2
P -hard (cf. [15]). So, this language belongs to a category with

higher complexity than EAPs whose satisfiability is NP-complete. However, only
a fragment of C is implemented and the complexity of such fragment is NP . This
fragment is known as the definite fragment of C [15]. In this fragment, static rules
are expressions of the form caused F if Body where F is a fluent literal and
Body is a conjunction of fluent literals, while dynamic rules are expressions of
the form caused not F if Body after Cond where Cond is a conjunction of
fluent or action literals3 For this fragment it is possible to provide a translation
into EAPs.

The main problem of the translation of C into EAPs lies in the simulation
of causal reasoning with stable model semantics. The approach followed here
to encode causal reasoning with stable models is in line with the one proposed
in [21]. We need to introduce some auxiliary predicates and define a syntactic

3 The definite fragment defined in [15] is (apparently) more general, allowing Cond
and Body to be arbitrary formulae. However, it is easy to prove that such kind of
expressions are equivalent to a set of expressions of the form described above.

64 J.J. Alferes, F. Banti, and A. Brogi

transformation of rules. Let F be a set of fluents, and let FC denote the set of
fluents F ∪ {QN | Q ∈ F}. We add, for each Q ∈ F , the constraints:

← not Q, not QN . (4)
← Q, QN . (5)

Let Q be a fluent and Body = F1, . . . , Fn a conjunction of fluent literals. We will
use the following notation: Q = not QN , not Q = not Q and Body = F1, . . . , Fn

Definition 9. Let P be any action program in the definite fragment of C with
set of fluents F . The translation C(P,F) is the pair (IC ⊕ DCP ,FC) where:
FC is defined as above, IC ≡ initialize(FC) and DCP consists exactly of the
following rules:

– a rule effect(Q ← Body) ← Cond, for any dynamic rule in P of the form
caused Q if Body after Cond;

– a rule effect(QN ← Body) ← Cond, for any dynamic rule in P of the form
caused not Q if Body after Cond;

– a rule Q ← Body, for any static rule in P of the form caused Q if Body;
– a rule QN ← Body, for a static rule in P of the form caused not Q if Body;
– The rules (4) and (5), for each fluent Q ∈ F .

For this translation we obtain a result similar to the one obtained for the
translations of the B language:

Theorem 3. Let P be any action program in the definite fragment of C with set
of fluents F , (IC ⊕ DCP ,FC) its translation, s a state, sC the interpretation
over FC defined as follows: sC = s ∪ {QN | Q ∈ s} ∪ {not QN | not Q ∈ s}
and K any set of actions. Then s∗ is a resulting state from sC given IC ⊕DCP

and the set of actions K iff there exists s′ such that s′ is a resulting state from
s, given P and the set K and s∗ ≡FL

s′.

By showing translations of the action languages B and the definite fragment
of C into EAPs, we proved that EAPs are at least as expressive as such languages.
Moreover, the translations above are quite simple: basically one EAP static or
dynamic rule for each static or dynamic rule in the other languages. The next
natural question is: Are they more expressive?

5 Updates of Action Domains

Action description languages describe the rules governing a domain where actions
are performed, and the environment changes. In practical situations, it may
happen that the very rules of the domain change with time too. When this
happens, it would be desirable to have ways of specifying the necessary updates
to the considered action program, rather than to have to write a new one. EAPs

From Logic Programs Updates to Action Description Updates 65

are just a particular kind of Evolp sequences. So, as in general Evolp sequences,
they can be updated by external events.

When one wants to update the existing rules with a rule τ , all that has to
be done is to add the fact assert(τ) as an external event. This way, the rule
τ is asserted and the existing Evolp sequence is updated. Following this line,
we extend EAPs by allowing the external events to contain facts of the form
assert(τ), where τ is an Evolp rule, and we show how they can be used to
express updates to EAPs. For simplicity, below we use the notation assert(R),
where R is a set of rules, for the set of expressions assert(τ) where τ ∈ R.

To illustrate how to update an EAP, we come back to Example 1. Let I ⊕D
be the EAP defined in there. Let us now consider that after some shots, and
dead turkeys, rubber bullets are acquired. One can now either load the gun with
normal bullets or with a rubber bullets, but not with both. If one shoots with a
rubber loaded gun, the turkey is not killed.

To describe this change in the domain, we introduce a new inertial fluent
representing the gun being loaded with rubber bullets. We have to express that,
if the gun is rubber-loaded, one can not kill the turkey. For this purpose we
introduce the new macro:

not effect(F ← Body) ← Cond.

where F , is a fluent literal, Body is a set of fluents literals and Cond is a set of
fluent or action literals. We refer to such expressions as effects inhibitions. This
macro simply stands for the rule

assert(not event(F ← Body)) ← Cond.

where event(F ← Body) is as before. The intuitive meaning is that, if the
condition Cond is true in the current state, any dynamic rule whose effect is the
rule F ← Body is ignored.

To encode the changes described above, we update the EAP with the external
event E1 consisting of the facts assert(I1) where

I1 = (initialize(rubber loaded))

Then, in the subsequent state, we update the program with the external update
E2 = assert(D1) where D1 is the set of rules4

inertial(rubber loaded).
effect(rubber loaded) ← rubber load.
effect(not rubber loaded) ← shoot(X).
effect(⊥) ← rubber loaded, load.
effect(⊥) ← loaded, rubber load.
not effect(dead(X) ← hit(X)) ← rubber loaded.

4 In the remainder, we use assert(U), where U is a set of macros (which are themselves
sets of Evolp rules), to denote the set of all facts assert(τ) such that there exists a
macro η in U with τ ∈ η.

66 J.J. Alferes, F. Banti, and A. Brogi

Let us analyze the proposed update. First, the fluent rubber loaded is ini-
tialized. It is important to initialize any fluent before starting to use it. The
newly introduced fluent is declared as inertial, and two dynamic rules are added
specifying that load actions are not executable when the gun is already loaded
in a different way. Finally we use the new command to specify that the ef-
fect dead(X) ← hit(X) does not occurs if, in the previous state, the gun was
loaded with rubber bullets. Since this update is more recent than the original
rule effect(dead(X) ← hit(X)) ← shoot(X), the dynamic rule is updated.

Basically updating the original EAP with the rule

not effect(dead(X) ← hit(X)) ← rubber loaded.

has the effect of adding not rubber loaded to the preconditions of the dynamic
rule

effect(dead(X) ← hit(X)) ← shoot(X).

So far we have shown how to update the preconditions of a dynamic rule. It
is also possible to update static rules and the descriptions of effects of actions.
Suppose the cylinder of the gun becomes dirty and, whenever one shoots, the
gun may either work properly or fail. If the gun fails, the action shoot has no
effect. We introduce two new fluents in the program with the event assert(I2)
where I2 = initialize(fails, work)). Then, we assert the event E2 = assert(D2)
where D2 is the following EAP

effect(fails ← not work) ← shoot(X).
effect(work ← not fails) ← shoot(X).

not missed(X) ← fails.
not hit(X) ← fails.

not bang ← fails.
effect(loaded ← fails) ← loaded.

effect(rubber loaded ← fails) ← rubber loaded.

The first two dynamic rules simply introduce the possibility that a failure
may occur every time we shoot. The three static rules describe changes in the
behaviour of the environment when the gun fails, and amount to negate what was
entailed by static and dynamic rules in D. The last two dynamic rules update
two of the dynamic rules in D and D1, respectively. These rules specify that,
when a failure occurs, the gun remain loaded with the same kind of bullet. Since
the new rules of D2 are more recent than the rules in D and D1, they update
these latter ones.

This last example shows how to update static and dynamic rules with new
static and dynamic rules. To illustrate how this is indeed achieved in this exam-
ple, we now show a possible evolution of the updated system. Suppose currently
the gun is not loaded. One loads the gun with a rubber bullet, and then shoots
at the turkey named Trevor. The initial state is {}. The first set of actions is
{rubber load} The resulting state after this action is s′ ≡ {rubber loaded}. Sup-
pose one performs the action load. Since the EAP is updated with the dynamic

From Logic Programs Updates to Action Description Updates 67

rule effect(⊥) ← rubber loaded, load. there is no resulting state. This happens
because we have performed a non executable action. Suppose, instead, that the
second set of actions is {shoot(trevor)}. In this case there are three possible
resulting states. In one the gun fails and, in it, the resulting state is again s′. In
the second, the gun works but the bullet misses Trevor. In this case, the result-
ing state is s′′1 ≡ {missed(trevor)}. Finally, in the third, the gun works and the
bullet hits Trevor. Since the bullet is a rubber bullet, Trevor is still alive. In this
case the resulting state is s′′2 ≡ {hit(trevor)}.

The events may introduce changes in the behaviour of the original EAP. This
opens a new problem. In classical action languages we do not care about the pre-
vious history of the world: If the current state of the world is s, the computation
of the resulting states is not affected by the states before s. In the case of EAPs
the situation is different, since external updates can change the behaviour of the
considered EAP. Fortunately, we do not have to care about the whole history
of the world, but just about those events containing new initializations, inertial
declarations, effects inhibitions, and static and dynamic rules.

It is possible to have a compact description of an EAP that is updated sev-
eral times via external events. For that we need to further extend the original
definition of EAPs.

Definition 10. An updated Evolp action program over (F ,A) is any sequence
I⊕D1⊕. . .⊕Dn where I is initialize(F), and the various Dk are sets consisting
of static rules, dynamic rules, inertial declarations and effects inhibitions such
that any fluent appearing in Dk belongs to F .
Definition 11. Let I ⊕ D1 ⊕ . . . ⊕ Dn be any updated EAP and s a state of
the world. Then s′ is a resulting state from s given I ⊕ D1 ⊕ . . . ⊕ Dn and the
sequence of sets of actions K1 . . . , Kn iff there exists an evolving stable model
M1, . . . ,Mn of I ⊕ D1 ⊕ . . . ⊕ Dn given the external events (s ∪ K1), . . . , Kn, ∅
such that s′ ≡F Mn.

In general, if we updated an Evolp action program I⊕D with the subsequent
events assert(I1), assert(D1), where I1 ⊕ D1 is another EAP, we obtain the
equivalent updated Evolp action program (I ∪ I1) ⊕ D ⊕ D1 Formally:

Theorem 4. Let I0∪I⊕D0⊕D1⊕. . .⊕Dk be any update EAP over (F ,A). Let⊕
En

i be a sequence of events such that: E1 = K1 ∪ s, where s is any state of
the world and K1 is any set of actions; and the others Eis are any set of actions
Kα, or any set assert(initialize(Fβ)) where

⋃
Fβ ≡ I, or any assert(Di) with

1 ≤ i ≤ k. Let s1, . . . , sn be a sequence of possible resulting states from s given the
EAP I0 ⊕D0 and the sequence of events

⊕
En

i and Kn+1 a set of actions. Then
s1, . . . , sn, s′ is a resulting state from s given I0 ⊕D0 and the sequence of events⊕

En
i ⊕Kn+1 iff s′ is a resulting state from sn given I0∪ I ⊕D0⊕D1⊕ . . .⊕Dk

and the set of actions Kn+1.

By applying this theorem we can, for instance, simplify the updates to the
original EAP of the example in this section into the updated EAP Isum ⊕ D ⊕
D1 ⊕D2, where Isum ≡ I ∪ I1 ∪ I2, I and D are as in Example 1, and the Iis
and Dis are as described above.

68 J.J. Alferes, F. Banti, and A. Brogi

Yet one more possibility opened by updated Evolp action programs is to cater
for successive elaborations of a program. Consider an initial problem described
by an EAP I⊕D. If we want to describe an elaboration of the program, instead of
rewriting I⊕D we can simply update it with new rules. This gives a new answer
to the problem of elaboration tolerance [25] and also open the new possibility of
automatically update action programs by other action programs.

The possibility to elaborate on an action program is also discussed in [15]
in the context of the C language. The solution proposed there, is to consider C
programs whose rules have one extra fluent atom in their bodies, all these extra
fluents being false by default. The elaboration of an action program P is the
program P ∪ U where U is a new action program. The rules in U can defeat
the rules in P by changing the truth value of the extra fluents. An advantage of
EAP over that approach is that in EAPs the possibility of updating rules is a
built-in feature rather then a programming technique involving manipulation of
rules and introduction of new fluents. Moreover, in EAPs we can simply encode
the new behaviours of the domain by new rules and then let these new rules
update the previous ones.

6 Conclusions and Future Work

In this paper we have explored the possibility of using logic programs updates
languages as action description languages. In particular, we have focused our
attention on the Evolp language [2]. As a first point, we have defined a new
action language paradigm, christened Evolp action programs, defined as a macro
language over Evolp. We have provided an example of usage of this language, and
compared Evolp action programs with action languages A, B and the definite
fragment of C, by defining simple translations into Evolp of programs in these
languages. Finally, we have also shown and argued about the capability of EAPs
to handle changes in the domain during the execution of actions.

Though all the results in this paper refer to the update language Evolp, it is
not our stance that these could not be obtained if other LP update languages
were used instead. For recasting (some) of the results in other LP update lan-
guages, one would have to resort to established relationships between the various
LP update languages, such as the ones found in [2, 19]. Also, the possibility of
handling changes in the domain shown by EAPs, could in principle be obtained
if, instead of Evolp, another update language with the capability of updating
update rules were used instead. Another LP update language with this capabil-
ity is the KABUL language defined in [19]. However, the study of which of the
existing LP update languages could be used as action description languages, in
a way similar to what is described here for Evolp, is outside the scope of this pa-
per, and would, in our opinion, fit better in a paper with a focus on relationship
among various LP update languages. Our goal in this paper was to show that
(at least) one LP update language can be used for describing effects of actions,
and can be formally compared with existing action description languages. This
goal was achieved by showing exactly that for the language Evolp.

From Logic Programs Updates to Action Description Updates 69

Several important topics are not touched here, and will be subject of future
work. Important fields of research are how to deal, in the Evolp context, with
the problem of planning prediction and postdiction [24], when dealing with in-
complete knowledge of the state of the world. Yet another topic involves the
possibility of concurrent execution of actions. Nevertheless, we have not fully
explored this topic, and confronted the results with extant works [6, 18].

The development of implementations for Evolp and EAPs is another neces-
sary step. Finally EAPs have to be tested in real and complex contexts.

References

1. J. J. Alferes, F. Banti, A. Brogi, and J. A. Leite. Semantics for dynamic logic
programming: a principled based approach. In 7th Int. Conf. on Logic Programming
and Nonmonotonic Reasoning (LPNMR-7), volume 1730 of LNAI. Springer, 2004.

2. J. J. Alferes, A. Brogi, J. A. Leite, and L. M. Pereira. Evolving logic programs. In
S. Flesca, S. Greco, N. Leone, and G. Ianni, editors, 8th European Conf. on Logics
in AI (JELIA’02), volume 2424 of LNAI, pages 50–61. Springer, 2002.

3. J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, and T. C. Przymusin-
ski. Dynamic updates of non-monotonic knowledge bases. The Journal of Logic
Programming, 45(1–3):43–70, September/October 2000.

4. J. J. Alferes, L. M. Pereira, H. Przymusinska, and T. Przymusinski. LUPS: A
language for updating logic programs. Artificial Intelligence, 132(1 & 2), 2002.

5. J. J. Alferes, L. M. Pereira, T. Przymusinski, H. Przymusinska, and P. Quaresma.
Preliminary exploration on actions as updates. In M. C. Meo and M. V. Ferro,
editors, Joint Conference on Declarative Programming (AGP-99), 1999.

6. C. Baral and M. Gelfond. Reasoning about effects of concurrent actions. Journal
of Logic Programming, 31:85–118, 1997.

7. C. Baral, M. Gelfond, and Alessandro Provetti. Representing actions: Laws, ob-
servations and hypotheses. Journal of Logic Programming, 31, April–June 1997.

8. F. Buccafurri, W. Faber, and N. Leone. Disjunctive logic programs with inheri-
tance. In D. De Schreye, editor, Proceedings of the 1999 International Conference
on Logic Programming (ICLP-99), Cambridge, November 1999. MIT Press.

9. T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. A framework for declarative
update specifications in logic programs. In Bernhard Nebel, editor, Proceedings
of the seventeenth International Conference on Artificial Intelligence (IJCAI-01),
pages 649–654, San Francisco, CA, 2001. Morgan Kaufmann Publishers, Inc.

10. T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. On properties of semantics
based on causal rejection. Theory and Practice of Logic Programming, 2:711–767,
November 2002.

11. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In R. Kowalski and K. A. Bowen, editors, 5th International Conference on Logic
Programming, pages 1070–1080. MIT Press, 1988.

12. M. Gelfond and V. Lifschitz. Representing actions and change by logic programs.
Journal of Logic Programming, 17:301–322, 1993.

13. M. Gelfond and V. Lifschitz. Action languages. Electronic Transactions on AI, 16,
1998.

14. E. Giunchiglia, J. Lee, V. Lifschitz, N. Mc Cain, and H. Turner. Representing ac-
tions in logic programs and default theories: a situation calculus approach. Journal
of Logic Programming, 31:245–298, 1997.

70 J.J. Alferes, F. Banti, and A. Brogi

15. E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, and H. Turner. Nonmonotonic
causal theories. Artificial Intelligence, 153:49–104, 2004.

16. E. Giunchiglia and V. Lifschitz. An action language based on causal explanation:
Preliminary report. In AAAI’98, pages 623–630, 1998.

17. M. Homola. Dynamic logic programming: Various semantics are equal on acyclic
programs. In this volume.

18. J. Lee and V. Lifschitz. Describing additive fluents in action language C+. In
William Nebel, Bernhard; Rich, Charles; Swartout, editor, Proc. IJCAI-03, pages
1079–1084, Cambridge, MA, 2003.

19. J. A. Leite. Evolving Knowledge Bases, volume 81 of Frontiers in Artificial Intel-
ligence and Applications. IOS Press, 2003.

20. J. A. Leite and L. M. Pereira. Generalizing updates: from models to programs. In
LPKR’97: workshop on Logic Programming and Knowledge Representation, 1997.

21. V. Lifschitz. The Logic Programming Paradigm: a 25-Year Perspective, chapter
Action languages, answer sets and planning, pages 357–373. Springer Verlag, 1999.

22. V. Lifschitz and T. Woo. Answer sets in general non-monotonic reasoning (pre-
liminary report). In B. Nebel, C. Rich, and W. Swartout, editors, Proceedings of
the 3th International Conference on Principles of Knowledge Representation and
Reasoning (KR-92). Morgan-Kaufmann, 1992.

23. John Wylie Lloyd. Foundations of Logic Programming. Springer,, Berlin, Heidel-
berg, New York,, 1987.

24. J. McCarthy. Programs with commons sense. In Proceedings of Teddington Con-
ference on The Mechanization of Thought Process, pages 75–91, 1959.

25. J. McCarthy. Mathematical logic in artificial intelligence, pages 297–311. Daedalus,
1988.

26. S. Russel and P. Norvig. Artificial Intelligence A Modern Approach. Artificial
Intelligence. Prentice Hall, 1995.

27. D. McDermott S. Hanks. Nonmonotonic logic and temporal projection. Artificial
Intelligence, 33:379–412, (1987).

A Proofs

Before presenting the proofs of the results in this paper, we present an alternative
definition of the transition function of EAPs, and prove its equivalence to the
original definition (Definition 6). We do so because in some proofs it is more
convenient to use this alternative definition.

In this alternative definition, and in its prove, we will use the notation S|I
to denote the restriction of the set S to the literals in the set I i.e., to denote
S ∩ I.

Theorem 5. Let I ⊕ D be any EAP, s a state of the world and K a set of
actions. Let R be the set of static rules in D, I the following set of fluent literals

I = {Q ∈ F : inertial(Q) ∈ D} ∪ {not Q : Q ∈ F : inertial(Q) ∈ D}

and D(s,K) be the following set of rules:

D(s,K) = {τ : effect(τ) ← Cond ∈ D ∧ K ∪ s |= Cond}

From Logic Programs Updates to Action Description Updates 71

Then s′ is a resulting state from s given I ⊕ D and the set of actions K iff

s′ = least
(
(s ∩ s′ ∩ I) ∪ Default(s′,R∪ D(s,K))|(FL\I) ∪ D(s,K) ∪R

)
(6)

Proof. By Definition 6, s′ is a resulting state from s given I ⊕ D and the set
of actions K iff there exists an evolving stable model M1, s

∗ of I ⊕ D given the
external events s∪K, ∅ such that s′ ≡F s∗. An interpretation M1 is an evolving
stable model of I ⊕ D given the external events s ∪ K iff M1 is a refined stable
models of I ⊕ D ∪ s ∪ K i.e.,

M1 = least ((I ∪ D ∪ s ∪ K) \ Rejs(M1, I ⊕ D ∪ K ∪ s) ∪ Default(M1))

All the atoms of the form event(τ) where τ is the effect of a dynamic rule
are false by default in I ⊕ D ∪ K ∪ s. Hence the rules of the form (1) and (3),
which have those atoms in their bodies, play no role when calculating the least
model. Also all the literals of the form prev(Q), where Q is a fluent literal, are
false by default, and so the rules of the form Q ← prev(Q) play no role either.
Since the initial (starting) state s is always assumed consistent wrt. the static
rules, there is no conflict between the static rules in D. Thus, static rules do not
reject any literal in s nor do they infer any fluent literal that does not belong to
s. So, we can simplify the expression above in the following way:

M1 = least ((D∗ ∪ s ∪ K) ∪ Default(M1))

where D∗ is the set of all rules the form

assert(event(τ)) ← Cond.

for which there is a dynamic rule effect(τ) ← Cond in D, union with the set of
all rules of the form

assert(prev(Q)) ← Q. assert(not prev(Q)) ← not Q.

for every Q such that inertial(Q) belongs to D.
Hereafter, for sake of simplicity, in interpretations we omit the negative lit-

erals of the form not A whenever A is an auxiliary atom or an action literal. In
other words, we omit not A whenever A �∈ F . Moreover, by Prev(s) we denote
the set of literals which are either of the form prev(F) where F is a fluent literal
that is declared as inertial in D and is true in s, or of the form not prev(F) where
F is a fluent literal that is declared as inertial in D and is false in s. Finally, by
ED(s,K) we mean the set of literals event(τ) such that

assert(event(τ)) ← Cond.

belongs to D and s ∪ K |= Cond.
Given this, it is easy to see that the trace associated with any evolving inter-

pretation M1, s
∗ is the sequence J : I ⊕ D ⊕ Prev(s) ∪ ED(s,K). So, M1, s

∗

72 J.J. Alferes, F. Banti, and A. Brogi

is an evolving stable model of I ⊕D given the sequence of events K, ∅ iff s∗ is a
refined stable model of J .

Let s∗ be any interpretation over the language of I ⊕ D, and s′ = s∗|F . To
prove the theorem, we simply have to prove that s∗ is a refined stable model of
J iff s′ satisfies the equivalence (6). By definition of refined stable model, s∗ is
a refined stable model of J iff

s∗ = least
(
(I ∪ D ∪ Prev(s) ∪ D(s,K)) \ RejS(s∗) ∪ Default(s∗)

)
⇒ Assume that s∗ is a refined stable model of J . To prove that s′ satisfies the

equivalence, we start by simplifying the expression above defining s∗.
Let s′ = s∗F . Since s′ only has fluent literals, the dynamic rules and the

inertial declarations in D play no role in verifying the equivalence. Hence, the
only rules we are interested in are the static rules in R. Moreover, since s∗

is two valued, there is no mutual rejection between the rules in R: otherwise
there would be a fluent literal Q such that all the rules with head Q or not Q
would be rejected, and such that not Q would not be in the set Default(s∗)
as well. In such a case, neither Q nor not Q would be in s∗ which would
contradict the two valuedness of s∗. Finally, by partially evaluating the facts
in ED(s,K), in the rules of the form

F ← Body, event(F ← Body).

we can delete the atoms event(τ) from the body of those rules whenever
event(τ) ∈ ED(s,K), and delete one such rule when event(τ) �∈ ED(s,K).
With this, we can simplify the equivalence for s′ into:

s′ = least
(
I \ RejS(s∗) ∪ Prev(s) ∪R ∪ D(s,K) ∪ Default(s∗)

)
We can split the set of default assumptions into two subsets: the one con-
cerning the inertial fluent literals; and the one concerning the fluent literals
that are not inertial. Taking this splitting in consideration, the equivalence
for s′ becomes:

s′ = least

(
I \ RejS(s∗) ∪ Prev(s) ∪ Default(s∗)|I ∪
R ∪ D(s,K) ∪ Default(s∗)|(FL\I)

)

where Default(s∗) stands for Default(s∗, I ⊕ R ∪ D(s,K))|(FL\I). Notice
that the expression Default(s∗, I ⊕ R ∪ D(s,K))|(FL\I) is equivalent to
Default(s′,R∪D(s,K))|(FL\I). Moreover, the expression Default(s∗)|I is
equivalent to Default(s′, s ∪ R ∪ D(s,K))|(I). Let Inherit(s) be the set of
rules:

Inherit(s∗) = {Q ∈ F : Q ← prev(Q) ∈ I \ RejS(s∗) ∧ prev(Q) ∈ Prev(s)}

What remains to show in order to prove that s′ satisfies the equivalence (6)
is that

Inherit(s∗) ∪ Default(s∗)|I ≡ (s ∩ s′ ∩ I)

From Logic Programs Updates to Action Description Updates 73

For showing this, we consider separately the negative and the positive fluent
literals. Let Q be a fluent literal that belongs to (s ∩ s′ ∩ I). We want to
prove this is equivalent to say that Q ← prev(Q) belongs to I \ RejS(s∗)
and that Prev(Q) ∈ Prev(s) i.e., we want to prove that Q ∈ Inherit(s∗).

The literal Q belongs to (s ∩ s′ ∩ I) iff Q ∈ I, not Q �∈ s and not Q �∈ s′.
This implies that there exists no rule in R∪D(s,K) whose head is not Q and
whose body is true. So, the rule Q ← prev(Q) belongs to I \ RejS(s∗) and,
by Q ∈ s and by definition of Prev(s), we conclude that Prev(Q) ∈ Prev(s).
Let assume now Q ← prev(Q) belongs to I \ RejS(s∗), then there exists
no rule in R ∪ D(s,K) whose head is not Q and whose body is true. If,
furthermore, Prev(Q) ∈ Prev(s), then not Q �∈ Default(s∗) and so not Q is
not derived by any rule nor by default assumption. Thus, not Q �∈ s′ and so
Q ∈ s. Moreover, by definition if prev(Q) ∈ Prev(s) then Q ∈ s and Q ∈ I.
So, we have proved that

Q ∈ (s ∩ s′ ∩ I) ⇔ Q ← prev(Q) ∈ I \ RejS(s∗) ∧ prev(Q) ∈ Prev(s)

Let us now consider the negative fluent literals. In this case we want to prove
that, for any inertial fluent, the following equivalence holds.

not Q ∈ (s ∩ s′) ⇔ not Q ∈ Default(s′, s ∪R ∪ D(s,K))|F

We know not Q ∈ s′ iff Q �∈ s′, which, since s′ is a model of R ∪ D(s,K),
implies that there exists no rule in R∪D(s,K) whose head is Q and whose
body is satisfied by s′. This, together with the fact that Q �∈ s, by definition
of Default implies that not Q ∈ Default(s′, s ∪R ∪ D(s,K)), as desired.

⇐ Let us now suppose that s′ satisfies the equivalence (6). i.e.

s′ = least
(
(s ∩ s′ ∩ I) ∪ Default(s′,R∪ D(s,K))|(FL\I) ∪ D(s, k) ∪R

)
Let NED be the set of literals of the form ¬event(τ) such that event(τ) ∈
ED(s,K) and there is no dynamic rule of the form effect(τ) ← Cond
such that s′ satisfies Cond. Let s′ be the following evolving interpretation
(again we omit in the interpretation, the negative literals which are not fluent
literals).

s∗ = s′ ∪ Prev(s) ∪ ED(s,K) ∪ NED ∪ assert(ED(s′,K)) ∪
∪ assert(Prev(s))′

We have to prove that s∗ is a refined stable model of J . We start this proof
by showing that

Inherit(s∗) ∪ Default(s∗)|I ≡ (s ∩ s′ ∩ I)

We start by assuming that Q is a fluent literal in (s∩s′∩I). Q is such a fluent
iff Prev(Q) ∈ Prev(s), and not Q �∈ s′. Since s′ is a model of R ∪ D(s,K),
we conclude that there exists no rule in R ∪ D(s,K) with head not Q and
true body in s′. Thus, the rule Q ← prev(Q) ∈ I \ RejS(s∗), and hence
Q ∈ Inherit(s∗).

74 J.J. Alferes, F. Banti, and A. Brogi

Let assume now Q ∈ Inherit(s∗) (i.e. Q ← prev(Q) ∈ I \ RejS(s∗) and
prev(Q) ∈ Prev(s)) then Q ∈ s. This implies that not Q �∈ s, Q ∈ I, and
there exists no rule in R ∪ D(s,K) with head Q whose body is true in s′.
Consequently, not Q �∈ s′ (i.e. Q ∈ s′), and finally Q ∈ (s ∩ s′ ∩ I).
Let us now consider the negative fluent literals. We want to prove that, for
any inertial fluent, the following equivalence holds.

not Q ∈ (s ∩ s′) ⇔ not Q ∈ Default(s′, s ∪R ∪ D(s,K))|F

The proof proceeds in the same way as above, in order to conclude that

Inherit(s∗) ∪ Default(s∗)|I ≡ (s ∩ s′ ∩ I)

We obtain then the following equivalence

s′ = least

(
Inherit(s∗) ∪ Default(s∗)|I ∪
Default(s′,R∪ D(s,K))|(FL\I) ∪ D(s, k) ∪R

)

which is equivalent to

s′ = least (Inherit(s∗) ∪ Default(s∗) ∪ D(s, k) ∪R) |FL

Since s′ is consistent wrt. D(s,K) and R, these sets of rules do not contain
any pair of rules with conflicting heads and whose bodies are both true in
s′. So, by replacing Inherit(s∗) with Prev(s) ∪ I \ RejS(s∗) we obtain

s′ = least
(

(I ∪ D(s,K) ∪ mR) \ RejS(s∗) ∪ Default(s∗)
)
|FL

and from this, and by considering the definition of s∗

s∗ = least
(
(I ∪ D ∪ Prev(s) ∪ D(s,K)) \ RejS(s∗) ∪ Default(s∗)

)
This equation is, by definition, equivalent to say that M1, s

∗ is an evolving
stable model of I ⊕ D given the sequence of events K, ∅. In other words, s′

is a resulting state from s given I ⊕ D and the set of actions K.

In the extreme cases where the set of inertial fluents coincides with the whole
set of fluents and, when the set if inertial fluents is empty, we obtain two sim-
plifications of the equivalence (6).

Corollary 1. Let I ⊕ D be any EAP, s a state of the world and K a set of
actions. Let R, D(s,K) be as in theorem 5. Moreover let every fluent be an
inertial fluent. Then s′ is a resulting state from s given I ⊕ D and the set of
actions K iff

s′ = least (s ∩ s′) ∪ D(s, k) ∪R)

Proof. Follows trivially as a special case of theorem 5.

From Logic Programs Updates to Action Description Updates 75

Corollary 2. Let I ⊕ D be any EAP, s a state of the world and K a set of
actions. Let R, D(s,K) be as in theorem 5. Moreover let the set of inertial
fluents be the empty set. Then s′ is a resulting state from s given I ⊕D and the
set of actions K iff s′ is a stable model of the logic program D(s, k) ∪R

Proof. It follows trivially as a special case of theorem 5 that

s′ = least
(
Default(s′,R∪ D(s,K))|(FL\I) ∪ D(s, k) ∪R

)
As proved in [19] this amount to say s′ is a stable model of D(s, k) ∪R.

Having shown this alternative to the definition of the transition function of
EAPs, and proven its equivalence to the original Definition 6, we are now ready
to prove all of the theorems (that we recall here, for the sake of readability) in
this paper.

Theorem 1 (Complexity of EAPs). Let I ⊕D be any EAP over (F ,A), s
a state of the world and K ⊆ A. To find a resulting state s′ from s given I ⊕ D
and the set of actions K is an NP-complete problem.

Proof. By corollary 2, and given that the problem of finding a stable model of a
program is NP-hard, we conclude that finding a resulting state s′ from s given
I ⊕ D and the set of actions K is an NP-hard problem.

As for membership, from theorem 5 and from the observation that the com-
putation of least(P), where P is a logic program, is polynomial wrt. the number
of rules in P (since least(P) is the least Herbrand model of P considering the
negative literals in P as new atoms), it follows that checking whether a given
state s′ is resulting state is a polynomial problem wrt. the number of rules in
I ⊕ D plus the number of elements in F ∪ A. Hence, the problem of finding a
resulting state s′ from s given I ⊕ D and the set of actions K is NP.

Theorem 2 (Relation to B). Let P be any B program with set of fluents F ,
(IB ⊕ DBP ,F) its translation, s a state and K any set of actions. Then s′ is a
resulting state from s given P and the set of actions K iff it is a resulting state
from s given IB ⊕ DBP and the set of actions K.

Proof. It trivially follows from corollary 1.

Theorem 3 (Relation to C). Let P be any action program in the definite
fragment of C with set of fluents F , (IC ⊕ DCP ,FC) its translation, s a state,
sC the interpretation over FC defined as follows: sC = s ∪ {QN | Q ∈ s} ∪
{not QN | not Q ∈ s} and K any set of actions. Then s∗ is a resulting state
from sC given IC ⊕DCP and the set of actions K iff there exists s′ such that s′

is a resulting state from s, given P and the set K and s∗ ≡FL
s′.

Proof. By corollary 2, s∗ is a resulting state from sC given IC ⊕ DCP and the
set of actions K iff s′ is a stable model of the program R∪D(s,K) where R and
D(sC ,K) are defined as in theorem 5. From the translation of definite causal

76 J.J. Alferes, F. Banti, and A. Brogi

theories into logic programs presented in [15], it follows that this is equivalent
to say that s′ is a model of the causal theory obtained by all the static rules of
P plus the rules of the form caused J if H for which a dynamic rule

caused J if H after O

belongs to P and Q is true in s ∪ K. This, in turn, is equivalent to saying that
s′ is a resulting state from s given P and the set of actions K, as desired.

Theorem 4 (Simplification of updated EAPs). Let I0∪I⊕D0⊕D1⊕. . .⊕
Dk be any update EAP over (F ,A). Let

⊕
En

i be a sequence of events such that:
E1 = K1 ∪ s, where s is any state of the world and K1 is any set of actions;
and the others Eis are any set of actions Kα, or any set assert(initialize(Fβ))
where

⋃
Fβ ≡ I, or any assert(Di) with 1 ≤ i ≤ k. Let s1, . . . , sn be a sequence

of possible resulting states from s given the EAP I0 ⊕ D0 and the sequence of
events

⊕
En

i and Kn+1 a set of actions. Then s1, . . . , sn, s′ is a resulting state
from s given I0⊕D0 and the sequence of events

⊕
En

i ⊕Kn+1 iff s′ is a resulting
state from sn given I0 ∪ I ⊕ D0 ⊕ D1 ⊕ . . . ⊕ Dk and the set of actions Kn+1.

Proof. The sequence s1, . . . , sn, s′ is a sequence of possible resulting states iff
there exists a sequence of evolving interpretations M0,M1, . . . Mn, s∗ such that
M0|F ≡ s, Mi|F ≡ si and s∗|F ≡ s′. The trace of M0,M1, . . . Mn, s∗ is the DLP
I0 ⊕ D0 ⊕ T1 . . . ⊕ Tn where each Tis is a set of literal of one of the following
forms:

Ti = Auxi

Ti = Auxi ∪ initialize(Fβ)
Ti = Auxi ∪ Dj] for some 0 ≤ j ≤ k

and Auxi is a set of auxiliary literals of the form Prev(Q) or not Prev(Q), where
Q is an inertial literal or event(τ) or not event(τ), τ being the effect of some
dynamic rule.

To compute s∗, the only relevant part of the trace is formed by the various
initialize(Fβs), Dks and the last set of auxiliary literals Auxn. Moreover, the
semantics does not change if we put the various initialize(Fβs) in the first pro-
gram of the sequence, since a fluent only appears in a Dj after being initialized.
Hence we can simplify the trace of M0,M1, . . . Mn, s∗ into:

I0 ∪ I ⊕ D0 ⊕ D1 ⊕ . . . ⊕ Dk ∪ Auxn

The set Auxn can be split in three separate sets

Auxn = Prev(sn) ∪ ED(sn,K) ∪ Retract(sn)

where Prev(sn) and ED(sn,K) are as defined in the proof of theorem 5 and
Retract(sn) is the set of all literals of the form not event(τ) coming from dynamic
rules whose preconditions are true in sn−1 and false in sn. The negative literals
in Retract(sn) simply rejects facts of the form event(τ) from Auxn−1. Since we

From Logic Programs Updates to Action Description Updates 77

have already simplified the trace by erasing all the Auxis with i < n, we can
ignore the set Retract(sn). Thus, we obtain that s1, . . . s

′ is a sequence of possible
resulting states iff an interpretation s∗, with s∗|FL

≡ s′, is a refined stable model
of I0 ∪ I ⊕ D0 ⊕ D1 ⊕ . . . ⊕ Dk ⊕ ED(sn,K) ∪ Prev(sn). This is equivalent to
saying that s′ is a resulting state from s given I0 ∪ I ⊕ D0 ⊕ D1 ⊕ . . . ⊕ Dk and
the set of actions Kn+1, as desired.

Dynamic Logic Programming: Various Semantics
Are Equal on Acyclic Programs

M. Homola

Comenius University, Bratislava, Slovakia
homola@tbc.sk

Abstract. Multidimensional dynamic logic programs (MDLPs) are suit-
able to represent knowledge dynamic in time, or more generally, informa-
tion coming from various sources, partially ordered by arbitrary relevancy
relation, e.g., level of authority. They have been shown useful for mod-
eling and reasoning about multi-agent systems. Various approaches to
define semantics of MDLPs have been presented. Most of the approaches
can be characterized as based on rejection of rules.

It is understood that on some restricted classes of MDLPs several of
these semantics coincide. We focus on acyclic programs. We show that
for a MDLP P and a candidate model M , if P is acyclic to some extent
then several of the known semantics coincide on M . It follows as a direct
consequence that on the class of acyclic programs all of these semantics
coincide.

1 Introduction

Background. In Multidimensional Dynamic Logic Programs (MDLPs), intro-
duced in [1], knowledge is encoded into several logic programs, partially ordered
by a relevance relation. MDLPs have been shown as well suited for represent-
ing knowledge change in time, and as well, to provide favourable representation
for reasoning over information structured by some relevancy relation, such as
authority hierarchies.

Already in [1], authors have shown that MDLPs are useful to model and rea-
son about multi-agent systems. Particularly in logic based multi-agent systems
where knowledge of an agent is naturally represented by rules. Thus, knowledge
associated with an agent at a given state is encoded into a logic program. As-
sume that the agent’s knowledge evolves with time. With each new time-state
new knowledge appears to the agent, in form of rules, perceived trough sensors
or communicated with other agents. This new knowledge may be in general con-
trary to the knowledge inherited from the previous time-states. We want the
agent to be able to resolve such conflicts, assigning more relevance to the more
recent knowledge.

MDLPs allow us to do this in a natural way. Agent’s initial state and sub-
sequent perceptions are modeled as a sequence of logic programs. More recent
information is treated as more relevant. MDLPs assign semantics to the sequence,

J. Leite and P. Torroni (Eds.): CLIMA V, LNAI 3487, pp. 78–95, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Dynamic Logic Programming 79

resolving conflicts between rules according to their relevancy. Moreover, they en-
able for determining semantics of the agent’s knowledge at arbitrary state, thus
allowing us to query the agent’s knowledge history.

Besides time, MDLPs are capable of handling other relevancy relations, like
specificity of the information or authority. This is particularly handy in multi-
agent communities where an authoritative hierarchy among the agents is present.
Assume that the knowledge of each agent is represented by a logic program. If an
agent is authoritatively superior to the another one, we treat also the program
of the former one as more relevant than the program of the latter one. Assuming
that the agents obey the authority, we are able to query the global knowledge
of the system but as well the knowledge of a subsystem rendered by an agent
together with all the agents that are inferior to it.

Moreover, the framework allows us to combine several “relevancy dimensions”
into a single MDLP. Thus, we are able to model, e.g., the knowledge distributed
over an authority-enabled community of agents and as well the change of the
whole system in time. Hence, we favor MDLPs as a powerful framework for
modeling and reasoning about knowledge distributed over multi-agent systems,
logic-based in particular. However, a multi-agent system does not have to be
associated with a single MDLP, nor the view provided by the MDLP has to
be global. For instance, each agent may use a MDLP to maintain its own view
of the system, reflecting its own preference amongst the chunks of information
obtained by communication with other agents. Thus, MDLPs may also provide
a local knowledge repository for each agent of the system. For a more detailed
analysis, we refer the reader to [3, 1, 11, 12]. We also refer the reader to [13], in
order to see how extensions of MDLPs can benefit to multi-agent systems, and
to [14] to see how the knowledge of multiple agents can be combined when there
is no authoritative order among the agents.

Motivation. Various approaches have been presented in order to provide a
semantics of MDLPs. Most of these semantics are based on similar notions (e.g.,
generalization of stable model semantics, employing rejection of rules) and are
very close, one to another. Such semantics include P-Justified Update semantics
introduced in [2, 3], Dynamic Stable Model semantics from [4, 1], Update Answer
Set semantics from [5, 3] and Refined Dynamic Stable Model semantics of [6, 7].
(The latest one is only known for linearly ordered MDLPs.) Usually, a new
semantics has been introduced to cope with drawbacks of the older ones. Most
important contributions are those of Leite [3, 8], Eiter et al. [5, 9] and Alferes et
al. [4, 6].

Typically, semantics assigns a set of models to a program. Models are picked
among the interpretations of the program. Authors point out that for some
particular pairs of semantics, for a given MDLP, the model-set of one semantics
is always a subset of the model-set of the other one. Thus, a sort of hierarchy of
the model-sets assigned to a MDLP by different semantics is organized (cf. [3,
5, 6, 10]).

Studying the differences and similarities between these semantics, helps us to
evaluate them w.r.t. our intuitions. Perhaps we do not need such a rich family

80 M. Homola

of semantics, indeed if the difference between them shows to be very small.
Particularly, within the field of multi-agent systems, it helps us to determine
whether or not MDLPs are appropriate for a particular application, and if yes,
which semantics to choose.

Also, it is a shared opinion, that on “plain” MDLPs, which are not obfus-
cated with cyclic dependencies (cyclic chains of rules), conflicting rules within
a same logic program and other unconvenient constructs, all of these semantics
coincide. Different behavior on some “abnormal” MDLPs is usually assigned to
the inability of some of the semantics to deal with these abnormalities. Sev-
eral restrictive conditions on MDLPs have been introduced in order to identify
classes of programs on which two or more semantics coincide (cf. [3, 5, 6]). From
this point of view, We find several results of [5, 3, 7], about restricted classes of
MDLPs on which some of the semantics coincide, not tight, as many MDLPs on
which the semantics also match are beyond the proposed classes.

We focus on a hypothesis that has been sketched already (cf. [5, 3, 7]), that
perhaps on MDLPs that do not contain cycles several of the semantics may
coincide. We see this hypothesis as valuable, since acyclic programs form a broad
subclass and it is known that for some, simpler, applications they are sufficient.
So, we suggest further evaluation of these semantics w.r.t. the class of acyclic
programs and programs with limited occurrence of cyclic dependencies.

Contribution. As in [3, 15], we build MDLPs over a more general language of
generalized extended logic programs that unifies the previous approaches under
a common framework, allowing for more elegant comparisons, while keeping the
previous approaches as special cases, so the results are propagated.

We introduce a new concept of sufficient acyclicity. Logic program is suffi-
ciently acyclic if each of its literals is supported by at least one acyclic derivation.
As the main result we establish a restrictive condition, using the notion of suf-
ficient acyclicity, under which four (five) of the semantics coincide on the given
interpretation of the given MDLP (linear MDLP). It trivially follows that on
acyclic programs these semantics coincide entirely. This article presents the re-
sults of the author’s Master’s thesis [10] that can be viewed as its extended
version.

2 Preliminaries

We first introduce basic concepts from logic programming. Logic programs are
build from propositional atoms. The set of all atoms is denoted by A. We employ
two kinds of negation, explicit negation ¬ and default negation not . Let p be
a proposition. By ¬ p we intuitively mean that (we know that) A is not true.
Default negation is sometimes called negation as failure. We use it to express
lack of objective evidence: by not p we intuitively mean that we have no evidence
confirming that p is true.

An objective literal is an atom or an atom preceded by explicit negation
(e.g., A ∈ A and ¬ A are objective literals). A default literal is an objective

Dynamic Logic Programming 81

literal preceded by default negation (e.g., not A, not ¬ A are default literals,
A ∈ A). Both objective literal and default literal are literals. We denote the set
of all objective literals by O, the set of all default literals by D and the set of all
literals by L.

A rule is a formula L ← L1, . . . , Ln, where n ≥ 0 and L,L1, . . . , Ln ∈ L.
A rule of a form L ← (i.e., n = 0) is called a fact. For each rule r of a form
L ← L1, . . . , Ln we call the literal L the head of r and denote it by h(r) and we
call the set {L1, . . . , Ln} the body of r and denote it by b(r).

A set of rules P is called a generalized extended logic program (logic program,
GELP). GELPs are the most general logic programs that we use. We favor
the approach outlined in [3, 15], where MDLPs are built over GELPs, unifying
the previous approaches under a common framework, allowing for more elegant
comparisons, while keeping the previously used languages as special cases, so
the results are propagated. We also remark, that GELPs enable to properly
manipulate three truth values, “something is true”, “something is false”, and
“we do not know”, allowing to adequately switch from one to another, what we
mark as a desirable feature, once dealing with knowledge updates.

Several other flavours of logic programs do exist. We mention extended logic
programs, a subclass of GELPs formed by programs that do not contain default
literals in heads of rules. Generalized logic programs do not allow explicit nega-
tion at all, i.e., for each objective literal L, contained in the program, it holds
that L ∈ A, and for each default literal not L, contained in the program, it holds
that L ∈ A. A logic program is definite if it only contains atoms of A in the
heads, as well as in the bodies of its rules, i.e., definite logic programs do not
allow negation at all.

Let P be a GELP. The expanded version of P is the program Ṗ = P ∪
{not ¬ h(r) ← b(r) | r ∈ P ∧ h(r) ∈ O}. Two literals L ∈ O and not L are said
to be conflicting. Two rules are conflicting if their heads are conflicting literals.
We denote this by L �� L′ and by r �� r′ respectively. For any set of literals S,
S+ = S ∩ O and S− = S ∩ D.

A set of literals that does not contain a pair of conflicting literals is called
an interpretation. An interpretation is total if for each L ∈ O it contains L or
not L. A literal L is satisfied in an interpretation I if L ∈ I and we denote it by
I � L. Also I � S, a set of literals S, if I � L for each L ∈ S. A rule r is satisfied
in an interpretation I (denoted by I � r) if I � h(r) whenever I � b(r). Let P
be a definite logic program. We denote by least(P) the unique least model of P
that exists, as showed by van Emden and Kowalski in [16].

Most of the semantic approaches in dynamic logic programming build
on ideas of the stable model semantics of logic programs that has been
introduced by Gelfond and Lifschitz in [17]. According to this semantics a
total interpretation M is a stable model of a GELP P if it holds that
M = least(P ∪ M−)1.

1 With an abuse of notation, we commonly treat (sets of) literals as (sets of) facts, and
also GELPs as definite programs, considering each negated literal as a new atom.

82 M. Homola

3 MDLPs and Various Semantics Based on Rejection of
Rules

Logic programs have been proven useful in the area of knowledge representation.
As long as the information we deal with is rather static we face no problem to
encode it in form of a logic program. But we reach the barrier very soon, when
dealing with information change in time, or when integrating information from
several sources with various levels of relevancy.

To deal with this problem, the framework of dynamic logic programming has
been introduced in [4]. In this framework information is encoded into several
programs that are linearly ordered into a sequence by their level of relevancy.
Such sequences are called dynamic logic programs.

This framework has been further generalized in [1] by allowing logic pro-
grams ordered by arbitrary (i.e., also non-linear) partial ordering. Multidimen-
sional dynamic logic programs were born. We formalize the latter approach in
Definition 1.

Definition 1. Let G = (V,E) be a directed acyclic graph with finite set of ver-
tices V . Let P = {Pi | i ∈ V } be a set of logic programs. The pair (P, G) is a
multidimensional dynamic logic program or often just program or MDLP.

We often use just P instead of (P, G) and assume the existence of the cor-
responding G. The multiset of all rules of the expanded versions Ṗi of the logic
programs Pi, i ∈ V of P is denoted by �P . Let i, j ∈ V , we denote by i ≺ j (and
also by Pi ≺ Pj) if there is a directed path from i to j in G. We denote by i � j
(and by Pi � Pj) if i ≺ j or if i = j.

A dynamic logic program (DLP, linear MDLP) is such a MDLP P whose G
is collapsed into a single directed path. So, DLPs form a subclass of MDLPs,
they are precisely all linearly ordered MDLPs.

Most of the semantic approaches in dynamic logic programming are based on
the ideas of stable model semantics of simple logic programs. A set of models is
assigned to a program by each of these semantics. Models are picked among the
interpretations of the program.

As a MDLP in general may contain conflicting rules, semantics try to resolve
these conflicts, when it is possible, according to the relevancy level of the con-
flicting rules. A common approach is to assign a set of rejected rules to a given
program P and a “candidate model” interpretation M . Rejected rules are then
subtracted from the union of all rules of P, gaining the residue of P w.r.t. M .
Also the set of default assumptions (sometimes just defaults) is assigned to P
and M . Defaults are picked among the default literals. A fix-point condition is
verified, whether M coincides with the least model of the union of the residue
and the default assumptions. If so, then M is a model of P w.r.t. the semantics.
A semantics that can be characterized in this manner is said to be based on
rejection of rules or rule-rejecting.

Once we deal with several rule-rejecting semantics, then any difference be-
tween them originates in the way how particularly rejection of rules and default

Dynamic Logic Programming 83

assumptions are implemented in these semantics. Two different kinds of rejection
have been used with MDLPs. The original rejection used in [4, 1] keeps each rule
intact as long as there is no reason for rejecting it in form of a more relevant rule
that is satisfied in the considered interpretation. Formally, the set of rejected
rules of P w.r.t. M is

Rej (P,M) = {r ∈ Ṗi | (∃r′ ∈ Ṗj) i ≺ j,M � b(r′), r �� r′} .

In [5], an alternative notion of rejection has been introduced, allowing each
rule to reject other rules only if it is not rejected already. Such a set of rejected
rules of P w.r.t. M is formalized as

Rej �(P,M) = {r ∈ Ṗi | (∃r′ ∈ Ṗj) i ≺ j,M � b(r′), r �� r′, r′ /∈ Rej �(P,M)} .

Originally, in [2], default assumptions have been computed just exactly as in
the stable model semantics of logic programs. Formally,

Def �(P,M) = M− .

Later on, in [4, 1], another approach has been introduced, as the original
set of defaults showed to be too broad. We formalize defaults according to this
approach as

Def (P,M) = {not L | L ∈ O, (�r ∈ �P) h(r) = L,M � b(r)} .

Combining two implementations of rejection and two of default assumptions
immediately leads to four semantics of MDLPs. We define each of them formally
in the following.

Definition 2. A rule-rejecting semantics that uses Rej (P,M) for rejection and
Def �(P,M) for defaults is called the dynamic justified update (DJU) semantics.
That is, a total interpretation M is a model of a MDLP P w.r.t. the DJU
semantics whenever M = least(Res(P,M) ∪ Def �(P,M)), where Res(P,M) =
�P \ Rej (P,M) is the residue.

The DJU semantics is the very first rule-rejecting semantics that has been
used in dynamic logic programming. If we restrict to DLPs build from generalized
logic programs, it is identical with the P-justified updates semantics of [2]. Soon
the original default assumptions showed to be too broad. In [4, 1], they have
been replaced by Def (P,M). The semantics is formally defined as follows.

Definition 3. A rule-rejecting semantics that uses Rej (P,M) for rejection and
Def (P,M) for defaults is called the dynamic stable model (DSM) semantics. Or
equivalently, a total interpretation M is a model of a MDLP P w.r.t. the DSM
semantics whenever M = least(Res(P,M) ∪ Def (P,M)), where the residue is
as in Definition 2.

In [5], the alternative notion of rejection, Rej �(P,M), has been combined with
Def �(P,M) to produce semantics for DLPs build from extended logic programs.
The semantics has been originally called the update answer set semantics. In
our setting we formalize it in Definition 4.

84 M. Homola

Definition 4. A rule-rejecting semantics that uses Rej �(P,M) for rejection and
Def �(P,M) for defaults is called the backward dynamic justified update (BDJU)
semantics. In other words, a total interpretation M is a model of a MDLP
P w.r.t. the BDJU semantics whenever M = least(Res�(P,M) ∪ Def �(P,M)),
where Res�(P,M) = �P \ Rej �(P,M) is the residue.

By the label “backward” we indicate use of Rej �(P,M) rejection, as the algo-
rithm for its computation from [5] traverses P in backward direction compared
to the one for Rej (P,M) found in [4, 1]. In [3], the three above mentioned se-
mantics have been brought to a more general platform offered by GELPs. Also a
backward variant of the DSM semantics has been introduced, that we formalize
in Definition 5. In [3], this semantics is called the U-model semantics.

Definition 5. A rule-rejecting semantics that uses Rej �(P,M) for rejection and
Def (P,M) for defaults is called the backward dynamic stable model (BDSM)
semantics. That is, a total interpretation M is a model of a MDLP P w.r.t.
the BDSM semantics whenever M = least(Res�(P,M)∪Def (P,M)), where the
residue is as in Definition 4.

The set of all models of a program P w.r.t. the DJU semantics is denoted
by DJU (P). Similarly, DSM (P), BDJU (P) and BDSM (P) are the sets of all
models according to the remaining three semantics.

We have presented four rule-rejecting semantics of MDLPs. The following
two examples taken from [3] show that each of this semantics is different.

Example 1. Let P = {P1 ≺ P2} where P1 = {a ← }, P2 = {not a ← not a}.
It holds that DSM (P) = BDSM (P) = {{a,not ¬ a}}. But, for the other two,
DJU (P) = BDJU (P) = {{a,not ¬ a}, {not a,not ¬ a}}.

Example 2. Let P = {P1 ≺ P2 ≺ P3} where P1 = {a ← }, P2 = {not a ← } and
P3 = {a ← a}. It holds that DJU (P) = DSM (P) = {{not a,not ¬ a}}. On the
other hand, BDJU (P) = BDSM (P) = {{a,not ¬ a}, {not a,not ¬ a}}.

Moreover, as it has been shown in [3], the sets of models assigned to arbitrary
program P, one set by each of these semantics, form a kind of hierarchy w.r.t.
the set inclusion relation. The DSM semantics is the most restrictive one, the set
of models w.r.t. DSM is always a subset of the other model-sets. On the other
hand, the set of models w.r.t. any semantics is always a subset of the one w.r.t.
BDJU, which always provides the broadest set of models. We summarize these
observations in Theorem 1 taken from [3].

Theorem 1. For each MDLP P it holds that

DSM (P) ⊆ DJU (P) ⊆ BDJU (P) ,

DSM (P) ⊆ BDSM (P) ⊆ BDJU (P) .

Dynamic Logic Programming 85

4 Equality on the Class of Acyclic Programs

We have shown in Examples 1 and 2 that the four rule-rejecting semantics are in
general distinct. However, many MDLPs exist, such as the one from Example 3,
on which these four semantics coincide.

Example 3. Let P = {P1, P2, P3 | P1 ≺ P3, P2 ≺ P3}. Let P1 = {a ← },
P2 = {not a ← } and P3 = {a ← }. This simple MDLP can be viewed as
a model of a community of three agents, who take part in the hierarchy of
authorities. The first two of them are of incomparable authority and moreover,
they have conflicting knowledge. This conflict is resolved by the third one of
them, who is represented by logic program P3 and its authority level is superior
to the former two. All of the four semantics agree with this intuition and assign
M = {a,not ¬ a} to P as its single model.

Examples like this one lead us to a hypothesis that there probably are vast
classes of programs on which several semantics coincide. It shows that several
rule-rejecting semantics possibly behave equally on “plain” programs, that are
not obfuscated with cyclic dependencies among literals or other obstacles. Dif-
ferent behavior on such programs is supposed to be caused by different ability
of the semantics to deal with such obstacles.

To evaluate cyclic dependencies among literals in programs we adopt the
graph-theoretic framework introduced in [5]. An AND/OR-graph (N,C) is a
hypergraph, whose set of nodes N = NA �NO decomposes into the set of AND-
nodes NA and the set of OR-nodes NO, and its set of connectors C = N×

⋃|N |
i=0 N i

is a function, i.e., for each I ∈ N there is exactly one tuple 〈O1, . . . , Ok〉 s.t.
〈I,O1, . . . , Ok〉 ∈ C. For any connector 〈I,O1, . . . , Ok〉, I is its input node and
O1, . . . , Ok are its output nodes.

Let (N,C) be an AND/OR-graph, I ∈ N and 〈I,O1, . . . , Ok〉 ∈ C. A tree p
is a path in (N,C) rooted in I if one of the following conditions holds:

(i) k = 0 ∧ p = 〈I〉,
(ii) k > 0 ∧ I ∈ NA ∧ p = 〈I, p1, . . . , pk〉,
(iii) k > 0 ∧ I ∈ NO ∧ (∃i) 1 ≤ i ≤ k ∧ p = 〈I, pi〉,

where pi is a path in (N,C) rooted in Oi, 1 ≤ i ≤ k.
Let p = 〈I, p1, . . . , pk〉 be a path in an AND/OR-graph. A path p′ is a subpath

of p if p′ = p or p′ is a subpath of pi for some i, 1 ≤ i ≤ k. A path p in an
AND/OR-graph is said to be acyclic if for every subpath p′ (including p) rooted
in the node R, no subpath p′′ of p′ is rooted in R.

Definition 6. Let P be a logic program. An AND/OR-graph GP = (N,C) is
associated with P if both of the following conditions hold:

(i) NA = P ∧ NO = L ,
(ii) C = {〈r, L1, . . . , Lk〉 | r = L ← L1, . . . , Lk ∈ P}

∪ {〈L, r1, . . . , rn〉 | {r1, . . . , rn} = {r ∈ P | h(r) = L}} .

86 M. Homola

Armed with such a framework we instantly identify the class of acyclic pro-
grams in Definition 7. Clearly, this definition is equivalent to the original one,
as introduced in [18].

Definition 7. We say that logic program P is strictly acyclic (or just acyclic)
if GP does not contain a path that is cyclic. We say that a MDLP P is strictly
acyclic if �P is strictly acyclic.

In [5], further reduction of GP is utilized, once an interpretation M and a
given notion of rejection are available. The resulting reduced AND/OR-graph is
stripped from dependencies corresponding to rules that are rejected or that are
not applicable.

Definition 8. Let P be a MDLP, M a total interpretation and Rejected(P,M)
a set of rejected rules according to some rule-rejecting semantics. The reduced
AND/OR-graph of P with respect to M , GM

P is obtained from GP by

1. removing all r ∈ NA and their connectors (as well as removing r from all
connectors containing it as an output node) if either r ∈ Rejected(P,M) or
M � b(r), and

2. replacing, for every L ∈ O, the connector of not L by the 0-connector 〈not L〉,
if L is associated with 0-connector after step 1 and no r ∈ Rejected(P,M)
exists s.t. h(r) = L.

Possessing the outlined framework, authors of [5] have introduced the “root
condition” and the “chain condition”, that we adopt in Definition 9 and 10
respectively.

Definition 9. Let P be a MDLP, M a total interpretation and Rejected(P,M)
a set of rejected rules according to some rule-rejecting semantics. We say that
P, M and Rejected(P,M) obey the root condition if, for each not L ∈ M−, one
of the following conditions holds:

(i) (∀r ∈ �P) h(r) = L =⇒ M � b(r),
(ii) there exists an acyclic path p in GM

P rooted in not L.

Definition 10. We say that a MDLP P and a total interpretation M obey the
chain condition if, for each pair of rules r ∈ Pi, r′ ∈ Pj s.t. i ≺ j, r �� r′,
M � b(r), M � b(r′) and r′ ∈ Rej �(P,M), there also exists r′′ ∈ Ps s.t. j ≺ s,
r′ �� r′′ and b(r′′) ⊆ b(r).

A theorem follows in [5], stating that if both, the root and the chain condition,
are satisfied by a DLP P, a total interpretation M and Rej (P,M) then M ∈
DSM (P) if and only if M is a model of P (both transformed to extended logic
programs) w.r.t. the BDJU semantics.

In [3] relations between all four of these semantics are further investigated,
once all four are generalized to the platform of GELPs. It is shown there, that
the root condition renders a proper subclass of DLPs, in order to compare two
semantics that utilize Def (P,M) and Def �(P,M) for defaults respectively, and

Dynamic Logic Programming 87

share the same implementation of rejection. We adopt this proposition from [3]
and generalize it to the platform of MDLPs in Theorem 2. In [3] it is also shown
that two pairs of semantics that differ in rejection but use the same defaults,
pairwise, coincide on a DLP P and a total interpretation M if they obey the
chain condition. We adopt this proposition in Theorem 3.2

Theorem 2. Let P be a MDLP, M a total interpretation. Then it holds that:

(i) M ∈ DJU (P) ≡ M ∈ DSM (P) if and only if P, M and Rej (P,M) obey
the root condition,

(ii) M ∈ BDJU (P) ≡ M ∈ BDSM (P) if and only if P, M and Rej �(P,M)
obey the root condition.

Theorem 3. Let P be a MDLP, M a total interpretation. If P and M obey the
chain condition then each of the following propositions holds:

(i) M ∈ DJU (P) ≡ M ∈ BDJU (P) ,
(ii) M ∈ DSM (P) ≡ M ∈ BDSM (P) .

It follows in [3], that if both of the conditions are obeyed by P and M , then all
four of the semantics coincide on P and M . However, as we show in Example 4,
many times the chain condition is not obeyed but the semantics do coincide. We
argue that this restriction is not accurate.

Example 4. Let P = {P1 ≺ P2 ≺ P3}, P1 = {a ← }, P2 = {not a ← }
and P3 = {a ← not b}. The chain condition is not obeyed by P and M =
{a,not b,not ¬ a,not ¬ b}. Yet, DSM (P) = BDSM (P) = {M} and DJU (P) =
BDJU (P) = {M}.

We now return to considerations about programs with restricted occurrence
of cycles. We focus on a hypothesis that different behavior of semantics is always
accompanied by presence of cyclic dependencies among literals. Our aim is to
restrict somehow the occurrence of cyclic dependencies in order to establish the
coincidence of the semantics.

Programs with cycles are often considered odd. Self-dependence, connected
with presence of cycles, is marked as unpleasant and undesirable feature, as
strict, deductive reasoning – closely interconnected with mathematical logic –
forbids it. Yet, in logic programming cycles are useful, for example to express
equivalence. Moreover there are programs that contain cycles and still different
semantics match regarding them. Both of these features are apparent from Ex-
ample 5. Hence we introduce yet another, weaker, condition of acyclicity in the
consecutive Definition 11. With this condition, we are able to identify programs,
where cycles may be present, but each literal is supported by at least one acyclic
derivation.

2 We remark that this property does not depend on the particular choice of defaults.
In fact, it holds for arbitrary set of default assumptions. See [10] for details.

88 M. Homola

Example 5. Let P = {P1 ≺ P2}, P1 = {a ← b; b ← a} and P2 = {a ← }.
All of the four semantics match on P. DJU (P) = DSM (P) = BDJU (P) =
BDSM (P) = {{a, b,not ¬ a,not ¬ b}}. Actually, the cyclic information of pro-
gram P1 is not redundant in any way. P1 states that the truth value of a is
equivalent with the truth value of b and vice versa. Later, when the more recent
knowledge of P2 appears telling that a is true we derive that also b is true.

Definition 11. We say that logic program P is sufficiently acyclic if for every
literal L ∈ L there exists an acyclic path in the hypergraph GP associated with P
that is rooted in L. A MDLP P is sufficiently acyclic whenever �P is sufficiently
acyclic.

The application of the condition of sufficient acyclicity on MDLPs in general
is, however, useless – as when the residue is computed, several rules are retracted
and the condition may not be satisfied any more. So we resort to the one-model
relations of two semantics quite like in the case of the root condition. The relation
is established for a program and a given model. Possessing a candidate-model,
the residue is determined, and the condition is applied on the residue instead of
the whole program.

To establish one-model equivalence of two semantics on a program, we re-
peatedly use a method, that is sketched in Remark 1.

Remark 1. Let P be a MDLP and let M be a total interpretation. Let S1 and
S2 be two rule-rejecting semantics with shared implementation of defaults and
different implementation of rejection. Let D be the set of defaults assigned to P
and M by these semantics and let R1 and R2 be the residues assigned to P and
M by S1 and S2 respectively. If

(i) M ∈ S2(P),
(ii) R1 ⊆ R2,

then M ∈ S1(P) if and only if there exists such R ⊆ R1 that M = least(R∪D) –
i.e., we are able to find R, a subset of R1, s.t. R still contains enough of rules that
are necessary to compute M . Therefore we concentrate on searching for such sets
R ⊆ R1 in order to establish equivalence of S1 and S2 regarding P and M .

The condition for one-model equality of that pairs of semantics that differ in
the implementation of rejection and use same defaults is expressed in Theorem 4.
The theorem uses the following lemma.

Lemma 1. Let S be the BDSM or the BDJU semantics. Let P be a MDLP,
M ∈ S(P) and let Defaults(P,M) be the default assumptions assigned to P and
M by S. If the set R defined as

R = {r | r ∈ Res(P,M) ∧ M � b(r)}

is sufficiently acyclic then M can be computed as a model in the given semantics
using only the rules of R. That is, M = least(R ∪ Defaults(P,M)).

Dynamic Logic Programming 89

Proof. Since R is sufficiently acyclic, there exists a rule r ∈ R such that for each
L ∈ b(r) for no r′ ∈ R holds h(r′) = L. And r ∈ R so it holds that M � b(r).
From Definitions 2 and 4 and from how R is defined it follows that for each rule
q ∈ Res�(P,M), M � b(q) there is a q′ ∈ R s.t. h(q) = h(q′) and since M ∈ S(P)
then b(r) ⊆ Defaults(P,M). We now construct

M0 = Defaults(P,M) , M1 = M0 ∪ h(r) ,

R0 = R , R1 = R0 \ {r′′ | h(r′′) = h(r)} .

Assume that M j and Rj are constructed by adding one literal L ∈ L to M j−1

and removing all r′′ from Rj−1 such that h(r′′) = L, 0 < j ≤ i. Again, as R is
sufficiently acyclic, there is r ∈ Ri s.t. for each L ∈ b(r) for no r′ ∈ Ri holds
h(r′) = L. From the construction of Di, Ri it follows that

(∀j ≤ i) M j ∪ {h(r) | r ∈ Rj} = M .

Therefore b(r) ⊆ M i, and so we are able to construct

M i+1 = M i ∪ h(r) , Ri+1 = Ri \ {r′′ ∈ Ri | h(r′′) = h(r)} .

It is straightforward that
⋃∞

i=1 M i = M . This way we have computed M as
a model in S only from the rules of R. (Step by step, we have simulated the
iterations of the least(·) operator.) In other words,

M = least(R ∪ Defaults(P,M)) .

��
Theorem 4. Let P be a MDLP and M be its total interpretation. If the set

R = {r | r ∈ Res(P,M) ∧ M � b(r)}

is sufficiently acyclic then it holds that

(i) M ∈ DSM (P) ≡ M ∈ BDSM (P), and also
(ii) M ∈ DJU (P) ≡ M ∈ BDJU (P).

Proof. The only-if part of both (i) and (ii) follows from Theorem 1. The if
part proves as follows. Let P be a MDLP. Let M ∈ BDSM (P) (BDJU (P)
respectively). Let R be sufficiently acyclic. From Lemma 1 we get that M can
be computed only using the rules of R. Since

R ⊆ Res(P,M) ⊆ Res�(P,M) ,

it follows from Remark 1 that M ∈ DSM (P) (M ∈ DJU (P)). ��

In Theorem 4 we have presented a restrictive condition for one-model equality
of those pairs of semantics that differ in rejection and use same defaults. We now
show (in Lemma 2) that under this condition also the root condition is satisfied.
It follows as a direct consequence of this lemma and Theorem 4 that under our
condition all four semantics coincide (Corollary 1).

90 M. Homola

Lemma 2. Let P be a MDLP and M its total interpretation. Let

R = {r | r ∈ Res(P,M) ∧ M � b(r)} .

If R is sufficiently acyclic then both of the triples P, M , Rej (P,M) and P, M ,
Rej �(P,M) obey the root condition.

Proof. R is sufficiently acyclic, hence for every L ∈ M− either L ∈ Def (P,M)
and then condition (i) of Definition 9 (root condition) is satisfied or there exists
a rule r ∈ Res(P,M) s.t. M � b(r) and h(r) = L and therefore also r′ ∈ R
s.t. h(r′) = L and so there is a path p in GR rooted in L that is acyclic. The
subpath p′ of p, terminated in every not L′ ∈ D whose connector was replaced
by 〈not L′〉 in step 2 of the construction of GM

P , is an acyclic path in GM
P rooted

in L. And so condition (ii) of Definition 9 is satisfied. Hence the root condition
is obeyed by P, M and Rej (P,M).

As for each r ∈ Res(P,M), M � b(r) there exists such r′ ∈ Res�(P,M)
that h(r′) = h(r) and M � b(r′) and vice versa, we get that also P, M and
Rej �(P,M) obey the root condition. ��

Corollary 1. Let P be a MDLP and M its total interpretation. If the set

R = {r | r ∈ Res(P,M) ∧ M � b(r)}

is sufficiently acyclic then

M ∈ DSM (P) ≡ M ∈ BDSM (P) ≡ M ∈ DJU (P) ≡ M ∈ BDJU (P) .

Moreover, as for a strictly acyclic program each of its subsets is sufficiently
acyclic, it trivially follows that all four semantics coincide on strictly acyclic
programs as we state in the following corollary.

Corollary 2. Let P be a strictly acyclic MDLP. Then

DSM (P) = BDSM (P) = DJU (P) = BDJU (P) .

We have shown that the four rule-rejecting semantics coincide on strictly
acyclic programs. In Corollary 1 we have also established a more accurate re-
striction that renders the one-model equivalence of the semantics. However, com-
paring entire model-sets assigned to a program by two semantics one by one is
computationally as complex as computing and enumerating these two model-
sets. So, this result is rather of theoretical value.

5 RDSM Semantics and DLPs

In [7], Alferes et al. have introduced a new semantics for linear DLPs. Motiva-
tion for this new semantics roots in the observation that even the most restric-
tive semantics, DSM, provides counterintuitive models for some programs (cf.
Example 6).

Dynamic Logic Programming 91

Example 6. Let P = {P1 ≺ P2} where P1 = {a ← ;not a ← } and P2 = {a ← a}.
It holds that DSM ({P1}) = ∅, it is not surprising as P1 is contradictory. If
we inspect the single rule of P2 we see that it actually brings no new factual
information. We suppose that addition of such rule should not add new models
to the program. However, DSM (P) = {{a,not ¬ a}}.

Such rules as the one of P2 from Example 6, having head a subset of the
body, are called tautological. Tautological rules are in fact just a special case of
cycles that only span throughout one rule. In [7], authors have identified even
broader class of extensions of DLPs that, according to their intuition, should not
yield new models of the programs. Such extensions are called refined extensions.
Then a principle has been formed, stating that, having a proper semantics, if a
program P ′ is just a refined extension of P then it should not have a model that
is not also a model of P. This principle is called the refined extension principle.
We refer the reader who is interested in precise definitions to [7].

In [7], also a modified DSM semantics has been introduced. The modification
is slight, two conflicting rules of the same program are allowed to reject each
other. Formally, the set of rejected rules of this semantics is

RejR(P,M) = {r ∈ Ṗi | (∃r′ ∈ Ṗj) i � j,M � b(r′), r �� r′} .

The semantics is formalized in Definition 12.

Definition 12. A rule-rejecting semantics of DLPs that uses RejR(P,M) for
rejection and Def (P,M) for defaults is called the refined dynamic stable model
(RDSM) semantics. In other words, a total interpretation M is a model of a DLP
P w.r.t. the RDSM semantics whenever M = least(ResR(P,M) ∪ Def (P,M)),
where ResR(P,M) is the residue.

We agree with [7] that the RDSM semantics is very favourable. It has been
shown in [7] that it satisfies the refined extension principle and, as we adopt
in Theorem 5, it always yields such model-set that is a subset of the model-
set w.r.t. the DSM semantics. Moreover, it has been precisely described and
motivated in [7], why some models provided by DSM should be excluded.

Theorem 5. For any DLP P it holds that RDSM (P) ⊆ DSM (P).

In [7], it further has been shown that for a program P that does not contain
a pair of conflicting rules in the very same Pi ∈ P, the RDSM and the DSM
semantics coincide. However, this result neither is tight as many programs exist
s.t. DSM and RDSM coincide on them and the condition is not satisfied.

The RDSM semantics has been introduced only for linear DLPs and according
to our deepest knowledge all attempts to generalize it for MDLPs have failed
so far (cf. [19]). Hence, in this section, we restrict our considerations to linear
DLPs. In the remaining we show that under a very similar restriction as the one
of Corollary 1, for a given model, all five of the semantics coincide.

First of all, the following example demonstrates why the condition has to be
altered.

92 M. Homola

Example 7. Recall again the program P from Example 6. Let M = {a,not ¬a}.
Even if R = {a ←, a ← a} is sufficiently acyclic, M ∈ DSM(P) and M /∈
RDSM(P). Indeed, the fact that R � ResR(P,M) causes the trouble. The
sufficient acyclicity is broken in ResR(P,M) and therefore a can not be derived
in the refined semantics.

The further restrictive condition is introduced in Theorem 6, where we prove
the one-model coincidence of RDSM and DSM and we also confirm that the
propositions of Theorem 4 hold under this modified condition as well. The the-
orem uses the following lemma.

Lemma 3. Let semantics S be one of DSM, DJU, BDSM and BDJU. Let P be
a DLP. Let M ∈ S(P). Let Rejected(P,M) be the rejected rules, Residue(P,M)
be the residue and Defaults(P,M) be the defaults assigned to P and M by S. If

R′ = {r | r ∈ ResR(P,M) ∧ M � b(r)}

is sufficiently acyclic then M can be computed as a model in the given semantics
using only the rules of R′. That is, M = least(R′ ∪ Defaults(P,M)).

Proof. From Definitions 2, 4 and 12 and from how R′ is defined it follows that
if M ∈ S(P) then for each rule q ∈ Residue(P,M), M � b(q) there is a q′ ∈ R′

s.t. h(q) = h(q′). Once we are aware of this fact this lemma is proved exactly as
Lemma 1. ��

Theorem 6. Let P be a DLP and M be its total interpretation. If

R′ = {r | r ∈ ResR(P,M) ∧ M � b(r)}

is sufficiently acyclic then the following propositions hold:

(i) M ∈ DSM (P) ≡ M ∈ RDSM (P) ,
(ii) M ∈ DSM (P) ≡ M ∈ BDSM (P) ,
(iii) M ∈ DJU (P) ≡ M ∈ BDJU (P) .

Proof. Propositions (ii) and (iii) are proved like in the above Theorem 4. The if
part of (i) follows from Theorem 5. The only if part of (i) proves as follows.

Let M ∈ DSM (P). Let R′ be sufficiently acyclic. From Lemma 3 we know
that M can be computed using only the rules of R′. Also

R′ ⊆ ResR(P,M) ⊆ Res(P,M) ,

so it follows from Remark 1 that M ∈ RDSM (P). ��

In the following lemma we show that even if we have slightly modified the
condition, its satisfaction still implies that the root condition is also satisfied.
Hence if the modified condition is satisfied, all five of the semantics for DLPs
coincide on a given model as we state in Corollary 3.

Dynamic Logic Programming 93

Lemma 4. Let P be a MDLP and M its total interpretation. Let

R′ = {r | r ∈ ResR(P,M) ∧ M � b(r)} .

If R′ is sufficiently acyclic and M ∈ DJU (P) (M ∈ BDJU (P)) then P, M ,
Rej (P,M) (P, M , Rej �(P,M)) obey the root condition.

Proof. This lemma the same way as Lemma 2 if we realize that when M ∈
DJU (P) (M ∈ BDJU (P)) then for each rule r ∈ Res(P,M) (r ∈ Res�(P,M))
s.t. M � b(r) and h(r) = L there also exists r′ ∈ R′ s.t. h(r′) = L. ��

Corollary 3. Let P be a DLP and M its total interpretation. If the set

R′ = {r | r ∈ ResR(P,M) ∧ M � b(r)}

is sufficiently acyclic then

M ∈ DSM (P) ≡ M ∈ BDSM (P) ≡ M ∈ RDSM (P) ≡
≡ M ∈ DJU (P) ≡ M ∈ BDJU (P) .

As for Corollary 1, also for Corollary 3 it holds that if, using it, we want
to compare entire model-sets assigned to a program by a pair of semantics,
computational complexity is the same as enumerating and comparing these two
model-sets. Anyway, it trivially follows from this corollary that all five of the
semantics coincide on strictly acyclic programs, as follows in Corollary 4.

Corollary 4. Let P be a strictly acyclic DLP. Then

DSM (P) = BDSM (P) = RDSM (P) = DJU (P) = BDJU (P) .

6 Conclusion

In accordance with [3, 15], we have built MDLPs over a more general language
of GELPs, that allows for more elegant comparisons, since no transformations
are necessary, as the previous approaches are obtained as its special cases. We
have then compared four different rule-rejecting semantics of MDLPs and in
addition one more when restricted to linear DLPs. We have introduced sufficient
acyclicity. Using this notion, we have provided a restrictive condition on a MDLP
(DLP) P and a given candidate model M s.t. if it is satisfied all four (five)
semantics coincide on P and M . As a trivial consequence we have stated the
main result, that on strictly acyclic programs all four (five) of the semantics
coincide.

There are several open problems. As there are programs that contain cycles
and several of the five semantics coincide on them, the search for a more proper
characterization of the class of programs on which these semantics coincide is
still open. In this line, we suggest investigation of other well known classes, as

94 M. Homola

stratified and call-consistent programs. One of the most favourable semantics,
RDSM, is only known for DLPs, generalizing RDSM to MDLPs is a challenging
problem. Comparing semantics that are based on rejection of rules with other
approaches (such as the one of [15] based on Kripke structures) might be inter-
esting. To meet this goal, we propose that more abstract criteria for evaluating
these semantics should be introduced, seeing some of the present ones, e.g., the
refined extension principle of [6, 7], too attached to the rule-rejecting framework.

Acknowledgements

I would like to thank to anonymous referees for valuable comments and sugges-
tions. I would like to thank to Ján Šefránek and João A. Leite for their advising
and help and to Michaela Danǐsová and to Martin Baláž for language and typo-
graphical corrections.

References

1. Leite, J.A., Alferes, J.J., Pereira, L.M.: Multi-dimensional dynamic logic program-
ming. In Sadri, F., Satoh, K., eds.: Proceedings of the CL-2000 Workshop on
Computational Logic in Multi-Agent Systems (CLIMA’00). (2000) 17–26

2. Leite, J.A., Pereira, L.M.: Iterated logic program updates. In Jaffar, J., ed.:
Proceedings of the 1998 Joint International Conference and Symposium on Logic
Programming (JICSLP’98), MIT Press (1998) 265–278

3. Leite, J.A.: Evolving Knowledge Bases: Specification and Semantics. Volume 81
of Frontiers in Artificial Intelligence and Applications, Dissertations in Artificial
Intelligence. IOS Press, Amsterdam (2003)

4. Alferes, J.J., Leite, J.A., Pereira, L.M., Przymusinska, H., Przymusinski, T.C.:
Dynamic logic programming. In Cohn, A.G., Schubert, L.K., Shapiro, S.C., eds.:
Proceedings of the Sixth International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR’98), Morgan Kaufmann (1998) 98–109

5. Eiter, T., Sabbatini, G., Fink, M., Tompits, H.: On updates of logic programs:
Semantics and properties. Technical Report 1843-00-08, Institute of Information
Systems, Vienna University of Technology (2002)

6. Alferes, J.J., Banti, F., Brogi, A., Leite, J.A.: The refined extension principle for
semantics of dynamic logic programming. Studia Logica 79(1) (2005) 7–32

7. Alferes, J.J., Banti, F., Brogi, A., Leite, J.A.: Semantics for dynamic logic program-
ming: A principle-based approach. In Lifschitz, V., Niemela, I., eds.: Proceedings
of the Seventh International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR-7), Springer-Verlag (2004)

8. Leite, J.: On some differences between semantics of logic program updates. In
Lemaitre, C., Reyes, C.A., Gonzalez, J.A., eds.: Advances in Artificial Intelligence:
Proceedings of the 9th Ibero-American Conference on AI (IBERAMIA-04). LNAI,
Springer (2004)

9. Eiter, T., Sabbatini, G., Fink, M., Tompits, H.: On properties of update sequences
based on causal rejection. Theory and Practice of Logic Programming (2002)
711–767

Dynamic Logic Programming 95

10. Homola, M.: On relations of the various semantic approaches in multidimensional
dynamic logic programming. Master’s thesis, Comenius University, Faculty of
Mathematics Physics and Informatics, Bratislava (2004)

11. Leite, J.A., Alferes, J.J., Pereira, L.M.: Multi-dimensional logic programming.
Technical report, Departamento de Informática, Faculdade de Ciências e Tecnolo-
gia, Universidade Nova de Lisboa (2001)

12. Leite, J.A., Alferes, J.J., Pereira, L.M.: Multi-dimensional dynamic knowledge
representation. In Eiter, T., Faber, W., Truszczynski, M., eds.: Proceedings of the
Sixth International Conference on Logic Programming and Nonmonotonic Reason-
ing (LPNMR’01), Springer (2001) 365–378

13. Alferes, J.J., Banti, F., Brogi, A.: From logic program updates to action description
updates. In this volume.

14. Sakama, C., Inoue, K.: Coordination between logical agents. In this volume.
15. Šefránek, J.: Semantic considerations on rejection. In: Proceedings of the In-

ternational Workshop on Non-Monotonic Reasoning (NMR 2004), Foundations of
Nonmonotonic Reasoning. (2004)

16. van Emden, M.H., Kowalski, R.A.: The semantics of predicate logic as a program-
ming language. Journal of the ACM 23 (1976) 733–742

17. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In
Kowalski, R.A., Bowen, K.A., eds.: Logic Programming, Proceedings of the Fifth
International Conference and Symposium, MIT Press (1988) 1070–1080

18. Apt, K.R., Bezem, M.: Acyclic programs. New Generation Computing 9 (1991)
335–363

19. Šǐska, J.: Refined extension principle for multi-dimensional dynamic logic program-
ming. Master’s thesis, Comenius University, Faculty of Mathematics Physics and
Informatics, Bratislava (2004)

Declarative Agent Control

Antonis Kakas1, Paolo Mancarella2, Fariba Sadri3,
Kostas Stathis2,4, and Francesca Toni2,3

1 Dept. of Computer Science, University of Cyprus
antonis@cs.ucy.ac.cy

2 Dip. di Informatica, Università di Pisa
{paolo, stathis, toni}@di.unipi.it

3 Dept. of Computing, Imperial College London
{fs, ft}@doc.ic.ac.uk

4 School of Informatics, City University London
kostas@soi.city.ac.uk

Abstract. In this work, we extend the architecture of agents (and robots)
based upon fixed, one-size-fits-all cycles of operation, by providing a frame-
work of declarative specification of agent control. Control is given in terms
of cycle theories, which define in a declarative way the possible alterna-
tive behaviours of agents, depending on the particular circumstances of
the (perceived) external environment in which they are situated, on the
internal state of the agents at the time of operation, and on the agents’
behavioural profile. This form of control is adopted by the KGP model of
agency and has been successfully implemented in the PROSOCS platform.
We also show how, via cycle theories, we can formally verify properties of
agents’ behaviour, focusing on the concrete property of agents’ interrupt-
ibility. Finally, we give some examples to show how different cycle theories
give rise to different, heterogeneous agents’ behaviours.

1 Introduction

To make theories of agency practical, normally a control component is proposed
within concrete agent (robot) architectures. Most such architectures rely upon a
fixed, one-size-fits-all cycle of control, which is forced upon the agents whatever
the situation in which they operate. This kind of control has many drawbacks,
and has been criticised by many (e.g. in robotics), as it does not allow us to
take into account changes in the environment promptly and it does not take into
account agent’s preferences and “personality”.

In this paper, we present an alternative approach, which models agents’ con-
trol via declarative, logic-based cycle theories, which provide flexible control in
that: (i) they allow the same agent to exhibit different behaviour in different
circumstances (internal and external to the agent), thus extending in a non-
trivial way conventional, fixed cycles of behaviour, (ii) they allow us to state
and verify formal properties of agent behaviour (e.g. their interruptibility), and
thus (iii) provide implementation guidelines to design suitable agents for suitable

J. Leite and P. Torroni (Eds.): CLIMA V, LNAI 3487, pp. 96–110, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Declarative Agent Control 97

applications. Furthermore, cycle theories allow different agents to have different
patterns of behaviour in the same circumstances, by varying few, well-identified
components. Thus, by adopting different cycle theories we obtain behaviourally
heterogeneous agents.

The notion of cycle theory and its use to determine the behaviour of agents
can in principle be imported into any agent system, to replace conventional fixed
cycles. However, in defining the cycle theory of an agent, we will assume that
the agent is equipped with a pool of state transitions that modify its internal
state. We will understand the operation of agents simply in terms of sequences
of such transitions. Such sequences can be obtained from fixed cycles of opera-
tion of agents as in most of the literature. Alternatively, such sequences can be
obtained via fixed cycles together with the possibility of selecting amongst such
fixed cycles according to some criteria e.g. the type of external environment in
which the agent will operate (see the recent work of [4]). Yet another possibil-
ity, that we pursue in this paper, is to specify the required operation via more
versatile cycle theories that are able to generate dynamically several cycles of
operations according to the current need of the agent. This approach has been
adopted in the KGP model of agency [10, 2] and implemented in the PROSOCS
platform [16].

We will define a cycle theory as a logic program with priorities over rules.
The rules represent possible follow-ups of (already executed) transitions. The
priorities express high-level preferences of the particular agent equipped with
the cycle theory, that characterise the operational behaviour of the agent, e.g.
a preference in testing the preconditions of an action before it tries to execute
it. We will assume that the choice for the next transition depends only on the
transition that has just been executed (and the resulting state of the agent),
and not on the longer history of the previous transitions. We believe this not to
be restrictive, in that the effects of any earlier transitions may in any case be
recorded in the internal state of the agent and reasoned upon by it. Also, the
approach can be extended to take into account longer histories of transitions
when deciding the next one.

2 Background

Cycle theories will be written in the general framework of Logic Programming
with Priorities (LPP). Our approach does not rely on any concrete such frame-
work. One such concrete framework could be the Logic Programming without
Negation as Failure (LPwNF) [5, 8] suitably extended to deal with dynamic
preferences [9]. Other concrete frameworks that could be used for LPP are, for
instance, those presented in [13, 12]. Note also that our approach does not de-
pend crucially on the use of the framework of LPP: other frameworks for the
declarative specification of preference policies, e.g. Default Logic with Priorities
[3], could be used instead. Note, however, that the use of a logic-based frame-
work where priorities are encoded within the logic itself is essential, since it
allows reasoning even with potentially contradictory preferences. Also, note that

98 A. Kakas et al.

the choice of one logic rather than another might affect the properties of agents
specified via cycle theories.

For the purposes of this paper, we will assume that an LPP-theory, referred
to as T , consists of four parts:

(i) a low-level part P , consisting of a logic program; each rule in P is assigned
a name, which is a term; e.g., one such rule could be

n(X) : p(X) ← q(X,Y), r(Y)
with name n(X);

(ii) a high-level part H, specifying conditional, dynamic priorities amongst rules
in P ; e.g., one such priority could be

h(X) : n(X) � m(X) ← c(X)
to be read: if (some instance of) the condition c(X) holds, then the rule in
P with name (the corresponding instance of) n(X) should be given higher
priority than the rule in P with name (the corresponding instance of) m(X).
The rule is given a name, h(X);

(iii) an auxiliary part A, defining predicates occurring in the conditions of rules
in P and H and not in the conclusions of any rule in P ;

(iv) a notion of incompatibility which, for the purposes of this paper, can be
assumed to be given as a set of rules defining the predicate incompatible,
e.g.

incompatible(p(X), p′(X))
to be read: any instance of the literal p(X) is incompatible with the cor-
responding instance of the literal p′(X). We assume that incompatibility is
symmetric, and refer to the set of all incompatibility rules as I.

Any concrete LPP framework is equipped with a notion of entailment, that we
denote by |=pr. Intuitively, T |=prα iff α is the “conclusion” of a sub-theory of
P ∪A which is “preferred” wrt H ∪A in T over any other any other sub-theory
of P ∪ A that derives “conclusion” incompatible with α (wrt I). Here, we are
assuming that the underlying logic programming language is equipped with a
notion of “entailment” that allows to draw “conclusions”. In [13, 12, 9, 8, 5], |=pr

is defined via argumentation.

3 Abstract Agent Model

We assume that our agents conform to the following abstract model, which can
be seen as a high-level abstraction of most agent systems in the literature. Agents
are equipped with

– some internal state, which changes over the life-time of the agent, and is
formalised in some logic-based language or via some concrete data structure
in some programming language;

– some pool of (state) transitions, that modify the state of the agent, and may
take some inputs to be “computed” or selected by

– some selection functions on their states.

Declarative Agent Control 99

For example, the state may consist of beliefs, desires and intentions, represented
in some modal logics, as in the BDI architecture [14] and its follow-ups, e.g. [1], or
commitments and commitment rules, as in [15], or beliefs, goals and capabilities,
represented in concurrent logic programming, as in [7], or knowledge, goals and
plan, represented in (extensions of) logic programming, as in [11].

The transitions in the given pool can be any, but, if we abstract away from
existing agent architectures and models in the literature, we can see that we need
at least a transition responsible for observing the environment, thus rendering
the agents situated. This transition might modify the internal state differently
in concrete agent architectures, to record the observed events and properties
of the environment. Here, we will call such a transition Passive Observation
Introduction (POI). POI is “passive” in the sense that, via such a transition,
the agent does not look for anything special to observe, but rather it opens its
“reception channel” and records any inputs what its sensors perceive. Another
transition that is present in most agent systems is that of Action Execution (AE),
whereby actions may be “physical”, communicative, or “sensing”, depending on
the concrete systems.

Other useful transitions besides POI and AE (see e.g. [10, 2]) may include
Goal Introduction (GI), to introduce new goals into the state of the agent, tak-
ing into account changes to the state and to the external environment that
somehow affect the preferences of the agent over which goals to adopt, Plan In-
troduction (PI), to plan for goals, Reactivity (RE), to react to perceived changes
in the environment by means of condition-action/commitment-like rules, Sens-
ing Introduction (SI), to set up sensing actions for sensing the preconditions of
actions in the agent’s plan, to make sure these actions are indeed executable,
Active Observation Introduction (AOI), to actively seek information from the
environment, State Revision (SR) to revise the state currently held by the agent,
and Belief Revision (BR), e.g. by learning.

Whatever pool of transitions one might choose, and whatever their concrete
specification might be, we will assume that they are represented as

T (S,X, S′, τ)
where S is the state of the agent before the transition is applied and S′ the state
after, X is the (possibly empty) input taken by the transition, and τ is the time
of application of the transition. Note that we assume the existence of a clock
(possibly external to the agent and shared by a number of agents), whose task is
to mark the passing of time. The clock is responsible for labelling the transitions
with the time at which they are applied. This time (and thus the clock) might
play no role in some concrete agent architectures and models, where time is not
reasoned upon explicitly. However, if the framework adopted to represent the
state of the agent directly manipulates and reasons with time, the presence of
a clock is required. Note also that the clock is useful (if not necessary) to label
executed actions, and in particular communicative actions, to record their time
of execution, as foreseen e.g. by FIPA standards for communication [6].

As far as the selection functions are concerned, we will assume that each transi-
tion T available to the agent is equipped with a selection function fT , whose specifi-

100 A. Kakas et al.

cation depends on the representation chosen for the state and on the specification of
the transition itself. For example, AE is equipped with a selection function fAE re-
sponsible for choosing actions to be executed. These actions may be amongst those
actions in the plan (intention/commitment store) part of the state of the agent
whose time has not run-out at the time of selection (and application of the transi-
tion) and belonging to a plan for some goal which has not already been achieved by
other means.

In the next Section, we will see that, for fixed cycles, the role of the selection
functions is exclusively to select the inputs for the appropriate transition when
the turn of the transition comes up. Later, in Section 5, we will see that the role
of selection functions when using cycle theories is to help decide which transition
is preferred and should be applied next, as well as provide its input.

4 Fixed Cycles and Fixed Operational Trace

Both for fixed cycles and cycle theories, we will assume that the operation of an
agent will start from some initial state. This can be seen as the state of the agent
when it is created. The state then evolves via the transitions, as commended by
the fixed cycle or cycle theory. For example, the initial state of the agent could
have an empty set of goals and an empty set of plans, or some designer-given
goals and an empty set of plans. In the sequel, we will indicate the given initial
state as S0.

A fixed cycle is a fixed sequence of transitions of the form
T1, . . . , Tn

where each Ti, i = 1, . . . , n, is a transition chosen from the given pool, and n ≥ 2.
A fixed cycle induces a fixed operational trace of the agent, namely a (typically

infinite) sequence of applications of transitions, of the form
T1(S0,X1, S1, τ1), T2(S1,X2, S2, τ2), . . . , Tn(Sn−1,Xn, Sn, τn),
T1(Sn,Xn+1, Sn+1, τn+1), . . . , Tn(S2n−1,X2n, S2n, τ2n), . . .

where, for each i ≥ 1, fTi
(Si−1, τi) = Xi, namely, at each stage, Xi is the

(possibly empty) input for the transition Ti chosen by the corresponding selection
function fTi

.
Then, a classical “observe-think-act” cycle (e.g. see [11]) can be represented

in our approach as the fixed cycle:
POI,RE,PI,AE,AOI.

As a further example, a purely reactive agent, e.g. with its knowledge consisting
of condition-action rules, can execute the cycle

POI,RE,AE.
Note that POI is interpreted here as a transition which is under the control
of the agent, namely the agent decides when it is time to open its “reception
channel”. Below, in Section 8, we will see a different interpretation of POI as an
“interrupt”.

Declarative Agent Control 101

Note that, although fixed cycles such as the above are quite restrictive, they
may be sufficiently appropriate in some circumstances. For example, the cycle for
a purely reactive agent may be fine in an environment which is highly dynamic.
An agent may then be equipped with a catalogue of fixed cycles, and a number
of conditions on the environment to decide when to apply which of the given
cycles. This would provide for a (limited) form of intelligent control, in the spirit
of [4], paving the way toward the more sophisticated and fully declarative control
via cycle theories given in the next Section.

5 Cycle Theories and Cycle Operational Trace

The role of the cycle theory is to dynamically control the sequence of the inter-
nal transitions that the agent applies in its “life”. It regulates these “narratives
of transitions” according to certain requirements that the designer of the agent
would like to impose on the operation of the agent, but still allowing the pos-
sibility that any (or a number of) sequences of transitions can actually apply
in the “life” of an agent. Thus, whereas a fixed cycle can be seen as a restric-
tive and rather inflexible catalogue of allowed sequences of transitions (possibly
under pre-defined conditions), a cycle theory identifies preferred patterns of se-
quences of transitions. In this way a cycle theory regulates in a flexible way the
operational behaviour of the agent.

Formally, a cycle theory Tcycle consists of the following parts.

– An initial part Tinitial, that determines the possible transitions that the agent
could perform when it starts to operate (initial cycle step). More concretely,
Tinitial consists of rules of the form

∗T (S0,X) ← C(S0, τ,X), now(τ)
sanctioning that, if the conditions C are satisfied in the initial state S0 at the
current time τ , then the initial transition should be T , applied to state S0

and input X, if required. Note that C(S0, τ,X) may be absent, and Tinitial

might simply indicate a fixed initial transition T1.
The notation ∗T (S,X) in the head of these rules, meaning that the transition
T can be potentially chosen as the next transition, is used in order to avoid
confusion with the notation T (S,X, S′, τ) that we have introduced earlier to
represent the actual application of the transition T .

– A basic part Tbasic that determines the possible transitions (cycle steps)
following other transitions, and consists of rules of the form

∗T ′(S′,X ′) ← T (S,X, S′, τ), EC(S′, τ ′,X ′), now(τ ′)
which we refer to via the name RT |T ′(S′,X ′). These rules sanction that,
after the transition T has been executed, starting at time τ in the state S
and ending at the current time τ ′ in the resulting state S′, and the conditions
EC evaluated in S′ at τ ′ are satisfied, then transition T ′ could be the next
transition to be applied in the state S′ with the (possibly empty) input X ′, if
required. The conditions EC are called enabling conditions as they determine
when a cycle-step from the transition T to the transition T ′ can be applied.

102 A. Kakas et al.

In addition, they determine the input X ′ of the next transition T ′. Such
inputs are determined by calls to the appropriate selection functions.

– A behaviour part Tbehaviour that contains rules describing dynamic priorities
amongst rules in Tbasic and Tinitial. Rules in Tbehaviour are of the form
RT |T ′(S,X ′) �RT |T ′′(S,X ′′)←BC(S,X ′,X ′′, τ), now(τ)

with T ′ �= T ′′, which we will refer to via the name PT
T ′�T ′′ . Recall that

RT |T ′(·) and RT |T ′′(·) are (names of) rules in Tbasic∪Tinitial. Note that, with
an abuse of notation, T could be 0 in the case that one such rule is used to
specify a priority over the first transition to take place, in other words, when
the priority is over rules in Tinitial. These rules in Tbehaviour sanction that,
at the current time τ , after transition T , if the conditions BC hold, then
we prefer the next transition to be T ′ over T ′′, namely doing T ′ has higher
priority than doing T ′′, after T . The conditions BC are called behaviour
conditions and give the behavioural profile of the agent. These conditions
depend on the state of the agent after T and on the parameters chosen in the
two cycle steps represented by RT |T ′(S,X ′) and RT |T ′′(S,X ′′). Behaviour
conditions are heuristic conditions, which may be defined in terms of the
heuristic selection functions, where appropriate. For example, the heuristic
action selection function may choose those actions in the agent’s plan whose
time is close to running out amongst those whose time has not run out.

– An auxiliary part including definitions for any predicates occurring in the
enabling and behaviour conditions, and in particular for selection functions
(including the heuristic ones, if needed).

– An incompatibility part, including rules stating that all different transitions
are incompatible with each other and that different calls to the same transi-
tion but with different input items are incompatible with each other. These
rules are facts of the form

incompatible(∗T (S,X), ∗T ′(S,X ′)) ←
for all T, T ′ such that T �= T ′, and of the form

incompatible(∗T (S,X), ∗T (S,X ′)) ← X �= X ′

expressing the fact that only one transition can be chosen at a time.

Hence, Tcycle is an LPP-theory (see Section 2) where:
(i) P = Tinitial ∪ Tbasic, and (ii) H = Tbehaviour.
In the sequel, we will indicate with T 0

cycle the sub-cycle theory Tcycle \ Tbasic

and with T s
cycle the sub-cycle theory Tcycle \ Tinitial.

The cycle theory Tcycle of an agent is responsible for the behaviour of the
agent, in that it induces a cycle operational trace of the agent, namely a (typically
infinite) sequence of transitions

T1(S0,X1, S1, τ1), . . . , Ti(Si−1,Xi, Si, τi),
Ti+1(Si,Xi+1, Si+1, τi+1), . . .

(where each of the Xi may be empty), such that

– S0 is the given initial state;
– for each i ≥ 1, τi is given by the clock of the system, with the property that

τi < τi+i;
– (Initial Cycle Step) T 0

cycle ∧ now(τ1) |=pr ∗T1(S0,X1);

Declarative Agent Control 103

– (Cycle Step) for each i ≥ 1
T s

cycle ∧ Ti(Si−1,Xi, Si, τi) ∧ now(τi+1) |=pr ∗Ti+1(Si,Xi+1)
namely each (non-final) transition in a sequence is followed by the most
preferred transition, as specified by Tcycle.

If, at some stage, the most preferred transition determined by |=pr is not unique,
we choose arbitrarily one.

Note that, for simplicity, the above definition of operational trace prevents
the agent from executing transitions concurrently. However, a first level of con-
currency can be incorporated within traces, by allowing all preferred transitions
to be executed at every step. For this we would only need to relax the above
definition of incompatible transitions to be restricted between any two transi-
tions whose executions could interact with each other and therefore cannot be
executed concurrently on the same state, e.g. the Plan Introduction and State
Revision transitions. This would then allow several transitions to be chosen to-
gether as preferred next transitions and a concurrent model of operation would
result by carrying out simultaneously the (non-interacting) state updates im-
posed by these transitions. Further possibilities of concurrency will be subject
of future investigations.

In section 8 we will provide a simple extension of the notion of operational
trace defined above.

6 Fixed Versus Flexible Behaviour

Cycle theories generalise fixed cycles in that the behaviour given by a fixed
operational trace can be obtained via the behaviour given by a cycle operational
trace, for some special cycle theories. This is shown by the following theorem,
which refers to the notions of fixed cycle and fixed operational trace introduced
in Section 4.

Theorem 1. Let T1, . . . , Tn be a fixed cycle, and let fTi
be a given selection

function for each i = 1, . . . , n. Then there exists a cycle theory Tcycle which
induces a cycle operational trace identical to the fixed operational trace induced
by the fixed cycle.

Proof. The proof is by construction as follows.

– Tinitial consists of the rule
∗T1(S0,X) ← now(τ)
i.e. the initial transition is simply T1.

– Tbasic consists of the following rules, for each i with 2 ≤ i ≤ n:
∗Ti(S′,X ′) ← Ti−1(S,X, S′, τ), now(τ ′),X ′ = fTi

(S′, τ ′).
In addition Tbasic contains the rule
∗T1(S′,X ′) ← Tn(S,X, S′, τ), now(τ ′),X ′ = fT1(S

′, τ ′).
– Tbehaviour is empty.
– the auxiliary part contains the definitions of the given selection functions

fTi
, for each i = 1, . . . , n.

104 A. Kakas et al.

The proof then easily follows by construction, since at each stage only one cy-
cle step is enabled and no preference reasoning is required to choose the next
transition to be executed. �

It is clear that there are some (many) cycle theories that cannot be mapped
onto any fixed cycles, e.g. the cycle theory given in the next Section. So, pro-
viding control via cycle theories is a genuine extension of providing control via
conventional fixed cycles.

7 An Example

In this Section we exemplify the flexibility afforded by cycle theories through a
simple example. Assume that the pool of transitions consists of GI, PI, AE and
POI, as described in Section 3. We start from the cycle theory corresponding to
the fixed cycle given by POI, GI, PI, AE which is constructed as follows (see
Theorem 1).

(1) Tinitial with the following rule
∗POI(S0, {}) ←

namely, the only way an agent can start is through a POI.
(2) Tbasic with the following rules

∗GI(S′, {}) ← POI(S, {}, S′, τ)
∗PI(S′, Gs) ← GI(S, {}, S′, τ), Gs = fPI(S′, τ ′), now(τ ′)
∗AE(S′, As) ← PI(S,Gs, S′, τ),As = fAE(S′, τ ′), now(τ ′)
∗POI(S′, {}) ← AE(S,As, S′, τ)

(3) Tbehaviour is empty.

A first simple improvement, providing a limited form of flexibility, consists
in refining the rule RGI|PI(·) by adding the condition that the set of goals
to plan for, which are selected by the corresponding selection function fPI , is
non-empty. This amounts at modifying the second rule of Tbasic by adding the
condition Gs �= {} to its body.

Similarly, AE is an option after PI if some actions can actually be selected
for execution. This amounts at modifying the the third rule of Tbasic by adding
the condition As �= {} to its body.

In this case, we should provide further options for choosing the transition
to be executed after GI and PI, respectively. To adhere with the given origi-
nal cycle, these rules could be simply suitable rules named by RGI|AE(S′, As),
RGI|POI(S′, {}) and RPI|POI(S′, {}), i.e. AE and POI are also an option after
GI, and POI is also an option after PI. With this choice, the standard opera-
tional trace is recovered by adding to the Tbehaviour part of the cycle theory the
following rules

RGI|PI(S′, Gs) � RGI|AE(S′, As) ←
RGI|AE(S′, As′) � RGI|POI(S′, {}) ←
RGI|PI(S′, Gs′) � RGI|POI(S′, {}) ←
RPI|AE(S′, As) � RPI|POI(S′, {}) ←

Declarative Agent Control 105

The first rule states that PI has to be preferred over AE as the next transition
to be applied after GI, whenever both PI and AE are enabled. Similarly for the
other rules.

A more interesting, proper extension of the original (fixed) cycle amounts at
adding further options to the transition which can follow any given transition.
Imagine for instance that we want to express the behaviour of a punctual or
timely agent. This agent should always prefer executing actions if there are ac-
tions in the plan which have become urgent. This can be declaratively formalised
by adding to the Tbasic part the rules

∗AE(S′, As′) ← T (S,X, S′, τ), As′ = fAE(S′, τ ′), now(τ ′)

for each transition T in the pool, and by adding to the Tbehaviour part the
following rules named PT

AE�T ′ :
RT |AE(S′, As′) � RT |T ′(S′,X ′) ← urgent(As′)

for each transition T and T ′ �= AE, where urgent is defined in the auxiliary part
of the theory with the intuitive meaning. In the rest of this Section, we use T fix

cycle

to refer to the cycle theory corresponding to the fixed cycle POI, GI, PI, AE,
and we use T ext

cycle to refer to the extended cycle theory.
As a concrete example, consider an agent aiding a businessman who, while on

a business trip, can choose amongst three possible goals: return home (home),
read news (news), and recharge his laptop battery (battery). Let us use first the
cycle theory T fix

cycle.
Suppose that, initially (when now(1) holds), the agent’s state is empty,

namely the (businessman’s) agent holds no plan or goal, and that the initial
POI does not add anything to the current state. Then GI is performed as the
next transition in the trace:

GI(S0, {}, S1, 1),
and suppose also that the application of GI generates the agent’s goal (added
to S1) G1 = home. This goal may come along with a time parameter and some
temporal constraints associated with it, e.g. the actual goal can be represented
by (home, t) ∧ t < 20. Due to space limitations, we intentionally omit here the
details concerning temporal parameters of goals and actions, and the temporal
constraints associated with them. Since the state contains a goal to be planned
for, suppose that the selection function fPI selects this goal, and the PI transition
is applied next, producing two actions book ticket and take train. Hence, the
second transition of the trace is (when now(3) holds)

PI(S1, {}, S2, 3)
where the new state S2 contains the above actions.

Suppose now that the selection function fAE selects the action book ticket
and hence that the next element of the trace is (when now(4) holds)

AE(S2, {book ticket}, S3, 4). (*)
In the original fixed cycle the next applicable transition is POI, and assume

that this is performed at some current time, say 10. Hence the next element of
the trace is (when now(10) holds)

POI(S3, {}, S4, 10). (**)

106 A. Kakas et al.

Imagine that this POI brings about the new knowledge that the laptop bat-
tery is low, suitably represented in the resulting state S4. Then the next tran-
sition GI changes the state so that the goal battery is added, and then PI is
performed to introduce a suitable plan to recharge the battery and so on.

Now suppose that we use T ext
cycle instead and that the operational trace is

identical up to the execution of the transition (*). At this point, the action
take train may have become urgent. Notice that it is likely that this same action
was not urgent at time 3, when book ticket was selected for execution, but has
become urgent at time 10 (e.g. because the train is leaving at 11). Then, if we
use T ext

cycle, the rule PAE
AE�POI applies and the next element of the trace, replacing

(**) above, becomes
AE(S3, {take train}, S′

4, 10).
This example shows how the use of cycle theories can lead to flexible behaviours.
More flexibility may be achieved by allowing the agents to be interruptible, i.e.
to be able to react to changes in the environment in which they are situated as
soon as the perceive those changes. This added flexibility requires some further
extensions, that we discuss in the next Section.

8 Interruptible Agents

In our approach we can provide a declarative specification of interruptible agents,
i.e. agents that are able to dynamically modify their “normal” (either fixed or
cycle) operational trace when they perceive changes in the environment in which
they are situated.

In order to obtain interruptibility, we will make use of the POI transition as the
means by which an agent can react to an interrupt. Referring to the example of
the previous Section, assume that our agent can book the ticket only through its
laptop and, by the time it decides to actually book the ticket, the laptop battery
has run out. Then, the action of recharging the laptop battery should be executed
as soon as possible in order to (possibly) achieve the initial goal. Indeed, executing
the booking action before recharging would not be feasible at all.

In order to model the environment where the agent is situated, we assume
the existence of an environmental knowledge base Env that it is not directly
under the control of the agent, in that the latter can only dynamically assim-
ilate the knowledge contained in Env. This knowledge base can be seen as an
abstraction of the physical (as opposed to the mental) part of the agent (its
body) which, e.g. through its sensors, perceives changes in the environment. We
assume that, besides the knowledge describing the agent’s percepts, Env mod-
els a special propositional symbol, referred to as changed env which holds as
soon as the body of the agent perceives any new, relevant changes in the en-
vironment. The way we model the reaction of the agent to the changes repre-
sented by changed env becoming true, is through the execution of a POI. We
also assume that the execution of a POI transition resets the truth value of
changed env, so that the agent may be later alerted of further changes in the
environment.

Declarative Agent Control 107

The Env knowledge base becomes now part of the knowledge that the agent
uses in order to decide the next step in its operational trace. This is formally
specified through the notion of cycle-env operational trace, which extends the
notion of cycle operational trace introduced in Section 5, by replacing the defi-
nitions of Initial Cycle Step and Cycle Step by the following new definitions:
(Initial Cycle-env Step): T 0

cycle ∧ Env ∧ now(τ1) |=pr ∗T1(S0,X1);
(Cycle-env Step) for each i ≥ 1

T s
cycle ∧ Ti(Si−1,Xi, Si, τi) ∧ Env ∧ now(τi+1)

|=pr ∗Ti+1(Si,Xi+1)
We can now define a notion of interruptible agent as follows. Let Tcycle be

the cycle theory of the agent and let T1(·), . . . , Ti(·), . . . be a cycle operational
trace of the agent. Let also Ti(Si−1,Xi, Si, τi) be an element of the given trace
such that:

Env ∧ now(τi) |= ¬changed env, and
Env ∧ now(τi+1) |= changed env.
In other words, some changes have happened in the environment between the

time of the execution of the transitions Ti and Ti+1 in the trace. Then we say
that the agent is interruptible if
Tcycle∧Ti(Si−1,Xi, Si, τi)∧Env∧now(τi+1) |=pr ∗POI(Si, {}), i.e. as soon as the
environment changes, in a cycle-env operational trace the next transition would
be a POI.

It is worth noting that by interruptibility we do not mean here that the
(executions of) transitions are interrupted, rather the trace is interrupted.

In order to make an agent interruptible, we need to extend both Tbasic and
Tbehaviour. In Tbasic, POI should be made an option after any other transition in
the pool, which is achieved by adding the following rule RT |POI(S, {}), for any T :

∗POI(S′, {}) ← T (S,X ′, S′, τ).
In Tbehaviour, the following set of rules, where T, T ′ are transitions with T ′ �=
POI, express that POI should be preferred over any other transition if the envi-
ronment has actually changed:

RT |POI(S′, {}) � RT |T ′(S′,X) ← changed env. (***)
Notice that, even if the above extensions are provided in the overall Tcycle theory,
the interruptibility of the agent is still not guaranteed. For instance, Tbehaviour

could contain further rules which make a transition T �= POI preferable over
POI even if changed env holds. One way to achieve full interruptibility is by
adding the condition ¬changed env in the body of any rule in Tbehaviour other
than the rules (***) given above.

9 Patterns of Behaviour

In this section we show how different patterns of operation can arise from differ-
ent cycle theories aiming to capture different profiles of operational behaviour by
agents. We assume the agent is equipped with a set of transitions, as in the KGP
model [10, 2] (see Section 3 for an informal description of these transitions):

108 A. Kakas et al.

– POI, Passive Observation Introduction
– AE, Action Execution
– GI, Goal Introduction
– PI, Plan Introduction
– RE, Reactivity
– SI, Sensing Introduction
– AOI, Active Observation Introduction
– SR, State Revision

In Section 7 we have given a simple example of a cycle theory describing a
punctual, timely agent which attempts to execute its planned actions in time.
This agent was obtained by adding some specific rules to Tbehaviour of a given
cycle theory. The same approach can be adopted to obtain different profiles.

For example, we can define a focused or committed agent, which, once chosen
a plan to execute, prefers to continue with this plan (refining it and/or executing
parts of it) until the plan is finished or it has become invalid, at which point the
agent may consider other plans or other goals. Hence transitions that relate to
an existing plan have preference over transitions that relate to other plans. This
profile of behaviour can be captured by the following rules added to Tbehaviour

of an appropriate cycle theory:

RT |AE(S,As) � RT |T ′(S,X) ← same plan(S,As)

for any T and any T ′ �= AE, and

RT |PI(S,Gs) � RT |T ′(S,X) ← same plan(S,Gs)

for any T and any T ′ �= PI. These rules state that the agent prefers to execute
actions or to reduce goals from the same plan as the actions that have just been
executed. Here, the behaviour conditions are defined in terms of some predicate
same plan which, intuitively, checks that the selected inputs for AE and PI,
respectively, belong to the same plan as the actions most recently executed
within the latest AE transition.

Another example of behavioral profile is the impatient pattern, where actions
that have been tried and failed are not tried again. This can be captured by rules
of the form:

RT |T ′(S,) � RT |AE(S,As) ← failed(S,As)

for any T and any T ′ �= AE. In this way, AE is given less preference than any other
transition T ′ after any transition T . Intuitively, As are failed actions. As a result of
this priority rule it is possible that such failed actions would remain un-tried again
(unless nothing else is enabled) until they are timed out and dropped by SR.

If we want to capture a careful behaviour where the agent revises its state
when one of its goals or actions times out (being careful not to have in its state
other goals or actions that are now impossible to achieve in time) we would have
in Tbehaviour the rule:

RT |SR(S, {}) � RT |T ′(S,) ← timed out(S, τ)

for any T and any T ′ �= SR. In this way, the SR transition is preferred over

Declarative Agent Control 109

all other transitions, where the behaviour condition timed out(S, τ) succeeds if
some goal or action in the state S has timed out at time τ .

10 Conclusions and Ongoing Work

We have presented an approach providing declarative agent control, via logic
programs with priorities. Our approach share the aims of 3APL [4], to make
the agent cycle programmable and the selection mechanisms explicit, but goes
beyond it. Indeed, the approach of [4] can be seen as relying upon a catalogue of
fixed cycles together with the possibility of selecting amongst such fixed cycles
according to some criteria, whereas we drop the concept of fixed cycle completely,
and replace it with fully programmable cycle theories.

Our approach allows us to achieve flexibility and adaptability in the operation
of an autonomous agent. It also offers the possibility to state and verify properties
of agents behaviour formally. In this paper we have exemplified the first aspect via
an example, and the second aspect via the property of “interruptibility” of agents.
The identification and verification of more properties is a matter for future work.

Our approach also lends itself to achieving heterogeneity in the overall opera-
tional behaviour of different agents that canbe specifiedwithin theproposed frame-
work. Indeed, an advantage of control via cycle theories is that it opens up the possi-
bility to produce a variety of patterns of operation of agents, depending on the par-
ticular circumstances under which the transitions are executed. This variety can
be increased, and many different patterns or profiles of behaviour can be defined by
varying the cycle theory, thus allowing agents with (possibly) the same knowledge
and operating in the same environment to exhibit heterogeneous behaviour, due to
their different cycle theories. We have given a number of examples of profiles of be-
haviour. A systematic study of behaviour parameterisation (perhaps linking with
Cognitive Science) is a matter for future work, as well as the comparison on how
different behaviours affect the agents’ individual welfare in different contexts.

Acknowledgments

This work was partially funded by the IST programme of the EC, FET un-
der the IST-2001-32530 SOCS project, within the Global Computing proactive
initiative. The last two authors were also supported by the Italian MIUR pro-
gramme “Rientro dei cervelli”.

References

1. R.H. Bordini, A. L. C. Bazzan, R. O. Jannone, D. M. Basso, R. M. Vicari, and V. R.
Lesser. AgentSpeak(XL): Efficient intention selection in bdi agents via decision-
theoretic task scheduling. In C. Castelfranchi and W. Lewis Johnson, editors,
Proceedings of the First International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS-2002), Part III, pages 1294–1302, Bologna, Italy,
July 15–19 2002. ACM Press.

110 A. Kakas et al.

2. A. Bracciali, N. Demetriou, U. Endriss, A. Kakas, W. Lu, P. Mancarella, F. Sadri,
K. Stathis, G. Terreni, and F. Toni. The KGP model of agency for GC: Compu-
tational model and prototype implementation. In Proc. Global Computing 2004
Workshop, LNCS. Springer Verlag, 2004.

3. G. Brewka. Reasoning with priorities in default logic. In AAAI94, pages 940–945.
AAAI Press, 1994.

4. M. Dastani, F. S. de Boer, F. Dignum, W. van der Hoek, M. Kroese, and J. Ch.
Meyer. Programming the deliberation cycle of cognitive robots. In Proc. of 3rd
International Cognitive Robotics Workshop (CogRob2002), Edmonton, Alberta,
Canada, 2002.

5. Y. Dimopoulos and A. C. Kakas. Logic programming without negation as failure. In
Logic Programming, Proceedings of the 1995 International Symposium, Portland,
Oregon, pages 369–384, 1995.

6. FIPA Communicative Act Library Specification, August 2001. Published
on August 10th, 2001, available for download from the FIPA website,
http://www.fipa.org.

7. K.V.Hindriks,F. S. deBoer,W.vanderHoek, andJ.Ch.Meyer. Agentprogramming
in 3APL. Autonomous Agents and Multi-Agent Systems, 2(4):357–401, 1999.

8. A. C. Kakas, P. Mancarella, and P. M. Dung. The acceptability semantics for
logic programs. In Proceedings of the Eleventh International Conference on Logic
Programming, Santa Marherita Ligure, Italy, pages 504–519, 1994.

9. A. C. Kakas and P. Moraitis. Argumentation based decision making for au-
tonomous agents. In J. S. Rosenschein, T. Sandholm, M. Wooldridge, and
M. Yokoo, editors, Proceedings of the Second International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS-2003), pages 883–890, Mel-
bourne, Victoria, July 14–18 2003. ACM Press.

10. A.C. Kakas, P. Mancarella, F. Sadri, K. Stathis, and F. Toni. The KGP model
of agency. In R. Lopez de Mantaras and L. Saitta, editors, Proceedings of the
Sixteenth European Conference on Artificial Intelligence, Valencia, Spain (ECAI
2004). IOS Press, August 2004.

11. R. A. Kowalski and F. Sadri. From logic programming towards multi-agent sys-
tems. Annals of Mathematics and Artificial Intelligence, 25(3/4):391–419, 1999.

12. R.A. Kowalski and F. Toni. Abstract argumentation. Artificial Intelligence and
Law Journal, Special Issue on Logical Models of Argumentation, 4:275–296, 1996.

13. H. Prakken and G. Sartor. A system for defeasible argumentation, with defeasible
priorities. In International Conference on Formal and Applied Practical Reasoning,
volume 1085 of Lecture Notes in Artificial Intelligence, pages 510–524. Springer-
Verlag, 1996.

14. A. S. Rao and M. Georgeff. BDI Agents: from theory to practice. In Proceed-
ings of the First International Conference on Multiagent Systems, San Francisco,
California, USA, pages 312–319, San Francisco, CA, June 1995.

15. Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60(1):51–92, 1993.
16. Kostas Stathis, Antonis C. Kakas, Wenjin Lu, Neophytos Demetriou, Ulle Endriss,

and Andrea Bracciali. PROSOCS: a platform for programming software agents in
computational logic. pages 523–528, Vienna, Austria, April 13-16 2004. Austrian
Society for Cybernetic Studies. Extended version to appear in a special issue of
Applied Artificial Intelligence, Taylor & Francis, 2005.

Metareasoning for Multi-agent Epistemic Logics�

Konstantine Arkoudas and Selmer Bringsjord

RPI
{arkouk, brings}@rpi.edu

Abstract. We present an encoding of a sequent calculus for a multi-
agent epistemic logic in Athena, an interactive theorem proving system
for many-sorted first-order logic. We then use Athena as a metalanguage
in order to reason about the multi-agent logic an as object language.
This facilitates theorem proving in the multi-agent logic in several ways.
First, it lets us marshal the highly efficient theorem provers for clas-
sical first-order logic that are integrated with Athena for the purpose
of doing proofs in the multi-agent logic. Second, unlike model-theoretic
embeddings of modal logics into classical first-order logic, our proofs are
directly convertible into native epistemic logic proofs. Third, because we
are able to quantify over propositions and agents, we get much of the
generality and power of higher-order logic even though we are in a first-
order setting. Finally, we are able to use Athena’s versatile tactics for
proof automation in the multi-agent logic. We illustrate by developing a
tactic for solving the generalized version of the wise men problem.

1 Introduction

Multi-agent modal logics are widely used in Computer Science and AI. Multi-
agent epistemic logics, in particular, have found applications in fields ranging
from AI domains such as robotics, planning, and motivation analysis in natu-
ral language [1]; to negotiation and game theory in economics; to distributed
systems analysis and protocol authentication in computer security [2, 3]. The
reason is simple—intelligent agents must be able to reason about knowledge. It
is therefore important to have efficient means for performing machine reasoning
in such logics. While the validity problem for most propositional modal logics is
of intractable theoretical complexity1, several approaches have been investigated
in recent years that have resulted in systems that appear to work well in prac-
tice. These approaches include tableau-based provers, SAT-based algorithms,
and translations to first-order logic coupled with the use of resolution-based au-
tomated theorem provers (ATPs). Some representative systems are FaCT [6],
KSATC [7], TA [8], LWB [9], and MSPASS [10].

� This research was funded in part by the US Air Force Labs of Rome, NY.
1 For instance, the validity problem for multi-agent propositional epistemic logic is

PSPACE-complete [4]; adding a common knowledge operator makes the problem
EXPTIME-complete [5].

J. Leite and P. Torroni (Eds.): CLIMA V, LNAI 3487, pp. 111–125, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

112 K. Arkoudas and S. Bringsjord

Translation-based approaches (such as that of MSPASS) have the advantage
of leveraging the tremendous implementation progress that has occurred over
the last decade in first-order theorem proving. Soundness and completeness are
ensured by the soundness and completeness of the resolution prover (once the
soundness and completeness of the translation have been shown), while a decision
procedure is automatically obtained for any modal logic that can be translated
into a decidable fragment of first-order logic, such as the two-variable fragment.
Furthermore, the task of translating from a modal logic to the classical first-
order setting is fairly straightforward (assuming, of course, that the class of
Kripke frames captured by the modal logic is first-order definable [11]; modal
logics such as the Gödel-Löb logic of provability in first-order Peano arithmetic
would require translation into second-order classical logic). For instance, the
well-known formula [�P ∧ �(P ⇒Q)] ⇒�Q becomes

∀ w1 . [(∀ w2 . R(w1, w2) ⇒P (w2)) ∧
(∀ w2 . R(w1, w2) ⇒P (w2) ⇒Q(w2))] ⇒ (∀ w2 . R(w1, w2) ⇒Q(w2))

Here the variables w1 and w2 range over possible worlds, and the relation R
represents Kripke’s accessibility relation. A constant propositional atom P in
the modal language becomes a unary predicate P (w) that holds (or not) for a
given world w.

This is the (naive) classical translation of modal logic into first-order logic [4],
and we might say that it is a semantic embedding, since the Kripke semantics
of the modal language are explicitly encoded in the translated result. This is,
for instance, the approach taken by McCarthy in his “Formalizing two puzzles
involving knowledge” [12]. A drawback of this approach is that proofs produced
in the translated setting are difficult to convert back into a form that makes
sense for the user in the original modal setting (altough alternative translation
techniques such as the functional translation to path logic can rectify this in
some cases [13]). Another drawback is that if a result is not obtained within
a reasonable amount of time—which is almost certain to happen quite often
when no decision procedure is available, as in first-order modal logics—then a
batch-oriented ATP is of little help to the user due to its “low bandwidth of
interaction” [14].

In this paper we explore another approach: We embed a multi-agent epis-
temic logic into many-sorted first-order logic in a proof-theoretic rather than
in a model-theoretic way. 2 Specifically, we use the interactive theorem proving
system Athena [15] to encode the formulas of the epistemic logic along with the
inference rules of a sequent calculus for it. Hence first-order logic becomes our
metalanguage and the epistemic logic becomes our object language. We then use
standard first-order logic (our metalanguage) to reason about proofs in the object
logic. In effect, we end up reasoning about reasoning—hence the term metarea-
soning. Since our metareasoning occurs at the standard first-order level, we are

2 This paper treats a propositional logic of knowledge, but the technique can be readily
applied to full first-order multi-agent epistemic logic, and indeed to hybrid multi-
modal logics, e.g., combination logics for temporal and epistemic reasoning.

Metareasoning for Multi-agent Epistemic Logics 113

free to leverage existing theorem-proving systems for automated deduction. In
particular, we make heavy use of Vampire [16] and Spass [17], two cutting-edge
resolution-based ATPs that are seamlessly integrated with Athena.

Our approach has two additional advantages. First, it is trivial to translate
the constructed proofs into modal form, since the Athena proofs are already
about proofs in the modal logic. Second, because the abstract syntax of the epis-
temic logic is explicitly encoded in Athena, we can quantify over propositions,
sequents, and agents. Accordingly, we get the generalization benefits of higher-
order logic even in a first-order setting. This can result in significant efficiency
improvements. For instance, in solving the generalized wise men puzzle it is nec-
essary at some point to derive the conclusion M2 ∨ · · · ∨ Mn from the three
premises ¬Kα(M1), Kα(¬(M2 ∨ · · · ∨ Mn) ⇒M1), and

¬(M2 ∨ · · · ∨ Mn) ⇒Kα(¬(M2 ∨ · · · ∨ Mn))

where M1, . . . ,Mn are atomic propositions and α is an epistemic agent, n > 1.
In the absence of an explicit embedding of the epistemic logic, this would have
to be done with a tactic that accepted a list of propositions [M1 · · ·Mn] as input
and performed the appropriate deduction dynamically, which would require an
amount of effort quadratic in the length of the list. By contrast, in our approach
we are able to formulate and prove a “higher-order” lemma stating

∀ P,Q, α . {¬Kα(P),Kα(¬Q ⇒P),¬Q ⇒Kα(¬Q)} � Q

Obtaining the desired conclusion for any given M1, . . . ,Mn then becomes a mat-
ter of instantiating this lemma with P �→ M1 and Q �→ M2 ∨ · · · ∨ Mn. We have
thus reduced the asymptotic complexity of our task from quadratic time to con-
stant time.

But perhaps the most distinguishing aspect of our work is our emphasis on
tactics. Tactics are proof algorithms, which, unlike conventional algorithms, are
guaranteed to produce sound results. That is, if and when a tactic outputs a
result P that it claims to be a theorem, we can be assured that P is indeed a
theorem. Tactics are widely used for proof automation in first- and higher-order
proof systems such as HOL [18] and Isabelle [19]. In Athena tactics are called
methods, and are particularly easy to formulate owing to Athena’s Fitch-style
natural deduction system and its assumption-base semantics [20]. A major goal of
our research is to find out how easy—or difficult—it may be to automate multi-
agent modal logic proofs with tactics. Our aim is not to obtain a completely
automatic decision procedure for a certain logic (or class of logics), but rather to
enable efficient interactive—i.e., semi-automatic—theorem proving in such logics
for challenging problems that are beyond the scope of completely automatic
provers. In this paper we formulate an Athena method for solving the generalized
version of the wise men problem (for any given number of wise men). The relative
ease with which this method was formulated is encouraging.

The remainder of this paper is structured as follows. In the next section we
present a sequent calculus for the epistemic logic that we will be encoding. In
Section 3 we present the wise men puzzle and formulate an algorithm for solving

114 K. Arkoudas and S. Bringsjord

Γ � P Γ � Q [∧-I]
Γ � P ∧ Q

Γ � P ∧ Q [∧-E1]
Γ � P

Γ � P ∧ Q [∧-E2]
Γ � Q

Γ � P [∨-I1]
Γ � P ∨ Q

Γ � Q [∨-I2]
Γ � P ∨ Q

Γ � P1 ∨ P2 Γ, P1 � Q Γ, P2 � Q [∨-E]
Γ � Q

Γ, P � Q [⇒-I]
Γ � P ⇒Q

Γ � P ⇒Q Γ � P [⇒-E]
Γ � Q

Γ � ¬¬P [¬-E]
Γ � P

Γ, P � ⊥ [¬-I]
Γ � ¬P

[Reflex]
Γ, P � P

Γ � P [Dilution]
Γ ∪ Γ ′ � P

Γ � P ∧ ¬P [⊥-I]
Γ � ⊥

[�-I]
Γ � �

Fig. 1. Inference rules for the propositional connectives

the generalized version of it in the sequent calculus of Section 2. In Section 4
we discuss the Athena encoding of the epistemic logic and present the Athena
method for solving the generalized wise men problem. Finally, in Section 5 we
consider related work.

2 A Sequent Formulation of a Multi-agent Epistemic
Logic

We will use the letters P , Q, R, . . ., to designate arbitrary propositions, built
according to the following abstract grammar:

P ::= A | � | ⊥ | ¬P | P ∧ Q | P ∨ Q | P ⇒Q | Kα(P) | C(P)

where A and α range over a countable set of atomic propositions (“atoms”) and
a primitive domain of agents, respectively. Propositions of the form Kα(P) and
C(P) are read as follows:

Kα(P): agent α knows proposition P

C(P): it is common knowledge that P holds

By a context we will mean a finite set of propositions. We will use the letter
Γ to denote contexts. We define a sequent as an ordered pair 〈Γ, P 〉 consisting of

Metareasoning for Multi-agent Epistemic Logics 115

[K]
Γ � [Kα(P ⇒Q)] ⇒ [Kα(P) ⇒Kα(Q)]

[T]
Γ � Kα(P) ⇒P

∅ � P [C-I]
Γ � C(P)

[C-E]
Γ � C(P) ⇒Kα(P)

[CK]
Γ � [C(P ⇒Q)] ⇒ [C(P) ⇒C(Q)]

[R]
Γ � C(P) ⇒C(Kα(P))

Fig. 2. Inference rules for the epistemic operators

a context Γ and a proposition P . A more suggestive notation for such a sequent
is Γ � P . Intuitively, this is a judgment stating that P follows from Γ . We will
write P, Γ (or Γ, P) as an abbreviation for Γ ∪ {P}. The sequent calculus that
we will use consists of a collection of inference rules for deriving judgments of
the form Γ � P . Figure 1 shows the inference rules that deal with the standard
propositional connectives. This part is standard (e.g., it is very similar to the
sequent calculus of Ebbinghaus et al. [21]). In addition, we have some rules
pertaining to Kα and C, shown in Figure 2.

Rule [K] is the sequent formulation of the well-known Kripke axiom stating
that the knowledge operator distributes over conditionals. Rule [CK] is the cor-
responding principle for the common knowledge operator. Rule [T] is the “truth
axiom”: an agent cannot know false propositions. Rule [CI] is an introduction
rule for common knowledge: if a proposition P follows from the empty set of
hypotheses, i.e., if it is a tautology, then it is commonly known. This is the
common-knowledge version of the “omniscience axiom” for single-agent knowl-
edge which says that Γ � Kα(P) can be derived from ∅ � P . We do not need to
postulate that axiom in our formulation, since it follows from [C-I] and [C-E].
The latter says that if it is common knowledge that P then any (every) agent
knows P , while [R] says that if it is common knowledge that P then it is common
knowledge that (any) agent α knows it. [R] is a reiteration rule that allows us to
capture the recursive behavior of C, which is usually expressed via the so-called
“induction axiom”

C(P ⇒E(P)) ⇒ [P ⇒C(P)]

where E is the shared-knowledge operator. Since we do not need E for our
purposes, we omit its formalization and “unfold” C via rule [R] instead.
We state a few lemmas that will come handy later:

Lemma 1 (Cut). If Γ1 � P1 and Γ2, P1 � P2 then Γ1 ∪ Γ2 � P2.

Proof: Assume Γ1 � P1 and Γ2, P1 � P2. Then, by [⇒-I], we get Γ2 � P1 ⇒P2.
Further, by dilution, we have Γ1 ∪ Γ2 � P1 ⇒P2 and Γ1 ∪ Γ2 � P1. Hence, by
[⇒-E], we obtain Γ1 ∪ Γ2 � P2. ��

116 K. Arkoudas and S. Bringsjord

The proofs of the remaining lemmas are equally simple exercises:

Lemma 2 (⇒-transitivity). If Γ � P1 ⇒P2, Γ � P2 ⇒P3 then Γ � P1 ⇒P3.

Lemma 3 (contrapositive). If Γ � P ⇒Q then Γ � ¬Q ⇒¬P .

Lemma 4. (a) ∅ � (P1 ∨ P2) ⇒ (¬P2 ⇒P1); and (b) Γ � C(P2) whenever
∅ � P1 ⇒P2 and Γ � C(P1).

Lemma 5. For all P,Q, and Γ , Γ � [C(P) ∧ C(Q)] ⇒C(P ∧ Q).

3 The Generalized Wise Men Puzzle

Consider first the three-men version of the puzzle:

Three wise men are told by their king that at least one of them has a white
spot on his forehead. In reality, all three have white spots on their fore-
heads. We assume that each wise man can see the others’ foreheads but
not his own, and thus each knows whether the others have white spots.
Suppose we are told that the first wise man says, “I do not know whether
I have a white spot,” and that the second wise man then says, “I also do
not know whether I have a white spot.” Now consider the following ques-
tion: Does the third wise man now know whether or not he has a white
spot? If so, what does he know, that he has one or doesn’t have one?

This version is essentially identical to the muddy-children puzzle, the only
difference being that the declarations of the wise men are made sequentially,
whereas in the muddy-children puzzle the children proclaim what they know (or
not know) in parallel at every round.

In the generalized version of the puzzle we have an arbitrary number n + 1
of wise men w1, . . . , wn+1, n ≥ 1. They are told by their king that at least one
them has a white spot on his forehead. Again, in actuality they all do. And they
can all see one another’s foreheads, but not their own. Supposing that each of
the first n wise men, w1, . . . , wn, sequentially announces that he does not know
whether or not he has a white spot on his forehead, the question is what would
the last wise man wn+1 report.

For all n ≥ 1, it turns out that the last—(n + 1)st—wise man knows he is
marked. The case of two wise men is simple. The reasoning runs essentially by
contradiction. The second wise man reasons as follows:

Suppose I were not marked. Then w1 would have seen this, and knowing
that at least one of us is marked, he would have inferred that he was the
marked one. But w1 has expressed ignorance; therefore, I must be marked.

Consider now the case of n = 3 wise men w1, w2, w3. After w1 announces
that he does not know that he is marked, w2 and w3 both infer that at least
one of them is marked. For if neither w2 nor w3 were marked, w1 would have
seen this and would have concluded—and stated—that he was the marked one,

Metareasoning for Multi-agent Epistemic Logics 117

since he knows that at least one of the three is marked. At this point the puzzle
reduces to the two-men case: both w2 and w3 know that at least one of them
is marked, and then w2 reports that he does not know whether he is marked.
Hence w3 proceeds to reason as previously that he is marked.

In general, consider n + 1 wise men w1, . . . , wn, wn+1, n ≥ 1. After the first
j wise men w1, . . . , wj have announced that they do not know whether they are
marked, for j = 1, . . . , n, the remaining wise men wj+1, . . . , wn+1 infer that at
least one of them is marked. This holds for j = n as well, which means that the last
wise man wn+1 will infer (and announce, owing to his honesty) that he is marked.

The question is how to formalize this in our logic. Again consider the case
of two wise men w1 and w2. Let Mi, i ∈ {1, 2} denote the proposition that wi

is marked. For any proposition P , we will write Ki(P) as an abbreviation for
Kwi

(P). We will only need three premises:

S1 = C(¬K1(M1))
S2 = C(M1 ∨ M2)
S3 = C(¬M2 ⇒K1(¬M2))

The first premise says that it is common knowledge that the first wise man does
not know whether he is marked. Although it sounds innocuous, note that a couple
of assumptions are necessary to obtain this premise from the mere fact that w1

has announced his ignorance. First, truthfulness—we must assume that the wise
men do not lie, and further, that each one of them knows that they are all truthful.
And second, each wise man must know that the other wise men will hear the
announcement and believe it. Premise S2 says that it is common knowledge that
at least one of the wise men is marked. Observe that the announcement by the
king is crucial for this premise to be justified. The two wise men can see each
other and thus they individually know M1 ∨ M2. However, each of them may not
know that the other wise man knows that at least one of them is marked. For
instance, w1 may believe that he is not marked, and even though he sees that
w2 is marked, he may believe that w2 does not know that at least one of them is
marked, as w2 cannot see himself. Finally, premise S3 states that it is common
knowledge that if w2 is not marked, then w1 will know it (because w1 can see
w2). From these three premises we are to derive the conclusion C(M2)—that it
is common knowledge that w2 is marked. Symbolically, we need to derive the
judgment {S1, S2, S3} � C(M2). If we have encoded the epistemic propositional
logic in a predicate calculus, then we can achieve this immediately by instantiating
Lemma 7 below with α �→ w1, P �→ M1 and Q �→ M2—without performing any
inference whatsoever. This is what we have done in Athena.

For the case of n = 3 wise men our set of premises will be:

S1 = C(¬K1(M1))
S2 = C(M1 ∨ M2 ∨ M3)
S3 = C(¬(M2 ∨ M3) ⇒K1(¬(M2 ∨ M3)))
S4 = C(¬K2(M2))
S5 = C(¬M3 ⇒K2(¬M3))

118 K. Arkoudas and S. Bringsjord

Consider now the general case of n + 1 wise men w1, . . . , wn, wn+1. For any
i = 1, . . . , n, define

Si
1 = C(¬Ki(Mi))

Si
2 = C(Mi ∨ · · · ∨ Mn+1)

Si
3 = C(¬(Mi+1 ∨ · · · ∨ Mn+1) ⇒Ki(¬(Mi+1 ∨ · · · ∨ Mn+1)))

and Sn+1
2 = C(Mn+1). The set of premises, Ωn+1, can now be defined as

Ωn+1 = {C(M1 ∨ · · · ∨ Mn+1)}
n⋃

i=1

{Si
1, S

i
3}

Hence Ωn+1 has a total of 2n + 1 elements. Note that S1
2 is the commonly

known disjunction M1 ∨ · · · ∨ Mn+1 and a known premise, i.e., a member of
Ωn+1. However, Si

2 for i > 1 is not a premise. Rather, it becomes derivable
after the ith wise man has made his announcement. Managing the derivation
of these propositions and eliminating them via applications of the cut is the
central function of the algorithm below. Before we present the algorithm we
state a couple of key lemmas.

Lemma 6. Consider any agent α and propositions P,Q, and let R1, R2, R3 be
the following three propositions:

1. R1 = ¬Kα(P);
2. R2 = Kα(¬Q ⇒P);
3. R3 = ¬Q ⇒Kα(¬Q)

Then {R1 ∧ R2 ∧ R3} � Q.

Proof. By the following sequent derivation:

1. {R1 ∧ R2 ∧ R3} � R1 [Reflex], ∧-E1

2. {R1 ∧ R2 ∧ R3} � R2 [Reflex], ∧-E1, ∧-E2

3. {R1 ∧ R2 ∧ R3} � R3 [Reflex], ∧-E2

4. {R1 ∧ R2 ∧ R3} � Kα(¬Q) ⇒Kα(P) 2, [K], ⇒-E
5. {R1 ∧ R2 ∧ R3} � ¬Q ⇒Kα(P) 3, 4, Lemma 2
6. {R1 ∧ R2 ∧ R3} � ¬Kα(P) ⇒¬¬Q 5, Lemma 3
7. {R1 ∧ R2 ∧ R3} � ¬¬Q 6, 1, ⇒-E
8. {R1 ∧ R2 ∧ R3} � Q 7, [¬-E]

��

Lemma 7. Consider any agent α and propositions P,Q. Define R1 and R3

as in Lemma 6, let R2 = P ∨ Q, and let Si = C(Ri) for i = 1, 2, 3. Then
{S1, S2, S3} � C(Q).

Metareasoning for Multi-agent Epistemic Logics 119

Proof. Let R′
2 = ¬Q ⇒P and consider the following derivation:

1. {S1, S2, S3} � S1 [Reflex]
2. {S1, S2, S3} � S2 [Reflex]
3. {S1, S2, S3} � S3 [Reflex]
4. ∅ � (P ∨ Q) ⇒ (¬Q ⇒P) Lemma 4a
5. {S1, S2, S3} � C((P ∨ Q) ⇒ (¬Q ⇒P)) 4, [C-I]
6. {S1, S2, S3} � C(P ∨ Q) ⇒C(¬Q ⇒P) 5, [CK], [⇒-E]
7. {S1, S2, S3} � C(¬Q ⇒P) 6, 2, [⇒-E]
8. {S1, S2, S3} � C(¬Q ⇒P) ⇒C(Kα(¬Q ⇒P)) [R]
9. {S1, S2, S3} � C(Kα(¬Q ⇒P)) 8, 7, [⇒-E]
10. {R1 ∧ Kα(¬Q ⇒P) ∧ R3} � Q Lemma 6
11. ∅ � (R1 ∧ Kα(¬Q ⇒P) ∧ R3) ⇒Q 10, [⇒-I]
12. {S1, S2, S3} � C((R1 ∧ Kα(¬Q ⇒P) ∧ R3) ⇒Q) 11, [C-I]
13. {S1, S2, S3} � C(R1 ∧ Kα(¬Q ⇒P) ∧ R3) ⇒C(Q) 12, [CK], [⇒-E]
14. {S1, S2, S3} � C(R1 ∧ Kα(¬Q ⇒P) ∧ R3) 1, 3, 9, Lemma 5, [∧-I]
15. {S1, S2, S3} � C(Q) 13, 14, [⇒-E]

��

Our method can now be expressed as follows:

Φ← {S1
1 , S1

2 , S1
3};

Σ ← Φ � S2
2 ;

Use Lemma 7 to derive Σ;

If n = 1 halt

else

For i = 2 to n do

begin

Φ← Φ ∪ {Si
1, S

i
3};

Σ′ ← {Si
1, S

i
2, S

i
3} � Si+1

2 ;

Use Lemma 7 to derive Σ′;
Σ′′ ← Φ � Si+1

2 ;

Use the cut on Σ and Σ′ to derive Σ′′;
Σ ← Σ′′

end

The loop variable i ranges over the interval 2, . . . , n. For any i in that interval,
we write Φi and Σi for the values of Φ and Σ upon conclusion of the ith iteration
of the loop. A straightforward induction on i will establish:

Lemma 8 (Algorithm correctness). For any i ∈ {2, . . . , n},

Φi = {C(M1 ∨ · · · ∨ Mn+1)}
i⋃

j=1

{Sj
1, S

j
3}

while Σi = Φi � Si+1
2 .

Hence, Φn = Ωn+1, and Σn = Φn � Sn+1
2 = Ωn+1 � Sn+1

2 = Ωn+1 � C(Mn+1),
which is our goal.

120 K. Arkoudas and S. Bringsjord

It is noteworthy that no such correctness argument is necessary in the for-
mulation of the algorithm as an Athena method, as methods are guaranteed to
be sound. Their results are always logically entailed by the assumption base,
assuming that our primitive methods are sound (see Chapter 8 of [20]).

4 Athena Implementation

In this section we present the Athena encoding of the epistemic logic and our
method for solving the generalized version of the wise men puzzle (refer to the
Athena web site [15] for more information on the language). We begin by in-
troducing an uninterpreted domain of epistemic agents: (domain Agent). Next
we represent the abstract syntax of the propositions of the logic. The following
Athena datatype mirrors the abstract grammar for propositions that was given
in the beginning of Section 2:

(datatype Prop

True

False

(Atom Boolean)

(Not Prop)

(And Prop Prop)

(Or Prop Prop)

(If Prop Prop)

(Knows Agent Prop)

(Common Prop))

We proceed to introduce a binary relation sequent that may obtain between
a finite set of propositions and a single proposition:

(declare sequent (-> ((FSet-Of Prop) Prop) Boolean))

Here FSet-Of is a unary sort constructor: for any sort T, (FSet-Of T) is a new
sort representing the set of all finite sets of elements of T. Finite sets are built
with two polymorphic constructors: the constant null, representing the empty
set; and the binary constructor insert, which takes an element x of sort T and
a finite set S (of sort (FSet-Of T)) and returns the set {x} ∪S. We also have all
the usual set-theoretic operations available (union, intersection, etc.).

The intended interpretation is that if (sequent S P) holds for a set of propo-
sitions S and a proposition P , then the sequent S � P is derivable in the epis-
temic logic via the rules presented in Section 2. Accordingly, we introduce axioms
capturing those rules. For instance, the conjunction introduction rule is repre-
sented by the following axiom:

(define And-I

(forall ?S ?P ?Q

(if (and (sequent ?S ?P)

(sequent ?S ?Q))

(sequent ?S (And ?P ?Q)))))

Metareasoning for Multi-agent Epistemic Logics 121

Note that the lowercase and above is Athena’s built-in conjunction operator, and
hence represents conjunction at the metalanguage level, whereas And represents
the object-level conjunction operator of the epistemic logic.

The cut rule and the common knowledge introduction (necessitation) rule
become:

(define cut

(forall ?S1 ?S2 ?P ?Q

(if (and (sequent ?S1 ?P)

(sequent (insert ?P ?S2) ?Q))

(sequent (union ?S1 ?S2) ?Q))))

(define common-intro-axiom

(forall ?P ?S

(if (sequent null ?P)

(sequent ?S (Common ?P)))))

The remaining rules are encoded by similar first-order axioms.
We next proceed to derive several lemmas that are useful for the proof. Some

of these lemmas are derived completely automatically via the ATPs that are inte-
grated with Athena. For instance, the cut rule is proved automatically (in about
10 seconds). As another example, the following result—part (b) of Lemma 4—is
proved automatically:

(forall ?S ?P1 ?P2

(if (and (sequent null (If ?P1 ?P2))

(sequent ?S (Common ?P1)))

(sequent ?S (Common ?P2))))

Other lemmas are established by giving natural deduction proofs. For instance,
the proof of Lemma 6 in Section 3 is transcribed virtually verbatim in Athena,
and validated in a fraction of a second. (The fact that the proof is abridged—
i.e., multiple steps are compressed into single steps—is readily handled by in-
voking ATPs that automatically fill in the details.) Finally, we are able to prove
Lemma 7, which is the key technical lemma. Utilizing the higher-order charac-
ter of our encoding, we then define a method main-lemma that takes an arbi-
trary list of agents [a1 · · · an], n ≥ 1, and specializes Lemma 7 with P �→ Ma1 ,
Q �→ Ma2 ∨ · · · ∨ Man

, and α �→ a1 (recall that for any agent α, Mα signi-
fies that α is marked). So, for instance, the application of main-lemma to the
list [a1, a2, a3] would derive the conclusion {S1, S2, S3} � C(Ma2 ∨ Ma3), where
S1 = C(¬Ka1(Ma1)), S2 = C(Ma1 ∨ Ma2 ∨ Ma3), and

S3 = C(¬(Ma2 ∨ Ma3) ⇒Ka1(¬(Ma2 ∨ Ma3)))

We also need a simple result shuffle asserting the equality Γ, P1, P2 = Γ, P2, P1

(i.e., Γ ∪ {P1} ∪ {P2} = Γ ∪ {P2} ∪ {P1}).
Using these building blocks, we express the tactic for solving the generalized

wise men problem as the Athena method solve below. It takes as input a list of
agents representing wise men, with at least two elements. Note that the for loop
in the pseudocode algorithm has been replaced by recursion.

122 K. Arkoudas and S. Bringsjord

(define (solve wise-men)

(dletrec

((loop (method (wise-men th)

(dmatch wise-men

([_] (!claim th))

((list-of _ rest)

(dlet ((new-th (!main-lemma wise-men)))

(dmatch [th new-th]

([(sequent context Q2)

(sequent (insert Q1

(insert Q2 (insert Q3 null))) P)]

(dlet ((cut-th

(!derive (sequent

(union

context

(insert Q1 (insert Q3 null)))

P)

[th new-th shuffle cut])))

(!loop rest cut-th))))))))))

(dlet ((init (!prove-goal-2 wise-men)))

(!loop (tail wise-men) init))))

Assuming that w1, w2, w3 are agents representing wise men, invoking the method
solve with the list [w1 w2 w3]) as the argument will derive the appropriate result:
Ω3 � (Common (isMarked w3)), where Ω3 is the set of premises for the three-men
case, as defined in the previous section.

5 Related Work

The wise men problem became a staple of epistemic AI literature after being
introduced by McCarthy [12]. Formalizations and solutions of the two-wise-men
problem are found in a number of sources [22, 23, 24], most of them in simple
multi-agent epistemic logics (without common knowledge). Several variations
have been given; e.g., Konolige has a version in which the third wise man states
that he does not know whether he is marked, but that he would know if only the
second wise man were wiser [25]. Ballim and Wilks [26] solve the three-men ver-
sion of the puzzle using the “nested viewpoints” framework. Vincenzo Pallotta’s
solution [27] is similar but his ViewGen framework facilitates agent simulation.
Kim and Kowalski [28] use a Prolog-based implementation of metareasoning to
solve the same version of the problem using common knowledge. A more natural
proof was given by Aiello et al. [29] in a rewriting framework.

The importance of reasoning about the intentional states of intelligent agents
is widely recognized (see, for instance, the recent work by Dastani et al. on in-
ferring trust [30]). Agent metareasoning and metaknowledge, in particular, is
extensively discussed in “Logical foundations of Artifical Intelligence” by Gene-
sereth and Nillson [24] (it is the subject of an entire chapter). They stress that the
main advantage of an explicit encoding of the reasoning process is that it makes

Metareasoning for Multi-agent Epistemic Logics 123

it possible to “create agents capable of reasoning in detail about the inferential
abilities of and beliefs of other agents,” as well as enabling introspection.3

The only work we are aware of that has an explicit encoding of an epistemic
logic in a rich metalanguage is a recent project [32] that uses the Calculus of
Constructions (Coq [33]). However, there are important differences. First, they
encode a Hilbert proof system, which has an adverse impact on the readabil-
ity and writability of proofs. The second and most important difference is our
emphasis on reasoning efficiency. The seamless integration of Athena with state-
of-the-art provers such as Vampire and Spass is crucial for automation, as it
enables the user to skip tedious steps and keep the reasoning at a high level
of detail. Another distinguishing aspect of our work is our heavy use of tac-
tics. Athena uses a block-structured natural-deduction style not only for writing
proofs but also for writing proof tactics (“methods”). Proof methods are much
easier to write in this style, and play a key role in proof automation. Our empha-
sis on automation also differentiates our work from that of Basin et al. [34] using
Isabelle, which only addresses proof presentation in modal logics, not automatic
proof discovery.

References

1. Davis, E., Morgenstern, L.: Epistemic Logics and its Applications: Tutorial Notes.
(www-formal.stanford.edu/leora/krcourse/ijcaitxt.ps)

2. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about knowledge. MIT
Press, Cambridge, Massachusetts (1995)

3. Meyer, J., Hoek, W.V.D.: Epistemic Logic for Computer Science and Artificial
Intelligence. Volume 41 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press (1995)

4. Gabbay, D.M., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-dimensional
modal logics: theory and applications. Volume 4 of Studies in Logic and the Foun-
dations of Mathematics. Elsevier (1994)

5. Halpern, J., Moses, Y.: A guide to completeness and complexity for modal logics
of knowledge and belief. Artificial Intelligence 54 (1992) 319–379

6. Horrocks, I.: Using an expressive description logic: FaCT or fiction? In: Sixth In-
ternational Conference on Principles of Knowledge Representation and Reasoning.
(1998) 636–647

7. Giunchiglia, E., Giunchiglia, F., Sebastiani, R., Tacchella, A.: More evaluation of
decision procedures for modal logics. In Cohn, A.G., Schubert, L., Shapiro, S.C.,
eds.: 6th international conference on principles of knowledge representation and
reasoning (KR’98), Trento (1998)

8. Hustadt, U., Schmidt, R.A.: On evaluating decision procedures for modal logic. In:
Fifteenth International Joint Conference on Artificial Intelligence. (1997) 202–209

3 In addition, Bringsjord and Yang [31] have claimed that the best of human reasoning
is distinguished by a capacity for meta-reasoning, and have proposed a theory—
mental metalogic—of human and machine reasoning that emphasizes this type of
reasoning.

124 K. Arkoudas and S. Bringsjord

9. Heuerding, A.: LWBtheory: information about some propositional logics via the
WWW. Logic Journal of the IGPL 4 (1996) 169–174

10. Schmidt, R.A.: MSPASS. http://www.cs.man.ac.uk/~schmidt/mspass/ (1999)
11. Fitting, M.: Basic modal logic. In Gabbay, D.M., Hogger, C.J., Robinson, J.A.,

eds.: Logical foundations. Volume 4 of Handbook of Logic in Artificial Intelligence
and Logic Programming. Oxford Science Publications (1994)

12. McCarthy, J.: Formalization of two puzzles involving knowledge. In Lifschitz, V.,
ed.: Formalizing Common Sense: Papers by John McCarthy. Ablex Publishing
Corporation, Norwood, New Jersey (1990)

13. Schmidt, R.A., Hustadt, U.: Mechanised reasoning and model generation for ex-
tended modal logics. In de Swart, H.C.M., Orlowska, E., Schmidt, G., Roubens, M.,
eds.: Theory and Applications of Relational Structures as Knowledge Instruments.
Volume 2929 of Lecture Notes in Computer Science. Springer (2003) 38–67

14. Cyrluk, D., Rajan, S., Shankar, N., , Srivas, M.: Effective theorem proving for
hardware verification. In: Theorem Provers in Circuit Design (TPCD ’94). Volume
901 of Lecture Notes in Computer Science., Bad Herrenalb, Germany, Springer-
Verlag (1994) 203–222

15. Arkoudas, K.: Athena. (http://www.pac.csail.mit.edu/athena)
16. Voronkov, A.: The anatomy of Vampire: implementing bottom-up procedures with

code trees. Journal of Automated Reasoning 15 (1995)
17. Weidenbach, C.: Combining superposition, sorts, and splitting. In Robinson, A.,

Voronkov, A., eds.: Handbook of Automated Reasoning. Volume 2. North-Holland
(2001)

18. Gordon, M.J.C., Melham, T.F.: Introduction to HOL, a theorem proving envi-
ronment for higher-order logic. Cambridge University Press, Cambridge, England
(1993)

19. Paulson, L.: Isabelle, A Generic Theorem Prover. Lecture Notes in Computer
Science. Springer-Verlag (1994)

20. Arkoudas, K.: Denotational Proof Languages. (PhD dissertation, MIT, 2000)
21. Ebbinghaus, H.D., Flum, J., Thomas, W.: Mathematical Logic. 2nd edn. Springer-

Verlag (1994)
22. Huth, M., Ryan, M.: Logic in Computer Science: modelling and reasoning about

systems. Cambridge University Press, Cambridge, UK (2000)
23. Snyers, D., Thayse, A.: Languages and logics. In Thayse, A., ed.: From modal

logic to deductive databases, John Wiley & Sons (1989) 1–54
24. Genesereth, M., Nilsson, N.: Logical Foundations of Artificial Intelligence. Morgan

Kaufmann (1987)
25. Konolige, K.: A deduction model of belief. Research Notes in Artificial Intelligence.

Pitman, London, UK (1986)
26. Ballim, A., Wilks, Y.: Artificial Believers. Lawrence Erlbaum Associates, Hillsdale,

New Jersey (1991)
27. Pallotta, V.: Computational dialogue Models. In: 10th Conference of the European

Chapter of the Association for Computational Linguistics EACL03. (2003)
28. Kim, J., Kowalski, R.: An application of amalgamated logic to multi-agent belief. In

Bruynooghe, M., ed.: Second Workshop on Meta-Programming in Logic META90.
(1990) 272–283

29. Aiello, L.C., Nardi, D., Schaerf, M.: Yet another solution to the three wisemen
puzzle. In: Proceedings of the 3rd International Symposium on Methodologies for
Intelligent Systems. (1988) 398–407

30. Dastani, M., Herzig, A., Hulstijn, J., van der Torre, L.: Inferring trust. In this
volume.

Metareasoning for Multi-agent Epistemic Logics 125

31. Yang, Y., Bringsjord, S.: Mental Metalogic: A New, Unifying Theory of Human
and Machine Reasoning. Erlbaum, Mahwah, NJ (2005)

32. Lescanne, P.: Epistemic logic in higher order logic: an experiment with COQ.
Technical Report RR2001-12, LIP-ENS de Lyon (2001)

33. Coquand, T., Huet, G.: The Calculus of Constructions. Information and Compu-
tation 76 (1988) 95–120

34. Basin, D., Matthews, S., Viganò, L.: A modular presentation of modal logics
in a logical framework. In Ginzburg, J., Khasidashvili, Z., Vogel, C., Lévy, J.J.,
Vallduv́ı, E., eds.: The Tbilisi Symposium on Logic, Language and Computation:
Selected Papers. CSLI Publications, Stanford, CA (1998) 293–307

Graded BDI Models for Agent Architectures?

Ana Casali1, Llúıs Godo2, and Carles Sierra2

1 Depto. de Sistemas e Informática,
Facultad de Cs. Exactas, Ingenieŕıa y Agrimensura,

Universidad Nacional de Rosario,
Av Pellegrini 250, 2000 Rosario, Argentina

2 Institut d‘Investigació en Intel·ligència Artificial (IIIA) - CSIC,
Campus Universitat Autònoma de Barcelona s/n,

08193 Bellaterra, Catalunya, España

Abstract. In the recent past, an increasing number of multiagent sys-
tems (MAS) have been designed and implemented to engineer complex
distributed systems. Several previous works have proposed theories and
architectures to give these systems a formal support. Among them, one
of the most widely used is the BDI agent architecture presented by Rao
and Georgeff. We consider that in order to apply agents in real domains,
it is important for the formal models to incorporate a model to represent
and reason under uncertainty. With that aim we introduce in this paper
a general model for graded BDI agents, and an architecture, based on
multi-context systems, able to model these graded mental attitudes. This
architecture serves as a blueprint to design different kinds of particular
agents. We illustrate the design process by formalising a simple travel
assistant agent.

1 Introduction

In the recent past, an increasing number of multiagent systems (MAS) have
been designed and implemented to engineer complex distributed systems. Several
previous works have proposed theories and architectures to give these systems a
formal support. Agent theories are essentially specifications of agents’ behaviour
expressed as the properties that agents should have. A formal representation of
the properties helps the designer to reason about the expected behaviour of the
system [25]. Agent architectures represent a middle point between specification
and implementation. They identify the main functions that ultimately determine
the agent’s behaviour and define the interdependencies that exist among them
[25]. Agent theories based on an intentional stance are among the most common
ones. Intentional systems describe entities whose behaviour can be predicted

? A preliminary version of this paper, “Modelos BDI graduados para Arquitecturas
de Agentes” (in Spanish), was presented at the Argentine Symposium on Artificial
Intelligence (ASAI’04) and will appear in an especial issue of “Inteligencia Artificial”
(Revista Iberoamericana de Inteligencia Artificial).

J. Leite and P. Torroni (Eds.): CLIMA V, LNAI 3487, pp. 126–143, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Graded BDI Models for Agent Architectures 127

by the method of attributing certain mentalistic attitudes such as knowledge,
belief —information attitudes, desire, intention, obligation, commitment —pro-
attitudes, among others [5]. A well-known intentional system formal approach is
the BDI architecture proposed by Rao and Georgeff [20, 21]. This model is based
on the explicit representation of the agent’s beliefs (B) —used to represent the
state of the environment, its desires (D) —used to represent the motivations of
the agent, and its intentions (I) —used to represent the goals of the agent. This
architecture has evolved over time and it has been applied in several of the most
significant multiagent applications developed up to now.

Modelling different intentional notions by means of several modalities (B, D,
I) can be very complex if only one logical framework is used. In order to help
in the design of such complex logical systems Giunchiglia et.al. [9] introduced
the notion of multi-context system (MCS for short). This framework allows the
definition of different formal components and their interrelation. In our case, we
propose to use separate contexts to represent each modality and formalise each
context with the most appropriate logic apparatus. The interactions between
the components are specified by using inter-unit rules, called bridge rules. These
rules are part of the deduction machinery of the system. This approach has
been used by Sabater et.al. [22] and Parsons et.al. [19] to specify several agent
architectures and particularly to model some classes of BDI agents [17]. Indeed
one advantage of the MCS logical approach to agency modelling is that it allows
for rather affordable computational implementation. For instance, a portion of
the framework described in [17] is being now implemented using a prolog multi-
threaded architecture [8].

The agent architectures proposed so far mostly deal with two-valued infor-
mation. Although the BDI model developed by Rao and Georgeff explicitly ac-
knowledges that an agent’s model of the world is incomplete, by modelling beliefs
as a set of worlds that the agent knows that it might be in, it makes no use of
quantified information about how possible a particular world is to be the actual
one. Neither does it allow desires and intentions to be quantified. We think that
taking into consideration this graded information could improve the agent’s per-
formance. There are a few works that partially address this issue and emphasize
the importance of graded models. Notably, Parsons and Giorgini [17] consider
the belief quantification by using Evidence Theory. In their proposal, an agent
is allowed to express its opinion on the reliability of the agents it interacts with,
and to revise its beliefs when they become inconsistent. They set out the im-
portance of quantifying degrees in desires and intentions, but this is not covered
by their work. Lang et al. [14] present an approach to a logic of desires, where
the notion of hidden uncertainty of desires is introduced. Desires are formalized
to support a realistic interaction between the concepts of preference and plau-
sibility (or normality), both represented by a pre-order relation over the sets of
possible worlds. Other works deal with reasoning about intentions in uncertain
domains, as the proposal of Schut et al. [24]. They present an efficient intention
reconsideration for agents that interact in an uncertainty environment in terms
of dynamics, observability, and non-determinism.

128 A. Casali, L. Godo, and C. Sierra

All the above mentioned proposals model partial aspects of the uncertainty
related to mental notions involved in an agent’s architecture. We present in this
paper a general model for a graded BDI agent, specifying an architecture able
to deal with the environment uncertainty and with graded mental attitudes. In
this sense, belief degrees represent to what extent the agent believes a formula is
true. Degrees of positive or negative desire allow the agent to set different levels
of preference or rejection respectively. Intention degrees give also a preference
measure but, in this case, modelling the cost/benefit trade off of reaching an
agent’s goal. Then, Agents having different kinds of behaviour can be modeled
on the basis of the representation and interaction of these three attitudes.

This paper is organised as follows: in Section 2, we introduce multi-context
systems and the general multivalued logic framework for the graded contexts.
Sections 3, 4, and 5 present the mental units of the graded BDI model, that
is the contexts for beliefs (BC), desires (DC), and intentions (IC). Section 6
outlines two functional contexts for planning (PC) and communication (CC). In
Section 7, we deal with bridge rules, we illustrate the overall reasoning process
in Section 8, and finally, we present some conclusions and future lines of work.

2 Graded BDI Agent Model

The architecture presented in this paper is inspired by the work of Parsons et.al.
[17] about multi-context BDI agents. Multi-context systems were introduced by
Giunchiglia et.al. [9] to allow different formal (logic) components to be defined
and interrelated. The MCS specification of an agent contains three basic compo-
nents: units or contexts, logics, and bridge rules, which channel the propagation
of consequences among theories. Thus, an agent is defined as a group of inter-
connected units:

〈
{Ci}i∈I ,∆br

〉
, where each context Ci ∈ {Ci}i∈I is the tuple

Ci = 〈Li, Ai,∆i〉 where Li, Ai and ∆i are the language, axioms, and inference
rules respectively. They define the logic for the context and its basic behaviour
as constrained by the axioms. When a theory Ti ∈ Li is associated with each
unit, the implementation of a particular agent is complete. ∆br can be under-
stood as rules of inference with premises and conclusions in different contexts,
for instance:

C1 : ψ,C2 : ϕ
C3 : θ

means that if formula ψ is deduced in context C1 and formula ϕ is deduced in
context C2 then formula θ is added to context C3.

The deduction mechanism of these systems is based on two kinds of inference
rules, internal rules ∆i inside each unit, and bridge rules ∆br outside. Internal
rules allow to draw consequences within a theory, while bridge rules allow to
embed results from a theory into another [7].

We have mental contexts to represent beliefs (BC), desires (DC) and inten-
tions (IC). We also consider two functional contexts: for Planning (PC) and
Communication (CC). The Planner is in charge of finding plans to change the

Graded BDI Models for Agent Architectures 129

current world into another world, where some goal is satisfied, and of computing
the cost associated to the plans. The communication context is the agent’s door
to the external world, receiving and sending messages. In summary, the BDI
agent model is defined as:

Ag = ({BC,DC, IC, PC,CC},∆br)

Each context has an associated logic, that is, a logical language with its own
semantics and deductive system. In order to represent and reason about graded
notions of beliefs, desires and intentions, we decide to use a modal many-valued
approach. In particular, we shall follow the approach developed by Hájek et
al. in e.g. [12] and [10] where uncertainty reasoning is dealt with by defining
suitable modal theories over suitable many-valued logics. The basic idea is the
following. For instance, let us consider a Belief context where belief degrees are
to be modeled as probabilities. Then, for each classical (two-valued) formula
ϕ, we consider a modal formula Bϕ which is interpreted as “ϕ is probable”.
This modal formula Bϕ is then a fuzzy formula which may be more or less true,
depending on the probability of ϕ. In particular, we can take as truth-value of
Bϕ precisely the probability of ϕ. Moreover, using a many-valued logic, we can
express the governing axioms of probability theory as logical axioms involving
modal formulae of the kind Bϕ. Then, the many-valued logic machinery can
be used to reason about the modal formulae Bϕ, which faithfully respect the
uncertainty model chosen to represent the degrees of belief.

In this proposal, for the mental contexts we choose the infinite-valued
 Lukasiewicz logic but another selection of many-valued logics may be done for
each unit, according to the measure modeled in each case 1. Therefore, in this
kind of logical frameworks we shall have, besides the axioms of Lukasiewicz
many-valued logic, a set of axioms corresponding to the basic postulates of a
particular uncertainty theory. Hence, in this approach, reasoning about prob-
abilities (or any other uncertainty models) can be done in a very elegant way
within a uniform and flexible logical framework. The same many-valued logical
framework may be used to represent and reason about degrees of desires and
intentions, as will be seen in detail later on.

3 Belief Context

The purpose of this context is to model the agent’s beliefs about the environment.
In order to represent beliefs, we use modal many-valued formulae, following the
above mentioned logical framework. We consider in this paper the particular

1 The reason of using this many-valued logic is that its main connectives are based
on the arithmetic addition in the unit interval [0, 1], which is what is needed to deal
with additive measures like probabilities. Besides, Lukasiewicz logic has also the min
conjunction and max disjunction as definable connectives, so it also allows to define
a logic to reason about degrees of necessity and possibility.

130 A. Casali, L. Godo, and C. Sierra

case of using probability theory as the uncertainty model. Other models might
be used as well by just modifying the corresponding axioms.

3.1 The BC Language

To reason about the credibility of crisp propositions, we define a language for
belief representation, following Godo et al.’s [10], based on Lukasiewicz logic. In
order to define the basic crisp language, we start from a classical propositional
language L, defined upon a countable set of propositional variables PV and
connectives (¬,→), and extend it to represent actions. We take advantage of
Dynamic logic which has been used to model agent’s actions in [23] and [16].
These actions, the environment transformations they cause, and their associated
cost must be part of any situated agent’s beliefs set.

The propositional language L is thus extended to LD, by adding to it action
modalities of the form [α] where α is an action. More concretely, given a set
Π0 of symbols representing elementary actions, the set Π of plans (composite
actions) and formulae LD is defined as follows:

– Π0 ⊂ Π (elementary actions are plans)
– if α, β ∈ Π then α;β ∈ Π, (the concatenation of actions is also a plan)
– if α, β ∈ Π then α ∪ β ∈ Π (non-deterministic disjunction)
– if α ∈ Π then α∗ ∈ Π (iteration)
– If A is a formula, then A? ∈ Π (test)

– if p ∈ PV , then p ∈ LD

– if ϕ ∈ LD then ¬ϕ ∈ LD

– if ϕ,ψ ∈ LD then ϕ→ ψ ∈ LD

– if α ∈ Π and ϕ ∈ LD then [α]ϕ ∈ LD.

The interpretation of [α]A is “after the execution of α, A is true”
We define a modal language BC over the language LD to reason about the

belief on crisp propositions. To do so, we extend the crisp language LD with a
fuzzy unary modal operator B. If ϕ is a proposition in LD, the intended meaning
of Bϕ is that “ϕ is believable”. Formulae of BC are of two types:

– Crisp (non B-modal): they are the (crisp) formulae of LD, built in the usual
way, thus, if ϕ ∈ LD then ϕ ∈ BC.

– B-Modal: they are built from elementary modal formulae Bϕ, where ϕ is
crisp, and truth constants r, for each rational r ∈ [0, 1], using the connectives
of Lukasiewicz many-valued logic:
• If ϕ ∈ LD then Bϕ ∈ BC
• If r ∈ Q ∩ [0, 1] then r ∈ BC
• If Φ, Ψ ∈ BC then Φ →L Ψ ∈ BC and Φ&Ψ ∈ BC (where & and →L

correspond to the conjunction and implication of Lukasiewicz logic)

Other Lukasiewicz logic connectives for the modal formulae can be defined from
&, →L and 0: ¬LΦ is defined as Φ →L 0, Φ ∧ Ψ as Φ&(Φ →L Ψ), Φ ∨ Ψ as
¬L(¬LΦ ∧ ¬LΨ), and Φ ≡ Ψ as (Φ→L Ψ)&(Ψ →L Φ).

Graded BDI Models for Agent Architectures 131

Since in Lukasiewicz logic a formula Φ →L Ψ is 1-true iff the truth value of
Ψ is greater or equal to that of Φ, modal formulae of the type r →L Bϕ express
that the probability of ϕ is at least r. Formulae of the type r →L Ψ will be
denoted as (Ψ, r).

3.2 Belief Semantics

The semantics for the language BC is defined, as usual in modal logics, using
a Kripke structure. We have added to such structure a ρ function in order to
represent the world transitions caused by actions, and a probability measure µ
over worlds. Thus, we define a BC probabilistic Kripke structure as a 4-tuple
K = 〈W, e, µ, ρ〉 where:

– W is a non-empty set of possible worlds.
– e : V ×W → {0, 1} provides for each world a Boolean (two-valued) evaluation

of the propositional variables, that is, e(p, w) ∈ {0, 1} for each propositional
variable p ∈ V and each world w ∈ W . The evaluation is extended to
arbitrary formulae in LD as described below.

– µ : 2W → [0, 1] is a finitely additive probability measure on a Boolean
algebra of subsets of W such that for each crisp ϕ, the set {w | e(ϕ,w) = 1}
is measurable [12].

– ρ : Π0 → 2W×W assigns to each elementary action a set of pairs of worlds
denoting world transitions.

Extension of e to LD formulae:
e is extended to L using classical connectives and to formulae with action modal-
ities –as [α]A, by defining ρ(α;β) = ρ(α) ◦ ρ(β), ρ(α ∪ β) = ρ(α) ∪ ρ(β),
ρ(α∗) = (ρ(α))∗ (ancestral relation) and ρ(ϕ?) = {(w,w) | e(ϕ,w) = 1}, and
setting e([α]A,w) = min {e(A,wi) | (w,wi) ∈ ρ(α)}. Notice that e([α]A,w) = 1
iff the evaluation of A is 1 in all the worlds w′ that may be reached through the
action α from w.
Extension of e to B-modal formulae:
e is extended to B-modal formulae by means of Lukasiewicz logic truth-functions
and the probabilistic interpretation of belief as follows:

– e(Bϕ,w) = µ({w′ ∈W | e(ϕ,w′) = 1}), for each crisp ϕ
– e(r, w) = r, for all r ∈ Q ∩ [0, 1]
– e(Φ&Ψ,w) = max(e(Φ) + e(Ψ) − 1, 0)
– e(Φ→L Ψ,w) = min(1 − e(Φ) + e(Ψ), 1)

Finally, the truth degree of a formula Φ in a Kripke structure K = 〈W, e, µ, ρ〉
is defined as ‖Φ‖K = infw∈W e(Φ,w).

3.3 BC Axioms and Rules

As mentioned in Section 2, to set up an adequate axiomatization for our be-
lief context logic we need to combine axioms for the crisp formulae, axioms of

132 A. Casali, L. Godo, and C. Sierra

 Lukasiewicz logic for modal formulae, and additional axioms for B-modal for-
mulae according to the probabilistic semantics of the B operator. Hence, axioms
and rules for the Belief context logic BC are as follows:

1. Axioms of propositional Dynamic logic for LD formulae (see e.g. [11]).
2. Axioms of Lukasiewicz logic for modal formulae: for instance, axioms of

Hájek’s Basic Logic (BL) [12] plus the axiom: ¬¬Φ→ Φ
3. Probabilistic axioms
B(ϕ→ ψ) →L (Bϕ→ Bψ)
Bϕ ≡ ¬LB(ϕ ∧ ¬ψ) →L B(ϕ ∧ ψ)
¬LBϕ ≡ B¬ϕ

4. Deduction rules for BC are: modus ponens, necessitation for [α] for each
α ∈ Π (from ϕ derive [α]ϕ), and necessitation for B (from ϕ derive Bϕ).

Deduction is defined as usual from the above axioms and rules and will be
denoted by `BC . Notice that, taking into account Lukasiewicz semantics, the
second probabilistic axiom corresponds to the finite additivity while the third one
expresses that the probability of ¬ϕ is 1 minus the probability of ϕ. Actually,
one can show that the above axiomatics is sound and complete with respect to
the intended semantics described in the previous subsection (cf. [12]). Namely,
if T is a finite theory over BC and Φ is a (modal) formula, then T ` Φ iff
‖Φ‖K = 1 in each BC probabilistic Kripke structure K model of T (i.e. K such
that ‖Ψ‖K = 1 for all Ψ ∈ T).

4 Desire Context

In this context, we represent the agent’s desires. Desires represent the ideal
agent’s preferences regardless of the agent’s current perception of the environ-
ment and regardless of the cost involved in actually achieving them. We deem
important to distinguish what is positively desired from what is not rejected.
According to the works on bipolarity representation of preferences by Benferhat
et.al. [2], positive and negative information may be modeled in the framework of
possibilistic logic. Inspired by this work, we suggest to formalise agent’s desires
also as positive and negative. Positive desires represent what the agent would
like to be the case. Negative desires correspond to what the agent rejects or does
not want to occur. Both, positive and negative desires can be graded.

4.1 DC Language

The language DC is defined as an extension of a propositional language L by
introducing two (fuzzy) modal operators D+ and D−. D+ϕ reads as “ϕ is pos-
itively desired” and its truth degree represents the agent’s level of satisfaction
would ϕ become true. D−ϕ reads as “ϕ is negatively desired” and its truth de-
gree represents the agent’s measure of disgust on ϕ becoming true. As in BC
logic, we will use a modal many-valued logic to formalise graded desires. We use

Graded BDI Models for Agent Architectures 133

again Lukasiewicz logic as the base logic, but this time extended with a new con-
nective ∆ (known as Baaz’s connective), considered also in [12]. For any modal
Φ, if Φ has value < 1 then ∆Φ gets value 0; otherwise, if Φ has value 1 then
∆Φ gets value 1 as well. Hence ∆Φ becomes a two-valued (Boolean) formula.
Therefore, DC formulae are of two types:

– Crisp (non modal): formulae of L
– Many-valued (modal): they are built from elementary modal formulae D+ϕ

andD−ϕ, where ϕ is from L, and truth constants r for each rational r ∈ [0, 1]:
• If ϕ ∈ L then D−ϕ,D+ϕ ∈ DC
• If r ∈ Q ∩ [0, 1] then r ∈ DC
• If Φ, Ψ ∈ DC then Φ→L Ψ ∈ DC and Φ&Ψ ∈ DC

As in BC, (Dψ, r̄) denotes r̄ →L Dψ.
In this context the agent’s preferences will be expressed by a theory T con-

taining quantitative expressions about positive and negative preferences, like
(D+ϕ, α) or (D−ψ, β), as well as qualitative expressions like D+ψ →L D+ϕ
(resp. D−ψ →L D−ϕ), expressing that ϕ is at least as preferred (resp. rejected)
as ψ. In particular (D+φi, 1) ∈ T means that the agent has maximum preference
in φi and is fully satisfied if it is true. While (D+φj , α) 6∈ T for any α > 0 means
that the agent is indifferent to φj and the agent doesn’t benefit from the truth of
φj . Analogously, (D−ψi, 1) ∈ T means that the agent absolutely rejects φi and
thus the states where ψi is true are totally unacceptable. (D−ψj , β) 6∈ T for any
β > 0 simply means that ψj is not rejected, the same applies to the formulae
not explicitly included in T .

4.2 Semantics for DC

The degree of positive desire for (or level of satisfaction with) a disjunction of
goals ϕ ∨ ψ is taken to be the minimum of the degrees for ϕ and ψ. Intuitively
if an agent desires ϕ ∨ ψ then it is ready to accept the situation where the less
desired goal becomes true, and hence to accept the minimum satisfaction level
produced by one of the two goals. In contrast the satisfaction degree of reaching
both ϕ and φ can be strictly greater than reaching one of them separately. These
are basically the properties of the guaranteed possibility measures (see e.g. [1]).
Analogously, we assume the same model for the degrees of negative desire or
rejection, that is, the rejection degree of ϕ ∨ φ is taken to be the minimum of
the degrees of rejection for ϕ and for ψ separately, while nothing prevents the
rejection level of ϕ ∧ ψ be greater than both.

The DC models are Kripke structures MD = 〈W, e, π+, π−〉 where W and e
are defined as in the BL semantics and π+ and π− are preference distributions
over worlds, which are used to give semantics to positive and negative desires:

– π+ : W → [0, 1] is a distribution of positive preferences over the possible
worlds. In this context π+(w) < π+(w′) means that w′ is more preferred
than w.

134 A. Casali, L. Godo, and C. Sierra

– π− : W → [0, 1] is a distribution of negative preferences over the possible
worlds: π−(w) < π−(w′) means that w′ is more rejected than w.

We impose a consistency condition: π−(w) > 0 implies π+(w) = 0, that is, if
w is rejected to some extent, it cannot be desired. And conversely. The truth
evaluation e is extended to the non-modal formulae in the usual (classical) way.
The extension to modal formulae uses the preference distributions for formulae
D−ϕ and D+ϕ, and for the rest of modal formulae by means of Lukasiewicz
connectives, as in BC semantics, plus the unary connective ∆. The evaluation of
modal formulae only depends on the formula itself –represented in the preference
measure over the worlds where the formula is true– and not on the actual world
where the agent is situated:

– e(D+ϕ,w) = inf{π+(w′) | e(ϕ,w′) = 1}
– e(D−ϕ,w) = inf{π−(w′) | e(ϕ,w′) = 1}

– e(∆Φ,w)
{

1, if e(Φ,w) = 1
0, otherwise.

As usual, by convention we take inf ∅ = 1 and thas e(D+⊥, w) = e(D−⊥, w) = 1
for all w ∈W .

4.3 DC Axioms

In a similar way as in BC, to axiomatize the logical system DC we need to com-
bine classical logic axioms for non-modal formulae with Lukasiewicz logic axioms
extended with ∆ for modal formulae. Also, additional axioms characterizing the
behaviour of the modal operators D+ and D− are needed. Hence, we define the
axioms and rules for the DC logic as follows:

1. Axioms of classical logic for the non-modal formulae.
2. Axioms of Lukasiewicz logic with ∆ (cf. [12]) for the modal formulae.
3. Axioms for D+ and D− over Lukasiewciz logic:
D+(A ∨B) ≡ D+A ∧D+B
D−(A ∨B) ≡ D−A ∧D−B
¬L∆(D+A ∧D−A) → ¬L(∇D−A&∇D+A), where ∇ is ¬L∆¬L

2.
D+(⊥)
D−(⊥)

4. Rules are: modus ponens, necessitation for ∆, and introduction of D+ and
D− for implications: from A → B derive D+B →L D+A and D−B →L

D−A.

Notice that the two first axioms in item (3) define the behaviour of D− and
D+ with respect to disjunctions, while the third axiom establishes that it is not
possible to have at the same time positive and negative desires over the same

2 Notice that e(∇Φ, w) = 1 if e(Φ, w) > 0, and e(∇Φ, w) = 0 otherwise.

Graded BDI Models for Agent Architectures 135

formula except if the formula is a contradiction. In that case notice that the an-
tecedent of the axiom becomes false. Finally, the two inference rules state that
the degree of desire is monotonically decreasing with respect to logical implica-
tion. This axiomatics is correct with respect to the above defined semantics, and
the conjecture is that it is complete too.

5 Intention Context

In this context, we represent the agent’s intentions. We follow the model intro-
duced by Rao and Georgeff [20, 21], in which an intention is considered a funda-
mental pro-attitude with an explicit representation. Intentions, as well as desires,
represent the agent’s preferences. However, we consider that intentions cannot
depend just on the benefit, or satisfaction, of reaching a goal ϕ –represented in
D+ϕ, but also on the world’s state w and the cost of transforming it into a world
wi where the formula ϕ is true. By allowing degrees in intentions we represent
a measure of the cost/benefit relation involved in the agent’s actions towards
the goal. The positive and negative desires are used as pro-active and restrictive
tools respectively, in order to set intentions. Note that intentions depend on the
agent’s knowledge about the world, which may allow –or not– the agent to set a
plan to change the world into a desired one. Thus, if in a theory T we have the
formula Iψ →L Iϕ then the agent may try ϕ before ψ and it may not try φ if
(Iφ, δ) is a formula in T and δ < Threshold. This situation may mean that the
benefit of getting φ is low or the cost is high.

5.1 IC Language

We define its syntax in the same way as we did with BC (except for the dynamic
logic part), starting with a basic language L and incorporating a modal operator
I. We use Lukasiewicz multivalued logic to represent the degree of the intentions.
As in the other contexts, if the degree of Iϕ is δ, it may be considered that the
truth degree of the expression “ϕ is intended” is δ. The intention to make ϕ true
must be the consequence of finding a feasible plan α, that permits to achieve a
state of the world where ϕ holds.

The value of Iϕ will be computed by a bridge rule (see (3) in next Section
7), that takes into account the benefit of reaching ϕ and the cost, estimated by
the Planner, of the possible plans towards it.

5.2 Semantics and Axiomatization for IC

The semantics defined in this context shows that the value of the intentions
depends on the formula intended to bring about and on the benefit the agent
gets with it. It also depends on the agent’s knowledge on possible plans that
may change the world into one where the goal is true, and their associated cost.
This last factor will make the semantics and axiomatization for IC somewhat
different from the presented for positive desires in DC.

136 A. Casali, L. Godo, and C. Sierra

The models for IC are Kripke structures K = 〈W, e, {πw}w∈W 〉 where W
and e are defined in the usual way, and for each w ∈ W , πw : W → [0, 1] is a
possibility distribution where πw(w′) ∈ [0, 1] is the degree on which the agent
may try to reach the state w′ from the state w.

The truth evaluation e : V × W → {0, 1} is extended to the non-modal
formulae in the usual way. It is extended to modal formulae using Lukasiewicz
semantics as e(Iϕ,w) = Nw({w′ | e(ϕ,w′) = 1}), whereNw denotes the necessity
measure associated to the possibility distribution πw, defined as Nw(S) = inf{1−
πw(s) | s 6∈ S}. A sound and complete axiomatics for the I operator, is defined
in a similar way as for the previous mental operators but now taking the axioms
corresponding to necessity measures (cf. [12]), that is, the following axioms:

1. Axioms of classical logic for the non-modal formulae.
2. Axioms of Lukasiewicz logic for the modal formulae.
3. Axioms for I over Lukasiewciz logic:
I(ϕ→ ψ) → (Iϕ→ Iψ)
¬I(⊥)
I(ϕ ∧ ψ) ≡ (Iϕ ∧ Iψ)

4. Deduction rules are modus ponens and necessitation for I (from ϕ derive
Iϕ).

6 Planner and Communication Contexts

The nature of these contexts is functional. The Planner Context (PC) has to
build plans which allow the agent to move from its current world to another,
where a given formula is satisfied. This change will indeed have an associated
cost according to the actions involved. Within this context, we propose to use a
first order language restricted to Horn clauses (PL), where a theory of planning
includes the following special predicates:

– action(α, P, A, cα) where α ∈ Π0 is an elementary action, P ⊂ PL is the
set of preconditions; A ⊂ PL are the postconditions and cα ∈ [0, 1] is the
normalised cost of the action.

– plan(ϕ, α, P, A, cα, r) where α ∈ Π is a composite action representing the
plan to achieve ϕ, P are the pre-conditions of α, A are the post-conditions
ϕ ∈ A , cα is the normalized cost of α and r is the belief degree (> 0) of
actually achieving ϕ by performing plan α. We assume that only one instance
of this predicate is generated per formula.

– bestplan(ϕ, α, P, A, cα, r) similar to the previous one, but only one instance
with the best plan is generated.

Each plan must be feasible, that is, the current state of the world must satisfy
the preconditions, the plan must make true the positive desire the plan is built
for, and cannot have any negative desire as post-condition. These feasible plans
are deduced by a bridge rule among the BC, DC and PC contexts (see (2) in
the next Section 7).

Graded BDI Models for Agent Architectures 137

The communication unit (CC) makes it possible to encapsulate the agent’s
internal structure by having a unique and well-defined interface with the envi-
ronment. This unit also has a first order language restricted to Horn clauses.
The theory inside this context will take care of the sending and receiving of
messages to and from other agents in the Multi Agent society where our graded
BDI agents live. Both contexts use resolution as a deduction method.

7 Bridge Rules

For our BDI agent model, we define a collection of basic bridge rules to set the
interrelations between contexts. These rules are illustrated in figure 1. In this
section we comment the most relevant ones.

The agent’s knowledge about the world’s state and about actions that change
the world, is introduced from the belief context into the Planner as first order
formulae d.e:

B : Bϕ
P : dBϕe

(1)

Then, from the positive desires, the beliefs of the agent, and the possible
transformations using actions, the Planner can build plans. Plans are gener-
ated from actions, to fulfill positive desires, but avoiding negative desires. The
following bridge rule among D, B, and P contexts does this:

D : ∇(D+ϕ), D : (D−ψ, threshold), P : action(α, P,A, c),
B : (B([α]ϕ), r), B : B(A→ ¬ψ)

P : plan(ϕ, α, P,A, c, r)
(2)

As we have previously mentioned, the intention degree trades off the benefit
and the cost of reaching a goal. There is a bridge rule that infers the degree of
Iϕ for each plan α that allows to achieve the goal. This value is deduced from
the degree of D+ϕ and the cost of a plan that satisfies desire ϕ. This degree is
calculated by function f as follows:

D : (D+ϕ, d), P : plan(ϕ, α, P,A, c, r)
I : (Iϕ, f(d, c, r))

(3)

Different functions model different individual behaviours. For example, if we
consider an equilibrated agent, the degree of the intention to bring about ϕ,
under full belief in achieving ϕ after performing α, may depend equally on the
satisfaction that it brings the agent and in the cost —considering the complement
to 1 of the normalised cost. So the function might be defined as

f(d, c, r) = r(d+ (1 − c))/2.

In fact, given the plan P for the goal ϕ, with desire level d and(normalized) cost
c, we can think of u = (d + (1 − c))/2 as the utility of reaching ϕ by means of

138 A. Casali, L. Godo, and C. Sierra

the plan P . The intention degree as computed above is thennothing but r · u,
that is, the utility u multiplied by the probability r of reaching ϕ after the plan
is executed. This is actually the expected utility of reaching ϕ by means of the
plan P if one considers a utility value of 0 when the plan P does not reach ϕ.

In BDI agents, bridge rules have been also used to determine the relation-
ship between the mental attitudes and the actual behaviour of the agent. Well-
established sets of relations for BDI agents have been identified [21]. If we use
the strong realism model, the set of intentions is a subset of the set of desires,
which in turn is a subset of the beliefs. That is, if an agent does not believe
something, it will neither desire it nor intend it [20]:

B : ¬Bψ
D : ¬Dψ

and
D : ¬Dψ
I : ¬Iψ

(4)

We also need bridge rules to establish the agent’s interactions with the en-
vironment, meaning that if the agent intends ϕ at degree imax, where imax is
the maximum degree of all the intentions, then the agent will focus on the plan
-bestplan- that allows the agent to reach the most intended goal:

I : (Iϕ, imax), P : bestplan(ϕ, α, P,A, cα, r)
C : C(does(α))

(5)

Through the comunication unit the agent perceives all the changes in the
enviroment that are introduced by the following bridge rule in the belief context:

C : β
B : Bβ

(6)

Figure 1 shows the graded BDI agent proposed with the different contexts
and the bridge rules relating them.

Fig. 1. Multicontext model of a graded BDI agent

DC

IC

CC

PC

(1)

(4)

(6)

(2)

(3)

(5)

(4)

BC

Graded BDI Models for Agent Architectures 139

8 Example of a Graded BDI Agent for Tourism

Suppose we want to instruct our travel agent to look for a one-week holiday
destination package. We instruct the agent with two desires, first and more
important, we want to rest, and second we want to visit new places (visitNP).
We restrict its exploration range as we do not want to travel more than 1000
kms from Rosario, where we live. To propose a destination (plan) the agent will
have to take into account the benefit (with respect to rest and to visitNP) and
the cost of the travel. The agent will consult with a travel agency that will give a
number of plans, that conveniently placed in the planner context will determine
the final set of proposals. In this scenario we have the following theories in the
BC, DC, and PC contexts (IC has no initial theory):
D context: The agent has the following positive and negative desires:

- (D+(rest), 0.8)
- (D+(visitNP), 0.7)
- (D+(rest ∧ visitNP), 0.9)
- (D−(distance > 1000km), 0.9)

B context: This theory contains knowledge about the relationship between pos-
sible actions the agent can take and formulae made true by their execution. In
this case, actions would be traveling to different destinations. For this example
we consider only six destinations:

Π0 = {CarlosPaz, Cumbrecita,Bariloche, V illaGesell,MardelP lata, P toMadryn}.

Then, we represent the agent’s beliefs about visiting new places and resting.
In particular, we may consider the degree of B([α]visitNP) as the probability
of visitNP after traveling to α. According to the places we know in each
destination and the remaining places to visit in each destination, we give our
travel agent the following beliefs:

- (B([Cumbrecita]visitNP), 1)
- (B([Carlos Paz]visitNP), 0.3)
- (B([Bariloche]visitNP), 0.7)
- (B([Villa Gesell]visitNP), 0.6)
- (B([Mar del Plata]visitNP), 0.3)
- (B([Pto Madryn]visitNP), 1)

The agent needs to assess also beliefs about the possibility that a destination
offers to rest. In this case the degree of B([α]Rest) is interpreted as the
probability of resting in α. These beliefs are determined by the characteristics
of the destination —beach, mountains, big or a small city, etc— and taking into
account our personal views:

- (B([Cumbrecita]Rest), 1)
- (B([Carlos Paz]Rest), 0.8)

140 A. Casali, L. Godo, and C. Sierra

- (B([Bariloche]Rest), 0.6)
- (B([Villa Gesell]Rest), 0.8)
- (B([Mar del Plata]Rest), 0.5)
- (B([Pto Madryn]Rest), 0.7)

We assume here that, for each action α, the positive desires are stochastically
independent, so we add to BC an appropriate inference rule:

(B[α]Rest, r), (B[α]visitNP, s)
(B[α](Rest ∧ visitNP), r · s)

P Context A series of elementary actions:

- action (Cumbrecita, {cost = 800},{dist =500 km}, 0.67)
- action (Carlos Paz, {cost = 500},{dist = 450 km}, 0.42)
- action (Bariloche, {cost = 1200},{dist = 1800 km},1)
- action (Pto Madryn, {cost = 1000},{dist =1700 km}, 0.83)
- action (Villa Gessell, {cost = 700},{dist =700 km}, 0.58)
- action (Mar del Plata, {cost = 600},{dist =850 km}, 0.5)

Once these theories are defined the agent is ready to reason in order to deter-
mine which Intention to adopt and which plan is associated with that intention.
We follow give a brief schema of the different steps in this process:

1. The desires are passed from DC to PC.
2. Within PC plans for each desire are found.

Starting from the positive desires the planner looks for a set of different
destination plans, taking into consideration the beliefs of the agent about
the possibilities of satisfying the goals rest and visitNP through the
different actions. Using the restriction introduced by the negative desire:
(D−(dist > 1000km), 0.9) the planner rejects plans to Bariloche and to Pto
Madryn, because their post-conditions make true (dist > 1000km) which
is strongly rejected (0.9). Therefore, using the bridge rule (2), plans are
generated for each desire. For instance, for the most preferred desire, i.e.
rest ∧ visitNP the following plans are generated:

plan(rest ∧ visitNP,Cumbrecita, {cost = 800}, {dist = 500km}, 0.67, 1)
plan(rest ∧ visitNP,CarlosPaz, {cost = 500}, {dist = 450km}, 0.42, 0.24)
plan(rest∧ visitNP, V illaGessell, {cost = 700}, {dist = 700km}, 0.58, 0.48)
plan(rest ∧ visitNP,MardelP lata, {cost = 600}, {dist = 850km}, 0.5, 0.15)

3. The plans determine the degree of intentions.
Using bridge rule (3) and the function f proposed for an equilibrated agent
the I context calculates the intention degree for the different destinations.
Since f is monotonically increasing with respect to d, it is enough to consider
the most preferred desired, i.e. rest ∧ visitNP . Hence, rest ∧ visitNP is
preferred to a degree 0.9, using f(d, b, c) = b(0.9 + (1− c))/2 we successively
have for α ∈ {Cumbrecita, CarlosPaz, V illaGessell,MardelP lata}:

Graded BDI Models for Agent Architectures 141

(I(rest ∧ visitNP), 0.615),
(I(rest ∧ visitNP), 0.1776),
(I(rest ∧ visitNP), 0.3168),
(I(rest ∧ visitNP), 0.105).

We get a maximal degree of intention for rest ∧ visitNP by the plan cum-
brecita, of 0.615.

4. A plan is adopted.
Finally, by means of bridge rule (5), the action α = Cumbrecita is selected
and passed to the Communication context CC.

9 Conclusions and Future Work

This paper has presented a BDI agent model that allows to explicitly represent
the uncertainty of beliefs, desires and intentions. This graded architecture is
specified using multicontext systems and is general enough to be able to specify
different types of agents. In this work we have used a different context for each
attitude: Belief, Desire and Intention. We used a specific logic for each unit,
according to the attitude represented. The Lukasiewicz multivalued logic is the
framework chosen to formalise the degrees and we added the corresponding ax-
iomatic in order to represent the uncertainty behaviour as probability, necessity
and possibility. Other measures of uncertainty might be used in the different
units by simply changing the corresponding axiomatic. Adding concrete theories
to each context, particular agents may be defined using our context blueprints.
The agent’s behaviour is then determined by the different uncertainty measures
of each context, the specific theories established for each unit, and the bridge
rules. An issue of current research is to look for possible alternative axiomatic
modelings of desires and intentions, and their implications in the bridge rules
which deal with them, and check how they can also influence the agent’s behav-
ior. Besides, the model introduced, based on a multicontext specification, can be
easily extended to include other mental attitudes.

As for future work, we are considering two directions. On the one hand we
want to extend our multicontext agent model to a multiagent scenario. We plan
to do this by introducing a social context in the agent architecture to deal with
all aspects of social relations with other agents. In particular to equip this social
context with a good logical model of trust is very important to allow the agent
to infer beliefs from other agents´ information. Interesting models of trust are
Liau’s logic of Belief, Information and Trust (BIT) [15] in the extension of this
model described in [4] in this volume.

On the other hand, from an computational point of view, our idea is to
implement each unit as prolog thread, equipped with its own meta-interpreter.
The meta-interpreter purpose will be to manage inter-thread (inter-context)
communication, i.e. all processes regarding bridge rule firing and assertion of
bridge rule conclusions into the corresponding contexts. This implementation
will support both, the generic definition of graded BDI agent architectures and

142 A. Casali, L. Godo, and C. Sierra

the specific instances for particular types of agents. The implementation will
also allow us to experiment and validate the formal model presented.

Acknowledgments. Lluis Godo acknowledges partial support by the Spanish
project MULOG, TIN2004-07933-C03-01, and Carles Sierra acknowledges par-
tial support by the Spanish project WEBI2, TIC2003-08763-C02-00.

References

1. Benferhat, S., Dubois, D., Kaci, S., Prade, H.: Bipolar Possibilistic Representa-
tions. In Proceedings of the 18th Conference in Uncertainty in Artificial Intelligence
(UAI 2002): pages 45-52. Morgan Kaufmann 2002.

2. Benferhat, S., Dubois, D., Kaci, S., Prade, H.: Bipolar representation and fusion
of preferences in the possilistic Logic framework. In: Proceedings of the 8th In-
ternational Conference on Principle of Knowledge Representation and Reasoning
(KR-2002), pages 421-448, 2002.

3. Cimatti, A., Serafini, L.: Multi-Agent Reasoning with Belief Contexts: the Ap-
proach and a Case Study. In: M. Wooldridge and N. R. Jennings, eds.: Intelligent
Agents: Proceedings of 1994 Workshop on Agent Theories, Architectures, and Lan-
guages, number 890 in Lecture Notes in Computer Science, pages 71-5. Springer
Verlag, 1995.

4. Dastani, M., Herzig, A., Hulstijn, J., van der Torre, L.: Inferring Trust. In this
volume.

5. Dennet, D.C.: The Intentional Stance. MIT Press, Cambridge, MA, 1987.

6. Esteva, F., Garcia, P., Godo, L.: Relating and extending semantical approaches to
possibilistic reasoning. International Journal of Approximate Reasoning, 10:311-
344, 1994.

7. Ghidini, C., Giunchiglia, F.: Local Model Semantics, or Contextual Reasoning =
Locality + Compatibility. Artificial Intelligence,127(2):221-259, 2001.

8. Giovannucci, A.: Towards Multi-Context based Agents Implementation. IIIA-CSIC
Research Report, in preparation.

9. Giunchiglia, F., Serafini, L.: Multilanguage Hierarchical Logics (or: How we can do
without modal logics). Journal of Artificial Intelligence, vol.65, pp. 29-70, 1994.

10. Godo, L., Esteva, F. and Hajek, P.: Reasoning about probabilities using fuzzy
logic.Neural Network World, 10:811–824, 2000.

11. Goldblatt, R.: Logics of Time and Computation, CSLI Lecture Notes 7, 1992.

12. Hájek, P.: Metamathematics of Fuzzy Logic, volume 4 of Trends in Logic. Kluwer,
1998.

13. Jennings, N.R.: On Agent-Based Software Engineering. Artificial Intelligence
117(2), 277-296, 2000.

14. Lang, J., van der Torre, L., Weydert, E.: Hidden Uncertainty in the Logical Rep-
resentation of Desires International Joint Conference on Artificial Intelligence,
IJCAI 03, Acapulco, Mexico, 2003.

15. Liau, C.J.: Belief, Information Acquisition, and Trust in Multiagent Systems - a
modal formulation. Artificial Intelligence 149, 31-60, 2003.

16. Meyer, J.J.: Dynamic Logic for Reasoning about Actions and Agents. Workshop
on Logic-Based Artificial Intelligence, Washington, DC, June 14–16, 1999

Graded BDI Models for Agent Architectures 143

17. Parsons, S., Sierra, C., Jennings, N.R.: Agents that reason and negotiate by argu-
ing.Journal of Logic and Computation, 8(3): 261-292, 1998.

18. Parsons, S., Giorgini, P.: On using degrees of belief in BDI agents. Proceedings
of the International Conference on Information Processing and Management of
Uncertainty in Knowledge-Based Systems, Paris, 1998.

19. Parsons, S., Jennings, N.J., Sabater, J., Sierra, C.: Agent Specification Using Multi-
context Systems.Foundations and Applications of Multi-Agent Systems 2002: 205-
226, 2002.

20. Rao, A., Georgeff, M.: Modeling Rational Agents within a BDI-Architecture. In
proceedings of the 2nd International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR-92), pages 473-484 (ed R. Fikes and E. Sandewall),
Morgan Kaufmann, San Mateo, CA, 1991.

21. Rao, A., Georgeff, M.:BDI agents: From theory to practice. In proceedings of the
1st International Conference on Multi-Agents Systems, pp 312-319, 1995.

22. Sabater, J., Sierra, C., Parsons, S., Jennings, N.R.: Engineering executable agents
using multi-context systems. Journal of Logic and Computation12(3): 413-442
(2002).

23. Sierra, C., Godo,L., López de Màntaras, R., Manzano, M.: Descriptive Dynamic
Logic and its Application to Reflective Architectures. Future Generation Computer
Systems, 12, 157-171, 1996.

24. Schut, M., Wooldridge, M., Parsons, S.: Reasoning About Intentions in Uncertain
Domains Symbolic and Quantitative Approaches to Reasoning with Uncertainty.
6th ECSQARU 2001, Proceedings, pages 84-95, Toulouse, France, 2001.

25. Wooldridge, M., Jennings, N.R.: Intelligent Agents: theory and practice. The
Knowledge Engineering Review, 10(2), 115-152, 1995.

Inferring Trust

Mehdi Dastani1, Andreas Herzig2, Joris Hulstijn3, and Leendert van der Torre4

1 Utrecht University, The Netherlands
mehdi@cs.uu.nl

2 IRIT, Toulouse, France
herzig@irit.fr

3 Vrije Universiteit, Amsterdam, The Netherlands
jhulstijn@feweb.vu.nl

4 CWI, Amsterdam, The Netherlands
torre@cwi.nl

Abstract. In this paper we discuss Liau’s logic of Belief, Inform and
Trust (BIT), which captures the use of trust to infer beliefs from ac-
quired information. However, the logic does not capture the derivation
of trust from other notions. We therefore suggest the following two ex-
tensions. First, like Liau we observe that trust in information from an
agent depends on the topic of the information. We extend BIT with a
formalization of topics which are used to infer trust in a proposition
from trust in another proposition, if both propositions have the same
topics. Second, for many applications, communication primitives other
than inform are required. We extend BIT with questions, and discuss
the relationship with belief, inform and trust. An answer to a question
can lead to trust, when the answer conforms to the beliefs of the agent.

1 Introduction

Trust is an issue which emerges in many subareas of artificial intelligence, such as
inmultiagent systems, reputation systems, e-institutions, and electronic commerce
[1]. Liau [2] proposes an elegant, simple, but expressive modal logic as an extension
of multi-agent epistemic logic. The three main ingredients are modal operators
for belief (B), inform (I), and trust (T). The central axiom expresses that if an
agent trusts another agent with respect to a proposition, and it has been informed
by that agent that the proposition is true, then it believes that proposition.

The logic explains the consequences of trust, but it does not explain where trust
comes from. The only optional axiom discussed by Liau that derives positive trust
formulas is so-called transferability, which says that trust in one agent can lead to
trust in another agent with respect to the same proposition. In this paper, we study
two other ways in which trust can be derived. We do this by first enriching Liau’s
frameworkwith topics andquestions, and thenby investigating the following issues.

1. How to use topics to infer trust? Like Liau we observe that trust in in-
formation depends on the topic of the information. We extend BIT with a

J. Leite and P. Torroni (Eds.): CLIMA V, LNAI 3487, pp. 144–160, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Inferring Trust 145

formalization of topics. Topics can be used to infer trust in a proposition
from trust in another proposition, if both propositions have the same topics.

2. How to use communication to infer trust? For many applications, commu-
nication primitives other than inform are required. We extend BIT with
questions and discuss the relationship with belief, inform and trust. An an-
swer to a question can also lead to trust, when an agent tests another agent
by questioning him and the answer conforms to the beliefs of the agent.

Weformalizetopicsandquestionsintermsofnon-normalmodaloperators.Toobtain
a simple axiomatization of our semantically defined operatorswe re-formalize them
intermsofoperatorsfromnormalmodallogicusingatechniqueknownassimulation.
Moreover, Liau uses a non-normal modal logic to formalize trust, i.e., his notion of
trust is not closed under tautologies, nor under conjunction nor implication: agent
i does not necessarily trust that �, trust that ϕ ∧ ψ does not imply trust that ϕ,
and validity of ϕ ⊃ ψ does not entail that trust that ϕ implies trust that ψ. In order
to work in a uniform and simple framework we also simulate the non-normal trust
operator, using a combination of normal modal logic operators. The reductions or
simulations use the fact that “normal modal logics can simulate all others” [3, 4].

The layout of this paper is as follows. In Section 2 we introduce the running
example. In Section 3 we repeat and discuss Liau’s BIT logic, and we formalize
the running example in it. In Section 4 and 5 we introduce topics and questions,
as well as the principles permitting to infer trust that can be based on them.

2 Running Example

We use the following example to motivate and illustrate our extensions of Liau’s
logic.

Agent i wants to know the interest rate, which is of vital importance for
his portfolio management. He has found three web-services s1, s2 and s3 that
present financial information, but he does not know whether they deliver up to
date information, or whether the information is correct at all. In other words,
agent i does not know which web-service to trust. Suppose agent i knows the
latest exchange rates for the euro against the dollar, and asks the web-services
about this piece of information. If they do not provide the correct information,
then the agent concludes that the web-services are not trustworthy. Otherwise,
if they supply the correct exchange rate, then the agent trusts them with respect
to financial information. Thus he then knows whom to ask about the interest
rate, in order to use this piece of information in his portfolio management.1

1 We assume that the web-service is not a strategic player, in the sense of Goffman’s
strategic interaction [5], that is, we assume that the web-service does not have some-
thing to gain by making you believe that it is trustworthy but not being so. In
this sense this example is less complex than issues around trust found in electronic
commerce.

146 M. Dastani et al.

In this paper, we ignore the dynamics and time aspects2 involved in this
example and discuss the formalization of three aspects of this example.

1. First we express the example in Liau’s BIT logic. What can be said there is
that
– if the agent trusts the web-service, then he believes what he is being

informed about;
– if a web-service has informed the agent about something it believes to

be false, then the agent does not trust the web-service.
2. To relate the question about exchange rates with the question about interest

rates, we introduce the notion of topic. Both exchange and interest rates have
the topic of financial information. So, when the web-service can be trusted on
exchange rates, it can be trusted on the whole topic of financial information,
and therefore it can be trusted on interest rates.

3. Based on the hypothesis that in general agents are not being informed by a
web-service by accident, but are being informed as the result of a question
being submitted to the web-service, we extend the system with a question
operator. An agent can then infer trust in a web-service, in case the web-
service has informed the agent in accordance with the agent’s current beliefs.

3 BIT

In this section we repeat and discuss Liau’s logic BIT [2], and we formalize the
running example in it. Definition 1 presents the language of the basic BIT logic,
where Biϕ is read as ‘agent i believes ϕ’, Iijϕ as ‘agent i acquires information ϕ
from agent j’, and Tijϕ as ‘agent i trusts the judgment of agent j on the truth
of ϕ’. In the rest of this paper, we read Iijϕ as ‘agent i is being informed ϕ by
agent j’ or ‘agent i has been informed ϕ by agent j’. For the purpose of this
paper, these three readings can be regarded as synonymous.

Definition 1 (BIT language). Assume we have n agents and a set Φ0 of
countably many atomic propositions. The well formed formulae of the logic BIT
is the least set containing Φ0 that is closed under the following formation rules:

– if ϕ is a wff, then so are ¬ϕ, Biϕ, Iijϕ and Tijϕ for all 1 ≤ i �= j ≤ n, and
– if ϕ and ψ are wffs, then so is ϕ ∨ ψ.

As usual, other classical boolean connectives are defined as abbreviations.

Definition 2 presents the axiomatic system for basic BIT. Beliefs are represented
by a normal KD45 modal operator; inform by a normal KD modal operator, and
trust by a non-normal modal operator.

2 We do not discuss the state transitions based on communication actions such as
inform and question.

Inferring Trust 147

Definition 2 (BIT). The basic BIT logic contains the following axioms and is
closed under the following set of inference rules:

P propositional tautologies
B1 [Biϕ ∧ Bi(ϕ ⊃ ψ)] ⊃ Biψ
B2 ¬Bi⊥
B3 Biϕ ⊃ BiBiϕ
B4 ¬Biϕ ⊃ Bi¬Biϕ
I1 [Iijϕ ∧ Iij(ϕ ⊃ ψ)] ⊃ Iijψ
I2 ¬Iij⊥
C1 (BiIijϕ ∧ Tijϕ) ⊃ Biϕ
C2 Tijϕ ⊃ BiTijϕ
R1 (Modus Ponens, MP): from � ϕ and � ϕ ⊃ ψ infer � ψ
R2 (Generalization, Gen): from � ϕ infer � Biϕ and � Iijϕ
R3 from � ϕ ≡ ψ infer � Tijϕ ≡ Tijψ

Liau discusses several possible extensions of the basic BIT logic: additional axiom
C3 is called symmetric trust, C4 is called transferability, C5 is called cautious
trust, and axiom C6 is called the ideal environment assumption.

C3 Tijϕ ⊃ Tij¬ϕ (symmetric trust)
C4 BiTjkϕ ⊃ Tikϕ (transferability)
C5 Tijϕ ⊃ Bi[(Iijϕ ⊃ Bjϕ) ∧ (Bjϕ ⊃ ϕ)] (cautious trust)
C6 Iijϕ ≡ BiIijϕ (ideal environment)

To understand Liau’s logic, first observe that an agent can trust another agent,
without believing that the other agent is sincere and competent, as in other logics
of trust, see for example [6]. This is expressed by the central axiom (C1), which
is weaker than the inference from a combination of sincerity Iijϕ ⊃ Bjϕ and
competence Bjϕ ⊃ ϕ by the trusted agent, which are the respective constituents
of cautious trust in C5.

Secondly, observe that the logic is focussed on the formalization of conse-
quences of trust, not on how trust is derived. That is, axiom C1 characterizes
how trust in a proposition may lead to a belief in that proposition (in case of
an inform), but little is said about the derivation of trust. Axiom C3 relates
trust in a proposition to trust in its negation, and axiom C4 derives trust in an
agent from trust in another agent. There are no axioms that derive trust from
an inform, or that relate trust in a proposition to trust in another proposition,
except for the negation in C3.

Thirdly, it shouldbeobservedthatthe fact thatthetrustoperator isnon-normal,
means that using axiom C1 we can derive Biϕ from BiIij(ϕ ∧ ψ) and Tijϕ, but we
cannot derive Biϕ from BiIijϕ and Tij(ϕ∧ψ). There are good reasons for this, for
whichwe refer toLiau’s paper. Liau presents the following standard semantics for
his logic. We do not mention the semantic constraints for the additional C3-C6.

148 M. Dastani et al.

Definition 3 (Semantics BIT). A BIT model is a tuple

〈W,π, (Bi)1≤i≤n, (Iij)1≤i�=j≤n, (Tij)1≤i�=j≤n〉

where W is a set of possible worlds, π : Φ0 → 2W is a truth assignment mapping
each atomic proposition to the set of worlds in which it is true, (Bi)1≤i≤n ⊆
W×W are serial, transitive and Euclidian binary relations on W , (Iij)1≤i�=j≤n ⊆
W ×W are serial binary relations on W , and (Tij)1≤i�=j≤n are binary relations
between W and the power set of W . Moreover, the satisfaction relation is defined
as follows.

1. M,w |= p iff w ∈ π(p)
2. M,w |= ¬ϕ iff M,w �|= ϕ
3. M,w |= ϕ ∨ ψ iff M,w |= ϕ or M,w |= ψ
4. M,w |= Biϕ iff for all u ∈ Bi(w), M,u |= ϕ
5. M,w |= Iijϕ iff for all u ∈ Iij(w), M,u |= ϕ
6. M,w |= Tijϕ iff |ϕ| = {u ∈ W | M,u |= ϕ} ∈ Tij(w),

where |ϕ| is called the truth set of ϕ.

The corresponding constraints for axioms C1 and C2 are:
m1 For all S ∈ Tij(w), if (Bi ◦ Iij)(w) ⊆ S, then Bi(w) ⊆ S, where ‘◦’ denotes

the composition operator between two binary operations;
m2 Tij(w) = ∩u∈Bi(w)Tij(u).

The logic may seem relatively simple, but – although Liau does not discuss
such applications – we can already use the logic to reason about relatively com-
plex phenomena such as trust in the ignorance of agents Tij(¬Bjϕ∧¬Bj¬ϕ) or
some aspects of trusted third parties (BiIijTjkϕ ∧ TijTjkϕ) ⊃ Tikϕ.

The following example formalizes some aspects of the running example.

Example 1. Assume a finite set of atomic propositions i(0.0), . . . , i(10.0) denot-
ing interest rates, and a finite set of atomic propositions e(0.50), . . . , e(2.00)
denoting exchange rates, where the interval and step size are chosen arbitrarily.
Moreover, let the set of agents be {i, s1, s2, s3}. From axiom C1, by contra-
position we have the following set of instances, for s ∈ {s1, s2, s3} and r ∈
{0.50, . . . , 2.00}, which states that if an agent i believes that a web-service s has
informed him about an exchange rate which i does not believe, then agent i will
not trust that web-service.

BiIise(r) ∧ ¬Bie(r) ⊃ ¬Tise(r)

Moreover, axiom C1 also implies the following set of instances, for s ∈ {s1, s2, s3}
and r ∈ {0.0, . . . , 10.0}, which states that if an agent i believes that the web-
service s has informed him about the interest rates, and i trusts s, then agent i
believes the interest rates.

BiIisi(r) ∧ Tisi(r) ⊃ Bii(r)

Finally, if agent i trusts the web-service s with respect to some interest or
exchange rates, then i also trusts s with respect to other rates. This can be

Inferring Trust 149

‘hard-coded’ with the following set of assumptions, for s ∈ {s1, s2, s3}, r1, r3 ∈
{i(0.0), . . . , i(10.0)} and r2, r4 ∈ {e(0.50), . . . , e(2.00)}.

Tisi(r1) ∨ Tise(r2) ⊃ Tisi(r3) ∧ Tise(r4)

Hence Liau’s logic already allows to infer new beliefs via trust, and to infer
distrust. What it does not allow is to infer trust, which is what the rest of the
paper is about.

4 Topics

For trust it matters what a formula “is about”: its topic. Agents have a certain
area of expertise or competence. If they are trustworthy on some formulas, then
they are likely to be trustworthy on other formulas that have the same topic.
That will lead to a principle of inference that, for example, trust in one financial
rate implies trust in another financial rate. We formalize a principle of topical
trust. Liau already recognizes the need for topical trust, as his third item for
further research:

“A special case of symmetric trust, called topical trust, is considered
without standard axiomatization. This problem may be remedied by
introducing the topics of propositions into the language. For example,
in a logic of aboutness [7], a sorted binary predicate A(t,‘p’) is used to
denote “sentence ‘p’ is about topic t”. If our BIT language is extended
with such a predicate, then we can formulate axioms as: A(t,‘ϕ’) ⊃
Tijϕ when j is specialized at topic t, or more strongly, as (A(t1,‘ϕ’) ∨
. . . ∨ A(tk,‘ϕ’)) ≡ Tijϕ when the set of topics at which an agent is
specialized are [t1, . . . , tk]. However, further research is needed to see how
the semantics can be changed to accommodate this syntactic extension.”

Our extension of BIT logic with topics is loosely inspired by a proposal of Herzig
and Longin. Whereas Herzig and Longin formalize the notion of topics in the
metalanguage, we will formalize it using standard normal modal operators.

4.1 Herzig and Longin

The conceptual model of Herzig and Longin [8] is visualized in Figure 1. It
contains a meta theory with the following three relations:

– A competence function that relates agents to topics, namely those topics in
which the agent is an expert.

– A subject function that relates propositions to topics, namely those topics
that the propositions are about.

– A scope function that relates actions (such as inform) to topics. Actions
which are affected by the topic of proposition are listed here.

150 M. Dastani et al.

scope

subject

Belief

competence

Action

Proposition

TopicAgent

Fig. 1. Conceptual Model of Trust

These concepts enable one to formulate principles of belief update. Informally,
they can be expressed as follows:

– If a formula ϕ holds, and an agent is informed about a proposition which
does not share any topic with ϕ, then ϕ persists;

– If an agent j is competent on a topic and ϕ belongs to that topic, then an
inform by agent j that ϕ implies belief that ϕ.

The first principle is not relevant for this paper, because the BIT logic only
considers the state of the world at one moment. An extension with time is very
interesting, but beyond the scope of this paper. The second principle implies that
if an agent is competent on a proposition ϕ and all topics of proposition ψ are
also topics of ϕ, then the agent is competent on ψ, too. It is the latter issue which
we formalize in the BIT logic, simply replacing belief in competence by trust.
This move disregards the distinction between the two, in the sense that belief in
someone’s competence may lead to trust, but this need not always be the case and
more importantly, trust can be based on other reasons than belief in competence.
Note that both Demolombe and Herzig and Longin take a syntactic approach.
Aboutness A(t,‘p’) and ‘subject’ are relations between formulas and some set
of objects t1, ..., tn called topics with no additional structure. By contrast we
handle topics in the semantics.

4.2 Simulation

In this section we formalize the trust and topic operators, using a technique
called simulation. This means that – typically complex – operators are defined
in terms of standard normal modal operators. For example, the simulation of the
non-normal trust operator in normal modal logic means that the trust operator
is defined using normal operators, but that the operator itself behaves like a
non-normal operator.

The advantages of simulation are twofold. First, the advantage of classical
simulations such as the simulation of various kinds of non-normal modal logics in
[3, 4] is that theorem provers of normal modal logic can be used for proving theo-
rems of non-normal modal logic. This advantage also holds for the simulation of
the non-normal trust operator in normal modal logic. This means, among other
things, that it becomes easier to have a theorem prover test specifications written

Inferring Trust 151

in the extended BIT logic. Second, the advantage that motivates the simulation
in this paper is that such a simulation gives us a direct axiomatization of the
logic, which would not be obtained if the operators were only defined semanti-
cally. In that case, additional axioms would have to be given to characterize the
semantic notions.

Consider the trust operator, which is a non-normal modal operator. This
operator can be simulated using three standard normal modal operators �1

ij , �2

and �3 [4]
Tijϕ ≡ �1

ij(�
2ϕ ∧ �3¬ϕ)

where �ϕ abbreviates ¬�¬ϕ as usual.
To understand the reduction remember that truth of Tijϕ in a world w of a

model M means that there is a truth set (neighborhood) S ∈ Tij(w) such that
M,w′ |= ϕ for every w′ ∈ S, and M,w′′ �|= ϕ for every w′′ �∈ S. Thus �1

ij enables
us to refer to the existence of a truth set (neighborhood), �2 is used to express
the truth of ϕ in S, and �3 expresses the falsehood of ϕ outside S.

4.3 Topic as Enumeration of Options

In this paper, we assume that propositions have topics and that topics are shared
by all agents3. For example, the proposition i(5.0) has financial information as its
topic. Moreover, in the Herzig-Longin approach propositions can belong to two
or more topics, though this does not play a role in the example. Consequently, a
complication of the formalization of topics is that we not only have to state which
topics there are, but that these are all the topics available. It is only by making
explicit all given topics, that we can quantify over topics. For this reason, we
introduce both an operator topic and an operator all topics. We identify a topic
with the set of atomic propositions that have this topic as a subject (see above).
For example, the topic financial information is identified with the set

{i(0.0), . . . , i(10.0), e(0.50), . . . , e(2.00)}

Such a topic set will be represented by a formula like

topic(i(0.0) × . . . × i(10.0) × e(0.50) × . . . × e(2.00))

in which ‘×’ is used to separate alternative options. Our encoding is as follows.

Definition 4 (Topics). The language of BIT with topics is the language of
BIT, together with clause

– if ϕ is a sentence of BIT, then so are �1ϕ, �2ϕ, �3ϕ and �4ϕ.

Moreover, we add the following abbreviations:

– ϕ1 × . . . × ϕn ≡ �2(�3ϕ1 ∧ �4¬ϕ1) ∧ . . . ∧ �2(�3ϕn ∧ �4¬ϕn) ∧
�2((�3ϕ1 ∧ �4¬ϕ1) ∨ . . . ∨ (�3ϕn ∧ �4¬ϕn))

3 We assume here that topics are shared by all agents to simplify our presentation.

152 M. Dastani et al.

– topic(ϕ1 × . . . × ϕn) ≡ �1(ϕ1 × . . . × ϕn)
– all topics((ϕ1,1 × . . . × ϕ1,n); . . . ; (ϕk,1 × . . . × ϕk,m)) ≡

�1((ϕ1,1 × . . . × ϕ1,n) ∨ . . . ∨ (ϕk,1 × . . . × ϕk,m))
– topic contained(ϕ,ψ) ≡ �1(�2(�3ϕ ∧ �4¬ϕ) ⊃ �2(�3ψ ∧ �4¬ψ))

The topic notation with × may be read as a representation of a set. That
is, due to the properties of the modal logic we have for example that p × q × r
implies q × p × r or p × p × q × r, but it does not imply for example p × q.

The operator topic represents the set of propositions having the same topic;
all topics states furthermore that these are all topics available, and topic contained
formalizes the fact that all topics of the first element are also a topic of the second
element. In our example topic contained(i(1.0), e(2.00)) holds. In example 2 an
explanation is given. So topic contained(ϕ,ψ) expresses that for every (�1) topic,
if formula ϕ has that topic (�2(�3ϕ ∧ �4¬ϕ)), then formula ψ has that topic
too. It is the latter abbreviation which will be used to formulate a topic-based
trust inference principle.

We assume that topics are treated as axioms, in the sense that they are known
by all agents, and distribute over inform and trust operators. We therefore accept
the following principles:

topic(ϕ1 × . . . × ϕn) ≡ Bitopic(ϕ1 × . . . × ϕn)
topic(ϕ1 × . . . × ϕn) ≡ Iijtopic(ϕ1 × . . . × ϕn)
topic(ϕ1 × . . . × ϕn) ≡ Tijtopic(ϕ1 × . . . × ϕn)

The semantics of BIT with topics extends the semantics of BIT with four
binary accessibility relations that correspond to �1 to �4, that are interpreted
in the usual way. The distribution of topic operators over the BIT modalities is
characterized by the fact that in each world, the relevant accessibility relations
are the same. Due to space limitations we do not give the details.

It may seem that our encoding of the topic operators is rather complicated,
compared to for example [7], but the advantage is that we have a standard seman-
tics. Moreover, an important advantage is that we can use the same methodology
for questions too (see section 5).

4.4 Comparison with Janin and Walukiewicz

The encoding of the topic operator is a further extension of the simulation of
non-normal modal operators mentioned above. This extension can be understood
by analogy to work by Janin and Walukiewicz [9]. They define a → S =def∧

ϕ∈S �aϕ ∧ �a
∨

ϕ∈S ϕ, where a is an index of a modal operator and S is
set of formulas [9]. It means that world w satisfies formula a → S when any
formula of S is satisfied by at least one a-successor of w, and all a-successors
of w satisfy at least one formula of S. Classical modal operators are written as
�aϕ ≡ a → {ϕ,�} and �ap ≡ a → {ϕ}∨a → ∅. This is essentially the definition
of bisimulation,4 so the representation reflects the essence of modal logic. As

4 This insight is attributed to Alexandru Baltag by Yde Venema.

Inferring Trust 153

we indicated above, we use the ×-notation instead of sets, so S = {p, q, r} is
represented by p × q × r. Like sets we have iteration and associativity, i.e., we
can derive for example p × q × q × r. However, also note that if modalities �a

and �a are normal, then we can derive weakening: (p ∧ q) × r → p × r. Since
we do not like this property for topics, we use non-normal modal operators –
to be precise, non-monotonic ones – that do not satisfy weakening. So, in our
reduction of topics, we combine two ideas:

(a) �ϕ ≡ �2(�3ϕ ∧ �4¬ϕ) (simulation, as before)
(b) a → S ≡

∧
ϕ∈S �aϕ ∧ �a

∨
ϕ∈S ϕ (Janin and Walukiewicz)

These are combined using the definition of modality 2 according to (b), substitut-
ing (�3ϕ∧�4¬ϕ) for ϕ and substituting ‘2’ for a, which gives us

∧
ϕ∈S �2(�3ϕ∧

�4¬ϕ)∧�2
∨

ϕ∈S(�3ϕ∧�4¬ϕ), which corresponds to the topic definition above.
Since this only defines one topic, we still have to represent that ”there is a topic”,
for which we use �1.

4.5 Topics and Trust

Now we can formalize the intuition that if a proposition is trusted, then also all
other propositions are trusted which are based on the same topics. We call it
topic-based trust transfer (T3).

�1(�2(�3ϕ ∧�4¬ϕ)) ∧ topic contained(ϕ,ψ) ⊃ (Tijϕ ⊃ Tijψ) (T3)

We formalize the running example with topics. Since there is only one topic,
the example is relatively simple.

Example 2. The topic financial information (f) is defined as follows.

f ≡ (i(0.0)× . . .× i(10.0)×e(0.50)× . . .×e(2.00)) topic(f) all topics(f)

In the first treatment of the example, the trust inference was ‘hard coded’. Now,
we use axiom T3 to derive: Tisi(r1)∨Tise(r2) ⊃ (Tisi(r3)∧Tise(r4)). In particular,
from topic(f) we can derive �1(�2(�3i(r1) ∧ �4¬i(r1))) and from topic(f) and
all topics(f) we can infer topic contained(i(r1), i(r3)). Using axiom T3, we can
infer Tisi(r1) ⊃ Tisi(r3). Similarly, we can infer Tisi(r1) ⊃ Tise(r4) and therefore
Tisi(r1) ∨ Tise(r2) ⊃ Tisi(r3) ∧ Tise(r4). So the property that was postulated in
Example 1, is now derived from our topic construction.

Finally, we note that Liau does not discuss the possibility to add (Tijϕ ∧
Tijψ) ⊃ Tij(ϕ∨ψ), which at first hand looks reasonable, in particular when ϕ and
ψ belong to the same topics. Such an axiom can be formalized with our topics.
Also, by contraposition we can derive topic contained(ϕ,ψ) ⊃ (¬Tijψ ⊃ ¬Tijϕ).
In other words, if all topics of ϕ are a topic of ψ, distrust in ψ transfers to
distrust in ϕ.

154 M. Dastani et al.

5 Questions

In this section, the logic of Liau is extended with questions, because of their
specific relation to trust. Questions have been studied extensively as part of the
semantics of natural language. In this paper we use the semantics of questions
and answers of Groenendijk and Stokhof [10]. The idea is as follows. Concep-
tually, a question expresses a ‘gap’ in the information of the asker, to be filled
by an answer of the right type. For example, a ‘when’-question asks for a time
or date. So a question specifies what its possible answers are. In the semantics,
that means that a question separates the set of possible worlds into disjoint
subsets, each of which correspond to a complete answer to the question. The
resulting structure is a partition [10]. Technically, a partition is equivalent to an
equivalence relation, called an indistinguishability relation: the agent does not
distinguish between worlds that satisfy the same answer to a question. For a
yes/no question there are two sets of worlds in the partition: worlds that cor-
respond to the answer “yes”, and worlds that correspond to the answer “no”.
For an alternative question like “Which color is the traffic light?”, the partition
corresponds to three possible answers: “red”, “yellow” and “green”. For an open
question like “Who are coming to the party?”, which asks about groups of people
coming to the party, we would get possible answers ranging from “Nobody will
come”, “John will come”, “Mary will come” and “John and Mary will come”,
up to “”Everybody will come”. In other words, open questions are treated as
alternative questions, where each selection from a contextually relevant set cor-
responds to one alternative.

Like in the case of topics, this conceptualization of questions can be en-
coded using the symbol ‘×’ to separate alternatives. We denote a question
by an expression questionij(ϕ1 × . . . × ϕn), where ϕ1...ϕn are the alterna-
tive answers. For example, “Which color is the traffic light?” is encoded by
questionij(‘traffic light is red×traffic light is yellow×traffic light is green). Note
that yes/no questions are a special case of alternative questions.

In some of the trust derivation cases, we need to express the fact that a
possible answer was, either explicitly or implicitly, asked for. We use the Qij-
operator for this. Expression Qijϕ means that agent i has posed a question to
agent j for which ϕ is a possible answer. In other words, Qijϕ holds in case
questionij(ψ1 × ... × ψn) has been explicitly or implicitly posed by agent i to
agent j, for ϕ ≡ ψk and 1 ≤ k ≤ n.

Definition 5 (Questions). The language of BIT with topics and questions, is
the language of BIT with topics, together with the following clause:

– if ϕ is a sentence of BIT with topics, then so is �ijϕ, for 1 ≤ i �= j ≤ n.

Moreover, we add the following abbreviations:

– questionij(ϕ1 × . . . × ϕn) = �ij(ϕ1 × . . . × ϕn)
– Qijϕ = �ij�

2(�3ϕ ∧ �4¬ϕ)

The definition is analogous to the simulation of topics by a range of normal
modal operators. The semantics of the BIT logic with topics and questions,

Inferring Trust 155

extends the semantics of the BIT logic with topics, with a suitable accessibility
relation corresponding to �ij . In the semantics �ij or equivalently questionij

expresses the existence of a neighborhood corresponding to the answers to a
question from agent i to j. The operators �2 and �3, �4 are again used to
express the properties of the ×-notation for alternatives. Note that like trust,
but unlike topics, the semantics of questions is made relative to agents i and j.
This expresses the intuition that topics are part of the general logical language,
which is shared by all agents, whereas the questions that have been asked are
particular for specific agents.

In a way, this provides only a minimal semantics. It does not express Groe-
nendijk and Stokhof’s idea of a partition. In case we want to model that answers
to a question must be exclusive, and that the presented answers cover the whole
logical space, i.e., that a question partitions the logical space, then we add the
following axioms:

questionij(ϕ1 × . . . × ϕn) ⊃ (ϕi ∧ ϕj ⊃ ⊥), for all 1 ≤ i �= j ≤ n
questionij(ϕ1 × . . . × ϕn) ⊃ (ϕ1 ∨ . . . ∨ ϕn ≡ �)

5.1 Questions and Trust

The specific relation between questions and trust that we like to formalize in
this section is based on the following intuition. If agent i has deliberately posed
a question to an agent j to which agent i already believes the answer, and agent
j has provided information that corresponds to the initial beliefs of agent i,
then agent i will trust the second agent j. Otherwise, if agent j has provided
the wrong answer, i.e. the information does not correspond to i’s initial beliefs,
then agent i will not trust agent j. This intuition is formalized by the following
axioms which we call question-based trust derivation and question-based distrust
derivation respectively.

(Qijϕ ∧ Biϕ ∧ BiIijϕ) ⊃ Tijϕ
(Qijϕ ∧ Bi¬ϕ ∧ BiIijϕ) ⊃ ¬Tijϕ

Here, the combination of Qijϕ and BiIijϕ is meant to express that Iijϕ is a
relevant response of agent j to a question posed by agent i. This reading may
be problematic for a setting in which different questions can be posed, with the
same kinds of answers. For example an answer “at five” may be relevant to both
“When does the bus come?” and ‘When does the train come?”. However, these
problems are not essential for the phenomenon of inferring trust.

Using these axioms, we can formalize our running example.

Example 3. Agent i asks a web-service s the exchange rate: questionis(e(0.50)×
. . . × e(2.00)) which implies Qise(0.50) ∧ . . . ∧ Qise(2.00). If the agent believes
for example that the exchange is 1, Bie(1), and the web-service gives the correct
answer, i.e., BiIise(1), then using the question-based trust creation axiom we
can derive Tise(1). Similarly, in case the agent’s beliefs do not correspond to the
answer, for example Bie(5) and therefore Bi¬e(1) because exchange rates are
unique, we derive ¬Tise(1) by question-based distrust creation.

156 M. Dastani et al.

5.2 Questions and Topics

Questions turn out to be very similar to topics. In the example, the topic ‘fi-
nancial information’ corresponds to a combination of the questions “What is
the current interest rate?” and “What is the current exchange rate?”. In natu-
ral language semantics, relations between topics and questions have long been
known. Van Kuppevelt [11] even defines topics in terms of the questions that
are currently under discussion. By asking a question, the asker can manipu-
late the current topic of the conversation. As we noted above, topics are the
same for all worlds and all agents. By contrast, we can use Qij to express
the particular ‘questions under discussion’ for agents i and j. Under such an
interpretation, it would make sense that questions were closed under topic:
Qijϕ ∧ topic contained(ϕ,ψ) ⊃ Qijψ. However, under such an implicit ‘ques-
tions under discussion’ interpretation, the question operator cannot be used to
model that an agent explicitly asked for some information. But this is exactly
the interpretation we need in the running example. We therefore use an inter-
mediate step, first using question-based trust creation, and then applying the
topic-based trust transfer principle.

Example 4. We would like to prove the following.

(Bie(r) ∧ questionis(. . . × e(r) × . . .) ∧ Iise(r) ∧
topic contained(e(r), i(r′)) ∧ Iisi(r′)) ⊃ Bii(r′)

Suppose (Bie(r) ∧ questionis(. . . × e(r) × . . .) ∧ Iise(r) ∧
topic contained(e(r), i(r′)) ∧ Iisi(r′)). First, derive Qise(r) by the defini-
tion of Qij , and subsequently Tise(r) by the principle of question-based trust
creation. Second, derive Tisi(r′) from (Tise(r) ∧ topic contained(e(r), i(r′)) by
topic-based trust transfer, and third, derive Bii(r′) from (Iisi(r′) ∧ Tisi(r′))
by Liau’s trust-based belief creation axiom C1. From these three formulas the
desired implication can be obtained by principles of classical logic.

6 Further Research

6.1 Other Communicative Primitives

Suppose communication primitives proposalijϕ and requestijϕ are added to the
logic, to express that agent i received a proposal or request from j. Like an
inform, an agent will only accept a proposal when it trusts the agent’s capabil-
ities. And like a question, a request either indicates trust in the other agent’s
capabilities, or, analogous to our running example, a request is used to test the
agent’s capabilities. Once accepted, a proposal or request expresses a commit-
ment of one of the participants to achieve some future state of affairs. Therefore
we would have to further extend the logic with a ‘see-to-it that’ operator Eiϕ
[12]. In that case, i’s acceptance of a proposal by j can be expressed by an in-
form that i trusts the sender j to achieve the content of the proposal: IjiTijEjϕ.

Inferring Trust 157

Similarly, an acceptance of a request, is an inform that the accepter will achieve
the content of the request: IjiEiϕ. Thus in case of a proposal the sender will
act upon acceptance, while in case of a request the receiver will act after having
accepted.

proposalijϕ ∧ IjiTijEjϕ ⊃ Ejϕ
requestijϕ ∧ IjiEiϕ ⊃ Eiϕ

6.2 Control Procedures

Trust can be based on personal relationships between agents, on past experiences,
or on a reputation that has been passed on by other trusted agents. In the absence
of such direct trust in the other party, an agent has to rely on institutional
control procedures to make sure that other agents will keep their part of the
deal. Examples are banks to guarantee payment, or a bill of lading to guarantee
shipping. However, if an agent does not understand a control mechanism, or does
not trust the institutions that guarantee it, the mechanism is useless. Therefore
one should also model trust in the control procedures. The general idea can be
summarized as follows [1].

Transaction Trust = Party Trust + Control Trust

If we further analyze control trust, it comes down to two aspects. First, the agent
must understand the workings of the control mechanism. For example, agent
i understands that, within a shipment institution s, a bill of lading ‘counts
as’ evidence of the goods having been shipped. A bill of lading is a specific
kind of inform act. In BIT we write Iisbill ⊃ Iisshipped. Second, the agent
must trust the institution s that guarantees the control mechanism. This can be
expressed in BIT too: Tisshipped. Together, these rules implicate, that whenever
the agent receives a bill of lading, it will trust that the goods have been shipped:
Iisbill ⊃ Bishipped. This translation is promising, but rather simplified. Further
relations between Liau’s BIT logic and evidential norms need to be investigated.

7 Related Research

The notion of trust has been studied extensively in the social sciences. For an
overview of research on trust in the context of electronic commerce and multi-
agent systems, see Tan and Thoen [1, 13]. Generally, trust is studied in relation
to a transaction. Mayer et al. give the following definition of trust: “The will-
ingness of a party to be vulnerable to the actions of another party based on
the expectation that the other party will perform a particular action important
to the trustor, irrespective of the ability to monitor or control that other party
[14]”. Note that risk is involved for the truster. A similar sentiment is found
in the definition by Gambetta “Trust is the subjective probability by which an
individual A expects that another individual B performs a given action on which
its welfare depends” [15]. Both these definitions indicate that trust is subjective,

158 M. Dastani et al.

and directed towards another agent. Trust reflects an interpersonal relation, that
can be generalized to machines. This aspect is nicely reflected in the logic of Liau.

Aboutness and topicality have received a lot of attention in linguistics. A topic
and its subtopics can be used to identify the structure of a text. For example,
Grosz and Sidner [16] relate the topic of a discourse (also called center or focus of
attention) to the intention that is intended to be conveyed by the author. More
technical research on aboutness is done in the context of information retrieval
[17]. Clearly, in information retrieval it matters under what circumstances we
can say that two documents are “about the same topic”.

A notion that is very similar to trust is found in the so called BAN logics
[18], used to define authentication policies in computer security. Although there
is no explicit notion of trust in these logics, sharing a secret key counts as a proof
of being trusted. The primitives of BAN logic are as follows: i sees X, which
means that agent i received a message containing X. This is similar to Liau’s
inform; j said X, which means that agent j actually sent a message containing
X, and that in case j is to be trusted, X ought to be believed by i; i controls X,
which can be interpreted as saying that agent i is trusted as an authority on X.
This notion might be developed towards our use of topics. In BAN logics it is
often used to represent trusted third parties, like authentication services; fresh
X, which means that X has not been sent previously, and i

K←→ j, which means
that agent i and j are entitled to use the same secret key K. Sharing a key
counts as a proof of being trusted. There are several differences between BAN
logics and Liau’s BIT logic and the way they are used. An obvious difference
is the use of keys, which is absent from Liau. Another difference concerns the
perspective: Liau’s logic takes the viewpoint of an individual agent: under what
circumstances can I believe the content of a message? BAN takes the bird’s eye
view of a designer: how should I design my protocol to avoid secrets getting lost?
The underlying logic is also different.

Finally, trust has been studied extensively in the context of a ‘Grid’-like
architecture for the sharing of resources and services [19]. Much of this work is
applied. However, the underlying formal models that are developed in the context
of such research [20] deserve to be compared with the BIT logic proposed here.
Other formalizations in terms of modal logic also exist [21].

8 Conclusion

Trust plays an important role in advanced computer systems such as trust man-
agement systems in computer security [22] and reputation systems as used for
example in eBay [23]. These applications define a much more precise notion of
trust than the notion of trust used in social theories. Moreover, intelligent agents
use trust mechanisms to reason about other agents, for example in cooperation,
coordination, or electronic commerce. Agents that reason about their relations
with other agents, such as agents reasoning about possible cooperation strate-
gies, can benefit from reasoning about trust explicitly. Liau’s logic does not tell
us much about the inner structure of trust, which may even be considered as a

Inferring Trust 159

black box, but it does explain the relation between trust and other concepts, in
particular the relation between trust, belief and information actions.

This paper presents two extensions to Liau’s BIT logic, which allow the
derivation of trust. First, we extend the logic with topics. In this way, we can
express that from trust in the truth of one proposition, we can infer trust in the
truth of other propositions that are related by topic.

Second, we extend the logic with questions. In this way, we can express that
informs are explicitly asked for, or else are implicitly considered relevant by an
agent. There are two kinds of trust inference principles. We might say that by
selecting another agent to ask a question, you indicate that you will trust this
other agent. Thus, questions imply trust. On the other hand, questions may be
asked strategically. In our running example the agent deliberately asked for a
question with a known answer, in order to infer if the replying agent could be
trusted on propositions of a related topic.

A question concerns the applicability of trust principles. We have already seen
two alternative principles regarding trust and questions. It also seems reasonable
to restrict the trust derivation axiom to situations in which the agent is relatively
ignorant. In an examsituation, the teacher knows the answers to all the questionshe
asks. But a correct answer to the first question will not necessarily make the teacher
trust the student about the answers to the remaining questions. This just shows
that the social context in which trust is applied, needs to be modeled very carefully.

There are several important properties of trust which remain undiscussed.
The logic does not capture the element of risk. In the running example, trusting
the web-service is risky, because the portfolio management of the agent depends
on it. Note that without such a risk, the agent would not go through the trouble
of testing the services with the question about exchange rates.

We briefly indicated how the logic might be further extended with requests
and proposals. This however, would require a shift from an epistemic notion of
trust, about beliefs, to a more practical notion of trust, about actions. We also
discussed how the logic is related to more general transaction models of trust,
which involve control mechanisms guaranteed by an institution. More research
is needed to connect these models with work on institutional norms.

References

[1] Tan, Y.H., Thoen, W.: Formal aspects of a generic model of trust for elec-
tronic commerce. In: 33rd Hawaii International Conference on System Sciences
(HICSS’00). (2000) p. 6006

[2] Liau, C.J.: Belief, information acquisition, and trust in multi-agent systems – a
modal formulation. Artificial Intelligence 149 (2003) 31–60

[3] Gasquet, O., Herzig, A.: From classical to normal modal logics. In Wansing, H.,
ed.: Proof Theory of Modal Logics. Volume 2 of Applied Logic Series. Kluwer
(1996) 293–311

[4] Kracht, M., Wolter, F.: Normal monomodal logics can simulate all others. Journal
of Symbolic Logic 64 (1999) 99–138

[5] Goffman, E.: Strategic interaction. University of Pennsylvania Press, Pennsylvania
(1969)

160 M. Dastani et al.

[6] Demolombe, R.: To trust information sources: a proposal for a modal logical
framework. In Castelfranchi, C., Tan, Y.H., eds.: Trust and Deception in Virtual
Societies. Kluwer (2001) 111–124

[7] Demolombe, R., Jones, A.: On sentences of the kind “sentence ‘p’ is about topic
t”. In: Logic, language and reasoning: Essays in Honour of Dov Gabbay. Kluwer
Academic, Dordrecht (1999) 115–133

[8] Herzig, A., Longin, D.: Belief dynamics in cooperative dialogues. Journal of
Semantics 17 (2000) 91–118

[9] Janin, D., Walukiewicz, I.: Automata for the modal mu-calculus and related
results. In: Proceedings of the 20th International Symposium on Mathematical
Foundations of Computer Science (MFCS’95). LNCS 969, Springer Verlag (1995)
552–562

[10] Groenendijk, J., Stokhof, M.: Questions. In Van Benthem, J., Ter Meulen, A.,
eds.: Handbook of Logic and Language. North-Holland, Elsevier (1996) 1055–1124

[11] van Kuppevelt, J.: Discourse structure, topicality and questioning. Journal of
Linguistics 31 (1995) 109–149

[12] Horty, J.: Agency and Deontic Logic. Oxford University Press (2001)
[13] Tan, Y.H., Thoen, W.: An outline of a trust model for electronic commerce.

Applied Artificial Intelligence 14 (2000) 849–862
[14] Mayer, R., Davis, J., Schoorman, F.: An integrative model of organizational trust.

Academy of Management Review 20 (1995) 709–734
[15] Gambetta, D.: Can we trust trust? In: Trust. Basil Blackwell, New York (1988)

213–237
[16] Grosz, B., Sidner, C.: Attentions, intentions and the structure of discourse. Com-

putational Linguistics 12 (1986) 175–204
[17] Huibers, T.: An Axiomatic Theory for Information Retrieval. PhD thesis, Utrecht

University (1996)
[18] Burrows, M., Abadi, M., Needham, R.: A logic of authentication. ACM Transac-

tions on Computer Systems 8 (1990) 18–36
[19] Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the Grid: Enabling scalable

virtual organizations. .International Journal of High Performance Computing
Applications 15 (2001) 200–222

[20] Carbone, M., Nielsen, M., Sassone, V.: A formal model for trust in dynamic net-
works. In: International Conference on Software Engineering and Formal Methods
(SEFM’03), IEEE (2003) 54–63

[21] Jones, A., Firozabadi, B.S.: On the characterisation of a trusting agent - aspects
of a formal approach. In Castelfranchi, C., Tan, Y., eds.: Trust and Deception in
Virtual Societies. Kluwer Academic Publishers (2001) 157–168

[22] Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized trust management. In: IEEE
Symposium on Security and Privacy. IEEE (1996) 164–173

[23] Dellarocas, C.: The digitization of word-of-mouth: Promise and challenges of
online feedback mechanisms. Management Science 49 (2004) 1407–1424

Coordination Between Logical Agents

Chiaki Sakama1 and Katsumi Inoue2

1 Department of Computer and Communication Sciences,
Wakayama University,

Sakaedani, Wakayama 640 8510, Japan
sakama@sys.wakayama-u.ac.jp

2 National Institute of Informatics,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101 8430, Japan

ki@nii.ac.jp

Abstract. In this paper we suppose an agent that has a knowledge
base written in logic programming and sets of beliefs under the answer
set semantics. We then consider the following two problems: given two
logic programs P1 and P2, which have the sets of answer sets AS(P1)
and AS(P2), respectively; (i) find a program Q which has the set of
answer sets such that AS(Q) = AS(P1)∪AS(P2); (ii) find a program R
which has the set of answer sets such that AS(R) = AS(P1) ∩ AS(P2).
A program Q satisfying the condition (i) is called generous coordination
of P1 and P2; and R satisfying (ii) is called rigorous coordination of P1

and P2. Generous coordination retains all of the original belief sets of
each agent, but admits the introduction of additional belief sets of the
other agent. By contrast, rigorous coordination forces each agent to give
up some belief sets, but the result remains within the original belief sets
for each agent. We provide methods for constructing these two types of
coordination and discuss their properties.

1 Introduction

In multi-agent systems different agents may have different sets of beliefs, and
agents negotiate and accommodate themselves to reach acceptable agreements.
We call a process of forming such agreements between agents coordination. The
problem is how to settle an agreement acceptable to each agent. The outcome
of coordination is required to be consistent and is desirable to retain original
information of each agent as much as possible.

Suppose an agent that has a knowledge base as a logic program whose se-
mantics is given as the collection of answer sets [7]. Answer sets represent sets
of literals corresponding to beliefs which can be built by a rational reasoner on
the basis of a program [2]. An agent may have (conflicting) alternative sets of
beliefs, which are represented by multiple answer sets of a program. Different
agents have different collections of answer sets in general. We then capture co-
ordination between two agents as the problem of finding a new program which
has the meaning balanced between two programs. Consider, for instance, a logic

J. Leite and P. Torroni (Eds.): CLIMA V, LNAI 3487, pp. 161–177, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

162 C. Sakama and K. Inoue

program P1 which has two answer sets S1 and S2; and another logic program
P2 which has two answer sets S2 and S3. Then, we want to find a new program
which is a result of coordination between P1 and P2. In this paper, we consider
two different solutions: one is a program Q which has three answer sets S1, S2,
and S3; the other is a program R which has the single answer set S2.

These two solutions provide different types of coordination — the first one
retains all of the original belief sets of each agent, but admits the introduction
of additional belief sets of the other agent. By contrast, the second one forces
each agent to give up some belief sets, but the result remains within the original
belief sets for each agent. These two types of coordination occur in real life. For
instance, suppose the following scenario: to decide the Academy Award of Best
Pictures, each member of the Academy nominates films. Now there are three
members — p1, p2, and p3, and each member can nominate at most two films:
p1 nominates f1 and f2, p2 nominates f2 and f3, and p3 nominates f2. At this
moment, three nominees f1, f2, and f3 are fixed. The situation is represented
by three programs:

P1 : f1 ; f2 ←,

P2 : f2 ; f3 ←,

P3 : f2 ←,

where “;” represents disjunction. Here, P1 has two answer sets: {f1} and {f2}; P2

has two answer sets: {f2} and {f3}; P3 has the single answer set: {f2}. The three
nominees correspond to the answer sets: {f1}, {f2}, and {f3}. A program having
these three answer sets is the first type of coordination. After final voting, the
film f2 is supported by three members and becomes the winner of the Award.
That is, the winner is represented by the answer set {f2}. A program having
this single answer set is the second type of coordination. Thus, these two types
of coordination happen in different situations, and it is meaningful to develop
computational logic for these coordination between agents.

The problem is then how to build a program which realizes such coordination.
Formally, the problems considered in this paper are described as follows.

Given: two programs P1 and P2;
Find: (1) a program Q satisfying AS(Q) = AS(P1) ∪ AS(P2);

(2) a program R satisfying AS(R) = AS(P1) ∩ AS(P2),

where AS(P) represents the set of answer sets of a program P . The program Q
satisfying (1) is called generous coordination of P1 and P2; and the program R
satisfying (2) is called rigorous coordination of P1 and P2. We develop methods
for computing these two types of coordination and verify the results.

The rest of this paper is organized as follows. Section 2 presents definitions
and terminologies used in this paper. Section 3 introduces a framework of co-
ordination between logic programs. Section 4 provides methods for computing
coordination and addresses their properties. Section 5 discusses related issues
and Section 6 summarizes the paper.

Coordination Between Logical Agents 163

2 Preliminaries

In this paper, we suppose an agent that has a knowledge base written in logic
programming. An agent is then identified with its logic program and we use
those terms interchangeably throughout the paper.

A program considered in this paper is an extended disjunctive program (EDP)
which is a set of rules of the form:

L1 ; · · · ; Ll ← Ll+1 , . . . , Lm, not Lm+1 , . . . , not Ln (n ≥ m ≥ l ≥ 0)

where each Li is a positive/negative literal, i.e., A or ¬A for an atom A, and not
is negation as failure (NAF). notL is called an NAF-literal. The symbol “;” rep-
resents disjunction. The left-hand side of the rule is the head , and the right-hand
side is the body. For each rule r of the above form, head(r), body+(r), body−(r),
and not body−(r) denote the sets of (NAF-)literals {L1, . . . , Ll}, {Ll+1, . . . , Lm},
{Lm+1, . . . , Ln}, and {notLm+1, . . . , not Ln}, respectively. A disjunction of lit-
erals and a conjunction of (NAF-)literals in a rule are identified with its corre-
sponding sets of (NAF-)literals. A rule r is often written as head(r) ← body+(r),
not body−(r) or head(r) ← body(r) where body(r) = body+(r) ∪ not body−(r).
A rule r is disjunctive if head(r) contains more than one literal. A rule r is an
integrity constraint if head(r) = ∅; and r is a fact if body(r) = ∅. A program P
is NAF-free if body−(r) = ∅ for any rule r in P . A program with variables is se-
mantically identified with its ground instantiation, and we handle propositional
and ground programs throughout the paper.

The semantics of EDPs is given by the answer set semantics [7]. Let Lit be
the set of all ground literals in the language of a program. A set S(⊂ Lit) satisfies
a ground rule r if body+(r) ⊆ S and body−(r)∩S = ∅ imply head(r)∩S �= ∅. In
particular, S satisfies a ground integrity constraint r with head(r) = ∅ if either
body+(r) �⊆ S or body−(r) ∩ S �= ∅. S satisfies a ground program P if S satisfies
every rule in P . When body+(r) ⊆ S (resp. head(r) ∩ S �= ∅), it is also written
as S |= body+(r) (resp. S |= head(r)).

Let P be an NAF-free EDP. Then, a set S(⊂ Lit) is a (consistent) answer
set of P if S is a minimal set such that

1. S satisfies every rule from the ground instantiation of P ,
2. S does not contain a pair of complementary literals L and ¬L for any L ∈ Lit.

Next, let P be any EDP and S ⊂ Lit. For every rule r in the ground instantiation
of P , the rule rS : head(r) ← body+(r) is included in the reduct PS if body−(r)∩
S = ∅. Then, S is an answer set of P if S is an answer set of PS . An EDP has
none, one, or multiple answer sets in general. The set of all answer sets of P is
written as AS(P). A program P is consistent if it has a consistent answer set.
In this paper, we assume that a program is consistent unless stated otherwise.

A literal L is a consequence of credulous reasoning in a program P (written as
L ∈ crd(P)) if L is included in some answer set of P . A literal L is a consequence
of skeptical reasoning in a program P (written as L ∈ skp(P)) if L is included in
every answer set of P . Clearly, skp(P) ⊆ crd(P) holds for any P . Two programs

164 C. Sakama and K. Inoue

P1 and P2 are said to be AS-combinable if every set in AS(P1) ∪ AS(P2) is
minimal under set inclusion.

Example 2.1. Given two programs:

P1 : p ; q ←,

p ← q,

q ← p,

P2 : p ← not q,

q ← not p,

where AS(P1) = {{p, q}} and AS(P2) = {{p}, {q}}. Then, crd(P1) = skp(P1) =
{ p, q }; crd(P2) = { p, q } and skp(P2) = ∅. P1 and P2 are not AS-combinable
because the set {p, q} is not minimal in AS(P1) ∪ AS(P2).

Technically, when two programs P1 and P2 are not AS-combinable, we can
make them AS-combinable by introducing the rule L ← notL for every L ∈ Lit
to each program, where L is a newly introduced atom associated uniquely with
each L.

Example 2.2. In the above example, put P ′
1 = P1 ∪ Q and P ′

2 = P2 ∪ Q with

Q : p ← not p,

q ← not q .

Then, AS(P ′
1) = {{p, q}} and AS(P ′

2) = {{p, q}, {p, q}}, so P ′
1 and P ′

2 are AS-
combinable.

3 Coordination Between Programs

Given two programs, coordination provides a program which is a reasonable
compromise between agents. In this section, we introduce two different types of
coordination under the answer set semantics.

Definition 3.1. Let P1 and P2 be two programs. A program Q satisfying the
condition AS(Q) = AS(P1) ∪ AS(P2) is called generous coordination of P1 and
P2; a program R satisfying the condition AS(R) = AS(P1) ∩ AS(P2) is called
rigorous coordination of P1 and P2.

Generous coordination retains all of the answer sets of each agent, but ad-
mits the introduction of additional answer sets of the other agent. By contrast,
rigorous coordination forces each agent to give up some answer sets, but the
result remains within the original answer sets for each agent.

Technically, generous coordination requires two programs P1 and P2 to be AS-
combinable, since answer sets of Q are all minimal. Thus, when we consider gen-
erous coordination between two programs, we assume them to be AS-combinable.

Coordination Between Logical Agents 165

Generous coordination between programs that are not AS-combinable is possible
by making them AS-combinable in advance using the program transformation
presented in Section 2.

Definition 3.2. For two programs P1 and P2, let Q be a result of generous
coordination, and R a result of rigorous coordination. We say that generous (resp.
rigorous) coordination succeeds if AS(Q) �= ∅ (resp. AS(R) �= ∅); otherwise, it
fails.

Generous coordination always succeeds whenever both P1 and P2 are consis-
tent. On the other hand, when AS(P1)∩AS(P2) = ∅, rigorous coordination fails
as two agents have no common belief sets. Note that generous coordination may
produce a collection of answer sets which contradict with one another. But this
does not cause any problem as a collection of answer sets represents (conflicting)
alternative belief sets of each agent.

As we assume consistent programs, the next result holds by the definition.

Proposition 3.1 When generous/rigorous coordination of two programs suc-
ceeds, the result of coordination is consistent.

Coordination changes the consequences of credulous/skeptical reasoning by
each agent.

Proposition 3.2 Let P1 and P2 be two programs.

1. If Q is a result of generous coordination,
(a) crd(Q) = crd(P1) ∪ crd(P2) ;
(b) skp(Q) = skp(P1) ∩ skp(P2) ;
(c) crd(Q) ⊇ crd(Pi) for i = 1, 2 ;
(d) skp(Q) ⊆ skp(Pi) for i = 1, 2.

2. If R is a result of rigorous coordination,
(a) crd(R) ⊆ crd(P1) ∪ crd(P2) ;
(b) skp(R) ⊇ skp(P1) ∪ skp(P2) if AS(R) �= ∅ ;
(c) crd(R) ⊆ crd(Pi) for i = 1, 2 ;
(d) skp(R) ⊇ skp(Pi) for i = 1, 2 if AS(R) �= ∅.

Proof. 1.(a) A literal L is included in an answer set in AS(P1) ∪ AS(P2) iff L
is included in an answer set in AS(P1) or included in an answer set in AS(P2).
(b) L is included in every answer set in AS(P1) ∪ AS(P2) iff L is included in
every answer set in AS(P1) and also included in every answer set in AS(P2).
The results of (c) and (d) hold by (a) and (b), respectively.

2.(a) If L is included in an answer set in AS(P1)∩AS(P2), L is included in an
answer set in AS(Pi) (i = 1, 2). (b) If L is included in every answer set of either
P1 or P2, L is included in every answer set in AS(P1)∩AS(P2) if the intersection
is nonempty. The results of (c) and (d) hold by (a) and (b), respectively. ��

166 C. Sakama and K. Inoue

Example 3.1. Let AS(P1) = {{a, b, c}, {b, c, d}} and AS(P2) = {{b, c, d}, {c, e}},
where crd(P1) = { a, b, c, d }, skp(P1) = { b, c }, crd(P2) = { b, c, d, e }, and
skp(P2) = { c }. Generous coordination Q of P1 and P2 has the answer sets
AS(Q) = {{a, b, c}, {b, c, d}, {c, e}} where crd(Q) = { a, b, c, d, e } and skp(Q) =
{c}. Rigorous coordination R has the answer sets AS(R) = {{b, c, d}} where
crd(R) = skp(R) = { b, c, d }. The above relations are verified for these sets.

Generous coordination merges credulous consequences of P1 and P2, while
restricts skeptical consequences to those that are common between two pro-
grams. As a result, it increases credulous consequences and decreases skeptical
consequences. This reflects the situation that accepting opinions of the other
agent increases alternative choices while weakening the original argument of
each agent. By contrast, rigorous coordination reduces credulous consequences,
but increases skeptical consequences in general. This reflects the situation that
excluding opinions of the other agent costs abandoning some of one’s alternative
beliefs, which results in strengthening some original argument of each agent.

Definition 3.3. For two programs P1 and P2, let Q be a result of generous
coordination, and R a result of rigorous coordination. When AS(Q) = AS(P1)
(resp. AS(R) = AS(P1)), P1 dominates P2 under generous (resp. rigorous) co-
ordination.

Proposition 3.3 Let P1 and P2 be two programs. When AS(P1) ⊆ AS(P2), P2

dominates P1 under generous coordination, and P1 dominates P2 under rigorous
coordination.

When P2 dominates P1 under generous coordination, we can easily have a
result of generous coordination as Q = P2. Similarly, when P1 dominates P2

under rigorous coordination, a result of rigorous coordination becomes R = P1.
In cases where one agent dominates the other one, or when coordination fails,

the results of coordination are trivial and uninteresting. Then, the problem of
interest is the cases where AS(P1) �⊆ AS(P2) and AS(P2) �⊆ AS(P1) for com-
puting generous/rigorous coordination; and AS(P1)∩AS(P2) �= ∅ for computing
rigorous coordination. In the next section, we present methods for computing
these two coordination.

4 Computing Coordination

4.1 Computing Generous Coordination

We first present a method of computing generous coordination between two
programs.

Definition 4.1. Given two programs P1 and P2,

P1 ⊕ P2 = {head(r1) ; head(r2) ← body∗(r1), body∗(r2) | r1 ∈ P1, r2 ∈ P2 } ,

Coordination Between Logical Agents 167

where head(r1) ; head(r2) is the disjunction of head(r1) and head(r2),
body∗(r1) = body(r1) \ {notL | L ∈ T \ S } and body∗(r2) = body(r2) \ {notL |
L ∈ S \ T } for any S ∈ AS(P1) and T ∈ AS(P2).

The program P1⊕P2 is a collection of rules which are obtained by combining
a rule of P1 and a rule of P2 in every possible way. In body∗(r1) every NAF-literal
notL such that L ∈ T \ S is dropped because the existence of this may prevent
the derivation of some literal in head(r2) after combination.

Example 4.1. Consider two programs:

P1 : p ← not q,

q ← not p,

P2 : ¬p ← not p,

where AS(P1) = {{p}, {q}} and AS(P2) = {{¬p}}. Then, P1 ⊕ P2 becomes

p ; ¬p ← not q,

q ; ¬p ← not p.

Note that not p from the rule of P2 is dropped in the resulting rules because of
the existence of {p} in AS(P1).

By the definition, P1⊕P2 is computed in time |P1|×|P2|×|AS(P1)|×|AS(P2)|,
where |P | represents the number of rules in P and |AS(P)| represents the number
of answer sets in P .

The program P1 ⊕ P2 generally contains useless or redundant literals/rules,
and the following program transformations are helpful to simplify the program.

– (elimination of tautologies: TAUT)
Delete a rule r from a program if head(r) ∩ body+(r) �= ∅.

– (elimination of contradictions: CONTRA)
Delete a rule r from a program if body+(r) ∩ body−(r) �= ∅.

– (elimination of non-minimal rules: NONMIN)
Delete a rule r from a program if there is another rule r′ in the program such
that head(r′) ⊆ head(r), body+(r′) ⊆ body+(r) and body−(r′) ⊆ body−(r).

– (merging duplicated literals: DUPL)
A disjunction (L;L) appearing in head(r) is merged into L, and a conjunc-
tion (L,L) or (notL, notL) appearing in body(r) is merged into L or notL,
respectively.

These program transformations all preserve the answer sets of an EDP [3].

Example 4.2. Given two programs:

P1 : p ← q,

r ←,

P2 : p ← not q,

q ← r,

168 C. Sakama and K. Inoue

P1 ⊕ P2 becomes

p ; p ← q, not q,

p ; q ← q, r,

p ; r ← not q,

r ; q ← r.

The first rule is deleted by CONTRA, the second rule and the fourth rule are
deleted by TAUT. After such elimination, the resulting program contains the
third rule only.

Now we show that P1 ⊕ P2 realizes generous coordination of P1 and P2.

Lemma 4.1 Let P1 and P2 be two NAF-free AS-combinable programs. Then, S
is an answer set of P1 ⊕ P2 iff S is an answer set of either P1 or P2.

Proof. Suppose that S is an answer set of P1. Then, S satisfies any rule
head(r1) ← body(r1) in P1, thereby satisfies any rule head(r1);head(r2) ←
body(r1), body(r2) in P1 ⊕ P2. (Note: body∗(ri) = body(ri) for NAF-free pro-
grams.) To see that S is an answer set of P1⊕P2, suppose that there is a minimal
set T ⊂ S which satisfies every rule in P1 ⊕ P2. Since S is an answer set of P1,
there is a rule r′1 in P1 which is not satisfied by T . For this rule, T �|= head(r′1) and
T |= body(r′1) hold. Then, for any rule head(r′1);head(r2) ← body(r′1), body(r2)
in P1 ⊕ P2, T |= head(r2) or T �|= body(r2). Since every rule in P2 is combined
with r′1, it holds that T |= head(r2) or T �|= body(r2) for every r2 in P2. Then, T
satisfies P2. As P2 is consistent, it has an answer set T ′ ⊆ T . This contradicts
the assumption that P1 and P2 are AS-combinable, i.e., T ′ �⊂ S. Hence, S is an
answer set of P1 ⊕ P2. The case that S is an answer set of P2 is proved in the
same manner.

Conversely, suppose that S is an answer set of P1 ⊕ P2. Then, S satis-
fies any rule head(r1);head(r2) ← body(r1), body(r2) in P1 ⊕ P2. Then S |=
body(r1), body(r2) implies S |= head(r1);head(r2). If S �|= head(r1) for some rule
r1 ∈ P1, S |= head(r2) for any r2 ∈ P2. Then, S |= body(r2) implies S |= head(r2)
for any r2 ∈ P2, so that S satisfies every rule in P2. Else if S �|= head(r2) for
some rule r2 ∈ P2, S |= head(r1) for any r1 ∈ P1. Then, S |= body(r1) im-
plies S |= head(r1) for any r1 ∈ P1, so that S satisfies every rule in P1. Else if
S |= head(r1) for every r1 ∈ P1 and S |= head(r2) for every r2 ∈ P2, S satisfies
both P1 and P2. Thus, in every case S satisfies either P1 or P2. Suppose that S
satisfies P1 but it is not an answer set of P1. Then, there is an answer set T of
P1 such that T ⊂ S. By the if-part, T becomes an answer set of P1 ⊕ P2. This
contradicts the assumption that S is an answer set of P1 ⊕P2. Similar argument
is applied when S satisfies P2. ��

Theorem 4.2. Let P1 and P2 be two AS-combinable programs. Then, AS(P1 ⊕
P2) = AS(P1) ∪ AS(P2).

Coordination Between Logical Agents 169

Proof. Suppose S ∈ AS(P1). Then, S is an answer set of PS
1 , so that S is an

answer set of PS
1 ⊕PT

2 for any T ∈ AS(P2) (Lemma 4.1). (Note: as P1 and P2 are
AS-combinable, the reducts PS

1 and PT
2 are also AS-combinable.) For any rule

head(r1);head(r2) ← body+(r1), body+(r2) in PS
1 ⊕PT

2 , it holds that body−(r1)∩
S = body−(r2) ∩ T = ∅. On the other hand, for any rule head(r1);head(r2) ←
body∗(r1), body∗(r2) in P1 ⊕ P2, head(r1);head(r2) ← body+(r1), body+(r2) is in
(P1 ⊕ P2)S iff (body−(r1) \ {L | L ∈ T \ S′ }) ∩ S = ∅ and (body−(r2) \ {L |
L ∈ S′ \ T }) ∩ S = ∅ for any S′ ∈ AS(P1) and T ∈ AS(P2). Here it holds that
(body−(r1) \ {L | L ∈ T \ S′ })∩ S ⊆ body−(r1)∩ S and (body−(r2) \ {L | L ∈
S′ \T })∩S ⊆ body−(r2)∩T ∩S ⊆ body−(r2)∩T . Hence, PS

1 ⊕PT
2 ⊆ (P1⊕P2)S .

Suppose any rule head(r1);head(r2) ← body+(r1), body+(r2) in (P1 ⊕ P2)S \
(PS

1 ⊕PT
2). Since S satisfies any rule r1 in P1, S |= body+(r1), body+(r2) implies

S |= head(r1);head(r2). Thus, the answer set S of PS
1 ⊕ PT

2 satisfies every rule
in (P1 ⊕P2)S \ (PS

1 ⊕PT
2). By PS

1 ⊕PT
2 ⊆ (P1 ⊕P2)S , S becomes an answer set

of (P1 ⊕ P2)S and S ∈ AS(P1 ⊕ P2). The case of S ∈ AS(P2) is proved in the
same manner.

Conversely, suppose S ∈ AS(P1 ⊕ P2). Then, S satisfies any rule
head(r1);head(r2) ← body∗(r1), body∗(r2) in P1⊕P2, so S |= body∗(r1), body∗(r2)
implies S |= head(r1);head(r2). If S �|= head(r1) for some rule r1 ∈ P1, S |=
head(r2) for any r2 ∈ P2. Then, S |= body∗(r2) implies S |= head(r2) for any
r2 ∈ P2, so S |= head(r2) or S �|= body∗(r2). As S �|= body∗(r2) implies S �|=
body(r2), it holds that S |= head(r2) or S �|= body(r2) for any r2 ∈ P . Hence, S
satisfies every rule in P2. Else if S �|= head(r2) for some rule r2 ∈ P2, it is shown
in a similar manner that S satisfies every rule in P1. Else if S |= head(r1) for
every r1 ∈ P1 and S |= head(r2) for every r2 ∈ P2, S satisfies both P1 and P2.
Thus, in every case S satisfies either P1 or P2. Suppose that S satisfies P1 but
it is not an answer set of P1. Then, there is an answer set T of P1 such that
T ⊂ S. By the if-part, T becomes an answer set of P1 ⊕ P2. This contradicts
the assumption that S is an answer set of P1 ⊕ P2. Similar argument is applied
when S satisfies P2. ��
Example 4.3. In Example 4.1, AS(P1⊕P2) = {{p}, {q}, {¬p}}, thereby AS(P1⊕
P2) = AS(P1) ∪ AS(P2).

4.2 Computing Rigorous Coordination

Next we present a method of computing rigorous coordination between two pro-
grams.

Definition 4.2. Given two programs P1 and P2,

P1 ⊗ P2 =
⋃

S∈AS(P1)∩AS(P2)

R(P1, S) ∪ R(P2, S),

where AS(P1) ∩ AS(P2) �= ∅ and

R(P, S) = {head(r) ∩ S ← body(r), not (head(r) \ S) | r ∈ P and rS ∈ PS }
and not (head(r) \ S) = {notL | L ∈ head(r) \ S }.

170 C. Sakama and K. Inoue

When AS(P1) ∩ AS(P2) = ∅, P1 ⊗ P2 is undefined.1

Intuitively, the program P1⊗P2 is a collection of rules which may be used for
constructing answer sets that are common between P1 and P2. In R(P, S) any
literal in head(r) which does not contribute to the construction of the answer
set S is shifted to the body as NAF-literals. P1 ⊗ P2 may contain redundant
rules, which are eliminated using program transformations given in the previous
subsection.

Example 4.4. Consider two programs:

P1 : p ← not q, not r,

q ← not p, not r,

r ← not p, not q,

P2 : p ; q ; ¬r ← not r,

where AS(P1) = {{p}, {q}, {r}}, AS(P2) = {{p}, {q}, {¬r}}, and AS(P1) ∩
AS(P2) = {{p}, {q}}. Then, P1 ⊗ P2 becomes

p ← not q, not r,

q ← not p, not r,

p ← not r, not q, not¬r,

q ← not r, not p, not¬r.

Here, the third and the fourth rules can be eliminated by NONMIN.

By the definition, P1 ⊗ P2 is computed in time (|P1| + |P2|) × |AS(P1) ∩
AS(P2)| where |AS(P1) ∩ AS(P2)| represents the number of answer sets in
AS(P1) ∩ AS(P2).

P1 ⊗ P2 realizes rigorous coordination of P1 and P2.

Lemma 4.3 Let P be a program. Then, S is an answer set of P iff S is an
answer set of R(P, S).

Proof. S is an answer set of P iff S is an answer set of PS

iff S is a minimal set such that body+(r) ⊆ S implies head(r) ∩ S �= ∅ for
every rule head(r) ← body+(r) in PS (∗). By the definition of R(P, S), the rule
head(r) ← body+(r) is in PS iff the corresponding rule head(r)∩ S ← body+(r)
is in R(P, S)S (because body−(r) ∩ S = ∅ and (head(r) \ S) ∩ S = ∅). Hence,
the statement (∗) holds iff S is a minimal set such that body+(r) ⊆ S implies
head(r) ∩ S �= ∅ for every rule head(r) ∩ S ← body+(r) in R(P, S)S

iff S is a minimal set which satisfies every rule head(r) ∩ S ← body+(r) in
R(P, S)S

iff S is an answer set of R(P, S). ��

1 Technically, P1 ⊗ P2 is set as { p ← not p } for any atom p.

Coordination Between Logical Agents 171

Theorem 4.4. Let P1 and P2 be two programs. Then, AS(P1⊗P2) = AS(P1)∩
AS(P2).

Proof. Suppose S ∈ AS(P1) ∩ AS(P2). Then, S satisfies any rule head(r) ←
body(r) in P1 and P2, so that S satisfies the corresponding rules head(r) ∩ T ←
body(r), not (head(r) \T) in R(P1, T)∪R(P2, T) for any T ∈ AS(P1)∩AS(P2).
Thus, S satisfies P1 ⊗P2. Suppose that S is not an answer set of P1 ⊗P2. Then,
there is a minimal set U ⊂ S which satisfies every rule in P1 ⊗ P2. In this case,
U satisfies R(P1, S). By Lemma 4.3, however, S is a minimal set which satisfies
R(P1, S). Contradiction. Hence, S is an answer set of P1 ⊗ P2.

Conversely, suppose S ∈ AS(P1⊗P2). Then, S is a minimal set which satisfies
every rule head(r) ∩ T ← body(r), not (head(r) \ T) in R(P1, T) ∪ R(P2, T) for
any T ∈ AS(P1)∩AS(P2). By Lemma 4.3, T is also a minimal set which satisfies
both R(P1, T) and R(P2, T), so that there is a literal L ∈ S \ T and a literal
M ∈ T \ S. However, any rule in R(P1, T)∪R(P2, T) has the head head(r)∩ T ,
so that no literal L ∈ S \ T is included in the head. Thus, L is not included in
the answer set S, thereby S \ T = ∅. As both T and S are minimal, T \ S = ∅.
Hence, T = S and S ∈ AS(P1) ∩ AS(P2). ��

Example 4.5. In Example 4.4, AS(P1⊗P2) = {{p}, {q}}, thereby AS(P1⊗P2) =
AS(P1) ∩ AS(P2).

4.3 Algebraic Properties

In this subsection, we provide properties of the operations ⊕ and ⊗.

Proposition 4.5 For programs P1, P2, and P3, the operations ⊕ and ⊗ have
the following properties:

(i) P1 ⊕ P2 = P2 ⊕ P1 and P1 ⊗ P2 = P2 ⊗ P1;
(ii) (P1 ⊕ P2) ⊕ P3 = P1 ⊕ (P2 ⊕ P3) if P1, P2 and P3 are NAF-free;
(iii) (P1 ⊗ P2) ⊗ P3 = P1 ⊗ (P2 ⊗ P3).

Proof. The results of (i) and (ii) are straightforward. To see (iii), AS(P1 ⊗
P2) = AS(P1) ∩ AS(P2) holds by Theorem 4.4. Then, both (P1 ⊗ P2) ⊗ P3

and P1 ⊗ (P2 ⊗ P3) consist of rules in R(P1, S) ∪ R(P2, S) ∪ R(P3, S) for every
S ∈ AS(P1) ∩ AS(P2) ∩ AS(P3). ��

The operation ⊕ is not associative in general when programs contain NAF,
but it holds the relation AS((P1 ⊕ P2) ⊕ P3) = AS(P1 ⊕ (P2 ⊕ P3)). ⊕ is also
idempotent, P ⊕P = P if NONMIN and DUPL are applied to P ⊕P and P . ⊗ is
not idempotent but the relation AS(P ⊗ P) = AS(P) holds. By the definition,
P ⊗ P has the effect of extracting rules used for constructing answer sets of P .

By Proposition 4.5, when rigorous coordination are done among more than
two agents, the order of computing coordination does not affect the result of
final outcome. This is also the case for generous coordination when programs
are NAF-free.

172 C. Sakama and K. Inoue

Two types of coordination are mixed among agents. In this case, the absorp-
tion laws and the distribution laws do not hold in general, i.e.,

P1 ⊕ (P1 ⊗ P2) �= P1 and P1 ⊗ (P1 ⊕ P2) �= P1;
P1 ⊕ (P2 ⊗ P3) �= (P1 ⊕ P2) ⊗ (P1 ⊕ P3) and
P1 ⊗ (P2 ⊕ P3) �= (P1 ⊗ P2) ⊕ (P1 ⊗ P3),

Note that programs are generally different, but the following relations hold
by the definitions:

AS(P1 ⊕ (P1 ⊗ P2)) = AS(P1 ⊗ (P1 ⊕ P2)) = AS(P1),
AS(P1 ⊕ (P2 ⊗ P3)) = AS((P1 ⊕ P2) ⊗ (P1 ⊕ P3)),
AS(P1 ⊗ (P2 ⊕ P3)) = AS((P1 ⊗ P2) ⊕ (P1 ⊗ P3)).

5 Discussion

When a set of answer sets is given, it is not difficult to construct a program
which has exactly those answer sets. Given a set of answer sets {S1, . . . , Sm},
first compute the disjunctive normal form: S1 ∨ · · · ∨ Sm, then convert it into
the conjunctive normal form: R1 ∧ · · · ∧ Rn. The set of facts {R1, . . . , Rn} then
has the answer sets {S1, . . . , Sm}. This technique is also used for computing
coordination between programs. For instance, suppose two programs:

P1 : sweet ← strawberry,

strawberry ←,

P2 : red ← strawberry,

strawberry ←,

where AS(P1) = {{sweet, strawberry}} and AS(P2) = {{red, strawberry}}.
To get generous coordination which has the answer sets AS(P1) ∪ AS(P2),

taking the DNF of each answer set produces

(sweet ∧ strawberry) ∨ (red ∧ strawberry).

Converting it into the CNF, it becomes

(sweet ∨ red) ∧ strawberry.

As a result, the set of facts

Q : sweet ; red ←,

strawberry ←

is a program which is generous coordination of P1 and P2. On the other hand,
the program P1 ⊕ P2 becomes

Coordination Between Logical Agents 173

sweet ; red ← strawberry,

strawberry ←,

after eliminating duplicated literals and redundant rules.
These two programs have the same meaning but have different syntax. Then,

a question is which one is more preferable as a result of coordination? Our answer
is P1 ⊕ P2. The intuition behind this selection is that we would like to include
as much information as possible from the original programs. Comparing Q with
P1 ⊕ P2, information of dependency between sweet (or red) and strawberry is
lost in Q.2 Generally speaking, if there exist different candidates for coordination
between two programs, a program which is syntactically closer to the original
ones is preferred. Then, a question is how to measure such “syntactical closeness”
between programs? One solution we have in mind is, as illustrated above, using
dependency relations between literals. We prefer a result of coordination which
inherits dependency relations from the original programs as much as possible.

More precisely, suppose the dependency graph of a program P in which each
node represents a ground literal and there is a directed edge from L1 to L2 (we
say L1 depends on L2) iff there is a ground rule in P such that L1 appears in the
head and L2 appears in the body of the rule. Let (L1, L2) be a pair of ground
literals such that L1 depends on L2 in the dependency graph of a program.
Let δ(P) be the collection of such pairs in P . For two programs P1 and P2,
suppose that two different programs P3 and P4 are obtained as candidates for
coordination. Then, we say that P3 is preferable to P4 if

∆(δ(P3), δ(P1) ∪ δ(P2)) ⊂ ∆(δ(P4), δ(P1) ∪ δ(P2)),

where ∆(S, T) represents the symmetric difference between two sets S and T , i.e.,
(S\T) ∪ (T \S). Applying to the above example, δ(P1) = {(sweet, strawberry)},
δ(P2) = {(red, strawberry)}, δ(Q) = ∅, and δ(P1⊕P2) = {(sweet, strawberry),
(red, strawberry)}. Then, ∆(δ(P1⊕P2), δ(P1)∪δ(P2)) ⊂ ∆(δ(Q), δ(P1)∪δ(P2)),
so we conclude that P1 ⊕ P2 is preferable to Q. Further elaboration would be
considered to reflect syntactical closeness, but we do not pursue this issue further
here.

Coordination supposes that different programs have equal standings and com-
bines those programs while maximally keeping original information from them.
The problem of combining logical theories has been studied by several researchers
in different contexts. Baral et al. [1] introduce algorithms for combining logic pro-
grams by enforcing satisfaction of integrity constraints. For instance, suppose two
programs:

P1 : p(x) ← not q(x),
q(b) ← r(b),
q(a) ←,

P2 : r(a) ←,

2 Technically, the program Q is obtained by unfolding rules in P1 ⊕ P2 [3, 11].

174 C. Sakama and K. Inoue

together with the integrity constraints:

IC : ← p(a), r(a),
← q(a), r(a).

They combine P1 and P2 and produce a new program which satisfies IC as
follows:

P3 : p(x) ← not q(x), x �= a,

q(b) ← r(b),
q(a) ∨ r(a) ← .

By contrast, (P1 ∪ IC) ⊕ P2 in our framework becomes3

p(x) ; r(a) ← not q(x),
q(b) ; r(a) ← r(b),
q(a) ; r(a) ←,

after eliminating tautologies. Comparing two results, the program P3 has two
answer sets {p(b), q(a)} and {p(b), r(a)}; by contrast, (P1 ∪ IC) ⊕ P2 has two
answer sets: {p(b), q(a)} and {r(a)}. Thus, the answer sets of P3 do not coincide
with those of the original programs. Indeed, they request that every answer set
of a resulting program to be a subset of an answer set of P1 ∪ P2. This is in
contrast to our approach where we request the result of coordination to keep
(part of) the answer sets of the original programs. Another important difference
is that algorithms in [1] are not applicable to unstratified logic programs, while
our method is applied to every extended disjunctive program.

The problem of program composition has been studied by several researchers
(e.g., [4, 6, 12]). It combines different programs into one. The problem is then
how to provide the meaning of a program in terms of those components. Brogi
et al. [4] introduce three meta-level operations for composing normal logic pro-
grams: union, intersection, and restriction. The union simply puts two programs
together, and the intersection combines two programs by merging pair of rules
with unifiable heads. For instance, given two programs:

P1 : likes(x, y) ← not bitter(y),
hates(x, y) ← sour(y);

P2 : likes(Bob, y) ← sour(y),

the program P1 ∩ P2 consists of the single rule:

likes(Bob, y) ← not bitter(y), sour(y).

The restriction allows one to filter out some rules from a program. They em-
ploy Fitting’s 3-valued fixpoint semantics and show how one can compute the

3 Here IC is included in P1 as we handle integrity constraints as a part of a program.

Coordination Between Logical Agents 175

semantics of the composed program in terms of the original programs. In the
context of normal open logic programs, Verbaeten et al. [12] introduce a variant
of the well-founded semantics, and identify conditions for two programs P1 and
P2 to satisfy the equality Mod(P1∪P2) = Mod(P1)∩Mod(P2) where Mod(P) is
the set of models of P . Etalle and Teusink [6] consider three-valued completion
semantics for program composition as the union of normal open programs. Com-
paring these three studies with ours, both program operations and underlying
semantics are different from ours. Moreover, the goal of program composition is
to compute the meaning of the whole program in terms of its subprograms; on
the other hand, our goal is to construct a program whose answer sets are the
union/intersection of the original programs.

Combination of propositional theories has been studied under the names of
merging [8] or arbitration [9]. The goal of these research is to provide a new
theory which is consistent and preserves as much information as possible from
their sources. Merging is different from coordination presented in this paper.
For instance, two theories P1 = { p ←} and P2 = { q ←} are merged into
P3 = { p ← , q ←}. By contrast, generous coordination of P1 and P2 becomes
P1 ⊕ P2 = { p ; q ←}. Thus, in contrast to generous coordination, merging does
not preserve answer sets of the original programs. In merging different beliefs by
different agents are mixed together as far as they are consistent, which makes it
difficult to distinguish the original beliefs of one agent after merging. This implies
the problem that original beliefs of one agent are hard to recover when one of
the information sources turns out incorrect. For instance, suppose an agent has
the program P4 = { p ; q ←} and new information P1 = { p ←} arrives. If P4

and P1 are merged, the result becomes P5 = { p ←}. Later, it turns out that the
fact p in P1 does not hold. At this stage, the agent cannot recover the original
program P4 from P5. By contrast, if generous coordination is done, it becomes
P4 ⊕ P1 = P4 and the original information P4 is kept.

Ciampolini et al. [5] introduce a language for coordinating logic-based agents.
They handle two types of coordination: collaboration and competition. Their
goal is to solve these different types of queries using abduction, and not to con-
struct a program as a result of coordination. Recently, Meyer et al. [10] introduce
a logical framework for negotiating agents. They introduce two different modes
of negotiation: concession and adaptation. They characterize such negotiation
by rational postulates and provide methods for constructing outcomes. Those
postulates are not generally applied to nonmonotonic theories, and in this sense
coordination considered in this paper is beside the subject of those postulates.

Coordination introduced in this paper is naive in the sense that it just takes
the union/intersection of different collections of answer sets. We can develop
variants of coordination by introducing strategies that depend on situations.
For instance, when there are more than two agents, it is considered to take
the majority into account as in [8]. Given collections of answer sets by three
agents, {S1, S2, S3 }, {S2, S4 }, and {S1, S5 }, such majority principle allows us
to build {S1, S2 } as a result of coordination, whose member is supported by
more than one agent. Priorities between agents are also considerable. In the

176 C. Sakama and K. Inoue

above example, if the second agent is most reliable, we can have a choice to take
S4 into account. We can also consider finer grains of compositions such as having
S1 ∪ S2 or S1 ∩ S2 as a result of coordination from two answer sets S1 and S2

(where S1 ∪S2 is assumed consistent). Detailed studies on such variants are left
to further research.

6 Concluding Remarks

This paper has studied coordination between logical agents. Given multiple
agents as logic programs, two different types of coordination have been intro-
duced and their computational methods have been provided. We have verified
that the proposed methods realize generous/rigorous coordination between logic
programs. Our coordination framework provides a compositional semantics of
multiple agents and serves as a declarative basis for accommodation in multi-
agent systems. From the viewpoint of answer set programming, the process of
computing coordination is considered as a program development under a specifi-
cation that requests a program reflecting the meanings of two or more programs.
This relates to the issue of program composition under the answer set seman-
tics. This paper considered the answer set semantics but a similar framework
would be developed under different semantics (though computational methods
are likely to be different).

There is still room for improvement in computing generous/rigorous coordi-
nation. The operations ⊕ and ⊗ introduced in this paper require computation
of answer sets of original programs, but it is much better if coordination can be
constructed by purely syntactic manipulation without computing those answer
sets. Further, the operation ⊕ produces a disjunctive program even when the
original programs are non-disjunctive programs. The resulting disjunctive pro-
gram is reduced to a non-disjunctive one if it is head-cycle-free, but this is not
the case in general. At the moment, we do not have solutions for these problems.
In future work, we will refine our framework and also investigate other types
of coordination and collaboration as well as their characterization in terms of
computational logic.

References

1. C. Baral, S. Kraus, and J. Minker. Combining multiple knowledge bases. IEEE
Transactions of Knowledge and Data Engineering 3(2):208–220, 1991.

2. C. Baral and M. Gelfond. Logic programming and knowledge representation. Jour-
nal of Logic Programming 19/20:73–148, 1994.

3. S. Brass and J. Dix. Characterizations of the disjunctive stable semantics by partial
evaluation. Journal of Logic Programming 32(3):207–228, 1997.

4. A. Brogi, S. Contiero, and F. Turini. Composing general logic programs. Proc. 4th
International Conference on Logic Programming and Nonmonotonic Reasoning,
Lecture Notes in Artificial Intelligence 1265, pp. 273–288, Springer, 1997.

Coordination Between Logical Agents 177

5. A. Ciampolini, E. Lamma, P. Mello, F. Toni, and P. Torroni. Cooperation and
competition in ALIAS: a logic framework for agents that negotiate. Annals of
Mathematics and Artificial Intelligence 37(1/2), pp. 65–91, 2003.

6. S. Etalle and F. Teusink. A compositional semantics for normal open programs.
Proceedings of the Joint International Conference and Symposium on Logic Pro-
gramming, pp. 468–482, MIT Press, 1996.

7. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing 9(3/4):365–385, 1991.

8. S. Konieczny and R. Pino-Pérez. On the logic of merging. Proceedings of the 6th In-
ternational Conference on Principles of Knowledge Representation and Reasoning,
pp. 488–498, Morgan Kaufmann, 1998.

9. P. Liberatore and M. Schaerf. Arbitration (or how to merge knowledge bases).
IEEE Transactions on Knowledge and Data Engineering 10(1):76–90, 1998.

10. T. Meyer, N. Foo, R. Kwok, and D. Zhang. Logical foundation of negotiation:
outcome, concession and adaptation. Proceedings of the 19th National Conference
on Artificial Intelligence, pp. 293–298, MIT Press, 2004.

11. C. Sakama and H. Seki. Partial deduction in disjunctive logic programming. Jour-
nal of Logic Programming 32(3):229–245, 1997.

12. S. Verbaeten, M. Denecker, and D. De. Schreye. Compositionality of normal open
logic programs. Proceedings of the 1997 International Symposium on Logic Pro-
gramming, pp. 371–385, MIT Press, 1997.

J. Leite and P. Torroni (Eds.): CLIMA V, LNAI 3487, pp. 178 – 195, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Computational Model for Conversation Policies
 for Agent Communication

Jamal Bentahar1, Bernard Moulin1, John-Jules Ch. Meyer2,
and Brahim Chaib-draa1

1 Laval University, Department of Computer Science and Software Engineering, Canada
jamal.bentahar.1@ulaval.ca

{bernard.moulin, brahim.chaib-draa}@ift.ulaval.ca
2 University Utrecht, Department of Computer Science, The Netherlands

jj@cs.uu.nl

Abstract. In this paper we propose a formal specification of a persuasion
protocol between autonomous agents using an approach based on social
commitments and arguments. In order to be flexible, this protocol is defined as
a combination of a set of conversation policies. These policies are formalized as
a set of dialogue games. The protocol is specified using two types of dialogue
games: entry dialogue game and chaining dialogue games. The protocol
terminates when exit conditions are satisfied. Using a tableau method, we prove
that this protocol always terminates. The paper addresses also the
implementation issues of our protocol using logical programming and an agent-
oriented platform.

1 Introduction

Research in agent communication has received much attention during the past years
[9; 13; 14]. Agent communication protocols specify the rules of interaction governing
a dialogue between autonomous agents in a multi-agent system. These protocols are
patterns of behavior that restrict the range of allowed follow-up utterances at any
stage during a dialogue. Unlike protocols used in distributed systems, agent
communication protocols must take into account the fact that artificial agents are
autonomous and proactive. These protocols must be flexible enough and must also be
specified using expressive formalisms. Indeed, logic-based protocols seem an
interesting way for specifying these protocols [3; 16].

On the one hand, conversation policies [18] and dialogue games [12; 21] aim at
offering more flexible protocols [20]. This is achieved by combining different policies
and games to construct complete and more complex protocols. In this paper we argue
that conversation policies and dialogue games are related and can be used together to
specify agent communication. Conversation policies are declarative specifications that
govern communication between autonomous agents. We propose to formalize these
policies as a set of dialogue games. Dialogue games are interactions between players,
in which each player moves by performing utterances according to a pre-defined set
of roles. Indeed, protocols specified using, for example, finite state machines are not
flexible in the sense that agents must respect the whole protocol from the beginning to

 A Computational Model for Conversation Policies for Agent Communication 179

the end. Thus, we propose to specify these protocols by small conversation policies
that can be logically put together using a combination of dialogue games.

On the other hand, in the last years, some research works addressed the importance
of social commitments in the domain of agent communication [4; 5; 11; 20; 24; 27].
These works showed that social commitments are a powerful representation to model
multi-agent interactions. Commitments provide a basis for a normative framework
that makes it possible to model agents’ communicative behaviors. This framework
has the advantage of being expressive because all speech act types can be represented
by commitments [11]. Commitment-based protocols enable the content of agent
interactions to be represented and reasoned about [17; 28]. In opposition to the BDI
mental approach, the commitment-approach stresses the importance of conventions
and the public aspects of dialogue. A speaker is committed to a statement when he
makes this statement or when he agreed upon this statement made by another
participant. In fact, we do not speak here about the expression of a belief, but rather
about a particular relationship between a participant and a statement. What is
important in this approach is not that an agent agrees or disagrees upon a statement,
but rather the fact that the agent publicly expresses agreement or disagreement, and
acts accordingly.

In this paper we present a persuasion dialogue which is specified using
conversation policies, dialogue games and a framework based on commitments. In
addition, in order to allow agents to effectively reason on their communicative
actions, our framework is also based on an argumentative approach. In our framework
the agent’s reasoning capabilities are linked to their ability to argue. In this paper we
consider conversation policies as units specified by dialogue games whose moves are
expressed in terms of actions that agents apply to commitments and arguments.
Indeed, the paper presents three results: 1- A new formal language for specifying a
persuasion dialogue as a combination of conversation policies. 2- A termination proof
of the dialogue based on a tableau method [10]. 3- An implementation of the
specification using an agent oriented and logical programming.

The paper is organized as follows. In Section 2, we introduce the main ideas of our
approach based on commitments and arguments. In Section 3 we address the
specification of our persuasion protocol based on this approach. We present the
protocol form, the specification of each dialogue game and the protocol dynamics.
We also present our termination proof. In Section 4 we describe the implementation
of a prototype allowing us to illustrate how the specification of dialogue games is
implemented. In Section 5 we compare our protocol to related work. Finally, in
Section 6 we draw some conclusions and we identify some directions for future work.

2 Commitment and Argument Approach

2.1 Social Commitments

A social commitment SC is a public commitment made by an agent (the debtor), that
some fact is true or that something will be done. This commitment is directed toward
a set of agents (creditors) [8]. A commitment is an obligation in the sense that the
debtor must respect and behave in accordance with this commitment. A representation

180 J. Bentahar et al.

of this notion as directed obligations using a deontic logic is proposed in [19].
Commitments are social in the sense that they are expressed publicly. Consequently,
they are different from the private mental states like beliefs, desires and intentions. In
order to model the dynamics of conversations, we interpret a speech act SA as an
action performed on a commitment or on its content [4]. A speech act is an abstract
act that an agent, the speaker, performs when producing an utterance U and
addressing it to another agent, the addressee. In the dialogue games that we specify in
Section 3, the actions that an agent can perform on a commitment are: Act∈{Create,
Withdraw}. The actions that an agent can perform on a commitment content are: Act-
content∈{Accept, Refuse, Challenge, Defend, Attack, Justify}. In our framework, a
speech act is interpreted either as an action applied to a commitment when the speaker
is the debtor, or as an action applied to its content when the speaker is the debtor or
the creditor [4]. Formally, a speech act can be defined as follows:

Definition 1. SA(Ag1, Ag2, U) =def Act(Ag1, SC(Ag1, Ag2, p))
 | Act-content(Agk, SC(Agi, Agj, p))

where i, j ∈ {1, 2} and (k = i or k = j), p is the commitment content. The definiendum
SA(Ag1, Ag2, U) is defined by the definiens Act(Ag1, SC(Ag1, Ag2, p)) as an action
performed by the debtor Ag1 on its commitment. The definiendum is defined by the
definiens Act-content(Agk, SC(Agi, Agj, p)) as an action performed by an agent Agk

(the debtor or the creditor) on the commitment content.

2.2 Argumentation and Social Commitments

An argumentation system essentially includes a logical language L, a definition of the
argument concept, and a definition of the attack relation between arguments. Several
definitions were also proposed to define arguments. In our model, we adopt the
following definitions from [15]. Here Γ indicates a knowledge base with deductive
closure. Stands for classical inference and ≡ for logical equivalence.

Definition 2. An argument is a pair (H, h) where h is a formula of L and H a sub-set
of Γ such that : i) H is consistent, ii) H h and iii) H is minimal, so no subset of H
satisfying both i and ii exists. H is called the support of the argument and h its
conclusion. We use the notation: H = Support(Ag, h) to indicate that agent Ag has a
support H for h.

Definition 3. Let (H1, h1), (H2, h2) be two arguments. (H1, h1) attacks (H2, h2) iff h1

≡ ¬h2.

In fact, before committing to some fact h being true (i.e. before creating a
commitment whose content is h), the speaker agent must use its argumentation system
to build an argument (H, h). On the other side, the addressee agent must use its own
argumentation system to select the answer it will give (i.e. to decide about the
appropriate manipulation of the content of an existing commitment). For example, an
agent Ag1 accepts the commitment content h proposed by another agent if Ag1 has an
argument for h. If Ag1 has an argument neither for h, nor for ¬h, then it challenges h.

 A Computational Model for Conversation Policies for Agent Communication 181

In our framework, we distinguish between arguments that an agent has (private
arguments) and arguments that this agent used in its conversation (public arguments).
Thus, we use the notation: S = Create_Support(Ag1, SC(Ag1, Ag2, p)) to indicate the
set of commitments S created by agent Ag1 to support the content of SC(Ag1, Ag2, p).
This support relation is transitive i.e.:
(SC(Ag1, Ag2, p2) ∈ Create_Support(Ag, SC(Ag1, Ag2, p1))
∧ SC(Ag1, Ag2, p1) ∈ Create_Support(Ag, SC(Ag1, Ag2, p0)))
 SC(Ag1, Ag2, p2) ∈ Create_Support(Ag, SC(Ag1, Ag2, p0))

Other details about our commitment and argument approach are described in [4].
Surely, an argumentation system is essential to help agents to act on commitments
and on their contents. However, reasoning on other social attitudes should be taken
into account in order to explain the agents’ decisions. In our persuasion protocol we
use the agents’ trustworthiness to decide, in some cases, about the acceptance of
arguments [6].

3 Conversation Policies for Persuasion Dialogue

3.1 Protocol Form

Our persuasion protocol is specified as a set of conversation policies. In order to be
flexible, these policies are defined as initiative/reactive dialogue games. In
accordance with our approach, the game moves are considered as actions that agents
apply to commitments and to their contents. A dialogue game is specified as follows:

This specification indicates that if an agent Ag1 performs the action Action_Ag1,
and that the condition Cond is satisfied, then the interlocutor Ag2 will perform the
action Action_Ag2. The condition Cond is expressed in terms of the possibility of
generating an argument from the agent’s argumentation system and in terms of the
interlocutor’s trustworthiness. We use the notation: p Arg_Sys(Ag1) to denote the fact
that a propositional formula p can be generated from the argumentation system of Ag1

denoted Arg_Sys(Ag1). The formula ¬(p Arg_Sys(Ag1)) indicates the fact that p
cannot be generated from Ag1’s argumentation system. A propositional formula p can
be generated from an agent’s argumentation system, if this agent can find an
argument that supports p. To simplify the formalism, we use the notation Act’(Agx,
SC(Agi, Agj, p)) to indicate the action that agent Agx performs on the commitment
SC(Agi, Agj, p) or on its content (Act’∈{Create, Withdraw, Accept, Challenge,
Refuse}). For the actions related to the argumentation relations, we write Act-Arg(Agx,
[SC(Agn, Agm, q)], SC(Agi, Agj, p)). This notation indicates that Agx defends (resp.
attacks or justifies) the content of SC(Agi, Agj, p) by the content of SC(Agn, Agm, q)
(Act-Arg∈{Defend, Attack, Justify}). The commitment that is written between square
brackets [] is the support of the argument. In a general way, we use the notation
Act’(Agx, S) to indicate the action that Agx performs on the set of commitments S or on
the contents of these commitments, and the notation Act-Arg(Agx, [S], SC(Agi, Agj, p))

Action_Ag1 Action_Ag2
Cond

182 J. Bentahar et al.

to indicate the argumentation-related action that Agx performs on the content of
SC(Agi, Agj, p) using the contents of S as support. We also introduce the notation Act-
Arg(Agx, [S], S’) to indicate that Agx performs an argumentation-related action on the
contents of a set of commitments S’ using the contents of S as supports.

We distinguish two types of dialogue games: entry game and chaining games. The
entry game allows the two agents to open the persuasion dialogue. The chaining
games make it possible to construct the conversation. The protocol terminates when
the exit conditions are satisfied (Figure 1).

Fig. 1. The general form of the protocol

3.2 Dialogue Games Specification

A Entry Game
The conversational policy that describes the entry conditions in our persuasion
protocol about a propositional formula p is described by the entry dialogue game as
follows (Specification 1):

where a1, b1 and c1 are three conditions specified as follows:
a1 = p Arg_Sys(Ag2)
b1 = ¬(p Arg_Sys(Ag2)) ∧ ¬(¬p Arg_Sys(Ag1))
c1 = ¬p Arg_Sys(Ag2)

If Ag2 has an argument for p then it accepts p (the content of SC(Ag1, Ag2, p)) and
the conversation terminates as soon as it begins (Condition a1). If Ag2 has neither an
argument for p nor for ¬p, then it challenges p and the two agents open an
information-seeking dialogue (condition b1). The persuasion dialogue starts when Ag2

refuses p because it has an argument against p (condition c1).

B Defense Game
Once the two agents opened a persuasion dialogue, the initiator must defend its point
of view. Thus, it must play a defense game. Our protocol is specified in such a way
that the persuasion dynamics starts by playing a defense game. We have
(Specification 2):

Chaining games Entry game Exit conditions (Termination)

 Refuse(Ag2, SC(Ag1, Ag2, p)) Persuasion Dialogue

Create(Ag1, SC(Ag1, Ag2, p))

a1

b1

c1

Accept(Ag2, SC(Ag1, Ag2, p)) Termination

Challenge(Ag2, SC(Ag1, Ag2, p)) Information-
 seeking Dialogue

 A Computational Model for Conversation Policies for Agent Communication 183

where:
nipAgAgSCS i ,...,0/),,(21 == , pi are propositional formulas.

SSi i ==h 3
1 , =ji SS h ∅, jiji ≠= &3,...,1,

By definition, Defend(Ag1, [S], SC(Ag1, Ag2, p)) means that Ag1 creates S in order
to defend the content of SC(Ag1, Ag2, p). Formally:
Defend(Ag1, [S], SC(Ag1, Ag2, p)) =def (Create(Ag1, S)

∧ S = Create_Support(Ag1, SC(Ag1, Ag2, p)))

We consider this definition as an assertional description of the Defend action.
This specification indicates that according to the three conditions (a2, b2 and c2),

Ag2 can accept a subset S1 of S, challenge a subset S2 and attack a third subset S3. Sets
Si and Sj are mutually disjoint because Ag2 cannot, for example, both accept and
challenge the same commitment content. Accept, Challenge and Attack a set of
commitment contents are defined as follows:
Accept(Ag2, S1) =def (∀i, SC(Ag1, Ag2, pi) ∈ S1 Accept(Ag2, SC(Ag1, Ag2, pi)))
Challenge(Ag2, S2) =def (∀i, SC(Ag1, Ag2, pi) ∈ S2 Challenge(Ag2, SC(Ag1, Ag2, pi)))
Attack(Ag2, [S’], S3) =def ∀i, SC(Ag1, Ag2, pi) ∈ S3 ∃S’j ⊆ S’:

 Attack(Ag2, [S’j], SC(Ag1, Ag2, pi))

where: h m
j 0= S’j = S’. This indication means that any element of S’ is used to attack

one or more elements of S3.
The conditions a2, b2 and c2 are specified as follows:

a2 = ∀i, SC(Ag1, Ag2, pi) ∈ S1 pi Arg_Sys(Ag2)
b2 = ∀i, SC(Ag1, Ag2, pi) ∈ S2 (¬(pi Arg_Sys(Ag2)) ∧¬(¬pi Arg_Sys(Ag2)))
c2 = ∀i, SC(Ag1, Ag2, pi) ∈ S3 ∃S’j ⊆ S’, Content(S’j) = Support(Ag2, ¬pi)

where Content(S’j) indicates the set of contents of the commitments S’j.

C Challenge Game
The challenge game is specified as follows (Specification 3):

where the condition a3 is specified as follows:
a3 = (Content(S) = Support(Ag2, p))

In this game, the condition a3 is always true. The reason is that in accordance with
the commitment semantics, an agent must always be able to defend the commitment it
created [5].

Defend(Ag1, [S], SC(Ag1, Ag2, p))

Attack(Ag2, [S’], S3)

a2

b2

c2

Accept(Ag2, S1)

Challenge(Ag2, S2)

Challenge(Ag1, SC(Ag2, Ag1, p)) Justify(Ag2, [S], SC(Ag2, Ag1, p))
a3

{ }

184 J. Bentahar et al.

D Justification Game
For this game we distinguish two cases:

Case1. SC(Ag1, Ag2, p) ∉ S
In this case, Ag1 justifies the content of its commitment SC(Ag1, Ag2, p) by creating a
set of commitments S. As for the Defend action, Ag2 can accept, challenge and/or
attack a subset of S. The specification of this game is as follows (Specification 4):

where:

{ }nipAgAgSCS i ,...,0/),,(21 == , pi are propositional formulas.

SSi i ==h 3
1 , =ji SS h ∅, jiji ≠= &3,...,1,

a4 = a2, b4 = b2, c4 = c2

Case2. {SC(Ag1, Ag2, p)} = S
In this case, the justification game has the following specification (Specification 5):

Ag1 justifies the content of its commitment SC(Ag1, Ag2, p) by itself (i.e. by p).
This means that p is part of Ag1’s knowledge. Only two moves are possible for Ag2: 1)
accept the content of SC(Ag1, Ag2, p) if Ag1 is a trustworthy agent for Ag2 (a’4), 2) if
not, refuse this content (b’4). Ag2 cannot attack this content because it does not have
an argument against p. The reason is that Ag1 plays a justification game because Ag2

played a challenge game.
Like the definition of the Defend action, we define the Justify action as follows:

Justify(Ag1, [S], SC(Ag1, Ag2, p)) =def (Create(Ag1, S)
∧ S = Create_Support(Ag1, SC(Ag1, Ag2, p)))

This means that Ag1 creates the set S of commitments to support the commitment
SC(Ag1, Ag2, p).

E Attack Game
The attack game is specified as follows (Specification 6):

Justify(Ag1, [S], SC(Ag1, Ag2, p))

Attack(Ag2, [S’], S3)

a4

b4

c4

Accept(Ag2, S1)

Challenge(Ag2, S2)

Justify(Ag1, [S], SC(Ag1, Ag2, p))

Refuse(Ag2, SC(Ag1, Ag2, p))

a’4

b’4

Accept(Ag2, SC(Ag1, Ag2, p))

Attack(Ag2, [S’], S4)

Attack(Ag1, [S], SC(Ag2, Ag1, p))

a5

b5

c5

d5

Refuse(Ag2, S1)

Accept(Ag2, S2)

Challenge(Ag2, S3)

 A Computational Model for Conversation Policies for Agent Communication 185

where:
}nipAgAgSCS i ,...,0/),,(21 == , pi are propositional formulas.

,4
1h = =i i SS Card(S1)=1, =ji SS h ∅, jiji ≠= &4,...,1,

Formally, the Attack action is defined as follows:
Attack(Ag1, [S], SC(Ag2, Ag1, p)) =def (Create(Ag1, SC(Ag1, Ag2, ¬p)) ∧ Create(Ag1, S)

∧ S = Create_Support(Ag1, SC(Ag1, Ag2, ¬p)))

This means that by attacking SC(Ag2, Ag1, p), Ag1 creates the commitment SC(Ag1,
Ag2, ¬p) and the set S to support this commitment.

The conditions a5, b5, c5 and d5 are specified as follows:
a5 =∃i: SC(Ag2, Ag1, pi) ∈ Create_Support(Ag2, SC(Ag2, Ag1, ¬q))
where S1 = {SC(Ag1, Ag2, q)}
b5 = ∀i, SC(Ag1, Ag2, pi) ∈ S2 pi Arg_Sys(Ag2)
c5 = ∀i, SC(Ag1, Ag2, pi) ∈ S3 (¬(pi Arg_Sys(Ag2)) ∧¬(¬pi Arg_Sys(Ag2)))
d5 = ∀i, SC(Ag1, Ag2, pi) ∈ S4 ∃S’j ⊆ S’: Content(S’j) = Support(Ag2, ¬pi)

∧ �k: SC(Ag2, Ag1, pk) ∈ Create_Support(Ag2, SC(Ag2, Ag1, ¬pi))

Ag2 refuses Ag1’s argument if Ag2 already attacked this argument. In other words,
Ag2 refuses Ag1’s argument if Ag2 cannot attack this argument since it already
attacked it, and it cannot accept it or challenge it since it has an argument against this
argument. We have only one element in S1 because we consider a refusal move as an
exit condition. The acceptance and the challenge actions of this game are the same as
the acceptance and the challenge actions of the defense game. Finally, Ag2 attacks
Ag1’s argument if Ag2 has an argument against Ag1’s argument, and if Ag2 did not
attack Ag1’s argument before. In d5, the universal quantifier means that Ag2 attacks all
Ag1’s arguments for which it has an against-argument. The reason is that Ag2 must act
on all commitments created by Ag1. The temporal aspect (the past) of a5 and d5 is
implicitly integrated in Create_Support(Ag2, SC(Ag2, Ag1, ¬q)) and
Create_Support(Ag2, SC(Ag2, Ag1, ¬pi)).

F Termination
The protocol terminates either by a final acceptance or by a refusal. There is a final
acceptance when Ag2 accepts the content of the initial commitment SC(Ag1, Ag2, p) or
when Ag1 accepts the content of SC(Ag2, Ag1, ¬p). Ag2 accepts the content of SC(Ag1,
Ag2, p) iff it accepts all the supports of SC(Ag2, Ag1, p). Formally:
Accept(Ag2, SC(Ag1, Ag2, p)) ⇔

[∀i, SC(Ag1, Ag2, pi) ∈ Create_Support(Ag1, SC(Ag1, Ag2, p))
 Accept(Ag2, SC(Ag1, Ag2, pi))]

The acceptance of the supports of SC(Ag1, Ag2, p) by Ag2 does not mean that they
are accepted directly after their creation by Ag1, but it can be accepted after a number
of challenge, justification and attack games. When Ag2 accepts definitively, then it
withdraws all commitments whose content was attacked by Ag1. Formally:
Accept(Ag2, SC(Ag1, Ag2, p)) [∀i, ∀S, Attack(Ag1, [S], SC(Ag2, Ag1, pi))

Withdraw(Ag2, SC(Ag2, Ag1, pi))]

{

186 J. Bentahar et al.

On the other hand, Ag2 refuses the content of SC(Ag1, Ag2, p) iff it refuses one of
the supports of SC(Ag1, Ag2, p). Formally:
Refuse(Ag2, SC(Ag1, Ag2, p)) ⇔

[∃i: SC(Ag1, Ag2, pi)∈Create_Support(Ag1, SC(Ag1, Ag2, p))
∧ Refuse(Ag2, SC(Ag1, Ag2, pi))]

3.3 Protocol Dynamics

The persuasion dynamics is described by the chaining of a finite set of dialogue
games: acceptance move, refusal move, defense, challenge, attack and justification
games. These games can be combined in a sequential and parallel way (Figure 2).

Fig. 2. The persuasion dialogue dynamics

After Ag1’s defense game at moment t1, Ag2 can, at moment t2, accept a part of the
arguments presented by Ag1, challenge another part, and/or attack a third part. These
games are played in parallel. At moment t3, Ag1 answers the challenge game by
playing a justification game and answers the attack game by playing an acceptance
move, a challenge game, another attack game, and/or a final refusal move. The
persuasion dynamics continues until the exit conditions become satisfied (final
acceptance or a refusal). From our specifications, it follows that our protocol plays the
role of the dialectical proof theory of the argumentation system.

Indeed, our persuasion protocol can be described by the following BNF grammar:
Persuasion protocol : Defense game ~ Dialogue games
Dialogue games : (Acceptance move

// (Challenge game ~ Justification game ~ Dialogue games)
// (Attack game ~ Dialogue games))

| refusal move

where: “~” is the sequencing symbol, “//” is the possible parallelization symbol. Two
games Game1 and Game 2 are possibly parallel (i.e. Game1 // Game2) iff an agent
can play the two games in parallel or only one game (Game1 or Game2).

3.4 Termination Proof

Theorem. The protocol dynamics always terminates.

Defense game

Attack game

Justification game

t1 t2 t3 t4
Acceptance

Challenge game
Acceptance
Challenge game

Attack game

Refusal Termination

 A Computational Model for Conversation Policies for Agent Communication 187

Proof. To prove this theorem, we use a tableau method [10]. The idea is to formalize
our specifications as tableau rules and then to prove the finiteness of the tableau.
Tableau rules are written in such a way that premises appear above conclusions.
Using a tableau method means that the specifications are conducted in a top-down
fashion. For example, specification 2 (p 3.2) can be expressed by the following rules:

:1R
),(

))(],[,(

12

1

SAgAccept

pSCSAgDefend
:2R

),(

))(],[,(

12

1

SAgChallenge

pSCSAgDefend

:3R
)],[,(

))(],[,(

12

1

SS'AgAttack

pSCSAgDefend

We denote the formulas of our specifications by σ, and we define E the set of σ.
We define an ordering h on E and we prove that h has no infinite ascending chains.
Intuitively, this relation is to hold between σ1 and σ2 if it is possible that σ1 is an
ancestor of σ2 in some tableau. Before defining this ordering, we introduce some
notations: Act*(Ag, [S], S’) with Act* ∈ {Act’, Act-Arg} is a formula. We notice that
formulas in which there is no support [S], can be written as follows: Act*(Ag, [φ], S’).
σ[S] →R σ[S’] indicates that the tableau rule R has the formula σ[S] as premise and
the formula σ[S’] as conclusion, with σ[S] = Act*(Ag, [S], S’). The size |S| is the
number of commitments in S.

Definition 4. Let σ[Si] be a formula and E the set of σ[Si]. The ordering h on E is
defined as follows. We have σ[S0] h σ[S1] if:
|S1| < |S0| or

For all rules Ri such that σ[S0] →R0 σ[S1] →R1 σ[S2]… →Rn σ[Sn] we have |Sn| = 0.

Intuitively, in order to prove that a tableau system is finite, we need to prove the
following:
1- if σ[S0] →R σ[S1] then σ[S0] h σ[S1].
2- h has no infinite ascending chains (i.e. the inverse of h is well-founded).

Property 1 reflects the fact that applying tableau rules results in shorter formulas,
and property 2 means that this process has a limit. The proof of 1 proceeds by a case
analysis on R. Most cases are straightforward. We consider here the case of R3. For
this rule we have two cases. If |S1| < |S0|, then σ[S0] h σ[S1]. If |S1| ≥ |S0|, the rules
corresponding to the attack specification can be applied. The three first rules are
straightforward since S2 = φ. For the last rule, we have the same situation that R3.
Suppose that there is no path in the tableau σ[S0] →R0 σ [S1] →R1 σ[S2]… →Rn σ[Sn]
such that |Sn| = 0. This means that i) the number of arguments that agents have is
infinite or that ii) one or several arguments are used several times. However, situation
i is not possible because the agents’ knowledge bases are finite sets, and situation ii is
not allowed in our protocol.

Because the definition of h is based on the size of formulas and since |S0| ∈ N (<
∞) and < is well-founded in N, it follows that there is no infinite ascending chains of
the form σ[S0] h σ[S1]…

188 J. Bentahar et al.

4 Implementation

In this section we describe the implementation of the different dialogue games using
the JackTM platform [25]. We chose this language for three main reasons:
1- It is an agent-oriented language offering a framework for multi-agent system
development. This framework can support different agent models.
2- It is built on top of and fully integrated with the Java programming language. It
includes all components of Java and it offers specific extensions to implement agents’
behaviors.
3- It supports logical variables and cursors. These features are particularly helpful
when querying the state of an agent’s beliefs. Their semantics is mid-way between
logic programming languages with the addition of type checking Java style and
embedded SQL.

4.1 General Architecture

Our system consists of two types of agents: conversational agents and trust model
agents. These agents are implemented as JackTM agents, i.e. they inherit from the basic
class JackTM Agent. Conversational agents are agents that take part in the persuasion
dialogue. Trust model agents are agents that can inform an agent about the
trustworthiness of another agent.

According to the specification of the justification game, an agent Ag2 can play an
acceptance or a refusal move according to whether it considers that its interlocutor
Ag1 is trustworthy or not. If Ag1 is unknown for Ag2, Ag2 can ask agents that it
considers trustworthy for it to offer a trustworthiness assessment of Ag1. From the
received answers, Ag2 can build a trustworthiness graph and measure the
trustworthiness of Ag1. This trustworthiness model is described in detail in [6].

4.2 Implementation of the Dialogue Games

To be able to take part in a persuasion dialogue, agents must possess knowledge bases
that contain arguments. In our system, these knowledge bases are implemented as
JackTM beliefsets. Beliefsets are used to maintain an agent’s beliefs about the world.
These beliefs are represented in a first order logic and tuple-based relational model.
The logical consistency of the beliefs contained in a beliefset is automatically
maintained. The advantage of using beliefsets over normal Java data structures is that
beliefsets have been specifically designed to work within the agent-oriented paradigm.

Our knowledge bases (KBs) contain two types of information: arguments and
beliefs. Arguments have the form ([Support], Conclusion), where Support is a set of
propositional formulas and Conclusion is a propositional formula. Beliefs have the
form ([Belief], Belief) i.e. Support and Conclusion are identical. The meaning of the
propositional formulas (i.e. the ontology) is recorded in a beliefset whose access is
shared between the two agents.

To open a dialogue game, an agent uses its argumentation system. The
argumentation system allows this agent to seek in its knowledge base an argument for
a given conclusion or for its negation (“against argument”). For example, before

 A Computational Model for Conversation Policies for Agent Communication 189

creating a commitment SC(Ag1, Ag2, p), agent Ag1 must find an argument for p. This
enables us to respect the commitment semantics by making sure that agents can
always defend the content of their commitments.

Agent communication is done by sending and receiving messages. These messages
are events that extend the basic JackTM event: MessageEvent class. MessageEvents
represent events that are used to communicate with other agents. Whenever an agent
needs to send a message to another agent, this information is packaged and sent as a
MessageEvent. A MessageEvent can be sent using the primitive: Send(Destination,
Message). In our protocol, Message represents the action that an agent applies to a
commitment or to its content, for example: Create(Ag1, SC(Ag1, Ag2, p)), etc.

Our dialogue games are implemented as a set of events (MessageEvents) and plans.
A plan describes a sequence of actions that an agent can perform when an event
occurs. Whenever an event is posted and an agent chooses a task to handle it, the first
thing the agent does is to try to find a plan to handle the event. Plans are methods
describing what an agent should do when a given event occurs.

Each dialogue game corresponds to an event and a plan. These games are not
implemented within the agents’ program, but as event classes and plan classes that are
external to agents. Thus, each conversational agent can instantiate these classes. An
agent Ag1 starts a dialogue game by generating an event and by sending it to its
interlocutor Ag2. Ag2 executes the plan corresponding to the received event and
answers by generating another event and by sending it to Ag1. Consequently, the two
agents can communicate by using the same protocol since they can instantiate the
same classes representing the events and the plans. For example, the event
Event_Attack_Commitment and the plan Plan_ev_Attack_commitment implement the
defense game. The architecture of our conversational agents is illustrated in Figure 3.

Fig. 3. The architecture of conversational agents

To start the entry game, an agent (initiator) chooses a goal that it tries to achieve.
This goal is to persuade its interlocutor that a given propositional formula is true. For
this reason, we use a particular event: BDI Event (Belief-Desire-Intention). BDI

Ag1 Ag2

Knowledge
base (Beliefset)

Knowledge
base (Beliefset)

Event → Plan
…

Event → Plan

Dialogue games

Argumentation system
(Java + Logic programming)

Argumentation system
(Java + Logic programming)

Ontology
(Beliefset)

190 J. Bentahar et al.

events model goal-directed behavior in agents, rather than plan-directed behavior.
What is important is the desired outcome, not the method chosen to achieve it. This
type of events allows an agent to pursue long term goals.

4.3 Example

In this section we present a simple example dialogue that illustrates some notions
presented in this paper.

This example was also studied in [2] in a context of strategical considerations for
argumentative agents. The letters on the left of the utterances are the propositional
formulas that represent the propositional contents. Agent Ag1’s KB contains: ([q, r],
p), ([s, t], q) and ([u], u). Agent Ag2’s KB contains: ([¬t], ¬p), ([u, v], ¬t), ([u], u) and
([v], v). The combination of the dialogue games that allows us to describe the
persuasion dialogue dynamics is as follows:

Ag1 creates SC(Ag1, Ag2, p) to achieve the goal of persuading Ag2 that p is true. Ag1

can create this commitment because it has an argument for p. Ag2 refuses SC(Ag1,
Ag2, p) because it has an argument against p. Thus, the entry game is played and the
persuasion dialogue is opened. Ag1 defends SC(Ag1, Ag2, p) by creating SC(Ag1, Ag2,
q) and SC(Ag1, Ag2, r). Ag2 accepts SC(Ag1, Ag2, r) because it has an argument for r
and challenges SC(Ag1, Ag2, q) because it has no argument for q or against q. Ag1

Entry Game
SC(Ag1, Ag2, p)

Defense Game
([SC(Ag1, Ag2, q), SC(Ag1,
Ag2, r)], SC(Ag1, Ag2, p))

Acceptance Move
 SC(Ag1, Ag2, r)

Challenge Game
 SC(Ag1, Ag2, q)

a2

b2
a3

Justification Game
([SC(Ag1, Ag2, s),
SC(Ag1, Ag2, t)],
SC(Ag1, Ag2, q))

Acceptance move
SC(Ag1, Ag2, s)

Attack Game
([SC(Ag2, Ag1, u),
SC(Ag2, Ag1, v)],
SC(Ag1, Ag2, t))

Acceptance moves
SC(Ag2, Ag1, u), SC(Ag2, Ag1, v)

+ Final acceptance move
SC(Ag2, Ag1, ¬p)

a4

c4 b5

Ag1: Newspapers can publish information I (p).
Ag2: I don’t agree with you.
Ag1: They can publish information I because it is not private (q), and any public
information can be published (r).
Ag2: Why is information I public?
Ag1: Because it concerns a Minister (s), and information concerning a Minister
are public (t).
Ag2: Information concerning a Minister is not necessarily public, because
information I is about the health of Minister (u), and information about the health
remains private (v).
Ag1: I accept your argument.

 A Computational Model for Conversation Policies for Agent Communication 191

plays a justification game to justify SC(Ag1, Ag2, q) by creating SC(Ag1, Ag2, s) and
SC(Ag1, Ag2, t). Ag2 accepts the content of SC(Ag1, Ag2, s) and attacks the content of
SC(Ag1, Ag2, t) by creating SC(Ag2, Ag1, u) and SC(Ag2, Ag1, v). Finally, Ag1 plays
acceptance moves because it has an argument for u and it does not have arguments
against v and the dialogue terminates. Indeed, before accepting v, Ag1 challenges it
and Ag2 defends it by itself (i.e. ([SC(Ag2, Ag1, v), SC(Ag2, Ag1, v)])). Then, Ag1

accepts this argument because it considers Ag2 trustworthy. This notion of agent trust
and its role as an acceptance criteria of arguments are detailed in [6]. Ag1 updates its
KB by removing the attacked argument and including the new argument. Figure 4
illustrates the screen shot of this example generated by our prototype. In this figure
commitments are described only by their contents and the identifiers of the two agents
are the two first arguments of the exchanged communicative actions. The contents are
specified using a predicate language that the two agents share (the ontology).

Fig. 4. The example screen shot

192 J. Bentahar et al.

5 Related Work

In this section, we compare our protocol with some proposals that have been put
forward in two domains: dialogue modeling and commitment based protocols.

1- Dialogue modeling. In [1] and [22] Amgoud, Parsons and their colleagues studied
argumentation-based dialogues. They proposed a set of atomic protocols which can be
combined. These protocols are described as a set of dialogue moves using Walton and
Krabbe’s classification and formal dialectics. In these protocols, agents can argue
about the truth of propositions. Agents can communicate both propositional
statements and arguments about these statements. These protocols have the advantage
of taking into account the capacity of agents to reason as well as their attitudes
(confident, careful, etc.). In addition, Prakken [23] proposed a framework for
protocols for dynamic disputes, i.e., disputes in which the available information can
change during the conversation. This framework is based on a logic of defeasible
argumentation and is formulated for dialectical proof theories. Soundness and
completeness of these protocols have also been studied. In the same direction, Brewka
[7] developed a formal model for argumentation processes that combines
nonmonotonic logic with protocols for dispute. Brewka pays more attention to the
speech act aspects of disputes and he formalizes dispositional protocols in situation
calculus. Such a logical formalization of protocols allows him to define protocols in
which the legality of a move can be disputed. Semantically, Amgoud, Parsons,
Prakken and Brewkas’ approaches use a defeasible logic. Therefore, it is difficult, if
not impossible, to formally verify the proposed protocols.

There are many differences between our protocol and the protocols proposed in the
domain of dialogue modeling: 1. Our protocol uses not only an argumentative
approach, but also a public one. Locutions are formalized not as agents’ private
attitudes (beliefs, intentions, etc.), but as social commitments. In opposition of private
mental attitudes, social commitments can be verified. 2. Our protocol is based on a
combination of dialogue games instead of simple dialogue moves. Using our dialogue
game specifications enables us to specify the entry and the exit conditions more
clearly. In addition, computationally speaking, dialogue games provide a good
balance between large protocols that are very rigid and atomic protocols that are very
detailed. 3. From a theoretical point of view, Amgoud, Parsons, Prakken and
Brewkas’ protocols use moves from formal dialectics, whereas our protocol uses
actions that agents apply on commitments. These actions capture the speech acts that
agents perform when conversing (see Definition 1). The advantage of using these
actions is that they enable us to better represent the persuasion dynamics considering
that their semantics is defined in an unambiguous way in a temporal and dynamic
logic [5]. Specifying protocols in this logic allows us to formally verify these
protocols using model checking techniques. 4. Amgoud, Parsons and Prakkens’
protocols use only three moves: assertion, acceptance and challenge, whereas our
protocol uses not only creation, acceptance, refusal and challenge actions, but also
attack and defense actions in an explicit way. These argumentation relations allow us
to directly illustrate the concept of dispute in this type of protocols. 5. Amgoud,
Parsons, Prakken and Brewka use an acceptance criterion directly related to the
argumentation system, whereas we use an acceptance criteria for conversational

 A Computational Model for Conversation Policies for Agent Communication 193

agents (supports of arguments and trustworthiness). This makes it possible to decrease
the computational complexity of the protocol for agent communication.

2- Commitment-based protocols. Yolum and Singh [28] developed an approach for
specifying protocols in which actions’ content is captured through agents’
commitments. They provide operations and reasoning rules to capture the evolution of
commitments. In a similar way, Fornara and Colombetti [17] proposed a method to
define interaction protocols. This method is based on the specification of an
interaction diagram (ID) specifying which actions can be performed under given
conditions. These approaches allow them to represent the interaction dynamics
through the allowed operations. Our protocol is comparable to these protocols
because it is also based on commitments. However, it is different in the following
respects. The choice of the various operations is explicitly dealt with in our protocol
by using argumentation and trustworthiness. In commitment-based protocols, there is
no indication about the combination of different protocols. However, this notion is
essential in our protocol using dialogue games. Unlike commitment-based protocols,
our protocol plays the role of the dialectical proof theory of an argumentation system.
This enables us to represent different dialogue types as studied in the philosophy of
language. Finally, we provide a termination proof of our protocol whereas this
property is not yet studied in classical commitment-based protocols.

6 Conclusion and Future Work

The contribution of this paper is the proposition of a logical language for specifying
persuasion protocols between agents using an approach based on commitments and
arguments. This language has the advantage of expressing the public elements and the
reasoning process that allows agents to choose an action among several possible
actions. Because our protocol is defined as a set of conversation policies, this protocol
has the characteristic to be more flexible than the traditional protocols such as those
used in FIPA-ACL. This flexibility results from the fact that these policies can be
combined to produce complete and more complex protocols. We formalized these
conversation policies as a set of dialogue games, and we described the persuasion
dynamics by the combination of five dialogue games. Another contribution of this
paper is the tableau-based termination proof of the protocol. We also described the
implementation of this protocol. Finally, we presented an example to illustrate the
persuasion dynamics by the combination of different dialogue games.

As an extension of this work, we intend to specify other protocols according to
Walton and Krabbe’s classification [27] using the same framework. Another
interesting direction for future work is verifying these protocols using model checking
techniques. The method we are investigating is an automata theoretic approach based
on a tableau method [10]. This method can be used to verify the temporal and
dynamic aspects of our protocol. Finally, we intend to extend our implementation
using ideas from the agent programming language 3APL, namely the concept of
cognitive agents. An important characteristic of this language that is interesting for us
is its dynamic logic semantics [26] because our protocol is based on an action theory
and the semantics of our approach is also based on dynamic logic [5].

194 J. Bentahar et al.

Acknowledgements. We’d like to deeply thank the three anonymous reviewers for
their valuable comments and suggestions. We’d also like to thank Rance Cleaveland
and Girish Bhat for their interesting explanations on the tableau method.

References

1. Amgoud, L., Maudet, N., and Parsons, S. Modelling dialogues using argumentation. In
Proc. of 4th Int. Conf. on Multi Agent Systems (2000) 31-38.

2. Amgoud, L., and Maudet, N. Strategical considerations for argumentative agents. In Proc.
of 10th Int. Workshop on Non-Monotonic Reasoning (2002) 409-417.

3. Baldoni, M., Baroglio, C., Martelli, A., Patti, V., Schifanella, C. Verifying protocol
conformance for logic-based communicating agents. In Proc. of 5th Int. Workshop on
Computational Logic in Multi-Agent Systems (2004) 82-97.

4. Bentahar, J., Moulin, B., and Chaib-draa, B. Commitment and argument network: a new
formalism for agent communication. In [13] (2004) 146-165.

5. Bentahar, J., Moulin, B., Meyer, J-J. Ch., and Chaib-draa, B. A logical model for
commitment and argument network for agent communication (extended abstract). In 3rd

Int. J. Conf. on Autonomous Agents and Multi-Agent Systems AAMAS (2004) 792-799.
6. Bentahar, J., Moulin, B., and Chaib-draa, B. Specifying and implementing a persuasion

dialogue game using commitment and argument network. In I. Rahwan, P. Moraitis and
C. Reed (Eds.), Argumentation in Multi-Agent Systems, LNAI 3366, Springer, (2005). (in
press).

7. Brewka, G. Dynamic argument systems: A formal model of argumentation processes
based on situation calculus. Journal of Logic and Computation, 11(2) (2001) 257-282.

8. Castelfranchi, C. Commitments: from individual intentions to groups and organizations. In
Proc. of Int. Conf. on Multi Agent Systems (1995) 41-48.

9. Chaib-draa, B., and Dignum, F. Trends in agent communication languages. In
Computational Intelligence, (18)2 (2002) 89-101.

10. Cleaveland, R. Tableau-based model checking in the propositional mu-calculus. In Acta
Informatica, 27(8) (1990) 725-747.

11. Colombetti, M. A commitment-based approach to agent speech acts and conversations. In
Proc. of Int. Autonomous Agent Workshop on Conversational Policies (2000) 21-29.

12. Dastani, M., Hulstijn, J., and der Torre, L.V. Negotiation protocols and dialogue games. In
Proc. of Belgium/Dutch AI Conference (2000) 13-20.

13. Dignum, F. (Ed.). Advances in Agent Communication. Int. Workshop on Agent
Communication Languages. LNAI 2922, Springer, (2004).

14. Dignum, F., and Greaves, M. (Eds.). Issues in agent communication. LNAI 1916, Springer
(2000).

15. Elvang-Goransson, M., Fox, J., and Krause, P. Dialectic reasoning with inconsistent
information. In Proc. of 9th Conf. on Uncertainty in Artificial Intelligence (1993) 114-121.

16. Endriss, U., Maudet, N., Sadri, F., and Toni, F. Logic_based agent communication
protocols. In [13] (2004) 91-107.

17. Fornara, N. and Colombetti, M. Protocol specification using a commitment based ACL. In
[13] (2004) 108-127.

18. Greaves, M., Holmback, H., and Bradshaw, J. What is a conversation policy? In [14]
(2000) 118-131.

19. Herrestad, H. and Krogh, C. Obligations directed from bearers to counterparties. In Proc.
of 5th Int. Conf. on Artificial Intelligence and Law (1995) 210-218.

 A Computational Model for Conversation Policies for Agent Communication 195

20. Maudet, N., and Chaib-draa, B. Commitment-based and dialogue-game based protocols,
new trends in agent communication languages. In Knowledge Engineering Review, 17(2),
Cambridge University Press (2002) 157-179.

21. McBurney, P., and Parsons, S. Games that agents play: A formal framework for dialogues
between autonomous agents. In Journal of Logic, Language, and Information, 11(3) (2002)
1-22.

22. Parsons, S., Wooldridge, M., and Amgoud, L. On the outcomes of formal inter-agent
dialogues. In Proc. of 2nd Int. J. Conf. on Autonomous Agents and Multi-Agent Systems
(2003) 616-623.

23. Prakken, H. Relating protocols for dynamic dispute with logics for defeasible
argumentation. In Synthese (127) (2001) 187-219.

24. Singh, M.P. A social semantics for agent communication language. In [14] (2000) 31-45.
25. The Agent Oriented Software Group. Jack 4.1. 2004. www.agent-software.com/
26. van Riemsdijk, M.B., de Boer, F.S., and Meyer, J-J. Ch. Dynamic logic for plan revision

in intelligent agents. In Proc. of 5th Int. Workshop on Computational Logic in Multi-Agent
Systems (2004) 196-211.

27. Walton, D.N., and Krabbe, E.C.W. Commitment in dialogue: basic concepts of
interpersonal reasoning. State University of New York Press, NY (1995).

28. Yolum, P. and Singh, M.P. Flexible protocol specification and execution: applying event
calculus planning using commitments. In Proc. of 1st Int. J. Conf. on Autonomous Agents
and Multi-Agent Systems (2002) 527-534.

Verifying Protocol Conformance for

Logic-Based Communicating Agents�

Matteo Baldoni, Cristina Baroglio, Alberto Martelli,
Viviana Patti, and Claudio Schifanella

Dipartimento di Informatica — Università degli Studi di Torino,

C.so Svizzera, 185 — I-10149 Torino (Italy)

{baldoni,baroglio,mrt,patti,schi}@di.unito.it

Abstract. Communication plays a fundamental role in multi-agents

systems. One of the main issues in the design of agent interaction pro-

tocols is the verification that a given protocol implementation is “con-

formant” w.r.t. the abstract specification of it. In this work we tackle

those aspects of the conformance verification issue, that regard the de-

pendence/independence of conformance from the agent private state in

the case of logic, individual agents, set in a multi-agent framework. We do

this by working on a specific agent programming language, DyLOG, and

by focussing on interaction protocol specifications described by AUML

sequence diagrams. By showing how AUML sequence diagrams can be

translated into regular grammars and, then, by interpreting the problem

of conformance as a problem of language inclusion, we describe a method

for automatically verifying a form of “structural” conformance; such a

process is shown to be decidable and an upper bound of its complexity

is given. We also give a set of properties that describes the influence of

the agent private information on the conformance of its communication

policies to protocol specifications.

1 Introduction

Multi-agent systems (MASs) often comprise heterogeneous components, different
in the way they represent knowledge about the world and about other agents, as
well as in the mechanisms used for reasoning about it. Notwithstanding hetero-
geneity, agents must cooperate, to execute a common task or compete for shared
resources; interoperation is, normally, ruled by a set of shared interaction pro-
tocols. The design and implementation of interaction protocols are crucial steps
in the development of a MAS. Following the development process, described in
[21], for interaction protocol engineering, two different kinds of test are to be
executed. The first consists in verifying the consistency of an abstract protocol

� This research is partially supported by MIUR Cofin 2003 “Logic-based development

and verification of multi-agent systems (MASSiVE)” national project and by the

European Commission and by the Swiss Federal Office for Education and Science

within the 6th Framework Programme project REWERSE number 506779.

J. Leite and P. Torroni (Eds.): CLIMA V, LNAI 3487, pp. 196–212, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Verifying Protocol Conformance for Logic-Based Communicating Agents 197

definition w.r.t. the original requirements, derived from the analysis phase, that
it should embody. This verification, often called validation test, is typically done
by means of model-checking techniques. A different problem is the one that we
face in this work, which amounts to verify if a given implementation, which is
an agent interaction policy, respects a given abstract protocol definition. This
problem is known as conformance testing. Moreover, since the specific imple-
mentations1 normally use the agent’s private information (the agent’s “state”),
e.g. for deciding which utterances to articulate, one further question that arises
is: to which extent does the agent internal state influence the conformance of
an implementation to a given protocol specification? Indeed, depending on the
result of tests on the agent’s internal state, different executions could occur, only
part of them being correct w.r.t. the specifications. Merely in the case in which
the “structure” of the conversation policy is such that it is bound to produce
correct conversations, conformance is not influenced at all by the agent’s internal
state (we will discuss this issue in Section 3).

In this work we tackle the problem of conformance verification for two specific
languages: we use Agent UML (AUML for short, first specified in [27]) as the
interaction protocol specification language and DyLOG [3, 5] as the conversation
policy implementation language. In the literature one can, actually, find many
formal techniques for protocol specification. A non-exhaustive list includes finite
state automata [6, 24], petri nets [23, 11], temporal logic [15, 16] and UML-based
languages.All theseproposalsarecurrentlybeingstudiedandnodefinitivestandard
emerged yet. The reason for choosing AUML is that, despite its yet incomplete
formal semantics (a proposal for a semantics based on petri nets can be found
in [10]), this language bears some relevant advantages: it is based on the wide-
spread and well-known UML standard, it is intuitive and easy to learn, there are
graphical editors for the generation of code, and AUML sequence diagrams have
been adopted by FIPA to represent agent interaction protocols. On the other
hand, DyLOG is a logic language for programming agents, based on reasoning
about actions and change in a modal framework, that allows the inclusion of a set
of conversation policies, in the specification of an agent. The language refers to a
mentalistic approach, where speech acts are represented as atomic actions with
preconditions and effects on the executor’s mental state. It allows the specification
of individual agents, situated in a multi-agent context, each having a personal
view of the world. The use of a declarative language is helpful because it allows
the proof of properties of the specific implementation in a straightforward way.
In particular, a language that explicitly represents and uses the agent internal
state, is useful for proving to which extent certain properties depend on the agent
mental state or on the semantics of the speech acts. For instance, in our work we
perform hypothetical reasoning about the effects of conversations on the agent
mental state, in order to find conversation plans which are proved to respect the
implemented protocols, achieving at the same time some desired goal. The DyLOG
language is briefly introduced in Section 2, for a thorough description of it see [5].

1 In Java, in a logic language, etc.

198 M. Baldoni et al.

Our goal for this work is, then, to study under which conditions a DyLOG
implementation can be declared as being conformant to an AUML specification.
To this aim, we will introduce different levels of abstraction w.r.t. the agent
mental state by defining three degrees of conformance (agent conformance, agent
strong conformance, and protocol conformance). We will describe their relations
and, by interpreting the problem of conformance verification as a problem of
inclusion of a context-free language (CFL) into a regular language, we will show
a method for automatically verifying the strongest degree of conformance; an
upper bound to its complexity is also given. When this kind of conformance
holds, the implemented policy respects the specification whatever the rational
effects of the speech acts are, whatever the agent mental state is.

As a last observation about AUML, some authors, who work on protocol
validation, criticize the choice of this formalism because its lack of a formal
semantics makes it difficult to validate the designed protocols w.r.t. the orig-
inal specifications. They also criticize the choice of a mentalistic approach (á
la FIPA) because at the level of protocol validation this approach has shown
relevant flaws. The dissatisfaction to the mentalistic approach is mostly due to
the difficulty of verifying that an agent acts according to a commonly agreed
semantics, because it is not possible to have access to the agents’ private men-
tal state [30], a problem known as semantics verification. Some authors have
proposed a social approach to agent communication [29], where communicative
actions affect the “social state” of the system, rather than the internal states
of the agents. The social state records the social facts, like the permissions and
the commitments of the agents, which are created and modified along the in-
teraction. The social approach overcomes the semantics verification problem by
exploiting a set of established commitments between the agents, that are stored
as part of the MAS social state. In this framework it is possible to formally prove
the correctness of public interaction protocols with respect to the specifications
outcoming from the analysis phases; such proof can be obtained, for instance, by
means of model checking techniques [22, 25, 28, 30, 18, 7] (but not only, e.g., [9]).

Nevertheless, AUML is being used, more and more often, in MAS develop-
ment because it is intuitive for designers that have a background in UML and
in the object-oriented approach, and for this reason it has an appeal for the de-
ployment of agent systems in the industry world. Moreover, when developing the
single agents, besides verifying that the agent respects the social commitments,
it is important to study properties of their implementations and, in particular, to
understand if and to which extent such properties depend on the agent’s internal
state (in the case of communication, on the semantics of the speech acts).

2 Specification of Communication in DyLOG

DyLOG [5] is a high-level logic programming language for modeling rational
agents, based upon a modal logic of actions and mental attitudes where modal-
ities are used for representing actions as well as beliefs that are in the agent’s
mental state. It accounts both for atomic and complex actions, or procedures, for

Verifying Protocol Conformance for Logic-Based Communicating Agents 199

specifying the agent behavior. A DyLOG agent can be provided with a communi-
cation kit that specifies its communicative behavior [3], defined in terms of inter-
action protocols, i.e. conversation policies that build on FIPA-like speech acts.
The communication theory is a homogeneous component of the general agent
theory; in particular, both the conversational policies, that guide the agent’s
communicative behavior, and the other policies, defining the agent’s behavior,
are represented by procedure definitions (represented by axiom schema). DyLOG
agents can reason about their communicative behavior answering to queries like
“given a protocol and a set of desiderata, is there a conversation, that respects the
protocol, which also satisfies the desired conditions on the final mental state?”.

2.1 The DyLOG Language in Brief

In DyLOG atomic actions are either world actions, affecting the world, or mental
actions, i.e. sensing or communicative actions which only affect the agent beliefs.
The set of atomic actions consists of the set A of the world actions, the set C of
communicative acts, and the set S of sensing actions. For each atomic action a
and agent agi we introduce the modalities [aagi] and 〈aagi〉. [aagi]α means that
α holds after every execution of action a by agent agi; 〈aagi〉α means that there
is a possible execution of a (by agi) after which α holds. We use the modality �

to denote laws, i.e. formulas that hold always (after every action sequence). Our
formalization of complex actions draws considerably from dynamic logic for the
definition of action operators like sequence, test and non-deterministic choice.
However, differently than [26], we refer to a Prolog-like paradigm: procedures are
defined by means of (possibly recursive) Prolog-like clauses. For each procedure
p, the language contains also the universal and existential modalities [p] and 〈p〉.
The mental state of an agent is described by a consistent set of belief formulas
(we call it belief state). We use the modal operator Bagi to model the beliefs of
agent agi. The modality Magi is defined as the dual of Bagi and means that agi

considers ϕ possible. A mental state contains what agi (dis)believes about the
world and about the other agents (nested beliefs are needed for reasoning on
how other agents beliefs can be affected by communicative actions). Formally
it is a complete and consistent set of rank 1 and 2 belief fluents, where a belief
fluent F is a belief formula BagiL or its negation. L denotes a belief argument,
i.e. a fluent literal l (f or ¬f) or a belief fluent of rank 1 (Bl or ¬Bl).

All the modalities of the language are normal; � is reflexive and transitive,
its interaction with action modalities is ruled by �ϕ ⊃ [aagi]ϕ. The epistemic
modality Bagi is serial, transitive and euclidean. A non-monotonic solution to the
persistency problem is given, which consists in maximizing assumptions about
fluents after the execution of action sequences, based on an abductive framework.

2.2 The Communication Kit in Brief

The behavior of an agent agi is specified by a domain description, which includes,
besides a specification of the agent belief state: (i) action and precondition laws
for describing the atomic world actions in terms of their preconditions and their

200 M. Baldoni et al.

affects on the agent’s mental state, (ii) sensing axioms for describing atomic
sensing actions, (iii) procedure axioms for describing complex behaviors, (iv) a
communication kit that describes the agent communicative behavior by means
of further axioms and laws of the kind mentioned above. In fact a communication
kit consists of (i’) a set of action and preconditions laws modeling a predefined
set of primitive speech acts the agent can perform/recognize (ii’) a set of sensing
axioms for defining special sensing actions for getting new information by ex-
ternal communications (iii’) a set of procedure axioms for specifying interaction
protocols, which can be seen as a library of conversation policies the agent can
follow when engaging a conversations with others.

Interaction Protocols are represented as procedures that build upon individ-
ual speech acts and specify conversation policies for guiding the agent commu-
nicative behavior. They are expressed by axiom schema of form:

〈p0〉ϕ ⊂ 〈p1; p2; . . . ; pm〉ϕ (1)

p0 is a procedure name and the pi’s (i = 1, . . . ,m) are either procedure names,
atomic actions, or test actions (actions of the form Fs?, where Fs is a belief fluent
conjunction); intuitively, the ? operator corresponds to checking the value of a
fluent conjunction in the current state while the ; is the sequencing operator of
dynamic logic. Since each agent has a subjective perception of the communication
with other agents, given a protocol specification we expect to have as many
procedural representations as the possible roles in the conversation.

The axiom schema used to define procedures have the form of inclusion ax-
ioms, which were the subject of previous work [4, 2], in which the class of multi-
modal logics, characterized by axioms that have the general form 〈s1〉 . . . 〈sm〉ϕ ⊂
〈t1〉 . . . 〈tn〉ϕ, where 〈si〉 and 〈ti〉 are modal operators, has been analyzed. These
axioms have interesting computational properties because they can be consid-
ered as rewriting rules. In [14] this kind of axioms is used for defining grammar
logics and some relations between formal languages and such logics are analyzed.

A speech act c in C has form speech act(ags, agr, l), where ags (sender) and
agr (receiver) are agents and l is the message content. Effects and preconditions
are modeled by a set of effect and precondition laws. In particular, effects on
agi’s belief state of an action c are expressed by action laws of form:

�(BagiL1 ∧ . . . ∧ BagiLn ⊃ [cagi]BagiL0) (2)
�(MagiL1 ∧ . . . ∧MagiLn ⊃ [cagi]MagiL0) (3)

Law (2) means that, after any sequence of actions (�), if the set of fluent literals
L1 ∧ . . . ∧ Ln (representing the preconditions of the action c) is believed by agi

then, after the execution of c, L0 (the effect of c) is also believed by agi. Notice
that our representation of speech acts models only the dynamics of the mental
state of the agent the we are implementing. Executing a speech act may cause an
agent to have new beliefs (in its mental state), that are assumptions on what the
others believe but the agent cannot be sure that the others actually have those
beliefs. Law (3) states that when the preconditions of c are unknown to agi, after
the execution of c, it will consider unknown also its effects. Precondition laws

Verifying Protocol Conformance for Logic-Based Communicating Agents 201

specify mental conditions that make an action in C executable in a state. They
have form:

�(BagiL1 ∧ . . . ∧ BagiLn ⊃ 〈cagi〉�) (4)

agi can execute c when its precondition fluents are in agi’s belief state.
Get message actions are formalized as sensing actions, i.e. knowledge pro-

ducing actions whose outcome cannot be predicted before the execution. In fact,
from the perspective of the individual agent, expecting a message corresponds
to query for an external input, thus it is natural to think of it as a special case
of sensing. A get message action is defined by the inclusion axiom schema:

[get message(agi, agj , l)]ϕ ≡ [
⋃

speech act∈Cget message

speech act(agj , agi, l)]ϕ (5)

Intuitively, Cget message is a finite set of speech acts, which are all the possible
communications that agi could expect from agj in the context of a given con-
versation. Hence, the information that can be obtained is calculated by looking
at the effects of the speech acts in Cget message on agi’s mental state.

As a finale comment, in the operational interpretation of the language, (1) is
handled as a rewriting rule. From a declarative semantics point of view, the rule
is an axiom schema of the logic, hence its form. Intuitively, the set of formulas of
kind (2), (3) and (4) define the theory, while those of form (1) and (5) define the
characteristics of the multi-modal logic in which the formulas are interpreted.

Example 1. The following procedure axioms represent an implementation of the
protocol in Fig. 1 as the conversation policy that the customer agent (cus) must
use for interacting with the service provider (sp). Axioms implementing the query
subprotocol follow. Since the AUML protocol contains two roles, the customer
and the provider, the implementation must contain two views as well but for
brevity we report only the view of the customer (get cinema ticketC). Similarly
for the subprotocol for querying information: yes no queryQ implements the role
of the querier and yes no queryI the one of the responder2.

(a) 〈get cinema ticketC(cus, sp,movie)〉ϕ ⊂
〈yes no queryQ(cus, sp, available(movie));
Bcusavailable(movie)?; get info(cus, sp, cinema(c));
yes no queryI(cus, sp, pay by(credit card));
Bcuspay by(credit card)?; inform(cus, sp, cc number);
get info(cus, sp, booked(movie))〉ϕ

(b) 〈get cinema ticketC(cus, sp,movie)〉ϕ ⊂
〈yes no queryQ(cus, sp, available(movie));Bcusavailable(movie)? ;
get info(cus, sp, cinema(c));
yes no queryI(cus, sp, pay by(credit card));¬Bcuspay by(credit card)?〉ϕ

2 The subscripts next to the protocols names are a writing convention for representing

the role that the agent plays: Q stands for querier, I stands for informer, C for

customer.

202 M. Baldoni et al.

(c) 〈get cinema ticketC(cus, sp,movie)〉ϕ ⊂
〈yes no queryQ(cus, sp, available(movie));¬Bcusavailable(movie)?〉ϕ

(d) [get info(cus, sp, F luent)]ϕ ≡ [inform(sp, cus, F luent)]ϕ

Protocol get cinema ticketC works as follows: agent cus begins the interaction.
After checking if the requested movie is available by the yes no queryQ proto-
col, it waits for an information (get info) from the provider (sp) about which
cinema shows it. Then, the provider asks for a payment by credit card by us-
ing the yes no queryI protocol. If the answer if positive cus communicates the
credit card number and the confirmation of the ticket booking is returned to it,
otherwise clause (b) is selected, ending the conversation. Clause (c) tackles the
case in which the movie is not available; clause (d) describes get info, which is a
get message action. In the following the get answer and get start definitions are
instances of axiom schema (5): the right hand side of get answer represents all the
possible answers expected by cus from sp about Fluent, during a conversation
ruled by yes no queryQ.

(e) 〈yes no queryQ(cus, sp, F luent)〉ϕ ⊂
〈queryIf(cus, sp, F luent); get answer(cus, sp, F luent)〉ϕ

(f) [get answer(cus, sp, F luent)]ϕ ≡ [inform(sp, cus, F luent) ∪
inform(sp, cus,¬Fluent) ∪ refuseInform(sp, cus, F luent)]ϕ

(g) 〈yes no queryI(cus, sp, F luent)〉ϕ ⊂ 〈get start(cus, sp, F luent);
BcusFluent?; inform(cus, sp, F luent)〉ϕ

(h) 〈yes no queryI(cus, sp, F luent)〉ϕ ⊂ 〈get start(cus, sp, F luent);
Bcus¬Fluent?; inform(cus, sp,¬Fluent)〉ϕ

(i) 〈yes no queryI(cus, sp, F luent)〉ϕ ⊂ 〈get start(cus, sp, F luent);
UcusFluent?; refuseInform(cus, sp, F luent)〉ϕ

(j) [get start(cus, sp, F luent)]ϕ ≡ [queryIf(sp, cus, F luent)]ϕ

Given a set ΠC of action and precondition laws defining the agent agi’s
primitive speech acts, a set ΠSget of axioms for the reception of messages,
and a set ΠCP , of procedure axioms for specifying conversation protocols, we
denote by CKitagi the communication kit of an agent agi, that is the triple
(ΠC ,ΠCP ,ΠSget).

A domain description (DD) for agent agi, is a triple (Π, CKitagi , S0), where
CKitagi is agi’s communication kit, S0 is the initial set of agi’s belief fluents,
and Π is a tuple (ΠA,ΠS ,ΠP), where ΠA is the set of agi’s world action and
precondition laws, ΠS is a set of axioms for agi’s sensing actions, ΠP a set of
axioms that define the complex non-communicative behavior of the agent.

From a DD with the specifications of the interaction protocols and of the
relevant speech acts, a planning activity can be triggered by existential queries
of form 〈p1〉〈p2〉 . . . 〈pm〉Fs, where each pk (k = 1, . . . , m) may be an atomic
or complex action (a primitive speech act or an interaction protocol), executed
by our agent, or an external3 speech act, that belongs to CKitagi . In [3] we

3 By the word external we denote a speech act in which our agent plays the role of

the receiver.

Verifying Protocol Conformance for Logic-Based Communicating Agents 203

presented a goal-directed proof procedure for the language based on negation as
failure (NAF) which allows query of form 〈p1〉〈p2〉 . . . 〈pm〉Fs to be proved from
a given domain description and returns as answer an action sequence. A query of
the form 〈p1; p2; . . . ; pn〉Fs, where pi, 1 ≤ i ≤ n (n ≥ 0), is either a world action,
or a sensing action, or a procedure name, or a test, succeeds if it is possible to
execute p1, p2, . . . , pn (in the order) starting from the current state, in such a
way that Fs holds at the resulting state. In general, we will need to establish if
a goal holds at a given state. Hence, we will write:

a1, . . . , am � 〈p1; p2; . . . ; pn〉Fs with answer (w.a.) σ

to mean that the query 〈p1; p2; . . . ; pn〉Fs, i.e. 〈p1〉〈p2〉 . . . 〈pn〉Fs, can be proved
from the DD (Π, CKitagi , S0) at the state a1, . . . , am with answer σ, where σ is
an action sequence a1, . . . , am, . . . am+k which represents the state resulting by
executing p1, . . . , pn in the current state a1, . . . , am. ε denotes the initial state.

3 Protocol Conformance

In AUML a protocol is specified by means of sequence diagrams [27], which
model the interactions among the participants as message exchanges, arranged
in time sequences. The vertical (time) dimension specifies when a message is sent
(expected), the horizontal dimension expresses the participants and their roles.
The current proposal [17], enriches the set of possible operators of the language;
particularly interesting is the possibility of representing loops, calls to subpro-
tocols, and exit points. Generally speaking, given a protocol implementation it
would be nice to have a means for automatically verifying its conformance to the
desired AUML specification. The technique that we follow consists in turning
this problem into a problem of formal language inclusion. To this aim, given a
sequence diagram, we define a formal grammar which generates a language, that
is the set of all the conversations allowed by the diagram itself. The algorithm
used to this purpose is described in Section 3.1. On the other hand, given a
DyLOG implementation of a protocol, we define a language that is compared to
the previously obtained one: if the language obtained from the implementation is
included in the one obtained from the sequence diagram we conclude that a type
of conformance holds. We, actually, define three degrees of conformance (agent
conformance, agent strong conformance, and protocol conformance), character-
ized by different levels of abstraction from the agent private mental state, which
correspond to different ways of extracting the language from the implementation.
These definitions allow us to define which parts of a protocol implementation
must fit the specification and to describe in a modular way how the implemen-
tation can be enriched with respect to the specification, without compromising
the conformance. Such an enrichment is important when using logic agents, that
support sophisticated forms of reasoning.

204 M. Baldoni et al.

3.1 Turning an AUML Sequence Diagram into a Linear Grammar

In the following we show how it is possible to translate an AUML sequence
diagram, as defined in [17], into a grammar. Using the notation of [20], a grammar
G is a tuple (V, T, P, S), where V is a set of variables, T a set of terminals, P of
production rules, and S is the start symbol. By L(G) we will denote the language
generated by grammar G, i.e. the set of sentences in T ∗ that are generated
starting from S, by applying rules in P .

On the side of sequence diagrams we focus on the operators used to specify
FIPA protocols, which are: message, alternative, loop, exit, and reference to a
sub-protocol (see top of Fig. 1).

m m

alternative

loop [cond]

Protocol name

ref

:Customer :Service Provider

queryIf(available(movie))

inform(available(movie))

inform(~available(movie))

refuseInform(available(movie))

inform(cinema(c))

queryIf(pay_by(c_card))

refuseInform(pay_by(c_card))

inform(~pay_by(c_card))

inform(pay_by(c_card))

inform(cc_number)

inform(booked(movie))

alternative

alternative

yes_no_query

yes_no_query

Fig. 1. On top a set of AUML operators is shown. Below, on the left the sequence

diagram, representing the interaction protocol between a cinema booking service and

a customer, is reported with its corresponding production rules

Verifying Protocol Conformance for Logic-Based Communicating Agents 205

Algorithm 1 (Generating GpAUML) The grammar construction is done in
the following way. We will denote by the variable last the most recently created
variable. Initially T and P are empty. Define the start symbol as Q0, initialize
last to Q0 and V := {Q0}, then, we apply the translation rules described by
cases hereafter, according to the sequence given by the AUML diagram:

– given a message arrow, labeled by m, create a new variable Qnew, V := V ∪
{Qnew}, T := T ∪{m}, P := P ∪{last −→ mQnew}, finally, set last := Qnew;

– given an exit operator, add to P a production last −→ ε, last :=⊥ (unde-
fined);

– given an alternative operator with n branches, apply to each branch the
grammar construction algorithm, so obtaining a grammar G′

i = (V ′
i , T ′

i , P
′
i , S

′
i)

with last′i being the last variable used inside that branch. Let us assume
that V ′

1 ∩ . . . ∩ V ′
n ∩ V = ∅ (it is sufficient to rename all variables in the

V ′
i ’s), then create a new variable Qnew. V := V ∪ V ′

1 ∪ . . . ∪ V ′
n ∪ {Qnew},

T := T ∪T ′
1 ∪ . . . T ′

n, P := P ∪P ′
1 ∪{last −→ S′

1}∪ . . .∪P ′
n ∪{last −→ S′

n},
moreover P := P ∪ {last′i −→ Qnew} for each i ∈ [1, n] such that last′i �=⊥,
and finally we set last to Qnew;

– given a loop, apply the grammar construction algorithm to its body, so ob-
taining a grammar G′ = (V ′, T ′, P ′, S′) with a value for last′. Let us as-
sume that V ′ ∩ V = ∅, then create Qnew, V := V ∪ V ′ ∪ {Qnew}, T :=
T ∪ T ′, P := P ∪ P ′ ∪ {Qlast −→ S′, last −→ Qnew} if last′ �=⊥ then
P := P ∪ {last′ −→ last}, and last := Qnew;

– given a subprotocol reference, apply the grammar construction algorithm to
the called subprotocol, so obtaining a grammar G′ = (V ′, T ′, P ′, S′) with a
value for last′. Let us assume that V ′ ∩ V = ∅, then increment new, create
Qnew, V := V ∪ V ′ ∪ {Qnew}, T := T ∪ T ′, P := P ∪ P ′ ∪ {Qlast −→ S′}, if
last′ �=⊥ then P := P ∪ {last′ −→ Qnew}, and last := Qnew;

Proposition 1. The set of conversations allowed by an AUML sequence dia-
gram is a regular language.

Proof. The Algorithm 1 produces a right linear grammars (variables appear only
at the rigth end of productions), so the generated language is regular [20].

By this translation we give to the set of conversations encoded by the se-
quence diagram a structural semantics (although no semantics is given to the
single speech acts). The grammar could, then, be translated into a finite-state
automaton, another formal tool often used to represent interaction protocols, as
mentioned in the introduction. As a last observation, the produced grammar may
contain redundancies and could be simplified using standard algorithms [20].

Consider, as an example, the sequence diagram in Fig. 1: it represents an
interaction protocol with two agent roles (Customer, cus, and Service Provider,
sp): the protocol rules the interaction of a cinema booking service with each of
its customers, and will be used as a running example along the paper. Suppose,
now, to have a DyLOG implementation of the specification given by the diagram.
The technique that we apply for verifying if it is conformant (w.r.t. the defini-
tions given in Section 3) to the specifications, intuitively works as follows. If

206 M. Baldoni et al.

we can prove that all the conversations produced by the implementation belong
to the language generated by the grammar into which the specification can be
translated (see Fig. 1), then the implementation can be considered conformant.

3.2 Three Degrees of Conformance

We have shown how AUML sequence diagrams can be translated into regular
grammars. By interpreting the problem of conformance as a problem of formal
language inclusion, we will describe a method for automatically verifying the
strongest of the three degrees of conformance (protocol conformance). The ver-
ification of protocol conformance is shown to be decidable and an upper bound
of its complexity is given.

Definition 1 (Agent conformance). Let D = (Π, CKitagi , S0) be a domain
description, pdylog ∈ CKitagi be an implementation of the interaction protocol
pAUML defined by means of an AUML sequence diagram. Moreover, let us define
the set

Σ(S0) = {σ | (Π, CKitagi , S0) � 〈pdylog〉� w. a. σ}

We say that the agent described by means of D is conformant to the sequence
diagram pAUML if and only if

Σ(S0) ⊆ L(GpAUML
) (6)

In other words, the agent conformance property holds if we can prove that every
conversation, that is an instance of the protocol implemented in our language (an
execution trace of pdylog), is a legal conversation according to the grammar that
represents the AUML sequence diagram pAUML; that is to say that conversation
is also generated by the grammar GpAUML

.
The agent conformance depends on the initial state S0. Different initial states

can determine different possible conversations (execution traces). One can define
a notion of agent conformance that is independent from the initial state.

Definition 2 (Agent strong conformance). Let D = (Π, CKitagi , S0) be a
domain description, let pdylog ∈ CKitagi be an implementation of the interaction
protocol pAUML defined by means of an AUML sequence diagram. Moreover, let
us define the set

Σ =
⋃
S

Σ(S)

where S ranges over all possible initial states. We say that the agent described
by means of D is strongly conformant to the sequence diagram pAUML if and
only if

Σ ⊆ L(GpAUML) (7)

The agent strong conformance property holds if we can prove that every con-
versation for every possible initial state is a legal conversation. It is obvious by
definition that agent strong conformance (7) implies agent conformance (6).

Verifying Protocol Conformance for Logic-Based Communicating Agents 207

Agent strong conformance, differently than agent conformance, does not de-
pend on the initial state but it still depends on the set of speech acts defined
in CKitagi . In fact, an execution trace σ is built taking into account test actions
and the semantics of the speech acts (defined by executability precondition laws
and action laws).

A stronger notion of conformance should require that a DyLOG implemen-
tation is conformant to an AUML sequence diagram independently from the
semantics of the speech acts. In other world, we would like to prove a sort of
“structural” conformance of the implemented protocol w.r.t. the corresponding
AUML sequence diagram. In order to do this, we define a formal grammar from
the DyLOG implementation of a conversation protocol. In this process, the par-
ticular form of axiom, namely inclusion axiom, used to define protocol clauses
in a DyLOG implementation, comes to help us.

Algorithm 2 (Generating Gpdylog
) Given a domain description (Π, CKitagi , S0)

and a conversation protocol pdylog ∈ CKitagi = (ΠC ,ΠCP ,ΠSget), we define the
grammar Gpdylog

= (T, V, P, S), where:

– T is the set of all terms that define the speech acts in ΠC ;
– V is the set of all the terms that define a conversation protocol or a get

message action in ΠCP or ΠSget;
– P is the set of production rules of the form p0 −→ p1p2 . . . pn where 〈p0〉ϕ ⊂

〈p1; p2; . . . ; pn〉ϕ is an axiom that defines either a conversation protocol (that
belongs to ΠCP) or a get message action (that belongs to ΠSget). Note that,
in the latter case, we add a production rule for each alternative speech act
in Cget message see (5), moreover, the test actions Fs? are not reported in the
production rules;

– the start symbol S is the symbol pdylog.

Let us define L(Gpdylog
) as the language generated by means of the grammar

Gpdylog
.

Proposition 2. Given a domain description (Π, CKitagi , S0) and a conversa-
tion protocol pdylog ∈ CKitagi = (ΠC ,ΠCP ,ΠSget), L(Gpdylog

) is a context-free
language.

Proof. The proposition follows from the fact that Gpdylog
is a context-free gram-

mar (CFG).

Intuitively, the language L(Gpdylog
) represents all the possible sequences of

speech acts (conversations) allowed by the DyLOG protocol pdylog independently
from the evolution of the mental state of the agent. For example, clause (a) of
get cinema ticketC presented in the previous section is represented as follows:

get cinema ticketC(cus, sp, movie) −→
yes no queryQ(cus, sp, available(movie))
get info(cus, sp, cinema(c))
yes no queryI(cus, sp, pay by(credit card))
inform(cus, sp, cc number)
get info(cus, sp, booked(movie))

208 M. Baldoni et al.

Definition 3 (Protocol conformance). Given a domain description DD =
(Π, CKitagi , S0), let pdylog ∈ CKitagi be an implementation of the interaction
protocol pAUML defined by means of an AUML sequence diagram. We say that
pdylog is conformant to the sequence diagram pAUML if and only if

L(Gpdylog
) ⊆ L(GpAUML

) (8)

We then interpret the verification of conformance as a containment of formal
languages problem; in particular, that a CFL is included in a regular language.
By doing so, we verify the structural matching of the implementation to the
specification.

Proposition 3. Protocol conformance (8) implies agent strong conformance
(7) and the latter implies agent conformance (6).

Proof. It is sufficient to prove that Σ ⊆ L(Gpdylog
). We give a sketch of proof.

Actually, let us consider the application of proof rule (1) and (4) in the proof of
(Π, CKitagi , S0)�ps〈pdylog〉� w.a. σ, it is possible to build a derivation pdylog ⇒∗
σ where each derivation step is determined by selecting the production rule that
is obtained from the inclusion axiom of the the corresponding rule (1) and (4)
that has been applied. This shows that σ ∈ L(Gpdylog

). The second part of the
proposition trivially derives from definitions.

Proposition 4. Protocol conformance is decidable.

Proof. Equation (8) is equivalent to L(Gpdylog
)∩L(GpAUML

) = ∅. Now, L(Gpdylog
)

is a CFL while L(GpAUML
) is a regular language. Since the complement of a reg-

ular language is still regular, L(GpAUML
) is a regular language. The intersection

of a CFL and a regular language is a CFL. For CFLs, the emptyness is decidable
[20].

Proposition 4 tells us that an algorithm for verifying protocol conformance ex-
ists. In [13, 8] a procedure to verify the containment property of a CFL in a regu-
lar language is given, that takes O(|PGpdylog

|·|VGpAUML
|3) time and O(|PGpdylog

|·
|VGpAUML

|2) space.

Example 2. Let us consider the yes no queryI DyLOG procedure, presented in
Section 2.2, clauses (g)-(j). In the case in which Fluent holds available(movie),
Algorithm 2 produces the following grammar Gyes no queryI dylog

:

yes no queryI(cus, sp, available(movie)) −→
get start(cus, sp, available(movie)) refuseInform(cus, sp, available(movie))

yes no queryI(cus, sp, available(movie)) −→
get start(cus, sp, available(movie)) inform(cus, sp, available(movie))

yes no queryI(cus, sp, available(movie)) −→
get start(cus, sp, available(movie)) inform(cus, sp,¬available(movie))

get start(cus, sp, available(movie)) −→
queryIf(cus, sp, available(movie))

Verifying Protocol Conformance for Logic-Based Communicating Agents 209

It is easy to see that the language produced by it is the following and that it
contains three possible conversations:

L(Gyes no queryI dylog
) = {

queryIf(cus, sp, available(movie))refuseInform(cus, sp, available(movie)),
queryIf(cus, sp, available(movie))inform(cus, sp, available(movie)),
queryIf(cus, sp, available(movie))inform(cus, sp,¬available(movie)) }

The grammar Gyes no queryI AUML
, obtained starting from the AUML specification

of the protocol, is similar to the one shown in Fig. 1, productions from Q1 through
Q7, where Q7 produces ε instead of Q8. The language L(Gyes no queryI AUML

) con-
tains the same conversations of L(Gyes no queryI dylog

), therefore the protocol con-
formance trivially holds. This is a structural conformance, in the sense that no
information about the agent private state is taken into account nor the semantics
of the speech acts is.

Now, the speech acts might have different semantics (different preconditions
or effects); for instance, we can imagine two inform implementations, the first
can be executed when the informer knows a certain fact, the other when it
knows a fact and it believes that the querier does not know it. Depending on its
semantics, an inform act might or might not be executed in a given agent mental
state. Thus, generally, the interaction dynamics of the speech act semantics
and the agent belief states might enable or disable conversations even when
using the same agent policy. Nervertheless, since protocol conformance holds,
by Proposition 3 we can state that the obtained conversations will always be
legal w.r.t. the AUML specification; the private information of the agent and the
semantics of the speech acts will, at most, reduce the set of possible conversations
but they will never introduce new, uncorrect sequences.

4 Conclusions and Related Work

In this work we face the problem of verifying if the implementation of an inter-
action protocol as an internal policy of a logic-based agent is conformant to the
protocol abstract specification, in the special case of DyLOG agents implementing
AUML specifications. We have taken advantage from the logical representation
of protocols in DyLOG as inclusion axioms, by interpreting the conformance
problem as a problem of language inclusion.

Verifying the conformance of protocol implementations is a crucial problem
in an AOSE perspective, that can be considered as a part of the process of engi-
neering interaction protocols sketched in [21]. In this perspective the techniques
discussed along our paper, actually, suggest a straightforward methodology for
directly implementing protocols in DyLOG so that conformance to the AUML
specification is respected. In fact, we can build our implementation starting from
the grammar GpAUML , and applying the inverse of the process that we described
for passing from a DyLOG implementation to the grammar Gpdylog

. In this way
we can obtain a skeleton of a DyLOG implementation of pAUML that is to be

210 M. Baldoni et al.

completed by adding the desired ontology for the speech acts and customized
with tests. Such an implementation trivially satisfies protocol conformance and,
then, all the other degrees of conformance.

The problem of checking the agent conformance to a protocol in a logical
framework has been faced also in [12]. In [12] agent communication strategies
and protocol specification are both represented by means of sets of if-then rules
in a logic-based language, which relies on abductive logic programming. A notion
of weak conformance is introduced, which allows to check if the possible moves
that an agent can make, according to a given communication strategy, are legal
w.r.t. the protocol specification. The conformance test is done by disregarding
any condition related to the agent private knowledge, which is not considered
as relevant in order to decide weak conformance. On this respect, our notion
of conformance is similar to the notion of agent weak conformance described
above. However, our approach allows to tackle a broader class of protocols: we
are not restricted to protocols that sequentially alternate the dialogue moves
of the agents. Furthermore, while in [12] conformance avoids to deal with the
dialogue history, our notion of conformance takes into account the whole context
of the conversation, due to the fact that it considers sequences of dialogue acts.
This can be done thanks to the modal logic framework, which allows to naturally
deal with contexts.

Moreover, our framework allows us to give a finer notion of conformance,
for which we can distinguish different degrees of abstraction with respect to the
agent private mental state. This allows us to decide which parts of a protocol
implementation must fit the protocol specification and to describe in a modu-
lar way how the protocol implementation can be enriched with respect to the
protocol specification, without compromising the conformance. Such an enrich-
ment is important when using logic agents, whose ability of reasoning about the
properties of the interactions among agents before they actually occur, may be
a powerful tool for supporting MAS designers.

So far we have focussed on the conformance of the policies of a single agent to
a protocol specification. A current research issue that we are studying concerns
the conditions by which our notion of conformance can be proved compositional.
Intuitively, given two agent policies that are conformant to the same protocol
and that encode the different roles foreseen by it, it would be interesting to prove
that the actual interaction of the two agents will also be conformant.

Some authors (e.g. [29]) have proposed a different approach to agent commu-
nication, the social approach, in which communicative actions affect the “social
state” of the system, rather than the internal states of the agents. The social state
records the social facts, like the permissions and the commitments of the agents,
which are created and modified along the interaction. Different approaches en-
able different types of properties to be proved [19]. For instance the mental ap-
proach is not well suited for the verification of open multi-agent systems, where
the history of communications is observable, but the internal states of the single
agents may not be accessed [29]. Therefore the social approach is taken in works
such as the one in [1], where an open society of agents is considered and the prob-

Verifying Protocol Conformance for Logic-Based Communicating Agents 211

lem of verifying on the fly the compliance of the agents’ behavior to protocols
specified in a logic-based formalism (Social Integrity Constraints) is addressed
by taking the point of view of an external entity that detects faulty behaviors.

Acknowledgement. The authors would like to thank Dr. Giuseppe Berio for
the discussion about Agent UML.

References

1. M. Alberti, D. Daolio, P. Torroni, M. Gavanelli, E. Lamma, and P. Mello. Speci-

fication and verification of agent interaction protocols in a logic-based system. In

H. Haddad, A. Omicini, R. L. Wainwright, and L. M. Liebrock, editors, Proc. of the
2004 ACM Symposium on Applied Computing, SAC 2004, pages 72–78, Nicosia,

Cyprus, 2004. ACM.

2. M. Baldoni. Normal Multimodal Logics with Interaction Axioms. In D. Basin,

M. D’Agostino, D. M. Gabbay, S. Matthews, and L. Viganò, editors, Labelled De-
duction, volume 17 of Applied Logic Series, pages 33–53. Applied Logic Series,

Kluwer Academic Publisher, 2000.

3. M. Baldoni, C. Baroglio, A. Martelli, and V. Patti. Reasoning about self and others:

communicating agents in a modal action logic. In C. Blundo and C. Laneve, editors,

Theoretical Computer Science, 8th Italian Conference, ICTCS’2003, volume 2841

of LNCS, pages 228–241, Bertinoro, Italy, October 2003. Springer.

4. M. Baldoni, L. Giordano, and A. Martelli. A Tableau Calculus for Multimodal

Logics and Some (un)Decidability Results. In H. de Swart, editor, Proc. of
TABLEAUX’98, volume 1397 of LNAI, pages 44–59. Springer-Verlag, 1998.

5. M. Baldoni, L. Giordano, A. Martelli, and V. Patti. Programming Rational Agents

in a Modal Action Logic. Annals of Mathematics and Artificial Intelligence, Special
issue on Logic-Based Agent Implementation, 41(2-4):207–257, 2004.

6. M. Barbuceanu and M.S. Fox. Cool: a language for describing coordination in

multiagent systems. In the 1st Int. Conf. on Multi-Agent Systems (ICMAS-95).
AAAI Press, 1995.

7. J. Bentahar, B. Moulin, J. J. Ch. Meyer, and B. Chaib-Draa. A computational

model for conversation policies for agent communication. In this volume.

8. A. Bouajjani, J. Esparza, A. Finkel, O. Maler, P. Rossmanith, B. Willems, and

P. Wolper. An efficient automata approach to some problems on context-free

grammars. Information Processing Letters, 74(5–6):221–227, 2000.

9. A. Bracciali, P. Mancarella, K. Stathis, and F. Toni. On modelling declaratively

multiagent systems. In Leite et al. [25], pages 76–92.

10. L. Cabac and D. Moldt. Formal semantics for auml agent interaction protocol

diagrams. In Proc. of AOSE 2004, 2004.

11. R. S. Cost, Y. Chen, T. Finin, Y. Labrou, and Y. Peng. Modeling agent conver-

sation with colored petri nets. In Autonomous Agents Workshop on Conversation
Policies, 1999.

12. U. Endriss, N. Maudet, F. Sadri, and F. Toni. Logic-based agent communication

protocols. In F. Dignum, editor, Advances in agent communication languages,
volume 2922 of Lecture Notes in Artificial Intelligence (LNAI), pages 91–107.

Springer-Verlag, 2004.

212 M. Baldoni et al.

13. J. Esparza, P. Rossmanith, and S. Schwoon. A uniform framework for problems

on context-free grammars. EATCS Bulletin, 72:169–177, October 2000.

14. L. Fariñas del Cerro and M. Penttonen. Grammar Logics. Logique et Analyse,
121-122:123–134, 1988.

15. M. Finger, M. Fisher, and R. Owens. Metatem: modeling reactive systems us-

ing executable temporal logic. In the Int. Conf. on Industrial and Engineering
Applications of Artificial Intelligence and Expert Systems (IEA-AIE), 1993.

16. M. Fisher and M.J. Wooldridge. Specifying and executing protocols for coopera-

tive actions. In the Int. Working Conf. on Cooperative Knowledge-Based Systems
(CKBS-94), 1994.

17. Foundation for InteroPerable Agents. Fipa modeling: Interaction diagrams. Tech-

nical report, 2003. Working Draft Version 2003-07-02.

18. L. Giordano, A. Martelli, and C. Schwind. Verifying communicating agents by

model checking in a temporal action logic. In J. Alferes and J. Leite, editors, 9th
European Conference on Logics in Artificial Intelligence (JELIA’04), volume 3229

of LNAI, pages 57–69, Lisbon, Portugal, Sept. 2004. Springer-Verlag.

19. F. Guerin and J. Pitt. Verification and Compliance Testing. In H.P. Huget,

editor, Communication in Multiagent Systems, volume 2650 of LNAI, pages 98–

112. Springer-Verlag, 2003.

20. J. E. Hopcroft and J. D. Ullman. Introduction to automata theory, languages, and
computation. Addison-Wesley Publishing Company, 1979.

21. M. P. Huget and J.L. Koning. Interaction Protocol Engineering. In H.P. Huget,

editor, Communication in Multiagent Systems, volume 2650 of LNAI, pages 179–

193. Springer-Verlag, 2003.

22. M. Kacprzak, A. Lomuscio, and W. Penczek. Verification of multiagent systems via

unbounded model checking. In Proc. of the 3rd Int. Joint Conf. on Autonomous
Agents and Multiagent Systems (AAMAS04), New York, NY, USA, 2004.

23. J.-L. Koning, G. Franois, and Y. Demazeau. Formalization and pre-validation for

interaction protocols in multiagent systems. In the 13th European Conference on
Artificial Intelligence (ECAI-98), 1998.

24. K. Kuwabara, T. Ishida, and N. Osato. Agentalk : describing multiagent coordina-

tion protocols with inheritance. In 7th Int. Conf. on Tools for Artificial Intelligence
(ICTAI-95), 1995.

25. J. Leite, A. Omicini, P. Torroni, and P. Yolum, editors. Int. Workshop on Declara-
tive Agent Languages and Technology, New York City, NY, USA, July 2004. Volume

3476 of LNAI. Springer-Verlag, 2005.

26. H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. B. Scherl. GOLOG: A

Logic Programming Language for Dynamic Domains. J. of Logic Programming,
31:59–83, 1997.

27. J. Odell, H. V. D. Parunak, and B. Bauer. Extending UML for agents. In Pro-
ceedings of the Agent-Oriented Information System Workshop at the 17th National
Conference on Artificial Intelligence. 2000.

28. L. R. Pokorny and C. R. Ramakrishnan. Modeling and verification of distributed

autonomous agents using logic programming. In Leite et al. [25], pages 172–187.

29. M. P. Singh. A social semantics for agent communication languages. In Proc. of
IJCAI-98 Workshop on Agent Communication Languages, Berlin, 2000. Springer.

30. C. Walton. Model checking agent dialogues. In Leite et al. [25], pages 156–171.

An Application of Global Abduction
to an Information Agent

Which Modifies a Plan Upon Failure
- Preliminary Report -

Ken Satoh

National Institute of Informatics,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, 101-8430, Japan

ksatoh@nii.ac.jp

Abstract. This paper proposes an implementation of an information
agent in a new form of abductive logic programming called global ab-
duction [11]. We consider an information agent which performs not only
information gathering, but also actions which update the outside world.
However, since the success of the actions is not guaranteed, the agent
might encounter a failure of some action. In this case, the agent needs to
modify an alternative plan with consideration to the side-effects caused
by the already-executed actions. In this paper, we solve the problem of
such plan modification by using global abduction. Global abduction is a
new form of abduction whose abducibles can be referred to in any search
path once abduced. This mechanism is used to propagate information
about already-executed actions so that we can modify an alternative plan
to accommodate side-effects caused by the already-executed actions.

1 Introduction

Thanks to the Internet, human activity within cyber-space has become accel-
erated and sometimes beyond one’s ability to control. Therefore, support by
information agents has become very important. However, current research on
information agents is mainly limited to “information gathering” which aids one
element of human activity within the cyber-space. Another important aspect of
information manipulation is updating outside information sources such as mak-
ing online-reservations or ordering a product online. The most distinguishing
property of such updating actions is that they may include side-effects to the
outside world and therefore these updates may influence the agents’ subsequent
activity.

To make things more complicated, there are a lot of uncertainties on the
success of such updates. In other words, even though agents can make a plan
to achieve a given goal, they cannot guarantee that the plan will always be
successful since they may rely on some assumptions about the outside world. For
example, suppose that an agent makes a schedule for a user’s trip abroad. The

J. Leite and P. Torroni (Eds.): CLIMA V, LNAI 3487, pp. 213–229, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

214 K. Satoh

agent would create a plan to ask an airplane company to make a reservation of a
flight and to ask a hotel to make a reservation for the accommodation. However,
one of these reservations might fail since we do not know whether there are any
vacancies on the flight or the hotel. This means that there might be a failure
of information manipulation activity and therefore, we need to modify the plan
upon failure. However, already-executed actions might cause side-effects and we
need to care about such side-effects when we consider an alternative plan.

In this paper, we use the following motivating example:

1. An agent is asked to buy a good book on the subject of computers using a
credit card “card1” or “card2”.

2. We assume that the bank account associated with the credit card might not
contain enough money to buy the book.

3. The agent makes a plan which consists of logging-in to a site selling books
and searching for a book on the subject of computers, and purchasing a copy
with a credit card.

4. The agent logs in to a site selling books (called “amazon”) with a user ID
associated with a credit card.

5. Suppose that the agent logs in as the user of credit card “card1”.
6. The agent asks for a good book on the subject of computers to the “amazon”

site and the site returns information about a book (named “linux”).
7. The agent tries to purchase a copy of the book using the credit card “card1”.
8. It turns out that the bank account for “card1” cannot be used because the

account does not contain enough money to buy the book.
9. The agent backtracks to make an alternative plan to purchase the book by

using the other credit card “card2”.
10. However, the agent has to log-in with a user ID associated with “card2”. We

assume that the system does not allow double logging-in and so, the agent
must log-out first and then log-in to “amazon” again as the user of “card2”.

11. Since the agent already knows about a good book on computers (“linux”),
the agent avoids searching for the book again.

12. The agent directly proceeds to purchase the book by using the credit card
“card2”.

The characteristics of a problem class considered in this paper are as follows:

– There is a failure in the plan (authorization of “card1”) which could not
have been anticipated when the plan was first executed.

– An agent makes actions with side-effects (an agent logs-in as the user of
“card1”).

– An agent changes the plan on the fly when failure occurs.
– An agent must consider the side-effects from the already-executed actions

when changing the plan (an agent logs-out as the user of “card1” and then
logs-in as another user associated with “card2”).

– An agent can make use of these side-effects in the changed plan (a result of
search of a book on the computer is reused).

An Application of Global Abduction to an Information Agent 215

There are many research issues involved in making an agent do tasks such as
the above.

– How to propagate the information gained from already-executed actions in
one plan to alternative plans?

– How to identify the exact situation when the failure in execution of the plan
occurs?
(In the working example, the agent itself had to figure out whether the agent
had already logged in or not.)

– How to make a new plan at the failure point?
(e.g. what does the agent do in order to purchase the book when it turns
out that “card1” is not authorized?)

– What are the semantics for this agent’s behaviour in order to consider the
correctness of the agent’s internal mechanism?

We solve the above problem by introducing a new form of abduction in logic
programming called global abduction [11]. In the previous abductive logic pro-
gramming framework (see [6] for a comprehensive survey), we use abduction
to complement unknown information when the derivation of a goal needs such
hypotheses. However, these hypotheses are valid only in the derivation path to
achieve the goal and there is no influence on the other search path. We call this
type of abduction local abduction.

For global abduction, we introduce a global belief state, a store of global
information, which can be accessed from any search path, and two annotations,
announce(P) and hear(P). announce(P) asserts a ground literal P in the global
belief state. After announce(P) is executed, P becomes true globally as if it was
asserted in the beginning of the execution. This means P is abduced not only
in the search path where the announcement is done, but also propagated to the
other search paths as if it were true in the beginning. hear(P) is used to see the
truth value of P in a global belief state. If P has already been announced in the
global belief state by announce(P), hear(P) is succeeded. If the complement of P
has already been announced in the global belief state, hear(P) fails. Otherwise,
the execution related with hear(P) is suspended and other derivation path will
be traversed.

Using global abduction, we can solve the above problem class as follows.

– How to propagate already-executed actions in one plan to another plan? ⇒
These actions are regarded as abducibles for global abduction. Every time
an action with side-effects is performed, information about such actions is
propagated to other alternative plans by announcing these abducibles.

– How to identify the exact situation when the failure in execution of the plan
occurs? ⇒ By hearing abducibles representing already-executed actions, we
can detect these actions and simulate these actions in alternative paths to
modify a new plan.

– How to make a new plan at the failure point? ⇒ We consider an alternative
plan by backtracking to the choice point and modify the alternative plan if
necessary according to the side effects of the already-executed actions.

216 K. Satoh

– What are the semantics for this agent behaviour to talk about the correct-
ness of the agent’s internal mechanism? ⇒ We use the semantics of global
abduction called “all’s well that ends well (AWW) principle” which
means that if we add the last set of abduced atoms to the initial program,
the same result is derived by the usual SLDNF procedure.

�

�

�

�

� �

PLAN LIBRARY

�

�

�

�

� �

MODIFICATION RULES

�

�

�

�

� �

PAST ACTION INFORMATION

�

�

�

�START

SELECT A PLAN

MODIFY A PLAN

EXECUTE ACTION

RECORD ACTION

������������������������ACTION SUCCEEDED?
no

	

yes

������������������������ PLAN FINISHED?
no

yes
�

�

�

�END

Fig. 1. Plan Execution with Plan Modification upon Failure

One of the key ideas presented in this paper is plan modification. In Fig. 1, we
show how to execute a plan with plan modification upon failure. We select a plan
from a plan-library to achieve a given goal. Then, we check whether there exist
the past executed actions. If such past actions exist, we modify the plan according
to plan modification rules. After a modification, we execute a modified plan and
record actions during the plan execution. If an action in the plan fails, then
we select another plan and modify the plan according to the already-executed
actions. We iterate through the above process until all the execution of actions
in the plan are performed. This is a different modification method from the

An Application of Global Abduction to an Information Agent 217

one considered in [9]. In [9], they consider generating a modified plan from the
current plan using action-effect rules while we use plan modification rules which
directly modify a plan without action-effect rules.

We implement this idea by global abduction in logic programming. We back-
track to the choice point upon failure of actions and then consider an alternative
plan. However, there might be some side-effects which influence the alternative
plan. If so, we modify an alternative plan to accommodate these side-effects.
To check such side-effects, we announce the already-executed actions in other
alternative paths by global abduction. Then, in other alternative paths, we refer
to these actions using hearing literals, and consider a modification of alternative
plans.

The structure of the paper is as follows. In Section 2, we review (slightly
modified) framework of global abduction and show a solution of the motivating
example using global abduction. Then, we review semantics of the framework and
a correct proof procedure of the framework w.r.t. the semantics. In Section 3, we
show an execution trace of the motivating example. In Section 4, we discuss the
related works, and we summarize our contributions and discuss future research
in Section 5.

2 Global Abduction

We give an adapted formalization of global abduction used for a solution of the
working example. The difference between global abduction in [11] and this paper
is that we introduce a “cut” operator1 and omit integrity constraints and impose
an evaluation strategy of goals which are used in PROLOG; a depth-first search
with right-to-left evaluation of the body of the rule and top-to-bottom trial over
rules.

2.1 Framework of Global Abduction

Definition 1. A global abductive framework GA is the following tuple 〈B,P〉
where

– B is a set of predicates called belief predicates.
Let A be an atom with belief predicate. We call A a positive belief literal, or
a belief atom and ¬A a negative belief literal. We call a literal of the above
form belief literal. Let Q be a belief literal. We introduce annotated liter-
als announce(Q) and hear(Q) called announcing literal and hearing literal
respectively. We say that announce(Q) contains Q and hear(Q) contains Q.

– P is a set of rules of the form:

H: −B1, B2, ..., Bn.

1 Note that in [11], we show how to implement “cut” in global abduction with integrity
constraints. Thus, the introducing “cut” does not cause any extra control mechanism.
In this paper, however, we omit the detail for simplicity.

218 K. Satoh

where
• H is an ordinary atom which is neither an annotated literal, an equality

literal nor a belief literal.
• each of B1, ..., Bn is an ordinary atom, or an annotated literal, or an

equality literal of the form t = s, or a disequality literal of the form t �= s
or ’!’ (called a cut operator).

We call H a head denoted as head(R) and B1, ..., Bn a body denoted as
body(R). If there are no atoms in the body, body(R) = ∅.

Intuitively, annotated literals have the following meaning.

– For global abduction, we introduce a global belief state, a store of global
information, which can be accessed from any search path.

– Announcing literal announce(L) is an assertion of a ground positive/negative
belief L to the global belief state. This means while we traverse a search space
to achieve a goal, some of the facts are added by the program itself. Then,
from another search path, we can access this addition using a hearing literal.
Therefore, L is “globally” abduced by announce(L).

– Hearing literal hear(L) is a check of a ground positive/negative belief L in
the current belief state. If L is included in the current belief state, hear(L)
coincides with the truth value of L w.r.t. the current belief state. Else if
L is not included in the current belief state, the truth value of hear(L) is
undefined and the evaluation is postponed.

The following program shows a solution to the motivating example of book
purchase2

Example 1. Rules for plan generation:

plan(Genre,card1,Plan):-
modify_plan(

[login(id1),book_search(Genre,Book),purchase(Book,card1)],
Plan).

plan(Genre,card2,Plan):-
modify_plan(

[login(id2),book_search(Genre,Book),purchase(Book,card2)],
Plan).

The above rules represent two alternative plans that an agent logs in either as
id1 (associated with card1) or id2 (associated with card2) and then searches
for a book on the genre specified as Genre. However, we have to check whether
there were any previous actions which influence the current plan. If so, we make
a plan modification according to the following rules.

2 Note that a string starting with an upper case is a variable and a string starting
with an lower case is a constant.

An Application of Global Abduction to an Information Agent 219

Rules for Plan Modification

modify_plan([],[]):-!.

modify_plan([login(ID)|Plan],[login(ID)|RevisedPlan]):-
hear(logged_in(ID1)),ID=/=ID1,hear(logged_out(ID1)),!,
modify_plan(Plan,RevisedPlan).

modify_plan([login(ID)|Plan],[logout(ID1),login(ID)|RevisedPlan]):-
hear(logged_in(ID1)),ID=/=ID1,!,
modify_plan(Plan,RevisedPlan).

modify_plan([login(ID)|Plan],[login(ID)|RevisedPlan]):-!,
modify_plan(Plan,RevisedPlan).

modify_plan([book_search(Genre,Book)|Plan],RevisedPlan):-
hear(book_searched(Genre,Book)),!,
modify_plan(Plan,RevisedPlan).

modify_plan([book_search(Genre,Book)|Plan],
[book_search(Genre,Book)|RevisedPlan]):-!,

modify_plan(Plan,RevisedPlan).

modify_plan([purchase(Book,Card)|Plan],
[purchase(Book,Card)|RevisedPlan]):-!,

modify_plan(Plan,RevisedPlan).

For a plan for the login action, we firstly ensure that the agent currently does
not log in as another ID. If there is a history that the agent logged in, we also
check that the agent has already logged out. If so (in the second rule), there is
no modification in a plan so that the agent directly logs in, otherwise (in the
third rule), we add the logout action before logging in. If there is no such history
(in the fourth rule), we do not need to change the plan 3

The fifth and sixth rules are for an action of searching for a book. The fifth
rule is a deletion of redundant search of a book. If a book has already been
searched for the genre Genre, the agent no longer searches for another book for
the genre. We use a hearing literal for book searched(Genre,Book) for such a
check. If a book has already been searched for, we modify the plan by deleting
the action of search. Otherwise, we do not need to change the plan. Note that
since we adopt the top-bottom trial strategy, we should check in the first place
whether the search of a book has been done so that we can guaranteed that
there has been no such search when we execute the sixth rule.

The seventh rule is for an action of buying a book. We could put another
rule to avoid the redundant purchase like search action, but we omit the rule for
simplicity.

3 Precisely speaking, if we have a history of multiple log-ins, we need to keep a cor-
respondence between log-in’s and log-out’s. However, we do not consider here for
simplicity.

220 K. Satoh

Rules for execution:

execute([]):-!.
execute([login(ID)|Plan]):-

login(ID),execute(Plan).
execute([logout(ID)|Plan]):-

logout(ID),execute(Plan).
execute([book_search(Genre,Book)|Plan]):-

book_search(Genre,Book),execute(Plan).
execute([purchase(Book,Card)|Plan]):-

purchase(Book,Card),execute(Plan).

Rule for logging-in amazon site:

login(ID):-!,
announce(action(login(ID))@amazon),announce(logged_in(ID)).

announce(action(login(ID))@amazon) expresses that an action of logging-in
to amazon as ID and its history is recorded as logged in(ID) by announcing it
by global abduction.

Rule for logging-out from amazon site:

logout(ID):-!,
announce(action(logout(ID))@amazon),announce(logged_out(ID)).

Rule for searching books:

book_search(Genre,Book):-
hear(book_search(Genre,Book)@amazon),!,
announce(book_searched(Genre,Book)).

In this action, the search command is dispatched to amazon site and wait till the
site returns a book information. When the information is returned, the agent
announces it by global abduction of book searched(Genre,Book).

Rule for purchasing a book:

purchase(X,CARD):-
hear(authorize(CARD)@checker),!,
announce(action(purchase(X,CARD))@amazon).

The above rule checks whether the credit card CARD is authorized or not, if not,
it simply fails and otherwise, we submit a purchase command to amazon.

2.2 Semantics for Global Abduction

In this subsection, we briefly explain the semantics of global abduction. Readers
who would like to know the detail of the semantics, see [11].

We use the three-valued semantics of logic programs [1, 10] since the truth
value of the belief literals can be undefined when the current belief state does

An Application of Global Abduction to an Information Agent 221

not decide their truth values. We extend the three-valued least model so that
the semantic of the global abduction are indexed w.r.t. a belief state. A belief
state BS is the set of belief literals which represents agent’s belief. We define
truth-values of belief literals w.r.t. BS as follows:

– If a literal L in BS, L is said to be true w.r.t. BS.
– If the complement of a literal L in BS, L is said to be false w.r.t. BS.
– Otherwise L is said to be undefined w.r.t. BS.

Let P be sets of rules. We firstly replace announce(L) and hear(L) by a
corresponding belief literal L. We denote a set of ground rules obtained by
replacing all the variables in every rule of the resulting program by every term
in the language as ΠP . Then, we translate ΠP into another program ΠBS

P which
is reduced by BS as follows.

– We delete every rule in the program ΠP which contains a false belief literal
w.r.t. BS in the body.

– We delete every true literal w.r.t. BS and replace every undefined literal
w.r.t. BS by a special atom undef in the body of the remaining rules.

We assume that the truth value of undef is always “undefined”.
We also drop the “cut” operator since it does not influence the correctness

of the program. Then, the reduced program ΠBS
P is a normal logic program

which may have undef in the body. Then, we follow the three-valued least model
semantics [1] to give the truth value of an ordinary ground atom. We say that
the three-valued least model of ΠBS

P is the assumption-based three-valued least
model of P w.r.t. BS.

2.3 Proof Procedure

In this section we give a proof procedure which is correct in the above seman-
tics. The execution of global abductive framework is based on process reduction.
Intuitively, processes are created when a choice point of computation is encoun-
tered like case splitting. A process terminates successfully if all the computation
is done and the belief literals used in the process are not contradictory with the
last belief state. As the subsequent theorem shows, if we reflect the last belief
state BS to the program P by considering ΠBS

P , then the same result is obtained
by usual SLDNF procedure. Therefore, we call this principle “all’s well that ends
well (AWW)” principle in that we talk about the correctness at the last belief
state when we get an answer.

In the procedure, we reduce an active process into a new process. Reduction
for an ordinary atom is a usual goal reduction in logic programming and reduc-
tion for an announcing literal corresponds with an update of the belief state and
reduction for a hearing literal corresponds with an inquiry to the belief state.

Updating the belief state by an announcing literal may result in the suspen-
sion of the current executed process and change of the execution to an alternative
process.

222 K. Satoh

Preliminary Definitions
We define the following for explanation of the proof procedure.

Definition 2. A process is the following tuple 〈GS,BA,ANS〉 which consists
of

– GS: a set of atoms to be proved called a goal set.
– BA: a set of ground belief literals called belief assumptions.
– ANS: a set of instantiations of variables in the initial query.

A process expresses an execution status in a path in the search tree. The intuitive
meaning of the above objects is as follows:

– GS expresses the current status of computation.
– BA is a set of belief assumptions used during a process.
– ANS gives an answer for variables in the initial query.

We use the following two sets for process reduction.

Definition 3.

– A process set PS is a set of processes.
– A current belief state CBS is a belief state.

PS is a set of processes which express all the alternative computations con-
sidered so far, and CBS is the current belief state which expresses the agent’s
current belief.

Definition 4. Let 〈GS,BA,ANS〉 be a process and CBS be a current belief
state. A process is active w.r.t. CBS if for every L ∈ BA, L is true in CBS
and a process is suspended w.r.t. CBS otherwise.

If BA contradicts CBS, the execution of process is considered to be useless at
the current belief state and therefore, the process will be suspended.

Description of Proof Procedure
In the following reduction, we specify only changed PS, CBS as NewPS,
NewCBS; otherwise each PS,CBS is unchanged. We modified the proof proce-
dure in [11] to impose a PROLOG-like evaluation strategy in order to use “cut”
operator.

Initial Step: Let GS be the initial goal set.
We give 〈GS, ∅, ANS〉 to the proof procedure where ANS is a set of variables
in GS. That is, PS = {〈GS, ∅, ANS〉}. and let CBS be the initial set of belief
literals.

Iteration Step: Do the following.
Case 1 If there is an active process 〈∅, BA,ANS′〉 w.r.t. CBS in PS, return

instantiation for variables ANS′ and the current belief state CBS.
Case 2 If PS is empty, return “failure”.

An Application of Global Abduction to an Information Agent 223

Case 3 Select the most recently added active process 〈GS,BA,ANS〉 w.r.t.
CBS from PS and select a left-most literal L (an ordinary atom, or an
equality atom, or a disequality atom, or an annotated literal or “cut”
operator) in GS which satisfies one of the conditions in the following
subcase. If there is no such process, return “floundering”.
Let PS′ = PS − {〈GS,BA,ANS〉} and GS′ = GS − {L}.
Case 3.1 If L is an ordinary atom,

append the following processes to PS′ to from NewPS:
{〈({body(R)} ∪ GS′)θ,BA,ANSθ〉|

R ∈ P and ∃most general unifier(mgu) θ s.t. head(R)θ = Lθ}
in the order of matched rules in the program.

Case 3.2 If L is an equality atom t = s,
Case 3.2.1 if there is an mgu θ between t and s, then NewPS =

{〈GS′θ,BA,ANSθ〉} ∪ PS′

Case 3.2.2 else if there is no such mgu, then NewPS = PS′.
Case 3.3 If L is an disequality atom t �= s, and t and s are ground

terms,
Case 3.3.1 if t and s are different ground terms then NewPS =

{〈GS′, BA,ANS〉} ∪ PS′

Case 3.3.2 else if t and s are identical terms, then NewPS = PS′.
Case 3.4 If L is a hearing literal hear(Q) and there is a ground instance

of Q in CBS, then NewPS = {〈GS′, BA ∪ {Q}, ANS〉} ∪ PS′.
Case 3.5 If L is a ground announcing literal announce(A), then

NewPS = {〈GS′, BA ∪ {A}, ANS〉} ∪ PS′, and
NewCBS = CBS\{A} ∪ {A}.

Case 3.6 If L is the “cut” operator “!”, then we delete all alternatives
reduced to the body of alternative rules competing with the rule
which contains the above cut.

”All’s Well that Ends Well (AWW)” Principle
The following theorem shows correctness of the above procedure. The theorem
intuitively means that when we receive an answer of execution, the answer is
correct in the assumption-based three-valued model w.r.t. the program and the
final belief state. This is an idea of AWW principle.

Let ANS′ be an instantiation of the variables and GS be the initial goal. We
write GS ◦ANS′ as the goal obtained from GS by replacing variables in GS by
corresponding term in ANS′. Let M be the assumption-based least three-valued
model of the program w.r.t. a belief state. and {L1, ..., Ln} be a set of ground
literals. We write M |= {L1, ..., Ln} if Li is true in M .

Theorem 1. Let GA be a global abductive framework 〈B,P〉. Let GS be an
initial goal set. Suppose that an instantiation of the variables ANS′ and the
current belief state CBS are returned. Let M be the assumption-based three-
valued model of P w.r.t. CBS. Then, M |= GS ◦ ANS′.

A proof of Theorem 1 can be found in [11].

224 K. Satoh

3 Execution of Global Abduction

We show an execution trace of Example 1 using the above proof procedure. Since
no belief literal changes its truth-value once announced in the example, we omit
belief assumptions of a process, and show only goal sets.

1. The agent starts from the following initial goal meaning that the agent firstly
makes a plan and then executes the plan.
plan(computer,Card,Plan),execute(Plan)

2. The goal is reduced to two alternative plans. Firstly, the agent considers the
following goal of a plan using the credit card card1.
modify plan(
[login(id1),book search(computer,Book),purchase(Book,card1)],
Plan),

execute(Plan)
3. To check whether the agent should modify the plan related with logging-in

action, the agent checks the three rules for the logging-in action, but since
there is no information that the agent logged-in, the first and the second rules
are suspended and the third rule is selected and the plan is not modified.
!,modify plan(
[book search(computer,Book),purchase(Book,card1)],
RevisedPlan),

execute([login(id1)|RevisedPlan])
4. By executing a cut “!”, the suspended goals associated with the first and the

second rules of logging-in is deleted.
modify plan(

[book search(computer,Book),purchase(Book,card1)],
RevisedPlan), execute([login(id1)|RevisedPlan])

5. To check whether the agent has to modify the plan related with searching
for a book, the agent first checks by using hearing literal in the first rule of
searching for books whether a book search has been already performed or
not. This time there is no such information about the current belief state,
and so, the first rule of searching for books is suspended and the second rule
is used to reduced the goal.
!,modify plan([purchase(Book,card1)],RevisedPlan1),
execute([login(id1),book search(computer,Book)|RevisedPlan1])

6. By executing a cut “!”, the suspended goals associated with the first rule of
searching for books is deleted.
modify plan([purchase(Book,card1)],RevisedPlan1),
execute([login(id1),book search(computer,Book)|RevisedPlan1])

7. Since there is no modification rule of the purchase action, we reduce the goal
without any modification of the action.
execute(
[login(id1),book search(computer,Book),purchase(Book,card1)])

8. The agent logs in as id1.
login(id1),
execute([book search(computer,Book),purchase(Book,card1)])

An Application of Global Abduction to an Information Agent 225

9. The agent executes an action of logging-in by sending a login command to
amazon, and announcing a history of the logging-in as id1.
!,announce(action(login(id1))@amazon),announce(logged in(id1)),
execute([book search(computer,Book),purchase(Book,card1)])

10. The agent executes a book-search action.
book search(computer,Book),execute([purchase(Book,card1)])

11. To search for a book, the agent asks amazon whether there is a good book
on computer by the hearing predicate of

book search(computer,Book)@amazon,
and then announces a history that the agent knows about a good book on
computer.
hear(book search(computer,Book)@amazon),
!,announce(book searched(computer,Book)),
execute([purchase(Book,card1)])

12. We assume that amazon returns a book linux. Then, the agent purchases
the book with card1.
purchase(linux,card1),execute([])

13. To purchase the book titled linux, the agent needs to ask a checker agent
in order to confirm that card1 is authorized.
hear(authorize(card1)@checker),
!,announce(action(purchase(linux,card1))@amazon),
execute([])

14. Suppose that this plan is failed because the payment of card1 is not autho-
rized.

15. The agent backtracks to the other alternative plan in that the agent uses
card2. So, the agent checks whether there is a need of modification of an
alternative plan by the already-executed action.
modify plan(
[login(id2),book search(computer,Book),purchase(Book,card2)],
Plan), execute(Plan)

16. The agent checks whether he has already logged in and logged out.
hear(logged in(ID1)),id2=/=ID1,hear(logged out(ID1)),
!,modify plan(
[book search(computer,Book),purchase(Book,card2)],
RevisedPlan), execute([login(id2)|RevisedPlan])

17. The above goal is suspended since there is no information about
hear(logged out(id1)) and the agent checks the second rule for logging-in.
hear(logged in(ID1)),id2=/=ID1,
!,modify plan(
[book search(computer,Book),purchase(Book,card2)],
RevisedPlan), execute([logout(ID1),login(id2)|RevisedPlan])

18. In this case, since the agent has not logged out from amazon site, the
agent adds the action of logging-out as id1 before logging-in as id2. This
expresses a plan modification mechanism with the consideration
of already-executed action. By the cut operation, the first alternative is
removed.

226 K. Satoh

modify plan(
[book search(computer,Book),purchase(Book,card2)],
RevisedPlan), execute([logout(id1),login(id2)|RevisedPlan])

19. The agent checks whether he has already known a good book on computer
by using the hearing predicate.
hear(book searched(computer,Book)),
!,modify plan([purchase(Book,card2)],RevisedPlan),
execute([logout(id1),login(id2)|RevisedPlan])

20. This time the agent has already known a good book linux so, we remove the
book-search action from the plan. This also represents a plan modifica-
tion mechanism with the consideration of already-executed action.
In this case, in stead of adding an action, we delete a redundant
action.
modify plan([purchase(linux,card2)],RevisedPlan),
execute([logout(id1),login(id2)|RevisedPlan])

21. Since there is no modification rule of the purchase action, we reduce the goal
without any modification of the action.
execute([logout(id1),login(id2),purchase(linux,card2)])

22. The agent logs out from amazon by id1.
logout(id1),execute([login(id2),purchase(linux,card2)])

23. The agent executes an action of logout by sending a logout command to
amazon, and announcing a history of the logging-out as id1.
!,announce(action(logout(id1))@amazon),announce(logged out(id1)),
execute([login(id2),purchase(linux,card2)])

24. The agent logs into amazon as id2.
login(id2),execute([purchase(linux,card2)])

25. The agent executes an action of logging-in by sending a login command to
amazon, and announcing a history of the logging-in as id2.
!,announce(action(login(id2))@amazon),announce(logged in(id2)),
execute([purchase(linux,card2)])

26. Thanks to plan modification, the agent no longer needs to search for a book
again and he can proceed to the action of purchase of the book.
purchase(linux,card2),execute([])

27. To purchase a book linux, the agent needs to ask a checker agent to confirm
that card2 is authorized.
hear(authorize(card2)@checker),
!,announce(action(purchase(linux,card2))@amazon),
execute([])

28. Suppose that authorizing the card is succeeded, then the agent dispatches a
purchase command to amazon with the credit card card2.
announce(action(purchase(linux,card2))@amazon),execute([])

29. Finally, there is no action which should be performed and the agent accom-
plishes the purchase of the book.

An Application of Global Abduction to an Information Agent 227

4 Related Work

There are some previously published works on information manipulation [7, 2]
which consider not only information gathering (or in other words, sensing) but
also actions.

Golden [2] handles information under the open-world assumption and intro-
duces “local closed world information”(LCW) which temporarily make a closed
world assumption which can be later revoked. They show how LCW can avoid
redundant information gathering. However, they do not consider any replanning
upon failure.

Knoblock [7] discusses replanning in information gathering. However, he only
considers actions with regard to information access to other servers without
side-effects. A replan is only for accessing other information sources upon failure
caused by a system-down of one information sources and therefore, it does not
perform any complex replanning.

There are a lot of works relating with cognitive robotics [3, 8, 12, 13] which
could be applied to the example considered here. Although the above works
are aimed at rigorous semantics, they do not seem to care about efficiency very
seriously and the replanning is usually made from scratch again after identifying
the current situation. As pointed out in the Introduction, our framework of plan
modification is different from the one considered in [9]. In [9], they consider
a modified plan from the existing plan using action-effect rules whereas we use
plan modification rules which can directly modify rules. Therefore, the argument
in [9] on the replanning from scratch and plan modification is not applied here.

Hayashi et al. [4, 5] give a framework for agents which perform planning,
make actions with side effects and repair plans on the fly in a Hierarchical Task
Network (HTN) planning. In their work, every time an action with side effects
is performed,

– for an undoable action, undoing action sequences will be inserted in the
beginning of every alternative plan,

– alternative plans which is incompatible with side effects will be deleted,
– and if there are alternative plans with the same action in the beginning, the

action will be deleted in these plans to avoid redundant action.

The difference between their work and ours is that they only consider undoing
of the action or deletion of redundant action in the beginning of alternative
plans for a modification of actions, whereas we can be more flexible in a plan
modification by accommodating side-effects using hearing predicates.

5 Conclusion

The contribution of the paper is to show a basic mechanism using global abduc-
tion of an information agent which modifies an alternative plan to accommodate
side-effects by already-executed actions.

228 K. Satoh

We need to pursue the following future research.

– We would like to define an action language which is automatically translated
to a logic program with global abduction. This language will be a general
framework for replanning.

– We would like to apply this solution to various information activities to
assess its feasibility.

– We would like to relax the constraint of the evaluation strategy (a depth-first
search with right-to-left evaluation of the body of the rule and top-to-bottom
trial over rules) of the framework.

Acknowledgements. This research is partly supported by Grants-in-Aid for
Scientific Research from JSPS, No. 16200010. I thank Hideaki Takeda from NII
for suggesting the motivating example on information agents. I also thank Bob
Kowalski, Fariba Sadri, Paolo Torroni, Evelina Lamma and Nigel Collier and
anonymous referees for constructive comments on the paper.

References

1. Fitting, M. C., “A Kripke/Kleene Semantics for Logic Programs”, Journal of Logic
Programming, Vol 2. pp. 295 – 312 (1985).

2. Golden, K., Etzioni, O., and Weld, D., “Omnipotence Without Omniscience: Effi-
cient Sensor Management for Planning”, Proc. of AAAI-94, pp. 1048 – 1054 (1994).

3. Levesque, H, Reiter R., Lesperance, Y., Lin F., and Scherl R., “GOLOG: A Logic
Programming Language for Dynamic Domains”, Journal of Logic Programming,
31, pp. 59 – 84 (1997).

4. Hayashi, H., Cho, K., and Ohsuga, A., “Mobile Agents and Logic Programming”,
Proc. of Mobile Agents 2002, pp. 32 – 46 (2002).

5. Hayashi H., Cho K., and Ohsuga A., ”A New HTN Planning Framework for Agents
in Dynamic Environments”, Computational Logic in Multi-Agent Systems, CLIMA
IV, Revised selected and invited papers, LNAI 3259, pp. 108 – 133 (2004).

6. Kakas, A. C., Kowalski, R., and Toni, F., “The Role of Abduction in Logic Pro-
gramming”, Handbook of Logic in Artificial Intelligence and Logic Programming
5, pages 235-324, D.M. Gabbay, C.J. Hogger and J.A. Robinson eds., Oxford Uni-
versity Press (1998)

7. Knoblock, C. A., “Planning, Executing, Sensing, and Replanning for Information
Gathering”, Proc. of IJCAI’95, pp. 1686 – 1693 (1995).

8. Kowalski, R.A., and Sadri, F., “From Logic Programming towards Multi-agent
Systems”, Annals of Mathematics and Artificial Intelligence, Vol. 25, pp. 391 –
419 (1999).

9. Nebel, B., Koehler, J., “Plan Reuse Versus Plan Generation: A Theoretical and
Empirical Analysis”, Artif. Intell., 76(1-2), pp. 427 – 454 (1995).

10. Przymusinski, T., “The Well-Founded Semantics Coincides with the Three-Valued
Stable Semantics”, Fundamenta Informaticae 13 (4), pp. 445 – 463 (1990).

11. Satoh, K., “All’s Well that Ends Well – A Proposal of Global Abduction –”, Pro-
ceedings of the Tenth International Workshop on Non-Monotonic Reasoning, pp.
360 – 367 (2004).

An Application of Global Abduction to an Information Agent 229

12. Shanahan, M. P., “Reinventing Shakey”, Jack Minker (ed.), Logic-Based Artificial
Intelligence, Kluwer Academic, pp. 233–253 (2000)

13. Thielscher, M., “The Qualification Problem: A Solution to the Problem of Anoma-
lous Models”, Artificial Intelligence, Vol. 131, No. 1–2, pp. 1–37 (2001).

Planning Partially for Situated Agents

Paolo Mancarella1, Fariba Sadri2, Giacomo Terreni1, and Francesca Toni1,2

1 University of Pisa, Pisa, Italy
{paolo, terreni, toni}@di.unipi.it

2 Department of Computing, Imperial College London, UK
{fs, ft}@doc.ic.ac.uk

Abstract. In recent years, within the planning literature there has been
a departure from approaches computing total plans for given goals, in
favour of approaches computing partial plans. Total plans can be seen as
(partially ordered) sets of actions which, if executed successfully, would
lead to the achievement of the goals. Partial plans, instead, can be seen as
(partially ordered) sets of actions which, if executed successfully, would
contribute to the achievement of the goals, subject to the achievement of
further sub-goals. Planning partially (namely computing partial plans for
goals) is useful (or even necessary) for a number of reasons: (i) because
the planning agent is resource-bounded, (ii) because the agent has in-
complete and possibly incorrect knowledge of the environment in which
it is situated, (iii) because this environment is highly dynamic. In this
paper, we propose a framework to design situated agents capable of plan-
ning partially. The framework is based upon the specification of planning
problems via an abductive variant of the event calculus.

1 Introduction

Conventional GOFAI planners and planning techniques (e.g. [1]) rely upon a
number of assumptions: (i) that the planning agent can devote as many resources
as required to the planning task, and thus it can keep on planning until a total
plan for some given goals is obtained, (ii) that the knowledge of the agent is
complete and correct at the planning time, and (iii) that the environment in
which the agent is situated will not change between the planning time and the
time of execution of the plan, and thus the plan will be directly executable, thus
leading to achieving the goals it is meant to achieve. These assumptions are
unrealistic in most cases where planning is used, e.g. when the planning agent
is a robot in a dynamic physical environment.

A number of approaches have been proposed in the literature to cope with
the limitations of GOFAI planners, starting from early work on hierarchical
planning. In this paper, we present an approach to planning whereby the plan-
ning agent generates possibly partial plans, namely (partially ordered) sets of
actions which, if executed successfully, would contribute to the achievement of
the goals, subject to the achievement of further sub-goals. A partial plan, like a
hierarchical plan, is obtained by decomposition of top-level goals. A partial plan

J. Leite and P. Torroni (Eds.): CLIMA V, LNAI 3487, pp. 230–248, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Planning Partially for Situated Agents 231

consists of sub-goals, that still need to be planned for, and actions, that can be
directly executed, subject to their preconditions holding. Preconditions are also
part of partial plans, and they need planning for before the actions can be exe-
cuted. Within our approach, the decomposition of top-level goals, sub-goals and
preconditions into total plans is interleaved with the observation of the environ-
ment in which the agent is situated, via a sensing capability of the agent. Sensed
changes in the environment are assimilated within the planning knowledge base
of the agent. Currently, this assimilation is done rather straightforwardly, by
adding the sensed information to the planning knowledge base and, if inconsis-
tent with it, by “dropping” (implicitly) the existing beliefs in this knowledge
base that lead to the inconsistency. Thus, our approach relies upon full trust
upon the sensing capability of the agent. Observations from the environment in
turn might lead to the need to revise the currently held partial plan, because as
a consequence of the observations the agent notices that some top-level goals,
sub-goals or preconditions already hold, or that they need to be re-planned for,
or that they will never hold.

We adopt a novel variant of the event calculus [10], based upon abduction, to
represent the planning knowledge base of agents, which allows to perform partial
planning and to assimilate observations from the environment (in the simple
manner described above). We represent top-level goals, sub-goals, preconditions
and actions in the language of the event calculus. We impose a tree structure
over top-level goals, sub-goals, preconditions and actions to support the revision
of partial plans after observations and because of the passage of time. We define
the behaviour of the planning agent via a sense − revise − plan − execute life-
cycle, which relies upon (state) transitions (for sensing, revision, planning and
action execution) and selection functions to select intelligently top-level goals,
sub-goals and preconditions to plan for and actions to be executed. A variant of
the approach described here has been used within KGP agents [7, 2] and realized
within the prototype implementation PROSOCS [19] of KGP agents.

The paper is organised as follows. In section 2 we give some background on
abductive logic programming with constraints, since the event calculus-based
planning knowledge base of agents we adopt is a theory in this framework. In
section 3 we give the planning knowledge base. In section 4 we define our partial
plans and the cycle of planning agents. In section 5 we define the individual
transitions. In section 6 we define the selection functions. In section 7 we give a
simple example. In section 8 we evaluate our approach against related work and
conclude.

2 Background: Abductive Logic Programming with
Constraints

We briefly recall the framework of Abductive Logic Programming (ALP) for
knowledge representation and reasoning [8], which underlies our planning tech-
nique. An abductive logic program is a triple 〈P,A, I〉 where:

232 P. Mancarella et al.

– P is a normal logic program, namely a set of rules (clauses) of the form
H ← L1, . . . , Ln with H atom, L1, . . . , Ln literals, and n ≥ 0. Literals can
be positive, namely atoms, or negative, namely of the form notB, where B is
an atom. The negation symbol not indicates negation as failure. All variables
in H, Li are implicitly universally quantified, with scope the entire rule. H
is called the head and L1, . . . Ln is called the body of a rule. If n = 0, then
the rule is called a fact.

– A is a set of abducible predicates in the language of P , not occurring in the
head of any clause of P (without loss of generality, see [8]). Atoms whose
predicate is abducible are referred to as abducible atoms or simply abducibles.

– I is a set of integrity constraints, that is, a set of sentences in the language of
P . All the integrity constraints in this paper will have the implicative form
L1, . . . , Ln ⇒ A1∨. . .∨Am (n ≥ 0,m > 1)whereLi are literals1,Aj are atoms
(possibly the special atom false). All variables in the integrity constraints are
implicitly universally quantified from the outside, except for variables occur-
ring only in the head A1∨ . . .∨Am, which are implicitly existentially quantified
with scope the head. L1, . . . , Ln is referred to as the body.

Given an abductive logic program 〈P,A, I〉 and a formula (query/observation/
goal) Q, which is an (implicitly existentially quantified) conjunction of literals
in the language of the abductive logic program, the purpose of abduction is to
find a (possibly minimal) set of (ground) abducible atoms ∆ which, together
with P , “entails” (an appropriate ground instantiation of) Q, with respect to
some notion of “entailment” that the language of P is equipped with, and such
that this extension of P “satisfies” I (see [8] for possible notions of integrity
constraint “satisfaction”). Here, the notion of “entailment” depends on the se-
mantics associated with the logic program P (there are many different possible
choices for such semantics [8]). More formally and concretely, given a query Q,
a set of (ground) abducible atoms ∆, and a variable substitution θ for the vari-
ables in Q, the pair (∆, θ) is a (basic) abductive answer for Q, with respect to
an abductive logic program 〈P,A, I〉, iff P ∪∆ |=LP Qθ, and P ∪∆ |=LP I, where
|=LP is a chosen semantics for logic programming. In this paper, we will not
commit to any such semantics.

The framework ofALPcanbe usefully extended to handle constraint predicates
in the same way Constraint Logic Programming (CLP) [6] extends logic program-
ming. This extension allows to deal with non-ground abducibles, needed to support
our planning approach.TheCLP framework is defined over aparticular structure�
consisting of domain D(�) and a set of constraint predicates which includes equal-
ity, together with an assignment of relations on D(�) for each constraint predicate.
The structure is equipped with a notion of �-satisfiability. In this paper, the con-
straint predicates will be <,≤, >,≤,=,
=, but we will not commit to any concrete
structure for their interpretation. Given a (set of) constraints C, |=� C will stand
for C is �-satisfiable, and σ |=� C, for some grounding σ of the variables of C over
D(�), will stand for C is �-satisfied via σ.

1 If n = 0, then L1, . . . , Ln represents the special atom true.

Planning Partially for Situated Agents 233

The rules of a constraint logic program P take the same form as the rules in
conventional logic programming, but with constraints occurring in the body of
rules. Similarly, P and I in an abductive logic program might have constraints
in their bodies. The semantics of a logic program with constraints is obtained by
combining the logic programming semantics |=LP and �-satisfiability [6]. Below,
we will refer to such a combined semantics as |=LP (�).

The notion of basic abductive answer can be extended to incorporate con-
straint handling as follows. Given a query Q (possibly with constraints), a set ∆
of (possibly non-ground) abducible atoms, and a set C of (possibly non-ground)
constraints, the pair (∆,C) is an abductive answer with constraints for Q, with
respect to an abductive logic program with constraints 〈P,A, I〉, with the con-
straints interpreted on �, iff for all groundings σ for the variables in Q,∆,C
such that σ |=� C then, (i) P ∪ ∆σ |=LP (�) Qσ, and (ii) P ∪ ∆σ |=LP (�) I.

In the sequel, we will use the following extended notion of abductive answer.
Given an abductive logic program (with constraints) 〈P,A, I〉, a query Q (with
constraints), an initial set of (possibly non-ground) abducible atoms ∆0 and an
initial set of (possibly non-ground) constraint atoms C0, an abductive answer for
Q, with respect to 〈P,A, I〉, ∆0, C0, is a pair (∆,C) such that ∆ ∩ ∆0 = {},
C ∩ C0 = {}, and (∆ ∪ ∆0, C ∪ C0) is an abductive answer with constraints for
Q, with respect to 〈P,A, I〉.

In abductive logic programming (with constraints), abductive answers are
computed via abductive proof procedures, which typically extend SLD-resolution,
providing the computational backbone underneath most logic programming sys-
tems, in order to check and enforce integrity constraint satisfaction, the gen-
eration of abducible atoms, and the satisfiability of constraint atoms (if any).
There are a number of such procedures in the literature, e.g. CIFF [4, 3]. Any
such (correct) procedure could be adopted to obtain a concrete planning system
based upon our approach. Within KGP agents [7, 19] we have adopted CIFF to
perform the planning tasks along the lines described in this paper.

3 Representing a Planning Domain

In our framework, a planning problem is specified within the framework of the
event calculus (EC) for reasoning about actions, events and changes [10], in terms
of an abductive logic program with constraints KBplan = 〈Pplan, Aplan, Iplan〉
and an ordinary logic program KBpre. The EC allows to represent a wide vari-
ety of phenomena, including operations with indirect effects, non-deterministic
operations, and concurrent operations [15]. A number of abductive variants of
the EC have been proposed to deal with planning problems. Here, we propose a
novel variant KBplan, somewhat inspired by the E-language of [9], to allow sit-
uated agents to generate partial plans in a dynamic environment. In a nutshell,
the conventional EC allows to write meta-logic programs which ”talk” about
object-level concepts of fluents, operations, and time points. We allow fluents
to be positive, indicated e.g. as F , or negative, indicated e.g. as ¬F . Fluent
literals will be indicated e.g. as L. The main meta-predicates of the formalism

234 P. Mancarella et al.

are: holds at(L, T) (a fluent literal L holds at a time T), clipped(T1, F, T2) (a
fluent F is clipped - from holding to not holding - between a time T1 and a time
T2), declipped(T1, F, T2) (a fluent F is declipped - from not holding to holding -
between a time T1 and a time T2), initially(L) (a fluent literal L holds at the
initial time, say time 0), happens(O, T) (an operation/action O happens at a
time T), initiates(O, T, F) (a fluent F starts to hold after an operation O at
time T) and terminates(O, T, F) (a fluent F ceases to hold after an operation
O at time T). Roughly speaking, in a planning setting the last two predicates
represent the cause-effects links between operations and fluents in the modelled
world. We will also use a meta-predicate precondition(O,L) (the fluent literal
L is one of the preconditions for the executability of the operation O). In our
novel variant we also use executed and observed predicates to deal with dynamic
environments and the assume holds predicate to allow for partial planning.

We now give KBplan. Pplan consists of domain-independent and domain-
dependent rules. The basic domain-independent rules, adapted from the original
EC, are:

holds at(F, T2) ← happens(O, T1), initiates(O, T1, F),
T1 < T2,¬ clipped(T1, F, T2)

holds at(¬F, T2) ← happens(O, T1), terminates(O, T1, F),
T1 < T2,¬ declipped(T1, F, T2)

holds at(F, T) ← initially(F), 0 < T,¬ clipped(0, F, T)
holds at(¬F, T) ← initially(¬F), 0 < T,¬ declipped(0, F, T)
clipped(T1, F, T2) ← happens(O, T), terminates(O, T, F), T1 ≤ T < T2

declipped(T1, F, T2) ← happens(O, T), initiates(O, T, F), T1 ≤ T < T2

The domain-dependent rules define the initiates, terminates, and initially
predicates. We show a simple example for such rules within the blocks-world
domain.

Example 1. The domain dependent rules for the mv(X,Y) operation in the block
world domain, whose effects are to move block X onto block Y , are the following:

initiates(mv(X,Y), T, on(X,Y))
terminates(mv(X,Y), T, clear(Y))
terminates(mv(X,Y), T, on(X,Z)) ← holds at(on(X,Z), T), Y
= Z
initiates(mv(X,Y), T, clear(Z)) ← holds at(on(X,Z), T), Y
= Z

namely the mv(X,Y) operation initiates block X to be on block Y and termi-
nates Y being clear. Moreover, if block X was on a block Z, the operation mv
terminates this relation and initiates block Z being clear.

The conditions for the rules defining initiates and terminates can be seen as
preconditions for the effects of the operation (e.g. mv in the earlier example) to
be established. Conditions for the executability of operations are specified within
KBpre, which consists of a set of rules defining the predicate precondition.

Example 2. The preconditions for the executability of operation mv(X,Y) are
that both X and Y are clear, namely:

precondition(mv(X,Y), clear(X)) precondition(mv(X,Y), clear(Y))
�

Planning Partially for Situated Agents 235

In order to accommodate (partial) planning we will assume that the domain-
independent part in Pplan also contains the rules:

happens(O, T) ← assume happens(O, T)
holds at(L, T) ← assume holds(L, T) i.e. an operation can be made to

happen and a fluent can be made to hold simply by assuming them, where
assume happens and assume holds are the only predicates in Aplan in KBplan.
This supports partial planning as follows. We will see that actions in our spec-
ification amount to atoms in the abducible predicate assume happens: thus,
abducing an atom in this predicate amounts to planning to execute the corre-
sponding action. Moreover, as yet unplanned for, sub-goals in our specification of
partial plans amount to atoms in the abducible predicate assume holds(L, T):
abducing an atom in this predicate indicates that further planning is needed for
the corresponding sub-goal.

Iplan in KBplan contains the following domain-independent integrity con-
straints:

holds at(F, T), holds at(¬F, T) ⇒ false
assume happens(A, T), not executed(A, T), time now(T ′) ⇒ T > T ′

namely a fluent and its negation cannot hold at the same time and when assum-
ing (planning) that an action will happen, we need to enforce it to be executable
in the future.

As we will see in section 4, a concrete planning problem is influenced (amongst
other things) by a narrative of events, which, unlike KBplan and KBpre, changes
over the life-cycle of the agent. We refer to the agent’s representation of this nar-
rative as KB0. We assume that KB0 represents events via predicates executed
and observed, e.g., the KB0 of an agent in the blocks-world domain with a and
b as two blocks, might contain:

executed(mv(a, b), 3) observed(¬on(b, a), 10) observed(ag,mv(c, d), 3, 5)
namely the agent has executed a mv(a, b) operation at time 3, the agent has
observed that ¬on(b, a) holds at time 10 and the agent has observed at time 5
that another agent ag has moved block c onto block d at time 3. Observations
are drawn, via specific sensing capabilities of agents, from the environment in
which they are situated, and are recorded in KB0, as are records of actions
executed by the agent itself. To allow agents to draw conclusions, via the EC,
from the contents of KB0 the following bridge rules are also contained in the
domain independent rules of Pplan:

clipped(T1, F, T2) ← observed(¬F, T), T1 ≤ T < T2

declipped(T1, F, T2) ← observed(F, T), T1 ≤ T < T2

holds at(F, T2) ← observed(F, T1), T1 ≤ T2,¬ clipped(T1, F, T2)
holds at(¬F, T2) ← observed(¬F, T1), T1 ≤ T2,¬ declipped(T1, F, T2)
happens(O, T) ← executed(O, T)
happens(O, T) ← observed(A,O, T ′, T)
Note that we assume that the value of a fluent literal is changed according

to observations only from the moment the observations are made, and actions
by other agents have effects only from the time observations are made that they
have been executed, rather than from the execution time itself. These choices

236 P. Mancarella et al.

are dictated by the rationale that observations can only have effects from the
moment the planning agent makes them.

4 Representing Planning Problems and the Life-Cycle of
Agents

Given a planning domain and a set of (top-level) goals Goals held by the agent,
each of the form holds at(L, T), we represent a partial plan for Goals as a triple
〈Strategy, Parent, TC〉, where

– Strategy is a set of subgoals and preconditions, each of the form holds at(L, T),
and of actions, each of the form assume happens(L, T); each T of goals, sub-
goals, preconditions and actions is existentially quantified in the context of
the goals and the partial plan; each such T is unique as we shall see in
section 5; thus, such time variable uniquely identifies goals, subgoals, pre-
conditions and actions;

– Parent is a function from Strategy to Goals ∪ Strategy, inducing a tree
structure over the Goals and the Strategy; the root of this tree is the special
symbol ⊥, its children are all the goals in Goals, and the children of any other
node in the tree is the set of all subgoals/preconditions/actions which are
mapped, via Parent, onto the node; as we shall see in section 5, preconditions
can only be children of actions, whereas subgoals and actions can be children
of goals, subgoals or preconditions;

– TC is a set of temporal constraints over the times of goals, subgoals, precon-
ditions and actions in Strategy, namely constraint atoms in the language of
KBplan.

�
��

�
��

�
��

�
��

⊥ROOT

G1

holds at(on(a, b), T1) holds at(on(a, b), T2)

G2

assume happens(mv(a, b), T3)
A1

SG1

holds at(clear(a), T4) holds at(clear(b), T5)

SG2

Above we show a simple tree structure (where a Gn represents a goal, an
SGn represents a subgoal and an An represents an action) for the blocks world
domain, for the example given later in Section 7, to which we remand for details.

In the sequel, we will refer to any of goals, subgoals, preconditions and actions
as nodes. Moreover, with an abuse of notation, we will represent nodes N in Goals
and Strategy as pairs 〈holds at(L, T), P t〉 and 〈assume happens(O, T), P t〉,
where Pt = Parent(N), and we will omit mentioning Parent in partial plans.

Planning Partially for Situated Agents 237

Given a planning domain, we represent a concrete planning problem, at a
certain time τ (to be interpreted as the current time), via a notion of state
defined below. Then, the planning process amounts to a sequence of such states,
at incremental times, corresponding to the agent’s life-cycle.

Definition 1. Anagent’s stateat time τ is a tuple 〈KB0, Σ,Goals, Strategy, TC〉,
where

– KB0 is the recorded set of observations and executed operators (up until τ);
– Σ is the set of all bindings T = X, where T is the time variable associated

with some action recorded as having been executed by the agent itself within
KB0, with the associated execution time X;

– Goals is the set of (currently unachieved) goals, held by the agent at time τ ;
– 〈Strategy, TC〉 is a partial plan for Goals, held by the agent at time τ ;

Below, by the tree corresponding to a state we mean the tree corresponding
to the Goals and Strategy in the state, and to a node of the tree to indicate an
element of Strategy ∪ Goals, thus excluding ⊥.

We now introduce the concepts of initial state and final state. An initial state
is a state of the form 〈{}, {}, Goals, {}, TC〉, where TC are the given temporal
constraints for Goals. The tree TrS corresponding to an initial state S is a
two-level tree with root ⊥ and all the goals in Goals as the children of ⊥.

A final state can be either a success state or a failure state. A success state
is a state of the form 〈KB0, Σ, {}, {}, TC〉.

A failure state is a state of the form: 〈KB0, Σ,, {}, TC〉, where the symbol
 indicates that there is no way to achieve one of the initial goals. 2

In our framework, an agent which wants to plan in order to achieve its goals
behaves according to a life-cycle which is an adaptation of the classical sense -
plan - execute cycle. Concretely, such a life-cycle can be seen as the repetition
of a sequence of steps

sense − revise − plan − execute
starting from an initial state until a final state is reached. In the next section
we show the specification of the various steps, in the form of state transitions.
Thus, the life-cycle of the planning agent can be equated to a sequence of states,
each at a specific time τ . The corresponding tree varies during the life-cycle of
the agent, by inserting and deleting nodes, as specified in the next section.

We will use the following notation. Given a state S, with its corresponding
tree TrS :

– the set of siblings of a node N ∈ TrS of the form 〈 , P t〉 is the set
Siblings(N,TrS) = {N ′ ∈ TrS | N ′ = 〈 , P t〉}.

– the set of preconditions of an action A of the form 〈assume happens(O, T),
P t〉 is the set Pre(A, TrS) = {P ∈ TrS | P = 〈 , A〉}.

2 This is an arbitrary decision, and we could have defined a failure state as one where
there is no way to achieve all the goals, and a success state as one where at least
one goal can be achieved.

238 P. Mancarella et al.

5 Transitions Specification

Here we give the specification of the state transitions determining the life-cycle
of the planning agent. We refer to these transitions as the sensing transition, the
planning transition, the execution transition, and the revision transition. The
planning and execution transitions take inputs that are computed via selection
functions, defined in section 6.

5.1 Sensing Transition

Given a state S = 〈KB0, Σ,Goals, Strategy, TC〉 at a time τ , the application
of a sensing transition at τ leads to a state S′ = 〈KB′

0, Σ,Goals, Strategy, TC〉,
where KB′

0 is obtained from KB0 by adding any observations on fluent literals
at τ and any observations at τ that an operation has been executed by another
agent (at an earlier time). These observations are obtained by calling the sensing
capability of the agent at time τ which we refer to as |=τ

Env, which accesses the
environment of the agent.

Definition 2. Given a state S = 〈KB0, Σ,Goals, Strategy, TC〉 at a time τ , if
|=τ

Env l1 ∧ . . . ∧ ln ∧ a1 ∧ . . . ∧ am

where n+m ≥ 0, each li is a fluent literal and each aj is an operation oj executed
by agent agj at some earlier time τj, then the sensing transition leads to a state
S′ = 〈KB′

0, Σ,Goals, Strategy, TC〉 where:

KB′
0 = KB0 ∪{observed(l1, τ) ∪ . . . ∪ observed(ln, τ)}

∪{observed(ag1, o1, τ1, τ), . . . , observed(agm, om, τm, τ)}.

5.2 Planning Transition

The planning transition relies upon a planning selection function SelP (S, τ)
which, given as input a state S at time τ returns a (single) goal, subgoal or pre-
condition to be planned for. The extension whereby multiple goals, subgoals and
preconditions are returned by the selection function is straightforward. In this
section, we assume that such a selection function is given (a possible specification
is provided in the next section).

We introduce the following useful notation which will be helpful in defin-
ing the planning transition. Let S = 〈KB0, Σ,Goals, Strategy, TC〉 be a state.
Then:

– for any set X ⊆ Goals ∪ Strategy, by X(Σ) we denote the set obtained by
applying to each element of X the instantiations provided by Σ;

– given a node G ∈ Goals ∪ Strategy, by Rest(G) we denote the set
Rest(G) = Strategy(Σ) ∪ Goals(Σ) − G(Σ);

– given a node N ∈ Goals∪Strategy, we denote by A(N) the abducible version
of N , namely

A(N) =
{

assume happens(O, T) if N = 〈assume happens(O, T), 〉
assume holds(L, T) if N = 〈holds at(L, T), 〉

This notation is lifted to any set X of nodes as usual, i.e. A(X) =
⋃

N∈X

A(N).

Planning Partially for Situated Agents 239

Intuitively, given a state S = 〈KB0, Σ,Goals, Strategy, TC〉, the planning
transition builds a (partial) plan for a given goal, subgoal or precondition G in
terms of an abductive answer, as defined in section 2, and updates the state
accordingly. More precisely, an abductive answer is computed with respect to:

– the abductive logic program with constraints KBplan, as defined in Section 3;
– the initial query Q given by G;
– the initial set of abducibles ∆0 given by the abducible version of the current

tree (except for G), namely A(Rest(G));
– the initial set of constraints C0 given by the current set of constraints in the

state, along with the instantiations in Σ, namely TC ∪ Σ.

Once such abductive answer, say (∆,C ′), is obtained, the planning transition
leads to a new state S′ = 〈KB0, Σ,Goals, Strategy′, TC ′〉 where Strategy′ is
Strategy augmented with the actions, goals and preconditions derived from ∆,
and TC ′ is TC augmented with C ′ and with suitable equalities on the time
variables of the preconditions of actions added to the state. We assume that
the abducibles in ∆ do not share time variables3. This is formalised in the next
definition.

Definition 3. Given a state S = 〈KB0, Σ,Goals, Strategy, TC〉 at a time τ
and the node G = SelP (S, τ), let (∆,C′) be an abductive answer for the query
G with respect to the abductive logic program (with constraints) KBplan, and
initial sets ∆0 = A(Rest(G)) and C0 = TC ∪ Σ. Then, the planning transition
leads to a state S′ = 〈KB0, Σ,Goals, Strategy′, TC ′〉 where Strategy′ and TC ′

are obtained by augmenting Strategy and TC as follows:

– for each assume holds(L, T) ∈ ∆, 〈holds at(L, T), G〉 is added in Strategy′

– for each assume happens(O, T) ∈ ∆
• A = 〈happens(O, T), G〉 is added in Strategy′, and
• for each P such that precondition(happens(O, T), P) ∈ KBpre, let Tp

be a fresh time variable; then:
〈holds at(P, TP), A〉 is added in Strategy′, and
TP = T is added in TC ′

• C ′ is added in TC ′

Note that this transition enforces that preconditions of actions hold at the time
of the execution of the actions, by adding such preconditions to Strategy′ so that
they will need planning for. Note also that, when introducing preconditions, we
need to make sure that their time variable is new, and relate this, within TC ′,
to the time variable of the action whose preconditions we are enforcing.

5.3 Execution Transition

Similarly to the planning transition, the execution transition relies upon an
execution selection function SelE(S, τ) which, given a state S and a time τ ,

3 Notice that this is not a restrictive assumption, since shared variables can be renamed
and suitable equalities can be added to the constraints in C′.

240 P. Mancarella et al.

returns a (single) action to be executed (a possible specification of this selection
function is provided in the next section). The extension to the case of multiple
actions is straightforward.

Definition 4. Given a state S = 〈KB0, Σ,Goals, Strategy, TC〉 at a time τ and
an action A of the form 〈assume happens(O, T), P t〉 such that A = SelE(S, τ),
then the execution transition leads to a state S′ = 〈KB′

0, Σ
′, Goals, Strategy, TC〉

where:

– KB′
0 = KB0 ∪ {executed(O, τ)}

– Σ′ = Σ ∪ {T = τ}

Note that we are implicitly assuming that actions are ground except for their
time variable. The extension to deal with other variables in actions is straight-
forward.

Executed actions are eliminated from states by the revision transition, pre-
sented next.

5.4 Revision Transition

To specify the revision transition we need to introduce some useful concepts. A
node is said to be obsolete wrt a state S at a time τ for any of the following
reasons:

– The node is a goal, subgoal or precondition node and the node itself is
achieved.

– The parent of the node is obsolete wrt S and τ . Indeed, if a node is obsolete
there is no reason to plan for or execute any of its children (or descendants).

Thus, obsolete nodes amount to achieved goals, subgoals and preconditions
and actions that have been introduced for them (and thus become redundant).

Definition 5. Given a state S = 〈KB0, Σ,Goals, Strategy, TC〉 at a time τ ,
we define the set of obsolete nodes Obsolete(S, τ) as the set composed of each
node N ∈ Strategy ∪ Goals of the form N = 〈X,Pt〉 such that:

– Pt ∈ Obsolete(S, τ) or
– X = holds at(L, T)andPplan∪KB0 |=LP (�) Σ∧holds at(L, T)∧T ≤ τ ∧TC

A node is timed out wrt a state S at a time τ for any of the following reasons:

– It has not been achieved yet, and there is no way to achieve it in the future
due to temporal constraints.

– Its parent or one of its siblings is timed out wrt S and τ . Indeed, if either
the parent or a sibling of the node is timed out, there is no reason to keep
the node for later planning. This condition is not imposed if the node is a
top-level goal because top-level goals do not influence each other (except via
possible temporal constraints on their time variables).

Planning Partially for Situated Agents 241

Definition 6. Given a state S = 〈KB0, Σ,Goals, Strategy, TC〉 at a time τ ,
we define the set of timed out nodes TimedOut(S, τ) as the set composed of
each node N ∈ Strategy ∪ Goals of the form 〈holds at(L, T), P t〉 such that:

– N
∈ Obsolete(S, τ) and
|=� Σ ∧ TC ∧ T > τ or
– Pt ∈ TimedOut(S, τ) or
– N
∈ GoalsandthereexistsN ′ ∈ Siblings(N)suchthatN ′ ∈ TimedOut(S, τ)).

Using the above definitions we now define the revision transition which,
roughly speaking, removes obsolete and timed out nodes.

Definition 7. Given a state S = 〈KB0, Σ,Goals, Strategy, TC〉 at a time τ ,
the revision transition leads to a state S′ = 〈KB0, Σ,Goals′, Strategy′, TC〉
where, for each N ∈ Strategy′ ∪ Goals′:

– N
∈ TimedOut(S, τ), and
– ifN = 〈assume happens(O, T), 〉 then it is not the case that executed(O, τ ′) ∈

KB0 and T = τ ′ ∈ Σ, and
– if N ∈ Obsolete(S, τ) then Parent(N) = 〈assume happens(O, T), 〉, and
– Parent(N) ∈ Goals′ ∪ Strategy′.

Intuitively, each timed out node, each obsolete node and each executed ac-
tion has to be eliminated from the tree. The only exception is represented by
preconditions. Indeed, obsolete precondition at revision time are not eliminated
because they must hold at execution time. If an obsolete precondition p for an
action a is eliminated at revision time due to the fact that it holds at that time,
something could happen later on (e.g. an external change or an action performed
by some other agent or by the agent itself) that invalidates p so that it does not
hold when a is executed. Note that we could also impose for the temporal con-
straints to be simplified at revision time, but this is not necessary to guarantee
the correctness of our approach.

6 Selection Functions

The planning and execution transitions require a selection function each. Here,
we give possible definitions for these functions. Note that we use the term func-
tion loosely, as the selection randomly returns one of possibly several candidates.

6.1 Planning Selection Function

Given a state S = 〈KB0, Σ,Goals, Strategy, TC〉 at a time τ , the planning
transition needs a planning selection function SelP (S, τ) to select a goal, subgoal
or precondition G belonging to Goals or Strategy, to be planned for. We define
SelP so that G satisfies the following properties:

– neither G nor any ancestor or sibling of G is timed out at τ ;
– neither G nor an ancestor of G is achieved at τ ; i.e. G is not obsolete and it

does not hold at the current time;
– no plan for G belongs to S.

242 P. Mancarella et al.

Definition 8. Given a state S = 〈KB0, Σ,Goals, Strategy, TC〉 at a time τ ,
the planning selection function SelP (S, τ) returns a goal, a subgoal or a precon-
dition G = 〈holds at(L, T), 〉 such that:

– G
∈ TimedOut(S, τ);
– G
∈ Obsolete(S, τ), and it is not the case that

Pplan ∪ KB0 |=LP (�) holds at(L, T) ∧ T = τ ∧ TC ∧ Σ
– there exists no G′ ∈ Strategy such that G = Parent(G′);

Clearly it may be possible that a number of goals, subgoals and preconditions in
a state satisfy the above properties and thus could be selected. We could further
incorporate a number of heuristics to restrict the number of candidates G to be
selected amongst.

6.2 Execution Selection Function

Given a state S = 〈KB0, Σ,Goals, Strategy, TC〉 at a time τ , the execution
transition needs an execution selection function SelE(S, τ) to select an action A
in Strategy to be executed at τ . We define SelE so that A satisfies the following
properties:

– neither A nor any ancestor or sibling of A is timed out at τ ;
– all preconditions (children) of A are satisfied at τ ;
– no (goal, subgoal or precondition) ancestor of A is satisfied at τ ;
– A has not been executed yet.

Definition 9. Given a state S = 〈KB0, Σ,Goals, Strategy, TC〉 at a time
τ , the execution selection function SelE(S, τ) returns an action A =
〈assume happens(O, T), 〉 such that:

– A
∈ TimedOut(S, τ);
– for each P = 〈holds at(P, T ′), A〉 ∈ Strategy, P ∈ Obsolete(S′, τ)

where S′ = 〈KB0, Σ,Goals, Strategy, TC ∪ {T = τ}〉;
– A
∈ Obsolete(S, τ);
– there exists no τ ′ such that executed(O, τ ′) ∈ KB0 and T = τ ′ ∈ Σ.

Notice that in the second condition, we need to add {T = τ} to the temporal
constraint of the state S because preconditions have to be checked in a state
where the time of execution of the selected action is τ . Again, heuristics could
be incorporated within the execution selection function to restrict the number
of selectable actions.

7 An Example

In this section we show a simple example of life-cycle of an agent in the blocks-
world domain of examples 1 and 2.

Planning Partially for Situated Agents 243

We assume to have three blocks, a, b, c, all on the table initially. The formal-
isation of the initial configuration, using a special location table, is as follows:

initially(on(a, table)), initially(on(b, table)), initially(on(c, table)),
initially(clear(a)), initially(clear(b)), initially(clear(c))
Our objective is to have a tower with c on b on a by time 20. We can formalise

this via top-level goals:
G1 = 〈holds at(on(b, a), T1),⊥〉 G2 = 〈holds at(on(c, b), T2),⊥〉

where TC0 = {T1 = T2, T1 ≤ 20}
The following is a possible life-cycle of the agent, achieving G1 and G2.

Initial State: S0 = 〈{}, {}, {G1, G2}, {}, TC0〉
Time 1 - Sensing Transition: |=1

Env {}
Resulting state: S1 = S0

Time 2 - Revision Transition: There is nothing to be revised at this point.
Resulting state: S2 = S1

Time 3 - Planning Transition: Assume that SelP (S2, 3) = G1. Let (∆,C)
be the abductive answer wrt KBplan, ∆0 = {assume holds(on(c, b), T2)} and
C0 = TC0, where ∆ = {assume happens(mv(b, a), T3)} and C = {T3 < T1}.
Let

Strategy3 = { 〈assume happens(mv(b, a), T3), G1〉 = A1

〈holds at(clear(a), T4), A1〉
〈holds at(clear(b), T5), A1〉 }

TC3 = TC0 ∪ C ∪ {T4 = T3, T5 = T3}
Resulting state: S3 = 〈{}, {}, {G1, G2}, Strategy3, TC3〉
At this stage the tree structure is the one given earlier in the picture in Section 4.
Time 4 - Execution Transition: as the preconditions of action A1 are both
achieved at this time due to the initially rules in KBplan, then A1 = SelE(S3, 4)
(A1 is the only action that can be selected at this time). Let

KB4
0 = {executed(mv(b, a), 3)

Σ4 = {T3 = 4}
Resulting state: S4 = 〈KB4

0 , Σ4, {G1, G2}, Strategy3, TC3〉
Time 5 - Sensing Transition: Assume that the sensing capability of the agent
forces it to observe that b is actually on c at this time and that a is clear, namely
|=5

Env {on(b, c),¬on(b, a),¬on(c, table),¬clear(c), clear(a)}. Basically, there has
been either a problem in the execution of A1 or an interference by some other
agent. Then,

KB5
0 = KB4

0 ∪ { observed(on(b, c), 5), observed(¬on(b, a), 5),
observed(¬on(c, table), 5), observed(¬clear(c), 5),
observed(clear(a), 5)}

Resulting state: S5 = 〈KB5
0 , Σ4, {G1, G2}, Strategy3, TC3〉

Time 6 - Revision Transition: At this time the revision transition deletes
from the strategy the action A1 and its preconditions as A1 has been executed.
Resulting state: S6 = 〈KB5

0 , Σ4, {G1, G2}, {}, TC3〉
Time 7 - Planning Transition: Assume that the selected goal is again G1,
SelP (S6, 7) = G1. (Note that G1 is again selectable as it is not achieved at time
7.) Similarly as for the previous planning transition, let:

244 P. Mancarella et al.

Strategy7 = { 〈assume happens(mv(b, a), T ′
3), G1〉 = A′

1

〈holds at(clear(a), T ′
4), A

′
1〉

〈holds at(clear(b), T ′
5), A

′
1〉 }

TC7 = TC3 ∪ {T ′
3 < T1, T

′
4 = T ′

3, T
′
5 = T ′

3}
Resulting state: S7 = 〈KB5

0 , Σ4, {G1, G2}, Strategy7, TC7〉
Time 8 - Execution Transition: as the preconditions of action A1 are
both achieved at this time, due to the initially rules in KBplan and to the
observations in KB0, then A′

1 = SelE(S7, 8) (A′
1 is the only action that can be

selected at this time). Let
KB8

0 = {executed(mv(b, a), 8)
Σ8 = {T ′

3 = 8}
Resulting state: S8 = 〈KB8

0 , Σ8, {G1, G2}, Strategy7, TC7〉
Time 9 - Sensing Transition: |=9

Env {}
Resulting state: S9 = S8

Time 10 - Revision Transition: At this time the revision transition deletes
from the strategy the action A′

1 and its preconditions as A′
1 has been executed.

Resulting state: S10 = 〈KB8
0 , Σ8, {G1, G2}, {}, TC7〉

Time 11 - Planning Transition: Assume that the selected goal is
SelP (S10, 11) = G2. Note that at this time G2 is the only goal that can be
selected because goal G1 is achieved. Similarly as for the previous planning
transitions, let:

Strategy11 = { 〈assume happens(mv(c, b), T6), G2〉 = A2

〈holds at(clear(a), T7), A2〉
〈holds at(clear(b), T8), A2〉 }

TC11 = TC7 ∪ {T6 < T2, T7 = T6, T8 = T6}
Resulting state: S12 = 〈KB8

0 , Σ8, {G1, G2}, Strategy11, TC11〉
Time 12 - Execution Transition: action A2 is selected. Let

KB12
0 = KB8

0 ∪ {executed(mv(c, b), 12)
Σ12 = {T3 = 4, T ′

3 = 8, T6 = 12}
Resulting state: S13 = 〈KB12

0 , Σ12, {G1, G2}, Strategy11, TC11〉
Time 13 - Sensing Transition: |=13

Env {}
Resulting state: S13 = S12

Time 14 - Revision Transition: At this time the revision transition deletes
from the strategy the action A2 and its preconditions as A2 has been executed.
Moreover as both G1 and G2 are achieved, the revision transition deletes them
from the goals leading to a successful final state.
Resulting state: S14 = 〈KB12

0 , Σ12, {}, {}, TC11〉.

8 Related Work and Conclusions

Planning has been a very active research and development area for some time.
Systems have been developed for a range of applications such as medical, robotics
and web services. Many approaches to planning have been proposed (e.g the

Planning Partially for Situated Agents 245

STRIPS language with its improvements and related state-of-the-art systems
such as Graphplan [1]). Here we concentrate on those closer to our work.

Our approach to planning is based on the abductive event calculus. It is
thus closely related to Shanahan’s abduction and event calculus planning work
[14, 15, 16, 17, 18] and to the approach based on the situation calculus. The lat-
ter forms the basis of GOLOG [11], an imperative language implemented in
PROLOG incorporating macro-actions (as procedures) and non-determinism.
GOLOG has been shown to be suitable for implementing robot programs as
high-level instructions in dynamic domains.

The contribution of our paper is in describing a system that allows partial
planning and the interleaving of planning with sensing and executing actions.
This integration is particularly suitable for (possibly resource bounded) agents
situated in dynamic environments. Our partial plans, to some extent, have the
flavour of the compound actions of Shanahan [16]. If well defined, both ap-
proaches allow us to find executable actions quickly. However, our formalisation
is simpler than [16] as we do not need to use compound actions in our theories
in order to achieve partial planning.

Compound actions are also exploited in the situation calculus, in particular
[12] gives formal characterisations of compound actions and their preconditions
and postconditions. Investigating how to incorporate them in our framework is
subject of future work.

An important feature of our approach is the revision of the plans obtained
by the Revision transition. The tree structure in the Strategy part of each agent
state allows an intelligent, selective way of revising the (partial) plan. This means
that, if replanning becomes necessary, it is done only for unachieved goals and
subgoals, thus avoiding the ”replanning from scratch” method seen in [16].

There are issues that we have not addressed yet. These include ramifica-
tion problems, which are addressed in [17] where it is pointed out that the
state-constraints formalisation of ramifications can lead to inconsistencies. State-
constraints are of the form

holds at(P, T) ← holds at(P1, T), . . . , holds at(Pn, T)
This rule can cause inconsistencies if, at a time t, P1, . . . , Pn and thus P hold.

But at an earlier time, say t1, ¬P may hold and it is not clipped before the time
t. As rules of above form are needed to model subgoals, ramification is an impor-
tant issue to be addressed. One way to avoid the problem of inconsistency could
be to add, for each state constraint of the form above, another rule of the form

declipped(P, T) ← holds at(P1, T), . . . , holds at(Pn, T)
This approach is similar to the one that we have taken in the bridge rules of

Section 3, but needs to be further investigated.
The Sensing transition, described in Section 5, is important for a situated

agent, but is rather simplistic. It simply adds the observation to the agent’s
knowledge base and the bridge rules in the knowledge base perform some implicit
conflict resolution. An alternative approach is presented in [16]. This proposal
is that, once an observation is made, (possibly abductive) explanations of it are

246 P. Mancarella et al.

sought, thus avoiding some possible inconsistencies and giving a richer account
of causes and effects. This approach has obvious disadvantages in cases where
observations are such that the agent cannot be expected to find explanations
for. E.g., in a communication scenario, an agent could observe that the network
is down but has no way of knowing (or even guessing) why.

Another drawback of our Sensing transition is that it is random and passive.
The agent collects information from the environment as a passive observer. An
active form of sensing is described in [7, 2] where, as well as performing physical
actions, the agent can perform active knowledge-producing (or sensing) actions.
Such active sensing actions do not affect the external environment but they affect
the agent’s knowledge about the environment. Such an active sensing action can
be performed, for example, to seek information from the environment about
preconditions of actions before they are performed or to seek confirmation that
an executed action has had its desired outcome. Active sensing actions are also
addressed in [13] for imperative GOLOG programs where they allow conditional
plans whose conditions are checked at ”run-time”.

An issue related to observations is that of exogenous actions. Our handling
of observations combined with the Revision transition seem to be effective to
capture both exogenous actions and their effects in the sense that, if our agent
detects an action or a fact which invalidate a plan or a subplan already executed,
the revision procedure will replan for that part (and only for that part). Another
approach to exogenous (malicious) actions is that in [5] where, if exogenous
actions change the external environment, a recovery procedure is performed with
which the agent is able to restore the state to the one before the exogenous event
occurred.

With respect to our framework, drawbacks of that approach are that a num-
ber of assumptions have been made, in particular that the agent knows what
kind of exogenous actions can be done and what their effects are. Also, this
approach does not take into account the possibility that an exogenous action
can “help” the agent to achieve its goals making certain subgoals and action
unnecessary.

Finally, we remark that to properly evaluate our techniques, we are studying
formal results such as soundness and completeness and we are doing practical
experimentation with the CIFF system [4, 3] as the underlying abductive rea-
soner.

Acknowledgments

This work was partially funded by the IST programme of the EC, FET under the
IST-2001-32530 SOCS project, within the Global Computing proactive initiative.
The last author was also supported by the Italian MIUR programme “Rientro
dei cervelli”.

Planning Partially for Situated Agents 247

References

1. A. Blum and M. Furst. Fast planning through planning graph analysis. Artificial
Intelligence, 90:281–300, 1997.

2. A. Bracciali, N. Demetriou, U. Endriss, A. Kakas, W. Lu, P. Mancarella, F. Sadri,
K. Stathis, G. Terreni, and F. Toni. The KGP model of agency for global com-
puting: Computational model and prototype implementation. In C. Priami and P.
Quaglia, (eds.): Global Computing: IST/FET International Workshop, GC 2004
Rovereto, Italy, March 9-12, 2004 Revised Selected Papers, LNAI 3267, pp. 340–
367. Springer-Verlag, 2005.

3. U. Endriss, P. Mancarella, F. Sadri, G. Terreni, and F. Toni. Abductive logic
programming with CIFF: system description. In J.J. Alferes and J. Leite (eds.):
Logics in Artificial Intelligence. European Conference, JELIA 2004, Lisbon, Por-
tugal, September, 27-30, Proceedings, LNAI 3229, pp. 680-684. Springer-Verlag,
2004.

4. U. Endriss, P. Mancarella, F. Sadri, G. Terreni, and F. Toni. The CIFF proof
procedure for abductive logic programming with constraints. In J.J. Alferes and J.
Leite (eds.): Logics in Artificial Intelligence. European Conference, JELIA 2004,
Lisbon, Portugal, September, 27-30, Proceedings, LNAI 3229, pp. 31-43. Springer-
Verlag, 2004.

5. G. De Giacomo, R. Reiter, and M. Soutchanski. Execution monitoring of high-level
robot programs. In A. G. Cohn, L. K. Schubert, S. C. Shapiro (eds.): Proceedings
of the Sixth International Conference on Principles of Knowledge Representation
and Reasoning (KR’98), Trento, Italy, June 2-5, pp. 453–465. Morgan Kaufmann,
1998.

6. J. Jaffar and M.J. Maher. Constraint logic programming: a survey. Journal of
Logic Programming, 19-20:503–582, 1994.

7. A. Kakas, P. Mancarella, F. Sadri, K. Stathis, and F. Toni. The KGP model of
agency. In R. Lopez de Mantaras and L. Saitta (eds.): Proceedings of the Sixteenth
European Conference on Artificial Intelligence, Valencia, Spain, pp. 33–37. IOS
Press, August 2004.

8. A. C. Kakas, R. A. Kowalski, and F. Toni. The role of abduction in logic program-
ming. In D. M. Gabbay, C. J. Hogger, and J. A. Robinson, (eds.):, Handbook of
Logic in Artificial Intelligence and Logic Programming, vol. 5, pp. 235–324. Oxford
University Press, 1998.

9. A. C. Kakas and R. Miller. A simple declarative language for describing narratives
with ations. Journal of Logic Programming, 31(1-3):157–200, 1997.

10. R. A. Kowalski and M. Sergot. A logic-based calculus of events. New Generation
Computing, 4(1):67–95, 1986.

11. H. J. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R. B. Scherl. GOLOG: A
logic programming language for dynamic domains. Journal of Logic Programming,
31(1-3):59–83, 1997.

12. S. McIlraith and R. Fadel. Planning with complex actions. In S. Benferhat,
E. Giunchiglia (eds.): 9th International Workshop on Non-Monotonic Reasoning
(NMR 2002), April 19-21, Toulouse, France, Proceedings, pp. 356–364. 2002.

13. R. Scherl and H. J. Levesque. Knowledge, action, and the frame problem. Artificial
Intelligence, 144:1–39, 2003.

14. M. Shanahan. Event calculus planning revisited. In Proceedings of the 4th European
Conference on Planning, LNAI 1348, pp. 390–402. Springer Verlag, 1997.

15. M. Shanahan. Solving the Frame Problem. MIT Press, 1997.

248 P. Mancarella et al.

16. M. Shanahan. Reinventing shakey. In Working Notes of the 1998 AAAI Fall
Symposium on Cognitive Robotics, pages 125–135, 1998.

17. M. Shanahan. The ramification problem in the event calculus. In T. Dean (ed.):
Proceedings of the Sixteenth International Joint Conference on Artificial Intelli-
gence, Stockholm, Sweden, pages 140–146. Morgan Kaufmann Publishers, 1999.

18. M. Shanahan. Using reactive rules to guide a forward-chaining planner. In Proc.
of the Fourth European Conference on Planning. Springer-Verlag, 2001.

19. K. Stathis, A. C. Kakas, W. Lu, N. Demetriou, U. Endriss, and A. Bracciali.
PROSOCS: a platform for programming software agents in computational logic.
In R. Trappl (ed.): Proceedings of the 17th European Meeting on Cybernetics and
Systems Research, Vol. II, Symposium “From Agent Theory to Agent Implementa-
tion” (AT2AI-4), Vienna, Austria, pp. 523–528. Austrian Society for Cybernetic
Studies, 2004.

Desire-Space Analysis and Action Selection
for Multiple Dynamic Goals

David C. Han and K. Suzanne Barber

The Laboratory for Intelligent Processes and Systems,
Electrical and Computer Engineering,
The University of Texas at Austin,

Austin, TX 78712
{dhan, barber}@lips.utexas.edu

Abstract. Autonomous agents are given the authority to select which
actions they will execute. If the agent behaves rationally, the actions
it selects will be in its own best interests. When addressing multiple
goals, the rational action may not be obvious. Equipping the agents with
decision-theoretic methods allows the agent to mathematically evaluate
the risks, uncertainty, and benefits of the various available courses of
action. Using this evaluation, an agent can determine which goals are
worth achieving, as well as the order in which to achieve those goals.
When the goals of the agent changes, the agent must replan to maintain
rational decision-making. This research uses macro actions to transform
the state space for the agent’s decision problem into the desire space
of the agent. Reasoning in the desire space, the agent can efficiently
maintain rationality in response to addition and removal of goals.

1 Introduction

Decision theory is the mathematical evaluation of risks, uncertainty, and benefits
to calculate the value of alternative choices. Applied to agents, decision theory
can form the basis for rational action selection. An agent acts rationally if it
performs actions that are in its “best interests” [1]. The best interests of an
agent correspond to the goals an agent holds. Armed with decision theory, an
agent can weigh the rewards to be gained from achieving each of its goals against
the costs of actions to determine which goals are worth achieving, as well as the
order in which to achieve those goals.

Over time, the interests of an agent may change, changing the actions a ra-
tional agent should take in a given situation. As a simple example, after an agent
achieves a goal, it may lose interest in pursuing that particular goal. Addition-
ally, goals may be added, removed, or modified by the designer of that agent or
through interactions with other agents. Agents, being autonomous entities, are
given freedom to decide their own course of action for satisfying their goals.

Determining a course of action is a sequential decision problem, where the
initial decision impacts future decisions (i.e., the agent must consider not only
the effects of its actions in the current state, but also the future consequences of

J. Leite and P. Torroni (Eds.): CLIMA V, LNAI 3487, pp. 249–264, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

250 D.C. Han and K.S. Barber

any actions it takes). Further complicating the matter, the agent must consider
the consequences of each action in relation to each of the goals the agent holds.

Markov decision processes (MDPs) are often used to represent and reason
about sequential decision problems. Already suffering from the “curse of dimen-
sionality,” application of MDPs to domain problems containing multiple goals
further exacerbates the computational issues (by adding dimensions to the state
representation). These additional dimensions, representing the achievement sta-
tus of goals, do not reflect the behavior of the environment, but rather the
internal state of the agent. The behavior of the environment (e.g., the domain
physics) is conceptually different from the goals of an agent situated in that
environment. It is due to limitations of the MDP reward structure that goal
information must be represented as part of the state description.

When moving from theory to practice, priorities on the characteristics of the
approach shift. Taking an engineering approach, the concept of optimality takes
a back seat to the concept of satisficing. Abstraction and estimation are used
in the pursuit of computational efficiency at the expense of optimality. Towards
this end, this work addresses a restricted class of MDPs, using simple domains
to explore complex goal related behaviors. Making the assumption that the set
of goals assigned to an agent is much smaller than the total set of domain states,
this research uses macro actions to abstract away the domain physics, reasoning
about the desire space of the agent. As an added benefit, desire space reasoning
enables efficient computation of rational behavior in the face of changing goals
for this class of problems. In multi-agent systems, an agent cannot negotiate with
other agents without knowing the value of its own goals and actions. Calculation
of values based on desire analysis provide the agent with the knowledge with
which to negotiate with other agents. For example, when following a conversation
policy, as presented by Bentahar et. al. in this volume [2], an agent can decide,
through desire analysis, whether it should accept a commitment or continue
argumentation or persuasion.

This paper provides a formal presentation of the problem, a formulation of the
domain using goal factoring and macro actions, and algorithms for maintaining
an approximate solution under dynamic goals.

2 Action Selection

Though very different in approach, a number of approaches presented in this
volume seek to address the same problem of agent operation in dynamic do-
mains. Mancarella et. al. attack much the same problem through a qualitative
approach [3], compared to the quantitative approach used in this paper. Alferes,
Banti, and Brogi address action description updates through logic programming
[4], accounting for changes in the physics of the domain, which includes goal
modification.

Planning techniques [5] provide agents with methods for analyzing the effects
of their capabilities on the environment. In planning, an agent’s capabilities are
represented as action descriptions and desires are represented as goals. Classical

Desire-Space Analysis and Action Selection for Multiple Dynamic Goals 251

R

Fig. 1. Navigation Domain Example

planning finds a sequence of actions whose execution will transform the current
state into a goal state. Although classical planning was not designed to handle dy-
namic environments (where exogenous events can occur), elaborations upon the
same basic methods do. Continuous planning methods [6] allow an agent to ad-
just to unexpected situations by interleaving planning and execution. Decision-
theoretic planning, as described by Boutilier, Dean, and Hanks [7][8], uses MDPs
to perform this reasoning by allowing a range of reward values. As another bene-
fit, MDPs naturally capture and handle the uncertainty inherent in the domain.
Since the solution to an MDP consists of a policy describing the action to take in
any given state, MDPs are suited for adaptation to continuous planning as well.

A Markov decision process M is a representation of this action selection prob-
lem, consisting of four components: the state space, S = {s1, s2, ..., sN}; actions
the agent can execute, A = {a1, a2, ..., aL}; a transition function describing the
probability that executing each action a in some state s will result in some state
s′, T : S ×A× S �→ [0, 1]; and a reward function describing the value earned by
the agent for reaching each state, R : S �→ R. The product of an MDP planning
algorithm is a policy π : S �→ A describing what action the agent should execute
for any state it may find itself in.

The class of problems addressed in this paper reflects “cost-to-move” frame-
works. In cost-to-move problems, each action the agent executes incurs some cost
c < 0 as part of the reward structure. This provides incentive for the agent to
reach its goal states with the minimal amount of movement actions. An example
cost-to-move domain problem is robot navigation. Figure 1 illustrates the basic
setup of a robot navigation domain. The R in the figure shows the location of
the agent in the physical environment, which is in this case modelled as a Carte-
sian grid. The actions available to the agent are the cardinal directions, north,
south, east, and west. The cost can represent resource usage by the robot as it
moves from one location to another. The desires of the robot in these domains
are represented in the reward structure. For example, R(s) ≥ 0 for those states,
s, in which the robot achieves its goals.

Macro actions are used to combine the primitive actions available to the
agent. Clever use of macro actions can improve computational efficiency for
action selection. The remainder of this section discusses the representation of
macro actions, the application of macro actions to goals or subgoals, and the
concept of using macro actions to reason in the desire space of an agent.

252 D.C. Han and K.S. Barber

2.1 Macro Actions

Computational efficiency for solving an MDP is greatly impacted by its size.
Factoring has been used to reduce computation through abstracting the MDP
into higher level states and actions. This research makes use of the concept of
macro actions, specifically, the option model developed by Sutton, Precup, and
Singh [9]. Macro actions generalize actions into courses of action. Consider, for
example, a navigation problem where a robot has primitive actions allowing it
to move in each of the cardinal directions. Macro actions are defined as policies
using those primitive actions that describe higher level objectives such as moving
from room to room. Figure 2 shows the difference between options and actions.
The solid arrow represents the effects of executing a primitive action (north,
south, east, west), while the dashed arrow represents the effects of executing a
macro action (leave-the-room).

R

Fig. 2. Navigation task illustrating the difference between primitive actions and macro

actions

According to Sutton, Precup, and Singh [9], options consist of three compo-
nents: a policy π : S × A �→ [0, 1], a termination condition β : S �→ [0, 1], and a
set of initiation states I ⊆ S. A macro action can only be invoked from a state
within the initiation states I. Although formulated slightly differently, policies
as defined here satisfy the same requirements as those presented above, namely
prescribing which actions to execute in each state. Requiring

∑
ai∈A π(s, ai) = 1,

policies describe probabilistic selection of actions for each state. While execut-
ing, the agent will perform actions according to the policy π until termination
according to the termination condition β.

It is obvious that if the agent were planning using macro actions, the agent
can move farther for each decision it makes as compared to planning using
only primitive actions. Macro actions constructed to group actions related to

Desire-Space Analysis and Action Selection for Multiple Dynamic Goals 253

achieving goals or subgoals can be used to improve computational efficiency for
decision-making.

2.2 Macros and Goals

The use of the basic reward structure for MDP models is limiting in that if the
agent has multiple goals to achieve, those goals must be represented as part of
the state definition. For example, consider if the domain states are defined as
a product of state variables, Sdomain = V1 × V2 × ... × VL. If an agent desires
to sequentially visit multiple states in the domain, the actions that the agent
selects will be different depending on which of the goal states the agent has
already visited. Desire states of the agent can be defined as a product of the
goal variables (boolean values indicating whether each goal has been achieved),
Sdesire = G1×G2× ...×GK . The states represented in MDP M must be able to
differentiate between the same domain states when the agent has different desire
states, hence S = V1 × V2 × ... × VL × G1 × G2 × ... × GK .

Macro actions can be used to factor the desires of the agent from the state
description. This yields the benefit of separating analysis of the domain charac-
teristics from analysis of the desires. This allows reuse of the domain analysis
when desires change. If a navigation problem is on a 10x10 square grid, the
general solution for reaching any single location is a set of 100 policies, each of
size 100, one for each possible goal location. If the agent has a goal to visit two
locations, there are 10,000 policies, one policy corresponding to each set of two
locations. Additionally, the size of each policy is 300, since for each location, the
agents may still desire to visit either goal location or both (assuming termination
after visiting both locations). In spite of this exponential increase in complexity,
the basic problem domain remains navigation.

Recent work by Lane and Kaelbling has addressed complexity due to multiple
goals in the domain of robot package delivery [10]. In their work, the agent is
tasked with the goal of navigating to a number of locations. Each location is
treated as a subgoal, but no reward is given until the agent has successfully
visited all locations. Each subgoal (i.e. moving to a given location) is represented
by a boolean goal variable, denoting an undelivered package. Initially all goal
variables are set to 0. Upon reaching a subgoal location, the goal variable is
set to 1, and can never be set to 0 again signifying that packages cannot be
undelivered. Goal variables in this domain are independent of each other, given
the location of the agent.

Using the concept of options presented above, Lane and Kaelbling create a
macro action for each subgoal. An approximate policy is then generated for the
overall goal of visiting all locations through application of a travelling salesman
algorithm to determine the order in which the subgoals are visited.

For example, take the domain illustrated in Figure 3. Locations labelled 1
through 3 represent the subgoals the robot desires to visit. Unlike primitive
actions, execution of a macro action will have variable cost depending on the
distance from the state in which the macro action was initiated to the goal
location. Assuming uniform cost per move, the cost for execution of a macro is

254 D.C. Han and K.S. Barber

R

2

3

1

Fig. 3. Multiple goals in a navigation task

equal to the cost per move times the expected number of moves from the current
state to the termination state (Equation 1).

C(macro1, s) = cE(# of moves from s to the termination state) (1)

The costs of macro actions are used to form a weighted graph among all the
subgoals as shown in Figure 4. Many algorithms exist for finding the shortest
path visiting all nodes in a graph [11]. The application of travelling salesman
algorithms determines the order for a compound macro action which describes a
sequential ordering of macro actions. While this is useful for goals that exist in
an ’AND’ (i.e., reward is not given unless all subgoals have been achieved) rela-
tionship, goals can be related in other ways yielding more complicated behavior
by the agent. Of particular interest to this research is the ability of agents to
choose whether or not to address a goal they have been tasked with.

{}

G1

G2

G3

C(macro 1,s)

C(macro 3,s)

C(macro 2,s)

C(macro 3,g1)

C(macro 2,g1)

C(macro 1,g3)

C(macro 2,g3)

C(macro 3,g2)

C(macro 1,g2)

Initial
State

Fig. 4. Weighted graph relating costs to travel among the goal locations

Desire-Space Analysis and Action Selection for Multiple Dynamic Goals 255

2.3 Desire States and Goal Analysis

As a departure from the robot delivery domain used by Lane and Kaelbling [10],
this work addresses cases where reward values are set for each goal, rather than
for the completion of all goals. An important characteristic of an autonomous
agent is the ability to decide which goals to pursue. Towards this end, the agent’s
desires may be combined in an ‘OR’ fashion, where the agent may receive rewards
for goals independent of other goals . In this case, the agent must consider not
only the order in which to achieve goals, but whether to try to achieve each
particular goal at all - the cost to achieve a goal may outweigh the reward.
Additionally, since execution of actions will change the agent’s distance to the
respective goals, pursuing one goal may make it more or less profitable (even
unprofitable) to pursue other goals.

As a concrete example of a domain problem matching this description, imag-
ine a tourist visiting a new city. The tourist has a limited amount of money
for sightseeing, and must select from a set of recommended sights to visit. The
sights are rated by the tourist based on interest, assigning a reward value to each.
Additionally, transportation costs for travel in the city are based on distance,
making it a cost-to-move framework in a navigation domain.

By creating macro actions to achieve each individual goal, the entire set of
state variables can be abstracted away. Instead, reasoning can be performed
purely in terms of desire states, referred to in this paper as the desire space.
Figure 5 shows the desire space for the example robot navigation domain shown
in Figure 3. Each state is labelled with the set of goal variables denoting which
goals have been achieved in that state. Initially, the agent is in the state marked
by the empty set and the current location. Application of each macro leads
the agent to the desire state where the appropriate goal is marked as achieved,
leading up to the state with all goals being achieved. Unfortunately, the complete
domain space cannot be factored out because the cost function for the macro
actions is dependent upon domain state. Luckily, if an agent executes actions
according to this decision-making mechanism, the only relevant states are the
current state and the termination states of the macro actions.

The motivations for reasoning in the desire space include: (1) the desire space
is smaller than the complete state space, and (2) the structure of the desire
space can be exploited algorithmically for efficient computation. The model for
reasoning about the desire space is defined as follows. Given the state space of
the problem Sdomain, some subset of those states are marked as goals, Goals ⊆
Sdomain = {g1, g2, ...gK}. The states of the desire space are built from the goal
variables and the agent’s location in the domain space. Each macro action is
constructed to move the agent to a given goal state. The terminal states are
represented as a probability distribution over the domain states. However, due
to the nature of macro actions, the probability is concentrated on the goal state.
It is possible for a macro to have termination states that represent failure of
that macro to achieve its goal but, for simplicity of explanation, this paper
expects the macro actions to always terminate in its goal state without fail.
The desire states are denoted by a tuple 〈Gach, s〉. The first element of the

256 D.C. Han and K.S. Barber

{}
s

{G1}
g1

{G2}
g2

{G3}
g3

Macro 1

Macro 2

Macro 3

{G1, G2}
g2

{G1, G2}
g1

{G1, G3}
g3

{G2, G3}
g3

{G1, G3}
g1

{G2, G3}
g2

{G1, G2,
G3}
g1

{G1, G2,
G3}
g2

{G1, G2,
G3}
g3

Fig. 5. Desire space for the three goal navigation domain

tuple,Gach is the set of goals that have been achieved. This element could also
be represented by the complement of the set of achieved goals (i.e., the set of
unachieved goals), but will be labelled as the achieved goals for this discussion.
The second element of the tuple is the location of the agent in the domain
states, Sdomain. The agent can only be located at the initial state sinitial, or as
a result of executing a macro action, in an accomplished goal state gi, hence,
Sdesire = {〈{}, sinitial〉, 〈Gach, gi〉 s.t. Gach ⊆ Goals and gi ∈ Gach}. The action
set Adesire = {macro1,macro2, . . . ,macroK} is the set of macro actions, one for
achieving each goal the agent hold. Finally, the reward function, R : Goals �→ R,
assigns a separate reward value to each goal.

Since the reward function is assigned slightly differently from that used in a
MDP, the valuation of states and actions is changed to match. Global termination
states are those states in which there are no profitable macro actions. States in
which all goals have been achieved are global termination states since all rewards
have already been collected. The global termination states (where all goals have
been achieved) are assigned a value of 0, indicating that no further action will
yield any reward. The expected value of desire states is defined as follows:

V (〈Goals, s〉) = 0 (2)

Desire-Space Analysis and Action Selection for Multiple Dynamic Goals 257

V (〈Gach, s〉) = max

⎛
⎝0, max

macroi∈Adesire

⎛
⎝ C(macroi, s)

+R(gi)
+V (〈Gach ∪ {gi}, gi〉)

⎞
⎠

⎞
⎠ (3)

The value of a state is simply the sum of the cost of executing the macro
from that state (a negative number), the reward for achieving the immediate
goal through macro execution, and any expected value for being in the resulting
state, due to expected future goal achievement. Note that if no action is profitable
(i.e., the cost of each action outweighs or equals its benefits), then the state is
also a global termination state and is given a value of 0.

The specific structure of the graph offers many exploitable characteristics.
Since the domain does not allow goals to become unachieved, loops cannot exist
in the graph, forming a tree structure. This enables calculation of the expected
values to proceed through simple accumulation of the values from a single graph
traversal.

3 Model Modification for Dynamic Goals

Multi-agent systems operate in dynamic environments. Dynamism may come
from many sources. The priorities of the agent designer may change, causing
changes in the agent’s reward structures. Additionally, agents are affected by
the behavior of other agents in the system, either implicitly through competition
for domain resources, or explicitly through argumentation or negotiation. Even
the agent’s own actions may change the decision model it follows if there is
uncertainty in the environment. Regardless the cause, the agent’s priority is to
maintain rational action in the face of these changes. To the system designer,
in addition to rationality, computational efficiency is also an issue. This can be
addressed through the reuse of previous computations in the planning process.
Satoh also attempts to reuse computation in his abductive planning system [12].

3.1 Maintaining Rationality

Although goals may change over time, the overall style of operation of the agent
may remain constant (i.e., the agent will always try to maximize its rewards).
Hauskrecht et. al. [13] built on the work of Sutton, Precup, and Singh to solve
hierarchical MDPs using macro actions. In their work, they address local changes
in reward structure or system dynamics by constructing a hybrid MDP using
both macro actions and primitive actions. The area of the MDP most affected
by goal changes is recalculated using the primitive actions. Their work assumes
that the reward function and system dynamics remains the same in all but a
few regions of the state space. In those regions where the state space is not
changing, Hauskrecht advocates reuse of the macro actions. When dealing with
multiple goals, the addition or removal of goals may cause large changes in the
overall state space for an agent. However, due to the structure of the desire

258 D.C. Han and K.S. Barber

space, much of the previous computation can still be reused. It is from this reuse
that computational efficiency is gained.

As a simple elaboration in the robot package delivery domain, suppose the
robot can accept packages for delivery as well. Each package is represented as a
goal, so accepting a package equates to goal addition. Also, upon delivery, the
package is no longer the responsibility of the agent. This corresponds to a simple
example of goal removal. For various reasons, packages may become more or less
urgent, corresponding to changing reward values for the goals.

In a dynamic setting (i.e., one in which events exogenous to the agent may
modify the world) achieving optimality is impossible except through happen-
stance. Optimality requires that the agent have a perfect predictor for future
system behavior. Rationality requires only that the agent act in its believed
best interests. In a domain with complete knowledge (past, present, and future),
rationality would equate to the optimal solution though still computationally
expensive. With incomplete knowledge, the agent should try to perform as well
as it can, given its limited knowledge and resources. Lacking any information
about the future, an agent can be considered rational if it executes actions which
are considered optimal in the model the agent holds at the time it executes those
actions. When faced with new information, the agent maintains rationality by
revising its model and continuing execution with whatever action is then be-
lieved to be optimal. The following sections describe algorithms for maintaining
rationality by modifying the decision model in response to changes in the desires
of the agent.

3.2 Goal Removal

Goal removal allows the agent to reduce the size of the desire space that it
models. There are two cases for goal removal: (1) the goal has already been
achieved and (2) the goal has not already been achieved. Both cases are simple
due to the structure of the desire space.

The first case is trivial due to the structure of the desire space. The agent
needs only treat the current state as the new root of the model with no recalcu-
lation necessary. All desire states that are not reachable from the current desire
state can be pruned from the model (e.g., those desire states in which the goal
being removed has not been achieved). In fact, the goal variable itself can be
removed from the representation used by all remaining desire states. Since the
value assigned to that goal variable will be equivalent for all remaining states,
it can be safely factored out of the desire state representation without affecting
any of the remaining desire state values.

Algorithm 1. REMOVEGOAL(d,g)
location = d.location
d =CHILD(d, g)
d.location = location
UPDATE(V (d))

Desire-Space Analysis and Action Selection for Multiple Dynamic Goals 259

When the goal being removed has not already been achieved, recalculation
is necessary to remove the value of the goal from the action-selection reasoning.
Due to the structure of the desire space (Figure 5) , the value of any given node
is dependent only on the unachieved goals and state of the agent at that node.
Computation is saved by caching the values of each node. Algorithm 1 describes
the removal of goal g. The function CHILD(d, g) returns the desire state that
results from executing the macro to achieve g in the desire state d. The agent
transitions in the desire space as if it had achieved goal g. The resulting state in
the desire space is then updated with the agent’s current location in the state
space. Finally, the value of the current new state is recalculated based on the
new location. The values of the children states had previously been calculated,
but due to the new location, the costs to reach the children have changed. This
may cause a new macro to be selected as the most profitable when calculating
the new V (d).

Initial
{}
s

Current
{G1}
g1

{G2}
g2

{G3}
g3

Macro 1

Macro 2

Macro 3

{G1, G2}
g2

{G1, G2}
g1

{G1, G3}
g3

{G2, G3}
g3

{G1, G3}
g1

{G2, G3}
g2

{G1, G2,
G3}
g1

{G1, G2,
G3}
g2

{G1, G2,
G3}
g3

Remove G1
{}
s

{G2}
g2

{G3}
g3

Macro 2

Macro 3

{G2, G3}
g3

{G2, G3}
g2

Fig. 6. Modification of desire space for goal removal

Figure 6 illustrates the effect of pruning goal g1 from the desire space. Note
that the desire states highlighted in gray show the reused state values after the re-
moval of g1. To highlight this reuse, note that by Equation 3, V (〈{G1, G2}, g2〉) =
C(macroG3, s) + R(G3) + V (〈{G1, G2, G3}, g3〉). Since achievement of all goals,
with Goals = {G1, G2, G3}, results in a terminal state, V (〈{G1, G2, G3}, g3〉) =
0. After removal of G1, Goals = {G2, G3}, making 〈{G2, G3}, g3〉 a termi-
nal state. The value of being in state 〈{G2}, g2〉 is C(macroG3, s) + R(G3) +
V (〈{G2, G3}, g3〉), equivalent to the pre-removal value of state V (〈{G1, G2}, g2〉).

260 D.C. Han and K.S. Barber

3.3 Goal Addition

Goal addition can be handled in a single traversal of the graph. Algorithm 2
describes the process for adding goal g to desire state d. This algorithm describes
the desire state in terms of the unachieved goals, Gach, rather than Gach because
upon addition of a goal, the reuse of desire state values is linked to the unachieved
goals in that state. For desire state d, a new macro action is added for achieving
goal g and the resulting desire state d′ is created. The children of d are added to
d′. After the addition of the children, the value of d′ can be calculated, selecting
the best macro to execute in that desire state. The new goal g is then added to
each of the children of d, constructing a depth first traversal of the tree. Finally,
the value of s is updated, possibly changing the best macro to execute.

Algorithm 2.AddGoal(d,g)
d′ = new STATE(〈d.Gach, g〉)
d.Gach = d.Gach + g
for all i ∈ d.children do

ADDCHILD(d′, i)
end for
UPDATE(V (d′))
for all i ∈ d.children do

ADDGOAL(i,g)
end for
d.children = d.children + d′

UPDATE(V (d))

Replication saves the computational cost of recalculating the values for states
which will have equivalent values to preexisting states. Figure 7 shows the result
of adding g1 to a model that already includes g2 and g3. Desire states marked
in gray are replicated from the original model into the resulting model through
ADDCHILD in the algorithm described above. In the diagram, there are multiple
paths to reach some of the later states in the model. Caching of desire state values
further reduces computation as a node only needs to be computed once and can
be reused for each other incoming edge.

3.4 Goal Modification

The rewards associated with goals may change. This may be due to the passage
of time or acquisition of new information. States in which the goal has been
achieved are not affected by any change in the value of that goal. Only those
states leading up to achievement of that goal are affected. Similar to the addition
of goals, desire state values can be updated by a single traversal of the graph.
By intelligently caching the value calculation results large sections of the desire
space are not touched.

The overall objective when handling dynamic goals is to reuse the calculations
that stay static across changes. In each of the removal, addition, or modification

Desire-Space Analysis and Action Selection for Multiple Dynamic Goals 261

{}
s

{G1}
g1

{G2}
g2

{G3}
g3

Macro 1

Macro 2

Macro 3

{G1, G2}
g2

{G1, G2}
g1

{G1, G3}
g3

{G2, G3}
g3

{G1, G3}
g1

{G2, G3}
g2

{G1, G2,
G3}
g1

{G1, G2,
G3}
g2

{G1, G2,
G3}
g3

Add G1
{}
s

{G2}
g2

{G3}
g3

Macro 2

Macro 3

{G2, G3}
g3

{G2, G3}
g2

Fig. 7. Modification of desire space for addition of a goal

cases, the desire space is divided into sections by the appropriate macro action.
On the originating side of the macro action, desire states require recalculation. On
the resulting side of the macro action, previously calculated values can be reused.

4 Application to UAV Domain

Applying this research to build an operating system raises other interesting
opportunities for approximation and estimation. The work presented in the pre-
vious sections has been implemented for experimentation and demonstration
in the domain of unmanned aerial vehicle (UAV) control. Figure 8 shows the
graphical user interface for the simulation. In the simulation, the environment
has been abstracted into a Cartesian plane. Targets are placed at various points
in this plane and the agents, controlling the UAVs, are tasked with visiting the
various targets. Uncertainty is introduced into the domain by the movement of
the targets, forcing the UAVs to operate with possibly stale information regard-
ing the location of the targets. Three UAVs are shown by the dark circles. Lines
extending out of the UAVs show the past and future planned movement.

At the most basic level, an agent has control over the heading and speed of
a single UAV. A state in the state space is defined by the location, heading,
and speed of the UAV in conjunction with the locations of the targets. Even
in this simple domain, analysis of the state space directly is computationally
intractable. Approximation and estimation methods are used to further reduce
computation required for decision-making.

262 D.C. Han and K.S. Barber

Fig. 8. UAV demonstration of decision-theoretic action selection

Macro actions are constructed to move to each target location, enabling rea-
soning in the desire space. Through domain analysis, macro actions can be cre-
ated manually to control the operation of the UAVs. The macros consists of the
actions required to turn the UAV towards the specified target and move until the
destination is reached. If the target is not found, then a simple search pattern
is executed. Though not necessarily optimal, good domain analysis may yield
macros that reasonably approximate the optimal behavior for each goal.

Each target has an associated reward value, illustrated by the circles sur-
rounding the targets. Calculating the exact expected cost is rather complex due
to the movement of the targets. Probabilistic encounter models could be used.
E.g., cost of each macro usage can be cheaply estimated as a function of the
distance between the UAV and the target.

Targets are added to the system regularly. Additionally, with more than one
UAV operating in the system, targets may be removed through the action of the
other agents. These additional estimation methods, the manually constructed
macro actions and cost estimation functions, aid in producing the quick deci-
sions that are necessary for operating in highly dynamic domains that demand
computational efficiency.

5 Conclusion

Autonomous agents are provided with independence in the selection of which
actions they should perform. Although they are provided this independence,

Desire-Space Analysis and Action Selection for Multiple Dynamic Goals 263

the agent’s actions must also reflect its desires. Over time, desires may change.
This research extends previous work on using MDPs to provide rational action
selection in the face of changing desires.

MDPs provide the means for decision-theoretic reasoning but are afflicted by
the “curse of dimensionality”. Macro actions enable reasoning on a more abstract
level than the primitive actions in the domain at the cost of possible suboptimal-
ity in the actions of the agents. For a restricted class of domain problems, such
as the “cost-to-move” framework, structure in the desire space can be exploited
to reduce computation needed to make approximately optimal moves. Macro
actions encapsulate the domain characteristics, enabling the decision problem
posed to the agent to be transformed into the desire space. Reasoning in the
desire space of the agent allows the agent to approximately weigh the costs and
benefits of each of its goals at an abstract level. In the desire space, the agent
can simply add, remove, and modify goals. The drawback of this approach is
that it ignores possible action or subgoal interactions among the goals.

Analysis presented in this paper addressed goals composed in an indepen-
dent manner, as compared to the work of Lane and Kaelbling which addressed
sets of goals where a single reward was given for completion of the whole set.
Further analysis of the dependencies among goals will enable efficient reasoning
over goals that are composed using other operators (i.e., ‘NOT’ or ‘XOR’) or
composed hierarchically. Quantitative analysis of the exact computational sav-
ings is currently being pursued. Additionally, methods for integrating the goal
valuations with negotiation and argumentation mechanisms are being pursued.

Acknowledgements

This research was funded in part by the Defense Advanced Research Projects
Agency and Air Force Research Laboratory, Air Force Materiel Command, USAF,
under agreement number F30602-00-2-0588. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes notwithstanding
any copyright annotation thereon. The views and conclusions herein are those of
the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed on implied, of the Defense Advanced
Research Projects Agency (DARPA), the Air Force Research Laboratory, or the
U.S. Government.

The research reported in this document was performed in connection with
Contract number DAAD13-02-C-0079 with the U.S. Edgewood Biological Chem-
ical Command.

References

1. Wooldridge, M.: Reasoning about Rational Agents. The MIT Press, Cambridge,
Massachusetts (2000)

2. Bentahar, J., Moulin, B., Meyer, J.J.C., Chaib-Draa, B.: A computational model
for conversation policies for agent communication. In this volume.

264 D.C. Han and K.S. Barber

3. Mancarella, P., Sadri, F., Terreni, G., Toni, F.: Planning partially for situated
agents. In this volume.

4. Alferes, J.J., Banti, F., Brogi, A.: From logic programs updates to action descrip-
tion updates. In this volume.

5. Georgeff, M.P.: Planning. In Allen, J., Hendler, J., Tate, A., eds.: Readings in
Planning. Morgan Kaufmann Publishers, San Mateo, California (1990) 5–25

6. desJardines, M.E., Durfee, E.H., Ortiz Jr., C.L., Wolverton, M.J.: A survey of
research in distributed, continual planning. AI Magazine 20 (1999) 13–22

7. Boutilier, C.: Planning, learning and coordination in multiagent decision processes.
In: Theoretical Aspects of Rationality and Knowledge, Amsterdam, Netherlands
(1996) 195–201

8. Boutilier, C., Dean, T., Hanks, S.: Decision-theoretic planning: Structural assump-
tions and computational leverage. Journal of Artificial Intelligence Research 11
(1999) 1–94

9. Sutton, R.S., Precup, D., Singh, S.P.: Between MDPs and semi-MDPs: A frame-
work for temporal abstraction in reinforcement learning. Artificial Intelligence 112
(1999) 181–211

10. Lane, T., Kaelbling, L.P.: Nearly deterministic abstractions of markov decision pro-
cesses. In: Eighteenth National Conference on Artificial Intelligence (AAAI2002),
Edmonton, Alberta, Canada (2002) 260–266

11. Gutin, G., Punnen, A.P., eds.: The Traveling Salesman Problem and Its variations.
Kluwer, Dordrecht, The Netherlands (2002)

12. Satoh, K.: An application of global abduction to an information agent which
modifies a plan upon failure- preliminary report. In this volume.

13. Hauskrecht, M., Meuleau, N., Kaelbling, L.P., Dean, T., Boutilier, C.: Hierarchical
solution of Markov decision processes using macro-actions. In: Uncertainty in
Artificial Intelligence (UAI98). (1998) 220–229

Organising Software in Active Environments

Benjamin Hirsch1, Michael Fisher1, Chiara Ghidini2,�,
and Paolo Busetta2

1 Department of Computer Science,
University of Liverpool, United Kingdom
{M.Fisher, B.Hirsch}@csc.liv.ac.uk

2 Automated Reasoning Systems Division,
ITC-IRST, Trento, Italy

{ghidini, busetta}@itc.it

Abstract. In this paper, we investigate the use of logic-based multi-agent
systems for modelling active environments. Our case study is an intelli-
gent support system for a so-called “active museum”. We show the ap-
proach of structuring the “agent space”, i.e., the social organisations act-
ing within the environment, is well fitted to naturally represent not only
the physical structure of the application, but also the virtual structure
in which it operates. The adoption of a logic-based modelling system pro-
vides high-level programming concepts, and allows the designer to rapidly
design and develop flexible software to be used in active environments.

1 Introduction

In recent years, computing devices have become extremely powerful while, at
the same time, being small enough to integrate within portable devices. To-
gether with the advent of wireless communication methods, the technological
pre-requisites for ubiquitous computing are beginning to be in place. However,
it is much less obvious how to actually make use of these devices in order to
create an environment where the complexity of the surrounding computing en-
vironment is hidden from users, while still being available and able to adapt to
movements/preferences of the users.

Within the agent research community, many paths to tackling the complexity
of interactions, communication, co-ordination and organisation have been pur-
sued [16]. Some of the theories developed have been quite deep, yet few have
found their way into viable programming approaches for multi-agent systems.
An exception is our earlier work [12, 15], which is based on a strong formal the-
ory of agency combining modal, temporal and multi-context logics. By directly
executing specifications provided in such a theory [9], the behaviour of individual
agents can be implemented [11]. Overlayed on top of this is a multi-agent organ-
isational model comprising the notion of agent groups, providing the flexibility
and adaptability to program more complex multi-agent computations.

� Work supported by MIUR under FIRB-RBNE0195K5 contract.

J. Leite and P. Torroni (Eds.): CLIMA V, LNAI 3487, pp. 265–280, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

266 B. Hirsch et al.

The firm foundation in formal logic also provides the possibility of carrying
out verification of computation under varying environmental conditions [2].

Our aim in this paper is to utilise the approach above [12, 15], which is es-
sentially based on the MetateM executable temporal logic [1], in order to show
how computational logic in general, and temporal logic in particular, together
with a structured agent space, allows us to quickly and naturally model complex
real world computing environments.

To reinforce this claim, we will apply the above approach to a specific ac-
tive environment, namely the so-called “active museum” [19]. We will show how
such a logic-based multi-agent system, while being relatively straightforward to
build, can be an effective and high-level tool for modelling computing environ-
ments that are inherently flexible, adapt to changes within their environment
(and therefore to the users), and extensible. We will show how the approach of
structuring the “agent space”, i.e., the social organisations acting within the en-
vironment, is well fitted to naturally representing not only the physical structure
of the application, but also the virtual environment within which the software
artefacts reside.

The structure of this paper is as follows. To begin with, the concept of the
active museum is explained in Section 2. Then, in Section 3, we introduce the key
concepts of the particular logic-based programming language we aim to utilise.
The resulting multi-agent system is explained in Section 4 and its implemen-
tation is described in Section 5. The application of this approach to the active
museum scenario is presented in Section 6, and the advantages of this approach,
particularly as mobile agents move through the organisational layers, are dis-
cussed in Section 7. Finally, in Section 8, we provide concluding remarks.

2 The Active Museum

In work on the PEACH project1 [19] the concept of “active museum” is being
investigated. This is a form of active environment [18], and can be seen as a
large scale multi-user, multi-media, multi-modal system. In the case of PEACH,
museum visitors are provided (either on demand or pro-actively, depending on
the context) with information about exhibits they may see within the museum.
This information may be drawn from a variety of information sources and media
types (museum server, online remote servers, etc.), and presented to the visitors
by a variety of clients (for example, hand-held devices such PDAs, kiosks, wall
screens, and so on).

Generally speaking, active environments have some characteristics that make
them substantially different from traditional computing and HCIs. For instance,
multiple users may be in a single place, interacting with different applications
simultaneously. The set of users changes dynamically over time. Users are un-
aware (and uninterested) that the environment is formed of many distributed
components. Therefore, they interact with the environment as if it were a single,

1 http://peach.itc.it

Organising Software in Active Environments 267

monolithic system. However, services are provided by a variable set of compo-
nents that join and leave the environment on mobile devices or that may be
running anywhere else. Services provided by these components can (partially)
overlap; therefore, they need to coordinate in order to decide, for instance, who
provides a specific service, and how it is provided, in a specific context.

In our reference scenario, the active museum, users’ positions and resource
availability may impose constraints on the generation and display of information;
resources may rapidly change over time, while users move around. In the back-
ground, user modelling agents silently record histories of user interactions and
build profiles by observing their behaviour; their goal is to customise presenta-
tions, avoiding repetitions or inappropriate content. Furthermore, one long-term
objective of the PEACH project is supporting groups of visitors, such as families
or classes of children, by providing tools that allow the sharing of experience and
improve learning. All these requisites imply intensive communication among the
software collaborating to provide services well beyond current communication
architectures and service composition techniques. The objective here is to create
a highly distributed and dynamic environment, where the number of components
capable of providing services continuously varies.

The implementation of an active museum that has been provided in PEACH
relies on the ability of sending messages to roles, rather than to individual compo-
nents, and overhearing conversations happening among any set of components of
the system. This enables the aggregation of service-providing agents into teams
that have been called implicit organisations [5, 6]. In turn, this enables context-
sensitive behaviour to be built into objects embedded in the environment, freeing
high-level applications (concerned, for instance, with supporting knowledge shar-
ing within a group) from issues concerning service composition and delivery in
a specific environment. The implementation of this idea is based on a form of
group communication called channelled multicast [4], which is supported by an
experimental communication infrastructure, called LoudVoice. LoudVoice sup-
ports the creation of channels on-the-fly; messages sent on a channel are received
by all agents tuned into it.

3 MetateM

Over the last few years many different theories and specification languages, to-
gether with implementations of individual agents [17] and organisational aspects,
such as teamwork [20], have been developed. However, those areas of research sel-
dom overlap. Many specification languages are too complex to directly translate
into a (executable) program, and often ignore issues that arise with interac-
tion and collaboration between agents. On the other hand, implementations of
multi-agent systems often have only a fleeting connection with agent theories or
theories about teamwork.

Many specification languages are based on logic, which allows for (potential)
verification of the specification, and the ability to use high level concepts, while
also often resulting in a concise representation. Agent theories are typically based

268 B. Hirsch et al.

on the so-called BDI logic [3], combining strands for belief, desire, and intention.
By using those mentalistic notions, the agents’ reasoning about their environ-
ment, their choice or creation of plans, as well as the pursuit of goals can easily
be expressed in logical terms. However, this expressive power leads to a very
high complexity involved in handling the resulting specifications.

The specification language we use here, based on MetateM [1], is an exe-
cutable logic. That is to say, we can directly execute the logical specifications,
thereby partially bridging the gap between theory and practice. The multi-agent
environment natively supports the dynamic structuring of the agent space into
groups (and teams). MetateM is based on propositional linear temporal logic [14],
extended with modalities for (bounded) belief, confidence and abilities [12]. The
resulting logic is still expressive, yet simple enough to be directly executed. Be-
lief is modelled using a modal multi-context logic that is roughly equivalent to
the standard KD45 modal logic, while confidence is modelled as “believing that
eventually” something will happen. Ability is very simple, being little more than a
modality that can be used to prefix formulae. While arbitrary temporal formulae
can be used to specify the agent behaviour, agents are, in practice, programmed
using a special normal form called SNF, which is particularly amenable to exe-
cution and verification [10]. As an example of a simple set of SNF2 ‘rules’ which
might form part of an agent description, consider the following

start → in office
(in office ∧ ¬hungry) → ©in office

(in office ∧ hungry ∧ Amebuy food) → Bme © (¬in office ∧ buy food)
(buy food ∧ Ameeat) → ♦¬hungry

Here, ‘©’ means “in the next moment”, while ‘♦’ means “at some future mo-
ment”. Thus, the above describes a scenario where I am in the office at the begin-
ning of execution, and will continue to stay in the office while I am not hungry.
However, once I become hungry and I am able to buy food (Amebuy food), then
I believe (Bme), that in the next moment in time, I will leave the office and buy
food. Finally, if I buy food and am able to eat (Ameeat), then eventually I will
not be hungry.

The execution essentially forward chains through a set of such rules, gradu-
ally constructing a model for the specification. If a contradiction is generated,
backtracking occurs. Eventualities, such as ‘♦¬hungry ’ are satisfied as soon as
possible; in the case of conflicting eventualities, the oldest outstanding ones are
attempted first. The choice mechanism takes into account a combination of the
outstanding eventualities, and the deliberation ordering functions [11].

As mentioned above, belief is modelled using bounded multi-context logic.
Simply speaking, belief operators are computed by creating new time lines and
checking them for consistency. As each Bi operator is expanded, a record of the

2 For clarity the rules are presented in this way, even though they are not in exactly the
SNF form.

Organising Software in Active Environments 269

depth of nesting of such operators is kept. Once the current bound for expanding
the belief contexts is reached, exploration of the current belief context ceases.
Because abilities and beliefs are not used in this paper, we refer the interested
reader to [12] for an in-depth discussion on bounded belief.

4 Structuring the Agent Space

While the above approach is essentially concerned with single agents, the exten-
sion to Concurrent MetateM [8] was concerned with modelling and program-
ming general multi-agent computation. This approach has been developed over
a number of years, with an important aspect being the notion of flexible agent
grouping [13]. Here, agents are organised in groups, and groups themselves ap-
pear, to the outside world, as agents. Conversely, agents can contain other agents
(and thereby appear as groups for them), and groups can be contained in agents
(that is, groups can contain other agent groups). Thus, agents can be members
of several groups, and can contain many agents. It is vital to understand that
while we use the words agent, group, and group agent at different times to refer
to aspects of agents, we are always talking about one and the same entity.

During execution, each agent, a, has two main sets it uses for communication,
its Content and its Context . The Context contains references to the groups
(agents) that a is member of, while the Content contains references to agents
that are members of a. Figure 1 shows three different ways of representing nested
agents: as overlapping sets; as a membership tree; and as a membership table.
In the latter, CN denotes the agent’s Content , and CX its Context .

A

C

G

H

D
F

E

B

I

B G I

D C H

E F

A

Agent CN CX
A {B,G} ∅
B {D,C} {A}
C ∅ {B,G}
D {E,F} {B}
E ∅ {D}
F ∅ {D}
G {A} {C,H}
H ∅ {G}
I ∅ {A}

Fig. 1. Different views of nested agents

The key reasons we wish to identify agents and groups are:

– this is a natural way to represent complex problems and software;
– many types of meta-data can (concurrently) be represented (task structure,

abilities, physical location, ownership, social relations, teams, etc) within the
agent space topology; and

– groups can evolve from “dumb” containers into smart entities with refined
policies, reactive/deliberate behaviour, etc.

270 B. Hirsch et al.

Effectively, groups and agents are viewed as one and the same entity, avoiding
the need to introduce separate mechanisms to deal with agent structuring and
organisation.

4.1 Dynamic Grouping

While a multi-agent system generally starts out with some pre-defined structure,
agents can dynamically adapt the structure to fit their needs. In particular,
agents can add agents to, and remove agents from, their Content (resp. Context);
i.e., they can move within and change the structure. In addition to being able
to move through the hierarchy, agents can cease and clone themselves, and can
create new agents (and hence new groups).

By creating new agents, they can harness the power of the structure. Agents
can, for example, create group agents and instruct them to invite other agents
with a certain ability ϕ to join. Now the creating agent has a group of agents able
to do ϕ at its disposal. Because groups are in fact agents, their behaviour can
range from pure “containers” of other agents, through to complex behaviours
such as only allowing agents to join that agree to a certain set of rules [15]. For
example, if all agents in a group were to have the rule

receive(M) ⇒ ©do(M)

meaning “whenever you receive a message, make it true in the next moment in
time”, as part of their behaviour, then the group agent would be able to utilise
the abilities of all these agents simply by asking them to do something.

The structure of the agent space can be used to encode many different types of
information, avoiding the need for individual agents to keep an extensive knowl-
edge base and to keep that knowledge consistent with the (dynamic) environ-
ment. The types of information range from task and ability structures, to repre-
sentations of some physical space to meta information such as owner information,
trust relations, and so on. For example, if an agent is to accomplish some task,
but does not have the corresponding abilities, it can create a group agent that
contains agents that can accomplish (sub-) tasks, which in turn again can in-
vite other agents to their respective content. Eventually, the structure becomes
an accurate representation of the different sub-tasks involved in executing the
main task. Similarly, by re-creating the physical structure within the agent space,
agents can be modelled as being part of both physical and virtual structures.

4.2 Communication

In order to make effective use of different structures within the agent space, a
flexible message passing system has been devised. Whilst the general idea is to
broadcast messages to either Content or Context , agents are also allowed to send

1. messages to specific subsets of agents (e.g., send(SE,Message)),
2. nested messages (e.g., send(SE1,send(SE2,Message))), and
3. recursive messages (e.g., sendAll(SE,Message))

Organising Software in Active Environments 271

In case (1), the agent can either specify a set of one or more agents by name, or
it can specify a set expression. The sent message can in turn be a send message
(case (2)), thus providing a form of forwarding. Finally, the sendAll directive
instructs the receiving agent to re-send the message to the same set (adapted to
its own local Content/Context).

A set expression (SE) may be a single agent, a set of agents, the variables
Content or Context , or any of the operations SE1 ∪ SE2 (union), SE1 ∩ SE2
(intersection), or SE1 \ SE2 (subtraction) applied to set expressions. Note that
the special variables Content and Context are always interpreted locally.

Using this language, we can easily express the sendAll directive using the
following equivalence:

sendAll(Set ,Message) ≡ send(Set ,Message) ∧
send(Set , send(Set \ Self ,Message))

The special variable Self refers to the sending agent. It is necessary to ensure
that no message is repeatedly sent through the agent space. Note that while this
does guarantee that no message is sent forever, it does not guarantee that each
agent receives the message exactly once.

5 Programming Agents

We have created a Java implementation, in which agents are represented by
threads, and communicate via shared objects.

Agents are driven by a MetateM engine, which interprets a set of rules that
describe the behaviour of the agent. At each cycle, the agent first checks its
Inbox for new messages, and passes them to the MetateM engine, which then,
based on those predicates that were made true from the last state, and eventu-
alities that still need to be honoured, creates a new state. If the created state
turns out to be consistent, the cycle is repeated with the newly created state,
otherwise, backtracking occurs, firstly within the state (by making a different
set of predicates true) and if that fails by rolling back states, again trying to
resolve the contradiction by assigning different truth values to predicates within
the state.

Note that while we internally use propositional temporal logic, we employ
some syntactic sugar and allow predicates and variables in rules. However, only
rules where all variables are substituted by a ground term “fire”, and therefore
only grounded predicates (essentially propositions) can be made true.

An agent is only allowed to backtrack to the point where it interacted with
its environment, by sending messages or executing side effects connected with
certain predicates3. This is due to the inability of agents to un-do effects on the
environment.

3 Reading messages is not direct interaction, as the agents keeps track of messages
read during each cycle, and re-reads them in case of backtracking.

272 B. Hirsch et al.

As mentioned above, certain predicates can have side-effects. We distinguish
between internal side effects, which are provided by the system and include ac-
tions such as adding and removing agents to Content and Context , and external
ones, that consist of Java objects and/or rules. External abilities can for exam-
ple be used to connect to databases, or interact with sensors. Table 1 gives a
short overview of predicates with side effects used in the reminder of this paper.

Table 1. Predicates and their side effects

send(S,M) sends message M to agent-set S

doAddToContent(A) adds Agent A to current agent Content

doAddToContext(A) adds Agent A to current agent Context

prefer(P,Q) re-orders eventualities P and Q, s.t. P is preferred over Q

wait(i,P) sends P to itself after i milliseconds (external)

Agents are programmed using logical formulae in SNF form4. When program-
ming an agent, rules themselves are clustered and tagged. The reason for this is
twofold. First, it allows the programmer to structure her code. More importantly
though, it allows for behaviours (which typically comprised of many formulae)
to be exchanged within the agent.

We provide a (simple) implementation of several typical movements of agents,
such as moving up and down the Content/Context hierarchy, in a file which
agents can load. However, the programmer can write her own rules, which will
(completely) overwrite (default) behaviours with the same tag.

Figure 2 gives a simple definition for addToContent/2 based on the inter-
nal predicates doAddToContent/1, doAddToContext/1, which indiscriminately
connects agents (note that NEXT represents the “next moment in time” opera-
tor). In complex agents, this will most probably be adapted to, for example, only
allow certain agents to join the agent.

addToContent: {

addToContent($SELF,Sender)

=> NEXT doAddToContent(Sender).

addToContent($SELF,Sender)

=> NEXT send(Sender, addedToContent($SELF,Sender)).

addedToContent(Sender,$Self)

=> NEXT doAddToContext(Sender). }

Fig. 2. Tagged cluster of rules implementing addToContent

4 It might be clear to the reader that while any temporal formula can be transformed
into SNF, the transformation will result in a set of many small formulae.

Organising Software in Active Environments 273

6 MetateM in the Museum

Using the active museum as backdrop, we now show how the dynamic grouping
structure and executable logic within the system can be exploited to represent
different aspects of the scenario, and how we can design different layers and
easily incorporate them into one system.

In our particular example, we chose to use two distinct layers. On the one
hand, we use agents to represent the physical space, that is, the tangible struc-
ture of the museum, consisting of rooms, exhibits, and visitors moving between
the different rooms; on the other hand we wish to represent an organisational
structure of visitors, that will allow a visitor to receive preferences on the exhibits
available in a room.

Using those two structures allows us to exploit the information they contain.
The physical structure can be used to keep track of agent’ positions, compute
routes (on the fly), find nearby other agents, find the location of specific exhibits
and so on. The organisational structure allows agents to receive appropriate
suggestions or information, find and communicate with agents with the same
interests, profile visitors and so forth.

The first grouping structure is depicted in Figure 3. It represents the physical
layout of the museum. In our simplified example, museum M has two rooms (R1
and R2), with 3 exhibits in each room (Ex1. . . Ex6). Each room also contains a
visitor (V1 in R1 and V2 in R2).

M

R1 R2

Ex1 Ex2 Ex3 V1 Ex4 Ex5 Ex6 V2

Fig. 3. Physical Structure of Museum Example

A separate organisational structure (Figure 4) shows three interest groups, the
Artist Group (AG), ColourBlind Group (CB), and Time Group (TG). Visitor1
(V1) is member of both AG and CB while Visitor2 (V2) is only member of TG.
The function of the interest groups is to provide visitors with an optimal path
through the room, given the preferences of the visitor. In our example, V1 is
interested in artists, so the system suggests a certain order to the exhibits. The
group CB tags exhibits that primarily consist of hard to discern shades of red
and green (for the sake of argument). It therefore recommends participants not
to visit certain exhibits at all.

Given just the physical structure, the system should show the following be-
haviour. Upon entering a room (joining the content of R), a visitor sends a mes-
sage to its context, informing it that it is looking around within R. R in turn asks
its content what exhibits are available, and forwards the answers to the visitor.

274 B. Hirsch et al.

AG CB TG

V1 V2

Fig. 4. Organisational Structure of Museum Example

The MetateM Rules needed to accomplish the above are rather straight-
forward. Figure 5 shows the rules needed for V to “look around” and remember
the exhibits it can see5, as well as the rules R uses to send appropriate answers.

VISITOR

exhibits: {

addedToContent(Room,$Self) => NEXT lookAround(Room).

addedToContent(Room,$Self), canSee($Self,Room1,Exhibit)

=> NEXT seen(Exhibit).

lookAround(Room) => NEXT send(context, looking($Self,Room)).

receive(canSee($Self,Room,Exhibit))

=> NEXT canSee($Self,Room,Exhibit).

canSee($Self,Room,Exhibit), not(seen(Exhibit))

=> NEXT canSee($Self,Room,Exhibit). }

ROOM

exhibits: {

receive(looking(Visitor,$Self))

=> NEXT send(content,whatExhibit($Self,Visitor)).

receive(exhibit(Exhibit,$Self,Visitor))

=> NEXT send(Visitor,canSee(Visitor,$Self,Exhibit)). }

Fig. 5. Physical space rules of both Visitor and Room Agents

The above rules are enough to allow our visitor agent to guide a visitor through
a museum — given it has information about the different exhibits, or receives
them from the room. However, each and every visitor would be directed towards
the same sequence of exhibits.

We now add our organisational layer. As mentioned before, we wish to expand
the system by allowing for interest-based guidance through exhibits, possibly
excluding exhibits from the list. Figure 4 gives the (simple) structure of our
organisational layer. Note that the visitor agents V1 and V2 are the only agents
that appear in both structures.

Now, for the visitor agents to receive preferences about which exhibits to view,
they each forward a canSee/2 message to their context. The interest groups

5 Due to MetateM, predicates that need to be true in more than one moment in time
have to be made true explicitly.

Organising Software in Active Environments 275

INTEREST GROUP AGENT

preferences: {

START => go().

go() => NEXT prefer($room1,$exhibit1,$exhibit3).

go() => NEXT prefer($room1,$exhibit3,$exhibit2).

go() => NEXT prefer($room1,$exhibit1,$exhibit2).

go() => NEXT prefer($room2,$exhibit6,$exhibit5).

go() => NEXT prefer($room2,$exhibit6,$exhibit4).

go() => NEXT prefer($room2,$exhibit5,$exhibit4).

prefer(X,Y,Z) => NEXT prefer(X,Y,Z).}

request: {

receive(canSee(Visitor,Room,Exhibit))

=> NEXT canSee(Visitor,Room,Exhibit).

canSee(Visitor,Room,Exhibit), prefer(Room, Exhibit1, Exhibit2)

=> NEXT send(Visitor,prefer(Room, Exhibit1,Exhibit2)). }

Fig. 6. Organisational space rules of Interest Group Agent

then reply by sending a preference relation over the exhibits, or alternatively
exhibits that should be excluded (Fig. 6). Exclusion is accomplished simply by
sending a discard/1 message. The agent receiving an exclusion message will go
from not having seen the exhibit to seen, without ever making true the predicate
goLooking/1 that represents the agent’s action of looking at the exhibit (see Fig.
7). Note the message prefer/3 is followed by making prefer/2 true in the next
moment of time. prefer/2 is an internal predicate which re-orders eventualities
such that the agent tries to satisfy the first argument before the second (where it
has a choice). The visitor agent will try to honour the eventuality goLooking/1 in
the order given by the (set of) preferences. Eventualities are generally attempted
in the order they were created. The primitive prefer/2 can change that order.
Given a set of prefer/2 predicates, the agent tries to satisfy the constraints
they represent. If not successful, it will try to satisfy a subset of the preferences.
Also note that the order of eventualities is the same across moments in time, so
it generally is sufficient to call prefer/2 only once. Note that several interest
groups can send their preference relations, the visitor agent will internally try
to make the order as consistent as possible.

In our scenario, the rules that accomplish this modification of eventuality
order can be found in Figures 6 and 7. The visitor invokes interest groups by
forwarding to them any information about exhibits it can see. Interest groups
simply answer by sending preference relations on visible exhibits. (Executing
send(V,prefer($room1,X,Y)) will send all preference predicates that match
$room1). The rules of the visitor look complicated because the visitor, after
learning which exhibits there are, has to remember those for some time while
requesting preferences from the interest groups. During that wait, we must ensure
that the eventualities are not honoured.

Also note that while (in this simplified setting) the agent takes only one mo-
ment in time to actually look at the exhibits, it still needs to “remember” which

276 B. Hirsch et al.

VISITOR AGENT

preference: {

receive(prefer(Room,Exhibit1,Exhibit2))

=> NEXT prefer(Exhibit1,Exhibit2).

canSee($Self,Room,Exhibit) => SOMETIME goLooking(Exhibit).

canSee($Self,Room,Exhibit) => NEXT not(goLooking(Exhibit)).

send(context,canSee($Self,Room,Exhibit))

=> NEXT wait(2000,waitforPref(Room)).

waitforPref(Room) => NEXT startLooking(Room).

send(context,canSee($Self,Room,Exhibit))

=> NEXT not(goLooking(Exhibit)).

not(goLooking(Exhibit)), not(startLooking(Room))

=> NEXT not(goLooking(Exhibit)).

goLooking(Exhibit),not(discard(Exhibit))

=> NEXT lookAt(Exhibit).

lookAt(Exhibit) => NEXT seen(Exhibit).

goLooking(Exhibit), discard(Exhibit) => NEXT seen(Exhibit). }

exclude: {

receive(discard(X)) => NEXT discard(X).

discard(X),not(seen(X)) => NEXT discard(X). }

exhibits: {

receive(canSee($Self,Room,Exhibit))

=> NEXT send(context,canSee($Self,Room,Exhibit)). }

Fig. 7. Organisational space rules of Visitor Agent

exhibits it should exclude. The exclude rules ensure that discarded predicates
are remembered as long as is necessary.

7 Discussion of the System

In the above example, while being rather simple, still highlights several aspects
of both elements, the structure of the agent space and the use of temporal logic.

For one, the graph-like structure of the agent space can be exploited to contain
information about the system. In the above example, the room agents do not
know which exhibits they contain until they send a request. The agent space can
be very dynamic, and agents do not need to have complicated mechanisms to
ensure their internal representation of the world is accurate.

Secondly, not only can we use the structure in such a way, but we can repre-
sent different aspects of a system within the graph, design them independently,
and combine them at run time. Given the rules in Figures 6 and 7, we can eas-
ily add more rooms, exhibits, visitors, and interest groups, without having to
re-write or re-design the system.

Organising Software in Active Environments 277

The use of logic allows us to extend the system without having to change
anything. For example, we can define just the physical structure, which would
make the agent to randomly visit the different exhibits.

By adding a simple rule that sends requests for preferences when a canSee
predicate is received, this can be adapted.

In Section 6 we described the basic scenario. In the following subsections, we
will examine in more detail the dynamics between the agents.

7.1 Dynamic Aspects: Mobile Agents

In order to keep the example simple, we assume that some tracking agent tracks
the visitors (in the real world) and sends moveTo(Visitor,Room) messages to
the visitor agents. While we omit this in the current example, visitors can easily
also be members of this tracking agent.

V1 V1

V1 V1

V1 V1

V1
R1 R2

add(V1)

rem(V1)

M3

V1
R1 R2

see(Ex1,Ex2)

M9

V1
R1 R2

whatEx?

M6

MoveTo(R2)

R1 R2

M

R1 R2

room?
R1

M

R1 R2

remd(V1)

added(V1)

M

R1 R2

whatEx?

M

R1 R2
Ex2Ex1

M

R1 R2

Ex1, Ex2

M

1

4

7 8

5

2

Fig. 8. Messages sent when moving to a room

Figure 8 shows the flow of messages that occur when an agent moves from
one room to another6 Upon receiving moveTo/2, agent V1 sends appropriate
addToContent and removeFromContent messages to the new and old room,
respectively. The addToContent message exchange (see Figure 2) ends with
addedToContent, which, in turn, gives rise to the above described interchange
between room and visitor which results in the visitor learning about the exhibits
available in the (new) room. Note the second rule for the visitor in Figure 5, which
basically ensures that the agent “forgets” exhibits it might not have looked at
in the room it just left. Also note that we can add and remove exhibits on the
fly, because the room agents always checks what exhibits are available.

The movement of agents is independent of other agents being in the rooms,
because even though messages are often broadcast to Content or Context , they
generally contain the name of the receiving agent, so that only that agent’s rule
will fire. While we could have made sure that messages are only sent to particular

6 We omit “send” and abbreviate some of the messages for readability. Also, note that
“movement” refers to virtual, rather than actual movement.

278 B. Hirsch et al.

agents, this would not have allowed us to (at a later stage) take advantage of
the ability to overhear messages within certain groups.

7.2 Dynamic Aspects: Modifying Interests

We get more interesting interactions when looking at the organisational struc-
ture. Visitor agents can “subscribe” to interest groups, which in our example
determines the order in which the exhibits should be shown. In more complex
settings, interest groups also determine or influence the type of information that
the visitor will receive during her stay in the museum.

While our example is simple, we can already distinguish several situations. In
the first, the visitor is not subscribed to any group; next, a visitor can subscribe to
one or more interest groups that give (possibly conflicting) preference relations;
she can subscribe to interest groups that suggest to not look at exhibits at all;
and finally a combination of the latter two.

The interaction between visitor agents and interest groups works as fol-
lows (see Figure 9). After having received different exhibits that are available
(canSee/3), the visitor re-broadcasts them to its context, and waits a specified
time for answers (canSee/3 => NEXT wait/2). The rule in Figure 7,
not(goLooking(Exhibit)), not(startLooking(Room)) => NEXT

not(goLooking(Exhibit)

ensures that the eventualities containing goLooking/1 will not be made true
until the predicate startLooking/0 is true.

V1 V1

V1LS V1 TGLS discard(ex1)

goLookingex2) seen(ex1)
seen(ex2)

TG

pref(ex2,ex1)
canSee(ex1)canSee(ex1)

Fig. 9. Message exchange with interest groups

If the visitor agent is not subscribed to any interest groups (that is to say, there
are no interest groups in the visitor agent’s context), it will still wait for prefer-
ences. If none are sent, it will just work through its eventualities in a random order.

However, if the agent received one or more prefer/3 messages, it re-orders
the outstanding eventualities using the internal predicate prefer/2. If they are
not consistent (due to different interest groups having conflicting preferences), it
will try to honour as many of the preferences as possible, and choose randomly
between the inconsistent preferences remaining.

Organising Software in Active Environments 279

In the case of receiving discard/1 messages, our visitor just disregards the
exhibit, even if it has a high preference. It should be clear though that we
could easily add some rules to, for example, give discarded exhibits a very low
preference.

8 Conclusions

In this paper, we have utilised a structured multi-agent programming language,
and have shown how the structure can be exploited to create complex systems
that are (a) relatively easy to specify, due to the possibility of designing dif-
ferent layers independently of each other, (b) dynamic, and therefore suitable
for systems where many different agents interact in unforeseeable ways, and (c)
potentially verifiable, due to the logical basis of the system. The key behaviours
of individual agents are provided through varieties of executable temporal logic,
while the over-arching group structure allows us to represent a range of physical
and virtual organisations. This approach provides a powerful, flexible, yet logic-
based, route to the design, modelling and development of software for ubiquitous
computing applications.

Future work involves developing more complex scenarios, and comparing with
other approaches to the theory of team building [20] and other (non logic-based)
multi-agent programming systems [7, 17].

References

1. H. Barringer, M. Fisher, D. Gabbay, G. Gough, and R. Owens. MetateM: An
Introduction. Formal Aspects of Computing, 7(5):533–549, 1995.

2. R. Bordini, W. Visser, M. Fisher, C. Pardavila, and M. Wooldridge. Model checking
multi-agent programs with CASP. In Proceedings of the Fifteenth Conference on
Computer-Aided Verification (CAV-2003), Boulder, CO, 8–12 July, 2003.

3. M. E. Bratman. Intentions, Plans, and Practical Reason. Havard University Press,
Cambridge, MA, 1987.

4. P. Busetta, A. Doná, and M. Nori. Channeled multicast for group communications.
In Proceedings of the First International Joint Conference on Autonomous Agents
and Multiagent Systems, pages 1280–1287. ACM Press, 2002.

5. P. Busetta, T. Kuflik, M. Merzi, and S. Rossi. Service delivery in smart environ-
ments by implicit organizations. In Proceedings of the First Annual International
Conference on Mobile and Ubiquitous Systems (MobiQuitous 2004), pages 356–363,
Boston, MA, USA, 22-26 August 2004. IEEE Computer Society Press.

6. P. Busetta, M. Merzi, S. Rossi, and F. Legras. Intra-Role Coordination Using
Group Communication: A Preliminary Report. In Proceedings of International
Workshop on Agent Communication Languages, ACL2003 (in conjunction with
AAMAS 2003), volume LNAI 2922, pages 231–253. Springer, July 2003.

7. J. Ferber and O. Gutknecht. Aalaadin: a meta-model for the analysis and design of
organisations in multi-agent systems. Research Report R.R.LIRMM 97189, LIRM,
Université Montpelier, France, December 1997.

280 B. Hirsch et al.

8. M. Fisher. Concurrent MetateM — A Language for Modeling Reactive Sys-
tems. In Parallel Architectures and Languages, Europe (PARLE), Munich, Ger-
many, June 1993. (Published in Lecture Notes in Computer Science, volume 694,
Springer-Verlag).

9. M. Fisher. An Introduction to Executable Temporal Logics. Knowledge Engineer-
ing Review, 11(1):43–56, March 1996.

10. M. Fisher. A normal form for temporal logic and its application in theorem-proving
and execution. Journal of Logic and Computation, 7(4):429 – 456, August 1997.

11. M. Fisher and C. Ghidini. Programming Resource-Bounded Deliberative Agents.
In Proceedings of International Joint Conference on Artificial Intelligence (IJCAI).
Morgan Kaufmann, 1999.

12. M. Fisher and C. Ghidini. The ABC of rational agent modelling. In Proceedings
of the first international joint conference on autonomous agents and multiagent
systems (AAMAS’02), Bologna, Italy, July 2002.

13. M. Fisher and T. Kakoudakis. Flexible agent grouping in executable temporal logic.
In Proceedings of the 12th International Symposium of Intensional Programming
Languages, 1999.

14. R. Goldblatt. Logics of Time and Computation, volume 7 of CLSI Lecture Notes.
CLSI, Stanford, CA, 2nd edition, 1992.

15. B. Hirsch, M. Fisher, and C. Ghidini. Organising logic-based agents. In M.G.
Hinchey, J.L. Rash, W.F. Truszkowski, C. Rouff, and D. Gordon-Spears, edi-
tors, Formal Approaches to Agent-Based Systems. Second International Workshop,
FAABS 2002, volume 2699 of LNAI, pages 15–27. Springer, 2003.

16. N. R. Jennings, K. Sycara, and M. Wooldridge. A roadmap of agent research and
development. Autonomous Agents and Multi-Agent Systems, 1:275–306, 1998.

17. Agent Oriented Software Ltd. The JACK programming language, 2000.
http://agent-software.com.au.

18. J. McCarthy. Active environments: Sensing and responding to groups of people.
Personal and Ubiquitous Computing, 5(1), 2001.

19. O. Stock and M. Zancanaro. Intelligent Interactive Information Presentation for
Cultural Tourism. In Proceedings of the International CLASS Workshop on Natural
Intelligent and Effective Interaction in Multimodal Dialogue Systems, Copenhagen,
Denmark, 28-29 June 2002.

20. D. Pynadath and M. Tambe. An automated teamwork infrastructure for heteroge-
neous software agents and humans. Journal of Autonomous Agents and Multiagent
Systems, 2002.

Author Index

Alferes, José Júlio 52
Arkoudas, Konstantine 111

Baldoni, Matteo 196
Banti, Federico 52
Barber, K. Suzanne 249
Baroglio, Cristina 196
Bentahar, Jamal 178
Bringsjord, Selmer 111
Brogi, Antonio 52
Busetta, Paolo 265

Casali, Ana 126
Chaib-draa, Brahim 178

Dastani, Mehdi 144
de Boer, Frank S. 16
Dignum, Frank 33

Fisher, Michael 265

Ghidini, Chiara 265
Godo, Llúıs 126
Grossi, Davide 33

Han, David C. 249
Herzig, Andreas 144
Hirsch, Benjamin 265

Homola, Martin 78
Hulstijn, Joris 144

Inoue, Katsumi 161

Kakas, Antonis C. 96

Lomuscio, Alessio 1

Mancarella, Paolo 96, 230
Martelli, Alberto 196
Meyer, John-Jules Ch. 16, 33, 178
Moulin, Bernard 178

Patti, Viviana 196

Sadri, Fariba 96, 230
Sakama, Chiaki 161
Satoh, Ken 213
Schifanella, Claudio 196
Sierra, Carles 126
Stathis, Kostas 96

Terreni, Giacomo 230
Toni, Francesca 96, 230

van der Torre, Leendert 144
van Riemsdijk, M. Birna 16

Woźna, Bożena 1

	Frontmatter
	Foundations
	A Logic for Knowledge, Correctness, and Real Time
	Dynamic Logic for Plan Revision in Intelligent Agents
	Contextual Taxonomies
	From Logic Programs Updates to Action Description Updates
	Dynamic Logic Programming: Various Semantics Are Equal on Acyclic Programs

	Architectures
	Declarative Agent Control
	Metareasoning for Multi-agent Epistemic Logics
	Graded BDI Models for Agent Architectures

	Interaction
	Inferring Trust
	Coordination Between Logical Agents
	A Computational Model for Conversation Policies for Agent Communication
	Verifying Protocol Conformance for Logic-Based Communicating Agents

	Planning and Applications
	An Application of Global Abduction to an Information Agent Which Modifies a Plan Upon Failure -- Preliminary Report
	Planning Partially for Situated Agents
	Desire-Space Analysis and Action Selection for Multiple Dynamic Goals
	Organising Software in Active Environments

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

