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Abstract. One-class classification techniques are able to, based only
on examples of a normal profile, induce a classifier that is capable of
identifying novel classes or profile changes. However, the performance
of different novelty detection approaches may depend on the domain
considered. This paper applies combined one-class classifiers to detect
novelty in gene expression data. Results indicate that the robustness of
the classification is increased with this combined approach.

1 Introduction

Supervised learning algorithms learn from labeled examples in a training set
and later, on a test phase, attempt to classify new unseen examples based on
the knowledge acquired in the training phase. In a traditional approach, the
absence of good representative examples of a certain class in the training set leads
to a poor performance of the classifier on that particular class. In an extreme
situation, if a class does not have any examples at all, a traditional classifier will
assign objects of that class to one of the known classes, even though it might
not be an appropriate choice.
Therefore, the ability to detect a new class or sub-class is an important as-

pect for a machine learning system. Slight modifications in the data distribution
might indicate, for instance, the appearance of a new class, or a profile modifi-
cation in a class that has already been modeled. The capability to identify these
changes is known as Novelty Detection (ND) [9], Outlier Detection or One-Class
Classification [11] [12].
The term One-Class refers to the key characteristic of ND techniques, which

is the fact that the training is carried out based only on examples from a single
class that represents the normal profile. In other words, the algorithm learns to
identify a novelty profile without having seen any examples of such a class. The
power of novelty detection lies exactly on this aspect: in the training phase, no
examples of any novel profile are presented. As a consequence, the performance
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of one-class classifiers cannot be directly compared to that of two-class classifiers,
since the latter uses examples of both classes on the training phase.
Different approaches to ND have been proposed [9] and applied to a variety

of tasks. In this paper, some of these approaches are combined to produce a
single decision, as explained in Section 2. Section 3 presents and analyzes ex-
periments involving gene expression data. Section 4 reviews the most important
conclusions.

2 A Combined Approach to Novelty Detection

The problem of ND consists in the discovery of new profiles that were not present
in the training samples. Thus, the classifier is induced based only on positive
examples of a target class. All other examples are removed from the training set
as these examples are considered outliers.
Of the various approaches to ND described in the literature, five of them have

been chosen for this work: Parzen Window [10], K-NN (K-Nearest Neighbor) [6],
K-Means [3], SOM (Self-Organizing Map) [8] and PCA (Principal Components
Analysis) [3]. Each of these one-class classifiers uses one of three different strate-
gies, according to the classification proposed by Tax [12]. Other classifications
of ND techniques are available in the literature [9].
Parzen Window is a density estimation technique that, based on a data distri-

bution scheme, defines a threshold to distinguish between normal and novel pro-
files. K-NN constructs hypersphere boundaries to involve data of the target class,
therefore considering outliers any elements that fall outside these boundaries. K-
Means, SOM and PCA are classified as reconstruction techniques. K-Means is
a clustering algorithm that builds a boundary around prototype objects. SOM
is based on a Neural Network architecture called Self-Organizing Map, in which
prototypes are constrained to a lower-dimensional space in order to be later vi-
sualized. PCA performs a transformation of the original input attributes to a
smaller number of uncorrelated, thus more meaningful, attributes.
Each of these techniques alone may perform better in a specific domain, and

may also depend on a good parameter setting. Therefore, from a user’s point of
view, it might be hard to discover which approach is more likely to work best
when experimenting with a variety of datasets.
The combined approach proposed in this work aims to increase classification

robustness by taking into account the opinion of a set of one-class classifiers, instead
of relying on a single approach, that might favor one class over the other.
Initially, all classifiers in the set are trained with a set containing only ex-

amples of the target class. For the same dataset, each class is considered the
target class at one time, and examples of all other classes are labeled as outliers
and used for testing purposes only. In the test phase, when target and outlier
examples are present, the opinion of each classifier is taken and recorded. The
final decision for each example (normal or novelty) is taken by the set of the
classifiers. If the majority considers that the example belongs to the target class,
then it is labeled normal, otherwise it is marked novelty.
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Many statistic measures are taken throughout this process to ensure a good
analysis of the results. A desired situation is one where the classifier is able to
detect new profiles with high accuracy, but continues to classify normal exam-
ples with a good level of confidence. In other words, the aim is to minimize the
false negative and false positive rates. However, this optimum point is not eas-
ily achieved, once some classifiers might be more restrictive than others in the
definition of the normal profile.
Therefore, the major motivation for the combined approach is the belief that,

when the opinions of more than one classifier are considered, the undesirable in-
dividual tendencies toward a specific class will be less important in the whole
picture, since the final decision is taken by the majority. By doing so, it is ex-
pected that the optimum point described previously will be more easily achieved.
Previously, initial good results, not reported here, have been obtained with

various standard datasets from the UCI Machine Learning Repository [4]. These
results inspired a series of experiments carried out with gene expression data,
presented in the following section.

3 Experiments

The main goal of the experiments described in this section is to compare the
individual ND performance of each one-class classifier against the performance
of the combined approach described previously. All classifiers used are available
in DDtools, the Data Description Toolbox for Matlab [13], and this technique
has been previously tested on standard datasets from the UCI Machine Learning
Repository [4].
The experiments presented in this section have been conducted with the

following gene expression datasets:

– breast - Classification of breast tumor samples based on the positive or neg-
ative status of the estrogen receptor (ER) [14]. The database is composed of
44 examples with 7129 attributes each.

– colon - Distinction between tumor and normal colon tissue samples based on
gene expression [2]. The original database is composed of 62 examples and
2000 attributes.

– leukemia - Identification of two types of Leukemia (ALL and AML) from
values of gene expression [7]. The original database contains 72 examples
and 7129 attributes.

– lymphoma - Distinction between germinal center and activated diffuse large
B-cell lymphoma based on gene expression profiling [1]. The original database
is composed of 47 examples and 4026 attributes.

Throughout the analysis, classes are referred with numbers instead of labels,
according to the association shown in Table 1.
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Table 1. Classes numbers

Base Class 1 Class 2

breast ER- ER+

colon Tumor Normal

leukemia ALL AML

lymphoma Germinal Center Activated

3.1 Methodology

Stratified 10-fold cross-validation has been used in all experiments to ensure that
results represent the average behavior, not a specially successful or unsuccessful
case. The same folds were used in all experiments to allow replicability.
According to the number of incorrect predictions, two error rates were cal-

culated: the normal error rate, that considers examples of the normal profile
incorrectly classified as outliers, and the novelty error rate, which indicates the
percentage of outliers that have been incorrectly considered members of the
normal profile. The results obtained are presented and discussed as follows.

3.2 Analysis of the Results

Initially, experiments were performed with 2 original datasets and a set of 5
classifiers: Parzen Window, K-NN, K-Means, SOM and PCA. Table 2 presents
these results. In each cell, the mean error rate of the 10 folds tested is followed
by the standard deviation. These statistics are available for each classifier alone,
and for the combined approach. As previously explained, for all datasets, each
class has been considered the normal profile at a time. For example, when class
1 is the normal profile, examples of class 2 are not present in the training phase.
In fact, class 2 represents the novelty that the classifier is supposed to identify
in the testing phase. Then, the same procedure is carried out considering class
2 as the normal profile.
The first aspect to notice in the results is the poor performance of all clas-

sifiers. In general, they consider almost all test examples as being either normal
(very high novelty error rate) or novelty (very high normal error rate). For in-
stance, when the Parzen Window technique obtains a novelty error rate equal
to 1.00 and a normal error of 0.00, it means that it is classifying all test samples
as normal, which is completely inadequate. The opposite is seen with the SOM
technique in the lymphoma dataset, with normal error rates as high as 0.87. Nei-
ther one nor the other behavior is useful, and each shows that the classifier has
not been able to estimate the distribution of the data. This situation, i.e. where
all data are either considered normal or novelty, can be caused, among other
things, by a classifier that is either inadequate for that particular data domain
or badly configured. However, in this specific situation, a very high number of
attributes (2000 in the colon dataset and 4026 in lymphoma) could also be the
complicating factor.
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Table 2. Results with 2 original datasets and a set of 5 classifiers. In each cell, the
mean error rate is followed by the standard deviation

Base: colon Normal Error Novelty Error
Normal Class: 1 parzen 0.00 0.00 1.00 0.00

knn 0.10 0.17 0.95 0.16
kmeans 0.15 0.17 1.00 0.00
som 0.15 0.17 1.00 0.00
pca 0.18 0.26 0.95 0.16

Combined 0.13 0.18 1.00 0.00
Normal Class: 2 parzen 0.00 0.00 1.00 0.00

knn 0.10 0.21 0.63 0.27
kmeans 0.13 0.22 0.65 0.27
som 0.13 0.22 0.63 0.27
pca 0.20 0.26 0.50 0.26

Combined 0.10 0.21 0.63 0.27
Base: lymphoma Normal Error Novelty Error
Normal Class: 1 parzen 0.00 0.00 1.00 0.00

knn 0.10 0.21 0.67 0.29
kmeans 0.18 0.24 0.75 0.27
som 0.87 0.22 0.00 0.00
pca 0.27 0.24 0.50 0.34

Combined 0.13 0.22 0.67 0.29
Normal Class: 2 parzen 0.00 0.00 1.00 0.00

knn 0.08 0.18 0.80 0.26
kmeans 0.17 0.22 0.80 0.26
som 0.85 0.24 0.03 0.11
pca 0.25 0.36 0.50 0.42

Combined 0.17 0.22 0.80 0.26

To investigate that, a preprocessing phase has been added. In that phase, the
number of attributes has been reduced to a calculated optimum amount, different
for each dataset, based on the same technique used in [7]. This procedure aimed
to minimize the error rates of ND. As a positive side effect, it also largely reduced
the computational cost.
Table 3 shows the results after attribute reduction, with the same set of clas-

sifiers seen previously in Table 2. The colon dataset has been reduced to colon16,
with 16 attributes, and the lymphoma dataset has been reduced to lymphoma32,
with 32 attributes. With a few exceptions, the majority of the error rates de-
creased, which confirms that the high dimensionality of the original dataset did
not allow the induction of reliable ND classifiers. This table also includes results
obtained from 2 other reduced datasets, breast128 and leukemia64, with 128 and
64 input attributes respectively.
In this second round of experiments, K-NN and K-Means achieved low error

rates, except for the novelty class of colon16, which is known to be a difficult
dataset. The PCA based classifier obtained good results on all datasets, even
for the colon16 dataset, when the normal examples belong to class number
1. Unfortunately, in that case, most of the classifiers were not as successful.
Parzen Window was the worse of all classifiers, displaying the same behavior
seen previously in Table 2. However, this negative influence did not have a strong
impact on the overall performance of the combined approach.



Combining One-Class Classifiers for Robust Novelty Detection 59

Table 3. Results with the 4 reduced datasets and 5 classifiers

Base: breast128 Normal Error Novelty Error
Normal Class: 1 parzen 0.00 0.00 1.00 0.00

knn 0.15 0.34 0.03 0.11
kmeans 0.18 0.34 0.00 0.00
som 0.18 0.34 0.00 0.00
pca 0.18 0.34 0.00 0.00

Combined 0.15 0.34 0.00 0.00
Normal Class: 2 parzen 0.00 0.00 1.00 0.00

knn 0.15 0.24 0.13 0.22
kmeans 0.15 0.24 0.00 0.00
som 0.15 0.24 0.00 0.00
pca 0.18 0.24 0.00 0.00

Combined 0.15 0.24 0.00 0.00
Base: colon16 Normal Error Novelty Error

Normal Class: 1 parzen 1.00 0.00 0.00 0.00
knn 0.10 0.17 0.50 0.34

kmeans 0.13 0.13 0.53 0.34
som 0.15 0.13 0.48 0.30
pca 0.18 0.26 0.27 0.24

Combined 0.18 0.17 0.40 0.33
Normal Class: 2 parzen 1.00 0.00 0.00 0.00

knn 0.10 0.21 0.85 0.17
kmeans 0.15 0.24 0.68 0.24
som 0.15 0.24 0.63 0.27
pca 0.18 0.24 0.63 0.18

Combined 0.15 0.24 0.65 0.21
Base: leukemia64 Normal Error Novelty Error
Normal Class: 1 parzen 1.00 0.00 0.00 0.00

knn 0.12 0.17 0.07 0.14
kmeans 0.09 0.11 0.03 0.11
som 0.11 0.11 0.03 0.11
pca 0.14 0.13 0.03 0.11

Combined 0.13 0.11 0.03 0.11
Normal Class: 2 parzen 1.00 0.00 0.00 0.00

knn 0.07 0.21 0.47 0.24
kmeans 0.08 0.18 0.14 0.19
som 0.13 0.22 0.17 0.22
pca 0.28 0.35 0.09 0.15

Combined 0.17 0.22 0.14 0.19
Base: lymphoma32 Normal Error Novelty Error
Normal Class: 1 parzen 1.00 0.00 0.00 0.00

knn 0.08 0.18 0.12 0.19
kmeans 0.13 0.32 0.05 0.16
som 1.00 0.00 0.00 0.00
pca 0.22 0.24 0.28 0.26

Combined 0.30 0.32 0.05 0.16
Normal Class: 2 parzen 1.00 0.00 0.00 0.00

knn 0.15 0.34 0.23 0.34
kmeans 0.15 0.24 0.00 0.00
som 0.97 0.11 0.00 0.00
pca 0.18 0.24 0.00 0.00

Combined 0.23 0.34 0.00 0.00

The SOM technique only showed difficulty in the lymphoma32 dataset. How-
ever, even with two classifiers providing totally misleading results, the effect on
the performance of the combined approach in the lymphoma32 dataset was lit-
tle. This shows superior robustness of the combined approach against the choice
of a single classification strategy.
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Table 4. Results with a set of 3 classifiers, one from each strategy

Base: breast128 Normal Error Novelty Error
Normal Class: 1 parzen 0.00 0.00 1.00 0.00

knn 0.15 0.34 0.03 0.11
kmeans 0.18 0.34 0.00 0.00

Combined 0.15 0.34 0.03 0.11
Normal Class: 2 parzen 0.00 0.00 1.00 0.00

knn 0.15 0.24 0.13 0.22
kmeans 0.15 0.24 0.00 0.00

Combined 0.15 0.24 0.13 0.22
Base: colon16 Normal Error Novelty Error

Normal Class: 1 parzen 1.00 0.00 0.00 0.00
knn 0.10 0.17 0.50 0.34

kmeans 0.13 0.13 0.53 0.34
Combined 0.20 0.20 0.40 0.33

Normal Class: 2 parzen 1.00 0.00 0.00 0.00
knn 0.10 0.21 0.85 0.17

kmeans 0.15 0.24 0.68 0.24
Combined 0.15 0.24 0.68 0.24

Base: leukemia64 Normal Error Novelty Error
Normal Class: 1 parzen 1.00 0.00 0.00 0.00

knn 0.12 0.17 0.07 0.14
kmeans 0.09 0.11 0.03 0.11

Combined 0.19 0.15 0.03 0.11
Normal Class: 2 parzen 1.00 0.00 0.00 0.00

knn 0.07 0.21 0.47 0.24
kmeans 0.08 0.18 0.14 0.19

Combined 0.15 0.25 0.14 0.19
Base: lymphoma32 Normal Error Novelty Error
Normal Class: 1 parzen 1.00 0.00 0.00 0.00

knn 0.08 0.18 0.12 0.19
kmeans 0.13 0.32 0.05 0.16

Combined 0.22 0.33 0.05 0.16
Normal Class: 2 parzen 1.00 0.00 0.00 0.00

knn 0.15 0.34 0.23 0.34
kmeans 0.15 0.24 0.00 0.00

Combined 0.20 0.35 0.00 0.00

To assess the impact of the number of classifiers in the set on the final results,
experiments were also performed with a set of 3 classifiers, one representing each
of the ND strategies (density estimation, boundary and reconstruction).
The results, displayed in Table 4, show a small increase in the error rates

in the breast128 and colon16 datasets. On the other hand, for the lymphoma32
dataset there was a small reduction in the error rates. For the leukemia64 dataset
the results were similar. Considering that the number of classifiers was reduced
from 5 to 3, and that the relative influence of the Parzen Window on the overall
result was increased, the performance of the combined approach has not been
seriously affected.
A different set, in which Parzen Window has been replaced by PCA, has also

been tested and the results are presented inTable 5. Inmost cases, the performance
has been improved. However, although ParzenWindow, which apparently has not
shown any contribution to the combined result, has been replaced in the combina-
tion by PCA, a technique which has shown superior performance, the impact on
the combined result was not as high as could be expected. In fact, this stability in-
dicates the potential of the combined approach. With the combination, extremes
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Table 5. Results with another set of 3 classifiers

Base: breast128 Normal Error Novelty Error
Normal Class: 1 knn 0.15 0.34 0.03 0.11

kmeans 0.18 0.34 0.00 0.00
pca 0.18 0.34 0.00 0.00

Combined 0.15 0.34 0.00 0.00
Normal Class: 2 knn 0.15 0.24 0.13 0.22

kmeans 0.15 0.24 0.00 0.00
pca 0.18 0.24 0.00 0.00

Combined 0.15 0.24 0.00 0.00
Base: colon16 Normal Error Novelty Error

Normal Class: 1 knn 0.10 0.17 0.50 0.34
kmeans 0.13 0.13 0.53 0.34
pca 0.18 0.26 0.27 0.24

Combined 0.15 0.17 0.40 0.33
Normal Class: 2 knn 0.10 0.21 0.85 0.17

kmeans 0.15 0.24 0.68 0.24
pca 0.18 0.24 0.63 0.18

Combined 0.10 0.21 0.73 0.18
Base: leukemia64 Normal Error Novelty Error
Normal Class: 1 knn 0.12 0.17 0.07 0.14

kmeans 0.09 0.11 0.03 0.11
pca 0.14 0.13 0.03 0.11

Combined 0.06 0.10 0.03 0.11
Normal Class: 2 knn 0.07 0.21 0.47 0.24

kmeans 0.08 0.18 0.14 0.19
pca 0.28 0.35 0.09 0.15

Combined 0.07 0.14 0.14 0.19
Base: lymphoma32 Normal Error Novelty Error
Normal Class: 1 knn 0.08 0.18 0.12 0.19

kmeans 0.13 0.32 0.05 0.16
pca 0.22 0.24 0.28 0.26

Combined 0.13 0.22 0.12 0.19
Normal Class: 2 knn 0.15 0.34 0.23 0.34

kmeans 0.15 0.24 0.00 0.00
pca 0.18 0.24 0.00 0.00

Combined 0.15 0.24 0.00 0.00

can be avoided and, consequently, the robustness of the system as a whole can be
improved. Although the best possible results may not be achieved, unstable situ-
ations in which a classification technique favors one specific profile over the other
can be avoided, i.e. normal over novelty or novelty over normal. As mentioned pre-
viously, this is an important issue when dealing with one-class classification, since
the challenge is to identify new profiles with a high level of confidence while main-
taining a good performance on the normal profile.
Finally, to provide a better visualization of the decisions taken throughout

the process, individual errors made by each classifier on each example of the test
set have been recorded for each fold and later reassembled. Figure 1 displays
those errors in a graphical format, where white squares represent examples cor-
rectly classified and black squares mark errors. Examples are placed along the
horizontal axis and classifiers vertically.
It is easily noticed that the larger number of errors is concentrated in the

dataset colon16 when the second class represents the normal profile. In this
situation, all classifiers except Parzen Window make similar mistakes, which can
also be confirmed by the error rates displayed in Table 3.
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Fig. 1. Individual errors (black squares) of each classifier (vertical axis) on each exam-
ple (horizontal axis)

Through these graphs it is also clearer to see that a classification strategy
that shows good results in one dataset might not be successful in another, even
considering datasets of the same domain (gene expression). For example, the
horizontal lines which represent the performance of the SOM technique display
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a very different amount of classification mistakes, depending on the dataset and
on the normal class considered. This picture reinforces that the combination of
classifiers leads to more robust results, since the decision is always taken by the
majority of them.
An example of a desired situation is shown in the first plot of leukemia64

and in both plots of breast128, where low error rates have been achieved. The
vertical alignment of the errors indicate that all classifiers are having similar
difficulties. These are problematic examples, which can be further investigated
with a different technique, or isolated to be analyzed by a specialist.
However, if a larger number of scattered errors is present, the final perfor-

mance of the combined approach might still be good. This is due to the fact
that each classifier is filling-in other classifiers faults, which exemplifies the im-
portance to combine classifiers built with various techniques, since the diversity
of classifiers in the set may determine the robustness of the system as a whole.

4 Conclusion

One-class classification techniques are able to, based only on examples of a nor-
mal profile, induce a classifier that is capable of detecting novelty.
This paper has shown the use of a simple strategy which combines the opin-

ions of a set of one-class classifiers for the task of ND in gene expression data.
The results obtained suggest that the use of such a combined approach im-
proves the robustness of the overall decision. By considering the opinion of the
majority of a set of classifiers instead of just one, this technique avoids indi-
vidual tendencies that certain approaches might present in some datasets or
domains.
The improvement achieved so far inspire further investigations. As analyzed,

the diversity of classifiers in the decision set seems to be an important aspect
in the final performance of the combined approach. Another possible way of im-
proving the results might be the addition of a selection phase, after which only
the ND approaches that better fit the problem at hand would be considered. An
assessment of the impact of both technical and biological noise on the differen-
tial performance of the classifiers has been suggested, and also inspires further
experimentation.
Still, other combinations of one-class classifiers are yet to be explored in

bioinformatics, following previous initiatives [12], as the authors continue to
explore ND techniques for the identification of novel classes and profile changes.
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