


Lecture Notes in Bioinformatics 3594
Edited by S. Istrail, P. Pevzner, and M. Waterman

Editorial Board: A. Apostolico S. Brunak M. Gelfand
T. Lengauer S. Miyano G. Myers M.-F. Sagot D. Sankoff
R. Shamir T. Speed M. Vingron W. Wong

Subseries of Lecture Notes in Computer Science



João Carlos Setubal
Sergio Verjovski-Almeida (Eds.)

Advances in
Bioinformatics and
Computational Biology

Brazilian Symposium on Bioinformatics, BSB 2005
Sao Leopoldo, Brazil, July 27-29, 2005
Proceedings

13



Series Editors

Sorin Istrail, Celera Genomics, Applied Biosystems, Rockville, MD, USA
Pavel Pevzner, University of California, San Diego, CA, USA
Michael Waterman, University of Southern California, Los Angeles, CA, USA

Volume Editors

João Carlos Setubal
Virginia Bioinformatics Institute and Department of Computer Science
Virginia Polytechnic Institute and State University, Bioinformatics 1, Box 0477
Blacksburg, VA 24060-0477, USA
E-mail: setubal@vbi.vt.edu

Sergio Verjovski-Almeida
Universidade de Sao Paulo
Instituto de Quimica, Departamento de Bioquimica
Av. Prof. Lineu Prestes 748, 05508-000 Sao Paulo, SP, Brazil
E-mail: verjo@iq.usp.br

Library of Congress Control Number: 2005929321

CR Subject Classification (1998): H.2.8, F.2.1, I.2, G.2.2, J.2, E.1

ISSN 0302-9743
ISBN-10 3-540-28008-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-28008-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11532323 06/3142 5 4 3 2 1 0



Preface

The Brazilian Symposium on Bioinformatics (BSB 2005) was held in São Leo-
poldo, Brazil, July 27–29, 2005, on the campus of the Universidade Vale do Rio
dos Sinos (Unisinos). BSB 2005 was the first BSB symposium, though BSB is
in fact a new name for a predecessor event called the Brazilian Workshop on
Bioinformatics (WOB). WOB was held in three consecutive years: 2002, 2003,
and 2004. The change from workshop to symposium reflects the increased reach
and quality of the meeting. BSB 2005 was held in conjunction with the Brazilian
Computer Society’s (SBC) annual conference.
For BSB 2005 we had 55 submissions: 45 full papers and 10 extended ab-

stracts. These proceedings contain the 15 full papers that were accepted, plus
16 extended abstracts (a combination of the accepted abstracts and some full
papers that were accepted as extended abstracts). These papers and abstracts
were carefully refereed and selected by an international program committee of
40 members, with the help of some additional reviewers, all of whom are listed
on the following pages. These proceedings also include papers from three of our
invited speakers. We believe this volume represents a fine contribution to current
research in bioinformatics and computational biology.
The editors would like to thank: the authors, for submitting their work to

the symposium, and the invited speakers; the program committee members and
other reviewers for their help in the review process; the Unisinos local organizers,
José Mombach and Ney Lemke; Marcelo Walter from Unisinos, coordinator of
the SBC conference; Ivan Sendin, from the University of Goiás, who helped with
fund raising; Margaret Gabler, from VBI, who helped with the preparation of
the proceedings; the symposium sponsors (see list in this volume); Guilherme
Telles, Ana Bazzan, Marcelo Bŕıgido, Sergio Lifschitz, and Georgios Pappas,
members of the SBC special committee for computational biology; and Springer
for agreeing to print this volume.

July 2005 João Carlos Setubal
Sergio Verjovski-Almeida
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Francisco Prosdocimi, José Miguel Ortega . . . . . . . . . . . . . . . . . . . . . . . . . 153

A Method for Comparing Three Genomes
Guilherme P. Telles, Marcelo M. Brigido, Nalvo F. Almeida,
Carlos J.M. Viana, Daniel A.S. Anjos,
Maria Emilia M.T. Walter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Comparison of Genomic DNA to cDNA Alignment
Methods
Miguel Galves, Zanoni Dias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Segmentation and Centromere Locating Methods Applied to Fish
Chromosomes Images
Elaine Ribeiro de Faria, Denise Guliato,
Jean Carlo de Sousa Santos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181



Table of Contents XIII

Extended Abstracts

Sequence Motif Identification and Protein Family Classification Using
Probabilistic Trees
Florencia Leonardi, Antonio Galves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

Prediction of Myotoxic and Neurotoxic Activities in Phospholipases A2
from Primary Sequence Analysis
Fabiano Pazzini, Fernanda Oliveira, Jorge A. Guimarães,
Hermes Lúıs Neubauer de Amorim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Genomics and Gene Expression Management Tools for the Schistosoma
Mansoni cDNA Microarray Project
Thiago M. Venancio, Ricardo DeMarco, Katia C.P. Oliveira,
Ana Carolina Quirino Simoes, Aline Maria da Silva,
Sergio Verjovski-Almeida . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

SAM Method as an Approach to Select Candidates for Human Prostate
Cancer Markers
Ana C.Q. Simoes, Aline M. da Silva, Sergio Verjovski-Almeida,
Eduardo M. Reis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

New EST Trimming Strategy
Christian Baudet, Zanoni Dias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

A Modification of the Landau-Vishkin Algorithm Computing Longest
Common Extensions via Suffix Arrays
Rodrigo de Castro Miranda, Mauricio Ayala-Rincón . . . . . . . . . . . . . . . . 210
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Differential Gene Expression in the Auditory System 
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Abstract. Hearing disorders affect over 10% of the population and this ratio is 
dramatically increasing with age. Development of appropriate therapeutic 
approaches requires understanding of the auditory system, which remains 
largely incomplete. We have identified hearing-specific genes and pathways by 
mapping over 15000 cochlear expressed sequence tags (ESTs) to the human 
genome (NCBI Build 35) and comparing it to other EST clusters (Unigene 
Build 183). A number of novel potentially cochlear-specific genes discovered in 
this work are currently being verified by experimental studies. The software 
tool developed for this task is based on a fast bidirectional multiple pattern 
search algorithm. Patterns used for scoring and selection of loci include EST 
subsequences, cloning-process identifiers, and genomic and external 
contamination determinants. Comparison of our results with other programs and 
available annotations shows that the software developed provides potentially 
the fastest, yet reliable mapping of ESTs. 

1   Introduction 

Personalized medicine in the future will be based on the comparison of individual 
genetic information to reference gene expression, molecular interactions and 
pathways in tissues and organs, in health and disease.  It will be based on advanced 
genome sequencing, gene expression, proteomic and metabolomic technologies, as 
well as efficient computational tools for mapping of genes and pathways.  

The reliability of computational approaches and models is improving, as “omic” 
technologies mature and the accuracy of predictions grows with increasing data 
input. There is a growing need for fast software tools capable of handling massive 
amounts of data and reanalyzing the data to discover integrated knowledge and 
identify broken links and wrong connections between intricate processes in 
individual datasets.   

The first step in comparing genomic information is to align DNA sequences, that 
is, to map nucleotides of expressed sequence tags (ESTs) or full cDNAs to the 
genome and sequences of known and predicted genes. Sequence alignment is one of 
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the oldest and most successful applications of Computer Science to Biology [1-2]. 
Many local pairwise alignment methods exist [1-6] and most software tools are freely 
available. These tools, however, are customized for specific tasks and do not allow 
enough flexibility for new specialized tasks to external users. The most popular 
generic programs relevant to EST mapping, BLAST from the National Center for 
Biotechnology Information [6] and BLAT from U.C. Santa Cruz [4], each have their 
strengths and weaknesses. The BLAST service offered by NCBI is too slow to use for 
sets of tens of thousands  ESTs. Moreover, it does not handle intron gaps well when 
used for the whole-genome mappings and works best on expressed sequence 
databases. The BLAT service offered by UCSC is fast, but its interactive nature and 
25-sequence submission limit would prevent its use on a large number of sequences.  

To direct and control the process of EST mapping, we needed software with 
problem-specific intelligence that was not available with existing tools. One of the 
most important tasks in processing experimental data is estimating the errors and 
potential sources of errors in measurements [7]. Cloning and sequencing artifacts, for 
example, could be eliminated using pre-screening procedures. Accordingly, we 
needed not only to align ESTs, but also check for a number of favorable and 
detrimental signals, to identify the most likely mapping amongst many possibilities.  

In this work, we have analyzed over fifteen thousand ESTs expressed in the human 
cochlea. The cochlea is one of the smallest organs in the body located in the inner ear 
and responsible for auditory transduction (conversion of sound into the language of 
the brain). Hearing impairment is always the result of damage to either the middle ear, 
the cochlea or its associated auditory nerve. Over one hundred genes responsible for 
deafness have been discovered, but many more candidates apparently exist.  A much 
smaller fraction of molecular-level auditory pathways have been identified [8-10], 
mostly due to the lack of knowledge of human biology in general.  

We have mapped and analyzed genes predominantly expressed in the inner ear and 
their pathways. We have also studied cochlear genes expressed in low numbers. We 
show that the vast majority of cochlea-unique genes identified by existing tools and 
servers are either genomic contaminations or can be also found in other tissues. We 
have selected a small subset of cochlea-specific genes and they are currently being 
verified by independent experimental methods. 

2   Computational Approach 

To speed up alignment of ESTs to the genome and improve the scoring of such 
mappings, we reduced the problem to that of simultaneous exact matching of multiple 
motifs within ESTs to localized genome regions.  Our approach is illustrated on the 
example of a particular Morton cochlear EST (Fig. 1).  

Mapping and selection of ESTs is realized by dynamic interaction of two in-house 
programs, Enhancer2 and BatchSearch. Enhancer2 is a 5000-line C++ program that 
finds exact matches of a number of input search patterns within a database of 
sequences (whole genomes, mRNAs, etc). The fast exact string prefix matching 
algorithm (Dick Carter and Peter Markstein, to be published) was applied to other 
genome  search problems in early stages of its development [11]. Some of the features  
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Trimming stats: from front 8, from back 18, 0 in the middle ****  
The 11 highest entropy motifs are: 
A: AAGCTGCGGAAGCCCAGACA pos25 E=0.8629 E1=0.8942 E2=0.8316 
B: AAGGTGAGATCTTCGACACA pos50 E=0.9368 E1=0.9794 E2=0.8942 
C: ATATGAGATTACGGAGCAGC pos81 E=0.8924 E1=0.9631 E2=0.8217 
D: GCAAGATTGATCAGAAAGCT pos 101 E=0.8736 E1=0.9519 E2=0.7953 
E: GTGGACTCACAAATTTTACC pos 121 E=0.9303 E1=0.9764 E2=0.8842 
F: AAATCAAAGCTATTCCTCAG pos 143 E=0.8597 E1=0.9305 E2=0.7889 
G: CTCCAGGGCTACCTGCGATC pos 163 E=0.9230 E1=0.9519 E2=0.8942 
H: TGTGTTTGCTCTGACGAATG pos 183 E=0.8697 E1=0.9355 E2=0.8040 
I: GAATTTATCCTCACAAATTG pos 203 E=0.8750 E1=0.9284 E2=0.8217 
J: GTGTTCTAAATGTCTTAAGA pos 223 E=0.8642 E1=0.9232 E2=0.8053 
K: ACCTAATTAAATAGCTGACT pos 243 E=0.8724 E1=0.9232 E2=0.8217 

>gi|15333946|gb|BI494602.1|BI494602 df111e09.y1 Morton Fetal Cochlea Homo sapiens cDNA clone 
IMAGE:2539120 5', mRNA sequence 
GCACGAGGCTTACTTCAAGAAGAAGAAGCTGCGGAAGCCCAGACACCAGGAAGGTGAGATCTTCG
ACACAGAAAAAGAGAAATATGAGATTACGGAGCAGCGCAAGATTGATCAGAAAGCTGTGGACTCA
CAAATTTTACCAAAAATCAAAGCTATTCCTCAGCTCCAGGGCTACCTGCGATCTGTGTTTGCTCTGA
CGAATGGAATTTATCCTCACAAATTGGTGTTCTAAATGTCTTAAGAACCTAATTAAATAGCTGACT
ACAAAAAAAAAAAAAAAAAA 

11 hits in a window of 238 ... 
Hs K-J-I-H-G-F-E-D-C-B-A-LOC388460 18p11.23 similar to 60S ribosomal protein L6 (TAX-responsive 
enhancer element binding protein 107) (TAXREB107) (Neoplasm-related protein C140)  
starts 206 from end of LOC388460- and overlaps (also ends 47211 upstr of L3MBTL4-) 
NT_010859.14(6452112..6452349) 

New Clusters found: 1, Total clusters: 1 
**** PolyA tail detected in the genome. Genomic Contamination **** 

>NT_010859.14, chr18 
CAGCAATGTAAAAATCCCAAAACATCTTACTGATGCTTACTTCAAGAAGAAGAAGCTGCGGAAGC
CCAGACACCAGGAAGGTGAGATCTTCGACACAGAAAAAGAGAAATATGAGATTACGGAGCAGCG
CAAGATTGATCAGAAAGCTGTGGACTCACAAATTTTACCAAAAATCAAAGCTATTCCTCAGCTCCA
GGGCTACCTGCGATCTGTGTTTGCTCTGACGAATGGATTTATCCTCACAAATTGGTGTTCTAAATGT
CTTAAGAACCTAATTAAATAGCTGACTACAAAAAAAAAAAAAAAAAAAAAAGACACTGACAGGA
TTGAGGGGGAAGTAGACAGTTTCACAGTAATACCTGGAGACCTCAATATCTCACTTTCAATGGTAA 

Searching for 11 hits in a window of 1000 ... 
Hs K-J-I-H-G-F-E-D-C-B-A-RPL6 12q24.1 ribosomal protein L6 starts 3711 inside and totally 
within RPL6- NT_009775.15(3412506..3413219) 

New Clusters found: 1, Total clusters: 2 
**** PolyA signal detected within 30nt of the 3’ end of the gene. May be a functional gene **** 

> NT_009775.15, chr12 
CAGCAATGTAAAAATCCCAAAACATCTTACTGATGCTTACTTCAAGAAGAAGAAGCTGCGGAAGC
CCAGACACCAGGAAGGTGAGATCTTCGACACAGAAAAAGAGGTAAGTTTCTACTTGTCATCTCCTG
TGTTAGCACTGGCCCTTCTACCTGGGGTGAAAAGAAACAGGTTGCACAAAAAGAAGAAAAATGAA
AGGTTAAATAATGAGGAATGCTGGGAGATACTTAGTATTCCAGATTCTTCTAAATTGAGTAGTTCT
TTTGGCAGTCTGGGAGCTCAACTTAGAATCCTAAAGTTTGGTGGAATTGTGTGGGAATTAACTGCT
ACCATCGTATTGGGAATGTGCCCTTACTTATCCTTGATGTGTCCTAAAGTATACAAAAGCTTAAGA
GCTACTTTTATTACATTAAAAAATGGGTTGTGTTTCACAGCATTCCAAGGAAAGGATTGTCAAAAT
TGTCTTTAATGTTTTCTAAATATTCTTGGGGATTAGTACTTGTGAGACAGGACTCCTTAGTTGACCT
ACAAGTAATTTGGTATGTGCCTGTTTTAAAATGTTTGATTTTCTCTTTATTTAGAAATATGAGATTA
CGGAGCAGCGCAAGATTGATCAGAAAGCTGTGGACTCACAAATTTTACCAAAAATCAAAGCTATT
CCTCAGCTCCAGGGCTACCTGCGATCTGTGTTTGCTCTGACGAATGGAATTTATCCTCACAAATTGG
TGTTCTAAATGTCTTAAGAACCTAATTAAATAGCTGACTACATTTTGTGTCTCTTTTTTTAATTTTTG
GTTTTTAAAAAAAATTCTTACCTACCTGAAGGTGTAGTTTGACCATGCCAGCTCACCTGGGGGTTTT 
 

Fig. 1. Our approach to mapping and scoring of results illustrated on the example of a sequence 
with accession number BI49460. As a first step, we determined detrimental motifs in this 
sequence (shaded in grey) and trimmed them off. Blue area represents dynamically selected 
subsequences used for matching to the human genome. The program found two equally well 
matching regions in chromosomes 12 and 18. A detrimental signal (polyA tail (black shading), 
in chromosome 18 and a favorable motif in chromosome 12 determined the best mapping. See 
text for details 
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of this algorithm are its ability to handle all IUPAC nucleotide codes with little 
additional overhead and its high parallelization efficiency. 

The other component of our EST-mapping solution is BatchSearch, a 2500-line 
C++ program that interacts with Enhancer2 by giving it search tasks and dynamically 
responding to its output.  Using the fast exact-matching Enhancer2 speeds the 
alignment process since EST-mapping would normally require slower inexact 
matching to cope with introns and frequent EST sequencing errors or single 
nucleotide polymorphisms (SNPs).  Our idea was to divide an EST into smaller 
fragments and, using Enhancer2, find where some of them occur. Normally the bulk 
of the fragments would be found clustered within the same locale, thus forming the 
basis for the reported EST mapping. In the majority of cases, we also observed a very 
high level of identity, as an entire EST sequence after trimming often exactly matched 
to a localized region within the genome.  

The logic of BatchSearch involves a number of steps.  First, the input EST is 
trimmed of bases that are artifacts of the sequencing process (Fig.1).  Second, a 
globally optimal set of high-entropy fragments is chosen from the EST using a 
dynamic programming algorithm.  Then, the formulated exact-match search problem 
is passed to the waiting Enhancer2 program.  Depending on these results, 
BatchSearch can ask Enhancer2 to refilter its search results, allowing for more widely 
dispersed clusters to be reported. In addition, clusters of other detrimental and 
favorable motifs in the genome are taken into account. Fig.1 demonstrates two such 
motifs – a polyA tail (black shading) that is supposed to be located within 30 
nucleotides of the 3’ end (larger distance may be allowed in the 5’ EST) and a polyA 
signal (see [12], orange shading, not be followed by polyA tail in the genome) 
Alternatively, BatchSearch can redo the genome search with smaller EST 
subsequences, in an effort to identify the most likely mapping.  One search for six 20-
nucleotide fragments using Enhancer2 takes about 2.5 seconds on a 2.8 gHz Xeon 
CPU with one Giga Byte of RAM. A dual-processor HP XW8000 PC workstation 
requires 5.5 hours to map the entire library of 15000 cochlear ESTs to the human 
genome. Datasets with less mapping ambiguity are processed faster.  

3   Genes and Pathways of the Human Cochlea 

Only from 60% to 95% of all deposited ESTs in tissue- and organ-specific libraries 
are classified by Unigene. Fig.2 demonstrates the ratio of classified vs. unclassified 
sequences for fetal cochlear, eyes and brain libraries and adult bone and stomach 
datasets. Only 11,913 human cochlear sequences out of fifteen thousand deposited 
(dbEST Library ID.371 [13,14]) are annotated in Unigene. We mapped over 98% (all 
but 276 – area 3 in inset of Fig.2 showing sequences not available in Unigene) of the 
ESTs in the Morton fetal cochlear library to specific regions in the human genome 
and genomes of laboratory organisms. Of the unmapped sequences, most correspond 
to highly conserved regions that can be exactly matched to dozens of proteins in a 
variety of organisms. The remaining unmapped ESTs seem to be formed by 
nonspecific recombination events and cannot be confidently attributed to a specific 
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gene or genome. Non-human contaminations in the dataset (259, area 4 in Fig.2) 
come from laboratory organisms – mainly yeast, E.coli, phages and cloning vectors, 
but there are also single occurences of such unexpected species as worm and mouse. 
Among about five thousand genes identified, almost 2000 genes are represented by 
single ESTs. Less than 200 genes are supported by ten or more sequences. The most 
abundant mRNAs were for extracellular matrix genes. This can be explained by the 
importance of structural support in cochlea. We note that this class of proteins acounts 
for almost half of nonsyndromic deafness genes. 

Less than 10% of all our cochlea sequences were deposited with gene-relevant 
information in their headers, while 41% of the sequences were annotated based on 
results of BLAST searches against GenBank databases in early 2000s. Almost 80% 
from this set are annotated in the latest build of Unigene, although about 8% of these 
annotations remain hypothetical. We selected many different isoforms among ESTs 
clustered in the same Unigene clusters. In addition to the 4058 Unigene clusters, we 
determined almost 1000 additional loci, many of which might represent novel genes 
or isoforms of known genes (areas 1 and 4 in Fig.2). We found about 20% potential 
genomic contaminations in the dataset and 1% of sequence flips in EST sequences. 
Many transcripts corresponding to ESTs present in the dataset might not be expressed 
as proteins, but instead are degraded by nonsense-mediated mRNA decay or other cell 
surveillance mechanisms. We revealed a number of incomplete, truncated mRNAs in 
the library, confirming this possibility. 

The inset of Figure 2 shows how sequences extracted from the fetal inner ear and 
not classified by Unigene are mapped to the human genome and genomes of other 
species (human pathogens and laboratory organisms). Comparison of our mappings to  

alignments produced by popular 
tools, such as BLAST [6] and BLAT 
[4], shows that our solutions are 
essentially the same. These other 
tools, however, offer the best 
solutions among several other top 
scoring results, thus requiring post-
processing of results, often 
manually.  We note that most of our 
novel genes are also suggested in the 
AceView database [15] and are 
being incorporated into the next 
build of the human genome. On the 
one hand, we consider it as another 
confirmation of the reliability of our 
findings. On the other hand, we note 
that the subject of this work is 
analysis of hearing-specific genes 
and this was not done by the authors 
of AceView, GeneScan and other 
global gene-finding programs.   

       

Fig. 2. A bar-chart of sequences of organ-specific 
libraries classified (white base) and not classified 
(black top) into Unigene entries. Inset shows our 
mappings of non-classified cochlear ESTs. 
Sequences in areas: (1) may be novel isoforms of 
known genes; (2) are non-human genes; (3) are 
ambiguous; 4) map to unannotated regions in the 
human genome
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Table 1. The most highly expressed genes and predominant pathways of the human cochlea 

PATHWAYS 
Name EST 

count, 
Uni- 
gene 

EST 
count, 
this 
work 

Ion 
Transport 

Cell Shape 
Maintenance Housekeeping 

Collagen, type I, 
alpha 2 

314 343 
 

Collagen 
matrix  

Collagen, type 
III, alpha 1 

153 159 
 

Collagen 
matrix  

Secreted protein, 
acidic, cysteine-
rich(osteonectin) 

125 162 

 
Binds 
Collagen  

Eukaryotic 
translation 
elongation factor 
1 alpha 1 

81 130 

 Binds Actin 
Protein 
Synthesis 

Vimentin 80 84 
 

Intermediate 
Filament 

Structure and 
Motiilty 

Collagen, type I, 
alpha 1 

70 83 
 

Collagen 
matrix  

Myristoylated 
alanine-rich 
protein kinase C 
substrate 

63 67 

 Binds Actin 
Structure and 
Motiilty 

KIAA1040 
protein 

55 56 Proton 
transport   

Tumor protein, 
translationally 
controlled 

51 53 

 
Extracellular 
matrix 

Structure and 
Motiilty 

Chromosome 5 
open reading 
frame 13 

50 56 

 Cell junctions  
Actin, beta 46 54 

 Actin filament 
Structure and 
Motiilty 

Potassium 
channel 
tetramerisation 
domain 
containing 12 

44 49 

Potassium 
transport   

Actin, gamma 1 42 47 
 Actin Filament

Structure and 
Motiilty 

Ribosomal 
protein S20 

38 39 
  

Protein 
Synthesis 

Cyclin I 36 37 
  

Cell Cycle 
Regulation 
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Comparison of our results to available Unigene assignments shows a very good 
correspondence as well. Our “new gene” mappings often correspond to “transcribed 
loci” and most discrepancies in gene names are solely due to different naming of the 
same genes. For example, “ecotropic viral integration site 2A” is the same gene as 
“neurofibromin 1 (neurofibromatosis, von Recklinghausen disease, Watson disease)”, 
and ALEX2 is the same as ARMCX2. Less than 1% of our EST mappings do not 
correspond to Unigene assignments. In half of these cases our results might be better. 
In several cases old Unigene assignments seem to be better than the latest ones.  

In order to normalize the cochlear library to find crucial components of hearing 
transduction, all housekeeping and cell structure maintenance genes have to be 
subtracted from the set. This task is not trivial, as many proteins have multiple 
functions and the difference between cochlear and other existing libraries is 
statistically significant only for a very small number of relatively highly expressed 
genes. These are collagens (col1a2, col3a1) and osteonectin (if compared to fetal 
brain, structural tissues or whole embryo). Comparison with libraries from other 
tissues points additionally to several other candidates. For example, a protein 
potentially involved in the assembly of potassium channels is known to be implied in 
the hearing process (“potassium channel tetramerisation domain containing 12”). 
Table 1 shows fifteen genes of the human cochlea with the highest level of 
expression. We note that some of the ESTs appear as genomic contaminations (data 
not shown) and might not be expressed in the cell. Many such sequences, however, 
are annotated as legitamate genes in public databases. 

We identified a number of pathways including abundant transcripts of the dataset, 
not-directly related to hearing. They describe cell proliferation, maintenance of ion 
balance, protein synthesis, splicing, transcription, regulation of actin cytoskeleton, etc. 
The table shows that certain cellular shape maintenance pathways (extracellular 
junction and matrix-related) are hearing related, rather than for housekeeping (see [16-
17] for lists of housekeeping genes). This can be explained by the importance of 
maintenance of acoustic resonator structures (on the level of cell assemblies) in the ear. 

For genes present in a small number of copies, we can employ a bottom-up 
approach by focusing on potentially novel genes that seem to be solely or 
predominantly expressed in the cochlea, then reconstructing pathways involving 
products of these genes. We selected about 200 clusters of ESTs potentially 
representing novel genes not classified by Unigene. We have further narrowed this list 
down by filtering out genomic contaminations and highly repetitive sequences.  The 
candidate genes include possible transcription factors (gene-regulatory pathways), a 
motor protein (cell shape maintenance), an isoform of collagen (cell shape 
maintenance) and a transmembrane protein (ion transport). The findings are currently 
being verified by RT-PCR and other laboratory tests.  

4   Concluding Remarks 

Crucial processes of life, hearing being one of them, are only partially understood at 
the molecular level. Important but low-abundant proteins remain elusive. Large-scale 
sequencing of tissue-specific genes and fast yet reliable mapping of sequences will 
help to identify the key components of sensory sound transduction pathways. 
Eventually, this will bring a cure and better treatment to now-incurable deafness and 
age-related hearing loss. 
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Searching for Non-coding RNA

Walter L. Ruzzo
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Non-coding RNAs (ncRNAs) are functional RNA molecules that do not code for
proteins. Classic examples include ribosomal and transfer RNAs, but dramatic
discoveries in the last few years have greatly expanded both the number of known
ncRNAs and the breadth of their biological roles [1]. In short, ncRNAs are much
more biologically significant than previously realized.

The computational problems associated with discovery and characterization
of ncRNAs are quite different from, and arguably more difficult than, compa-
rable tasks for protein-coding genes [2]. A key element of this difference is the
importance of secondary structure in most ncRNAs. RNA secondary structure
prediction is a well-studied problem, and useful tools exist, but they are certainly
not perfect. It is generally accepted that the best evidence for stable secondary
structure in biologically relevant RNAs is to identify diverged examples exhibit-
ing compensatory base-pair changes that would preserve putative structural ele-
ments. Unfortunately, such compensatory mutations interfere with the ability of
standard sequence search and alignment tools (e.g., BLAST, ClustalW) to find
and align homologs.

This talk will attempt to outline the problems and promises of computa-
tional search for ncRNA, with some emphasis on work by my group, including
the following. One successful approach to ncRNA homology search that exploits
secondary structure conservation employs so-called Covariance Models (CMs),
statistical models based on probabilistic context-free grammars [3]. CMs are
used, for example, in the important Rfam database [4]. CM searches, although
highly accurate, are very slow – years of CPU time. We have developed novel
algorithms to make CMs faster, while provably sacrificing none of their accuracy.
For most known ncRNA families, this allows genome databases to be scanned
in days instead of years, and yields new ncRNAs missed by the heuristics that
were necessary for practical CM searches until now [5, 6]. Constructing covari-
ance models is somewhat laborious. We are also developing new methods to
automatically learn CM’s from a small number of unaligned example RNA se-
quences [7]. Most importantly, these methods have led us to discovery and/or
improved characterization of interesting ncRNAs [8, 9, 10].
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Abstract. The application of new information and biotechnologies to infectious 
disease research provides an opportunity to design, develop and deploy a com-
prehensive cyberinfrastructure for life sciences. The application of integrative 
approaches including theory, wet experimentation, modeling and simulation 
and the leveraging of a strong comparative, evolutionary framework has 
spawned pathosystems biology. I will show examples of how cyberinfrastruc-
ture is being developed and used to support pathosystems biology.  

1   Introduction 

The application of modern information technologies and biotechnologies (including 
genome-scale approaches, systems biology, etc.) in the context of infectious diseases 
has spawned a new way to augment our understanding of infectious diseases, as well 
as new opportunities to leverage the knowledge and apply it to the development of 
countermeasures (surveillance, vaccines, therapeutics, diagnostics, etc.) to help pro-
tect the global community from attacks by infectious agents (of plants, animals, and 
humans).  This paper will focus on these concepts in the context of the research and 
development programs I am responsible for implementing.  

1.1   Cyberinfrastructure 

The Atkins Report on cyberinfrastructure (CI) recalled how infrastructure in general 
is taken for granted until it stops functioning [1].  For life scientists, thinking about 
infrastructure is novel in most cases, although the need and power of infrastructure 
has been shown to most life scientists through the Human Genome Project.  Many 
have pointed out how infrastructure is complex and expensive and should be built 
specifically by groups capable of developing infrastructure.  CI refers to infrastructure 
based upon distributed computer, information and communication technology.  Fur-
thermore, CI is required for a knowledge economy, and biological knowledge is re-
quired to support the needs of infectious disease research and development.  CI tech-
nologies are the components of computation, storage, and communication; also the 
software programs, services, instruments, data, information, knowledge, and social 
practices applicable to specific projects, disciplines, and communities, in the case of 
infectious diseases, microbiology and related bioscience fields (for example those that 
consider the effects of pathogens on hosts, such as immunology, plant pathology, 
etc.).  Furthermore, there is the layer of enabling hardware, algorithms, software, 
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communications, institutions, and personnel.  This crucial layer enables specific 
communities of researchers to innovate and eventually change what they do, how they 
do it, and who participates.  This last layer requires institutions with service-oriented 
staff and core facilities to provide operational support and services, as well as high-
impact applications of CI in relevant areas of science and engineering research and 
allied education.  I believe that infectious diseases provide a high-impact arena in 
which to develop and deploy CI for life sciences.  Infectious disease biology is ready 
for CI because full deployment of a working system to support public health and 
biodefense will require grids of computational centers, libraries of digital objects, 
including software programs and literature, multidisciplinary, well-curated federated 
collections of scientific data, thousands of online instruments and distributed sensor 
arrays, convenient software toolkits for resource discovery, modeling, and interactive 
visualization, and the ability to collaborate with physically distributed teams of people 
using all of these capabilities, in real-time or quasi-real-time.  These are specifically 
what the Atkins Report characterizes as the vision for CI.  Finally, as noted by that 
report, this “vision requires enduring institutions with highly competent professionals 
to create and procure robust software, leading-edge hardware, specialized instru-
ments, knowledge management facilities, and appropriate training.” 

1.2   Pathosystems Biology 

Infectious diseases are caused by the interaction of hosts, pathogens, and environ-
mental factors.  It is not possible to speak about disease outcomes meaningfully with-
out specifying these factors; thus, a pathogen is not equivalent to a disease and most 
pathogens are not capable of infecting most organisms (i.e., most organisms are non-
hosts of a given pathogen).  Therefore, it is common for example in plant pathology to 
speak of a “pathosystem” when referring to the interaction of hosts, pathogens, and 
their environments.  Some argue that this “disease triangle” (Figure 1) does not apply 
to animal systems because the environment within the animal is somewhat constant.  I 
would say that even if this is believed to be the case, the epidemiological level clearly 
involves environmental factors even for animal systems.  Systems biology is a rela-
tively new term that can be seen as an extension and modernization of cybernetics [2]  
Many definitions exist for systems biology, but in my opinion it is characterized by an 
approach that fully integrates modeling, simulation, theory and wet chemistry ex-
perimentation in a unified, multidirectional feedback loop (i.e., theory effects model-
ing, modeling affects how you design wet chemistry experiments, and so on, in all 
possible combinations).  Taking together the disease triangle as a comparative bio-
logical focus area and using a systems biology approach yields the term “pathosys-
tems biology”.  The comparative aspect is crucial to increase our understanding of 
pathosystems because evolution re-uses successful components for other needs of the 
organism (wings may become flippers, for example).  At the level of the ongoing 
molecular arms race that hosts and pathogens engage in, this is well documented [3]. 
Comparative approaches also may provide crucial benefits because some systems are 
more tractable to experimentation in the laboratory than others and some of the suc-
cessful components (of host response or pathogen attack) may be more easily re-
vealed in some systems when compared to others.  
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Fig. 1. Host, pathogens, and the environment interact at diverse levels in what is known as the 
“disease triangle”.  In the center is a triangle illustrating the use of molecular signatures of 
DNA, mRNA, proteins and metabolites as but some of the types of data that can be provided 
through generation, analysis and management of these data, along with the human resources to 
use the information in pathosystems biology 

2   Some Components of Cyberinfrastructure to Achieve Synthesis 
in Pathosystems Biology 

Part of the overall plan for infectious disease monitoring will of necessity reside in 
data management and analysis capabilities.  Coincidentally, as the explosion of types 
and volume of data occurs, there is an ongoing change in software architectures that 
support data integration and interoperation.  Briefly, in the 1990s, client-server appli-
cations changed information systems. Prior to the 90s, mainframes were the norm – 
these were replaced by client-server architectures with the rise of the PCs.  On the 
software side, vendors released client-server applications, yielding enterprise applica-
tions.  From the user’s perspective, these changes brought end-users into the dialog 
for the first time.  So, IT departments came out to affect all departments in an 
organization; this is true for scientific organizations as well.  Now, there is an 
evolution from client-server to web-services (see below for characteristics).  Web 
services are enabled because of agreement on standards across a very broad range of  
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hardware and software organizations, (for example, W3C and webservices.org).  
From the perspective of the mission that must be accomplished to support pathosys-
tems biology, this technological advance is enabling because there is a huge need for 
information systems interoperation to support collaboration across organizations and 
real-time information access and analysis, whether it be for public health or biode-
fense needs.   

The catalyzing force behind web services is the agreement by major software and 
hardware vendors on standards for communication between computer systems, 
building off the foundation of the Internet (TCP/IP, http and XML).  The Internet 
removed the communication/information bottleneck for information consumers in 
the client-server model.  Web services promise to relieve the information and com-
munication barriers that limit organizational collaboration (because of barriers 
caused by proprietary, non-interoperable information systems that were independ-
ently developed under client-server models).  Despite what we see on TV, trans-
federal agency or trans-research institution information system interoperability is 
largely not possible with current architectures without dramatic investments in  
integration. 

By definition, web services are characterized by being: 1) loosely coupled; 2) self-
describing (WSDL1); 3) accessed programmatically (SOAP2); 4) network distributed; 
and 5) exchange data using platform, vendor and language-neutral protocols.  These 
characteristics provide: flexibility and ease of reconfiguration (1); the software rather 
than the user determines how to invoke the service and what results the service will 
return (2); access via Internet protocols and data formats complying with security 
measures and policies, such as firewalls, allowing deployment and access across intra-
nets as well as Internet (3); data exchange via vendor, platform and language-neutral 
protocols, due to broad agreement on standards (4). 

There are many resources being funded through diverse federal agencies that could 
be wrapped to become part of a web-services architecture for pathosystems biology.  
This could be done by other methods, but non-web-services-based integration efforts 
have been widely used and are appropriate in some mixture with web services, espe-
cially in the initial phases of implementation of novel approaches for life sciences 
data interoperation.  Typical approaches include (Marks 2003): 

• Ad hoc custom integration – heavily based on individual skills. 
• Data warehouses and data marts – develop high quality products based on 

snapshots of data (frozen in time) and periodic extraction into a common sys-
tem.  

• Enterprise application integration (EAI) – a replication-based middleware 
approach, tying key systems together.  

The above approaches are powerful but can suffer from well-know problems, even 
outside the technical scope.  These are typically (Marks 2003): 1) the requirement for 
very significant investments in time and money, reducing funds for other, more stra-

                                                           
1  Web Services Description Language. 
2  Simple Object Access Protocol. 
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tegic activities; 2) poor quality data, caused by the lack of definition of standards in 
the master resources, thereby causing additional time and money investments in 
cleaning up the data; 3) limited operational visibility, especially in life sciences since 
there is little understanding and comprehension by most life scientists of the problem 
at hand and the cost of enterprise integration for example – this has the very negative 
effect of spending a lot of time trying to get the integration itself right, rather than 
focusing on the data analysis (the reason for integration); and 4) lack of flexibility, 
since the above approaches result in tightly coupled systems with reduced operational 
flexibility – this is perhaps the most severe problem for life scientists since the tech-
nologies and underlying data are evolving very rapidly.   

Pathosystems biology requires the utilization of diverse types of data that are ac-
quired through standard processes, frequently in distributed locations.  Early re-
sponses to natural, accidental, or intentional infectious disease outbreaks will require 
that this information be easily accessed in real-time or near real-time if we are to 
respond effectively to outbreaks [4].  In addition, technologies for data production are 
rapidly evolving, especially with respect to machinery and techniques to collect high-
resolution data about molecular constituents of living cells (DNA, mRNA, proteins 
and metabolites, for example, see Figure 4), which may be used to develop signatures 
of the presence of pathogens.  Technologies (laboratory and IT) are thus evolving 
much more quickly than institutions.  Meanwhile, biological knowledge and expertise 
is distributed organizationally throughout the country and globe, requiring broad 
community involvement to meet the challenges of infectious diseases in the 21st cen-
tury.  Finally, excellent legacy systems composed of data and analysis/visualization 
tools are “out there”, requiring information system architectures that leverage “old” 
and enable rapid deployment of “new”.  All of this argues for flexible, decentralized, 
modular information system architectures to suit evolving requirements and rapid 
response – and this is precisely what web services enable.   

Distributed data systems, analysis tools and infectious disease expertise require 
strong collaboration to be in place if we are to respond to infectious diseases rapidly 
and effectively.  In life sciences, collaboration is becoming the norm rather than the 
exception, although many biologists are still evolving sociologically to accommodate 
this situation, especially in academia3.  The goal of collaboration is to establish, main-
tain and strengthen connections to achieve common objectives.  Many of these con-
nections are people to people connections, and these are likely the most important.  
Yet we must also increase the people to data content, people to applications, and ap-
plications to applications to content to applications connections – and these are the 
ones that web services can enable.  In all cases, though, we must not loose sight of the 
need to understand the social networks4 [5]  

The Internet alone is insufficient to support the type of organization-to-
organization collaboration that is needed for pathosystems biology.  This is because 
                                                           
3  NIH Roadmap can be obtained at http://nihroadmap.nih.gov/; more directly related is a subset 

of the Roadmap developed by the BECON Symposium on Catalyzing Team Science at 
http://www.becon.nih.gov/symposium2003.htm 

4  The “Atkins Report” on Revolutionizing Science and Engineering through Cyber-
Infrastructure can be accessed at http://www.communitytechnology.org/nsf_ci_report/ 
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there is a lack of standards for integration and automation.  In addition, manual web 
browsing and searching does not scale well when there is a need to know about and 
access diverse information systems – web services provide registry-based applications 
that find one another and auto-invoke at run time to create larger applications serving 
specific needs from components that may be used for other purposes and that may 
reside in distributed machines.  Distributed development of biological data sets and 
analysis tools has been the hallmark of the development of most bioinformatics5 and 
computational biology6 systems thus far – so another advantage of web services ap-
proaches is that they leverage what has already been done without the need to invest 
large sums of money and time into enterprise integration of such components into 
brittle systems that cannot easily evolve further. 

2.1   Bioinformatics, Computational Biology and Community Standards 

Bioinformatics and computational biology have grown over the last twenty or so 
years and through this growth diverse database systems and analytical tools have been 
developed and deployed, mostly by single investigators or small groups of investiga-
tors working together on specific biological problems.  Some community resources, 
such as GenBank, have become key enablers of research on a global scale.  The 
power of this distributed approach to development is that innovation has blossomed at 
various levels.  The challenge is that there have been relatively few concerted efforts 
to standardize data formats, thus hindering efforts to integrate disparate data types 
from diverse data sources.  Paradoxically, further synthesis in biology largely depends 
on the capability to access and jointly analyze disparate data.  This is especially true 
for pathosystems biology, since it must deal with data from many types of organisms 
(pathogens and their hosts) in diverse environments (from intracellular to ecosystems 
and social networks). 

Yet, there are important efforts to develop and deploy community standards for 
biological data communication.  It is important that these efforts be supported and 
succeed in developing at least data exchange standards for the sake of interoperability 
across information systems that matter to microbial forensics, whether in existence, or 
to be (being) developed.  The web services stack builds on and extends the standards 
of the Internet.  At the lowest level, there are network protocols (such as TCP/IP, 
HTTP, FTP, SMTP).  The next level is concerned with the meta language (XML).  
This is where diverse community-based efforts are providing useful standards.  Going 
from DNA through molecules that permit an assessment of the dynamic response of 
the organism to perturbations, as well as capabilities for modeling and simulation, we 
have (not meant to be exhaustive): 

                                                           
5  “Research, development, or application of computational tools and approaches for expanding 

the use of biological, medical, behavioral or health data, including those to acquire, store, or-
ganize, archive, analyze, or visualize such data.” http://www.bisti.nih.gov/ 

6  “The development and application of data-analytical and theoretical methods, mathematical 
modeling and computational simulation techniques to the study of biological, behavioral, and 
social systems.” http://www.bisti.nih.gov/ 
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• DNA – DAS-ML7, BSML8, MSA-ML9 
• RNA – MAGE-ML10 (mRNA profiling) 
• Proteins – PEDRo11 (protein profiling) and ProML12 (protein sequences, struc-

tures and families) 
• Molecular models – SMBL13 
• Cellular levels, including metabolism and signal transduction – CellML14 
• Organ level – AnatML15 
• Spatially and temporally varying field information using finite elements – 

FieldML16 

Furthermore, there is a need to handle data at the level of phenotypes displayed by 
organisms.  In the case of humans, this is typically placed within clinical records.  
Fortunately, there are efforts in place to handle these data using XML standards, such 
as the Clinical Data Exchange Standards Consortium17 (CDISC).  Finally, to handle 
data from molecular responses to perturbations, through phenotypes and into geo-
graphic space (required for epidemiological monitoring and global molecular epide-
miologies), there is ArcXML18 and OpenGIS19. 

There is a danger that of fragmentation of standards through a diversity of non-
interacting groups building competing XMLs to represent essentially the same data.  
Avoiding this will take some vigilance and incentives from funding agencies and 
requirements for machine-readable interfaces to major resources that are built with 
federal funding.  At some point in the future there will be sufficient advantage 
through achievement of interoperation that implementations that do not conform to 
those standards will not be competitive or generally useful. 

The network protocol and XML layers are fairly stable technologically and there-
fore can be thought of as enabling at this point.  Above this layer lie three crucial 
layers that are still undergoing some evolution.  These are the services communication 
layer (SOAP), the services description layer (WSDL), and services publishing and 
discovery (UDDI20/OGSA21).  These three layers are still evolving and web services 
implementors need to understand the risks associated with evolution away from the 

                                                           
7  Distributed Annotation System Markup Language, http://stein.cshl.org/das/. 
8  Bioinformatic Sequence Markup Language, http://www.bsml.org/. 
9  Multiple Sequence Alignment Markup Language, http://xml.coverpages.org/msaml.html. 
10  Microarray Gene Expression Markup Language. 

http://www.mged.org/Workgroups/MAGE/mage.html. 
11  http://psidev.sourceforge.net/. 
12  Protein Markup Language, http://www.bioinfo.de/isb/gcb01/talks/hanisch/main.html. 
13  Systems Biology Markup Language, http://sbml.org/index.psp. 
14  http://www.cellml.org/public/about/what_is_cellml.html. 
15  Anatomical Markup Language http://www.physiome.org.nz/anatml/pages/. 
16  http://www.physiome.org.nz/fieldml/pages/. 
17  http://www.cdisc.org/. 
18  http://support.esri.com/. 
19  http://www.opengis.org/. 
20  Universal Description, Discovery and Integration protocol, http://www.uddi.org/about.html. 
21  Open Grid Services Architecture, http://www.uddi.org/about.html. 
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currently accepted standard.  Finally, the most rapidly evolving layers, comprising of 
still emerging standards, are the business process execution (BPEL4WS22, WFML23, 
WSFL24, Biztalk, etc.) and additional standards such as WSXL25. 

Another major need is with respect to ongoing curation of data that requires spe-
cific biological knowledge, such as much of the microbial data will require.  This is 
especially important because of the distributed nature of biological knowledge in the 
field.  Although funding is limiting in most cases, there are models for supporting 
distributed curation among specialists.   

Sample Cyberinfrastructure for Pathosystems Biology Projects. One model for 
distributed curation in pathosystems biology has been prototyped on a limited scale in 
the Pathogen Portal (PathPort26) [6].  PathPort project has developed and deployed the 
Pathogen Information (PathInfo27) resource containing data from about 20 of the 50 
pathosystems for which acquisition of highly curated data sets referenced from the 
literature has been requested.  One output of the literature curation effort is the Patho-
gen Information Markup Language or PIML [7], which can now be used further by a 
distributed community of experts to enter similar data about other pathosystems into a 
common, machine-readable format.  Figure 2 illustrates PIML architecture; figure 3 
shows how distributed data acquisition and dissemination is managed in the context 
of scientific literature and molecular data sets; this is being further developed and 
deployed under the recently funded Bioinformatics Resource Centers28 (BRCs) 
funded by NIAID to develop the capabilities to support genomic data for NIAID cate-
gory A, B and C pathogens.  The goal of the BRCs is to work on the pathogen side of 
the genomic data management and interoperation issues.  To produce, acquire, inte-
grate, manage, analyze and disseminate proteomics data about pathogens, NIAID has 
recently awarded contracts to establish the Biodefense Proteomics Research Centers29.  
An integral Administrative Resource for Biodefense Proteomic Centers30 will be 
responsible for centralized data management for the network. 

A number of efforts are now using PathPort’s CI (which includes a Core Labora-
tory31 and a Core Computational Facility32 at the Virginia Bioinformatics Institute but 
they could be anywhere, based on the web-services paradigm).  For example, PathPort 
+ Core  Computational  Facility + Core Laboratory Facility now provide the Bioinfor- 

                                                           
22  Business Process Execution Language for Web Services. 

http://www-106.ibm.com/developerworks/library/ws-bpel/. 
23  Windows Forms Markup Language, http://windowsforms.net/articles/wfml.aspx. 
24  Web Services Flow Language, http://xml.coverpages.org/wsfl.html. 
25  Web Services Experience Language.  

http://www-106.ibm.com/developerworks/library/ws-wsxl/. 
26  https://www.vbi.vt.edu/article/articleview/316. 
27  http://staff.vbi.vt.edu/pathport/pathinfo/. 
28  http://brc.vbi.vt.edu/. 
29  http://www.niaid.nih.gov/dmid/genomes/prc/default.htm. 
30  http://www.niaid.nih.gov/dmid/genomes/prc/administrative.htm. 
31  https://www.vbi.vt.edu/article/articleview/87. 
32  https://www.vbi.vt.edu/article/articleview/88. 
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Fig. 2. A web query starts with specifying a particular topic and pathogen(s).  Requested patho-
gen PIML documents are parsed and the results are transformed into HTML by an XSLT script.  
The PIML documents are updated daily from the Xindice DB via the PathInfo web service. 
Corresponding viewer is also available via TB/PP system 

matics and Genomics Research Core (BGRC33) for the Mid-Atlantic Regional Center 
for Biodefense and Emerging Infectious Diseases (MARCE34), funded by NIAID.  In 
this large-multi-institutional, multi-investigator program, part of a national network 
funded by NIAID this year, the main objective is to develop diagnostics and coun-
termeasures for infectious agents on NIAID category A and B priority lists.  The 
general functional model of the BGRC is illustrated in Figure 4.  In the context of 
MARCE, other CI components, such as the MARCE website35, supporting external 
visibility for the project as well as “intranet” functionalities for real-time communi-
cation are available as well.  These capabilities are meant to support a range of ac-
tivities, from real-time video conferencing within MARCE and from MARCE to 
other RCEs as well as interactive tools supporting document preparation, discussion 
of data, presentations, etc., with the goal of a vibrant, functional CI for pathosystems 
biology.  As different agencies and scientists working on different aspects of infec-
tious diseases use and help evolve the CI, one of the benefits that will come out of 
the infrastructure, without additional investment, is the possibility of doing joint 
analyses on data sets that were developed with specific goals in mind but that can be 
useful to other goals.  The success of GenBank in enabling comparative analyses of 
community sequences because of deposition into a standardized repository is but an 
example of what can be aspired by the infectious disease CI being developed and 
deployed. 

One of the many reasons for using a web-services, federated approach is the lever-
aging, with relatively little effort, of key resources being built in the community. It is 
not possible here to provide an exhaustive review of these, but clearly efforts such as 
the Microbial Rosetta Stone Database (MRS) project (K.L. Hari, J.A. McNeil, IBIS  
 

                                                           
33  http://marce.vbi.vt.edu/cores/bioinformatics_and_genomics_core. 
34  https://www.vbi.vt.edu/article/articleview/426/1/33/. 
35  http://marce.vbi.vt.edu/. 
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Pharmaceuticals; and J.M. Robertson, FBI; personal communication) are aimed in 
the right direction. MRS has been motivated by the need to map the landscape of 
infectious diseases and to assist with microbial forensics needs, specifically.  An-
other interesting resource is Gideon Online36.  This system has been developed es-
sentially to assist in diagnosing (at the clinical level) infectious agents based on in-
formation collected by the clinician and a Bayesian analysis system.  It is continually 
updated and has information on all infectious agents of humans and related mam-
mals, and also a recently released bioterrorism module.  It has also been used for 
training and teaching of physicians.  Models could be developed to support further 
documentation and referencing of the system to the scientific literature and online, 
real-time update by distributed experts that start to then use the system for data entry 
to support monitoring. 

The PathPort project itself has been federating through web services diverse data 
sources and analysis tools to support the needs of (currently and primarily) discovery 
scientists working on developing a more comprehensive knowledge of the mecha-
nisms that infectious agents and their hosts deploy in their interactions (an “arms 
race”).  The client-side interconnect for the federated services, ToolBus (Figure 5), 
allows users of the system to access and analyze (mostly molecular currently) data of 
diverse types from diverse sources.  The overall architecture of the PathPort system is 
shown in Figure 6 and the architecture of the client-side interconnect, ToolBus, is 
shown in Figure 7. 

 

Fig. 3. A model for distributed curation involving subject matter experts throughout the com-
munity and showing how many of the (molecular) data types are dealt with, along with the CI 
needed to ensure that the data are acquired and disseminated appropriately 

                                                           
36  http://www.gideononline.com/. 
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Fig. 4. CI supporting data generation, acquisition, analysis, storage for MARCE.  Note that 
although the physical capacities provided by thee cores happen to reside at the same institution 
in this case, one can envision a number of such facilities distributed, working under standard 
operating and quality assurance procedures, and supported by the interoperability middleware 
such as provided by PathPort’s implementation of a web services strategy and ToolBus for the 
client-side interconnect.  Also note that analysts providing training support and where appropri-
ate conducting analyses collaboratively with a distributed set of partners is integral to this 
model but not shown in the figure 

PathPort project is following some of the typical phases explored in web services 
adoption.  These are: 1) integration/interoperation, 2) collaboration and 3) innovation 
[8].  PathPort project is in the first phase, primarily, and exploring the second phase.  
The first phase typically involves building wrappers around legacy systems and appli-
cations.  During this first phase, the project has embraced fast cycles of development 
and deployment37 with opportunity for community involved in the rapid cycles of 
learning.  The goal has been to deploy early and often to allow users to react and 
participate effectively with the software development team.  This has resulted in shar-
ing of information across collaborators and mutual learning.  During this phase the CI 
team and its collaborators sometime encounter limits based on immature standards 
and unprepared IT architectures.  With the coming of the second phase, collaboration, 
we eventually expect a reduction in the levels of human intervention required to sup-
port collaboration.  Finally, as being experienced in the PathPort project, “external” 
partners start to increase in their sharing and collaboration thus further driving the  
 

                                                           
37  See http://staff.vbi.vt.edu/pathport/scrum/ for information about the SCRUM/SPRINT proc-

ess being employed to agilize software development.  
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development/implementation/evolution chain.  In the innovation phase, we hope to 
use the lessons learned from the previous phases to drive entirely new processes and 
models.  New, distributed web-services models tend to be disruptive and thereby 
enable change.  We hope, in good CI form, that there will be a redefinition of how 
research is conducted across organizational boundaries, something I believe the 
MARCE project, the NIAID RCE Network, the BRC Network and the Biodefense 
Proteomic Research Centers38 can help prototype both within their own networks as 
well as across networks.  This redefinition is sorely needed and enabled by exposing 
specific operational information system elements for dynamic linking to processes  
of  partners/collaborators.  The goal is to have organizations operating as a truly inter- 

 

Fig. 5. “-Omics” data provide the opportunity to develop the “parts lists” for pathogens and 
their hosts (genomics data), along with the contextual “state” data that describe the dynamic 
molecular responses of living organisms (pathogens and hosts) as they respond to each other in 
a given environmental condition (transcriptional profiles or transcriptomics data, protein pro-
files or proteomics data and metabolite profiles or metabolomics data).  These data sets not only 
will allow molecular signatures to be developed, they will also help establish a mechanistic 
understanding of infectious agents attacking their hosts, thereby enabling development of new 
countermeasures, such as vaccines and therapeutics  

                                                           
38  http://www.niaid.nih.gov/dmid/genomes/prc/default.htm. 
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Fig. 6. A simplified view of the architecture employed by PathPort project to allow interopera-
bility of diverse analysis tools and data sources of relevance to infectious diseases.  Web ser-
vices can be either analysis tools, such as BLAST, or a data source, such as GenBank.  They 
can reside anywhere.  Local files (available to the local user only), whether programs or data, 
can be used without making them available to the entire federation if desired 

 

Fig. 7. Architecture of the client-side interconnect, ToolBus, that allows for access of web-
services relevant to PathPort project.  Note that new data models can be added easily without 
breaking the system or requiring major re-engineering 
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Fig. 8. A simple example of interoperability across previously incompatible systems (DAS 
Viewer, BLAST, MUMer) built by the community as well as of allowing communication be-
tween the visualizer for a given analysis result (in this case comparative genomics between 
Vaccinia and Variola) through a drag-and-drop approach into another analysis server (in this 
case BLAST).  A web-services architecture separates the building of visualizers from databases 
such that new visualizations can be achieved easily.  The communication across incompatible 
systems enables a much faster and more efficient workflow for the human knowledge 
worker/operator/analyst 

connected cyber-ecosystem. The newness of these research networks provides a 
unique opportunity to develop this from the beginning, if this an objective that is 
adequately and integrally planned. 

One question that frequently arises with infectious disease research and data in 
our post-9/11 world is security.  There are many different levels of need to security.  
From an IT perspective, web-services can provide security via models being devel-
oped and implemented, such as the WS-Security39 or OASIS WS Security TC40.  
Importantly, again, is to leverage community standards for implementation.  Al-
though some of the needs may be national security related, it is important to note that 
most life sciences companies, such as Pharmaceuticals and biotechs, have very strin-
gent security needs because of Intellectual Property requirements.  (This is to say 
that there are meaningful solutions that can leverage web services and be enabling all 
the same, based on specific requirements.)  The Intel community is already imple-
menting  prototypical  projects in this direction, noting41:  “In a network-centric envi- 
 

                                                           
39  http://www-106.ibm.com/developerworks/webservices/library/ws-secure/. 
40  http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss. 
41  See http://fcw.com/fcw/articles/2003/0317/web-nces-03-18-03.asp, for example. 



 Cyberinfrastructure for PathoSystems Biology 25 

 

ronment, data would be made available as quickly as possible to those who need it 
across the organization or on the battlefield.  Many DoD systems in the field today 
use a client/server architecture.” and “…would create an infrastructure that will en-
able users to quickly take advantage of DoD and intelligence community networks, 
eliminating the system-by-system approach”…”The system will enable users to 
customize the way they search and actually view information in real-time and dis-
play previously unavailable combinations of intelligence, surveillance and recon-
naissance data. Access based on individual users' security clearances will be built 
into the design.”  Thus there is nothing specific about web-services that will not 
support security as needed. 

In the three years of development experience provided by the PathPort project, in-
teroperability across previously incompatible systems, using web-services, has al-
ready been implemented and used by scientists (Figures 8 and 9).  In the future, as we 
move toward the innovation phases of development, ideas and concepts that support 
large-scale simulations of real-world events pertaining to infectious disease outbreaks 
(Figure 10) will be possible. 

 

Fig. 9. ToolBus use case ToolBus showing the group suggestor function working on a set of 
transcriptional profiles.  It is important to note that ToolBus and the “group suggestor” capabil-
ity of the system do not “know” about the type of data being analyzed – although in this exam-
ple all the data are of one type (mRNA expression levels), any type of data that is available in 
such an interoperable framework could be analyzed with the group suggestor capabilities (for 
example, transcriptional profiles and GIS coordinates of people or plants from which the pro-
files were obtained) 
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Fig. 10. An illustration of the conceptual, integrative framework for a long-term CI for patho-
systems biology 

Acknowledgements 

I am grateful for funding by the US Department of Defense (contracts DAAD 13-02-
C-0018 and W911SR-04-0045), the National Institute of Allergy and Infectious Dis-
eases (contract HHSN266200400035C, HHSN266200400061C and Cooperative 
Agreement 1 U54 AI057168-01) in support of ToolBus, and PATRIC projects respec-
tively.  Special thanks to Dana Eckart, Yongqun He, Ron Kenyon, Dave Sebring and 
my Cyberinfrastructure Group at VBI for making this work possible.  I am also grate-
ful to Darleen Baker for assistance and editorial improvements to this paper.  Finally, 
this work is dedicated to Minnis Ridenour, to whom VBI owes its existence.   

References 

1. Atkins, D., Droegemeier, K., Feldman, S., Garcia-Molina, H., Klein, M., Messerschmitt, 
D., Messina, P., Ostriker, J., Wright, M.: Revolutionaizing Science and Engineering 
Through Cyberinfrastructure: Report of the National Science Foundation Blue-Ribbon Ad-
visory Panel on Cyberinfrastructure. (2003). 
http://www.nsf.gov/publications/pub_summ.jsp?ods_key=cise051203 

2. Wiener, N.: Cybernetics: or Control and Communication in the Animal and the Machine. 
2nd edn.MIT Press (1948) 212 



 Cyberinfrastructure for PathoSystems Biology 27 

 

3. Studholme, D. J., Downie, J. A., Preston, G. M.: Protein Domains and Architectural Inno-
vation in Plant-Associated Proteobacteria. BMC Genomics. 6 (2005) 17 

4. Eubank, S., Guclu, H., Kumar, V. S., Marathe, M. V., Srinivasan, A., Toroczkai, Z., Wang, 
N.: Modelling Disease Outbreaks in Realistic Urban Social Networks. Nature. 429 (2004) 
180-184. 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citatio
n&list_uids=15141212 

5. Ibid 
6. Eckart, J.D., Sobral, B.W.: A Life Scientist's Gateway to Distributed Data Management and 

Computing: The PathPort/ToolBus Framework. Omics. 7 (2003) 79-88. 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citatio
n&list_uids=12831562 

7. He, Y., Vines, R. R., Wattam, A. R., Abramochkin, G. V., Dickerman, A. W., Eckart, J. D., 
Sobral, B. W.: PIML: the Pathogen Information Markup Language. Bioinformatics. (2004) 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citatio
n&list_uids=15297293 

8. Marks, E., Werrell, M. : Executive's Guide to Web Services. John Wiley & Sons, Inc., Ho-
boken, N.J. (2003) 



 

J.C. Setubal and S. Verjovski-Almeida (Eds.): BSB 2005, LNBI 3594, pp. 28 – 29, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Analysis of Genomic Tiling Microarrays for Transcript 
Mapping and the Identification of Transcription Factor 

Binding Sites 

Joel Rozowsky, Paul Bertone, Thomas Royce, Sherman Weissman, 
Michael Snyder, and Mark Gerstein 

Department of Molecular Biophysics & Biochemistry, Yale University, 
New Haven CT, USA 

The recently developed technology of genomic tiling microarrays, which can be used 
for genome annotation, has required the development of new methodologies [Royce 
et.al] for their design and analysis. Genomic tiling arrays use PCR amplicons or short 
oligonucleotide probes to tile the non-repetitive DNA sequence of a genome in an 
unbiased fashion for the purposes of detecting novel genomic features. Specifically, 
they can be used for the identification of novel transcripts, distinguishing between 
different splice isoforms and for finding transcription factor binding sites using 
Chromatin-Immunoprecipitation on chip experiments (ChIP-chip). 

High density PCR product arrays which has allowed entire human chromosomes to 
be tiled [Rinn et.al (2003)], and super high density oligonucleotide arrays which has 
enabled the tiling of the entire human genome or a substantial portion thereof 
[Kapranov et.al, Bertone et.al, Cheng et.al]. Arrays of this type have also been used 
for transcript mapping in other genomes: Arabidopsis thaliana [Yamada et.al (2003), 
Stolc et.al (2005)] and Drosophila melanogaster [Stolc et.al (2004)]. Unlike 
conventional gene-targeted microarrays, where analysis methods have been well 
developed, only a small fraction of probes on a tiling array (especially true for 
mammalian genomes) show-hybridizing signal necessitating a more sophisticated 
analysis. An additional important factor is that experiments of this type generate vast 
quantities of data (multiple gigabytes) unlike conventional gene-based arrays. 

Tiling arrays are also useful for the identification of transcription factor binding 
sites [Martone et.al (2003), Cawley et.al (2004) & Euskirchen et.al (2004)] using the 
so-called ChIP-chip experimental technique. In order to identify binding sites it is 
essential that all of the non-repetitive genomic DNA sequence is represented in an 
unbiased manner on the microarray. The analysis methodology for these experiments 
is different for amplicon and oligonucleotide tiling arrays, as stretches of 
oligonucleotide probes showing enriched signal compared to the control are required 
for a statistical significant hits, unlike PCR amplicon arrays where hits are determined 
on an amplicon-by-amplicon basis. 

Another important issue is the design of genomic tiling arrays. Oligonucleotide 
probes show biases in fluorescent signal intensities due to the variation in binding 
affinities of different probe sequences. In addition, short sequence motifs can generate 
disproportionately high signal. Sequences biases and artifacts of these types can be 
taken into account in the design of arrays of this type. 
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Abstract. Reactions within the cell should satisfy the law of mass con-
servation and the second law of thermodynamics. Networks of reactions
violating any of these laws are unphysical and cannot occur in nature.
In this paper we describe a technique that perturbs an unfeasible net-
work to produce a metabolic network that satisfies the two fundamental
laws. This algorithm has been applied to study the metabolic pathways
of E. coli.

1 Introduction

With the availability of many completely sequenced genomes and much gene
expression data the study of metabolic pathways [1] is entering a phase where
constraint-based approaches will be useful in quantitative analysis [7]. These
approaches are valuable since they are based on fundamental physical laws and
do not make use of any unknown parameters. For a given system of reactions in
steady state, mass balance of the reactions restricts the space of possible fluxes
or rates to the null space of the stoichiometric matrix [13]. This constraint is
used in flux balance analysis (FBA). Formulating the problem in terms of fluxes
we do not need detailed knowledge of the kinetic parameters inside the cell.
In the absence of detailed knowledge about the kinetic parameters and enzyme
concentrations, the FBA assumes that the metabolic flux vector in a biological
network optimizes the production of growth or biomass, subject to the mass
balance constraint.

The network structure of metabolic pathways imposes an additional ther-
modynamic constraint on the rates of reactions. Many authors [6] have studied
reaction networks from a very theoretical standpoint, but only recently, have
applied constraints to metabolic networks, to further constrain the space of fea-
sible fluxes. The thermodynamic constraint is a consequence of the second law
of thermodynamics, according to which, the direction of a chemical reaction
is from a higher chemical potential to a lower chemical potential [9], like the
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flow of current from a higher voltage to a lower voltage in an electrical circuit.
This constraint is also called energy balance analysis (EBA) in the literature [2].
The stoichiometric matrix contains all the information regarding the flux bal-
ance and energy balance constraints. Moreover, the chemical potential depends
on the concentration of the metabolites, but in the EBA model the sign of the
chemical potential difference is used to formulate the thermodynamic constraint.

In [2] FBA and EBA are formulated as non-linear optimization problems
for the flux and change in chemical potential, which can lead to errors if the
method does not converge. Recently, [3] propose a method of exponential com-
plexity based on matroid theory to solve this problem. In [5] a sign test was
proposed which is a necessary condition for testing thermodynamic unfeasibility
and which, when combined with linear programming (LP), is both necessary and
sufficient, leading to a polynomial algorithm to detect and compute thermody-
namically feasible fluxes and chemical potential changes.

In this paper we propose a novel LP based polynomial time algorithm that
constructs fluxes and changes in chemical potential which satisfy both the FBA
and EBA constraints by perturbing the network, by removing reactions that
are thermodynamically unfeasible. We have applied our algorithm to the com-
plete metabolic network of Escherichia coli [10], but in this paper we illustrate
it on a sub-network of E. coli that deals with central metabolism [4]. The re-
action network considered in this paper contains 19 metabolites linked by 23
reactions. The algorithm is used to maximize the production of biomass flux,
and the resulting flux vector is thermodynamically unfeasible. By appropriately
perturbing the network by removing an internal cycle the metabolic pathway
becomes thermodynamically feasible.

2 Metabolic Pathways

Biological systems differ from purely chemical systems in the sheer complexity
of the reaction schemes and number of chemicals involved. However, their com-
plex kinetic behavior is not merely a result of complex reaction schemes, but is
permissible thermodynamically if the system is far from equilibrium. One of the
functions of metabolism is to maintain biological systems far from equilibrium,
allowing complex behavior to take place. Metabolic processes are controlled by
catalysts known as enzymes, which are proteins whose three-dimensional struc-
ture is essential to the precision of their operation.

The methods presented in this paper will help biologists to compute the rates
of these reactions, without going into detailed kinetics. For example, consider a
small subset of the E. coli metabolic network, with one unit of oxygen and two
units of glucose as inputs. These inputs are boundary or exchange fluxes. From
this information we want to know the maximal ATP production rate. To answer
this question, we need information about the various reactions associated with
the metabolites encoded in the stoichiometric matrix. In the FBA method, the
constraints imposed by the stoichiometry of a chemical network at steady state
are similar to Kirchhoff’s first law for the balance of currents in electric circuits.
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By applying just the FBA to find the maximal ATP production, we could pro-
duce solutions that violate the second law of thermodynamics. To disallow such
unphysical solutions we impose the additional EBA constraint. This constraint is
analogous to Kirchhoff’s second law in electrical circuits, where the voltage drop
around a closed loop in an electrical circuit must be zero, and currents flow from
higher to lower voltages. Similarly, in metabolic networks the free energy change
around a reaction loop must be zero. In a complicated network, such closed loops
can be identified by computing the null space of the stoichiometric matrix cor-
responding to the internal reaction fluxes. These internal fluxes can for example
be associated with the ATPase reaction. These closed loops have non-increasing
entropy that violate the second law of thermodynamics, hence they should be
detected and removed from the FBA solution. This approach perturbs the orig-
inal network so as to produce a feasible network that satisfies both FBA and
EBA. The EBA approach requires no prior information about the concentrations
of the metabolites or any detailed knowledge of the kinetic parameters.

Reference [8] showed that the FBA solution decomposes into weightings of
three types of pathways. Type I pathways, for example, deal with the cycling
of ATP, which then drives other cellular processes. Type II pathways are those
that have exchange fluxes corresponding to metabolites like ATP, NADH, with
the rest of the pathway being an internal cycle. These pathways represent futile
cycles. Type III pathways have no exchange fluxes, and these represent internal
cycles corresponding to internal fluxes. Type III loops in the flux direction violate
the second law of thermodynamics [8]. For example, the pyruvate-kinase reaction
flux could be part of a type III loop. These loops are detected and removed by
our algorithm.

In this paper we consider only steady state solutions, an approximation that
holds when metabolites do not accumulate.

3 Flux and Energy Balance Analysis

A metabolic network [12] typically consists of several hundred reactions that are
catalyzed by enzymes. A reaction rate, or flux, is assigned to each metabolic
reaction. In flux balance analysis, the law of mass balance is applied to each
metabolite, which in steady state implies that the incoming fluxes should bal-
ance the outgoing fluxes. The flux balance analysis has been formulated as a
linear program by many authors [13], in which a linear objective function Z
(Eq.(1)) is to be maximized or minimized. Usually written as a linear combi-
nation of the fluxes, the objective function could, for example, be growth rate,
ATP production, or glucose intake. The optimization of the objective function
is subject to the mass balance constraints in Eq.(2):

Z = dT f , (1)

Sf = 0, (2)

and,
l ≤ f ≤ u (3)
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where, f ∈ Rn is the vector of n fluxes, S ∈ Rm×n is a stoichiometric matrix
and m is the number of reactants or metabolites in the network. All vectors
by default are column vectors. Also, d, l and u are vectors ∈ Rn of objec-
tive function coefficients, lower and upper bound constraints on the fluxes re-
spectively, and 0 is a zero vector of size m. Equation (3) imposes upper and
lower bounds on the flux vector, taken componentwise. This constraint is mea-
sured experimentally. The lower bound constraint in most cases is either zero
or negative infinity. In this paper we will assume these two lower bounds for
the fluxes. The upper bound constraint for most of the fluxes is infinity, but for
some boundary fluxes has a finite value that is experimentally determined. Also,
the vector of objective function coefficients has to be determined experimen-
tally. Usually the objective function depends only on the boundary or exchange
fluxes.

In the above formulation the number of fluxes n exceeds the number of
metabolites m in the cell, so linear programming is a convenient way to solve
the system of underdetermined equations. Due to degeneracy an infinite number
of solutions are possible for the flux vector, that satisfy all the constraints and
optimize the objective function.

According to the second law, fluxes must flow from reactants of higher chem-
ical potential to ones of lower chemical potential, since the entropy of the reac-
tion is always non-decreasing [9]. The FBA analysis allows an infinite number
of fluxes, many of these flux vectors violate the second law and hence are un-
feasible. From a network topology point of view, the presence of cycles in the
flux direction violates the law of production of entropy. Applying Kirchoff’s loop
law, eliminates these entropy violating cycles.

From S we remove the columns corresponding to boundary fluxes and keep
only the columns of non-redundant internal fluxes, which we define as those
between metabolites. The resulting matrix G ∈ Rm×ni , where ni is the number
of internal fluxes in the network. Using the reduced row echelon form [11] we
can find the null space matrix N of G. The matrix N ∈ Rni×nl consists of nl

basis vectors of N (G), the null space of G. The dimension of N (G), denoted
by D(N (G)) gives the number of independent loops nl in the network (Strang,
2003). By taking linear combinations of these basis loops we can generate bigger
and compound cycles (see Strang, 2003, page 363). This basis is unique since
the reduced echelon form of G is unique.

Associated with each internal flux fi is a chemical potential difference Δμi.
These potential differences satisfy a law similar to Kirchoff’s loop law in electrical
circuits, namely [2]:

KΔμ = 0 (4)

where, K = NT ∈ Rnl×ni is a matrix whose rows are the basis vectors of the
null space of G, Δμ ∈ Rni is a column vector of chemical potential differences
for the internal fluxes in the cell, and 0 is a zero vector of size nl.
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The second law ensures that entropy increases in each internal reaction i and
hence the direction of internal flux fi is from metabolites of higher chemical
potential to ones of lower chemical potential:

{
fiΔμi < 0 for fi �= 0 and Δμi �= 0,
fi = 0,Δμi = 0 otherwise. (5)

This constraint applies to all the internal fluxes. According to equation (5), if
either of fi and Δμi are zero, then both of them must be zero.

Equations (4) and (5) are thermodynamic feasibility constraints that are ap-
plied in addition to the flux balance constraints. Equation (5) is a nonlinear
constraint which, when incorporated into the FBA, makes it a non-linear pro-
gramming problem. In this paper we propose a simpler algorithm to solve the
problem as a linear programming problem.

In addition to the above constraints we impose upper and lower bound con-
straints on Δμ

β ≤ Δμ ≤ α (6)

where, β and α ∈ Rni represent the lower and upper bounds on the change in
chemical potential Δμ, and the inequality is componentwise. The absolute values
of the components in β and α mean nothing, since equations (4), (5) and (6)
can be scaled by a positive constant without changing the linear programming
solution.

In the next section we describe the condition for checking the presence of
cyclic fluxes, and we introduce some notation here. We will use upper-case in-
dices to denote sets. For example, let F be the set of all fluxes in the net-
work, R be the set of unrestricted fluxes, F≥0 be the set of non-negative fluxes,
F<0, F=0 and F>0 be the set of negative, zero and positive fluxes, respectively.
Denote the ith flux component fi ∈ F , ri is an unrestricted flux, f≥0

i a non-
negative flux etc. The matrix N can be written in terms of its column vectors
as N = [N∗1, . . . , N∗k, . . . , N∗i, . . . , N∗nl

], where N∗k is the kth column vector of
N . Also N∗k = [n1k, n2k, . . . , nik, . . . , nnik]T , where nik is the (i, k) th entry of
the matrix N .

4 No-Cycle Feasibility Constraint

In this section we introduce a simple test to detect the presence of loops in a
metabolic network that violate the second law of thermodynamics. To do so
we take advantage of the directionality of the flow of fluxes in the cycle. The
number of rows nl of the K matrix gives the number of loops or cycles in the
network [11]. These loops are the basis cycles. If in any row j of the K matrix
Kj∗ all the entries (more than one should be non-zero) are of the same sign,
corresponding to the set of positive fluxes F>0

j for the jth cycle, then the flux
vector is thermodynamically unfeasible. If some unrestricted flux ri belonging
to the jth cycle is negative, it can be made positive by reversing the sign of the
corresponding entries in the ith column of the G and K matrices, namely G∗i
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and K∗i respectively. If after this transformation, any of the rows of the K matrix
still has the same sign, then the flux vector is thermodynamically unfeasible, and
we detect the presence of a cycle. By satisfying this condition we can eliminate
the non-linear constraint in equation (5), transforming the non-linear problem
into a linear one.

The no-cycle feasibility condition is equivalent to solving the FBA problem
with constraints (4) and (5). To satisfy equation (4), for a single row of the K
matrix corresponding to a single cycle, at least one of the Δμi should differ in
sign from the other components in the Δμ vector, which, when combined with
equation (5), prevents the formation of thermodynamically unfeasible loops in
the network. This no-cycle feasibility condition can be applied to basis loops,
which can be easily observed in the echelon basis.

We state without proof lemma 1 [5], which summarizes the previous para-
graphs, and gives a necessary condition for detecting thermodynamically unfea-
sible cycles.

Lemma 1. (sign transformation and feasibility lemma)
Transforming the unrestricted internal flux −ri, to ri, makes the elements of K∗i

negative. If after this transformation, any row of K is of the same sign, then the
metabolic network is thermodynamically unfeasible.

Lemma 2. (pivoting lemma)
Subtracting a multiple of a row of K from the corresponding internal fluxes in
a cycle does not change the optimum value of the objective function in equa-
tion (1).

Since this pivoting step changes neither the objective function, which contains
only boundary fluxes, nor the constraints on the linear program in equations (1)-
(3), since the multiple is chosen to respect all the constraints, the application
of this step will not change the optimal value of an objective function, such
as production of biomass, that is composed of throughput fluxes. The examples
discussed in [8] are very restrictive and their flux-zeroing method does not always
preserve the optimal value of the objective function, since they set the pivoting
vector to be a vector of all ones, which may not always lie in N (G), the null space
of G. Moreover, as a result of this pivoting step, some internal fluxes become
zero, forcing the corresponding change in the chemical potentials to be zero. From
equation (4), some additional change in the chemical potentials are inferred to be
zero. These additional Δμ’s force the corresponding internal fluxes to be zero, to
maintain thermodynamic feasibility. These additional constraints on the fluxes
make the EBA solution sub-optimal. In this paper we use lemma 2 to transform
thermodynamically unfeasible loops, into thermodynamically feasible loops by
making particular fluxes zero and then removing the reaction corresponding to
the zero fluxes. This will perturb the metabolic network.

Definition: An internal flux xi is called non-overlapping if it belongs to only one
basis cycle.
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Definition: An internal flux xi is limiting if by pivoting on it, the constraints on
the other internal fluxes are not violated.

The next section develops a theorem that we will use in the algorithm to
break thermodynamically unfeasible cycles.

5 Breaking Cycles: Algorithm to Perturb
Thermodynamically Unfeasible Networks

A metabolic network with cycles that violates the second law of thermodynamics
is unphysical, hence these unfeasible cycles must be detected and removed. The
following theorem gives a method to break such cycles.

Theorem 1. (Zero Transformation Theorem)
If the entries of the ith column of the matrix G, G∗i, corresponding to the ith
internal, non-overlapping flux xi, which only belongs to the jth cycle, are set
equal to zero, then the jth row of the K matrix Kj∗ is zero everywhere except
at the ith column, that is, the (j, i)th entry of the K matrix, kji is nonzero.

Proof: Since N is the null space matrix of G, we have GN = 0, where 0 is a
(m × nl) matrix of zeros.
From GN = 0, we have, on expanding the matrix-matrix product:[∑ni

p=1 G∗pnp1, . . . ,
∑ni

p=1 G∗pnpj , . . . ,
∑ni

p=1 G∗pnpnl

]
= 0. The jth cycle corre-

sponds to the jth row of K and hence the jth column of the N matrix. Consider
the equation corresponding to the jth column of the N matrix:

ni∑
p=1

G∗pnpj = 0 (7)

where, 0 ∈ Rm is a column vector of m zeros, and npj is the (p, j)th element of
the N matrix, which is non-zero if the flux p belongs to cycle j, and is otherwise
zero:

G∗1n1j + . . . + G∗ni
nnij = −G∗inij (8)

where on the left side we exclude the ith index, which we bring to the right.
Without loss of generality let nij = 1, hence:

G∗1n1j + . . . + G∗ni
nnij = −G∗i (9)

Since G∗i is a zero vector, we have:

G∗1n1j + . . . + G∗ni
nnij = 0 (10)

From the above equation (10) we see on the left hand side that,
G∗1n1j , . . . , G∗ni

nnij are at most ni − 1 nonzero vectors, which were a part of
the jth cycle along with G∗inij (which corresponds to the ith internal flux),
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setting G∗i = 0 (whenever xi = 0, we can set G∗i = 0 without violating the flux
conservation constraint Gx = −Hy) breaks the cycle, and the rest of the nonzero
column vectors, G∗1, . . . , G∗ni

in the broken cycle are linearly independent and
since at most ni internal fluxes in the jth cycle, corresponding to the jth row
of the K matrix Kj∗, are linearly dependent (since they form a cycle), breaking
the cycle makes the rest of the fluxes in the jth cycle linearly independent. In
our construction of the null space of G we only considered irreducible cycles that
form the basis of N (G). Hence, if breaking the cycle doesn’t make the rest of the
fluxes in the jth cycle linearly independent, another cycle is present in the jth
cycle, which is a contradiction since the jth cycle is an irreducible basis cycle.
The only way equation (9) holds is when n1j = . . . = nnij = 0. Hence, the jth
column of the matrix N , N∗j is zero except for the nij element which is nonzero.
Since K = NT , the jth row of K, Kj∗ is zero except for kji = nij .

From theorem 1 we see that when a particular, non-overlapping internal flux is
zero we can zero out its respective column in the G matrix breaking the cycle which
contains the flux that has become zero due to pivoting. So the row and column
corresponding to the broken cycle and the zero flux can be deleted from the K
matrix, changing the stoichiometric matrix and hence perturbing the metabolic
network. The change in chemical potential corresponding to the deleted zero flux
is unconstrained. Our algorithm uses this theorem to remove one cycle at a time,
by zeroing out non-overlapping internal fluxes in the pivoting step.

To construct a flux vector that satisfies both FBA and EBA we impose ad-
ditional constraints, by setting the limiting flux components, of every thermo-
dynamically unfeasible cycle to zero. We then delete these fluxes by setting the
corresponding columns of the G matrix to zero. This is described below.

i) Solve the FBA for the flux vector f . If the FBA cannot find a solution then
the problem has no solution.

ii) Compute the K matrix via the reduced row echelon form of the G matrix.
iii) Scan the flux components of the flux vector computed in step (i) and change

the sign of the entries of the columns of the K matrix corresponding to neg-
ative fluxes, according to lemma 1, transforming the cycles in the network.
Check the K matrix for no-cycle feasibility by applying lemma 1.

iv) If, after the above steps, the K matrix is feasible, we solve the combined
linear program to compute the Δμ vector that satisfies the constraints in
equations (4), (5) and (6). The components of the Δμ vector in the solution
are constrained to satisfy equation (5) by adjusting equation (6).

v) If the K matrix is unfeasible after step (iv), we pivot out the limiting flux
components in each cycle to zero. We set the columns of the G matrix cor-
responding to the zero fluxes to zero and compute the K matrix, perturbing
the network. In this step, if a column of the G matrix corresponds to a non-
overlapping flux, then we can apply theorem 1 to compute the K matrix.
Otherwise, we compute the K matrix in the usual way. From the K matrix
we remove rows corresponding to broken cycles and also remove columns
corresponding to zero fluxes. We do not constrain the chemical potential
change for these deleted zero fluxes. We check the K matrix for feasibility.
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If feasible, we repeat step (i) with the updated G and K matrices and a new
set of constraints on the zero fluxes. If the K matrix is unfeasible we report
that the flux vector is thermodynamically unfeasible.

The sign test in lemma 1 is a necessary condition for detecting thermody-
namic unfeasibility [5]. Combined with the LP in the above algorithm, it becomes
a necessary and sufficient test if a given flux is thermodynamically unfeasible.

In the above algorithm, the computation of Δμ decouples from the compu-
tation of the flux vector f . When implemented in MATLAB (The Mathworks
Inc., Natick, MA), however, the two can be combined into single linear program,
the details are not discussed in this paper. Also, when trying to identify non-
shared fluxes among basic cycles, it is best to use the rational basis of the null
space for the G matrix. After a feasible flux vector f is identified, the lower
and upper bounds on Δμ in equation (6) can be adjusted, and by using linear
programming to produce a Δμ vector that satisfies the constraints in equations
(4) and (5). Since the problem can admit multiple solutions, we can perform the
MATLAB computation starting from another initial flux vector and repeat all
the steps in the algorithm.

The overall complexity of the algorithm comes from computing the null space
and solving the LP. Both take polynomial time.

5.1 Perturbing the E. coli Central Metabolism Network

We use the stoichiometric matrix S of the model E. coli system from Table 1 [4]
for our FBA/EBA analysis. The reaction network contains 19 metabolites linked
by 23 reactions (Figure 1 [4]). Out of these 23 fluxes, 3 are external or bound-
ary fluxes and 20 are internal fluxes. The network takes glucose as input and
produces acetate and carbon dioxide. We applied our algorithm to maximize the
production of biomass, which is a linear combination of the different fluxes with
experimentally determined stoichiometric coefficients. In the FBA optimization
the internal fluxes are unrestricted and only satisfy the flux balance constraint.
The C02 and acetate fluxes come from the literature (references found in [4]).
Since only the relative rates matter, the glucose flux is set to 1, and all other
fluxes are normalized with respect to it.

The G matrix is formed by considering the columns of the following internal
fluxes from Table 1 of Delgado and Liao (1997):

x = [Jpgi, J3, Jpep, Jpyk, Jpdh, Jace, J8, Jict, J11, J12, Jppc, J14, J15, J16, Jtkt,
Jtal, Jresp, Jatp, Jbiomass, Jglyox] and the H matrix is formed from the columns
of the external fluxes: y = [Jgluc, qCO2 , qace].

The null space of the G matrix is of dimension 1, hence the K matrix consists
of one row, corresponding to a single loop in the network:

K = [0, 0, 0, 1, 1, 0, 0,−1,−1,−1,−1, 0, 0, 0, 0, 0,−1,−3, 0, 1].

From the non-zero entries of the K matrix, we see that the following 9 fluxes
form a cycle: [Jpyk, Jpdh, Jict, J11, J12, Jppc, Jresp, Jatp, Jglyox].
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We consider the following optimal internal flux vector which satisfies the FBA
and optimizes the production of biomass, (Jbiomass = 0.0001 per unit of glucose
consumed) but is thermodynamically unfeasible:

x = [0.87, 0.85, 1.58, 48.51, 49.31, 0.27, 0.56,−47.63,−47.71,−47.71,−47.98, 0.12,
0.09, 0.03, 0.03, 0.03,−44.80,−136.84, 0.0001, 48.19]T

To see that this flux vector is thermodynamically unfeasible, we transform
columns 8, 9, 10, 11, 17 and 18 of the K matrix corresponding to the negative
flux components to obtain a transformed K matrix
[0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 3, 0, 1], and see that all components have
the same sign. This is unfeasible. We identify the limiting internal flux x20, and
make x20 = 0, by subtracting x20 ∗ KT from x to get:

x̄ = [0.87, 0.85, 1.58, 0.33, 1.12, 0.27, 0.56, 0.48, 0.48, 0.21, 0.12, 0.09, 0.03, 3.38,
7.71, 0.0001, 0]T . We now delete the reaction corresponding to x20, which cor-
responds to the flux Jglyox, perturbing the unfeasible network. By theorem 1,
the cycle breaks and the network becomes thermodynamically feasible. Also, the
chemical potential difference Δμ20 for the deleted flux x20 is no longer restricted.
By applying theorem 1, the transformed K matrix is
K̄ = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]. Since the perturbed network
has no cycles, we can easily choose Δμ1, . . . , Δμ19 to be negative, satisfying the
second law of thermodynamics in equation (5).

We have applied our technique to the full metabolic network of E. coli [10],
and found several cycles that violated the second law of thermodynamics. Per-
turbing the network can make it feasible, as in this example.

6 Discussion

At the fundamental level metabolic pathways have been represented as complex
networks of reactions, which obey the stoichiometric relationship between the
different metabolites. The stoichiometric matrix contains all the information for
balancing the fluxes and applying the second law of thermodynamics to the over-
all system. It constrains the metabolic network to satisfy the law of conservation
of mass and the thermodynamic law so that the reactions in the network are
physically meaningful and can be readily compared with experiments.

If we want to go beyond this model, we need a detailed knowledge of the kinet-
ics of these reactions, the rate constants and the interactions between different
reactions. The flux and energy balance analysis provides an alternative route
to computing the rates of reaction, without using detailed kinetic information.
Recent enhancements to the stoichiometric theory look promising and the con-
tribution in this paper will lead to more complete models of metabolic pathways.

7 Conclusion

This paper gave a simple linear programming algorithm to compute fluxes of re-
actions that satisfy both flux and energy balance constraints. This technique dif-
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fers from previous approaches, as it is constructive and it perturbs the metabolic
network by deleting reactions to produce feasible solutions. We applied the
method to the metabolic network of E. coli and computed the fluxes and changes
in chemical potentials for the internal reactions. However, FBA together with
EBA cannot constrain the metabolic network completely, leading to an infin-
ity of flux and chemical potential difference vectors. More realistic bounds on
the values of fluxes from studying the biochemistry of several pathways are re-
quired as further constraints. In the future, a more complete formulation could
make the change in chemical potential for each internal reaction more under-
standable and comparable to experiment. Now it just dictates the direction of
thermodynamically feasible fluxes in the metabolic network. Linear algebra and
thermodynamics together lead to a law of entropy in metabolic networks. Since
the analysis and techniques presented here are simple, they can easily be applied
to large-scale metabolic networks.
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Abstract. Many cellular functions are carried out in compartments of
the cell. The cellular localization of a protein is thus related to its func-
tion identification. This paper investigates the use of two Machine Lear-
ning techniques, Support Vector Machines (SVMs) and Decision Trees
(DTs), in the protein cellular localization prediction problem. Since the
given task has multiple classes and SVMs are originally designed for the
solution of two class problems, several strategies for multiclass SVMs
extension were investigated, including one proposed by the authors.

Keywords. protein cellular localization, Machine Learning, multiclass
Support Vector Machines, Decision Trees.

1 Introduction

Proteins may be located at various regions in the cell or transported to the
extracellular space [8]. The identification of a protein destination is important
to understand its function. Even knowing the protein function, its localization
may provide valuable information about enzyme pathways [6].

Several works employed Machine Learning (ML) techniques in this recogni-
tion task [6, 9, 10, 11, 14]. ML is a sub-area of Artificial Intelligence that provides
techniques which can extract concepts (knowledge) from a given dataset [15].
These techniques are usually applied to the induction of a classifier or predictor,
through a process called training. The generated predictor can then be used in
the classification of new instances from the same domain.

In [10], a k-nearest neighbor (kNN) classifier, a DT, a Näıve-Bayes (NB)
classifier and a probabilistic model were applied in the recognition of E. coli
and yeast protein locations. In [6] and [11], SVMs were successfully employed in
the localization of prokaryotic and eukaryotic proteins. SVMs were also applied
recently in the localization of human proteins [9]. In [14], a NB classifier was
used in the localization of proteins of five distinct organisms, and the generated
predictors are part of a protein analysis web-service.

This work applies two ML techniques in the recognition of prokaryotic and
eukaryotic protein locations: Decision Trees (DTs) [17] and Support Vector Ma-
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chines (SVMs) [5]. These algorithms follow distinct approaches in the learning
process, which are generally named symbolic and statistical.

In relation to the SVM classifiers, one issue studied in this paper that differ-
entiates it from previous works [6, 9, 11] is how the extension of the SVMs to the
multiclass localization task is performed, since they are originally designed for
the solution of two class problems. While the later studies applied one particular
method in the multiclass SVMs generalization, the present paper compares se-
veral strategies in this extension. Among the tested approaches is one technique
proposed by the authors in [13] and expanded here.

This paper is structured as follows. Section 2 describes the materials and
methods employed in this work. Section 3 presents experimental results. Section
4 discusses the results obtained. Section 5 concludes this paper.

2 Materials and Methods

2.1 Learning Techniques

Several ML algorithms can be applied to induce a classifier from a set of exam-
ples. Given a training set composed of known protein sequences with their corres-
ponding localization, the learning algorithm must induce a classifier that should
be able to predict the class of new samples from the same domain. The learn-
ing techniques used in this paper are Decision Trees [17] and Support Vector
Machines [5].

The Decision Tree (DT) [17] is a symbolic learning technique that organizes
information extracted from data in a structure composed of nodes and ramifica-
tions. The nodes represent either tests applied to data or classes, when the node
is a leaf. The ramifications are possible results of the tests. The classification of
a new sample is performed following the nodes and ramifications until a leaf is
reached.

The DT induction is conceived iteratively until all training examples are
correctly classified. The generated structure is thus subject to overfitting [15], in
which the classifier specializes to the training samples, showing poor performance
on new data. To avoid this effect, a pruning phase is usually applied to the trained
tree. It prunes ramifications that have low expressive power according to some
criterion, like the expected error rate [18]. In this process, whole subtrees are
replaced by leaf nodes. The replacement is made if the expected error rate in
the subtree is larger than in the single leaf.

Support Vector Machines (SVMs) represent a learning technique based on
the Statistical Learning Theory [22]. Given a dataset with n samples (xi, yi),
where each xi ∈ �m (Euclidean space with m dimensions) is a data sample
and yi ∈ {−1,+1} corresponds to xi’s label, this technique seeks an hyperplane
(w · x + b = 0) able of separating data with a maximal margin. To perform this
task, it solves the following optimization problem:

Minimize: ‖w‖2 + C
n∑

i=1

ξi
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Restrictions:
{

ξi ≥ 0
yi (w · xi + b) ≥ 1 − ξi

where ‖ · ‖ denotes the Euclidean norm, C is a constant that imposes a tradeoff
between training error and generalization and the ξi are slack variables. These
variables relax the restrictions imposed to the optimization problem, allowing
some patterns to be within the margins.

When a non-linear separation of the dataset is needed, its data samples are
mapped to a higher-dimensional space. In this space, also named feature space,
the dataset can be separated by a linear SVM with a low training error. This
mapping process is performed with the use of Kernel functions, which compute
dot products between any pair of patterns in the feature space in a simple way.
Thus, the only modification necessary to deal with non-linearity with SVMs is to
substitute any dot product among patterns by a Kernel function. In this work,
the Kernel function used was a Gaussian, illustrated in Equation 1 [3].

K(xi,xj) = exp(−σ‖xi − xj‖2) (1)

It should be noticed that SVMs originally can only deal with binary classifica-
tions. However, several strategies can be employed to extend them to multiclass
problems, as described next.

2.2 Multiclass Support Vector Machines Approaches

This section describes the strategies used in the extension of SVMs to the solution
of the multiclass protein cellular localization problem.

One-against-all. In the one-against-all (1AA) decomposition, given k classes,
k binary predictors are generated, each being responsible to distinguish a class
i from the remaining classes. The final prediction is given by the classifier with
the highest output value [22].

All-against-all. The all-against-all (AAA) decomposition consists of building
k(k − 1)/2 predictors, each differentiating a pair of classes i and j, with i < j.
For combining these classifiers, a majority voting scheme can be applied [12].
Each AAA classifier gives one vote to its preferred class. The final result is then
given by the class with most of the votes.

Directed Acyclic Graphs. The AAA decomposition with majority voting
integration presents the drawback of generating unknown classifications, which
occur when more than one class receives the maximum number of votes. To
overcome this problem, a Decision Directed Acyclic Graph (DDAG) [16] can be
employed in the binary classifiers combination.

A Directed Acyclic Graph (DAG) is a graph with oriented edges and no
cycles. The DDAG approach uses the classifiers generated through AAA decom-
position in each node of a DAG, as illustrated in Figure 1. The prediction of a
new pattern class is obtained following the nodes and ramifications of the DDAG
until the last level is reached, giving the final classification.
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Fig. 1. DDAG for a problem with four classes [16]

Error Correcting Output Codes. In an alternative strategy, Dietterich and
Bariki [7] proposed the use of a distributed output code to represent the k classes
associated with a multiclass problem. For each class, a codeword of length l is as-
signed. Frequently, the size of the codewords has more bits than needed in order
to represent each class uniquely. The additional bits can be used to correct even-
tual classification errors. For this reason, this method is named error-correcting
output coding (ECOC). A new pattern x can be classified by evaluating the pre-
dictions of the l classifiers, which generate a string s of length l. This string is
then compared to the codeword associated to each class. The sample is assigned
to the class whose codeword is closest according to a given distance measure.

In this paper, the decoding function used was extracted from [2]. It considers
the margins of each SVM classifier and was more accurate than the Hamming
distance applied in [7]. Equation 2 presents the computation of this margin-based
measure, where q is a class and mqi represents the ith bit of class q codeword.

dm (s, q) =
l∑

i=1

max {0, 1 − (mqi · si)} (2)

Following the instructions given in [7], the ECOC codes generated in this
work are given by all 2k−1 − 1 possible binary partitions of the classes. In this
scheme, the codeword of the first class is composed only of ones. For each other
class i, where i > 1, it is composed of alternate runs of 2k−i zeros and ones.

Hierarchical SVMs and Minimum Spanning Trees. This work also inves-
tigates the combination of binary SVMs in a hierarchical structure as illustrated
in Figure 2c. Each level of the hierarchy distinguishes two subsets of classes.
Based on the decision from the previous levels, new nodes are visited, until a
leaf node is reached, where the final classification is given. In general, it can be
stated that the hierarchical approaches (that also include the DDAG strategy)
have faster prediction times, since usually a lower number of classifiers need to
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Fig. 2. (a) Graph for a problem with five classes; (b) Minimum Spanning Tree; (c)
Multiclass hierarchical structure obtained

be consulted for each prediction. In the hierarchical structure used, a lower num-
ber of binary classifiers is also induced (k − 1), so the time spent on the SVM
classifiers training can be reduced too.

This type of hierarchical architecture is also used in [4, 20, 23]. These works
differ on the way the binary partitions of classes in each level of the tree are
obtained. The present work uses some concepts from these papers to build a
Minimum Spanning Tree, which is then used to obtain the hierarchies of classes.
This idea was first introduced in [13] and is expanded here.

Given an undirected graph G = (V,E) with |V | vertices, |E| edges and a
cost or weight associated to each edge, a Minimum Spanning Tree (MST) T is a
connected acyclic subgraph that spans all vertices of G with the smallest total
cost of edges [1].

Information collected from the training dataset is used to obtain the weighted
graph, which has k vertices and k(k−1)/2 edges connecting all pairs of vertices.
Figure 2a illustrates an example of a graph for a problem with five classes, while
Figure 2b shows the MST extracted from this graph. Various methods can be
used to assign costs to the edges. In this work, the following approaches are
investigated:

1. Centroid distances : each class is first represented by a centroid μi. The
weight of an arc (i, j) is then given by the Euclidean distance between μi and
μj . Using this criterion, the MST will group in each level of the hierarchy
subsets of one or more classes that are similar to each other according to
their centroid.

2. Inverse of centroid distance: in this case, the weight of an arc (i, j) is given
by 1/dE(μi,μj), where dE is the Euclidean distance. The MST will group
subsets of classes that are more distant according to their centroid.

3. Balanced subsets : inspired by ideas presented in [23], this criterion acts by
grouping classes that have similar data distribution. The weight of an arc
(i, j) is then given by the difference among the number of patterns from
classes i and j.
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4. Inverse of balanced subsets: this criterion weights the connection between
classes i and j as the inverse of the measure employed in the balanced subsets
method. Using this weighting, classes more distant according to their sample
distribution are grouped by the MST algorithm.

5. Scatter Measure: using concepts from [4], the weight of an arc (i, j) in this
method is given by a scattering measure between classes i and j. This mea-
sure is calculated by Equation 3, where s2

i and s2
j are the variances of data

samples from classes i and j, respectively. The MST will group classes con-
sidered less separated according to the scattering measure calculated.

sm (i, j) =

∥∥μi − μj

∥∥2

s2
i + s2

j

(3)

6. Inverse of Scatter Measure: the application of this method, given by 1
sm(i,j) ,

tends to maximize the distance between group centers and minimize the
variance in each group during the hierarchies formation.

7. Confusion matrix : given the concept of confusion classes from [20], a con-
fusion matrix can be employed in the graph weights definition. A confusion
matrix offers an idea of which classes a classifier has more difficulty to distin-
guish. For a dataset with k classes, it has kxk dimension, and each element
mij represents the number of examples from class i that were misclassified
as belonging to class j [15]. To obtain this matrix, the whole k class problem
has to be solved first. In this work, DTs were used in the confusion matrix
generation. The weight of an arc (i, j) is then calculated by Equation 4,
where ni is the number of examples from class i. Applied to these weights,
the MST algorithm will group subsets of classes that present less confusion
with each other.

dCM (i, j) =
mij

ni
+

mji

nj
(4)

8. Inverse of confusion matrix : in this case, the weight of an arc (i, j) is given
by 1/dCM (i, j). The MST will group subsets of classes that present more
confusion with each other.

The inverse criterions 2, 4, 6 and 8 were employed to explore the contrast
of using the dissimilarity between classes in the grouping process against the
similarity. They are introduced in this work, as well as the confusion matrix
weighting.

Given the obtained weighted graph, an adapted version of the Kruskal al-
gorithm [1] was applied in the multiclass tree determination. The Kruskal algo-
rithm maintains in each interation subsets of grouped vertices. Taking advantage
of this characteristic, the proposed algorithm uses these groupings in the hierar-
chies formation process. The generation of the hierarchical structure operates in
a bottom-up iterative way. A pseudocode of this algorithm can be found in [13].
The given algorithm is efficient and allows a totally automatic determination of
a multiclass hierarchical classifier structure from binary predictors.
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2.3 Datasets

The datasets used in the experiments reported in this paper were extracted from
the UCI benchmark database [21]. They were submitted by Horton and Nakai
[10]. The first one is used in the localization of E. coli proteins, a prokaryotic
organism. The second contains samples for the prediction of yeast protein loca-
tions, which is an eukaryotic organism. The features contained in these datasets
are numerical and were calculated from the amino acid sequences of the proteins.
Details about them can be found in [21].

Originally, the E. coli dataset has 8 classes of protein locations. However, two
of them have only two instances and one has 5 instances. These very low numbers
of examples result in problems to the classifiers induction process. Thus, only 5
classes were used. The yeast dataset has one class with only 5 instances, which
was also not considered in this study.

Table 1describes theE. coli dataset, showing its number of instances (�Inst), the
number of attributes (�Attr, all continuous valued), the baseline error (BE), which
is the error rate for a classifier that always predicts the class with most instances,
and the number of examples in each class. In this table, “cp” refers to cytoplasm,
“im” to inner membrane without signal sequence, “pp” to perisplasm, “imU” to
inner membrane with uncleavable signal sequence and “om” to outer membrane.

Table 1. E. coli dataset description

�Inst per class

�Inst �Attr BE cp im pp imU om

327 7 43.7% 143 77 52 35 20

Table 2. Yeast dataset description

�Inst per class

�Inst �Attr BE CYT NUC MIT ME3 ME2 ME1 EXC VAC POX

1481 8 45.5% 463 429 244 163 51 44 37 30 20

Table 2 describes the yeast dataset. “CYT” refers to cytosolic or cytoskeletal,
“NUC” to nuclear, “MIT” to mitochondrial, “ME3” to membrane protein with
no N-terminal signal, “ME2” to membrane protein with uncleaved signal, “ME1”
to membrane protein with cleaved signal, “EXC” to extracellular, “VAC” to
vacuolar and “POX” to peroxisomal.

3 Experiments

In order to obtain estimatives of the accuracy rates of the classifiers generated
in this study, the datasets previously described were divided following the 10-
fold cross-validation methodology [15]. Accordingly, each dataset was divided in
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ten disjoint subsets of approximately equal size. In each train/test round, nine
subsets were used for training and the remaining was left for test. This makes
a total of ten pairs of training and test sets. The accuracy of a classifier on
the total dataset was then given by the average of the accuracies observed in
each test partition. A stratified approach was adopted in this division process,
maintaining the class distribution of the original dataset in each partition.

Some parameters had to be set for the ML techniques. To adjust these pa-
rameters, each of the training datasets was further divided with holdout to gen-
erate tuning datasets, in a proportion of 70% for training and 30% for valida-
tion. For each dataset, the classifiers were then generated on the new training
partition and tested on the validation set for all parameters combination. The
parameter values were chosen as the ones that lead to a maximum accuracy
in the validation set. The final classifier was then generated using the whole
training dataset with the parameters determined and tested on the test set.
To speed up this process, the same parameters were employed in all binary
SVMs induced in each multiclass strategy. It should be noticed that, through
out this process, different parameters can be chosen for distinct partitions of the
data.

For the DTs, the parameter controlled was the pruning confidence. The values
tested were of 0.25, 0.5 and 0.75. For SVMs, different combinations of the C
and Kernel σ parameters were tested, being: C = [100, 101, 102, 103] and σ =
[10−3, 10−2, 10−1, 100]. This gives a total of 16 combinations of parameters for
each dataset. The DTs induction was performed with the C4.5 algorithm [18],
while the SVMs were generated using the LibSVM library [3].

For SVMs it is also necessary to normalize the datasets, preventing attributes
in higher numerical ranges from dominating those in lower levels. All training
datasets attributes were then normalized to null mean and unit variance. Their
corresponding test and validation sets were also pre-processed according to the
normalization factors extracted from the training data.

The DDAG results depend on the sequence of nodes chosen to compose the
graph. Thus, for each data partition in E. coli, 30 random DDAG structures
were generated and the best was chosen based on its validation accuracy. The
same procedure was applied in the yeast dataset, with 60 DDAGs.

Table 3 shows the mean and standard deviation of accuracies (Total col-
umn) obtained by each technique in the cross-validation partitions for the E.
coli dataset, as well as the performance in each class. Standard deviation values
of the rates are indicated in brackets. The numbers 1 to 8 indicate the MST
based techniques. The rows 1AA to 8 refers to SVMs multiclass techniques. The
best rates are highlighted in boldface and the worst in italic. Table 4 presents
the accuracies rates for the yeast dataset.

As pointed in Section 2.2, the AAA strategy with majority voting, denoted
in Tables 3 and 4 by AAA, presents the occurrence of unknown classifications.
The total rates of unknown samples in the E. coli and yeast dataset were of 0.6
(std 1.3) and 0.7 (std 0.6), respectively.
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Table 3. Results on E. coli dataset

Tec cp im pp imU om Total

1AA 97.9 81.8 86.7 65.0 85.0 88.1 (4.9)

AAA 97.9 79.1 82.7 59.2 85.0 86.2 (3.9)

DDAG 97.9 81.8 84.7 59.2 80.0 86.9 (3.2)

ECOC 97.9 84.3 86.7 61.7 85.0 88.4 (3.7)

1 97.9 77.9 88.7 59.2 80.0 86.5 (3.9)

2 97.9 76.4 88.7 65.0 85.0 87.2 (4.2)

3 97.2 83.2 86.7 61.7 85.0 87.8 (3.8)

4 97.9 83.2 90.7 59.2 80.0 88.1 (4.8)

5 95.8 79.1 85.0 62.5 85.0 85.9 (4.1)

6 97.1 81.6 84.7 65.0 80.0 87.1 (3.5)

7 97.2 79.1 86.7 62.5 85.0 86.9 (4.3)

8 97.1 76.4 82.7 59.2 80.0 85.0 (3.6)

DT 95.8 92.3 78.7 46.7 70.0 85.6 (5.7)

Table 4. Results on yeast dataset

Tec CYT NUC MIT ME3 ME2 ME1 EXC VAC POX Total

1AA 67.7 50.8 57.7 84.8 33.3 81.0 50.0 3.3 45.0 60.1 (1.8)

AAA 72.2 48.2 55.3 78.1 41.3 71.5 61.7 0.0 50.0 59.9 (2.6)

DDAG 70.2 49.9 54.5 78.6 41.3 71.5 61.7 3.3 50.0 59.8 (2.6)

ECOC 69.8 50.1 57.7 81.1 39.3 73.5 61.7 6.7 45.0 60.5 (2.8)

1 71.3 51.3 48.3 75.6 33.7 69.5 47.5 0.0 45.0 58.3 (3.1)

2 56.0 59.4 52.0 78.7 41.3 73.5 61.7 0.0 45.0 57.6 (3.3)

3 70.0 50.4 50.4 78.7 43.3 75.5 52.5 6.7 45.0 59.2 (3.2)

4 74.7 49.4 45.8 71.9 26.0 71.5 65.0 3.3 45.0 58.3 (2.6)

5 71.7 52.0 51.1 71.3 39.0 51.0 40.0 0.0 50.0 58.3 (2.7)

6 69.6 48.0 45.8 83.0 12.0 73.5 65.0 0.0 45.0 57.1 (3.4)

7 61.2 56.4 50.7 79.3 25.0 80.0 52.5 3.3 50.0 57.8 (3.6)

8 71.3 51.3 50.3 75.0 33.7 69.5 55.0 0.0 45.0 58.8 (2.5)

DT 57.5 50.1 52.4 83.6 41.0 74.5 60.0 3.3 30.0 55.8 (5.1)

Results concerning training and test times were also collected, but are not
presented here due to the lack of space. The DT model was faster in both steps.
Among the SVMs strategies, the AAA technique was usually faster on training.
Since in this technique each binary classifier involves patterns from only two
classes, its induction was faster. Follows the hierarchical strategies, 1AA and
ECOC, in this sequence. ECOC showed in general high training times compared
to the other techniques (10 times higher in average for the E. coli dataset and
200 times higher for the yeast data). In the test phase, all techniques in general
showed fast times, although the hierarchical strategies were faster. In the yeast
dataset, ECOC again showed high test times compared to the other techniques
(60 times higher in average).
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4 Discussion

It is interesting to notice that, for both E. coli and yeast datasets, the ECOC
strategy presented higher total accuracies. The next best results in the E. coli
dataset were obtained by the hierarchical method 4 and the 1AA decomposition.
In the yeast data, the next best strategies were 1AA and AAA. The total accu-
racies of the pointed strategies were very similar. In the classes, however, some
differences can be detected. Each technique tends to present the highest accu-
racy in one or more classes. Except for the AAA strategy in VAC class (yeast),
none of them presented the lowest accuracies on the classes. Their performance
was, thus, generally good in all classes.

Comparing the results of all tested techniques in terms of total accuracy with
the McNemar test and Bonferroni adjustment [19], a difference with 95% of con-
fidence was found in the following cases: in E. coli dataset, between techniques
ECOC and 8; in yeast dataset, between 1AA and DT, 1AA and 6, AAA and DT,
AAA and 6, ECOC and DT, ECOC and 2, ECOC and 6, DDAG and DT and
DDAG and 6. While in the first dataset the hierarchical method 8 showed worst
results in comparison to the most accurate technique, in the second dataset the
DT and the hierarchical method 6 presented the worst results in relation to the
best accuracy techniques. Although the DT technique generally did not present
the lowest accuracies for all classes of yeast data, its overall results were worst.

Higher standard deviation rates were vertified for the DT technique in both
datasets. This indicates a larger variation among the results in each fold. It is also
important to emphasize that all the results presented were above the baseline
error of the datasets, indicating that the predictors were able to generalize.

In relation to the hierarchical strategies 1 to 8, 4was better in theE. coli dataset,
presenting the second highest total accuracy among all tested techniques, and 3
was better in the yeast dataset. Both represent the balanced subsets criterion, the
first one being the inverse variation. In contrast, techniques 8 in E. coli and 6 in
yeast showed low performances compared to the best accuracy ones, as discussed
previously. In the classes, some strategies tend to favour one or more classes, but
in general the results were similar to those obtained by other techniques.

The behavior of inverse (2, 4, 6 and 8) against “standard” (1, 3, 5 and 7)
criterions in the hierarchical techniques was also observed. In the E. coli dataset,
except for the matrix confusion criterion, the inverse weightings were better than
their standard counterpart. For the yeast dataset, the opposite was verified. The
matrix confusion inverse criterion was better than the standard one and the
centroid, balanced subsets and scatter standard weightings were better than
their inverse. Thus, while in the E. coli dataset a dissimilarity between protein
classes was in general better in generating the hierarchies, in the yeast dataset
the similarity usually showed better effect.

An interesting result is the very good accuracy of DTs in the “im” class of E.
coli dataset when compared to the other techniques. It suggests that the DTs
favoured this class, since in the other classes their results were worse.

In the yeast dataset, all techniques showed low accuracies for the “VAC”
class. This aspect was also reported in [10], although their results are not directly
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comparable to the ones in this paper, since the dataset was modified and the
cross-validation partitions are different.

As a general conclusion, the SVMs achieved better results than DTs in the
given application, although a statistical significance was found only in the yeast
dataset. Among the SVMs multiclass strategies, apart from some exceptions,
the results were similar. Other criterions can then be explored to choose a par-
ticular technique, like training and prediction times or the size of the multiclass
predictors. A smaller number of binary classifiers leads to a simpler multiclass
classifier. The hierarchies 1 to 8 present the lowest number of binary classifiers
(k−1), followed by the 1AA decomposition (k), AAA decomposition (k(k−1)/2),
which includes DDAG, and the ECOC (2k−1 − 1).

From the Bioinformatics view, the results indicate that the data attributes
may be not the most adequate for this application. Thus, the use of new data,
with additional features and known proteins, could improve the results observed.

5 Conclusion

This work investigated the use of two ML techniques in the multiclass problem of
protein cellular localization, DTs and SVMs. As this is a multiclass problem and
SVMs originally perform binary classifications, this work also investigated several
techniques to extend them to multiclass applications, including one proposed
by the authors, which was expanded in this paper. This study is one of the
main contributions of this paper, since previous works with SVMs evaluated the
application of only one multiclass strategy.

As a future work, the distinct multiclass SVM strategies tested can be com-
bined. As some complementarity can be observed among the results of these
techniques in the classes, a combination can improve the overall results obtained.
One issue not investigated in this paper is whether the features used to represent
the proteins harm the predictions obtained in some classes. This would be an
interesting future work too, since recent studies show that the combination of
multiple types of information about the proteins can help the classifier in the
localization task [9]. It would be also profitable to observe which patterns each
technique has more difficulty to classify.
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Abstract. One-class classification techniques are able to, based only
on examples of a normal profile, induce a classifier that is capable of
identifying novel classes or profile changes. However, the performance
of different novelty detection approaches may depend on the domain
considered. This paper applies combined one-class classifiers to detect
novelty in gene expression data. Results indicate that the robustness of
the classification is increased with this combined approach.

1 Introduction

Supervised learning algorithms learn from labeled examples in a training set
and later, on a test phase, attempt to classify new unseen examples based on
the knowledge acquired in the training phase. In a traditional approach, the
absence of good representative examples of a certain class in the training set leads
to a poor performance of the classifier on that particular class. In an extreme
situation, if a class does not have any examples at all, a traditional classifier will
assign objects of that class to one of the known classes, even though it might
not be an appropriate choice.
Therefore, the ability to detect a new class or sub-class is an important as-

pect for a machine learning system. Slight modifications in the data distribution
might indicate, for instance, the appearance of a new class, or a profile modifi-
cation in a class that has already been modeled. The capability to identify these
changes is known as Novelty Detection (ND) [9], Outlier Detection or One-Class
Classification [11] [12].
The term One-Class refers to the key characteristic of ND techniques, which

is the fact that the training is carried out based only on examples from a single
class that represents the normal profile. In other words, the algorithm learns to
identify a novelty profile without having seen any examples of such a class. The
power of novelty detection lies exactly on this aspect: in the training phase, no
examples of any novel profile are presented. As a consequence, the performance
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of one-class classifiers cannot be directly compared to that of two-class classifiers,
since the latter uses examples of both classes on the training phase.
Different approaches to ND have been proposed [9] and applied to a variety

of tasks. In this paper, some of these approaches are combined to produce a
single decision, as explained in Section 2. Section 3 presents and analyzes ex-
periments involving gene expression data. Section 4 reviews the most important
conclusions.

2 A Combined Approach to Novelty Detection

The problem of ND consists in the discovery of new profiles that were not present
in the training samples. Thus, the classifier is induced based only on positive
examples of a target class. All other examples are removed from the training set
as these examples are considered outliers.
Of the various approaches to ND described in the literature, five of them have

been chosen for this work: Parzen Window [10], K-NN (K-Nearest Neighbor) [6],
K-Means [3], SOM (Self-Organizing Map) [8] and PCA (Principal Components
Analysis) [3]. Each of these one-class classifiers uses one of three different strate-
gies, according to the classification proposed by Tax [12]. Other classifications
of ND techniques are available in the literature [9].
Parzen Window is a density estimation technique that, based on a data distri-

bution scheme, defines a threshold to distinguish between normal and novel pro-
files. K-NN constructs hypersphere boundaries to involve data of the target class,
therefore considering outliers any elements that fall outside these boundaries. K-
Means, SOM and PCA are classified as reconstruction techniques. K-Means is
a clustering algorithm that builds a boundary around prototype objects. SOM
is based on a Neural Network architecture called Self-Organizing Map, in which
prototypes are constrained to a lower-dimensional space in order to be later vi-
sualized. PCA performs a transformation of the original input attributes to a
smaller number of uncorrelated, thus more meaningful, attributes.
Each of these techniques alone may perform better in a specific domain, and

may also depend on a good parameter setting. Therefore, from a user’s point of
view, it might be hard to discover which approach is more likely to work best
when experimenting with a variety of datasets.
The combined approach proposed in this work aims to increase classification

robustness by taking into account the opinion of a set of one-class classifiers, instead
of relying on a single approach, that might favor one class over the other.
Initially, all classifiers in the set are trained with a set containing only ex-

amples of the target class. For the same dataset, each class is considered the
target class at one time, and examples of all other classes are labeled as outliers
and used for testing purposes only. In the test phase, when target and outlier
examples are present, the opinion of each classifier is taken and recorded. The
final decision for each example (normal or novelty) is taken by the set of the
classifiers. If the majority considers that the example belongs to the target class,
then it is labeled normal, otherwise it is marked novelty.
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Many statistic measures are taken throughout this process to ensure a good
analysis of the results. A desired situation is one where the classifier is able to
detect new profiles with high accuracy, but continues to classify normal exam-
ples with a good level of confidence. In other words, the aim is to minimize the
false negative and false positive rates. However, this optimum point is not eas-
ily achieved, once some classifiers might be more restrictive than others in the
definition of the normal profile.
Therefore, the major motivation for the combined approach is the belief that,

when the opinions of more than one classifier are considered, the undesirable in-
dividual tendencies toward a specific class will be less important in the whole
picture, since the final decision is taken by the majority. By doing so, it is ex-
pected that the optimum point described previously will be more easily achieved.
Previously, initial good results, not reported here, have been obtained with

various standard datasets from the UCI Machine Learning Repository [4]. These
results inspired a series of experiments carried out with gene expression data,
presented in the following section.

3 Experiments

The main goal of the experiments described in this section is to compare the
individual ND performance of each one-class classifier against the performance
of the combined approach described previously. All classifiers used are available
in DDtools, the Data Description Toolbox for Matlab [13], and this technique
has been previously tested on standard datasets from the UCI Machine Learning
Repository [4].
The experiments presented in this section have been conducted with the

following gene expression datasets:

– breast - Classification of breast tumor samples based on the positive or neg-
ative status of the estrogen receptor (ER) [14]. The database is composed of
44 examples with 7129 attributes each.

– colon - Distinction between tumor and normal colon tissue samples based on
gene expression [2]. The original database is composed of 62 examples and
2000 attributes.

– leukemia - Identification of two types of Leukemia (ALL and AML) from
values of gene expression [7]. The original database contains 72 examples
and 7129 attributes.

– lymphoma - Distinction between germinal center and activated diffuse large
B-cell lymphoma based on gene expression profiling [1]. The original database
is composed of 47 examples and 4026 attributes.

Throughout the analysis, classes are referred with numbers instead of labels,
according to the association shown in Table 1.
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Table 1. Classes numbers

Base Class 1 Class 2

breast ER- ER+

colon Tumor Normal

leukemia ALL AML

lymphoma Germinal Center Activated

3.1 Methodology

Stratified 10-fold cross-validation has been used in all experiments to ensure that
results represent the average behavior, not a specially successful or unsuccessful
case. The same folds were used in all experiments to allow replicability.
According to the number of incorrect predictions, two error rates were cal-

culated: the normal error rate, that considers examples of the normal profile
incorrectly classified as outliers, and the novelty error rate, which indicates the
percentage of outliers that have been incorrectly considered members of the
normal profile. The results obtained are presented and discussed as follows.

3.2 Analysis of the Results

Initially, experiments were performed with 2 original datasets and a set of 5
classifiers: Parzen Window, K-NN, K-Means, SOM and PCA. Table 2 presents
these results. In each cell, the mean error rate of the 10 folds tested is followed
by the standard deviation. These statistics are available for each classifier alone,
and for the combined approach. As previously explained, for all datasets, each
class has been considered the normal profile at a time. For example, when class
1 is the normal profile, examples of class 2 are not present in the training phase.
In fact, class 2 represents the novelty that the classifier is supposed to identify
in the testing phase. Then, the same procedure is carried out considering class
2 as the normal profile.
The first aspect to notice in the results is the poor performance of all clas-

sifiers. In general, they consider almost all test examples as being either normal
(very high novelty error rate) or novelty (very high normal error rate). For in-
stance, when the Parzen Window technique obtains a novelty error rate equal
to 1.00 and a normal error of 0.00, it means that it is classifying all test samples
as normal, which is completely inadequate. The opposite is seen with the SOM
technique in the lymphoma dataset, with normal error rates as high as 0.87. Nei-
ther one nor the other behavior is useful, and each shows that the classifier has
not been able to estimate the distribution of the data. This situation, i.e. where
all data are either considered normal or novelty, can be caused, among other
things, by a classifier that is either inadequate for that particular data domain
or badly configured. However, in this specific situation, a very high number of
attributes (2000 in the colon dataset and 4026 in lymphoma) could also be the
complicating factor.
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Table 2. Results with 2 original datasets and a set of 5 classifiers. In each cell, the
mean error rate is followed by the standard deviation

Base: colon Normal Error Novelty Error
Normal Class: 1 parzen 0.00 0.00 1.00 0.00

knn 0.10 0.17 0.95 0.16
kmeans 0.15 0.17 1.00 0.00
som 0.15 0.17 1.00 0.00
pca 0.18 0.26 0.95 0.16

Combined 0.13 0.18 1.00 0.00
Normal Class: 2 parzen 0.00 0.00 1.00 0.00

knn 0.10 0.21 0.63 0.27
kmeans 0.13 0.22 0.65 0.27
som 0.13 0.22 0.63 0.27
pca 0.20 0.26 0.50 0.26

Combined 0.10 0.21 0.63 0.27
Base: lymphoma Normal Error Novelty Error
Normal Class: 1 parzen 0.00 0.00 1.00 0.00

knn 0.10 0.21 0.67 0.29
kmeans 0.18 0.24 0.75 0.27
som 0.87 0.22 0.00 0.00
pca 0.27 0.24 0.50 0.34

Combined 0.13 0.22 0.67 0.29
Normal Class: 2 parzen 0.00 0.00 1.00 0.00

knn 0.08 0.18 0.80 0.26
kmeans 0.17 0.22 0.80 0.26
som 0.85 0.24 0.03 0.11
pca 0.25 0.36 0.50 0.42

Combined 0.17 0.22 0.80 0.26

To investigate that, a preprocessing phase has been added. In that phase, the
number of attributes has been reduced to a calculated optimum amount, different
for each dataset, based on the same technique used in [7]. This procedure aimed
to minimize the error rates of ND. As a positive side effect, it also largely reduced
the computational cost.
Table 3 shows the results after attribute reduction, with the same set of clas-

sifiers seen previously in Table 2. The colon dataset has been reduced to colon16,
with 16 attributes, and the lymphoma dataset has been reduced to lymphoma32,
with 32 attributes. With a few exceptions, the majority of the error rates de-
creased, which confirms that the high dimensionality of the original dataset did
not allow the induction of reliable ND classifiers. This table also includes results
obtained from 2 other reduced datasets, breast128 and leukemia64, with 128 and
64 input attributes respectively.
In this second round of experiments, K-NN and K-Means achieved low error

rates, except for the novelty class of colon16, which is known to be a difficult
dataset. The PCA based classifier obtained good results on all datasets, even
for the colon16 dataset, when the normal examples belong to class number
1. Unfortunately, in that case, most of the classifiers were not as successful.
Parzen Window was the worse of all classifiers, displaying the same behavior
seen previously in Table 2. However, this negative influence did not have a strong
impact on the overall performance of the combined approach.
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Table 3. Results with the 4 reduced datasets and 5 classifiers

Base: breast128 Normal Error Novelty Error
Normal Class: 1 parzen 0.00 0.00 1.00 0.00

knn 0.15 0.34 0.03 0.11
kmeans 0.18 0.34 0.00 0.00
som 0.18 0.34 0.00 0.00
pca 0.18 0.34 0.00 0.00

Combined 0.15 0.34 0.00 0.00
Normal Class: 2 parzen 0.00 0.00 1.00 0.00

knn 0.15 0.24 0.13 0.22
kmeans 0.15 0.24 0.00 0.00
som 0.15 0.24 0.00 0.00
pca 0.18 0.24 0.00 0.00

Combined 0.15 0.24 0.00 0.00
Base: colon16 Normal Error Novelty Error

Normal Class: 1 parzen 1.00 0.00 0.00 0.00
knn 0.10 0.17 0.50 0.34

kmeans 0.13 0.13 0.53 0.34
som 0.15 0.13 0.48 0.30
pca 0.18 0.26 0.27 0.24

Combined 0.18 0.17 0.40 0.33
Normal Class: 2 parzen 1.00 0.00 0.00 0.00

knn 0.10 0.21 0.85 0.17
kmeans 0.15 0.24 0.68 0.24
som 0.15 0.24 0.63 0.27
pca 0.18 0.24 0.63 0.18

Combined 0.15 0.24 0.65 0.21
Base: leukemia64 Normal Error Novelty Error
Normal Class: 1 parzen 1.00 0.00 0.00 0.00

knn 0.12 0.17 0.07 0.14
kmeans 0.09 0.11 0.03 0.11
som 0.11 0.11 0.03 0.11
pca 0.14 0.13 0.03 0.11

Combined 0.13 0.11 0.03 0.11
Normal Class: 2 parzen 1.00 0.00 0.00 0.00

knn 0.07 0.21 0.47 0.24
kmeans 0.08 0.18 0.14 0.19
som 0.13 0.22 0.17 0.22
pca 0.28 0.35 0.09 0.15

Combined 0.17 0.22 0.14 0.19
Base: lymphoma32 Normal Error Novelty Error
Normal Class: 1 parzen 1.00 0.00 0.00 0.00

knn 0.08 0.18 0.12 0.19
kmeans 0.13 0.32 0.05 0.16
som 1.00 0.00 0.00 0.00
pca 0.22 0.24 0.28 0.26

Combined 0.30 0.32 0.05 0.16
Normal Class: 2 parzen 1.00 0.00 0.00 0.00

knn 0.15 0.34 0.23 0.34
kmeans 0.15 0.24 0.00 0.00
som 0.97 0.11 0.00 0.00
pca 0.18 0.24 0.00 0.00

Combined 0.23 0.34 0.00 0.00

The SOM technique only showed difficulty in the lymphoma32 dataset. How-
ever, even with two classifiers providing totally misleading results, the effect on
the performance of the combined approach in the lymphoma32 dataset was lit-
tle. This shows superior robustness of the combined approach against the choice
of a single classification strategy.
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Table 4. Results with a set of 3 classifiers, one from each strategy

Base: breast128 Normal Error Novelty Error
Normal Class: 1 parzen 0.00 0.00 1.00 0.00

knn 0.15 0.34 0.03 0.11
kmeans 0.18 0.34 0.00 0.00

Combined 0.15 0.34 0.03 0.11
Normal Class: 2 parzen 0.00 0.00 1.00 0.00

knn 0.15 0.24 0.13 0.22
kmeans 0.15 0.24 0.00 0.00

Combined 0.15 0.24 0.13 0.22
Base: colon16 Normal Error Novelty Error

Normal Class: 1 parzen 1.00 0.00 0.00 0.00
knn 0.10 0.17 0.50 0.34

kmeans 0.13 0.13 0.53 0.34
Combined 0.20 0.20 0.40 0.33

Normal Class: 2 parzen 1.00 0.00 0.00 0.00
knn 0.10 0.21 0.85 0.17

kmeans 0.15 0.24 0.68 0.24
Combined 0.15 0.24 0.68 0.24

Base: leukemia64 Normal Error Novelty Error
Normal Class: 1 parzen 1.00 0.00 0.00 0.00

knn 0.12 0.17 0.07 0.14
kmeans 0.09 0.11 0.03 0.11

Combined 0.19 0.15 0.03 0.11
Normal Class: 2 parzen 1.00 0.00 0.00 0.00

knn 0.07 0.21 0.47 0.24
kmeans 0.08 0.18 0.14 0.19

Combined 0.15 0.25 0.14 0.19
Base: lymphoma32 Normal Error Novelty Error
Normal Class: 1 parzen 1.00 0.00 0.00 0.00

knn 0.08 0.18 0.12 0.19
kmeans 0.13 0.32 0.05 0.16

Combined 0.22 0.33 0.05 0.16
Normal Class: 2 parzen 1.00 0.00 0.00 0.00

knn 0.15 0.34 0.23 0.34
kmeans 0.15 0.24 0.00 0.00

Combined 0.20 0.35 0.00 0.00

To assess the impact of the number of classifiers in the set on the final results,
experiments were also performed with a set of 3 classifiers, one representing each
of the ND strategies (density estimation, boundary and reconstruction).
The results, displayed in Table 4, show a small increase in the error rates

in the breast128 and colon16 datasets. On the other hand, for the lymphoma32
dataset there was a small reduction in the error rates. For the leukemia64 dataset
the results were similar. Considering that the number of classifiers was reduced
from 5 to 3, and that the relative influence of the Parzen Window on the overall
result was increased, the performance of the combined approach has not been
seriously affected.
A different set, in which Parzen Window has been replaced by PCA, has also

been tested and the results are presented inTable 5. Inmost cases, the performance
has been improved. However, although ParzenWindow, which apparently has not
shown any contribution to the combined result, has been replaced in the combina-
tion by PCA, a technique which has shown superior performance, the impact on
the combined result was not as high as could be expected. In fact, this stability in-
dicates the potential of the combined approach. With the combination, extremes
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Table 5. Results with another set of 3 classifiers

Base: breast128 Normal Error Novelty Error
Normal Class: 1 knn 0.15 0.34 0.03 0.11

kmeans 0.18 0.34 0.00 0.00
pca 0.18 0.34 0.00 0.00

Combined 0.15 0.34 0.00 0.00
Normal Class: 2 knn 0.15 0.24 0.13 0.22

kmeans 0.15 0.24 0.00 0.00
pca 0.18 0.24 0.00 0.00

Combined 0.15 0.24 0.00 0.00
Base: colon16 Normal Error Novelty Error

Normal Class: 1 knn 0.10 0.17 0.50 0.34
kmeans 0.13 0.13 0.53 0.34
pca 0.18 0.26 0.27 0.24

Combined 0.15 0.17 0.40 0.33
Normal Class: 2 knn 0.10 0.21 0.85 0.17

kmeans 0.15 0.24 0.68 0.24
pca 0.18 0.24 0.63 0.18

Combined 0.10 0.21 0.73 0.18
Base: leukemia64 Normal Error Novelty Error
Normal Class: 1 knn 0.12 0.17 0.07 0.14

kmeans 0.09 0.11 0.03 0.11
pca 0.14 0.13 0.03 0.11

Combined 0.06 0.10 0.03 0.11
Normal Class: 2 knn 0.07 0.21 0.47 0.24

kmeans 0.08 0.18 0.14 0.19
pca 0.28 0.35 0.09 0.15

Combined 0.07 0.14 0.14 0.19
Base: lymphoma32 Normal Error Novelty Error
Normal Class: 1 knn 0.08 0.18 0.12 0.19

kmeans 0.13 0.32 0.05 0.16
pca 0.22 0.24 0.28 0.26

Combined 0.13 0.22 0.12 0.19
Normal Class: 2 knn 0.15 0.34 0.23 0.34

kmeans 0.15 0.24 0.00 0.00
pca 0.18 0.24 0.00 0.00

Combined 0.15 0.24 0.00 0.00

can be avoided and, consequently, the robustness of the system as a whole can be
improved. Although the best possible results may not be achieved, unstable situ-
ations in which a classification technique favors one specific profile over the other
can be avoided, i.e. normal over novelty or novelty over normal. As mentioned pre-
viously, this is an important issue when dealing with one-class classification, since
the challenge is to identify new profiles with a high level of confidence while main-
taining a good performance on the normal profile.
Finally, to provide a better visualization of the decisions taken throughout

the process, individual errors made by each classifier on each example of the test
set have been recorded for each fold and later reassembled. Figure 1 displays
those errors in a graphical format, where white squares represent examples cor-
rectly classified and black squares mark errors. Examples are placed along the
horizontal axis and classifiers vertically.
It is easily noticed that the larger number of errors is concentrated in the

dataset colon16 when the second class represents the normal profile. In this
situation, all classifiers except Parzen Window make similar mistakes, which can
also be confirmed by the error rates displayed in Table 3.
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Fig. 1. Individual errors (black squares) of each classifier (vertical axis) on each exam-
ple (horizontal axis)

Through these graphs it is also clearer to see that a classification strategy
that shows good results in one dataset might not be successful in another, even
considering datasets of the same domain (gene expression). For example, the
horizontal lines which represent the performance of the SOM technique display
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a very different amount of classification mistakes, depending on the dataset and
on the normal class considered. This picture reinforces that the combination of
classifiers leads to more robust results, since the decision is always taken by the
majority of them.
An example of a desired situation is shown in the first plot of leukemia64

and in both plots of breast128, where low error rates have been achieved. The
vertical alignment of the errors indicate that all classifiers are having similar
difficulties. These are problematic examples, which can be further investigated
with a different technique, or isolated to be analyzed by a specialist.
However, if a larger number of scattered errors is present, the final perfor-

mance of the combined approach might still be good. This is due to the fact
that each classifier is filling-in other classifiers faults, which exemplifies the im-
portance to combine classifiers built with various techniques, since the diversity
of classifiers in the set may determine the robustness of the system as a whole.

4 Conclusion

One-class classification techniques are able to, based only on examples of a nor-
mal profile, induce a classifier that is capable of detecting novelty.
This paper has shown the use of a simple strategy which combines the opin-

ions of a set of one-class classifiers for the task of ND in gene expression data.
The results obtained suggest that the use of such a combined approach im-
proves the robustness of the overall decision. By considering the opinion of the
majority of a set of classifiers instead of just one, this technique avoids indi-
vidual tendencies that certain approaches might present in some datasets or
domains.
The improvement achieved so far inspire further investigations. As analyzed,

the diversity of classifiers in the decision set seems to be an important aspect
in the final performance of the combined approach. Another possible way of im-
proving the results might be the addition of a selection phase, after which only
the ND approaches that better fit the problem at hand would be considered. An
assessment of the impact of both technical and biological noise on the differen-
tial performance of the classifiers has been suggested, and also inspires further
experimentation.
Still, other combinations of one-class classifiers are yet to be explored in

bioinformatics, following previous initiatives [12], as the authors continue to
explore ND techniques for the identification of novel classes and profile changes.
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Campus Universitario, 59072-970 - Natal, RN, Brazil

marcilio@dimap.ufrn.br

Abstract. This work investigates the behavior of two different cluster-
ing algorithms, with two proximity measures, in terms of the contents
of the partitions obtained with them. An analysis of how the classes are
separated by these algorithms, as different numbers of clusters are gen-
erated, is also presented. A discussion on the use of these information
in the identification of special cases for further analysis by biologists is
presented.

1 Introduction

Nowadays, gene expression data consists of an important source of information
for the understanding of biological processes and diseases mechanisms. Cluster-
ing methods are one of the most important tools to support biologists in the
analysis of gene expression data. As pointed out by [1], this type of analysis
is of increasing interest in the field of functional genomics and gene expression
data analysis. One of its motivation is the need for molecular-based refinement
of broadly defined biological classes, with implications in cancer diagnosis, prog-
nosis and treatment [1].

There is a huge diversity of clustering techniques described in the litera-
ture. Some of them have been employed to gene expression data. Examples
are k-means [2], Self-Organizing Maps (SOM) [2], Self-Organizing Tree Algo-
rithm (SOTA) [3] and the hierarchical clustering algorithms [2]. In this paper,
k-means and SOTA, with both the Euclidean distance and Pearson correlation,
are employed to generate a set of partitions (clusterings). Based on the parti-
tions generated, two types of analysis are developed. First, a high level evaluation
and comparison of the quality of the partitions are accomplished. For such, two
different validation approaches are used: external validation employing the cor-
rected Rand index [4] and the analysis of the variability of the algorithms by
bootstrapping.
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The second type of analysis, which is the main focus of this work, is a finer
study of the partitions obtained. More precisely, the best partitions according
to the evaluation process from the first step have their contents analyzed in
detail. A further analysis of the contents of each cluster in the partitions can
bring important insights to the biologists. For example, this analysis can show
patterns (samples or genes) that have a different behavior from that expected.
These patterns could represent interesting cases to have a detailed investigation
in the laboratory.

Furthermore, the analysis of partitions with different numbers of clusters can
help in the identification of new subgroups in the data, when main groups are
already known, as in the case of cancer classes. This can lead to the discovery of
new classes, or subclasses, of cancer. The discovery of new classes of cancer is an
issue that has received strong attention recently. Other possible contributions to
biologists are discussed in Sect. 5.

2 Experiments

The experiments were carried out by applying two clustering algorithms, k-means
and SOTA, to the dataset St. Jude leukemia [5, 1]. This dataset has a multi-class
distinction (a phenotype) that will be considered as the gold standard partition,
referred also as the true partition of the dataset. Following the conversion used
in [1], the groups stated by the gold standard partition are referred as classes,
while the notation cluster is reserved for the groups returned by the clustering
algorithms.

For the detailed analysis described in Sect. 4, the class label associated to
each pattern should be known, otherwise the coloring scheme cannot be applied.

This dataset consists of 248 diagnostic bone marrow samples from pediatric
acute leukemia patients corresponding to six prognostically important leukemia
subtypes. Each sample is composed of the expression values of 985 genes. Table 1
shows the classes and the number of patterns (samples) of each class present in
the dataset. For short, the notation in parenthesis will be employed in the text,
when it is the case. In the experiments, the samples were the patterns to be
clustered and the genes were their attributes.

Table 1. Classes present in the dataset

Class Number of patterns

BCR-ABL (BCR) 15
E2A-PBX1 (E2A) 27
‘hyperdiploid>50’ (hyperdip) 64
MLL 20
T-lineage ALL (T-ALL) 43
TEL-AML1 (TEL) 79
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The experiments consisted of the generation of partitions having from 2 to
15 clusters, employing k-means and SOTA algorithms with the Euclidean and
Pearson proximity measures. This range was chosen because the true number of
clusters is six and having as a reference the work in [1], which also investigated
such a range for this dataset.

K-means is one of the most traditional clustering algorithms [4]. It is a par-
titional algorithm that partition the dataset in a predefined number of clusters.
In this work, k-means has been chosen as a reference, since it is widely employed
in a number of applications, including gene expression analysis. In contrast to
partitional features of the k-means, SOTA is a hierarchical divisive algorithm,
based in the neural networks Self Organizing Maps (SOM) and Growing Cell
Structures (GCS). It is a neural network that grows adopting the topology of
a binary tree. Some of the main characteristics of this algorithm, desirable for
gene expression data analysis, are its ability in dealing with high-dimensional
data, scalability, robustness against noise and outliers and independence from
the order of data presentation.

The experiments carried out with SOTA employed default values for the
parameters, except for the maximum number of cycles (max). This param-
eter determines the number of clusters to be generated (max + 1 clusters).
The value of max varied from 1 to 14 (2 to 15 clusters). Although SOTA
can automatically determine the best number of clusters, the authors forced
the algorithm to generate the partitions with the specific numbers of clusters
that were being studied. The other parameters of SOTA are the variability
and resource thresholds, that define the convergence of the network (default
value of 0 for both parameters), the relative error threshold, that defines the
convergence of a cycle (default value of 0.0001) and the actualization factors
for the winning, mother and sister nodes (default values of 0). Other values
for these parameters were not investigated, since the interest were not in the
best adjustment of SOTA, but in the comparison among different numbers of
clusters in different algorithms and similarity measures. For k-means, the only
parameter of the algorithm is the number of clusters, that was varied from 2
to 15.

The algorithm k-means generate different partitions for the same dataset
and number of clusters, depending on the random initialization of the centroids.
SOTA generates the same partition for a specified number of clusters and just
breaks the clusters as a higher number of clusters is specified.

The performance of a clustering method for gene expression data analysis
depends on the employment of an appropriate proximity function, according
to the properties the researcher wants to focus. As the interest of the authors
are in looking for all potentially interesting groups in a dataset, two different
proximity measures commonly employed to gene expression data clustering were
employed: Euclidean distance and Pearson coefficient [2]. The Euclidean distance
measures the absolute distance between two points in an n-dimensional space.
According to this metric, similar patterns exhibits the same magnitude and
direction. The Pearson correlation coefficient (linear correlation) measures the



68 K. Faceli, A.C.P.L.F. de Carvalho, and M.C.P. de Souto

angular separation of the patterns around their mean. This metric is usually
described as a measure of the shape, as it is insensitive to differences in the
magnitude of the attributes.

In the following sections, the experiments will be represented by three com-
ponents. The first one is a letter representing the algorithm: K for k-means and
S for SOTA. The second component is also a letter representing the proximity
measure employed: E for Euclidean distance and P for Pearson correlation. The
last component is the number of clusters generated. For example, the experiment
employing the k-means and the Euclidean distance, generating six clusters will
be represented by KE6.

3 High Level Evaluation

In this paper, the validation of the results was accomplished by means of two
different approaches: external validation employing the corrected Rand index
[4, 6] and the analysis of the variability of the algorithms by bootstrapping [7].
The first approach aims to assess how good the clustering techniques investigated
are at recovering known clusters. This was performed by using the corrected
Rand index (CR for short). In this context, the authors also checked if the
partitions generated are valid. A partition can be considered valid, for example,
if the value of its CR index is unusually high, according to a reference distribution
[4]. In order to do so, the authors followed the procedure described in [6], but
employing bootstrap samples as if they were a replication of a Monte Carlo
experiment [4]. The number of bootstrap samples, B, considered in this paper
was set to 100.

CR measures the agreement between the true partition (the gold standard)
and the clustering generated by an algorithm. It can take values from -1 to 1,
with 1 indicating a perfect agreement between the partitions, and the negatives
or near 0 values corresponding to cluster agreements found by chance.

The other validation approach employed in this paper also uses bootstrap-
ping, but to analyze the variability of each clustering algorithm [7]. The

Table 2. Variablilty and Corrected Rand for the best partitions

Five Best CR Five Best Vadj

Partition Vadj CR Partition Vadj CR

KP5 0.254802 0.852346 SP3 0.181361 0.287574
KE4 0.260567 0.829675 SP4 0.186054 0.255003
KP6 0.267859 0.829643 KP2 0.191907 0.217778
KP5 0.234667 0.805082 SE3 0.194405 0.380157
SP11 0.204392 0.796235 SE4 0.198795 0.340644
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Fig. 1. Variability and Corrected Rand for all partitions generated

variability can be used, for instance, to compare partitions produced by dif-
ferent algorithms, by an algorithm with different parameters values or by an
algorithm employing different proximity measures. Such approach sees a cluster-
ing algorithm as a point estimator (as in statistical theory) for the partition of
the data space and uses bootstrapping to estimate the variability of the estima-
tor. In this context, if the partition is valid, the variability should be low. In order
to apply this validation, B = 100 bootstrap samples were also generated. The
algorithm was run on each sample obtaining a set of partitions. The variability,
V , was estimated using CR to calculate the distance between two partitions.
Afterwards, 100 random partitions were generated and the variability on them,
Vran was also calculated. Finally, the adjusted variability Vadj was calculated by
Vadj = V/Vran. Vadj is the variability value employed to compare the partitions
in the analysis that follows.

Each validation strategy employed led to different best partitions. The five
best results according to each strategy are shown in Table 2 - all partitions
obtained in the experiments with the external validation employing the corrected
Rand index were found to be valid with a significance level of 0.05. Figure 1 is
a plot of the values of CR and variability for all partitions obtained, ordered by
their variability. Some interesting observations can be made from Table 2 and
Fig. 1. Partitions presenting the lowest (best) variabilities show very poor quality
according to CR. Variability favors small number of clusters. On the other hand,
the best partitions according to CR were obtained for numbers of clusters close
to the true number of clusters, six. The partitions presenting high CR values
show variabilities slightly above the best variability values obtained. It can be
observed that for the 6th to 38th variability values shown in the graphic, most
of the corresponding values of corrected Rand lied above 0.6. It was observed
that k-means presented the best results according to CR and SOTA showed the
best results according to the variability.
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4 Partitions Evaluation

This section takes a closer look at the partitions produced in order to evaluate
the composition of the clusters and the influence of the clustering algorithms
and the number of clusters used. This analysis also considers the true known
structure of the dataset (classes).

In order to facilitate the analysis, a coloring scheme was applied to each
partition. The first step in the procedure of coloring the partitions was the
assignment of a color to each class. Next, the number of patterns from each
class present in each cluster for a given partition was determined. Based on this
information, the predominant class for each cluster was found (the class that
presents more patterns in the cluster). Next, each cluster was labeled with the
color of its predominant class. An intensity was also assigned to each cluster,
aiming to distinguish the clusters with the same predominant class. An intensity
of 0 was assigned to the cluster with the highest number of patterns from the
predominant class, an intensity of 1 was assigned to that with the second highest
number of patterns of the predominant class, and so on.

With the clusters colored, the partitions to be compared were plotted side
by side in a datasheet, with all partitions ordered by the pattern identifier.
It should be noticed that the pattern identifier has an indication of the class to
which the pattern belongs. Otherwise, an indication of the class should be added
to the identifier. This representation associated with the coloring scheme make
it possible to readily distinguish the patterns wrongly assigned to a cluster and
the most homogeneous clusters.

For a preliminary analysis, the three best partitions of each validation strat-
egy described (Sect. 3) were selected. As the 5th best partition, according to CR,
was the 6th best partition, according to the variability, this partition was also
selected (SP11). This first analysis originated a question: What does it happen
with partitions with a higher number of clusters? Is it possible that a parti-
tion with a number of clusters much higher than the true number presents good
clusters, together with clusters of poor quality? To check this possibility, the par-
titions with 15 clusters generated with both algorithms and proximity measures
investigated were analyzed. Another issue investigated with 15 clusters was the
existence of problematic patterns that can interfere with the clustering result.
With a higher number of clusters, these patterns could be isolated, so that the
other patterns could be grouped into more homogeneous clusters.

From the coloring scheme and the observation of the clusters contents, useful
information was obtained, which is summarized in this section. Table 3 details
the amount of patterns from each class in the clusters from the best partition
according to CR (KP5), the best partition according to variability (SP3), the
partition SP11, described previously and the partition SP15, that present the
best CR value among the partitions with 15 clusters.

Table 4 contains a summary of the clusters generated in each experiment
considered. The clusters were classified into four types: pure clusters (P), large
well defined clusters (LWD), large mixed clusters (LM) and small mixed clusters
(SM). The pure clusters contain patterns of only one class. Clusters with one
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Table 3. Clusters contents for the best clustering

Partition Cluster Class
BCR E2A hyperdip MLL T-ALL TEL

KP5 1 78
5 13 62 1
4 39
2 1 27 3
3 1 2 16 4

SP3 3 14 23 62 4 79
1 39
2 1 4 2 16 4

SP11 10 79
9 14 1 62 1
4 19
3 12
1 4
2 4
5 3
11 22 3
8 2 14 1
6 1
7 4 2

SP15 14 79
13 14 1 62 1
3 8
6 8
8 7
1 4
2 4
7 4
4 3
9 3
5 1
15 22 3
11 4 2
12 2 14 1
10 1

single pattern are also considered pure. Large well defined clusters have the
majority of the patterns from the predominant class and just few patterns from
other classes. Large mixed clusters have the majority of the patterns from 2 or
more classes. Small mixed clusters contain few patterns from more than one class.
The table included the number of each type of cluster and, when appropriate,
the predominant class of each cluster (in the case of LMC, the classes with a
large number of patterns in the cluster).
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Table 4. Main structure of the clusters of each clustering

Partition P LWD LM SM

KP5 2 (T-ALL, TEL) 2 (MLL, E2A) 1 (hyperdip+BCR) 0
KE4 1 (T-ALL) 1 (TEL) 2 (hyperdip+BCR, 0

E2A+MLL) 0
KP6 2 (T-ALL, TEL) 2 (MLL, E2A) 1 (hyperdip+BCR) 1
SP3 1 (T-ALL) 1 (MLL) 1 (hyperdip+BCR+ 0

E2A+TEL) 0
SP4 2 (2 T-ALL) 1 (MLL) 1 (hyperdip+BCR+ 0

E2A+TEL) 0
KP2 0 1 (T-ALL) 1 (hyperdip+BCR+ 0

E2A+TEL+MLL) 0
SP11 7 (5 T-ALL, 2 (MLL, E2A) 1 (hyperdip+BCR) 1

BCR, TEL)
KE15 9 (5 T-ALL, hyperdip, 5 (2 E2A, BCR, 0 1

BCR, MLL, TEL) 2 TEL)
KP15 8 (3 T-ALL, 3 TEL, 3 (MLL, E2A, 1 (hyperdip+BCR) 3

E2A, hyperdip) hyperdip)
SE15 9 (8 T-ALL, hyperdip) 6 (MLL, E2A, TEL, 0 0

hyperdip, 2 BCR)
SP15 11 (9 T-ALL, BCR, 2 (MLL, E2A) 1 (hyperdip+BCR) 1

TEL)

Table 5 shows the number of patterns assigned to a large cluster of another
class (wrong assignment), the number of patterns assigned to the small mixed
clusters and the number of patterns assigned to small pure clusters (with less
than 5 patterns in the cluster), in each clustering analyzed. The patterns in
the pure and small mixed clusters are better seen by looking at the clusters
composition in Table 3.

Some conclusions can be drawn from the analysis of these data. First, pat-
terns from each class were represented mostly with the same color, but in some
cases with different intensities. This means that, even when the patterns from a
class were separated in different clusters, they usually were assigned to clusters
with the same predominant class. This was also true in the analysis of the par-
titions with 15 clusters (the highest number of clusters investigated). Even for
the partitions with fewer clusters, most of the patterns of each class tended to
appear together in the same cluster, even when the clusters were composed of
different classes (LM). These were the cases of KP4 and KP2, which presented
few wrong assignments due to the large mixed clusters that placed most of the
patterns from several classes together.

The best partition according to CR (KP5) generated two pure clusters, two
well defined clusters and one mixed cluster (BCR + hyperdip). This is a good
partition, but it did not separate the classes hyperdip and BCR. Looking at the
partitions of 15 clusters, most of them can separate all classes, including BCR
and hyperdip (KE15, KP15 and SE15). The partition KE15 did not generate
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large mixed clusters and generated just one small mixed cluster, with just four
patters. Although the number of clusters was large, the clusters obtained were
homogeneous. This partition can also be considered a good partition, in spite of
its relatively low value of CR and high variability.

Almost all patterns from the class TEL always grouped together. There were
just few cases in some of the partitions where a pattern from this class was asso-
ciated to another cluster. The TEL patterns also appeared well separated from
the other classes, except for the cases where few clusters were generated. The
patterns from the class T-ALL formed a well separated cluster too. The algo-
rithm SOTA tended to divide the patterns from the class T-ALL in several small
sub-clusters before separating the patterns of the classes TEL, hyperdip-BCR
and E2A. This was observed by looking at the clusters of T-ALL for the parti-
tions of three and four clusters generated by SOTA with the Pearson correlation.
This trend was confirmed by the analysis of the partitions with 15 clusters, where
eight or nine small pure clusters of the class T-ALL were formed.

The patterns from the classes BCR and hyperdip were almost always grouped
together in the same cluster. Even when there were clusters with the predomi-
nant class BCR and clusters with the predominant class hyperdip, most of these
clusters still presented patterns from both classes (BCR or hyperdip). As there
are 6 classes, the best solution of 6 clusters found (generated with the algorithm
k-means with Pearson - KP6) was analyzed with more attention to compare the
clusters with the true classes. This partition did not separate the patterns from
the classes BCR and hyperdip, as the other partitions containing a smaller num-
ber of clusters. This partition presented a large cluster with most of the hyperdip
and BCR patterns and a small cluster containing the other few hyperdip and
BCR patterns together with patterns from three other classes The other clusters
were similar to those obtained using a smaller number of clusters.

A question arises from the observation of the result obtained in the partition
with 6 clusters, KP6. Does the generation of two clusters mixing BCR and
hyperdip can indicate that if more clusters were generated, this classes could be
separated? It was observed that when a large number of clusters were generated
(11 or 15), small pure cluster started to appear. Also, in the analysis of the
partitions with 15 clusters, pure clusters of hyperdip, clusters with almost all
patterns belonging to this class and clusters with some hyperdip samples, but
with the majority of the patterns belonging to the BCR class were found. Such
results confirmed that, although the classes hyperdip and BCR are very similar,
they have differences that can be found in some way (in this case, generating
a higher number of clusters). This observations were valid for both algorithms,
SOTA, which generated the same partition for a specified number of clusters,
and k-means, which generated a different partition in each run. It should also
be observed that the best partition of 15 clusters, according to CR, did not
separate the classes BCR and hyperdip, as the other partitions with 15 clusters
do. Both partitions of 15 clusters obtained with k-means presented several pure
clusters. In the case of SOTA, the class T-ALL was divided into several small
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pure clusters. Three of these four partitions with 15 clusters separated the class
BCR from hyperdip.

Some heterogeneous clusters very similar in many of the partitions analyzed
were found. One of this clusters was composed of the majority of the hyperdip
and BCR patterns. Another similar case was the cluster composed of 16 MLL
patterns, one BCR, two hyperdip and a few other patterns of other classes. This
can indicate that the patterns wrongly assigned to this clusters found in all
cases are really more similar to the patterns in this clusters than to those of
their class, and that the wrong assignments did not occur just because of the
variability of the algorithms. Maybe these patterns were either wrongly labeled
or contained important information to be investigated, as they should be more
similar to patterns from their class.

Other observation is that there were some patterns that were assigned to
the same wrong cluster in most of the partitions analyzed. This is the case for
the patterns ”hyperdip.50.7” and ”hyperdip.50.C19”, almost always assigned to
clusters with the predominant class MLL. Other patterns were also assigned to
a wrong cluster, but in only one or two partitions. Table 6 shows the patterns
wrongly assigned to at least five partitions. In this table, for each pattern, only
the columns of the partitions in which a wrong assignment occurred are marked.
This ”marking” is made with the predominant class of the cluster to which
the pattern was wrongly assigned. For example, the pattern ”BCR.ABL.R1”
was wrongly assigned to the class E2A in the partition KE4 and to the class
MLL in the partitions KP5, KP6, SP3, SP4 and SE15. These wrongly assigned
patterns were easily identified with the coloring scheme as they were shown with
a different color from the majority of the other patterns from the same class. It
should be noticed that for the clusters that encompassed more than one class
(the majority of the patterns from more than one class), the patterns from the
classes well represented in the clusters were not considered wrong assignment.
Thus, for example, in the cluster composed of hyperdip and BCR, neither BCR

Table 5. Number of patterns in each type of cluster

Partition Wrong assignments Small mixed Small pure

KP5 13 0 0
KE4 5 0 0
KP6 13 13 0
SP3 15 0 0
SP4 15 0 0
KP2 7 0 0
SP11 8 6 12
KE15 18 4 6
KP15 16 16 0
SE15 21 0 13
SP15 8 6 20
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Table 6. Assignments to wrong clusters in at least 2 clusterings

Pattern KP5 KE4 KP6 SP3 SP4 KP2 SP11 KE15 KP15 SE15 SP15

BCR.ABL.R1 MLL E2A MLL MLL MLL MLL

Hyperdip.50.7 MLL E2A MLL MLL MLL T-ALL MLL MLL MLL MLL

Hyperdip.50.C19 MLL E2A MLL MLL MLL MLL MLL MLL MLL

MLL.C3 E2A E2A TEL TEL hyp E2A E2A E2A hyp

MLL.C4 E2A E2A TEL TEL E2A E2A E2A TEL E2A

MLL.C5 E2A hyp TEL TEL E2A E2A hyp E2A

MLL.C6 E2A E2A TEL TEL E2A E2A E2A TEL E2A

T.ALL.C5 MLL MLL MLL MLL MLL MLL

nor hyperdip patterns were considered wrongly assigned. An assignment was
considered an error only if the pattern was assigned to a cluster with only few or
no other patterns from its class. The small mixed clusters were not considered
wrong assignments either.

Different wrong assignments of a pattern can be due to mixed clusters as they
encompasses a large amount of patterns of more than one class and a cluster has
a predominant class when this class has more patterns in the cluster than the
other classes. For example, ”BCR.ABL.R1” was assigned to a cluster of the class
E2A in the partition KE4 and to clusters of the class MLL in all other partitions
where a wrong assignment occurred. Even when assigned to the cluster from the
class E2A, ”BCR.ABL.R1” was assigned to a cluster with many MLL patterns,
as the cluster E2A is a large mixed cluster of E2A and MLL.

5 Conclusion

This paper investigated two different clustering algorithms and two proximity
measures to obtain a series of partitions of a gene expression dataset. For each
algorithm and proximity measure, partitions containing from 2 to 15 clusters
were generated. Each validation strategy pointed out a different technique as
superior. The k-means algorithm presented better results according to CR and
SOTA according to variability. The best partitions obtained had their contents
analyzed in details.

The analysis carried out in this work can provide useful insights to the area
of gene expression analysis. The information outlined can be used to point out
new directions for further analysis by biologists. The large mixed clusters can
indicate unexpected similarities of the classes. The subdivisions of the classes in
smaller clusters can indicate possible important subdivisions of the data, sup-
porting the discovery of new disease subtypes (such as those of great interest in
cancer research). The small heterogeneous clusters can have important mean-
ing as they present patterns with different behavior from that expected. They
could represent interesting samples that could be further analyzed in laboratory.
The samples that were always classified in the same wrong cluster can be either
just noisy samples, or can indicate an error in the original classification of these
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samples. Alternatively, they can occur because these samples really present an
unexpected behavior, which may be worth of additional investigation.

Additional experiments are being carried out using other datasets. The results
so far have confirmed the potential of the proposed approach. Other clustering
algorithms are also being included. The authors also intend to have the support
of biologists to identify the true contribution to gene expression data analysis,
mainly in the discovery of new subclasses of the data. As a result, more general
conclusions can be obtained. Future work includes the application of the same
analysis performed in this paper, but comparing all partitions generated with all
the different numbers of clusters investigated. The goals are to better analyze
the isolation of problematic patterns and their influence in the good separation
of the clusters and to investigate the identification of new subclasses in the data.
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Abstract. One of the most important goals of bioinformatics is the
ability to identify genes in uncharacterized DNA sequences. Improved
promoter prediction methods can be one step towards developing more
reliable ab initio gene prediction methods. In this paper, we present
an empirical comparison of machine learning techniques such as Naive
Bayes, Decision Trees, Support Vector Machines and Neural Networks
to the task of predicting Bacillus subtilis promoters. In order to do so,
we first built a data set of promoter and nonpromoter sequences for this
organism.

1 Introduction

The process of mapping from DNA sequences to folded proteins in eucaryotic
and prokaryotic organisms involve many steps [1, 2]. The first step is the tran-
scription of a portion of DNA into an RNA molecule, called RNA messenger.
Such a process begins with the binding of a molecule called RNA polymerase
to a location on the DNA molecule. The exact location where the polymerase
binds determines which strand of the DNA will be read and in which direc-
tion. Parts of the DNA near the beginning of a protein coding region con-
tain signals that can be recognized by the polymerase: these regions are called
promoters [2].

Computational promoter prediction methods can be one step towards de-
veloping more reliable ab initio gene prediction programs [1, 3]. These methods
could also be seen as part of the complex process of discovery gene regulatory
network activity [4]. However, such a prediction task is hard due to both the
large variable distance between various DNA signals that are the substrate of

J.C. Setubal and S. Verjovski-Almeida (Eds.): BSB 2005, LNBI 3594, pp. 77–84, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



78 M.I. Monteiro et al.

recognition by the polymerase, and a large number of other factor involved in
regulation of the expression level [1, 5].

Despite these limitations, a large number of promoter prediction programs
have been developed for eukaryotic sequences and are easily accessible [6, 7, 8, 5].
However, up to now, the Neural Network Promoter Prediction program (NNPP)
is one of the few available system that can be used as a prokaryotic promoter
prediction tool [9]. Some other prokaryotic promoter prediction methods are
based on weight matrix pattern searches [10, 11, 12]. In [13], a novel prokaryotic
promoter prediction method based on DNA stability is presented.

As pointed out in [5], there is a conceptual difference between trying to rec-
ognize all eukaryotic (prokaryotic) promoters, and recognizing only those being
active in a specific cell type. Alternatively, the promoter finding problem might
be divided into several sub-problems, meaning that it may be necessary to con-
struct specific algorithms to recognize specific classes of promoters. For example,
most of the system referred in the previous paragraph were designed for organism
specific purposes, such as Escherichia coli (E. coli).

Motivated by this, in this paper, we apply machine learning techniques for the
analysis of Bacillus subtilis (B. subtilis) promoters. We have chosen this bacteria
for its wide use by biologists as a model of gram-positive bacteria in genetics
studies, as well as for having all its genome already sequenced. Furthermore,
there are, in the literature, many experimental analysis confirming several of
their promoter sequences [14], which will be fundamental in the construction of
our data set.

This paper is organized as follows. Section 2 presents the B. subtilis promoter
dataset that we built, which is one of our contribution, and how the experimental
results will be evaluated. In Section 3, we introduce a brief review of related work.
The experimental setting is described in Section 4. Section 5 presents results and
discussion. Finally, Section 6 summarizes the work.

2 Material and Methods

We perform an empirical comparison of rule based systems such as Decision
Trees and PART, and statistical learning systems such as Naive Bayes, k-Nearest
Neighbor, Support Vector Machines and Neural Networks to the task of B. sub-
tilis promoter prediction. All the learning methods used in our study were ob-
tained from the WEKA machine learning package [15] (http://www.cs.waikato.ac
.nz/ ml/weka/).

2.1 Dataset

We built our dataset following the guidelines used in the construction of E. coli
dataset first used in [17] (ftp://ftp.ics.uci.edu/pub/machine- learningdatabases/
molecular-biology/promoter-gene-sequences/). This E. coli dataset contains 53
examples of promoters and 53 of nonpromoters. The 53 examples of promoters
were obtained from a compilation produced by [16]. According to [16], negative
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training examples were derived by selecting contiguous substrings from a frag-
ment of the E. coli bacteriophage T7. Each example, either positive or negative,
is composed of 57 attributes (i.e., 57 nucleotides).

In the case of the B. subtilis dataset, we initially consider for our dataset only
experimentally determined promoter sequences presented in the compilation in
[14]. Next, we calculated the average length of these sequences, which was 117
nucleotides. Based on this, we fixed the length of our promoters sequences in 117
nucleotides. Putative and shorter sequences than this number were discarded.
Promoter sequences equal or longer than 117 nucleotides, on the other hand,
were preserved in the dataset. In the latter case, the sequences were first cut on
their upstream region such that their final length was kept in 117 nucleotides
- this strategy was used to preserve the promoter region of the B. subtilis that
is often found in the region between -100 (downstream) and +15 (upstream) of
the gene. At the end of this process, we ended up with 112 promoter sequences
out of 236 originally presented in [14].

In order to create the nonpromoter sequences for our dataset, we select 112
contiguous substrings of 117 nucleotides from the genome of the B. subtilis bac-
teriophage PZA [18] - there is no promoter sequence identified for this phage so
far. These 112 nonpromoters sequences were chosen in such way as to maximize
the degree of similarity of each of them to the sequences in the promoter set.
This resulted on an average degree of similarity between promoter and nonpro-
moter sequences of 27%. In the case of the E. coli dataset in [17] this average is
of 24%. In summary, our B. subtilis dataset contains 112 examples of promoters
and 112 of nonpromoters, each one with 117 nucleotides.

2.2 Evaluation

The comparison of two supervised learning methods is, often, accomplished by
analyzing the statistical significance of the difference between the mean of the
classification error rate, on independent test sets, of the methods evaluated. In
order to evaluate the mean of the error rate, several (distinct) data sets are
needed. However, the number of data sets available is often limited. One way to
overcome this problem is to divide the data sets into training and test sets by
the use of a k-fold cross validation procedure [19, 20, 15].

This procedure can be used to compare supervised methods, even if only one
data set is available. The procedure works as follows. The data set is divided into
k disjoint equal size sets. Then, training is performed in k steps, each time using
a different fold as the test set and the union of the remaining folds as the training
set. Applying the distinct algorithms to the same folds with k at least equal to
10, the statistical significance of the differences between the methods can be
measured, based on the mean of the error rate from the test sets [19, 20, 15].

In fact, in this work, in order to use the greatest possible amount of data for
training, we use a special form of cross-validation called leave-one-out [19, 20, 15].
The leave-one-out cross-validation is simply k-fold cross validation, where k is
the number of instances in the dataset. In our case, k is set to 224, that is, the
total of promoter and nonpromoter sequences in the dataset.



80 M.I. Monteiro et al.

3 Related Work

In the context of machine learning, the identification of promoter sequences can
be stated as follows [3]:
– Problem: Identification of promoter sequences.
– Input: Set of DNA sequences of fixed length with known promoter regions

and sequences without the presence of this signal.
– Do: Generate a classifier able to predict if a window of fixed size has or not

a promoter region.

The most closely related work to ours is the one developed in [16]. In that
work, a hybrid approach based on neural networks and symbolic rules was applied
to predicting promoter sequences of E. coli. The system used, called KBANN
(Knowledge Based Neural Network), uses propositional rules formulated by a
biologist in order to determine the network topology and initial weights. By
doing so, [16] could observe a decrease of the network training time and an
improvement of its generalization.

The dataset used by [16] contained 53 examples of promoters and 53 of
nonpromoters, where each example, is composed of 57 attributes (i.e., 57 nu-
cleotides), as described at beginning of Section2.1. In the experiments per-
formed by the author, the results obtained with KBANN were compared to
those achieved by using neural network in the form of multi-layer perceptron
(as the ones used in our work), decision trees, k-nearest neighbor, among others.
The best results achieved was with the KBANN and neural networks - decision
trees and k-nearest neighbor had a poorer result. The author do not present in
the results the rate of false positives.

In [9], a neural network model of the structural and compositional properties
of a eukaryotic core promoter region, the Neural Network Promoter Prediction
(NNPP), was developed and applied to analysis of the Drosophila melanogaster.
The model uses a time-delay architecture, a special case of a feedforward neural
network. According the authors, application of this model to a test set of core
promoters not only gave better discrimination of potential promoter sites than
previous statistical or neural network models, but also revealed indirectly subtle
properties of the transcription initiation signal. Such a model was extended to
work with prokaryotic promoters. In fact, the (NNPP) tool is one of the few
available system that can be used as a prokaryotic promoter prediction program
(http://www.fruitfly.org/seq tools/promoter.html).

Recently, [21] developed a comparative analysis on the application of both
transductive support vector machines (TSVM) and support vector machines
(SVM) to prediction of eukaryotic promoter regions. According to them, TSVM
outperformed SVM in this task.

4 Experiments

Our experiments were accomplished by presenting the dataset to the Machine
Learning (ML) algorithms. In fact, because of the leave-one-out methodology
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each method was run 224 times. The values for the parameters of the ML al-
gorithms were chosen as follows. For example, for an algorithm with only one
parameter, an initial value for the parameter was chosen followed by the run
of algorithm. Then, experiments with a larger and smaller value were also per-
formed.

If with the initially chosen value, the classifier obtained has the best results (in
terms of validation error), then no more experiments were performed. Otherwise,
the same process was repeated for the parameter value with the best result so
far. Of course, this procedure becomes more time consuming with the increasing
in the number of parameters to be investigated.

Using the previous procedure, we arrived to the following values for the pa-
rameters of the ML algorithms (WEKA implementation [15]):

– k-Nearest Neighbor (k-NN): k was set to 8 and the distance weighting to
1/distance. All other parameters were set to their default.

– Naive Bayes (NB): all parameters were set to their default.
– Decision Tree (DT): all parameters were set to their default.
– PART : all parameters were set to their default.
– Voted Perceptron (VT): all parameters were set to their default.
– Support Vector Machine (SVM): C was set to 1 and the exponent to 4. All

the other parameters were set to their default.
– Neural Networks (NN): the number of hidden nodes was set to 50, the learn-

ing rate to 10−2, the momentum term to 0.9, the maximum number of iter-
ation to 1000, and the validation set size to 10%. All the other parameters
were set to their default.

Each of the previous ML method, as already mentioned, was trained with a
leave-one-out methodology, considering the best parameter setting found. Then,
for all experiments, the mean of the percentage of incorrectly classified train-
ing patterns on independent test sets were measured. Next, these means were
compared two by two means of paired t-test, as described in [20, 19].

5 Results

Table 1 presents, for each ML algorithm, the mean and standard deviation of
the percentage of incorrectly classified examples (error rate) on independent test
sets. According to this table, NB and SVM obtained a lower classification error
than the other methods (18.30%). The null hypotheses were rejected in favor
of SVM and NB in comparison to k-NN,DT and PART at α = 0.05, where α
stands for the significance level of the equal means hypothesis test. However, no
significance difference was detected between NB and NN (α = 0.05) and SVM
and NN (α = 0.05).

Now, we turn our attention to more detailed comparison. In order to do so,
we constructed a confusion matrix as illustrated in the table below Table 2.
This table shows a generic confusion matrix, where TP (True Positive) denotes
the mean of the correct classification of promoter examples (positive examples).
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Table 1. Mean of the Classification Error Rate

Algorithm Mean St. Dev.

k-NN 34.82% 47.75%

NB 18.30% 38.76%

DT 30.80% 46.27%

PART 31.25% 46.46%

VP 32.14% 46.81%

SVM 18.30% 38.76%

NN 25.0% 43.40%

True Negative (TN) stands for the mean of correct classification of nonpromot-
ers examples (negative examples). False Positive (FP) represents the mean of
the incorrect classification of negative examples into the class of positive exam-
ples. Likewise, False Negative (FN) is the mean of positive examples incorrectly
classified into the class of negative examples.

Table 2. Confusion Matrix

Promoter Nonpromoter

Promoter TP FN

Nonpromoter FP TN

In order to develop our detailed analysis will consider three best results ob-
tained in our experiments in terms of lower error rate mean, that is, we choose
NB, SVM and NN, as shown in Table 3, 4 and 5.

Table 3. Confusion Matrix for NB

Promoter Nonpromoter

Promoter 82% 18%

Nonpromoter 19% 81%

Table 4. Confusion Matrix for SVM

Promoter Nonpromoter

Promoter 76% 24%

Nonpromoter 12.4% 87.5%

In terms of the previous tables, for the convenience of results comparison,
in our evaluation scheme will consider TP and FP. In this case, NB, SVM and
NN present, respectively, the following TP/FP relation: 4.31, 6.08, and 2.67.
Thus, in such a context, SVM offers the best trade-off between generalization
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Table 5. Confusion Matrix for NN

Promoter Nonpromoter

Promoter 80% 20%

Nonpromoter 30% 70%

and discrimination. This also implies in a better control of the false positives.
Such an issue is important for, as mentioned before, there is a high probability
of finding similar sequence elements elsewhere in genomes, outside the promoter
regions (false positives).

We also tried our dataset using the NNPP. The NNPP program is available
at (http://www.fruitfly.org/seq tools/promoter.html). All the NNPP predictions
were carried out at a score cut-off 0.80. In the case of our dataset, the NNPP
systems correctly predicted 107 promoter sequences out of 112, that is, a TP
of 95.53%. However, for the nonpromoter sequences such a system presented a
unacceptable high FP of 74.1% (83 nonpromoter sequences, out of 112, were
predicted as true promoter sequences). That is, for this dataset, the TP/FP
relation for the NNPP was of 1.29, which is much lower than the rate presented
by our SVM (6.08).

6 Final Remarks

In this paper, we presented an empirical comparison of machine learning tech-
niques such as Naive Bayes, Decision Trees, Support Vector Machines and Neural
Networks to the task of predicting B. subtilis promoters. In order to so, as one
of our contributions, we first built a dataset of promoter and nonpromoter se-
quences for this organism.

From the different learning algorithms analyzed, support vector machines
outperformed the others in terms of the relation true positive rate/false positive
rate (6.08). In fact, such a method performed better as compared to currently
available prokaryotic prediction method, such as NNPP. One reason for this is
that we constructed a classifier to recognize a specific classes of promoters (B.
subtilis), while the NNPP is a general system.

In terms of our results, the classifiers build need to be further improved to
reduce the number of false positives. This could be achieved by, for example,
combining several classifiers in order to form ensemble [22].
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Abstract. Gene expression on prokaryotes initiates when the RNA-
polymerase enzyme interacts with DNA regions called promoters, where are 
located the main regulatory elements of the transcription process. Despite the 
improvement of in vitro techniques for molecular biology analysis, character-
izing and identifying promoters is a complex task. In silico approaches are 
used to recognize theses regions. Nevertheless, they confront the absence of a 
large set of promoters to identify conserved patterns among the species. 
Hence, a methodology able to predict them on any genome is a challenge. 
This work proposes a methodology based on Hidden Markov Models 
(HMMs), Decision Threshold Estimation and Discrimination Analysis. For 
three investigated prokaryotic species, the mainly results are: a reduction in 
44.96% of recognition error rate compared with previous works on Es-
cherichia coli, an accuracy of 95% on recognition and 78% on prediction for 
Bacillus subtilis. However, it was found a large number of false positives on 
Helicobacter pylori. 

1   Introduction 

The fundamental mechanism that permits the expression of a gene is the interaction of 
RNA-polymerase enzyme (RNAp) with a DNA region containing the signals to estab-
lish the gene to be expressed and its expression rate. This region is known as the pro-
moter [10]. 

Prokaryotic promoter sequence can be described by a frame-set where the first nu-
cleotide that belongs to transcript is defined by +1 or transcription start site (TSS), the 
nucleotides before this are represented by negative integers, while the posterior ones 
by positive integers. Promoters have three characteristic regions: a conserved se-
quence of 6 nucleotides (hexamer) centered on -35, another one centered on -10 and 
finally one region between them. The distance between the two hexamers has on av-
erage 17 base pairs and seems to be relevant. This because, even having variable size 
and showing no conservation on its nucleotide composition, it may be different of 
other genome regions. 
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The ideal promoter for Escherichia coli (E. coli) is characterized by the pattern 
TTGACAN17TATAAT, where N corresponds to any nucleotide (see Fig. 1). How-
ever, this pattern cannot be found in any real promoter region [11].  

 

 

Fig. 1. A representation to the frameset describing conserved regions on prokaryotic promoters 

A generic methodology to represent and discover promoters is an essential step to-
ward the understanding of gene expression regulation. Nowadays, we have an exten-
sive dataset with promoter information for E. coli and partial information for few 
other organisms [12]. Most of the previous works on this area do not benefit from 
recent biochemical data [10].  

In this work, we propose a methodology based on HMMs for recognition and pre-
diction of promoter regions, considering: datasets with a great number of sequences, 
the use of a criterion to determine the critical score to recognize a sequence as a pro-
moter, and a technique to reduce the influence of genome characteristics on identifica-
tion of promoter patterns. 

2   Methodology 

Prokaryotic genomes can be classified in two sets of sequences: coding and non-
coding regions. A critical task for Bioinformatics has been the classification of se-
quences on these groups, for that many approaches have been investigated [6].  

The most effective ones to find gene sequences are based on Markov models. 
Genemark [8] uses a fixed-order Markov chain, while Glimmer [14] uses interpolated 
Markov models. However the success of these approaches on identification of coding 
regions, the characterization of non-coding regions remains a challenge, despite of in 
vitro and in silico researches. Inside of these regions are located the regulatory ele-
ments responsible for gene regulation. 

The classical studies on promoter recognition are based on hidden Markov models. 
This technique has been applied successfully to find and interpret different classes of 
DNA regions, like transcription units, genes and proteins. Observing that promoters 
are sequences of nucleotides with different conservation levels at each position, 
HMMs is an adequate model for these sequences. They capture both the strong con-
served region, that are modeled with concentrated probability distributions, as non-
conserved regions that can be modeled by more uniform distributions [9]. 

2.1   Standard HMM Methodology  

The HMM is a Markov model and can be described as stochastic finite state automata 
[2], given by M = (Q, Σ, π, a, b), where: 
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- Q  =  {q0, … ,qn} is a set with n states; 
- Σ  =  {σ1, … , σm} is an output alphabet;  
- πi are the initial probabilities;  
- aij are the transition probabilities from state i to j;   
- bik is the probability that i emits a symbol k. 

The system evolves visiting the states q and emitting at each one a symbol from Σ. 
These symbols represent the observable sequences that we wish to model. Since em-
pirically we have no access to the states q, this Markov model is called hidden. The 
matrices π, a, and b are obtained from a dataset. 

HMM used on biological sequence analysis is composed by five types of states that 
models the sequence alignment analysis: match, insert, delete, begin and end. These 
states are organized in an architecture like that presented on Fig. 2. 

 
 

 

Fig. 2. The classical HMM architecture applied to describe biological sequences like promot-
ers. The number of match states is equal to the length of sequences modeled 

An HMM can be trained to recognize a set of sequences belonging to a biological 
class. The adherence of a sequence to a model can be calculated using Viterbi’s algo-
rithm, which computes the likelihood of the best transition path among all the possi-
ble states [2]. For convenience, we use instead the negative logarithm of this quantity, 
denominate Viterbi score (S). This implies that sequences with high adherence to the 
model have smaller scores. 

The description above is the standard HMM methodology for any kind of sequence 
recognition task. On promoters, its application of may be considered problematic be-
cause: 

• there is no specification of a formal method to determine the threshold 
among Viterbi scores to consider a sequence belonging to the promoter 
class;  

• there is a strong influence of genome properties of each specie, such as 
A+T content, on the promoter model. This reduces the model applicability 
to species closely related to the ones used on the training process.  

We extended the classical methodology aiming the solution of these problems, re-
sulting in an improved methodology described as follows. 
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2.2   Improved HMM Methodology 

The proposal of an improvement on standard HMM methodology was guided by sev-
eral experiments to test recognition’s tools and available promoter datasets. These 
allowed the identification of the two cited limitations on the ending of previous sec-
tion. In this way, we propose an extension to resolve which one of them. 

The first extension was the use of Decision Threshold Estimation (DTE), which is 
based on Bayes Decision Rule. This rule can be applied to resolve the expected value 
of payoff for two classes of sequences, being chosen that with max value.  

Determination of the critical threshold (Sc) is based on calculus of Viterbi score (S) 
for each promoter and gene sequence used along a training process. We observed that 
the scores values can be modeled as random variables normally distributed. In such 
case, fitting the each class data set to Gaussians, two distributions are obtained: Pp 
and Pn, where n, p stands for negative and positive. From these distributions is possi-
ble define the Sc value adopting a criterion to be maximized. Our methodology con-
siders as criterion the accuracy defined by: 

, 
(1) 

where T and F stands for true and false and P and N for positive and negative. Assum-
ing that the distributions P represent truly the data, we determine the functions TN(S) 
and TP(S). These functions represent the fraction of true positives and true negatives 
as a function of a threshold Sc, which is the estimated value that maximizes TN+TP. 
Fig. 3 shows both probability distributions. 

 

Fig. 3. The score probability distributions to promoter and gene sequences. (a) The histograms 
for Pp and Pn. (b) The fit of data to Gaussians 

On the second extension, we applied a Discrimination Analysis (DA) to minimize 
the influence of genome properties in the promoter patterns modeled. DA considers 
two HMMs, one to recognize promoter sequences and another to recognize gene se-
quences. This is appropriated in promoter case, because it belongs to the class of ge-
nome sequence too. However, on prokaryotes, which have genome with a compac-
table structure, we can reduce the genome sequences to promoters and genes, or cod-
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ing and no-coding (where probably there is some regulatory element). In this manner, 
the new classification parameter, Sp, is given by: 

,    (2) 

where Spromoter is the score of the sequence on the promoter HMM and Sgene the score 
on gene HMM. The rationale for this choice is that Sp is the negative logarithm of the 
ratio between the likelihoods of a sequence being a promoter and a gene. In another 
words, we are calculating how more high is the probability of a sequence be a pro-
moter of that be a gene. Fig. 4 condenses the main stages of the standard and the im-
proved HMM methodology.  

 

Fig. 4. Global vision of the differences between the standard and the improved methodology 

3   Results 

The proposed methodology was applied to three prokaryotic species: Escherichia coli 
(E. coli), Bacillus subtilis (B. subtilis) and Helicobacter pylori (H. pylori). Moreover, 
it was used to recognize and predict promoters.  

For recognition, a dataset to train the promoter model is available, while for predic-
tion there is not enough identified promoters to create the model. In this last case, we 
use the E. coli promoter HMM to predict promoters.  

HMMs were trained using the HMMpro, tool designed to simulate and analyze 
hidden Markov models of biological sequences [1]. Model architecture is linear and 
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permits transitions to all possible states. The models have 81 main states, the same 
number of nucleotides on the RegulonDB sequences, and each nucleotide has an ini-
tial emission probability of 0.25.  

Once the structure and the initial parameters are defined, the model was trained 
during 30 epochs in the on-line mode, period considered adequate for this problem 
[1]. After the training stage, we have the best model to describe the training dataset 
for promoters and the best model to describe the training dataset genes.  

Since HMMs have a large number of parameters, the new methodology was vali-
dated using 10-fold cross validation. For each fold, it was calculated: Sc, the expected 
accuracy (Ae) and observed accuracy (Ao). Ae is calculated by applying the equation 
(1) on TP(Sp) and TN(Sp) obtained from the fitted score distributions, while Ao is ob-
tained using TP and TN from the test datasets.  

Since the application of the methodology depends on the available dataset for the 
organisms, the results are organized accordant them. 

3.1   E. coli 

The promoter regions of E. coli were obtained from the RegulonDB database in the 
version 4.0 [13]. This database provides biological information on different mecha-
nisms of transcription, regulation, and structural aspects related to gene expression 
rate of E. coli [5]. 

The 928 promoter sequences (true positives – TP) of our dataset with length of 81 
nucleotides were filtered and shuffled by a Perl script to build the training and test 
sets. The database was restricted because some entries have no sequence to the pro-
moter instance. For each promoter set, it was created a coding sequence dataset with 
the same number of instances, which corresponds to true negatives examples (TN) for 
the experiment. 

For a better evaluation of the each extension on the methodology, we execute two 
distinct experiments: one using just the Decision Threshold Estimation, and another 
considering the simultaneous use of Decision Threshold Estimation and Discrimina-
tion Analysis. The results of both are presented on Table 1. 

The comparative analysis of the two experiments shows that the accuracy is higher 
than 0.9, when we consider both extensions of the methodology. While previous in 
silico studies predicted about 13-54% of the promoters correctly [12]. 

Table 1. Values of average accuracy for the 10-fold cross validation considering just Decision 
Threshold Estimation, and this one with Discrimination Analysis on E. coli 

Experiment measure average standard deviation 
Sc 136.587 0.615 
Ae 0.851 0.011 

Decision Threshold Estimation 

Ao 0.817 0.07 
Sc 1.343 0.604 
Ae 0.921 0.005 

Decision Threshold Estimation 
and Discrimination Analysis 

Ao 0.919 0.03 
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Moreover, the recognition performance increased on 12.48% and the error rate de-
creased to 44.26% when both extensions were associated.  

3.2   B. subtilis 

Promoter regions of B. subtilis were extracted from compilation of Hellman [4], 
which contains 220 sequences.  The application of the same experiments realized on 
E. coli case in this prokaryote results the measures presented on Table 2. 

Table 2. Values of average accuracy for the 10-fold cross validation considering just Decision 
Threshold Estimation, and this one with Discrimination Analysis on B. subtilis 

Experiment measure average standard deviation 
Sc 132.966 1.374 
Ae 0.983 0.004 

Decision Threshold Estimation 

Ao 0.95 0.031 
Sc -22.635 1.454 
Ae 0.986 0.003 

Decision Threshold Estimation 
and Discrimination Analysis 

Ao 0.95 0.031 

 

Fig. 5. Distributions of Sp considered on prediction task on B. subtilis. The dash line represent 
the gauss curve for E. coli promoters, the others the for B. subtilis genes, each one for a fold in 
the 10-fold cross validation 

The accuracies show that both experiments had a better performance than the pre-
vious ones. A reason for this may be the high A+T content of B. subtilis genome 
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(around 0.56) compared with the E. coli (0.49). Thus, it is expected that gene se-
quences of B. subtilis had higher adherence to E. coli promoter model than properly 
E. coli promoters 

The high A+T content on promoter regions is well known, considering that this 
characteristic permits the RNAp open the DNA double helix more easily, in function 
of the two hydrogen bonding of a base-pair A-T. 

To determine the performance of the application of E. coli model to predict pro-
moters in other organisms, we redefined Sp as the difference between E. coli promoter 
HMM model and B. subtilis gene HMM model. In this case, we are supposing that we 
do not have any promoter dataset to estimate Sc. This value was replaced by the aver-
age Sp minus one standard deviation obtained using only gene sequences (see Fig. 5). 
The Table 3 presents this analysis. 

Table 3. Analysis of prediction promoters based on promoter E. coli HMM and gene B. subtilis 
HMM. Results from 10-fold cross validation.  

Fold average Sp standard deviation accuracy 
1 -19.623 4.656 0.775
2 -19.378 4.987 0.784
3 -19.320 4.96 0.775 
4 -19.221 5.002 0.773 
5 -19.046 4.943 0.775 
6 -18.873 4.945 0.777 
7 -18.480 4.889 0.786 
8 -18.604 4.792 0.784
9 -18.613 4.874 0.777

10 -18.797 4.994 0.773 

Observe that the accuracy on prediction is lower than in the recognition task. 
Nevertheless, in the first case we do not have any idea about promoter nucleotide 
composition, i.e., values of accuracy around 0.75 is a considerable performance 
considering that none information about promoter is taken in account. 

3.3   H. pylori 

The last experiment was the prediction of promoter on an organism that had no avail-
able information about their promoter sequences composition. For this case we ana-
lyzed the genome of Helicobacter pylori.  

Using the same methods used on B. subtilis case, we concluded that is impossi-
ble to apply the same methodology on this organism because its gene sequences 
were almost totally recognized as promoters. Based on analyses of Sp distribution, 
this characteristic is confirmed (see Fig. 6). 
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Fig. 6. Distributions of Sp considered gauss curve for E. coli promoters and for H. pylori genes. 
Observe that they are practically overlaid 

4   Conclusions 

In this work we propose a methodology, which extends the standard one by consider-
ing Decision Threshold and Discrimination Analysis based on HMMs, for prokaryotic 
promoter recognition and prediction.  

The new methodology was successfully applied to E. coli, reducing the error rate 
in 45%. The mainly reason for this success is the utilization of two HMMs, one for 
promoters and other for gene sequences. This strategy reduces the number of false 
positives; those gene regions with high A+T content. This performance was repeated 
on B. subtilis studies on recognition as well on prediction task. However, the method-
ology failed on H. pylori because the genes of this organism had high adherence to 
HMM E. coli promoter model. 

We expect that this methodology could be extended to other prokaryotic organisms 
with A+T content different from 0.5. At this moment, we are investigating extensions 
to the methodology that will allow its use on prokaryotes to recognize and to predict 
promoters. 
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Abstract. Understanding biochemical pathways is one of the big chal-
lenges of the field of molecular biology nowadays. Computer science can
contribute in this area in a variety of ways. One of them is providing
formalisms and tools to simulate and check properties of pathways. One
formalism that is well known and suited for modeling concurrent and dis-
tributed systems is Milner’s Calculus of Communicating Systems (CCS).
CCS is a process algebra and there are many tools that support modeling
and automatic verification of properties of systems modeled in terms of
CCS processes. This paper describes the regulation of the lactose operon
using CCS. We validate our formal model by automatic checking a series
of properties that are known for the regulation of the lactose. Thus, we
show the viability of using process algebras to model and reason about
biochemical networks.

1 Introduction

Biochemical pathways are one of the most studied topics in molecular biology.
The behavior of cells is governed and coordinated by biochemical networks that
translate external cues (hormones, growth factors, substances) into adequate bi-
ological responses such as cell proliferation, specialization and metabolic control.
Metabolic and regulatory pathways are two examples of biochemical networks.
However, it is very time consuming and expensive to make laboratory exper-
iments to understand how a biochemical pathway works. A better approach
would be to simulate these systems using computers, and only make laboratory
experiments when the simulations give hints that some expected behavior could
occur. The simulation of these networks can answer, for example, whether the
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concentration of some components have increased inside the cell when the cell is
put in a glucose-rich environment. To simulate and discover properties of these
networks in silico, formal models are needed [1]. The most used model to simu-
late biochemical pathways is based on differential equations and its variants [2].
However, these equation-based models make it very difficult to verify properties
of such networks. Therefore, for many applications, hybrid, like XS-Systems [3],
and symbolic models, like Petri nets [4] and graphs [5], are preferred.

Bacteria have a simple general mechanism for coordinating the regulation of
genes encoding products that participate in a set of related processes: these genes
are clustered on the chromosome and are transcribed together. Many prokaryotic
mRNAs are polycistronic — multiple genes on a single transcript — and the
single promoter that initiates transcription of the cluster is the site of regulation
for expression of all the genes in the cluster. The gene cluster and promoter, plus
additional sequences that function together in regulation, are called an operon
[6]. Many of the principles of prokaryotic gene expression were first defined by
studies of lactose metabolism in E. coli, which can use lactose as its sole carbon
source. In 1961, Jacob and Monod published a paper that described how two
adjacent genes involved in lactose metabolism were coordinately regulated by
a genetic element located at one end of the gene cluster [7]. The genes were
those for β-galactosidase, which cleaves lactose to galactose and glucose, and
galactoside permease, which transports lactose into the cell. The terms “operon”
and “operator” were first introduced in this paper. With the operon model, gene
regulation could, for the first time, be considered in molecular terms [6]. In
this paper we will focus our modeling in regulation of lactose operon. Besides
modeling, we show that our model is a faithful representation of the real system
by using model checking techniques (we prove that crucial properties of the real
system are satisfied by the formal model).

Recent work by Regev, Silverman and Shapiro suggests that process algebras,
like CCS and π-calculus, may become valuable tools in modeling and simulation
of biological systems where the interaction and mobility are important features
[8]. The field may have an important impact in understanding how biological
systems work, giving at the same time a way to describe, manipulate, and analyze
them. Ciobanu, Ciubotariu and Tanasă developed a π-calculus model for Albers-
Post mechanism to ion (Na+ or K+) transport across membrane [9] and Yildirim
and Mackey proposed nonlinear differential delay equations to model regulation
in the lactose operon and made comparisons with experimental data [10]. A
recent work of Chabrier-Rivier, Chiaverini, Danos, Fages and Schächter proposed
a formal counterpart of Kohn’s compilation on the mammalian cell-cycle control
and the use of the Computation Tree Logic (CTL) as a query language for
biomolecular networks [11].

Our contribution in this paper is the usage of a process algebra (CCS) associated
to a temporal logic (CTL) to analyse the expected behavior of a biological system.
To the best of our knowledge it is the first time that a process algebra is used to
make qualitative inferences of a biological system, instead of simulations as in [8].
We point out that our approach isn’t quantitative, but it complements this one.
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This paper is structured as follows: after a short introduction to CCS (sec-
tion 2) and to the mechanism of regulation of lactose operon (section 3), we
present our model (section 4) and show that it is faithful (section 5). Finally, in
section 6 we relate our work to previous ones, make some conclusions and show
our future work directions.

2 Calculus of Communicating Systems

The Calculus of Communicating Systems (CCS) [12] is a mathematical formal-
ism designed to describe and analyze the behavior of different systems running
concurrently. CCS is a process algebra, where all components of the system can
be viewed as processes that can interact via message-passing. This interaction
is modeled as synchronized communication. A CCS process can be viewed as a
black box, which may have a name and has a process interface. This interface de-
scribes the channel set that this process can use to interact with other processes
in its environment. Each of the channels may be either an input or an output
channel. The behavior of a process is given by the actions it can perform. These
actions can occur sequentially or in parallel, and there may be non-deterministic
choices of which actions shall occur.

For example, the interface for a process named CM (for Coffee Machine) is
given by coin (input) and coffee (output) channels. This process may interact
with its environment via these channels. Processes that want to interact with
CM must have at least one of the complement channels, that is, coin or coffee.

2.1 Syntax and Semantics of CCS

We present a subset of the CCS language that we use in this paper. The most
basic process is the process 0, that performs no action whatsoever. Another
basic construction in CCS is action prefixing, that describes the execution of an
action after other (sequential behavior). For example, the process coin.coffee.0
performs an input action in the coin channel, thereafter performs an output
action in coffee channel and finally does not perform anything. We can introduce
a name for the previous process, and use this name in other process descriptions:
CM

def= coin.coffee.CM, where the process CM performs coin and coffee actions,
and then behaves like CM again.

A process can choose the action that will perform among several actions (non-
deterministic behavior) and this is described by operator +. In order to describe a
coffee or tea vending machine we can use this operator: CTM

def= coin.(coffee.CTM
+tea.CTM), where, after performing coin action, it can perform either the coffee
or the tea actions.

We can describe the behavior of a student that gets some coffee from a vend-
ing machine: S

def= study.coin.coffee.S. The student can only get a coffee if he inter-
acts with CM. In order to describe systems consisting of two or more processes
running at the same time (parallel behavior), and possibly interacting (syn-
chronizing) with each other, CCS offers the parallel composition operation |. The
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expression CM|S describes the system where the CM and the S processes are run-
ning in parallel. They can interact through their complementary channels named
coin and coffee. The S and CM processes have the possibility to communicate in
the parallel composition CM|S, but we do not require that they must communi-
cate with each other. Both processes could use their complementary channels to
communicate with other processes in their environment. We can avoid the com-
munication with these other processes through coin and coffee channels using
the restriction operator \, whose aim is to limit the scope of channel names. For
instance, using the operation \{coin, coffee}, we hide the coin and coffee channels
from the environment of CM and S processes: (CM|S)\{coin, coffee}.

During the execution of a CCS process, each time an action is performed,
the state is changed. This is called transition. The behavior of a CCS process is
given by a set of computations that this process can carry out. A computation of
a process is a sequence of transitions. A transition is described by an in-state, an
out-state and a label α. The in-state (out-state) is the process state before (after)
performing an action. The α label describes the action that was performed and
can be an output action: a; an input action: a; or a synchronization action: τ ,
where a is a channel. The synchronization actions represent internals executions
and are not visible to the environment.

3 Regulation of Lactose Operon

The lactose operon contains three genes related to lactose metabolism. The lac Z,
Y and A genes encode β-galactosidase, galactoside permease and thiogalactoside
transacetylase, respectively. β-galactosidase converts lactose to galactose and
glucose or, by transglycosylation, to allolactose. Galactoside permease transports
lactose into the cell and thiogalactoside transacetylase appears to modify toxic
galactosides to facilitate their removal from the cell.

In the absence of lactose, the lac operon genes are repressed — in fact, they
are transcribed at a basal level. This negative regulation is done by a molecule
called Lac repressor, which binds to some sites near the start of the operon,
blocking the activity of RNA polymerase. These sites are called operators. The
operator to which the repressor binds most tightly is named O1. The lac operon
has two secondary binding sites for the Lac repressor: O2 and O3. To repress the
operon, the Lac repressor binds to both the main operator and one of the two
secondary sites.

When cells are provided with lactose, the lac operon is induced. An inducer
(signal) molecule binds to a specific site on the Lac repressor, causing a confor-
mational change that results in dissociation of the repressor from the operators.
The inducer in the lac operon system is allolactose, an isomer of lactose. When
unrepressed, transcription of lac genes is increased, but not at its higher level.

Other factors besides lactose affect the expression of the lac genes, such as the
availability of glucose — the preferred energy source of bacteria. Other sugars
can serve as the main or sole nutrient, but extra steps are required to prepare
them for entry into glycolysis, necessitating the synthesis of additional enzymes.
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Clearly, expressing the genes for proteins that metabolize sugars such as lactose
is wasteful when glucose is abundant.

The lac operon deals with it through a positive regulation. A regulation mech-
anism known as catabolite repression restricts expression of the genes required
for catabolism of lactose in the presence of glucose, even when this secondary
sugar are also present. The effect of glucose is mediated by cAMP, as a coac-
tivator, and an activator protein known as cAMP receptor protein, or CRP
(sometimes it is called CAP, for catabolite gene activator protein). CRP has
binding sites for DNA and cAMP. When glucose is absent, CRP-cAMP binds to
a site near the lac promoter and stimulates RNA transcription. CRP-cAMP is
therefore a positive regulatory element responsive to glucose levels, whereas the
Lac repressor is a negative regulatory element responsive to lactose. The two act
in concert. CRP-cAMP has little effect on the lac operon when the Lac repressor
is blocking transcription, and dissociation of the repressor from the lac operator
has little effect on transcription of the lac operon unless CRP-cAMP is present
to facilitate transcription; when CRP is not bound, the wild-type lac promoter
is a relatively weak promoter.

The effect of glucose on CRP is mediated by the cAMP interaction. CRP
binds to DNA most avidly when cAMP concentrations are high. In the presence
of glucose, the synthesis of cAMP is inhibited and efflux of cAMP from the
cell is stimulated. As cAMP declines, CRP binding to DNA declines, thereby
decreasing the expression of the lac operon. Strong induction of the lac operon
therefore requires both lactose (to inactivate the Lac repressor) and a lowered
concentration of glucose (to trigger an increase in cAMP and increase binding
of cAMP to CRP).

There are also another level of regulation called inducer exclusion. The key
molecular component in this exclusion is the PTS transport system, a complex of
proteins in the bacterial membrane, which phosphorylates and transports sugars
into the cell. One of the proteins of this complex (IIAGlc) becomes dephospho-
rylated as a result of glucose transport. It then binds to galactoside permease
and prevents it from importing lactose into the cell [13].

Now we can specify some known properties of lactose operon regulation to
be verified in our formal model of the system — shown in Fig. 1.

4 Modeling Regulation of Lactose Operon

The cellular concentration of a protein is determined by a delicate balance of at
least seven activities, each having several potential points of regulation:

1. Synthesis of the primary RNA transcript (transcription);
2. Posttranscriptional modification of mRNA;
3. Messenger RNA degradation;
4. Protein synthesis (translation);
5. Posttranslational modification of proteins;
6. Protein targeting and transport;
7. Protein degradation.
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A ) When glucose concentration is high, will cAMP concentration be low? (yes)
B ) When glucose concentration is low, will cAMP concentration be high? (yes)
C ) Can cAMP bind to CRP? (yes)
D) When cAMP concentration is low, will it bind to CRP? (no)
E ) When cAMP concentration is high, will it bind to CRP? (yes)
F ) Can cAMP-CRP complex bind to CRP site? (yes)
G) When cAMP-CRP complex binds to CRP site, will there be an activation of

lac operon? (yes)
H) Will external lactose interact with galactoside permease? (yes)
I ) Will external lactose enter the cell? (yes)
J ) Will intracellular lactose react with β-galactosidase? (yes)
K) Can allolactose only be a product of a reaction mediated by β-galactosidase?

(yes)
L ) Can allolactose be produced when lactose is available? (yes)
M) Will allolactose bind to Lac repressor? (yes)
N) Will lac operon be unrepressed when allolactose is bound to Lac repressor?

(yes)
O) Can lac repressor bind to operator 1? (yes)
P ) Can lac repressor unbind operator 1? (yes)
Q) Can lac repressor bind to operator 2? (yes)
R ) Can lac repressor unbind operator 2? (yes)
S ) Can lac repressor bind to operator 3? (yes)
T ) Can lac repressor unbind operator 3? (yes)
U) Will lac repressor never be bound to operator 2 and 3 simultaneously? (yes)
V) If cAMP-CRP complex is bound to CRP site and lactose operators are free,

will the concentration of β-galactosidase increase? (yes)
W) Can glucose only be a product of a reaction mediated by β-galactosidase? (yes)
X) After β-galactosidase concentration is increased, will be possible an increase

in glucose concentration? (yes)
Y) After glucose concentration is increased, will be possible an decrease in β-

galactosidase concentration? (yes)

Fig. 1. Known Properties of Lactose Operon Regulation

Our model focuses on the regulation of transcription initiation of lac operon.
We don’t include the inducer exclusion in our model to avoid a great number of
processes related to glucose transport — which isn’t our object of study here.
Concerning this we have made some adaptations in the model to abstract some
activities that aren’t (or aren’t known to be) directly related to lac regulation,
like RNA polymerase activity, decrease of glucose level by cellular activity, pro-
duction of galactose by metabolism of lactose mediated by β-galactosidase and
presence of thiogalactoside transacetylase. Our model of the system is shown in
Fig. 2 and Fig. 3.

The modeling uses channel synchronization via lowercase names (silent ac-
tion) to model relevant biological events and, right after it, message sending
(output action) to allow the analysis of system behavior using model checking
tools — we need to have output actions (uppercase names) that are observable
outside the system to verify properties.
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1) System
def
= (Lactose out|Galactoside permease|Lactose in none|

Allolactose none|Beta galactosidase low|Operator1|
Operator2|Operator3|Lac repressor off|CRP site|CRP off|
Promoter iu|C AMP low|Glucose high)\{elac, ilac, rbeta,
iallo, ibeta, iglu, dbeta, ballo, bo1, bo2, rep, bo3, ubo1,
ubo23, act, urep, iact, bs, ubs, bc, ubc, lev, low, high}

2) Lactose out
def
= elac.ilac.ILAC.Lactose out

3) Galactoside permease
def
= elac.ELAC.Galactoside permease

4) Lactose in none
def
= ilac.Lactose in low

5) Lactose in low
def
= ilac.(Lactose in low + Lactose in high)

+rbeta.(Lactose in low + Lactose in none)

6) Lactose in high
def
= rbeta.(Lactose in low + Lactose in high)

7) Beta galactosidase low
def
= rbeta.RBETA.iallo.IALLO.Beta galactosidase low

+ibeta.IBETA.Beta galactosidase high

8) Beta galactosidase high
def
= rbeta.RBETA.iglu.IGLU.Beta galactosidase high

+dbeta.DBETA.Beta galactosidase low

9) Allolactose none
def
= iallo.Allolactose low

10) Allolactose low
def
= iallo.Allolactose low + ballo.Allolactose none

11) Lac repressor off
def
= bo1.BO1.(bo2.BO2.rep.REP.Lac repressor on

+bo3.BO3.rep.REP.Lac repressor on)

12) Lac repressor on
def
= ballo.BALLO.ubo1.ubo23.urep.UREP.Lac repressor off

Fig. 2. CCS Specification of Lactose Operon Regulation (Part 1)

Sometimes we also need a qualitative measure of substance concentration
(or activity) to choose the right behavior for it. So we can have more than one
process description to each substance in the model1. They are all related since
all descriptions can be reached by some channel synchronization.

Our main process is called System (Fig. 2). It contains all relevant processes
to lac regulation running in parallel. The channel names listed in its descrip-
tion (lowercase names) are restricted to the processes inside it. We start our
system with lactose outside the cell, no intracellular lactose and allolactose, a
few galactoside permease and β-galactosidase enzymes, high glucose level, low
cAMP concentration, all regulatory sites for lac operon released and some CRP
and Lac repressor proteins2.

Lactose can be outside or inside cell in our model. For external lactose (Fig. 2)
we have the process Lactose out, which can interact with permease (elac channel)
and after that can enter the cell (ilac channel). Intracellular lactose are modeled
using three qualitative levels: none, low and high (process descriptions 4 to 6 in
Fig. 2). When lactose is available inside cell it can react with β-galactosidase

1 Experimental results available in [13] were used to choose the number of process
descriptions to each substance

2 Process are all qualitative, that is, one process doesn’t means one unit of a substance.
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13) Operator1
def
= bo1.ubo1.UBO1.Operator1

14) Operator2
def
= bo2.ubo23.UBO2.Operator2

15) Operator3
def
= bo3.ubo23.UBO3.Operator3

16) Promoter iu
def
= rep.Promoter ir + act.ibeta.Promoter au

17) Promoter ir
def
= urep.Promoter iu + act.Promoter ar

18) Promoter au
def
= rep.dbeta.Promoter ar + iact.dbeta.Promoter iu

19) Promoter ar
def
= urep.ibeta.Promoter au + iact.Promoter ir

20) CRP site
def
= bs.ubs.CRP site

21) CRP off
def
= bc.bs.BS.act.ACT.CRP on

22) CRP on
def
= ubc.ubs.UBS.iact.IACT.CRP off

23) C AMP low
def
= lev.(low.L to H.bc.BC.C AMP high + high.C AMP low)

24) C AMP high
def
= lev.(low.C AMP high

+high.H to L.ubc.UBC.C AMP low)

25) Glucose high
def
= iglu.Glucose high + lev.high.Glucose high

+DGLU.Glucose low

26) Glucose low
def
= iglu.(Glucose low + GLU L to H.Glucose high)

+lev.low.Glucose low

Fig. 3. CCS Specification of Lactose Operon Regulation (Part 2)

enzyme (rbeta channel) and its level can decrease. While there isn’t high concen-
tration of lactose, it can enter the cell (ilac channel) and its level can increase.

Galactoside permease (Fig. 2) process just allows the entrance of lactose in the
cell (elac channel). The activation of lac operon doesn’t affect it in our model
and, therefore, we don’t use concentration levels for it because the only change
is in the rate of lactose entering the cell at a given time.

β-galactosidase (processes 7 and 8 in Fig. 2) has two levels: low and high,
which are affected by activation and repression of lac operon. From low to high
concentration we have ibeta channel and from high to low level dbeta chan-
nel. When reacting with lactose (rbeta), this enzyme, at low level, can produce
allolactose (iallo) or, at high level, can produce glucose (iglu) and galactose3.
Since galactose doesn’t participate in lac regulation we don’t include it in our
model.

Allolactose (processes 9 and 10 in Fig. 2) can be present at low concentration
in the cell or can be absent. When absent, the only action the process can perform
is its increase (iallo). When present, besides its production, it can bind to Lac
repressor (ballo). After binding, its concentration will reduce.

Lac repressor can be bound (on) or unbound (off) to operators (processes 11
and 12 in Fig. 2). When unbound, it can bind to O1 (bo1) and either O2 (bo2) or
O3 (bo3). After that, the lac promoter will be repressed (rep). When allolactose

3 We have restricted reaction products at low and high levels in our model because
we want to include a preferential product according to enzyme level.
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binds to Lac repressor (ballo), it unbinds the operators (ubo1 and ubo23) and
unrepresses the promoter (urep).

All operator sites (processes 13, 14 and 15 in Fig. 3) can only bind to Lac
repressor (bo1, bo2 and bo3) and after that can only unbind from it (ubo1 and
ubo23).

The lac promoter has four states: iu for inactivated and unrepressed, ir for in-
activated and repressed, au for activated and unrepressed and ar for activated and
repressed (processes 16, 17, 18 and 19 in Fig. 3, respectively). These processes
can change the concentration of β-galactosidase from low to high (ibeta) after it
is activated (act) and unrepressed (urep) and from high to low (dbeta) after it is
inactivated (iact) or repressed (rep)4. The ibeta synchronization abstracts several
biological events to one — all transcription and translation steps between operon
activation and β-galactosidase production. We don’t increase all lac-related pro-
teins concentrations to keep only relevant information in our model.

CRP site (Fig. 3) process can only bind to CRP-cAMP complex (bs) and after
that can unbind from it (ubs).

CRP can be free in the cell (process 21 in Fig. 3) or bound at CRP site
(process 22 in Fig. 3). When free, it can bind to cAMP (bc). After that, it
binds to CRP site (bs) and activates the lac promoter (act). When bound, it can
unbind cAMP (ubc) and, after that, it unbinds CRP site (ubs) and inactivates
the promoter (iact).

We can have low or high cAMP levels (processes 23 and 24 in Fig. 3). Changes
in cAMP level depends on the glucose concentration5. So, our cAMP processes
always ask glucose its level (lev). According to the answer (low or high), it can
change its concentration. If its level is raised (L to H), cAMP binds to CRP (bc)
to start activation of lac operon. If its level is reduced (H to L), cAMP unbinds
CRP (ubc) and deactivates lac operon.

Glucose concentration can be at high or low levels (processes 25 and 26 in
Fig. 3). Glucose can have an increase in its concentration via β-galactosidase
mediated reaction (iglu) or can be asked for its level by cAMP process (lev fol-
lowed by high or low). Glucose level can be increased (GLU L to H) or decreased
(DGLU). We signal these changes in glucose concentration to facilitate the ver-
ification of some properties related to glucose influence in lac regulation. The
decrease of glucose concentration without any apparent reason in process 25 oc-
curs to avoid the usage of more processes in our model for consuming glucose.
Instead of it, we abstract the consumption of energy using the DGLU channel.

5 Properties Verification of the System

The approach we use to verification of properties of our system is called model
checking. This was done using the tool Concurrency Workbench of the New

4 In fact, we have intermediary levels of transcription (from basal to highest), but for
the sake of simplicity we model only basal rate — low — and highest rate — high.

5 How glucose level affects cAMP level is not entirely known yet [13].
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Century [14]. In this approach, we describe the system using CCS (specification
language) and the properties using temporal logic.

A temporal logic is an extension of regular predicate logic with modalities
and enduring capabilities. This logic gives us the potential to reason about prop-
erties for different computations at the same time, not just properties for one
computation. Moreover, we can describe properties like “the property is always
possible” or “the action a will eventually happen”, that is, valid for several states
of the computations.

We validated our formal model by checking the properties in Fig. 1 that are
known for the regulation of the lactose. We described these properties using a
logic called Computation Tree Logic (CTL) [15], checked them and the obtained
results agreed with the known answers. Thus, we showed the viability of using
process algebras to model and reason about biochemical networks.

In Fig. 4 some selected properties are shown. The remaining properties were
omitted because their formulae are similar to one of those depicted in Fig. 4.

Each CTL operator has a meaning that can translated into an English sen-
tence. The illustrated formulae in Fig. 4 can be translated as follows:

A) Exists one state at one computation where, between GLU L to H and DGLU,
occurs H to L;

C) Exists one state at one computation where BC will occur;
D) It is similar to A. We selected this property because its result is different

from A result;
K) Exists one state at one computation where IALLO, followed (preceded) or not

by silent actions (τ), occurs after RBETA and does not exist one computation
where IALLO occurs before RBETA;

L) Exists one state at one computation where IALLO, followed (preceded) or
not by silent actions (τ), occurs after ILAC;

U) For all states at all computations, BO2 and BO3 do not occur one after
another and, at some time, they occur between BO1 and UBO1.

When we checked our model we were faced to the state explosion problem,
where the automata related to the model description have a great number of
states. We dealt this problem by adapting our model to each property. First

A) EF(〈GLU L to H〉〈〈H to L〉〉〈DGLU〉tt) (yes)

C) EF〈BC〉tt (yes)

D) EF(〈H to L〉〈〈BC〉〉〈L to H〉tt) (no)

K) A(¬〈IALLO〉tt W 〈RBETA〉tt) ∧ EF(〈RBETA〉〈〈IALLO〉〉tt) (yes)

L) EF(〈ILAC〉〈〈IALLO〉〉tt) (yes)

U) AG((¬〈BO2〉〈〈BO3〉〉tt) ∧ (¬〈BO3〉〈〈BO2〉〉tt))∧
EF(〈BO1〉〈〈BO2〉〉〈UBO1〉tt)∧
EF(〈BO1〉〈〈BO3〉〉〈UBO1〉tt) (yes)

Fig. 4. CTL Formulae
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of all, we got rid of every non-restricted channel from the model in Fig. 2 and
Fig. 3. Thereafter, for each property we included only the non-restricted chan-
nels related to it. For instance, the model used to property A contains only
GLU L to H, H to L and DGLU channels, exactly at the same places depicted in
our model.

6 Conclusion

In this paper we have shown a model of lactose operon regulation using CCS. So,
we obtained a formal description for this regulatory system that can be analyzed
to verify system properties using model checking techniques and tools. We verify
the validity of our model by checking known properties of lac regulation and,
because of it, we gain confidence to verify other properties of biological systems.

Yildirim and Mckey followed this way to validate their model — nonlinear
differential delay equations. But they have found much more data because they
have a quantitative model. This kind of model only allows simulation and the
discovery of some steady states in the system. They relate that no full stability
analysis of steady states was possible in their model[10]. When we use qualitative
models, we lose some accuracy to make possible the analysis of system structure.

This was done by Ciobanu, Ciubotariu and Tanasă for Albers-Post mecha-
nism to ion transport across membrane — Na pump. They used π-calculus, a
process algebra, to accomplish this. But they have made only deadlock6 checking
in their system[9].

When dealing with process algebra modeling we very often be faced to the
state explosion problem, where the automata related to the model description
have a great number of states. In our model we have to adapt the processes to
each verified property because of this problem — see section 5.

Chabrier-Rivier and colleagues have modeled Kohn’s compilation on the
mammalian cell-cycle control in a new modeling language[11]. They have used
CTL to check system properties related to metabolic pathways. But they don’t
have an automatic way to transform its own language in a formalism that have
available model checking tools.

To proceed our work, some future steps are the inclusion of other kinds of
interaction (such as metabolism) and information about where these interactions
occur in the cell. Besides, we want to make use of MONET database [16] to
translate biological data into CCS language (or another process algebra) in a
semi-automatic way. This task can be accomplished by user selection of some
data sets from MONET — up to now they have metabolic pathways available.
Regulatory and signaling pathways must be fulfilled to make possible the future
automation of this task.

A good model must take all relevant biological information into account, and
present results that are compatible with the ones reached in vitro. The main goal
of our work is to do analysis of biochemical processes. Using the CCS and CTL

6 A process deadlocks if its transition system has states with no successors.
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we may be able to verify some properties of biological systems, shedding light
on relevant questions of pathways, such as the possibilities of energy generation
given a certain substance in the cell.
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Abstract. One of the most important challenges for Bioinformatics is
the simulation of a single cell, even if we restrict ourselves to simple
models of the molecular networks responsible for the behavior of organ-
isms. The challenge involves not only the development of experimental
techniques to obtain kinetic parameters that characterize the myriad re-
actions occurring inside cells, but also computational approaches able
to simulate and test the complex models generated. These systems have
stochastic behavior; they can take different paths depending on environ-
mental conditions. We can describe them using stochastic models that
have a high computational cost, but the simulations can be performed
efficiently on distributed architectures like grids and clusters of com-
puters. In this work we describe an implementation of a computational
architecture to execute this kind of large scale simulation using a grid
infrastructure. We validate the proposed architecture using experiments
in order to estimate its performance.

1 Introduction

Bioinformatics has changed from a set of tools to store, manage, visualize and
make accessible biological data to a key part of the Biosciences, by developing
its own approach to understand the intricacies of life. This approach uses the-
oretical concepts originating from computer science, such as information and
computation, to make sense out of plethora of biological data.

One of the most important challenges in this scenario is the simulation of a
single cell, even if we restrict ourselves for simple models of its biochemical net-
works responsible for the behavior of organisms. The challenge involves not only
the development of experimental techniques to obtain kinetical parameters that
characterizes the myriad of reactions occurring inside cells, but also computa-
tional approaches able to simulate and test the complex models generated. Even
though we do not have yet a complete model for even the most simple organism,
we know that the computational cost will be high. Given the stochastic nature
of the models used in these problems, the algorithms involved can be classified
as embarrassing parallel and computer grids can be used efficiently.

In the last years we have witnessed many different approaches to investigate
sets of biochemical reactions including new algorithms [1], [2], [3], computational
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architectures [4], and generic frameworks such as SBW (http://www.sys-bio.
org) and Biospice (http://www.biospice.org). Here, we will not compare
these approaches, but instead we will present a new architecture and test its
performance.

In this article we describe a grid architecture to run large scale simulations of
molecular networks called YAMONES (Yet Another MOlecular NEtwork Sim-
ulator). The architecture explores intra and extra-node parallelism considering
specific properties of each node. The simulations use different algorithms, includ-
ing both deterministic ones based on the resolution of Differential Equations and
fully stochastic ones based on Gillespie algorithms [5].

This article is divided as follows: in section 2 we present essential concepts
about molecular networks, in section 3 we describe the algorithms implemented
on YAMONES, in section 4 we discuss the architecture of the system, on sec-
tion 5 we analyze the architecture performance and on section 6 we draw our
conclusions.

2 Molecular Network Models

When we consider an organism as a whole, its metabolism represents all the
chemical processes occurring inside its cells. When you consider a given sub-
stance, the metabolism is the chemical activity involving this substance on a
living organism, when we consider a specific cell the metabolism is the set of all
processes occurring in that cell.

The metabolism can make complex chemical conversions in a series of small
steps, each step (reaction) is catalyzed by a specific enzyme. The enzymes are
also metabolic products, but as catalysts they can be present in small quantities.

Chemical reactions are the canonical language of biological modeling. Con-
sider the reaction:

naA + nbB
k−→ ncC + ndD. (1)

In this example, na molecules of the chemical specie A react with nb molecules
of species B and they are transformed into nc molecules of species C and nd

molecules of species D. The terms on the left are called substrates and the terms
on the right are called products. Each reaction can contain an indefinite number
of substrates and products. k is the velocity at which the reaction occurs, and its
value depends on temperature and volume. The n values are called stoichiometric
coefficients.

2.1 Intracellular Viral Kinetics

A simple virus metabolic network model, like the one in Figure 1, was developed
to explore differences between the deterministic and stochastic model imple-
mentations [6]. The components studied were the viral nucleic acids and a viral
structural protein (struct). The viral nucleic acids were classified as genomic
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gen
k1−→ tem (2)

tem
k2−→ deg (3)

tem
k3−→ gen (4)

gen + struct
k4−→ virus (5)

tem
k5−→ struct (6)

struct
k6−→ sec (7)

Fig. 1. Model of viral replication cycle. The tem is only used catalytically in the syn-
thesis of gen and struct. The catalytic reactions are represented by dashed lines

(gen) or template (tem). The genome, whether DNA, positive-strand RNA,
negative-strand RNA, or some other variant, is the vehicle which transports
viral information.

The genome can undergo one of two fates. The first possibility is that it may
be modified, whether through integration into the host genome or by some other
type of processing (e.g. reverse transcription), to form a template. The template
refers to the form of the nucleic acid that is transcribed and is involved on the
synthesis of the viral components. Alternatively the genome may be packaged
within structural proteins to form progeny virus.

2.2 λ Phage Model

The λ phage is a virus that infects Escherichia coli cells, the infected cell has two
fates: lyse the virus replicates inside the cell and dissolves the cell, freeing about
100 new virus on cellular environment or lysogeny in this case the virus genetic
material is incorporated in the cell genome, and this material replicate each
time the cell replicates. A lysogeny protects the cell against future infections.
Under certain conditions a lysogeny can be induced, that is, the virus DNA can
be removed from the host DNA and the virus replicate and dissolve the host
cell [7].

The λ phage has been extensively studied since it is one of the simplest
organism with different final states, to which state the system will evolve depends
on the level of infection but is essentially a random choice. These characteristics
make it a model organism to study the stochastic nature of gene regulation. Its
genome has been sequenced and details about its levels of gene expression are
known accurately [8], [9], [7] and [10].

Figure 2 shows the two DNA strands of λ phage. The RNA polymerase can
start transcription by binding to any of the promoters. Once transcription starts,
RNA polymerase walks through the DNA, each time the final position of a gene
is achieved a mRNA molecule is produced. When RNA polymerase arrives at a
terminator site, the molecule can leave the DNA with a certain probability. The
molecule velocity depends on the DNA position and on the presence or not of
the N protein bounded to it.
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Fig. 2. λ phage DNA and some of its genes and regulatory regions

3 Stochastic Simulation

The time evolution of coupled chemical reactions can be simulated using a
stochastic model. Consider the following set of reactions:

A + B
k1−→ C (8)

B + C
k2−→ D (9)

D + B
k3−→ A (10)

To determine the probability of occurrence of a reaction we denote each A
molecule as A1, A2, ..., A#A , each B molecule as B1, B2, ..., B#B , each C molecule
as C1, C2, ..., C#C and each D molecule as D1, D2, ...,D#D. In this way there are
(#A)×(#B) copies of reaction (8), (#B)×(#C) copies of (9) and (#D)×(#B)
copies of (10). The copies of reactions (1), (2), (3) have the same occurrence
probability since we assume that the chemical system is a homogeneous solu-
tion. In this approximation the state of the system is described by the number
of molecules of each specie, that is a discrete quantity that changes each time a
reaction occurs.

Gillespie [5] proposed two exact stochastic algorithms to simulate systems of r
coupled chemical reactions, called the Direct Method and First Reaction Method.
Knowing the state of the system, the algorithms determine randomly with the
correct probability distribution the next reaction that will occur and when it
will occur. The probability of occurrence of a trajectory is the one predicted
by the Master Chemical Equation, that is why the algorithms are called exact.
When dealing with cells we are in general interested on the behavior of cell
populations, in this case we will be interested on average values of the chemical
species.

The complexity of Gillespie Methods is O(rE) where r is the number of reac-
tions and E is the number of simulation events [9]. There are other methods that
could reduce substantially the computational cost but they are not exact. The
Hybrid Method proposed on [11] divides the reactions on two sets, one with the
fast reactions and the other with the slow ones. The fast reactions are evolved
using deterministic algorithms and are converted into ordinary differential equa-
tions, while the slow ones are investigated using stochastic models. The quality
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Fig. 3. YAMONES, modules and their interactions

of the approximation on this algorithm depends on a suitable partition criteria
that depends on the details of the simulation.

4 Computational Architecture

The YAMONES design divides the main simulation tasks into modules: a con-
figuration file parser (Parser), a simulation method computation (Simulation
algorithm), a simulation trace generation (Trace), thread management (Threads
Pool), random number generation (RNG) and simulation state management
(Simulation State). Figure 3 shows a schematic representation of the modules
and their interactions.

The simulator configuration file is in XML. The file is divided into three
parts, one with parameters for the simulation method, other specifying the bio-
chemical composites and the last describing the set of chemical reactions. The
hybrid method also requires the differential equations for the reactions. These
equations are loaded by a dynamic library and are generated automatically from
the configuration file.

Complex molecular network models usually have reactions with variable rate.
To deploy this feature is possible to specify the dynamic library name and a
function that calculate the variable rate in the reaction declaration at the XML
configuration file. Another feature of the simulator is the capability of running
trajectories in parallel with threads.

4.1 Grid

The Gillespie algorithm is a Monte Carlo algorithm and belongs to the bag
of tasks type, being an excellent application for computer clusters and grids
[12]. The realizations of a given simulation can be executed asynchronously,
the results of N independent trajectories can be consolidated as the result of a
single simulation with N×T realizations, where T is one independent trajectory,
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Fig. 4. Execution flow for a grid architecture

reducing the disk space for storing the results of the simulations. To aid in
consolidation our architecture implements the merger application that calculates
the average of each chemical specie at each time interval.

Figure 4 represents the execution flow of a simulation using YAMONES on
a grid architecture. The process is divided in the following steps: preparation of
simulation lots, computation of simulations and consolidation of results.

The software that creates the simulations lots is responsible for sending the
files to the grid, manage the automatic generation of seeds for the random num-
ber generators and periodically verify if the simulation has achieved the stop
criteria (predefined precision or number of realizations), if so it stops sending
new jobs to the grid, otherwise new jobs are submitted. This execution model
is robust to problems on grid nodes. If a node interrupts the simulation of a
trajectory, a new job is sent automatically to the grid.

The software which consolidates results also executes periodically, consoli-
dating new results and generating a new file containing the most recent partial
results. This file is also used by the software that generates the simulation or by
the user to analyze partial simulation results.

The proposed architecture could be implemented using several grid tools. But
because we don’t have any of them running in our infrastructure, we decided
otherwise to validate our proposal by implementing our own scripts in Python
and Bash languages. The grids machines can be accessed using Openssh services,
that furnishes a complete solution to transfer data and execute jobs on the
machines on our architecture. The scripts implement a basic loading balance
based on processor clocks. For example, if a node has a clock with frequency v
it will compute ntraj :

ntraj =
ttotal∑

vi
× v, (11)

where ttotal is the total number of trajectories and
∑

vi is the sum of the clock
frequencies of all machines on the grid.
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5 Performance Evaluation

5.1 Intra-node Parallelism

First performance test investigates the number of threads with the best cost-
benefit on bi-processed machines with hyperthreading. The target machine hard-
ware configuration is two 2.4 GHz Xeon processors with hyperthread. And soft-
ware configuration is GNU Linux with 2.6.9 kernel and 2.3.4 glibc.

The number of trajectories are divided equally between all available threads
and are computed concurrently. If the division is not exact the rest is also dis-
tributed equally between all threads, doing each thread compute the closest
number of trajectories possible of each other thread. For example, to calculate
6 trajectories with 3 threads each thread will process 2 trajectories, however if
is used 4 threads to compute the same 6 trajectories 2 threads will process 2
trajectories and the other 2 threads will process 1 trajectories each.

Figure 5-(a) presents the dependence of the simulation time on the number
of threads for a simulation of 50 trajectories of viral intracellular kinetics with
multiplicity of infection 5 using the first reaction method. The best performance
is obtained using two threads. The machines with hyperthreading have for each
physical processor another logical processor. So there are 4 possible execution
flows. Intra-node parallel processing using threads synchronizes when all threads
finish their jobs, this allow an efficient exploration of the parallelism.

Figure 5-(b) represents the dependence of the speed-up on the number of
threads. The highest value for the speed-up occurs for two threads and is
close to two. This result is interesting since we might expect a speed-up of at
least 2.6 for bi-processed machines using hyperthreading on Intel CPUs (Intel,
www.intel.com). Unfortunately the nature of our application, basically the ap-
plication just executes floating point operations, do not explore the parallel use
of the unused CPU resources.

Fig. 5. (a) Dependence of simulation time to calculate 50 trajectories of the viral
intracellular kinetics model on the number of threads on a machine with two processors
and hyperthreading. (b) Speed-up in the same situation
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5.2 Extra-Node Parallelism

Figure 6 depicted the simulations environment. The grid is composed of two
clusters, the first has five machines with two 2.4 GHz Xeon processors and hyper-
threading on all processors. They use GNU Linux with kernel 2.6.9, glibc 2.3.4
and Openssh services. The machines are connected by a Gigabit switch. The
other cluster has six machines with 1.8 GHz Pentium 4 processor, GNU Linux
with kernel 2.6.8, glibc 2.3.4 and Openssh services. The machines are connected
by a 100 Megabit switch.

Fig. 6. Grid environment of two clusters; one with five 2.4 GHz two-processor machines
and the other with six 1.8 GHz machines

Figure 7 we compare the total simulation time dependence with the number
of simulated trajectories on the grid. On this experiment we simulate trajectories
for the intracellular infection model with multiplicity of infection 1 using the first
reaction method. We can observe that the total simulation time increases linearly
with the number of simulated trajectories. The sequential simulation time for
100 trajectories on a 2.4 GHz Xeon processor is 9.8 minutes with a standard
deviation of 0.8 minutes, on the grid, the time is 1.31 minutes with a standard
deviation of 0.16 minutes. The grid speed-up is 7.5.

Fig. 7. Dependence of total simulation time on the number of trajectories, on a grid
with 11 machines
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5.3 Hybrid Method

Figure 8 compares the performance of hybrid and first reaction methods for
intracellular viral kinetics for different infection levels. Figures 8-(a) and 8-(b),
present, respectively, the performance of the hybrid and first reaction methods.

On both methods there is a monotonical increase of total simulation time
with the level of infection. We can observe that the hybrid method is 100 faster
than the first reaction method. This performance increase entails a marginal loss
of precision. Unfortunately these results are model dependent, and can not be
extrapolated to other models.

Fig. 8. Performance comparison of the hybrid (a) and first reaction method (b) using
the viral intracellular kinetics at different levels of infection. For each case we simulated
10 trajectories

5.4 λ Phage Model

We applied our architecture also to a realistic model, the λ phage infection model
proposed by Arkin on [8]. The description of this complex model, which involves
9000 reactions is beyond the scope of this article. For further details the reader
should see the related literature. To generate the list of reactions necessary to
describe the model we developed Python scripts.

Figure 9 presents the dependence of the simulation time with the level of
infection using the first reaction method, not including the initialization time.
The figure shows an almost linear increase on simulation time with the level of
infection. The simulations were executed on a 2.4 GHz Xeon processor.

The investigation of this model demands data with statistical significance,
we estimate that we need at least 1, 000 trajectories for each level of infection to
achieve this goal. Using this environment will be necessary 9 days to obtain a
single point, with level of infection 11. In such a case the use of a grid environment
is compulsory.
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Fig. 9. Simulation time for the λ phage model using the first reaction method

6 Conclusion

In this article we proposed an architecture for simulation of sets of coupled
chemical reactions called YAMONES. The performance of this architecture was
tested trough a series of experiments showing that we obtain suitable speed-ups
on the exploration of intra and extra-node parallelism.

The grid architecture was implemented using scripts written on Python and
Bash languages, we plan to extend the model and use some grid tool such as
OurGrid and Globus to make further improvements.
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Abstract. The enzymes of the shikimate pathway constitute an excel-
lent target for the design of new antibacterial agents. This pathway is
found in bacteria, fungi, plants and apicomplexan parasites but is absent
in mammals. Chorismate Synthase (CS) catalyzes the last step of this
pathway, the product of which is utilized in other enzymatic transfor-
mations like the biosynthesis of aromatic amino acids, folate, vitamin K
and ubiquinone. This reaction is the most unusual of the entire path-
way and is unique in nature. It converts EPSP to chorismate in the
presence of a reduced FMN cofactor. Structure prediction used the com-
parative protein structure modeling methodology. The three-dimensional
(3D) structure prediction of the enzyme was performed using the crys-
tal structure (PDB ID: 1QX0) of CS from Streptococcus pneumoniae as
template (≈ 42% identity), and the MODELLER6v2 package. Addition-
ally, in order to understand the possible binding modes of substrate and
cofactor to the enzyme EPSP and FMN, respectively, were geometrically
docked to CS. FMN binding to CS of M. tuberculosis (MTB) is similar
to that of the S. pneumoniae template despite the change of Asn251 in
S. pneumoniae to Gln256 in MTB. The longer side chain of Gln256 is
overlapping with the FMN cofactor and a small conformational change is
needed in order to properly accommodate this interaction. EPSP binding
mode is also very similar to that of the template with three hydrogen
bonds missing. This could be due to artifacts from the simple geometric
docking we performed. Refinement with energy-based docking algorithms
should relax the enzyme and substrates, thus promoting the expected
interactions between them. Understanding the structure of MTB CS to-
gether with its cofactor and substrate binding modes should facilitate
the search for inhibitors of this enzyme as alternative agents to treat
tuberculosis.
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1 Introduction

The shikimate pathway is the common way for the production of various prod-
ucts including folic acid, vitamin K, ubiquinone and the three aromatic amino
acids. In bacteria, fungi, plants and apicomplexan parasites, chorismate, the final
product of the shikimate pathway, is the branch point in the biosynthesis for all
these products that are essential for these species. The absence of the shikimate
pathway in all other species makes it an attractive target for the development
of new antibacterial agents [3, 16].

Chorismate Synthase, the seventh and final step of the shikimate pathway,
catalyses the conversion of 5-enolpyruvylshikimate 3-phosphate (EPSP) to cho-
rismate in the presence of a reduced flavin mononucleotide (FMN) as a cofactor
[12]. The reaction mechanism of the shikimate pathway has been studied ex-
tensively and revealed that the reaction of CS is unique in nature. The reaction
involves a 1,4 elimination of phosphate and the loss of a proton of the C-6 hydro-
gen. This consists in the formation of the second out of three necessary double
bonds to build an aromatic ring (Fig. 1). The enzyme activity requires a reduced
FMN molecule which is not consumed during the reaction [3, 11].

Fig. 1. Reaction catalyzed by Chorismate Synthase. The elimination of the 3-phosphate
and the loss of a proton in C-6 introducing a second double bound in the ring

The function of the reduced FMN in catalysis was extensively studied. The
most accepted mechanism suggests a direct role of reduced FMN in the elim-
ination reaction. FMN transfer the electron transiently to phosphate and the
substrate donates an electron to regenerate the FMN. This reaction does not
involve an overall change in the redox state [5, 12].

Recently, with the first high-resolution X-ray structure of CS from S. pneumo-
niae with the substrate and the cofactor in the oxidized form, [13] the structure
of CS from Saccharomyces cerevisiae [15], and the structure of CS from Heli-
cobacter pylori with the cofactor in the reduced form [1], studies on the binding
mode of substrate and cofactor in the active site has started.

How reduced FMN is obtained divides the CS into two classes, monofunc-
tional and bifunctional. Bifunctional CS has an intrinsic ability to reduce flavin
(specifically FMN) using NADPH. In monofunctional CS this catalytic activity is
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not present. The bifunctional enzyme is present in fungi and the monofunctional
form in plants and bacteria [12].

The active site of S. pneumoniae CS is very hydrophobic and extremely
basic, with six arginine and two histidine residues. The FMN cofactor is deeply
buried into the active site with EPSP blocking any possible exit. FMN makes
one hydrogen bond with EPSP and a few polar interactions with the protein. On
the other hand, EPSP makes several polar interactions and a few hydrophobic
contacts with the protein [13]. The two histidines are present in both classes of
CS and mutation of these residues to two alanines reduces the activity of both
bifunctional and monofuctional enzymes to 5% [8].

M. tuberculosis, the etiological agent of tuberculosis, is responsible for
widespread human morbidity and mortality. The development of new effective
chemotherapy should aid in the treatment and control of the disease [21].

Sequencing of the MTB genome has revealed a large number of individual
enzymes potentially useful in drug design [6], including CS. Understanding the
structure of MTB CS, together with its cofactor and substrate binding modes,
should facilitate the search for inhibitors of this enzyme as possible alternative
agents to treat tuberculosis.

In this work we present 3D structural models for CS from MTB and evaluate
their interactions with the substrate EPSP and the cofactor FMN by docking
simulations.

2 Materials and Methods

The starting point of homology modelling is the identification of proteins in the
Protein Data Bank (PDB) [4] that are related to the target sequence and then
select the templates. In this case, the structure prediction of CS from MTB was
based on 3D structures for the homologous S. pneumoniae CS protein (PDB ID:
1QXO) [13] found using Blastp [2].

The next step is the multiple sequence alignment comparisons. The objective
of this alignment is to improve the sensitivity of the search and to find the
regions with high similarity. Possible templates and target sequences alignments
were performed with ClustalW [18] and required a small gap, of four residues
(insertions and/or deletions).

The program MODELLER6v2 [19] was used to build the protein models, us-
ing the standard protocol for comparative protein structure modelling method-
ology [14]. The best model of each enzyme was evaluated and selected according
to their stereochemical quality analyzed with PROCHECK [9]. Validation of the
models 3D profiles was performed with VERIFY 3D [10].

The structures of EPSP and FMN were geometrically and manually docked
to the CS model of MTB using SwisPdbViewer [7].

The schematic diagrams of protein-ligand interactions of the best docking
results were performed with LIGPLOT [20]. All figures were prepared with Swis-
sPdbViewer [7].
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3 Results

3.1 Homology Modelling

Corismate Synthase is a protein of about 360 to 400 amino acid residues, ex-
cept in apicomplexan parasites, where it has about 500 amino acids. It has a
high degree of sequence conservation among species. The protein has three sig-
nature patterns (Fig. 2) from conserved regions rich in basic residues (mostly
arginines) [17].

In the search for templates, CS from Aquifex aeolicus (PDB ID: 1Q1L) had
the best score. However, some residues were missing from the crystal structure
which then had to be discarded. Therefore, the second highest score structure,

                     |         |         |         |         |         |         |
TARGET       MLRWITAGESHGRALVAVVEGMVAGVHVTSADIADQLARRRLGYGRGARMTFERDAVTVLSGIRHGSTLG
TEMPLATE     −MRYLTAGESHGPRLTAIIEGIPAGLPLTAEDINEDLRRRQGGYGRGGRMKIENDQVVFTSGVRHGKTTG
             :*::*******  *.*::**: **: :*: ** ::* **: *****.**.:*.* *.. **:***.* *

                     |         |         |         |         |         |         |
TARGET       GPIAIEIGNTEWPKWETVMAADPVDPAELADVARNAPLTRPRPGHADYAGMLKYGFDDARPVLERASARE
TEMPLATE     APITMDVINKDHQKWLDIMSAEDIEDRLKSKRK−−−−ITHPRPGHADLVGGIKYRFDDLRNSLERSSARE

                   150       160       170       180       190       200       210
                     |         |         |         |         |         |         |
TARGET       TAARVAAGTVARAFLRQALGVEVLSHVISIGASAPYEGPPPRAEDLPAIDASPVRAYDKAAEADMIAQIE

                   220       230       240       250       260       270       280
                     |         |         |         |         |         |         |
TARGET       AAKKDGDTLGGVVEAVALGLPVGLGSFTSGDHRLDSQLAAAVMGIQAIKGVEIGDGFQTARRRGSRAHDE
TEMPLATE     QIKRDGDTIGGVVETVVGGVPVGLGSYVQWDRKLDARLAQAVVSINAFKGVEFGLGFEAGYRKGSQVMDE
              *:****:*****:*. *:******:.. *::**::** **:.*:*:****:* **::. *:**:. **

                   290       300       310       320       330       340       350
                     |         |         |         |         |         |         |
TARGET       MYPG−PDGVVRSTNRAGGLEGGMTNGQPLRVRAAMKPISTVPRALATVDLATGDEAVAIHQRSDVCAVPA
TEMPLATE     ILWSKEDGYTRRTNNLGGFEGGMTNGQPIVVRGVMKPIPTLYKPLMSVDIETHEPYKATVERSDPTALPA
            :  .  ** .* **. **:*********: **..****.*: :.* :**: * :   *  :***  *:**

                   360       370       380       390       400
                     |         |         |         |         |
TARGET       AGVVVETMVALVLARAALEKFGGDSLAETQRNIAAYQRSVADREAPAARVSG
TEMPLATE     AGMVMEAVVATVLAQEILEKFSSDNLEELKEAVAKHRDYTKNY−−−−−−−−−
            **:*:*::** ***:  ****..*.* * :. :* ::  . :                                 

Identity (*) : 172 is 42.79 %
Strongly similar (:) : 77 is 19.15 %
Weakly similar (.) : 33 is 8.21 %
Different : 120 is 29.85 %

            .**:::: *.:  **  :*:*: ::    :.      :*:******* .* :** *** *  ***:****

TEMPLATE     TTMRVAVGAVAKRLLAELDMEIANHVVVFGGKEIDVPENLTVAEIKQRAAQSEVSIVNQEREQEIKDYID
            *: ***.*:**: :* :     .   *:  * .       . **       * *   ::  * ::   *:

                    10        20        30        40        50        60        70

                    80        90       100       110       120       130       140

Fig. 2. ClustalW pairwise sequence alignment between the target (M. tuberculo-
sis CS) and template (1QXO). The amino acid residues of the CS signatures (G-
[DES]-S-H-[GC]-x(2)-[LIVM]-[GTIV]-x-[LIVT]-[LIV]-[DEST]-[GH]-x-[PV], [GE]-x(2)-
S-[AG]-R-x-[ST]-x(3)-[VT]-x(2)-[GA]-[STAVY]-[LIVMF], R-[SHF]-D-[PSV]-[CSAVT]-
x(4)-[SGAIVM]-x-[IVGSTAPM]-[LIVM]-x-E-[STAHNCG]-[LIVMA]) are underlined
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Plot Results
Residues in most favoured regions (red) 318 94.9%
Residues in additional allowed regions (dark yellow) 15 4.5%
Residues in generously allowed regions (light yellow) 1 0.3%
Residues in disallowed regions (white) 1 0.3%
Number of non-glycine and non-proline residues 335 100.0%
Number of end-residues (excl. Gly and Pro) 1
Number of glycine residues (shown as triangles) 43
Number of proline residues 22
Total number of residues 401

Fig. 3. Ramachandran plot for the best model of MTB CS

CS from S. pneumoniae (PDB ID: 1QX0), was used as template to model the
3D structure of MTB CS. 1QX0 turned to be a very attractive template for its
structure contained not only the enzyme, but the cofactor FMN in the oxidized
form and the EPSP substrate. In addition, as in MTB, CS from S. pneumoniae
is monofunctional.

Fig. 2 shows a pairwise alignment between the target and template sequences,
whose identity is over 40%, well above the 30% limit usually required for com-
parative protein structure modelling [14].

Ten models of the enzyme were built. They were evaluated by PROCHECK
[9] and VERIFY 3D [10] in order to choose the best one. Out of 335 non-
glycine and non-proline residues, 318 or 94,9%, were located in the most favored
regions of the Ramachandran plot (Fig. 3). The root mean-square (RMS) of
planar atoms from best-fit plane are less than 0.02 for rings and 0.01 otherwise.
The PROCHECK results are given in Table 1. The best model of MTB CS is
illustrated in Fig. 4.

3.2 Docking Studies

The cofactor FMN and the EPSP substrate were geometrically and manually
docked into the active site of MTB CS. Based on the assumption that the binding
is similar to S. pneumoniae, we were able to manually place FMN and EPSP in
their respective binding sites [13].
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Table 1. Quality of main-chain and side-chain parameters of modelled MTB CS. The
model is verified at 2 Å resolution

Comparison Values

Number of
Number of Parameter Typical bandwidths

Stereochemical parameters data pts value value Band width from mean

Stereochemistry of main-chain
%-tage residues in A, B, L 335 94.9 83.8 10.0 1.1
Omega anglest dev 400 3.8 6.0 3.0 -0.7
Bad contacts 100 residues 3 0.7 4.2 10.0 -0.3
Zeta angle st dev 358 1.3 3.1 1.6 -1.1
H-bond energy st dev 238 0.7 0.8 0.2 -0.5
Overall G-factor 401 0.0 -0.4 0.3 1.2
Stereochemistry of side-chain
Chi-1 gauche minus st dev 56 5.1 18.1 6.5 -2.0
Chi-1 trans st dev 89 9.1 19.0 5.3 -1.9
Chi-1 gauche plus st dev 121 6.2 17.5 4.9 -2.3
Chi-1 pooled st dev 266 7.0 18.2 4.8 -2.3
Chi-2 trans st dev 72 11.8 20.4 5.0 -1.7

Fig. 4. Stereoview of M. tuberculosis CS three-dimensional structure (ribbon repre-
sentation) looking across the active site. The structure contains 9 α-helices (red) and
15 β-strands (yellow). The secondary structures making up the active site are colored
green

Thus, we have similar interactions except one missing contact to Gln256
which in S. pneumoniae corresponds to Asn251. The longer side chains of the
non-conserved Gln256 and the conserved Lys315 are too close to FMN and thus
need a conformational change to be properly accommodated.

All H bonds to FMN in S. pneumoniae, with exception of that involving
Thr315, are present in MTB, including the H bond with EPSP. The H bonds
to FMN involving Asn251 in S. pneumoniae were not reproduced in the MTB
model for its structural equivalent in MTB, Gln256, is far too close to the FMN
molecule. However, Gln256 makes a H bond with the FMN phosphate. Lys315 in
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Fig. 5. Ligplot representation of the FMN binding pattern to CS from MTB (Left,
Fmn 402) and S. pneumoniae (Right, Fmn 4001)

Fig. 6. Ligplot representation of the binding pattern of EPSP to MTB CS (Left, Eps
403) and S. pneumoniae (Right, Eps 5001)

M. tuberculosis made a H bond with O3 in the aliphatic portion of FMN which
was not present in S. pneumoniae. MTB has more hydrophobic contacts (six)
then the S. pneumoniae (four) (Fig. 5).

The H bonds to EPSP in MTB CS are also very similar to those found in
S. pneumoniae. Two H bonds, involving amino acids His11 and Arg139, were
missing. They correspond to His10 and Arg134, respectively, in the S. pneumo-
niae. Furthermore, while Arg45 makes two H bonds to EPS in S. pneumoniae, in
MTB, its equivalent, Arg46, makes only one H bond. The hydrophobic contacts
were very similar, only one in the S. pneumoniae (Arg48) and two in MTB,
Arg49 and Met50 (Fig. 6).
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Fig. 7. Molecular surface representation of MTB CS colored by amino acid type. Ap-
olar, gray; polar, yellow; acidic or negatively charged, red; and basic or positively
charged, blue. (Left) The enzyme subunit looking into the active site. (Right) A close-
up view of the active site entrance. The binding site entrance is composed mainly of
arginines (blue). The cofactor FMN (green) and substrate EPSP (pink) are bound deep
inside

The molecular surface of MTB CS (Fig. 7) shows that the active site entrance
is very hydrophilic with many basic amino acids that are involved in EPSP
binding.

4 Discussion and Conclusions

We have obtained the 3D structure of MTB CS based on the crystal structure
of an orthologous enzyme from S. pneumoniae. In addition, we modelled the
interactions of the cofactor FMN and the EPSP substrate with the enzyme
using a simple, geometric, docking approach.

The quality of the MTB CS model is good and appropriate for docking
studies.

The geometric docking we used is adequate for an initial study only. As
observed, the side chains of Gln256 and Lys315 need to undergo some confor-
mational changes to better accommodate the FMN cofactor in its binding site.
Nonetheless, our docking analysis showed that the binding mode of EPSP and
FMN is similar in both S. pneumoniae and MTB CS, as we should expect based
on sequence homology.

The hydrophilic amino acids making up the binding site of EPSP are con-
served, but the interactions between enzyme and substrate need some addi-
tional studies. His11 and Arg139 are important for enzyme activity, but the
H bonds their side chains make to the EPSP substrate are missing in MTB.
Further docking refinements with energy-based docking algorithms should relax
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the enzyme and substrates, hence promoting the expected interactions between
them.

Understanding the structure of M. tuberculosis Chorismate Synthase, to-
gether with its cofactor and substrate binding modes, should provide a working
model to be used in high throughput virtual screening of small-molecule public
libraries so as to accelerate the search for inhibitors of this enzyme as alternative
agents to treat tuberculosis.
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Abstract. Secondary structure prediction methods are widely used
bioinformatics algorithms providing initial insights about protein struc-
ture from sequence information. Significant efforts to improve the predic-
tion accuracy over the past years were made, specially the incorporation
of information from multiple sequence alignments. This motivated the
search for the factors contributing for this improvement. We show that
in two of the highly ranked secondary structure prediction methods, DSC
and PREDATOR, the use of multiple alignments consistently improves
the prediction accuracy as compared to the use of single sequences. This
is validated by using different measures of accuracy, which also permit to
identify that helical regions benefit the most from alignments, whereas
β -strands seem to have reached a plateau in terms of predictability.
Also, the origins of this improvement is explored in terms of sequence
specificity, secondary structure composition and the extent of sequence
similarity which provides the optimal performance. It is found that di-
vergent sequences, in the identity range of 25–55% provide the largest
accuracy gain and that above 65% identity there is almost no advantage
in using multiple alignments.

1 Introduction

One of the earliest utilization of computational methods to solve complex biolog-
ical problems can be considered protein secondary structure prediction, dating
from 1960’s. The well established concept that the three-dimensional structure
of a protein is dictated by its amino acid sequence [1] prompted the quest for
methodologies aiming to predict structure solely from sequence. However, due
to the intrinsic complex structural atomic arrangement, a widely used approach
is to predict the secondary structure as string of generally three symbols repre-
senting α -helices, β -strands and coil (other non-regular structures) [2, 3].

Several methodologies were developed for this task, with varying degrees of
success, but not overcoming 75% accuracy on average [4, 5]. The main concep-
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tual framework in the first generation of algorithms was the idea of establishing
propensities for each amino acid to adopt a secondary structure, in a local se-
quence context. In the second generation accuracy improvement was attained by
the adoption of pairwise residue statistics over sequence blocks of limited size,
instead of single residue statistics [2, 6]. In recent years, several alternative pro-
cedures have been employed to increase the accuracy levels. Amongst these, the
one that has been most successful was the utilization of evolutionary information
given in multiple alignments of similar sequences [6, 7, 8, 9, 10, 11] instead of a
single sequence.

The rationale behind that relies on the observation that protein structures
diverge more slowly than sequences. Generally speaking, a lower bound of 30% in
sequence identity is considered sufficient for two polypeptide chains to share the
same fold [12, 13]. The fact that the possible number of protein folds is limited
[14] implies that the sequence to structure mapping is highly degenerated and
favors the formation of a single fold by several sequences. This tendency turns
out to be a desirable trait for molecular evolution, since a structure can accom-
modate varying degrees of mutations in the sequence without compromising the
structural core or the protein active site. Since the plasticity of residue substi-
tution between structurally homologous peptides does not occur randomly, one
can envision a mechanism where the pattern of amino acid substitution conveys
specific information regarding the conformation [7].

Several observations provide a link between multiple alignments and protein
structure. For instance, after a detailed analysis of several protein families, it
was observed that sites of insertions (deletions) in multiple alignments are good
indicators of surface loops, since these are more likely to tolerate mutations
without disrupting the protein core [15]. Conversely, sites that display strict
conservation may represent important structural regions.

The incorporation of aligned sequences in the prediction can be achieved in
several ways. One is to combine the homologous sequences representation them
as a single consensus sequence, which is subject to prediction [16]. Another
approach is to predict the secondary structure for each individual sequence in
the alignment and then combine then into a consensus prediction [7]. Following
the same line the DSC algorithm [10], deals with multiple alignment inputs by
averaging the structural propensities over the aligned sequences.

The PREDATOR method [11], instead of using pre-computed multiple align-
ments in the input, performs a custom pairwise optimal local alignment between
the query sequence and each of the other ones in the input. The alignment proce-
dure will try to find only non-gapped patches in a pair of sequences that will have
the best local alignment. Therefore, the alignment regions are discontinuous, as
opposed to the ones generated by global alignment procedures, but these reflect
more clearly a significant structural relationship. After all local alignments with
regard to the query sequence are defined, the prediction utilizes the usual aver-
aging of propensities to generate the final model. The authors report a 74.8%
accuracy value for a test set of 125 proteins.
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Other methodologies use evolutionary information derived from PSI–BLAST
searches [17] of the query against large sequence databases and transform the
results in sequence profiles (position-specific scoring matrices), which in turn,
are feed to neural networks for prediction [18, 19, 20].

The reports of accuracy increase using multiple alignments when compared
to single sequence input in secondary structure prediction, range from 5 to 9%
on average, and for most of the methods it is claimed that the 70% accuracy
barrier is surpassed [6, 10, 11, 21] even reaching figures close to 80% [18, 19, 20].
This an indication that these methods are maturing to be useful predictors for
genomic scale analises.

In this scenario, there is a motivation for a detailed analysis of the factors
that cause this accuracy improvement. Previous studies investigated the effects
of methodologies employed to create multiple alignments [22] or the size of the
databases providing homologous sequences [23]. On the other hand, several ques-
tions remain to be answered such as what is the optimal level of sequence identity
in the alignments most suitable for the prediction, and if all secondary structure
types equally benefit from the alignments. The present work addresses these
questions by re-evaluating two of the most popular methods with a new test
database, subject to several quality measures.

2 Methods

2.1 Computer Programs

To measure the effect of using multiple aligned sequences, the most appropriate
algorithms are these that can be executed with single sequences as well. This
enables quantitative characterization of improvements in prediction due to use of
alignments. Programs like PHD [21] which only work with multiple sequences or
PSIPRED [18] that need homologues in public sequence databases were not used
in this work. Two of the best performing methods were selected: DSC [10] and
PREDATOR [11]. Their computer implementations were obtained from the re-
spective authors. To simplify the nomenclature, PREDATOR will be designated
by the authors initials F A.

2.2 Testing Database

Starting from a data set of high-resolution protein structures (better than 2.5 Å)
from the PDB database (Protein Data Bank, [24]), and with chain size larger
than 50 residues, a non-redundant sequence subset was selected using the Ob-
struct program [25], with the constraint that no chains have more than 25% of
global identity.

Based on this initial set of proteins, the HSSP database [26] was used as a
source of multiple sequence alignments. HSSP merges structure and sequence
information by creating, for each known protein structure from PDB, a multiple
alignment of suitable hits from similarity searches against the SWISS–PROT
protein sequence database.
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Since the number of aligned proteins and the extent of alignment varies con-
siderably between HSSP entries, some limits were imposed on the selection of
proteins for analysis. Each member of the aligned sequence set is mandated to
be aligned with at least 75% of the amino acids in the reference PDB sequence
and an entry in HSSP is considered for further analysis only if it contains at
least 3 aligned sequences other than the PDB sequence. The combination of this
and the PDB filter above results in 231 HSSP entries constituting our test set.

Secondary structure assignments were taken from DSSP program [27] and
transformed to three-states (α -helix, β -strand and coil) according to [23].

2.3 Accuracy Measures

An important issue in the analysis of prediction performance is the definition
of prediction success measurements. Historically, the Q3 measure is the simpler
and most widely used, representing the overall fraction of correct predictions. It
is also possible to define this quantity for each structural class. For example, Qα

3

means the percentage of correctly predicted helical residues [6].
In addition to Q3, two additional measures were utilized given their improved

sensitivity to mispredictions: the Matthews’ correlation coefficients [28] and the
Rost–Sander information measure (RSI, [21]). Matthews’ correlation coefficients
(Cα,β,c) probe specific secondary structures and take into account both true
and false positives, as well the correct predictions for the particular structure.
The RSI measure on the other hand is consolidated for all types of secondary
structure elements and represents well the overall success rate of the prediction.

For an additional assessment of the prediction accuracy, the prediction meth-
ods were analyzed by their capacity to identify entire segments of α -helices and
β -strands, as opposed to residue-wise measures described previously. In many
cases it is useful to get an estimate of the number of secondary structure types
present in a protein even if their precise location is not well-predicted. Two
measures are used for this purpose. The first (Ostrict) is the percentage of pre-
dicted segments that overlap exactly with the experimental segments. This is a
very stringent measure, not allowing any mismatches between the predicted and
correct segments. To be more permissive, the percentage of predicted segments
overlapping with at least 50% of the segment in the experimental structure is
also employed and is called Oloose.

3 Results and Discussion

3.1 Evaluation of Secondary Structure Prediction Accuracy from
Multiple Alignments

The first task in evaluating the effect of using multiple sequences is the predic-
tion of secondary structure using only the reference PDB sequence (single) and
the respective multiple alignment from HSSP (aligned). For a detailed analysis,
several accuracy measures are utilized to probe both the global and structure
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Table 1. Average accuracy values for prediction with DSC and F A methods with
(aligned) and without (single) the use of multiple sequence alignments. The column
labeled Δ is the difference between aligned and single sequence measures for the method

Measure DSC F A
aligned single Δ aligned single Δ

Q3 0.6798 0.6294 +0.0504 0.6956 0.6355 +0.0601
Qα

3 0.6548 0.5305 +0.1243 0.6284 0.5474 +0.0810

Qβ
3 0.5162 0.5513 −0.0351 0.5160 0.4059 +0.1101

Qc
3 0.7779 0.7436 +0.0343 0.8340 0.8140 +0.0200

Cα 0.5492 0.4527 +0.0965 0.5827 0.4705 +0.1122
Cβ 0.4786 0.4112 +0.0674 0.5012 0.3847 +0.1165
Cc 0.4531 0.3989 +0.0542 0.4794 0.4012 +0.0782
RSI 0.2238 0.1585 +0.0653 0.2590 0.1704 +0.0886

specific behavior of the prediction algorithms. Table 1 shows the average accu-
racy values for predictions of the 231 sequences using DSC and F A algorithms.

The most important observation is that for both methods, regardless of the
accuracy measure utilized, there is a consistent increase in the success level of
predictions when a multiple sequence alignment is employed. The only exception
to this is the Qβ

3 measure for the DSC method which decreased by an absolute
value of 3.5% from single to aligned sequences. Another important feature is
that the increased values of RSI and the Matthews correlation indicate that not
only more residues are being correctly predicted but there are also less under
and over-prediction errors.

The overall accuracy gain in using multiple alignments is in the order of 5–6%
using the general Q3 measure, which was also originally reported using a smaller
dataset of proteins [10, 11]. However, the newly calculated Q3 values of 67.9%
for DSC and 69.5% for F A are inferior to these claimed in the original reports,
70.1% and 74.8%, respectively. This disparity suggests that the generalization
power of the methods is still somewhat limited, since the new dataset of 231
proteins is about twice as large as the original ones. Additionally, reveal the
considerable qualitative dependence on the sequences and alignments used for
evaluation.

On the other hand, it is clear that the use of alignments consistently im-
proves the overall performance of the methods. Hence, it is important to explore
where this additional information is incorporated in terms of predicting sec-
ondary structure elements.

Owing to the fact that gaps in multiple sequence alignments are most likely
to occur in coil regions, it is anticipated that predictions for this structural
category would benefit the most from multiple alignments. Nevertheless, the
inspection of the measures reflecting the coil prediction, namely Qc

3 and Cc,
reveals that the increase in accuracy for the coil structure is clearly overshadowed
by the improvement in α -helix prediction. The absolute increase in the number
of correctly predicted residues in α -helix (Qα

3 ) is 12.4% for DSC and 8.1% for
F A, whereas the values for Qc

3 are 3.4% and 2.0% respectively (Table 1). The
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positive variation of Cα values by 9.6 (DSC) and 11.2% (F A) clearly reflects a
better resolution in the prediction of α -helices.

Conversely, the prediction of β -strands does not improve markedly with the
use of multiple alignments. As seen before, in the case of DSC, there is even a
loss of performance for β -strands judged by the negative variation in Qβ

3 . For the
same measure, F A predictions using multiple alignments significantly improve
in comparison to single sequence predictions. However, it should be noticed that
the value of predicted accuracy for the single sequence is already excessively
low (40.5%), and the multiple alignments partially overcome this deficiency.
For both algorithms, the final value of 51.6% is still not impressive, showing
that only about half of the residues in β -strands are correctly predicted and
that this particular structural type deserves special treatment by the predictive
methods.

To further investigate the effect of the alignments on α -helices and β -strands
the predictions were analyzed in terms of the ability to locate entire segments
of these conformations based on the segment overlap measures (2). Table 2
displays the number of correct region predictions as percentages of the total
number of segments in the test database (1630 α -helices and 2277 β -strands
segments).

Table 2. Comparative accuracy of the methods with and without the use of multiple
sequence alignments based on secondary structure segment location measures

Measure DSC F A
aligned single Δ aligned single Δ

Oα
strict 4.85 2.88 +1.97 4.51 2.66 +1.85

Oβ
strict 7.33 8.21 −0.88 9.15 6.03 +3.12

Oα
loose 69.08 55.03 +14.05 65.06 58.32 +6.74

Oβ
loose 57.40 61.35 −3.95 57.22 45.73 +11.49

The results for α -helices confirm what was observed earlier with the residue-
wise measures, namely, a marked improvement in the identification of helical
regions. The number of absolutely correctly predicted α -helices (Oα

strict) almost
doubled for both algorithms, but these comprise only about 4.5% of the total
number of α -helices. When using a less stringent measure (Oα

loose), the DSC
method shows a substantial improvement in identification of helical segments
(14.0% more α -helices than that based on a single sequence). To a lesser extent,
F A method also benefits from multiple alignments (6.7% increase).

The behavior for β -strands also parallels the results in Table 1. The DSC
method suffers a consistent decrease in the ability to predict β -strand segments
when using multiple alignments as opposed to using only the single sequence.
The F A method, on the other hand, gains accuracy with the aligned sequences,
but could only equal DSC predictions overall in terms of Oβ

loose (57%) and be
slightly better in terms of Oβ

strict (9.1%).
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3.2 Analysis of the Influence of Alignment in the Prediction

It is clear that the use of multiple alignments has an overall positive impact on
secondary structure prediction. Consequently, it is important to verify what are
the beneficial characteristics of the multiple alignments for prediction.

First, the goal is to probe if the amino acid substitution patterns found in the
alignments really convey useful structural information than can be assimilated
by the prediction methods. As a negative control, alignments were artificially
generated by adding noise to the pre-existing alignments for each of the proteins
in the test set. This was attained by randomly substituting a percentage of the
amino acids by any of the other 19 amino acids or the gap symbol, with equal
probability. All alignments had 15 proteins and were created for specific degrees
of sequence identity. For example for an identity of 45%, each of the 15 proteins
in the alignment had 55% of the amino acids randomly mutated, creating a
different sequence for each aligned protein.

The results of the simulation with random alignments using the DSC pro-
gram is shown in Fig. 1. As expected, the random alignments with low levels of
sequence identity (i.e., high noise), produced low average accuracy values for Q3

measure compared to the average value of the predictions using single sequences
alone (≈ 65%). The same behavior was observed using the F A program, as well

Fig. 1. Prediction accuracy of DSC method using randomly created alignments with
varying identity levels compared to the original sequence. The line labeled “single”
corresponds to the prediction without aligned sequences
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with other accuracy measures (not shown). This result indicates that indeed the
information contained in the multiple alignments is relevant to the accuracy of
prediction. In other words, if the alignment quality is poor, then the single se-
quence prediction provides better results. This apparently contradicts previous
findings for PHD method were it was found that the inclusion of distant homo-
logues (from BLAST searches) in the alignment, and even false positives, was
beneficial for the prediction [23]. However, there is no discrepancy whatsoever
since the random alignments do not contain evolutionary reliable substitution
patterns, which is not the case for BLAST searches.

3.3 Effect of Alignment Identity Levels

Next we address the optimal level of homology between proteins within the
multiple alignment that confers the best prediction, given the indication that
the more divergent the sequences the better the prediction [23]. Toward this
end, the following protocol was devised:

1. For each HSSP alignment in the test set, create subsets with percent identity
ranging from 95% to 25% in intervals of 10%

2. If the number of proteins selected in the identity range is greater than a
threshold (3 sequences) the alignment subset with the reference PDB protein
is saved

3. For each saved alignment, the secondary structure predictions are performed
using DSC and F A methods for the reference PDB protein alone (single)
and for the corresponding multiple sequence alignment subset (aligned)

4. For all proteins in the specified identity subset, the prediction accuracies for
the single and aligned input are calculated and their average computed.

This procedure results in a dissection of the original alignment, splitting it
into several new ones, with a more homogeneous distribution in terms of similar-
ity. This aims at quantifying the amount of sequence variation in the input align-
ment that is optimal for secondary structure prediction. This can be observed in
Fig. 2, where the average accuracy values for each identity range are compared.

For the F A method (Fig. 2 b,d), it is clear that the higher gains in accuracy
occur when low identity alignments (25–45%) are used as input. The gain in
accuracy is inversely proportional to the increase in sequence identity. In fact, in
the case of RSI, there is virtually no gain in predictive accuracy when the input
alignment contains proteins with identity values higher than 65% in relation to
the reference PDB protein. Also, in terms of Q3, for identity range high than
this value, there are only small accuracy improvements (< 1%).

In the case of DSC method (Fig. 2 a,c) the overall trend is maintained, but
with the highest absolute Q3 value appearing in the 45–55% identity range.
However, in terms of RSI, the behavior is similar to the one observed using
the F A method, with the accuracy values decreasing monotonically with the
increase in sequence identity.

It should be noted that the compositional heterogeneity between the gen-
erated alignments renders the direct comparison of the average accuracy values
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Fig. 2. Variation of the prediction accuracy as a function of the identity level of the
aligned proteins for the methods DSC and F A. The results compare the accuracy
values at varying sequence identity levels by using only the reference PDB protein
(Single) or the multiple alignment (Aligned). Graphs a-b use RSI measure, whereas c-d
use Q3 measure

between identity levels somewhat less rigorous. Nevertheless, since what is sought
is the measurement of the gain obtained by using multiple alignments in relation
to single sequence input, this problem is less critical, given that the prediction
for a single sequence serves as the reference point.

In order to quantitatively assess the amount of prediction improvement and
to provide a better qualitative visualization of how the methods benefit from the
alignments, a simple measure of the increase in the accuracy, named accuracy
gain (G), was defined. This term is the difference between aligned and single
sequence accuracies normalized by the maximum difference value between the
series, as shown in the formula:

Gi =
Ai − Si

Max(A)
,

⎧⎪⎪⎨
⎪⎪⎩

i = Identity level
Ai = Accuracy value for the aligned input
Si = Accuracy value for the single input
Max(A) = Maximum value of Ai values

(1)
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In this measure, negative G values imply that the prediction accuracy using a
single sequence is actually higher than that obtained using a multiple alignment.
With this definition in place, all accuracy measures can be compared across the
prediction methods, thus consolidating the plots in Fig. 2 onto a single one,
which is shown in Fig. 3. It can be observed that there is a marked difference in
the predictions of DSC and F A methods. For DSC, the highest prediction gain
is attained by utilizing aligned proteins in the 25–35% identity range, whereas
for F A the best gains come from the protein identity set in the 45–55% range.

Fig. 3. Prediction improvement as measured by the gain ratio (1), that reflects the
increase in accuracy due to use of multiple alignments for the two prediction methods
using Q3 and RSI accuracy measures

An important feature shared by both methods is that the prediction gain
continuously decreases for alignments with increasing identity to the reference
protein. This trend is more evident for the F A method using RSI, where identi-
ties higher than 65% have an imperceptible or, in some cases, deleterious effect
on the prediction.
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4 Conclusion

The comparisons of the accuracy values obtained from single sequence and mul-
tiple alignment inputs indicate that significant improvements in secondary struc-
ture prediction can be obtained by using sets of homologous proteins. Neverthe-
less, this is not reflected uniformly across all types of secondary structure. In
fact, the results show that α -helices tend to be better predicted using multi-
ple alignments, whereas β -strands seem to have reached a plateau in terms of
predictability.

The prediction methods that use evolutionary information do not take into
account the degree of sequence similarities within the multiple alignments. As
pointed out by earlier [29], such methods effectively consider the sequences as
independent realizations of some stochastic process. However, based on the re-
sults of the analysis of the influence of protein similarity on the prediction of
secondary structure, it is clear that this is not the case. The results suggest
that the prediction methods could obtain more information about the secondary
structure by using only the fraction of related proteins that have low identities
with the query sequence. This has not been taken in consideration earlier, and
is seen to lead to improvements in the prediction.

The difference between the optimal identity level for DSC (45–55%) and F A
(25–35%) methods stems primarily on how the input alignments are manipu-
lated by the algorithms. DSC does not modify the alignment given in the input,
whereas F A discards the input alignment structure and re-creates alignments
by searching for the best local alignments.

However, the critical question that remains to be answered is the prediction
improvement with low levels of identity in the alignments. One possible explana-
tion involves the fact that the secondary structure prediction algorithms assign
static structural propensities for the amino acids, rendering predictions some-
what rigid and displaying a strong bias toward the assigned propensities. The
inherent plasticity in the sequence–structure relationship [5], hence, cannot be
effectively accounted for in these methods.

The use of multiple alignments in prediction overcomes this bias by providing
a mechanism to create position-specific propensities as opposed to fixed ones, in
the case of single sequence prediction. This occurs through the averaging process
over the columns of the alignment, which in reality, creates context-dependent
values reflecting more faithfully the sequence substitutions allowed for the par-
ticular structural environment. The inclusion of very similar sequences will not
generate the necessary variability, and as consequence exhibits lower accuracy
gains. On the other hand, divergence in low identity alignments translates in
better prediction.

Given the fact that short identical sequences can adopt entirely different
conformations [30, 31] and the present results, alternative ways to deal with the
structure prediction problem should be employed. One approach is to disregard
the common view of amino acids having a strict propensity to form a particular
secondary structure, in favor of a setting in which the structure acts upon actively
selecting the optimal sequence. Multiple alignment incorporation proved to be
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a successful alternative to the old vision, but still more work is needed to raise
even more the accuracy levels.
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Abstract. BLAST homology searches have been largely used to anno-
tate function to novel sequences. Secondary databases like KOG can be
used in this intention since their sequences have functional classifica-
tion. We devised an experiment where public ESTs from four eukariotic
organisms, which protein sequences are present in the KOG database,
are classified to functional KOG categories using tBLASTn. First we as-
signed the ESTs from one organism to KTL (KOG, TWOG and LSEs)
proteins and then we searched the database depleted of the same organ-
ism’s proteins to simulate a novel transcriptome. Data show that classifi-
cation was correct (assignment equals annotation) 87.2%, 96.8%, 92.0%,
88.7% for A. thaliana(Ath), C. elegans(Cel), D. melanogaster(Dme) and
H. sapiens(Hsa) respectively. We have estimated identity cutoffs for all
organisms to use with tBLASTn. These cutoffs trim the same amount
of events that a BLASTn in order to minimize false positives in conse-
quence of sequence errors. We found values of 80%, 78%, 78% and 84%
for amino-acid identity cutoff for Hsa, Dme, Cel and Ath, respectively.
We then evaluated our system by comparing the KTL categories of the
assigned ESTs with the KTL categories that the ESTs were classified
without the organism’s KTL proteins. Moreover, we show the potential
of annotation of the KOG database and the ESTs used. Suplementary
Information can be found at: http://www.biodados.icb.ufmg.br

1 Introduction

Homology searches have been largely used to annotate the putative function
of novel described sequences, either nucleotides or aminoacids. Usually software
from the BLAST package [8] is used in this type of search [2] and the best hit
(higher bit score) associated with a cutoff requirement of low E value is suffi-
cient to establish a relationship of homology between query and subject [12][13].
Quality of annotation remarkably depends on the quality of the database that is
being used as subject in homology searches. Secondary databases are currently
available where sequences are not only deposited, but classified into functional
categories. These databases are being widely used in the categorization of ESTs
[4][18][5]. One of these databases is KOG [17], at NCBI, which organizes protein
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entries from seven organisms with complete sequenced genome into three classes
of occurrence: KOG, TWOG and LSE, which occur in three, two or only one
organism, respectively. Each protein has received a KOG ID - e.g. enolase is
KOG0047. All orthologs, and eventually occurring paralogs, are classified under
the same ID, and there are IDs for the three classes of KOG. Thus, this database
is an attractive subject for testing automated annotation procedures. ESTs and
transcriptome projects have showed its importance not only for gene discov-
ery [1] but also for analysis of differential expression of genes [14][6][16]. ESTs
are known to bear up to 4% of sequencing errors due to its single-pass nature.
Development of automated annotation for ESTs is already being issued [3][15].
Annotation is mostly solved with the use of best hit to the subject database,
but the identity of a nucleotide sequence, that contains errors, to an aminoacid
sequence of the proper organism have not been addressed yet. It has been largely
accepted (e.g. UniGene database - Lukas Wagner, personal communication,[19])
that 96% identity at nucleotide level is sufficient to assign an EST to the corre-
spondent nucleotide cDNA sequence. Errors occurring in the third base of the
codons tend to be silent in either tBLASTn or BLASTx searches. However, errors
in the first two bases of the codon are expected to be hazardous to the align-
ment. In this work we set up to define a cutoff in BLASTx / tBLASTn searches
that would be equivalent to 96% identity cutoff in nucleotide to nucleotide com-
parisons (BLASTn).Then we devised an experiment where we initially assigned
ESTs to proteins from the KOG database of the proper organism and further
annotated the ESTs with the entire KOG database lacking the proteins from
the organism whose ESTs were used to query the database. This procedure sim-
ulates the annotation of a novel transcriptome. Furthermore, we evaluated our
procedure verifying if the annotation was either correct, resulting in the same
database ID, changed to a different one or even speculative (ESTs not assigned
to any organism’s protein but annotated by other organism’s sequences).

2 Material and Methods

2.1 Vector Sequences

The pUC18 sequences used in this work have been provided by 3 laboratories
from Universidade Federal de Minas Gerais (UFMG) that integrate the network
Rede Genoma de Minas Gerais. The reactions were made in a single pool and
divided into tubes for the PCR sequencing reaction. After the reaction, the
sequences were joint again in the same tube, mixed, and then divided into three
96 sequencing well plates. Each plate was run 3 times on a MegaBASE sequencing
equipment, yielding a total of 864 reads. From those, 846 processed ESD files
were obtained.

2.2 Other Sequences

The EST sequences were downloaded from dbEST database [9] at Mai/2003.
All KTL proteins and KOG conserved domains were downloaded from NCBI
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homepage [7] from the ”kyva” file. We then selected the 88,613 classified KTL
proteins found at the ”kog, ”twog” and ”lse” files at the same address, to use
in the BLAST searches. The KTL proteins are divided in 60,758 KOG, 4,451
TWOG and 23,404 LSE proteins. To retrieve the 50 CDS relative to the 50
KOG proteins from the four organisms, we selected the 100 more expressed
KOG proteins that were hit by the ESTs from the four organisms (data not
shown). We chose the 50 ones that have only one representing ortholog protein,
to avoid ESTs being aligned to paralogs. We downloaded the respective mRNA
sequences from these 50 KOG proteins (NCBI provides a list of proteins from
KOG database assigned to their relative mRNAs - called ”kyva=gb”). We then
selected only the CDS of these mRNAs and removed the stop codons, by parsing
the genbank file with a PERL script, to assure the proportion of identity between
the alignments of ESTs to its proteins/nucleotides.

2.3 Data Processing

All data were processed using MySQL version 3.23.58 and scripts wrote in PERL
language, version 5.8.0. The BLAST software package version 2.2.8 was obtained
from NCBI. PHRED software version 0.020425.c was obtained (see [10]), thanks to
Phill Green. All processing was made on a Linux Red Hat 9 machine, Pentium IV
HT, 2.4 GHz and 1 GB RAM. The BLAST searches were run additionally on four
other machines with similar power of processing and same operational system.

2.4 BLASTs

The tBLASTn/BLASTn were run with the following parameters: -m 8 -b 10e6
-e 1e-10 -F f . These parameters activate the tabular output of BLAST, allows
up to 10 million hits to one protein (the default is 250) and deactivates the low
complexity filter, respectively. The low-complexity filter was deactivated in order
to permit tBLASTn to achieve 100% identity in the alignments.

2.5 PHRED

The software PHRED was run with the following parameters: -trim alt ”” -st
fasta -trim cutoff <n> Which activates the trimming algorithm selects the file
type and activates the trimming with error cutoff (n) respectively.

2.6 Statistics

When necessary data were reported as means ± SEM (standard error of the
mean).

3 Results

3.1 Defining Cutoffs

To define a cutoff for tBLASTn that is equivalent to 96% for BLASTn, we
took advantage of 846 sequence reads of pUC18 (see material and methods)
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and aligned these sequences with either BLASTn to the published nucleotide
sequence (genbank access number L09136) or with tBLASTn to a single frame
translation starting at the first nucleotide downstream to the primer. We solved
the problem of alignments to stop codons by representing the respective positions
with the ”*” character, what leads to 100% identity to tBLASTn alignments (not
shown). Reads were trimmed with PHRED basecalling software under increasing
error acceptance, using trim alt PHRED internal algorithm. (E.g. 1% of error
corresponds to PHRED 20 , 10% to PHRED 10). Data presented in figure 1A
show that, for all error densities used, alignments of single-pass pUC18 reads
(here simulating controlled ESTs) to the nucleotide sequence result, in average,
to more than 96% identity , while alignments to the aminoacid sequences yielded
lower levels of identity.

In order to investigate the behavior of the actual cDNA sequences we down-
loaded large sets of ESTs (Table 1) from the four organisms present in the KOG
database (ath: A. thaliana; Cel : C. elegans; Dme: D. melanogaster; hsa: H.
sapiens) from dbEST. We then selected 50 KOG proteins from each organism
requiring that they corresponded to the most occurring ESTs and did not have
paralogs, thus hits should probably point to a single protein. Data in figure 1B
show that ESTs, aligned with tBLASTn to the amino-acid sequences, consis-
tently show average levels of identity lower than the correspondent complete
CDS nucleotide sequences. Moreover, the identities observed for each EST col-
lection seem to represent the error density characteristic of the collection, as
judged by comparison with the data presented in figure 1A.

Fig. 1. A. Plot of mean identity ± mean standard error obtained from tBLASTn and
BLASTn experiments with PUC18 using variable PHRED trim cutoff parameters. B.
Plot of average identity and mean standard error obtained from tBLASTn and BLASTn
experiments with a set of ESTs and 50 nucleotide/aminoacid sequences from the four
organisms. Inverted open triangles are tBLASTn experiments and straight full triangles
are BLASTn experiments. The n for pUC18 ranged from 846 reads with 25% of error
to 673 reads with 0.3% of error. The n for Dme, Cel, Ath and Hsa was 23,630, 14,096,
1,891 and 14,484 sequences respectively
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Table 1. Organisms and the respective ESTs, KOGs and proteins used in this work

Organisms ESTs KOGs Proteins

Arabidopsis thaliana 178,538 4,872 24,154
Caenorhabditis elegans 215,200 5,306 17,101

Drosophila melanogaster 261,404 5,145 10,517
Homo sapiens 1,941,556 6,572 26,324

pUC18* 846 ** - 1 ***

* pUC18 stands for the commercial vector (see GenBank accession number L09136).
** pUC18 reads obtained by sequencing. *** The nucleotide sequence of pUC18 was
translated into 1 protein sequence.

To estimate a cutoff for tBLASTn that would correspond to the 96% cutoff
for BLASTn and to find the amount of events that these two cutoffs represent, we
performed BLASTn and tBLASTn alignments using the pUC18 reads and its
respective nucleotide/aminoacid sequences (Figure 2A). Reads were processed
with 16% trim alt cutoff (this procedure yields a maximum score plateau when
aligning pUC18 reads to its nucleotide/amino-acid sequences - data not shown).
Figure 2B shows the same tuples as in figure 2A but grouped by number of
events, so it is possible to conclude that 96% of identity cutoff, when aligning
nucleotides, corresponds to 93% of the totality of tuples. Therefore, the identity
cutoff value that retrieves the same amount of tuples when using aminoacid

Fig. 2. A. Plot of tBLASTn - BLASTn tuples result of BLASTs performed with the
translated and the nucleotide sequence of pUC18 with the reads obtained by automatic
sequencing and PHRED 8. The dotted lines limit 96% and 82% of identity cutoff
for BLASTn and tBLASTn. B. Same plot organized by number of events. The open
inverted triangles represent tBLASTn plots and the full straight triangles BLASTn.
The horizontal dotted line shows the cutoff for tBLASTn when 96% of identity for
BLASTn is the reference. The vertical dotted line shows the ammount of events that
the two cutoffs are representing
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sequences as a target is 82.3% (depicted by the dotted lines in figure 2A). This
same procedure was performed with the 4 organisms sequences and we found
values of 80%, 78%, 78% and 84% for amino-acid identity cutoff for Hsa, Dme,
Cel and Ath, respectively (data not shown). The mean cutoff value found for
the 4 organisms (80% ± 2.8) is very close to the one found for pUC18 (82.3%).
The percentage of events that these values collect ranged from 84% to 99%,
suggesting that these cutoffs are discarding a minority of correct events when
using tBLASTn.

3.2 Simulating Novel Transcriptomes

To test if these cutoff values are adequate, and to verify the accuracy of an au-
tomatic annotation experiment using ESTs and KTL proteins with tBLASTn,
we conducted the pipeline as explained in figure 3.A. First, all ESTs from one
organism (eg. Dme) are searched against the KTL proteins from the same organ-
ism. The best matches from this experiment are therefore assigning Dme ESTs
to KTL proteins. Second, all ESTs from Dme are searched against the KOG
database, but lacking Dme proteins, simulating in this way an annotation of a
novel transcriptome. The best matches from this second experiment can be classi-
fied into 3 groups: correct annotation, when an EST from the second experiment
is assigned to the same KOG ID as in the first experiment; speculative annota-
tion, when an EST has not been assigned to a KOG ID in the first experiment,
but it found a hit to a KOG ID in the second experiment; changed annotation,
when an EST points to a KOG ID in the second experiment that is different from
the KOG ID it was assigned to in the first experiment. The first experiment was
conducted using the respective cutoff value for each of the four organisms and the
accuracy of the annotation measured with the second experiments. There is two
further possibilities of missing annotations (figure 3B), where ESTs are assigned
but miss annotations in the simulation of a novel transcriptome (assigned but no
hit), and where ESTs have no hit at all in neither experiments (no hit). When
analyzing the totality of annotated ESTs, this methodology is able to correctly
process around 90% (87.2%, 96.8%, 92.0%, 88.7% for A. thaliana, C. elegans,
D. melanogaster and H. sapiens respectively), using the cutoffs determined. The
percentage of changed annotation remains very small for all organisms, never
overscoring 5%. The speculative annotation is more expressive in Hsa and Ath,
but with values below 10% (data not shown).

We tested if annotability is altered by using different identity cutoffs when
assigning ESTs to KOG IDs. We performed rounds of annotation, starting from
45% up to 100% of identity cutoff. Figure 4 shows the percentage of ESTs that
are found in the 3 categories, when using these cutoffs and the 4 organisms
sequences. Together these 3 categories and all assigned ESTs forms the group
of ESTs that are potentially annotable. We found that, in most cases, the use
of low cutoff values augments the group of correct annotation relative to the
other groups. Moreover, the changed annotation stays at low values (below 2%
of the ESTs in most cases). Changed annotation slightly diminishes when the
cutoff is raised, probably because fewer errors are permitted in the alignment.
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Fig. 3. Schema of the experiment devised to test the annotation of the ESTs from
the four organisms with the KOG database. A. The experiment is made using ESTs
and KTLs (KOGs, TWOGs and LSEs) from Dme as an example. It is divided in two
steps, first a tBLASTn is made against KTL proteins only from Dme (grey square),
to assign ESTs to KTL classes. The next step is a tBLASTn of ESTs from Dme
against KTL proteins from the other organisms (the tree grey squares) but not from
Dme, then simulating a novel transcriptome. The classification of the annotation is
obtained by comparing the classes of KTL that the ESTs were assigned in the first
and second experiments. Three classes are possible: changed, speculated and correct
annotations. B. The products obtained from A. 5 classes are possible: correct, changed
and speculated and 2 classes of missing annotations: the ”no hit” and ”assigned but
no hit” ESTs

On the contrary, when raising the cutoff values above 80%, the percentage of
speculative annotation raises because less ESTs are being assigned to a KOG ID
in the first experiment (less alignments pass this filter). This can be assumed by
the diminishment of the correct annotation class in the same proportion of the
increase of the speculative class. We found that, for Dme and cutoff values below
90%, annotation of almost 50% of the total ESTs is to correct KOG IDs. This
is followed by Cel annotation, with 40% of total ESTs. Distinctly, Ath and Hsa
annotation might be classified as poorer, with only 20% and 13% of all ESTs
being correctly annotated.

In order to show the potential of annotation that is gained or lost by using
different identity cutoffs, we plotted in figure 5 the amount of ESTs that are
potentially annotable: correct, changed, speculated and assigned but with miss-
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Fig. 4. Testing the annotation with KOG using different identity cutoffs. Full circles
represent the correct annotation. Gray squares are representing speculations of a right
KOG and inverted open triangles represent changed annotations. Hsa: Homo sapiens.
Cel: C. elegans. Dme: D. melanogaster. Ath: A. thaliana

ing annotation when simulating new transcriptomes (the black + grey areas).
The definition of potentially annotable is used because these ESTs have had
a hit to a KOG protein in any of the experiments. The amount of ESTs that
this methodology was unable to classify (no hit to any database when assign-
ing and when simulating novel transcriptomes), can be observed by calculating
the complementary area of the black + grey areas. The black area represent
the correct, speculated and changed annotations. In other words, the ESTs that
had been annotated by any KOG protein in the second experiment. The grey
areas represent the ESTs that had been assigned to a KOG ID but had no
annotation in the second experiment. This can be caused by assignments to
unique proteins of the organism (dark grey areas) in the first experiment. Us-
ing lower cutoff values, Dme ESTs have the best potential of annotability with
around 77% of all ESTs being annotable and less than 23% unable to be clas-
sified. It is followed by Cel (75% and 25%) and Ath with a good anotability
(around 80%) but with a poor potential of classification by the system (57%
loss). This loss can be explained by a large amount of assignments to LSE pro-
teins (discussed below). H. Sapiens is a special case, with a very low efficiency
of around 35% and with almost 20% of its ESTs unable to be classified by our
system.
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Fig. 5. Test of annotation with KOG using different identity cutoffs showing the por-
centage of ESTs that are annotable and the missing assigned ESTs. The black + grey
areas show the total percentage of annotable ESTs. The black areas are representing
the correct, speculated and changed annotations. The light grey areas are representing
the assigned ESTs to KOG proteins but with no hit when simulating a new organism
transcriptome. The dark grey areas are representing the amount of ESTs from the light
grey areas that were assigned to LSE proteins. Hsa: Homo sapiens. Cel : C. elegans.
Dme: D. melanogaster. Ath: A. thaliana

3.3 Searching LSEs

When simulating a novel transcriptome, a low potential of annotability and
wrong KOG ID classification can be explained by ESTs being assigned to LSE
proteins, genes that are present only in the organism being annotated. In this
case, annotation can result in two cases: a no hit to any KOG, TWOG or LSE
from other organisms or an undesired changed annotation. We did a survey into
all assigned EST sequences using the organism’s cutoffs, to test if assignment
to LSE proteins were biasing these results. We found that Ath, as expected for
being the only plant in the database, has the higher number of ESTs assigned to
LSE proteins (41% of the total 129,100 EST sequences assigned), followed by Hsa
(16% of 574,091), Cel (11% of 160,065) and Dme (6% of 194,838). Furthermore
we surveyed all set of changed annotation and missed assigned ESTs to obtain
the percentages of these groups that were initially assigned to LSE proteins. We
found that, from the group of changed annotation, Hsa and Ath have 30.8%
and 35.5% of sequences assigned initially to LSE proteins respectively. Cel and
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Dme have a smaller amount with 10.3% and 16.6% respectively. From the set of
sequences that were assigned but are missing an annotation, Hsa and Ath have
again the greater percentage with 29.0% and 42.4% belonging to LSE proteins
respectively. Cel has 23.2% followed by Dme with only 7.0%. Altough in some
cases, like Hsa and Ath that have around 30% of all changed annotation caused
by EST sequences assigned to LSE proteins, these numbers are representing a
very small portion of the total EST sequences used. Thus, the most part of
sequences that were initially assigned to LSE proteins are not being classified as
a changed annotation. This result indicates that ESTs assigned to LSE proteins
are not causing a strong bias on changed annotation. In most cases, less than 3%
of all EST sequences assigned to LSE proteins are contributing to this group.
Except by Ath, the group of EST sequences that had been assigned but is missing
an annotation is not greatly increased by assignments to LSE proteins. The plant
shows a significant ammount of LSE proteins being assigned but are missing an
annotation.

4 Discussion and Conclusion

Assuming a cutoff value for identity when using tBLASTn is necessary since the
big volume of data is diminished, requiring less computational effort and storage
space.

Our system was able to correctly classify around 90% of all annotable ESTs
which passed the first 10−10 BLAST E-value cutoff.

The identity cutoff values found for the 4 organisms are therefore suitable
as changed annotation is almost not altered for all cutoffs and always have low
values, representing less than 5% of all ESTs. Our results also show that the use
of high identity cutoffs can be harmful to an automatic annotation procedure.
This is depicted by the raise of speculative annotation and diminishment of
correct annotation, when using high identity cutoffs (above 80%), in figure 4.

Hsa lacks a good potential of annotability and we speculate two possible ex-
planations. First, probable low quality EST sequences in the database: sequences
with low lengths and high error rates (see Fig.2B). We are currently investigating
this fenomena.

The second explanation is that KOG is not yet a complete database to anno-
tate Hsa and it may lack more than 60% of the necessary proteins to annotate
a human transcriptome. To explain this, we’ll perform a future annotation ex-
periment with larger secondary databases like Uniprot [11] or the NCBI’s nr
database.

However, all annotable Hsa ESTs showed a high rate of correctness (above
87%). Furthermore, Dme, Cel and Ath showed a better automatic annotation
potential with around 80% of annotability.

We conclude that KOG is a reliable database for EST annotation depicted
by the results obtained with the four organisms studied. Suplementary infor-
mation was made available with APACHE/PHP and can be found at http://
www.biodados.icb.ufmg.br .
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Abstract. Whether diet has been influencing the genomic and proteomic consti-
tution of the organisms along the evolution is an interesting and not answered 
question. Here, we investigate the hypothesis that essential amino acids – the 
ones that are not produced by the organisms – have being replaced in proteins 
by non-essential ones. We compare the amino acid composition of the proteome 
from human, worm and fly, that cannot synthesize all amino acids, with the 
ones from plant, baker yeast and budding yeast, capable to synthesize all of 
them. The analysis was made with 190,074 proteins composed of 87,175,891 
amino acids. Our data seems to evidence a little bias on the usage of non-
essential amino acids by the metazoan organisms, except for the worm. Thus, 
the preliminary results shown here support the thesis that non-essential ones 
have replaced essential amino acids. 

1   Introduction 

Whether diet has been influencing the genomic constitution of the organisms along 
evolution is an interesting and not answered question. Considering this topic, two 
different and opposite evolutionary scenarios can be conceived.  

In the first one, diet has not been made particular selection pressure in the pro-
teome of ancestral organisms. This first scenario could be though in two ways: (1) the 
high-fitness organisms capable to reproduce have always been well fed and the bad 
fed individuals could not reproduce; or (2) the need of essential amino acids (EAA) is 
too small and even the worst fed organisms were capable to reproduce. This way the 
diet has never pressure for the genome or proteome modification. 

A second scenario can be described if we consider diet as a putative mechanism for 
genome and proteome modification. In this case, ancestral organisms presenting a 
genome full of EAA would need to ingest a great amount of food and, if they could 
not get the nutrients, their proteins would not be produced appropriately. So, these 
organisms would produce few offspring. This way, mutations happening in ancestral 
proteins leading to the substitution from essential to non-essential amino acids 
(NEAA) would be positive selected and the organisms harboring them would be ca-
pable to produce a greater and fertile offspring. 

The study of the diet influence in the genome modification can be evaluated 
through the analysis of the EAA content in proteins from different species. Consider-
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ing that many metazoan organisms (MO) cannot synthesize some amino acids, the 
essential ones, they need to be obtained through the diet. So, if diet has been acting as 
a selection pressure for the proteomic modification along evolution, one can imagine 
that MO will be changing their amino acid composition of proteins from essential to 
non-essential amino acids. This way, organisms would be each time less dependent of 
the amino acid composition of the proteins ingested for their perfect metabolism and 
functioning. So, the current work intends to verify if diet has been acting as a selec-
tive pressure for the proteome modification and, if so, in which scale it has been hap-
pening. Therefore, our main goal is try to find evidences for the substitution of EAA 
to NEAA in the metazoan organisms and investigate if this kind of substitution is 
happening all over the proteome or only in particular group of proteins. 

Here, we report the analysis of the EAA content from all proteins of 6 genome-
completed organisms. Three of them are MO -- Homo sapiens (hsa), Drosophila 
melanogaster (dme) and Caenorhabditis elegans (cel) -- and, therefore, present 8 
EAA; and the other three are non-metazoan organisms (NMO) holding enzymes to 
synthesize all amino acids – Arabidopsis thaliana (ath), Saccharomyces cerevisiae 
(sce) and Schizosaccharomyces pombe (spo). Two well-curated secondary genomic 
databases were used to evaluate the differences on the EAA usage in proteins: COG 
and RefSeq. The NCBI eukaryotic cluster of orthologous groups (KOG) was used to 
allow the comparison between evolutionary related proteins, in order to investigate if 
the amino acids have been changing in proteins with the same origin and function 
(Tatusov et al., 2003). The Reference Sequence database (RefSeq) was also used to 
evaluate the amino acid composition of proteins throughout the complete proteome of 
the selected organisms (Pruitt et al., 2000; Pruit et al., 2005), since KOG just contain 
proteins conserved by three organisms at least. 

2   Methodology 

2.1   Essentiality Index Ranking  

For each KOG orthology group, it was created an index called “essentially index” 
(EI). This index represents the proportion of EAA in that KOG. The amino acid argin-
ine was removed from the index since it is frequently called a semi-essential amino 
acid and it can be produced in some phases of organisms’ life. So, the essential index 
was calculated as shown on (1). 

The essentiality index: 

)()_(
)_(

RNtotalaaN
essaaNEI =  

(1)*

*  In KOGs presenting more than one gene (paralogs), the number of all amino acids were 
considered to generate the EI. The R, in formula, represents the number of arginines that were 
removed from the total. 

EI pair-wise comparisons were made between MO and NMO for all KOGs. The to-
tal number of events and the number of times where NMO KOGs presented greater 
index than MO were counted. 

_
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2.2   Amino Acidic Index Clustering 

For each organism, it was calculated amino acid usage for all its proteome based on 
RefSeq database. Once more, pair-wised comparisons were done between MO and 
NMO, this time to verify which amino acids one or other group are preferentially 
using. If diet has been influencing proteome modification, we would expect that the 
most dissimilar used amino acids between the groups should be the essential ones. So, 
hierarchical clustering of amino acidic indexes were produced using cluster software 
from Michael Eisen (Eisen et al., 1998) and normalized by log2.  

NMO

MO
AA UsageAA

UsageAAPI
_%
_%log2=  (2) 

3   Results 

3.1   Download Data 
Protein sequence data were downloaded from RefSeq and eukaryotic COG database 
(for Schizosaccharomyces pombe only KOG data was analyzed). 

3.2   Raw Data Analysis 

The first analysis performed was simply the calculation of EAA percentage in the 
proteome (table 1). 

The EAA percentage in KOG appears to be greater than in RefSeq for all organ-
isms analyzed, as well as lower in MO than NMO (with exception of cel), although 
these differences did not seem to be statistically significant. 

Table 1. General project information 

Database Organism # proteins # aa % EAA Std EAA 
Ath 24,155 9,981,732 46% 5,4% 
Sce 4,842 2,423,755 47% 5,6% 
Spo 4,234 1,915,466 46% 5,5% 
Cel 17,102 7,397,061 47% 6,7% 
Dme 10,518 5,214,193 44% 6,6% 
Hsa 26,325 11,431,714 44% 6,5% 

KOG 

Total KOG 87,176 38,363,921   
Ath 29,157 12,120,473 43% 5,3% 
Sce 5,868 2,913,021 45% 5,1% 
Cel 21,136 9,221,024 44% 6,8% 
Dme 18,759 10,563,721 41% 6,2% 
Hsa 27,978 13,993,731 41% 6,6% 

REFSEQ 

Total RefSeq 102,898 48,811,970   
 TOTAL 190,074 87,175,891   
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3.3   Voting of KOGs Essentiality Index 

The EI for each KOG orthology group shared by a couple of organisms (MOs and 
NMOs) was taken on account. So, the percentage of MO KOGs presenting higher EI 
than NMO ones was generated (Table 2). 

Table 2. Percentage of KOGs with higher EI 

 Ath Sce 
Hsa higher 45% 34% 
Dme higher 45% 33% 
Cel higher 60% 46% 

Such as expected, hsa and dme has shown lower number of high-EI KOGs than ath 
and sce. Although the results have not shown an outstanding difference between MO 
and NMO they point out in the direction of the existence of a pressure. Once more, 
cel was an exception when compared to ath and considering missing information 
about amino acid biosynthesis pathways in this worm, further analysis was done pref-
erentially with hsa and dme. 

 

Fig. 1. Clustering analysis of amino acidic indexes between the indicated MO and NMO. A) 
Green and red filled circles indicate, respectively, NEAA and EAA. The colors in the plot 
represent the tendency of the amino acids to be present rather in MO (green) than NMO (red). 
The color intensity is the representation of amino acid PI. B) PI plot of amino acids for hsa-ath. 
EAA are shown in red and NEAA in green 
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3.4   Amino Acidic Index Clustering 

In order to verify if non-essential amino acids (NEAA) are supposed to occur prefer-
entially in MOs, an amino acid percentage usage was derived based on RefSeq data. 
A preference index ratio (PI) was defined as the percentage of each amino acid in MO 
divided by its the percentage in NMO normalized by log2.  

Data for the comparison between hsa and ath is shown (Figure 1b). Remarkably, 
all the amino acids occurring preferentially in human than plant (A, H, C, P and Q) 
are NEAA. Data for other MO/NMO comparison also support this observation  
(figure 1a). 

3.5   The First Hungry-Failed Proteins 

It is also interesting to analyze which proteins would be mainly affected in an or-
ganism with a restrictive diet. This is the same of analyzing the proteins presenting 
the highest EI. The top ten proteins found for human genome are shown (Table 3). 

These high-EI protein groups have not shown any particular relationship amongst 
them and they seem to be unrelated by means of molecular function or biological 
process. 

Table 3. Human KOGs with higher EI 

KOG Description 
KOG1721 FOG: Zn-finger  
KOG0613 Projectin/twitchin and related proteins  
KOG3594 FOG: Cadherin repeats 
KOG3656 FOG: 7 transmembrane receptor 
KOG3544 Collagens (type IV and type XIII), and related proteins 
KOG2177 Predicted E3 ubiquitin ligase 
KOG0619 FOG: Leucine rich repeat 
KOG0516 Dystonin, GAS (Growth-arrest-specific protein), and related pro-

teins 
KOG3595 Dyneins, heavy chain 
KOG1217 Fibrillins and related proteins containing Ca2+-binding EGF-like 

domains 

3.6   The Proteins Under Selection Pressure 

The identification of the KOGs harboring the higher number of expected amino acid 
changes (EAA to NEAA) between NMOs and MOs was also performed. The most 
different KOGs between hsa and ath are shown (Table 4). So, the EI of each KOG 
from both organisms was observed and we select the 10 top KOGs presenting the 
most different EI. These proteins have shown direct modification in amino acidic 
structure, changing their EAA to NEAA during evolution (considering they were the 
same on the common ancestor between hsa and ath). 
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Table 4. Hsa-Ath most different KOGs on EI 

KOG DIFF* Description 
KOG4752 38% (J) Ribosomal protein L41 
KOG0002 24% (J) 60s ribosomal protein L39 
KOG3491 19% (S) Predicted membrane protein 
KOG3445 17% (J) Mitochondrial/chloroplast ribosomal protein 36a 
KOG3500 15% (C) Vacuolar H+-ATPase V0 sector, subunit M9.7 (M9.2) 
KOG1793 14% (S) Uncharacterized conserved protein 
KOG4293 14% (T) Predicted membrane protein, contains DoH and Cyto-

chrome b-561/ferric reductase transmembrane domains 
KOG3423 14% (K) Transcription initiation factor TFIID, subunit TAF10 

(also component of histone acetyltransferase SAGA) 
KOG2346 13% (S) Uncharacterized conserved protein 

Interestingly, the first four proteins with most dissimilar EI KOGs between ath and 
hsa represent highly expressed ribosomal proteins.  

4   Discussion 

As far as we know this is the first attempt to investigate the hypothesis that diet has 
been influencing the proteome modification of the organisms. Since amino acids 
substitutions can be conservative, the genome of complex organisms might be 
modified as a response for a selection pressure on the preferentially usage of non-
essential amino acids. We have shown indicatives of the occurrence of this kind of 
modification along evolution, although it seems to be happening mainly in the most 
expressed proteins (Table 4). At this moment, we are currently extending our inves-
tigation to a large number of organisms that might have any information about the 
requirement of EAAs. It would be highly desirable to study position-specific substi-
tutions in orthologous proteins, since we could find which substitutions are more 
frequent, and if those ones happen using minimum pathways of nucleotide substitu-
tions based on the genetic code. However, it is very probable that the substitutions 
are happening freely in the non-conservative regions of the proteins (that ones do 
not matched by local sequence alignment software). Moreover, the investigation of 
EAA proportion in specific processes and pathways should give us a glimpse on 
where these substitutions seem to be more relevant. Thus, the preliminary results 
shown here support the thesis that EAA has been replaced by non-essential ones at 
least in a long term way.  
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Abstract. The large amount of data from complete genomes gave rise
to the need for computational tools to analyze and compare them. In
this work, we propose a method for comparing three genomes simultane-
ously, at the basic level of their sequences. This comparison can indicate
the set of genes shared by genomes, giving interesting clues about the
metabolic pathways and proteins related to particular issues. The input
for the method is three sets of gene coding sequences or products and
the output are the sequences exclusive to each genome, the sequences
common to pairs of genomes, and the sequences common to the three
genomes. Because each sequence in a genome may be similar to many
sequences in the other two genomes, some complicated situations may
arise. The main feature of our method is the ability to avoid such situa-
tions. We used our method to compare genomes of two pathogenic and
five non-pathogenic fungi, and made a biological analysis based on one
of these results.

1 Introduction

The increasing availability of complete genomes has created the need for com-
putational tools to analyze and compare them. Genome comparison is useful
to investigate common functionalities of corresponding organisms and to get a
better understanding of how genes or groups of genes are involved in particular
functions and characteristics.

Different methods for genomic comparison have been described in the liter-
ature. They are based on sequence comparisons of raw genomic DNA, coding
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sequences or gene products [1, 5, 11, 10, 6]. Some of them make comparative anal-
ysis of pathogenic and non-pathogenic organisms trying to identify genes that
contribute to infection and disease [4, 7]. There are also many computational
tools available on the Internet that can be freely used [8, 14, 15, 9].

In this work we propose a method for comparing three genomes simultane-
ously, at the basic level of their sequences. The input for the method is a set of
gene coding sequences or products and the output are the sequences exclusive
to each genome, the sequences common to pairs of genomes, and the sequences
common to the three genomes. This output corresponds to the regions in a Venn-
Euler diagram, as the one shown in Figure 1. Determining the sequences in each
region of the diagram may indicate the set of genes shared by genomes, giving
interesting clues about shared metabolic pathways and proteins related to some
particular issues.

We used our method to compare genomes of pathogenic and non-pathogenic
fungi. Particularly, we compared two pathogenic fungi with five different non-
pathogenic fungi, three at a time, trying to identify genes involved on pathogenic-
ity. We also make a biological analysis from the results obtained by one of these
comparisons.

The rest of the paper is organized as follows. In Section 2, we discuss some
issues on comparing three genomes at the same time. In Section 3 we describe
our method. Experiments with fungal genomes appear in Section 4. A biological
analysis of one of the results obtained from the experiments is presented on
Section 5. Finally, in Section 6, we make our concluding remarks.

2 3-Genome Comparison

Suppose that we have three genomes, and that a genome is a set of gene se-
quences that can be either coding DNA or peptidic gene products. If we are
able to unambiguously assign the genes from each genome to a single region of a
Venn-Euler diagram as shown in Figure 1, the regions in the diagram would rep-
resent the sequences exclusive to each genome, the sequences common to pairs
of genomes, and the sequences common to the three genomes.

In order to produce the diagram, we use sequence similarity to select the
sequences that are going to be assigned to each region of the diagram. There are
a number of clear cut situations. Such cases are illustrated in Figure 2, where
an edge connecting two genes means that the sequences are similar.

It can often be hard to decide in which region a sequence has to be included
because a sequence may be similar to many other sequences in different genomes.
This can lead to complicated relations among the sequences, whose biological
meaning is unclear (Figure 3).

We propose a method for finding the sequences in each region of the di-
agram that avoids dealing with complicated cases. Our method starts finding
similar sequences among the genomes. Then it finds as much sequences com-
mon to the three genomes as possible, taking into consideration a score given
to every sequence triplet. Finally it finds as much sequences common to pairs
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Fig. 1. A Venn-Euler diagram representing (a) sequences exlusive to one genome, (b)
sequences restricited to two genomes, and (c) sequences common to the three genomes

(a)

P R

Q

(b)

P R

Q

(c)

P R

Q

p1 r1

q1

p1 r1 p1

Fig. 2. Genes that can be unambiguously assigned to a region of the Venn-Euler dia-
gram. (a) Genes in all the three genomes (triangles). (b) Genes in genomes P and R
only (edges). (c) Genes exclusive to P . Other possibilities are symmetric and are not
shown
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Q

r1p1
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Fig. 3. Genes with not clearly defined biological relations, which makes hard their
inclusion on the Venn-Euler diagram regions. Other situations similar to these are easy
to find

of genomes as possible, also taking into consideration a score given to every
sequence pair.

Our method is a general framework, that is, we leave some measures and
thresholds unspecified. This allows the method to be specialized depending on
many issues, such as processing power availability, size of the genomes, specificity
and sensitivity.
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3 Method Description

In our method a sequence is a juxtaposition of letters. A sequence may be
either DNA or protein. A genome is a set of sequences. We restrict a genome to
be a set of sequences of the same kind. We denote by G(p) the genome to which
sequence p belongs. Our method lays on two main concepts: edge and triangle.

– Given two genomes P and Q, an edge is a pair of sequences (p, q), p ∈ P
and q ∈ Q. The weight of an edge, w(p, q), is any measure of similarity that
can be evaluated given p and q.

– Given three genomes P, Q and R, a triangle is a triplet of sequences (p, q, r),
p ∈ P , q ∈ Q and r ∈ R, such that there are edges (p, q), (p, r) and (q, r).

Method 3GC
Input: genomes P , Q and R
Output: sequences in P , Q and R attributed to Venn-Euler diagram regions

Evaluate w(a, b) for every pair of sequences such that G(a) �= G(b).
For every triangle (p, q, r), p ∈ P , q ∈ Q and r ∈ R, such that w(p, q, r) ≥ Tt do

Add (p, q, r) to list L;
Sort L non-increasingly on the weights of the triangles.
while L �= ∅ do

Take the first triangle from L, and call it t = (p, q, r).
Add t to the proper region in the diagram.
Remove any triangle in L that has p, q or r as a member.
Remove p, q and r from P , Q and R, respectively.

For every edge (p, q), p ∈ P and q ∈ Q, such that w(p, q) ≥ Te do
Add (p, q) to list L;

For every edge (p, r), p ∈ P and r ∈ R, such that w(p, r) ≥ Te do
Add (p, r) to list L;

For every edge (q, r), q ∈ Q and r ∈ R, such that w(q, r) ≥ Te do
Add (q, r) to list L;

Sort L non-increasingly on the weights of the edges.
while L �= ∅ do

Take the first edge from L, and call it e = (a, b).
Add e to the proper region in the diagram.
Remove any edge in L that has a or b as a member.
Remove a and b from G(a) and G(b), respectively.

for every sequence s in P do
add s to the region corresponding exclusively to P in the diagram;

for every sequence s in Q do
add s to the region corresponding exclusively to Q in the diagram;

for every sequence s in R do
add s to the region corresponding exclusively to R in the diagram;

Fig. 4. The method description
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The weight of a triangle, w(p, q, r), is any measure that can be evaluated
from w(p, q), w(p, r) and w(q, r).

Our method evaluates the weight of every pair of sequences from distinct
genomes. Then the triangles are processed in non-increasing order of weights.
One by one the triangles are assigned to the common region of the diagram, until
no triangles with weight greater or equal to Tt are left. When a triangle (p, q, r)
is included in the diagram, no more triangles or edges involving p, q or r are
taken into consideration. After that, the edges are processed in non-increasing
order of weights. One by one the edges are assigned to the proper region of the
diagram, until no edges with weight greater or equal to Te are left. The general
description of the method appears in Figure 4.

Our method has been described taking into account that the measure used
in weight evaluation is based on sequence similarity [13]. By making only mi-
nor changes, it can also be described with other kinds of measures, like Blast
expectation [2], or edit distance [13]. Proper changes on the measures and thresh-
olds will lead to a family of algorithms that can be applied for comparing three
genomes at the same time.

The running time for an algorithm that follows the steps in our method is
loosely O(|P ||Q|α + |P ||R|α + |Q||R|α + |P ||Q||R|β), that corresponds to the
number of sequence comparisons at cost α per comparison, plus the maximum
number of triangles that can be generated among the genomes at cost β per
triangle weight evaluation. Of course the number of triangles is going to be
smaller in practice. Indeed, our experiments have shown that the processing
time is affordable.

4 Experiments

We used our algorithm to compare the genomes of fungi Aspergillus nidulans
(9541 sequences), Candida albicans (6165 sequences), Criptococcus neoformans
(6578 sequences), Fusarium graminearum (11640 sequences), Magnaporte grisea
(11109 sequences), Neurospora crassa (10082 sequences) and Saccharomyces cere-
viseae (6305 sequences). C. neoformans and C. albicans are human pathogens;
the other fungi are not. We compared every non-pathogenic genomes with C. ne-
oformans and C. albicans, giving rise to the five Venn-Euler diagrams that appear
in Figure 5. Every gene located in the diagram regions and the input genomes
are available at http://egg.dct.ufms.br/3gc/.

We set our algorithm as follows. There is an edge between two sequences if
they form a Blast bidirectional hit. Given a sequence p from genome P and a
sequence q from genome Q, we say that p and q are a bidirectional hit if

– q is found by the Blast search of p against Q with expectation less or equal
to e−5, and

– p is found by the Blast search of q against P with expectation less or equal
to e−5.
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Fig. 5. Venn-Euler diagrams for two pathogenic and five non-pathogenic fungi, com-
pared three at the same time

The weight of an edge (p, q) is given by the average percent coverage of the
sequences by the alignments produced by the Blast searches. We believe that us-
ing coverage it is possible to avoid adding an edge between two sequences sharing
only small subsequences, like small protein domains. Triangles are weighted by
the average of the weights of its edges.

In order to set Tt, we conduced the following experiment. We executed the
algorithm for 1 ≤ Tt ≤ 100, in steps of 1. For each value of Tt, we recorded the
number of triangles with three sequences belonging to the same Pfam family [3]
and the number of triangles with two sequences belonging to the same Pfam
family. Pfam was used since it is based on Hidden Markov Models that detect
family/domain features in a given protein sequence. Pfam models were consid-
ered assuming that orthologous sequences in a given triangle would share the
same Pfam family. Triangles sharing two or three sequences with the same Pfam
result were counted and plotted considering only steps of 10 (Figure 6). This
curve suggests a reduced effect of coverage cutoff on the efficiency of detecting
sequences with similar Pfam result.

In Figure 7 we show the number of resulting triangles with increasing coverage
cutoff. As expected, there was a marked decrease of triangles as the stringency
increases, falling close to zero when sequence pairs must share 100% coverage.
Although the existence of such sharp drop, the number of triangles are rather
constant for coverages below 50%, a comprehensive coverage for interspecies
orthologous detection. It is note worth that the method is rather insensitive to
a low coverage cutoff. It is possibly a feature of the algorithm in use, which
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Fig. 6. Percentages of triangles with at least two coincident (upper curve) and per-
centages of triangles with three coincident Pfam families (lower curve), for Tt varying
from 10 to 100

Fig. 7. Number of triangles with increasing coverage cutoff. The upper curve represents
the total number of triangles for a given cuttoff. The lower curve represents the number
of triangles having three sequences matching with the same Pfam family

Fig. 8. Number of edges with increasing coverage cutoff. The upper curve represents
the total number of edges for a given cuttoff. The lower curve represents the number
of edges having two sequences matching with the same Pfam family
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eliminates the high coverage triangles progressively reducing the search space at
each step. This approach apparently prevents low similarity hits from getting
into triangles, improving the number of correctly detected orthologous among
tested species. We selected Tt = 50.

In order to set Te we conduced a similar test. We executed the algorithm for
1 ≤ Te ≤ 100, in steps of 1, with Tt = 50. For each value of Te, we recorded the
number of edges with two sequences belonging to the same Pfam family. The
results are plotted considering steps of 10 in Figure 8. The percentage of edges in
the same Pfam family had similar behavior of triangles. So, we selected Te = 50.

It took 35 minutes on the average to run the program for every fungal com-
parison in a Pentium 4 at 2 GHz, 1 GB RAM and an ultra ATA/100 40 GB hard
disk. Running Blast took less than 22 hours in the same machine. Our program
was written in Perl.

5 Biological Inference Based on Our Experiments

We selected seven complete genomes to test the 3-genome comparison algorithm.
In order to focus on genes related to human pathogenesis, we compared C. al-
bicans and C. neoformans to any of the other five non-pathogenic species. The
numbers resulting from this analysis are shown in Figure 5. There is a striking
constant number of triangles among comparison (2941 ± 79). This set may re-
flect shared genes involved in the informational and central metabolism, a set of
indispensable genes for fungi.

We conduced a biological analysis with three fungi genomes among the an-
alyzed genome set, chosen because they are biological representative systems.
S. cereviseae was the first determined eukaryote genome and now is object of
intensive annotation validation by many groups around the world. This non-
pathogenic fungus is standard for genome comparison due to the large availability
of biochemical and genetic data. C.albicans is a human opportunistic pathogen
that had its genome recently dissected. Its genome had been intensively anno-
tated and, likewise S. cereviseae, is a well studied fungi. These two genomes were
compared to the newly described genome of C. neoformans, the etiological agent
of an opportunistic mycosis. Cryptococcosis is an opportunistic fungal infection
that most frequently causes pneumonia and/or meningitis. The comparison of
C. neoformans genome to other fungi may reveal pathogenic related genes and
biochemical peculiarities yielding to alternative therapeutic approaches.

The 3-genome comparison resulted in the first Venn-Euler diagram shown
on Figure 5. The genomes harbor an equivalent number of genes (S. cereviseae:
6305 genes; C. albicans: 6165 genes; C. neoformans: 6578 genes). There are 2921
triangles corresponding to orthologous genes among genomes. According to this,
roughly half of the genes in the three genomes could be assigned to triangles.
Edges representing genes in two but absent in the third genome is small (less
then 6%) except for those presented in S. cereviseae and C. albicans and absented
in C. neoformans. This number is followed by a 48% of exclusive genes in the
C. neoformans. This region represents genes with no orthologous genes on the
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other compared genomes. This result suggests that S. cereviseae and C. albicans
share more orthologous than any of them with C. neoformans.

Histones are conserved proteins involved in the assembly of DNA into chro-
matin. Histones are coded by a set of conserved genes that can be found in any
eukaryote. They are classified by histone H1, H2a, H2b, H3 and H4, where H1
performs an associative role to keep together the nucleosomes particles. The tri-
angles revealed the presence of 8 orthologous among S. cereviseae, C. albicans
and C. neoformans. There were three copies of H3 and two copies of H4; H2a
and H2b appears as single copies. There is also the regulatory histone variant
H2A F/Z found on the three analyzed genomes. Interestingly, we did not find a
triangle for the Histone H1. We only found a single edge between S. cereviseae,
and C. neoformans, suggesting the absence of this histone in C. albicans. Indeed
there is no evidence for a H1 homologous in C. albicans in the literature, and it
was shown that for other fungi, it was dispensable [12]. So, this analysis could
easily reveal the hole set of orthologous histones among these three genomes.

Fungal pathogenesis depends on a series of genes to yield fungi cell growth in-
side host cell and to evade immune system. The glyoxilate cycle help fungi survive
inside macrophage, an immunity cell that phagocyte foreign bodiesLBF04. The
invading cell must be able to survive inside macrophages to succeed in infecting.
It had been shown that the activation of the glyoxilate cycle is fundamental for S.
cereviseae and C. albicans survival in this condition. The enzymes isocitrato lyase
and malate synthase together with malate dehydrogenase, citrate synthase and
aconitase complete the cycle. All these enzymes were found on triangles among
the three genomes and support the existence of the cycle in the poorly character-
ized C. neoformans genome. This fact suggests new targets for C. neoforms drug
development, based in the absence of this metabolic pathway in animal (host) cell.

6 Concluding Remarks

The need for computational tools to analyze and compare the large amount of
data from complete genomes is posed. In this work, we proposed a method for
comparing three genomes simultaneously, at the basic level of their sequences.
The input for the method is a set of gene coding sequences or products and
the output is sequences exclusive to each genome, sequences common to pairs of
genomes, and sequences common to the three genomes. We used our method to
compare genomes of two pathogenic (Candida albicans and Criptococcus neofor-
mans) and five non-pathogenic fungi (Aspergillus nidulans, Fusarium gramin-
earum, Magnaporte grisea, Neurospora crassa and Saccharomyces cereviseae).
Finally, we chose the results from (C. albicans, C. neoformans and S. cereviseae)
to make a biological analysis.

We believe that our method performed well in affordable time, since con-
sidering the percentage of triangles with at least two coincident Pfam families,
more than 90% of all triangles had that condition, and this ratio increased to
more than 95% in a high coverage match cutoff. This data showed that the
most part of the triangles had coincident Pfam results, suggesting that they are
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indeed structurally/functionally related, a sine qua non condition for assigning
orthology to a pair of related sequences.

Other possibilities for comparing three genomes include a previous clustering
step in each genome. Like our method does, this also could help to avoid those
complicated cases involving paralogous genes, reported in Section 2. By analyzing
intersections of interest across diagrams, keeping a pair of genomes fixed, highly
conserved pathways in fungi could be revealed. Analyzing specific genes in each
genome could reveal particular pathways of secondary metabolism. Our method
is general in the sense that one can use any measures and/or thresholds, so its
use in conjunction to other methods found on the literature could lead to new
interesting biological findings.

References

1. N.F. Almeida. Tools for genome comparison. PhD thesis, IC-Unicamp, Campinas-
SP, Brazil, 2002. in Portuguese.

2. S.F. Altschul, T.L. Madden, A.A. Schäffer, et al. Gapped BLAST and PSI-BLAST:
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Abstract. Aligning cDNA sequences to genomic sequences is a very
common way to study expressed sequences, find their genes, and study
alternative splicing. Several computer programs address this problem,
using heuristics to define exon regions. Usually, standard alignment algo-
rithms are not used to align ESTs to genomic DNA, due to the existence
of large regions of introns. This paper compares the EST-to-genomic
alignments produced by sim4, est genome, Spidey and standard sequence
aligners using an appropriate score. Surprisingly, standard aligners per-
formed quite well with sequences having few errors.

1 Introduction

Identifying genes in non-characterized DNA sequences is one of the great chal-
lenges in genomics. One of the most common methods for this task is aligning
expressed sequence tags (EST) to genomic sequences.

ESTs are key to understanding the inner working of an organism. However,
in order to fully understand the function of an expressed sequence, it must
be put in its genomic context. Estimates show that the human being has a
number of genes between 30000 and 35000 [1], and therefore alternative splicing
may be an important factor in generating transcriptional diversity, so EST-to-
genomic alignment will be crucial to our understanding of the genome. Generic
sequence alignment algorithms are not usually used to perform EST-to-genomic
alignment, mostly because of the high amount of introns that may occur in the
genomic sequence. The main goal of this paper is to compare alignments between
genomic DNA and cDNA produced by a conventional aligner, using a custom
set of scores, with the results produced by publicly available software (sim4,
est genome and Spidey) that use heuristics to find exon boundaries.

In Section 2 we describe the classic algorithms to align any given pair of
sequences. In Section 3 we describe the aligner used in this paper. In Section 4,
we discuss the strategies adopted by sim4, est genome and Spidey to find good
EST-to-DNA alignments. In Section 5 we describe the data set used as testbench
for the paper. In Section 6 we describe the test methodology, whose results are
further analyzed in Section 7. Finally, in Section 8 we conclude and propose
possible further work.
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2 Classic Algorithms to Align a Pair of Sequences

An alignment of a pair of sequences is defined as an operation in which gaps are
inserted in both sequences in order to make them have the same length, allowing
comparison between bases [8]. For a given alignment, it is possible to define a
score that measures the quality of the obtained result. The simplest score system
consists of a penalty given to base aligned to a gap, (gap penalty), points given
to alignment of different bases (mismatch) and points given to alignment of
identical bases (match).

This type of score system does not differentiate one-base gaps from contigu-
ous (multi-base) gaps. However, it is known that k-length gaps are much more
common that k one-base gaps [8]. Therefore a strategy had to be developed, in
which one-base gaps suffer a bigger penalty than contiguous gaps. With that,
it is expected that most gaps are joined together. To accomplish this, the gap
penalty was replaced by an affine function w(k) = g + hk, where k it is number
of contiguous spaces, g it is the cost opening a new gap, and h is the cost of
extending an open gap.

Throughout this paper, we will always deal with 4 parameters: g, which will
be called opengap, h, or extendgap, match and mismatch. The goal of alignment
algorithms is to achieve optimum alignment, i.e, the one that receives the highest
possible score. Global alignment intends to achieve the best possible alignment
for two sequences. Spaces may be inserted at any position of the sequence, in
order to get optimal score. Semi-global alignment intends to group the highest
amount of spaces at the beginning and at the end of the alignment, at no penalty
cost, with the sole goal of getting the best alignment between a prefix of one
sequence prefix and a suffix of the other sequence or between one sequence and
a subsequence of the other sequence.

3 Global and Semi-global Aligners

For this paper, we developed global and semi-global aligners with affine score
systems. The implemented aligners use linear space, considering that space is
crucial to aligning long sequences. The global aligner is an implementation of
the algorithm for global alignment proposed by Miller and Myers [4]. The semi-
global aligner is based on the global algorithm.

Both aligners were implemented using the Java programming language. Com-
parative tests between the implemented aligners and fasta [6] package aligners
were made to validate the implementation.

4 ESTs to Genomic DNA Alignment Packages

One of the main goals of aligning ESTs to genomic DNA is to detect exon
(coding sequences) and intron (non-coding sequences) boundaries in the latter.
Some heuristic-based algorithms have been developed to address this problem.
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In this paper we will compare our aligner’s results with those produced by three
of theses softwares: est genome [3], sim4 [2] and Spidey [10].

5 Test Dataset

In order to compare the aligners, a large human genome dataset was built,
containing relevant data about chromosomes, genes, mRNAs and CDSs. The
data used to build such dataset was extracted from FASTA files and GENBANK
flat files. Detailed description of how the files are organized can be found on the
NCBI website [5]. All files used were obtained at the NCBI’s FTP repository and
were made available in the repository on October 9, 2004. To achieve consistency,
it was necessary to filter the dataset.

5.1 Data Filtering Criteria

An mRNA is a single stranded RNA molecule that specifies the amino acid
sequence of one or more polypeptide chains. This information is translated during
protein synthesis when ribosomes bind to the mRNA. CDS (Coding sequence)
is the region between mRNA’s start and stop codon that effectively is translated
by the ribosome and code protein sequence. UTR (untranslated sequence) are
sections of the RNA before the start codon and after the stop codon that are
not translated. These come from the template DNA strand that the RNA was
transcribed from. These regions, known as the 5’UTR and 3’UTR, code for no

Fig. 1. Accepted mRNA and CDS patterns: mRNA composed by a number of CDSs
without UTR; mRNA composed by two CDSs and one region of 3’-UTR ; mRNA
composed by one CDSs, one region of 5’-UTR and two segments of one region of 3’-
UTR
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Fig. 2. Discarded mRNA and CDS patterns: an inner region of the mRNA is not
covered by the CDS; one of the inner regions of the mRNA is partially covered by two
regions of CDS; mRNA regions not present in the CDS and vice-versa

protein sequences. An mRNA must be fully covered by CDSs and UTRs and
UTRs and CDSs must not have regions outside the mRNA. Examples of the
accepted mRNAs and CDSs patterns in the database are showed in Fig. 1.

The following elements were removed from the database:

– Genes, mRNAs and CDSs with a /pseudo tag.
– CDSs matching the patterns shown in Fig. 2.
– mRNAs without any CDS.
– Genes without any mRNA.

5.2 Results After Filtering

From all the genes extracted from the files, 6.72% were removed for being in-
complete (without mRNAs), and 6.78% were removed for being pseudo-genes.
Only 0.06% of the mRNAs were removed for being pseudo-mRNAs. From all the
CDSs, 0.17% were removed for being pseudo-CDSs and 1.7% were removed for
not matching the patterns mentioned earlier.

By the end of the filtering process, 23124 genes (86.5% of the genes) and
27448 mRNAs were stored in the database. Among the mRNAs inserted in the
database, 9.48% do not contain any UTR, 4.74% contain 5’-UTR only, 4.33%
contain 3-’UTR only and 81.45% contain both 3’-UTR and 5’-UTR.

6 Test Methodology

To evaluate the many score systems considered, we defined gene subsets, in order
to perform a large number of evaluation experiments. The subsets defined are:
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Subset 1. Data set composed by 66 mRNAs extracted from 66 genes from
chromosome Y with less than 100000 bases.

Subset 2. Data set composed by 50 mRNAs extracted from 40 complete genes
(without N symbols) from chromosome Y with less than 100000 bases.

Subset 3. Data set composed by 8056 mRNAs extracted from 7376 complete
genes from the whole human genome database with less than 10000 bases.

Subset 4. Data set composed by modified subsequences extracted from 493
complete genes from chromosome 6 with less than 10000 bases. For each
selected gene, 10 subsequences were randomly extracted, with size ranging
from 200 to 1000 bases: in 5 of them we introduced errors (insertion, deletions
and base substitution) at a rate of 1%, and in the other 5, at a rate of 10%.
The errors were introduced using a random number generator. The final
subset is composed by 4930 simulated ESTs to be aligned with 493 genes.
The values of 1% and 10% are justified by the fact that the error rate of
base-calling programs can be as high as 3% [9].

To determine the more appropriate alignment strategy (global or semi-global)
and score system to produce good EST-to-genomic alignments using a standard
aligner, we started producing alignments with data sets 1 and 2. For each gene
and mRNA, alignment algorithm and score system, we produced 4 types of
alignments: mRNA (CDS+UTR) to gene, CDS to gene, mRNA to gene+200
bases (100 bases appended to each extremity) and CDS to gene+200 bases.

Once the alignment strategy and score system were defined, we performed
the 4 alignments defined above using the data from sets 3 and 4. Besides, we
used the external programs sim4 [2], Spidey [10] and est genome [3], with their
default configuration, to align all the data from the 4 data sets.

6.1 Evaluation Methods of the Obtained Alignments

The following metrics were defined to compare the alignments produced by our
simple aligner and those produced by the external programs.

Gaps introduced in the aligned gene sequence. Simply counts the num-
ber of gaps inserted by the aligner in the genomic sequence. Using mRNAs
and CDS without errors, the expected value for all alignments is 0. All values
must be positive.

Delta exons. Subtracts the number of exons created by the aligner from the
number of exons of the original mRNA. Positive values mean that the aligner
created less exons than expected. Ideally, the value must be 0 for all produced
alignments. It is important to notice that the generic aligner does not define
exon/intron boundaries. However, we consider a contiguous region of bases
in the aligned mRNA or EST as being exon regions.

Bases similarity percentage. Calculates the similarity percentage between
the expected gapped cDNA and the gapped cDNA produced by the aligners.
This is done comparing each base from the predicted gapped cDNA to the
base in the same position in the produced gapped cDNA.
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Mismatch percentage. Counts the number of mismatches created by the align-
ers and divides it by the size of the cDNA. In exact alignments (data sets 1,
2 and 3), the expected value is 0 for all produced alignments.

7 Results and Comparative Analysis

The comparative analysis of the alignments produced by a conventional aligner
and those produced by carefully crafted programs, designed to produce EST-to-
genomics alignments, was divided in two stages: first, the tests were designed
to identify the most appropriate algorithm (global or semi-global) and the most
appropriate score system to produce good EST-to-genomics alignments. Second,
we ran tests to compare our aligner with sim4, Spidey and est genome, using
both exact sequences and sequences with introduced errors.

7.1 Alignment Algorithm and Score System Definition

Using the aforementioned methodology, we tested 15 different score systems, using
data sets 1 and 2. The score system match = 1, mismatch = −2, opengap = −1,

Table 1. Minimum, maximum, average and standard deviation for base similarity
percentage of the exons produced by sim4, est genome, Spidey, global and semi-global
aligner using dataset 3, and percentage of alignments with the expected base similarity
score of 100%

Base similarity percentage (Dataset 3)

Aligner Alignment type Min Max Avg σ % Score 100%

Semi-global Gene x mRNA 80.85% 100.00% 99.89% 0.49% 53.56%
Semi-global Gene+200 x mRNA 80.31% 100.00% 99.83% 0.63% 53.56%
Semi-global Gene x CDS 80.31% 100.00% 99.83% 0.63% 59.35%
Semi-global Gene+200 x CDS 80.85% 100.00% 99.89% 0.49% 59.35%
Global Gene x mRNA 80.70% 100.00% 99.85% 0.52% 53.62%
Global Gene x CDS 80.31% 100.00% 99.78% 0.63% 46.97%
Global Gene+200 x mRNA 80.31% 100.00% 99.76% 0.67% 38.87%
Global Gene+200 x CDS 90.01% 100.00% 99.90% 0.28% 43.61%
sim4 Gene x mRNA 36.00% 100.00% 99.39% 1.34% 22.72%
sim4 Gene x CDS 10.29% 100.00% 99.08% 2.29% 33.19%
sim4 Gene+200 x mRNA 36.00% 100.00% 99.39% 1.34% 22.72%
sim4 Gene+200 x CDS 10.29% 100.00% 99.08% 2.29% 33.19%
est genome Gene x mRNA 1.80% 100.00% 53.83% 35.09% 18.11%
est genome Gene x CDS 2.68% 100.00% 62.45% 35.09% 31.05%
est genome Gene+200 x mRNA 1.80% 100.00% 53.80% 35.10% 18.11%
est genome Gene+200 x CDS 2.68% 100.00% 62.44% 35.09% 31.05%
Spidey Gene x mRNA 0.00% 100.00% 80.34% 36.49% 44.25%
Spidey Gene x CDS 0.00% 100.00% 81.47% 37.06% 50.92%
Spidey Gene+200 x mRNA 0.00% 100.00% 80.19% 36.75% 44.19%
Spidey Gene+200 x CDS 0.00% 100.00% 81.53% 37.02% 50.93%
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Table 2. Minimum, maximum, average and standard deviation for delta exons pro-
duced by sim4, est genome, Spidey and semi-global aligner using dataset 3, and per-
centage of alignments with the expected delta exons score of 0

Delta exons (Data set 3)

Aligner Alignment type Min Max Avg σ % Score 0

Semi-global Gene x mRNA 0 0 0.00 0.00 100.00%
Semi-global Gene x CDS 0 1 0.00 0.03 99.91%
Semi-global Gene+200 x mRNA 0 0 0.00 0.00 100.00%
Semi-global Gene+200 x CDS 0 1 0.00 0.03 99.91%
Global Gene x mRNA -2 0 -0.27 0.45 99.55%
Global Gene x CDS -2 1 -0.22 0.42 78.15%
Global Gene+200 x mRNA -2 1 -0.27 0.45 72.80%
Global Gene+200 x CDS -1 0 0 0.07 73.01%
sim4 Gene x mRNA -3 8 -0.01 0.23 97.46%
sim4 Gene x CDS -3 13 -0.05 0.33 94.02%
sim4 Gene+200 x mRNA -3 6 -0.01 0.22 97.44%
sim4 Gene+200 x CDS -3 13 -0.05 0.33 94.00%
est genome Gene x mRNA -4 0 -0.14 0.38 76.79%
est genome Gene x CDS -4 0 -0.21 0.48 80.24%
est genome Gene+200 x mRNA -4 0 -0.14 0.38 76.85%
est genome Gene+200 x CDS -4 0 -0.21 0.48 80.24%
Spidey Gene x mRNA -27 -1 -4.04 3.13 0.00%
Spidey Gene x CDS -27 -1 -3.60 3.05 0.00%
Spidey Gene+200 x mRNA -27 -1 -4.04 3.13 0.00%
Spidey Gene+200 x CDS -27 -1 -3.60 3.05 0.00%

extendgap = 0 was the first to produce consistent results for both global and semi-
global aligners. Table 1 shows that the average similarity percentage is greater
than to 99.8% and standard deviation less than 1%.

We can see that the results are very similar for the global and semi-global
aligners. Mainly, two factors determined the choice of the semi-global aligner: the
fact that in general, more alignments have 100% of similarity with the expected
gapped mRNA, as shown in Table 1, and the fact that the semi-global aligner
got slightly better results with the delta exons evaluation, as showed in Table 2.
Indeed, one expects the semi-global aligner to be more appropriate for EST-to-
genomics alignments, since it ignores the beginning and ending spaces.

7.2 mRNA-to-Genomic and CDS-to-Genomic Alignments Analysis

Analyzing the results in Table 1, Table 2 and Table 3, we can see that the
semi-global aligner with the chosen score system (match = 1, mismatch = −2,
opengap = −1, extendgap = 0), in comparison to the other tools, produced
quite good alignments. Semi-global alignments got base similarity percentages
closer to 100%, are as good as alignments produced by sim4, and much better
than those produced by Spidey and est genome. Moreover, in more than 99.9%
of the semi-global alignments results, the number of produced exons was equal
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Table 3. Minimum, maximum, average and standard deviation for extra gaps in
genomic DNA produced by sim4, est genome, Spidey and semi-global aligner using
dataset 3, and percentage of alignments with the expected extra gaps score of 0

Extra gaps (Data set 3)

Aligner Alignment Min Max Avg σ % Score 0

Semi-global Gene x mRNA 0 0 0 0 100.00%
Semi-global Gene x CDS 0 1 0 0.03 99.91%
Semi-global Gene+200 x mRNA 0 0 0 0 100.00%
Semi-global Gene+200 x CDS 0 1 0 0.03 99.91%
sim4 Gene x mRNA 0 14 1.11 1.69 54.56%
sim4 Gene x CDS 0 16 0.96 1.63 60.85%
sim4 Gene+200 x mRNA 0 14 1.11 1.69 54.51%
sim4 Gene+200 x CDS 0 16 0.96 1.64 60.82%
est genome Gene x mRNA 0 201 16.99 21.49 27.84%
est genome Gene x CDS 0 201 14.13 21.12 41.66%
est genome Gene+200 x mRNA 0 201 17.00 21.49 27.84%
est genome Gene+200 x CDS 0 201 14.13 21.12 41.66%
Spidey Gene x mRNA 0 36 0.15 1.39 97.43%
Spidey Gene x CDS 0 23 0.10 1.03 98.01%
Spidey Gene+200 x mRNA 0 36 0.15 1.34 97.18%
Spidey Gene+200 x CDS 0 23 0.10 1.02 98.03%

Table 4. Minimum, maximum, average and standard deviation for mismatch percent-
age in genomic DNA produced by sim4, est genome, Spidey and semi-global aligner
using dataset 3, and percentage of alignments with the expected mismatch percentage
score of 0%

Mismatch percentage (Data set 3)

Aligner Alignment type Min Max Avg σ % Score 0%

Semi-global Gene x mRNA 0.00% 0.00% 0.00% 0.00% 100.00%
Semi-global Gene x CDS 0.00% 0.00% 0.00% 0.00% 100.00%
Semi-global Gene+200 x mRNA 0.00% 0.00% 0.00% 0.00% 100.00%
Semi-global Gene+200 x CDS 0.00% 0.00% 0.00% 0.00% 100.00%
sim4 Gene x mRNA 0.00% 2.15% 0.17% 0.21% 36.68%
sim4 Gene x CDS 0.00% 3.23% 0.24% 0.33% 45.47%
sim4 Gene+200 x mRNA 0.00% 2.15% 0.17% 0.21% 36.67%
sim4 Gene+200 x CDS 0.00% 3.23% 0.24% 0.33% 45.47%
est genome Gene x mRNA 0.00% 7.25% 1.19% 1.26% 21.55%
est genome Gene x CDS 0.00% 13.36% 1.48% 1.70% 35.18%
est genome Gene+200 x mRNA 0.00% 7.25% 1.19% 1.26% 21.56%
est genome Gene+200 x CDS 0.00% 13.36% 1.48% 1.70% 35.18%
Spidey Gene x mRNA 0.00% 23.69% 0.15% 0.98% 90.65%
Spidey Gene x CDS 0.00% 20.56% 0.20% 1.28% 89.67%
Spidey Gene+200 x mRNA 0.00% 28.68% 0.20% 1.38% 90.75%
Spidey Gene+200 x CDS 0.00% 20.06% 0.21% 1.30% 89.59%
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to the expected number of exons in the original mRNA. The software sim4 again
produced the best results among the third-party software packages with at most
97% of the produced alignments having the correct number of exons. Spidey did
not produce any correct number of exons (it always produced more exons than
expected).

In almost all of the semi-globals alignments, no gaps were inserted in the
genomic sequence, which is expected considering that all the CDSs and UTRs
were extracted from the gene. Spidey and sim4 produced good results, with the
average number of extra gaps ranging from 0.1 to 1.1 (Table 3). Finally, our
aligner did not create any mismatch (Table 4).

7.3 EST-to-Genomic Alignments Analysis

Analyzing the results produced by the four aligners with artificial ESTs, we
can see that the results are very similar. In Table 5, we can see again that the
results from our aligner and those from sim4 are pretty much equivalent. In this
evaluation, est genome shows the worst results, with an average similarity of
27% for ESTs with error rate of 1% and 17% for ESTs with error rate of 10%.

Table 5. Minimum, maximum, average and standard deviation for similarity percent-
age from exons produced by sim4, est genome, Spidey and semi-global aligner using
dataset 4, and percentage of alignments with the expected similarity percentage score
of 100%

Base similarity percentage (Data set 4)

Aligner Error rate Min Max Avg σ % Score 100%

Semi-global 1% 4.04% 100.00% 54.14% 30.42% 0.45%
Semi-global 10% 2.99% 95.88% 48.20% 27.64% 0.00%
sim4 1% 4.04% 100.00% 53.98% 30.33% 0.41%
sim4 10% 3.55% 95.88% 50.41% 28.54% 0.00%
est genome 1% 1.36% 100.00% 27.78% 22.11% 1.54%
est genome 10% 1.24% 67.23% 17.77% 12.18% 0.00%
Spidey 1% 0.00% 100.00% 47.43% 32.61% 0.49%
Spidey 10% 0.00% 95.28% 41.47% 29.67% 0.00%

Besides, Table 6 shows that sim4 created the smallest number of extra exons
in average, compared to the expected number of exons, and in almost half of
the alignments the number of generated exons was in accordance with expected
results. In this delta exons evaluation, est genome and Spidey did not produce
the correct number of exons in any alignment.

7.4 Performance Comparison

All the tests were performed on a 1.7GHz Intel Pentium IV system with 512Mb
of RAM running Fedora Core Linux 3. Table 7 shows comparative running times
of each aligner used in this work.
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Table 6. Minimum, maximum, average and standard deviation for delta exons pro-
duced by sim4, est genome, Spidey and semi-global aligner using dataset 4, and per-
centage of alignments with the expected delta exons score of 0

Delta exons (Data set 4)

Aligner Error rate Min Max Avg σ % Score 0

Semi-global 1% -15 16 -2.46 3.27 49.90%
Semi-global 10% -94 2 -33.89 15.56 46.00%
sim4 1% -17 2 -1.37 2.13 45.80%
sim4 10% -16 2 -1.34 2.08 49.13%
est genome 1% -17 0 -1.48 2.17 0.00%
est genome 10% -16 0 -1.48 2.15 0.00%
Spidey 1% -18 -1 -3.58 2.75 0.00%
Spidey 10% -18 -1 -3.58 2.75 0.00%

Table 7. Comparison of aligner’s running times, in seconds per alignment

Comparison of Running Times

EST-to-DNA mRNA-to-DNA
(s/alignment) (s/alignment)

sim4 0.013 0.017
Spidey 0.066 0.140
est genome 0.640 3.400
Semi-global 0.670 5.170

Table 8. Average running time to align two sequences of the same size, using a Java
sequence aligner and the fasta package implementation

Semi-global aligner implementation comparison

Sequence Size Java aligner fasta align
(bases) (s/alignment) (s/alignment)

1600 0.523 0.452
3200 2.055 1.203
6400 9.974 4.091

The packages sim4 and Spidey are faster than our simple semi-global aligner,
while est genome’s running time is equivalent to ours. Still, it is worth of notice
that the aligner used in this work is written in Java, while the others are written
in C, which produces faster programs.

We made some running time comparisons with the fasta package [6], which
performs semi-global alignments using linear space and is written in C: the results
are shown in Table 8. We can see that the C implementation improves the
running time.
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8 Conclusion and Further Work

Based on the results shown above, it is possible to say that our semi-global aligner
with score system (match = 1, mismatch = −2, opengap = −1, extendgap = 0)
produces very acceptable results in cDNA-to-genomic alignments. Considering
alignments with few or no errors, the results are very close to the results produced
by third party software especially designed to address this kind of alignment.
The best external aligner was sim4, both in tests with ESTs with errors and in
alignments with error-free cDNA. It is worth of notice that our aligner produced
alignment results as good as those produced by sim4 with error-free data.

Further improvements to exon detection could be possible. One way to do
that would be to first try to define regions more likely to be exon or intron
regions, and then, to define different score systems for those regions. One possible
criterion to define exon regions would be the to find high-GC percentage regions.
Moreover, it would be interesting to perform tests with more realistic ESTs data.
One possible solution would be to use SeqGen [7] to generate artificial data.

References

1. The Genome Sequencing Consortium. Initial sequencing and analysis of the human
genome. Nature, 409:860–921, 2001.

2. L. Florea, G. Hartzell, Z. Zhang, G. Rubin, and W. Miller. A computer program for
aligning cDNA sequence with genomic DNA sequence. Genome Research, 8:967–
974, 1998.

3. R. Mott. EST GENOME: A program to align spliced DNA sequences to unspliced
genomic DNA. Computer Applications in the Biosciences, 13:477–478, 1997.

4. E. W. Myers and W. Miller. Optimal alignment in linear space. Computer Appli-
cations in the Biosciences, 4(1):11–17, 1988.

5. National Center for Biotecnology Information. http://www.ncbi.nlm.nih.gov/.
6. W. R. Pearson and D. J. Lipman. Improved tools for biological sequence com-

parison. Proceedings of the National Academy of Sciences of the United States of
America, 85(8):2444–2448, 1988. ftp://ftp.virginia.edu/pub/fasta/.

7. A. Rambaut and N. C. Grassly. Seq-gen: an application for the Monte Carlo simu-
lation of DNA sequence evolution along phylogenetic trees. Computer Applications
in the Biosciences, 13:235–238, 1997.

8. J. C. Setubal and J. Meidanis. Introduction to Computional Molecular Biology.
PWS Publishing Company, 1997.

9. R. Sorek and H. M. Safer. A novel algorithm for computational identification of
contaminated EST libraries. Nucleic Acids Research, 31(3):1067–1074, 2003.

10. S. J. Wheelan, D. M. Church, and J. M. Ostell. Spidey: A Tool for mRNA-
to-Genomic Alignments. Genome Research, 11:1952–1957, 2001. Disponfvel em
http://www.ncbi.nlm.nih.gov/spidey.



Segmentation and Centromere Locating
Methods Applied to Fish Chromosomes Images

Elaine Ribeiro de Faria, Denise Guliato, and Jean Carlo de Sousa Santos

Faculdade de Computação,
Universidade Federal de Uberlândia,
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Abstract. The objective of this paper is to describe a new approach for
locating the centromere of each chromosome displayed in the digitalized
photomicrography of fish cells. To detect the centromere position, the au-
thors propose methods for both image segmentation and split touching
chromosomes based on the fuzzy sets theory and a method for the rota-
tion of chromosomes. These methods were applied to two species of fish
chromosomes: Astyanax scabripinnis and Astyanax eigenmanniorum.
Using a database with 40 images including metacentric, submetacentric
and subtelocentric chromosomes, and comparing the centromere locating
obtained by the proposed algorithm with the manual results obtained
by two expert cytogeneticists, the average accuracies were 81.79% and
82.54% respectively.

1 Introduction

Chromosome analysis is an essential task for the detection of some diseases,
abnormal cells and numerical variations. The process of visualization and classi-
fication of chromosomes is called karyotyping. The chromosomes are classified
in four classes: metacentric, submetacentric, subtelocentric and acrocentric, de-
pending on the centromere location. Then, they are paired in pre-defined classes,
according to their similarity and displayed in a decreasing order.

The karyotype is used to detect abnormalities in cells which have structural
defects and numerical variations. Many diseases can be foreseen through chro-
mosome analysis, as an example, acute promyelocytic leukemia which can be
detected analysing the extremity of the chromosome [1].

The process for obtaining the karyotype manually is very repetitive, time
consuming and requires an experienced professional, making it an expensive pro-
cedure [2],[3]. After the acquisition of the digital chromosome image the manual
process requires that the cytogeneticist cuts each chromosome into its indivi-
dual parts and visually determine their centromere location. The centromere is
a point at which the chromatides (identical arms) are joined together. After de-
tecting the centromere, the lengths of chromosome arms are assessed. Then the
centromeric index is calculated using the ratio between the longer arm (P) and
shorter arm (Q). Using the centromeric index, chromosomes are classified in one
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of four possible classes, mentioned above. The chromosomes of each class are
paired according to their similarity (for example: size or banding pattern) and
the karyotype is displayed with chromosome pairs in decreasing order of size.

Various systems for the assembling of human karyotype are presented in lite-
rature. Pantaleão [1] proposed a system to recognize chromosomes from one
unique image to analyze the acute promyelocytic leukemia disease. The pro-
posed classification is based on chromosome area, perimeter and shape factors.
The system had problems to rotate chromosomes properly for the displaying
of the karyotype and did not treat the problems as centromere locating, over-
lapping chromosomes or as touching chromosomes. Popescu et al. [4] proposed
a system that automatically processes cells that contain overlapping chromo-
somes. The main features of this system are the use of cross-section sequence
graphs (CSSG) to segment overlapping chromosomes and the use of pale-path
to separate touching chromosomes. The use of pale-path is a good solution in
simple cases. In more complex situations, this solution fails, as there is no path
that separates the chromosomes.

Agam and Dinstein [5] proposed a method for chromosome segmentation
based on the shape of the contour. Only high concave points on external con-
tours are considered for segmentation. Based on these points, lines are traced
to separate the chromosomes and a series of hypotheses are checked to choose
the best line. When a hypothesis is verified, an appropriate separation is per-
formed. This process treats both touching and overlapping chromosomes. The
system provides good results when there exist clusters with two chromosomes.
Clusters with three or more chromosomes do not produce satisfactory results.
The method presents problems in chromosome separation when there is a large
contact area between bent chromosomes and when there are clusters containing
small chromosomes.

Centromere locating is an important task for obtaining the karyotype auto-
matically, however, this problem was not treated in the three previous works.
Features as banding pattern, medial axis (MAT) and projection vector are
commonly used for locating the centromere. Moradi et al. [6] proposed an ap-
proach for locating the centromere of human chromosome based on the horizontal
projection vector. This work shows that the centromere locating is the narrowest
part of the chromosome on its longitudinal direction. In order to calculate the
horizontal projection vector from a binary image, the chromosome pixel values
of each row are summed. The position of centromere is the point of global mi-
nimum in the central region of the horizontal projection vector. In the case of
acrocentric chromosomes this method fails as there is no global minimum and
the fact that the centromere is located on the extremity of the chromosome.

Cho [7] proposed centromere locating using medial axis transform (MAT).
The profile shape is obtained for measuring the width along a transverse line,
perpendicular to the tangent of the medial axis and centered at the unit dis-
tance along the medial axis. As the profile shape has peaks, only the first and
the least peak are considered. The position of the centromere is the minimum
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value between the two peaks. The method could not be applied to acrocentric
chromosomes. In this case, the centromeres were located manually.

The methods used to assembly the human karyotype cannot be used for the
assembling of the fish karyotype due to fact that the fish chromosomes present
some particularities such as: i) the number of fish chromosomes varies and the
human chromosomes is always 46; ii) the fish chromosome skeleton is more rami-
fied than human chromosome skeleton; iii) the image possess more noise, poorer
contrast and the quality of the banding pattern is lower. These particularities
make the centromere locating of fish cells a more difficult task.

This paper proposes a method for locating of the centromere of fish chromo-
somes for future classification and karyotype assembling procedures. The pro-
posed method was applied to Astyanax scabripinnis and Astyanax eigenmannio-
rum fish species presenting good results.

2 The Outline of Proposed Centromere Locating
Algorithm

For locating the centromere of fish chromosomes the digitalized fish photomi-
crography is given as input, a fuzzy-set-pre-processing method is executed to
remove noise and increase contrast. After that, a segmentation method based
on fuzzy set is applied to extract the chromosomes from the background. Howe-
ver, some chromosomes are not separated and continue touching one other. A
procedure to separate touching chromosomes is therefore carried out. Then,
for determining the position of the centromere, the individual chromosomes
are first rotated to a vertical orientation. A schematic algorithm is shown in
Figure 1. The following sections will present each phase of the algorithm in
detail.

original
image

fuzzy-set-pre-processing

split-touchingchromosomes

segmentation based on the contour

skeletonization and rotation

centromere detection

image with centromeres locating

Fig. 1. Outline of the centromere detecting algorithm
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2.1 Preprocessing Based on Fuzzy Sets

The image of the fish chromosome presents noise and low contrast. The central
part of the chromosomes appears darker and the transaction region between the
central part and the background is clearer. The immediate application of thre-
sholding does not yield good results. The objective of this procedure is to improve
the contrast of chromosome images and to eliminate the background noises. The
fuzzy-set-pre-processing method proposed first uses a quadratic function, defined
in equation (1) to increase contrast between chromosomes and the background.

P =
(pj)2

255
, where pj is the jth pixel of image (1)

A fuzzy membership function defined in equation 2 is applied to enhance the
chromosomes. This function is based on the work developed by Guliato et al. [8]
and defined as μ1 : I → [0, 1], where I is a image, pj is a jth pixel of image I, Li

and Ls determine the interval for characterizing the center of the chromosome
in gray-scale levels and β determines the opening of fuzzy membership function:
higher values result in a function with severe behavior and lower values result in
a permissive behavior.

μ1(pj) =

⎧⎪⎪⎨
⎪⎪⎩

1, if Li ≤ pj ≤ Ls
1

1 + β|Ls − pj | , if pj > Ls

1
1 + β|Li − pj | , if pj < Li

(2)

The resulting image displays the chromosomes with higher gray levels and the
background with darker gray levels. Now a thresholding algorithm can be used
to eliminate the background. The 8-connected regions are labeled and statistical
measurements are assessed such as: mean, standard deviation, maximum and
minimum gray-scale values. These statistical measurements will be used to guide
the following phases in the centromere locating algorithm. Figure 2 shows the
partial results obtained after each stage of fuzzy-set-pre-processing image.

(a) (b) (c) (d)

Fig. 2. Partial results obtained of fuzzy-set-processing (a) part of the original image
obtained through fish chromosome photomicrography; (b) the resulting image after
applying the function defined in eq. (1); (c) the resulting image after applying the
fuzzy membership function defined in eq.(2) and (d) the enhanced original image

2.2 Image Segmentation Based on the Contour

The objective of this phase is to extract the contour of the chromosomes concer-
ning touching chromosomes. However, overlapping chromosomes are not treated
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(a) (b) (c)

Fig. 3. Results of segmentation (a) result obtained after applying the fuzzy membership
function μ2(pj), eq. (3), in image shown in Figure 2 (d); (b) thresholding to separate
the touching chromosomes; (c) the resulting contour superimposed to original image

in this work. For obtaining the chromosome contour segmentation each chromo-
some is first represented by a fuzzy set that preserves the transition information
between chromosomes and background. To obtain the fuzzy set, the equation
(3) is applied to each chromosome,

μ2(pj) =

⎧⎪⎨
⎪⎩

1, if mvRk ≤ pj ≤ μ − σ
2

1
1 + β|((μ − σ

2 ) − pj)| , otherwise
(3)

where mvRk, μ and σ are the value of gray-scale level lower, mean and the
standard deviation of 8-connected region, respectivally and β is the opening of
fuzzy membership function.

At the end of such a process, pixels in and around of each chromosome will
be displayed according to their degree of similarity with respect to the feature
of central part of chromosome given by μ - σ

2 , where μ and σ are the mean and
standard deviation of the chromosome being segmented, as shown in Figure 3 (a).

For separating touching chromosomes, a global threshold is applied to the
image, see Figure 3 (b). After that a region growing algorithm is carried out for
each chromosome obtained in the last step to detect the chromosome contours,
as shown in Figure 3 (c).

2.3 Chromosome Rotation

Before locating the chromosome centromere it is necessary to rotate the chro-
mosome to a vertical position. In order, to realize it automatically the authors
proposed first to preprocess the chromosomes making then a convex connected
region by filling in the regions among the chromatides. After that, the chro-
mosome skeleton is obtained with one-pixel width [9] and then the inclination
coefficient of the principal axis of the skeleton is assessed. The angle related to
the inclination coefficient will be used to rotate the chromosomes. However, in
some cases the chromosome skeleton presents extra ramifications that make it
difficult to detect the principal axis. A posprocessing is applied to the skeleton to
eliminate these extra ramifications and to enhance the principal axis. Sometimes
it is not possible to find the principal axis of the skeleton and the rotating angle
accurately. In this case a manual adjustment is necessary. This procedure yields
a binary image with the chromosomes rotated to a vertical position. The results
of skeletonization and chromosome rotating are shown in the Figure 4.



186 E.R. de Faria, D. Guliato, and J.C. de Sousa Santos

(a) (b) (c) (d) (e) (f)

Fig. 4. Result of skeletonization and rotation (a) skeleton without ramifications su-
perimposed to binary image of chromosome with the region among chromatides filled;
(b) rotation based on skeleton of Figure 4 (a), applied in binary image (c) rotation based
on skeleton of Figure 4 (a), applied in original image; (d) skeleton with ramifications
superimposed to binary image of chromosome with the region among chromatides filled;
(e) rotation based on skeleton of Figure 4 (d), in which extra segments were eliminated,
applied in binary image and (f) rotation based on skeleton of Figure 4 (d), in which
extra segments were eliminated, applied in original image

2.4 Centromere Locating

The chromosome centromere is the point where the chromatides of the chro-
mosomes join together. The acknowledgement of this position is fundamental
to the classification of each chromosome in one of the four classes: metacen-
tric, submetacentric, subtelocentric and acrocentric. The centromere is located
in the thinner region of the chromosome. For the automatic locating of the
centromere, a vector projection is obtained by scanning each chromosome im-
age line and summing the number of the pixels of the scan line that belong to
the chromosome. The use of vector projection with this purpose was first pre-
sented by Moradi et al. [6], who applied their method to locate the centromere
of human chromosomes. The vector projection as proposed by Moradi et al [6]
does not work well when applied to fish chromosome as their chromatides are

(a) (b)

Fig. 5. Calculation of projection vector (a) chromosome image after the regions among
the chromatides have been filled (b) projection vector used to choose the locating
centromere
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(a) (b) (c)

Fig. 6. Results of centromere locating (a) metacentric chromosome; (b) submetacentric
chromosome and (c) subtelocentric chromosome

disjoined. For locating the fish chromosome centromere using the vector projec-
tion approach each binary rotated chromosome image, as shown in Figure 4 (b)
and 4 (e), should have the regions among the chromatides filled in again. This
process makes each chromosome a convex region preserving its external mor-
phology as shown in Figure 5 (a). After scanning the binary chromosome image,
as shown in Figure 5 (b), the resulting projection vector can be seen as a skyline
that possess two or more peaks and some valleys. The position of the centromere
is the lowest point located in the largest basin. For defining the largest basin
of this skyline an algorithm based on watershed transform was used [10]. This
algorithm is successful when the chromosomes are metacentric, submetacentric
and subtelocentric. For the automatic locating of the centromere of acrocentric
chromosomes the proposed algorithm did not yield satisfactory results. A dis-
cussion about the centromere locating results is presented in the next section.
Figure 6 shows the three different classes with the position of the chromosome
centromere superimposed.

3 Discussion

We proposed a new approach for locating the centromere of fish chromosomes
using fuzzy-set-based preprocessing step to enhance the chromosome region, an
algorithm based on region growing to extract the contour and a vector projection
to detect the position of the centromere.

The segmentation and locating centromeres methods were applied to 40 fish
chromosome images, which were chosen randomly. In the segmentation process
there were 20 images with occurrence of touching chromosomes. In these images,
there were about 2.2 touching chromosomes per image. After the application of
segmentation methods this value changes for 0.4 touching chromosomes, resul-
ting in an improvement of 81.82%.

For the rotation process, on average, 15.53 chromosomes must be rotated
manually, since the images have about 49.15 chromosomes.

For the locating centromere process, two cytogeneticists were solicited to
detect the centromeres of 40 images, manually. In these images the acrocen-
tric chromosomes, the overlapped chromosomes and the chromosomes where the
cytogeneticists were not sure about the correct centromere locating were elimi-
nated.



188 E.R. de Faria, D. Guliato, and J.C. de Sousa Santos

Based in the fact that the number of chromosomes, whose centromere locating
caused doubts, varied from one cytogeneticist to another, and these chromosomes
were eliminated from the analysis, the results given by the first cytogeneticist
for the average number of chromosomes available for analysis were by 40.625 per
image and for the second cytogeneticist 38.925 chromosomes per image.

According to the first cytogeneticist, the percentage of chromosomes with
correct locating centromeres was 81.79% and for the second cytogeneticist 82.54%.

Based on these results, the following steps help to improve the chromosome
rotation and develop an algorithm for locating the centromere of acrocentric
chromosomes. After chromosome classification based in centromeric index is
made and assembly.

Future directions include to assembly karyotypes and choose automatically
the best one to represent the population being studied. Furthermore, to evaluate
this system to assembly human and other animals karyotype.
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Abstract. Efficient family classification of newly discovered protein se-
quences is a central problem in bioinformatics. We present a new al-
gorithm, using Probabilistic Suffix Trees, which identifies equivalences
between the amino acids in different positions of a motif for each fam-
ily. We also show that better classification can be achieved identifying
representative fingerprints in the amino acid chains.

1 Introduction

A central problem in genomics is to determine the function of a new discovered
protein using the information contained in its amino acid sequence [1]. Nowadays,
the most popular methods to generate a hypothesis about the function of a
protein are BLAST and Hidden Markov Models (HMM).

Probabilistic Suffix Trees (PST) were first introduced in [2] as a universal
model for data compression. A major advantage of PST is its capacity of ex-
tracting structural information from the sequences under analysis. Recently, an
implementation of PST has been successfully used in protein classification [3],
even though its performance decreases with less conserved families. Better re-
sults have been obtained using mixtures of PST models for sparse sequences
[4, 5]. A major drawback of these algorithms is their high complexity, which
makes problematic their application in very large databases.

We present a new algorithm to estimate Sparse Probabilistic Suffix Trees
(SPST). We also show that the identification of sub-sequences of maximal mean
probability (fingerprints) increases the classification rates of the SPST algo-
rithm. This is the basis of our F-SPST algorithm.

2 Variable Length Markov Models

It was suggested in the literature to use PST models to fit protein families. A
PST is a Variable Length Markov Model (VLMC), that is, a stochastic chain
(X0, X1, . . .) taking values on a finite alphabet A and characterized by two el-
ements. The first element is the set of all contexts. A context Xn−�, . . . , Xn−1

� This work is partially supported by CAPES and is part of PRONEX/FAPESP’s
Project Stochastic behavior, critical phenomena and rhythmic pattern identification
in natural languages (grant number 03/09930-9).
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is the finite portion of the past X0, . . . , Xn−1, for each time, which is relevant
to predict the next symbol Xn. The second element is a family of probability
transitions associated to each context. Given a context, its associated probability
transition gives the distribution of occurrence of the next symbol immediately
after the context.

In a PST the set of contexts has the suffix property : looking from the present
to the past no context is a suffix of another context. This makes it possible to
define without ambiguity the probability distribution of the next symbol. The
suffix property makes it possible to represent the set of contexts as a tree. In
this tree, each context c = (c−k, . . . , c−1) is represented by a complete branch,
in which the first node on top is c−1 and so on until the last element c−k which
is represented by the terminal node of the branch.

In a PST model for a protein family, the alphabet A represents the set of
twenty amino acids and the stochastic chains (X0, X1, . . .) are the sequences of
amino acids belonging to the family.

A Sparse Probabilistic Suffix Tree (SPST) is a PST in which some contexts
are grouped together in an equivalence class. More precisely, the contexts of a
SPST model are sequences of the form An−�, . . . , An−1, with Ai ⊂ A for each i.
This feature makes SPST models more suitable for sparse sequences like amino
acids chains.

3 The SPST and the F-SPST Algorithms

The SPST algorithm works as follows. It starts with a tree consisting of a single
root node. At each step, for every terminal node t with depth less than L and
for every symbol x, the leaf x is added to t, if the sequence xt appears in the
training sequences at least Nmin times. For every pair of new leaves of a node,
we test their equivalence using a log-likelihood ratio test and choose the pair
that realizes the minimum between all the tests. If this minimum belongs to the
acceptance region, the leaves are merged together in a single leaf. The procedure
is iterated with the new set of leaves. It stops when no more leaves can be merged.
The acceptance region is defined by {c < rmax}, where c is the value of the test.
Clearly, taking the minimum between the tests ensures the independence of the
order in which the tests are performed.

To conclude the construction of the SPST we assign to each leaf a transition
probability estimated by the usual maximum likelihood procedure. In order to
avoid non zero probabilities, the distributions associated to each leaf (context)
are smoothed by a constant γmin.

After the construction of the model, we want to decide if a given sequence
of amino acids belongs to the family or not. To do this, we calculate the log
probability of the sequence in the family model and divide this value by the
length of the sequence. If this value is greater than a predefined threshold, the
protein is identified as a member of the family.

The Fingerprint-SPST algorithm estimates the context tree and the transi-
tion probabilities in the same way as the SPST algorithm. However, to classify a
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new sequence of amino acids, F-SPST starts by identifying fingerprints defined
as follows. Given a new sequence of amino acids, we look for the sub-sequence
of length M with maximal probability, where M is a parameter which depends
on the size of the domains in each family. If this maximum is bigger than a
pre-defined threshold, the protein is identified as a member of the family.

4 Statistical Results

In order to test our algorithms and to compare them with PST published results
[3] we use protein families of the Pfam database [6] release 1.0. This database
contains 175 families derived from the SWISSPROT 33 database [7]. We trained
both SPST and F-SPST with 4/5 of the sequences in each family, and then we
applied the resulting models to classify all the sequences in the SWISSPROT 33
database. To establish the family membership threshold, we used the equiva-
lence number criterion [8]. This method sets the threshold at the point where
the number of false positives equals the number of false negatives. The quality
of the model is measured by the number of true positives detected relative to
the total number of proteins in the family.

Table 1 summarizes the classification rates obtained with our SPST and F-
SPST algorithms together with the published results obtained with the PST
algorithm [3]. We emphasize that these are preliminary results as no attempt
was made to optimize the choice of the parameters. It is clear that SPST and

Table 1. Performance comparison between PST, SPST and F-SPST. The parameters
in the SPST and F-PST algorithms where: L = 20, Nmin = 2, γmin = 0.001 and
rmax = 3.8. The length of the fingerprint in the F-SPST algorithm was M = 80 for all
families

Family Size PST SPST F-SPST

7tm 1 515 93.0% 96.3% 97.7%
7tm 2 36 94.4% 97.2% 100.0%
7tm 3 12 83.3% 100.0% 100.0%
AAA 66 87.9% 90.9% 93.9%
ABC tran 269 83.6% 85.9% 89.3%
actin 142 97.2% 97.2% 99.3%
adh short 180 88.9% 89.4% 92.8%
adh zinc 129 95.3% 91.5% 95.3%
aldedh 69 87.0% 89.9% 92.8%
alpha-amylase 114 87.7% 91.2% 94.7%
aminotran 63 88.9% 88.9% 90.5%
ank 83 88.0% 86.8% 86.6%
arf 43 90.7% 93.0% 93.0%
asp 72 83.3% 90.3% 91.7%
ATP-synt A 79 92.4% 94.9% 97.5%
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F-SPST improves PST classification rates in all cases except for the Ankyrin
repeat family. It is interesting to note that this family consists of very short
domains (with mean length equal to 28.12), and this could explain the reduction
in the classification rate.

Another very interesting feature of SPST appears when we compare the
equivalence classes in the estimated trees with the classes obtained by grouping
the amino acids by their physical and chemical properties. For instance, the es-
timated tree for the AAA family identifies as equivalence class the set of amino
acids {I, V, L} which corresponds exactly to the group of aliphatic amino acids.
For more details see http://www.ime.usp.br/~leonardi/spst/.

5 Conclusion

The preliminary results presented in this paper strongly suggest that these new
algorithms can improve in a significant way the classification rates obtained with
the PST algorithm. We are presently applying our algorithms to more families
in the Pfam database to confirm this initial encouraging results.

Nevertheless, even at this preliminary stage, it is alredy clear that a Sparse
Probabilistic Tree fits protein families well. This is probably due to the fact
that the sparse model mimics well the sparse nature of relevant domains in the
amino acids chains. It is also worth observing that the complexity of the SPST
and F-SPST algorithms is smaller than the complexity of previously presented
algorithms for sparse sequences [4, 5].
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Abstract. We developed a methodology to predict myotoxicity and 
neurotoxicity of proteins of the family of Phospholipases A2 (PLA2) from 
sequence data. Combining two bioinformatics tools, MEME and HMMER, it 
was possible to detect conserved motifs and represent them as Hidden Markov 
Models (HMMs). In ten-fold cross validation testing we have determined the 
efficacy of each motif on prediction of PLA2 function. We selected motifs 
whose efficacy in predict function were above 60 % at the Minimum Error 
Point (MEP), the score in which there are fewest both false positives and  
false negatives. Combining HMMs of the best motifs for each function, we 
have achieved a mean efficacy of 98 ± 4 % on prediction of myotoxic function 
and 77.4 ± 4.8% on prediction of neurotoxicity. We have used the results of this 
work to build a web tool (available at www.cbiot.ufrgs.br/bioinfo/ 
phospholipase) to classify PLA2s of unknown function regarding myotoxic or 
neurotoxic activity.  

1   Introduction 

One of the most important tasks of the bioinformatics is to give meaning to the large 
amount of data from genomic and proteomic projects. Part of this task comprises 
automatic prediction of the function of proteins. However, the most currently used 
algorithms and databases (such as BLAST [ 1], PFAM [ 2] and PROSITE [ 3]) strive to 
classify protein sequences into broad families, which not necessarily share the same 
biological function. The Phospholipase A2 (PLA2) family (E.C. 3.1.1.4), initially 
classified according to its ability to catalyze the cleavage of membrane phospholipids, 
represents an interesting challenge. Despite the high level of sequence similarity and 
structure conservation of the family [ 4], the proteins of this group are involved in 
distinct biological functions such as digestion, cell signaling and inflammation. They 
also present myotoxic, neurotoxic and cytotoxic activities.  

Based on the analysis of conserved amino acids and protein motifs and using 
Hidden Markov Models (HMMs) to capture the particular characteristics of the 
Multiple Sequence Alignments (MSAs), we developed a methodology to discriminate 
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between neurotoxic PLA2 (nPLA2) and myotoxic PLA2 (mPLA2). Based in the 
results of this work we provided a tool, now available at www.cbiot.ufrgs.br/bioinfo/ 
phospholipase, which allows the identification of PLA2s displaying myotoxicity and 
neurotoxicity. To our knowledge no other method is available allowing classification 
of the biological function of these PLA2s.  

2   Methodology 

We collected sequences which were used to build and test the models representing the 
biological function of interest. For each biological function there are two main sets of 
sequences: one represents sequences with biological function and other with 
sequences without the function (negative control). 

 

Fig. 1. Flow diagram of the methodology to detect sequence motifs specific to some biological 
function 

In our approach we used MEME [ 5] to detect conserved motifs and HMMER [ 6] to 
construct HMMs of each motif found. The complete process is depicted in Fig. 1. 
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On each iteration, the sequences that have the biological function are split in 
training set (used to construct HMMs) and positive control (which together with 
negative control forms the test set). 

The first efficacy metric that is calculated is the Error Rate (ER) at each score. It 
shows how well some HMM classify the sequences of the test set: 

ER = (FP + FN) / size of test set (1) 

FP represents false positives, and FN, false negatives. 
Based on the ER at each score, it is possible to determine the Minimum Error Point 

(MEP), the score which ER value is minimum. The efficacy value at the MEP is the 
best possible for the motif. Note that we define Prediction Accuracy (PA) as the 
complement of the error rate, i.e.,  

PA + ER = 1 (2) 

The coverage measures how much of the true positives (TP) were correctly 
classified above some score. It is calculated as the ratio between TP above some score 
and the total number of sequences of the positive control. 

As the biological function can be associated to more than one motif, all motifs with 
PA greater than 60% were selected to be used in function prediction.  

In the case of occurrence of multiple motifs to detect the same biological function, 
it is possible to combine them, improving the PA of the respective function. If each of 
these motifs recognizes different subsets of true positives, combining their results will 
increase the coverage, but the impact on PA must be calculated considering both TP 
and FP of the maximal set composed by all sequences with score above MEP of the 
respective motif. 

3   Results 

Table 1 shows the motifs detected and the corresponding average accuracy values, 
computed after 10-fold cross validation process. 

Table 1. Motifs with mean predictive accuracy (PA) greater than 60 % at MEP 

Group Motif MEP score PA at MEP (%) Coverage at MEP 
(%) 

mPLA2 N-terminal 28.03 86 72 
mPLA2 C-terminal region 18.17 80 60 
nPLA2 N-terminal 82.67 63.5 39.8 
nPLA2 near catalytic site 47.67 67.3 75 

In order to improve the PA of the final model, all detected motifs related to the 
same biological function were combined, maximizing their capability to correctly 
recognize their target biological function. The parameters of the 10-fold cross 
validation and the mean efficacy for the best motifs are in Table 2. 
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Table 2. Parameters and results of k-fold cross validation 

Group k Size of 
functional 
set 

Size of 
negative 
control 

Number of 
motifs with 
ER < 40% 

Coverage 
for 
combined 
motifs (%) 

Best mean 
PA for 
combined 
motifs 

mPLA2 10 20 8 2 96,0 98,0±4,0% 
nPLA2 10 16 13 2 78,6 69.5±7.6% 

4   Concluding Remarks 

The use of conserved motifs, instead the entire sequences, to construct each HMM 
helps to minimize the bias induced by the small training sets [ 7]. Additionally the 
utilization of Dirichlet Mixtures by HMMER also increases the generalization power 
of the resulting HMM [ 8]. 

Considering the biochemical and pharmacological importance of the PLA2s, 
especially those exhibiting toxicological effects, we expect that the methodology 
described here can contribute for the advance of the knowledge in this area of 
research. 

References 

1. Scott McGinnis, Thomas L.Madden: BLAST: at the core of a powerful and diverse set of 
sequence analysis tools. Nucl. Acids. Res.,Vol. 32. (2004) W20-W25 

2. Bateman, A., Coin, L., Durbin, R., Finn, R.D., Hollich, V., Griffiths-Jones, S., Khanna, A., 
Marshall, M., Moxon, S., Sonnhammer, E.L.L., Studholme, D.J., Yeats, C., and Eddy, S.R.: 
The Pfam protein families database. Nucl. Acids. Res.,Vol. 32. (2004) D138-D141 

3. Sigrist C.J.A., Cerutti L., Hulo N., Gattiker A., Falquet L., Pagni M., Bairoch A., and 
Bucher P.: PROSITE: A documented database using patterns and profiles as motif 
descriptors. Briefings in Bioinformatics,Vol. 3. (2002) 265-274 

4. Manjunatha Kini, R.: Excitement ahead: structure, function and mechanism of snake venom 
phospholipase A2 enzymes. Toxicon,Vol. 42. (2003) 827-840 

5. Timothy L. Bailey and Charles Elkan, "Fitting a mixture model by expectation 
maximization to discover motifs in biopolymers", Proceedings of the Second International 
Conference on Intelligent Systems for Molecular Biology, pp. 28-36, AAAI Press, Menlo 
Park, California, 1994.  

6. Eddy, S.R.: Profile hidden Markov models. Bioinformatics, Vol. 14. (1998) 755-763 
7. Grundy, W.N. et al: Meta-MEME : motif-based hidden Markov models of protein families. 

CABIOS, Vol. 13. (1997) 397-406  
8. Haussler, D. et al: Dirichlet Mixtures: A Method for Improving Detection of Weak but 

Significant Protein Sequence Homology. CABIOS, Vol. 12. (1996) 327-345 



 

J.C. Setubal and S. Verjovski-Almeida (Eds.): BSB 2005, LNBI 3594, pp. 198 – 201, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Genomics and Gene Expression Management Tools for 
the Schistosoma Mansoni cDNA Microarray Project 

Venancio, T.M.1,3, DeMarco, R.2,3, Oliveira, K.C.P.2,3, Simoes, A.C.Q.1,3,  
da Silva, A.M.3, and Verjovski-Almeida, S.2,3 

1 Laboratório de Bioinformática 
2 Laboratório de expressão gênica em eucariotos 

3 Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo 

Schistosoma mansoni, a trematode parasite, is the major causative agent of Schistomi-
asis, a public health problem in South America and Africa. Recently, as a result of 
two separate efforts, the transcriptome of Schistosoma mansoni [1] and S. japonicum 
[2] were published. Schistosomes possess distinct and differentiated organs and have 
evolved to adapt to parasitism. Availability of transcriptome data has raised a number 
of issues regarding the parasite's cell biology and signaling pathways, as recently dis-
cussed in a review [3]. 

Currently, the S. mansoni microarray project, being conducted at Instituto de 
Quimica, Universidade de São Paulo, is aimed at identifying the genes and pathways 
involved in the parasite's development. This project raises the need for appropriate 
tools and databases to manage and analyze gene expression data, integrating these re-
sults with genome and sequence analysis information. 

In this work we describe the implementation of local copies of two important tools 
in our project: (i) the BioArray Software Environment (BASE), a platform to manage 
and analyze microarray data [4] and (ii) the generic genome browser, a web-based tool 
to visualized genomic information and other features [5]. We have implemented the 
BASE system (version 1.2.15) to centralize storage and to maintain data integrity, 
which is a very important aspect in large-scale microarray experiments. The relational 
database manager used is MySQL. We have deposited information regarding our array 
design with all reporters, integrating the information of the 96-well re-array plates, the 
384-well consolidated cDNA source plates and the position of each reporter in the final 
array design. A screenshot of our BASE implementation can be seen in figure 1. 

The microarray images were previously analyzed with ArrayVision 6.0 in order to 
extract the raw fluorescence intensity data, which were subsequently corrected for 
background intensity. Lowess normalization was performed using R scripts adapted 
from Koide et al. (2004) [6]. An example of this first step normalization is shown in 
figure 2.  We have built a pipeline that processes all data, from the ArrayVision 
spreadsheets to a user friendly schema that shows the BLAST search results for the S. 
mansoni differentially expressed genes. The first step is data normalization, followed 
by filtering steps, which permit exclusion of controls and genes with weak signal 
from the subsequent analysis. We have performed Significance Analysis of Microar-
ray (SAM) [7] to identify the differentially expressed genes in the dataset. The subse-
quent steps in the pipeline build a multifasta file with sequences from all these se-
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lected genes, submit it to a BLAST search, parse it and build a HTML report with a 
summary of the results.  This pipeline has been used with success in our lab, as we 
have already identified several gender specific differentially expressed genes in S. 
mansoni (in preparation). Some of these genes have been similarly identified recently 
by Fitzpatrick et al (2005) [8], but some of them are newly identified. Currently, we 
are performing wet lab validation steps in order to confirm these results. 

 

Fig. 1. Screenshot of our BASE implementation.  The steps of spot filtering can be visualized 

 

Fig. 2. One of our pipeline steps. Lowess normalization process; the panel on the left shows the 
normalized data output resulting from the raw input data on the right. “Femea/macho” indicates 
comparison between female/male gene expression 
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To facilitate further data integration of microarray results with genomic informa-
tion, we have implemented the Generic Genome Browser. This browser allows the 
user to scroll and zoom in different regions of the genome, search for a specific land-
mark and perform a full search of all features, as well as enable and disable the visu-
alization of some tracks. Some of the tracks implemented are the mapping of our S. 
mansoni EST reads to genomic sequence, BLASTX results of similarity searches 
against other species, low complexity regions, GC content and the sequence itself. Al-
though the S. mansoni genome sequence is not fully determined yet, we have used a 
preliminary assembly obtained at the Sanger Institute FTP site [9] in which the ge-
nome is still fragmented into 70,714 contigs (Jan 14, 2005 release). As an example, 
this browser permits us to visualize the differentially expressed genes identified in our 
microarray and to analyze them in a genomic context, checking if any of them over-
laps with the low complexity regions, compare to gene predictions, 3´ and 5´ UTR 
etc. These analyses steps are essential to obtain a detailed picture of the differentially 
expressed genes for further elucidation of their functions. A screenshot of our Ge-
nome Browser implementation can be seen in figure 3. 

 

Fig. 3. Screenshot of our Generic Genome Browser implementation for S. mansoni genome 
visualization. Here we can see the EBI assembly track, the low complexity regions and GC 
content 
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Abstract. In order to select gene markers among differentially expressed 
transcripts identified from tumoral prostate, we have applied a filter and 
Significance Analysis of Microarrays (SAM) as the feature selection method on 
a previously normalized dataset of DNA microarray experiments reported by 
Reis et al., 2004 (Oncogene 23:6684-6692). Twenty seven samples with 
different degrees of tumor differentiation (Gleason scores) were analyzed. SAM 
was run using either two-class, unpaired data analysis with Gleason 5-6 and 
Gleason 9-10 samples, or multiclass response analysis with an additional 
category of Gleason 7-8. Both strategies revealed a promising set of transcripts 
associated with the degree of differentiation of prostate tumors. 

1   Introduction 

To extract information with experimental significance from DNA microarray data and 
reduce dimensionality, many methods can be applied for feature selection [1] such as 
Pearson's correlation [2], Principal Component Analysis [3], SAM (Significance 
Analysis of Microarrays) [4] and improved SAM [5], which differ on the structure 
and metric used. 

The degree of prostate tumor differentiation is defined by the Gleason Score 
(GS), which is assigned to the tumor sample by histological examination. Our group 
has recently initiated a thorough search for transcripts whose expression would 
correlate to the degree of tumor differentiation. For this purpose, we have generated 
and analyzed a microarray dataset using Self Organizing Map (SOM) and an 
unsupervised hierarchical clustering analysis as well as Pearson's correlation [6]. 
This microarray dataset was generated with samples from 27 human prostate tumors 
along with samples from adjacent normal prostate tissues. Hybridizations were 
performed with intronic cDNA microarray slides that were enriched with a 
collection of partial transcripts that map in the human genome sequence to intronic 
segments of known genes [6]. In the present work we have re-analyzed this 
complete microarray dataset using four different filters and SAM as feature 
selection method. 
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2   Methodology 

The dataset used in this work consisted of a table with the expression levels of 3821 
spots representing approximately 3700 ORESTES and ESTs [6] obtained for each of 
the 27 tumoral prostate samples from 27 patients. The data has been previously 
normalized as described in Reis et al., 2004 [6] and is available at 
http://verjo19.iq.usp.br/gec/en/publications/. 

A filter was generated to parse this table. It was designed to select transcripts that 
potentially exhibit differential expression levels and to do so it uses the mean intensity 
of each transcript across the different samples (line) and its variance, considering that 
only the transcripts that have their intensity above a certain value in a given number 
of samples should be selected. Two sets were generated, one without the filter and 
another using the filter to select samples that had intensity levels out of the range of 
mean +/- 1.25 standard deviation of the mean in at least 4 samples.  

For every set two analysis were performed: (i) a two class, unpaired data analysis 
was performed considering the labels of Gleason Score (GS) 5-6 as category 1 and 9-
10 as category 2; and (ii) a multiclass response analysis, considering the labels 1 for 
GS 5-6, 2 for GS 7-8 and 3 for GS 9-10. Finally, a hierarchical clustering was 
performed for each analysis using Ward's method [7] and average value distance as 
the ordering function. 

3   Results and Discussion 

Expression profiles of 27 prostate samples were analyzed using SAM. A delta value 
of 1.45 was used in both two-class, unpaired data analyses. It showed 67 differentially 
regulated probes with a False Discovery Rate (FDR) equal to 0.91% for the two-class, 
unpaired data analysis of the set without filtering. For the filtered set, two-class, 
unpaired data analysis revealed 49 differentially regulated probes with a False 
Discovery Rate (FDR) equal to 1.22%. The filtered set shares 35 probes with the set 
without filtering.  

In both multiclass response analyses a delta value of 0.42 was used. SAM showed 
19 differentially regulated probes with a False Discovery Rate (FDR) equal to 3.88% 
for the multiclass response analysis of the set without filtering. For the filtered set, 
multiclass response analysis revealed 12 differentially regulated probes with a False 
Discovery Rate (FDR) equal to 5.80%. The filtered set shares 9 probes with the set 
without filtering. 

The differentially regulated probes revealed by the two-class, unpaired data 
analysis for the unfiltered set contain known prostate markers such as PSA, KLK-1 
and RPL17 and allow separation of the samples according to their GS. The 
hierarchical clustering presented in figure 1 shows how well the probes retrieved from 
the filtered set can separate the samples according to their GS, where the samples with 
higher GS are in a separate branch from the samples with lower GS. The hierarchical 
clustering of figure 2 shows how this set of probes classifies the GS 7-8 samples, 
showing that the latter set of samples exhibits a heterogeneous expression profile and 
that the higher GS samples still cluster in a separate branch. 
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Fig. 1. Hierarchical Cluster using Ward´s method with average value as ordering function for 
the transcripts obtained with two-class, unpaired data analysis with SAM for the filtered set. 
SAM analysis was performed using only the samples with GS 5-6 and GS 9-10. Each line 
represents a transcript, each column represents a sample and the acronym under each column 
refers to the sample number – GS 

 

Fig. 2. Hierarchical Cluster using Ward´s method with average value as ordering function. The 
transcripts selected by SAM analysis with two-class unpaired data for the filtered set, obtained 
in Fig. 1, were used as a classifier that was applied to all samples with GS 5-6, GS 7-8 and GS 
9-10. Each line represents a transcript, each column represents a sample and the acronym under 
each column refers to the sample number – GS 
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The result of the analyses reported here share 10 differentially regulated probes 
with previously reported results [6] where Pearson correlation and SOM were used in 
the same normalized dataset, suggesting that these are the most robust candidate 
markers. Among these probes we highlight RAB3B, a member of RAS oncogene 
family. 

Even though no clustering evaluation techniques have yet been applied to the 
current analysis, the transcripts revealed by SAM allowed a categorization of the 
samples and are consistent with previous analysis [6]. The identification of additional 
sets of correlated genes in the current analysis indicates that complementary statistical 
approaches are required to allow the full description of the transcriptional profile of 
prostate cancer at different stages of tumor progression. 

As a next development of our work we intend to fully automate the statistical 
analysis of our microarray data and integrate the analysis procedures with the BASE 
database [8]. This will certainly improve the set of analysis tools available for the 
BASE database.  
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Abstract. Trimming procedures are an important part of the sequence
analysis pipeline in an EST Sequencing Project. In general, trimming is
done in several phases, each one detecting and removing some kind of
undesirable artifact, such as low quality sequence, vectors or adapters,
and contamination. However, this strategy often results in a phase being
unable to recognize its target because part of it was removed during a
previous phase. To remedy this drawback, we propose a new strategy,
where each phase detects but does not remove its target, leaving this de-
cision to a post processing step occurring after all phases. Our tests show
that this strategy can significantly improve the detection of artifacts.

1 Introduction

EST Sequencing Projects are developed with the objective of quickly obtain the
gene index of an organism.

An EST sequence may contain unwanted regions made up of ribosomal RNA,
low quality ends, poly-A/T fragments, vector and adapter fragments and slipped
fragments. In this work, we denote these regions as artifacts.

Therefore, EST projects must submit their sequences to the sequence trim-
ming processes before analyzing them. Some projects make use of specific trim-
ming softwares as ESTprep [5] or LUCY [3]. The latter is used by TIGR - The
Institute of Genomic Research.

A trimming process is a set of procedures that has the goal of removing
regions of low quality and subsequences that do not belong to the project target
organism. This cleaning process must be performed because these subsequences
can add errors to the data analysis [6]. For example, a simple adapter sequence
can determine whether two sequences will be clustered together or not in a
clustering process.

Usually, each sequencing project executes its own sequence trimming proto-
col. Some projects perform a complete analysis, while others execute only low
quality and vector trimming. This difference between the protocols compromises
the comparison between sequences produced by different projects.

This work studies the difference between alternative trimming methods, with
the objective of creating a new set of procedures to improve the detection and
removal of unwanted sequences.
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2 EST Trimming

Removal of artifacts can be done in many different ways, which can be simple or
more elaborated. The simplest solutions are usually fastest, an important factor
when the data volume that must be processed is high.

For example, a simple strategy to trimming low quality regions is the ex-
ecution of an algorithm to determine a subsequence of maximum sum as im-
plemented by phred [4]. Each sequence processed by this algorithm has its low
quality extremities removed thus the remaining sequence has the the minimum
probability error.

Many projects perform the quality analysis through sliding windows. Usually,
the sequence is covered base by base in both directions, from the extremities,
with a window that has a fixed size. The sliding window method searches for
regions that have at most a certain number of bases which qualities values lower
than a minimum value.

Other example is the vector and adapter removal. A simple way of perform-
ing this task is using a software like cross match [4] to mask unwanted regions.
Regions that have good score alignment with vector or adapter sequences are
masked with Xs. Thus, analyzing the X regions is possible to identify the vec-
tor and adapter artifacts. Telles and Silva [6] make use of this technique and,
additionally, classify the vector neighborhood into seven different classes. More
complex solutions, such as the implemented by LUCY, search in an adaptive
way, guided by the quality of the analyzed region.

In this work we implemented two sets of procedures. The first set implemented
was based on our interpretation of the procedure described in the work of Telles
and Silva [6].

The second set, called New Schema, was also based in the set proposed by
Telles and Silva, but it has differences in sequence treatment. The major differ-
ence is in the input sequence of each step. In their set of procedures, all identified
artifacts are removed before the sequence is submitted to the next step. In the
new proposed set, the complete sequence is analyzed in each phase. The initial
idea is to simplify detection methods for further refining of the techniques that
did not show good results.

The motivation for this strategy was the observation of sequences processed
by the procedures described by Telles and Silva. We observed that an artifact
could be detected or not influenced by the detection or not of other artifact in
a previous step. For example, if a vector is not identified, the detection of a
poly-A/T tail cannot occur because of the proximity criterion required by the
method.

Another point that we observed was the omission of artifacts that overlap
with other artifacts. For example, certain adapters have an extremity that over-
laps the extremity of the vector where they are inserted. In this case, when a
vector is identified and discarded, the remaining adapter sequence is not detected
because its size becomes too small for the identification criterion.

The first step of the New Schema is ribosomal RNA detection and it is exactly
the same as in the trimming set of Telles and Silva.
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The second step is low quality trimming that is performed with a maxi-
mum subsequence algorithm similar to the one implemented in the software
phred.

Vector detection is the next step. Detection is made with cross match using
12 for minimum match and 20 for minimum score. Any subsequence identified is
marked as vector. This strategy simplifies vector detection and obviates classifi-
cation of the neighborhood of vector regions. In our method, the whole sequence
is analyzed and this can result in more vector regions. This sequence fragmen-
tation does not represent a problem because the last step of trimming preserves
only the longest subsequence that does not contain an artifact.

After vector detection, the sequence is searched for adapters that were used
in the sequence cloning process. Here, the criterion is to mark as adapter all
regions that have an alignment with score greater than or equal to the size of
the adapter minus four bases.

The following step is poly-A/T tail detection. The solution proposed is to
perform an alignment of the target sequence with a long chain of 200 As or Ts
using the software swat. All regions that have an alignment with a minimum
score of 10 are marked as a poly-A or poly-T region.

The last step of the trimming procedure set implemented for the New Schema
is the identification of all maximum subsequences that do not contain any artifact
and have at least 100 bases. In addition, the subsequence must have at least
50 bases with quality greater than 20. Only the longest subsequence will be
preserved. If there are several subsequences that meet the two criteria above,
the method will choose the one with greater quality sum.

3 Comparative Analysis

The tests necessary to validate the method developed in this work were made
with the sequences available in the Cattle EST Project site [2]. The sequences
are extracted from placentas of Bos taurus individuals. A total of 12620 se-
quences, distributed in 174 96-well plates, were obtained. These sequences are
the ones that had not been discarded by the trimming process implemented by
the project.

To perform the ribosomal contamination detection we constructed a repos-
itory of ribosomal sequences of mammals. The choice for mammal sequences
is appropriate because Bos taurus is a mammal and ribosomal RNA is highly
conserved across the species.

Since all sequences had already been processed by the Cattle EST project,
we expected that identification of rRNA sequences would not occur. However,
the procedures implemented discarded 100 sequences.

Low quality trimming did not discard any sequence. This result was expected
because of the observation that the trimming process performed by the Cattle
EST project had discarded 24.5% of the sequences.

Both trimming procedure sets identified vector regions in 12461 sequences
(99.5% of 12520 sequences preserved by the ribosomal detection phase).
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The most dramatic difference between the two sets was shown by the adapter
detection methods. The solution described by Telles and Silva found adapter
regions in 91 sequences (0.7%), while our method detected them in 12311 se-
quences (98.3%). In their method, the vector is removed before the detection of
the adapter, which, in this case, has a 6-base overlap with the vector sequence.
Therefore, the remaining adapter could not be detected because its too short.

Our schema was also capable to detect more poly-A/T tails. It detected poly-
A tails in 1957 sequences (15.5%), while Telles and Silva’s method detected them
in 658 sequences (5.3%). Our method found poly-T tails in 955 sequences (7.6%),
while Telles and Silva’s method found them in 718 sequences (5.7%).

4 Conclusion

Our study evidences that the possibility of improvement in the trimming proce-
dures is real. The New Schema proposed shows that the strategy of performing
the detection of the artifacts individually, without constructing relationships
among the different types of artifacts, can produce good results.

The next steps of our work are to refine the methods developed and to cre-
ate new methods for trimming of slipped sequences. We will also work with
procedures of contamination detection.

To make better comparisons, we obtained the sequences of the Sugarcane
EST project to use in the next validation tests. We intend to make clustering
of the sequences trimmed by our set of procedures and compare with Telles and
Silva’s results.

Supplementary material to this work can be found in the technical report [1]
available at http://www.ic.unicamp.br/ic-tr/.
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Abstract. Landau and Vishkin developed an O(kn) algorithm for the
approximate string matching problem, where k is the maximum number
of admissible errors and n the length of the text. This algorithm uses
suffix trees for an O(1) running time computation of the longest com-
mon extensions between strings. We present a variation of this algorithm
which uses suffix arrays for computing the longest common extensions.

1 Introduction

Matching strings with errors is an important problem in Computer Science, with
applications that range from word processing to text databases and biological
sequence alignment. Landau and Vishkin [7] developed an O(kn) algorithm for
matching a pattern to a string of length n with at most k differences. The
algorithm iterates through the diagonals of the table of the Smith-Waterman
dynamic programming classical solution and uses a suffix tree for constant-
time jumps along the diagonals, bypassing character-by-character matching. We
present a variation of the Landau-Vishkin algorithm which instead of suffix trees
uses suffix arrays enhanced with a table of longest common prefixes [8] for com-
puting the O(1) jumps along the diagonals of the dynamic programming table.
The space usage of the proposed modification of the Landau-Vishkin algorithm
is better, since suffix arrays use less space than suffix trees.

2 Problem Definition and the Landau-Vishkin Algorithm

Given two strings T = t1...tn and P = p1...pm, m ≤ n over an alphabet Σ, we
say that P is the i-th suffix of T , denoted by Ti, if p1 . . . pm = ti . . . tn such that
1 ≤ i ≤ n and m+i−1 = n. We say that P is a prefix of T if p1 . . . pm = t1 . . . tm
such that m ≤ n. The longest common prefix of P and T is the longest string that
is a prefix of both P and T . The longest common extension (LCE) of P and T is
the length of their longest common prefix. The edit distance between two strings
is defined as the minimum number of rewriting steps of elimination, insertion
or substitution of symbols needed to transform one string into the other. The
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approximate string matching problem with k differences between a pattern string
P and a text string T is the problem of finding every pair of positions (i, j) in
T such that the edit distance between P and ti...tj is at most k.

The Landau-Vishkin Algorithm. A brief overview of the Landau-Vishkin
algorithm is presented. For a detailed explanation we refer the reader to [3, 7].

The algorithm works by building paths in the dynamic programming table
of the classical Smith-Waterman solution. A path is said to contain an error at
cell (i, j) if pi �= tj or if the transition from cell (i, j) to cell (i + 1, j) or to cell
(i, j + 1) is in the path. A path with d errors is called a d-path. The algorithm
iterates through each diagonal i and finds the d-paths from the (d − 1)-paths
that end at diagonals i − 1, i and i + 1. When d = k, the algorithm is finished
and every k-path that reached row m is a match of P in T with at most k errors.

The algorithm iterates k times through O(n) diagonals. It runs in time O(kn)
because the extension of a d-path from the three paths of the previous iteration
is done in O(1) by using an O(1) LCE query which is based on an O(1) lowest-
common-ancestor (LCA) query over a suffix tree. Also it runs in space O(kn)
because it is unnecessary to represent the whole dynamic table: in fact, a d-path
is represented in O(d) space.

Suffix Trees and Their Use for Computing LCAs. A suffix tree T for
a string T = t1...tn over an alphabet Σ is a rooted tree that has interesting
properties for string matching applications. We refer the reader to [9, 3] for
further explanation. A suffix tree can be built using O(n) running-time and
space complexity.

Given a rooted tree T , an ancestor of a node v is a node which is on the
unique path from v to the root. The LCA of two nodes x and y is the deepest
node in T that is an ancestor of both x and y.

In a suffix tree T for the string T , given any two leaves i and j of T , corre-
sponding to the suffixes Ti and Tj of T , the LCA of i and j gives us the longest
common prefix of Ti and Tj .

A rooted tree with n nodes may be pre-processed in time and space O(n) in
order to allow O(1) LCA queries, as described in [3, 1].

3 Modification of the Landau-Vishkin Algorithm

Our proposal is to substitute the use of suffix trees on Landau-Vishkin algorithm
with the use of suffix arrays for computing the longest common prefixes.

3.1 Suffix Arrays

A suffix array Pos for a string T is an array which gives us a lexicographically
ordered sequence of the suffixes of T [8]. It can be constructed from T in time
O(n) and uses O(n) space as seen in [4, 5]. An enhanced suffix array is a suffix
array augmented with a LCP table. The LCP table is the array lcp of n elements
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such that lcp[i] is the LCE of the suffixes Pos[i] and Pos[i + 1]. The lcp array
can be constructed in linear time from Pos.

3.2 Longest Common Extension Computation Using Suffix Arrays

Given an enhanced suffix array for the string P#T 1, we can pre-process the lcp
array in O(n) time and answer LCE queries in O(1) time.

The LCE between two suffixes Sa and Sb of S can be obtained from the
lcp array in the following way: given i and j, i < j such that Pos[i] = a and
Pos[j] = b, then the LCE of Sa and Sb is lcp(i, j) = mini≤k<j lcp[k]. Thus LCE
queries can be answered by a range-minimum-query (RMQ) over a range in lcp.
As it turns out, it is possible to pre-process an array of integers (such as lcp) in
O(n) so that a RMQ in a given interval of the array is answered in O(1). The
idea presented below follows the algorithm based on Cartesian trees given in [2].

A Cartesian tree C for a sequence of real numbers x1 . . . xn is defined as a
binary tree with nodes labeled by those numbers, such that the root is labeled
by xm where xm = min{xi | 1 ≤ i ≤ n}, the left subtree is the Cartesian tree
for x1...xm−1 and its right subtree is the Cartesian tree for xm+1 . . . xn.

Given a Cartesian tree C for the array x, a RMQ of the interval xi . . . xj can
then be found by simply finding the LCA of nodes i and j of C, which can be
done in O(1) after O(n) pre-processing (see section 2). The Cartesian tree can
be built in O(n) using the algorithm given in [2].

Thus, in order to answer LCE in O(1) with O(n) pre-processing, we first
build an enhanced suffix array in O(n) time and space for the string T#P . We
then create a Cartesian tree C for the LCP table, and pre-process it in O(n) so
that we can query the LCA of any two nodes of C in O(1). Given the suffixes i
and j of P#T , their LCE will be the result of a RMQ over lcpi . . . lcpj , which is
given by an O(1) LCA query over C.

3.3 Proposed Algorithm

The proposed algorithm is then the same Landau-Vishkin one substituting the
suffix tree for an enhanced suffix array, and the LCA queries over the suffix tree
for a RMQ over the LCP table:

1. Build the enhanced suffix array for the string P#T .
2. Pre-process the lcp array so that we can answer RMQ in O(1)
3. For d from 1 to k iterate through every diagonal i of the dynamic program-

ming table:
3.1. Using the O(1) RMQ extend the (d − 1)-paths that end at diagonals

i − 1, i and i + 1 to a d-path ending in diagonal i.
3.2. Choose the d-path that ends at the cell that has the largest column

index.

1 ‘#’ is a sentinel character — i.e., a character which is neither in P nor in T .
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The modified algorithm runs in time and space O(kn) as well. The construc-
tion and maintenance of suffix arrays is done in O(n) time and space as well as
the building and maintenance of Cartesian trees. Since after O(n) pre-processing
LCA queries are done in O(1), the construction of the approximate matches is
computed in O(kn) running time and space.

Although the theoretical bounds coincide with the original algorithm, in prac-
tice we are able to use less space during pre-processing than with suffix trees. Sup-
posingwe are dealingwith a good implementation of suffix treeswherewe use about
12 bytes per character (see [6]), constructed with 3

2n nodes. The space used for the
LCA pre-processing is then 12n + A 3

2n bytes, where A is the space used by the
LCA pre-processing for each node of the suffix tree. The suffix array and the lcp
array can be built with a total of 8n bytes. If one builds the labeled Cartesian tree
C using 12n bytes such that the labels of its nodes are actual values of lcp, instead
of indexes, we can discard the suffix array and the lcp array altogether. Since the
C has exactly n nodes, the final amount of space used for the preprocessing is then
12n+An bytes, which is an economy of A

2 n bytes over the suffix tree-based version.

4 Concluding Remarks

We have shown that it is possible to change the Landau-Vishkin approximate
string matching algorithm to use suffix arrays instead of suffix trees for its com-
putation of longest common extensions between suffixes of the text and the
pattern, while keeping the same running time and space complexity. Due to the
use of suffix arrays and companion data structures actual space usage is likely
to be better than the standard version.
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Abstract. This paper describes BioPAUÁ Project, a new portal for Molecular 
Dynamics (MD) simulations over a computational grid environment. It inte-
grates MD simulations and analyses tools with grid technologies to provide 
support to biomolecular in silico experiments. The objective of BioPAUÁ 
Project is to offer a tool, as well the facility, for researches working in several 
important fields (e.g., bioinformatics, structural biology, biochemistry, me-
dicinal chemistry, biopharmacology). At first, the possible user does not need 
any special skill in MD simulations, however, advanced ones are also well 
contemplated. The project methodology is based on MYGRID middleware 
and uses GROMACS package in order to run simulations. This work is de-
veloped by LNCC/MCT, with IBCCF/UFRJ collaboration, and supported by 
HP Brazil R&D. 

1   Introduction 

There are several projects in bioinformatics [1,2] with similar aims to the ones pro-
posed by BioPAUÁ, but no one, as far as we concern, poses the special features pre-
sented here. BioPAUÁ hosts Molecular Dynamics (MD) tools and it is able to perform 
relatively complex computer simulations of proteins in a computational grid environ-
ment, all that made available through a web portal at http://www.biopaua.lncc.br. 

The development of this Portal places numerous computing challenges as well as 
bioinformatics modelling issues. Since it is the first release of a still beta version, it 
has several designed (and desired) missing options plus some unwilling occasional 
service failures. Nevertheless, it is operational, given that we were able to accomplish 
some results depicted in works [3,4,5] with the help of the Portal. 



 The BioPAUÁ Project: A Portal for Molecular Dynamics Using Grid Environment 215 

 

In this paper, we describe, not in deep, the BioPAUÁ portal, which unites MD 
tools and Grid technologies with the intention of that their combined effect may sup-
port experimental science. The goal of BioPAUÁ Project is to offer a tool, as well the 
facility, for researches working in several important fields like bioinformatics, struc-
tural biology, biochemistry, medicinal chemistry and biopharmacology.  

In simple words, the Portal accepts jobs of MD, as defined by the user (novice or 
expert), and will spread them over a grid of computers. 

2   BioPAUÁ Portal Description 

The BioPAUÁ portal provides submission and execution in MD services, based on 
GROMACS package [6], through a grid computing platform. However, it is not pos-
sible to enclose all options of GROMACS utilisation, which is also able to do, for in-
stance, normal mode analysis, free energy calculations and so on. Even in MD and 
optimisation protocols that are offered, we have to restrict the options based on our 
experience, in order to facilitate the introducing, for the user, in the MD techniques 
field. Nevertheless, the expert in GROMACS is able to use our grid facility via Portal, 
as described bellow. In this way, any sort of user is eligible to exploit BioPAUÁ. 

The user will be able to access Portal services in the following manner: 

1. By submitting any PDB file, containing amino acids residues, with or without a to-
pology file for ligand (in ITP file GROMACS format). Any residue or molecule 
group not identified automatically by GROMACS and without its respective topol-
ogy, provided by the user, will be neglected for simulation. 

2. By submitting any PDB file, as long as it has its residues identification matching 
the ones recognised by GROMACS (like nucleotides bases, some saccharides and 
lipids), or with its respective topology file in ITP format. 

3. By submitting just a TPR file, previously designed by the GROMACS expert user. 
In this mode, likely any GROMACS application is virtually feasible. 

To overcome the lack of topologies, users can access Dundee PRODRG2 Server 
[7] (http://davapc1.bioch.dundee.ac.uk/programs/prodrg/), which builds particular 
topologies, whose parameters are not inserted in GROMACS topology database. 
Nevertheless, user must be aware about likely topologies issues. 

Users can monitor their jobs by cancelling, removing, extending, and eventually, 
downloading results files, with logs, trajectories, energies and some common simple 
analyses. The sequence of GROMACS commands executed is also available to users, 
hoping that this information may help them to acquire some skill in GROMACS. 

3   Technical Information 

Behind the portal, the first front-end facility is a beowulf cluster based on common 
PCs supplied by HP Brazil, running Debian GNU/Linux with a kernel ready for 
OpenMosix (http://www.openmosix.org), not activated, but also operational. All in-
ternal networks are 100 Mbps Fast Ethernet. Then, such cluster is connected to others 
ones around Brazil, from the Northeast to the South states, via MYGRID/OURGRID 
[8] over Internet, using SSH protocol, the only security measure adopted by now. The 
grid community is known as PAUÁ Network. 
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The whole process runs as follow: 

1. User accesses the BioPAUÁ Portal and submits a MD job to server, over an en-
crypted connection. The server hosts the web service, MYGRID and all files needs 
by system, where every user has a special folder in hard disk and his/her activities 
are monitored by MYSQL database. Once started, user can only wait and has to 
monitor job status at Portal. 

2. The server pre-process the files and instructions supplied by user and, via 
MYGRID, sends the user job to an idle machine, which can be local or remote, on 
OURGRID community. The first step is to check which computer system is being 
accessing. By now only machine with GNU/Linux are acceptable. Second, it 
checks for GROMACS. If it is not already there, then a previously built binary 
package of GROMACS will be sent. This operation is done only once for each ma-
chine, during its first time access. 

3. After job finalization, output files are sent back to the server, including graphical 
analyses files in XMGRACE format, and stored on the specific job folder. So, user 
will be able to download files. 

OURGRID / MYGRID Project 
The OURGRID Project (http://www.ourgrid.org) [8] is a collaborative effort involv-
ing Hewlett-Packard (HP) and Federal University of Campina Grande (UFCG) to re-
search and develop solutions of usage and management of computational grids. 
MYGRID is the user broker when dealing with the grid. The OURGRID Community 
is responsible for assembling grid to be used by MYGRID instances. 

GROMACS Software Package 
GROMACS [6] (http://www.gromacs.org) is a programme to solve Newtonian equa-
tions of motion for systems up to millions of atoms, in a extremely high performance. 
It also comes with a large selection of flexible tools for trajectory analysis and it is 
ready for visualization with graphical tools. In addition, GROMACS is free software, 
available under the GNU General Public License. 

PAUÁ Network Project 
PAUÁ, which means “everything” in Tupi-Guarani, is an initiative created by HP 
Brazil R&D to build a countrywide Brazilian Grid. PAUÁ currently involves 11 dif-
ferent universities and research centres is a 250-node grid that supports the execution 
of Bag-of-Tasks (BoT) applications whose tasks are independent. 

4   Final Remarks 

The solution proposed here seems to show potential since it intends to facilitate the use 
of MD techniques employing frequent idle computers in a grid. In spite of this, there 
are some drawbacks. The most important problems are related to the computer time 
that simulations take to be executed, as well as the size of output files which must be 
transferred over Internet. Since simulations can last for days to weeks, the remote 
compute where job is being executed can present failures. To cope with that, 
MYGRID/OURGRID developers are working on a checkpoint tool to restore the last 
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saved state of a job. About the problem of file transference, not much has been done, 
except that PAUÁ Network will have some links upgraded to Gigabit Ethernet system. 

Despite the mentioned problems, we got some interesting results using the Portal 
facilities, even while in development; we can cite three here. i) Derived from some 
MD simulations carried out via Portal, the most important result that Batista et al. [3] 
could achieve was the decline in binding affinity for inhibitor relative to non-B sub-
types when compared to subtype B, in accordance with some previous experimental 
results, which can, in due course, favour the emergence of drug resistance. ii) Study-
ing falcipain-2 complexed with E64 and Z-LR-AMC by MD, at BioPAUÁ, Gomes et 
al. [4] have proposed some line of directions to structure-based design of inhibitors 
for this protease. iii) França et al. [5] used the Portal services in their work to perform 
some molecular dynamics simulations. MD results combined with docking studies 
were employed to propose structures and to study the dynamic behavior in the active 
site of nine potential lead compounds as selective inhibitors of Plasmodium falcipa-
rum Serine Hydroxymethyltransferase. 

For future work we are improving the first version to offer more options of simula-
tion and analyses. We are also investigating how to add new Molecular Biology and 
Pharmacology applications, like high-throughput drug screening. 
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Abstract. Methyl-CpG-binding protein 2 (MeCP2) belongs to the
DNA-binding protein family that selectively binds to DNA methylated
CpG-islands. MeCP2 acts like a transcriptional repressor, that contains a
N-terminal methylated DNA-binding domain (MBD), and a C-terminal
transcriptional repression domain (TRD). Mutations in MECP2 gene
have been associated to Rett Syndrome - a neurological disorder linked
to X-chromossome, and one of the most common causes of physical and
intellectual dysfunction in females. The calculation of MeCP2 MDB had
been solved, but the effects of the mutations on the protein’s structure
and, consequently, functions have not been analyzed. Databases, systems,
tools, and, more recently, protein structure motifs databases available on
Internet make it possible to predict ab initio protein structure quickly.
This extended abstract looks at the the use of these tools to analyze
the effects of MeCP2’s mutations, which cause Rett syndrome, in the
original protein structure.

1 Introduction

Rett syndrome is a neurological disorder first described by Andreas Rett in 1966
[1] in a article written in German. The pathology was only more widely known
and understood when Hagberg et al. published a paper in English [2]. Since then,
several researches have been performed and, particularly in brain, it was noticed
selective fails in connections between neurons, and altered neurotransmitters
quantities [3] . Later on an initial apparently normal development, generally up
to 6 to 18 months old, the child with Rett syndrome starts a regression period
that affects mainly the speech and hand usage [1, 2]. The pathology reaches one
of 15,000 born girls [4]. In 1999, Amir et al. [5] mapped Rett syndrome locus
to a gene localized in X-chromosome, particularly to Xq28 position, where is
localized MeCP2 gene. The link between Rett syndrome and X-chromosome
explains the reason why males are rarely affected, though when it happens the
consequences are severe because, as only one X-chromosome is activated per
cell, all his cells are mutation carriers. It also explains the symptoms variability
to girls with the same mutation. MeCP2 gene contains three exons, and a long
untranslated 3’ region that may have a structural or functional role because it
has well conserved homologues [6]. MeCP2 gene codifies a protein (MeCP2) that
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contains 486 amino acids. MeCP2 contains at least two functional domains: the
methyl-cytosine-binding domain (MBD) that contains 85 amino acids; and the
transcriptional repression domain (TRD) with 104 amino acids. The MeCP2
MBD were calculated and analyzed by Nuclear Magnetic Resonance (NMR) [7]
and its function is to bind to 5-methyl-cytosine residues in CpG dinucleotides
in gene promoter regions that are subject to repression after DNA-methylation
[8]. The MeCP2 TRD, in its turn, interacts with the histone deacetylase, and
with a transcription co-repressor, SIN3A. Together, they cause the transcription
repression through the core histone deacetylation.

It has been shown that protein domains are the fundamental units for analysis
of structure, function, and evolution protein [9]. The domains present distinct
structural conformations and can be considered as building blocks of protein
structure. Know protein structure and, consequently, its domains is essential to
understand protein functions. This protein modular characteristic has the pro
in offering stability to proteins. Besides this, the proteins evolution, by duplica-
tions, mutations, and natural selection, allows that large quantity of proteins -
specially the eukaryotic extracellular proteins - has multiple domains with dis-
tinct functions, though cooperative function. A structural domain can be defined
as a protein substructure, composed of an amino acid chain - containing from
40 up to 350 amino acids - able to folding in a compact and stable form. The
region of a protein that is in charge for a specific biological function is called
functional domain. The functional domain is identified by experiments where it
is extracted residues from the amino acids chain up to the minimal polypeptidic
chain and which does not present the original function. Although it is not nec-
essary, in most of case the functional and structural domains comprehend the
same residues [10].

2 Protein Structure Prediction

Obtaining the protein’s three-dimensional structure demands hard work. The
process consists of purifying; lyophilizing the protein, up to obtaining/calculating
an image by the crystallography X-Ray, or Nuclear Magnetic Resonance (NMR).
The protein domain databases available on Internet became essential for im-
proving the prediction time. An efficient method to predict protein structure is
necessary, particularly in this post-genomic era, when new proteins have been
discovery on a daily basis. At this moment, biological research is restricted by a
lack of insight that partly originates from our ability to efficiently manage biolog-
ical databases, and by the lack of adequate software tools. Most of the systems
and tools available are based on comparison - alignment algorithms - e.g., a just
discovered protein is compared with proteins (or models of proteins) saved on
protein databases. For some predictions these systems have a very good predic-
tion accuracy [11], though the number of databases and different approaches can
leave the beginner in this type of research lost.

There are three main alternative approaches for predicting mutated protein
structure based on Internet available resources:
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– Ab initio Prediction. The protein secondary, tertiary structure predic-
tion or its domains, and boundaries domains prediction can be based only
on the residues sequence, and its physic-chemical properties. This approach
has been improved, and can be the alternative to calculating a new protein
structure when one does not find a homologous in databases. The prediction
reliability gets up to 70% [12].

– Homology Modeling. The protein structure prediction can also be based
on comparison with beforehand calculated protein structures databases [10].
The homologous structure - generally saven on PDB format - can be edited
and recalculated using an algorithm that tries to optimize the structure of
its mutant using some constraints - e.g. strucutural energy.

– A Combination of Both Approaches. MeCP2, for example, contains
more than one domain. Actually it contains two domains, a MBD and a
TRD. The MBD already has been solved and one can use Homology Mod-
eling to predict a structure of the MBD mutated. Since the TRD was not
pre-calculated, one can use the first approach to obtain a predicted TRD
structure.

3 Results

We evaluate the main tools that are available on Internet to analyze the effects
of MeCP2 mutations - that cause Rett syndrome - in protein structure. Since
the results of the first approach does not present new significant information,
we focus on the two others appraches. The tools evaluation will be based on the
taken time to solve the problem, on the accuracy of results, and labour. Finally,
The results also can be used as references to analyze of the links between protein
mutation, structure, function, and Rett syndrome phenotypes.
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Abstract. We used Artificial Neural Network for protein loop classification 
based on the amino acid sequence alone. A new algorithm recently proposed, 
the Hidden Layer Learning Vector Quantization (HLVQ) was used and its accu-
racy compared with traditional Multilayer Preceptrons (MLP). The HLVQ algo-
rithm achieved superior accuracy correctly classifying most loops. 

1   Introduction 

Since the seminal work of Jones [1] on secondary structure prediction that Artificial 
Neural Networks (ANN) has become a essential tool for protein structure prediction. 
Neural Networks are connectionist machines that learn by example with very good 
generalization capabilities. They have been applied with success in protein structure 
prediction, protein interaction and protein classification [2]. 

However, one difficulty in applying ANN to bioinformatics is the large dimension-
ality of the search space. For instance, a sequence of 10 amino acids represents a 
search space of 2010 possibilities and requires a network with 200 inputs. Training 
such large networks is difficult, requires large datasets of known examples and the 
risk of overfitting considerable. 

To alleviate these difficulties feature extraction techniques should be used. How-
ever, these techniques always discharge some information, while some problems are 
intrinsically high dimensional. In bioinformatics these cases abound, like gene identi-
fication or prediction of secondary structure of proteins.  

Loop prediction is a good test-bed to the much harder protein-folding problem. De-
spite improvements in prediction of protein structure [3], modelling the conformation 
of loop remains a challenging problem [4]. Loops represent an important part of the 
protein structure often determining the functional specificity of the protein. The con-
formation of a polypeptide chain forming the loop has to be calculated from the se-
quence of the segment while flanking regions and the structure of the rest of the pro-
tein may also influence the loop conformation. 

Hidden Layer Learning Vector Quantization is an algorithm developed to work 
with high dimensional datasets [5]. It has the advantage of being relatively simple 
while less prune to overfitting.  
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In this work we use HLVQ neural networks to classify protein loops based on 
amino acids sequence alone using a non-redundant database of proteins with less than 
40% sequence identity was taken from SCOP and used to generate the ArchDB [5] 
database. This database was used to train and test the neural network. 

2   The Hidden Layer Learning Vector Quantization (HLVQ) 

The Hidden Layer Learning Vector Quantization (HLVQ) [5] is implemented in three 
steps. First, a multilayer perceptron is trained using back-propagation. Second, super-
vised Learning Vector Quantization is applied to the outputs of the last hidden layer 

to obtain the code-vectors icw  corresponding to each class ci in which data are to be 

classified. Each example, ix , is assigned to the class ck having the smallest Euclidian 
distance to the respective code-vector:  

                                 )(min xhwk jc
j
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where h  is a vector containing the outputs of the hidden layer.  In the third step the 
perceptron is retrained with two differences. First the error correction is not applied to 
the output layer but directly to the last hidden layer. The output layer is therefore 
ignored from now on. The second difference is in the error correction backpropagated 
to each hidden node:  
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After retraining the MLP a new set of code-vectors, and the process is repeated un-
til convergence is achieved. 

3   Application of HLVQ to Protein Loop Classification  

Loop prediction can be seen as a mini protein-folding problem. The correct conforma-
tion of a given segment of a polypeptide chain has to be calculated from the sequence 
of the segment influenced by flanking regions that span the loop and by the structure 
of the rest of the protein that cradles the loop.  

We used a classification database of structural motifs, ArchDB. This database con-
tains 12665 clustered loops in 451 structural classes with information about φ - ϕ
angles in the loops and 1492 structural subclasses with cover both the φ - ϕ angles and 
the relative locations of the bracing secondary structures [7].  

Loops are classified in fives types according to the bracing secondary structure type: 
α−α loops, α−β loops, β−α loops and  β−β loops that are further split into β−hairpins 
(which are those loop between two β strands with at least one hydrogen bond between 
both strands) and β−links (also named β−archs), the complementary set. 
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In this work we use the information contained in the amino acid sequence to clas-
sify the loop type. As a first step, only loops of length five were considered since this 
is the most representative category. Amino acids from the flanking regions we not 
considered. This can be considered a test bed to the general problem of classifying 
loops of any size. 

We used the orthogonal coding for the amino acids and tested several networks 
with different hidden layers. The selected neural network has 100 inputs and 10 hid-
den nodes. The MLP networks were trained by backpropagation with a learning rate 
of 0.05 and a momentum of 0.4. 

3.1   Prediction of β-β Loops 

We first consider a sub-problem: discriminate a loop having a β-β link bracing secon-
dary structure from a loop with β-β hairpins. This is an important problem since the 
β-β hairpin loop highly constrains the local topology of the protein. An accurate clas-
sification of this type of loop is therefore very helpful for super-secondary structure 
prediction codes. 

Table 1 show the results obtained on a subset of 702 links and 2240 hairpins using 
five-fold cross validation. An accuracy 88% (79%) for the β-β link and 87% (84%) 
for β-β hairpins was found respectively for HLVQ and MLP. HLVQ is clearly supe-
rior to MLP and from now on we will only use it.  

Table 1. Confusion matrix, in percentage, for β-β loops obtained by HLVQ and MLP -  in 
parenthesis 

 Predicted 
Real β-β link β-β hairpin 
β-β link 88.4

(79.4) 
11.6

(20.6) 
β-β hairpin 12.5

(16.1) 
87.5

(83.9) 

3.2   Classification of All Loops 

We now consider the whole sample containing 702 β-β links, 1015  -β, 2240 β-β
hairpins, 1739 β-  and 915 - . Results are presented in Table 2. The most accurate 
predictions are the β-β hairpins (96%), which is not surprising as these loops are the 
most common having a clearly identifiable characteristics. Worst prediction occurs 
for the β-β links with only 46% being correctly classified, 28%  wrongly assigned to 

 -β and 20% to β –  loops. Comparing these results with Table 1 we conclude that  
β-β links are the most difficulty to classify, although they are clearly distinct from β-β
hairpins. This low accuracy on β-β links is also due to a small representativity of this 
class in the database.  
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Table 2. Performance of HLVQ for all loop types 

Predicted 
Real 

β-β link  -β β-β hairpin β- -

β-β link 45.9 28.5 3.7 19.8 2.1 
-β 8.8 67.4 1.2 18.0 4.6 

β-β hairpin 0.4 0.9 96.1 2.1 0.5 
β- 4.4 6.2 2.4 79.5 7.6 

 –  4.0 15.7 1.3 20.3 58.6

4   Discussion and Conclusions 

We show that HLVQ algorithm is a promising approach to classify high dimensional 
data. It is robust, relatively simple to implement and it can handle many features, even 
if they are irrelevant for the solution. These characteristics of HLVQ may be very 
useful for other applications in bioinformatics, like protein-protein interactions and 
secondary protein structure prediction. 

Due to the high accuracy obtained for some loops types, like β-β hairpins, our re-
sults may be used to boost secondary structure prediction of proteins by correcting 
results obtained for the loop regions – the most difficult sections to predict. 

In future we will use the HLVQ to classify loops of any size and to identify more 
details of loop by mapping the amino acids sequence to a three letter alphabet discre-
tization of the Ramachandran plan.  
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Abstract. Protein structure visualization is crucial for understanding
its function inside the cell. Each year, laboratories around the world de-
posit protein structures on a central database for further analysis and
research. The result is a large amount of structures being deposited (ap-
proximately 31,000 in may 2005). Visualization is a very powerful tool to
help in the analysis, aiding data understanding and interpretation. The
present work suggests an architecture to help the rapid construction of
visual biomolecular software, specifically designed to be simple, modular
and scalable. The architecture, called VIZ, employs high quality open-
source libraries offering simple data structures and customizable options.
The architecture can be used to start a new visual software project to
visualize and represent individual protein structures, as well as multiple
conformations from molecular dynamics simulation trajectories.

1 Introduction

Large amounts of protein structures are being deposited on the Protein Data
Bank (PDB) repository each year [1]. Searching relevant information within
the data is not a trivial task, and research efforts are being directed for the
development of interactive tools that possess the ability to highlight important
regions on the data [2].

The present work defines an open-source architecture to help analysis of pro-
tein structure and dynamics visualization. We are proposing an easy to use archi-
tecture, called VIZ. The goal is to produce a solid base for future development
of softwares for high quality visualization of experimental biomolecular struc-
tures, as well as ensembles of conformations obtained from molecular dynamics
simulations.

2 Visualization and Open-Source Solutions

Visualization offers powerful tools to understand and gain insight from data,
helping researchers to identify and quantify interesting regions. It is very im-
portant to convey relevant information, not only pretty images. This research
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has many applications such as in computer simulation analysis, business decision
making, and Bioinformatics, just to name a few [3].

Open-source software is present in today’s main applications such as op-
erating systems, networking hardware, telephones, and many others, including
Bioinformatics, due to the adoption of well-known file formats and freely avail-
able genomic data on the Internet [5].

Among the most commonly open-source visualization tools used nowadays,
we highlight VMD - Visual Molecular Dynamics [9] and PyMOL [10]. Both tools
also offers scripting and are very stable. For advanced analysis, scripting skills
are mandatory.

3 The VIZ Architecture

TheVIZ architecture is designed to be simple, modular and scalable. Another
aspect worth of note is the use of the MVC (Model-View-Controller) pattern. In
MVC, there must be a separation between the data structure (the Model), the
user interface (the View) and the operations (the Controller) [4].

3.1 Software Libraries

This proposed architecture uses the following libraries and IDEs (Integrated De-
velopment Enviroments): DevC++ (version 4.9.9.1), a free C/C++ IDE [11];
OpenBabel (version 1.100.2), a free open library designed to read/write file for-
mats used in molecular modeling and chemistry; OpenGL, a graphical library
having many visualization functions [7]; and FLTK (version 2.0) used for the
GUI (Graphical User Interface) [6].

3.2 Modules and Class Diagram

VIZ uses some data structures already defined by OpenBabel. A class named
OBMol contains a list of OBResidues and each OBResidue contains a list of
OBAtoms. Each of this classes can attach an OBGenericData, used for cus-
tomized data.

The VIZ architecture is divided in modules with their Class Diagrams
(Figure 1):

1. Main Module: A main class, called VIZ is responsible for opening pro-
tein files and creating the graphic window (VIZOpenGLWindow). Contains
the atom list, which all other modules access. VIZGenericData is inherited
from OBGenericData and contains specific information for each OBAtom or
OBResidue such as the bonding style to be used (lines or cylinders).

2. Rendering Module: has a VIZOpenGLWindow, responsible for redrawing the
scene and rendering objects.

3. Interface Module: generates callbacks for mouse and keyboard events.
4. Coloring Module: color atoms (using the VIZColorer class), used to display

aditional information about the inner protein structures.
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Fig. 1. The VIZ architecture represented as a simplified UML Class Diagram

4 Results

We used VIZ architecture to build a protein visualization tool, named Protein-
VIZ, capable of opening a PDB file and having the following molecular repre-
sentations: Lines, Bonds, VDW (Van der Waals) or CPK (atoms as spheres and
bonds as cylinders). ProteinVIZ enables color modification of atoms/residues
by the following types: Chain, Residue, Atom Type and Residue Type. It also
allows atom radii alteration.

A simple CPK representation of a protein using ProteinVIZ is shown in Figure
2. The left side, together with an auxiliary window illustrates some modifications
available to users.

5 Conclusions, Perspectives and Acknowledgements

There is a need in the structural biology community for high-quality, insightful
visualization software. VIZ presently focuses on protein structure visualization.
However, it will evolve to a visualization and analysis tool for multiple molecular
dynamics simulation trajectories, featuring visual data mining approaches in
order to represent simulation events inside the rendering scene.

The VIZ architecture is in the early stages of development, but seems very
promising in terms of modularity capabilities and maintainability and will be
distributed under the LGPL license. The software can also be used in education,
teaching molecular visualization techniques.

We thank the referees for critical reading of this work. We also thank
FAPERGS and CAPES for financial support.
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Fig. 2. CPK representation on ProteinVIZ
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1 Introduction and Related Work

Automatic annotation tools are becoming popular since the biologists and cu-
rators of databases cannot cope with the volume of sequences to be annotated
manually. One way to automate the annotation is to use techniques of symbolic
machine learning to derive rules to guide this annotation. However, the training
instances tend to have too many attributes, turning the machine learning process
difficult and time consuming.

The aim of this paper is to evaluate the information provided by those at-
tributes, which can come from different data sets, regarding a simple task: clas-
sifying proteins according to a given set of keywords. Despite its simplicity,
the task is very relevant because the Keyword field is an important one in the
SWISS-PROT database and gives several hints to experts regarding proteins
function and structure. Instead of using thousands of attributes during the ma-
chine learning process, we study which set of these attributes can potentially con-
tribute more to the annotation process. Once those rules are generated, they are
used to fill the Keyword field in the TrEMBL database (a computer-annotated
supplement of SWISS-PROT).

The idea of automating the annotation is not new. Machine learning tecn-
hiques have been widely used in automated annotation process. An approach
based on these techniques to generate rules based on already annotated key-
words of the SWISS-PROT database is described by [3]. Such rules can then be
applied to unannotated protein sequences in TrEMBL.

In [1] similar methods were employed to automate the annotation of Keyword
for proteins appearing in the genome of organisms of the Mycoplasmataceae
family. However, as said, one issue with this approach is that it still uses too
many attributes (all motifs from InterPro and PROSITE cross-referenced in
SWISS-PROT). We believe that the time consumed in the training task can be
reduced if the correct set of attributes is used.

� Authors partially supported by CNPq; the project is partially supported by CNPq
and by FAPERGS.
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2 Data and Methods

Here we use data about proteins from the model organism Arabidopsis thaliana,
which is available in SWISS-PROT, to feed the Layer II of ATUCG, our agent-
based environment for annotation [2]. SWISS-PROT1 provides a high level of
annotation of each protein, also including extensive cross-references to other
databases of motifs, patterns, and profiles. We use some of these cross-references
as attributes in the machine learning process. Specifically, we use the follow-
ing. PROSITE2 characterizes biologically significant sites in proteins. Pfam3

is a database of alignments and HMMs covering many common protein do-
mains. PRINTS4 is a compendium of protein fingerprints. ProDom5 families are
built by an automated process based on a recursive use of PSI-BLAST. Finally,
InterPro6 uses a collection of profiles from PRINTS, Prosite, ProDom, Pfam
and SWISS-PROT, which creates a unique, non-redundant characterization of
a given protein family, domain or functional site.

The data used comes from a local version of the SWISS-PROT database
(status of May, 2004), in which 2817 proteins relating to A. thaliana were found.
Many keywords appeared in the data but we are focusing on those whose number
of instances is higher than 100. The number of keywords satisfying this criterion
is 27 (those that appear in Table 1). Since the aim here is to compare data
sets of motifs we use all motifs which are cross-referenced in SWISS-PROT as
attributes. The number of attributes, by data set, is: 1316 (Intepro), 907 (Pfam),
220 (Prodom), 589 (Prosite), 246 (Prints), thus 3278 in total. Also, we have
imposed a constraint on the quality of the rules generated by C4.5: each rule
must cover a minimum number of 25 instances, a number that is approximately
1% of the number of training instances. The quality of each rule generated by
C4.5 was evaluated via 5-fold cross-validation (CV).

3 Results and Discussion

In Table 1, the first column is a list of the keywords which met the above men-
tioned criteria. The second column gives the global error. The third and fourth
blocks of columns relate to the statistics for the positive and the negative classes
respectively. In these two blocks, averages (due to the n-fold CV) of the number
of instances, the absolute error, and the percentage of error are shown. Also, for
the positive class only, the table shows confidence as defined in [3].

Due to lack of space, we omit the other tables, showing in Table 2 only the
equivalent of the last line of Table 1 (average over all keywords). When the

1 http://www.expasy.ch/sprot/
2 http://www.expasy.ch/prosite
3 http://www.sanger.ac.uk/Pfam/
4 http://bioinf.mcc.ac.uk/dbbrowser/PRINTS/PRINTS.html
5 http://protein.toulouse.inra.fr/prodom.html
6 http://www.ebi.ac.uk/interpro/
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Table 1. Evaluation Test (5-fold CV) - Attributes Used: Interpro

Global Class (Keyword) Non-Class
Keyword Error (%) Instances Error (%) Conf. Error (%)

ATP-binding 21.60 (3.80) 53.6 21.20 (39.55) 0.87 0.40 (0.08)
Alternative-splicing 27.20 (4.80) 27.2 27.20 (100.00) 0.00 0.00 (0.00)
Calcium 8.20 (1.40) 22.2 7.80 (35.14) 0.75 0.40 (0.07)
Cell-wall 8.80 (1.60) 24.2 7.80 (32.23) 0.74 1.00 (0.19)
Chloroplast 71.00 (12.60) 71 71.00 (100.00) 0.00 0.00 (0.00)
Coiled-coil 23.60 (4.20) 33 21.00 (63.64) 0.57 2.60 (0.49)
DNA-binding 33.00 (5.80) 47.4 33.00 (69.62) 0.79 0.00 (0.00)
Glycoprotein 31.80 (5.70) 49.2 29.80 (60.57) 0.72 2.00 (0.39)
Heme 4.00 (0.70) 32.6 3.80 (11.66) 0.87 0.20 (0.04)
Hydrolase 36.80 (6.50) 51.8 36.60 (70.66) 0.78 0.20 (0.04)
Iron 13.00 (2.30) 27.4 12.80 (46.72) 0.77 0.20 (0.04)
Metal-binding 23.20 (4.10) 38.6 23.00 (59.59) 0.78 0.20 (0.04)
Mitochondrion 44.20 (7.80) 44.2 44.20 (100.00) 0.00 0.00 (0.00)
Multigene-family 152.60 (27.10) 70 0.00 (0.00) 0.86 4.60 (1.33)
Nuclear-protein 55.40 (9.80) 76.8 55.40 (72.14) 0.85 0.00 (0.00)
Oxidoreductase 34.80 (6.20) 63.4 34.60 (54.57) 0.87 0.20 (0.04)
Phosphorylation 15.20 (2.70) 25.8 11.20 (43.41) 0.56 4.00 (0.74)
Plant-defense 12.00 (2.20) 23.4 12.00 (51.28) 0.75 0.00 (0.00)
Protein-transport 21.40 (3.80) 23.2 21.40 (92.24) 0.32 0.00 (0.00)
Repeat 42.60 (7.50) 62.4 42.60 (68.27) 0.84 0.00 (0.00)
Ribosomal-protein 34.00 (6.00) 34 34.00 (100.00) 0.00 0.00 (0.00)
Signal 60.20 (10.70) 98.8 59.20 (59.92) 0.87 1.00 (0.22)
Transcription-regulation 26.00 (4.60) 47.4 26.00 (54.85) 0.85 0.00 (0.00)
Transferase 43.20 (7.70) 57.4 43.00 (74.91) 0.77 0.20 (0.04)
Transit-peptide 69.00 (12.30) 69 69.00 (100.00) 0.00 0.00 (0.00)
Transmembrane 79.60 (14.10) 111.8 78.40 (70.13) 0.84 1.20 (0.27)
Transport 40.40 (7.20) 48.2 40.40 (83.82) 0.67 0.00 (0.00)

Average 38.25 (6.79) 49.41 32.09 (63.51) 0.62 0.68 (0.15)

classification is performed with attributes only from single databases in Table 2,
in most cases the error in the non-class is low. However, looking at error rates
regarding the positive class only (fourth column), some are unacceptable (e.g.
95.07% for ProDom). Similar conclusion can be drawn for confidence. If we
consider attributes only from the InterPro database, we see that the error rate
in the positive class is lower than it was the case when only ProDom was used.
This is valid for all keywords (though not shown here).

For the other data sets, the trend is that global error is low (e.g. 7.75%
for PRINTS) but the error rate for the positive class is high. Better confi-
dences and error rates are achieved when using the following databases: In-
terPro, Pfam, and also for the combinations: InterPro+PROSITE, and Inter-
Pro+PROSITE+Pfam). However, in these last cases, the combination brought
no increase: using attributes from InterPro alone is as good as using attributes
from InterPro plus other data sets.
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Table 2. Evaluation Test (5-fold CV) – Error, number of instances and confidence, for
each data set of attributtes (average over all keywords)

Global Class (Keyword) Non-Class
Database Error (%) Instances Error (%) Conf. Error (%)

All 37.98 (6.74) 49.50 31.94 (63.31) 0.62 0.65 (0.14)
Interpro+Prosite+Pfam 37.98 (6.74) 49.51 31.90 (63.19) 0.62 0.70 (0.15)
Interpro+Prosite 37.96 (6.73) 49.51 31.88 (63.16) 0.62 0.70 (0.15)
Interpro 38.25 (6.79) 49.41 32.09 (63.51) 0.62 0.68 (0.15)
Pfam 39.52 (7.01) 49.21 33.13 (65.38) 0.60 0.68 (0.15)
Prosite 40.35 (7.15) 49.32 34.32 (68.92) 0.57 0.44 (0.09)
Prints 43.70 (7.75) 48.64 37.13 (73.55) 0.47 0.31 (0.06)
Prodom 52.54 (9.32) 50.36 47.77 (95.07) 0.20 0.23 (0.04)

Finally, a note on the still high level of error rate. This is due to two main
factors: low level of annotation of Keyword in SWISS-PROT and the unbalance
of the two classes. This issues were investigated somewhere else and are not the
focus of the present paper, which aims at comparing the data sets.

4 Conclusions

Using all available data regarding motifs as attributes is prohibitive for symbolic
machine learning methods. This paper discusses the use of several data sets
in order to evaluate which one(s) is/are more valuable regarding the task of
producing rules for annotation of the field Keyword in TrEMBL.

One sees that some data sets of attributes perform similarly. In particu-
lar, using all attributes (i.e. from all databases together) does not perform bet-
ter than using only InterPro or only Pfam. Combinations of attributes (e.g.
PROSITE+InterPro or PROSITE+InterPro+Pfam) do not perform much bet-
ter than each of these data sets alone. ProDom or PRINTS should not be used
alone as data set in the automated techniques, at least at this time when the
data set is small. Since each of these databases has its particularities, the expert
in the domain of annotation should decide which one to use. In the absence of
this information, InterPro is a safe choice since it is based on the others.
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1 Introduction

HIV/AIDS pandemic affected 39.4 million people at the end of 2004, spreading
at the rate of 15.000 new infections per day [1]. Although Brazil ranks in fourth
in number of reported AIDS cases, limited information concerning the molecu-
lar diversity of HIV-1 circulating subtypes is known [3]. Southern Brazil has a
particular HIV-1 epidemic, whereas subtype B dominates other regions of the
country and subtype C reported cases are rare, in southern states the subtypes
C and B have equivalent proportions, and the subtype C seems to be growing
up since it was first described in Porto Alegre city, capital of Rio Grande do Sul
(RS), at 90’s.

The characterization of the particular population of Southern Brazil, where
a large number of HIV-1 infected subjects are under antiretroviral (ARV) treat-
ment, underscores its potential usefulness in clinical, treatment, and vaccine
trials in Brazil [12]. This study focus mainly in the data analysis and characteri-
zation of HIV-1 subtypes circulating in Southern Brazil states - which account’s
for over 20% of the total Brazilian infections.

2 Materials and Methods

The sixty-eight samples sequences from the three states of Southern Brazil
(Paraná - PR, Santa Catarina - SC and RS) for subtype determination were
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obtained from Laboratório Central do Estado do Rio Grande do Sul - LACEN-
RS data bank, from patients chronically infected already under ARV treatment
that are failing ARV therapy. Samples collected between the years 2002 and
2003 were chosen randomly. The protease (pr) and transcriptase (rt) genes from
the pol region (1.302 base pairs, corresponding to nucleotides (nt) 2253-3555 in
HIV-1 HXB2) were sequenced and analyzed for subtype determination.

Multiple alignments between the sample sequences and the sequences of ref-
erence isolates for each of the known subtypes included in the 2001 compendium
of the Los Alamos National Laboratory (LANL) [7], both in FASTA format, were
performed with ClustalX (1.83) program [14]. Gaps were manually removed with
Bioedit program [4]. Phylogenetic inferences were performed by the neighbor-
joining method using the HKY model of substitution [5] implemented in PAUP
4.0 beta [13] and its reliability was estimated by 1000 bootstrap replications.

Phylogenetic trees were generated with PAUP 4.0 beta [13] and visualized
with the TreeView program [10]; a bootstrap value joining the query sequence
with a particular subtype was considered to be significant if it exceeded 70%. The
sequences that had an outlier behavior (probable recombinant form - mosaics)
were selected to further analysis in the bootscanning package of the SIMPLOT
software version 2.5 [8], to verify the evidence of recombination as well as the
breakpoints map. A window size of 400bp was chosen. Recombinant authenti-
cation was performed with the likelihood ratio test [6] using Modeltest, version
3-06 [11] and PAUP 4.0 beta software [13].

3 Results and Discussion

Samples subtype were identified when they cluster with reference sequences from
LANL [7] with bootstrap values above 70%. Samples with bootstrap values be-
low 70% on phylogenetic trees were analyzed by bootscaning [8] for recombina-
tion breakpoints delimitation. Phylogenetic neighbor-joining trees of partial seg-
ments confirm the subtype assignments of segments obtained by bootscanning,
bootstrap support segments clustering with reference subtypes. When necessary,
posterior analyses with appropriate substitution model chosen by Modeltest [11]
were performed for each of the mosaics in support of their subtype authentica-
tion.

Breakpoints of the eight mosaics are located at nt positions 2532 (sample
014), 3002 and 3202 (sample 028), 3010 (sample 033), 3212 (sample 036), 2632
(sample 049), 2602 (sample 051), 2616 and 3102 (sample 073) and 3002 and 3202
(sample 074) according to HXB2.

Table 1 and Table 2 summarizes the data of calculated proportions and region
distribution of HIV-1 pr and rt gene subtypes for the sixty-eight samples.

As expected for subtype distribution of Brazilian subtypes, B strains was the
main subtype observed (48.5%), but C strains has a higher number of infected
subjects than F1 subtype (Table 1), probably because of the samples origin,
since at Southern Brazil there is a higher prevalence of subtype C infections,
diverse from the other geographical regions [3, 12].
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Table 1. Estimate prevalence of HIV-1 pol subtypes at South Brazil

Southern Brazil Subtype B Subtype C Subtype F1 Mosaics

n=68 48.5% 30.9% 8.82% 11.8%

Table 2. Proportion of HIV-1 pol subtypes by states of South Brazil

State Subtype B Subtype C Subtype F1 B/F mosaic B/C mosaic

PR (n=19) 12 (63%) 4 (21%) 1 (5.3%) 2 (10.5%) –
SC (n=18) 8 (44%) 7 (39%) 2 (11%) 1 (5.5%) –
RS (n=31) 13 (42%) 10 (32%) 3 (10%) 2 (6%) 3 (10%)

In PR state, the subtype B has a important prevalence of infected subjects
(63%), more than in the other studied states, where there was an almost equiv-
alent number of subtype B and C cases (44% B and 39% C for SC and 42%
B and 32% C for RS) (Table 2). Mosaics B/C and B/F were found in areas of
co-circulations of these subtypes, been B/C observed only at RS state. The B/F
is the most common recombinat form in Brazil [2], since these two subtypes are
the most frequent related in this country.

4 Conclusion

Bioinformatics tools allow us to identify the subtypes circulating in a popula-
tion, been possible a reliable characterization of HIV-1 epidemics for each of the
regions in a country with continental proportions as Brazil. The similar preva-
lence of subtypes B and C in this study makes Southern Brazil a perfect setting
for clinical, treatment, and vaccine trials, where a control group both of sub-
type B and C infected individuals with similar ethnic characteristics are readily
available.

The HIV-1 virus is characterized by it’s high genetic variability, rapid evo-
lution, and diversification, most because of genetic recombination within and
between different subtypes [12]. The high incidence of mosaics (11.8%) is in
agreement with the 2002 WHO estimation, that countries where multiple sub-
types co-circulate could have a percentage of recombinants between 8% and
24% [9].
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Abstract. We present a preliminary description and results of a system
to help the curation of genome assembly and annotation. Standard tools
are used for these tasks, and our methodology focuses on user guidance,
data visualization and integration, and data browsing aspects.

1 Introduction

The usual concern of most of activities, tools and infrastructure related to ge-
nomic analyses is with computer systems functionality. Many systems are devel-
oped in an ad hoc way following only functional requirements. This development
methodology pays little attention to characteristics like user interface and usabil-
ity. We have developed a simple methodology to make the user-interaction part
of genome assembly and annotation more user-friendly and therefore more effec-
tive. Based on this methodology we have implemented a web-based prototype.
This prototype is being used as the main tool for the assembly and annotation of
the Xanthomonas axonopodis pv aurantifolii strains B and C genomes at LBI [4]
with the support of USP [1] and UNESP [5].

2 System Development Methodology

The system presented here was developed following a generic methodology spec-
ified by us at LBI. This methodology allows the development of any compu-
tational infrastructure which requires a flow of activities and that provides
data mining and visualization mechanisms. This methodology has the following
phases: (i) identification and description of tasks to be done; (ii) description of
facts to be considered; (iii) development of fact analysis and visualization tools;
(iv) development of examples or tutorials on how to execute each task; (v) devel-
opment of tools for accomplishing the tasks. We have applied this methodology
to improve a genome assembly and annotation system used at our laboratory.

Facts are characteristics observed in the set of available data. Facts are the
basis for all the analysis and conclusions which will be made during assembly
and annotation. Tasks are actions which must be executed (automatically or
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Table 1. Assembly tasks and facts

Task Facts

Contigs management set of reads, phrap and genscaff results

Links management reads from the same insert found on different contigs

Contigs projection on the
reference genome

alignment between the reference and the target genomes

Supercontigs management contigs, links, gap closures and alignments to the refer-
ence genome

Management of inserts
to be subcloned and
sequenced

reads and links information

manually) with the objective of getting closer to the desired solution. For ex-
ample, a set of facts can be observed in the result of the phrap [3] assembly
and postprocessing by the genscaff program [6], such as a possible link between
contig x and contig y. A task must obtain conclusions about the facts, for in-
stance, to conclude whether contigs x and y are adjacent or not. For each kind
of fact, data analyses and visualization tools were developed to ease the under-
standing and the making of a decision. Some examples of genome assembly tasks
are: contigs management, links management, selection of clones to be subcloned
and sequenced, comparison between the target and the reference genomes and
supercontig management (supercontig is a set of linked contigs).

Figure 1 shows some of the graphical results of our tools (showing contig,
supercontig, link and projection with reference genome information). All figures
are automatically generated and have hyperlinks to allow easy data browsing.

One of the most complex tasks during genome assembly is to decide whether
two contigs are linked or not. Our system used the following facts to help in
decision making: (1) links between those contigs; (2) conservation of the order
regarding the reference genome (based on alignment against a reference genome);

Fig. 1. Supercontig information: contigs, links, gaps and projection over the reference
genome information
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and (3) bionformatics gap closure (a sub-assembly using only reads in a particu-
lar region that successfully closes a gap). By integrating these facts, our system
facilitates the curatorial part of the genome assembly process, decreasing the
need for new sequencing.

3 Results, Conclusions and Future Work

Complex information systems that require intense user interaction deserve spe-
cial care on user-related issues, such as usability and interface. Large-volume
data processes, such as genome assembly and annotation, require special care
on data presentation, through graphic visualizations, data summaries and data
integration. We have briefly described a simple methodology that helped us cre-
ate a web-based system that allowed us to achieve good results in a genome
assembly process. The detailed description of each one of the tasks and facts, as
well as the specification of tutorials or examples for each task, makes possible a
more conscious, easy and systematic use of the system.

The system proposed is being used on the Xanthomonas axonopodis pv au-
rantifolii strains B and C genomes assembly and annotation. Before the work
described in this paper, these two genomes were being assembled using a tradi-
tional system, which had no specific computational help for assembly curators.
The use of our system showed quantitative and qualitative gains with respect
to previous assembly results. The main gains were: (i) all data is integrated in
a database management system (DBMS), making it possible to make efficient
queries to every object involved in the project; (ii) low training cost of new
assembly and annotation team, due to tutorials developed for the execution of
each task; (iii) greater assembly efficiency through a better use of data. The
most important practical conclusion of this case study was the reduction on the
number of supercontigs without the need of new sequencing, causing greater
genome coverage. Table 2 compares the results obtained by our system to the
ones available before we put our system to use. This table shows that thorough
our system we obtained better results on every analyzed characteristic, refining
the assembly and being more efficient on the use of available data.

As a future step we intend to package tools (making them more generic and
reusable), and extending the system for dealing also with comparative genomics.

Table 2. Comparison between previous results and results from our approach

Data Previous
Results

Our results Situation

Number of supercontigs 45 35 Improved

Total number of contigs in the supercontigs 225 234 Improved

Average number of contigs by supercontig 5 6.69 Improved

Number of base pairs on supercontigs 4934046 5105624 Improved

Valid links on supercontigs 180 199 Improved

Number of new closed gaps 87 91 Improved
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Another future work is the development and usage of ontology to publish data
on the Web through XML [2], increasing interoperability.

More detailed descriptions and tools can be obtained through e-mail contact
with LBI: lbi@ic.unicamp.br.
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Abstract. This paper presents a neural network clustering strategy to identify 
regularities in a dataset of Mycoplasma promoter sequences. The traditional 
way that prokaryotic promoters are identified is proven inadequate to the My-
coplasma family. Our clustering approach tries to discover regularities in base 
pair compositions of the dataset sequences to give clues which indicate the 
presence or absence of promoters. Several experiments with leave-one-out 
strategy and a negative dataset revealed a best way to fit model parameters. Pre-
liminary results are promising for creating a computational model able to find 
promoter regions in Mycoplasmas. 

1   Introduction 

The promoter recognition apparently is a dominated task to prokaryotic organisms; 
the early studies about transcription in E. coli revealed a great consensus in base pairs 
composition of its sequences. However the systematic used to E. coli data is not suit-
able to identify promoters in all prokaryotic organisms. 

Although many experiments have been already carried out and some methodolo-
gies applied, the problem of promoter recognition is not yet completely solved. Some 
of the reasons for this is the lack of experimental data for evidence of the existence of 
the promoters due to high costs, bad determination of which non-promoter regions are 
adequate for learning, the lack of data of others organisms, the difficult characteriza-
tion of the problem due to the lack of a more accurate region localization, and so on. 

The investigation reported in this paper presents a clustering strategy to identify the 
promoter regions in Mycoplasma family that indicates the beginning of putative 
genes. The next section shows the biological concept of the traditional promoter re-
gion and the difficulties observed in Mycoplasmas. The third section exposes the 
experiment developed, describing the dataset, the clustering strategy, and the evalua-
tion of experiments. The fourth section discusses the obtained results and the last 
section presents the conclusion and discussion. 

2   Promoter Characterization 

The promoter regions play an important role in protein synthesis because they are 
responsible for determining the bound between the DNA region that is transcribed in 
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mRNA, to produce protein and the remaining information that is not transcribed. The 
promoters are found in portions that precede the beginning of genes, the so-called 
transcription start site (TSS). This place is the point where the RNA polymerase, 
enzyme responsible for the transcription process, contacts the promoter region [2]. 

The standard promoter definition is observed in E. coli. Figure 1 shows a proto-
typical pattern promoter. The sequence consists of a -35 hexamer separated by 17 bp 
of the -10 hexamer, located 7 bp upstream of the TSS [5]. 

 

Fig. 1. The pattern promoter 

2.1   Promoters in Mycoplasma  

Experiments realized with M. pneumoniae promoter sequences revealed that there are 
several possible -10 region: TA(AGT)AAT, TAA(GT)AT, TACTAT and TATTAA 
and a weak consensus in the -35 region, which shows a short sequence, TTGA, to be 
relatively conserved. Previous studies demonstrated that the poor definition in -35 
region occurs due to insufficient data to identify some conservation [7]. 

This may reflect a more complex process of transcriptional initiation than might be 
expected. The researchers concluded that features which appear infrequently in other 
bacterial species appear to be common in M. pneumoniae [4]. 

3   Method and Experiment 

3.1   Clustering Strategy 

The clustering strategy applied in our experiment follows the Adaptive Resonance 
Theory (ART) proposed by Carpenter and Grossberg. It comprises a set of neural 
networks which support competitive learning in such a way that a new cluster is 
formed whenever an input pattern is sufficiently different from any existing cluster 
prototype, according to a vigilance parameter. Clusters are represented by individual 
output units, as usual; but in an ART network the output units are uncommitted until 
they are needed [1].  

ART is compounded by several models each one with a particularity. The model 
used is the ART1; like the other models it tries to solve the stability-plasticity di-
lemma [6]. This refers to the conflicting goals for the neural networks to remain stable 
in the condition to which they have converged (i.e. to retain their memories of what 
has been learned) while at the same time being receptive to new learning [3]. 

3.2   Experiment Description 

The dataset utilized in the experiment was extracted from Nucleic Acids Research 
article: Transcription in Mycoplasma pneumoniae, and was organized by Weiner III, 

-35 -10 
TTGACA TATAAT 16-19 pb TSS 5-9 pb 
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Herrmann and Browning in the Zentrum für Molekulare Biologie Heidelberg [7]. The 
reported experiment shows 32 promoter sequences obtained from experimental ap-
proach with M. pneumoniae M129. 

These sequences were aligned by -10 region where there is a major consensus. 
Each sequence was compounded by 50 nucleotides because in this length are inserted 
the supposed two principal features of promoter region. After that, a 6 base pairs 
window positioned exactly over the -10 region, and another window over the sup-
posed     -35 region, enclosing ten base pairs, where a 6 base pair set corresponding to 
the promoter is supposed to be inserted, referring to the promoter were extracted from 
the original sequence. The junction of these two windows composes a characteristic 
promoter sample. Then this dataset of 32 samples of promoters was converted to the 
binary codification known as BIN4 [8]. 

The next step was to submit the preprocessed samples to a clustering method that 
uses a competitive learning to find groups with similar composition in nucleotide 
sequence. The clusters were obtained to each promoter region, i.e., the -10 region was 
applied to train one ART1 net and the -35 region was used to train another ART1 net. 
Each one of theses networks was responsible for creating its respective clusters. 

Besides of the dataset for constructing the cluster, another dataset was applied as 
validation set. While the data for generating clusters were represented only for pro-
moter sequences, the validation data were constructed from sequences that represent 
non-promoters. These sequences were obtained from two intergenic regions of M. 
pneumoniae located between one gene in forward strain and another gene in reverse 
strain; these regions contain no regulatory information about promoters. The non-
promoter sample was generated by a sliding displacement of the two proposed win-
dows with one-position increment along the start of the sequence until reaching the 
final length of each sequence. In this way, 2220 non-promoter samples were generated. 

This validation set is very important because it serves to observe how to fit the 
vigilance parameter, once it searches for equilibrium between the clusterization of 
positive and negative datasets.  

4   Obtained Results 

The results evaluated the classification error obtained with the application of leave-
one-out method to promoter samples and the classification error for the propagation 
of non-promoter samples by the clusters generated with all promoter samples. 

The best results suggest values to the vigilance parameter to train each model setup 
in 0.7 for -35 region and 0.1 for -10 region, respectively. This configuration showed a 
classification error less than 10%. The propagation of all non-promoter samples for 
this combination resulted in 164/2220 misclassified samples. 

5   Conclusions and Discussion 

This paper reports an experiment that uses a clustering strategy based on Artificial 
Neural Networks to identify similarities in M. pneumoniae promoters. The dataset to 
obtain the clusters was extracted from experimental data that supplies specifications 
about nucleotides composition of some sequences. 
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The insufficient amount of data, only 32 samples, to represent promoters and the 
low data characterization that doesn’t follow the classical description for prokaryotic 
promoters like the E. coli, were the main problems. 

One of the goals of this experiment was to fit the vigilance parameters of the neural 
models based on similarities of promoter samples and its capacity to reject negative 
samples, for constructing a generalized model to identify similarities and to produce 
representative clusters. 

The presented results are a preliminary contribution to the several realized experi-
ments to investigate and to discovery regularities and patterns to elucidate the pro-
moter recognition problem in the Mycoplasma family. 
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Abstract. Given the number of available genomic DNA, one now faces
the task of identifying the functional parts of such raw sequence data,
like the protein-coding regions. The gene prediction problem can be ad-
dressed in several ways. The most recently methods make use of the sim-
ilarities between regions of two unannotated genomic sequences in order
to find their genes. In this paper we present a new comparative-based
heuristic to the gene prediction problem. It relies on a syntenic alignment
of two genomic sequences. We have implemented the proposed heuristic
in a computer program and confirmed its validity on a benchmark in-
cluding 50 pairs of human and mouse genomic sequences.

1 Introduction

The gene prediction problem can be defined as the task of finding the genes
encoded in a DNA sequence of interest. In other words, given an eukaryotic DNA
sequence, we would like to correctly determine the beginning and end positions of
its protein-coding regions. The genes of most eukaryotic organisms are separated
by long stretches of intergenic DNA and their coding fragments, named exons,
are interrupted by non-coding ones, the introns. A typical multi-exon eukaryotic
gene has the structure shown in Figure 1:

Promoter

Transcription site Acceptor site

Donor siteStart codon Stop codon

First exon

Int. exons

Introns Last exon5’UTR
3’UTR

Fig. 1. Simplified structure of a multi-exon eukaryotic gene

Gene prediction methods can be roughly classified into two main categories,
named ab initio or intrinsic methods and similarity-based or extrinsic meth-
ods. The first ones rely on statistical information that alone or in conjunction
with some signals previously identified in the target sequence allow the identi-
fication of its coding, non-coding and intergenic regions. The similarity-based
methods make use of the homology between the genomic sequence and a fully
annotated transcript, like cDNAs or proteins, in order to accomplish the gene
prediction task. Recently, with the huge amount of newly sequenced genomes,
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new similarity-based methods are being successfully applied in the task of gene
prediction. In some way different from the traditional extrinsic methods, the so-
called comparative-based methods, pioneered by Batzoglou et al.[2], rely on
the similarities between regions of two unannotated genomic sequences in order
to find the genes encoded in each of them.

In this work we present a new comparative-based heuristic to the gene pre-
diction problem. It is based on a pairwise alignment that takes into account
the existence of intermittent similarities between the compared sequences. This
heuristic was implemented and evaluated on a well-known data set including
a number of single and multi-exon sequences. The results in both nucleotide
and exon levels look promising and compare with that presented by another
comparative-based gene prediction tool.

2 Syntenic Alignment and Gene Prediction

The basic idea of our heuristic is to construct an alignment of the two genomic
sequences taking into account the fact that they include intergenic, intronic and
exonic regions. This type of alignment, where regions with different levels of
conservation are considered, can be referred as syntenic alignment. To construct
it, we make use of the ideas proposed by Almeida et al. in [1]. In these works, the
authors present a dynamic programming alignment algorithm whose main idea
is to heavily penalize mismatches and gaps inside conserved regions of the two
sequences and to penalize in a slightly way its occurrences inside non-conserved
regions. To this end, the score of a best syntenic alignment are stored in two
different sets of matrices: one for the similar regions and another for the regions
where differences are more probably to occur.

In the current work, taken two genomic sequences s and t as input, the
best syntenic alignment between them is searched for by making use of seven
matrices H, Se, Si, Ie, Ii, De, Di, where H stores the score of a best alignment
between s and t ending inside an intergenic region, Se/i stores the score of a best
alignment between s and t ending with a residue of each one of them inside an
exonic/intronic region Ie/i stores the score of a best alignment between s and t
ending with a insertion in one of them inside an exonic/intronic region and De/i

stores the score of a best alignment between s and t ending with a deletion in
one of them inside an exonic/intronic region.

It is worthwhile to note (Figure 1) that eukaryotic genes, with meaningless
exceptions, start and end with an exon. Moreover, the first exon of any eukary-
otic gene begins with a start codon and the last one ends with a stop codon.
It is also well known that the big majority of the internal exons are located
between conserved splicing sites. From these ideas, the following recurrences
can be used to compute the matrices H, S, I and D. In what follows, we refer
to a substring of s ending at position i as si and to a substring of t ending
at position j as tj . T is a given threshold. About P (si) and P (tj), they rep-
resent the probability of si and tj be a true splicing site. These values were
calculated by using the conditional probability matrices described by Salzberg
in [5].
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H[i][j] = max

{
H[i − i][j], H[i][j − 1],
Se[i − 1][j] − d, De[i − 1][j] − d, Ie[i − 1][j] − d, if there exists
Se[i][j − 1] − d, De[i][j − 1] − d, Ie[i][j − 1] − d. a stop codon

Se[i][j] = we + max

{
Se[i − 1][j − 1], De[i − 1][j − 1], Ie[i − 1][j − 1],
H[i − i][j − 1], if there exists a start codon
Si[i − 1][j − 1] + P (si) + P (tj), if P (si) and P (tj) > T

Ie[i][j] = max

{
Se[i][j − 1] − (he + ge), De[i][j − 1] − (he + ge), Ie[i][j − 1] − ge,
H[i][j − 1], if there exists a start codon
Si[i][j − 1] − (he + ge) + P (si) + P (tj), if P (si) ∧ P (tj) > T

De[i][j] = max

{
Se[i − 1][j] − (he + ge), De[i − 1][j] − ge, Ie[i − 1][j] − (he + ge),
H[i − 1][j], if there exists a start codon
Si[i − 1][j] − (he + ge) + P (si) + P (tj), if P (si) ∧ P (tj) > T

Si[i][j] = wi + max

{
Si[i − 1][j − 1], Di[i − 1][j − 1], Ii[i − 1][j − 1],
Se[i − 1][j − 1] − k + P (si) + P (tj), if P (si) ∧ ∧P (tj) > T

Ii[i][j] = max

{
Si[i][j − 1] − (hi + gi), Di[i][j − 1] − (hi + gi), Ii[i][j − 1] − gi,
Se[i][j − 1] − (k + hi + gi) + P (si) + P (tj), if P (si) ∧ P (tj) > T

Di[i][j] = max

{
Si[i − 1][j] − (hi + gi), Di[i − 1][j] − gi, Ii[i − 1][j] − (hi + gi).
Se[i − 1][j] − (k + hi + gi) + P (si) + P (tj), if P (si) ∧ P (tj) > T

In the above recurrences, d and k correspond to non-negative scalars used to
penalize the beginning of an intergenic and intronic region respectively.

3 Tests

In order to evaluate our approach, we have implemented the above recurrences
and tested the program on a benchmark including 50 pairs of single gene se-
quences from human and mouse. These sequences were compiled from the data
set used by Jareborg et al. in the training and testing of the SGP-2 gene predic-
tion program. About the parameters used, they were experimentally estimated.
To access the accuracy of our program, we made use of the specificity (Sp) and
sensitivity (Sn) measures introduced by Burset and Guigó in [4]. The average
values of specificity and sensitivity achieved by our program, at both nucleotide
(Spn, Snn) and exon levels (Spe, Sne), are shown in the first four columns of
Table 1.

Table 1. average values of specificity and sensitivity

Our Program Utopia

Spn Snn Spe Sne Spn Snn Spe Sne

0.87 0.94 0.43 0.45 0.86 0.98 0.38 0.52



Gene Prediction by Syntenic Alignment 249

Despite the good value of sensitivity at the nucleotide level, the specificity of
our approach still needs some improvements. The lowest value of specificity at
the nucleotide level is mainly due to the number of mispredicted bases at the
limits of the annotated exons in the sequences, where the similarity rate is as
high as that of the exonic regions. This problem becomes more evident when the
first and last exons of the genes are considered. With respect to the behavior of
our approach at the exon level, low values of both specificity and sensitivity were
achieved in this case. One fact that contributes to the low level of specificity at
the exon level is the number of false exons predicted by our approach. From the
total of 384 predicted exons, 57 have no intersection with an annotated exon. The
majority of these mispredicted exons are located outside the genes and a little
bit far from their real limits. This is in accordance with a number of works in the
literature, like that presented by The Mouse Genome Sequencing Consortium[6],
attesting a high level of conservation between the human and mouse genomes.
Finally, it is important to note that, despite the number of misleading bases, the
results of our approach compare with that presented (last four columns of Table
1) by another comparative-based gene prediction tool named Utopia[3].

4 Discussion

In this work we presented a program where two evolutionary related sequences
are compared in order to identify their genes. It is based on a syntenic alignment
of the two analyzed sequences. To the construction of this alignment, the main
idea is to heavily penalize mismatches and gaps inside the coding regions and
to penalize in a slightly way its occurrences inside the non-coding regions of
the two sequences. This approach was implemented and thus tested on a bench-
mark including 50 pairs of single gene sequences. Despite the low specificity and
sensitivity at exon level, our program has achieved promising results at the nu-
cleotide level. They compare with that presented by another comparative-based
gene prediction tool.

The main drawback of our approach is related to the existence of well conserved
regions outside the genes searched for. This leads to a number of mispredicted ex-
ons and additional bases identified as codings at the 5’-UTR and 3’-UTR regions
of the predicted genes. One way to overcome this problem is by making use of an-
other statistical information that can give us better insights about the real start
and stop codon in the sequences. This work, jointly with a fine tuning of the pa-
rameters, is in progress in the hope that better values of specificity and sensitivity
at both nucleotide and exon level can be achieved in the future.
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Abstract. The aim of this paper is to present a real time immersive 
visualization and manipulation of the full color visible human dataset. A data 
glove and stereo shutter glasses were used to provide interactive and 
stereoscopic 3D visualization of this set of images in a multiprojection 
immersive environment. 

1   Introduction 

The main goal of this project is the interactive volumetric visualization of the Visible 
Human data set in a multiprojection immersive environment, where the user may 
visualize and manipulate the head and part of the neck of the virtual man. Volumetric 
hardware graphics boards named VolumePro were essential to render these images 
[1]. We used a data glove to realize some movements of the virtual head and a stereo 
shutter glasses to provide stereoscopic view in the multiprojection immersive 
environment. 

2   System Modeling 

This project was implemented in C and C++ language, using VLI VolumePro, 
OpenGL GLUT, imgall and Glass libraries. The VLI VolumePro Library is needed 
for the correct use of the VolumePro board, making it’s use unique when working 
with the GLUT. The Glass library was used to synchronize the computer set (cluster), 
making the project become a distributed system.  

The images are photographs taken from a frozen human body and the ice in the 
photos has a blue aspect, and we needed to develop a segmentation technique to 
remove the ice, making the background black.  

In a pre-processing stage we had to create four new files for each raw image: three 
images with eight bits each - one for the R values, one for the G values and another 
for de B’s; and a fourth file formed by the union of the other three, resulting on a 
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unique 21 bits RGB image, providing a colorful 24 bits RGB image of 2048x1216 
size for each slice of the Visible Man.  

We converted the images to HSI type, working with only the images containing the 
Hue values. Applying geometric diffusion to eliminate some images details, the 
object’s contours were traced using the outlierg function from imgall library and then 
dilation was applied twice to thicken the contour and to eliminate errors. We had to 
develop an algorithm to eliminate the connected components between an interval. 
Any connected component with total number of pixels outside this interval is 
eliminated from de image.  After applying two erosions, we implemented a technique 
to find a contour with one pixel thickness. To complete the segmentation, every pixel 
inside this contour belongs to the segmented image. 

The VolumePro 500 board supports only grayscale 8 (eight) and 12 (twelve) bits in 
.VOX formats and each 12 bits .VOX file consists of four bits sets separated by an 
identification spot. Every bit 1 (one) corresponds to the identification spot that 
separates the bits sets. Each four bits sets correspond to the R, G and B values, 
respectively, showing that each .VOX files has a total of 16 bits. 

To render a colorful image, it was necessary to split the 24 bits RGB original set 
into three different grayscale volumes, one for R (R.VOX), one for G (G.VOX) and 
another one for B (B.VOX), each one with 8 bits. After that, it was created a color 
table and a scale to convert each grayscale value to the respective color value. Then 
the three images were gathered in a memory buffer to be used as an OpenGl texture, 
wich was applied to a cube that is drawn in the main window, as shown in figure 1.  

 

Fig. 1. Visible Man – main window 

To obtain a correct stereoscopic vision, this process must be repeated for two 
points of view or cameras and two proceedings were developed, one that generates 
the right eye vision and other that works with the left eye vision. So the system 
creates six (6) grayscale images that are converted in two (2) RGB images and then 
presents them interpolating at the stereoscopic glass frequencies. 
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We used the data glove to manage the virtual man real time movements in the 
multiprojection immersive environment. With some a priori movements, the user may 
rotate the image at a maximum horizontal or vertical 180° angle, provide transparency 
(figure 2) or make an arbitrary cut in the volume (figure 3). Each action may 
discharge functions that move the volumetric data (.VOX) and it’s necessary to 
generate new renderings to form a new stereoscopic image.  

 

Fig. 2. Visible Man – active transparency 

Gesture functions are finger open/close binary setups, where the thumb is an 
exception. There are 24 = 16 possible gesture combinations, and the number zero 
gesture is defined when all fingers are closed (except the thumb) and the 15th gesture 
is when all fingers are opened. Figures 4 and 19, respectively. For invalid gesture, the 
number is defined as –1. Table 1 shows every possible combinations and it’s 
respective referenced figures [2]. 

 

Fig. 3. Visible Man – volume cut 
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Table 1. Data glove sensors positions [2] 

Sensors position Gestu
re B C D E 

Gesture 
description Fig 

0 0 0 0 0 Fist 4 
1 0 0 0 1 Index finger point 5 
2 0 0 1 0 Up yours 6 
3 0 0 1 1 Two finger point 7 
4 0 1 0 0 Ring finger point 8 
5 0 1 0 1 Ring index point 9 
6 0 1 1 0 Ring middle point 10 
7 0 1 1 1 Three finger point 11 
8 1 0 0 0 Little finger point 12 
9 1 0 0 1 Howzit 13 

10 1 0 1 0 Little middle point 14 
11 1 0 1 1 Not ring finger point 15 
12 1 1 0 0 Little ring point 16 
13 1 1 0 1 Not up yours 17 
14 1 1 1 0 Not index finger point 18 
15 1 1 1 1 Flat hand 19 

For movements we used the following gestures: 

 Gesture 0: Rotate in y axis with an maximum 180° angle; 
 Gesture 1: Apply the cut plane; 
 Gesture 3: Rotate in x axis with an maximum 180° angle; 
 Gesture 7: Rotate the cut plane in x and y axis with an maximum 180° angle; 
 Gesture 8: Apply transparency; 
 Gesture 9: Activate stereoscopic visualization; 
 Gesture 14: Rotate the cut plane in z-axis with a maximum 180° angle. 

As mentioned before, this three-dimensional virtual man was visualized on a 
cluster based 5-side CAVERNA digital. This implementation considers 5 high-end 
PCs with Graphics Accelerators and Volume Pro boards attached to them and high-
speed synchronization provided by a Gigabit-Ethernet switch.  

To support stereoscopy, the user has to use the StereoGraphics CrystalEyes shutter 
glasses with wireless infrared connection, with three shutter glasses. 
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Fig. 4. Gesture 0  

Fig. 5. Gesture 1  
Fig. 6. Gesture 2 

 
Fig. 7. Gesture 3 

 
Fig. 8. Gesture 4  

Fig. 9. Gesture 5 
 

Fig. 10. Gesture 6 
 

Fig. 11. Gesture 7 

 
Fig. 12. Gesture 8 

 
Fig. 13. Gesture 9  

Fig. 14. Gesture 10 
 

Fig. 15. Gesture 11 

 
Fig. 16. Gesture 12 

 
Fig. 17. Gesture 13 

 
Fig. 18. Gesture 14 

 
Fig. 19. Gesture 15 

3   Conclusions and Future Work 

This work presented a new proposal for segmenting Visible Human database for 
volumetric visualization on multiprojection immersive environment using the data 
glove and stereo shutter glasses. It consists with images segmentations and real time 
tri-dimensional rendering in Cave environment, using the VolumePro 500 board. The 
segmentation was made in C language and the visualization in C++ language, 
operational system independent. These languages were chosen due to their 
portability. 

In a future work, another segmentation technique should be developed, this time 
to separate some parts of the human body, to generate a volume only from a region 
of interest. The user would be able to interact with some parts like the brain or the 
bones.  

We should develop a freight distributor to improve the project performance too. As 
the Visible Human needs to be rendered by a maximum number of three windows 
simultaneously, we always have cluster nodes available that could be used to make a 
faster system. A tracker device must be added to provide better interaction with the 
data, tracking all the hand movements.  

Acknowledgements. We thank the staff of CAVERNA digital, specially Leonardo 
Nomura and Breno Santos for their help and attention while developing this project. 
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