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Preface

This volume contains the proceedings of the 20th International Conference on
Automated Deduction (CADE-20). It was held July 22–27, 2005 in Tallinn, Esto-
nia, together with the Workshop on Constraints in Formal Verification (CFV’05),
the Workshop on Empirically Successful Classical Automated Reasoning (ES-
CAR), the Workshop on Non-Theorems, Non-Validity, Non-Provability (DIS-
PROVING), and the yearly CADE ATP System Competition (CASC).

CADE is the major forum for the presentation of research in all aspects
of automated deduction. The first CADE conference was held in 1974. Early
CADEs were mostly biennial, and annual conferences started in 1996.

Logics of interest include propositional, first-order, equational, higher-order,
classical, intuitionistic, constructive, modal, temporal, many-valued, substruc-
tural, description, and meta-logics, logical frameworks, type theory and set the-
ory.

Methods of interest include saturation, resolution, tableaux, sequent calculi,
term rewriting, induction, unification, constraint solving, decision procedures,
model generation, model checking, natural deduction, proof planning, proof pre-
sentation, proof checking, and explanation.

Applications of interest include hardware and software development, systems
analysis and verification, deductive databases, functional and logic programming,
computer mathematics, natural language processing, computational linguistics,
robotics, planning, knowledge representation, and other areas of AI.

This year, there were 78 submissions, of which 9 system descriptions. Each
submission was assigned to at least four program committee members, who care-
fully reviewed the papers, in many cases with the help of one or more of a total
number of 115 external referees. For each submission at least four reviews were
produced and forwarded to the authors. The merits of the submissions were dis-
cussed by the program committee for ten days through the Internet by means of
the EasyChair system. Finally, the program committee selected for publication
25 regular research papers and 5 system descriptions.

Also included in this volume are three invited papers, by Randal Bryant (De-
cision Procedures Customized for Formal Verification), Gilles Dowek (What Do
We Know When We Know That A Theory Is Consistent?), and by Frank Wolter
(Temporal Logics over Transitive States). Not contained in this volume are the
materials of two invited tutorials, given by Bruno Blanchet (An Automatic Se-
curity Protocol Verifier Based on Resolution Theorem Proving) and by Enrico
Giunchiglia (Beyond SAT: QSAT, and SAT-Based Decision Procedures), and
the tutorial on Integrating Object-Oriented Design and Deductive Verification
of Software, by Wolfgang Ahrend and others.



VI Preface

At CADE-20 the 2005 Herbrand Award for Distinguished Contributions to
Automated Reasoning was delivered to Martin Davis, in recognition of his role
as

– a founding father of the field of automated reasoning;
– coauthor of both papers that introduced what is now called the Davis-

Putnam or Davis-Putnam-Logemann-Loveland procedure, one of the most
outstanding and useful proof procedures known today;

– historian regarding the early history of the field of automated deduction;

and for his numerous other contributions to the field.
Many people helped to make CADE-20 a success. I am of course grateful to

the members of the program committee and to the external reviewers, as well
as to the local organizers and the sponsors.

Special thanks go to Andrei Voronkov for providing the EasyChair soft-
ware, which includes many features which improved the quality of the reviewing
process, like the extremely good interface for discussion, or the complete hiding
of information to PC members with conflicts of interest; for me, it also eliminated
most of the administrative work related to paper assignment, author notification,
etc.

Finally, I thank the organizers of all co-located events at CADE-20, which
made it even more interesting and attractive to a larger audience, and among
them, of course, the Conference Chair, Tanel Tammet.

July 2005 Robert Nieuwenhuis
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What Do We Know
When We Know That a Theory Is Consistent?

Gilles Dowek

École polytechnique and INRIA,
LIX, École polytechnique, 91128 Palaiseau Cedex, France

Gilles.Dowek@polytechnique.fr

http://www.lix.polytechnique.fr/~dowek

Abstract. Given a first-order theory and a proof that it is consistent,
can we design a proof-search method for this theory that fails in finite
time when it attempts to prove the formula ⊥?

1 Searching for Proofs in a Theory

1.1 Who Knows That Higher-Order Logic Is Consistent?

It is well known that higher-order logic can be presented as a first-order theory,
i.e. that there exists a first-order theory H and a function Φ translating closed
formulas of higher-order logic to closed formulas of the language of H such that
the sequent � A is provable in higher-order logic if and only if the sequent
H � ΦA is provable in first-order logic (see, for instance, [4]). Thus, instead of
using a proof-search method specially designed for higher-order logic, such as
higher-order resolution [8,9], it is possible to use a first-order method, such as
resolution, to search for proofs in higher-order logic.

However, this reduction is inefficient. Indeed, if we attempt to prove the
formula ⊥ with higher-order resolution, the clausal form of the formula ⊥ is the
empty set of clauses, from these clauses, we can apply neither the higher-order
resolution rule that requires two clauses to be applied, nor any other rule of
higher-order resolution, that all require at least one clause. Thus, this attempt
to prove the formula ⊥ fails immediately. In contrast, the axioms of H give
an infinite number of opportunities to apply the resolution rule and thus when
searching for a proof of H � ⊥, the search space in infinite.

Thus, we can say that higher-order resolution “knows” that higher-order logic
is consistent, because an attempt to prove the formula ⊥ fails in finite time, while
first-order resolution does not.

1.2 A Proof-Search Method for the Theory H

There is an link between higher-order logic and higher-order resolution and an-
other link between higher-order logic and the first-order theory H. But can we
establish a direct link between higher-order resolution and the theory H, without
referring to higher-order logic?

R. Nieuwenhuis (Ed.): CADE 2005, LNAI 3632, pp. 1–6, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 G. Dowek

The answer is positive because the translation Φ can be inverted: there exists
a function Ψ translating closed formulas of the language of H to closed formulas
of higher-order logic such that the sequent H � B is provable in first-order logic
if and only if the sequent � ΨB is provable in higher-order logic. Thus, a way to
search for a proof of a sequent H � B is to apply higher-order resolution to the
sequent � ΨB. Thus, independently of higher-order logic, higher-order resolution
can be seen as special proof-search method for a the first-order theory H.

As Ψ⊥ = ⊥ this first-order proof-search method immediately fails when
attempting to prove the sequent H � ⊥. Thus, this method is much more efficient
than applying first-order resolution to the sequent H � ⊥ as it “knows” that the
theory H is consistent.

1.3 A Proof-Search Method for a Theory T

Can we generalize this to other theories than H? Given an arbitrary first-order
theory T and a proof that T is consistent, can we always build in the theory T,
i.e. exploit the consistency of T to design a proof-search method that fails in
finite time when required to prove the formula ⊥?

Of course, as we are not interested in the trivial solution that first tests if
the formula to be proven is ⊥ and then applies any method when it is not, we
have to restrict to proof-search methods that do not mention the formula ⊥.

It is clear that the consistency of the theory T is a necessary condition for
such a method to exist: if T is inconsistent, a complete proof-search method
should succeed, and not fail, when attempting to prove the formula ⊥. The
main problem is to know if this hypothesis is sufficient.

2 Resolution Modulo

2.1 Resolution Modulo

Resolution modulo is a proof-search method for first-order logic that generalizes
higher-order resolution to other theories than the theory H.

Some axioms of the theory H are equational axioms. How to build in equa-
tional axioms is well-known: we drop equational axioms and we replace unifica-
tion by equational unification modulo these axioms (see, for instance, [13,12]).
Equational unification modulo the equational axioms of H is called higher-order
unification.

From a proof-theoretical point of view, this amounts to define a congruence on
formulas generated by the equational axioms and to identify congruent formulas
in proofs. For instance, if we identify the terms 2 + 2 and 4, we do not need the
axiom 2+2 = 4 that is congruent to 4 = 4, but when we substitute the term 2 for
the variable x in the term x+ 2, we obtain the term 4. We have called deduction
modulo the system obtained by identifying congruent formulas in proofs.

But not all axioms can be expressed as equational axioms. For instance, if
the axiom of arithmetic S(x) = S(y)⇒ x = y can be replaced by the equivalent
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equational axiom Pred(S(x)) = x, the axiom ¬0 = S(x), that has no one-point
model, cannot be replaced by an equational axiom.

Thus, we have extended deduction modulo by identifying some atomic formu-
las with not atomic ones. For instance, identifying formulas with the congruence
generated by the rewrite rules Null(0) −→ � and Null(S(x)) −→ ⊥ is equiva-
lent to having the axiom ¬0 = S(x).

When we have such rewrite rules operating directly on formulas, equational
resolution has to be extended. Besides the resolution rule, we need to add an-
other rule called Extended narrowing. For instance, if we identify the formula
P (1) with ¬P (0), we can refute the set of clauses {¬P (x)}, but to do so,
we have to be able to substitute the term 1 for the variable x in the clause
¬P (x), deduce the clause P (0) and conclude with the resolution rule. More
generally, the Extended narrowing rule allows to narrow any atom in a clause
with a propositional rewrite rule. The proposition obtained this way must then
be put back in clausal form. Equational resolution extended with this rule is
called ENAR — Extended Narrowing and Resolution — or resolution modulo for
short.

When we orient the axioms of H as rewrite rules and use resolution modulo,
we obtain exactly higher-order resolution.

2.2 Proving Completeness

Proving the completeness of higher-order resolution, and more generally of res-
olution modulo, is not very easy. Indeed higher-order resolution knows that
higher-order logic is consistent, i.e. it fails in finite time when attempting to
prove the formula ⊥. Thus, a finitary argument shows that the completeness
of higher-order resolution implies the consistency of higher-order logic, and by
Gödel’s second incompleteness theorem, the completeness of higher-order resolu-
tion cannot be proved in higher-order logic itself. This explains that some strong
proof-theoretical results are needed to prove the completeness of higher-order
resolution, at least the consistency of higher-order logic. The completeness proof
given by Andrews and Huet [1,8,9] uses a result stronger than consistency: the
cut elimination theorem for higher-order logic.

In the same way, the completeness of resolution modulo rests upon the fact
that deduction modulo the considered congruence has the cut elimination prop-
erty. Indeed, when the congruence is defined by rules rewriting atomic formulas
to non-atomic ones, deduction modulo this congruence may have the cut elimi-
nation property or not. For instance, deduction modulo the rule P −→ Q∧R has
the cut elimination property, but not deduction modulo the rule P −→ Q ∧ ¬P
[6] and resolution modulo this second rule is incomplete.

Is it possible to weaken this cut elimination hypothesis and require, for in-
stance only consistency? The answer is negative: the rule P −→ Q ∧ ¬P is
consistent, but resolution modulo this rule is incomplete. More generally, Her-
mant [7] has proved that the completeness of resolution modulo a congruence
implies cut elimination for deduction modulo this congruence.
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2.3 A Resolution Strategy

At least in the propositional case, resolution modulo can be seen as a strategy
of resolution [2].

For instance, consider the rule P −→ Q ∧ R. The Extended narrowing rule
allows to replace an atom P by Q∧R and to put the formula obtained this way
back in clausal form. With this rule, from a clause of the form C ∨ P we can
derive the clauses C ∨ Q and C ∨ R and from a clause of the form C ∨ ¬P we
can derive the clause C ∨ ¬Q ∨ ¬R.

We can mimic this rule by adding three clauses ¬P ∨Q, ¬P ∨R, P ∨¬Q∨¬R
and restricting the application of the resolution rules as follows: (1) we cannot
apply the resolution rule using two clauses of the this set (2) when we apply
the resolution rule using one clause of this set the eliminated atom must be the
underlined atom. Notice that this set of clauses is exactly the clausal form of the
formula P ⇔ (Q ∧ R). This strategy is in the same spirit as hyper-resolution,
but the details are different.

If we apply the same method with the formula P ⇔ (Q∧¬P ), we obtain the
three clauses ¬P ∨Q, ¬P ∨ ¬P , P ∨ ¬Q∨P with the same restriction and, like
resolution modulo, this strategy is incomplete: it does not refute the formula Q.

The fact that this strategy is complete for one system but not for the other
is a consequence of the fact that deduction modulo the rule P −→ Q ∧ R has
the cut elimination property, but not deduction modulo the rule P −→ Q∧¬P .

Understanding resolution modulo as a resolution strategy seems to be more
difficult when we have quantifiers. Indeed, after narrowing an atom with a rewrite
rule, we have to put the formula back in clausal form and this involves skolem-
ization.

3 From Consistency to Cut Elimination

We have seen in section 2 that the theory T = {P ⇔ (Q ∧ ¬P )} is consistent,
but that resolution modulo the rule P −→ (Q ∧ ¬P ) is incomplete.

Thus, it seems that the consistency hypothesis is not sufficient to design a
complete proof-search method that knows that the theory is consistent. However
the rule P −→ (Q∧¬P ) is only one among the many rewrite systems that allow
to express the theory T in deduction modulo. Indeed, the formula P ⇔ (Q∧¬P )
is equivalent to ¬P ∧ ¬Q and another solution is to take the rules P −→ ⊥ and
Q −→ ⊥. Deduction modulo this rewrite system has the cut elimination property
and hence resolution modulo this rewrite system is complete. In other words, the
resolution strategy above with the clauses ¬P , ¬Q is complete and knows that
the theory is consistent.

Thus, the goal should not be to prove that if deduction modulo a congruence
is consistent then it has the cut elimination property, because this is obviously
false, but to prove that a consistent set of axioms can be transformed into a
congruence in such a way that deduction modulo this congruence has the cut
elimination property. To stress the link with the project of Knuth and Bendix
[10], we call this transformation an orientation of the axioms.
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A first step in this direction has been made in [3] following an idea of [11].
Any consistent theory in propositional logic can be transformed into a polarized
rewrite system such that deduction modulo this rewrite system has the cut
elimination property.

To do so, we first put the theory T in clausal form and consider a model ν
of this theory (i.e. a line of a truth table).

We pick a clause. In this clause there is either a literal of the form P such
that ν(P ) = 1 or a literal of the form ¬Q such that ν(Q) = 0.

In the first case, we pick all the clauses where P occurs positively P ∨
A1, ..., P ∨An and replace these clauses by the formula (¬A1∨ ...∨¬An)⇒ P . In
the second, we pick all the clauses where Q occurs negatively ¬Q∨B1, ...,¬Q∨Bn

and replace these clauses by the formula Q⇒ (B1∧ ...∧Bn). We repeat this pro-
cess until there are no clauses left. We obtain this way a set of axioms of the form
Ai ⇒ Pi and Qj ⇒ Bj such that the atomic formulas Pi’s and Qj’s are disjoint.

The next step is to transform these formulas into rewrite rules and this is
difficult because they are implications and not equivalences. But, this is possible
if we extend deduction modulo allowing some rules to apply only to positive
atoms and others to apply only to negative atoms. This extension of deduction
modulo is called polarized deduction modulo. We get the rules Pi −→+ Ai and
Qj −→− Bj . Using the fact that the Pi’s and the Qj ’s are disjoint, it is not
difficult to prove cut elimination for deduction modulo these rules [3].

So, this result is only a partial success because resolution modulo is defined for
non-polarized rewrite systems and orientation yields a polarized rewrite system.
There may be two ways to bridge the gap: the first is to extend resolution
modulo to polarized rewrite systems. There is no reason why this should not
be possible, but this requires some work. A more ambitious goal is to produce
a non-polarized rewrite system when orienting the axioms. Indeed, the axiom
P ⇒ A can be oriented either as the polarized rewrite rule P −→− A or as
the non-polarized rule P −→ (P ∧ A), and similarly the axiom A ⇒ P can
be oriented as the rule P −→ (P ∨ A). But the difficulty here is to prove that
deduction modulo the rewrite system obtained this way has the cut elimination
property.

Bridging this gap would solve our initial problem for the propositional case.
Starting from a consistent theory, we would build a model of this theory, orient it
using this model, i.e. define a congruence and resolution modulo this congruence
would be a complete proof search method for this theory that knows that the
theory is consistent.

But, this would solve only the propositional case and for full first-order logic,
everything remains to be done.

We have started this note with a problem in automated deduction: given a
theory T and a proof that it is consistent, can we design a complete proof-search
method for T that knows that T is consistent? We have seen that this problem
boils down to a problem in proof theory: given a theory T and a proof that it
is consistent, can we orient the theory into a congruence such that deduction
modulo this congruence has the cut elimination property?
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We seem to be quite far from a full solution to this problem, although the
solution for the propositional case seems to be quite close.

Some arguments however lead to conjecture a positive answer to this prob-
lem: first the fact that the problem seems almost solved for propositional logic,
then the fact that several theories such as arithmetic, higher-order logic, and
some version of set theory have been oriented. Finally, we do not have examples
of theories that can be proved to be non orientable (although some counter ex-
amples exist for intuitionistic logic). However, some theories still resist to being
oriented, for instance higher-order logic with extensionality or set theory with
the replacement scheme.

A positive answer to this problem could have some impact on automated the-
orem proving, as in automated theorem proving, like in logic in general, axioms
are often a burden.
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Abstract. Our general goal is to provide better automation in interactive proof
assistants such as Coq. We present an interpreter of proof traces in first-order
multi-sorted logic with equality. Thanks to the reflection ability of Coq, this in-
terpreter is both implemented and formally proved sound — with respect to a re-
flective interpretation of formulae as Coq properties — inside Coq’s type theory.
Our generic framework allows to interpret proofs traces computed by any auto-
mated theorem prover, as long as they are precise enough: we illustrate that on
traces produced by the CiME tool when solving unifiability problems by ordered
completion. We discuss some benchmark results obtained on the TPTP library.

The aim of this paper is twofold: first we want to validate a reflective approach for
proofs in interactive proof assistants, and second show how to provide a better automa-
tion for such assistants. Both aspects can be achieved by using external provers designed
to automatically solve some problems of interest: these provers can “feed” the assistant
with large proofs, and help to compare the direct and the reflective approaches, and they
can also release the user from (parts of) the proof.

The proof assistant doesn’t rely on the soundness of the external tool, but keeps
a skeptical attitude towards the external traces by rechecking them. Moreover incom-
pleteness of this tool is not an issue either, since when it fails to produce an answer,
the user simply has to find another way to do his proof. But a key point is that it has to
produce a trace which can be turned into a proof.

Proof checkers usually have a very fine grained proof notion, whereas automated
theorem provers tend to do complex inferences such as term normalization and para-
modulation in one single step. Reflection techniques [10] provide a good intermediate
layer to turn traces missing a lot of implicit information into fully explicit proofs. They
rely on the computation abilities of the proof assistant for trivial parts of proofs, leaving
the hard but interesting work of finding proofs to automated tools. Bezem et al. [3] use
reflection techniques to handle the clausification part of a proof but the derivation of the
empty clause is provided by an external tool.

Our approach extends the reflection technique to the proof itself, turning the proof
assistant into a skeptical trace interpreter from an intermediate language of proof traces
to its own native format. We have implemented this technique inside the Coq proof
assistant [17] using a sequent calculus for multi-sorted intuitionistic first-order logic
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with equality as a semantics for the intermediate language. To validate the reflective ap-
proach, we used the CiME tool [4] to produce traces when solving word and unifiability
problems by ordered completion and had these traces checked by Coq.

Other works integrate either reflection and/or rewriting inside Coq. Nguyen [14]
explains how to produce term rewriting proofs, but does not use reflection, whereas
Alvarado [1] provides a reflection framework dedicated to proofs of equality of terms.
Both of them consider that the rewriting system is fixed a priori. Our approach is close
to the work of Crégut [6] who also interprets proof traces thanks to reflection, but for
quantifier-free formulae in Peano’s Arithmetic.

In our work, the rewriting system changes during the completion process, and in
order to address the problem of the trace, we add some information on the usual rules of
ordered completion. Thanks to this extra information, only the useful rules are extracted
from the completion process, and the resulting formal proof is significantly shorter than
the completion process. But this is far from a formal proof. We explain how to turn the
annotations into useful lemmata, that is universally quantified equalities together with
their proofs as sequences of equational steps.

Section 1 presents a general framework for reflection of first-order logic with equal-
ity in type theory. In Section 2, we give key details of the implementation. In Section 3,
we briefly recall ordered completion, give an annotated version of the completion rules
and show how to extract a CiME proof from a successful completion run. In Section
4, we explain the translation of CiME proofs into Coq reified proofs. In Section 5, we
comment some benchmarks obtained on the TPTP library with CiME and Coq.

1 Type Theory and the Reflection Principle

1.1 Type Theory and the Conversion Rule

Coq’s type theory is an extension of dependently-typedλ-calculus with inductive types,
pattern matching and primitive recursion. Coq acts as an interpreter/type-checker for
this language. The use of the proofs as programs paradigm allows its use as an interac-
tive proof assistant: the typing relation Γ � t : T can be seen either as “according to
the types of variables in Γ , t is an object in set T” or as “supposing the hypotheses in
Γ , t is a proof of the assertion T”. Together with the λ function binder, Coq’s most im-
portant construction is the ∀ binding operator, which builds either a dependent function
type or a universally quantified logical proposition. The term ∀x : A.B is written A→B
as long as x does not occur free in B; in this case it represents the function space from
type A to type B or the implication between propositions A and B. To establish a clear
distinction between informative objects (datatypes and functions) and non-informative
objects (proofs of propositions), types intended as datatypes are in the sort Set and logic
propositions are in the sort Prop.

A main feature of Coq’s type theory, which will be essential for the reflection mech-
anism, is the conversion rule: if Γ � t : T then Γ � t : T ′ for any type T ′ equivalent
to T , i.e. having the same normal form with respect to the reduction of Coq terms. In
particular, any term t can be proved equal to its normal form nf(t) inside Coq’s type
theory : we can use the reflexivity axiom refl= to build the proof (refl= t) : t = t
and thanks to the conversion rule this is also a proof of t = nf(t) e.g. take the term 2×2



Reflecting Proofs in First-Order Logic with Equality 9

which reduces to 4, then (refl= 4) is a proof of 4 = 4 and a proof of 2× 2 = 4 (both
propositions have 4 = 4 as normal form).

1.2 The Reflection Principle

The power of type theory appears when building types or propositions by case analysis
on informative objects: suppose there is a type form of sort Set intended as a concrete
representation of logical formulas, and an interpretation function � � : form→Prop,
then one can define a function decide : form→bool deciding whether an object in
form represents a tautology, and prove a correctness theorem:

decide correct : ∀F : form, ((decide F ) = true)→ �F �

This gives a useful way of proving that some proposition A in the range of � � is
valid. First, by some external means, A is reified, i.e. some representation Ȧ such that
�Ȧ� is convertible to A is computed. Then the term (decide correctȦ(refl=true))
is built. This term is well typed if, and only if (decide Ȧ) is convertible to true, and
then its type is �Ȧ� so this term is a proof of A. Otherwise, the term is not typable. The
advantage of this approach is that it is left to the internal reduction procedure of Coq
to check if A is provable. Moreover, careful implementation of the decide function
allows some improvement in the time and space required to check the proof.

The distinction between properties and their representations is necessary since there
is no way to actually compute something from a property (for example there is no func-
tion of type Prop→Prop→bool deciding the syntactic equality) since there is no such
thing as pattern-matching or primitive recursion in Prop, whereas the representation of
properties can be defined as an inductive type such as form on which functions can be
defined by case analysis.

As tempting as this approach may seem, there are several pitfalls to avoid in order to
be powerful enough. First, the propositions that can be proven thanks to this approach
are the interpretations of the representations F : form such that (decideF ) = true.
This set is limited by the range of the interpretation function and by the power of the
decision function: the function that always yields false is easily proved correct but is
useless. Besides, we need to take into account space and time limitations induced by
the cost of the reduction of complex Coq terms inside the kernel.

1.3 Reflecting First-Order Proofs

Since validity in first-order logic is undecidable, we have two options if we want to
prove first-order assertions by reflection: either restrict the decide function to a de-
cidable fragment of the logic, or change the decide function into a proof-checking
function taking a proof trace (of type proof : Set) as an extra argument. The correct-
ness theorem for this function check reads:

check correct : ∀π : proof.∀F : form.((checkF π) = true)→ �F �

The proof process using this proof trace approach is shown in Figure 1, it shows how
an external tool can be called by Coq to compute a proof trace for a given formula. The
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input formula A

��

proof of
�
Ȧ

�
(convertible to A)

��

A : Prop

��

check correct Ȧ π (refl= true) :
�
Ȧ

�
logic world

reification

��
Ȧ : form

����������������������

query �������������� π : proof

��

object world

interpretation

��

Coq

external tool

answer

�����������

Fig. 1. Reflection scheme with proof traces

reification phase is done inside the Coq system at the ML level and not by a type-theory
function (remember there is no case analysis on Prop).

The proof traces can have very different forms, the key point being the amount of
implicit information that check will have to recompute when the kernel will type-check
the proof. Moreover, if too many things have to be recalculated, the correctness theorem
may become trickier to prove. What we propose is to give a derivation tree for a sequent
calculus as a proof trace, and this is what the next section is about.

2 Proof Reflection for Multi-sorted First-Order Logic

2.1 Representation for Indexed Collections

The first attempt to represent collections of indexable objects with basic lists indexed
by unary integers as in [3] was most inefficient, consuming uselessly time and space
resources. For efficiency purposes, lists were replaced by binary trees indexed by binary
integers B . These binary trees T(τ) containing objects of type τ are equipped with
access and insertion functions get : T(τ)→B→τ? and add : T(τ)→B→τ→T(τ).

The question mark in the get function stands for the basic option type constructor
adding a dummy element to any type. Indeed any Coq function must be total, which
means that even the interpretation of badly formed objects needs a value. Most of the
time the option types will be the solution to represent partiality.

Trees will sometimes be used as indexable stacks by constructing a pair in type
B ×T(τ), the first member being the next free index in the second member. The empty
stack and the empty tree will be denoted ∅. As a shortcut, if S = (i, T ), the notation S;x
stands for (i + 1, add(T, i, x)) (pushing x on top of S). The i index in S; i : x means
that i is the stack pointer of S, i.e. the index pointing to x in S; i : x (see Example 1).
The notation Sj stands for get(T, j), assuming j is a valid index, i.e. j < i.

2.2 Representation and Interpretation of Formulae

Since Coq’s quantifiers are typed, in order to be able to work with problems involving
several types that are unknown when proving the reflection theorems, our representation
will be parameterized by a domain signature. This enables the representation of multi-
sorted problems, and not only problems expressed with a domain chosen a priori. We
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represent the quantification domains by our binary integers, referring to a binary tree
Dom : T(Set) which we call domain signature. The interpretation function, given a
domain signature, is a Coq function � �Dom : B→Set, which maps undefined indices
to : Set, the set with one element.

Given a domain signature, function symbols are defined by a dependent record: its
first field is a (possibly empty) list of binary integers d1, . . . , dn, the second field is an
integer r for the range of the function, and the third field is the function itself, of type
�d1�Dom→ . . .→ �dn�Dom→ �r�Dom (its type is computed from Dom and the two first
fields). Predicate symbols are defined in a similar way, except there is no range field and
the last field has type �d1�Dom→ . . .→ �dn�Dom→Prop. The function signature Fn is
defined as a tree of function symbols, and the predicate signature Pred is defined as a
tree of predicate symbols.

Example 1. In order to express properties of integers in N and arrays of integers (in
AN), we define the domain signature as Dom = 1 : N ; 2 : AN.

In the signature, we put the 0 constant as well as two relations < and ≥ over the
integers. We also add the get and set functions over arrays and the sorted predicate.
The valid predicate states that an integer is a valid index for a given array. The function
and predicate signatures corresponding to this theory will be:

Fn = 1 : {∅, 1,0}; 2 : {[2; 1], 1, get}; 3 : {[2; 1; 1], 2, set}
Pred = 1 : {[1; 1], <}; 2 : {[1; 1],≥}; 3 : {[2], sorted}; 4 : {[1; 2], valid}

Definition 1 (term, formula). Terms and formulae are recursively defined as follows:

term := FvB | BvN | App B args args := ∅ | term, args
form := Atom B args | term .=B term | ⊥̇ | ∀̇B form | ∃̇B form

| form →̇ form | form ∧̇ form | form ∨̇ form

In terms, the Fv constructor represents free variables and their indices will refer to the
slot they use in the sequent context (see below). The Bv constructor represents bound
variables under quantifiers, using the deBruijn notation [7]: the indices are unary inte-
gers N , 0 standing for the variable bound by the innermost quantifier over the position
of the variable, 1 for the next innermost, etc. The indices in the App and Atom con-
structors refer to symbols in the signature, whereas those in the equality and quantifiers
refer to domains in Dom. There is no variable in the quantifiers since the deBruijn no-
tation takes care of which quantifier binds which variable without having to name the
variable. The logical negation of a formula F can be expressed by F →̇ ⊥̇.

A term is closed if it contains no Bv constructor, and a formula is closed if all Bv
constructors have indices less than their quantifier depth.

Example 2. Using the signature of the previous example, the property:

∀a : AN, sorted(a)→∃i : N, ∀ : j : N, valid(j, a)→
((j < i)→(get(a, j) < 0)) ∧ ((j ≥ i)→(get(a, j) ≥ 0)) is represented by:

∀̇2(Atom 3 Bv0)→̇∃̇1∀̇1(Atom 4 (Bv0,Bv2))→̇
(Atom 1 (Bv0,Bv1))→̇(Atom 1 (App 2 (Bv2,Bv0),App 1 ∅))∧̇
(Atom 2 (Bv0,Bv1))→̇(Atom 2 (App 2 (Bv2,Bv0),App 1 ∅))
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Terms �Bvn�r
γ,δ = x if δn = {x ∈ r′} and r = r′

�Fvi�r
γ,δ = x if γi = {x ∈ r′} and r = r′

�App i a�r
γ,δ = �f | a�d

γ,δ if Fni = (d, r′, f) and r = r′

Arguments �Φ| ∅�∅γ,δ = Φ �Φ|t :: a�r::d
γ,δ =

�
Φ(�t�r

γ,δ)
∣∣∣ a�d

γ,δ

Formulae �Atom i a�γ,δ = �P | a�d
γ,δ if Predi = (d, P )

�t1 .=d t2�γ,δ = �t1�d
γ,δ =

�d�Dom

�t2�d
γ,δ

�
⊥̇

�
γ,δ

= ⊥�
∀̇dF

�
γ,δ

= ∀x : �d�Dom , �F �γ,{x∈d}::δ�
∃̇dF

�
γ,δ

= ∃x : �d�Dom , �F �γ,{x∈d}::δ

�F1→̇F2�γ,δ = �F1�γ,δ → �F2�γ,δ�F1∧̇F2�γ,δ = �F1�γ,δ ∧ �F2�γ,δ�F1∨̇F2�γ,δ = �F1�γ,δ ∨ �F2�γ,δ

Contexts �∅ ‖Ψ � = Ψ(∅) �Γ ;F ‖Ψ � =
�
Γ
∥∥∥γ �→ �F �γ,∅→Ψ(γ)

�
�Γ ; id : ‖Ψ � =

�
Γ
∥∥γ �→ ∀x : �d�Dom , Ψ(add γ i {x ∈ d})

�
Sequents �Γ � G� =

�
Γ
∥∥∥γ �→ �G�γ,∅

�

Fig. 2. Interpretation of terms, formulae, sequents

Definition 2 (Sequent). A sequent is a pair written Γ � G, where Γ is the context,
of type T(B + form) containing objects in B or in form. Objects in form represent
logical hypotheses whereas objects in B represent the domain of assumed variables
(referred to using the Fv constructor). G : form is called the goal of the sequent.

On Figure 2, we explain how to interpret reified objects as Coq propositions. The in-
terpretation functions use global and local valuations, these valuations contain depen-
dent pairs {v ∈ d} in type val : Set. They contain a domain index d and an object
v : �d�Dom. The letter γ will usually denote global valuations, in T(val). We say γ is
an instantiation for a context Γ if it maps indices of global variables in Γ to pairs in the
same domain (it gives values to global variables in Γ ). The local context usually written
δ, is a list of the above pairs (addition of x in the list L is written (x :: L)).

The interpretation of terms takes an extra argument which is the intended domain
r of the result, and returns an optional value in �r�

?
Dom. If the represented term is not

well typed, the dummy optional value is returned. The interpreter for arguments uses
an accumulator Φ which is successively applied to the interpretation of arguments. This
accumulator trick is necessary to build well typed terms, as well as the use of a Coq
proof of r = r′ to coerce objects of �r′�Dom to �r�Dom. The interpretation of atomic
formulae uses the arguments interpreter with a different kind of accumulator. The in-
terpretation of badly formed formulae is �, the trivial formula. The interpretation of
contexts is presented inside out so it is easier to reason about, it builds a function Ψ
from global valuations to Prop by adding hypotheses recursively.
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(Ax i) : Γ � G
Γi = G

π1 : Γ � A π2 : Γ ; A � G

(Cut A π1 π2) : Γ � G (⊥E i) : Γ � G
Γi = ⊥̇

π : Γ ; A � B

(→I π) : Γ � A→̇B

π : Γ ;B � G

(→E i j π) : Γ � G

{
Γi = A→̇B

Γj = A
π1 : Γ ; A;B→̇C � B π2 : Γ ; C � G

(→D i π1 π2) : Γ � G
Γi = (A→̇B)→̇C

π1 : Γ � A π2 : Γ � B

(∧I π1 π2) : Γ � A∧̇B

π : Γ ; A; B � G

(∧E i π) : Γ � G
Γi = A∧̇B

π : Γ ; A→̇B→̇C � G

(∧D i π) : Γ � G
Γi = (A∧̇B)→̇C

π : Γ � A

(∨I1 π) : Γ � A∨̇B

π : Γ � B

(∨I2 π) : Γ � A∨̇B

π1 : Γ ; A � G π2 : Γ ; B � G

(∨E i π1 π2) : Γ � G
Γi = A∨̇B

π : Γ ; A→̇C; B→̇C � G

(∨D i π) : Γ � G
Γi = (A∨̇B)→̇C

π : Γ ;j d � (inst A Fvj)

(∀I π) : Γ � ∀̇dA

π : Γ ; (inst A t) � G

(∀E i t π) : Γ � G
Γi = ∀̇dA

π1 : Γ � ∀̇dA π2 : Γ ; B � G

(∀D i π1 π2) : Γ � G
Γi = (∀̇dA)→̇B

π : Γ � (inst A t)

(∃I t π) : Γ � ∃̇dA

π : Γ ;j d; (inst A Fvj) � G

(∃E i π) : Γ � G
Γi = ∃̇dA

π : Γ ; ∀̇d(A→̇B) � G

(∃D i π) : Γ � G
Γi = (∃̇dA)→̇B

(=I t) : Γ � t
.=
τ

t

π : Γ ;A � G

(=D i π) : Γ � G
Γi = (t .=

τ
t)→̇A

π : Γ � (rewrite s t p G)
(=E1 i � p π) : Γ � G

Γi = s
.=
d

t
π : Γ � (rewrite t s p G)
(=E1 i 	 p π) : Γ � G

Γi = s
.=
d

t

π : Γ ; (rewrite s t p A) � G

(=E2 i j � p π) : Γ � G

{
Γi = s

.=
d

t

Γj = A

π : Γ ; (rewrite t s p A) � G

(=E2 i j 	 p π) : Γ � G

{
Γi = s

.=
d

t

Γj = A

Fig. 3. Well-formedness of proofs

2.3 Proof Traces

We define the proof traces and their meaning in Figure 3. The judgement π : Γ � G
means “π is a correct proof trace for the sequent Γ � G”. We adapted Roy Dychkoff’s
contraction free sequent calculus for intuitionistic logic [8], in order to allow multiple
sorts and possibly empty domains. Even though the choice of this sequent calculus may
seem exotic, the proof technique is quite generic and our proofs may be easily adapted
to other kinds of mono-succedent sequent calculi such as classical ones with excluded
middle axiom or implicit non-empty domains.
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In order to reify first-order reasoning, it is necessary to decide syntactic equality
between terms and between formulae, which is done by the boolean functions =term

and =form. The inst function implements the substitution of a given closed term (no lift
operator needed) to the first bound variable in a formula, which is used in the definition
of proof steps for quantifiers. Finally, the rewrite function replaces a closed term by
another at a given set of occurrences, checking that the first term is the same as the
subterms at the rewrite positions.

2.4 Correctness Proof

For every object defined in the last paragraphs (terms, arguments, formulae, contexts,
sequents), there is an implicit notion of well-formedness contained in the definition of
the interpretation functions. These well-formedness properties are implemented inside
Coq both as inductive predicates in Prop named WF ∗ (with ∗ = term, args, form . . . )
and as boolean functions check ∗. For every object a correctness lemma is proved:

WF checked ∗ : ∀x : ∗, (check ∗ x) = true→(WF ∗ x)
The next step is the definition of WF proof which is a Coq inductive predicate rep-

resenting the “:” in the well-formedness of proofs. Then, a check proof boolean func-
tion is implemented and the corresponding WF checked proof lemma can be proved.
Using these, the fundamental theorem can be stated.

Theorem 1 (Logical soundness). There are Coq proof terms of these two theorems:

∀π : proof.∀Γ, ∀G, (WF sequent Γ � G)→(WF proof Γ � G π)→ �Γ � G� (1)

∀π : proof.∀Γ, ∀G,(check sequent Γ � G) = true→
(check proof Γ � G π) = true→ �Γ � G�

(2)

Coq proofs for these theorems, along with all the definitions above are available at
http://www.lri.fr/∼corbinea/ftp/programs/rfo.tar.gz.

Sketch of the proof. (2) is a consequence of (1) by composition with the WF checked ∗
lemmata. Formula (1) is proved by induction on the proof trace, so it amounts to prove
that in each step the interpretation of the conclusion is a consequence of the interpreta-
tion of the premises. Many intermediate steps are needed, the key ones being lemmata
about the semantics of inst and rewrite, weakening lemmata, and lemmata about
the stability of the interpretation functions (an interpretation is preserved by the addition
of variables in the context).

3 Rewriting Traces for Ordered Completion

3.1 Completion Rules

The purpose of ordered completion [15,13,2] is to build a convergent rewriting system
from a set of equations in order to decide the word problem. Some provers such as
CiME [4] or Waldmeister [12] use an enhanced version of ordered completion in order
to solve unifiability problems instead of word problems.

We adopt the classical presentation of the completion process as a sequence of ap-
plications of inference rules. The input is a pair (E0, s = t), where E0 is a set of
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(implicitly universally quantified) equalities defining an equational theory, and s = t is
a conjecture, that is an implicitly existentially quantified equation. The output is True
when there exists a substitution σ such that sσ and tσ are equal modulo E0, False other-
wise. Of course, this semi-decision procedure may not terminate. The whole procedure
is parameterized by a reduction ordering >. The completion rules are working on a
triple (E,R,C), where E and C are sets of equations (unordered pairs of terms), and
R is a set of rules (ordered pairs of terms).

The set of completion rules may be divided into several subsets. First the rule Init
initializes the process, by building the initial triple from the initial set of axioms and
the conjecture. Then there are the rules Orient and Orient’ which create rewrite rules
for R from unordered pairs of terms u = v in E. If u and v are comparable for >,
a single rewrite rule is created, otherwise, two rules are created since it may be the
case that uσ > vσ or vσ > uσ, depending on σ. The rewrite rules are used by the
Rewrite, Rewrite’, Collapse and Compose for rewriting respectively in an equation,
in a conjecture, in the left-hand side of a rule and in the right-hand side of a rule. Some
new facts are computed by deduction, either between two rewrite rules (Critical pair)
or between a rewrite rule and a conjecture (Narrow).

A recursive application of the rules may run forever, or stop with an application of
the Success rule. Due to lack of space, we do not recall the rules, they can be read from
Figure 4 by erasing the annotations.

3.2 Completion Rules with Traces

In order to build a trace for a formal proof management system as Coq, the inference
rules have to be annotated with some additional information. From this respect, there
are two kinds of rules, those which simplify equations or rules by rewriting the inside
terms, and those which create some new facts. The application of the simplification
rules is recorded in the rewritten term itself as a part of its history whereas the new facts
contain the step by which they were created as a trace. Moreover, one has to precisely
identify the left- and right-hand sides of equations, which leads to duplicate some of
the rules. We shall only write down the left version of them and mention that there is
a right version when there is no ambiguity. Hence the data structures are enriched as
follows:

– An equation is a pair of terms with a trace. It will sometimes be denoted by u = v,
u and v being the two terms, when the trace is not relevant.

– A term u has a current version u∗, an original version u0, and an history, that is
sequence of rewriting steps, which enables to rewrite u0 into u∗.

– A rewriting step is given by a position, a substitution and a rewrite rule.
– A rewrite rule is an oriented (+ or−) equation u = v denoted by u

+→ v or v
−→ u.

– A trace is either an axiom (ω), or a peak corresponding with a critical pair (κ) or
with a narrowing (either in a left-hand side (νL) or in a right-hand side (νR)).

– A peak is given by its top term t, two rewrite rules rl1, rl2, and the position p where
the lowest rewrite rule rl2 has to be applied to t: rl2

p ← t→rl1
Λ .

An axiom, that is a pair of usual terms s = t, is lifted into an equation ŝ = t by turn-
ing s and t into general terms with an empty history and by adding the trace ω(s = t).
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Init
Ê0, ∅, {ŝ = t}

if E0 is the set defining the equational theory and s = t is the conjecture.

OrientL
{u = v} ∪E, R, C

E, {u +→ v} ∪R, C
if u∗ > v∗ OrientR

{u = v} ∪E, R, C

E, {v −→ u} ∪R, C
if v∗ > u∗

Orient’
{u = v} ∪E, R, C

E, {u +→ v; v −→ u} ∪ R,C
if u∗ and v∗ are not comparable w.r.t. to >.

RewriteL

{u = v} ∪E, {l ±→ r} ∪R, C

{Rew(u, l
±→r−−−−−→

p,σ
) = v} ∪ E, {l ±→ r} ∪R, C

if u∗|p = l∗σ and l∗σ > r∗σ.

Rewrite’L
E, {l ±→ r} ∪R, {s = t} ∪ C

E, {l ±→ r} ∪R, {Rew(s, l
±→r−−−−−→

p,σ
) = t} ∪ C

if s∗|p = l∗σ and l∗σ > r∗σ.

RewriteR Rewrite’R

Collapse+

E, {l +→ r; g ±→ d} ∪R, C

{Rew(l, g
±→d−−−−−→

p,σ
) = r} ∪E, {g ±→ d} ∪ R,C

if l∗|p = g∗σ.

Collapse−
E, {l −→ r; g ±→ d} ∪R, C

{r = Rew(l, g
±→d−−−−−→

p,σ
)} ∪ E, {g ±→ d} ∪R, C

if l∗|p = g∗σ.

Compose
E, {l ±→ r; g ±→ d} ∪R, C

E, {l ±→ Rew(r, g
±→d−−−−−→

p,σ
); g ±→ d} ∪ R,C

if r∗|p = g∗σ.

Critical pair
E, {l ±→ r; g ±→ d} ∪R, C⎧⎨⎩

l∗ρ1[d∗ρ2]pσ = r∗ρ1σ

by κ( g
±→d←−−−−−
p

lρ1σ
l
±→r−−−−−→
Λ

)

⎫⎬⎭∪E, {l ±→ r; g ±→ d}∪R, C

if l∗ρ1|pσ=g∗ρ2σ.

NarrowL

E, {g ±→ d} ∪ R, {s = t} ∪ C

E, {g ±→ d}∪R,

⎧⎨⎩
s∗ρ1[d∗ρ2]pσ = t∗ρ1σ

by νL( g
±→d←−−−−−
p

sρ1σ
s
+→t−−−−−→
Λ

)

⎫⎬⎭∪{s = t}∪C

if s∗ρ1|pσ=g∗ρ2σ.

NarrowR

E, {g ±→ d} ∪R, {s = t} ∪ C

E, {g ±→ d}∪R,

⎧⎨⎩
s∗ρ1σ = t∗ρ1[d∗ρ2]pσ

by νR( g
±→d←−−−−−
p

tρ1σ
t
−→s−−−−−→
Λ

)

⎫⎬⎭∪{s= t}∪C

if t∗ρ1|pσ=g∗ρ2σ.

Success
E, R, {s = t} ∪ C

True
if s∗ and t∗ are unifiable.

Fig. 4. Annotated rules for ordered completion
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Given a term u, a rule l → r, a position p and a substitution σ, when u∗|p = l∗σ the
term u can be rewritten into a new term Rew(u,−→l→r

p,σ ) where the original version
keeps the same, the current value is equal u∗[r∗σ]p and the new history is equal to
h@(p, σ, l → r), h being the history of u. The annotated completion rules are given in
Figure 4.

3.3 Constructing a Formal Proof from a Trace

When a triple (E,R,C) can trigger the completion rule Success all the needed infor-
mation for building a formal proof can be extracted from the trace of the conjecture
s = t such that s∗ and t∗ are unifiable. Building the formal proof is done in two steps,
first the information (as sequences of equational steps) is extracted from the trace, then
the proof is built (either as a reified proof object or as a Coq script).

Word Problem. We shall first discuss the easiest case, when the original conjecture
is an equation between two closed terms. The narrowing rules never apply, the set of
conjectures is always a singleton, and the Success rule is triggered when both current
sides of the conjecture are syntactically equal.

There are two possibilities for building a proof. The first one is to give a sequence
of equational steps with respect to E0 between both sides of the conjecture (cut-free
proof). Since extracting the information from the trace in order to build such a proof
is quite involved (the critical pairs have to be recursively unfolded), we start by the
other alternative which is more simpler, where the proof is given by a list of lemmata
mirroring the computation of critical pairs.

Critical Pairs as Cuts. First, it is worth noticing that all the applications of completion
rules made so far do not have to be considered, but only the useful ones, which can be
extracted and sorted by a dependency analysis, starting from the rewrite rules which
occur in the history of s and t.

Now each critical pair can be seen as a lemma stating a universally quantified equal-
ity between two terms, and can be proven by using either the original equalities in E0

or the previous lemmata.

When the trace of l
±→ r is ω(u = v), this means that the rule is obtained from

the original equation u = v of E0 by possibly rewriting both left and right hand sides.
l∗ and r∗ can be proven equal by the sequence of equational steps obtained by the
concatenation of 1. the reverted history of l, 2. u = v at the top with the identity
substitution either forward when the rule has the same orientation as it parent equa-
tion (+ case) or backward when the orientation is different (− case), 3. the history
of r.

When the trace of a rule l
±→ r is κ( l2

±→r2←−−−−
p

l1σ
l1

±→r1−−−−→
Λ

), the rule is obtained from

a critical pair between two rules and possibly a change of orientation. l∗ and r∗ can be
proven equal by the sequence of equational steps obtained from the concatenation of
1. the reverted history of l, 2. a proof between l0 and r0 depending on the orientation;

when there is no change of orientation, 2.a l2
±→ r2 applied backward at position p

with the substitution σ2 such that l∗2σ2 = l∗1σ|p and r∗2σ2 = l0|p, 2.b l1
±→ r1 applied

forward at the top with the substitution σ1 such that l∗1σ1 = l∗1σ and r∗1σ1 = r0, (when
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there is a change of orientation, 2.a’ l1
±→ r1 applied backward at the top with the

substitution σ1 such that l∗1σ1 = l∗1σ and r∗1σ1 = l0, 2.b’ l2
±→ r2 applied forward at

position p with the substitution σ2 such that l∗2σ2 = l∗1σ|p and r∗2σ2 = r0|p), 3. the
history of r.

The proof of the original conjecture s0 = t0 is then given by the concatenation of
the history of s and the reverted history of t.

Unfolding the Proof. The main proof between s0 and t0 can be unfolded: as soon as a
rule is used between u and v, at position p with the substitution σ, this rule is recursively
replaced by its proof, plugged into the context u[ ]p when used forward or the context
v[ ]p when used backward, and the whole sequence being instantiated by σ.

Unifiability Problem. In this case the narrowing rules may apply and the proof can be
given as a sequence of lemmata, or as a substitution and a sequence of equational steps
using only E0.

There are two kinds of lemmata, those coming from critical pairs as above, and those
coming from narrowing. Again, the useful ones can be extracted from the conjecture
s = t which triggered the Success rule.

Critical Pairs and Narrowing Steps as Cuts. The computation of the set of useful lem-
mata is similar as in the word case when the trace of s = t is of the form ω( ), but the

starting set has to be extended with l1
±→ r1 and l2

±→ r2 when the trace is of the form

νL/R( l2
±→ r2←−−−−
p

l1σ
l1

±→r1−−−−→
Λ

). This set can be sorted as above, and the proof of a critical

pair lemma is exactly the same. The proof of a narrowing lemma is different: let s′ = t′

be a conjecture obtained by narrowing from the rule g
±→ d and the conjecture s = t.

From the formal proof point of view, this means that the goal s = t has been replaced
by s′ = t′; one has to demonstrate that the replacement is sound, that is s′ = t′ implies
s = t. Hence the proof of s = t is actually a sequence of rewriting steps between s∗

and t∗ instantiated by the appropriate substitution, using s′ = t′ and some smaller crit-
ical pair lemmata. In the case of left narrowing, for example, the substitution is equal
to σ1 such that s∗σ1 = s∗σ and t∗σ1 = t′0 and the sequence of rewriting steps is ob-

tained by the concatenation of 1. the forward application of the rule g
±→ d at position

p with the substitution σ2 such that g∗σ2 = s∗σ|p and d∗σ2 = s′0|p, 2. the history of
s′, 3. the forward application of s′ = t′ at the top with the identity substitution, 4. the
reverted history of t′. The case of right narrowing is similar, and the case of the original
conjecture has already been described in the word problem case.

The proof of the last goal, that is the conjecture s = t which actually triggered the
Success rule is the substitution σ which unifies s∗ and t∗, and the sequence of rewriting
steps obtained by the concatenation of the history of s and the reverted history of t,
every step being then instantiated by σ.

Unfolding the Proof. As in the word problem case, the main proof can also be unfolded,
but one has also to propagate the substitution introduced by each narrowing lemma.
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4 Translation of CiME Proofs into Reified Proofs

First we describe the way we model unifiability problems inside Coq, then in Subsection
4.2 we explain how to reify a single sequence of rewrite steps in an suitable context, and
finally in Subsections 4.3 and 4.4 how to obtain a global proof from several lemmata by
building the needed contexts, and by combining the small proofs together.

4.1 Modelling Unifiability Problems Inside Coq

A natural way to represent unifiability problems inside Coq is to represent algebraic
terms with Coq terms (deep embedding), but since Coq has a typed language we first
need to suppose we have a type domain in the Coq sort Set.

This encoding is not harmless at all since Coq types are not inhabited by default,
which contradicts the semantics of unifiability problems: with an empty domain, the
provability of the conjecture f(x) = f(x) (which is implicitly existentially quantified)
depends on the existence of a constant symbol in the signature. Therefore we assume we
have a dummy constant in our domain type to model the non-emptiness assumption.

We need to introduce a Coq object of type

n times︷ ︸︸ ︷
domain→ · · · → domain→ domain for

every n-ary function symbol in our signature. To represent the equality predicate we use
Coq’s standard polymorphic equality which is the interpretation of the

.= construction.
Since we always use the domain type, with index 1 in our domain signature, 1 will be
the default subscript for

.=, ∀̇ and ∃̇. For each equality s = t we choose an arbitrary total
ordering on variables. We suppose rules will always be quantified in increasing order
with respect to this ordering.

A unifiability problem is formed by a list of universally quantified equalities
R1, . . . , Rn which are declared as Coq hypotheses and an existentially quantified equal-
ity G which is declared as the goal we want to prove.

4.2 Sequence of Rewrite Steps

In a tool like CiME, the equations and the rewrite rules are implicitly universally quan-
tified and some new variables are created when needed, whereas in the intermediate
sequent calculus, any variable has to come from a context. The main difficulty of the
subsection is to fill this gap by explaining in which contexts we are able to reify a
sequence of rewrite steps.

Let R1, . . . , Rn be rules, suppose CiME has given a rewriting trace between s1 and

t as follows: s1
±R1−−−−→
σ1,p1

s2
±R2−−−−→
σ2,p2

· · · ±Rn−−−−→
σn,pn

sn+1 = t. We say Γ is an adapted

context for this trace if it contains a representation of y1, . . . , ym, the free variables in
s1 and t, a representation of dummy, and the closed hypotheses Ṙ1, . . . , Ṙn. In such
a context Γ , the reification of an open term t is defined by if t = (f a1 . . . ap) then
ṫ = (ḟ ȧ1 . . . ȧp), otherwise if t = yi then ṫ is the corresponding variable in Γ ,
and if t is an unknown variable then ṫ = ˙dummy. These unknown variables appear
for example when the conjecture f(a, a) = f(b, b) is proven using the hypothesis
∀xy.f(x, x) = y.
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Theorem 2. There exists a proof-trace of Γ � ṡ1
.= ṫ for any adapted context Γ .

Proof. We prove by downwards induction on i that for any adapted context Γ there
exist π such that π : Γ � ṡi

.=ṫ :
If i = n + 1 then si is t, so we have =I :Γ � (t .= t) for any Γ .
Otherwise, let Γ be an adapted context of length h and k be the index of Ṙi in Γ ,

let z1, . . . , zl be the free variables in Ri. We can build the following proof tree:

Induction hypothesis with Γ ;h+1 : ˙Ri{z1 �→ z1σi} . . . ;h+l : ˙Riσi
:

π : Γ ; . . . ;h+l : ˙Riσi � ˙si+1
.= ṫ

(=E1 (h+l)↔ ṗi π) : Γ ; . . . ;h+l : ˙Riσi � ṡi
.= ṫ.... l ∀E steps

(∀E k ˙z1σi(∀E (h+1) ˙z2σi . . . (∀E (h+l−1) ˙zlσi(=E1 (h+l)↔ pi π)) . . . ):Γ � ṡi
.=ṫ

The induction step is valid since any extension of an adapted context stays adapted. ��

4.3 Closed Goals and Critical Pairs

Theorem 3. Let G be a closed goal, O1, . . . , On some original rules and C1, . . . , Cm

an ordered list of critical pairs used in the CiME trace of G. Let Γ k be the context
�; ˙dummy; Ȯ1; . . . ; Ȯn; Ċ1; . . . ; Ċk with 0 ≤ k ≤ m. There is a proof trace π for
Γ 0 � Ġ.

Proof. We build inductively a proof trace π for the sequent Γ i � Ġ, starting from i = m
and going backwards to i = 0.

– We can build a proof trace π such that π : Γm � Ġ using the Theorem 2 and the
trace given by CiME for G.

– Suppose we have a proof trace π such that π : Γ i � Ġ, and suppose Ci is of the
form ∀x1 . . . xp.s = t, we build the following tree to obtain a proof of Γ i−1 � G :

Theorem 2
:

π′ : Γ i−1; ẋ1; . . . ; ẋp � ṡ
.= ṫ

.... p ∀I steps

(∀I . . . (∀I π′) . . . ) : Γ � ∀̇1 . . . ∀̇1ṡ
.= ṫ

Induction hypothesis
:

π : Γ i � Ġ

(Cut Ċi (∀I . . . (∀I π′) . . . ) π) : Γ i−1 � Ġ ��

4.4 Open Goals and Narrowings

Open Goals. When the goal is of the form ∃x1, . . . , xn.s = t, CiME provides a sub-
stitution σ and a rewriting trace for sσ = tσ. Using Theorem 2 we build a trace π for
ṡσ

.= ˙tσ. The proof trace for the quantified goal is (∃I ˙x1σ . . . (∃I ˙xnσ π) . . . ).

Narrowings. Assume the current goal is an equality ∃x1, . . . , xn.s = t and CiME
gives a proof trace with a narrowing N = ∃y1, . . . , ym.s′ = t′. We do a cut on Ṅ .
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In the left premise, the goal becomes Ṅ and we build here the trace for the rest of the
lemmata. In the right premise, we apply m times the ∃E rule to obtain the hypotheses
ẏ1, . . . , ẏm, ṡ′

.= ṫ′, and we are in the case of the open goal described above.

5 Benchmarks
We run successfully CiME and Coq together on 230 problems coming from the TPTP
library [16]. These problems are a subset of the 778 unifiability and word problems
of TPTP. Some of the 778 TPTP problems are discarded because they are not solved
within the given time (298), some others because they do not have a positive answer
(11) or because they involve AC symbols (239), not handled by our framework yet.

The experiments were made on a 1.8GHz Pentium PC with 1Gb RAM, and a time-
out of 600s on the completion process. For each of the 230 completion successes, 4
proofs were automatically generated, a short reified proof, a short proof with tactics, a
cut-free reified proof and a cut-free proof with tactics. We used the current CVS ver-
sions of CiME3 and Coq, with the virtual machine turned on, which helps the Coq
kernel reduce terms (see [9]).

Coq has been run on each of the 4*230 generated proofs, again with a timeout of
600s. We have observed that the short proofs are always checked in less that 1 second,
for reified proofs as well as for tactics proofs, whatever the completion time. A short
reified proof takes less time than the corresponding short tactics proof, but this is on
very short times, so not very significant. The cut-free reified proofs take less time than
the cut-free tactics, and the factor varies between 1 and 30. There is even an example
(GRP614-1) where the reified proof is checked in 2 seconds and Coq gives up on the
tactics proof. Some of the cut-free proofs are actually huge (several millions of lines)
and cannot be handled by Coq (14 reified proofs and 16 script proofs).

6 Conclusion
We have described how to use reflection for proofs in Coq, how to annotate the usual
ordered completion rules in order to build a trace, and how to turn the obtained trace into
a reflective proof. The experiments made so far have validated the reflective approach
and shown that some automation may be introduced in Coq and release the user from a
part of the proof.

Previous works on reflection either aimed at proving meta-properties of proof trees
in a very general framework [11] or at actually solving domain specific problems and
at providing some automation for interactive provers [3,6]. We claim that our work
belongs to the second trend but without loss of generality since our development is
parameterized by the signature. Special care has been devoted to efficiency of proof-
checking functions written in the Coq language.

We plan to work in several directions. First finalize the existing implementation as
a Coq tactic by adding glue code, then extend the reflection mechanism to other calculi;
for example LJTI which adds arbitrary non-recursive connectives to first-order logic
with a contraction-free presentation [5], or classical multi-succedent calculi to handle
more general traces produced e.g. by classical tableaux provers. Finally handle AC
function symbols by reflecting AC-steps.



22 E. Contejean and P. Corbineau

References
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thesis, Université Paris-Sud, Dec. 2002.

2. L. Bachmair, N. Dershowitz, and D. A. Plaisted. Completion without failure. In H. Aı̈t-
Kaci and M. Nivat, editors, Resolution of Equations in Algebraic Structures 2: Rewriting
Techniques, chapter 1, pages 1–30. Academic Press, New York, 1989.

3. M. Bezem, D. Hendriks, and H. de Nivelle. Automated proof construction in type theory
using resolution. Journal of Automated Reasoning, 29(3):253–275, 2002.
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Abstract. We describe methods for automated theorem proving in ex-
tensional type theory with primitive equality. We discuss a complete,
cut-free sequent calculus as well as a compact representation of cut-free
(ground) proofs as extensional expansion dags. Automated proof search
can be realized using a few operations to manipulate extensional ex-
pansion dags with variables. These search operations form a basis for
complete search procedures. Procedures based on these ideas are imple-
mented in the higher-order theorem prover Tps .

1 Introduction

Church’s type theory [12] is a form of higher-order logic which is sufficiently power-
ful to represent much of traditional mathematics. The original Hilbert-style proof
theory in [12] does not provide a convenient calculus for automated deduction.
In an effort to study automated deduction for higher-order logic, fragments of
Church’s type theory have been considered. In particular, the higher-order theo-
rem proving system Tps has traditionally searched for proofs in elementary type
theory. Elementary type theory is Church’s type theory without axioms of exten-
sionality, descriptions, choice, or infinity. Andrews introduced a Hilbert-calculus
T for elementary type theory in [2]. Three important steps regarding the develop-
ment of automated reasoning in elementary type theory can be sketched as follows:

1. In [2] Andrews proved a cut-free sequent calculus complete relative to T .
2. Miller [15] demonstrated that every theorem of elementary type theory has

an expansion proof as described in [15,16,6,4].
3. Procedures were developed to search for expansion proofs by manipulating

expansion trees (with progressively instantiated variables). The implemen-
tation of such search procedures in Tps are described in [3,6].

We can generalize the three steps above and add another to outline a method
for studying automated reasoning in a logic.

1. Develop a cut-free ground calculus for the logic.
2. Develop a compact representation of cut-free ground proofs.
3. Design a set of search operations for approximating compact ground proofs

(using variables).
4. Establish completeness of search by verifying that some selection of the

search operations will lead to a proof, if a proof exists.
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A ground expansion proof can be approximated by an expansion tree with
expansion variables. First-order methods can be naturally generalized to search
for expansion proofs. In particular, Tps combines mating search with Huet’s
higher-order pre-unification. For completeness, one must also consider primi-
tive substitutions for set variables. A primitive substitution introduces a logical
constant or projection for a variable at the head of a literal. Primitive (and
general) substitutions in Tps are discussed in [6] on page 331. Such enumera-
tion techniques place practical limitations on the search space. Intuitively, Tps
attempts to converge towards a ground expansion proof by adding appropriate
connections, performing higher-order unification steps and performing primitive
substitutions.

To complete the analysis of automated reasoning in elementary type theory,
such a search procedure would need to be proven complete. That is, one must
show that some sequence of search operations applied to expansion trees success-
fully terminates if an expansion proof exists. This has never been carried out for
expansion proofs. One reason is Tps traditionally has performed primitive sub-
stitutions (and most quantifier duplications) in a pre-processing step. Since new
quantifiers can be introduced during search (via primitive substitutions), one
cannot expect restricting primitive substitution applications to pre-processing
leads to a complete search procedure.

Another interesting fragment of Church’s type theory is extensional type
theory. Extensional type theory adds principles of Boolean and functional ex-
tensionality to elementary type theory. The system Leo [8] searches using a res-
olution calculus for extensional type theory. Tps can now also prove theorems of
extensional type theory using an appropriately modified notion of an expansion
proof. We also extend the notion of expansion proof to include reasoning with
primitive equality.

One advantage of working with extensional type theory is that the theory
is closer to mathematical reasoning. For example, in mathematics one does not
distinguish between A ∪ B and B ∪ A. These sets could be different in models
of elementary type theory, but not in models of extensional type theory.

Another advantage of working with extensional type theory is that one can
simplify the search for instantiations of set variables. (This was, in fact, the
motivation for adding extensionality reasoning to Tps .) While primitive substi-
tutions are still necessary, one can obtain certain restrictions on which logical
constants must be available for primitive substitutions. Also, one can represent
some theorems in a natural manner which avoids introducing certain set vari-
ables. In particular, the use of primitive equality instead of Leibniz equality
completely eliminates the set variables introduced by Leibniz equality.

A lifting lemma is proven for the resolution calculus in [8] in order to show
completeness of search. However, this lifting lemma required a Flex-Flex rule to
apply a substitution to a flex-flex pair. Since such a rule is notoriously branch-
ing, Leo does not actually apply such a rule during search. One of the goals
of the development of extensional expansion proofs and corresponding search
procedures was to show completeness of search without requiring operations on
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flex-flex pairs. In the end, we not only show completeness of search without any
Flex-Flex rule, but also without considering connections between two flexible
nodes.

We begin by describing extensional type theory relative to a signature of
logical constants. By formulating extensional type theory in this way, we make
precise the possible restrictions on set instantiations and hence primitive substi-
tutions. We proceed by describing each of the four steps outlined above relative
to (fragments of) extensional type theory. We describe a cut-free sequent calculus
(complete with respect to an appropriate semantics). We describe extensional
expansion proofs as extensional expansion dags (generalizing expansion trees)
which satisfy certain properties. We indicate completeness of ground extensional
expansion proofs relative to extensional type theory. When searching for exten-
sional expansion proofs, we use variables which are progressively instantiated.
We give a set of operations one can perform during search on extensional expan-
sion dags (with variables). A lifting argument shows completeness of search once
one has completeness of the ground case. Finally, we indicate some theorems
which can be proven automatically in Tps using the new methods. This paper
describes the work contained in [11], focusing on the results for automated proof
search in extensional type theory.

2 Terms and Propositions

In first-order logic, one first defines terms (inductively) then atomic propositions
(using terms and relations) and finally propositions (inductively). In higher-order
logic, one can inductively define the terms of type α and let propositions be
the terms of a particular type o of truth values. However, in order to express
propositions as a term of type o, one must use logical constants such as ¬oo,
∨ooo and Πα

o(oα). For completeness of proof search, one must consider primitive
substitutions for each such logical constant. Since one of our purposes is to
restrict primitive substitutions, it is worthwhile to define propositions at one
level higher than terms (as is done in the first-order case).

First, we define the set of (simple) types inductively. o is the type of truth
values, ι is a type of individuals and (αβ) is a type of functions from β to α
whenever α and β are types. Suppose S is a set of typed logical constants, V is
a set of typed variables and P is a set of typed parameters. For each type α, we
assume the set Vα (variables of type α) and the set Pα (parameters of type α) are
infinite. Next, we can inductively define the set wffα(S) of terms of type α using
logical constants in S, variables, parameters, application and λ-abstraction. We
make the dependence on S explicit in order to consider different sets of logical
constants.

To formulate higher-order logic, Church [12] assumed the signature included
logical constants ¬oo, ∨ooo and Πα

o(oα) for each type α. From these, one can
define the other logical operators as in [12]. Equality at type α can be defined
by Leibniz equality. The alternative pursued in [5] is to have primitive equality
=α

oαα in the signature for each type α. The logical connectives and quantifiers can
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be defined from primitive equality (assuming full extensionality). In the general
case, we will not assume any logical constants to be in the signature S. We will
always assume, however, that S is a subset of the collection

{�o,⊥o,¬oo,∧ooo,∨ooo,⊃ooo,≡ooo}
∪ {Πα

o(oα)

∣∣ α ∈ T } ∪ {Σα
o(oα)

∣∣ α ∈ T } ∪ {=α
oαα

∣∣ α ∈ T }.
Without (enough) logical constants we should not consider the type theory to be
“higher-order logic” since one cannot define the same sets using the restricted
language as one can define using higher-order logic. Each collection of logical
constants yields a fragment of higher-order logic.

The set prop(S) of propositions over a signature S is defined inductively.

– If A ∈ wffo(S), then A ∈ prop(S).
– If α is a type and A,B ∈ wffα(S), then [A =α

. B] ∈ prop(S).
– �. ∈ prop(S).
– If M ∈ prop(S), then [¬.M] ∈ prop(S).
– If M,N ∈ prop(S), then [M ∨. N] ∈ prop(S).
– If M ∈ prop(S), then [∀. xα M] ∈ prop(S).

We use the notation �. , ¬. , ∨. and ∀. to distinguish these constructors (at the level
of propositions) from the corresponding logical constants �, ¬, ∨ and Πα.

Suppose S is a signature with ¬ ∈ S and A ∈ wffo(S). Then ¬A ∈ wffo(S)
is both a term of type o and a proposition. Also, A is a term of type o and a
proposition. Hence ¬.A is a proposition, but is not a term of type o.

We assume the usual notions of α, β and η conversion for terms. These can be
easily extended (by induction) to propositions along with notions of substitution,
β-normalization, βη-normalization, etc. We use M↓ to denote the βη-normal
form of M (whether M is a term or a proposition). Likewise, the notions of
free and bound variables is defined as usual for terms and propositions. A term
or proposition is closed if it contains no free variables. A sentence is a closed
proposition.

An advantage of adding this extra level of propositions is that many theorems
can be stated as propositions without assuming any logical constants are in S.
For example, the surjective form of Cantor’s Theorem can be stated as the
sentence

¬. ∃. goιι∀. foι∃. jι. g j =oι
. f (1)

which is in prop(∅). (We use ∃. as shorthand for ¬. ∀.¬. .) If we insisted on rep-
resenting Cantor’s Theorem as a term of type o, then we would need several
logical constants. By separating the levels of terms and propositions, we can
distinguish between the expressive power of a fragment of type theory from the
proof strength of the fragment.

3 Sequent Calculus

For any signature S of logical constants, a sequent calculus GSβfb is defined in [11]
(where sequents are multisets of sentences). Using this proof theory, we define the
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S-fragment of extensional type theory by the set of theorems of GSβfb (provable
sequents containing only one sentence). The rules of GSβfb are shown in Figure 1.
The rules G(∀W

. ) and G(fW ) require the usual condition that the parameter W be
new with respect to the sequent in the conclusion of the rule. The rules G(¬. ∀. ,S)
and G(¬. =→

. ,S) depend directly on the signature S. (The more logical constants
are in S, the more terms can be used in these rules.) The rules G(Init=. ) and
G(Dec) apply for any n ≥ 0 and parameter H (of the appropriate type).

Γ, M,M
G(Contr)

Γ, M

Γ, M↓
G(βη)

Γ, M
G(�. )

Γ,�.

Γ, M
G(¬.¬.)

Γ,¬.¬.M

Γ, M, N
G(∨. )

Γ, [M ∨. N]

Γ,¬.M Γ,¬.N
G(¬.∨. )

Γ,¬.[M ∨. N]

Γ, [[W/x]M]
G(∀W

. )
Γ, [∀.xαM]

Γ,¬.[[C/x]M] C ∈ cwffα(S)
G(¬.∀. ,S)

Γ, ¬.[∀.xαM]

Γ, A� A ∈ cwffo(S)
G(	)

Γ, A

Γ,¬.(A�) A ∈ cwffo(S)
G(¬.	)

Γ,¬.A

Γ, [[G W ] =
α

. [H W ]]
G(fW )

Γ, [G =αβ
. H]

Γ, ¬.[[GB] =
α

. [HB]] B ∈ cwffβ(S)
G(¬. =→

. ,S)

Γ, ¬.[G =αβ
. H]

Γ,¬.A, B Γ,¬.B, A
G(b)

Γ, [A =
o

. B]

Γ, A, B Γ, ¬.A,¬.B
G(¬. =o

. )
Γ,¬.[A =

o
. B]

Γ, [A =ι
. C] Γ, [B =ι

. D]
G(EUnif1)

Γ,¬.[A =ι
. B], [C =ι

. D]

Γ, [A =ι
. D] Γ, [B =ι

. C]
G(EUnif2)

Γ,¬.[A =ι
. B], [C =ι

. D]

Γ, [A
1

=. B
1
] · · · Γ, [A

n
=. B

n
]
G(Init=. )

Γ, [H An],¬.[H Bn]

Γ, [A
1

=. B
1
] · · · Γ, [A

n
=. B

n
]
G(Dec)

Γ, [[H An] =ι
. [H Bn]]

Fig. 1. Sequent Rules for GS
βfb

The rules G(�) and G(¬. �) provides the connection between the logical con-
stants in S and the level of propositions using the operation taking a term
A ∈ wffo(S) to a proposition A	. The definition of A	 depends on the head of
the term A. In particular, �	 is �. , [¬B]	 is ¬.B, [B ∨ C]	 is [B ∨. C], [D =α E]	

is [D =α
. E] and [Πα F]	 is [∀. xα .Fx]. For other logical constants, we rely on

the usual methods of representing different operations in terms of �. , ∨. and ∀. .
For example, ⊥	 is ¬.�. and [B ⊃ C]	 is [¬.B ∨. C]. If the head of A is not a
logical constant, then A	 is simply defined to be A. (Note that the operation is
not recursive. For example, [¬¬B]	 is ¬. ¬B as opposed to ¬. ¬.B.)



28 C.E. Brown

In [11], a model class Mβfb(S) is defined for the S-fragment of extensional
type theory. The sequent calculus GSβfb is proven sound and complete with re-
spect to Mβfb(S) (see Theorems 3.4.14 and 5.7.18 of [11]). As a consequence of
completeness, we can prove that the surjective form of Cantor’s “theorem” (1)
cannot be proven in the ∅-fragment of extensional type theory. (The intuitive
reason for this is the need to use ¬ in the definition of the diagonal set.) In
fact, one cannot prove (1) in the S-fragment of extensional type theory even
if S is {�,⊥,∧,∨} (see Corollary 6.7.9 in [11]). There is a concrete model in
Mβfb({�,⊥,∧,∨}) in which (1) is false.

We do not include a cut rule in GSβfb since we are interested in represent-
ing (and searching for) cut-free proofs. We know cut is admissible in GSβfb as a
consequence of completeness (see Corollary 5.7.19 of [11]).

We do not include an initial rule for deriving general sequents of the form
Γ,¬.M,M or a reflexivity rule for deriving general sequents of the form Γ, [A =.
A]. The sequent calculus is complete without such rules (essentially because one
can reduce to special cases of G(Init=. ) and G(Dec)). The reason we do not
include a general initial rule or a general reflexivity rule is to avoid needing to
perform arbitrary βη-unification when proving lifting results to show complete-
ness of automated search.

While we do include a contraction rule in GSβfb, there are only a limited
number of situtations in which contraction is necessary to obtain a proof. For
example, the contraction rule is often used along with the rules G(¬. ∀. ,S) and
G(¬. =→

. ,S) in order to allow multiple instantiations. In the sequent calculus
GSβfb, one may also need to make multiple uses of formulas in instances of the rules
G(Init=. ), G(EUnif1) and G(EUnif2). Finally, we may need to use contraction to
provide a copy of an equation for an instances of G(Dec) as well as an instance
of either G(EUnif1) or G(EUnif2). The next example demonstrates different
essential applications of contraction in conjunction with the other rules of GSβfb.

For purposes of illustration, the main example we will consider in this paper
is THM615 (discussed briefly in [11]):

Hιo [H � =ι H ⊥] =ι
. H ⊥

This is a sentence in prop(S) if we assume �,⊥,=ι∈ S. There is a reasonably
simple proof of THM615. Either [H � =ι H ⊥] is true or false. If true, then
THM615 is equivalent to [H � =ι H ⊥] which we have assumed true. If false,
then THM615 is equivalent to [H ⊥ =ι H ⊥] which is true by reflexivity.

This short proof of THM615 can be formalized using of the cut rule with
cut formula [H � =ι H ⊥]. Since cut is admissible, there must be a derivation
of THM615 without using cut. The only possible rules of GSβfb which can be
used to conclude THM615 are contraction or the decomposition rule G(Dec).
Since [H � =ι H ⊥] =o

. ⊥ is not a theorem, one cannot expect a derivation
of THM615 to end with the decomposition rule. Instead, one can derive the
sequent

[Hιo [H � =ι H ⊥] =ι
. H ⊥], [H � =ι H ⊥] =o

. ⊥ (2)
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and complete the derivation of THM615 using decomposition followed by con-
traction.

The rule G(b) (for Boolean extensionality) reduces deriving (2) to deriving
(3) and (4):

[Hιo [H � =ι H ⊥] =ι
. H ⊥], ¬. [H � =ι H ⊥], ⊥ (3)

[Hιo [H � =ι H ⊥] =ι
. H ⊥], ¬.⊥, [H � =ι H ⊥]. (4)

The sequent (4) is derived using G(¬. �), G(¬. ¬. ) and G(�. ) (since ¬. (⊥	) is ¬. ¬.�).
Nontrivial equality reasoning is required to derive (3). One can conclude (3)

using G(EUnif1) and contraction from (5) and (6):

[[H �] =. [H.[H ⊥] = [H ⊥]]], ¬. [H � =. H ⊥], ⊥ (5)

[[H ⊥] =. [H ⊥]], ¬. [H � =. H ⊥], ⊥ (6)

The sequent (6) contains an instance of reflexivity and has an easy derivation
(with several steps since there is no general rule for reflexivity). Using G(Dec)
and G(b), (5) can be reduced to deriving (7) and (8):

¬.�, [[H ⊥] = [H ⊥]], ¬. [H � =. H ⊥], ⊥ (7)

�, ¬. [[H ⊥] = [H ⊥]], ¬. [H � =. H ⊥], ⊥ (8)

Both (7) and (8) are straightforward to derive.

4 Extensional Expansion Dags

While one can formulate automated search based on a sequent calculus, it is
more common to choose a proof representation which eliminates certain redun-
dancies. Expansion proofs provide a compact representation of cut-free proofs
in elementary type theory. In particular, an expansion proof contains the es-
sential information regarding instantiations and which atoms are used in initial
sequents without recording all the information about the order of sequent rule
applications. In [15] and [16] Dale Miller defined expansion proofs consisting of
expansion trees with an acyclic dependence relation and a complete mating. A
complete mating [3] is a set of connections which spans every vertical path.

Frank Pfenning defined a notion of extensional expansion proofs in his the-
sis [17] by adding a new kind of (extensional) node to expansion trees. The new
extensional nodes introduce instances of extensionality axioms. However, during
automated search there is no criteria for when to introduce such a node. Hence
the notion of extensional expansion proof in [17] was never implemented as part
of Tps or used as part of an automated search procedure.
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An alternative notion of extensional expansion proof is defined and studied
in [11]. An extensional expansion proof (as defined in [11]) is an extensional
expansion dag (instead of an expansion tree) with an acyclic dependence re-
lation and no unsolved parts (instead of no unspanned vertical paths). A for-
mal definition of extensional expansion proofs can be found in [11] (see Defi-
nition 7.4.18). Here we describe the different elements of extensional expansion
proofs by considering examples and noting the relationship to the sequent cal-
culus GSβfb.

As in an expansion tree, each node of an extensional expansion dag has
an associated shallow formula and polarity. Extensional expansion dags also
distinguish between primary nodes and certain other nodes (such as connection
nodes). Consider the sentence ¬. [Poo⊥o] ∨. [P [¬�]]. An expansion tree for this
formula is shown on the left in Figure 2. We could try to connect LEAF0 to
LEAF1, but we will never be able to syntactically unify [P ⊥] and [P [¬�]].
Extensionally, we can prove these are equal since the arguments ⊥ and ¬� are
equivalent, hence equal by Boolean extensionality. n extensional expansion dag
which would provide a proof of the sentence is shown on the right in Figure 2. We
make the connection between ATOM0 and ATOM1 explicit via the connection
node MATE. The node MATE corresponds to the goal of showing [P ⊥] and
[P [¬�]] are equal. Whenever we create a mate node by connecting two atoms,
the two atoms must have the same parameter in the head position. The children
of the mate node correspond to showing the arguments of the two atoms are
equal. The process of connecting two atoms by creating a mate node and forming
the children of the new mate node corresponds to an application of the G(Init=. )
rule in the sequent calculus GSβfb. In Figure 2, the node BOOL corresponds to
showing ⊥ and [¬�] are equal (and is related to the G(b) sequent rule). One
child of BOOL corresponds to showing [¬�] implies ⊥ (which uses the positive
node for [¬�], but not the negative node for ⊥). The other child of BOOL
corresponds to showing ⊥ implies [¬�] (which uses the positive node for ⊥,
but not the negative node for [¬�]). Many of the nodes below BOOL simply
pass from logical constants in terms to the level of propositions. Such nodes
correspond to applications of the sequent rules G(�) and G(¬. �).

In Figure 3 we show an extensional expansion proof of THM615, omitting a
few minor portions. (The nodes labelled by ⊃. actually stand for a ∨. node and a ¬.
node.) We can directly compare this extensional expansion proof to the sequent
calculus derivation described in the previous section. Note that the root node
EQN0 is a negative equation node with two children, DEC0 and EQNGOAL0,
both of which correspond to the same negative equation. EQN0 behaves like an
application of contraction giving two copies of the equation. The child DEC0 is
a decomposition node which will correspond to the principal formula in applica-
tions of the rule G(Dec). The child EQNGOAL0 is an equation goal node which
will correspond to a principal formula in applications of the rule G(EUnif1) and
G(EUnif2). We obtained the subgoal sequent (2) by applying G(Contr) and
G(Dec). This corresponds to passing from the root node EQN0 to the children
DEC0 and EQNGOAL0 and then to the child BOOL0 of DEC0. Hence the se-



Reasoning in Extensional Type Theory with Equality 31

∨−
.

¬.−

LEAF0+

P ⊥

LEAF1−
P [¬�]

∨.
−

¬.−

ATOM0+

P⊥
MATE−

Poo[¬�] =. P⊥

BOOL−
[¬�] =. ⊥

∨.
−

¬.−

¬�+

¬.�+

�−

�.
−

LEAF0−
⊥

∨.
−

¬.−

⊥+

¬.�.
+

�. −

LEAF1−
¬�

ATOM1−
P [¬�]

Fig. 2. Expansion Tree and Extensional Expansion Dag

EQN0−

Hιo[ H� = H⊥] =. H⊥

DEC0−
Hιo[ H� = H⊥] =. H⊥

BOOL0−
[Hιo� = H⊥] =. ⊥

⊃.
−

EQN1+

Hιo� = H⊥ EUNIF0−
[Hιo� =. H[ H� = H⊥]] ∧. [H⊥ =. H⊥]

EQN2−

Hιo� =. H [H� = H⊥]

DEC2−

BOOL1−
� =. [Hιo� = H⊥]

⊃.
−

� + EQN3−

EQNGOAL3−

Hιo� =. H⊥

EUNIF1−
[Hιo� = H�] ∧. [H⊥ = H⊥]

[Hιo� =. H�] −
.
.
.

[Hιo⊥ =. H⊥] −
.
.
.

[[Hιo� = H⊥] ⊃. �] −
.
.
.

EQN4−

Hιo⊥ =. H⊥

DEC4−

[⊥ =. ⊥] −
.
.
.

⊥ −

[⊥ ⊃. [Hιo� = H⊥]] −
.
.
.

EQNGOAL0−

Hιo[ H� = H⊥] =. H⊥

Fig. 3. Extensional Expansion Proof for THM615

quent (2) corresponds to the set {EQNGOAL0,BOOL0}. Each sequent Γ which
occurs in the sequent derivation of THM615 corresponds to a set of nodes in
the extensional expansion dag:
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sequent set of nodes
(3) {EQNGOAL0,EQN0,⊥−}
(5) {EQN2,EQN1,⊥−}
(6) {EQN4,EQN1,⊥−}
(7) {�+,EQN1,EQNGOAL3,⊥−}

This correspondence can be used to translate between sequent derivations and
extensional expansion proofs (see Theorems 7.9.1 and 7.10.12 in [11]).

5 Search Operations

While searching for an extensional expansion proof, we manipulate extensional
expansion dags containing (free) expansion variables. Some search operations
extend the structure by adding information (e.g., nodes or edges). Other search
operations partially instantiate variables using projection and imitation terms
(as in Huet’s pre-unification algorithm). One search operation (Flex-Rigid Mate)
instantiates a variable (using an imitation term) and adds a connection.

First we consider a search operation which can always be applied eagerly
without sacrificing completeness. We refer to this operation as development.

– Development The operation is technically defined by a large number of
cases. We only provide a few example cases. If a is a leaf node with shallow
formula [¬.M] and polarity p, then add a new successor node b to a with
shallow formula M and polarity −p. If a is a positive leaf node with shallow
formula [∀. xαM], then let yα be a new variable and add a new positive node
b with shallow formula [y/x]M and add a new expansion arc from a to b
labelled with a new variable yα.

The remaining operations are relative to a given set of nodes. A set p of nodes
is called an unsolved part (or u-part) of an extensional expansion dag if the set
satisfies certain closure conditions (see Definition 7.4.4 in [11]). For example, we
require every child of a conjunctive node in p (e.g., a negative ∨. node) to be
in p and we require that every disjunctive node in p has some child in p. These
conditions are analogous to conditions defining the vertical paths of a matrix
representation of a formula. We also require a condition for p arising from the
existence of connection nodes: If a and b are connected by a node c and a, b ∈ p,
then c ∈ p.

Given any expansion node in a u-part, we can increase its multiplicity.

– Duplication Suppose p is a u-part and e ∈ p is a positive expansion node
with shallow formula [∀. xα M]. A Duplication step creates a new child of e
with shallow formula [yα/x]M where yα is a new (free) expansion variable.1

Three operations add connections between two nodes in a u-part.
1 This simple form of duplication does not “copy” any information from previously

existing children of e.
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– Rigid-Rigid Mate Suppose p is a u-part, a ∈ p is a positive atomic node
with shallow formula [P An] and b ∈ p is a negative atomic node with shallow
formula [P Bn] where P is a parameter. A Rigid-Rigid Mate step creates a
new mate node with shallow formula [[P An] =o

. [P Bn] beneath a and b.
– E-Unification Suppose p is a u-part, a ∈ p is a positive equation node with

shallow formula [A =ι
. B] and b ∈ p is a negative equation goal node with

shallow formula [C =ι
. D]. An E-unification step creates a new E-unification

node with shallow formula [[A =ι
. C] ∧. [B =ι

. D]]2 beneath a and b.
– Symmetric E-Unification This is analogous to the E-unification step ex-

cept the new node has shallow formula [[A =ι
. D] ∧. [B =ι

. C]].

We next consider two operations which instantiate an expansion variable.
The first operation corresponds to pre-unification and the second operation cor-
responds to applying primsubs.

– Flex-Rigid Suppose p is a u-part and a ∈ p is a negative equation node
with shallow formula [xAn =ι

. F Bm] (or [F Bm =ι
. xAn]) where x is a

variable and F is a parameter. A Flex-Rigid step instantiates x by imitating
F or by projecting onto any argument of x with an appropriate type.

– Primitive Substitution Suppose p is a u-part and a ∈ p is a positive flexi-
ble node with shallow formula [pAn] where p is a (set) variable. A Primitive
Substitution step instantiates p by imitating any logical constant in S or
projecting onto any argument of p with an appropriate type.

Finally, we consider an operation which mates a positive flexible node with
a negative atomic node.

– Flex-Rigid Mate Suppose p is a u-part, a ∈ p is a positive flexible node
with shallow formula [pAn] and b ∈ p is a negative atomic node with shallow
formula [QBm] where p is a (set) variable and Q is a parameter. A Flex-
Rigid Mate step instantiates p by imitating Q and creates a new mate node
beneath a and b.

A search procedure proceeds by applying the search operations above (start-
ing with an initial extensional expansion dag) until one obtains a pre-solved
extensional expansion dag (i.e., an extensional expansion dag such that every
u-part is pre-solved).

We have not introduced search operations which operate on negative flex-flex
equation nodes or that connect two flexible nodes. The fact that such (highly
branching) rules are not necessary for completeness is significant. The fact that
flex-flex pairs (and flex-flex connections) can always be delayed corresponds to
the fact that flex-flex pairs are always delayed in higher-order pre-unification [14].
In higher-order pre-unification, if one reaches a set of disagreement pairs such
that every pair is flex-flex, then the set is pre-unified and there exist many (easy
to construct) solutions to the unification problem. In the context of extensional

2 Technically, this proposition is ¬.[¬.[A =ι
. C] ∨. ¬.[B =ι

. D]].
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expansion dags, we say a u-part p is pre-solved if there is either a negative flex-
flex equation node in p or a negative flexible node in p. Extensional expansion
proofs are required to contain no u-parts. We can weaken this condition to say
every unsolved part is pre-solved. Given an appropriate extensional expansion
dag such that every unsolved part is pre-solved, one can easily construct an
extensional expansion proof (see Theorem 8.3.3 in [11]). The idea for solving u-
parts containing flex-flex pairs is the same as in higher-order pre-unification: one
imitates a new parameter Cι of base type. The idea for solving u-parts containing
negative flexible nodes is analogous: one imitates the logical constant �o. Using
this idea, one can solve any collection of pre-solved u-parts simultaneously.

Among the operations presented above, the least directed are primitive sub-
stitution steps. A primitive substitution can involve imitating any logical con-
stant in S whenever a u-path contains a positive flexible node. In general, the
set S is infinite (e.g., if Πα ∈ S for every type α). In an effort to minimize the
problem of primitive substitutions, one can consider smaller signatures of logical
constants. Some restrictions on the signature S do not result in any essential
incompleteness. For example, assuming {¬,∨} ⊆ S, there is no need to include
∧, ⊃ or ≡ in the signature S. In particular, performing primitive substitutions
for ∧ in addition to primitive substitutions for ∨ and ¬ does not increase the
theorems one can prove. Furthermore, assuming {¬,∨} ⊆ S, there is no need
to include Πα, Σα or =α in S for propositional types α (i.e., types α which
are constructed solely from type o). If one is concerned only with the theory of
propositional types (as in [13,1]), then one can reduce the signature (and hence
primitive substitutions) to {¬,∨} (or other such minimal signatures) without
sacrificing completeness. This fact does not hold if one does not assume exten-
sionality. Consider the simple proposition involving only propositional types:

∃. so(oo)∀. foo. s f ≡. ∃. po f p (9)

Essentially, (9) expresses the existence of the Σo (existence) operator for type o.
Assuming extensionality, the witness [λfoo. f Ao ∨ [f ¬A]] (expressed using only
∨, ¬ and an arbitrary parameter Ao) can be used to prove the theorem. On the
other hand, there is a non-extensional model which includes interpretations for
¬ and ∨ in which (9) is false.

One can also consider other restrictions (such as eliminating all logical con-
stants by choosing S to be empty) which do rule out the possibility of proving
certain theorems of extensional type theory (e.g., the surjective form of Can-
tor’s theorem). On the other hand, Mβfb(∅) provides a model theory for the
∅-fragment of extensional type theory, G∅βfb provides a cut-free proof theory and
the search operations above provide for automated search without primitive sub-
stitutions (except projections).

6 Completeness of Search

In order to prove completeness of search, we assume there is a ground extensional
expansion proof Q∗ of a sentence M. Given Q∗ we can define the notion of a
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lifting map f = 〈ϕ, f〉 from an extensional expansion dag Q (with variables) to
Q∗ (where ϕ is a ground substitution and f maps the nodes of Q to the nodes
of Q∗). We can also define an ordinal ‖f : Q → Q∗‖ for each such lifting map
(see Definitions 8.4.3 and 8.4.4 in [11]) which roughly measures how close Q is
to Q∗. For f = 〈ϕ, f〉, ‖f : Q → Q∗‖ is defined in terms of the nodes in Q∗

missing from the image of the map f and the size of the long βη-form of the
values of the ground substitution ϕ. Using Q∗ we can guide the application of
search operations to Q and use the lifting map f to maintain the relationship
between the current extensional expansion dag Q and the known proof Q∗.

A key step for proving completeness is to verify one can always make progress.
That is, given any ground extensional expansion proofQ∗, extensional expansion
dag Q (where Q is not already pre-solved) and lifting map f from Q to Q∗, there
must be some search operation one can apply to Q to obtain Q′ and some lifting
map f′ from Q′ to Q∗ such that ‖f′ : Q′ → Q∗‖ < ‖f : Q → Q∗‖. In other words,
some search operation gives a new dag which is closer to the goal proof Q∗.

Once one knows progress can always be made, one can argue completeness
of search as follows: There is a trivial lifting map from an initial extensional
expansion dag (with one node corresponding to M) to a ground extensional
expansion proof Q∗ of M. Using the progress property, one can appropriately
choose search operations until one obtains a pre-solved extensional expansion
dag. Since ‖f : Q → Q∗‖ is an ordinal, the process will terminate in a pre-solved
extensional expansion dag after a finite number of appropriate choices. From
a pre-solved extensional expansion dag, one can obtain a ground extensional
expansion proof (which may actually be different from Q∗).

This completeness argument is further refined as in [11]. First, one can assume
that no development step can be applied to the given extensional expansion proof
Q∗. Using this assumption, one can show that given any extensional expansion
dagQ and lifting map f : Q → Q∗, if any development step applies toQ, then this
development step results in an extensional expansion dag Q′ and lifting map f′ :
Q′ → Q∗ such that ‖f′ : Q′ → Q∗‖ < ‖f : Q → Q∗‖ (see Lemma 8.6.17 in [11]).
Consequently, development steps are a form of don’t-care non-determinism.

Assuming no development step can be applied to Q, then one can show a
progress property relative to u-parts (which are not pre-solved). In particular,
for any u-part p either p is pre-solved or there is a search operation (other than
development) relative to p which results in an extensional expansion dag Q′

with a lifting map f′ : Q′ → Q∗ such that ‖f′ : Q′ → Q∗‖ < ‖f : Q → Q∗‖ (see
Lemma 8.8.4 in [11]). Consequently, choosing the (not pre-solved) u-part p is also
a form of don’t-care non-determinism while choosing the operation relative to p
is a form of don’t-know non-determinism. We can always restrict our attention to
u-parts which are not pre-solved since search ends precisely when every u-part
is pre-solved.

Finally, instead of simply maintaining a current extensional expansion dag Q
and a search lifting map f, one can also represent information regarding quanti-
fier duplications and set variables. Using this information one can impose certain
conditions on the order of search operations. In particular, one can perform quan-
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tifier duplications (on a single expansion node), then primitive substitutions (for
certain set variables) and lastly create connections and perform unification. (If
new expansion nodes or set variables are created during search, then new duplica-
tions or primitive substitutions for these new objects are allowed.) Completeness
of this ordered form of search follows from Theorem 8.8.6 of [11].

7 Examples

The MS04-2 search procedure implemented in Tps uses a bounded best-first
search strategy with iterative deepening. Under the basic flag settings, MS04-2
only considers u-parts which are not presolved and only considers the options
described in Section 5. Flags provide weights for ordering different options.

Using MS04-2, Tps can prove THM615 automatically in less than a second.
Other examples Tps can prove automatically in less than a second using MS04-
2 include Eext

1 , Eext
2 and Eext

3 from [7].
The example EDec in [7] motivates a special decomposition rule in Leo for

functions. The formulation in [7] is with respect to Leibniz equality:

∀. Xαα∀. Yα [fαα(αα) X Y =̇α
. gαα(αα) X Y ] ∧. ∀. Zα [hαα Z =̇α

. jαα Z] ⊃. f h =̇αα
. g j

In this proposition, we use the notation [A =̇α
. B] to denote Leibniz equality of A

and B at the level of propositions: [∀. qoα . [qA] ⊃. [qB]]. We can form an example
EDEC2 by replacing all instances of Leibniz equality with primitive equality:
The proof of EDec (using Leibniz equality) requires two primitive substitutions
using =ι followed by unification steps including 8 imitations and 4 projections.
Even when flag settings are optimized for this example (while still only allowing
basic search operations), Tps takes over 2 hours to find the proof. On the other
hand, EDEC2 requires no primitive substitutions and very little unification (3
imitation steps and 1 projection step) and can be proven in less than a second.

Our final example is a theorem of topology we call THM616:

∀. Go(oι) [G ⊆ OPENo(oι) ⊃. OPEN [
⋃

G]]

⊃. ∀. Boι . ∀. xι [B x ⊃. ∃. D .OPEN D ∧. D x ∧. D ⊆ B] ⊃. OPEN B

where
⋃

abbreviates λGo(oα)λxα ∃Soα . GS ∧ S x. THM616 is a modified ver-
sion of BLEDSOE-FENG-SV-10 (studied in [9,10]) where closure of OPEN
under unions is stated in a more natural manner. However, THM616 is only
a theorem if extensionality is assumed (whereas BLEDSOE-FENG-SV-10 is
a theorem of elementary type theory). Consequently, no previous Tps search
procedure could possibly prove THM616. By combining the extensionality rea-
soning described here with the set constraint reasoning described in [10], Tps
can prove THM616 in about 10 seconds.

8 Conclusion

We have developed the theory of automated reasoning in extensional type the-
ory with primitive equality by describing a complete sequent calculus, compact
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representations of proofs, search operations and lifting results which verify com-
pleteness of search.
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Abstract. In this paper we define an inductive set that is bijective with
the α-equated lambda-terms. Unlike de-Bruijn indices, however, our in-
ductive definition includes names and reasoning about this definition is
very similar to informal reasoning on paper. For this we provide a struc-
tural induction principle that requires to prove the lambda-case for fresh
binders only. The main technical novelty of this work is that it is compat-
ible with the axiom-of-choice (unlike earlier nominal logic work by Pitts
et al); thus we were able to implement all results in Isabelle/HOL and
use them to formalise the standard proofs for Church-Rosser and strong-
normalisation.

Keywords: Lambda-calculus, nominal logic, structural induction,
theorem-assistants.

1 Introduction

Whenever one wants to formalise proofs about terms involving binders, one faces
a problem: how to represent such terms? The “low-level” representations use
concrete names for binders (that is they represent terms as abstract syntax trees)
or use de-Bruijn indices. However, a brief look in the literature shows that both
representations make formal proofs rather strenuous in places (typically lemmas
about substitution) that are only loosely concerned with the proof at hand. Three
examples from the literature: VanInwegen wrote [19, p. 115]:

“Proving theorems about substitutions (and related operations such as
alpha-conversion) required far more time and HOL code than any other
variety of theorem.”

in her PhD-thesis, which describes a formalisation of SML’s subject reduction
property based on a “concrete-name” representation for SML-terms. Altenkirch
formalised in LEGO a strong normalisation proof for System-F (using a de-Bruijn
representation) and concluded [1, p. 26]:

“When doing the formalization, I discovered that the core part of the
proof. . . is fairly straightforward and only requires a good understanding
of the paper version. However, in completing the proof I observed that in
certain places I had to invest much more work than expected, e.g. proving
lemmas about substitution and weakening.”

R. Nieuwenhuis (Ed.): CADE 2005, LNAI 3632, pp. 38–53, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Hirschkoff made a similar comment in [10, p. 167] about a formalisation of the
π-calculus:

“Technical work, however, still represents the biggest part of our imple-
mentation, mainly due to the managing of de Bruijn indexes...Of our 800
proved lemmas, about 600 are concerned with operators on free names.”

The main point of this paper is to give a representation for α-equated lambda-
terms that is based on names, is inductive and comes with a structural induction
principle where the lambda-case needs to be proved for only fresh binders. In
practice this will mean that we come quite close to the informal reasoning using
Barendregt’s variable convention. Our work is based on the nominal logic work
by Pitts et al [16,6]. The main technical novelty is that our work by giving an
explicit construction for α-equated lambda-terms is compatible with the axiom of
choice. Thus we were able to implement all results in Isabelle/HOL and formalise
the simple Church-Rosser proof of Tait and Martin-Löf described in [3], and
the standard Tait-style strong normalisation proof for the simply-typed lambda-
calculus given, for example, in [7,17].

The paper is organised as follow: Sec. 2 reviews α-equivalence for lambda-
terms. Sec. 3 gives a construction of an inductive set that is bijective with the
α-equated lambda-terms and adapts some notions of the nominal logic work for
this construction. An induction principle for this set is derived in Sec. 4. Examples
of Isabelle/HOL formalisations are given in Sec. 5. Related work is mentioned in
Sec. 6, and Sec. 7 concludes.

2 Preliminaries

In order to motivate a design choice later on, we begin with a review of α-
equivalence cast in terms of the nominal logic work. The set of lambda-terms is
inductively defined by the grammar:

Λ : t ::= a | t t | λa.t

where a is an atom drawn from a countable infinite set, which will in what follows
be denoted by A.

The notion of α-equivalence for Λ is often defined as the least congruence
of the equation λa.t =α λb.t[a := b] involving a renaming substitution and a
side-condition, namely that b does not occur freely in t. In the nominal logic
work, however, atoms are manipulated not by renaming substitutions, but by
permutations—bijective mappings from atoms to atoms. While permutations
have some technical advantages, for example they preserve α-equivalence which
substitutions do not [18], their primary reason in the nominal logic work is that
one can use them to define the notion of support. This notion generalises what
is meant by the set of free atoms of an object, which is usually clear in case
the object is an abstract syntax tree, but less so if the object is a function. The
generalisation of “free atoms” to functions, however, will play a crucial rôle in
our construction of the bijective set.
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There are several ways for defining the operation of a permutation acting on
a lambda-term. One way [18] that can be easily implemented in Isabelle/HOL is
to represent permutations as finite lists whose elements are swappings (i.e., pairs
of atoms). We write such permutation as (a1 b1)(a2 b2) · · · (an bn); the empty list
[] stands for the identity permutation. The permutation action, written π·(−),
can then be defined on lambda-terms as:

[]·a def= a

(a1 a2) :: π·a def=

⎧⎨⎩a2 if π·a = a1

a1 if π·a = a2

π·a otherwise

π·(t1 t2)
def= (π·t1 π·t2)

π·(λa.t) def= λ(π·a).(π·t) (1)

where (a b) :: π is the composition of a permutation followed by the swapping
(a b). The composition of π followed by another permutation π′ is given by list-
concatenation, written as π′@π, and the inverse of a permutation is given by list
reversal, written as π−1.

While the representation of permutations based on lists of swappings is con-
venient for definitions like permutation composition and the inverse of a permu-
tation, this list-representation is not unique; for example the permutation (a a)
is “equal” to the identity permutation. Therefore some means to identify “equal”
permutations is needed.

Definition 1 (Disagreement Set and Permutation Equality). The dis-
agreement set of two permutations, say π1 and π2, is the set of atoms on which
the permutations disagree, that is ds(π1, π2)

def
= { a | π1·a �= π2·a }. Two permu-

tations are equal, written π1 ∼ π2, provided ds(π1, π2) = ∅.

Using the permutation action on lambda-terms, α-equivalence for Λ can be de-
fined in a syntax directed fashion using the relations (−)≈(−) and (−) �∈ fv(−);
see Fig. 1. Because of the “asymmetric” rule ≈λ2, it might be surprising, but:

Proposition 1. ≈ is an equivalence relation.

The proof of this proposition is omitted: it can be found in a more general setting
in [18]. (We also omit a proof showing that ≈ and =α coincide). In the following,
[t]α will stand for the α-equivalence class of the lambda-term t, that is [t]α

def=
{ t′ | t′ ≈ t }, and Λ/≈ for the set Λ quotient by ≈.

3 The Bijective Set

In this section, we will define a set Φ; inside this set we will subsequently identify
(inductively) a subset, called Λα, that is in bijection with Λ/≈. In order to obtain
the bijection, Φ needs to be defined so that it contains elements corresponding,
roughly speaking, to α-equated atoms, applications and lambda-abstractions—
that is to [a]α, [t1t2]α and [λa.t]α. Whereas this is straightforward for atoms and
applications, the lambda-abstractions are non-trivial: for them we shall use some
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a ≈ a
≈var

t1 ≈ s1 t2 ≈ s2

t1 t2 ≈ s1 s2
≈app

t ≈ s
λa.t ≈ λa.s

≈λ1
a �= b t ≈ (a b)·s a �∈fv(s)

λa.t ≈ λb.s
≈λ2

a �= b

a �∈fv(b)
fvvar

a �∈fv(t1) a �∈fv(t2)
a �∈fv(t1 t2)

fvapp
a �∈fv(λa.t)

fvλ1

a �= b a �∈fv(t)
a �∈fv(λb.t)

fvλ2

Fig. 1. Inductive definitions for (−) ≈ (−) and (−) �∈fv(−)

specific “partial” functions from A to Φ (by “partial” we mean functions that
return “error” for undefined values1). Thus the set Φ is defined by the grammar

Φ : t ::= er | am(a) | pr(t, t) | se(fn)

where er stands for “error”, a for atoms and fn stands for functions from A to
Φ.2 This grammar corresponds to the inductive datatype that one might declare
in Isabelle/HOL as:

datatype phi = er
| am "atom"
| pr "phi× phi"
| se "atom ⇒ phi"

where it is presupposed that the type atom has been declared. The constructors
am, pr and se will be used in Λα for representing α-equated atoms, applications
and lambda-abstractions. Before the subset Λα can be carved out from Φ, how-
ever, some terminology from the nominal logic work needs to be adapted. For this
we overload the notion of permutation action, that is π·(−), and define abstractly
sets that come with a notion of permutation:

Definition 2 (PSets). A set X equipped with a permutation action π·(−) is
said to be a pset, if for all x ∈ X, the permutation action satisfies the following
properties:

(i) []·x = x
(ii) π1@π2·x = π1·(π2·x)
(iii) if π1 ∼ π2 then π1·x = π2·x

The informal notation x ∈ pset will be adopted whenever it needs to be indicated
that x comes from a pset. The idea behind the permutation action, roughly
speaking, is to permute all atoms in a given pset-element. For lists, tuples and
sets the permutation action is therefore defined point-wise:

lists: π·[] def= []
π·(x :: t) def= (π·x) :: (π·t)

tuples: π·(x1, . . . , xn) def= (π·x1, . . . , π·xn)
sets: π·X def= {π·x |x ∈ X}

1 This is one way of dealing with partial functions in Isabelle.
2 Employing (on the meta-level) a lambda-calculus-like notation for writing such func-

tions, one could in this grammar just as well have written λa.f instead of fn.
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The permutation action for Φ is defined over the structure as follows:

π·er def= er

π·am(a) def= am(π·a)
π·pr(t1, t2) def= pr(π·t1, π·t2)
π·se(fn) def= se(λa.π·(fn (π−1·a))

where a lambda-term (on the meta-level !) specifies how the permutation acts on
the function fn , namely as π·fn def= λa.π·(fn (π−1·a)).

When reasoning about Λα it will save us some work, if we show that certain
sets are psets and then show properties (abstractly) for pset-elements.

Lemma 1. The following sets are psets: A, Λ, Φ, and every set of lists (similarly
tuples and sets) containing elements from psets.

Proof. By routine inductions. ��

The most important notion of a pset-element is that of its support (a set of
atoms) and derived from this the notion of freshness [6]:

Definition 3 (Support and Freshness). Given an x ∈ pset, its support is
defined as:3

supp(x)
def
= {a | inf{b | (a b)·x �= x}} .

An atom a is said to be fresh for such an x, written a # x, provided a �∈ supp(x).

Note that as soon as one fixes the permutation action for elements of a set, the
notion of support is fixed as well. That means that Def. 3 defines the support for
lists, sets and tuples as long as their elements come from psets. Calculating the
support for terms in Λ is simple: supp(a) = {a}, supp(t1 t2) = supp(t1)∪supp(t2)
and supp(λa.t) = supp(t) ∪ {a}. Because of the functions in se(fn), the support
for terms in Φ is more subtle. However, later on, we shall see that for terms of
the subset Λα there is simple structural characterisation for their support, just
like for lambda-terms.

First, some properties of support and freshness are established.

Lemma 2. For all x ∈ pset,

(i) π·supp(x) = supp(π·x), and
(ii) a # π·x if and only if π−1·a # x.

Proof. (i) follows from the calculation:

π·supp(x) def= π·{a | inf{b | (a b)·x �= x}}
def= {π·a | inf{b | (a b)·x �= x}}
= {π·a | inf{π·b | (a b)·x �= x}} (∗1)
= {a | inf{b | (π−1·a π−1·b)·x �= x}}
= {a | inf{b |π·(π−1·a π−1·b)·x �= π·x}} (∗2)
= {a | inf{b | (a b)·π·x �= π·x}} def= supp(π·x) (∗3)

3 The predicate inf will stand for a set being infinite.
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where (∗1) holds because the sets {b| . . .} and {π·b| . . .} have the same number of
elements, and where (∗2) holds because permutations preserve (in)equalities; (∗3)
holds because π commutes with the swapping, that is π@(a b) ∼ (π·a π·b)@π.
(ii): For all π, a ∈ supp(x) if and only if π·a ∈ π·supp(x). The property follows
then from (i) and x ∈ pset. ��

Another important property is the fact that the freshness of two atoms w.r.t.
an pset-element means that a permutation swapping those two atoms has no
effect:

Lemma 3. For all x ∈ pset, if a # x and b # x then (a b)·x = x.

Proof. The case a = b is clear by Def. 2(i, iii). In the other case, the assump-
tion implies that both {c | (c a)·x �= x} and {c | (c b)·x �= x} are finite, and
therefore also their union must be finite. Hence the corresponding co-set, that
is {c | (c a)·x = x ∧ (c b)·x = x}, is infinite (recall that A is infinite). If one
picks from this co-set one element, which is from now on denoted by c and as-
sumed to be different from a and b, one has (c a)·x = x and (c b)·x = x. Thus
(c a)·(c b)·(c a)·x = x. The permutations (c a)(c b)(c a) and (a b) are equal, since
they have an empty disagreement set. Therefore, by using Def. 2(ii, iii), one can
conclude with (a b)·x = x. ��

A further restriction on psets will filter out all psets containing elements with
an infinite support.

Definition 4 (Fs-PSet). A pset X is said to be an fs-pset if every element in
X has finite support.

Lemma 4. The following sets are fs-psets: A, Λ, and every set of lists (similarly
tuples and finite sets) containing elements from fs-psets.

Proof. The support of an atom a is {a}. The support of a lambda-term t is the
set of atoms occurring in t. The support of a list is the union of the supports of
its elements, and thus finite for fs-pset-elements (ditto tuples and finite sets). ��

The set Φ is not an fs-pset, because some functions from A to Φ have an infi-
nite support. Similarly, some infinite sets have infinite support, even if all their
elements have finite support. On the other hand, the infinite set A has finite sup-
port: supp(A) = ∅ [6]. The main property of elements of fs-psets is that there is
always a fresh atom.

Lemma 5. For all x ∈ fs-pset, there exists an atom a such that a # x.

Proof. Since A is an infinite set and the support of x is by assumption finite,
there must be an a �∈ supp(x). ��

We mentioned earlier that we are not going to use all functions from A to
Φ for representing α-equated lambda-abstractions, but some specific functions.4

The following definition states what properties these functions need to satisfy.
4 This is in contrast to “weak” and “full” HOAS [15,4] which use the full function space

for representing lambda-abstractions.



44 C. Urban and C. Tasson

Definition 5 (Nominal Abstractions). An operation, written [−].(−), taking
an atom and a pset-element is said to be a nominal abstraction, if it satisfies the
following properties (where a �= b):

(i) π·([a].x) = [π·a].(π·x)
(ii) [a].x1 = [b].x2 if and only if either:

a = b ∧ x1 = x2, or
a �= b ∧ x1 = (a b)·x2 ∧ a # x2

The first property states that the permutation action needs to commute with
nominal abstractions. The second property ensures that nominal abstractions be-
have, roughly speaking, like lambda-abstractions. To see this reconsider the rules
≈λ1 and ≈λ2 given in Fig. 1, which can be used to decide when two lambda-terms
are α-equivalent. Property (ii) paraphrases these rules for nominal abstractions.
The similarities, however, do not end here: given a [a].x with x ∈ fs-pset, then
freshness behaves like (−) �∈ fv(−), as shown next:

Lemma 6. Given a �= b and x ∈ fs-pset, then

(i) a # [b].x if and only if a # x, and
(ii) a # [a].x

Proof. (i⇒): Since x ∈ fs-pset, supp([b].x) ⊆ supp(x) ∪ {b} and therefore the
support of [a].x must be finite. Hence (a, b, x, [b].x) is finitely supported and by
Lem. 5 there exists a c with (∗) c # (a, b, x, [b].x). Using the assumption a # [b].x
and the fact that c # [b].x (from ∗), Lem. 3 and Def. 5(i) give [b].x = (c a)[b].x =
[b].(c a)·x. Hence by Def. 5(ii) x = (c a)·x. Now c # x (from ∗) implies that
c # (c a)·x; and moving the permutation to the other side by Lem. 2(ii) gives
a # x. (i⇐): From (∗), c # [b].x and therefore by Lem. 2(ii) (a c)·c # (a c).([b].x),
which implies by Def. 5(i) that a # [b].((a c)·x). From (∗) c # x holds and from
the assumption also a # x; then Lem. 3 implies that x = (a c)·x, and one can
conclude with a # [b].x.
(ii): By c # x and c �= a (both from ∗) we can use (i) to infer c # [a].x. Further,
from Lem. 2(ii) it holds that (c a)·c # (c a)·[a].x. This is a # [c].(c a)·x using
Def. 5(i). Since c �= a, c # x and (c a)·x = (c a)·x, Def. 5(ii) implies that
[c].(c a)·x = [a].x. Therefore, a # [a].x. ��

The functions from A to Φ we identify next satisfy the nominal abstraction
properties. Let [a].t be defined as follows

[a].t def= se(λb. if a = b then t else if b # t then (a b)·t else er) . (2)

This operation takes two arguments: an a ∈ A and a t ∈ Φ. To see how this oper-
ation encodes an α-equivalence class, consider the α-equivalence class [λa.(a b)]α
and the corresponding Φ-term [a].pr(a, b) (for the moment we ignore the term
constructor se and only consider the function given by [a].pr(a, b)). The graph
of this function is as follows: the atom a is mapped to pr(a, b) since the first if-
condition is true. For b, the first if-condition obviously fails, but also the second
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one fails, because b ∈ supp(pr(a, b)); therefore b is mapped to er. For all other
atoms c, we have a �= c and c # pr(a, b); so the c’s are mapped by the function
to (a c)·pr(a, b), which is just pr(c, b). Clearly, the function returns er whenever
the corresponding lambda-term is not in the α-equivalence class—in this exam-
ple λb.(b b) �∈ [λa.(a b)]α; in all other cases, however, it returns an appropriately
“renamed” version of pr(a, b).

Lemma 7. The operation [−].(−) given for Φ in (2) is a nominal abstraction.

Proof. Def. 5(i) follows from the calculation:

π·[a].t
def= π·se(λb. if a = b then t else if b # t then (a b)·t else er)
def= se(λb. π·if a = π−1·b then t else if π−1·b # t then (a π−1·b)·t else er)
= se(λb. if a=π−1·b then π·t else if b#π·t then π·(a π−1·b)·t else er) (∗)
= se(λb. if a = π−1·b then π·t else if b # π·t then (π·a b)·π·t else er)
= se(λb. if π·a = b then π·t else if b # π·t then (π·a b)·π·t else er)
def= [π·a].(π·t)
where we use in (∗) the fact that π·if...then...else... = if...then π·...else π·...
and Lem 2(ii). In case a = b, Def. 5(ii) is by a simple calculation using exten-
sionality of functions. In case a �= b and Def. 5(ii⇒), the following formula can
be derived from the assumption by extensionality:

∀c. if a = c then t1 else if c # t1 then (a c)·t1 else er =
if b = c then t2 else if c # t2 then (b c)·t2 else er

Instantiating this formula once with a and once with b yields the two equations

t1 = if a # t2 then (b a)·t2 else er
t2 = if b # t1 then (a b)·t1 else er

Next, one distinguishes two cases where a # t2 and ¬ a # t2, respectively. In the
first case, t1 = (b a)·t2, which by Lem. 1 and Def. 2(iii) is equal to (a b)·t2; and
obviously a # t2 by assumption. In the second case t1 = er. This substituted
into the second equation gives t2 = if b # er then (a b)·er else er. Since
supp(er) = ∅, t2 = (a b)·er = er. Now there is a contradiction with the assump-
tion ¬ a # t2, because a# er. Def. 5(ii⇐) for a �= b is by extensionality and a
case-analysis. ��

Note that, in general, one cannot decide whether two functions from A to Φ are
equal; however Def. 5(ii) provides means to decide whether [a].t1 = [b].t2 holds:
one just has to consider whether a = b and then apply the appropriate property
in Def. 5(ii)—just like deciding the α-equivalence of two lambda-terms using
(−)≈(−).
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Now everything is in place for defining the subset Λα. It is defined inductively
by the rules:

a ∈ A
am(a) ∈ Λα

t1 ∈ Λα t2 ∈ Λα

pr(t1, t2) ∈ Λα

a ∈ A t ∈ Λα

[a].t ∈ Λα

using in the third inference rule the operation defined in (2). For Λα we have:

Lemma 8. Λα is:
(i) an fs-pset, and
(ii) closed under permutations, that is if x ∈ Λα then π·x ∈ Λα.

Proof. (i): The pset-properties of Φ carry over to Λα. The fs-pset property fol-
lows by a routine induction on the definition of Λα using the fact derived from
Lem. 6(i,ii) that for x ∈ fs-pset, supp([a].x) = supp(x)− {a}. (ii) Routine induc-
tion over the definition of Λα. ��

Taking Lem. 8(i) and Lem. 6 together gives us a simple characterisation of the
support of elements in Λα: supp(am(a)) = {a}, supp(pr(t1, t2)) = supp(t1) ∪
supp(t2) and supp([a].t) = supp(t) − {a}. In other words it coincides with what
one usually means by the free variables of a lambda-term.

Next, one of the main points of this paper: there is a bijection between Λ/≈
and Λα. This is shown by using the following mapping from Λ to Λα:

q(a) def= am(a) q(t1 t2)
def= pr(q(t1), q(t2)) q(λa.t) def= [a].q(t)

and the following lemma:

Lemma 9. t1 ≈ t2 if and only if q(t1) = q(t2).

Proof. By routine induction over definition of Λα. ��

Theorem 1. There is a bijection between Λ/≈ and Λα.

Proof. The mapping q needs to be lifted to α-equivalence classes (see [14]). For
this define q′([t]α) as follows: apply q to every element of the set [t]α and build
the union of the results. By Lem. 9 this must yield a singleton set. The result of
q′([t]α) is then the singleton. Surjectivity of q′ is shown by a routine induction
over the definition of Λα. Injectivity of q′ follows from Lem. 9 since [t1]α = [t2]α
for all t1 ≈ t2. ��

4 Structural Induction Principle

The definition of Λα provides an induction principle for free. However, this in-
duction principle is not very convenient in practice. Consider Fig. 2 showing a
typical informal proof involving lambda-terms—it is Barendregt’s proof of the
substitution lemma taken from [3]. This informal proof considers in the lambda-
case only binders z that have suitable properties (namely being fresh for x, y, N
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Substitution Lemma: If x �≡ y and x �∈ FV (L), then

M [x := N ][y := L] ≡ M [y := L][x := N [y := L]].

Proof: By induction on the structure of M .
Case 1: M is a variable.

Case 1.1. M ≡ x. Then both sides equal N [y := L] since x �≡ y.
Case 1.2. M ≡ y. Then both sides equal L, for x �∈ FV (L) implies

L[x := . . .] ≡ L.
Case 1.3. M ≡ z �≡ x, y. Then both sides equal z.

Case 2: M ≡ λz.M1. By the variable convention we may assume that z �≡ x, y and
z is not free in N, L. Then by induction hypothesis

(λz.M1)[x := N ][y := L] ≡ λz.(M1[x := N ][y := L])
≡ λz.(M1[y := L][x := N [y := L]])
≡ (λz.M1)[y := L][x := N [y := L]].

Case 3: M ≡ M1M2. The statement follows again from the induction hypothesis.
�

Fig. 2. The informal proof of the substitution lemma copied from [3]. In the lambda-
case, the variable convention allows Barendregt to move the substitutions under the
binder, to apply the induction hypothesis and then to pull out the substitutions

and L). If we would prove the substitution lemma by induction over the definition
of Λα, then we would need to show the lambda-case for all z, not just the ones
being suitably fresh. This would mean we have to rename binders and establish
a number of auxiliary lemmas concerning such renamings. In this section we will
derive an induction principle which allows a similar convenient reasoning as in
Barendregt’s informal proof.

For this we only consider induction hypotheses of the form P t x, where
P is the property to be proved; P depends on a variable t ∈ Λα (over which
the induction is done), and a variable x standing for the “other” variables or
context of the induction. Since x is allowed to be a tuple, several variables can be
encoded. In case of the substitution lemma in Fig. 2 the notation P t x should be
understood as follows: the induction variable t is M , the context x is the tuple
(x, y,N, L) and the induction hypothesis P is

λM. λ(x, y,N, L). M [x := N ][y := L] ≡M [y := L][x := N [y := L]]

where we use Isabelle’s convenient tuple-notation for the second lambda-abstrac-
tion [11]. So by writing P t x we just make explicit all the variables involved in
the induction.

From the inductive definition of Λα we can derive a structural induction prin-
ciple that requires to prove the lambda-case for binders that are fresh for the
context x—this is what the variable convention assumes.
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Lemma 10 (Induction Principle). Given an induction hypothesis P t x with
t ∈ Λα and x ∈ fs-pset, then proving the following:

• ∀x a. P am(a) x

• ∀x t1 t2. P t1 x ∧ P t2 x ⇒ P pr(t1, t2) x

• ∀x a. a # x ⇒ (∀t. P t x ⇒ P [a].t x)

gives ∀t x. P t x.

Proof. By induction over the definition of Λα. We need to strengthen the in-
duction hypothesis to ∀t π x. P (π·t) x, that means considering t under all
permutations π. Only the case for terms of the form [a].t will be explained. We
need to show that P (π·[a].t) x, where π·[a].t = [π·a].(π·t) by Def. 5(i). By IH,
(∗1) ∀π x. P (π·t) x holds. Since x, π·t, π·a ∈ fs-pset holds, one can derive by
Lem. 5 that there is a c such that (∗2) c # (x, π·t, π·a). From c # x and the
assumption, one can further derive (∀t. P t x ⇒ P [c].t x). Given (∗1) we have
that P ((c π·a) ::π · t) x holds and thus also P ([c].((c π·a) ::π · t)) x. Because
of (∗2) c �= π·a and c # π·t, and by Def. 5(ii) we have that [c].((c π·a) ::π · t =
[π·a].(π·t). Therefore we can conclude with P (π·[a].t) x. ��

With this we have achieved what we set out in the introduction: we have a
representation for α-equivalent lambda-terms based on names (for example [λa.t]α
is represented by [a].t) and we have an induction principle where the lambda-case
needs to be proved for binders that are fresh w.r.t. the variables in the context
of the induction, i.e., we can reason as if we had employed a variable convention.

5 Examples

It is reasonably straightforward to implement the results from Sec. 3 and 4 in
Isabelle/HOL: the set Φ is an inductive datatype, the pset and fs-pset properties
can be formulated as axiomatic type-classes [20], and the subset Λα can be defined
using the Isabelle’s typedef-mechanism. This section focuses on how reasoning
over Λα pans out in practice.

The first obstacle is that so far Isabelle’s datatype package is not general
enough to allow a direct definition of functions over Λα: although Λα contains
only terms of the form am(a), pr(t1, t2) and [a].t, pattern-matching in Isabelle
requires the injectivity of term-constructors. But clearly, [a].t is not injective.
Fortunately, one can work around this obstacle by, roughly speaking, defining
functions as inductive relations and then use the definite description operator
THE of Isabelle to turn the relations into functions.

We give an example: capture-avoiding substitution can be defined as a four-
place relation (the first argument contains the term into which something is being
substituted, the second the variable that is substituted for, the third the term
that is substituted, and the last contains the result of the substitution):
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consts Subst :: "(Λα × A× Λα × Λα) set"
inductive Subst
intros
s1: "(am(a),a,t’,t’)∈Subst"
s2: "a �=b =⇒ (am(b),a,t’,am(b))∈Subst"
s3: "�(s1,a,t’,s1’)∈Subst; (s2,a,t’,s2’)∈Subst�

=⇒ (pr(s1,s2),a,t’,pr(s1’,s2’))∈Subst"
s4: "�b#(a,t’);(s,a,t’,s’)∈Subst� =⇒ ([b].s,a,t’,[b].s’)∈Subst"

While on first sight this relation looks as if it defined a non-total function, one
should be careful! Clearly, the lambda-case (i.e. ([b].s,a,t’,[b].s’)∈ Subst)
holds only under the precondition b#(a,s)—roughly meaning that a �= b and
b cannot occur freely in s. However, Subst does define a total function, because
Subst is defined over α-equivalent lambda-terms (more precisely Λα), not over
lambda-terms. We can indeed show “totality”:

Lemma 11. For all t1, a, t2, ∃t3. (t1, a, t2, t3) ∈ Subst .

Proof. The proof in Isabelle/HOL uses the induction principle derived in Thm. 10.
It is as follows:
proof (nominal induct t1)

case (1 b) (* variable case *)
show "∃t3. (am(b),a,t2,t3)∈Subst" by (cases "b=a") (force+)

next
case (2 s1 s2) (* application case *)
thus "∃t3. (pr(s1,s2),a,t2,t3)∈Subst" by force

next
case (3 b s) (* lambda case *)
thus "∃t3. ([b].s,a,t2,t3)∈Subst" by force

qed

The induction method nominal induct brings the induction hypothesis automat-
ically into the form

(λt1 λ(a, t2). ∃t3.(t1, a, t2, t3) ∈ Subst)︸ ︷︷ ︸
P

t1︸︷︷︸
t

(a, t2)︸ ︷︷ ︸
x

by collecting all free variables in the goal, and then it applies Thm. 10. This
results in three cases to be proved—variable case, application case and lambda-
case. The requirement that the context (a, t2) is a fs-pset-element is enforced by
using axiomatic type-classes and relying on Isabelle’s type-system. Note that in
the lambda-case it is important to know that the binder b is fresh for a and t2.
The proof obligation in this case is:

b # (a, t2) ∧ ∃t3.(s, a, t2, t3) implies ∃t3.([b].s, a, t2, t3)

which can be easily be shown by rule s4. As a result, the only case in which we
really need to manually “interfere” is in the variable case where we have to give
Isabelle the hint to distinguish the cases b = a and b �= a. ��
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lemma substitution lemma:

assumes a1: "x �= y"

and a2: "x# L"

shows "M[x:=N][y:=L] = M[y:=L][x:=N[y:=L]]"

proof (nominal induct M)

case (1 z) (* case 1: variables *)

have "z=x ∨ (z�=x ∧ z=y) ∨ (z�=x ∧ z�=y)" by force

thus "am(z)[x:=N][y:=L] = am(z)[y:=L][x:=N[y:=L]]"

using a1 a2 forget by force

next

case (2 z M1) (* case 2: lambdas *)

assume ih: "M1[x:=N][y:=L] = M1[y:=L][x:=N[y:=L]]"

assume f1: "z# (L,N,x,y)"

from f1 fresh fact1 have f2: "z# N[y:=L]" by simp

show "([z].M1)[x:=N][y:=L]=([z].M1)[y:=][x:=N[y:=L]]" (is "?LHS=?RHS")

proof -

have "?LHS = [z].(M1[x:=N][y:=L])" using f1 by simp

also have "...= [z].(M1[y:=L][x:=N[y:=L]])" using ih by simp

also have "...= ([z].(M1[y:=L]))[x:=N[y:=L]]" using f1 f2 by simp

also have "...= ?RHS" using f1 by simp

finally show "?LHS = ?RHS" by simp

qed

next

case (3 M1 M2) (* case 3: applications *)

thus "pr(M1,M2)[x:=N][y:=L]=pr(M1,M2)[y:=L][x:=N[y:=L]]" by simp

qed

Fig. 3. An Isabelle proof using the Isar language for the substitution lemma shown in
Fig. 2. It uses the following auxiliary lemmas: forget which states that x# L implies
L[x:=T]=L, needed in the variable case. This case proceeds by stating the three subcases
to be considered and then proving them automatically using the assumptions a1 and a2.
The lemma fresh fact1 in the lambda-case shows from z# (L,N,x,y) that z# N[x:=L]

holds. This lemma is not explicitly mentioned in Barendregt’s informal proof, but it is
necessary to pull out the substitution from under the binder z. This case proceeds as
follows: the substitutions on left-hand side of the equation can be moved under the
binder z; then one can apply the induction hypothesis; after this one can pull out the
second substitution using z# N[y:=L] and finally move out the first substitution using
z# (L,N,x,y). This gives the right-hand side of the equation

Together with a uniqueness-lemma (whose proof we omit) asserting that

∀s1s2.(t1, a, t2, s1) ∈ Subst∧ (t1, a, t2, s2) ∈ Subst⇒ s1 = s2 (3)

one can prove the stronger totality-property, namely for all t1, a, t2:

∃!t3. (t1, a, t2, t3) ∈ Subst . (4)
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Having this at our disposal, we can use Isabelle’s definite description operator
THE and turn capture-avoiding substitution into a function; we write this func-
tion as (−)[(−) := (−)], and establish the equations:

am(a)[a := t] = t
am(b)[a := t] = am(b) provided a �= b

pr(s1, s2)[a := t] = pr(s1[a := t], s2[a := t])
([a].s)[a := t] = [a].(s[a := t]) provided b # (a, t)

(5)

These equations can be supplied to Isabelle’s simplifier and one can reason about
substitution “just like on paper”. For this we give in Fig. 3 one simple example
as evidence—giving the whole formalised Church-Rosser proof from [3, p. 60–62]
would be beyond the space constraints of this paper. The complete formalisa-
tions of all the results, the Church-Rosser and strong normalisation proof is at
http://www.mathematik.uni-muenchen.de/∼urban/nominal/ .

6 Related Work

There are many approaches to formal treatments of binders; this section describes
the ones from which we have drawn inspiration.

Our work uses many ideas from the nominal logic work by Pitts et al [16,6].
The main difference is that by constructing, so to say, an explicit model of the
α-equated lambda-terms based on functions, we have no problem with the axiom-
of-choice. This is important. For consider the alternative: if the axiom-of-choice
causes inconsistencies, then one cannot build a framework for binding on top of
Isabelle/HOL with its rich reasoning infrastructure. One would have to inter-
face on a lower level and has to redo the effort that has been spend to develop
Isabelle/HOL. This was attempted in [5], but the attempt was later abandoned.

Closely related to our work is [9] by Gordon and Melham; it has been applied
and further developed by Norrish [13]. This work states five axioms characterising
α-equivalence and then shows that a model based on de-Bruijn indices satisfies the
axioms. This is somewhat similar to our approach where we construct explicitly
the set Λα. In [9] they give an induction principle that requires in the lambda-case
to prove (using their notation)

∀x t. (∀ v. P (t[x := VAR v])) =⇒ P (LAM x t)

That means they have to prove P (LAM x t) for a variable x for which nothing
can be assumed; explicit α-renamings are then necessary in order to get the
proof through. This inconvenience has been alleviated by the version of structural
induction given in [8] and [12], which is as follows

∃X. FINITE X ∧ (∀ x t. x �∈ X ∧ P t =⇒ P (LAM x t))

For this principle one has to provide a finite set X and then has to show the
lambda-case for all binders not in this set. This is very similar to our induction
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principle, but we claim that our version based on freshness fits better with in-
formal practise and can make use of the infrastructure of Isabelle (namely the
axiomatic type-classes enforce the finite-support property).

Like our Λα, HOAS uses functions to encode lambda-abstractions; it comes
in two flavours: weak HOAS [4] and full HOAS [15]. The advantage of full HOAS
over our work is that notions such as capture-avoiding substitution come for
free. We, on the other hand, load the work of such definitions onto the user.
The advantage of our work is that we have no difficulties with notions such
as simultaneous-substitution (a crucial notion in the usual strong normalisa-
tion proof), which in full HOAS seem rather difficult to encode. Another ad-
vantage we see is that by inductively defining Λα one has induction for “free”,
whereas induction requires considerable effort in full HOAS. The main difference
of our work with weak HOAS is that we use some specific functions to repre-
sent lambda-abstractions; in contrast, weak HOAS uses the full function space.
This causes problems known by the term “exotic terms”—essentially junk in the
model.

7 Conclusion

The paper [2], which sets out some challenges for automated proof assistants,
claims that theorem proving technologies have almost reached the threshold where
they can be used by the masses for formal reasoning about programming lan-
guages. We hope to have pushed with this paper the boundary of the state-of-
the-art in formal reasoning closer to this threshold. We showed all our results
for the lambda-calculus. But the lambda-calculus is only one example. We en-
visage no problems generalising our results to other term-calculi. In fact, there
is already work by Bengtson adapting our results to the π-calculus. We also do
not envisage problems with providing a general framework for reasoning about
binders based on our results. The real (implementation) challenge is to inte-
grate these results into Isabelle’s datatype package so that the user does not see
any of the tedious details through which we had to go. For example one would
like that the subset construction from a bigger set is done completely behind the
scenes. Deriving an induction principle should also be done automatically. Ideally,
a user just defines an inductive datatype and indicates where binders are—the
rest of the infrastructure should be provided by the theorem prover. This is fu-
ture work.
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Abstract. We describe the design and implementation of a higher-order
tabled logic programming interpreter where some redundant and infinite
computation is eliminated by memoizing sub-computation and re-using
its result later. In particular, we focus on the table design and table access
in the higher-order setting where many common operations are undecid-
able in general. To achieve a space and time efficient implementation, we
rely on substitution factoring and higher-order substitution tree index-
ing. Experimental results from a wide range of examples (propositional
theorem proving, refinement type checking, small-step evaluator) demon-
strate that higher-order tabled logic programming yields a more robust
and more powerful proof procedure.

1 Introduction

Efficient redundancy elimination techniques such as loop detection or tabling
play an important role in the success of first-order theorem proving and logic
programming systems. The central idea of tabling is to eliminate infinite and
redundant computation by memoizing subcomputation and reusing its results
later on. Up to now, higher-order theorem proving and logic programming sys-
tems lack such memoization techniques, thereby limiting their success in many
applications. This paper describes the design and implementation of tabling for
the higher-order logic programming systems Twelf [16,18] and presents a broad
experimental evaluation demonstrating the feasibility and benefits of tabling in
the higher-order setting.

Higher-order logic programming as Twelf [16] or λProlog [12] extends first-
order logic programming along two orthogonal dimensions: First, we allow dy-
namic assumptions to be added and used during proof search. Second, we allow
a higher-order term language which contains terms defined via λ-abstraction.
Moreover, execution of a query will not only produce a yes or no answer, but
produce a proof term as a certificate which can be checked independently. These
features make higher-order logic programming an ideal generic framework for
implementing formal systems and executing them.

Most recently, higher-order logic programming has been successfully em-
ployed in several certified code projects, where programs are equipped with a
certificate (proof) that asserts certain safety properties [3,5,2]. The safety policy
can be represented as a higher-order logic program and the higher-order logic
programming interpreter can be used to execute the specification and generate a
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certificate that a given program fulfills a specified safety policy. However, these
applications also demonstrate that present technology is inadequate to permit
prototyping and experimenting with safety and security policies. Many specifi-
cations are not directly executable and long response times lead to slow develop-
ment of safety policies in many applications. In [19], we outline a proof-theoretic
foundation for tabled proof search to overcome some of these deficiencies, by
memoizing sub-computations and re-using its result later. This paper focuses
on the realization and implementation of a tabled higher-order logic program-
ming interpreter in practice and presents a broad experimental evaluation. This
work is inspired by the success of memoization techniques in tabled first-order
logic programming, namely the XSB system [24] where it has been applied in
different problem domains such as implementing recognizers for grammars [27],
representing transition systems CCS, writing model checkers [6].

In the higher-order setting, tabling introduces several complications. First, we
must store intermediate goals together with dynamic assumptions which may be
introduced during proof search. Second, many operations necessary to achieve ef-
ficient table access such unifiability or instance checking, are undecidable in gen-
eral for higher-order terms. Our approach relies on linear higher-order patterns
[21] and adapts higher-order substitution tree indexing [19] to permit lookup
and possible insertion of terms to be performed in a single pass. To avoid re-
peatedly scanning terms when reusing answers, we adapt substitution factoring
[22]. Third, since storing and reusing fully explicit proof terms to certify tabled
proofs is impractical due to their large size, we propose a compact proof witness
representation inspired by [13] which only keeps track of a proof footprint. As
the experimental results from a wide range of examples (propositional theorem
proving, refinement type checking, small-step evaluation) demonstrate, tabling
leads to a more robust and more powerful higher-order proof search procedure.

The paper is organized as follows: In Sec. 2 we introduce higher-order logic
programming. In Sec. 3 we describe the basic principles behind table design
guided by substitution factoring and linearization of higher-order terms. This
is followed by higher-order term indexing (Sec. 4), and compact proof witness
generation (Sec. 5). Experimental results are discussed in Sec. 6. We conclude
with a discussion of related work (Sec. 7).

2 Motivating Example: Sequent Calculus

To illustrate the proof search problems and challenges in higher-order logic pro-
gramming, we introduce a sequent calculus which includes implication, conjunc-
tion, and universal quantification. This logic can be viewed as a simple example
of a general safety logic. It is small, but expressive enough that it allows us
to discuss the basic principles and challenges of proof search in this setting. It
can also easily be extended to a richer fragment which includes the existential
quantifier, disjunction and falsehood. We will focus here on the higher-order
logic programming language Elf [16], which is based on the logical framework
LF [9]. We will briefly discuss the representation of a first-order logic in the
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logical framework LF, and then illustrate how higher-order logic programming
interpreter proceeds and what problems arise. We can characterize this fragment
of first-order logic as follows, where P represents atomic propositions.

Propositions A,B,C := P | true | A ∧B | A ⊃ B | ∀x.A
Context Γ := . | Γ,A

The main judgment to describe provability is: Γ =⇒ A which means proposi-
tion A is provable from the assumptions in Γ . While A, B, C denote propositions,
we will use T to denote terms. The rules for the intuitionist sequent calculus are
then straightforward.

Γ =⇒ A Γ =⇒ B
Γ =⇒ A ∧B

andR
Γ, A ∧B, A =⇒ C

Γ, A ∧B =⇒ C
andL1

Γ, A ∧ B, B =⇒ C

Γ, A ∧ B =⇒ C
andL2

Γ, A =⇒ B

Γ =⇒ A ⊃ B
impR

Γ, A ⊃ B =⇒ A Γ, A ⊃ B, B =⇒ C

Γ, A ⊃ B =⇒ C
impL

Γ, A =⇒ A
axiom

Γ =⇒ [a/x]A a is new
Γ =⇒ ∀x.A

allR
Γ,∀x.A, [T/x]A =⇒ C

Γ,∀x.A =⇒ C
allL

The logical framework LF is ideally suited to support the representation and
implementation of logical systems such as the intuitionist sequent calculus above.
The representation of formulas and judgments follows [9]. We will distinguish
between propositions (conc A) we need to prove and propositions (hyp A) we
assume. The main judgment to show that a proposition A is provable from
the assumptions A1, . . . , An can be then viewed as: hyp A1, . . . , hyp An =⇒
conc A. This will allow a direct representation within the logical framework LF
and the higher-order logic program describing the inference rules is given next.

axiom : conc A
← hyp A.

andR : conc (A and B)
← conc A
← conc B.

andL1 : conc C
← hyp (A and B)
← (hyp A → conc C).

andL2 : conc C
← hyp (A and B)
← (hyp B → conc C).

impR : conc (A imp B)
← (hyp A → conc B).

impL : conc C
← hyp (A imp B)
← conc A
← (hyp B → conc C).

allR : conc (forall λx.A x)
← Πx:i.conc (A x).

allL : conc C
← hyp (forall λx.A x)
← (hyp (A T )→ conc C).

There are two key ideas which make the encoding of the sequent calculus
elegant and direct. First, we use higher-order abstract syntax to encode the
bound variables in the universal quantifier. We can read the allR clause as fol-
lows: To prove conc (forall λx.A.x) we need to prove for all parameters x, that
conc (A x) is true, where the Π-quantifier denotes the universal quantifier in
the meta-language. Second, we use the power of dynamic assumptions which
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higher-order logic programming provides, to eliminate the need to manage as-
sumptions in a list explicitly. To illustrate, we consider the clause impR. To prove
conc (A imp B), we prove conc B assuming hyp A. In other words, the proof for
conc B may use the dynamic assumption hyp A.

When we need to access an assumption from the context, we simply try to
prove hyp A using the axiom clause axiom. All the left rules andL1, andL2, impL
and allL follow the same pattern. The andL1 rule can be read operationally as
follows: we can prove conc C, if we have an assumption hyp (A and B) and we
can prove conc C under the assumption hyp A.

For the propositional fragment of the sequent calculus, proof search is decid-
able. Therefore, we expect that simple examples such as conc ((A and B) imp B)
should be easily be provable. Unfortunately, an execution with a depth-first
search interpreter will lead to an infinite loop, as we will continue to apply the
andL1 rule, and generate the following subgoals.

Dynamic assumption Goal Justification
A:o, B:o � conc ((A and B) imp B)
A:o, B:o, h1:hyp (A and B) � conc B impR

A:o, B:o, h1:hyp (A and B), h2:hyp A � conc B andL1

A:o, B:o, h1:hyp (A and B), h2:hyp A, h3:hyp A � conc B loop

To prevent looping, we need to detect two independent problems. First,
we need to prevent adding dynamic assumptions, which are already present
in some form. However, this is only part of the solution, since we also need
to detect that we keep trying to prove the goal conc B. In this paper, we
will propose the use of tabling in higher-order logic programming to detect
loops. The essential idea is to memoize subgoals together with its dynamic
assumptions and re-use their results later. This will prevent that the compu-
tation will be trapped in infinite paths and can potentially improve perfor-
mance by re-using the result of previous proofs. Note that although the sub-
goals encountered in the previous example were all ground, and did not con-
tain any existential variables, this may in general not be the case. Consider
for the slightly different version of the previous example which corresponds to
∃y′.∀x.∃y.((Q y′) ∧ (P x)) ⊃ (P y)):

exists λy′. forall λx. exists λy. (((Q y′) and (P x)) imp (P y))

We first remove the existential quantifier by introducing an existential vari-
able Y ′. Next, we eliminate the allR-rule by introducing a new parameter x. Then
we remove the second existential quantifier, by introducing a second existential
variable Y . Existential variables (or logic variables) such as Y ′ and Y are subject
to higher-order unification during proof search. Parameter dependencies such as
that the existential Y is allowed to depend on the parameter x, while Y ′ is not,
is naturally enforced by allowing higher-order terms and existential variables
which can be instantiated with functions. Using the impR-rule, we introduce the
assumption hyp ((Q Y ′) and (P x)), and the sequence of subgoals we will then
encounter by continuing to apply the andL1-rule is:
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x:i, u:hyp ((Q Y ′) and (P x)) � conc (P (Y x))
x:i, u:hyp ((Q Y ′) and (P x)), u1:hyp (Q Y ′) � conc (P (Y x)) andL1

x:i, u:hyp ((Q Y ′) and (P x)), u1:hyp (Q Y ′), u2:hyp (Q Y ′) � conc (P (Y x)) loop

As in the previous example, we will end up in an infinite loop, however the
subgoals now contain existential variables Y ′ and Y .

Although it is possible to design specialized propositional sequent calculus
with loop detection [10], this is often non-trivial and complicates the implemen-
tation of the proof search procedure. Moreover, proving the correctness of such
a more refined propositional calculus, is non-trivial, because we need to reason
explicitly about the structure of memoization. Finally, the certificates, which
are produced as a result of the execution, are larger and contain references to
the explicit memoization data-structure. This is especially undesirable in the
context of certified code where certificates are transmitted to and checked by a
consumer, as sending larger certificates takes up more bandwidth and checking
them takes more time. Tabled logic programming provides generic memoiza-
tion support for proof search and allows us to factor out common sub-proofs
during proof search, thereby potentially obtaining smaller and more compact
certificates. Since tabled logic programming terminates for programs with the
bounded term-size property, we are also able to disprove certain statements.
This in turn helps the user to debug the specification and implementations and
increases the expressive power and usefulness of the overall system. In the case
of the propositional sequent calculus, we obtain a decision procedure for free.

3 Tabling in Higher-Order Logic Programming

Tabling methods eliminate redundant and infinite computation by memoizing
subgoals and their answers in a table and re-using the results later. Our search
is based on the multi-stage strategy by Tamaki and Sato [25], which differs only
insignificantly from SLG resolution [4] for first-order logic programs without
negation. Tabled search proceeds in stages and relies on a table to keep track of
all the subgoals encountered, and answers which were derived for them. When
trying to prove a goal G from the dynamic assumptions Γ , we first check if there
exists a variant of Γ � G in the table. If yes, then we suspend the computation
and backtrack. If no, we add Γ � G to the table, and proceed proving the goal
using the dynamic assumptions in Γ and the program clauses. If we derive an
answer for a goal Γ � G, then this answer is added to the table. This first stage
terminates, once all possible search paths have been explored, and the leafs in
the search tree are either failure, success, or suspended nodes. In the next stage,
we will re-consider the suspended nodes in the search tree, and try to grow the
tree further by re-using answers of previous stages from the table. For a more
detailed description of the search we refer the reader to [19,20]. Here we will
discuss the basic design principles underlying tabled search, how to manage and
access the table efficiently in the higher-order setting. These principles are largely
independent of the actual strategy of how to reuse answers from the table. There
are three main table access operations:
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Call CheckInsert. When we encounter a tabled subgoal, we need to check
whether this subgoal is redundant. We check, if there exists a table entry
Γ ′ � G′ s.t. Γ � G (the current goal) is a variant (or instance) of the already
existing entry Γ ′ � G′.

Answer CheckInsert. When an answer together with its proof witness is de-
rived for a tabled subgoal, we need to check whether this answer has been
already entered into the table answer list for this particular subgoal. If it has
then the search fails, otherwise the answer together with its proof witness is
added to the answer list, and may be re-used in later stages.

Answer Backtracking. When a tabled subgoal is encountered, and answers
for it are available from the table, we need to backtrack through all the
answers.

A naive implementation can result in repeatedly rescanning terms and large
table size thereby degrading performance considerably and rendering tabling
impractical. This problem has been named table access problem in first-order
logic programming [22]. In this section, we will describe design and implemen-
tation solution, which shares common structure and common operations in the
higher-order setting using substitution factoring, linear higher-order patterns,
higher-order substitution tree indexing, and compact proof witnesses.

3.1 Design of Memo-Table

The table records intermediate goals Γ � G together with answers and proof wit-
nesses. As we have seen in the previous example, intermediate goals may refer
to existential (or logic variables) which will be instantiated during proof search.
In an implementation, existential variables are typically realized via references
and destructive updates. This achieves that instantiations of existential variables
are propagated immediately. On the other hand, we may need to undo these in-
stantiations for existential variables upon backtracking. This is usually achieved
by keeping a separate trail of existential variables and their corresponding in-
stantiations. As a consequence, we must take special care in an implementation
when memoizing and suspending the computation of intermediate goals. When
suspending nodes, we copy the trail to re-instantiate the existential variables
adapting ideas from [8]. Before storing intermediate goals in a memo-table, we
must abstract over all the existential variables in a goal, to avoid pollution of
the table. To illustrate recall the previous subgoal:

x:i, u:hyp ((Q Y ′) and (P x)) � conc (P (Y x))

To store this subgoal in a table, we abstract over the existential variables Y ′

and Y , to obtain the following table entry:

Δ ; Γ � G
y′ : i, y : i→ i ; x:i, u:hyp ((Q y′) and (P x)) � conc (P (y x))

Δ refers to a context describing existential variables, Γ describes the context
for the bound variables and dynamic assumptions and G describes the goal we
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are attempting to prove. To allow easy comparison of goals G with dynamic
assumptions Γ modulo renaming of the variables in Δ and Γ , we represent
terms internally using explicit substitutions [1] and de Bruijn indices.

Once this subgoal is solved and we inferred a possible instantiation for the
existential variables in Δ, we will add the answer to the table. The answer is
a substitution for the existential variables in Δ. In the previous example, the
correct instantiation for Y is λx.x, while the existential variable Y ′ is uncon-
strained. As we see in this example, not all instantiations for existential variables
need to be ground. To avoid pollution of the answer substitution in the table,
we again must abstract over the existential variables in the computed answer,
which leads to the following abstracted answer substitution:

y′:i � (y′/y′, λx.x/y) : y′:i, y:i→ i

In general, the invariant about table entries and answer substitutions are:

Table entry Answer substitution
Δ;Γ � G Δ′ � θ : Δ

The design supports naturally substitution factoring based on explicit sub-
stitutions [22]. With substitution factoring the access cost is proportional to the
size of the answer substitution rather than the size of the answer itself. It guar-
antees that we only store the answer substitutions, and create a mechanism of
returning answers to active subgoals that takes time linear in the size of the an-
swer substitution θ rather than the size of the solved query [θ]G. In other words,
substitution factoring ensures that answer tables contain no information that
also exists in their associated call table. Operationally, this means that the con-
stant symbols in the subgoal need not be examined again during either answer
checkInsert or answer backtracking. For this setup to work cleanly in the higher-
order setting, it is crucial that we distinguish between existential variables in Δ
and bound variables and assumptions in Γ .

To support selective memoization, we provide a user keyword which allows
the user to mark predicates to be tabled or not. If the predicate in G is not
marked tabled, then nothing will change. We design the tabled search in such
a way that it is completely separate from non-tabled search. The only over-
head in non-tabled computation will be a check whether a given predicate is
tabled.

3.2 Optimization: Linearization

A common optimization for first-order terms is linearization which enforces that
every existential variable occurs only once. This means that any necessary con-
sistency checks can be delayed and carried out in a post-processing step. In the
higher-order setting, we extend this linearization step to eliminate any compu-
tationally expensive checks involving bound variables and enforce that terms fall
into the linear higher-order pattern fragment, where every existential variable
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occurs only once and must be applied to all the bound variables. Linear higher-
order patterns refine the notion of higher-order patterns[11,17] further and factor
out any computationally expensive parts. As shown in [21], many terms encoun-
tered fall into this fragment and linear higher-order pattern unification performs
well in practice. Consider again, the previous example:

Δ ; Γ � G
y′ : i, y : i→ i ; x:i, u:hyp (Q x) � conc (P (y x))

Both occurrences of the existential variable y and y′ are higher-order pat-
terns, since they are applied to a distinct set of bound variables. However,
the variable y′ and y are not linear higher-order patterns, since neither is ap-
plied to all the bound variables which occur in Γ . During linearization, we
will translate the goal into a linear higher-order pattern together with resid-
ual equations which factor out non-linear sub-parts. We abbreviate y1 x u as
y1[id].

Δ ; Γ � G
y1 : i→ i→ i,
y2 : i→ i→ i
y′ : i, y : i→ i ; x:i, u:hyp ((Q y1[id]) and (P x)) � conc (P (y2[id]))

together with the residual equations R: y1[id] .= y′ ∧ y2[id] .= y x
This motivates the final table design:

Table entry Residual Equ. Answer substitution
Δ;Γ � G Δ;Γ � R Δ′ � θ : Δ

where G is a linear higher-order pattern, Γ denotes the bound variables and
dynamic assumptions and Δ describes the existential variables occurring in G
and Γ . This linearization step can be done together with abstraction and stan-
dardization over the existential variables in goal, hence only one pass through
the term is required.

3.3 Optimization: Strengthening

We have seen previously that strengthening of the dynamic assumptions is nec-
essary to prevent some loops. We previously concentrated on strengthening by
removing duplicate assumptions from the dynamic context. However, in general
we use in addition two other forms of strengthening based on a type-dependency
analysis called subordination [26]. First, we eliminate dynamic assumption in Γ
which cannot possibly contribute to a proof of G. Second, we eliminate bound
variable dependencies in existential variable. Strengthening allows us to detect
more loops during proof search and eliminate more redundant computation. Fur-
thermore, it allows us to store some information more compactly.
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4 Higher-Order Term Indexing for Tabling

To achieve an efficient and successful tabled logic programming interpreter, it is
crucial to support efficient indexing of terms in the table to facilitate compact
storage and rapid retrieval of table entries. Although a wide range of indexing
techniques exists in the first-order setting, indexing techniques for higher-order
terms are almost not existent. The main problem in handling higher-order terms
lies in the fact that most operations such as testing whether two terms are unifi-
able, computing the most specific generalization of two terms etc. are undecidable
in the higher-order setting.

We propose substitution tree indexing for linear higher-order patterns. In
[19,20], we give a formal description for computing the most specific generaliza-
tion of two linear higher-order patterns, for inserting terms in the index and for
retrieving a set of terms from the index s.t. the query is an instance of the term
in the index, and show correctness. Here we will concentrate on the adaptations
to support tabling. The main algorithm of building a substitution tree follows
the description in [23]. To illustrate higher-order substitution tree indexing let
us consider the following set of linear higher-order patterns.

Goal Residual Equation
conc (forall λz. ((P (f x) y1[id]) and Q z )) y1[id] .= y[x/x]
conc (forall λz. ((P z y1[id]) and Q y2[id])) y1[id] .= y′ ∧ y2[id] .= y[x/x]
conc (forall λz. ((P z y1[id]) and Q y2[id])) y1[id] .= y[id] ∧ y2[id] .= y′

conc (forall λz. ((P (f z) y1[id]) and Q (f y2[id])))) y1[id] .= y[id] ∧ y2[id] .= y[x/x]

For simplicity, we assume each of the goals has the same dynamic context Γ =
x:i, u:hyp ((P y0[id]x) and (Q x) and the context Δ describing the existential
variables contains y0, y1, y2, y, and y′.

A higher-order substitution tree is a tree whose nodes are substitutions to-
gether with a context Δi which describes the existential variables occurring in
the node. For example, the substitution in the top-most node contains the ex-
istential variable y1, while the node with the substitution f(i3[id])/i1 does not
refer to any existential variable. It is crucial that we ensure that any internal
variable i which is applied to all the variables in whose scope it occurs in. How-
ever, for any operation on the index, we must treat internal existential variables
i differently than globally existential variables y. Internal existential variables i
will be instantiated at a later point as we traverse the tree. While existential
variables defined in Δi are potentially subject to “global” instantiation, if we
check whether the current goal is an instance of a table entry. The intention is
that all the Δi along a given path together with the Δn at the leaf constitutes
the full context of existential variables Δ. As there are no typing dependencies
among the variables in Δ and all the variables in Δ are linear, they can be
arbitrarily re-ordered. Distributing Δ along the nodes in the substitution tree,
makes it easier to guarantee correctness in an implementation where variables
are represented via de Bruijn indices. Below we show the substitution tree for
the given set of linear higher-order patterns. Each table predicate will have its
own substitution tree.
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y1: . . . forall λz.P (i1[id], y1[id]) and Q(i2[id])

· f(i3[id])/i1

y2: . . .
z/i3

f(y2[id])/i2,

y1[id] .= y x
y2[id] .= y x

· x/i3,
z/i2

y1[id] .= y[id]

y2: . . .
z/i1,

y2[id]/i2

y1[id] .= y[id]
y2[id] .= y′

y1[id] .= y′

y2[id] .= y[id]

At the leafs, we will store linear residual equations, dynamic assumptions
Γ , the existential variables Δ′ occurring in the residual equations and in Γ , as
well as a pointer to the answer list. Note we omitted the two latter parts in
the figure above. By composing the substitutions along a path and collecting
all the existential variables Δi along this path, we will obtain the table entry
Δ;Γ � G together with its residual equations. By composing the substitutions
in the left-most branch, we obtain the term (4).

We distinguish between internal existential variables i which are defined in
the context Σ and “global” existential variables u and v which are defined in
the context Δ. A higher-order substitution tree is an ordered tree and is defined
as follows:

1. A tree is a leaf node with substitution ρ such that Δn � ρ : Σ.
2. A tree is a node with substitution ρ such that (Δj , Σ) � ρ : Σ′ and children

nodes N1, . . . , Nn where each child Node Ni has a substitution ρi such that
(Δi, Σi) � ρi : Σ.

For every path from the top node ρ0 where (Δ0, Σ1) � ρ0 : Σ0 to the leaf
node ρn, we have Δ = Δ0 ∪ Δ1 ∪ . . . ∪ Δn and Δ � ρn ◦ ρn−1 ◦ . . . ◦ ρ0 : Σ0.
In other words, there are no internal existential variables left after we compose
all the substitutions ρn up to ρ0. As there are no typing dependencies among
the variables in Σ and all the variables are linear, they can be arbitrarily re-
ordered. At the leaf, we also store a list of answer substitutions θ, where we have
Δ′ � θ : Δ and the dynamic context Γ .

5 Compact Proof Witnesses

Generating certificates as evidence of a proof is essential if we aim to use the
tabled logic programming interpreter as part of a certifying code infrastruc-
ture. Moreover, it is helpful in guaranteeing correctness of the tabled search and
debugging the logic programming interpreter. The naive solution to generate
certificates when tabling intermediate sub-goals and their results, is to store the
corresponding proof term together with the answer substitution in the table.
However this may take up considerable space and results in high computational
overhead, due to their large size[14]. Hence it is impractical to store the full proof
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term. In our implementation, we only store a footprint of the proof from which it
is possible to recover the full proof term. Essentially we just keep track of the id
of the applied clause thereby obtaining a string of numbers which corresponds
to the actual proof. This more compact proof witness can be de-compressed
and checked by building and re-running a deterministic higher-order logic pro-
gramming engine. This idea to represent proof witnesses as a string of (binary)
numbers is inspired by [13].

6 Experimental Results

In this section, we discuss some experimental results with different examples.
All experiments are done on a machine with the following specifications: 2.4GHz
Intel Pentium Processor, 512 MB RAM. We are using SML of New Jersey 110.0.7
under Linux Red Hat 9. Times are measured in seconds.

6.1 Propositional Theorem Proving

We report on experiments with an implementation of the propositional sequent
calculus where we chain all invertible rules together and use focusing for the non-
deterministic choices We will only memoize subgoals during focusing, thereby
controlling the table size and employ strengthening. The implementation of the
sequent calculus within Twelf will not be executable using a logic programming
interpreter based on depth-first search, however it is possible to use the iterative
deepening theorem prover which is part of the meta-theorem prover [18]. Iterative
deepening will stop after finding the first solution, hence we compare it to finding
the first solution using tabled search. We also include the time it takes for tabled
search to terminate, and conclude that no other solution exists.

Focusing Calculus (Propositional theorem proving) – run time in sec
Name ItDeep Tab(1) Tab(all)
(A ∨B) ∧ (D ∨E) ∧ (G ∨H) ⊃ (A ∧D)∨
(A ∧G) ∨ (D ∧G) ∨ (B ∧E) ∨ (B ∧H) ∨ (E ∧H) 0.23 0.05 0.05
((((A↔ B) ⊃ (A ∧B ∧ C)) ∧ ((B ↔ C) ⊃ (A ∧ B ∧ C))
∧((C ↔ A) ⊃ (A ∧B ∧ C))) ⊃ (A ∧B ∧ C)) ∞ 0.46 0.40
(((A ∨B ∨ C) ∧ (D ∨E ∨ F ) ∧ (G ∨H ∨ J)∧
(K ∨ L ∨M)) ⊃ ((A ∧D) ∨ (A ∧G) ∨ (A ∧K)∨
(D ∧G) ∨ (D ∧K) ∨ (G ∧K) ∨ (B ∧E) ∨ (B ∧H)∨
(B ∧ L) ∨ (E ∧H) ∨ (E ∧ L) ∨ (H ∧ L) ∨ (C ∧ F )∨
(C ∧ J) ∨ (C ∧M) ∨ (F ∧ J) ∨ (F ∧M) ∨ (J ∧M))) ∞ 4.12 4.23

Focusing Calculus (Propositional Theorem Proving) – Disproving
Formula tab
(((A ∧ (B ∨ C)) ⊃ (C ∨ (C ∧D))) ⊃ ((¬A) ∨ ((A ∨ B) ⊃ C))) 0.01
(((A ∨B ∨ C) ∧ (D ∨E ∨ F )) ⊃ ((A ∧ B) ∨ (B ∧ E) ∨ (C ∧ F ))) 0.02
((((¬(¬(¬A ∨ ¬B))) ⊃ (¬A ∨ ¬B)) ⊃ ((¬(¬(¬A ∨ ¬B)))∨
¬(¬A ∨ ¬B))) ⊃ (¬(¬(¬A ∨ ¬B)) ∨ ¬(¬A ∨ ¬B))) 11.99
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In our experiments, we consider all the propositional test-cases reported by
J. Howe in [10], which he used to compare and evaluate two special purpose
propositional theorem prover which employ loop-detection. Tabled higher-order
logic programming is able to prove or disprove 14 of the 15 propositional exam-
ples from Howe’s test-suite within 1 sec or below, and only one example took
4.12 sec thereby providing a decision procedure for propositional logic for free.
Only in one example the tabled logic programming interpreter started thrashing.
The table size in these examples was up to 2600 table entries and up to 22000
suspended goals, which seems to be the main limiting factor.

Not surprisingly, iterative deepening is not powerful enough to prove most of
the examples from Howe’s test-suite.

6.2 Refinement Type Checking

In this example, we explore refinement type checking as described by Davies and
Pfenning in [7]. This is an advanced type system for a small functional language
MiniML where expressions may have more than one type and there may be
many ways of inferring a type. The type system is executable with a depth-first
logic programming interpreter, however the redundancy may severely hamper the
performance. We will compare the performance between depth-first search and
tabled search, and group the examples in three categories: 1) Finding the first
solution and finding all possible solutions 2) Discovering that a given program
cannot be typed.

Refinement type checking – Typable examples (runtime in sec)
Name lp(1) tab(1) lp(all) tab(all)

sub : ((nat→ pos→ nat)&(pos→ nat→ nat)&
(pos→ pos→ nat)&nat→ nat→ nat) 0.10 0.38 3.43 0.43

mult : ((pos→ nat→ nat)&(nat→ nat→ nat)&
(nat→ pos→ nat)&(pos→ pos→ pos)) 0.06 0.66 ∞ 0.84

square: (pos→ nat&nat→ nat) 0.02 0.70 ∞ 1.06
square: (pos→ pos) 0.10 0.90 ∞ 0.88
– time out after 1h

Refinement type checking – Untypable examples
Name lp tab

plus : ((nat→ nat→ nat)&(nat→ pos→ pos)&
(pos→ nat→ pos)&(pos→ pos→ zero)) 8.14 0.20

mult : (nat→ pos→ nat) 805.97 0.35
mult : ((pos→ nat→ nat)&(nat→ nat→ nat)&

(nat→ pos→ nat)&(pos→ pos→ zero)) ∞ 0.620
square : (pos→ zero)&(pos→ nat) ∞ 0.72

– time out after 1h

As the results demonstrate, logic programming is superior, if we are only
interested in finding the first solution, but is not able to disprove that a given
program is in fact not well-typed. Similarly, finding all possible types for a given
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program is too unwieldy. The table contains up to 400 table entries and 300
suspended goals. The fact that depth-first-search is superior to tabled search is
not surprising since managing the table imposes some computational overhead.
Moreover, the tabled strategy delays the re-use of answers hence imposing a
penalty. However, the tabled logic programming interpreter is able to solve all
the examples within 1 sec. This attests to the strength and robustness of the
system.

6.3 Parsing

Next, we present experiments with a parser for formulas into higher-order ab-
stract syntax where we mix right and left recursion to model right and left
associativity in the grammar. This leads to specifications which are not exe-
cutable using a depth-first search. Hence we compare iterative deepening with
tabled search. As the results demonstrate, tabling is clearly superior to itera-
tive deepening, and provides a practical way of experimenting with parsers and
grammars. We only compare finding the first solution with tabling and finding
the first solution with iterative deepening, and report on the time depending on
the number of tokens parsed. Table size ranges up to 1500 table entries, and up
to 1750 suspended goals.

Parsing: Provable – runtime
Name #tokens ItDeep tab(1)
1 5 0.01 0.02
2 20 0.78 0.07
3 32 79 0.28
4 60 2820.02 0.94
6 118 ∞ 3.22
Time limit : 1h

Parsing: Not provable – runtime
Name #tokens Tab
1 19 0.01
2 31 0.27
3 58 0.50
4 117 2.24

7 Conclusion

In this paper, we described the design and implementation of a tabled higher-
order logic programming interpreter within the Twelf system. The system in-
cluding the test-suites is available at http://www.cs.cmu.edu/~twelf as part
of the Twelf distribution. Crucial ingredients in the design are substitution fac-
toring, linear higher-order patterns, higher-order substitution tree indexing, and
compact proof witnesses. These techniques are the key ingredients to enabling
tabling in higher-order logic programming or theorem proving systems. They
should also be applicable to systems such as λProlog [12] or Isabelle [15].

The wide range of examples we have experimented with demonstrates that
tabling is a significant step towards obtaining a more robust and more power-
ful proof search engine in the higher-order setting. Tabling leads to improved
performance and more meaningful, quicker failure behavior. This does not mean
that tabling is a panacea for all the proof search problems, but rather the first
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step towards integrating and adapting some of the more sophisticated first-order
theorem proving techniques to the higher-order setting.

Unlike most descriptions of tabling which rely on modifying the underlying
WAM to enable tabling support, we have identified and implemented the essen-
tial tabling mechanisms independently of the WAM. Although we have tried to
carefully design and implement tabling within the higher-order logic program-
ming system Twelf, there is still quite a lot of room for improvements. The most
severe limitation currently is due to the multi-stage strategy which re-uses an-
swers in stages, and prevents the use of answers as soon as they are available.
Different strategies have been developed in first-order tabled logic programming
such as SCC scheduling (strongly connected components), which allows us to
consume answers as soon as they are available and garbage collect unproduc-
tive suspended nodes [24]. In the future, we plan to adapt these techniques to
the higher-order setting, and incorporate more first-order theorem proving tech-
niques such as ordering constraints.
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A Focusing Inverse Method Theorem Prover for
First-Order Linear Logic

Kaustuv Chaudhuri and Frank Pfenning�

Department of Computer Science,
Carnegie Mellon University
{kaustuv, fp}@cs.cmu.edu

Abstract. We present the theory and implementation of a theorem prover for
first-order intuitionistic linear logic based on the inverse method. The central
proof-theoretic insights underlying the prover concern resource management and
focused derivations, both of which are traditionally understood in the domain of
backward reasoning systems such as logic programming. We illustrate how re-
source management, focusing, and other intrinsic properties of linear connectives
affect the basic forward operations of rule application, contraction, and forward
subsumption. We also present some preliminary experimental results obtained
with our implementation.

1 Introduction

Linear logic [1] extends classical logic by internalizing state. This is achieved by forc-
ing linear assumptions to be used exactly once during a proof. Introducing or using a
linear assumption then corresponds to a change in state. This alters the fundamental
character of the logic so that, for example, even the propositional fragment is unde-
cidable. The expressive power of linear logic has been exploited to provide a logical
foundation for phenomena in a number of diverse domains, such as planning, concur-
rency, functional programming, type systems, and logic programming.

Despite this wide range of potential applications, there has been relatively little
effort devoted to theorem proving for linear logic. One class of prior work consists of
fundamental proof-theoretic studies of the properties of linear logic [2,3,4]. Most of
these are concerned with backward reasoning, that is, with analyzing the structure of
proof search starting from a given goal sequent. The most important results, such as the
discovery of focusing [2] and solutions to the problem of resource management [5,6]
have made their way into logic programming languages [7,8], but not implemented
theorem provers. The term resource management in this context refers to the problem
of efficiently ensuring that the single-use semantics of linear assumptions is respected
during proof search.

Another class of prior work is directly concerned with theorem proving for linear
logic in the forward direction. Here, we are only familiar with Mints’s theoretical study
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of resolution for linear logic [9] and Tammet’s implementation of a resolution prover
for classical propositional linear logic [10].

In this paper we describe a theorem prover for first-order intuitionistic linear logic
based on the inverse method. The choice of the logic is motivated by two consider-
ations. First, it includes the core of the Concurrent Logical Framework (CLF) [11],
so our theorem prover can reason with specifications written in CLF; many such ex-
ample CLF specifications have been investigated, including Petri nets, the π-calculus,
and Concurrent ML. For many of these applications, the intuitionistic nature of the
framework is essential. Second, this logic is almost a worst-case scenario for theorem
proving, combining the difficulties of intuitionistic logic, and modal, linear, and first-
order connectives. However, nothing specifically in our approach prevents it from being
applied just as readily to classical linear logic, which might even be simpler because of
the single-sided formulation and a fuller symmetry in the connectives.

Our variant of the inverse method combines the forward-reasoning techniques of
Mints and Tammet with the (backward) proof-theoretic analyses by Andreoli and oth-
ers by incorporating focusing into the inverse method. This allows the inverse method to
proceed in bigger steps than single inferences, generating fewer sequents to be kept and
tested for subsumption. In addition, we develop a new approach to resource manage-
ment for reasoning in the forward direction and show how it extends to the first-order
case. We further treat the delicate interactions of resource management with contrac-
tion and subsumption, two critical operations in a forward inference engine. Finally,
we present some experimental results which demonstrate a significant speedup over
Tammet’s prover and help us quantify the effects of several internal optimizations.

Most closely related to the results reported in this paper is a recent submission [12]
which presents focusing for the inverse method in intuitionistic propositional linear
logic, but does not discuss many of the necessary implementation choices. We there-
fore concentrate here on the first-order and implementation aspects of the prover and
only briefly sketch focusing. The propositional prover from [12] and the first-order
prover here are separate implementations, since the propositional case—though also
undecidable—affords a number of optimizations that do not directly apply in the first-
order case.

Among related developments are recent implementations of theorem provers for the
logic of bunched implications [13,14]. BI-logic and linear logic have a common core,
so some techniques may be transferable, something we plan to consider in future work.
Méry’s prover [13] uses labeled tableaux in a goal-directed manner and is therefore
quite different from ours. Donnelly et al. [14] use the inverse method, but the essential
difficulty in its design concerns a particular interaction between weakening and con-
traction that is germane to bunched implication, but foreign to linear logic. Moreover,
both provers are quite preliminary at this stage and do not incorporate techniques such
as subsumption or indexing.

The remainder of the paper is organized as follows. In sect. 2 we give the briefest
sketch of a cut-free sequent calculus for intuitionistic linear logic and its critical subfor-
mula property. In sect. 3 we present the ground inverse method underlying our prover
and show how we solve the resource management problem. In sect. 4 we show how
to lift the results and operations to the case of sequents with free variables which are
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necessary for a first-order prover. In sections 5 and 6 we present the main points in
the design of an efficient implementation and some experimental results. In sect. 7 we
conclude with remarks regarding the scope of our methods and future work.

2 Backward Sequent Calculus and the Subformula Property

We use a backward cut-free sequent calculus for propositions constructed out of the
linear connectives {⊗, 1,�,&,�, !,∀,∃}. To simplify the presentation slightly we leave
out ⊕ and 0, though the implementation supports them and some of the experiments
in Sec. 6 use them. Propositions are written using uppercase letters A, B, C, with P
standing for atomic propositions. Atomic propositions contain terms t, which can be
term variables x, parameters a, b, or function applications f (t1, . . . , tn). As usual, term
constants are treated as nullary functions. The sequent calculus is a standard fragment
of JILL [15], containing dyadic two-sided sequents of the form Γ ; Δ =⇒ C: the zone Γ
contains the unrestricted hypotheses, and Δ contains the linear hypotheses. Both Γ and
Δ are unordered. For the rules of this calculus we refer the reader to [15, page 14]; the
missing quantifier rules are below:

Γ ; Δ =⇒ [a/x]A
Γ ; Δ =⇒ ∀x. A

∀Ra
Γ ; Δ, [t/x]A =⇒ C
Γ ; Δ,∀x. A =⇒ C

∀L
Γ ; Δ =⇒ [t/x]A
Γ ; Δ =⇒ ∃x. A

∃R
Γ ; Δ, [a/x]A =⇒ C
Γ ; Δ,∃x. A =⇒ C ∃La

The superscript in ∀R and ∃L indicates the proviso that a may not occur in the conclu-
sion. Also in [15] are the standard structural properties for the unrestricted hypotheses
and admissibility of cut, which extend naturally to the first-order setting.

Definition 1 (subformulas). A decorated formula is a tuple 〈A, s,w〉 where A is a
proposition, s is a sign (+ or −) and w is a weight (h or l). The subformula relation
≤ is the smallest reflexive and transitive relation between decorated subformulas to sat-
isfy the following conditions.

〈A, s, h〉 ≤ 〈! A, s,w〉 〈A, s, l〉 ≤ 〈A� B, s,w〉 〈B, s, l〉 ≤ 〈A� B, s,w〉
〈[a/x]A,+, l〉 ≤ 〈∀x. A,+,w〉 〈[a/x]A,−, l〉 ≤ 〈∃x. A,−,w〉
〈[t/x]A,+, l〉 ≤ 〈∃x. A,+,w〉 〈[t/x]A,−, l〉 ≤ 〈∀x. A,−,w〉

⎫⎪⎪⎬⎪⎪⎭ . . .
a any parameter
t any term

〈Ai, s, l〉 ≤ 〈A1 � A2, s,w〉 . . . � ∈ {⊗,&}, i ∈ {1, 2}
where s is the opposite of s. The notation ∗ can stand for either h or l, as necessary.
Decorations and the subformula relation are lifted to (multi)sets in the obvious way.

We also need the notion of free subformula which is precisely as above, except
that we use A instead of [t/x]A for subformulas of positive existentials and negative
universals.

Property 2 (strong subformula property). In any sequent Γ′ ; Δ′=⇒C′ used to prove
Γ ; Δ =⇒ C: 〈Γ′,−, h〉 ∪ 〈Δ′,−, ∗〉 ∪ {〈C′,+, ∗〉} ≤ 〈Γ,−, h〉 ∪ 〈Δ,−, l〉 ∪ {〈C,+, l〉}.

For the rest of the paper, all rules are to be understood as being restricted to dec-
orated subformulas of the goal sequent. A right rule is only applicable if the principal
formula A is a positive decorated subformula of the goal sequent (i.e., 〈A,+, ∗〉 ≤ goal);
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similarly, a left rule only applies to A if 〈A,−, ∗〉 ≤ goal. Of the judgmental rules, init is
restricted to atomic subformulas that are both positive and negative decorated subfor-
mulas, and the copy rule is restricted to cases where the copied formula A is a heavy
negative decorated subformula, i.e., 〈A,−, h〉 ≤ goal.

3 Forward Sequent Calculus and Resource Management

Following the “recipe” for the inverse method outlined in [16], we first present a forward
sequent calculus in a ground form (containing no term variables), and then lift it to free
subformulas containing term and parameter variables and explicit unification.

Γ ; Δ1 =⇒ A Γ ; Δ2 =⇒ B
Γ ; Δ1, Δ2 =⇒ A ⊗ B

⊗R

As mentioned before, backward proof-search
in linear logic suffers from certain kinds of non-
determinism peculiar to the nature of linear hypothe-
ses. A binary multiplicative rule like ⊗R as indicated
is actually deceptive as it hides the fact that the split Δ1, Δ2 of the linear zone is not struc-
turally obvious. Linearity forces the division to be exact, but there are an exponential
number of such divisions, which is an unreasonable branching factor for proof-search.
This form of resource non-determinism is typical in backward search, but is of course
entirely absent in a forward reading of multiplicative rules where the parts Δ1 and Δ2

are inputs. The nature of resource non-determinism in forward and backward search is
therefore significantly different.

Γ ; P =⇒ P init

Γ ; Δ =⇒ � �R

To distinguish forward from backward sequents, we shall use a
single arrow (−→), but keep the names of the rules the same. In the
forward direction, the primary context management issue concerns
rules where the conclusion cannot be simply assembled from the
premisses. The backward�R rule has an arbitrary linear context Δ,
and the unrestricted context Γ is also unknown in several rules such as init and �R. For
the unrestricted zone, this problem is solved in the usual (non-linear) inverse method
by collecting only the needed unrestricted assumptions and remembering that they can
be weakened if needed [16]. We adapt the solution to the linear zone, which may either
be precisely determined (as in the case for initial sequents) or subject to weakening (as
in the case for �R). We therefore differentiate sequents whose linear context can be
weakened and those who can not.

Definition 3 (forward sequents). A forward sequent is of the form Γ ; Δ −→w C, with
w a Boolean (0 or 1) called the weak-flag. The correspondence between forward and
backward sequents is governed by the following conditions:

Γ ; Δ −→0 C corresponds to Γ′ ; Δ =⇒ C if Γ ⊆ Γ′
Γ ; Δ −→1 C corresponds to Γ′ ; Δ′ =⇒ C if Γ ⊆ Γ′ and Δ ⊆ Δ′

Sequents with w = 1 are called weakly linear or simply weak, and those with w = 0 are
strongly linear or strong.

It is easy to see that weak sequents model affine logic, which is familiar from embed-
dings into linear logic that translate affine implications A→ B as A� (B ⊗ �). Initial
sequents are always strong, since their linear context cannot be weakened. On the other
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judgmental rules

· ; P −→0 P
init

Γ ; Δ, A −→w C
Γ, A ; Δ −→w C

copy Γ, A, A ; Δ −→w C
Γ, A ; Δ −→w C

contr

multiplicative connectives

Γ ; Δ −→w A Γ′ ; Δ′ −→w′ B

Γ, Γ′ ; Δ, Δ′ −→w∨w′ A ⊗ B
⊗R Γ ; Δ, A, B −→w C
Γ ; Δ, A ⊗ B −→w C

⊗L
Γ ; Δ, Ai −→1 C (Aj � Δ)

Γ ; Δ, A1 ⊗ A2 −→1 C
⊗Li

(i, j) ∈ {(1, 2), (2, 1)}

· ; · −→0 1
1R

Γ ; Δ −→0 C

Γ ; Δ, 1 −→0 C
1L

Γ ; Δ, A −→w B
Γ ; Δ −→w A� B

�R
Γ ; Δ −→1 B (A � Δ)

Γ ; Δ −→1 A� B
�R′

Γ ; Δ, B −→w C Γ′ ; Δ′ −→w′ A (w = 0 ∨ B � Δ′)

Γ, Γ′ ; Δ, Δ′, A� B −→w∨w′ C
�L

additive connectives

Γ ; Δ1 −→w1 A
Γ′ ; Δ2 −→w2 B

(Δ1/w1 + Δ2/w2� Δ)

Γ, Γ′ ; Δ −→w1∧w2 A & B
&R · ; · −→1 � �R

Γ ; Δ, Ai −→w C
Γ ; Δ, A1 & A2 −→w C

&Li

i ∈ {1, 2}
exponentials

Γ ; · −→w A

Γ ; · −→0 ! A
! R

Γ, A ; Δ −→w C
Γ ; Δ, ! A −→w C

! L
Γ ; Δ −→0 C (A � Γ)

Γ ; Δ, ! A −→0 C
! L′

quantifiers

Γ ; Δ −→w [a/x]A
Γ ; Δ −→w ∀x. A

∀Ra
Γ ; Δ, [t/x]A −→w C
Γ ; Δ,∀x. A −→w C

∀L

Γ ; Δ −→w [t/x]A
Γ ; Δ −→w ∃x. A

∃R
Γ ; Δ, [a/x]A −→w C
Γ ; Δ,∃x. A −→w C

∃La

Fig. 1. forward linear sequent calculus

hand, �R always produces a weak sequent. The collection of inference rules for the
forward calculus is in Fig. 1.

Γ ; Δ =⇒ A Γ ; Δ =⇒ B
Γ ; Δ =⇒ A & B

&R

For binary rules, the unrestricted zones are simply
juxtaposed. We can achieve the effect of taking their
union by applying the explicit contraction rule (which
is absent, but admissible in the backward calculus). The
situation is not as simple for the linear zone. As shown above, in the backward direction
the same linear zone is copied into both premisses of the &R rule: This rule is easily
adapted to the forward direction when both premisses are strong:
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Γ ; Δ −→0 A Γ′ ; Δ′ −→0 B (Δ = Δ′)
Γ, Γ′ ; Δ −→0 A & B

If one premiss is weak and the other strong, the weak zone must be a subset of the
strong zone:

Γ ; Δ −→0 A Γ′ ; Δ′ −→1 B (Δ′ ⊆ Δ)

Γ, Γ′ ; Δ −→0 A & B

If both premisses are weak, then the conclusion is also weak, but what resources are
present in the conclusion? In the ground case, we can simply take the maximal multi-
plicity for each proposition on the two premisses. To see that this is sound, simply apply
weakening to add the missing copies, equalizing the linear contexts in the premisses.
It is also complete because the maximum represents the least upper bound. In the free
variable calculus this analysis breaks down, because the two propositions in the linear
contexts in weak premisses may also be equalized by substitution. In preparation, we
therefore introduce a non-deterministic additive contraction judgment which is used in
the &R rule to generate multiple valid merges of the linear contexts of the premisses.

Definition 4. The additive contraction judgement is of the form Δ/w + Δ′/w′� Δ′′
where Δ, Δ′ and Δ′′ are linear contexts, and w and w′ are weak-flags. Δ, Δ′, w, and
w′ are inputs, and Δ′′ is the output. The rules are as follows:

·/0 + ·/0� · ·/1 + Δ/0� Δ Δ/0 + ·/1� Δ Δ/1 + Δ′/1� Δ, Δ′

Δ/w + Δ′/w′� Δ′′

Δ, A/w + Δ′, A/w′� Δ′′, A

Note that� is non-deterministic because the fourth and fifth rule overlap. Note further
that Δ/1 + Δ′/0� Δ′ iff Δ ⊆ Δ′, and for any Δ′′ with Δ ∪ Δ′ ⊆ Δ′′ ⊆ Δ, Δ′, the judgment
Δ/1 + Δ′/1� Δ′′ is derivable.

The conclusion of a binary multiplicative rule is weak if either of the premisses is
weak; thus, the weak-flag of the conclusion is a Boolean-or of those of the premisses.
Most unary rules are oblivious to the weakening decoration, which simply survives
from the premiss to the conclusion. The exception is ! R, for which it is unsound to have
a weak conclusion; there is no derivation of · ; � =⇒ !�, for example.

Left rules with weak premisses require some attention. It is tempting to write the
“weak” ⊗L rules as:

Γ ; Δ, A −→1 C

Γ ; Δ, A ⊗ B −→1 C
⊗L1

Γ ; Δ, B −→1 C

Γ ; Δ, A ⊗ B −→1 C
⊗L2.

However, these rules would admit redundant inferences such as the following:

Γ ; Δ, A, B −→1 C

Γ ; Δ, A, A ⊗ B −→1 C
⊗L2.

We might as well have consumed both A and B to form the conclusion, and obtained a
stronger result. The sensible strategy is: when A and B are both present, they must both
be consumed. Otherwise, only apply the rule when one operand is present in a weak
sequent. A similar observation can be made about all such rules: there is one weakness-
agnostic form, and some possible refined forms to account for weak sequents.
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Theorem 5 (soundness).
1. If Γ ; Δ −→0 C, then Γ ; Δ =⇒ C.
2. If Γ ; Δ −→1 C, then Γ ; Δ′ =⇒ C for any Δ′ ⊇ Δ.

Proof (sketch). Structural induction on the forward derivation F :: Γ ; Δ −→w C. The
induction hypothesis is applicable for smaller derivations modulo α-renamings of pa-
rameters. ��
For the completeness theorem we note that the forward calculus infers a possibly
stronger form of the goal sequent.

Theorem 6 (completeness). If Γ ; Δ =⇒ C, then for some Γ′ ⊆ Γ:
1. either Γ′ ; Δ −→0 C;
2. or Γ′ ; Δ′ −→1 C for some Δ′ ⊆ Δ

Proof (sketch). Structural induction on the backward derivationD :: Γ ; Δ =⇒ C. ��

4 Lifting to Free Variable Sequents

The calculus of the previous section uses only ground initial sequents, which is im-
possible for an implementation of the forward calculus. Continuing with the “recipe”
from [16], in this section we present a lifted version of the calculus with explicit uni-
fication. We begin, as usual, by fixing a goal sequent Γg ; Δg −→w Cg and considering
only the free subformulas of this goal. In the presentation, the quantified propositions
are silently α-renamed as necessary. In this calculus, every proposition on the left and
right is accompanied by a substitution for some of its parameters or free term variables.
These substitutions are built according the following grammar:

(substitutions) σ � ε (identity)
| σ, a1/a2 (param-subst)
| σ, t/x (term-subst)

A minor novel aspect of our formulation is that we distinguish parameters (which can
be substituted only for each other) and variables (for which we can substitute arbi-
trary terms, including parameters). The distinction arises from the notion of subformula,
since positive universal and negative existential formulas can only ever be instantiated
with parameters in a cut-free backward sequent derivation. This sharpening sometimes
removes unreachable initial sequents from consideration. Fortunately, the standard no-
tion of most general unifier (written mgu(σ,σ′)) carries over in a straightforward way
to this slightly more general setting. We make the customary assumption that substitu-
tions are idempotent. We write A[σ] (resp. t[σ]) for the application of the substitution
σ to the free subformula A (resp. term t). Sequents in the free calculus contain for-
mula/substitution pairs, written A · σ. The composition of σ and ξ, written σξ, has the
property A[σξ] = (A[σ])[ξ]. The composition of θ with every substitution in a zone Γ
or Δ (now containing formula/substitution pairs) is written Γθ or Δθ.

Figure 2 contains the rules of this calculus; we use a double-headed arrow (−→−→) to
distinguish it from the ground forward calculus. The definition of additive contraction
needs to be lifted to free subformulas also.
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judgmental rules

θ = mgu(P[ρ],P′)

· ; P · ρθ −→−→0 P′ · θ init
Γ ; Δ, A · σ −→−→w C · ξ
Γ, A · σ ; Δ −→−→w C · ξ copy

Γ, A · σ, A · σ′ ; Δ −→−→w C · ξ
Γθ, A · σθ ; Δθ −→−→w C · ξθ contr

Γ ; Δ −→w C · ξ
Γρ ; Δρ −→w C · ξρ ren

multiplicative connectives

Γ ; Δ −→−→w A · σ Γ′ ; Δ′ −→−→w′ B · σ′
Γθ, Γ′θ ; Δθ, Δ′θ −→−→w∨w′ (A ⊗ B) · σθ ⊗R

Γ ; Δ, A · σ, B · σ′ −→−→w C · ξ
Γθ ; Δθ, (A ⊗ B) · σθ −→−→w C · ξθ ⊗L

Γ ; Δ, Ai · σ −→−→1 C · ξ (∀ρ. Aj · σρ � Δ)

Γ ; Δ, (A1 ⊗ A2) · σ −→−→1 C · ξ ⊗Li

(i, j) ∈ {(1, 2), (2, 1)}

· ; · −→−→0 1 · ε 1R
Γ ; Δ −→−→0 C · ξ

Γ ; Δ, 1 · ε −→−→0 C · ξ 1L

Γ ; Δ, A · σ −→−→w B · σ′
Γθ ; Δθ −→−→w (A� B) · σθ �R

Γ ; Δ −→−→1 B · σ (∀ρ. A · σρ � Δ)

Γ ; Δ −→−→1 (A� B) · σ �R′

Γ ; Δ, B · σ −→−→w C · ξ
Γ′ ; Δ′ −→−→w′ A · σ′ (w = 0 ∨ ∀ρ. B · σθρ � Δ′)
Γθ, Γ′θ ; Δθ, Δ′θ, (A� B) · σθ −→−→w∨w′ C · ξθ �L

additive connectives

Γ ; Δ1 −→−→w1 A · σ
Γ ; Δ2 −→−→w2 B · σ′ (Δ1θ/w1 + Δ2θ/w2� 〈Δ ; ξ〉)

Γθξ, Γ′θξ ; Δ −→−→w1∧w2 (A & B) · σθξ &R · ; · −→−→1 � · ε �R

Γ ; Δ, A · σ −→−→w C · ξ
Γ ; Δ, (A1 & A2) · σ −→−→w C · ξ &Li i ∈ {1, 2}

exponentials

Γ ; · −→−→w A · σ
Γ ; · −→−→0 ! A · σ ! R

Γ, A · σ ; Δ −→−→w C · ξ
Γ ; Δ, ! A · σ −→−→w C · ξ ! L

Γ ; Δ −→−→0 C · ξ (∀ρ. A · ρ � Γ)

Γ ; Δ, ! A · ε −→−→0 C · ξ ! L′

quantifiers

Γ ; Δ −→−→w [a/x]A · (σ,b/a)
Γ ; Δ −→−→w ∀x. A · σ ∀Rb

Γ ; Δ, A · (σ,t/x) −→−→w C · ξ
Γ ; Δ,∀x. A · σ −→−→w C · ξ ∀L

Γ ; Δ −→−→w A · (σ, t/x)
Γ ; Δ −→−→w ∃x. A · σ ∃R

Γ ; Δ, [a/x]A · (σ, b/a) −→−→w C · ξ
Γ ; Δ,∃x. A · σ −→−→w C · ξ ∃Lb

Note: θ = mgu(σ,σ′); ρ is a (fresh) renaming substitution; and premisses are variable-disjoint.

Fig. 2. Forward sequent calculus with free subformulas
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Definition 7 (lifted additive contraction). The lifted additive contraction judgment,
written Δ1/w1 + Δ2/w2� 〈Δ ; ξ〉, takes as input the zones Δ1 and Δ2, together with
their weak flags w1 and w2, and produces a contracted zone Δ and its corresponding
substitution ξ. The rules for this judgment are as follows.

·/0 + ·/0� 〈· ; ε〉 ·/1 + Δ/0� 〈Δ ; ε〉 Δ/0 + ·/1� 〈Δ ; ε〉 Δ/1 + Δ′/1� 〈Δ, Δ′ ; ε〉
θ = mgu(σ,σ′) Δθ/w + Δ′θ/w′� 〈Δ′′ ; ξ〉
Δ, A · σ/w + Δ′, A · σ′/w′� 〈Δ′′, A · σθξ ; θξ〉

Lemma 8 (lifted additive contraction).
1. If Δ/0 + Δ′/0� 〈Δ′′ ; ξ〉, then Δξ = Δ′ξ = Δ′′.
2. If Δ/0 + Δ′/1� 〈Δ′′ ; ξ〉, then Δ′ξ ⊆ Δξ = Δ′′.
3. If Δ/1 + Δ′/0� 〈Δ′′ ; ξ〉, then Δξ ⊆ Δ′ξ = Δ′′.
4. If Δ/1 + Δ′/1� 〈Δ′′ ; ξ〉, then Δξ ⊆ Δ′′ and Δ′ξ ⊆ Δ′′. ��

Definition 9. A substitution σ is a grounding substitution if for every term-variable
x ∈ dom(σ), the term x[σ] contains no term variables.

Theorem 10 (soundness). If Γ ; Δ −→−→w C · ξ and λ is a grounding substitution for Γ,
Δ and C[ξ], then Γ[λ] ; Δ[λ] −→w C[ξλ].

Proof (sketch). Straightforward induction on the structure of F :: Γ ; Δ −→−→w C · ξ, us-
ing lem. 8 and noting that any grounding unifier must be less general than the mgu. ��
Theorem 11 (completeness).
Suppose A1[σ1], A2[σ2], . . . ; B1[τ1], B2[τ2] . . . −→w C[ξ] where the Ai, B j and C are
free subformulas of the goal. Then there exist substitutionsσ′1, σ

′
2, . . . , τ

′
1, τ
′
2, . . . , ξ

′ and
λ such that:
1. A1 · σ′1, A2 · σ′2, . . . ; B1 · τ′1, B2 · τ′2, . . . −→−→w C · ξ′; and
2. σ′iλ = σi; τ′jλ = τ j; and ξ′λ = ξ.

Proof (sketch). Structural induction on the given ground derivation. ��

5 Design of the Implementation

Representation of Sequents and Contraction Linear hypotheses can occur more than
once in the linear zone, so for each substitution we also store the multiplicity of that
substitution; we write this as A · σn where n is the multiplicity of A · σ. In the common
case of a variable-free proposition, this not only makes the representation of sequents
more efficient, but also greatly reduces the non-determinism involved in matching a hy-
pothesis in a premiss. Contraction in the presence of multiplicities is not much different
from before; the only change is that we can perform a number of contractions together
as a unit.

k = min(m, n) θ = mgu(σ, τ) Δ1θ, A · σθm−k/w1 + Δ2θ, A · τθn−k/w2� 〈Δ ; ξ〉
Δ1, A · σm/w1 + Δ2, A · τn/w2� 〈Δ, A · σθξk ; θξ〉

(Note that Δ, A · σ0 is understood as Δ.)
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In the implementation we perform contractions eagerly, that is, after every rule ap-
plication we calculate the possible contractions in the conclusion of the rule. This allows
us to limit contractions to binary rules, and furthermore, consider only the contractions
between propositions that originate in different premisses. This is complete because if
two hypotheses were to be contractible in the same premiss, then we would already
have generated the sequent corresponding to that contraction earlier.

The special case of contracting two weak zones, i.e., Δ1/1 + Δ2/1, can be greatly
improved by first eagerly contracting propositions that have an invertible unifier. This
is complete because a weak Δ, A · σ, A · σρ is subsumed by a weak Δ, A · σ.

Rule Generation. The subformula property gives us the core of the inverse method
procedure. We start with all initial sequents of the form · ; P · ρθ −→0 P′ · θ, where P is
a negative, and P′ a positive free atomic subformula of the goal sequent, ρ renames them
apart, and θ = mgu(P[ρ], P′). Next, we name all free subformulas of the goal sequent
with unique propositional labels. Then, we specialize all inference rules to these labels
as principal formulas before starting the main search procedure.

Subsumption and Indexing. Our prover performes forward, but currently not backward
subsumption. Subsumption has to account for linearity and the notion of weak sequent.

Definition 12 (free subsumption). The free subsumption relation � between free for-
ward sequents is the smallest relation satisfying:

(
Γ ; Δ −→−→0 C · ξ

)
�
(
Γ′ ; Δ −→−→0 C · ξ′

)

(
Γ ; Δ −→−→1 C · ξ

)
�
(
Γ′ ; Δ′ −→−→w C · ξ′

)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
for some θ such that Γθ⊆Γ′, Δθ⊆Δ′, and ξθ=ξ′

The full subsumption check is far too expensive to perform always. Subsumption is
usually implemented as a sequence of phases of increasing complexity; Tammet called
them hierarchical tests [17]. These hierarchical tests are designed to fail as early as
possible, as the overwhelming majority of subsumption queries are negative.

Definition 13 (hierarchical tests).
To check if s = Γ ; Δ −→−→w C · ξ subsumes s′ = Γ′ ; Δ′ −→−→w′ C′ · ξ′, the following tests
are performed in order:

1. if w = 0 and w′ = 1 then FAIL;
2. if #Δ > #Δ′ or #Γ > #Γ′ then FAIL (where # count the number of elements);
3. respecting multiplicities, if a free subformula L occurs n times in Δ and m times in
Δ′ and n > m then FAIL; similarly for Γ and Γ′;

4. if there is no θ for which C[ξθ] = C′[ξ′], then FAIL;
5. if for some A · σ ∈ Γ there is no A · σ′ ∈ Γ′ for which A[σθ] = A[σ′] (for some θ),

then FAIL; similarly for Δ and Δ′;
6. otherwise attempt the full subsumption test s � s′.

Tammet gives examples of other possible tests in [17], particularly tests that consider
the depth of terms and statistics such as the number of constants, but we have not so far
(for pragmatic reasons) considered them in the linear setting.
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For the index we use a global forest of substitution trees [18]. Each inserted sequent
is indexed into the substitution tree corresponding to the label of the principal literal,
indexed by its corresponding substitution. The leaves of the substitution tree contain
the sequents where the indexed formula was the principal formula. To check if a given
sequent is subsumed, we look up every formula in the sequent in the index to obtain a
collection of subsumption candidates, which are then tested for subsumption using the
hierarchical tests above.

Focusing and Lazy Rule Application. Efficient indexing and subsumption algorithms,
though important, are not as critical to the design of the prover as the use of derived big-
step rules. The inference rules of Fig.2 take tiny steps and thereby produce too many
sequents. In our implementation we use a version of focusing [19,2] tailored for for-
ward reasoning to construct derived inference rules with many premisses. The essential
insight of focusing is that every proof can be converted to one that alternates between
two phases–active and focused. Thinking in the backward direction, during the active
phase we break down all connectives whose left or right rules are invertible. This phase
has no essential non-determinism. This leads to a so-called neutral sequent where we
have to choose a formula to focus on, which is then successively decomposed by chain-
ing together non-invertible rules on this particular focus formula. It turns out that in the
forward direction we only need to keep neutral sequents if we construct big-step for-
ward rules by analyzing those frontier propositions which can occur in neutral sequents
and which are also subformulas of the goal. Essentially we simulate a backward focus-
ing phase followed by a backward active phase by inferences in the forward direction.
This construction is detailed in [12] for the propositional fragment and can easily be
extended to the first-order setting.

We implement a derived rule as a curried function from sequents (premisses) to the
conclusion of the rule. Each application of a rule to a sequent first tests if the sequent
can match the corresponding premiss of the rule; if the match is successful, then the
application produces a new partially instantiated rule, or if there are no remaining pre-
misses then it produces a new sequent. The order of arguments of this curried function
fixes a particular ordering of the premisses of the rule; the search procedure is set up so
that any ordering guarantees completeness.

We use a lazy variant of the OTTER loop as the main loop of the search procedure.
We maintain two global sets of derived sequents:

– the active set containing sequents to be considered as premisses of rules; and
– the inactive set (sometimes referred to as the set of support) that contains all facts

that have not yet been transferred to the active set.

The inner loop of the search procedure repeats the following lazy activation step
until either the goal sequent is subsumed (in which case the search is successful), or
no further rules are applicable to the sequents in the active set and the inactive set is
exhausted (in which case the search saturates).

Definition 14 (lazy activation). To activate the sequent s, i.e., to transfer it from the
inactive to the active set, the following steps are performed:
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1. After renaming, s is inserted into the active set.
2. All available rules are applied to s. If these applications produce new rules, R, then

the following two steps are performed in a loop until there are no additions to R.
(a) For every sequent s′ in the active set, every rule in R is applied to s′, and
(b) any new rules generated are added to R.

3. The collection of rules R is added to the set of rules.
4. All sequents generated during the above applications are tested for subsumption,

and the un-subsumed sequents and all their associated contractions are added to
the inactive set.

A sequent is added to the inactive set if it is not globally subsumed by some other
sequent derived earlier. In fact, if it is subsumed, then none of its contracts need to
be computed. We use the following heuristic for the order of insertion of the contracts
of a given sequent: if s is the result of a sequence of contractions from s′, then s is
considered for insertion in the inactive set before s′.

The initial inactive set and rules are produced uniformly by focusing on the frontier
literals of the goal sequent. The collection of (partially applied) rules grows at run-time;
this is different from usual implementations of the OTTER loop where the rules are
fixed before-hand. On the other hand, rule application is much simpler when each rule
is treated as a single-premiss rule (producing sequents or other rules, possibly nothing).
Furthermore, the same rule is never applied more than once to any sequent, because a
previously derived rule is applied only to newly activated sequents (which were not in the
active set before). Thus, the lazy activation strategy implicitly memoizes earlier matches.

Globalization. The final unrestricted zone Γg is shared in all branches in a proof of
Γg ; Δg =⇒ Cg. One thus thinks of Γg as part of the ambient state of the prover, instead
of representing it explicitly as part of the current goal. Hence, there is never any need
to explicitly record Γg or portions of it in the sequents themselves. This gives us the
following global and local versions of the copy rule:

Γ ; Δ, A · σ −→−→w C · ξ (∃ρ. A · σρ ∈ Γg)

Γ ; Δ −→−→w C · ξ delete
Γ ; Δ, A · σ −→−→w C · ξ (∀ρ. A · σρ � Γg)

Γ, A · σ ; Δ −→−→w C · ξ copy

6 Some Experimental Results

For our experiments we compared a few internal versions of the prover and two provers
in the Gandalf family. For comparison purposes, we implemented a purely propositional
version of our prover, which performs some additional optimizations that are not possi-
ble in the first-order case. The main differences are: contraction in the propositional case
always produces exactly one sequent, as opposed to (potentially) exponentially many
sequents in the first-order case; furthermore, subsumption is simply a matter of com-
paring the multiplicities, which is linear instead of quadratic. These properties greatly
simplify rule generation and application.

The internal versions of the prover are named L followed by a selection of P (propo-
sitional), F (big-step rules using focusing) and G (globalization) as suffixes. The default
prover is named L (first-order, small-step rules, no globalization); LPF, for example,
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Table 1. Some experimental results

Gr Gt LP LPF L LF

basic 0.06 s 0.08 s 0.024 s 0.018 s 0.058 s 0.037 s
bw-prop � � � 0.001 s � 0.007 s
coins 0.63 s � 3.196 s 0.001 s 8.452 s 0.001 s

affine1 �3 0.01 s 0.003 s 0.001 s 1.645 s 3.934 s
affine2 �3 � ≈ 12 m 1.205 s ≈ 34 m 4.992 s
qbf1 2.40 s � 0.013 s 0.001 s 0.038 s 0.002 s
qbf2 � � 0.037 s 0.001 s 0.512 s 0.060 s
qbf3 � � 0.147 s 0.003 s 2.121 s 0.820 s

(a) propositional

L LF LFG

bw-fo � 0.460 s 0.036 s
urn � 0.413 s 0.261 s

int-gir � 1.414 s 1.410 s
int-foc b11m 0.051 s 0.058 s

(b) first-order

is the purely propositional prover with focused big-step rules, but no globalization. In
total there are six internal versions, though for space reasons we do not list the running
times for every version. These provers are written in Standard ML and are available
from the first author’s website.1

For our experiments the internal versions were compiled using MLTon version
20041119 with the default optimization flags. All time measurements are wall-clock
times measured on an unloaded computer with a 2.80GHz Pentium 4 processor with
a 512KB L1 cache and 1GB of main memory. Time measurements of less than 0.01
seconds should be taken as unreliable; “�” means no solution was found within around
20 minutes.2

For external provers we concentrate on Tammet’s Gandalf “nonclassical” distribu-
tion (version 0.2), compiled using a packaged version of the Hobbit Scheme compiler.
This prover is limited to the propositional fragment of classical linear logic, but comes
in two flavors: resolution (Gr) and tableau (Gt). Neither version incorporates focusing
or globalization, and we did not attempt to bound the search for either prover. Another
tableau prover for classical propositional multiplicative-exponential linear logic is Lin-
TAP [20]; it cannot handle the majority of our examples using & and �, and on the
examples that are in the MELL fragment (bw-prop and coins), it does not terminate.
For comparatively simpler problems [20, p.14], our prover LPF finishes in cumulative
time of 0.003 seconds, while LinTAP’s total time is 3.30 seconds. Finally, llprover [21]
is a demonstration prover for classical first-order linear logic based on the sequent cal-
culus, but it cannot solve any of the examples in table 1.

Purely Propositional Problems The comparisons of this section are restricted to the
propositional fragment. They include: simple theorems in linear logic (basic), blocks-
world problems for a fixed collection of blocks (bw-prop), a change machine encoding
(coins), several affine logic problems encoded in linear logic (affine1 and affine2),
and a few hard examples of quantified Boolean formulas compiled to multiplicative-
additive linear logic (qbf1, qbf2 and qbf3, in order of increasing complexity) that
implement the algorithm of [22]. The results are shown in table 1 (a).

1 http://www.cs.cmu.edu/˜kaustuv/
2 As a check, we have run some of these failing cases for tens of hours, but they eventually

exhaust the system memory or our patience.
3 Gr appears to saturate incorrectly in these cases (fails to prove a true proposition), so we have

omitted the running time.
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It is evident that focusing greatly speeds up both the propositional and first-order
cases. For the propositional case, the speedup from the focusing prover to the non-
focusing one is between 1.33 (basic) and 597.5 (affine2); for the first-order case,
the speedups range from 1.57 (basic) to 408.7 (affine2). Except for bw-prop, these
examples were all within the realm of possibility for the small-step provers, though
some of them like affine2 severely strain the provers. In the affine1 case the fo-
cusing prover LF appears to take longer than the small-step prover L; this is because
this example contains an unprovable proposition for which the inverse method proce-
dure fails to saturate. The test is run for 1000 iterations of the lazy OTTER loop. The
focusing prover gets much further than the small-step prover in 1000 iterations, and
the delay is due entirely to the fact that the sequents it works with, after even a few
dozen iterations, are far more complex than the small-step prover generates in 1000
iterations.

Comparing to Gandalf, the small-step prover L is generally competitive with Gr: it
is slower on some examples (coins), but succeeds on a wider range of problems. Gt
was uniformly the slowest, taking a long time on even simple problems.

First-Order Problems Our first-order problems include the following: a first-order
blocks world planning example (bw-fo), Dijkstra’s urn game (urn), simple intuitionis-
tic first-order propositions encoded as linear propositions, using either Girard’s transla-
tion (int-gir), or a focusing-aware translation (int-foc) outlined in [12].

The results are shown in table 1 (b). Again, it is fairly obvious that focusing is the
dramatic winner, making some problems tractable, and being several orders of magni-
tude faster for the rest. Adding globalization also seems to have a significant effect here
for the examples that are not constructed in an ad-hoc fashion (bw-fo and urn).

7 Conclusion

We have presented a theorem prover for first-order intuitionistic linear logic based on
the inverse method which is already practical for a range of examples and significantly
improves on prior, more restricted provers. The design is based on general principles
that are applicable to both classical linear logic (which is simpler because it admits a
one-sided sequent formulation with more symmetries) and affine logic (via weak se-
quents). Both of these can also be treated by uniform translations to intuitionistic linear
logic [15], as can (ordinary) intuitionistic logic [12]. A generalization from a first-order
logic to a type theory such as CLF [11] would seem to require mostly a proper treat-
ment of linear higher-order unification constraints, but otherwise be relatively straight-
forward.

Our prover also leaves room for further high-level and low-level optimizations. In
particular, we plan to investigate how to limit the multiplicities of linear hypotheses,
either a priori or as a complete heuristic. Some manual experiments seem to indicate
that this could have a significant impact on a certain class of problems. The implemen-
tation of the prover is certifying—it produces independently verifiable proof terms in
a type-theory—but the algorithm used to extract these proofs currently lacks a formal
presentation and a correctness proof.
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Abstract. We present the CoRe calculus for contextual reasoning which
supports reasoning directly at the assertion level, where proof steps are
justified in terms of applications of definitions, lemmas, theorems, or hy-
potheses (collectively called “assertions”) and which is an established
basis to generate proof presentations in natural language. The calculus
comprises a uniform notion of a logical context of subformulas as well
as replacement rules available in a logical context. Replacement rules
operationalize assertion level proof steps and technically are generalized
resolution and paramodulation rules, which in turn should suit the im-
plementation of automatic reasoning procedures.

1 Introduction

The main application domains of computer-based theorem proving systems are
mathematical assistants, mathematical teaching assistants, and hardware and
software verification. In these domains, a human guidance of the proof procedures
is indispensable, even for theorems that are simple by human standards. For
instance the user must provide guidance information about how to explore the
search space or specify intermediate lemmas. Therefore, communication between
the user and the theorem proving system is crucial. The information provided
by the theorem proving system about the proof must be intelligible to the user
and the user must convey his/her intentions about how to continue the proof in
a manner that is intelligible to the theorem proving system.

Exchanging the information in an intelligible manner is the bottleneck for the
communication. A user like a mathematician or software engineer usually has
a semantic representation of the problem domain and exploits it to approach
and solve proof obligations. They usually have little or no knowledge about
formal logic. State of the art automated theorem provers, however, only incor-
porate deep knowledge about the search space structure based on the syntax and
calculus rules. Interactive theorem provers use tactics [11] to incorporate more
high-level proof procedures, but these still stick to the syntax and the basic cal-
culus rules. Proof planning [7] has been designed to overcome these limitations.
However, in practice it also requires an understanding of the underlying calculus
from the user and does not completely overcome the limitations imposed by the
lack of abstraction imposed by the underlying calculus.

In this paper we present a calculus for contextual reasoning (CoRe) which
aims at narrowing the gap between the user and the proof procedures. The

R. Nieuwenhuis (Ed.): CADE 2005, LNAI 3632, pp. 84–98, 2005.
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key idea of the calculus is that proof construction proceeds by transformation
of (parts of) a formula by applying definitions, lemmas, theorems as well as
information contained in the formula without enforcing its decomposition. We
have made a point of this idea in the CoRe calculus, where the logical contexts
can be statically determined for any part of a formula. The information contained
in a logical context is conditioned into replacement rules, which formalize the
notion of assertion level rules.

The assertion level has been introduced by Xiarong Huang in [13] as an
abstraction from the pure natural deduction calculus and it is the basis for the
generation of proof presentations in natural language close to the style of proofs
in mathematical textbooks. The idea is to subsume axioms, definitions, lemmas,
and theorems as assertions, and the use of a single assertion in the proof search
corresponds to a whole proof segment in the underlying calculus. Consider the
example assertion taken from [13]: ∀S1, S2 : Set .S1 ⊆ S2 ⇔ ∀x.x ∈ S1 ⇒ x ∈ S2.
This assertion allows us to derive (1) a ∈ S′

2 from a ∈ S′
1 and S′

1 ⊆ S′
2; (2)

S′
1 �⊆ S′

2 from a ∈ S′
1 and a �∈ S′

2; and (3) ∀x.x ∈ S′
1 ⇒ x ∈ S′

2 from S′
1 ⊆ S′

2.
This paper is organized as follows: In Sec. 2 we recapitulate the basic defini-

tions of higher-order logic, uniform notation, and extensional expansion proofs
for higher-order logic [15]. Sec. 3 describes the CoRe calculus and how uniform
notation provides a uniform basis to define the logical context of subformulas
and to determine replacement rules from the assertions available from the logical
context. In Sec. 4 we present an example proof with the CoRe calculus, before
addressing related work and concluding in Sec. 5.

2 Preliminaries

2.1 Higher-Order Logic

For the definition of higher-order logic, we use a simple higher-order type system
T [4], composed of a base type ι for individuals, a type o for formulas, and where
τ → τ ′ denotes the type of functions from τ to τ ′. As usual, we assume that the
functional type constructor → associates to the right.

We annotate constants fτ and variables xτ with types τ from T to indicate
their type. A higher-order signature Σ = (T ,F ,V) consists of types T , constants
F and variables V , both typed over T . The typed λ-calculus is standard and is
defined over a given higher-order signature Σ := (T ,F ,V).

Definition 1 (λ-Terms). Let Σ = (T ,F ,V) be a higher-order signature. Then
the typed λ-terms TΣ,V over Σ and V are: (Var) for all xτ ∈ V, x ∈ TF ,V is a
variable term of type τ ; (Const) for all cτ ∈ F , c ∈ TF ,V is a constant term of
type τ ; (App) if t : τ, t′ : τ → τ ′ ∈ TF ,V are typed terms, then (t′ t) ∈ TF ,V is an
application term of type τ ′; (Abs) if xτ ∈ V and t : τ ′ ∈ TF ,V , then λxτ .t ∈ TF ,V
is an abstraction term of type τ → τ ′.

Definition 2 (Substitutions). Let Σ = (T ,F ,V) be a higher-order signature.
A substitution is a type preserving function1 σ : V → TF ,V that is the identity
1 i.e. for all variables xτ , σ(x) also has type τ .
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function on V except for finitely many elements from V. This allows for a finite
representation of a substitution σ as {σ(x1)/x1, . . . , σ(xn)/xn} where σ(y) = y
if ∀1 ≤ i ≤ n, y �= xi.

As usual we do not distinguish between a substitution and its homomor-
phic extension to terms. Given a substitution σ we denote the domain of σ by
dom(σ) := {x ∈ V | σ(x) �= x}. Given two substitutions σ and ν, we say that ν
is a σ-refinement if, and only if, there exists a substitution ρ, such that ν = ρ◦σ.
We say that a substitution σ is ground, if, and only if, for all x ∈ dom(σ), σ(x)
contains no free variables. Higher-order λ-terms usually come with certain re-
duction and expansion rules. We use the β reduction rule and the η expansion
rule (see [4]), which give rise to the βη long normal form, which is unique up
to renaming of bound variables (α-equal). Throughout the rest of this paper we
assume substitutions are idempotent2 and all terms are in βη long normal form.

For the semantics of higher-order logic we use the extensional general models
from [12] by taking into account the corrections from [2]. It is based on the
notion of frames that is a τ -indexed family {Dτ}τ∈T of nonempty domains,
such that Do = {�,⊥} and Dτ1→τ2 is a collection of functions mapping Dτ1

into Dτ2 . Given a variable assignment ρ, a variable xτ and an element e ∈ Dτ

we denote by ρ[e/x] that assignment ρ′ such that ρ′(xτ ) = e and ρ′(yτ ′) = ρ(yτ ′),
if yτ ′ �= xτ .

Definition 3 (Satisfiability & Validity). A formula ϕ is satisfiable if, and
only if, there is a model M and a variable assignment ρ such that Mρ(ϕ) = �.
ϕ is true in a model M if, and only if, for all variable assignments ρ holds
Mρ(ϕ) = �. ϕ is valid if, and only if, it is true in all models.

2.2 Uniform Notation

The CoRe calculus relies on an extension of extensional expansion proofs and
makes use of the concept of polarities and uniform notation (cf. [18,9,17]). Po-
larities are assigned to formulas and subformulas and are either positive (+)
or negative (−). Intuitively, positive polarity of a subformula indicates that it
occurs in the succedent of a sequent in a sequent calculus proof and negative
polarity is for formulas occurring in the antecedent of a sequent.

Formulas annotated with polarities are called signed formulas. Uniform nota-
tion assigns uniform types to signed formulas which encode their “behavior” in
a sequent calculus proof: there are two propositional uniform types α and β, and
two types γ and δ for quantification over object variables. A signed formula is of
type α if the subformulas obtained by application of the respective sequent cal-
culus decomposition rule on the formula both occur in the same sequent. Signed
formulas are of type β, if the decomposition of the signed formula gives rise to a
split of the sequent calculus proof and the obtained subformulas occur in differ-
ent sequents. γ-type signed formulas indicate that the bound variable is freely
instantiable, while δ-type signed formulas are those for which the Eigenvariable
2 i.e. for all terms t holds σ(σ(t)) = σ(t).
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α α0 α1

(ϕ ∨ ψ)+ ϕ+ ψ+

(ϕ ⇒ ψ)+ ϕ− ψ+

(ϕ ∧ ψ)− ϕ− ψ−

(¬ϕ)+ ϕ− −
(¬ϕ)− ϕ+ −

β β0 β1

(ϕ ∧ ψ)+ ϕ+ ψ+

(ϕ ∨ ψ)− ϕ− ψ−

(ϕ ⇒ ψ)− ϕ+ ψ−

γ γ0(c)

(∀x.ϕ)− (ϕ[x/t])−

(∃x.ϕ)+ (ϕ[x/t])+

δ δ0(c)

(∀x.ϕ)+ (ϕ[x/c])+

(∃x.ϕ)− (ϕ[x/c])−

ε ε0 ε1
(s ⇔ t)− s t

(s = t)− s t

ζ ζ0 ζ1

(s ⇔ t)+ s t

(s = t)+ s t

Fig. 1. Extended Uniform Notation

condition must hold. We call γ-variable (resp. δ-variable) variables bound on
some γ-type signed formula (resp. δ-type). In Fig. 1 we give the list of signed
formulas for each uniform type.

An important intuitive concept is equality and equivalence and we want to
treat those as first-class citizens by supporting their use as rewrite rules. For
instance, given an equation s = t and a formula ϕ(s) it is natural to allow
the rewrite of ϕ(s) to ϕ(t). Similarly we want to support the rewriting with
equivalence, i.e. to apply P ⇔ Q on ϕ(P ) to obtain ϕ(Q). Note that we cannot
assign polarities to P and Q in P ⇔ Q, while P in ϕ(P ) may well have a polarity.
Furthermore, the uniform notion of rules obtained from uniform notation is
restricted to logical refinement rules and does not capture equivalence rules. In
order to capture equations and equivalences we introduce two new uniform types
ε and ζ respectively for negative and positive equations and equivalences (see
the rightmost tables in Fig. 1).

In the following we agree to denote by αp(F q, Gr) signed formulas of polarity
p, uniform type α, and subformulas F and G with respective polarities q and r
according the tables in Fig. 1, including the unary version αp(F q). Note that the
subformulas are not necessarily direct subformulas, as for instance α+(F−, G+)
denotes (F ⇒ G)+ but also (¬F ∨G)+. By abuse of notation we also allow the
replacement of F q and Gr by new formulas. Example: if α+(F q, Gr) is (A− ⇒
B+)+, then αp(C,Gr) denotes (C− ⇒ B+)+. We use an analogous notation for
formulas of the other uniform types. Furthermore we define αp(F q) := αp(F q)
and for n > 1, αp(F p1

1 , . . . , F pn
n ) := αp(F p1

1 , αp2(F p2
2 , . . . , F pn

n )). Analogously we
define β, but also add the case n = 0 by defining β

+
() := �+ and β

−
() := ⊥−.

In the rest of this article we are mainly concerned with signed formulas. To
ease the presentation we extend the notion of satisfiability to signed formulas. In
order to motivate this definition consider a sequent ψ1, . . . , ψn � ϕ. It represents
the proof status that we have to prove ϕ from the ψi. In terms of polarities,
all the ψi have negative polarity while ϕ has positive polarity. The ψi are the
assumptions and thus we consider the models that satisfy those formulas and
prove that those models also satisfy ϕ. Hence, we define that a model M satisfies
a negative formula ψ−

i if, and only if, M satisfies ψi. From there we derive the
dual definition for positive formulas, namely that a model M satisfies a positive
formula F+, if, and only if, M does not satisfy F .

Definition 4 (Satisfiability of Signed Formulas). Let F p be a signed for-
mula of polarity p, M a model and ρ an assignment. Then we define: Mρ |= F+

holds if, and only if, Mρ �|= F . Conversely, we define Mρ |= F− holds if, and only
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if, Mρ |= F . We extend that notion to sets of signed formulas F by: Mρ |= F ,
if, and only if, for all F p ∈ F , Mρ |= F p.

Lemma 1. Let M be a model, ρ a variable assignment, F q, Gr signed formulas
of polarities q, r. Then Mρ |= αp(F q, Gr) holds if, and only if, both Mρ |= F q

and Mρ |= Gr hold; Mρ |= βp(F q, Gr) holds, if, and only if, Mρ |= F q or
Mρ |= Gr holds.

Remark 1 (Notational Conventions). We denote formulas by capital Latin let-
ters A,B, . . . , F,G, . . ., and formulas with holes by Greek letters ϕ(.), which
denotes λ-abstractions λx.ϕ(x) where x occurs exactly once in ϕ. Similarly, we
define ψ(., .) to denote λx.λy.ψ(x, y) and x and y occur exactly once in ψ. 3

Definition 5 (Literals in Signed Formulas). Let ϕ(F )p be a signed formula
of polarity p. We say that F is a literal in ϕ(F )p if using the rules from Fig. 1
we can assign a polarity to F , but not to its subterms.

2.3 Extensional Expansion Proofs

For the CoRe calculus we build upon an extension of extensional expansion
proofs from [3]. They rely on extensional expansion trees which are defined in [15]
for formulas without equivalences, equations and the atoms � and ⊥ and where
all negations are around the literals. They are constructed for a formula F along
the tree structure of the formula. It follows closely that tree structure, except for
existential quantifiers, where it allows to have subtrees for arbitrary many in-
stances t of the quantifier. Each t is called an expansion term and the number of
instances is the multiplicity of that quantifier. For a universal quantifier the sub-
tree is created for the main formula instantiated with a selected parameter. The
non-instantiated formula represented by a subtree is called the shallow formula.
To each subtree we can associate a deep formula which represents the formula
where all quantifiers have been instantiated with expansion terms. Equations are
handled via Leibniz’ definition of equality in [15]. It also adds a rule to support
reasoning with respect to functional and Boolean extensionality, which gives rise
to extensional expansion trees. We denote the extensional expansion trees with
shallow formula F and multiplicity μ by #μ

F . The expansion terms in an ex-
pansion tree give rise to a substitution, which is #μ

F -admissible, if the transitive
closure of the relation induced by the hierarchy of quantifiers from the tree struc-
ture together with the relation induced by the substitution among introduction
nodes of expansion terms and selected parameters is irreflexive. An extensional
expansion tree #μ

F is an extensional expansion proof for F , if, and only if, (1)
its deep formula is a tautology (i.e., all paths through the deep formula are
unsatisfiable) and (2) the associated substitution σ is #μ

F -admissible.
In [3] we extend that calculus (1) by allowing for equivalences, equations

and the atoms � and ⊥; (2) by using polarities to overcome the restrictions on
the position of negations4; (3) by including a rule to dynamically increase the
3 This is similar to the notation used by Schütte in [16].
4 Here we follow the indexed formula trees of Wallen [18] for first-order modal logics

and fragments thereof.
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multiplicities on the fly in order to avoid guessing the initial multiplicities and
restart. Increasing the multiplicities thereby copies relevant existing connections
and results in a renaming of existential (γ) variables and universal (δ) variables.

Theorem 1 (Soundness & Completeness with Dynamic Increase of
Multiplicities). F is valid if, and only if, from an extensional expansion tree
for the signed formula F+ with singular multiplicities we can derive an exten-
sional expansion tree and a #μ

F -admissible substitution σ such that all paths in
#μ

F are unsatisfiable.

3 CoRe Calculus

The CoRe calculus relies on the idea to have a single signed formula represent-
ing the state of the proof and to use polarities and uniform types to manipulate
the subformulas. In order to check the admissibility of substitutions it uses the
extensional expansion trees from [3] (see previous section). For a closed signed
formula F p it constructs an extensional expansion tree with singular multiplici-
ties and with γ- and δ-variables. From such an initial extensional expansion tree,
we take its deep formula with free γ- and δ-variables.

As an example consider the closed formula representing the structural induc-
tion axiom ∀pι→o .(∀nι .n = 0⇒ p(n))⇒ ((∀n, n′

ι .(n = n′+1∧p(n′))⇒ p(n))⇒
∀nι .p(n)). Writing free γ-variables in capital letters, δ-variables in lower-case
letters and performing the necessary renamings to avoid name clashes, the free
variable representation of the extensional expansion tree for the negative version
of the formula and with singular multiplicities is ((n1 = 0⇒ P (n1))⇒ (((n2 =
n3 +1∧P (n3))⇒ P (n2))⇒ P (N)))−. Note that the free γ- and δ-variables are
bound in the corresponding extensional expansion tree. The extensional expan-
sion tree this formula stems from can be used to check the admissibility of any
substitution for this formula, even if the formula is further transformed.

The obtained signed formulas have the property that they do not contain any
quantifier with defined polarity, but may well contain quantifiers inside literals.
We denote this kind of signed formulas as quantifier-free formulas.

Definition 6 (Quantifier-Free & Ground Signed Formulas). Let F p be a
signed formula of polarity P . We say that F p is quantifier free (QF), if F p does
not contain any signed subformula of uniform type δ or γ. If F p additionally
contains no free γ-variables, then F p is ground.

An example for a ground signed formula which contains quantifiers inside
literals is the following definition of the predicate of even natural numbers
(Evenι→o = λxι .∃nι .x = 2 × n)p. Given a closed formula F , we denote by
#1

F the initial extensional expansion tree of singular multiplicity for F and by
F+

X the quantifier free formula obtained from #1
F . Using polarities and uniform

types we can define relationships between subformulas in signed QF-formulas as
well as the set of set of paths through signed quantifier-free formulas.
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Definition 7 (α- and β-Related Signed Formulas). Let ψ(F,G)p be a signed
formula of polarity p. We say that F and G are α-related (resp. β-related) in
ψ(F,G)p if, and only if, the smallest signed subformula of ψ(F,G)p which con-
tains both F and G is of uniform type α (resp. β).

Definition 8 (Paths in Signed QF-Formula). Let F p be a signed quantifier-
free formula of polarity p. A path in F p is a sequence $ F p1

1 , . . . , F pn
n % of

α-related signed subformulas of F p. The sets P(F p) of paths through F p is the
smallest set containing {$ F p %} and which is closed under the two operations:

(α) If P ∪{$ Γ, αp(Gq , Hr)%} ∈ P(F p), then P ∪{$ Γ,Gq, Hr %} ∈ P(F p).
(β) If P ∪{$ Γ, βp(Gq, Hr)%} ∈ P(F p), then P ∪{$ Γ,Gq %,$ Γ,Hr %} ∈
P(F p).

The following lemma establishes the basic relationship between the paths in
the extensional expansion tree for a closed formula and the paths through the
corresponding quantifier-free signed formula.

Lemma 2. Let F be a closed formula, #1
F the extensional expansion tree with

singular multiplicity for F+ and F+
X the QF-formula for #1

F . Then the set of all
literal paths through #1

F are in P(F+
X ).

This allows us to derive from the existence of satisfiable (ground) literal
paths in the extensional expansion tree the existence of (ground) literal paths
in the QF-formula. The preservation of the existence of satisfiable ground paths
is the property ensuring the soundness of any further transformation performed
on the QF-formula. Since it is cumbersome to always have to reason about the
existence of ground paths only at the level of literals, we lift the level to paths
at an arbitrary, less granular level of paths.

Definition 9 (Satisfiable & Unsatisfiable Ground Paths). A path p is
ground if all contained signed formulas are ground. A ground path p is satisfiable
if there exists a model M such that M |= p. Otherwise p is unsatisfiable.

Corollary 1. Let p be a path, which contains either �+, or ⊥− or signed for-
mulas F− and F+. Then any ground path for p is unsatisfiable.

The following lemma establishes then that we can choose the level of granularity
on which we want to reason about the satisfiability of a complete set of paths.

Lemma 3. Let F p be a signed formula, and P, P ′ ∈ P(F p) complete sets of
ground paths through F p. Then it holds: P contains a satisfiable ground path if,
and only if, P ′ contains a satisfiable ground path.

3.1 Admissible Replacement Rules

The logical context of some subformula in a signed formula is determined by
collecting all α-related subformulas. Now we are concerned with determining
the possible rules which can be generated from the available subformulas. To
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motivate this, consider the goal sequent A ⇒ (B ⇒ C) � C. Applying A ⇒
(B ⇒ C) to C means that the goal to prove C is replaced by the goal to prove
A and B. In this case both occurrences of C have opposite polarities and are
α-related via �. Furthermore, the new subgoals, i.e. the positive occurrences
of A and B, can be determined statically from the formula by collecting all
the formulas that are β-related to the negative occurrence of C. This enables
generating rules from a formula by fixing the left-hand side, e.g. the negative C.
The right-hand side of the rule is then the list of all formulas that are β-related
to the left-hand side, and we write this as a rule C− → 〈A+, B+〉. Analogously,
if there is a negative equation or a negative equivalence in the context, i.e.
an ε-type formula ε(s, t), we obtain the rules s → 〈t, F p1

1 , . . . , F pn
n 〉 and t →

〈s, F p1
1 , . . . , F pn

n 〉 where the F pi

i are the formulas β-related to ε(s, t). This rule
contains the information, that some goal formula ϕ(s) where s has an arbitrary
polarity – even no polarity – can be refined to the subgoals ϕ(t), F p1

1 , . . . , F pn
n .

Before formalizing the notion of replacement rules, we introduce a mechanism
which allows to weaken parts of α-type signed subformulas.

Definition 10 (Weakening of Signed Formulas). Let F p be a signed for-
mula. The set W(F p) of weakened signed formulas for F p is defined recur-
sively over the structure of F : (Atom) W(F p) := {F p} if F p is a literal; (α)
W(αp(Gq, Hr)) := {αp(Gq

w , Hr
w) | Gq

w ∈ W(Gq), Hr
w ∈ W(Hr)} ∪ W(Gq) ∪

W(Hr); (β) W(βp(Gq, Hr)) := {βp(Gq
w, Hr

w) | Gq
w ∈ W(Gq), Hr

w ∈ W(Hr)}.

Lemma 4. Let M be a model, F p a signed formula and σ a ground substitution
such that σ(F )p is ground. Then for any Gp ∈ W(F p) it holds: If M |= σ(F p)
then M |= σ(Gp).

Proof. By structural induction over F and using Lemma 1. ��

Corollary 2 (Connectable Signed Formulas). Let F p and G−p be two signed
formulas. If there exists an F p

w ∈ W(F p) which is α-equal to some F−p
w ∈

W(G−p), then for any ground substitution σ such that σ(F p) and σ(Gp) are
ground there exists no model M which satisfies both σ(F p) and σ(G−p). We say
that F p and G−p are connectable.

Example 1. As an example consider the negative formula A∨ (B ∧C)− and the
positive formula A∨ (C ∨D)+. The respective sets of weakened signed formulas
areW(A∨(B∧C)−) = {A∨(B∧C)−, A∨B−, A∨C−} andW(A∨(C ∨D)+) =
{A∨(C∨D)+ , A∨C+, A∨D+, A+, C+, D+}. Thus, the formulas are connectable,
since A ∨ C− ∈ W(A ∨ (B ∧ C)−) and A ∨C+ ∈ W(A ∨ (C ∨D)+).

Definition 11 (Subformula Conditions). Let ϕ(F q)p be a signed formula of
polarity p, Gp1

1 , . . . , Gpn
n be all maximal signed formulas that are β-related to F q

in ϕ(F q)p. Then the conditions of F q are Cϕ(.)p :=W(Gp1
1 )× . . .×W(Gpn

n ).

Replacement rules are of two kinds: the first kind are those where the left-
hand side is a subformula with a polarity, and the second kind result from ε-type
formulas. The former are called resolution replacement rules, while the latter are
called rewriting replacement rules.
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Definition 12 (Admissible Resolution Replacement Rules). Given the
signed formula ψ(L−p, Gp)q of polarity q and containing the two signed subfor-
mulas L and G of opposite polarities, let ψ′(L−p, Gp)r be the smallest signed
formula containing both L−p and Gp and (Rp1

1 , . . . , Rp1
n ) ∈ Cψ′(.,Gp)r . Then if

L−p and Gp are α-related in ψ(L−p, Gp)q, then L−p → 〈Rp1
1 , . . . , Rpn

n 〉 is an
admissible resolution replacement rule for Gp.

Definition 13 (Admissible Rewriting Replacement Rules). Given the
signed formula ψ(ε−(s, t), Gp)q of polarity q and containing the two signed sub-
formulas ε−(s, t) and Gp, let ψ′(ε−(s, t), Gp)r be the smallest signed formula
containing both ε−(s, t) and Gp and (Rp1

1 , . . . , Rp1
n ) ∈ Cψ′(.,Gp)r . Then if ε−(s, t)

and Gp are α-related in ψ(ε−(s, t), Gp)q, then s → 〈t, Rp1
1 , . . . , Rpn

n 〉 and t →
〈s,Rp1

1 , . . . , Rpn
n 〉 are admissible rewriting replacement rules for Gp.

A CoRe proof state is denoted by #;σ�F and consists of an extensional ex-
pansion tree #, a #-admissible substitution σ and a QF-formula F . We say that
#;σ � F is satisfiable if, and only if, for all #-admissible ground σ-refinements
ν there exists a satisfiable path in ν(F )+. In order to mimic a textual top-down
proof development style, the CoRe calculus rules π

π′ are to be read top-down5,
i.e. the problem of proving π is reduced to prove π′. The rules are given in Fig. 2
and consist of three parts separated by dotted lines: The upper part presents the
major calculus rules, the middle part consists of the propositional simplification
rules, and the lower part gives an extra rule for the application of rewriting re-
placement rule. The rules from the first two parts are the kernel of the CoRe
calculus necessary for completeness. The last rule is added for convenience, but
is admissible. We only illustrate some of the rules in detail and the meaning of
the other rules should follow easily from these descriptions.

The WeakL rule allows to reduce the goal to prove a positive formula ϕ in
which occurs a binary α-type subformula αp(F q, Gr) to the goal to prove the
formula ϕ, where the binary subformula is replaced by the left conjunct F q. The
surrounding αp is used to adapt the polarities by adding a negation, in case p �= q.
Example applications of this rule are: �; σ � C ∧ (A ⇒ B) �WeakL

C �; σ � C ∧B, or
�; σ�C∧(A ⇒ B) �WeakL

C �; σ�C∧¬(A). This rule changes neither the extensional
expansion tree nor the substitution.

The Leibniz -rule is used to expand an equality s =τ t into Leibniz definition
of equality ∀Pτ→ o .P (s)⇒ P (t), for any type τ . Therefore we determine the ex-
tensional expansion subtree #s=tp for (s = t)p and apply the respective Leibniz-
Introduction-rule of extensional expansion proofs. This adds an initial exten-
sional expansion subtree #∀P .P (s)⇒P (t) conjunctively to #s=tp . From that new
subtree we take the corresponding QF-formula P (s) ⇒ P (t) and α-relate it to
s = tp to obtain the new QF-formula ϕ(αp(s = tp, P (s)⇒ P (t))). Depending on
whether the polarity p is positive or not, P is a new δ-variable or a new γ-variable.
An example for this rule is: ��s(X)+Y =s(X+Y )− ; σ � (X ′ +0 = X ′∧ s(X)+Y = s(X +

Y ))⇒ s(s(a)) + 0 = s(s(a)) �Leibniz
C �α−(�s(X)+Y =s(X+Y ),�∀P .P (s(X)+Y )⇒P (s(X+Y )))

; σ �

5 Unlike sequent calculus rules.
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�; σ ��
q.e.d.

Axiom
�; σ � ϕ(F p)

�; σ � ϕ(αp(F p, F p))
Contract

�; σ � ϕ((F ⇔ G)+)

�; σ � ϕ(((F ⇒ G) ∧ (G ⇒ F ))+)
ζ-Elim

�; σ � ϕ(αp(F q, Gr))
�; σ � ϕ(αp(F q))

WeakL

�; σ � ϕ(αp(F q, Gr))
�; σ � ϕ(αp(Gr))

WeakR

��s=tp ; σ � ϕ(s = tp)

�αp(�s=tp ,�∀P .P (s)⇒P(t))
; σ � ϕ(αp(s = t, P (s)⇒ P (t)))

Leibniz

�s=tp ; σ � ϕ(s = tp)
�αp(s=tp,λx.s=λx.t); σ � ϕ(αp(s = t, λx.s = λx.t))

f-Ext

if x local to s = t in ϕ(s = tp).

�A⇔Bp ; σ � ϕ(A ⇔ Bp)
�αp(A⇔Bp,λx.A=λx.B); σ � ϕ(αp(A ⇔ B, λx.A = λx.B))

b-Ext

if x local to A ⇔ B in ϕ(A ⇔ Bp).

�; σ � F

σ′(�); σ′ ◦ σ � σ′(F )
Subst

if σ′ ◦ σ admissible wrt. �.

�; σ � ϕ(F p)

�; σ � ϕ(β
p
(V p1

1 , . . . , V pn
n ))

Res

If U−p → 〈V p1
1 , . . . , V pn

n 〉 admissible for
F p and U−p and F p are connectable.

��1···�n ; σ � ϕ(ψ1(
−→
V1), . . . , ψn(−→Vk))

��1�′
1···�n,�′

n
; σ′ ◦ σ � ϕ(α(ψ1(

−→
V1), ψ1(ρ(−→V1))), . . . , α(ψn(−→Vk), ψn(ρ(−→Vk))))

μ-Inc

where ρ is the renaming of γ- and δ-variables declared in the �i, (−→Vi)i=1...k is a
disjoint partition of dom(ρ), such that for all i, all the variables in −→Vi occur only
in ψi(

−→
Vi), and σ′ := [ρ(σ(x))/ρ(x) | for all γ-variables x ∈ dom(ρ)].

��F p ; σ � ϕ(F p)

��C ; ρ ◦ σ � ϕ(βp(αp(A−, F p), αp(A+, F p)))
Cut A

where �F p is the minimal subtree containing all literals in F p, −→x ′ are the free
variables of A not bound above �F p , ρ := [−→x ′/−→x ], and �C is the subtree
γp−→x ′ .βp(αp(A−,�F p), αp(A+,�F p)).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

�; σ � ϕ(� ∨ F )
�; σ � ϕ(�)

∨	
L

�; σ � ϕ(F ∨ �)
�; σ � ϕ(�)

∨	
R

�; σ � ϕ(⊥∨ F )
�; σ � ϕ(F )

∨⊥
L

�; σ � ϕ(F ∨ ⊥)
�; σ � ϕ(F )

∨⊥
R

�; σ � ϕ(� ⇒ F )
�; σ � ϕ(F )

⇒	
L

�; σ � ϕ(F ⇒ �)
�; σ � ϕ(�)

⇒	
R

�; σ � ϕ(⊥ ⇒ F )
�; σ � ϕ(�)

⇒⊥
L

�; σ � ϕ(F ⇒ ⊥)
�; σ � ϕ(¬(F ))

⇒⊥
R

�; σ � ϕ(� ∧ F )
�; σ � ϕ(F )

∧	
L

�; σ � ϕ(F ∧ �)
�; σ � ϕ(F )

∧	
R

�; σ � ϕ(⊥∧ F )
�; σ � ϕ(⊥)

∧⊥
L

�; σ � ϕ(F ∧ ⊥)
�; σ � ϕ(⊥)

∧⊥
R

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

�ε(s,t); σ � ϕ(L(s)p)

�α−(ε(s,t),∀P .β−(L(s)−p,L(t)p)); [λx.L(x)/P ] ◦ σ � ϕ(β
p
(L(t)p, V p1

1 , . . . , V pn
n ))

Rew

If L(s)p is a literal, s → 〈t, V p1
1 , . . . , V pn

n 〉 is admissible for L(s)p, and ε(s, t) is
the equation or equivalence this rule results from.

Fig. 2. The CoRe Calculus
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x
ρ→ ρ(x) = x′

σ↓ ↓σ′

σ(x)
ρ→ σ′(x′) := ρ(σ(x))

�α(�F ,�F ′ ); σ
′ ◦ σ�⎛⎜⎜⎜⎜⎜⎜⎝

X ′ + 0 = X ′ ∧ (s(X) + Y = s(X + Y )
∧(s(s(X) + Y ) + 0 = s(s(X) + Y )

⇒ s(s(X + Y )) + 0 = s(s(X + Y ))))
∧(s(U) + V = s(U + V )
∧(s(s(U) + V ) + 0 = s(s(U) + V )

⇒ s(s(U + V )) + 0 = s(s(U + V ))))

⎞⎟⎟⎟⎟⎟⎟⎠
⇒ s(s(a)) + 0 = s(s(a))

Fig. 3. (a) Construction of σ′ (b) Proof state after increase of multiplicity

(X ′+0 = X ′∧(s(X)+Y = s(X+Y )∧(P (s(X)+Y )⇒ P (s(X+Y )))))⇒ s(s(a))+0 =
s(s(a)), where P is a new γ-variable.

The functional and Boolean extensionality rules f-Ext and b-Ext require the
variable x to be local with respect to the equation (resp. equivalence). This
intuitively means that if x is a γ-variable, then it does not occur in a part which
is β-related to the equation (resp. equivalence). If x is a δ-variable, then it does
not occur in a part which is α-related. For a formalization we refer to [3].

The rule Res is the central rule operationalizing assertion level reasoning.
Assertions G can be applied to some subformula F p if it is possible to compile
from G an admissible resolution replacement rule U−p → 〈V p1

1 , . . . , V pn
n 〉. Such

a rule is applicable, if F p and U−p are connectable, and the application con-
sists of replacing F p by the disjunction of the subgoals V p1

1 , . . . , V pn
n , which is

represented by β
p
(V p1

1 , . . . , V pn
n ). Examples for this rule are: �; σ � (A ⇒ B) ⇒

B �Res
C �; σ � (A ⇒ B)⇒ A by the rule B− → 〈A+〉, �; σ � (A∨ (B ∧C)) ⇒ B �Res

C

�; σ � (A ∨ (B ∧ C))⇒ ¬(A) by the rule B− → 〈A−〉, or �; σ � (A⇒ B)⇒ B �Res
C

�; σ � (A ⇒ ⊥)⇒ B by the rule B+ → 〈.〉 where by definition β
−

(.) = ⊥−.
Finally, the μ-Inc-rule allows to increase the multiplicities of γ-quantifiers in

the extensional expansion tree. This rule is essentially necessary to be combined
with the substitution rule in order to preserve formulas containing those variables
that will be substituted. Assume {x1, . . . , xn} are those γ-variables that will
be substituted and whose associated subtrees #i are maximal with respect to
any other substituted γ-variable. The #i are the immediate subtrees in # of
the γ-quantifier that introduced xi. The increase of the multiplicity of these γ-
quantifiers with respect to the xi results in copies #′

i of the #i, where all γ-
and δ-variables declared in #i have been renamed. This renaming ρ is injective
and maps γ-variables to γ-variables and δ-variables to δ-variables. Furthermore,
it holds ρ(xi) = x′

i for all 1 ≤ i ≤ n. The extension σ′ of the substitution σ
is obtained by making the diagram on the left hand side of Fig. 3 commute
for any γ-variable x in the domain of ρ. Finally, the renaming is propagated to
the QF-formula by considering a partitioning (−→Vi)i=1...k of the renamed γ- and
δ-variables (dom(ρ)), such that for all 1 ≤ i ≤ k there is a subformula ψi(

−→
Vi)

containing all occurrences of the variables in −→Vi . The renaming ρ is applied to
these ψi(

−→
Vi) to obtain ψi(ρ(

−→
Vi)), which in turn are added conjunctively to ψi(

−→
Vi).

Consider the proof state obtained before by the Leibniz -rule: We first apply the
substitution σ(P ) = λx.s(x + 0) = s(x) and then increase the multiplicity of
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the γ-quantifier for X . This results in the proof state shown on the right hand
side of Fig. 3. Thereby ρ := [U/X, V/Y,Q/P ], and σ′ := [ρ(σ(P ))/ρ(P )] =
[λx.s(x + 0) = s(x)/Q].

Definition 14 (CoRe Calculus). Let π, π′ be CoRe proof states. π �C π′ is
a CoRe proof step if, and only if, there is a CoRe calculus rule π

π′ (cf. Fig. 2).
A CoRe derivation is a sequence π1 �C π2 �C . . . � πn of CoRe proof steps
(as usual we define �∗C as the reflexive transitive closure of �C).

Let F be a closed formula, #I the initial extensional expansion tree for F+,
FX the corresponding QF-formula and id the empty substitution. Then F is
provable in CoRe, if, and only if, there is a derivation #I ; id �FX �∗C #;σ ��.

Theorem 2 (Soundness & Completeness). The CoRe calculus is sound
and complete.

Proof (Sketch). (Soundness) In order to prove the soundness of the CoRe cal-
culus, we prove (1) for any closed formula F , if F is not valid, then the initial
proof state #I ; id � FX for F is satisfiable (by Theorem 1 and Lemma 2); (2)
each CoRe calculus rule (except the Axiom-rule) preserves the satisfiability of
the proof state; (3) proof states on which the CoRe Axiom-rule is applicable
are unsatisfiable (a single path with �+ is unsatisfiable by Corollary 1).
(Completeness) By completeness of extensional expansion proofs [15] we can as-
sume for any valid closed formula F that we have guessed the right multiplicities
for γ-type quantifiers, the right substitution σ, and the necessary applications
of Leibniz, f-Ext, b-Ext, ζ-Elim, and Cut.6 All paths in the resulting QF-formula
FP are (propositionally) unsatisfiable. That is from #I ; Id � FX we can derive
a proof state #P ;σ � FP . In a second phase we show that from #P ;σ � FP we
can derive #;σ �� by proving that path resolution [14] is admissible using Res,
Contract, Weakening and the simplification rules. The completeness then finally
follows from the completeness of path resolution for propositional logic. ��

4 Example

We illustrate the CoRe calculus by proving the following theorem over the nat-
ural numbers: ∀n.

∑n
i=1 i3 = (

∑n
i=1 i)2. The function symbols have the standard

meaning. Besides the necessary definitions and the structural induction axiom
for the natural numbers, we assume specific lemmas, in order to keep the proof
short. The axioms and lemmas, i.e. the assertions we assume, are given in Fig. 4.

The initial proof state consists of an extensional expansion tree #0 for the
conjunction of the assertions implying the conjecture, an empty substitution,
and the quantifier free formula resulting from #0. The initial proof state then is

6 Cut is used to simulate the extensionality rule from [15]. Cut is not admissible in
the CoRe-calculus, but would probably be if we add the rules ξ and b (see [5]).
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∀p.∀x.∃y.(p(0) ∧ (p(y)⇒ p(s(y))))⇒ p(x) (1)

∀n.
∑0

i=1 in = 0 (2)

∀n, m.
∑s(m)

i=1 in = s(m)n +
∑m

i=1 in (3)

∀a, b.(a + b)2 = (a2 + (2× b)× a) + b2 (4)

∀a, b, c.a = b ⇒ a + c = b + c (5)

∀n.
∑n

i=1 i1 = n×s(n)
2

(6)

∀m.2× m
2

= m (7)

∀q.s(q)3 = s(q)2 + (q × s(q))× s(q) (8)

0 = (0)2 (9)

Fig. 4. Axioms and lemmas assumed in the proof of ∀n.
∑n

i=1 i3 = (
∑n

i=1 i1)2

#0; id �

⎛⎜⎜⎜⎜⎝
(P(0) ∧ (P(y) ⇒ P(s(y)))) ⇒ P(X ) (1)∑ 0

i=1 iN = 0 (2)∑ s(M)
i=1 iN = s(M)N +

∑M
i=1 iN (3)

(A + B)2 = (A2 + (2 × B) × A) + B2 (4)

A′ = B′ ⇒ A′ + C′ = B′ + C′ (5)∑N′
i=1 i1 = N′×s(N′)

2 (6)

2 × M′
2 = M ′ (7)

s(Q)3 = s(Q)2 + (Q × s(Q)) × s(Q) (8)
0 = (0)2 (9)

⎞⎟⎟⎟⎟⎠
⇒
∑ n

i=1 i3 = (
∑ n

i=1 i1)2

Due to lack of space, we introduce a macro step RuleApplication from H for
the application of some assertion H . Such a macro step consists of applying a
replacement rule that can be obtained from H by (1) increasing the multiplicities
with respect to the variables that need to be instantiated to apply the rule, (2)
apply the necessary substitution, (3) apply the replacement rule, and finally (4)
“remove” the instantiated assertion by weakening. The proof is then as follows:

1. By RuleApplication from (1)

�1; σ1 �

(
(1) ∧

∑ 0
i=1 iN = 0 ∧ (3) ∧ (4) ∧ (5) ∧ (6) ∧ (7) ∧ (8) ∧ (9)

)
⇒

∑ 0
i=1 i3 = (

∑ 0
i=1 i1)2 ∧ (

∑y′
i=1 i3 = (

∑y′
i=1 i1)2) ⇒ (

∑ s(y′)
i=1 i3 = (

∑ s(y′)
i=1 i1)2)

2. By RuleApplication from (2)(2×)

�2; σ2 �

(
(1) ∧ (2) ∧ (3) ∧ (4) ∧ (5) ∧ (6) ∧ (7) ∧ (8) ∧ 0 = (0)2

)
⇒ 0 = (0)2 ∧ (

∑y′
i=1 i3 = (

∑y′
i=1 i1)2) ⇒ (

∑ s(y′)
i=1 i3 = (

∑ s(y′)
i=1 i1)2)

3. By RuleApplication from (9)

�3; σ3 �

(
(1) ∧ (2) ∧ (3) ∧ (4) ∧ (5) ∧ (6) ∧ (7) ∧ (8) ∧ (9)

)
⇒ � ∧ (

∑y′
i=1 i3 = (

∑y′
i=1 i1)2) ⇒ (

∑ s(y′)
i=1 i3 = (

∑ s(y′)
i=1 i1)2)

4. By Simplify by ∧�
L

�4; σ4 �

(
(1) ∧ (2) ∧

∑ s(M)
i=1 iN = s(M)N +

∑M
i=1 iN ∧ (4) ∧ (5) ∧ (6) ∧ (7) ∧ (8) ∧ (9)

)
⇒ (

∑y′
i=1 i3 = (

∑y′
i=1 i1)2) ⇒ (

∑ s(y′)
i=1 i3 = (

∑ s(y′)
i=1 i1)2)

5. By RuleApplication from (3)

�5; σ5 �

(
(1) ∧ (2) ∧

∑ s(M)
i=1 iN = s(M)N +

∑M
i=1 iN ∧ (4) ∧ (5) ∧ (6) ∧ (7) ∧ (8) ∧ (9)

)
⇒ (

∑y′
i=1 i3 = (

∑y′
i=1 i1)2) ⇒ (s(y′)3 +

∑ y′
i=1 i3 = (

∑ s(y′)
i=1 i1)2)

6. By RuleApplication from (3)

�6; σ6 �

(
(1) ∧ (2) ∧ (3) ∧ (A + B)2 = (A2 + (2 × B) × A) + B2 ∧ (5) ∧ (6) ∧ (7) ∧ (8) ∧ (9)

)
⇒ (

∑y′
i=1 i3 = (

∑y′
i=1 i1)2) ⇒ (s(y′)3 +

∑ y′
i=1 i3 = (s(y′) +

∑ y′
i=1 i1)2)

7. By RuleApplication from (4)

�7; σ7 �

(
(1) ∧ (2) ∧ (3) ∧ (4) ∧ (5) ∧ (6) ∧ (7) ∧ (8) ∧ (9)

)
⇒ (

∑y′
i=1 i3 = (

∑y′
i=1 i1)2) ⇒ s(y′)3 +

∑ y′
i=1 i3 =

(s(y′)2 + (2 ×
∑ y′

i=1 i1) × s(y′)) + (
∑ y′

i=1 i1)2

8. By RuleApplication from
∑y′

i=1 i3 = (
∑y′

i=1 i1)2

�8; σ8 �

(
(1) ∧ (2) ∧ (3) ∧ (4) ∧ A′ = B′ ⇒ A′ + C′ = B′ + C′ ∧ (6) ∧ (7) ∧ (8) ∧ (9)

)
⇒ (

∑y′
i=1 i3 = (

∑y′
i=1 i1)2) ⇒ s(y′)3 + (

∑ y′
i=1 i1)2 =

(s(y′)2 + (2 ×
∑ y′

i=1 i1) × s(y′)) + (
∑ y′

i=1 i1)2

9. By RuleApplication from (5)

�9; σ9 �

(
(1) ∧ (2) ∧ (3) ∧ (4) ∧ (5) ∧

∑N′
i=1 i1 = N′×s(N′)

2 ∧ (7) ∧ (8) ∧ (9)

)
⇒ (

∑y′
i=1 i3 = (

∑y′
i=1 i1)2) ⇒ s(y′)3 = s(y′)2 + (2 ×

∑ y′
i=1 i1) × s(y′)
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10. By RuleApplication from (6)

�10; σ10 �

(
(1) ∧ (2) ∧ (3) ∧ (4) ∧ (5) ∧ (6) ∧ 2 × M′

2 = M ′ ∧ (8) ∧ (9)
)

⇒ (
∑y′

i=1 i3 = (
∑y′

i=1 i1)2) ⇒ s(y′)3 = s(y′)2 + (2 × y′×s(y′)
2 ) × s(y′)

11. By RuleApplication from (7)

�11; σ11 �

(
(1) ∧ (2) ∧ (3) ∧ (4) ∧ (5) ∧ (6) ∧ (7) ∧ s(Q)3 = s(Q)2 + (Q × s(Q)) × s(Q) ∧ (9)

)
⇒ (

∑y′
i=1 i3 = (

∑y′
i=1 i1)2) ⇒ s(y′)3 = s(y′)2 + (y′ × s(y′)) × s(y′)

12. By RuleApplication from (8)

�12; σ12 �
(
(1) ∧ (2) ∧ (3) ∧ (4) ∧ (5) ∧ (6) ∧ (7) ∧ (8) ∧ (9)

)
⇒ (

∑y′
i=1 i3 = (

∑y′
i=1 i1)2) ⇒ �

13. By Simplify by 2× ⇒�
R : �13; σ13 � �

14. By Axiom: q.e.d

Discussion. The proof illustrates how the CoRe calculus supports direct rea-
soning at the assertion level. The main focus here is less on the fact that we
can represent a proof at the assertion level, but rather on the support offered by
the calculus to perform a proof at the assertion level. Indeed, representing such
a proof is also possible, for instance, in a natural deduction calculus, provided
that it comes with a strong equality substitution rule and that the syntactical
structure of the assertions fits the decomposition structure of the calculus rules.
However, formulas must typically be decomposed in order to apply the contained
knowledge, as for instance in the application of the induction hypothesis in step
8 in the example proof. Moreover, there is no support which actively suggests
how the assertions can be applied. The CoRe calculus provides this information
as replacement rules, which are directly read out from the assertions.

5 Related Work and Conclusion

We presented the CoRe calculus for contextual reasoning. It uses proof theo-
retic information to statically determine the available assertions for arbitrary
subformulas. The proof theoretic information is further used to operationalize
the application of the assertions via replacement rules. Therefore the CoRe
calculus actively supports direct reasoning on the assertion level.

The technical details of the calculus, for instance, that replacement rules are
in principle non-normalform resolution and paramodulation rules, can mostly
be hidden from the user. However, they should ease the implementation of au-
tomated proof procedures, and any proof constructed on their basis would im-
mediately be available as an assertion level proof, which should ease the under-
standing of the proofs for a human user. Although in this paper we focused on
higher-order logic, in [3] we define CoRe calculi on top of the matrix calculi for
most of the first-order modal logics considered in [18].

The CoRe calculus should also provide a suitable basis to accommodate a
deduction modulo [8] approach, since it allows to implement a contextual congru-
ence on propositions which takes the logical context of subformulas into account
through the uniform mechanism to synthesize all available rules from it. It also
is in the Deep Inference paradigm for calculi, which is studied for instance in
the Calculus of Structures [6]. However, rather than studying proof theoretic
properties using deep structural manipulation rules, the CoRe calculus aims at
supporting a reasoning based on assertions through replacement rules. Finally,
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it is also related to Focusing Proof Construction [1] which derives sequent calcu-
lus macro steps from available assertions. Unlike replacement rules, the focusing
proof steps can only be determined for top-level formulas, only be applied to
top-level formulas, and do not include conditional equivalences and equations.

Future work consists of treating equality as a primitive concept, define CoRe
calculi for further logics (especially intuitionistic logics), provide transforma-
tions of CoRe proofs into sequent calculus proofs to ease proof checking, and
investigate automated reasoning procedures for CoRe by extending ordering-
based automated reasoning techniques like [10] to non-normalform resolution
and paramodulation.
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Abstract. This paper shows how to harness existing theorem provers for first-
order logic to automatically verify safety properties of imperative programs that
perform dynamic storage allocation and destructive updating of pointer-valued
structure fields. One of the main obstacles is specifying and proving the (absence)
of reachability properties among dynamically allocated cells.

The main technical contributions are methods for simulating reachability in
a conservative way using first-order formulas—the formulas describe a superset
of the set of program states that can actually arise. These methods are employed
for semi-automatic program verification (i.e., using programmer-supplied loop
invariants) on programs such as mark-and-sweep garbage collection and destruc-
tive reversal of a singly linked list. (The mark-and-sweep example has been pre-
viously reported as being beyond the capabilities of ESC/Java.)

1 Introduction

This paper explores how to harness existing theorem provers for first-order logic to
prove reachability properties of programs that manipulate dynamically allocated data
structures. The approach that we use involves simulating reachability in a conserva-
tive way using first-order formulas—i.e., the formulas describe a superset of the set of
program states that can actually arise.

Automatically establishing safety and liveness properties of sequential and concur-
rent programs that permit dynamic storage allocation and low-level pointer manipula-
tions is challenging. Dynamic allocation causes the state space to be infinite; moreover,
a program is permitted to mutate a data structure by destructively updating pointer-
valued fields of nodes. These features remain even if a programming language has good
capabilities for data abstraction. Abstract-datatype operations are implemented using
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loops, procedure calls, and sequences of low-level pointer manipulations; consequently,
it is hard to prove that a data-structure invariant is reestablished once a sequence of op-
erations is finished [1]. In languages such as Java, concurrency poses yet another chal-
lenge: establishing the absence of deadlock requires establishing the absence of any
cycle of threads that are waiting for locks held by other threads.

Reachability is crucial for reasoning about linked data structures. For instance, to
establish that a memory configuration contains no garbage elements, we must show that
every element is reachable from some program variable. Other cases where reachability
is a useful notion include

– Specifying acyclicity of data-structure fragments, i.e., every element reachable
from node n cannot reach n

– Specifying the effect of procedure calls when references are passed as arguments:
only elements that are reachable from a formal parameter can be modified

– Specifying the absence of deadlocks
– Specifying safety conditions that allow establishing that a data-structure traversal

terminates, e.g., there is a path from a node to a sink-node of the data structure.
The verification of such properties presents a challenge. Even simple decidable frag-
ments of first-order logic become undecidable when reachability is added [2,3]. More-
over, the utility of monadic second-order logic on trees is rather limited because
(i) many programs allow non-tree data structures, (ii) expressing postconditions of pro-
cedures (which is essential for modular reasoning) requires referring to the pre-state
that holds before the procedure executes, and thus cannot, in general, be expressed in
monadic second-order logic on trees—even for procedures that manipulate only singly-
linked lists, such as the in-situ list-reversal program shown in Fig. 1 , and (iii) the
complexity is prohibitive.

While our work was actually motivated by our experience using abstract interpreta-
tion – and, in particular, the TVLA system [4,5,6] – to establish properties of programs
that manipulate heap-allocated data structures, in this paper, we consider the problem
of verifying data-structure operations, assuming that we have user-supplied loop invari-
ants. This is similar to the approach taken in systems like ESC/Java [7], and Pale [8].

The contributions of the paper can be summarized as follows:

Handling FO(TC) formulas using FO theorem provers. We want to use first-order
theorem provers and we need to discuss the transitive closure of certain binary pred-
icates, f . However, first-order theorem provers cannot handle transitive closure. We
solve this conundrum by adding a new relation symbol ftc for each such f , together
with first-order axioms that assure that ftc is interpreted correctly. The theoretical de-
tails of how this is done are presented in Sections 3 and 4. The fact that we are able to
handle transitive closure effectively and reasonably automatically is a major contribu-
tion and quite surprising.

As explained in Section 3, the axioms that we add to control the behavior of the
added predicates, ftc, must be sound but not necessarily complete. One way to think
about this is that we are simulating a formula, χ, in which transitive closure occurs, with
a pure first-order formula χ′. If our axioms are not complete then we are allowing χ′ to
denote more stores than χ does. This is motivated by the fact that abstraction can be an
aid in the verification of many properties; that is, a definite answer can sometimes be
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obtained even when information has been lost (in a conservative manner). This means
that our methods are sound but potentially incomplete.

If χ′ is proven valid in FO then χ is also valid in FO(TC); however, if we fail to
prove that χ′ is valid, it is still possible that χ is valid: the failure would be due to the
incompleteness of the axioms, or the lack of time or space for the theorem prover to
complete the proof.

It is easy to write a sound axiom, T1[f ], that is “complete” in the very limited
sense that every finite, acyclic model satisfying T1[f ] must interpret ftc as the reflexive,
transitive closure of its interpretation of f . However, in practice this is not worth much
because, as is well-known, finiteness is not expressible in first-order logic. Thus, the
properties that we want to prove do not follow from T1[f ]. We do prove that T1[f ] is
complete for positive transitive-closure properties. The real difficulties lie in proving
properties involving the negation of TC[f ].

Induction axiom scheme. To solve the above problem, we add an induction axiom
scheme. Although in general, there is no complete, recursively-enumerable axioma-
tization of transitive closure, we have found that on the examples we have tried, T1

plus induction allows us to automatically prove all of our desired properties. We think
of the axioms that we use as aides for the first-order theorem prover that we employ
(Spass [9]) to prove the properties in question. Rather than giving Spass many in-
stances of the induction scheme, our experience is that it finds the proof faster if we
give it several axioms that are simpler to use than induction. As already mentioned, the
hard part is to show that certain paths do not exist.

Coloring axiom schemes. In particular, we use three axiom schemes, having to do
with partitioning memory into a small set of colors. We call instances of these schemes
“coloring axioms”. Our coloring axioms are simple, and are easily proved using Spass
(in under ten seconds) from the induction axioms. For example, the first coloring
axiom scheme, NoExit[A, f ], says that if no f -edges leave color class, A, then no f -
paths leave A. It turns out that the NoExit axiom scheme implies – and thus is equivalent
to – the induction scheme. However, we have found in practice that explicitly adding
other coloring axioms (which are consequences of NoExit) enables Spass to prove
properties that it otherwise fails at.

We first assume that the programmer provides the colors by means of first-order for-
mulas with transitive closure. Our initial experience indicates that the generated color-
ing axioms are useful to Spass. In particular, it provides the ability to verify programs
like the mark phase of a mark-and-sweep garbage collector. This example has been
previously reported as being beyond the capabilities of ESC/Java. TVLA also succeeds
on this example; however our new approach provides verification methods that can in
some instances be more precise than TVLA.

Prototype implementation. Perhaps most exciting, we have implemented the heuris-
tics for selecting colors and their corresponding axioms in a prototype using Spass.
We have used this to automatically choose useful color axioms and then verify several
small heap-manipulating programs. More work needs to be done here, but the initial
results are very encouraging.
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Strengthening Nelson’s results. Greg Nelson considered a set of axiom schemes for
reasoning about reachability in function graphs, i.e., graphs in which there is at most one
f -edge leaving any node [10]. He left open the question of whether his axiom schemes
were complete for function graphs. We show that Nelson’s axioms are provable from
T1 plus our induction axioms. We also show that Nelson’s axioms are not complete: in
fact, they do not imply NoExit.

Outline. The remainder of the paper is organized as follows: Section 2 explains our
notation and the setting; Section 3 introduces the induction axiom scheme and fills in
our formal framework; Section 4 states the coloring axiom schemes; Section 5 explains
the details of our heuristics; Section 6 describes some related work; Section 7 describes
some future directions.

2 Preliminaries

This section defines the basic notations used in this paper and the setting.

2.1 Notation

Syntax: A relational vocabulary τ = {p1, p2, . . . , pk} is a set of relation symbols,
each of fixed arity. We write first-order formulas over τ with quantifiers ∀ and ∃,
logical connectives ∧, ∨, →, ↔, and ¬, where atomic formulas include: equality,
pi(v1, v2, . . . vai), and TC[f ](v1, v2), where pi ∈ τ is of arity ai and f ∈ τ is bi-
nary. Here TC[f ](v1, v2) denotes the existence of a finite path of 0 or more f edges
from v1 to v2. A formula without TC is called a first-order formula.

We use the following precedence of logical operators: ¬ has highest precedence,
followed by ∧ and ∨, followed by→ and↔, and ∀ and ∃ have lowest precedence.

Semantics: A model, A, of vocabulary τ , consists of a non-empty universe, |A|, and a
relation pA over the universe interpreting each relation symbol p ∈ τ . We writeA |= ϕ
to mean that the formula ϕ is true in the model A.

2.2 Setting

We are primarily interested in formulas that arise while proving the correctness of pro-
grams. We assume that the programmer specifies pre and post-conditions for procedures
and loop invariants using first-order formulas with transitive closure on binary relations.
The transformer for a loop body can be produced automatically from the program code.

For instance, to establish the partial correctness with respect to a user-supplied spec-
ification of a program that contains a single loop, we need to establish three properties:
First, the loop invariant must hold at the beginning of the first iteration; i.e., we must
show that the loop invariant follows from the precondition and the code leading to the
loop. Second, the loop invariant provided by the user must be maintained; i.e., we must
show that if the loop invariant holds at the beginning of an iteration and the loop con-
dition also holds, the transformer causes the loop invariant to hold at the end of the
iteration. Finally, the postcondition must follow from the loop invariant and the condi-
tion for exiting the loop.
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In general, these formulas are of the form

ψ1[τ ] ∧ T [τ, τ ′]→ ψ2[τ ′]

where τ is the vocabulary of the before state, τ ′ is the vocabulary of the after state,
and T is the transformer, which may use both the before and after predicates to de-
scribe the meaning of the module to be executed. If symbol f denotes the value of a
predicate before the operation then f ′ denotes the value of the same predicate after the
operation.

An interesting special case is the proof of the maintenance formula of a loop invari-
ant. This has the form:

LC[τ ] ∧ LI[τ ] ∧ T [τ, τ ′]→ LI[τ ′]

Here LC is the condition for entering the loop and LI is the loop invariant. LI[τ ′]
indicates that the loop invariant remains true after the body of the loop is executed.

The challenge is that the formulas of interest contain transitive closure; thus, the
validity of these formulas cannot be directly proven using a theorem prover for first-
order logic.

3 Axiomatization of Transitive Closure

The original formula that we want to prove, χ, contains transitive closure, which first-
order theorem provers cannot handle. To address this problem, we replace χ by the
new formula, χ′, where all appearances of TC[f ] have been replaced by the new binary
relation symbol, ftc.

We show in this paper that from χ′, we can often automatically generate an appro-
priate first-order axiom, σ, with the following two properties:

1. if σ → χ′ is valid in FO then χ is valid in FO(TC).
2. A theorem prover successfully proves that σ → χ′ is valid in FO.

We now explain the theory behind this process. A TC model, A, is a model such
that if f and ftc are in the vocabulary of A, then (ftc)A = (fA)�; i.e., A interprets ftc

as the reflexive, transitive closure of its interpretation of f .
A first-order formula ϕ is TC valid iff it is true in all TC models. We say that an

axiomatization, Σ, is TC sound if every formula that follows from Σ is TC valid. Since
first-order reasoning is sound, Σ is TC sound iff every σ ∈ Σ is TC valid.

We say that Σ is TC complete if for every TC-valid ϕ, Σ |= ϕ. If Σ is TC complete
and TC sound, then for all first-order ϕ,

Σ |= ϕ ⇔ ϕ is TC valid

Thus a TC-complete set of axioms proves exactly the first-order formulas, χ′, such
that the corresponding FO(TC) formula, χ, is valid.

All the axiomatizations that we consider are TC sound. There is no recursively
enumerable TC-complete axiom system (see [11,12]).
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3.1 Some TC-Sound Axioms

We begin with our first TC axiom scheme. For any binary relation symbol, f , let,

T1[f ] ≡ ∀u, v . ftc(u, v) ↔ (u = v) ∨ ∃w . f(u,w) ∧ ftc(w, v)

We first observe that T1[f ] is “complete” in a very limited way for finite, acyclic
graphs, i.e., T1[f ] exactly characterizes the meaning of ftc for all finite, acyclic graphs.
The reason this is limited, is that it does not give us a complete set of first-order axioms
because, as is well known, there is no first-order axiomatization of “finite”.

Proposition 1. Any finite and acyclic model of T1[f ] is a TC model.

Proof: Let A |= T1[f ] where A is finite and acyclic. Let a0, b ∈ |A|. Assume there is
an f -path from a0 to b. Since A |= T1[f ], it is easy to see that A |= ftc(a0, b).

Conversely, suppose that A |= ftc(a0, b). If a0 = b, then there is a path of length 0
from a0 to b. Otherwise, by T1[f ], there exists an a1 ∈ |A| such that A |= f(a0, a1) ∧
ftc(a1, b). Note that a1 �= a0 since A is acyclic. If a1 = b then there is an f -path of
length 1 from a to b. Otherwise there must exist an a2 ∈ |A| such thatA |= f(a1, a2)∧
ftc(a2, b) and so on, generating a set {a1, a2, . . .}. None of the ai can be equal to aj ,
for j < i, by acyclicity. Thus, by finiteness, some ai = b. Hence A is a TC model. �

Let T ′
1[f ] be the← direction of T1[f ]:

T ′
1[f ] ≡ ∀u, v . ftc(u, v) ← (u = v) ∨ ∃w . f(u,w) ∧ ftc(w, v)

Proposition 2. Let ftc occur only positively in ϕ. If ϕ is TC valid, then T ′
1[f ] |= ϕ.

Proof: Suppose that T ′
1[f ] �|= ϕ. Let A |= T ′

1[f ] ∧ ¬ϕ. Note that ftc occurs only
negatively in ¬ϕ. Furthermore, since A |= T ′

1[f ], it is easy to show by induction on the
length of the path, that if there is an f -path from a to b inA, thenA |= ftc(a, b). Define
A′ to be the model formed fromA by interpreting ftc in A′ as (fA)�. ThusA′ is a TC
model and it only differs from A by the fact that we have removed zero or more pairs
from (ftc)A to form (ftc)A

′
. Because A |= ¬ϕ and ftc occurs only negatively in ¬ϕ,

it follows that A′ |= ¬ϕ, which contradicts the assumption that ϕ is TC valid. �

Proposition 2 shows that proving positive facts of the form ftc(u, v) is easy; it is the
task of proving that paths do not exist that is more subtle.

Proposition 1 shows that what we are missing, at least in the acyclic case, is that
there is no first-order axiomatization of finiteness. Traditionally, when reasoning about
the natural numbers, this problem is mitigated by adding induction axioms. We next
introduce an induction scheme that, together with T1, seems to be sufficient to prove
any property we need concerning TC.

Notation: In general, we will use F to denote the set of all binary relation symbols, f ,
such that TC[f ] occurs in a formula we are considering. If ϕ[f ] is a formula in which f

occurs, let ϕ[F ] =
∧

f∈F

ϕ(f). Thus, for example, T1[F ] is the conjunction of the axiom

T1[f ] for all binary relation symbols, f , under consideration.
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Definition 1. For any first-order formulas Z(u), P (u), and binary relation symbol, f ,
let the induction principle, IND[Z, P, f ], be the following first-order formula:

(∀z . Z(z)→ P (z)) ∧ (∀u, v . P (u) ∧ f(u, v)→ P (v))
→ ∀u, z . Z(z) ∧ ftc(z, u)→ P (u)

The induction principle says that if every zero point satisfies P , and P is preserved
when following edges, then every point reachable from a zero point satisfies P . Obvi-
ously this principle is sound.

As an easy application of the induction principle, consider the following cousin of
T1[f ],

T2[f ] ≡ ∀u, v . ftc(u, v) ↔ (u = v) ∨ ∃w . ftc(u,w) ∧ f(w, v)

It is easy to see that neither of T1[f ], T2[f ] implies the other. However, in the pres-
ence of the induction principle they do imply each other. For example, it is easy to
prove T2[f ] from T1[f ] using IND[Z, P, f ] where Z(v) ≡ v = u and P (v) ≡ u =
v ∨ ∃w . ftc(u,w) ∧ f(w, v). Here, for each u we use IND[Z, P, f ] to prove by induc-
tion that every v reachable from u satisfies the right-hand side of T2[f ].

A related axiom scheme that we have found useful is the transitivity of reachability:

Trans[f ] ≡ ∀u, v, w . ftc(u,w) ∧ ftc(w, v)→ ftc(u, v)

4 Coloring Axioms

We next describe three TC-sound axioms schemes that are not implied by T1[F ]∧T2[F ],
and are provable from the induction principle of Section 3. We will see in the sequel
that these coloring axioms are very useful in proving that paths do not exist, permitting
us to verify a variety of algorithms. In Section 5, we will present some heuristics for
automatically choosing particular instances of the coloring axiom schemes that enable
us to prove our goal formulas.

The first coloring axiom scheme is the NoExit axiom scheme:

(∀u, v . A(u) ∧ ¬A(v)→ ¬f(u, v)) → ∀u, v . A(u) ∧ ¬A(v)→ ¬ftc(u, v) (1)

for any first-order formula A(u), and binary relation symbol, f , NoExit[A, f ] says that
if no f -edge leaves color class A, then no f -path leaves color class A.

Observe that although it is very simple, NoExit[A, f ] does not follow from
T1[f ] ∧ T2[f ]. Let G1 = (V, f, ftc, A) consist of two disjoint cycles: V = {1, 2, 3, 4},
f = {〈1, 2〉, 〈2, 1〉, 〈3, 4〉, 〈4, 3〉}, and A = {1, 2}. Let ftc have all 16 possible edges.
Thus G1 satisfies T1[f ] ∧ T2[f ] but violates NoExit[A, f ]. Even for acyclic models,
NoExit[A, f ] does not follow from T1[f ] ∧ T2[f ] because there are infinite models in
which the implication does not hold (see [12]).

NoExit[A, f ] follows easily from the induction principle: if no edges leave A, then
induction tells us that everything reachable from a point in A satisfies A. Similarly,
NoExit[A, f ] implies the induction axiom, IND[Z,A, f ], for any formula Z .
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The second coloring axiom scheme is the GoOut axiom: for any first-order formulas
A(u), B(u), and binary relation symbol, f , GoOut[A,B, f ] says that if the only edges
leaving color class A are to B, then any path from a point in A to a point not in A must
pass through B.

(∀u, v . A(u) ∧ ¬A(v) ∧ f(u, v)→ B(v))→
∀u, v . A(u) ∧ ¬A(v) ∧ ftc(u, v)→ ∃b . B(b) ∧ ftc(u, b) ∧ ftc(b, v)

(2)

To see that GoOut[A,B, f ] follows from the induction principle, assume that the
only edges out of A enter B. For any fixed u in A, we prove by induction that any point
v reachable from u is either in A or has a predecessor, b in B, that is reachable from u.

The third coloring axiom scheme is the NewStart axiom, which is useful in the
context of dynamically changing graphs: for any first-order formula A(u), and binary
relation symbols f and g, think of f as the previous edge relation and g as the current
edge relation. NewStart[A, f, g] says that if there are no new edges between A nodes,
then any new path from A must leave A to make its change:

(∀u, v . A(u) ∧A(v) ∧ g(u, v)→ f(u, v))→
∀u, v . gtc(u, v) ∧ ¬ftc(u, v)→ ∃b .¬A(b) ∧ gtc(u, b) ∧ gtc(b, v)

(3)

NewStart[A, f, g] follows from the induction principle by a proof that is similar to
the proof of GoOut[A,B, f ]

We remark that the spirit behind our consideration of the coloring axioms is similar
to that found in a paper of Greg Nelson’s in which he introduced a set of reachability
axioms for a functional predicate, f , i.e., there is at most one f edge leaving any point
[10]. Nelson asked whether his axiom schemes are complete for the functional setting.
We remark that Nelson’s axiom schemes are provable from T1 plus our induction prin-
ciple. However, Nelson’s axiom schemes are not complete: we constructed a functional
graph satisfying Nelson’s axioms but violating NoExit[A, f ], (see [12]).

At least one of Nelson’s axiom schemes does seem orthogonal to our coloring ax-
ioms and may be useful in certain proofs. Nelson’s fifth axiom scheme states that the
points reachable from a given point are linearly ordered. The soundness of the axiom
scheme is due to the fact that f is functional. We make use of a simplified version of
Nelson’s ordering axiom scheme: Let Func[f ] ≡ ∀u, v, w . f(u, v) ∧ f(u,w) → v =
w; then,

Order[f ] ≡ Func[f ]→ ∀u, v, w . ftc(u, v) ∧ ftc(u,w) → ftc(v, w) ∨ ftc(w, v)

5 Heuristics for Using the Coloring Axioms

This section presents heuristics for using the coloring axioms. Toward that end, it an-
swers the following questions:

– How can the coloring axioms be used by a theorem prover to prove χ?
– When should a specific instance of a coloring axiom be given to the theorem prover

while trying to prove χ?
– What part of the process can be automated?
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We first present a running example that will be used in later sections to illustrate the
heuristics. We then explain how the coloring axioms are useful, describe the search
space for useful axioms, give an algorithm for exploring this space, and conclude by
discussing a prototype implementation we have developed that proves the example pre-
sented and others.

5.1 Reverse Specification

The heuristics described in Sections 5.2–5.4 are illustrated on problems that arise in the
verification of partial correctness of a list reversal procedure. Other examples proven
using this technique can be found in the full version of this paper [12].

The procedure reverse, shown in Fig. 1, performs in-place reversal of a singly linked
list, destructively updating the list. The precondition requires that the input list be
acyclic and unshared. For simplicity, we assume that there is no garbage. The post-
condition ensures that the resulting list is acyclic and unshared. Also, it ensures that the
nodes reachable from the formal parameter on entry to reverse are exactly the nodes
reachable from the return value of reverse at the exit. Most importantly, it ensures that
each edge in the original list is reversed in the returned list.

Node reverse(Node x){
[0] Node y = null;
[1] while (x != null){
[2] Node t = x.next;
[3] x.next = y;
[4] y = x;
[5] x = t;
[6] }
[7] return y;

}

Fig. 1. A simple Java-like implementation
of the in-place reversal of a singly-linked
list

The specification for reverse is shown in
Fig. 2. We use unary predicates to represent
program variables and binary predicates to
represent data-structure fields. Fig. 2(a) de-
fines some shorthands. To specify that a unary
predicate z can point to a single node at a time
and that a binary predicate f of a node can
point to at most one node (a partial function),
we use unique[z] and func[f ] . To specify
that there are no cycles of f -fields in the graph,
we use acyclic[f ]. To specify that the graph
does not contain nodes shared by f -fields, (i.e.,
nodes with 2 or more incoming f -fields), we
use unshared[f ]. To specify that all nodes in
the graph are reachable from z1 or z2 by fol-
lowing f -fields, we use total[z1, z2, f ]. An-
other helpful shorthand is rx,f (v) which spec-
ifies that v is reachable from the node pointed to by x using f -edges.

The precondition of the reverse procedure is shown in Fig. 2(b). We use the predi-
cates xe and ne to record the values of the variable x and the next field at the beginning
of the procedure. The precondition requires that the list pointed to by x be acyclic and
unshared. It also requires that unique[z] and func[f ] hold for all unary predicates z
that represent program variables and all binary predicates f that represent fields, respec-
tively. For simplicity, we assume that there is no garbage, i.e., all nodes are reachable
from x.

The post-condition is shown in Fig. 2(c). It ensures that the resulting list is acyclic
and unshared. Also, it ensures that the nodes reachable from the formal parameter x on
entry to the procedure are exactly the nodes reachable from the return value y at the
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exit. Most importantly, we wish to show that each edge in the original list is reversed in
the returned list (see Eq. (11)).

A loop invariant is given in Fig. 2(d). It describes the state of the program at the
beginning of each loop iteration. Every node is in one of two disjoint lists pointed by x
and y (Eq. (12)). The lists are acyclic and unshared. Every edge in the list pointed to by
x is exactly an edge in the original list (Eq. (14)). Every edge in the list pointed to by y
is the reverse of an edge in the original list (Eq. (15)). The only original edge going out
of y is to x (Eq. (16)).

The transformer is given in Fig. 2(e), using the primed predicates n′, x′, and y′ to
describe the values of predicates n, x, and y, respectively, at the end of the iteration.

(a)

unique[z] def= ∀v1, v2.z(v1) ∧ z(v2)→ v1 = v2 (4)

func[f ] def= ∀v1, v2, v.f(v, v1) ∧ f(v, v2)→ v1 = v2 (5)

acyclic[f ] def= ∀v1, v2.¬f(v1, v2) ∨ ¬TC[f ](v2, v1) (6)

unshared[f ] def= ∀v1, v2, v.f(v1, v) ∧ f(v2, v)→ v1 = v2 (7)

total[z1, z2, f ] def= ∀v.∃w.(z1(w) ∨ z2(w)) ∧ TC[f ](w, v) (8)

rx,f (v) def= ∃w . x(w) ∧ TC[f ](w, v) (9)
(b) pre

def= total[xe, xe, ne] ∧ acyclic[ne]∧ unshared[ne] ∧ unique[xe] ∧ func[ne] (10)
(c) post

def= total[y, y, n]∧ acyclic[n]∧ unshared[n]∧ ∀v1, v2.ne(v1, v2)↔ n(v2, v1) (11)

(d)

LI[x, y, n] def= total[x, y, n] ∧ ∀v.(¬rx,n(v) ∨ ¬ry,n(v)) ∧ (12)

acyclic[n]∧ unshared[n] ∧ unique[x] ∧ unique[y] ∧ func[n] ∧ (13)

∀v1, v2.(rx,n(v1)→ (ne(v1, v2)↔ n(v1, v2))) ∧ (14)

∀v1, v2.(ry,n(v) ∧ ¬y(v1)→ (ne(v1, v2)↔ n(v2, v1))) ∧ (15)

∀v1, v2, v.y(v1)→ (x(v2)↔ ne(v1, v2)) (16)

(e) T
def= ∀v.(y′(v)↔ x(v)) ∧ ∀v.(x′(v)↔ ∃w.x(w) ∧ n(w, v)) ∧
∀v1, v2.n

′(v1, v2)↔ ((n(v1, v2) ∧ ¬x(v1)) ∨ (x(v1) ∧ y(v2))) (17)

Fig. 2. Example specification of reverse procedure: (a) shorthands, (b) precondition pre, (c) post-
condition post, (d) loop invariant LI [x, y, n], (e) transformer T (effect of the loop body)

5.2 Proving Formulas Using the Coloring Axioms

All the coloring axioms have the form A ≡ PA → CA, where PA and CA are closed
formulas. We call PA the axiom’s premise and CA the axiom’s conclusion. For an axiom
to be useful, the theorem prover will have to prove the premise (as a subgoal) and then
use the conclusion in the proof of the goal formula χ. For each of the coloring axioms,
we now explain when the premise can be proved, how its conclusion can help, and give
an example.

NoExit. The premise PNoExit[C, f ] states that there are no f -edges exiting color class
C. When C is a unary predicate appearing in the program, the premise is sometimes a
direct result of the loop invariant. Another color that will be used heavily throughout
this section is reachability from a unary predicate, i.e., unary reachability, formally
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defined in Eq. (9). Let’s examine two cases. PNoExit[rx,f , f ] is immediate from the
definition of rx,f and the transitivity of ftc. PNoExit[rx,f , f

′] actually states that there
is no f path from x to an edge for which f ′ holds but f doesn’t, i.e., a change in f ′ with
respect to f . Thus, we use the absence of f -paths to prove the absence of f ′-paths. In
many cases, the change is an important part of the loop invariant, and paths from and to
it are part of the specification.

A sketch of the proof by refutation of PNoExit[rx′,n, n
′] that arises in the reverse

example is given in Fig. 3. The numbers in brackets are the stages of the proof.

1. The negation of the premise expands to:

∃u1, u2, u3 . x
′(u1) ∧ ntc(u1, u2) ∧ ¬ntc(u1, u3) ∧ n′(u2, u3)

2. Since u2 is reachable from u1 and u3 is not, by transitivity of ntc, we have
¬n(u2, u3).

3. By the definition of n′ in the transformer, the only edge in which n differs from
n′ is out of x (one of the clauses generated from Eq. (17) is ∀v1, v2 .¬n′(v1, v2) ∨
¬n(v1, v2) ∨ x(v1)) . Thus, x(u2) holds.

4. By the definition of x′ it has an incoming n edge from x. Thus, n(u2, u1) holds.

The list pointed to by x must be acyclic, whereas we have a cycle between u1 and u2;
i.e., we have a contradiction. Thus, PNoExit[rx′,n, n

′] must hold.

x′[1] �� �������	u1
ntc[1] ��

¬ntc[1]

���������
�������	u2

n[4]

		

n′[1]



�������

¬n[2]��

x[3]��

�������	u3

Fig. 3. Proving PNoExit[rx,n, n′]

CNoExit[C, f ] states there are no f paths (ftc edges) exiting C. This is useful
because proving the absence of paths is the difficult part of proving formulas with TC.

GoOut. The premise PGoOut[A,B, f ] states that all f edges going out of color class
A, go to B. When A and B are unary predicates that appear in the program, again the
premise sometimes holds as a direct result of the loop invariant. An interesting special
case is when B is defined as ∃w .A(w)∧f(w, v). In this case the premise is immediate.
Note that in this case the conclusion is provable also from T1. However, from experi-
ence, the axiom is very useful for improving performance (2 orders of magnitude when
proving the acyclic part of reverse’s post condition).

CGoOut[A,B, f ] states that all paths out of A must pass through B. Thus, under
the premise PGoOut[A,B, f ], if we know that there is a path from A to somewhere
outside of A, we know that there is a path to there from B. In case all nodes in B are
reachable from all nodes in A, together with the transitivity of ftc this means that the
nodes reachable from B are exactly the nodes outside of A that are reachable from A.
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For example, CGoOut[y
′, y, n′] allows us to prove that only the original list pointed

to by y is reachable from y′ (in addition to y′ itself).

NewStart. The premise PNewStart[C, g, h] states that all g edges between nodes in C
are also h edges. This can mean the iteration has not added edges or has not removed
edges according to the selection of h and g. In some cases, the premise holds as a direct
result of the definition of C and the loop invariant.

CNewStart[C, g, h] means that every g path that is not an h path must pass outside
of C. Together with CNoExit[C, g], it proves there are no new paths within C.

For example, in reverse the NewStart scheme can be used as follows. No outgoing
edges were added to nodes reachable from y. There are no n or n′ edges from nodes
reachable from y to nodes not reachable from y. Thus, no paths were added between
nodes reachable from y. Since the list pointed to by y is acyclic before the loop body,
we can prove that it is acyclic at the end of the loop body.

We can see that NewStart allows the theorem prover to reason about paths within
a color, and the other axioms allow the theorem prover to reason about paths between
colors. Together, given enough colors, the theorem prover can often prove all the facts
that it needs about paths and thus prove the formula of interest.

5.3 The Search Space of Possible Axioms

To answer the question of when we should use a specific instance of a coloring ax-
iom when attempting to prove the target formula, we first define the search space in
which we are looking for such instances. The axioms can be instantiated with the colors
defined by an arbitrary unary formula (one free variable) and one or two binary predi-
cates. First, we limit ourselves to binary predicates for which TC was used in the target
formula. Now, since it is infeasible to consider all arbitrary unary formulas, we start
limiting the set of colors we consider.

The initial set of colors to consider are unary predicates that occur in the formula
we want to prove. Interestingly enough, these colors are enough to prove that the post-
condition of mark and sweep is implied by the loop invariant, because the only axiom
we need is NoExit[marked, f ].

An immediate extension that is very effective is reachability from unary predicates,
as defined in Eq. (9). Instantiating all possible axioms from the unary predicates appear-
ing in the formula and their unary reachability predicates, allows us to prove reverse. For
a list of the axioms needed to prove reverse, see Fig. 4. Other example are presented
in [12]. Finally, we consider Boolean combinations of the above colors. Though not
used in the examples shown in this paper, this is needed, for example, in the presence
of sharing or when splicing two lists together.

All the colors above are based on the unary predicates that appear in the original
formula. To prove the reverse example, we needed x′ as part of the initial colors.
Table 1 gives a heuristic for finding the initial colors we need in cases when they cannot
be deduced from the formula, and how it applies to reverse

An interesting observation is that the initial colors we need can, in many cases, be
deduced from the program code. As in the previous section, we have a good way for
deducing paths between colors and within colors in which the edges have not changed.
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NoExit[rx′,n, n
′] GoOut[x, x′, n] NewStart[rx′,n, n, n′] NewStart[rx′,n, n

′, n]
NoExit[rx′,n′ , n] GoOut[x, y, n′] NewStart[rx′,n′ , n, n′] NewStart[rx′,n′ , n′, n]
NoExit[ry,n, n

′] NewStart[ry,n, n, n′] NewStart[ry,n, n
′, n]

NoExit[ry,n′ , n] NewStart[ry,n′ , n, n′] NewStart[ry,n′ , n′, n]

Fig. 4. The instances of coloring axioms used in proving reverse

Table 1. (a) Heuristic for choosing initial colors. (b) Results of applying the heuristic on reverse

Group Criteria
Roots[f] All changes are reachable from one of the colors using ftc

StartChange[f,g] All edges for which f and g differ start from a node in these colors
EndChange[f,g] All edges for which f and g differ end at a node in these colors
(a)
Group Colors Group Colors
Roots[n] x(v), y(v) StartChange[n, n′] x(v)
Roots[n′] x′(v), y′(v) EndChange[n, n′] y(v), x′(v)
(b)

The program usually manipulates fields using pointers, and can traverse an edge only in
one direction. Thus, the unary predicates that represent the program variables (including
the temporary variables) are in many cases what we need as initial colors.

5.4 Exploring the Search Space

When trying to automate the process of choosing colors, the problem is that the set of
possible colors to choose from is doubly-exponential in the number of initial colors;
giving all the axioms directly to the theorem prover is infeasible. In this section, we
define a heuristic algorithm for exploring a limited number of axioms in a directed way.
Pseudocode for this algorithm is shown in Fig. 5. The operator � is implemented as a
call to a theorem prover.

Because the coloring axioms have the form A ≡ PA → CA, the theorem prover
must prove PX or the axiom is of no use. Therefore, the pseudocode works iteratively,
trying to prove PA from the current ψ ∧Σ, and if successful it adds CA to Σ.

The algorithm tries colors in increasing levels of complexity. BC(i, C) gives all the
Boolean combinations of the predicates in C up to size i. After each iteration we try to
prove the goal formula. Sometimes we need the conclusion of one axiom to prove the
premise of another. The NoExit axioms are particularly useful for proving PNewStart.
Therefore, we need a way to order instantiations so that axioms useful for proving the
premises of other axioms are acquired first. The ordering we chose is based on phases:
First, try to instantiate axioms from the axiom scheme GoOut. Second, try to instan-
tiate axioms from the axiom scheme NoExit. Finally, try to instantiate axioms from
the axiom scheme NewStart. For NewStart[c, f, g] to be useful, we need to be able to
show that there are either no incoming f paths or no outgoing f paths from c. Thus,
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explore(Init, χ) {
Let χ = ψ → ϕ
Σ := {Trans[f ], Order[f ] | f ∈ F}
Σ := Σ ∪ {T1[f ], T2[f ] | f ∈ F}
C := {rc,f (v) | c ∈ Init, f ∈ F}
C := C ∪ Init
i := 1
forever {

C′ := BC(i, C)
phase1(C′,Σ,ψ)
phase2(C′,Σ,ψ)
phase3(Σ,ψ)
if Σ ∧ ψ � ϕ

return SUCCESS
i := i + 1

}
}

phase1(C, Σ, ψ) {
foreach f ∈ F, cs �= ce ∈ C

if Σ ∧ ψ � PGoOut[cs, ce, f ]
Σ := Σ ∪ {CGoOut[cs, ce, f ]}

}
phase2(C, Σ, ψ) {
foreach f ∈ F, c ∈ C

if Σ ∧ ψ � PNoExit[c, f ]
Σ := Σ ∪ {CNoExit[c, f ]}

}
phase3(Σ, ψ) {
foreach CNoExit[c, f ] ∈ Σ, g �= f ∈ F

if Σ ∧ ψ � PNewStart[c, f, g]
Σ := Σ ∪ {CNewStart[c, f, g]}

}

Fig. 5. An iterative algorithm for instantiating the axiom schemes. Each iteration consists of three
phases that augment the axiom set Σ

we only try to instantiate such an axiom when either PNoExit[c, f ] or PNoExit[¬c, f ]
were proven.

5.5 Implementation

The algorithm presented here was implemented using a Perl script and the Spass
theorem prover [9] and used successfully to verify the example programs of Section 5.1.

The method described above can be optimized. For instance, if CA has already been
added to the axioms, we do not try to prove PA again. These details are important in
practice, but have been omitted for brevity.

When trying to prove the different premises, Spass may fail to terminate if the
formula that it is trying to prove is invalid. Thus, we limit the time that Spass can
spend proving each formula. It is possible that we will fail to acquire useful axioms this
way.

6 Related Work

Shape Analysis. This work was motivated by our experience with TVLA [4,5], which
is a generic system for abstract interpretation [13]. The TVLA system is more auto-
matic than the methods described in this paper since it does not rely on user-supplied
loop invariants. However, the techniques presented in the present paper are potentially
more precise due to the use of full first-order reasoning. It can be shown that the
NoExit scheme allows to infer reachability at least as precisely as evaluation rules for
3-valued logic with Kleene semantics. In the future, we hope to develop an efficient
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non-interactive theorem prover that enjoys the benefits of both approaches. An interest-
ing observation is that the colors needed in our examples to prove the formula are the
same unary predicates used by TVLA to define its abstraction. This similarity may, in
the future, help us find better ways to automatically instantiate the required axioms. In
particular, inductive logic programming has recently been used to learn formulas to use
in TVLA abstractions [14], which holds out the possibility of applying similar methods
to further automate the approach of the present paper.

Decidable Logics. Decidable logics can be employed to define properties of linked data
structures: Weak monadic second-order logic has been used in [15,8] to define prop-
erties of heap-allocated data structures, and to conduct Hoare-style verification using
programmer-supplied loop invariants in the PALE system [8]. A decidable logic called
Lr (for “logic of reachability expressions”) was defined in [16]. Lr is rich enough to
express the shape descriptors studied in [17] and the path matrices introduced in [18].

The present paper does not develop decision procedures, but instead suggests meth-
ods that can be used in conjunction with existing theorem provers. Thus, the techniques
are incomplete and the theorem provers need not terminate. However, our initial experi-
ence is that the extra flexibility gained by the use of first-order logic with transitive clo-
sure is promising. For example, we can prove the correctness of imperative destructive
list-reversal specified in a natural way and the correctness of mark and sweep garbage
collectors, which are beyond the scope of Mona and Lr.

Indeed, in [19], we have tried to simulate existing data structures using decidable
logics and realized that this can be tricky because the programmer may need to prove
a specific simulation invariant for a given program. Giving an inaccurate simulation
invariant causes the simulation to be unsound. One of the advantages of the technique
described in the present paper is that soundness is guaranteed no matter which axioms
are instantiated. Moreover, the simulation requirements are not necessarily expressible
in the decidable logic.

Other First-Order Axiomatizations of Linked Data Structures. The closest ap-
proach to ours that we are aware of was taken by Nelson as we describe in the full
version of the paper [12]. This also has some follow-up work by Leino and Joshi [20].
Our impression from their write-up is that Leino and Joshi’s work can be pushed for-
ward by using our coloring axioms.

Dynamic Maintenance of Transitive Closure. Another orthogonal but promising ap-
proach to transitive closure is to maintain reachability relations incrementally as we
make unit changes in the data structure. It is known that in many cases, reachability can
be maintained by first-order formulas [21,22] and even sometimes by quantifier-free
formulas [23]. Furthermore, in these cases, it is often possible to automatically derive
the first-order update predicates using finite differencing [24].

7 Conclusion

This paper reports on our initial attempts at applying the methodology that has been
described; hence, only preliminary conclusions can be drawn.
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As mentioned earlier, proving the absence of paths is the difficult part of proving
formulas with TC. The promise of the approach is that it is able to handle such formulas
effectively and reasonably automatically, as shown by the fact that it can successfully
handle the programs described in Section 5 and the full version of the paper [12]. Many
issues remain for further work, such as,

– Establishing whether T1[F ] plus the induction scheme is complete for interesting
subclasses of formulas (e.g. functional graphs).

– Exploring other heuristics for identifying color classes.
– Exploring variations of the algorithm given in Fig. 5 for instantiating coloring ax-

ioms.
– Exploring the use of additional axiom schemes, such as two of the schemes from

[10], which are likely to be useful when dealing with predicates that are partial func-
tions. Such predicates arise in programs that manipulate singly-linked or doubly-
linked lists—or, more generally, data structures that are acyclic in one or more
“dimensions” [25] (i.e., in which the iterated application of a given field selector
can never return to a previously visited node).

Thanks to Aharon Abadi and Roman Manevich for interesting suggestions.
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Abstract. In today’s society, people have very little control over what
kinds of personal data are collected and stored by various agencies in both
the private and public sectors. We describe an approach to addressing
this problem that allows individuals to specify constraints on the way
their own data is used. Our solution uses formal methods to allow de-
velopers of software that processes personal data to provide assurances
that the software meets the specified privacy constraints. In the domain
of privacy, it is often not sufficient to express properties of interest as a
relation between the input and output of a program as is done for general
program correctness. Here we consider a stronger class of properties that
allows us to express constraints on information flow. In particular, we can
express that an algorithm does not leak any information from particu-
lar “sensitive” values. We describe a general methodology for expressing
this kind of information flow property as Hoare-style program verification
judgments. We begin with the Java Modelling Language (JML), which
is a behavioral interface specification language designed for Java, and we
extend the language to include new concepts and keywords for express-
ing such properties. We use the Krakatoa tool which starts from JML-
annotated Java programs, generates proof obligations in the Coq Proof
Assistant, and helps to automate their proofs. We extend the Krakatoa
tool to understand our extensions to JML and to generate the new form
of required proof obligations. We illustrate our method on several data
mining algorithms implemented in Java.

1 Introduction

Privacy is one of the main concerns expressed about modern computing, espe-
cially in the Internet context. People and groups are concerned by the practice
of gathering information without explicitly informing the individuals that data
about them is being collected. Oftentimes, even when people are aware that their
information is being collected, it is used for purposes other than the ones stated
at collection time. The last concern is further aggravated by the power of mod-
ern database and data mining operations which allow inferring, from combined
data sets, knowledge of which the person is not aware, and would have never
consented to generating and disseminating. People have no ownership of their
own data: it is not easy for someone to exclude themselves from, e.g. direct mar-
keting campaigns, where the targeted individuals are selected by data mining
models.

R. Nieuwenhuis (Ed.): CADE 2005, LNAI 3632, pp. 116–130, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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One of the main concepts that has emerged from research on societal and
legal aspects of privacy is the idea of Use Limitation Principle (ULP). That
principle states that the data should be used only for the explicit purpose for
which it has been collected [15]. Our work addresses this question from the
technical standpoint. We provide tool support for verifying that this principle is
indeed upheld by organizations that perform data mining operations on personal
data.

In our setting, users can express individual preferences about what can and
cannot be done with their data. We have not yet addressed the question of how
users express preferences, though our approach allows any data properties that
can be expressed syntactically in formal logic. Certainly, a user-friendly language,
easy to handle by an average person, needs to be designed. It could initially
have the form of a set of options from which an individual would make choices.
We assume that an organization that writes data mining software must provide
guarantees that individuals’ constraints are met, and that these guarantees come
in the form of formal proofs about the source code. Organizations who use the
data mining software are given an executable binary. An independent agency,
whose purpose is to verify that privacy constraints are met, obtains the binary
from the software user, obtains the source code and proof from the software
developer, checks the proof, and verifies that the binary is a compiled version
of the source code. The details of the architecture just described can be found
in another paper [13]. The scenario just described involves using our techniques
to guard against malicious code. Our approach can also apply to a setting in
which trust is not an issue, for example, within a company that wants to insure
that its software release is free of privacy flaws. In this paper, we concentrate on
extending the class of privacy constraints which can be handled, and providing
tool support for proving these properties.

In our previous work [3,13], we considered privacy properties that could be
expressed as requirements on the input-output relation. Additionally, we showed
how to incorporate constraints on operations that could potentially violate pri-
vacy by overloading the output so that a trace of such operations was evident in
the result. Here we consider a stronger class of properties that allows us to express
constraints on information flow. In particular, we are interested in properties that
express that an algorithm does not leak any information from particular sensi-
tive values, or that a program never writes such sensitive data to a file. Many
such properties can be handled through the framework of non-interference. Non-
interference [7] is a high-level property of programs that guarantees the absence
of illegal information flow at runtime. More precisely, non-interference requires
distinguishing between public input/output and sensitive input/output. A pro-
gram that satisfies non-interference will be such that sensitive inputs of that
program have no influence on public outputs. Thus, with the non-interference
framework, it is straightforward to express the expected properties that an al-
gorithm does not leak any sensitive information or that a value is never written
into a file (considering this value as a sensitive input and the file as a public
output). The examples we present in this paper include properties constraining
information flow both with and without the use of non-interference.
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In addition to increasing the class of privacy constraints we can express, we
present a new approach to proving such properties. We start from the Weka
repository of Java code which implements a variety of data mining algorithms
[22]. We simplify the code somewhat, both for illustration purposes and so that
we can work within the limitations of current tools that support our approach.
Also, we must modify the code to include checks that the privacy constraints
that we allow users to specify are met. We then annotate the code with JML
(Java Modeling Language) [11] assertions, which express Hoare-style [9] precon-
ditions, postconditions, loop invariants, etc. We use the Krakatoa [12] tool to
generate proof obligations in Coq [14] and to partially automate their proofs.
Successful completion of these proof obligations ensures that the Java code sat-
isfies its JML specifications. The new approach has two advantages over our
old approach [3,13]. First, we work directly with Java programs. Previously, we
started with Java code, and translated it to the ML-like language used in Coq.
Second, we hope that using tools engineered for program verification will improve
the ability to automate proofs in the privacy domain.

To handle the kinds of information-flow properties we are interested in, we
extend the expressive power of JML. We also extend Krakatoa to generate the
proof obligations required for the extra expressive power, and to help automate
their proofs.

Contents of the Paper. In Section 2, we present the tools used in our approach
to building proofs of privacy constraints of data mining algorithms. In Section 3,
we present our first example; it is a simple one which serves to illustrate our
approach using JML and Krakatoa. In Section 4, we discuss a nearest neighbor
classification algorithm, and present JML annotations which guarantee that the
result value of a data-mining program does not reveal any sensitive information
by constraining it to a set of public values. In Section 5, we discuss how non-
interference can be used to handle a larger class of privacy-sensitive properties,
and how we extend JML and Krakatoa to provide support for non-interference.
In Section 6, we apply these results to a Naive Bayes classification algorithm.
Finally, in Section 7, we conclude and discuss future work.

2 Tools

First, we will introduce Weka, a Java library of data-mining algorithms, and the
notion of classifiers; then, the JML assertion language in which privacy prop-
erties are expressed; and finally, the Krakatoa tool, that we use to verify JML-
annotated Java programs.

2.1 Weka and Classifiers

Since we target data mining software, we have decided to apply our approach
to selected classification modules of Weka (Waikato Environment for Knowledge
Analysis) [22]. Weka is an open-source library of data mining algorithms, written
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in Java, providing a rich set of mining functions, data preprocessing operations,
evaluation procedures, and GUIs. Weka has become a tool of choice, commonly
used in the data mining community. Classification is one of the basic data min-
ing tasks, and Weka provides Java implementations of all the main classification
algorithms. In this paper, we illustrate our approach to privacy-sensitive infor-
mation flow with two commonly used classification tools, the so called Nearest
Neighbor and Naive Bayes classifiers.

The classification task can be defined as follows: given a finite training set
T = {〈xi, yi〉|xi ∈ D, yi ∈ C}, where D denotes the data (set of instances), and
C denotes the set of classes, find a function c : D �→ C such that for each pair
〈x′, y′〉 ∈ T, y′ = c(x′), and furthermore, c will correctly classify unseen examples
(i.e. examples that will only arrive in the future, and as such cannot be included
in the training set T .) c is referred to as a classifier, and the task of finding c is
known as learning c from T , or —alternatively— as the classifier induction task.
Usually, D = A1 × . . .×An, where Ai, i = 1, . . . , n, is an attribute domain. Ai’s
are either sets of discrete (nominal) values, or subsets of R. Each xi ∈ D can
therefore be seen as xi = ai,1, . . . , ai,n, where ai,j ∈ Aj .

2.2 The Java Modeling Language

The Java Modeling Language [11] (JML) is a behavioral interface specification
language designed for Java. It relies on the design by contract approach [16]
to guarantee that a program satisfies its specification during runtime. These
specifications are given as annotations of the Java source file. More precisely, they
are included as special Java comments, either after the symbols //@ or enclosed
between /∗@ and @∗/. For example, the general schema for the annotation of a
method is the following:
/∗@ behavior

@ requ i r es <precondition >;
@ modifiable <modified f i e l d s and var iables >;
@ ensures <postcondition i f no exception raised >;
@ s igna l s (E) <postcondition when exception E raised >; @∗/

The underlying model is a an extension of Hoare-Floyd logic [9]: if the precon-
dition holds at the beginning of the method call, then postconditions (with and
without exceptions) will hold after the call.

Preconditions and postconditions express first-order logic statements, with a
syntax following the Java syntax. Thus, they can easily be written by a pro-
grammer. The Java syntax is enriched with special keywords: \result and
\old(<expr>) to denote respectively the return value of a method, and the
value of a given expression before the execution of a method; and \forall,
\exists, ==> to denote respectively universal quantification, existential quan-
tification and logical implication. If the modifiable clause is omitted, it means
by convention that the method is side-effect free.

Apart from methods specification, it is also possible to annotate a program
with class invariants (predicates on the fields of a class that hold at any time
in the class) using the keyword invariant, loop invariants (inside the code of
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a method with loops) using the keyword loop_invariant, and assertions (that
must hold at the given point of the program) using the keyword assert.

Finally, when annotating a program, it might be useful to introduce new
variables to keep track of certain aspects or computations. Instead of adding
them to the program itself, thus adding new code, it is possible to define variables
that will only be used for specification. These variables, called ghost variables,
are defined in a JML annotation with the keyword ghost and assigned to a Java
expression with the keyword set.

2.3 Krakatoa

Once a program has been annotated with JML, these annotations can be ver-
ified either during runtime (an exception will be raised if they do not hold) or
statically, with a static checker or a theorem prover, given the semantics of the
program. A wide range of tools can be used to achieve this goal. Among these,
the LOOP Tool [21] will work with the PVS theorem prover, Jack [10] with
Atelier B, or Krakatoa [12], that we chose, with Coq [14].

The Krakatoa tool provides a generic model in Coq of the Java runtime en-
vironment. Annotated Java programs are not translated directly to Coq, but
to the Why [5] input language (an annotated ML-like language), without any
loss of precision. Then, Krakatoa relies on static analysis and weakest precon-
ditions calculus of the stand-alone Why tool to generate Coq proof obligations,
corresponding to requirements the Java program must respect to meet its specifi-
cations. Some of these proof obligations can be discharged automatically through
Coq built-in or Krakatoa provided tactics. The remaining proof obligations have
to be completed manually, through the interactive proof mechanism of Coq.
In some cases, preconditions or loop invariants of the annotated Java program
might not be strong enough to prove the postcondition of a method and need to
be modified. Proof obligations are then regenerated, but completed proofs not
affected by these modifications are kept.

The successful completion of all proof obligations is sufficient to ensure that
a program satisfies its specifications. However, the Why tool can also perform a
final step, called validation, to embed each functional translation of the methods
of Java program with its specification into a Coq term whose type corresponds
to the JML specification of that method. This term can be given as a certificate
of the soundness of the whole process.

3 A First Example: Joining Two Database Tables

This sections presents an example of a JML-annotated Java program. We redo
the example described in [3], where the program was written and proved within
Coq. This example serves to illustrate our new approach as well as compare
it to the old one. The program performs a database join operation. The data
from two sets (Payroll and Employee) is joined into a single set (Combined),
ignoring the data from individuals that do not want their data to be used in a join
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operation. For example, individuals with an exceptionally high salary may not
want their Payroll information in the same record as their address and phone
number. Such detailed records may contain enough information to identify them
or to make them the target of certain kinds of direct-marketing campaigns. In
this example, such individuals can express that they want to opt out of this
operation.

The data structures for this example are standard Java classes. For instance,
the payroll notion is captured by the following class that contains the employee
ID PID it refers to, the salary, and a boolean JoinInd which indicates if the
person who owns the data has given the permission to use the data in a join
operation.
class Payroll {

public int PID;
public int Salary;
public boolean JoinInd;

};

The result of the join is stored in a Combined class, that gathers the data
from the classes Payroll and Employee (which contains, among other fields,
name and EID which records the employee ID). We can notice at this point that
the constructor for the class Combined is annotated with a JML specification. It
prevents the creation of a Combined class for the users that do not allow it (the
field JoinInd has to be true), and ensures that the field JoinInd is unchanged
in the created class.
class Combined {

public Payroll m_payroll;
public Employee m_employee;

/∗@ public normal behavior
@ requ i r e s p != nul l && p . JoinInd == true && e .EID == p .PID ;
@ ensures m payroll . JoinInd == p . JoinInd ; @∗/

public Combined(Employee e, Payroll p) {
m_employee = e;
m_payroll = p;

} };

Note that the assertion above includes a statement that the employee ID fields
of e and p are the same. We did not need this in the version in [3] since only one
copy of the ID was kept in the new Combined record. This is a minor difference
which has little effect on the proofs.

The algorithm that iterates though a set of Payroll records to perform a
join operation is given below:
/∗@ public normal behavior

@ requ i r e s Ps != nul l && Es != nul l ;
@ ensures (\ f o r a l l int i ; 0 <= i && i < \ r e su l t . length ; \ r e su l t != nul l &&
@ (\ r e su l t [ i ] != nul l ==> \ r e su l t [ i ] . m payroll . JoinInd == true ) ) ; @∗/

public Combined[] join(Payroll[] Ps, Employee[] Es) {
Combined tab[] = new Combined[Ps.length];

/∗@ loop invar iant
@ 0 <= i && i <= Ps . length &&
@ (\ f o r a l l int j ; 0 <= j && j < i && j < tab . length ;
@ ( tab [ j ] != nul l ==> tab [ j ] . m payroll . JoinInd == true ) ) ;
@ decreases Ps . length−i ; @∗/

for (int i=0; i < Ps.length; i++)
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if (Ps[i] != null)
tab[i] = checkJoinIndAndfindEmployee(Ps[i], Es);

else
tab[i] = null;

return tab;
}

The specification of this algorithm expresses the same property as in [3], but
here it is expressed in JML, which uses Java-like syntax and refers directly to
variables occurring in the program. The particular property that is expressed
is that all data that took part in the join was in fact permitted to do so by
the owners of the data. In [3], this property was expressed directly as a formula
in Coq. Here, the requirements on individual methods taken together express
this property. The method checkJoinIndAndfindEmployee, whose code is not
given here, takes a single Payroll record Ps[i] and the entire list of Employee
records Es as arguments. If (1) a record is found such that Ps[i].EID matches
the employee ID value in one of the records in Es, and (2) Ps[i].JoinInd has
value true, then a new Combined record is created and returned. Otherwise
null is returned.

Note that the loop inside the join method had to be annotated, like any loop
in the Hoare-logic formalism. Also, the method checkJoinIndAndfindEmployee

had to be annotated with precondition, postcondition, and loop invariant since
it is called by join and extends the results of the call to the constructor of the
class Combined.

After going through Krakatoa, most of the generated proof obligations are
automatically solved by Coq. In the JML annotations from the code above,
we have omitted some dynamic type information (such as Ps is an instance
of Payroll[]) that was needed to complete the proof. The fact that we had
to manually insert this information is due to current limitations of Krakatoa
that will be fixed in the near future. Around 100 lines of proof were entered to
discharge the remaining proof obligations, which is slightly less than the length
of the proofs in [3]. Although the difference is not really significant due to the
limited size of the example, we believe that this approach leads to smaller proofs
and to an increased confidence in the whole engineering process.

4 A Simple Data Privacy Preserving Classifier

In this section, we will describe how to enforce the value of a data-mining algo-
rithm not to reveal any sensitive information, by constraining the output to a
set of public values.

The following algorithm, the nearest neighbor classifier algorithm, has been
extracted from the Weka library but, to keep proofs simpler, unwanted features
for the purpose of this example have been removed (such as method calls related
to the Weka graphic interface, or checks for an incorrect or incomplete data set)
and data are accessed directly, not through objects. For this particular classifier,
the returned value of the class attribute (in a data-mining context, the attribute
that the classifier aims at determining) for the given instance instance, is the
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value of the class attribute for the instance from the training set m_Train de-
termined as the nearest of the given instance. The corresponding distance is
calculated from the non-class attributes of both.

The specifications for this algorithm constrain the result value to be one of
the class attributes (in the row classIndex of instances), thus preventing leaks
of any other value of the dataset. This kind of specification can be used for
other classifiers on a finite set of class attributes and that return an element of
this set. It would be possible to also prevent a particular instance to be used
in the algorithm based on the owner requirements, as done in Section 3, but
it is supposed in this example that sensitive information resides in non-class
attributes and that the class attribute can be public.
/∗@ public normal behavior

@ requ i r e s instance != nul l && m Train != nul l && numInstances > 0 &&
@ instance . length == numAttributes && m Train . length == numInstances &&
@ (\ f o r a l l int i ; 0 <= i && i < numInstances ;
@ m Train [ i ] != nul l && m Train [ i ] . length == numAttributes ) ;
@ ensures (\ ex i s t s int i ; 0 <= i && i < m Train . length ;
@ \ r e su l t == m Train [ i ] [ c lassIndex ] ) ; @∗/

public double classifyInstance(double [] instance) throws Exception {
double dist, minDistance, classValue = 0.0;
boolean first = true;

buildClassifier();
updateMinMax(instance);

/∗@ loop invar iant
@ 0 <= i && i <= numInstances &&
@ (( f i r s t == true && i == 0) | |
@ (\ ex i s t s int j ; 0 <= j && j < i ; classValue == m Train [ j ] [ c lassIndex ] ) ) ;
@ decreases numInstances − i ; @∗/

for (int i = 0; i < numInstances; i++) {
dist = distance(instance, m_Train[i]);
if (first || dist < minDistance) {

minDistance = dist;
classValue = m_Train[i][classIndex];
first = false;

}
}

return classValue;
}

Proof obligations for this algorithm do not lead to particular problems, they just
follow the structure of the code and the annotations. A total of 180 lines of man-
ually entered proof scripts is needed for buildClassifier, classifyInstance
and the auxiliary functions involved such as updateMinMax and distance.

This approach leads to simple specifications and proofs for which the result
is constrained to a known set. However, in cases where the set result is infinite,
a stronger framework is needed, such as the one provided by non-interference.

5 Privacy Through Non-interference

As explained in the introduction, non-interference distinguishes public inputs
(resp. outputs) and sensitive inputs (resp. outputs) and prevents leaks from sen-
sitive inputs to public outputs. For example, if we consider the input/output
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variables x as public and y as sensitive, the program x = y*2 is interferent
(direct flow from y to x), whereas the program x = y; x = 0 is not (it is im-
possible for an attacker to guess the value of y by observing x at the end of the
execution). It is also possible to get interference through indirect information
flow, for instance the following program is interferent (it is possible to guess the
nullity of y):

if (y != 0) then x = 1; else x = 2;

Finally, interference can be observable through termination of programs
(termination-sensitive) or timing leaks. For the sake of this paper, we will not
consider these possibilities.

5.1 The General Framework

Non-interference can be enforced through type systems [20,1]. However, in prac-
tice these type systems turn out to be laborious to use and they can reject
obvious non-interferent programs. Instead, we prefer to follow the approach de-
scribed in [2] that proceeds by self-composition of the program and that can be
described using the Hoare-style logic of JML (and then integrated in the tools
we have used so far to study privacy).

Self-composition proceeds by duplicating the code of a program, with two
sets of inputs. Thus imperative pointer-free program P (x,y) with public in-
put/output variables x and sensitive input/output y will be non-interferent if
forall x1, x2, y1, y2 we have the following Hoare formula:

{x1 = x2} P (x1,y1);P (x2,y2) {x1 = x2}

where ; is usual sequential composition. This formula expresses the fact that
the output values of the public variables are independent from the values of the
sensitive variables.

More generally, dependencies between the parameters of the program, before
and after the execution, are characterized by a relation called L-equivalence. In
the above Hoare formula, this relation is simple equality. By allowing more gen-
eral L-equivalence relations between public and sensitive variables, it becomes
possible to capture the notion of declassification [4,18] within the same frame-
work. Declassification allows leaks, in a controlled way, of sensitive global in-
formation to public variables. Indeed declassification would allow a data-mining
algorithm to compute over sensitive variables and yield public results that do not
give any specific information about any of these sensitive variables. An example
of such a use is given in the example of Section 6 in the context of data-mining.

5.2 Extension of Krakatoa

In order to be able to handle non-interference with Krakatoa following the previ-
ous framework, some modifications have to be made to both JML and Krakatoa.
First, we wish to distinguish pre and post-conditions related to the normal exe-
cution of the program and those related to non-interference. For this purpose, we
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have introduced two optional keywords for method specifications: requires_ni
and ensures_ni. Then, to define L-equivalence relations in the pre and post-
conditions of the self-composed program, we need to distinguish variables for
each of the two runs of the program. Therefore, we have introduced two key-
words \ni1(<var>) and \ni2(<var>). Finally, annotations inside the code are
also required to exist in three variants, one for normal execution and one for each
run of the program for non-interference (these annotations are not necessarily
the same for each run). For example, the keywords loop_invariant_ni1 and
loop_invariant_ni2 are available to distinguish loop invariants to be used for
each run of the program.

Krakatoa is modified to recognize these new keywords. When a method is
annotated with non-interference specifications, it generates the code for the
self-composed method with the corresponding specifications and the appropri-
ate variable names. A particular case appears for method invocations inside a
method body. Indeed, the non-interference results from the invoked method will
only be available in the second copy of the self-composed code (the two runs must
have occurred). In addition, it is necessary to modify the program, with ghost
variables, to keep track of the invoked method parameters and result values of
the first run (they can be modified later on by assignment and thus would not
be available anymore). These values will be used as values of the variables of the
first run, in the non-interference results of the invoked method of the second run.

6 Non-interference for the Naive Bayes Classifier

In this section, we will illustrate how the idea of non-interference can be ap-
plied on a data-mining algorithm, the naive Bayes classifier, to express a privacy
property.

The Naive Bayes classifier predicts the class of an instance x = a1, . . . , an

(mTrain[i] in the code below) as

c(x) = argmaxcj∈CP (cj)
∏

P (ai|cj)

i.e. the class of x is obtained by estimating the probabilities of all classes for
given attribute values of x. These estimates, known as priors, are known from
the training set. Probability estimates are approximated by counting frequencies
of different classes for given attribute values. The training data needs therefore
to be summarized in a table (the variable probs in the code below), which keeps
the count of the number of instances with specific attribute values for each class.

From a data privacy point of view, we will assume that some people do
not want their data (more precisely the corresponding instances in the training
set T ) to be used by the classifier for this particular class. Having one’s data
used by a classifier means that this particular individual stands out in T , and
can be targeted (by the use of so called data drilling operations) in marketing
campaigns, sampling routines, etc. It might be reasonable to object to this.
Thus, the output class value of the algorithm, that is a public result, should not
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depend on these sensitive data. The entire set of training instances can not be
considered as fully sensitive data since some information has to be gained from
it to classify the instance; it can not be considered as public data either due to
the restrictions given above. Rather, the training set should be considered as
sensitive data with part of these data (instances that are allowed by their owner
to be used in a classifier algorithm) being declassified for non-interference. Then,
the L-equivalence relation for this algorithm will expect:

– from the input m_Train, the training set of instances, an array of
m_NumInstances instances, to be such that the corresponding duplicated
variables for self-composition \ni1(m_Train) and \ni2(m_Train) agree on
the values that can be used in the classifier algorithm;

– from the public inputs instance, the instance to classify, to be such that
the duplicated variables are equal;

– from the public input m_inst_Allow, an array of m_NumInstances booleans
that express for a given index whether the instance at the corresponding
index in m_Train can be used in the classifier, to be such that the duplicated
variables are equal;

– from the public output \result, an array of m_NumClassValues probabili-
ties, to be such that the duplicated variables are equal.

More formally, the JML specification for the naive Bayes algorithm is:
/∗@ public normal behavior

@ requ i r e s n i (\ f o r a l l int i ; i <= 0 && i < m NumInstances ;
@ ((\ni1 (m inst Allow ) [ i ] == true ) ==>
@ (\ f o r a l l int j ; j <= 0 && j < m numAttributes ;
@ \ni1 (m Train ) [ i ] [ j ] == \ni2 (m Train ) [ i ] [ j ] ) ) ) &&
@ (\ni1 ( instance ) [ i ] == \ni2 ( instance ) [ i ] ) &&
@ (\ni1 (m inst Allow ) [ i ] == \ni2 (m inst Allow ) [ i ] ) ;
@ ensures ni (\ f o r a l l int i ; 0 <= i && i < m NumClassValues ;
@ \ni1 (\ r e su l t [ i ] ) == \ni2 (\ r e su l t [ i ] ) ) ; @∗/

The structure of the code for this classifier relies on two main methods:
buildClassifier that initializes the classifier with the training set data, and
distributionForInstance that uses the previously built classifier to classify
a given instance. The buildClassifier method must ensure that two train-
ing sets that verify the conditions given above will generate equal probability
estimators:
/∗@ public normal behavior

@ requ i r e s n i (\ f o r a l l int i ; i <= 0 && i < m NumInstances ;
@ (\ni1 (m inst Allow ) [ i ] == \ni2 (m inst Allow ) [ i ] ) &&
@ ((\ni1 (m inst Allow ) [ i ] == true ) ==>
@ (\ f o r a l l int j ; j <= 0 && j < m numAttributes ;
@ \ni1 (m Train ) [ i ] [ j ] == \ni2 (m Train ) [ i ] [ j ] ) ) ) ;
@ ensures ni instance != nul l && instance . length == m NumAttributes &&
@ (\ f o r a l l int i ; 0 <= i && i < m NumClassValues ;
@ \ni1 ( m ClassDistribution ) . getProbabi l i ty ( i ) ==
@ \ni2 ( m ClassDistribution ) . getProbabi l i ty ( i )) &&
@ (\ f o r a l l int attIndex ; 0 <= attIndex && attIndex < m NumAttributes ;
@ (\ f o r a l l int i ; 0 <= i && i < m NumClassValues ;
@ (\ f o r a l l int j ; 0 <= j && j < m NumValues [ attIndex ] ;
@ \ni1 ( m Distributions ) [ attIndex ] [ i ] . getProbabi l i ty ( j ) ==
@ \ni2 ( m Distributions ) [ attIndex ] [ i ] . getProbabi l i ty ( j ) ) ) ) ; @∗/

public void buildClassifier() {
m_ClassDistribution = new DiscreteEstimator(m_NumClassValues, true);
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for (int attIndex = 0; attIndex < m_NumAttributes; attIndex++)
for (int j = 0; j < m_NumClassValues; j++) {

m_Distributions[attIndex][j] =
new DiscreteEstimator(m_NumValues[attIndex], true);

}
for (int i = 0; i < m_NumInstances; i++) {
if (m_inst_Allow[i] == true) {

for (int attIndex = 0; attIndex < m_NumAttributes; attIndex++) {
int distr_idx = m_Train[i][m_ClassIndex];
m_Distributions[attIndex][distr_idx].

addValue(m_Train[i][attIndex]);
}

m_ClassDistribution.addValue(inst[m_ClassIndex]);
}

}

The distributionForInstance method will now compute the probability
distribution probs (an array of m_NumClassValues values), such that probs[i]
is equal to the probability for the instance instance to be classified as the ith

class value. Based on the post-conditions of the previous method, the following
specifications will ensure for non-interference that two equal probability distri-
butions will be generated at the end of self-composition.
/∗@ public normal behavior

@ requ i r e s n i (\ f o r a l l int i ; i <= 0 && i < m NumInstances ;
@ (\ni1 ( instance ) [ i ] == \ni2 ( instance ) [ i ] ) ) &&
@ <ensures ni o f bu i ldC las s i f i e r >;
@ ensures ni (\ f o r a l l int i ; 0 <= i && i < m NumClassValues ;
@ \ni1 (\ r e su l t [ i ] ) == \ni2 (\ r e su l t [ i ] ) ) ; @∗/

public void distributionForInstance(double[] instance) {

/∗@ loop invar iant ni1
@ 0 <= \ni1 ( j ) && \ni1 ( j ) <= \ni1 (m NumClassValues) &&
@ (\ f o r a l l int i ; 0 <= i && i < \ni1 ( j ) ;
@ \ni1 (probs [ i ] ) == \ni1 ( m ClassDistribution ) . getProbabi l i ty ( i ) &&
@ \ni1 ( probs save [ 0 ] [ i ] ) == \ni1 ( probs [ i ] ) ) ;
@ decreases \ni1 (m NumClassValues) − \ni1 ( j ) ;
@ loop invar iant ni2
@ 0 <= \ni2 ( j ) && \ni2 ( j ) <= \ni2 (m NumClassValues) &&
@ (\ f o r a l l int i ; 0 <= i && i < \ni2 ( j ) ;
@ \ni2 (probs [ i ] ) == \ni1 ( probs save [ 0 ] [ i ] ) &&
@ \ni2 ( probs save [ 0 ] [ i ] ) == \ni1 ( probs save [ 0 ] [ i ] ) ) ;
@ decreases \ni2 (m NumClassValues) − \ni2 ( j ) ; @∗/

for (int j = 0; j < m_NumClassValues; j++) {
probs[j] = m_ClassDistribution.getProbability(j);
//@ set prob save [ 0 ] [ j ] = probs [ j ] ;

}

/∗@ loop invar iant ni1 <...> ;
@ loop invar iant ni2 <...> ; @∗/

for (int attIndex = 0; attIndex < m_NumAttributes; attIndex++) {

/∗@ loop invar iant ni1
@ 0 <= \ni1 ( j ) && \ni1 ( j ) <= \ni1 (m NumClassValues ) &&
@ (\ f o r a l l int i ; 0 <= i && i < \ni1 ( j ) ;
@ \ni1 ( probs [ i ] ) == \ni1 ( probs save [ attIndex ] [ i ] ) ∗
@ \ni1 ( m Distributions ) [ 0 ] [ i ] . getProbabi l i ty (\ni1 ( instance [ attIndex ] ) ) &&
@ \ni1 ( probs save [ attIndex +1][ i ] ) == \ni1 (probs [ i ] ) ) &&
@ (\ f o r a l l int i ; \ni1 ( j ) <= i && i < \ni1 (m NumClassValues ) ;
@ \ni1 ( probs [ i ] ) == \ni1 ( probs save [ attIndex ] [ i ] ) ) ;
@ loop invar iant ni2
@ 0 <= \ni2 ( j ) && \ni2 ( j ) <= \ni2 (m NumClassValues ) &&
@ (\ f o r a l l int i ; 0 <= i && i < \ni2 ( j ) ;
@ \ni2 ( probs [ i ] ) == \ni1 ( probs [ i ] ) &&
@ \ni2 ( probs save [ attIndex +1][ i ] ) == \ni1 ( probs save [ attIndex +1][ i ] ) ) &&
@ (\ f o r a l l int i ; \ni2 ( j ) <= i && i < \ni2 (m NumClassValues ) ;
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@ \ni2 ( probs [ i ] ) == \ni1 ( probs save [ attIndex ] [ i ] ) ) ; @∗/
for (int j = 0; j < m_NumClassValues; j++) {

probs[j] *= m_Distributions[attIndex][j].getProbability(instance[attIndex]);
//@ set prob save [ attIndex +1][ j ] = probs [ j ] ;

}
}
return(probs);

}

Non-interference specifications have been given for all methods involved in
this example (including the three methods from the class DiscreteEstimator
devoted to representing probability estimators). Note however that the specifi-
cations given above are not complete due to the lack space in the sense that
some loop invariants are not shown (they are similar to the ones given) and that
Krakatoa requires some additional information, also not shown, about bound
limits for arrays, types and non-nullity of objects, loop variants (the index used
in the loop) and modified objects.

The resolution of generated proof obligations proceeds by matching values
of the second run to the corresponding values of the first run. To do so, it is
necessary to keep track of the successive values assigned, which is the role in
the specifications of extra variables (for example the array probs_save to keep
track of values of the variable probs inside the loop), that can be declared as
JML ghost variables. Proofs are not yet completed due to the presence of method
invocations involving arrays. Although we are able to use non-interference results
in those cases, we are currently working on automatically generating assertions
related to the extra ghost variables (arrays) needed to store parameters and
result values of the invoked method. The if condition inside one loop does not
cause any particular problems. The specifications just require the use of logical
implication to reason about the value of the test, as was done in Section 3.

Although statements of generated proof obligations can be very long
due to the various loops involved (one statement of a proof obligation is
over 700 lines long), individual subgoal statements are very concise and
the required total length of proof script that had to be given manually
for the distributionForInstance method and methods from the class
DiscreteEstimator is about 200 lines.

7 Conclusion

We have presented several ways to enforce privacy-sensitive information flow with
JML, which we have illustrated on data-mining algorithms. We first extended
results from a previous paper to integrate them into the JML framework. We
then proposed a way to prevent leaks from sensitive variables when the set of
possible results is finite. Finally, we applied the framework of non-interference to
provide a stronger means to express and enforce privacy properties. To do so, we
extended JML specifications with new specific keywords, but we kept the under-
lying Hoare-Floyd style verification mechanism. We have completed all proofs
in Coq of the generated proof obligations for the first two examples. For the
more complex example which uses non-interference, we provided specifications
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for all methods, but proof obligations for one method could not be completed
due to current limitations of the tools. However, we completed proofs for all
others methods, thus providing a proof of concept of our methodology.

Related Work. One of the most comprehensive tools related to information flow
for Java is JFlow [17]. This tool acts as a compiler to statically and dynamically
check programs. It relies on a concept of security levels for variables, which is
not sufficient for our purpose, i.e. to catch the kind of declassification we are
dealing with. Concerning non-interference, although research in this domain is
very active (see [19] for a survey), most of the work done remains theoretical. On
the practical side, applications of non-interferent programs are currently limited
to security issues in smart cards. [6] is one of the more advanced contributions
in this area, using JFlow and Esc/Java. [8] is another example of work exploiting
JFlow information-flow policy to address privacy. Although this work does not
address data mining in particular, it may be possible to integrate this kind of
approach with ours, when dealing with simpler declassification properties, to
improve the scope of privacy concerns that can be enforced. Our use of non-
interference for JML to express privacy of data-mining algorithms is a novel,
promising application area.

Further Work. Future development of our work will aim at first to address the
limitations explained in Section 6 concerning the inclusion of non-interference
results from called methods inside the proofs, and scaling the approach to more
complex Java features and algorithms of the Weka library. Another interesting
development would be to automatically generate loop invariants, which can be
tedious to write, but are needed for proofs of non-interference. Indeed, the in-
variant for the two copies of the code of a self-composed program follow the
same pattern, and it can be determined statically which variable of the second
run corresponds to which variable of the first.
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Abstract. Two kinds of orderings are widely used in term rewriting and
theorem proving, namely recursive path ordering (RPO) and Knuth-Bendix
ordering (KBO). They provide powerful tools to prove the termination of
rewriting systems. They are also applied in ordered resolution to prune
the search space without compromising refutational completeness. Solv-
ing ordering constraints is therefore essential to the successful application
of ordered rewriting and ordered resolution. Besides the needs for deci-
sion procedures for quantifier-free theories, situations arise in constrained
deduction where the truth value of quantified formulas must be decided.
Unfortunately, the full first-order theory of recursive path orderings is un-
decidable. This leaves an open question whether the first-order theory of
KBO is decidable. In this paper, we give a positive answer to this question
using quantifier elimination. In fact, we shall show the decidability of a
theory that is more expressive than the theory of KBO.

1 Introduction

Two kinds of orderings are widely used in term rewriting and theorem proving.
One is recursive path ordering (RPO) which is based on syntactic precedence [9].
The other is Knuth-Bendix ordering (KBO) which is of hybrid nature; it relies on
numerical values assigned to symbols as well as syntactic precedence [13]. In
ordered term rewriting, a strategy built on ordering constraints can dynamically
orient an equation, at the time of instantiation, even if the equation is not
uniformly orientable. This provides a powerful tool to prove the termination
of rewriting systems [6]. In ordered resolution and paramodulation, ordering
constraints are used to select maximal literals to perform resolution. It also serves
as enabling conditions for inference rules and such conditions can be inherited
from previous inferences at each deduction step. This helps to prune redundancy
of the search space without compromising refutational completeness [25].

Solving ordering constraints is therefore essential to the successful applica-
tion of ordered rewriting and ordered resolution. The decision procedures for
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quantifier-free constraints of both types of orderings have been well-studied
[3,12,23,22,24,14,15]. However, situations arise where we need to decide the
truth values of quantified formulas on those orderings, especially in the ∃∗∀∗
fragment. Examples include checking the soundness of simplification rules in
constrained deduction [7]. Unfortunately, the full first-order theory of recursive
path orderings is undecidable [28,7] except for the special case where the lan-
guage only has unary functions and the precedence order is total [21]. Until now
it has been an open question whether the first-order theory of Knuth-Bendix
order is decidable (RTA open problem � 99). Here we answer this question
affirmatively by showing that an extended theory of term algebras with Knuth-
Bendix order admits quantifier elimination.

The basic framework is the combination of term algebras with Presburger
arithmetic. The extended language has two sorts; the integer sortZ and the term
sort TA. Intuitively, the language is the set-theoretic union of the language of
term algebras and the language of Presburger arithmetic. Formulas are formed
from term literals and integer literals using logical connectives and quantifica-
tions. The combination is tightly coupled in the following sense. We have a
weight function mapping terms to integers as well as various boundary functions
mapping integers to terms. In addition, the Knuth-Bendix order is expanded
in two directions. First, the order is decomposed into three disjoint suborders
depending on which of three conditions is used in the definition. Secondly, all
orders (including the suborders) are extended to gap orders, which assert the
least number of distinct objects between two terms. Moreover, as Knuth-Bendix
order is recursively defined on a lexicographic extension of itself, gap orders
are extended to tuples of terms. Thus we actually establish the decidability of a
richer theory.

Related Work and Comparison. Presburger arithmetic (PA) was first shown
to be decidable in 1929 by the quantifier elimination method [10]. Efficient
algorithms were later discovered by Cooper [8] and further improved in [26].

The decidability of the first-order theory of term algebras was first shown
by Mal’cev using quantifier elimination [20]. This result was proved again later
in different settings [19,5,11,4,2,27,17,18,29,30].

Quantifier elimination has been used to obtain decidability results for var-
ious extensions of term algebras. [19] shows the decidability of the theory of
infinite and rational trees. [4] presents an elimination procedure for term alge-
bras with membership predicate in the regular tree language. [2] presents an
elimination procedure for structures of feature trees with arity constraints. [27]
shows the decidability of term algebras with queues. [18] shows the decidabil-
ity of term powers, which are term algebras augmented with coordinatewise-
defined predicates. [29] extends the quantifier elimination procedure in [11] for
term algebras with constant weight function.

The decidability of the theory of RPO has been well-studied. [3] proves the
decidability of the quantifier-free theory of total lexicographic path ordering
(LPO, a variant of RPO). A similar result holds for RPO [12]. [23] (resp. [22])
establishes the NP-completeness for the quantifier-free theory of LPO (resp.
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RPO). A more efficient algorithm for the quantifier-free theory of RPO is given
in [24]. [28,7] show the undecidability of the first-order theory of LPO and the
undecidability of the first-order theory of RPO in case of partial precedence. The
decidability of the first-order theory of RPO (LPO) in case of unary signature
and total precedence is due to [21]. The decidability of the first-order theory of
RPO in case of total precedence remains open.

Recently some partial decidability results for the theory of KBO have been
obtained. [14] shows the decidability of the quantifier-free theory of term alge-
bras with KBO. [15] improves the algorithm and shows that the quantifier-free
theory of KBO is NP-complete. Analogous to [21], [16] shows the decidability
of the first-order theory of KBO in the case where all functions are unary.

In this paper, we show the general decidability result for an extended theory
of KBO with arbitrary function symbols and weight functions. The method
combines the extraction of integer constraints from term constraints with a
reduction of quantifiers on term variables to quantifiers on integer variables.

Paper Organization. Section 2 defines term algebras. Section 3 introduces the
theory of term algebras with Knuth-Bendix ordering and presents the technical
machinery for eliminating quantifiers. Section 4 presents the main contribution
of this paper: it expands the elimination procedure in [29] for the extended
theory of KBO and proves its correctness. Section 5 briefly explains how to
adapt the elimination procedure to the special case where the language contains
a unary function of weight 0. Section 6 concludes with some ideas for future
work. Due to space limitation all proofs have been omitted from this paper. An
extended version of this paper, which includes a detailed description of notation
and terminology, and all proofs, is available from the first author’s webpage.

2 Term Algebras

We present a general language and structure of term algebras. In this paper we
assume that the signature of our language is finite. For notation convenience, we
do not distinguish syntactic terms in the language from semantic terms in the
corresponding structure. The meaning should be clear from the context.

Definition 1. A term algebra ATA : 〈TA;C,A,S,T〉 consists of

1. TA: The term domain, which exclusively consists of terms recursively built up from
constants by applying constructors. The type of a term t, denoted by type(t), is the
outmost constructor of t. We say that t is α-typed (or is an α-term) if α = type(t).

2. C: A finite set of constructors: α, β, γ, . . . The arity of α is denoted by ar(α).
3. A: A finite set of constants: a, b, c, . . . We require A � ∅ andA ⊆ C. For a ∈ A,

ar(a) = 0 and type(a) = a.
4. S: A finite set of selectors. For a constructor αwith arity k > 0, there are k selectors

sα1 , . . . , s
α
k in S. We call sαi (1 ≤ i ≤ k) the ith α-selector. For a term x, sαi (x) returns

the ith component of x if x is an α-term and x itself otherwise.
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5. T : A finite set of testers. For each constructor α there is a corresponding tester Isα.
For a term x, Isα(x) is true if and only if x is an α-term. Note that for a constant a,
Isa(x) is just x = a. In addition there is a special tester IsA such that IsA(x) is true
if and only if x is a constant.

We use LTA to denote the language of term algebras.

Proposition 1 (Axiomatization of Term Algebras). Let z̄α abbreviate z1,. . . ,zar(α).
The following formula schemes, in which variables are implicitly universally quantified
over TA, axiomatize Th(ATA).

A1. t(x) � x, if t is built solely by constructors and t properly contains x.
A2. α(x1 . . . , xar(α)) � β(y1, . . . , yar(β)), if α, β ∈ C and α � β.
A3. α(x1, . . . , xar(α)) = α(y1, . . . , yar(α))→

∧
1≤i≤ar(α) xi = yi.

A4. Isα(x)↔ ∃ z̄αα(z̄α) = x, if α ∈ C \ A; Isa(x)↔ x = a, if a ∈ A.
A5. IsA(x)↔

∨
a∈A Isa(x).

A6. sαi (x) = y↔ ∃z̄α
(
α(z̄α) = x ∧ y = zi)

)
∨
(
∀z̄α(α(z̄α) � x) ∧ x = y

)
.

This set of axioms is a variant of the axiomatization given in [11].

Selectors and testers can be defined by constructors and vice versa. One
direction has been shown by (A4-A6), which are pure definitional axioms. The
other direction follows from the equivalence of

∧k
i=1 sαi (x) = xi ∧ Isα(x) and

x = α(x1, . . . , xk). For simplicity, from now on we assume LTA only has selector
functions, and we use x = α(x1, . . . , xk) only in discussions at the semantic level.

We write α = (sα1 , . . . , s
α
k ) (k > 0) to mean that α is a constructor of arity k,

and sα1 , . . . , s
α
k are the corresponding selectors of α. We use L to denote selector

sequences. If L = s1, . . . , sn, Lx stands for s1(. . . (sn(x) . . .)), and we say that the
depth of x in Lx is n. The depth of x in a formula ϕ is the maximum depth of x in
the selector terms in ϕ, denoted by depthϕ(x).

3 Term Algebras with Knuth-Bendix Order

In this section we introduce the theory of term algebras with KBO and present
the technical machinery needed in the quantifier elimination procedure.

Let Σ be a finite signature in the constructor language (i.e., Σ = C in Def.
1) and W : Σ → N a weight function. We expand dom(W) to TA by recursively
defining W(α(t1, . . . , tk)) =W(α)+

∑k
i=1 W(ti). Let ≺Σ be a linear precedence order

on symbols in Σ. We enumerate all symbols in the decreasing≺Σ-order such that
α1 �Σ α2 �Σ . . . �Σ α|Σ|.

Definition 2 (Knuth-Bendix Order [13]). A Knuth-Bendix order (KBO) ≺kb (pa-
rameterized with a weight function W and a precedence order ≺Σ) is defined recursively
such that for u, v ∈ TA, u ≺kb v if and only if one of the following conditions holds:
(i) W(u) < W(v), (ii) W(u) = W(v) and type(u) ≺Σ type(v), (iii) W(u) = W(v),
u ≡ α(u1, . . . , uk), v ≡ α(v1, . . . , vk) and

(∃i)
[

1 ≤ i ≤ k ∧ ui ≺kb vi ∧ ∀ j(1 ≤ j < i→ uj = vj)
]
. (1)
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The KBO ≺kb is a well-founded total order on TA [13,1]. To guarantee well-
foundedness, two compatibility conditions for W and ≺Σ are required: (i) W(a) > 0
for any constant a, and (ii) a unary function of weight 0, if present, should be
the maximum in ≺Σ. Let us denote by ⊥ the smallest term with respect to ≺kb.
It follows from (i) and (ii) that ⊥ must be an atom and so it can be determined
when W and ≺Σ are given. By (ii) if a unary function of weight 0 exists, it must
be unique. For presentation simplicity, we assume that W(α1) > 0. However, the
existence of such function actually simplifies our decision procedure. We defer
the discussion to Sec. 5.

Definition 3. The structure of term algebras with KBO is Akb = 〈ATA;≺kb〉. Let Lkb

denote the language of Akb.

3.1 Proof Plan

We shall show the decidability of Th(Akb) by quantifier elimination. The proce-
dure relies on the following two ideas: solved form and depth reduction.

1. Solved Form. A quantifier-free formula ϕ(x, ȳ) is solved in x if it is in the form∧
i≤m

ui ≺kb x ∧
∧
j≤n

x ≺kb vj ∧ ϕ′(ȳ), (2)

where x does not appear in ui, vi andϕ′. It is not hard to argue that (∃x)ϕ(x, ȳ)
simplifies to ∧

i≤m, j≤n

ui ≺kb
2 vj ∧ ϕ′(ȳ) (3)

where ≺kb
n , called gap order, is an extension of ≺kb such that x ≺kb

n y states
there is an increasing chain from x to y with at least n−1 elements in between
[10, page 196]. It is clear that the elimination of ∃x, the transformation from
(2) to (3), becomes straightforward once the matrix ϕ(x, ȳ) is solved in x, or
equivalently, depthϕ(x) = 0. That leads us to the notion of depth reduction.

2. Depth Reduction. Let us first consider the simple case where x is α-typed for
a proper constructor α and all occurrences of x have depth greater than 0.
By introducing new variables x1, . . . , xar(α) (called the descendants of x) to
represent x, we can rewrite ∃xϕ(x, ȳ) to

∃x1, . . . ,∃xar(α)ϕ
′(x1, . . . , xar(α), ȳ), (4)

where ϕ′(x1, . . . , xar(α), ȳ) is obtained from ϕ(x, ȳ) by substituting xi for sαi x
(1 ≤ i ≤ ar(α)). It is clear that depthϕ′(xi) < depthϕ(x). If all occurrences of
x have the same depth, then by repeating the process we can generate a
formula solved in x̄∗ where x̄∗ are descendants of x. A difficulty arises when
not all occurrences of x have equal depth. So eventually we meet the situation
where some occurrences of x have depth 0 and some do not. Here we have
to represent all occurrences of x of depth 0 in terms of sα1 (x), . . . , sαar(α)(x).
This amounts to reducing literals of the form x ≺kb

n t and literals of the form
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t ≺kb
n x to quantifier-free formulas using sα1 (x), . . . , sαar(α)(x). After that we

can introduce new variables and do quantifier manipulation just as in the
simple case to bring ∃xϕ(x, ȳ) into the form of (4). Therefore depth reduction
essentially depends on the reduction of x ≺kb

n t and reduction of t ≺kb
n x. In

order to carry out the reduction we need to extend the language as follows.
(a) We decompose ≺kb into three disjoint suborders ≺w, ≺p and ≺l, each of

which is also extended to gap orders.
(b) We introduce Presburger arithmetic explicitly in order to define counting

constraints to count how many distinct terms there are at certain weight,
and define boundary functions to delineate gap orders.

(c) The reduction of literals like x ≺kb
n t or t ≺kb

n x eventually comes down
to resolving relations between two terms of the same weight and of the
same type. So we need to extend all aforementioned notions to tuples
of terms of the same total weight.

In the rest of this section we define these extensions.

3.2 Decomposition of Knuth-Bendix Order

Definition 4. A Knuth-Bendix order≺kb can be decomposed into three disjoint orders,
a weight order ≺w, a precedence order ≺p, and a lexicographical order ≺l, as
follows:

u ≺w v⇔ W(u) <W(v),
u ≺p v⇔ W(u) =W(s) & type(u) ≺Σ type(v),
u ≺l v⇔ W(u) =W(v) & type(u) = type(v) & u ≺kb v,

such that u ≺kb v is equivalent to u ≺w v ∨ u ≺p v ∨ u ≺l v. We write u ≺pl v as an
abbreviation for u ≺p v ∨ u ≺l v.

3.3 Gap Orders

To express formulas of the form ∃x(u ≺� x ≺� v) in a quantifier-free language we
need to extend all aforementioned orders to “gap” orders.

Definition 5 (Gap Orders). Define ≺kb
n (n ≥ 0) such that

u ≺kb
n v↔ (∃u1, . . . ,∃un)

[
u ≺kb u1 ≺kb . . . ≺kb un �kb v

]
.

For � ∈ {w, p, l, pl}, define ≺�n such that u ≺�n v ↔ u ≺kb
n v ∧ u ≺� v, and u ��n v such

that (u ≺�n v) ∧ ¬(u ≺�n+1 v).

A gap order u ≺�n v (n ≥ 1) states that “u is less than v w.r.t. ≺�, and there are
at least n − 1 elements in between.” Similarly, u ��n v (n ≥ 1) states that “u is less
than v w.r.t. ≺�, and there are exactly n− 1 elements in between”. Note that ≺�1 is

just ≺�, ≺�0 is ��, ��0 is =, and we have u ≺�n v↔ u ≺�n+1 v ∨ u ��n v.

Example 1. The formula ∃x(u ≺l x ≺l v) reduces to u ≺l
2 v if u, v do not contain x.
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3.4 Boundary Functions

Consider the formula u �w
1 v. Intuitively it states “W(u) <W(v) and there are no

terms z such that u ≺kb z ≺kb v, that is, u is the largest term of weight W(u) and
v is the smallest term of weight W(v)”. To express this we introduce boundary
functions.

Definition 6 (Boundary Functions). Let n, p > 0. The following functions are called
boundary functions:

1. 0w :N→ TA such that 0w(n) is the smallest term (w.r.t. ≺kb) of weight n,
2. 0p :N2 → TA such that 0p(n, p) is the smallest term (w.r.t. ≺kb) of weight n and

type αp,

where, for all of the above, f (n) = ⊥ and f (n, p) = ⊥, if no such term exists.

Similarly we define 1w :N → TA and 1p :N2 → TA as the largest terms with
the corresponding properties. We write 0�(...) for 0�(. . .) and 1�(...) for 1�(. . .). Terms
having one of these functions as root symbol are called boundary terms. A literal
of the form u � v, where � is either equality or a gap order, is open if both u
and v are ordinary terms in TA, closed if both u and v are boundary terms, and
half-open otherwise.

3.5 Integer Extension of Term Algebras

To be able to express the boundary terms in the formal language, we extend
term algebras with Presburger arithmetic (PA).

Definition 7. The structure of term algebras with integers is AZTA = 〈ATA;AZ;(.)w〉,
where AZ is Presburger arithmetic and (.)w denotes the weight function.

We call terms of sort TA (resp. Z) TA-terms (resp. integer terms), similarly
for variables and quantifiers. We also use “term” for “TA” when there is no
confusion. A TA-term can occur inside the weight function. Such occurrence
is called integer occurrence to be distinguished from the normal term occurrence.
From now on, we freely use integer terms tw to form Presburger formulas, and
we use depthϕ(x) to denote the maximum depth of term occurrences of x in ϕ.

Example 2. The formula (∃x : TA)
[
0w

(xw) ≺
pl x ≺pl 1w

(xw)

]
states that there exists a

term t ∈ TA such that there are at least three elements with the same weight as t
(including t itself). Note that the first and the third occurrences of x are integral
while the second one is an ordinary term.

The truth value of the formula in Ex. 2 relies on the number of distinct TA-terms
of a certain weight. This is the essential use of Presburger arithmetic.

Definition 8 (Counting Constraint). A counting constraint is a predicate CNTαn(z)
that states there are at least n+1 different α-terms of weight z. CNTn(z) is similarly
defined with α-terms replaced by TA-terms. We write Treeα (resp. Tree) for CNTα0
(resp. CNT0).
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Counting constraints play a central role in our elimination procedure; it helps
reduce term quantifiers to integer quantifiers.

Example 3. The formula from Ex. 2 is reduced to (∃z :Z) CNT2(z).

It was proved in [14,29] that counting constraints can be expressed in PA.

Example 4. Consider AZlist = (Alist;AZ; (.)w) where Alist = 〈list, cons, car, cdr, a〉 is
the LISP list structure with the only atom a, and (.)w is a constant weight function
equal to 1. It has been shown in [30] that CNTcons

n (x) is x ≥ 2m− 1∧ 2 � m where
m is the least number such that the m-th Catalan number Cm =

1
m

(2m−2
m−1

)
is greater

than n. This is not surprising as Cm gives the number of binary trees with m
leaves (that tree has 2m − 1 nodes).

3.6 Extension of Knuth-Bendix Order

Definition 9. The structure of term algebras with KBO, extended with gap orders,
boundary functions and Presburger arithmetic, is

AZkb+ = 〈Akb; AZ; ≺�n,��n, � ∈ {kb,w, p, l, pl}, n ≥ 0; 0∗(...), 1
∗
(...), ∗ ∈ {w, p}〉.

We denote by Lkb+ the language extending Lkb with gap orders and bound-
ary terms and by LZ the language of Presburger arithmetic (including weight
functions on terms). The complete language is denoted by L Z

kb+ .

3.7 Tuples of Terms

The extensions for tuples of terms are defined as follows:

Definition 10 (Orders on Tuples). Let ū = 〈u1, . . . , uk〉, v̄ = 〈v1, . . . , vk〉 such that
Σk

i=1W(ui) = Σk
i=1W(vi). The lexicographical extension ≺k;kb (k ≥ 1) of ≺kb on k-tuples

of the same weight is defined such that ū ≺k;kb v̄ if and only if (1) holds.

Definition 11 (Suborders on Tuples). Let ū = 〈u1, . . . , uk〉, v̄ = 〈v1, . . . , vk〉 ∈ TAk,
� ∈ {w, p, l, pl}. We define those composite orders on tuples as follows.

ū ≺k;� v̄↔ u1 ≺� v1 ∨ (u1 = v1 ∧ 〈u2, . . . , uk〉 ≺k−1;kb 〈v2, . . . , vk〉)
We say that ū ≺k;� v̄ is proper if u1 ≺� v1 and we have ū ≺k;kb v̄↔ ū ≺k;w v̄ ∨ ū ≺k;p

v̄ ∨ ū ≺k;l v̄.

Definition 12 (Gap Orders between Tuples). We define ≺k;kb
n (k ≥ 1; n ≥ 0) such

that

ū ≺k;kb
n v̄↔ (∃ū1, . . . ,∃ūn :TAk)

[
ū ≺k;kb ū1 ≺k;kb . . . ≺k;kb ūn �k;kb v̄

]
.

For � ∈ {w, p, l, pl}, define ≺k;�
n such that ū ≺k;�

n v̄↔ ū ≺k;kb
n v̄ ∧ ū ≺k;� v̄, and ū �k;�

n v̄
such that (ū ≺k;�

n v̄) ∧ ¬(ū ≺k;�
n+1 v̄). Again note that ≺k;�

1 is just ≺k;�, ≺k;�
0 is �k;�, �k;�

0 is

=, and ū ≺k;�
n v̄↔ ū ≺k;�

n+1 v̄ ∨ ū �k;�
n v̄.
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Definition 13 (Tuple Boundary Functions). Let k, n,m, p > 0. Define partial func-
tions:

1. 0̄k;kb :N→ TAk (k ≥ 1) such that 0̄k;kb(n) is the smallest k-tuple (w.r.t. ≺k;kb) of
weight n.

2. 0̄k;w :N2→TAk (k ≥ 1) such that 0̄k;w(n,m) is the smallest k-tuple (w.r.t. ≺k;kb) of
weight n and the first component has weight m.

3. 0̄k;p :N3→TAk (k ≥ 1) such that 0̄k;p(n,m, p) is the smallest k-tuple (w.r.t. ≺k;kb) of
weight n and the first component has weight m and type αp.

Similarly we define 1̄k;kb : N → TAk, 1̄k;w : N2 → TAk and 1̄k;p : N3 → TAk

to be the largest k-tuples with the corresponding properties. As before these
functions are made total by assigning 〈⊥, . . .⊥〉 to undefined values. We write
0̄k;�

(...) for 0̄k;�(. . .) and 1̄k;�
(...) for 1̄k;�(. . .). Terms having one of these functions as root

symbol are called boundary tuples. As before we call a literal ū � v̄ open if both
ū and v̄ are ordinary tuples, closed if both ū and v̄ are boundary tuples, and
half-open otherwise.

To avoid unnecessary complications, we choose to treat tuples (including
boundary tuples) as “syntactic sugar”; they are only used in the intermediate
steps of the reduction. Lemma 5 shows that literals containing tuples can be
reduced to formulas in L Z

kb+ .

3.8 Delineated Gap Order Completion

Revisiting the transformation from (2) to (3), we see that the number of gap
orders in (3) is quadratic in the number of gap orders in (2). This complicates
the termination proof for the elimination procedure. Nevertheless, we can avoid
this difficulty by postulating the relative positions of parameters. This leads to
the notion of order completion.

Definition 14 (Gap Order Completion). A gap order completion (GOC) ϕ′ of a
conjunction of literalsϕ(t1, . . . , tn) is chain t f (1) � . . . � t f (n),where f is a permutation

function on {1, . . . , n} and � stands for =, ��n or ≺�n (� ∈ {w, p, l, pl}, n ≥ 1).

Example 5. A possible GOC of ϕ(x, y, z) : x ≺w
9 y∧x ≺pl z∧ z ≺w y is x ≺pl

5 z ≺w
4 y.

However, gap order completions are not sufficient. It is quite clear to see
(∃x : TA)[u ≺w x ≺p v] implies u ≺w

2 v. But for the converse to hold, v � 0w
(vw)

is required. As another example, (∃x : TA)[u ≺p x ≺p v] implies u ≺p
2 v, but not

vice versa. In order to preserve equivalence, intuitively, we need to “delineate”
a GOC to make sure ordinary terms in different intervals (a notion to be define
precisely soon) are not related in any gap orders. For example, consider the
linear order x1 ≺w

n1
x2 ≺p

n2
x3 ≺l

n3
x4 The order imposed may be viewed as

follows
•
⊥

•
x1 •

x2 •
x3 •

x4

p−intvl��� p−intvl ��� p−intvl��� p−intvl ��� p−intvl��� p−intvl ���
w−intvl

��� w−intvl
��� w−intvl

��� w−intvl
���



140 T. Zhang, H.B. Sipma, and Z. Manna

The weight of x1 is strictly lower than that of x2, x3, and x4. The weight of
x2, x3, and x4 is the same, but the precedence of x2 is lower than that of x3 and
x4. Finally, x3 is smaller than x4 in the lexicographic order. We call a maximal
list of elements with the same weight a w-interval, and similarly a maximal list
of elements with the same weight and precedence order a p-interval. Thus, the
second w-interval above has two inner p-intervals.

We want to avoid relating ordinary elements at different levels in different
intervals. Therefore we augment the gap order completion with boundary terms,
called a delineated gap order completion.

Definition 15 (Delineated Gap Order Completion). A delineated gap order com-
pletion (DGOC) is a GOC in which if there occurs the following pattern v1 �

�
n1

u�
	
n2

v2,
where n1, n2 > 0, � stands for either ≺ or �, �, 	 ∈ {w, p, l, pl}, and u is an ordinary
term in Lkb, then either � ≡ 	 ≡ pl or � ≡ 	 ≡ l. I.e., ordinary terms do not delineate
two intervals unless they are asserted equal to boundary terms.

Example 6. Revisit Ex. 5. A possible DGOC of ϕ(x, y, z) is

ϕ′(x, y, z) : 0w
(xw) ≺

pl
1 x ≺pl

5 z ≺pl
2 1w

(xw)︸�����������������������������︷︷�����������������������������︸
w-interval

≺w
1 0w

(yw) ≺
pl
1 y ≺pl

1 1w
(yw)︸��������������������︷︷��������������������︸

w-interval

Now we have (∃z :TA)ϕ′(x, y, z)↔ 0w
(xw) ≺

pl
1 x ≺pl

7 1w
(xw) ≺

w
1 0w

(yw) ≺
pl
1 y ≺pl

1 1w
(yw).

Lemma 1 (Delineated Gap Order Completion). Any conjunction of positive lit-
erals in Lkb+ is equivalent to a finite disjunction of delineated gap order completions.

Now we state a sequence of lemmas which will justify the elimination pro-
cedure given in the next section. These lemmas share the following common
features: (i) they state the soundness of symbolic transformations for formulas
in primitive form, a special prenex form where the prefix only consists of exis-
tential quantifiers and the matrix is a conjunction of literals; (ii) a formula ϕ is
transformed to a finite disjunction

∨
i ϕi where for any i, ϕi is in primitive form

and the matrix of ϕi contains no more open gap order literals than that of ϕ
does. To save space, we omit these conditions in the description of each lemma.

In principle, boundary terms can appear in the weight function or in selec-
tors, selector terms can occur in the weight function, and the weight function
can be used to construct boundary terms. Repeating this process we can build
more and more complex terms. The following lemma eliminates this superficial
complication. From now on, we assume that boundary terms are not properly
embedded in other terms.

Lemma 2 (Depth Reduction of Boundary Terms). Any formula in L Z
kb+ can be

effectively reduced to an equivalent formula in which no boundary terms appear inside
selectors or the weight function.

The following lemma states that we can always assume that all term occur-
rences of a TA-variable have the same depth, and hence we are able to reduce
them all together to depth 0.
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Lemma 3 (Depth Reduction). Let� ∈ {≺kb
n ,≺w

n ,≺
p
n,≺l

n,≺
pl
n ,�kb

n ,�w
n ,�

p
n,�l

n,�
pl
n }. If

x is of type αp with αp = (sαp

1 , . . . , s
αp

k ) and t is an arbitrary term, then x � t (t � x)
can be effectively reduced to an equivalent quantifier-free formula ϕ(sαp

1 x, . . . , s
αp

k x) (in
L Z

kb+) in which x does not appear and s
αp

i x (1 ≤ i ≤ k) is not inside selectors.

As we mentioned before, this is the main battlefield of quantifier elimination.
To streamline the proof, we introduce the following two lemmas.

Lemma 4 (Term Reduction). Let � ∈ {≺kb
n ,≺w

n ,≺
p
n,≺l

n,≺
pl
n ,�kb

n ,�w
n ,�

p
n,�l

n,�
pl
n }.

1. If x is an ordinary term of typeαp withαp = (sαp

1 , . . . , s
αp

k ) and t is either a boundary
term or an ordinary term not containing x, then x�t (t�x) can be effectively reduced
to an equivalent quantifier-free formula ϕ(sαp

1 x, . . . , sαp

k x) in which x does not occur
and s

αp

i x (1 ≤ i ≤ k) is not inside selectors.
2. If x� t (t�x) is closed, i.e., both t and x are boundary terms, then it can be effectively

reduced to an equivalent Presburger formula.

Lemma 4 states that literals containing non-atom terms can be expressed only
using the components of those terms. The reduction eventually comes down to
the success of decomposing relations between tuples of the same weight, as is
stated by the following lemma.

Lemma 5 (Tuple Reduction). Let � ∈ {≺k;kb
n ,≺k;w

n ,≺k;p
n ,≺k;l

n ,≺k;pl
n ,�

k;kb
n ,�

k;w
n ,�

k;p
n

,�k;l
n ,�

k;pl
n }, and U,V be k-tuples of the same weight.

1. If U = 〈u1, . . . , uk〉 is an ordinary tuple, then U � V (V � U) can be effectively
reduced to an equivalent quantifier-free formula ϕ(u1, . . . , uk) (in L Z

kb+) in which
ui (1 ≤ i ≤ k) does not occur inside selectors.

2. If U � V (V �U) is a closed tuple, i.e., both U and V are boundary tuples, then it
can be effectively reduced to an equivalent Presburger formula.

Lemma 6 (Elimination of Term Variables). Let x be a term variable, ϕkb+(x) a
conjunction of literals in Lkb+ with depthϕkb+

(x) = 0, and ϕZ(x) a Presburger formula
in which x occurs inside the weight function. Then (∃x : TA)[ϕkb+(x) ∧ ϕZ(x)] can be
effectively reduced to ϕ′kb+ ∧ ϕ

′
Z

in which x does not occur and ϕ′kb+ is quantifier-free.

Lemma 6 states that we can remove term quantifiers by reducing them to integer
quantifiers. The next lemma guarantees the elimination of integer quantifiers.

Lemma 7 (Elimination of Integer Variables). Let z be an integer variable, ϕkb+(z)
a conjunction of literals in Lkb+ where z occurs inside boundary terms, and ϕZ(z)
a Presburger formula. Then (∃z : Z)[ϕkb+(z) ∧ ϕZ(z)] can be effectively reduced to
ϕ′kb+ ∧ ϕ

′
Z

where no z occurs and ϕ′kb+ is quantifier-free.

4 Quantifier Elimination for Th(AZ
kb+

)

In this section we extend the quantifier elimination procedure for Th(AZTA) [29]
to an elimination procedure for Th(AZkb+). First we introduce some notations to
simplify the algorithm description.
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4.1 Primitive Form

It is well-known that eliminating arbitrary quantifiers reduces to eliminating
existential quantifiers from primitive formulas of the form

(∃x) ϕ(x, ȳ) ≡ (∃x)
[

Ai(x, ȳ) ∧ · · · ∧ An(x, ȳ)
]
, (5)

where Ai(x, ȳ) are (1 ≤ i ≤ n) literals [11]. We also assume that Ai(x, ȳ) are not
of the form x = t in case t does not contain x, as (∃x)[x = t ∧ ϕ′(x, ȳ)] simplifies
to ϕ′(t, ȳ). In addition we can assume Ai are positive literals. The details of
elimination of negation are given in the extended version of this paper.

4.2 Nondeterminism

All transformations are carried out on formulas of the form (5). Each step of
the transformations manipulates (5) to produce a version of the same form (or
multiple versions of the same form in case disjunctions are introduced), and
thus in each step (∃x)ϕ(x, ȳ) refers to the updated version rather than to the
original input formula. Whenever we say “guess ψ”, we mean to add a finite
disjunction

∨
i ϕi, which is valid in the context and contains ψ as a disjunct, to

ϕ(x̄, ȳ). It should be understood that an implicit disjunctive splitting is carried
out and we work on each resultant “simultaneously”.

4.3 Type Completion

We say a selector term sαi (t) is proper if Isα(t) holds. We can make selector terms
proper with type information.

Definition 16 (Type Completion). ϕ′ is a type completion of ϕ if ϕ′ is obtained
from ϕ by conjoining tester predicates such that for any term t in ϕ, exactly one type of
tester predicate Isα(t) (α ∈ C) is in ϕ′.

Example 7. Let α, β ∈ C, α � β and α = (sα1). A possible type completion for
y = sα1 (x) is y = sα1 (x) ∧ Isβ(x) ∧ Isβ(sα1 (x)) ∧ Isβ(y), which simplifies to y =
x ∧ Isβ(x) ∧ Isβ(y) by Axioms (A4) and (A6). Another type completion is y =
sα1 (x) ∧ Isα(x) ∧ Isβ(sα1 (x)) ∧ Isβ(y) in which the selector term is proper. As the
third example, a type completion could be y = sα1 (x)∧ Isα(x)∧ Isα(sα1 (x))∧ Isβ(y)
which simplifies to false.

We assume that all formulas are type-complete. In particular, all selector terms
are (simplified to) proper ones. The reason behind this assumption is that a sym-
bolic transformation can always be carried out to replace a non-type-complete
formula ϕ by an equivalent finite disjunction of type completions of ϕ. In terms
of efficiency, however, one would prefer doing the on-the-fly disjunctive split-
ting when the type information of a specific term is needed. We also assume that
every type completion is sound with respect to types. Certain type completion
of ϕ may be contradictory due to type conflicts. For example, IsA(x) ∧ Isα(s(x))
(α ∈ C \ A) is unsatisfiable. Nevertheless, unsatisfiable disjuncts will not affect
soundness of the transformation and they can be easily detected and removed.
At last, note that we omit listing tester literals unless they are needed for cor-
rectness proof.
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4.4 Elimination Procedure

The elimination procedure consists of the following two algorithms:

Algorithm 1 (Elimination of Integer Variables).
We assume that formulas with quantifiers on integer variables are in the form

(∃z̄ :Z)
[
ϕZ(x̄, ȳ, z̄) ∧ ϕkb+(x̄, ȳ, z̄)

]
, (6)

where ȳ, z̄ are integer variables, x̄ are term variables. Note that x̄ may occur inside
the weight function in ϕZ(x̄, ȳ, z̄) and ȳ, z̄ may appear inside boundary terms in
ϕkb+(x̄, ȳ, z̄).

Repeatedly apply the following subprocedures (A’) and (B’) to (6) until z̄ = ∅.

(A’) If none of z̄ appears inside any boundary terms, then ϕkb+(x̄, ȳ, z̄) is just ϕkb+(x̄, ȳ),
which can be moved out of ∃z̄. We then obtain

(∃z̄ :Z)
[
ϕZ(x̄, ȳ, z̄)

]
∧ ϕkb+(x̄, ȳ).

Since (∃z̄ :Z)[ϕZ(x̄, ȳ, z̄)] is in LZ, we can proceed to remove the block of existential
quantifiers using Cooper’s method ([8,26]). In fact, we can defer the elimination
until all term quantifiers are gone.

(B’) If for some z ∈ z̄, z occurs inside some boundary terms, we eliminate z by Lemma 7.

Algorithm 2 (Elimination of Term Variables).
We assume that formulas with quantifiers on term variables are in the form

(∃x̄ :TA)
[
ϕkb+(x̄, ȳ, z̄) ∧ ϕZ(x̄, ȳ, z̄)

]
, (7)

where x̄, ȳ are term variables, z̄ are integer variables. Note that z̄ may occur inside
boundary terms in ϕkb+(x̄, ȳ, z̄), and x̄, ȳ may occur inside the weight function in
ϕZ(x̄, ȳ, z̄).

Repeatedly apply the following subprocedures (A) and (B) to (7) until x̄ = ∅.

(A) Depth Reduction. Repeat (a),(b),(c) in the order while (∀x ∈ x̄) depthϕkb+
(x) >0.

(a) Selection. Select a α-typed variable x ∈ x̄ for some α = (sα1 , . . . , s
α
ar(α)). This

selection is always possible as depthϕkb+
(x) > 0. We require that in the next

run of (a), we choose one of the variables generated by this run of (b). I.e., the
variable selection is done in depth-first manner. This is crucial to guarantee
that a run eventually leaves (A). Let x̄′ ≡ x̄ \ x.

(b) Decomposition. We rewrite (7) to:(
∃ x̄′, x1, . . . , xar(α), x :TA

) [
Isα(x) ∧

∧
1≤i≤ar(α)

sαi (x) = xi

∧ ϕkb+(x̄, ȳ, z̄) ∧ ϕZ(x̄, ȳ, z̄)
]
. (8)

(c) Simplification. Exhaustively apply the following simplification rules to ϕkb+

and ϕZ in (8):
(1) replace sαi (x) by xi (1 ≤ i ≤ ar(α));
(2) replace xw by Σar(α)

i=1 xw
i +W(α);
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(3) replace x ≺�n t by depth-reduction ( x ≺�n t );
(4) similar for t ≺�n x, x ��n t and t ��n x.
The existence of depth-reduction follows from Lemma 3. Let the resulting
formula be
(
∃ x̄′, x1, . . . , xar(α), x :TA

) [
Isα(x) ∧

∧
1≤i≤ar(α)

sαi (x) = xi

ϕ′kb+(x̄
′, sα1 (x), . . . , sαar(α)(x), ȳ, z̄) ∧ ϕ′

Z
(x̄′, sα1 (x), . . . , sαar(α)(x), ȳ, z̄)

]
. (9)

It is now clear that if x occurs in ϕ′kb+ and ϕ′
Z

it occurs inside some of
sα1 (x), . . . , sαar(α)(x). Since

(
∀x1, . . . , xar(α) :TA

)(
∃x :TA

)[
Isα(x) ∧

∧
1≤i≤ar(α)

sαi (x) = xi

]

is valid in ATA, we can replace in (9), sα1 (x), . . . , sαar(α)(x), respectively, by
x1, . . . , xar(α), and hence remove

∧
1≤i≤ar(α) sαi (x) = xi, Isα(x) together with ∃x,

obtaining
(
∃ x̄′, x1, . . . , xar(α) :TA

) [
ϕ′kb+(x̄

′, x1, . . . , xar(α), ȳ, z̄)

∧ ϕ′
Z

(x̄′, x1, . . . , xar(α), ȳ, z̄)
]
. (10)

(B) Elimination. Repeat (B) while (∃x ∈ x̄) depthϕkb+
(x) = 0.

Take the x as in the guard condition, guess a DGOC for all terms related with x in
gap order literals (by Lemma 1) and then eliminate x by Lemma 6.

Theorem 1. Th(AZkb+) is decidable, and hence so is Th(Akb).

Example 8. Let us go through an example with emphasis on the depth reduction.
Due to space limitation, we only show one simple trace of the reduction. Consider
in the LISP list structure the following formula

(∃x)
[
car(x) ≺l

2 cdr(cdr(x)) ∧ cdr(cdr(car(x))) ≺l
3 y
]
, (11)

where depth(11)(x) = 3. At the first run of (A), we introduce fresh variables
x1 and x2 to replace car(x) and cdr(x), respectively. By a standard quantifier
manipulation we obtain

(∃x1∃x2)
[
x1 ≺l

2 cdr(x2) ∧ cdr(cdr(x1)) ≺l
3 y
]
, (12)

where depth(12)(x1) = 2 and depth(12)(x2) = 1, both less than depth(11)(x). In the
second run of (A), we pick x1 and replace x1 ≺l

2 cdr(x2) by car(x1) = car(cdr(x2))∧
cdr(x1) ≺l

2 cdr(cdr(x2)) (which is one of several choices). We obtain

(∃x2∃x11∃x12)
[
x11 = car(cdr(x2)) ∧ x12 ≺l

2 cdr(cdr(x2)) ∧ cdr(x12) ≺l
3 y
]
. (13)

At this point we have depth(13)(x11) = 0 and the run enters (B). In this case we
can immediately remove ∃x11, obtaining

(∃x2∃x12)
[
x12 ≺l

2 cdr(cdr(x2)) ∧ cdr(x12) ≺l
3 y
]
, (14)
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where depth(14)(x12) = 1 and depth(14)(x2) = 2. At the third run of (A), we select
x12. The run could give us

(∃x2∃x121∃x122)
[
x121 = car(cdr(cdr(x2))) ∧ x122 ≺l

2 cdr(cdr(x2)) ∧ x122 ≺l
3 y
]
, (15)

which as before by (B) simplifies to

(∃x2∃x122)
[
x122 ≺l

2 cdr(cdr(x2)) ∧ x122 ≺l
3 y
]
. (16)

Still we have depth(16)(x122) = 0 which justifies another run of (B). Let us take a
gap order completion x122 ≺l

2 cdr(cdr(x2)) ≺l
1 y (which again is just one of many

choices) and rewrite (16) to

(∃x2∃x122)
[
x122 ≺l

2 cdr(cdr(x2)) ≺l
1 y
]
. (17)

With the help of boundary functions, (17) reduces to

(∃x2)
[
0w

((cdr(cdr(x2)))w ) ≺
l
2 cdr(cdr(x2)) ≺l

1 y
]
. (18)

The fourth and the fifth runs of (A) (with the same trick of quantifier manipu-
lation) give us

(∃x222)
[
0w

(xw
222) ≺

l
2 x222 ≺l

1 y
]
. (19)

After that the run comes back again to (B) as depth(19)(x222) = 0. Here we have
to reduce term quantifiers to integer quantifiers in that x222 also appears in
boundary terms. By Lemma 6, (19) is equivalent to

(∃z)
[
0w

(z) ≺
l
3 y ∧ Treecons(z)

]
, (20)

which simplifies to 0w
(yw) ≺

l
3 y ∧ Treecons(yw), and in turn to

0w
(yw) ≺

l
3 y, (21)

as 0w
(yw) ≺

l
3 y implies Treecons(yw). It is not hard to verify that (21) implies (11) as

desired. (We do not have equivalence because this is just one trace of reduction.)

We note that the depth reduction of a variable is at the expense of increasing
the depth of a term on the other side of a relation. This happens when ϕ
contains x � t (or t � x) and depthϕ(x) > 0. For example, from (12) to (13), the
depth of x2 increases by 1. Moreover, the depth reduction in general introduces
more existential quantifiers and more equalities in the matrix (e.g., also in the
reduction from (12) to (13)). In each transformation, however, the number of
open gap order literals in each resulting primitive formula is no more than that
in the original (primitive) formula. Moreover, the final elimination procedure
removes at least one open gap order literal if the eliminated variable occurs in
such literals (e.g., from (17) to (18) and from (19) to (20)). When all open gap
order literals are gone, the depths of terms will be strictly decreasing. This forces
the run to eventually leave (A) and from then on to stay in (B) until all existential
quantifiers are removed.
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5 Presence of a 0-weight unary function

As mentioned earlier, the presence of a unary function α0 of weight 0 in Σ
simplifies the elimination procedure. Intuitively, the existence of α0 makes ≺w

and ≺p dense almost everywhere except around atoms. This follows from the
fact that 1w

(m) and 1p
(m,p) are undefined (i.e., no maximum) except when αp is an

atom and m =W(αp). Accordingly, if u is not an atom, then for any n ≥ 1, u ≺w
n v

(resp. u ≺p
n v) is equivalent to u ≺w v (resp. u ≺p v). Also, it suffices for L Z

kb+ to
only have lower boundary functions in order to decompose gap orders. More
details are given in the extended version of this paper.

6 Conclusion

We showed the decidability of the first-order theory of term algebras with
Knuth-Bendix order by quantifier elimination. Our method combines the extrac-
tion of integer constraints from term constraints with the reduction of quantifiers
on term variables to quantifiers on integer variables. In fact, we established the
decidability of a much more expressive theory.

Two problems related to practical complexity need further investigation.
First, as a rule of thumb, more expressive power means higher complexity. Even
if the theoretical complexity bound is the same, in practice the efficiency will
be compromised. It is worthwhile to search for the smallest extension of KBO
which admits quantifier elimination. Second, the elimination is intrinsically
limited to processing quantified variables one at a time. We plan to extend the
method in [30] to eliminate a block of quantifiers of the same kind in one step.
We believe this will be a significant improvement in pragmatic terms, since in
most applications the quantifier alternation depth is small.

We also plan to investigate the decidability issue of the first-order theory of
KBO in the term domain with variables [13,1].
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Abstract. Context unification (CU) is the open problem of solving con-
text equations for trees. We distinguish a new decidable variant of CU–
well-nested CU – and present a new unification algorithm that solves
well-nested context equations in non-deterministic polynomial time. We
show that minimal well-nested solutions of context equations can be com-
posed from the material present in the equation (see Theorem 1). This
property is wishful when modeling natural language ellipsis in CU.

1 Introduction

Context unification (CU) is the problem of solving equations with context vari-
ables over the structure of finite trees [Com92, Lev96, NPR97, SSS99, SS02]. CU
is the natural generalisation of word unification (WU) [Mak77]. It can equally
be understood as a variant of linear second-order unification [Lev96, LV00].

Whether CU is decidable is a long-standing open problem. So far, only a num-
ber of fragments of CU could be shown decidable. The most prominent fragment
is WU proved decidable in [Mak77] and PSPACE in [Pla99]. Two further decid-
ability results were shown for stratified CU [SS02] and for the 2 variable fragment
[SSS99]. All these decidable fragments are defined over syntactic properties of
the equations considered. In contrast to these results, the present paper intro-
duces a new decidable variant, well-nested context unification, whose definition
relies on semantic properties of solutions.

The well-nestedness restriction is motivated by an applications of CU
[NPR97] in the field of compositional semantics of natural language, whose orig-
inal goal was to improve on previous approaches to ellipsis resolution based on
higher-order unification [DSP91, GK96]. The equational language of CU here
serves as a uniform modelling language for ellipsis and scope underspecifica-
tion phenomena. This approach then led to the development of the constraint
language for lambda structures (CLLS) [EKN01]. The parallelism constraints
feature of the CLLS, has been shown equally expressive than CU [NK01], hence
its decidability is still unknown.
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The first decidable fragment of CLLS that is sufficiently expressive for the
envisaged application to computational semantics (even though not for all as-
pects of ellipsis modelling) is the language of well-nested parallelism constraints
[EN03], whose satisfiability problem is NP-complete. Modelling languages with
lower algorithmic complexity are not known for these applications.

Unfortunately, however, the NP-algorithm for well-nested parallelism con-
straints remains questionable in practice. It relies on repeatedly solving full
dominance constraints, which is exponentially less efficient in theory and prac-
tice than solving normal dominance constraints [BDMN04]. Normal dominance
constraints in turn are sufficient for modelling pure scope underspecification.

Well-nested CU is properly less expressive than well-nested parallelism con-
straints because the later subsume (full) dominance constraints, whereas well-
nested CU does not. We show that minimal well-nested solutions of CU equations
can always be composed from the material present in the equations (see Theo-
rem 1). This surprising property is wanted for ellipsis modelling, where it means
that elided parts of ellipsis can always be reconstructed from what was uttered
elsewhere. CLLS does not satisfy this condition. In particular, some well-nested
parallelism constraints that we can not express in well-nested CU fail to have
this property.

We contribute a new unification algorithm that solves well-nested CU equa-
tions in non-deterministic polynomial time. Our algorithm guesses how to con-
struct minimal well-nested solutions from the given equation. We show NP-
hardness of well-nested CU satisfiability by encoding string matching [Ang80].

The paper proceeds as follows, in Section 2 we illustrate how well-nested CU
can solve ellipses, in Sections 3 and 4 we provide basic definitions to introduce
in Section 5 well-nested CU and prove that size-minimal solutions have a poly-
nomial representation. In Section 6 we show its NP-completeness proving that
guessed solutions can be checked in polynomial time.

2 Ellipsis Resolution

To illustrate the usage of CU in ellipsis resolution, we consider an example from
[Sag76] which contains two VP-ellipsis with a nice nesting structure, but without
scope underspecification:

(1) Mary can’t go to Princeton in the fall, (2) but she can in the spring,
(3) although if she does then ...
Sentence (2) means that Mary can go to Princeton in the spring, so the

phrase go to Princeton is elided. Sentence (3) states that something will happen
if Mary goes to Princeton in the spring; go to Princeton in the spring is elided
here.

Following [Mon73], we can represent the semantics of sentences by lambda
terms, i.e., in higher-order logics:

x1 = mary@λm(in the fall@(can′t@m@go to princeton))
x2 = mary@λm(in the spring@(can@m@go to princeton))
x3 = (mary@λm(in the spring@(do@m@go to princeton))) → x4
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The variables x1, x2, x3 denote the respective meanings of the three sentences,
while x4 stands for the meaning of the consequence that Mary fears.

A non-trivial question is how to resolve the nested ellipses automatically. This
problem is typically split into two part [DSP91, GK96, NPR97, EKN01, EN03].
First one has to infer the nesting structure of the ellipsis, second, one has to
reconstruct the elided parts from the nesting structure. In this paper, we only
treat the second problem, resolving ellipsis given their nesting structure. The
nesting structure of the example is indicated in Fig. 1.

goes to
Princeton

can

in the
spring

mary marymary

in the
fall

can’t does

Fig. 1. Nesting sketches for 2

The dashed box represents the first
elided part, the larger dotted box the
second one. Note that one occurrence
of the dashed box is nested inside of
the dotted box, while the second one
is completely outside of it. These boxes
are well-nested because they do not
properly overlap.

When looking at the trees formed
by the abstract syntax of the lambda-
terms, the boxes become contexts, i.e.,
trees where a subtree has been substi-
tuted by a hole marker •. The lambda terms can then be described by context
equations of CU. Let X be a context variable for the dashed box and Y for the
dotted box. We can then describe the meaning of the ellipsis by the following
equations:

x1
?= mary@λm(in the fall@X(can′t)) X ?= (•@m)@go to princeton

x2
?= mary@λm(Y (can)) Y ?= in the spring@X

x3
?= (mary@λm(Y (do))) → x4

Similar semantical descriptions can be inferred compositionally from the syntax
of the sentence [EKN01, NPR97]. Resolving the ellipsis amounts to find minimal
size unifiers of the equations. Such solutions are well-nested, i.e., correspond
to instantiating context variables with contexts that do not properly overlap,
moreover, they are made of the material already present in the equations.

3 Well-Nested Segments

Given a signature Γ of symbols, we write TΓ for the set of terms over Γ . The size
|t| of a term t is the number of its symbols in Γ . We identify positions in terms
by their relative address from the root, using the Dewey’s decimal notation. We
denote the set of positions of a term t by pos(t). The word’s prefix ordering
p & q is also known as the dominance ordering on positions, which holds if p is
an ancestor or equal to q. For all terms t and positions p ∈ pos(t), we let labt(p)
denote the symbol of Γ at position p of t.

A segment 〈p, q〉 is a pair of positions such that p & q. A segment 〈p, q〉
belongs to a term t if p, q ∈ pos(t). Every segment of a term t distinguishes a set
of positions of t: post(〈p, q〉) = {r ∈ pos(t) | p & r, q �& r}
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Well-nested segments Non Well-nested segments
disjoint:
〈1, 11〉, 〈2, 21〉

disjoint:
〈1, 11〉, 〈ε, 1〉

inside:
〈1, 11〉, 〈ε, 11〉

overlap:
〈ε, 22〉, 〈ε, 11〉

overlap:
〈ε, 22〉, 〈2, 221〉
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Fig. 2. Relationships between segments

Definition 1. Let S1 and S2 be two segments of t. We say that S1 is inside
of S2 in t, if post(S1) ⊆ post(S2). The segments S1 and S2 are disjoint in t, if
post(S1)∩post(S2) = ∅. The segments S1 and S2 are well-nested, if one of them
lies inside the other in t, or if they are disjoint.

Examples for the possible segment relationship are given in Fig. 2. A non-
empty segment 〈p, q〉 of t is inside of a segment 〈p′, q′〉 of t if, and only if, p′ & p
and q & q′. Notice that post(〈p, p〉) = ∅ for any position p ∈ pos(t).

4 Context Unification

We introduce the variant of context unification (CU) that we will use. Let Σ
be a signature of constants: f, g, . . . with non-zero arity, and a, b, . . . with arity
zero. Let Vars be a countable infinite set of context variables X, Y, Z, . . . with
arity one1, and let • be a symbol of arity 0 that we call the hole marker. The
signature of CU-terms s, t, . . . over Σ is Γ (Σ) = Σ ( Vars ( {•}, i.e.:

s, t ::= a | • | X(t) | f(t1, . . . , tn)

The set of variables occurring in a term t is Var(t).
A tree over Σ is a term over Γ (Σ) that does not contain the hole marker

(but possibly variables). A context over Σ is a term over Γ (Σ) that contains a
unique occurrence of the hole marker, at a position denoted by hole(t). We write
TreeΣ for the set of trees over Σ and ContΣ for the set of contexts over Σ.

Given a tree t and a segment 〈p, q〉 of t, we write t〈p, q〉 for the context in t
that starts at p and has its hole at q. For instance g(f(a, b), c))〈1, 1 ·2〉 = f(a, •).
Note that post(〈p, q〉) = {p · r | r ∈ pos(t〈p, q〉)} \ {q}.

The hole marker is like a λ-bound variable, for instance the context f(g(a, •))
corresponds to the linear higher-order term λx.f(f(a, x)). This view is formally
adapted in linear second-order unification [Lev96, LV00].
1 Note that we could add variables of arbitrary arities, but, although the adaptation

of this results to this more general framework is not straight forward, we do not do
so for sake of simplicity.
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While avoiding more general higher-order syntax here, we will nevertheless
use contexts t ∈ ContΣ as functions t : TΓ (Σ) → TΓ (Σ) which map terms s to
terms t(s) by substituting the hole marker in t by s. For instance,

f(g(a, •))(b) = f(g(a, b)) or f(g(a, •))(f(•)) = f(g(a, f(•)))
Note that t(TreeΣ) ⊆ TreeΣ and t(ContΣ) ⊆ ContΣ since the unique hole of t
will be filled by either a tree or a context.

A context substitution is a function σ : Vars → ContΣ such that σ(X) �= X
only for a finite set of variables X ∈ Vars. We lift substitutions from variables to
functions on terms σ : TΓ (Σ) → TΓ (Σ) while using contexts as functions:

σ(X(s)) = σ(X)(σ(s)), σ(a) = a,
σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)), σ(•) = •.

Contexts σ(X), substituted for variables X , are immediately applied so that
their holes are filled. Thus, σ(TreeΣ) ⊆ TreeΣ and σ(ContΣ) ⊆ ContΣ. The
composition of two substitutions σ1 and σ2, written as σ1 ◦ σ2, is defined
by (σ1 ◦ σ2)(t) = σ1(σ2(t)). Substitutions are usually represented as [X1 �→
σ(X1), . . . , Xn �→ σ(Xn)], where the Xi’s are the variables for which σ(Xi) �= Xi.
As we will see in the next section, we can get more compact representations of
substitutions by means of composition.

A context equation e is a term s ?=t with s, t ∈ TreeΣ. Equations are terms
over the signature Σ∪Var∪{ ?=}, therefore the notions of positions and segments
apply to equation, as to all other types of terms. We apply substitutions to
equations such that the result of σ(s ?=t) is the equation σ(s) ?=σ(t).

A unifier of an equation s ?=t is a substitution σ satisfying σ(s) = σ(t). A
unifier σ of e is said to be ground if σ(e) does not contain any variable, and
size-minimal if it minimizes

∑
X∈Var(e) |σ(X)| while satisfying σ(X) = X for all

X �∈ Var(e).
CU is often seen as the satisfiability problem of context equations, i.e.: given

a fixed signature Σ, the problem of deciding whether a given system of context
equations over Σ has a unifier. For the sake of simplicity, we restrict ourselves
to a single context equation as input. This does not affect expressiveness.

CU can alternatively be considered as a constraint solving problem, i.e., the
problem to enumerate all unifiers of a given equation. Rather than enumerating
all unifiers, one usually prefers to enumerate only the most general unifiers (from
which all others can be obtained by instantiation). In this paper, we will consider
a similar variant. We will be able to enumerate all size-minimal unifiers in a
compact representation by using compositions of substitutions.

Definition 2 (Correspondence function). Let e be an equation with uni-
fier σ. Positions in e and σ(e) correspond through the function ce

σ : pos(e) →
pos(σ(e)) that satisfies for all positions p · i ∈ pos(e) and variables X ∈ Var(e):

ce
σ(ε) = ε and ce

σ(p · i) =
{

ce
σ(p) · i if labe(p) ∈ Σ

ce
σ(p) · hole(σ(X)) if labe(p) ∈ Var
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Fig. 3. The equation e = X(f(a, b)) ?=f(X(a), b) and σ(e), where σ is the non-well
nested unifier [X �→ f(f(•, b), b)], with the correspondence function ce

σ and the “cuts”

Figure 3 represents the correspondence function of a given equation and
unifier. Notice that if 〈p, q〉 is a segment of e then 〈ce

σ(p), ce
σ(q)〉 is a segment of

the equation σ(e). Furthermore, if labe(p) = X then σ(X) = σ(e)〈ce
σ(p), ce

σ(p·1)〉.
We next define an equivalence relation on positions of σ(e) that must carry

the same labels. An occurrence of variable X in an equation e is a position p
that satisfies labe(p) = X .

Definition 3 (Equivalent positions). Let e be an equation with unifier σ. Let
≈e

σ ⊆ pos(σ(e))× pos(σ(e)) be the least equivalence relation satisfying:

1. corresponding positions in both sides of the instantiated equation are equiv-
alent: all position p such that 1 · p, 2 · p ∈ pos(σ(e)) satisfy 1 · p ≈e

σ 2 · p
2. corresponding positions in instances of different occurrences of the same vari-

able are equivalent: all X ∈ Var(e), q ∈ pos(σ(X)) \ hole(σ(X)), and occur-
rences p1 and p2 of X in e satisfy ce

σ(p1) · q ≈e
σ ce

σ(p2) · q

Lemma 1. If σ is a solution of equation e then every pair of equivalent positions
p1 ≈e

σ p2 has the same label, i.e. labσ(e)(p1) = labσ(e)(p2).

5 Well-Nested Unifiers

In this section we define well-nested unifiers, and show how to represent well-
nested unifiers of equations in polynomial space depending on the size of the
equation.

It is well known that most general first-order unifiers can be expo-
nentially sized on the size of the problem. Take as example the problem
g(X1, . . . , Xn−1)

?=g(f(X2, X2), . . . , f(Xn, Xn)). Fortunately, these unifiers can
be represented in polynomial space as a composition of substitutions. In our
example: [Xn−1 �→ f(Xn, Xn)] ◦ · · · ◦ [X1 �→ f(X2, X2)]. Moreover, the terms on
the right of the arrows, f(Xi, Xi) in our example, are subterms of the original
unification problem. These two properties are used by practical implementations
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Fig. 4. Forbidden overlaps

of first-order unification. Theorem 1 states a similar property for well-nested CU,
that does not hold neither for general CU nor for word unification.

Size-minimal and most general well-nested unifiers do not introduce new
constants not occurring in the original equation. In the application to ellipsis
resolution, this is expected to hold for all size-minimal unifiers. In general CU,
however, this property does not hold. For instance, the equation X(a) ?=Y (b) has
as many size-minimal unifiers of the form [X �→ f(•, b), Y �→ f(a, •)] as binary
symbols f ∈ Σ. This makes CU dependent of the signature.

If we allow the use of n-ary context variables, like in linear second-order
unification, then we get this property back, but only for most general unifiers
(not necessarily size-minimal ones). For instance, we get a unique most general
unifier [X �→ Z(•, b), Y �→ Z(a, •)] for our example, that uses a fresh binary
context variable Z, but that does not introduce new constants.

Roughly speaking, a unifier σ of an equation e is well-nested if all segments of
σ(e) that encompass variable occurrences in e are pairwise well-nested. Consider
for instance the equation f(X(a)) ?=X(f(a)). Well-nestedness forbids unifiers like
[X �→ f(f(•))] since the segments encompassing the two occurrences of X over-
lap when overlaying the two sides of the instantiated equation. The situation is
illustrated in Fig. 4 (left)

More indirect overlaps are raised by “reflection” in the instances of other vari-
able occurrences. Consider for instance the equation X(X(a)) ?=f(Y (Y (f(a))))
and the unifier [X �→ f(f(f(•))), Y �→ f(f(•))] in Fig. 4 (right). Here the in-
stances of the occurrences of Y are nested into those of X . However, if we overlay
the both instances of X , then we see that the two instances of Y overlap. Thus,
the unifier is not well-nested.

In order to formally define well-nested unifiers we need to extend the equiva-
lence relation ≈e

σ on positions in σ(e) to an equivalence relation ≡e
σ on segments

of σ(e).

Definition 4 (Equivalent segments). Let ≡e
σ be the least equivalence relation

on segments of σ(e) that satisfies:
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1. corresponding segments on both sides of the instantiated equation are equiv-
alent: for all segments 〈1 · p, 1 · q〉 of σ(e), 〈1 · p, 1 · q〉 ≡e

σ 〈2 · p, 2 · q〉
2. segments encompassing different occurrences of the same variable are equiv-

alent: all occurrence p1, p2 of the same variables X ∈ Var(e) in e satisfy
〈ce

σ(p1), ce
σ(p1 · 1)〉 ≡e

σ 〈ce
σ(p2), ce

σ(p2 · 1)〉
3. corresponding subsegments in equivalent segments are equivalent: for all

equivalent segments 〈p1, q1〉 ≡e
σ 〈p2, q2〉 of σ(e), and all segments 〈p, q〉 satis-

fying that 〈p1 ·p, p1 ·q〉 is a segment of σ(e) inside 〈p1, q1〉, 〈p1 ·p, p1 ·q〉 ≡e
σ

〈p2 · p, p2 · q〉

If 〈p, q〉 is a segment of σ(e) just containing one position (this must be p),
then 〈p, q〉 ≡e

σ 〈p′, q′〉 if, and only if, p ≈e
σ p′. This shows that the equivalence on

segments indeed extends on the equivalence on positions.

Definition 5 (Well-nested CU). Let σ be a unifier of an equation e. The
〈σ, e〉-images of variables in e are the segments 〈q, r〉 of σ(e) such that there
exists a variable-labeled position p in the equation e whose corresponding segment
in σ(e) is equivalent:

〈q, r〉 ≡e
σ 〈ce

σ(p), ce
σ(p · 1)〉

We call a unifier σ of e well-nested if the set of all 〈σ, e〉-images of variables in
e are pairwise well-nested. Well-nested CU is the problem of deciding whether a
given equation has a well-nested unifier or not.

In what follows, we will show how to solve this problem by enumerating all
well-nested size-minimal ground unifier of a given input equation.

Definition 6 (Normal unifer). We say that a well-nested unifier is normal
if it is size-minimal among all well-nested unifiers.

It is important that normal unifiers are required to be size-minimal among
well-nested unifiers, since size-minimal ground unifiers may not always need to
be well-nested. As a consequence of the fact that non-ground well-nested unifiers
can be made smaller by instantiating variables to the empty context, we have:

Lemma 2. Normal unifiers are ground.

We next recall a nice property of WU, that we will extend to CU, in order
to prove the existence of compact representations of normal CU unifiers. We do
not actually know who was the first in stating this property for WU, but to our
knowledge, it was first proved in [PR98]. The set of positions in the equation e
define “cuts” in σ(e) throughout the function ce

σ: formally, a position p ∈ σ(e)
is a cut if it is in the range of ce

σ. These “cuts” limit the possible subwords that
a size-minimal unifier may contain:

Proposition 1 (Lemma 6 of [PR98]). If σ is a minimal unifier of a word
equation t ?=u, then each subword of σ(t) has an occurrence “over a cut”.
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In [PR98] cuts are located between two consecutive positions, cutting the
word into two pieces (see the scissors in Fig. 3). We locate the cuts in the positions
on the range of ce

σ (in Fig. 3, just bellow the scissors, where the dotted arrows
representing ce

σ points). In WU, “having an occurrence over a cut” means that
there is an(other) occurrence of the same subword containing a cut in an inner
point or in one of their extremes.

The analogous result fails for general CU but carries over in the well-nested
case (see Lemma 5). Moreover, we generalise it by restricting the relation “has
an(other) occurrence” to “there is an(other) ≡e

σ equivalent segment”, and, if
the segment contains two or more positions, by restricting cuts to properly cut
the context into two non-empty terms, i.e., discarding cuts on the extremes. To
prove this result, we need two previous lemmas. Lemma 4 plays the same role
as the Lemma 4 of [PR98].

Lemma 3. Given a term t, and a marking function m : pos(t) → {rem, pres}, let
pres(t, m) be a term for which there exists an embedding from the set of preserved
nodes of t to pos(pres(t, m)), i.e. a bijective morphism

ft,m : {p ∈ pos(t) | m(p) = pres}→ pos(pres(t, m))

preserving the tree structure (ancestor, brother and label relations). Then, if such
term pres(t, m) exists, then it is unique.
Given an equation e and a well-nested unifier σ, let m : pos(σ(e)) → {rem, pres}
be a marking function satisfying:

1. For any pair of positions p, q ∈ pos(σ(e)), if p ≈e
σ q then m(p) = m(q), i.e.,

equivalent positions are both removed or both preserved.
2. For any p ∈ pos(e), we have m(ce

σ(p)) = pres, i.e. cuts are preserved.
3. The term pres(σ(e), m) exists, i.e. after the removing process you get a term.

Then, there exists a well-nested unifier σ′ of e such that σ′(e) = pres(σ(e), m).
Moreover, if there exists some removed node, then σ′ is size-smaller than σ.

Proof. First, notice that if pres(t, m) exists there must be a unique outermost
preserved position in t, and the function f−1

t,m has to map ε to it. Moreover,
for any p ∈ pos(pres(t, m)) there must be arity(labt(f−1

t,m(p))) many preserved
outermost bellow f−1

t,m(p) positions in t, and f−1
t,m has to map p · i to the i-th of

them. Therefore, f−1
t,m is unique, so its inverse, and pres(t, m).

Now, notice that a unifier σ of e can be characterised by e, the term σ(e)
and the correspondence function ce

σ. In our case, we characterise σ′ by the cor-
respondence function ce

σ′ = fσ(e),m ◦ ce
σ.

Since cuts are not removed, this function maps any position of e to a position
in pres(σ(e), m), which on the other side, is a well-formed term.

For any p, q ∈ pos(e) with labe(p) = labe(q) ∈ Var(e) we have σ(e)〈ce
σ(p), ce

σ(p·
1)〉 = σ(e)〈ce

σ(q), ce
σ(q ·1)〉. Now, since the positions of these two contexts are ≈e

σ-
equivalent one to one, and equivalent positions are both removed or preserved, we
have pres(σ(e), m)〈ce

σ′ (p), ce
σ′(p · 1)〉 = pres(σ(e), m)〈ce

σ′(q), ce
σ′ (q · 1)〉. Therefore,
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we can define a substitution σ′ mapping X to pres(σ(e), m)〈ce
σ′(p), ce

σ′ (p ·1)〉, for
any of the occurrences p of X .

It can also be proved that p ≈e
σ′ q ⇔ f−1

σ(e),m(p) ≈e
σ f−1

σ(e),m(q). This makes
〈σ, e〉-images to correspond to 〈σ′, e〉-images throughout fσ(e),m. Therefore, if σ
is well-nested, then σ′ is well-nested, too. �

Lemma 4. If σ is a normal unifier of an equation e, then every equivalence
class C of ≈e

σ is cut by some constant in e, i.e., there is a position p ∈ pos(e)
such that ce

σ(p) ∈ C and labe(p) ∈ Σ.

Proof. All positions of C are labeled alike in σ(e) according to Lemma 1. Let
f = labσ(e)(p) for all positions p ∈ C. Now, assume that the statement does
not hold, so all positions in C belong to segments that are denotations of some
variables. There are three cases:

If f is unary, the proof is quite similar to the proof given in [PR98]: if C does
not contain cuts of a unary constant of e, then we can remove these occurrences
of the constant f in C, which would result into a smaller unifier. As it is stated
in Lemma 3, this replacement only involves changes in the instantiations of
the variables, by deleting the nodes of the equivalence class. Moreover, this
removing process preserves the well-nestedness property, because the relative
position between segments do not change with the process.

If arity(f) ≥ 2, the proof is more subtle, and requires the unifier to be well-
nested. For every p ∈ C, consider the longest path qp in e such that ce

σ(qp) & p.
First, notice that, since we have assumed that C does not contain cuts corre-
sponding to constants, all qp correspond to variables Xp = labe(qp) and, second,
notice that p is inside the segment 〈ce

σ(qp), ce
σ(qp · 1)〉.

Now, we can prove the following property: for any p, p′ ∈ C, and integer
numbers i, i′, if p · i & ce

σ(qp · 1) and p′ · i′ & ce
σ(qp′ · 1), then i = i′. To prove

it, assume i �= i′. Since p and p′ are related by the ≈e
σ equivalence relation,

and this is the transitive closure of a more restrictive relation, we can find two
positions p′′, p′′′ ∈ C, related by this more restrictive relation, and such that
p′′ · i & ce

σ(qp′′ · 1) and p′′′ · i′ & ce
σ(qp′′′ · 1). According to the ≈e

σ definition, for
these new positions, either Xp′′ = Xp′′′ , or p′′ = 1 · r and p′′′ = 2 · r, for some
r. In the first case, we have i = i′. In the second case, if i �= i′, we would have
two bad-nested variables Xp′′ and Xp′′′ . Notice that, in this point of the proof,
we make use of the well-nestedness property.

We can conclude that there exists a number i such that, for every p ∈ C,
every integer j �= i, and every sequence r, there are not cuts of the form p · j · r.
(Notice that this does not imply that there exist cuts of the form p · i · r). Now,
using again Lemma 3, we can replace all the contexts σ(e)〈p, p · i〉 by the empty
context, because they do not contain cuts. Again this removing process preserves
the well-nestedness property, and results in a smaller well-nested unifier, which
contradicts the assumption.

If arity(f) = 0 we can not apply the previous reasoning because σ(e)〈p, p · i〉
is not a context. However, if C does not contains cuts corresponding to constants
of e, then C does not contain cuts at all (it could only contain cuts corresponding
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to first-order variables, but we do not consider them). Then, the set of parents
of p ∈ C, i.e., the set of positions {q | ∃p ∈ C . ∃j ∈ N . p = q ·j} is an equivalence
class of positions C′. This class of positions C′ can contain cuts corresponding to
context variables, but not to constants (this would imply that C contains cuts).
Therefore, since the nodes of C′ are labelled with a nonzero arity constant, we
can apply some of the two previous cases to C′, and reach a contradiction. �

We want to remark that Lemma 4 does not hold for general CU. For instance,
the context unification equation e = X(a) ?=Y (b) has a size-minimal unifier
σ = [X �→ f(•, b), Y �→ f(a, •)]. The set of positions {1, 2} is an ≈e

σ-equivalence
class (all of them corresponding to the same constant f), but there exists no f -
labeled node in e that could generate a f -labelled cut in σ(e). This size-minimal
unifier, however, is not well-nested.

Lemma 5. If σ is a normal unifier of an equation e, then, for any non-empty
segment 〈p, q〉 of σ(e), there exists an ≡e

σ equivalent segment 〈p′, q′〉 over a cut
ce
σ(r), i.e. there exist r ∈ pos(e) and 〈p′, q′〉 ≡e

σ 〈p, q〉 such that ce
σ(r) is inside

〈p′, q′〉.
Moreover, if 〈p, q〉 contains just one position, then we can restrict labe(p′) to
be a unary constant, and if 〈p, q〉 contains two or more positions, then we can
restrict r to satisfy ce

σ(r) �= p′.

Proof. Consider a segment 〈p, q〉 containing just one position, this must be p,
and q = p ·1. Consider the ≈e

σ-equivalence class defined by p. By Lemma 4, there
exists a cut p′ ≈e

σ p corresponding to a constant f = labe(ce
σ
−1(p′)) in the same

equivalence class. Then, the segment 〈p′, p′ · 1〉 fulfils our requirements, because
p ≈e

σ p′ implies 〈p, p · 1〉 ≡e
σ 〈p′, p′ · 1〉.

Consider a segment 〈p, q〉 containing more than one position. Suppose that
the lemma does not hold, then any segment 〈p′, q′〉, in the same ≡e

σ-equivalence
class as 〈p, q〉, does not contain any cut, except for possibly p′. Comparing the
definitions of ≈e

σ and ≡e
σ, in such conditions, we have 〈p, p · s〉 ≡e

σ 〈p′, p′ · s〉
implies p ≈e

σ p′. Now, by Lemma 4, there exists a position p′ ≈e
σ p over a cut

corresponding to a constant. Therefore, for any integer i, the position p′ · i is
also a cut. Now, since 〈p′, q′〉 contains more than one position, it must contain
p′ · i, for some i, hence it contains another cut, apart from p′, which contradicts
the initial supposition. �

Lemma 6. If σ is a normal unifier of an equation e, then, for every variable
X ∈ Var(e), there exists a segment 〈p, q〉 in e such that σ(X) = σ(e〈p, q〉), where
the segment e〈p, q〉 is not of the form Y (•).

Proof. There are several cases. If σ(X) is the empty context • then, for any
empty segment 〈p, p〉 of e, we have σ(X) = σ(e〈p, p〉) = σ(•) = •.

If σ(X) = f(•), we can assume that X occurs in e, say at position p, and
σ(X) occurs in σ(e), at segment 〈ce

σ(p), ce
σ(p · 1)〉 = 〈ce

σ(p), ce
σ(p) · 1〉, otherwise

σ would not be size-minimal. Now, using Lemma 5, we have an occurrence r in
e such that 〈ce

σ(r), ce
σ(r) · 1〉 ≡e

σ 〈p, p · 1〉 and labe(r) = f . Therefore, σ(X) =
σ(e〈r, r · 1〉) = f(•).
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If σ(X) contains two or more positions, let p be an occurrence of X in e, and
〈ce

σ(p), ce
σ(p · 1)〉 be the corresponding occurrence of σ(X) in σ(e). By Lemma 5

there exists an occurrence 〈p′, q′〉 of σ(X) over a cut: 〈p′, q′〉 ≡e
σ 〈ce

σ(p), ce
σ(p ·1)〉,

and there exists a position r in e such that ce
σ(r) is inside 〈p′, q′〉 and ce

σ(r) �= p′.
Now, we will prove that p′ and q′ are also cuts.

Suppose that p′ is not a cut. Let s ∈ pos(e) be the longest position such
that ce

σ(s) & p′. Then, ce
σ(s) ≺ p′ ≺ ce

σ(s · 1), hence s corresponds to a variable
occurrence. Since 〈ce

σ(s), ce
σ(s·1)〉 does not contain other cuts than ce

σ(s), we have
ce
σ(s ·1) & ce

σ(r). This gives two overlapping segments 〈p′, q′〉 and 〈ce
σ(s), ce

σ(s ·1)〉
that violate the well-nestedness condition. A similar argument allows us to prove
that q′ is a cut.

We can conclude that 〈ce
σ
−1(p′), ce

σ
−1(q′)〉 is a segment of e containing a

position r with r �= ce
σ
−1(p′) and r �= ce

σ
−1(q′), therefore fulfilling the conditions

of the lemma. �

Theorem 1. Normal unifiers σ of a context equation e have a representation
of the form:

σ = [X1 �→ e〈p1, q1〉] ◦ · · · ◦ [Xn �→ e〈pn, qn〉]
where 〈pi, qi〉 are segments of e and Xi variables of Var(e) that do not occur in
e〈pj , qj〉 for j ≤ i.
This representation is polynomial in |e|, and does not use constants not occurring
in e.

Proof. By Lemma 6, for any variable Xi of the equation, we can find a segment
〈pi, qi〉 of the equation such that σ(Xi) = σ(e〈pi, qi〉), where 〈pi, qi〉 is something
else than just one variable. For any variable Xj occurring in e〈pi, qi〉 we say
that Xi > Xj . The transitive closure of this relation results into an irreflexive
relation. Now, Let X1 > X2 > · · · > Xn be a total ordering of the variables
of the equation compatible with this transitive and irreflexive ordering. This
ordering is used to express the σ as it is stated in the theorem. �

6 Well-Nested Context Unification is in NP

In this section we prove that given an equation e, and a substitution σ that can
be represented in polynomial space on |e| in the form [X1 �→ t1]◦ · · · ◦ [Xn �→ tn],
we can check if σ is a unifier of e in polynomial time on |e|. This result is not
trivial, since |σ(e)| can be exponential in |e|. For instance, the equation:

Xn(Xn−1(· · ·X1(a) · · ·)) ?=Xn−1(Xn−1(Xn−2(Xn−2(· · · f(a)) · · ·))))
has as unique unifier that we can represent as follows:

σ = [X1 �→ f(•)] ◦ [X2 �→ X1(X1(•))] ◦ · · · ◦ [Xn �→ Xn−1(Xn−1(•))]
This representation has linear size on n, like the equation. However σ(e) =
f2n−1(a) ?=f2n−1(a) has exponential size on n.

To overcome this problem we construct a context free grammar generating a
preorder traversal of the term σ(t), and another for σ(u). Both grammars will
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be of polynomial size (not so the word generated by them). Then, we can use a
result (see Lemma 7) due to Plandowski that allows us to check the equality of
the words generated by the two grammars in polynomial time on the size of the
grammars.

A context-free grammar (CFG) is a 4-tuple (Σ, N, P, S), where Σ is an al-
phabet of terminal symbols, N is an alphabet of non-terminal symbols, P is a
finite set of rules, and S ∈ N is the start symbol. We will not distinguish a par-
ticular start symbol, and we will represent a context free grammars as a 3-tuple
(Σ, N, P ).

Definition 7. A context free grammar G = (Σ, N, P ) generates a word w ∈ Σ∗

if there exists a non-terminal symbol A ∈ N such that w belongs to the language
defined by (Σ, N, P, A). In such case, we also say that A generates w.

We say that a context free grammar is a singleton CFG if it is not recursive
and every non-terminal symbol occurs in the left-hand side of exactly one rule.
Then, every non-terminal symbol A ∈ N generates just one word, noted wA.

Plandowski [Pla94, Pla95] defines singleton grammars, but he calls them
grammars defining set of words. He proves the following result.

Lemma 7 ([Pla95], Theorem 33). The word equivalence problem for sin-
gleton context-free grammars is defined as follows: given a grammar and two
non-terminal symbols A and B, to decide whether wA = wB . This problem can
be solved in polynomial worst-case time on the size of the grammar.

In order to translate trees and contexts into sequences, we will use a pair
of nonterminal symbols XL and XR for each context variable X . Then, the
translation function is defined by:

trans(a) = a trans(f(t1, . . . , tn)) = f trans(t1) · · · trans(tn)
trans(•) = • trans(X(t)) = XL trans(t)XR

Given a unification equation t ?=u, and a guessed substitution [X1 �→ v1] ◦
· · · ◦ [Xn �→ vn], where vi ∈ ContΣ , we generate the following grammar:

A → trans(t)
B → trans(u)

XL
i → left(trans(vi))

XR
i → right(trans(vi))

}
for every i = 1, . . . , n

where left(α • β) = α and right(α • β) = β.
In the case of our example, the grammar would be:

A → XL
n XL

n−1 · · ·XL
1 a XR

1 · · ·XR
n−1 XR

n

B → XL
n−1 XL

n−1 XL
n−2 XL

n−2 · · · f a · · ·XR
n−2 XR

n−2 XR
n−1 XR

n−1

XL
n → XL

n−1 XL
n−1 XR

n → XR
n−1 XR

n−1

XL
n−1→ XL

n−2 XL
n−2 XR

n−1→ XR
n−2 XR

n−2

· · · · · ·
XL

1 → f XR
1 → ε

Lemma 8. Given a context equation e, and a substitution of the form:

σ = [X1 �→ v1] ◦ · · · ◦ [Xn �→ vn]
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where Xi are distinct context variables, vi are contexts, and Xi does not occurs
in v1 . . . vi, we can check if it is a unifier in polynomial time on |e|+ |σ|.

Proof. Since every constant has a unique arity, then for every pair of terms
t, u ∈ TΓ (Σ), t = u if, and only if trans(t) = trans(u).

Now, we can prove, by induction on k, that the grammar

A → trans(t)
B → trans(u)

XL
i → left(trans(vi))

XR
i → right(trans(vi))

}
for every i = n− k, . . . , n

using A as the start symbol, can generate trans([Xn−k �→ vn−k]◦· · ·◦[Xn �→ vn]t),
and similarly for B and u. Finally, using Lemma 7, we simply have to check if
A and B generate the same sequence, in polynomial time on the size of the
grammar, that is polynomial on |e|+ |σ|. �

Theorem 2. Deciding if a context equation has a well-nested unifier is NP-
complete.

Proof. Given an equation e, we can guess a representation for normal unifiers in
polynomial time (Theorem 1), and then check in polynomial time whether it is
represents indeed a unifier (Lemma 8). Finally, it can be proved that checking if
the unifier represented in the form of Theorem 1 is well-nested can also be done
in polynomial time using similar techniques.

For NP-hardness, it is sufficient to note that well-nested CU subsumes string
matching [Ang80]. This is since the standard encoding of string matching will
produce context equations that only have well-nested unifiers. �

7 Conclusions

Well-nested context unifiers are a kind of context unifiers with interest in com-
putational linguistics. Here we prove that decidability of the existence of a well-
nested context unifier is NP-complete. Additionally, we prove that well-nested
size-minimal unifiers can be represented in polynomial space, as a composition of
substitutions where each one of them instantiate a context variable by a segment
of the original equation (a similar result holds for most general unifiers in first-
order unification). As a direct consequence, well-nested size-minimal unifiers do
not use constants not occurring in the original equation, a wishful property for
computational linguistic applications. All these results are extensible to word
unification.

In the future, we plan to study the relationship between well-nested context
unification and well-nested parallelism constraints, and to look for a more effi-
cient algorithm to compute well-nested unifiers than the brute force guessing.

Acknowledgments. We acknowledge the suggestions of the anonymous referees
and the fruitful discussions with Katrin Erk.
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Abstract. We show that termination is decidable for rewrite systems
that contain shallow and right-linear rules, collapsing rules, and right-
ground rules. This class of rewrite systems is expressive enough to include
interesting rules. Our proof uses the fact that this class of rewrite systems
is known to be regularity-preserving and hence the reachability and join-
ability problems are decidable. Decidability of termination is obtained
by analyzing the nonterminating derivations.

1 Introduction

Term rewriting systems are Turing-complete models of computation that specify
rules for replacing certain patterns in terms by equivalent, in some cases sim-
pler, other terms. Simpler models of computation result by imposing additional
constraints on the form of terms in a rewrite system. For instance, if variables
are not allowed, we get ground term rewrite system, which have been extensively
studied, mainly via mapping them to tree automata [2]. More complex models of
computation arise by allowing restricted variable occurrences in the term rewrite
system (or the tree automata transitions).

Termination is one of the central properties of rewrite systems. Termination
guarantees that any expression cannot be infinitely rewritten, and hence, the
existence of a normal form for it. As we go from simple to more general classes
of rewrite systems, the complexity of deciding termination increases until it be-
comes undecidable. For example, while termination is decidable in polynomial
time for ground term rewriting systems [13, 16], it is undecidable for general
rewrite systems and string rewrite systems [13]. It is, therefore, fruitful to iden-
tify the decidability barrier and study decidability issues for some intermediate
classes, especially if these classes are expressive enough to capture interesting
rules.
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There are several negative, and few positive, results on decidability of ter-
mination for classes of rewrite system. Termination is undecidable for even one
(non-linear) rule [4]. Termination is usually established using well-founded or-
derings [6]. It is undecidable whether a single term rewriting rule can be proved
terminating using a simplification ordering [15] or a monotonic ordering total
on ground terms [7]. On the other hand, several powerful techniques and im-
plementations exist that can automatically prove termination of many rewriting
systems [8, 3, 12, 1]. These systems are based on combinations of techniques such
as the use of well-founded term orderings, transformations, semantic interpre-
tations, and dependency-pairs. The success of these tools suggests the natural
question: is there an interesting and large class of rewrite systems for which
termination is indeed decidable?

In this context, we consider term rewriting systems that contain shallow
right-linear rules, collapsing rules, and right-ground rules. In a shallow right-
linear rule l → r, every variable occurs at most once in r, and all variables
in l, r occur at depth 0 or 1. Some examples of shallow right-linear rules are
0∧x → 0, x∧x → x, 1∧x → x, 1∨x → 1, x∨x → x, 0∧x → x, x∧y → y∧x
and x ∨ y → y ∨ x. A rule of the form l → x, where x is a variable, is called
collapsing. For example, ¬(¬x) → x is a collapsing rule. A rule l → r, where r is
a ground term, is a right-ground rule. For example, x∧ (¬x) → 0, x∨ (¬x) → 1
are right-ground rules.

Our proof of decidability of termination relies on the decidability of reachabil-
ity and joinability. Takai, Kaji, and Seki [17] showed that right-linear finite-path-
overlapping systems effectively preserve recognizability. The class of rewrite sys-
tems defined by shallow right-linear, collapsing, and right-ground rules, is right-
linear and finite-path-overlapping, and hence it follows that the reachability and
joinability problems for this class is decidable. We point out here that reachabil-
ity is known to be undecidable for linear TRS’s, and also for shallow TRS’s [14].

In this paper, we prove the decidability of termination for TRS’s that contain
shallow right-linear, collapsing, or right-ground rules. We use the decidability of
reachability and joinability for this class as a black box. For termination, we
give a checkable characterization based on some reachability conditions and the
termination of a restricted rewrite system related with the original one.

In Section 2 we introduce some basic notions and notations. In Section 3 we
present termination-preserving transformations that replace the shallow right-
linear rules by flat right-linear rules and that replace the right-ground rules by
right-constant rules. This section is quite easy and similar to parts of other
previous works, but not identical, and allows us to simplify the arguments in the
rest of the paper. In Section 4 we characterize the termination property for flat
right-linear systems that contain additional collapsing and right-constant rules,
and prove its decidability.

2 Preliminaries

We use standard notation from the term rewriting literature. A signature Σ
is a (finite) set of function symbols, which is partitioned as ∪iΣi such that
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f ∈ Σn if the arity of f is n. Symbols in Σ0, called constants, are denoted by
a, b, c, d, with possible subscripts. The elements of a set V of variable symbols
are denoted by x, y with possible subscripts. The set T (Σ,V) of terms over Σ
and V , position p in a term, subterm t|p of term t at position p, and the term
t[s]p obtained by replacing t|p by s are defined in the standard way. For example,
if t is f(a, g(b, h(c)), d), then t|2.2.1 = c, and t[d]2.2 = f(a, g(b, d), d). We write
p1 * p2 (or, p2 ≺ p1) if p2 is a proper prefix of p1. By Vars(t) we denote the
set of all variables occurring in t. The height of a term s is 0 if s is a variable or
a constant, and 1 + max iheight(si) if s = f(s1, . . . , sm). Usually we will denote
a term f(t1, . . . , tn) by the simplified form ft1 . . . tn, and t[s]p by t[s] when p is
clear by the context or not important.

A substitution σ is sometimes presented explicitly as {x1 �→ t1, . . . , xn �→ tn}.
We assume standard definitions for a rewrite rule l → r, a rewrite system R, the
one step rewrite relation at position p induced by R →R,p, and the one step
rewrite relation induced by R (at any position) →R. If p = λ, then the rewrite
step →R,p is said to be applied at the topmost position (at the root) and is
denoted by s →r

R t; it is denoted by s →nr
R t otherwise.

The notations ↔, →+, and →∗, are standard. R is terminating if no infinite
derivation s1 →R s2 → · · · exists. A term t is reachable from s by R (or, R-
reachable) if s →∗

R t. A term s is R-irreducible (or, in R-normal form) if there
is no term t such that s →R t. We denote by s →! t the fact that an irreducible
term t is reachable from s by the → relation. If s is a term and S is a set of terms,
then we define Reach(s) = {t : s →∗

R t} and Reach(S) =
⋂

s∈S Reach(s). A set
S of two or more terms is R-joinable if Reach(S) �= ∅. A (rewrite) derivation or
proof (from s) is a sequence of rewrite steps (starting from s), that is, a sequence
s →R s1 →R s2 →R . . ..

A term t is called ground if t contains no variables. It is called shallow if all
variable positions in t are at depth 0 or 1. It is called linear if every variable
occurs at most once in t. A rule l → r ∈ R is called right-ground if r is ground,
and collapsing if r is a variable. It is called shallow right-linear if the term r is
linear, and both l, r are shallow, and flat if both l, r are height 0 or 1 terms.

3 Termination-Preserving Transformations

Let R be such that for every rule l → r ∈ R, either r is ground, or r is a variable,
or l → r is shallow and right-linear. Henceforth, we also assume that in every
rule l → r we have Vars(r) ⊆ Vars(l) (this is usual for rewrite rules, and without
this property the corresponding rewrite system is trivially non-terminating).

By replacing non-constant ground terms by new constants, as described for-
mally by the following two transformation rules, we can transform the rewrite
system R into a rewrite system R′ such that for every rule l → r ∈ R′, either r
is a constant, or r is a variable, or l → r is flat and right-linear.

l → r[s]

l → r[c], c → s

l[s] → r

l[c] → r, s → c

if s is non-constant and
ground; c a new constant
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We show in Lemma 3 that application of these two transformation rules is
terminating, and hence we can exhaustively apply them. As an optimization we
can replace multiple instances of s on LHS (equivalently, RHS) by the same
constant c, but we use the unoptimized version here to keep proofs simple. We
prove below that applying these two transformation rules preserves termination.
We remark here that this transformation is very similar (though not identical)
to the one that preserves confluence, see [11].

Lemma 1. Let R′ be obtained from R using one of the two transformation rules
described above. For every derivation t1 →R t2 →R t3 →R · · · , there exists a
derivation t1 →+

R′ t2 →+
R′ t3 →+

R′ · · · .

Proof. Suppose ti →l→r,σ,p ti+1, where l → r ∈ R. If l → r is also present in R′,
then clearly ti →R′ ti+1. If not, then suppose r|q = s and l → r ∈ R is replaced
by l → r[c]q and c → s in R′. In this case, ti →l→r[c],σ,p ti+1[c]p.q →c→s,id,p.q

ti+1[s]p.q = ti+1. In the other case, suppose l|q = s and l → r ∈ R is replaced by
l[c]q → r and s → c in R′. Now we have ti →s→c,id ,p.q ti[c]p.q →l[c]→r,σ,p ti+1.
This completes the proof. ��

Lemma 2. Let R′ be obtained from R using one of the two transformation rules
described above. Let c be the new constant that names some non-constant ground
term s. For every infinite derivation t1 →R′ t2 →R′ · · · over T (Σ ∪ {c},V),
there exists an infinite derivation t1σ →∗

R t2σ →∗
R · · · over T (Σ,V), where σ is

{c �→ s} and is applied as a substitution interpreting c as a variable.

Proof. Suppose R′ = (R − {l[s] → r}) ∪ {l[c] → r, s → c}. Consider the
step ti →l′→r′,ρ,p ti+1, where l′ → r′ ∈ R′. There are three cases. (1) If
l′ → r′ ∈ R, then since the constant c is new and not present in R, it fol-
lows that tiσ →l′→r′,ρσ,p ti+1σ.(2) If l′ = l[c] and r′ = r, then we can use
the rewrite rule l[s] → r from R to get tiσ →l[s]→r,ρσ,p ti+1σ.(3) If l′ = s
and r′ = c, then tiσ = ti+1σ and there is no corresponding step in the R-
derivation. Since {s → c} is terminating, case (1) and (2) happen infinitely
often, and hence the derivation t1σ →∗

R t2σ →∗
R · · · is an infinite derivation.

Finally, we complete the proof by saying that the argument for the case when
R′ = (R− {l → r[s]}) ∪ {l → r[c], c → s} can be done similarly. ��

Let R � R′ denote that R′ is obtained from R using an application of the
either of the two transformation rules.

Lemma 3. Every derivation R1 � R2 � R3 � · · · is necessarily finite. If R1 is
such that for every l → r ∈ R, either r is ground, or r is a variable, or l → r is
shallow and r is linear, then the final rewrite system R obtained as R1 �! R is
such that for every l → r ∈ R, either r is a constant, or r is a variable, or l → r
is flat and r is linear.

Proof. Let measure(R) be the multiset consisting of the depths of l and r for
every l → r ∈ R. If R � R′, then measure(R) >m measure(R′), where >m is the
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multiset extension of the regular greater-than > ordering on the naturals. Hence
the relation � is well-founded. If R1 �! R, and R violates the second claim, then
one of the two transformation rules will be applicable on R, thus contradicting
that R is the normal form of R w.r.t �. ��

The following theorem is now an easy consequence of Lemma 1, Lemma 2,
and Lemma 3.

Theorem 1. If R is any collection of right-ground rules, right-variable rules,
and shallow and right-linear rules, then R can be transformed into R′ such that
R′ is a collection of right-constant rules, right-variable rules, and flat and right-
linear rules. Furthermore, R is terminating if and only if R′ is terminating.

Additionally, with a transformation identical to the one presented in [11], we
can encode function symbols with nonzero arity using just one function symbol,
say f , with sufficiently large arity m. Hence, we can assume that Σ = Σ0 ∪ {f},
where f is of arity m. This encoding preserves termination and is done just to
simplify the proofs.

4 Termination

As a consequence of Theorem 1, we can without loss of generality assume that
all rules in R are right-constant, right-variable, or flat and right-linear; and that
Σ contains only one non-constant function symbol f of arity m.

Termination is decidable for right-ground term rewriting systems [5] and also
for the more general class that also has right-variable rules [9]. An important
idea used in [9] for handling nonlinear left-hand side terms is that of treat-
ing sets of constants (generalized to terms in this paper) as first-class objects
(terms). Intuitively, a set S ⊆ T (Σ,V) of terms represents any (all) terms that
are R-reachable from every term s ∈ S. For example, under this interpreta-
tion, the rewrite rule fxx → fax can rewrite fS1S2 to fa(S1 ∪ S2), if there is
some term R-reachable from every term in S1 ∪ S2. This is the basis for Defin-
ition 1.

A second observation we make in this paper is that the termination of R
can be decomposed into termination of right-constant or right-variable rules and
the termination of flat and right-linear rules. In particular, this means that
the rules l → r where depth(l) = depth(r) = 1, called permutation rules,
play an important role in characterizing the termination of the rewrite sys-
tem R.

Definition 1. [UJoin,UPerm] Let R be a flat right-linear TRS over Σ. Define
an infinite set K = {S : ∅ �= S ⊆ T (Σ,V) is R-joinable} of new constants
(every set in K represents a constant) called set-constants. The rewrite systems
UJoin(R), Perm(R), and UPerm(R) (over Σ ∪K) are defined as follows:
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UJoin(R) = {S → {c} : S ∈ K, c ∈ Σ0, c ∈ Reach(S), and S �= {c}}
Perm(R) = {l → r ∈ R : depth(l) = depth(r) = 1}

UPerm(R) = {fS1 . . .Sm → fT1 . . .Tm : ∃fs1 . . . sm → ft1 . . . tm ∈ Perm(R),
Sp ∈ K, Tp ∈ K for all p ∈ {1, . . . , m} AND
Sp = {sp} whenever sp ∈ Σ0 AND
Tp = {tp} whenever tp ∈ Σ0 AND
∀x∈Vars(fs1 . . . sm),

⋃
si=x Si is R-joinable, and if some tj is x,

then Tj is
⋃

si=x Si}

Note that the set K is infinite. The rewrite system UPerm(R) is ground
(though constants of the form {x} ∈ K may appear in it). The sets UPerm(R)
and UJoin(R) are theoretical constructions possibly containing infinitely many
rules. The termination characterization of Lemma 6 applies the rewrite system
UPerm(R)∪UJoin(R) only on terms fS1 . . .Sm where each Si ⊆ Σ0. Hence, the
relevant rules of UPerm(R)∪UJoin(R) are those that only contain set-constants
S s.t. S ⊆ Σ0.

Example 1. If R = {fxxx → fxc1c2, c2 → c1}, then the set UJoin(R) re-
stricted to set-constants over Σ0 is {{c2} → {c1}, {c1, c2} → {c1}}. The set
UPerm(R) restricted similarly contains the 27 rules: {fS1S2S3 → fS{c1}{c2} :
∅ �= S1, S2, S3 ⊆ {c1, c2}, S = S1 ∪ S2 ∪ S3}. The full set UPerm(R) contains
several other rules, for example, rules of the form fSSS → fSc1c2, where S is
any subset of terms that are R-joinable.

The notion of set-constants and the new definition of rewriting (using Unions)
induced by R, and captured by UPerm(R), allows us to
(a) project certain infinite R-derivations onto infinite (UPerm(R)∪UJoin(R))-
derivations over ground terms (Lemma 4 and Example 2); and
(b) lift infinite (UPerm(R) ∪ UJoin(R))-derivations starting from a flat ground
term to an infinite R-derivation (Lemma 5 and Example 3).
The consequence of these two lemmas is that termination of R restricted to
derivations with only permutation steps at root positions is equivalent to ter-
mination with (UPerm(R) ∪ UJoin(R))-derivations starting from flat ground
terms.

4.1 Projecting Rewrite Derivations

Consider an infinite derivation fcc(gb) →R fc(gb)b →R · · · using some rewrite
system R containing the permutation rule fxxy → fxyb. We will first project
this derivation onto the (UPerm(R) ∪ UJoin(R))-derivation f{c}{c}{gb} →
f{c}{gb}{b} → · · · , and thereafter remove the non-constant subterm gb from
it by carefully analyzing the role of gb in the subsequent derivation.

Lemma 4. Let s1 = fs11 . . . s1m →R s2 → · · · be an infinite R-derivation that
contains infinitely many top steps, where all of them are with rules in Perm(R).
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Then there is an infinite (UPerm(R) ∪ UJoin(R))-derivation starting from a
term of the form fS1 . . .Sm, where every Si is included in Σ0 and is R-joinable.

Proof. We project the derivation s1 → s2 · · · onto an infinite (UPerm(R) ∪
UJoin(R))-derivation t1 →∗ t2 · · · .

First, if s1 is of the form fs11 . . . s1m, then let t1 be f{s11} . . . {s1m}. We
inductively define ti+1 as follows. If si → si+1 is a non-root rewrite step, then
ti+1 = ti. If si → si+1 is a root rewrite step using a permutation rule l → r,
then, we define ti+1|p as {si+1|p} if r|p is a constant (and hence equal to si+1|p),
and as

⋃
l|p′=r|p ti|p′ if r|p is a variable.

By construction, all ti’s are flat terms where the depth 1 constants are sets
S that contain either constants of the original signature or the initial subterms
s11, . . . , s1m, i.e., if ti|p = S, then S ⊆ {s11, . . . , s1m} ∪Σ0.

We prove by induction on i that every si|p is reachable from all terms in ti|p,
that is, si|p ∈ Reach(ti|p) for all p. This is trivially true for s1 and t1. If si+1

is obtained from si using a non-root rewrite step, then it follows that ti = ti+1

(by definition), si|p ∈ Reach(ti|p) (by induction hypothesis), and si|p → si+1|p,
which together implies that si+1|p ∈ Reach(ti+1|p). If si+1 is obtained from si

with a root rewrite step using a permutation rule l → r, then, (i) for positions p
s.t. r|p ∈ Σ0 the result directly follows since for such p we have ti+1|p is {si+1|p},
and (ii) for positions p s.t. r|p ∈ V we have ti+1|p =

⋃
l|p′=r|p ti|p′ (by definition),

each si|p′ ∈ Reach(ti|p′) (by induction hypothesis), and si+1|p coincides with all
si|p′ such that l|p′ = r|p, which together implies that si+1|p ∈ Reach(ti+1|p).

Now we show that if si → si+1 with a permutation rule l → r, then
ti →∗

UJoin(R)→UPerm(R) ti+1, where the last step is done with the UPerm(R)
rule fS1 . . .Sm → ti+1 constructed from l → r by setting Sj = {l|j} if l|j
is a constant, and Sj = ti|j is l|j is a variable. The term ti may differ from
fS1 . . .Sm at positions p such that l|p is a constant. For each such position p,
Sp coincides with {si|p}, and by the previous fact, this si|j is reachable from all
terms in ti|p, and hence, a UJoin(R) rule ti|p → Sp exists. Hence we conclude
that ti →∗

UJoin(R) fS1 . . .Sm →UPerm(R) ti+1.
Since the derivation s1 → . . . contains infinite root rewrite steps with permu-

tation rules, the derivation t1 → . . . is also infinite. By right-linearity of R and
the definition of UPerm(R) and UJoin(R), the number of occurrences of the
non-constant terms {s11, . . . , s1m} in the set-constants S cannot increase in the
infinite derivation t1 → . . .. If some non-constant s1j ’s are persisting, then the
sets in which they occur can only become larger. Choose i large enough so that
the sets containing non-constant terms do not change any more in the derivation
ti → ti+1 → · · · . We can map this infinite derivation into a new one over flat
terms, in which all sets contain only constants, by eliminating the non-constant
s1j occurrences. Before doing it, we pick a fixed constant c ∈ Σ0. Now, if S
contains some non-constant s1j and also some constants, then we just remove
such s1j from the set S. If S contains no constants, but only terms such as s1j ,
then we replace S by {c}. With these replacements, it is easily verified that the
derivation ti → ti+1 → · · · is transformed into a new infinite rewriting deriva-
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tion t′i → t′i+1 → · · · with all terms flat and all set-constants only containing
constants from Σ0. This completes the proof. ��

Example 2. Let Σ = {f, g, a, b, c}, where arity(f) = 3, arity(g) = 1, and arity
of all other symbols is 0. Consider the rewrite system:

R = {fxxy → fxyb, fxyd → fcxa, a → gb, b → d, gb → c}.

Note that a normalizes to c and b normalizes to d. Consider the following infinite
R-derivation obtained by successively normalizing the depth 1 subterms (denoted
by superscript ∗, nr) and applying the appropriate permutation rule from R
(denoted by superscript r1, r2 for the two rules respectively).

fccgb →∗,nr fccc →r1 fccb →∗,nr fccd →r1 fcdb
→∗,nr fcdd →r2 fcca →∗,nr fccc →r1 · · ·

We project this derivation in two steps. In the first step, we ignore the nr-steps
and use the derived UPerm(R) rule to perform the r-steps. Note that we need
to use the UJoin(R) rule {b}→ {d} below. We get the following derivation:

f{c}{c}{gb}→r1 f{c}{gb}{b} →r1 f{c, gb}{b}{b} →nr f{c, gb}{b}{d}
→r2 f{c}{c, gb}{a} →r1 f{c, gb}{a}{b} →r1 f{a, c, gb}{b}{b}
→nr f{a, c, gb}{b}{d}→r2 f{c}{a, c, gb}{a}→r1 f{a, c, gb}{a}{b}
→r1 f{a, c, gb}{b}{b}→nr · · ·

In the second step, we notice that the set-constants in the derivation starting
from f{a, c, gb}{b}{b} do not change, and hence, we forget the nonconstants in
the sets and get the following (UPerm(R)∪UJoin(R))-derivation starting from
f{a, c}{b}{b}.

f{a, c}{b}{b}→nr f{a, c}{b}{d}→r2 f{c}{a, c}{a}→r1 f{a, c}{a}{b}
→r1 f{a, c}{b}{b} →nr · · ·

This is the required nonterminating derivation.

4.2 Lifting Rewrite Derivations

We next prove the converse of Lemma 4 under the assumption that UJoin(R) is
terminating. First we need the notions of a position being related to and going
to other positions in a permutation rule. For example, in the rule fxxy → fxyb,
position 1 is related to position 2 in the left-hand side term and positions 1 and
2 both go to position 1 on the right-hand side term. The goes-to relation is well-
defined since rules are right-linear. We naturally generalize this to UPerm(R)-
rules below.

Definition 2. Let fS1 . . .Sm → fT1 . . .Tm be a rule in UPerm(R), and let
fs1 . . . sm → ft1 . . . tm be the rule of R from which it is constructed. (Since a
rule in UPerm(R) can be constructed from different rules in R, we are assuming
an implicit arbitrary selection).
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We say that i1, . . . , ik are positions related to i in fS1 . . .Sm → fT1 . . .Tm if
si is a variable and si1 = . . . = sik

= si. We say that position i goes to position
j in fS1 . . .Sm → fT1 . . .Tm if si is a variable and tj = si. We say that i is an
original constant position in fS1 . . .Sm → fT1 . . .Tm if si is a constant.

Lemma 5. Suppose UJoin(R) is terminating. Let s1 → s2 → · · · be an infinite
(UPerm(R) ∪ UJoin(R))-derivation, where s1 = fS1 . . .Sm and every Si ⊆ Σ0

is a set of R-joinable constants. Then, R is nonterminating.

Proof. We associate a sequence of positions i1, i2, . . . with every depth 1 position
i in s1 as follows: i1 = i and for every j ≥ 1, (a) ij+1 = ij if the rewrite rule used
in sj → sj+1 is from UJoin(R), (b) ij goes to ij+1 if the rewrite rule sj → sj+1

is in UPerm(R), and (c) ij+1 is undefined (and the sequence terminates) if the
position ij does not go to any position in the rule sj → sj+1 ∈ UPerm(R). Note
that this sequence is uniquely defined for every i since R is right-linear. Thus,
the sequence associated with i can be either finite or infinite. It is easy to prove
inductively that, if i1 . . . is the sequence associated with i = i1 in s1, then, for all
ik in this sequence, the set sk|ik

is R-joinable and Reach(s1|i1) ⊇ Reach(sk|ik
) �=

∅ (on terms over the original signature). We can similarly associate a sequence of
positions with any depth 1 position i in any term sj (by considering the infinite
derivation sj → sj+1 → · · · ).

We now define the use of a depth 1 position i in s1.

use(s1, i)= {c} if i1 . . . ik is the sequence associated with i, sk|ik
= {c},

and ik is an original constant position in sk → sk+1

=
⋃

j∈J sk|j if i1 . . . ik is the sequence associated with i, and J is the
set of all positions related to ik in the rule sk → sk+1.

=
⋃

j≥1 sj |ij if the sequence i1 . . . associated with i is infinite

From the definition of use, it is easy to see that use(s1, i) is R-joinable and
Reach(use(s1, i)) ⊆ Reach(sk|ik

) for all k. An important property of the use
function is that if i1, i2, . . . , ik, . . . is the sequence associated with position i = i1
in s1, then use(sk, ik) = use(s1, i = i1) for all such k.

We wish to map terms si over the extended signature to terms ti over the
original signature, and hence we need to find a concrete representation term for
each sk|ik

. Therefore, define Choice({c}) = c if c ∈ Σ0, and Choice(S) = t if
S �= {c} for any c ∈ Σ0 and t is any (selected) term in Reach(S).We map every
term si of the original infinite derivation into a new term

s′i = f(Choice(use(si, 1)), . . . ,Choice(use(si, m)))

over the original signature. Our intention is to show that we have an infinite
derivation s′1 →∗

R s′2 →∗
R s′3 . . ., proving then that R is nonterminating.

If a rewrite step si → si+1 is done with a rule of UJoin(R), then s′i = s′i+1

by the definition of use, and hence s′i →∗
R s′i+1 trivially. For finishing the proof

it will be enough to show that if a rewrite step si → si+1 is done with a rule of
UPerm, then s′i →+

R s′i+1 (note that there are infinitely many steps of this kind
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in the derivation s1 → s2 → . . . since by assumption UJoin(R) is terminating).
The rule used in this step is precisely si → si+1 since UPerm is ground. Let
l → r be the rule in R from which it is constructed. For every variable position
j in l, let j1, . . . , jk be the positions related to j in the rule l → r. By the
definition of use, the sets use(si, j1), . . . , use(si, jk) are identical, and hence, the
terms Choice(use(si, j1)), . . . ,Choice(use(si, jk)) are identical. Moreover, if the
variable appears in r at position p, then all j1 . . . jk go to p in the rewrite rule, and
hence Choice(use(si+1, p)) is also the same term. Therefore, rewriting s′i with
l → r produces a term, say s′, that coincides with s′i+1 in all the depth 1 positions
that are variable positions in r. For the rest of positions, s′ contains constants
that coincide with the corresponding singleton sets at the same positions in
si+1. That is, for any other position p, s′|p = c for some c ∈ Σ0. In this case,
si+1|p = {c}. But, it is the case that c →∗

R Choice(use(si+1, p)), and hence,
s′ →∗

R s′i+1, which proves that s′i →+
R s′i+1. ��

Example 3. Consider the rewrite system R and the following infinite (UPerm(R)
∪UJoin(R))-derivation from Example 2:

f{a, c}{b}{b}→nr f{a, c}{b}{d}→r2 f{c}{a, c}{a}→r1 f{a, c}{a}{b}
→r1 f{a, c}{b}{b} →nr · · ·

The sequence associated with term f{a, c}{b}{b}, call it s1, and position 1 is
the infinite sequence 1, 1, 2, 1, 1, 1, 2, 1, 1, . . .; whereas the sequence associated
with s1 and position 2 is the finite sequence 2, 2 and the sequence associated
with s1 and position 3 is the finite sequence 3, 3. Therefore, use(s1, 1) = {a, c},
use(s1, 2) = {b}, and use(s1, 3) = {d}. We can set the Choice function so that
Choice({a, c}) = c, Choice({b}) = b, and Choice({d}) = d. Lifting the terms
using the Choice(use( , )) function, we get the following infinite R-derivation:

fcbd →r2 fcca →∗,nr fccc →r1 fccb →r1 fcbb
→∗,nr fcbd →r2 · · ·

Note that we have to apply →∗,nr steps (here a →∗ c steps since we chose c
as Choice({a, c})) to go from an intermediate term (for example, fcca) to the
lifting of the next term (fccc).

4.3 Deciding Termination

The following lemma characterizes termination of a rewrite system R that con-
tains only right-constant, right-variable, or flat and right-linear rules.

Lemma 6. R is terminating iff the following three conditions are satisfied:

1. There is no insertion rule x → r ∈ R.
2. The rewrite system UPerm(R)∪UJoin(R) terminates starting from any flat

term of the form fS1 . . .Sn where every Si contains only R-joinable constants
from Σ.

3. It is not the case that c →+
R C[c] for any constant c and context C[ ].
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Proof. ⇒: Suppose R is terminating. If either of conditions (1) or (3) are violated,
then the rewrite system R is clearly nonterminating. Now suppose conditions (1)
and (3) are satisfied but condition (2) is violated and there is an infinite rewriting
derivation s1 → s2 → s3 → · · · with UPerm ∪UJoin(R) starting from a term of
the form s1 = fS1 . . .Sm, where every Si is joinable and Si ⊆ Σ. Condition (3)
implies that UJoin(R) is terminating. This fact together with Lemma 5 implies
that R is nonterminating, a contradiction.

⇐: We prove by contradiction. Suppose the three conditions are satisfied but
R is nonterminating. We compare nonterminating derivations by the size of their
initial terms. For the case of two derivations starting from constants, we compare
them by comparing the constants with the following ordering: d is smaller than
c if c →+

R C[d] for some context C[ ] (by condition (3) this is a well founded
ordering). We consider a minimal nonterminating derivation:

s = s1 → s2 → s3 → · · ·

Consider the top rewrite steps in this derivation. If any of these top steps are
collapsing, then they can be commuted with the next rewrite step and moved to
the right. Repeatedly doing this would result in an infinite derivation without top
collapsing steps and with the same initial term. We can, therefore, assume that
there are no top collapsing steps in the above derivation. Moreover, there are no
applications of rewrite rules of the form l → c at the top, since otherwise, from
that point on we obtain a smaller derivation (either by the size or the constant
ordering). This observation, along with condition (1), means that we can assume
that all top steps in the above infinite derivation have to be applications of the
permutation rules f . . . → f . . ., with the exception that the first top step can
be the application of a rule of the form c → f . . ..

There are two cases:

(a) there are finitely many top rewrite steps, or
(b) there are infinitely many top rewrite steps.

Case (a): Suppose there are no top rewrite steps applied after reaching term
si. Clearly, there is an infinite derivation starting from some subterm si|p of
si where p ∈ {1, . . . , m}. Since all root rewrites are done using left-constant or
permutation rules, it follows that the term si|p is reachable from some subterm
s1|p′ with p′ ∈ {1, . . . , m}, or it is reachable from some constant c such that
s1 →+

R C[c]. In the former case, there is an infinite derivation starting from a
strictly smaller term s1|p′ . In the latter case, there is a smaller infinite derivation
starting from c (either in the size or the constant ordering).

Case (b): In this case we assume that s1 is not a constant. Otherwise, we
consider the same derivation but starting from s2. Lemma 4 shows that there
is an infinite (UPerm(R) ∪ UJoin(R))-derivation starting from a ground term
fS1 . . .Sm, where Si ⊆ Σ0 are R-joinable. This contradicts Condition (2). ��

Example 4. The rewrite system R = {fxxx → fxc1c2, c2 → c1} is nonterminat-
ing because the rewrite system {f{c1}{c1}{c2}→ f{c1, c2}{c1}{c2} , {c1, c2}→
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{c1}}, which is contained in the union of UJoin(R) and UPerm(R), does not
terminate starting from f{c1}{c1}{c2}.

Finally, we show that the three conditions characterizing termination of R
can be decided using the decidability of R-reachability and R-joinability and the
decidability of termination of ground TRSs. This result subsumes our previous
termination decidability result [9].

Theorem 2. The termination property for TRS’s containing only shallow right-
linear rules, arbitrary collapse rules, and right-ground rules is decidable.

Proof. Using Theorem 1, any such TRS can be transformed to a TRS R that
contains only flat right-linear rules, arbitrary collapse rules, and right-constant
rules, while preserving termination. Hence, decidability reduces to checking the
three conditions of Lemma 6.

Condition (1) is trivially checkable. For the decidability of condition (3),
we consider any constant c and distinguish two cases: checking if c →+

R c and
checking if c →∗

R C[c] for some non-empty context C[ ]. For the first case, note
that, since Vars(r) ⊆ Vars(l) is satisfied, the number of different terms reachable
from c in one rewrite step is finite; and hence, we can check if c is reachable
from every one of them by the decidability of R-reachability. For the second
case, note that, since R is regularity-preserving, the set of terms reachable from
c is recognizable. We can now check condition (3) by checking emptiness of
the intersection of this set with the set of terms in which c occurs at non-root
position, which is recognizable, too.

For the decidability of condition (2), note that the rewrite systems UJoin(R)
and UPerm(R) restricted to set-constants S s.t. S ⊆ Σ0 can be constructed,
due to the fact that R-reachability and R-joinability are decidable, and that the
number of different S s.t. S ⊆ Σ0 is finite. Now, this case reduces to checking
termination of a ground TRS, which is decidable. ��

5 Conclusion

In this paper, we showed that termination is decidable for rewrite systems that
contain right-ground, collapsing, or shallow right-linear rewrite rules. The proof
is especially elegant since it is modular over the decidability results for reacha-
bility and joinability [17]. We also prove some properties about rewriting using
shallow right-linear TRSs, which are used to prove the main results of this paper.
Using these intuitions, we have shown elsewhere [10] that confluence is decidable
for shallow and right-linear rewrite systems.

It will be interesting to explore the possibility of extending the class of rewrite
systems without compromising decidability of termination. Another direction for
future work would be investigating the termination of rewriting modulo certain
axioms such as associativity and commutativity.

Acknowledgments. We thank the reviewers for their helpful comments.
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Abstract. We describe the instance store, a system for reasoning about individuals
(i.e., instances of classes) in OWL ontologies. By using a hybrid reasoner/database
architecture, our system is able to perform efficient reasoning over large volumes
of instance data, as required by many real world applications.

1 Introduction

Ontologies, with their intuitive taxonomic structure and class based semantics, are widely
used in domains like bio- and medical-informatics, where there is a tradition in establish-
ing taxonomies of terms. The recent W3C recommendation of OWL [8] as the language
of choice for web ontologies also underlines the long term vision that ontologies will
play a central role in the semantic web. Most importantly, as shown in [9], most of the
available OWL ontologies can be captured in OWL-DL—a subset of OWL for which
highly optimised Description Logic [5] reasoners can be used to support ontology design
and deployment.

Unfortunately, existing reasoners (and tools), while successful in dealing with the
(relatively small and static) class level information in ontologies, fail when presented
with the large volumes of instance level data often required by realistic applications,
hampering the use of reasoning over ontologies beyond the class level.

The system we present—the instance Store (iS)—addresses this problem using a
hybrid database/reasoner architecture: a relational database is used to persist instances,
while a class level (i.e. ‘TBox’) reasoner is used to infer ontological information about
the classes they belong to; moreover, part of this ontological information is also persisted
in the database. The iS only supports a very limited form of reasoning about individuals,
i.e., answering instance retrieval queries w.r.t. an ontology and a set of axioms asserting
class-instance relationships, and it is clear that from a theoretical point of view this
could be reduced to pure TBox reasoning. The iS is, however, able to process much
larger numbers of individuals than it is currently possible using standard Description
Logic reasoners. Moreover, this kind of reasoning turns out to be useful in a wide
range of applications, in particular those where domain models are used to structure and
investigate large data sets.

2 Architecture and Interface

There is a long tradition of coupling databases to knowledge representation systems in
order to perform reasoning, most notably the work in [10]. However, in our architecture
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initialise(database: Database, reasoner: OWLReasoner, ontology: OWLOntology)
addAssertion(instance: URI, class: OWLDescription)
retrieve(query: OWLDescription): Set〈URI〉

Fig. 1. The iS API

<<Table>>
Descriptions

 id: INT <<PK>>
 description: LONGVARCHAR
 <<INDEX>> description

<<Table>>
Assertions

 instance: VARCHAR
 descriptionId: INT
 <<PK>> (individual, descriptionId)
 <<INDEX>> individual

<<FK>> descriptionId

1

<<Table>>
Subsumers

 concept: VARCHAR
 descriptionId: INT
 <<PK>> (concept, descriptionId)
 <<INDEX>> concept

<<Table>>
Children

 concept: VARCHAR
 descriptionId: INT
 <<PK>> (concept, descriptionId)
 <<INDEX>> concept

<<Table>>
Equivalents

 concept: VARCHAR
 descriptionId: INT
 <<PK>> (concept, descriptionId)
 <<INDEX>> concept

<<Table>>
Parents

 concept: VARCHAR
 descriptionId: INT
 <<PK>> (concept, descriptionId)
 <<INDEX>> concept

<<FK>> descriptionId

1

0..*

<<FK>> descriptionId

1

0..*

<<FK>> descriptionId

1

0..*

<<FK>> descriptionId

1

0..*

1..*

Fig. 2. Database Schema for iS

we do not use the standard approach of associating a table (or view) with each class and
property. Instead, we have a fixed and relatively simple schema that is independent of
the structure of the ontology and of the instance data. The iS is, therefore, agnostic about
the provenance of data, and uses a new, dedicated database for each ontology (although
the schema is always the same).

The basic functionality and the database schema of the iS system are illustrated
in Figure 1 and Figure 2 respectively. At start-up, the initialise method is called w.r.t.
a relational database, an OWL class reasoner, and a class level (i.e., not containing
instances) OWL ontology. The method creates the schema for database if needed (ie if
the iS is new), parses ontology and loads it into the reasoner.

To populate the iS, one calls the addAssertion method repeatedly. Each assertion
states that instance (a URI) belongs to class, which is an arbitrary OWL description (not
involving other instances). Once one has populated the iS with some—possibly millions
of—instances, one can query it using the retrieve method. A query again consists of an
arbitrary OWL class description, and the result is the set of all instances belonging to
the query class.

3 Implementation

We have implemented our system in Java1. The communication with the reasoner is
implemented using the DIG interface [7]. This allows the iS system to be, again, fully

1 Source code, binaries, GUI, and test suites are publicly available from SourceForge [3].
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agnostic of the actual reasoner used; indeed, we have used FaCT [14], Racer [12], and
FaCT++ [1] in our applications, sometimes using all of them at different times for the
same iS. As for the database system, we have used MySQL, Oracle and Hypersonic,
accessed either through JDBC or through Hibernate

The key algorithms in the Java code itself are those for addAssertion and retrieve.
Our starting point is the ‘semantic indexing’ of [15], taking the atomic classes in the
ontology as indexing concepts. In order to improve performance we also cache additional
information about descriptions: for every description D used in a class-instance assertion
or query, we store D in the Descriptions table, compute (using a TBox reasoner)
the location of D in the class hierarchy, and cache all named (atomic) concepts that

– subsume D (storing them in the Subsumers table);
– are equivalent to D (storing them in the Equivalents table);
– are parents (direct subsumers) of D (storing them in the Parents table); or
– are children (direct subsumees) of D (storing them in the Children table).

Caching this information avoids the need to traverse the class hierarchy (and issue
many DB queries) when answering instance retrieval queries. With this data in place,
the speed of retrieval for a query Q depends on whether:

1. Q is referenced in Equivalents (⇒ virtually immediate answer);
2. Q subsumes the conjunction of its parents2 (⇒ fast answer);
3. there is a set I of individuals, each of which is an instance of all of the parents of Q

and not an instance of any child of Q (⇒ speed of answer depends on size of I).

Note that almost all the reasoning needed in retrieval is performed by means of (single)
SQL queries, with the exception of the last case where the reasoner is needed for as
many subsumption tests as the size of I . For more details visit the iS website [4].

Clearly, the performance gains obtained by caching classified descriptions come at
the expenses of maintenance: changes at the class level of the ontology require costly
updates to the iS. The whole system, however, is geared towards scalability and fast
retrieval times, and the applications below demonstrate that this is useful in realistic
scenarios.

4 Applications and Performance

The first application we describe illustrates the performance of the iS w.r.t. a real world
problem with more that half a million instances. The Gene Ontology (GO) consortium
publishes every month a database [2] of gene products referring to terms in a large
(tens of thousands of classes) ontology. The structural simplicity of the ontology (little
more than a taxonomy of classes) means that its transitive closure can be precomputed
and stored in the database so that, when a client searches for the gene products whose
descriptions are subsumed by a set of terms, the answer can be returned without using

2 Every concept is always subsumed by the conjunction of its parents, hence this effectively
checks whether Q is equivalent to the conjunction of its parents.
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any reasoner. Together with other functionality provided by the database, this provides
biologists with a service which is highly valued and widely used.

To test the iS, we mined (the SWISS-PROT fragment of) the Gene Ontology
database extracting 653,762 gene product descriptions which we loaded in the iS using
the addAssertion method (in 23,750 seconds using FaCT++). In our mining we exploited
the fact that gene terms form three more or less separate taxonomies of ‘processes’,
‘components’ and ‘functions’. We therefore added three corresponding new properties
(also known as roles) to the gene ontology and described gene products using them.
For instance, we asserted that 1433 CANAL is an instance of the class of gene products
that take part in intracellular signalling cascade, are part of chloroplast, and have
the function of protein domain specific binding activity. (We denote roles in bold and
classes in italics.)

This does not take into account annotations and other information present in the
GO database, but our aim was simply to test a large set of realistic and interesting data.
Extensions in the structure of the ontology (as envisaged in GONG [17]) would allow
more complex assertions to be made and more complex queries to be asked .

Our results are very encouraging. We have tested our GO iS against various queries
formulated by domain experts. Their descriptions are similar in structure to the descrip-
tion of the assertion for the above gene product 1433 CANAL, i.e. a conjunction of
processes, components and functions (each conjunct possibly empty), and the retrieval
times range between less than a second and few seconds depending on the factors dis-
cussed in Section 3. The queries cover all three cases mentioned in the previous section,
thus including run-time calls to the reasoner for subsumption checks.

More bioinformatics applications of the iS include its use to guide gene annotation [6]
and, more recently, to investigate the structure of data mined from the InterPro database
of protein families [16].

We also built another example [11] of iS within the proof-of-concept project
MONET, where mathematical web-services are envisaged to register to a broker using
the iS to perform service matching. A typical service description specifies the ‘GAMS’
classification of the service, the problem it solves, input and output formats, the directives
it accepts, the software used to implement it, and the algorithm it implements. All this
involves several classes and roles in nested conjunctions from an ontology containing
thousands of classes interconnected by means of tens of roles. The structural richness of
the ontology means that services can then be matched using, e.g., a bibliographic refer-
ence to their implemented algorithm. The MONET iS contains too few instances for its
performance to be significant, however it illustrates the expressivity of our approach.

5 Conclusions and Future Work

The architectural choices made in the implementation of iS ensure that we use appropriate
technologies for appropriate tasks. It is clear that at some point the reasoner must be
used in order to retrieve individuals, but in our approach it is only used when necessary.
Databases are well suited to handling large volumes of data and are optimised for the
performance of operations such as joins and intersections.
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The functionality of the iS is limited, but is sufficient to support several interesting
applications, and allows us to deal with volumes of instance data that cannot, to the best
of our knowledge, be handled by any other reasoner.

In the present iS, roles are allowed to appear at class level as in the GO role take
part in, but no role assertion between instances is allowed, i.e., we cannot assert that
instance x is related via role r to instance y. We are currently working on an extension of
the iS that uses the precompletion technique [13] to overcome this limitation (although
at the cost of some restrictions on the structure of the ontology).
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Abstract. We investigate the computational behaviour of ‘two-dimen-
sional’ propositional temporal logics over (N, <) (with and without the
next-time operator ) that are capable of reasoning about states with
transitive relations. Such logics are known to be undecidable (even Π1

1 -
complete) if the domains of states with those relations are assumed to be
constant. Motivated by applications in the areas of temporal description
logic and specification & verification of hybrid systems, in this paper we
analyse the computational impact of allowing the domains of states to
expand. We show that over finite expanding domains (with an arbitrary,
tree-like, quasi-order, or linear transitive relation) the logics are recur-
sively enumerable, but undecidable. If these finite domains eventually
become constant then the resulting -free logics are decidable (but not
in primitive recursive time); on the other hand, when equipped with
they are not even recursively enumerable. Finally, we show that temporal
logics over infinite expanding domains as above are undecidable even for
the language with the sole temporal operator ‘eventually.’ The proofs are
based on Kruskal’s tree theorem and reductions of reachability problems
for lossy channel systems.

1 Introduction

Temporal logics are used in computer science and artificial intelligence to model
states (of soft or hardware, data or knowledge bases, spatial regions, multi-
agent systems, etc.) changing over time. (For uniformity, we can think of such
states as first- or higher-order structures of some fixed signature.) Perhaps the
best known example is LTL, the propositional linear temporal logic of infinite
sequences σ0σ1 . . . of states, equipped with temporal operators like F ‘always
in the future’ or ‘at the next state.’ LTL is decidable in PSPACE [28], reasoning
with this logic can be mechanised using tableaux [30] or resolution [6], with the
existing provers performing reasonably well [15,27].

However, being propositional, LTL is only capable of reasoning about states of
some fixed finite size which must be known in advance. This restriction seriously
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limits the scope of applications of LTL in areas where infinite or arbitrarily finite
states are required. Typical examples of such applications are:

– verification and specification of ‘infinite state systems’ such as real-time sys-
tems, hybrid (dynamical) systems, broadcast protocols, and channel systems;

– spatio-temporal representation and reasoning in artificial intelligence (where
the states modelling space are usually either unbounded or infinite);

– temporal data or knowledge bases, e.g., ‘dynamic’ ontologies or temporal
entity relationship models (where states are finite, but one cannot impose a
priory any upper bound on their size);

– distributed multi-agent systems.

The obvious idea to cope with unbounded states by means of ‘upgrading’ propo-
sitional temporal logic to first-order one is extremely expensive: first-order LTL
is not recursively enumerable (in fact, it is Π1

1 -hard; see, e.g., [7,8]), and so we
cannot even have a semi-decision procedure.

The attempts to ‘tame’ first-order temporal logic in the fields of temporal
data and knowledge bases, multi-agent systems and spatio-temporal representa-
tion and reasoning have led to semi-decidable and decidable fragments that can
be obtained by imposing certain independence and locality restrictions.

The monodic fragment of first-order LTL allows applications of temporal op-
erators to formulas with at most one free variable [14]. Thus, in the framework of
this fragment we can only control the temporal change of properties—i.e., unary
predicates—of states, while binary, ternary, etc. relations can change arbitrarily.
The full monodic fragment turns out to be semi-decidable [32], and if we restrict
the first-order part to a decidable fragment (for example, to the two-variable or
guarded fragments), then the resulting monodic fragment is usually decidable
as well. The simplest interesting fragment of this sort is the one-variable first-
order LTL (Sistla and German [29] considered it in the context of verification).
Various spatio-temporal logics based on spatial formalisms like RCC-8, BRCC-8,
etc. can be encoded in the one-variable first-order temporal logic [8,9] and there-
fore inherit its good computational properties. Monodic fragments of this kind
are usually decidable in elementary time [8], and both tableau- and resolution-
based provers have been developed and implemented for monodic temporal logics
[19,17,16].

The idea of monodicity is based on two conditions: the ‘positive’

Mono+: temporal constraints can be imposed on unary predicates

and the ‘negative’

Dya−: no temporal constraint can be imposed on n-nary predicates for n ≥ 2.

Having in mind possible applications of temporal logic mentioned above, con-
dition Dya− appears too restrictive. In fact, in temporal knowledge bases (say,
temporal description logics), more sophisticated spatio-temporal formalisms, in
particular, dynamic topological logics (designed for reasoning about safety and
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liveness properties of hybrid systems), or infinite state systems we do need to
control binary relations, for instance, to ensure that some of them do not change
in time or can only expand.

Thus, we are facing the problem of weakening Dya− without compromising
too much the good computational behaviour of the monodic fragment.

Some limits for such a weakening are well-known. For example, one can-
not simply replace Dya− with Dya+, for n = 2, because even the monadic
two-variable fragment of first-order temporal logic with one constant binary re-
lation is not recursively enumerable. So it seems that without imposing extra
constraints on the language no weakening of Dya− can result in new and inter-
esting decidable temporal logics.

Mono+ and locality. The strongest existing decidable temporal logics that are
capable of controlling binary relations of unbounded states replace Dya− with
some locality conditions which can be characterised as follows:

(1) over time, binary relations can be constant or expanding, or can change
arbitrarily,

(2) within states, these binary relations can satisfy some local constraints like
reflexivity, symmetry, the triangle inequality (for metric), but not transitiv-
ity,

(3) the language referring to binary relations is local in the sense that we are
only allowed to quantify along these relations like in modal or description
logic.

Basically, conditions (2)–(3) mean that every satisfiable formula ϕ of our lan-
guage can be satisfied in a model where the length of any strict path of the form
x0Rx1 . . .Rxn is bounded by an elementary function depending on ϕ.

The resulting formalisms can be regarded as extensions of propositional LTL
with propositional modal-like (or description logic) operators over states. Typical
examples are temporal description logics [25,31] (where the states are described
by the standard ALC and its extensions), temporal epistemic logics [12,8] (with
state languages like S5m), and a number of temporal metric logics [18]. The
satisfiability problem for such logics is often non-elementary (but primitive re-
cursive).

It is worth noting that by adding to the language a non-local state operator
(such as the universal modality) we immediately obtain an undecidable logic.

Transitive states. The most important example of a non-local constraint on
binary relations is transitivity which occurs naturally in almost all the examples
mentioned above: words in the channel of a channel system are linearly ordered
(and therefore based on a transitive structure), expressive description logics allow
transitive relations to model, e.g., the part-of relation, quasi-ordered structures
representing topological spaces are transitive, common knowledge operators in
epistemic logics are interpreted by transitive relations.

Unfortunately, even a single transitive relation which does not change over
time (and interprets the ‘modal’ operator from (3) in the standard way) leads
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to an undecidable (even Π1
1 -complete) temporal logic [8,11]. This also holds

true if we impose on the transitive relation some extra conditions like linearity,
reflexivity, being a tree, etc. Undecidability strikes even for the language with
sole temporal operator F (without next-time or until) and even if we are only
interested in safety properties (that is, interpret the language not over N but
over arbitrary finite initial segments of N).

The proofs of these ‘negative’ results heavily use the constant domain as-
sumption according to which the domains of all states coincide—and, therefore,
if uRv holds in some state (where R is the transitive relation and u, v are some
state elements) then uRv must hold in all states. Being quite natural in many
cases, this constant domain assumption may become inadequate for some other
applications. For example, in temporal data and knowledge bases new objects
may be created, which gives us states with expanding domains : that uRv holds in
some state σ only means that it also holds in all subsequent states, while before
σ elements u and v may not exist. Similarly, topological dynamic systems with
continuous functions give rise to states with expanding domains [21,18]. And
constructive logics like first-order intuitionistic logic can only be interpreted in
models with expanding domains.

It is known that logics with expanding domains are reducible to logics with
constant domains; see, e.g., [8]. A major open problem was whether the former
can actually have better computational properties than the latter. A partial
affirmative answer (for logics with finite flows of time) was obtained in [10].
Here we investigate this problem in full generality.

We show that over finite expanding domains (with an arbitrary, tree-like,
quasi-order, or linear transitive relation) the logics are recursively enumerable,
but undecidable. If these finite domains eventually become constant then the
resulting -free logics are decidable (but not in primitive recursive time); on
the other hand, when equipped with they are not even recursively enumer-
able. (Decidability can also be recovered for full LTL if we consider only safety
properties, that is, models with finite flows of time [10].) Finally, we show that
temporal logics over infinite expanding domains as above are undecidable even
for the language with the sole temporal operator ‘eventually.’ The proofs are
based on Kruskal’s tree theorem and reductions of reachability problems for
lossy channel systems.

2 Temporal Models with Expanding Domains

We begin by introducing the intended semantics for our temporal language dis-
cussed above. The only flow of time we deal with in this paper is (N, <). States
are first-order structures with one transitive binary relation and countably many
unary predicates. More precisely, let S be a function which associates with every
x ∈ N a structure

S(x) = (Wx, Rx, P 1
x , P 2

x , . . . ) (1)
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where Wx is a nonempty set, Rx ⊆ Wx ×Wx, and P i
x ⊆ Wx for all i. We will

call S a temporal model with expanding domains, or an e-model, for short, if it
satisfies the following conditions: whenever x < y then

– Wx ⊆Wy and
– for all u, v ∈Wx, we have uRxv iff uRyv.

(see Fig. 1).

� � �� �

� � �

� �� �

� �

�

�
���

�
���

�
���

�
���

������ 	

	� �

. . .

�
�

�
�

�

�

�

	

�

�

�

	
S(0)

S(1) S(2)

0 1 2

Fig. 1. An e-model S

We consider two propositional languages T L and T L for speaking about
e-models. The former contains the temporal operator F (and its dual F ), the
modal diamond (and its dual box ) interpreted over the binary relations
in the states, as well as state variables (unary predicates) p1, p2, . . . and the
Booleans. T L extends this language with the next-time operator . Thus, the
formulas ϕ of T L can be defined by taking

ϕ ::= pi | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ | F ϕ | ϕ

To simplify inductive proofs, we do not include in the language T L the ‘until’
operator U . As there is a satisfiability preserving reduction of formulas with U
to T L -formulas (see, e.g., [5] or Section 7 below), all our results for T L hold
for the language with U as well.

Given an e-model S of the form (1), x ∈ N and u ∈ Wx, we define the
truth relation S, (x, u) |= ϕ (or simply (x, u) |= ϕ, if understood) inductively as
follows:

– (x, u) |= pi iff u ∈ P i
x,

– (x, u) |= ψ iff there exists v ∈Wx such that uRxv and (x, v) |= ψ,
– (x, u) |= F ψ iff there exists y ∈ N such that x < y and (y, u) |= ψ,
– (x, u) |= ψ iff (x + 1, u) |= ψ,

plus the standard clauses for the Boolean connectives.
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We say that ϕ is satisfied in S if (x, u) |= ϕ for some x ∈ N and u ∈ Wx;
ϕ is valid in S (S |= ϕ, in symbols) if (x, u) |= ϕ holds for every pair (x, u)
with u ∈ Wx. If all formulas from a set Σ ⊆ L are valid in S then we write
S |= Σ.

In this paper, we consider the following classes of e-models S of the form (1):

– A, the class of all e-models,
– QO, the class of e-models with quasi-ordered states, that is, each Rx is

transitive and reflexive,
– T , the class of e-models S where each (Wx, Rx) is a tree,
– L, the class of e-models S where each (Wx, Rx) is a strict linear order.
– the subclasses Afin, QOfin, Tfin, Lfin of the classes above that only have finite

states,
– the subclasses Cc of the above classes C containing only models with even-

tually constant domains in the sense that there exists n ∈ N such that
(Wx, Rx) = (Wn, Rn) for all x ≥ n.

Let C be one of the classes of e-models defined above. Our goal is to investigate
the computational properties of the logics

LogC = {ϕ ∈ T L | ∀S ∈ C S |= ϕ}

and
Log C = {ϕ ∈ T L | ∀S ∈ C S |= ϕ}.

Our starting point is the results from [11,8] according to which the corre-
sponding logics under the constant domain assumption are not recursively enu-
merable, with some of them being actually Π1

1 -complete. By allowing models
with expanding domains, we hope to obtain more positive results.

Our hopes are not groundless. We will use Kruskal’s tree theorem to prove
the following:

Theorem 1. Let C ∈ {Afin,QOfin, Tfin,Lfin}. Then Log C (and therefore LogC)
is recursively enumerable.

It remains an open problem whether the same can be proved for the corre-
sponding classes of models with not necessarily finite states. However, none of
these logics is decidable:

Theorem 2. Let C ∈ {A,QO, T ,L,Afin,QOfin, Tfin,Lfin}. Then LogC (and
therefore Log C) is undecidable.

This result is proved by encoding the undecidable ω-reachability problem for
lossy channel systems (see below for definitions).

Consider now the impact of the assumption that eventually the states are
constant. In this case we reveal a crucial difference between full LTL and LTL
with sole temporal operator F :
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Theorem 3. Let C ∈ {Ac
fin,QO

c
fin, T c

fin,Lc
fin}. Then

(i) LogC is decidable (but not in primitive recursive time), while
(ii) Log C is not recursively enumerable.

The proofs are based on Kruskal’s tree theorem, a reduction of the non-
primitive recursive reachability problem for lossy channel systems, and a reduc-
tion of the undecidable Post correspondence problem (PCP).

Below we only present the proofs of these theorems for the class Lfin of finite
strict linear orders. It is not completely trivial to extend these proofs to arbitrary
transitive structures or quasi-orders. For instance, to deal with branching and/or
reflexive states, constructions from [10] should be combined with the techniques
introduced in the present paper. Also, the applications of Higman’s lemma [13]
we use here have to be replaced by the corresponding applications of Kruskal’s
tree theorem [22]. To prove Theorem 3 (ii) in full generality, the undecidable
‘master problem’ used in this paper (reachability for non-lossy channel systems)
should be replaced by PCP as in [8,18].

3 Recursive Enumerability

In this section we prove the following:

Theorem 4. Log Lfin is recursively enumerable.

Given a T L -formula ϕ, let subϕ be the set of all subformulas of ϕ and their
negations. Denote by Tϕ the set of Boolean types t over subϕ, where

– ¬ψ ∈ t iff ψ /∈ t, for every ¬ψ ∈ subϕ, and
– χ ∧ ψ ∈ t iff χ ∈ t and ψ ∈ t, for every χ ∧ ψ ∈ subϕ.

A Tϕ-word T = 〈T, <, l〉 is a finite strict linear order 〈T, <〉 with a labelling
function l which assigns to every u ∈ T a type l(u) ∈ Tϕ. A Tϕ-word T = 〈T, <, l〉
is said to be coherent if, for every ψ ∈ subϕ and every u ∈ T , we have

ψ ∈ l(u) iff there exists a v ∈ T such that u < v and ψ ∈ l(v).
Consider a function f associating with every natural number x a coherent

Tϕ-word f(x) = 〈Tx, <x, lx〉. A run r through f is a function with the domain

dom r = {k ∈ N | k ≥ m},

for some m ∈ N, such that r(x) ∈ Tx for all x ∈ dom r and

– for every x ∈ dom r and every F ψ ∈ subϕ, we have F ψ ∈ r(x) iff there
exists y > x such that ψ ∈ r(y);

– for all x ∈ dom r and all ψ ∈ subϕ, we have ψ ∈ r(x) iff ψ ∈ r(x + 1).

If n is the minimal number of dom r then we say that r starts at n.
For a set R of runs through f, we say that the pair (f, R) is a quasimodel for

ϕ if the following conditions are satisfied:
(q0) ϕ ∈ l0(w) for the minimal w in T0,
(q1) for all x ∈ N and w ∈ Tx, there is a unique run r ∈ R such that r(x) = w.
(q2) for all r, r′ ∈ R and all x, y ∈ dom r∩dom r′, r(x) <x r′(x) iff r(y) <y r′(y).
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Lemma 1. A T L -formula ϕ is satisfiable in an e-model from Lfin iff there
exists a quasimodel for ϕ.

Proof. We only show the implication (⇐) and leave the (basically trivial) other
direction to the reader.

Given a quasimodel (f, R) for ϕ, define

S(x) = (Wx, Rx, P 1
x , P 2

x , . . . )

by taking, for x ∈ N,

– Wx = {r ∈ R | x ∈ dom r},
– rRxr′ iff r(x) <x r′(x), whenever x ∈ dom r ∩ dom r′,
– P i

x = {r ∈ R | x ∈ dom r, pi ∈ lx(r(x))}.

Clearly, S is an e-model from Lfin. By a straightforward induction on the con-
struction of ψ ∈ subϕ one can show that (x, r) |= ψ iff ψ ∈ r(x). The claim of
the lemma follows now from (q0).

Of course, the unsurprising Lemma 1 simply reformulates the notion of satis-
fiability in Lfin into the language of quasimodels. However, this language will be
convenient for showing that actually we can effectively enumerate those formulas
that do not have quasimodels.

Suppose we are given a quasimodel (f, R) for ϕ as above. Formulas of the form
F ψ that occur in some lx(w), x ∈ N, will be called eventualities in f(x). We say

that an eventuality F ψ ∈ lx(w) is realised at y > x if y is the minimal number
such that ψ ∈ ly(r(y)), where r is that unique run in R for which r(x) = w. An
eventuality is realised until z (or in the interval (n, m)) if it is realised at some
y < z (at some y ∈ (n, m), respectively).

We say that f(y) = 〈Ty, <y, ly〉 is embeddable into f(z) = 〈Tz, <z, lz〉, where
y < z, if there exists an injective map g : Ty → Tz such that, for all u, v ∈ Ty,

– u <y v iff g(u) <z g(v),
– lz(g(u)) = ly(u).

If x < y < z and f(y) is embeddable into f(z) by a map g respecting the runs
through f(x) in the sense that g(r(y)) = r(z) whenever x ∈ dom r then we say
that f(y) is x-embeddable into f(z)

Let �(ϕ) be the length of ϕ, say, �(ϕ) = |subϕ| and let s(n, ϕ) = (�(ϕ)+1)n+1.

Lemma 2. A T L -formula ϕ is satisfiable in an e-model from Lfin iff there is
a quasimodel (f, R) for ϕ such that

(A) |Tn| ≤ s(n, ϕ), where f(n) = 〈Tn, <n, ln〉, n ∈ N, and
(B) for the sequence 0 = k0 < k1 < k2 < . . . of minimal numbers such that all

eventualities in f(ki) are realised until ki+1, if ki < n < m < ki+1 and f(n)
is ki-embeddable into f(m), then some eventuality from f(ki) is realised in
the interval (n, m).
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Proof. Suppose that a quasimodel (h, Q) for ϕ is given, with h(n) = 〈Tn, <n, ln〉,
n ∈ N. Define two operations shrink and delete on (h, Q).

Shrink makes Tn of size ≤ s(n, ϕ) provided that |Tn−1| ≤ s(n−1, ϕ) or n = 0.
If n = 0, then set T = {w}, where w is minimal in 〈T0, <0〉. If n > 0, then let
T ⊆ Tn be the set of points w ∈ Tn such that there exists a run r ∈ Q with
r(n) = w and n− 1 ∈ dom r.

Define T ′
n ⊆ Tn by adding to T the set of all <n-maximal points u ∈ Tn such

that there is some w ∈ T , w <n u, with ψ ∈ ln(w) and ψ ∈ l(u). It should be
clear that the size of T ′

n is as required. Denote by <′
n and l′n the restrictions of

<n and ln to T ′
n, respectively. Clearly, 〈T ′

n, <′
n, l′n〉 is coherent. Now define h′ by

taking, for m ∈ N,

h′(m) =
{

h(m) if m �= n,
〈T ′

n, <′
n, l′n〉 if m = n.

Finally, define a set Q′ of runs as follows: we put r to Q′ if r ∈ R and n /∈ dom r,
or if n ∈ dom r and r(n) ∈ T ′

n; and if n ∈ dom r but r(n) /∈ T ′
n then we put to Q′

the restriction of r to {n + 1, . . . }. It is easy to see that (h′, Q′) is a quasimodel
for ϕ.

Delete removes a part of the quasimodel between h(n) and h(m), n < m, if
the former is embeddable in the latter. More precisely, let x < n < m and h(n) is
x-embeddable in h(m) by some injection g. Construct a new quasimodel (h′, Q′)
as follows. First we set

h′(k) =
{

h(k) if k < n,
h(k + m− n) if k ≥ n

(that is we ‘cut off’ the words h(n), . . . , h(m− 1) from the original quasimodel).
And then we construct Q′ by putting into it runs r′ defined by taking

– if r ∈ R starts at k ∈ [n, m] then r′ starts at n and r′(n + y) = r(m + y),
y ≥ 0;

– if r ∈ R starts at k > m then r′ starts at n + k−m and r′(n + k−m + y) =
r(k + y), y ≥ 0;

– if r ∈ R starts at k < n then there is r1 ∈ R such that g(r(n)) = r1(m), and
we set

r′(k) =
{

r(k) if k < n,
r1(k + m− n) if k ≥ n.

It is not hard to check that (h′, Q′) is still a quasimodel for ϕ.
Using these two operations we can transform any given quasimodel (h, Q) for

ϕ into a quasimodel (f, R) for ϕ satisfying the conditions of the lemma. We begin
by shrinking h(0) and finding the minimal k1 such that all eventualities in the
resulting h(0) are realised until k1. Then we shrink the h(i), for 0 < i ≤ k1, and
delete a part of the quasimodel (if such a part exists) between h(n) and h(m),
0 < n < m < k1, such that h(m) is 0-embeddable into h(n) and no eventuality
from h(0) is realised in the interval (n, m). Note that, due to 0-embeddability of



Temporal Logics over Transitive States 191

h(n) into h(m), in the resulting quasimodel every eventuality from h(0) is realised
until some k′

1 ≤ k1. Then, we repeat the procedure. After finitely many iterations
we end up with a quasimodel for ϕ with the first segment [0, k1] satisfying the
conditions of the lemma. We then proceed with considering the word k1, etc.

Now, to conclude the proof of Theorem 4, it is enough to show that there is
an algorithm which, when applied to a T L -formula ϕ, eventually stops iff ϕ is
not satisfiable. The existence of such an algorithm can be proved using Lemma 2,
Higman’s lemma [13] and König’s lemma.

The algorithm explores all possible ways of constructing a quasimodel for a
given ϕ satisfying the conditions of Lemma 2. By condition (A), the choice of
Tϕ-words for the nth position in such a quasimodel is bounded by some recursive
function s′(n, ϕ). We claim that all possible ways of constructing a first segment
[0, k1] satisfying the conditions of Lemma 2 must come to an end (exhaust all
possible choices) after some step N1. Indeed, suppose otherwise, i.e., for every
n ∈ N, we can have a sequence of Tϕ-words f(0), . . . , f(n) satisfying (A), (B)
and such that not all eventualities in f(0) are realised until n. Then, by (A) and
König’s lemma, there exists an infinite sequence such that condition (A) holds,
at least one of the eventualities from f(0) is not satisfied, and if n < m and
f(n) is 0-embeddable into f(m) then some eventuality from f(0) is realised in
the interval (n, m). Let m be the smallest number such that all eventualities in
f(0) realised in this sequence are actually realised until m (such a number exists
because there are only finitely many such eventualities). But then, by Higman’s
lemma, we must have some i, j, for m < i < j, such that f(i) is 0-embeddable in
f(j), contrary to condition (B).

If we fail to construct at least one first segment satisfying Lemma 2, then ϕ
is not satisfiable. Otherwise we try to extend successful first segments to realise
the eventualities of their last word, again complying with conditions (A) and
(B), and so forth. Clearly, ϕ is not satisfiable iff this algorithm eventually stops.

4 Decidability

We now show that if we consider satisfiability in models with eventually constant
finite domains then we can obtain a decidable logic, provided that its language
does not contain the next-time operator.

Theorem 5. LogLc
fin is decidable, but not in primitive recursive time.

The crucial difference between LogLc
fin and LogLfinis revealed by the following:

Lemma 3. A T L-formula ϕ is satisfiable in an e-model from Lc
fin iff there is a

quasimodel (f, R) for ϕ such that, for some N ∈ N,

(a) |Tn| ≤ s(n, ϕ), where f(n) = 〈Tn, <n, ln〉 and n < N ,
(b) there are no n < m < N such that f(n) is embeddable into f(m),
(c) for all n ≥ N , |Tn| = |TN | and there are some N = n1 < · · · < nk such that

the set Ai = {m ≥ N | f(ni) = f(m)} is infinite for each ni, and every f(n),
for n ≥ N , belongs to some Ai.
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Proof. Since e-models in Lc
fin have finite states with eventually constant domains,

we may assume that ϕ is satisfied in a quasimodel (h, Q) satisfying condition
(c) for some N ∈ N. By applying operations shrink and delete from the proof of
Lemma 2 (with plain ‘embeddable’ instead of ‘x-embeddable’) to the Tϕ-words
from the segment h(0), . . . , h(N − 1) as many times as possible (the number N
will become smaller after each application of delete), we will eventually construct
a quasimodel as required.

Now, using the same argument as in the previous section (involving Higman’s
and König’s lemmas), we can effectively construct finitely many initial segments
f(0), . . . , f(n), satisfying (a) and (b) above, of possible quasimodels for ϕ. For
each such segment, take the final state f(n) = (Tn, <n, ln) and suppose that
w0 <n · · · <n wm are all elements of Tn. Consider the formula

χf = l̄n(w0) ∧
(
l̄n(w1) ∧

(
l̄n(w2) ∧ (· · · l̄n(wm) · · · )

))
,

where l̄n(w) =
∧
{ψ | ψ ∈ ln(w)}. It should be clear that ϕ is satisfiable iff, for at

least one of the constructed segments f(0), . . . , f(n), the formula χf is satisfiable in
a quasimodel f(n+1), f(n+2), . . . (with some set R of runs) satisfying condition
(c) of Lemma 3.

Observe now that the temporal operators F and F in such quasimodels
behave like S5 modalities: for all m > n and all w ∈ Tm, we have F ψ ∈ lm(w)
iff there is k > n such that ψ ∈ lk(r(k)), where r(m) = w. Thus, we can complete
the decidability part of the proof of Theorem 5 if we can prove the following.

Let C be the class of bimodal models of the form
(
W, R, (Vx | x ∈ V )

)
, where

V �= ∅, (W, R) is a finite strict linear order, and Vx, for x ∈ V , is a valuation
in W (i.e., a map from the set of propositional variables into the set of subsets
of W ). In other words, we have |V | (not necessarily distinct) models based on
(W, R). Define the truth relation (x, u) |= ϕ for T L-formulas in such a model by
taking for x ∈ V and u ∈ W :

– (x, u) |= pi iff u ∈ Vx(pi),
– (x, u) |= F ψ iff there exists y ∈ V such that (y, u) |= ψ,
– (x, u) |= ψ iff there exists v ∈W such that uRv and (x, v) |= ψ,

plus the standard clauses for the Booleans. (In fact, we have defined bimodal
models based on product frames of the form (V, V × V ) × (W, R); see [8] for
details.)

Proposition 1. The satisfiability problem for T L-formulas in models from C
is decidable. (Moreover, if a formula is satisfiable, then it satisfiable in a finite
model from C).

This proposition can be proved using the quasimodel technique from [8]. The
second half of Theorem 5 can be proved in the same way as in [10] using a
reduction of the non-primitive recursive reachability problem for lossy channel
systems from [26].
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In the next section we will show that the addition of the ‘next-time’ operator
results in a logic for Lc

fin that is not even recursively enumerable. Notice that
the decidability proof given above breaks down for when we observe that ‘on
the tail’ the temporal operators behave like S5 modalities: this is not the case
for . Lemma 3, however, still holds for the language with .

5 Undecidable Problems for Channel Systems

Our proofs of undecidability and non-recursive enumerability (Theorems 2 and
3) proceed by reduction of suitable reachability problems for channel systems.
We briefly discuss the required problems in this section; for further information
on channel systems the reader is referred to [2,4,26].

A single channel system is a triple S = 〈Q, Σ, Δ〉, where Q = {q1, . . . , qn} is
a finite set of control states, Σ = {a, b, . . .} is a finite alphabet of messages, and
Δ ⊆ Q× {?, !} ×Σ ×Q is a finite set of transitions.

A configuration of S is a pair γ = 〈q, w〉, where q ∈ Q and w ∈ Σ∗. Say
that a configuration γ′ = 〈q′, w′〉 is the result of a perfect transition of S from
γ = 〈q, w〉 and write γ →p γ′ if

– there is (q, !, u, q′) ∈ Δ such that w′ = uw, or
– there is (q, ?, u, q′) ∈ Δ such that w = w′u.

The reachability problem for channel systems is formulated as follows: given a
channel system S and two states q0 and qf , decide whether there is a computation
starting from 〈q0, ε〉 and reaching qf , where ε is the empty word. This reachability
problem is obviously recursively enumerable. However, similarly to the halting
problem for Turing machines we have the following result that was proved in [2]:

Theorem 6. The reachability problem for channel systems is undecidable.

We say that γ′ is a result of a lossy transition from γ and write γ →� γ′ if

γ , γ1 →p γ2 , γ′

for some γ1 and γ2, where 〈q, w〉 , 〈q′, w′〉 iff w′ is a subword of w and q = q′.
The ω-reachability problem for (lossy) channel systems is formulated as fol-

lows: given a channel system S and two states q0 and qf , decide whether for every
n ∈ N there exists a lossy computation of S starting with 〈q0, ε〉 and reaching
qf at least n times. The proof of the next theorem was kindly suggested by
Ph. Schnoebelen.

Lemma 4. The ω-reachability problem for lossy channel systems is undecidable.

Proof. We prove this lemma by reduction of the undecidable boundedness prob-
lem [24]: given a channel system S, determine whether the set of configurations
of S that are reachable from 〈q0, ε〉 is finite.

Given a channel system S, we construct a system S′ in such a way that S
is bounded, that is, has only finitely many configurations reachable from 〈q0, ε〉,
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iff S′ has the ω-reachability property. The set of states of S′ extends that of S
with one new additional state qrec, and the set of transitions of S′ is that of S
plus non-deterministic transitions from every state of S into qrec. Being in qrec,
the system reads one symbol from the channel and stays in qrec. It should be
clear now that there exists a (lossy) computation of S′ starting with 〈q0, ε〉 and
reaching qrec arbitrary many times iff S is unbounded.

6 Non-recursive Enumerability

Here we show that the addition of the next-time operator to T L immediately
destroys the decidability result of Theorem 5 for LogLc

fin.

Theorem 7. Log Lc
fin is not recursively enumerable.

Proof. Given a channel system S, control states q0 and qf , we construct a T L -
formula ϕS,q0,qf

which is satisfiable in a model from Lc
fin iff a computation started

from 〈q0, ε〉 reaches qf . Since the reachability problem for channel systems is
undecidable, but recursively enumerable, this will show that the set Log Lc

fin

cannot be recursively enumerable.
With a slight abuse of notation, we use the propositional variables

– δ, for every instruction δ ∈ Δ,
– a, for every a ∈ Σ,
– q, for every q ∈ Q,
– m, a marker,
– end, a marker for ‘end of word’ or ‘empty word.’

Let w stand for
∨

a∈Σ a, and let +
F ψ = ψ ∧ F ψ, +ψ = ψ ∧ ψ, and

+
F ψ = ψ ∨ F ψ, +ψ = ψ ∨ ψ.
Intuitively, our encoding of the reachability problem works as follows. First

we ‘mark’ infinitely many states by making marker m true everywhere in these
states (and false in all others).

q0q0q0 qfqfqf

initial
segment

. . .

mm m m

Fig. 2. Encoding of the perfect channel reachability problem

This can be achieved by using the formulas:

+
F

+
F m (2)

+
F

(
(m → m) ∧ (¬m → ¬m)

)
(3)
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endend
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computation
step

Fig. 3. Encoding one transition of a channel system. a) δ = (q, ?, u, q′): symbol u is read
from the end of the channel; b) δ = (q, !, u, q′): symbol u is written at the beginning of
the channel

Between any two markers, we simulate from right to left (that is, from future to
past) a computation of the channel system S starting with 〈q0, ε〉 and reaching
control state qf ; see Fig. 2. At every moment x we write the contents of the
channel on the linear order (Wx, <x) as a word without ‘gaps.’ We mark its end
with end, and if the word is empty then end will hold somewhere:

+
F

(
+end ∧ +(end → ¬end)

)
(4)

+
F

+
(
(w ∧ ¬w) → end

)
(5)

+
F

+¬
(
w ∧ (¬w ∧ w)

)
(6)

At every marked state, the system is in control state q0 and the channel is empty.
Moreover, this initial configuration is not obtained from any previous state by
any instruction δ:

+
F

+
(
m → (q0 ∧ ¬w ∧

∧
δ∈Δ

¬δ)
)

(7)

At every non-marked state the system is in a certain control state q which results
from the previous state by means of an application of some instruction δ:

+
F

+
( ∨

q∈Q

q ∧
∧

q �=q′
(q → ¬q′) ∧

∧
q∈Q

(q → q)
)

(8)

+
F

+
(
¬m →

( ∨
δ∈Δ

δ ∧
∧

δ �=δ′
(δ → ¬δ′) ∧

∧
δ∈Δ

(δ → δ)
))

(9)
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The following formula ensures that words are encoded properly and that the
contents of channels does not change arbitrarily:

+
F

+
( ∧

a∈Σ

(
a → (w → a)

)
∧
∧

a�=a′
(a → ¬a′)

)
(10)

Finally, we encode the effect of instructions δ; see Fig. 3. For every instruction
δ = (q, !, u, q′), take

+
F (δ → q) (11)

+
F

(
δ → q′ ∧ +(u ∧ ¬ w) ∧ +

(
w → (w ↔ w)

))
(12)

This formula says that we add u to the beginning of the word encoded at the next
moment of time and that nothing else changes. Similarly, for every instruction
δ = (q, ?, u, q′), take

+
F

(
δ →

(
q ∧ (u ∧ end)

))
(13)

+
F

(
δ →

(
q′ ∧ +(end ∧ ( end ∧ ¬end)) ∧

+(w → w) ∧ +( (w ∧ ¬end) → w)
))

(14)

This formula says that we delete u from the end of the word encoded at the next
moment of time and that nothing else changes. To make sure that the final state
of the computations is qf , we need one more formula

+
F (m → qf ) (15)

Note that (15) together with (7) and (8) also ensure that there cannot be two
marked adjacent states.

Let ϕS,q0,qf
be the conjunction of formulas (2)–(15). It is not difficult to

show that if there exists a computation of S starting from 〈q0, ε〉 and reaching
qf , then ϕS,q0,qf

is satisfied in a model with constant domains such that between
any two markers the computation of S is simulated. Conversely, suppose that
ϕS,q0,qf

is satisfied in a model from Lc
fin. Take two successive marked states n1

and n2 such that Wn1 = Wn2 (i.e., the domain does not change between n1 and
n2). Then a computation of S starting with q0 and reaching qf is simulated be-
tween n2 and n1.

This completes the proof of Theorem 7.

7 Undecidability

The encoding of perfect channel systems in the previous section was only possible
because we were considering models with eventually constant domains. In models
with expanding domains we can only simulate lossy computations of channel sys-
tems. Actually, a very simple modification of the formula ϕS,q0,qf

above is enough
to prove that Log Lfin is undecidable. We begin by showing how to do this, and
after that explain how to remove in order to prove undecidability of LogLfin.
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Proposition 2. For any channel system S and states q0 and qf , one can con-
struct a T L -formula ϕS,q0,qf

which is satisfiable in a model from Lfin iff, for
every n ∈ N, there exists a lossy computation of S starting with 〈q0, ε〉 and
reaching qf at least n times.

Proof. As above we use markers m that are true in infinitely many states and
simulate a lossy computation between any two marked states. However, instead
of forcing these computations to reach qf , now we ensure that, for every n, there
exist two marked states such that a computation between them reaches qf at
least n times. This will be enforced by the formula ψω-rec which replaces the
conjunct (15) in ϕS,q0,qf

. The formula ψω-rec is defined as the conjunction of
(16)–(19) below.

First we introduce an auxiliary variable s that cannot be true on two different
elements of Wx

+
F

+(s → ¬s), (16)

and if s is true on some u ∈Wx, then qf is also true there

+
F

+(s → qf ) (17)

The variable s is used for ‘counting.’ Whenever marker m is true, we can guar-
antee that at the next moment of time there exists a new domain point where s
is true:

+
F

+
(
m → ( ⊥→ s)

)
(18)

(Here we use the fact that the domains can expand.) The next formula together
with (18) ensure that if s is true n times in some interval between two markers,
then in the next interval it must be true at least n + 1 times:

+
F

+
(
s → F (m → ¬mUs)

)
(19)

Using the standard technique (see, e.g., [5]) formula (19), containing the ‘until’
operator U , can be replaced with the following T L -formula which is satisfiable
iff (19) is satisfiable:

+
F

+
(
s → F (m → p ∧ F s)

)
∧ +

F
+
(
(p → ¬m ∨ s) ∧

(
p → (p ∨ s))

)
where p is a fresh variable.

We are now in a position to prove the following:

Theorem 8. LogLfin is undecidable.

Proof. Given a channel system S and states q0, qf , we construct, by modifying
the formula ϕS,q0,qf

above, a T L-formula ψS,q0,qf
which is satisfiable in a model

from Lfin iff, for every n ∈ N, there exists a lossy computation of S starting with
〈q0, ε〉 and reaching qf at least n times.

Although the language T L does not contain the next-time operator, we can
simulate ‘locally’ some of its properties. Let vi be a fresh propositional variable.
Then we have (x, u) |= F vi ∧ F F¬vi iff
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– (x + 1, u) |= vi,
– (y, u) �|= vi for all y > x + 1.

Thus, at point (x, u) we can refer to the next point (x+1, u) along the time axis.
However, this can be done only once for given u and vi. We denote the resulting
‘one-off’ next-time operator by i and use it as an extra temporal operator
of our language T L bearing in mind that every occurrence of iϕ should be
replaced with F vi ∧ F F¬vi, and that +

F
+(vi → ϕ) should be added as

a conjunct to the whole formula.

q0q0 qf qfqfqf qf qf

initial
segment

mm m
m

. . .

Fig. 4. Encoding of the lossy channel ω-reachability problem

The T L-encoding of the ω-reachability problem for lossy channels is done in
almost the same way as in the proofs of Theorem 7 and Proposition 2. In every
next interval between two occurrences of the marker m, we model a computation
of the channel system S visiting the state qf at least one time more than in the
previous interval, and the contents of the channel is written on the linear order
as a word without gaps. Note, however, that if some point u ∈ Wx is used for
writing a word at time point x, it will never be used again for encoding words in
other intervals—simply because our ‘surrogate’ next-time operators cannot be
reused. Fortunately, this is not a real problem: by expanding the domain we can
always find the required ‘fresh’ points; see Fig. 4.

The modification ψS,q0,qf
of ϕS,q0,qf

we need keeps conjuncts (2)–(9) intact.
We add the conjunct

+
F

+¬
(
w ∧ F (¬w ∧ F w)

)
(20)

saying that for any given domain point the set of time points with a symbol
from Σ written on it is a (possibly empty) interval. In particular, symbols from
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Σ cannot be written on the same domain points in different intervals between
markers. Further, replace (10)–(13) with the following formulas (21)–(25):

+
F

+
( ∧

a∈Σ

(
a → F (w → a)

)
∧
∧

a�=a′
(a → ¬a′)

)
(21)

For every instruction δ = (q, !, u, q′),

+
F (δ → +

1q) (22)
+
F

(
δ → q′ ∧ +(u ∧ F¬w) ∧ +

(
w → (w ↔ F w)

))
(23)

and for every instruction δ = (q, ?, u, q′),

+
F

(
δ → +

2

(
q ∧ (u ∧ end)

))
(24)

+
F

(
δ → q′ ∧ +(end ∧ F end) ∧ +(w → F w)

)
(25)

Note that formulas (22) and (24) may force introduction of new domain points.
We also have to replace formulas (16)–(19) with some other formulas express-

ing the same property of m and qf : the number of occurrences of qf between
adjacent markers m is growing in time. In formulas (26)–(27) below, p ∧ F¬p
plays the same role as the variable s in (16)–(17):

+
F

+
(
(p ∧ F¬p) → ¬(p ∧ F¬p)

)
(26)

+
F

+
(
(p ∧ F¬p) → qf

)
(27)

The following formulas (28)–(32) guarantee that for every N ∈ N, there are
adjacent marked t1 < t2 such that the number of time points t ∈ (t1, t2) for
which (t, u) |= p ∧ F¬p, for some u ∈Wt, is ≥ N :

+
F

+
(
m ∧ p → F (m → ¬p)

)
(28)

+
F

+(¬p → F¬p) (29)
+
F

+
(
p ∧ F¬p → +( ⊥→ 3 p)

)
(30)

+
F

+
(
m → +( ⊥→ 4 p)

)
(31)

+
F

+(p ∧ F¬p → ¬m) (32)

This claim is proved by induction on N . We only show the basis of induction
N = 1 and indicate how to extend it to the inductive step.

Let t0 be the first marked time point. By (31), there is u ∈Wt0+1 such that
(t0 + 1, u) |= p. Two cases are possible now. First, if (t, u) |= p ∧ F¬p holds
for some t > t0 before the next marked point, then we are done. Otherwise,
(t1, u) |= p for the next marked time point t1. Let t2 be the first marked point
after t1. Then, by (28) and (29), (t, u) |= ¬p for all t ≥ t2. It follows that for
some t with t1 ≤ t < t2 we must have (t, u) |= p∧ F¬p. In view of (32), t �= t1.
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For the inductive step we use (30) to ensure that the number of points with
p ∧ F¬p in the next interval between two marked points is at least the same
as in the previous one, while (31) adds one more point of this kind.

8 An Application to Dynamic Topological Logic

Dynamic topological logic was introduced in 1997 (see, e.g., [20,1,21]) as a log-
ical formalism for describing the behaviour of dynamical systems, e.g., in order
to specify liveness and safety properties of hybrid systems [3]. Roughly, (some
aspects of) the behaviour of such systems are modelled by means of a topol-
ogy T on a space Δ and a continuous function f acting on Δ. What we are
interested in is the asymptotic behaviour of iterations of f , in particular, the
orbits w, f(w), f2(w), . . . of states w ∈ Δ. The language T L provides a nat-
ural formalism for speaking about such iterations, with propositional variables
interpreted as subsets of Δ, the modal operator interpreted as the topological
closure operator C on T, and the temporal operators F and as iterations of
the function f .

More formally, by a dynamic topological model we understand a structure

M = (Δ, T, f, P 1, P 2, . . . ),

where Δ is a space with topology T, f : Δ → Δ is a continuous function with
respect to this topology, and P i ⊆ Δ for all i. For a T L -formula ϕ and w ∈ Δ,
the truth relation M, w |= ϕ is defined as follows:

M, w |= pi iff w ∈ P i,

M, w |= ϕ iff w ∈ C{v ∈ Δ |M, v |= ϕ},
M, w |= ϕ iff M, f(w) |= ϕ,

M, w |= F ϕ iff M, fn(w) |= ϕ for some n ∈ N .

A formula ϕ is valid in M if M, w |= ϕ for every w ∈ Δ.
Every quasi-order (Δ, R) gives rise to a topological space with the interior

operator I defined by I(X) = {x ∈ X | ∀y ∈ Δ (xRy → y ∈ X)} (as usual,
C(X) = X \ I(Δ \ X)). Such spaces are known as Aleksandrov spaces. For
Aleksandrov spaces, the truth relation for can be defined in a more famil-
iar Kripke-style way:

M, w |= ϕ iff M, v |= ϕ for some v ∈ Δ such that wRv.

Moreover, it is easy to see that a function f is continuous with respect to this
topology iff ∀w, v ∈ Δ (wRv → f(w)Rf(v)).

By the dynamic topological logic of Aleksandrov spaces we understand the
set of T L -formulas that are valid in all dynamic topological model based on
Aleksandrov spaces.
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Theorem 9. The dynamic topological logic of Aleksandrov spaces is
undecidable.

Proof. Using the techniques developed in [10], one can show that every T L -
formula ϕ is satisfiable in an e-model from QO iff ϕ has a dynamic topological
model based on an Aleksandrov space.

A lot of problems related to dynamic topological logics remain open. For
example, is the dynamic topological logic of Aleksandrov spaces recursively enu-
merable? Is it finitely axiomatisable? Is the dynamic topological logic of arbitrary
topological spaces decidable and/or axiomatisable?

9 Conclusion

Being a very attractive and powerful formalism for representation of and rea-
soning about systems with changing states, first-order temporal logic is noto-
rious for its bad computational behaviour. This applies, in particular, to first-
order temporal logics which can represent non-local constraints on binary rela-
tions such as transitivity. The present paper makes one more step in the search
for fundamental reasons that could explain this phenomenon and thereby help
in finding maximal ‘well-behaved’ fragments. Here we investigate the potential
computational impact of relaxing the standard constant domain assumption by
allowing states to expand over time. We consider the standard propositional
temporal logic LTL equipped with an additional ‘modal’ operator for speak-
ing about transitive relations over states. This fragment of first-order temporal
logic comes from temporal description logic, specification & verification of hy-
brid systems, and some other areas. The main results of our research, given by
Theorems 1–3 above, show that by allowing expanding domains we can indeed
end up with logics having better computational properties. The logics still re-
main extremely complex, but sometimes they become recursively enumerable
or even decidable, which makes them a subject for various theorem proving
techniques.

It is worth noting that the same results can be proved for the language
containing additionally a modal operator interpreted by the converse R−1

x of Rx

in each state S(x). Also, as this language interpreted over strict linear orders is
expressively complete for the two-variable fragment of first-order logic [23], we
can reformulate our results as decidability/undecidability results for the monodic
fragment of the two-variable first-order temporal logic over e-models based on
finite or arbitrary strict linear orders.

Acknowledgements. We are grateful to A. Bovykin, Ph. Schnoebelen, and the
members of the London Logic Forum for stimulating discussions, comments and
suggestions.

The work on this paper was partially supported by U.K. EPSRC grants no.
GR/R42474/01, GR/S63175/01, GR/S61973/01/01, and GR/S63182/01.



202 B. Konev, F. Wolter, and M. Zakharyaschev

References

1. S. Artemov, J. Davoren, and A. Nerode. Modal logics and topological semantics
for hybrid systems. Technical Report MSI 97-05, Cornell University, 1997.

2. D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal of
the ACM, 30:323–342, 1983.

3. J. Davoren and A. Nerode. Logics for hybrid systems. Proceedings of the IEEE,
88:985–1010, 2000.

4. A. Finkel. Decidability of the termination problem for completely specified proto-
cols. Distributed Computing, 7:129–135, 1994.

5. M. Fisher. A resolution method for temporal logic. In J. Myopoulos and R. Reiter,
editors, Proceedings of IJCAI’91, pages 99–104. Morgan Kaufman, 1991.

6. M. Fisher, C. Dixon, and M. Peim. Clausal temporal resolution. ACM Transactions
on Computational Logic (TOCL), 2(1):12–56, 2001.

7. D. Gabbay, I. Hodkinson, and M. Reynolds. Temporal Logic, volume 1. Oxford
University Press, 1994.

8. D. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-Dimensional
Modal Logics: Theory and Applications, volume 148 of Studies in Logic. Elsevier,
2003.

9. D. Gabelaia, R. Kontchakov, A. Kurucz, F. Wolter, and M. Zakharyaschev. Com-
bining spatial and temporal logics: expressiveness vs. complexity. Journal of Arti-
ficial Intelligence Research, 23:167–243, 2005.

10. D. Gabelaia, A. Kurucz, F. Wolter, and M. Zakharyaschev. Non-primitive recursive
decidability of products of modal logics with expanding domains. Manuscript.
Available at http://www.dcs.kcl.ac.uk/staff/mz, 2004.

11. D. Gabelaia, A. Kurucz, F. Wolter, and M. Zakharyaschev. Products of ‘transi-
tive’ modal logics. Journal of Symbolic Logic, 2005. In print. Draft available at
http://www.dcs.kcl.ac.uk/staff/mz.

12. J. Halpern and M. Vardi. The complexity of reasoning about knowledge and time
I: lower bounds. Journal of Computer and System Sciences, 38:195–237, 1989.

13. G. Higman. Ordering by divisibility in abstract algebras. Proceedings of the London
Mathematical Society, 2:326–336, 1952.

14. I. Hodkinson, F. Wolter, and M. Zakharyaschev. Decidable fragments of first-order
temporal logics. Annals of Pure and Applied Logic, 106:85–134, 2000.

15. U. Hustadt and B. Konev. TRP++ 2.0: A temporal resolution prover. In F. Baader,
editor, Automated Deduction. Proceedings of the 19th International Conference
on Automated Deduction (CADE-19), volume 2741 of Lecture Notes in Computer
Science, pages 274–278. Springer, 2003.

16. U. Hustadt, B. Konev, A. Riazanov, and A. Voronkov. TeMP: A temporal monodic
prover. In Proceedings IJCAR 2004, volume 3097 of LNAI, pages 326–330. Springer,
2004.

17. B. Konev, A. Degtyarev, C. Dixon, M. Fisher, and U. Hustadt. Towards the imple-
mentation of first-order temporal resolution: the expanding domain case. Informa-
tion and Computation, 2005. In print. Available as Technical Report ULCS-03-005,
The University of Liverpool, Department of Computer Science.

18. B. Konev, R.. Kontchakov, F. Wolter, and M. Zakharyaschev. On dynamic topo-
logical and metric logics. Manuscript. Available at http://www.dcs.kcl.ac.uk/

staff/mz, 2005.
19. R. Kontchakov, C. Lutz, F. Wolter, and M. Zakharyaschev. Temporalising

tableaux. Studia Logica, 76:91–134, 2004.



Temporal Logics over Transitive States 203

20. P. Kremer and Mints. Dynamic topological logic. Bulletin of Symbolic Logic,
3:371–372, 1997.

21. P. Kremer and G Mints. Dynamic topological logic. Annals of Pure and Applied
Logic, 131:133–158, 2005.

22. J.B. Kruskal. Well-quasi-orderings, the tree theorem, and Vázsonyi’s conjecture.
Transactions of the American Mathematical Society, 95:210–225, 1960.

23. C. Lutz, U. Sattler, and F. Wolter. Modal logic and the two-variable fragment. In
Proceedings of Computer Science Logic (CSL 2001), pages 262–276. Lecture Notes
in Computer Science 2141, Springer, 2001.

24. R. Mayr. Undecidable problems in unreliable computations. Theoretical Computer
Science, 297:337–354, 2003.

25. K. Schild. Combining terminological logics with tense logic. In Proceedings of the
6th Portuguese Conference on Artificial Intelligence, pages 105–120, Porto, 1993.

26. Ph. Schnoebelen. Verifying lossy channel systems has nonprimitive recursive com-
plexity. Information Processing Letters, 83:251–261, 2002.

27. S. Schwendimann. Aspects of Computational Logic. PhD thesis, Universität Bern,
Switzerland, 1998.

28. A. Sistla and E. Clarke. The complexity of propositional linear temporal logics.
Journal of the Association for Computing Machinery, 32:733–749, 1985.

29. A. Sistla and S. German. Reasoning with many processes. In Proceedings of the
Second IEEE Symposium on Logic in Computer Science, pages 138–153, 1987.

30. P. Wolper. The tableau method for temporal logic: An overview. Logique et
Analyse, 28:119–152, 1985.

31. F. Wolter and M. Zakharyaschev. Temporalizing description logics. In D. Gabbay
and M. de Rijke, editors, Frontiers of Combining Systems II, pages 379–401. Studies
Press/Wiley, 2000.

32. F. Wolter and M. Zakharyaschev. Axiomatizing the monodic fragment of first-order
temporal logic. Annals of Pure and Applied Logic, 118:133–145, 2002.



Deciding Monodic Fragments
by Temporal Resolution�

Ullrich Hustadt1, Boris Konev1, and Renate A. Schmidt2

1 Department of Computer Science, University of Liverpool, UK
{U.Hustadt, B.Konev}@csc.liv.ac.uk

2 School of Computer Science, University of Manchester, UK
Renate.Schmidt@manchester.ac.uk

Abstract. In this paper we study the decidability of various fragments
of monodic first-order temporal logic by temporal resolution. We focus
on two resolution calculi, namely, monodic temporal resolution and fine-
grained temporal resolution. For the first, we state a very general decid-
ability result, which is independent of the particular decision procedure
used to decide the first-order part of the logic. For the second, we in-
troduce refinements using orderings and selection functions. This allows
us to transfer existing results on decidability by resolution for first-order
fragments to monodic first-order temporal logic and obtain new decision
procedures. The latter is of immediate practical value, due to the avail-
ability of TeMP, an implementation of fine-grained temporal resolution.

1 Introduction

Temporal logics have long been recognised as introducing appropriate languages
for specifying a wide range of important computational properties in computer
science and artificial intelligence [6]. However, until recently, the practical use
of temporal logics has largely been restricted to propositional temporal log-
ics. First-order temporal logic has generally been avoided as no complete proof
system can exist for this logic. However, recent work by Hodkinson, Wolter,
and Zakharyaschev [11] shows that a specific fragment of first-order temporal
logic, called the monodic fragment, or monodic first-order temporal logic, has
the completeness property. This initial result was followed by an examination of
the monodic fragment in terms of decidable subclasses, automated deduction,
and applications.

Hodkinson et al. [10,11,23] show the decidability of the monadic, two-variable,
fluted, and loosely guarded fragments of monodic first-order temporal logic with-
out equality as well as the decidability of the monodic packed fragment of first-
order temporal logic with equality. Kontchakov et al. [17] have developed a
framework for devising tableau decision procedures for such decidable monodic
first-order temporal logics. Using this framework they present tableau decision
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procedures for the one-variable fragment and for the fragment corresponding to
the modal logic S4u of monodic first-order temporal logic.

In parallel, Degtyarev, Dixon, Fisher, Hustadt, and Konev have investigated
monodic first-order temporal logic in the context of resolution. Degtyarev et
al. [5] present a temporal resolution calculus, called monodic temporal resolution,
for this logic, which is then used in [4] to establish a general decidability result for
temporal resolution. Decidability of all the classes from Hodkinson et al., as well
as, the Gödel class and the dual Maslov class K fragments of monodic first-order
temporal logic are shown to be immediate consequences of this general result.
Konev et al. [14,15] devise the fine-grained resolution calculus as an alternative
resolution calculus for monodic first-order temporal logic which is more amenable
to mechanisation. This calculus forms the basis of the temporal monodic theorem
prover TeMP presented in [12].

In this paper we focus on decidability results in the context of the fine-grained
resolution calculus. To motivate why the general decidability result obtained in
the context of monodic temporal resolution does not easily carry over to the
fine-grained resolution calculus, we first provide a brief presentation of both cal-
culi and some basic results about them, including the mentioned decidability
result. A main contribution of this paper is the introduction of refinements of
fined-grained resolution which incorporate advanced techniques developed in the
context of first-order resolution (e.g. [1,19]) into temporal resolution, namely or-
derings and selection functions. We prove completeness of this refined calculus
by simulating derivations in the monodic temporal resolution calculus. The re-
fined calculus, called ordered fine-grained resolution with selection, allows us to
transfer decidability results and decision procedures obtained for fragments of
first-order logic to the corresponding fragments of monodic first-order temporal
logic.

2 First-Order Temporal Logic

The language of First-Order Temporal Logic, FOTL, is an extension of classical
first-order logic by temporal operators for a discrete linear model of time (iso-
morphic to , that is, the most commonly used model of time). The signature
of FOTL (without equality and function symbols) consists of a countably infinite
set of variables x0, x1, . . . , a countably infinite set of constants c0, c1, . . . , a
non-empty set of predicate symbols P , P0, . . . , each with a fixed arity ≥ 0, the
propositional operators �, ¬, ∨, the quantifiers ∃xi and ∀xi, and the temporal
operators (‘always in the future’), ♦ (‘eventually in the future’), 
(‘at the
next moment’), and U (‘until’). The set of formulae of FOTL is defined as fol-
lows: � is a FOTL formula; if P is an n-ary predicate symbol and t1, . . . , tn
are variables or constants, then P (t1, . . . , tn) is an atomic FOTL formula; if ϕ
and ψ are FOTL formulae, then so are ¬ϕ, ϕ∨ψ, ∃xϕ, ∀xϕ, ϕ, ♦ϕ, 
ϕ, and
ϕU ψ. We also use ⊥, ∧, and ⇒ as additional operators, defined using �, ¬,
and ∨. Free and bound variables of a formula are defined in the standard way,
as well as the notions of open and closed formulae. Given a formula ϕ, we write
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ϕ(x1, . . . , xn) to indicate that all the free variables of ϕ are among x1, . . . , xn.
As usual, a literal is either an atomic formula or its negation.

Formulae of this logic are interpreted over structures M = (Dn, In)n∈ that
associate with each element n of , representing a moment in time, a first-order
structure Mn = (Dn, In) with its own non-empty domain Dn and interpreta-
tion In. An assignment a is a function from the set of variables to

⋃
n∈ Dn.

The application of an assignment to terms is defined in the standard way, in
particular, a(c) = c for every constant c. The truth relation Mn |=a ϕ is defined
(only for those a such that a(x) ∈ Dn for every variable x) as follows:

Mn |=a �
Mn |=a P (t1, . . . , tn) iff (In(a(t1)), . . . , In(a(tn))) ∈ In(P )
Mn |=a ¬ϕ iff not Mn |=a ϕ
Mn |=a ϕ ∨ ψ iff Mn |=a ϕ or Mn |=a ψ
Mn |=a ∃xϕ iff Mn |=b ϕ for some assignment b that may differ

from a only in x and such that b(x) ∈ Dn

Mn |=a ∀xϕ iff Mn |=b ϕ for every assignment b that may differ
from a only in x and such that b(x) ∈ Dn

Mn |=a 
ϕ iff Mn+1 |=a ϕ
Mn |=a ♦ϕ iff there exists m ≥ n such that Mm |=a ϕ
Mn |=a ϕ iff for all m ≥ n, Mm |=a ϕ
Mn |=a ϕU ψ iff there exists m ≥ n such that Mm |=a ψ and

Mi |=a ϕ for every i, n ≤ i < m

In this paper we make the expanding domain assumption, that is, Dn ⊆ Dm

if n < m, and we assume that the interpretation of constants is rigid, that is,
In(c) = Im(c) for all n, m ∈ .

The set of valid formulae of this logic is not recursively enumerable. However,
the set of valid monodic formulae is known to be finitely axiomatisable [23]. A
formula ϕ of FOTL is called monodic if any subformula of ϕ of the form 
ψ, ψ,
♦ψ, or ψ1 U ψ2 contains at most one free variable. For example, the formulae
∀x ∃yP (x, y) and ∀x P (x, c) are monodic, while ∀x∀y(P (x, y) ⇒ P (x, y))
is not monodic.

Every monodic temporal formula can be transformed into an equi-satisfiable
normal form, called divided separated normal form (DSNF) [14].

Definition 1. A monodic temporal problem P in divided separated normal form
(DSNF) is a quadruple 〈U , I,S, E〉, where

1. the universal part U and the initial part I are finite sets of first-order for-
mulae;

2. the step part S is a finite set of clauses of the form p ⇒ 
q, where p and q
are propositions, and P (x) ⇒ 
Q(x), where P and Q are unary predicate
symbols and x is a variable; and

3. the eventuality part E is a finite set of formulae of the form ♦L(x) (a non-
ground eventuality clause) and ♦l (a ground eventuality clause), where l is
a propositional literal and L(x) is a unary non-ground literal with variable
x as its only argument.
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With each monodic temporal problem 〈U , I,S, E〉 we associate the FOTL formula
I ∧ U ∧ ∀xS ∧ ∀xE . When we talk about particular properties of a tem-
poral problem (e.g., satisfiability, validity, logical consequences, etc) we refer to
properties of this associated formula.

The transformation to DSNF is based on using a renaming and unwinding
technique which substitutes non-atomic subformulae and replaces temporal op-
erators by their fixed point definitions as described, for example, in [8]. A step
in this transformation which is of relevance for the results presented here is the
following: We recursively rename each innermost open subformula ξ(x), whose
main connective is a temporal operator, by Pξ(x), where Pξ(x) is a new unary
predicate, and rename each innermost closed subformula ζ, whose main connec-
tive is a temporal operator, by pζ , where pζ is a new propositional variable. In
the terminology of [11] Pξ(x) and pζ are called the surrogates of ξ(x) and ζ, re-
spectively. Renaming introduces formulae defining Pξ(x) and pζ of the following
form (since we are only interested in satisfiability, we use implications instead of
equivalences for renaming positive occurrences of subformulae, see also [20]):

(a) ∀x(Pξ(x) ⇒ ξ(x)) and (b) (pζ ⇒ ζ).
If the main connective of ξ(x) or ζ is either or U , then the formula will be
replaced by its fixed point definition. If the main connective of ξ(x) or ζ is either
the 
or ♦ operator, the defining formula will be simplified further to obtain
step or eventuality clauses.

Theorem 1 (see [4], Theorem 1). Any monodic first-order temporal formula
can be transformed into an equi-satisfiable monodic temporal problem in DSNF
with at most a linear increase in the size of the problem.

In the next section we briefly recall the temporal resolution calculus first
developed in [5] and we present a general decidability result for this calculus.

3 Monodic Temporal Resolution

The monodic temporal resolution calculus does not directly operate on the
formulae and clauses of a monodic temporal problem P, but, as described
next, operates on merged derived step clauses and full merged step clauses
computed from the constant flooded form of P. Let P = 〈U , I,S, E〉 be a
monodic temporal problem, then the temporal problem Pc = 〈U , I,S, Ec〉 where
Ec = E∪{♦L(c) | ♦L(x) ∈ E , c is a constant in P} is the constant flooded form of
P. (Strictly speaking, Pc is not in DSNF: We have to rename ground eventualities
by propositions.) Evidently, Pc is satisfiability equivalent to P. Let

Pi1(x) ⇒ 
Mi1(x), . . . , Pik
(x) ⇒ 
Mik

(x) (1)
be a subset of the set of step clauses of Pc. Then formulae of the form

Pij (c) ⇒ 
Mij (c) and ∃x
∧k

j=1 Pij (x) ⇒ 
∃x∧k
j=1 Mij (x), (2)

where c is a constant in Pc and j = 1, . . . , k, are called derived step clauses.1

Note that formulae of the form (2) are logical consequences of (1). Let {Φ1 ⇒
1 In [4] derived step clauses, are termed e-derived step clauses.
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Ψ1, . . . , Φn ⇒ 
Ψn} be a set of derived step clauses or ground step clauses
in Pc. Then (

∧n
i=1 Φi) ⇒ 
(

∧n
i=1 Ψi) is called a merged derived step clause.

Let A ⇒ 
B be a merged derived step clause, let P1(x) ⇒ 
M1(x), . . . ,
Pk(x) ⇒ 
Mk(x) be a subset of the original step clauses in Pc, and let A(x) def=
A ∧

∧k
i=1 Pi(x), B(x) def= B ∧

∧k
i=1 Mi(x). Then ∀x(A(x) ⇒ 
B(x)) is called a

full merged step clause.
In what follows, A ⇒ 
B and Ai ⇒ 
Bi denote merged derived step

clauses, ∀x(A(x) ⇒ 
B(x)) and ∀x(Ai(x) ⇒ 
Bi(x)) denote full merged step
clauses, and U denotes the (current) universal part of a monodic temporal prob-
lem P. We now define the temporal resolution calculus, Ie, for the expanding
domain case. The inference rules of Ie are the following.
– Step resolution rule w.r.t. U :

A⇒ 
B
¬A ( 
U

res) , if U ∪ {B} |= ⊥.

– Termination rule w.r.t. U and I:

⊥ (⊥U
res) , if U ∪ I |= ⊥.

– Eventuality resolution rule w.r.t. U :
∀x(A1(x) ⇒ 
B1(x)) . . . ∀x(An(x) ⇒ 
Bn(x)) ♦L(x)

∀x
∧n

i=1 ¬Ai(x)
(♦U

res) ,

where ∀x(Ai(x) ⇒ 
Bi(x)) are full merged step clauses such that for every i,
1 ≤ i ≤ n, the loop side conditions ∀x(U ∧ Bi(x) ⇒ ¬L(x)) and ∀x(U ∧
Bi(x) ⇒

∨n
j=1(Aj(x))) are valid.2

The set of full merged step clauses, satisfying the loop side conditions, is
called a loop in ♦L(x) and the formula

∨n
j=1Aj(x) is called a loop formula.

– Ground eventuality resolution rule w.r.t. U :
A1 ⇒ 
B1 . . . An ⇒ 
Bn ♦l∧n

i=1 ¬Ai
(♦U

res) ,

where Ai ⇒ 
Bi are merged derived step clauses such that for every i,
1 ≤ i ≤ n, the loop side conditions U ∧ Bi |= ¬l and U ∧ Bi |=

∨n
j=1Aj

are valid. The notions of ground loop and ground loop formula are defined
similarly to the case above.

Let P be a temporal problem. By TRes(P) we denote the set of all possible
conclusions of the inference rules above applied to Pc.

Definition 2 (Derivation). Let P = 〈U , I,S, E〉 be a monodic temporal prob-
lem. A derivation from P is a sequence of universal parts, U = U0 ⊂ U1 ⊂
U2 ⊂ · · · , such that Ui+1 is obtained from Ui by applying an inference rule to
〈Ui, I,S, Ec〉 and adding its conclusion to Ui. The I, S and Ec parts of the tem-
poral problem are not changed during a derivation.
2 In the case U |= ∀x¬L(x), the degenerate clause, � ⇒ ��, can be considered as

a premise of this rule; the conclusion of the rule is then ¬� and the derivation
successfully terminates.
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A derivation terminates if, and only if, either a contradiction is derived, in which
case we say that the derivation terminates successfully, or if no new formulae can
be derived by further inference steps. Any derivation can be continued yielding
a terminating derivation. Note that since there exist only finitely many different
full merged step clauses, the number of different conclusions of the inference rules
of monodic temporal resolution is finite. Therefore, every derivation is finite.

A derivation U = U0 ⊂ U1 ⊂ U2 ⊂ · · · ⊂ Un from 〈U , I,S, E〉 is called fair (we
adopt terminology from [1]) if for any i ≥ 0 and formula ϕ ∈ TRes(〈Ui, I,S, Ec〉),
there exists j ≥ i such that ϕ ∈ Uj .

It is important to note that all the inference rules have side conditions
which are first-order problems. For example, consider a temporal problem
P = 〈U , I,S, E〉, where only I is non-empty, that is, P is simply a first-order
problem. Then the only inference rule applicable is the termination rule. If the
rule can be applied, then a single application of the rule would derive a contra-
diction indicating that P is unsatisfiable. If the rule cannot be applied, because
I is not contradictory, then the derivation terminates without a single inference
step being performed, indicating that P is satisfiable. This also illustrates why
all derivations can be finite although the satisfiability problem of monodic FOTL
is only semi-decidable.

So, in general, the side conditions of our inference rules are only semi-
decidable and in the case a side condition is false, it may happen that the test
of this side condition does not terminate. To ensure fairness we must make sure
that each such test cannot indefinitely block the investigation of alternative ap-
plications of inference rules in a derivation.

Theorem 2 (see [4, Theorem 10]). The rules of Ie preserve satisfiability
over expanding domains. A monodic temporal problem P is unsatisfiable over
expanding domains iff any fair derivation in Ie from Pc terminates successfully.

4 Decidability by Monodic Temporal Resolution

Monodic temporal resolution provides a decision procedure for a class of monodic
FOTL formulae provided that there exists a first-order decision procedure for the
side conditions of all inference rules. Examination of the side conditions shows
that we are interested in the satisfiability of (i) the conjunction of the (current)
universal part and the initial part, and (ii) the conjunction of the (current)
universal part and sets of monadic formulae built from predicate symbols which
occur in the step and eventuality part of a temporal problem. At the same time,
in each step of the derivation the universal part is extended by monadic formulae
from the conclusion of the inference rule applied in the inference step. So, after
imposing restrictions on the form of the universal and initial parts of a class of
temporal problems, we can guarantee decidability of this class.

However, formalising which fragments of monodic FOTL are decidable by
monodic temporal resolution is slightly more complex, since we have to take our
“rename and unwind” transformation to divided separated normal form into
account, as the following example illustrates.
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Example 1. Let ϕ(x, y, z, u) be the first-order formula Q1(x, y, z) ∨ Q2(y, z) ∨
Q(x, y, z, u). Then the formula ∃x∀y∀z∃uϕ(x, y, z, u) belongs to the dual of
Maslov’s class K which is decidable. In contrast, consider the temporal for-
mula ∃x ♦∀y∀z∃uϕ(x, y, z, u) with the same ϕ. Once transformed to an equi-
satisfiable temporal problem P = 〈U , I,S, E〉 in DSNF, the universal part U
contains the formula ∀x(Pϕ(x) ⇒ ∀y∀z∃uϕ(x, y, z, u)) which does not belong to
Maslov’s class K. (It belongs to the undecidable Surányi class ∀3∃ [2].)

To solve this problem, we define decidable fragments in terms of surrogates.

Definition 3 (Temporalisation by Renaming). Let C be a class of first-
order formulae. Let ϕ be a monodic temporal formula in negation normal form
(that is, the only Boolean connectives are conjunction, disjunction and negation,
and negations are only applied to atoms). Let ϕ denote the formula that results
from ϕ by replacing all of its subformulae whose main connective is a temporal
operator and which is not within a scope of another temporal operator with their
surrogates.

We say that ϕ belongs to the class TrenC if

1. ϕ belongs to C and
2. for every subformula of the form T ψ, where T is a temporal operator (or of

the form ψ1T ψ2 if T is binary), either ψ is a closed formula belonging to
C or the formula ∀x(P (x) ⇒ ψ), where P is a new unary predicate symbol,
belongs to C (analogous conditions for ψ1, ψ2).

Note that the formulae indicated in the first and second items of the definition
exactly match the shape of the formulae contributing to U when we reduce a
temporal formula to the normal form by renaming the complex expressions and
replacing temporal operators by their fixed point definitions.

Theorem 3 (Decidability by Temporal Resolution). Let C be a decidable
class of first-order formulae which does not contain equality and functional sym-
bols, but possibly contains constants, such that

– C is closed under conjunction;
– C contains universal monadic formulae.

Then TrenC is decidable.

Proof. [See also [4, Theorem 8.3]] After reduction to DSNF, all formulae from
U belong to C. The (monadic) formulae from side conditions and the (monadic)
formulae generated by temporal resolution rules belong to C. Therefore, testing
the applicability of one of the temporal resolution rules becomes decidable. Given
that all derivations are finite, due to the finiteness of the set of merged derived
step clauses and full merged step clauses, decidability follows. �

A consequence of Theorem 3 is the decidability of a wide range of temporal
monodic classes. These include the monadic, two-variable, fluted, guarded, and
loosely guarded fragments of monodic first-order temporal logic which have also
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been shown to be decidable in [11,23]. In addition, decidability also follows
for other classes, for example, the class Tren∃∗∀2∃∗ and the class TrenK where
K is the dual of Maslov’s class K [18]. Moreover, combining the constructions
from [10] and the saturation-based decision procedure for the guarded fragment
with equality [9], it is possible to build a temporal resolution decision procedure
for the monodic guarded and loosely guarded fragments with equality [16].

5 Monodic Fine-Grained Temporal Resolution

The main drawback of monodic temporal resolution is that the notion of merged
derived step clauses and full merged step clauses is quite involved and that the
search for merged step clauses to which one of the deduction rules can success-
fully be applied is computationally hard, in general it is only semi-decidable.
The idea underlying the monodic fine-grained temporal resolution calculus, fine-
grained resolution for short, is to refine the deduction rules of Ie in such a way
that they perform much smaller steps, but with decidable side conditions for
their applicability. Of course, the price that has to be paid is that derivations
are no longer guaranteed to be finite.

In more detail, fine-grained resolution differs from the calculus Ie in two
aspects. First, instead of the step resolution and the termination rule of Ie, we
use a set of deduction rules operating on clausified problems. Second, we use a
particular algorithm, called FG-BFS, to determine the loops to which we apply
the ground and non-ground eventuality resolution rule of Ie.

Definition 4. Let P = 〈U , I,S, E〉 be a monodic temporal problem. The clausifi-
cation Cls(P) of P is a quadruple 〈U ′, I ′,S′, E〉 such that (i) U ′ is a set of clauses,
called universal clauses, obtained by clausification of U ; (ii) I′ is a set of clauses,
called initial clauses, obtained by clausification of I; (iii) S′ is the smallest set of
step clauses such that all step clauses from S are in S′ and for every non-ground
step clause P (x) ⇒ 
L(x) in S and every constant c occurring P, the clause
P (c) ⇒ 
L(c) is in S′.

Example 2. Let P = 〈U , I,S, E〉 where U = {∃xQ(x)}, I = {P (c)}, S =
{P (x) ⇒ 
Q(x)}, and E = ∅. Then Cls(P) = 〈U ′, I ′,S′, E〉 where U ′ = {Q(d)}
with d a Skolem constant, I′ = {P (c)}, and S′ = {P (x) ⇒ 
Q(x), P (c) ⇒
Q(c)}.

During a derivation more general step clauses can be derived, which are of
the form C ⇒ 
D, where C is a conjunction of propositions, atoms of the
form P (x) and ground formulae of the form P (c), where P is a unary predicate
symbol and c is a constant such that c occurs in the input formula, and D is a
disjunction of arbitrary literals.

Let us first define the deduction rules of fine-grained step resolution which
replace the step resolution and the termination rule of Ie. In the following, we
assume that different premises and conclusions of the deduction rules have no
variables in common; variables may be renamed if necessary.
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(1) First-order resolution between two universal clauses. Defined as standard
first-order resolution between two clauses. The result is a universal clause.

(2) First-order factoring on a universal clause. Again, defined as standard first-
order factoring on a clause. The result is a universal clause.

(3) First-order resolution between an initial and a universal clause, between two
initial clauses, and factoring on an initial clause. Defined in analogy to the
two deduction rules above only that the result is an initial clause.

(4) Fine-grained step resolution.

C1 ⇒ 
(D1 ∨ L) C2 ⇒ 
(D2 ∨ ¬M)
(C1 ∧ C2)σ ⇒ 
(D1 ∨D2)σ

,

where C1 ⇒ 
(D1 ∨ L) and C2 ⇒ 
(D2 ∨ ¬M) are step clauses and σ
is a most general unifier of the literals L and M such that σ does not map
variables from C1 or C2 into a constant or a functional term.3

C1 ⇒ 
(D1 ∨ L) D2 ∨ ¬M
C1σ ⇒ 
(D1 ∨D2)σ

,

where C1 ⇒ 
(D1 ∨L) is a step clause, D2 ∨¬M is a universal clause, and
σ is a most general unifier of the literals L and M such that σ does not map
variables from C1 into a constant or a functional term.

(5) Fine-grained step factoring.

C ⇒ 
(D ∨ L ∨M)
Cσ ⇒ 
(D ∨ L)σ

,

where σ is a most general unifier of the literals L and M such that σ does
not map variables from C into a constant or a functional term.

(6) Clause conversion. A step clause of the form C ⇒ 
⊥ is rewritten to the
universal clause4 ¬C.

Besides the rules above we still need the eventuality resolution rule and the
ground eventuality resolution rule of Ie. However, we use a particular algorithm,
called FG-BFS (for fine-grained breadth-first search), to find loop formulae, that
is, to find a disjunction of the left-hand sides of full merged step clauses that
together with an eventuality literal forms the premises for the ground and non-
ground eventuality resolution rules. This algorithm internally uses the deduction
rules above with the exception of the clause conversion rule.

Let fine-grained resolution be the calculus consisting of the rules (1) to (6)
above, together with the ground and non-ground eventuality resolution rules,
restricted to loops found by the FG-BFS algorithm. We denote this calculus by
IFG. The calculus can be extended by first-order redundancy elimination rules,
e.g. tautology and subsumption deletion, as well as analogous rules for step
clauses.
3 This restriction justifies skolemisation of the universal part: Skolem constants from

one moment of time do not propagate to the previous moment.
4 Here, and further, ¬(L1(x) ∧ · · · ∧ Lk(x)) abbreviates (¬L1(x) ∨ · · · ∨ ¬Lk(x)).



Deciding Monodic Fragments by Temporal Resolution 213

A (linear) derivation in IFG from the clausification Cls(Pc) of a constant
flooded monodic temporal problem Pc is a sequence of clauses C1, . . . such that
each clause Ci is either an element of Cls(Pc) or else the conclusion by a deduction
rule applied to clauses from premises C1, . . . , Ci−1. A derivation C1, . . . , Cm is
also called a proof of Cm. A proof of the empty clause is called a refutation. A
derivation C1, . . . , Cm terminates iff for any derivation C1, . . . , Cm, Cm+1, the
clause Cm+1 is a variant of a clause in Cls(Pc) ∪ {C1, . . . , Cm}.

Theorem 4 ([15] Theorems 5 and 9). Fine-grained resolution is sound and
complete for constant flooded monodic temporal problems over expanding do-
mains.

For the class of problems where all the literals in a problem are propositional
or ground, fine-grained resolution is a decision procedure, as the inference steps
performed by it are exactly those performed by the clausal temporal calculus [8]
for propositional linear-time temporal logic, which is an exponential time deci-
sion procedure for the satisfiability problem of that logic. However, for all the
classes mentioned at the end of Section 4, termination of fine-grained resolution
cannot be guaranteed. So, in analogy to the approach taken to obtain resolu-
tion decision procedure for decidable fragments of first-order logic, we develop
sound and complete refinements of fine-grained resolution to ensure termination
of derivations. We assume that we are given an atom ordering *, that is, a to-
tal and well-founded ordering on ground first-order atoms which is stable under
substitution, and a selection function S which maps any first-order clause C to a
(possibly empty) subset of its negative literals. An atom ordering * is extended
to literals by (¬)A * (¬)B if A * B and ¬A * A. A literal L is called (strictly)
maximal w.r.t. a clause C iff there exists a ground substitution σ such that for
all L′ ∈ C: Lσ . L′σ (Lσ * L′σ). A literal L is eligible in a clause L∨C if either
it is selected in L ∨C, or no literal is selected in C and L is maximal w.r.t. C.

The atom ordering * and the selection function S are used to restrict the
applicability of the deduction rules of fine-grained resolution as follows.

(1) First-order ordered resolution with selection between two universal clauses
C1 ∨A ¬B ∨C2

(C1 ∨ C2)σ
,

if σ is the most general unifier of A and B, Aσ is eligible in (C1 ∨A)σ, and
¬Bσ is eligible in (¬B ∨ C2)σ.

(2) First-order ordered positive factoring with selection

C1 ∨A ∨B

(C1 ∨A)σ
,

if σ is the most general unifier of A and B, and Aσ is eligible in (C1∨A∨B)σ.
(3) First-order ordered resolution with selection between an initial and a uni-

versal clause, between two initial clauses, and ordered positive factoring with
selection on an initial clause. These are defined in analogy to the two deduc-
tion rules above with the only difference that the result is an initial clause.
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(4) Ordered fine-grained step resolution with selection.

C1 ⇒ 
(D1 ∨A) C2 ⇒ 
(D2 ∨ ¬B)
(C1 ∧ C2)σ ⇒ 
(D1 ∨D2)σ

,

where C1 ⇒ 
(D1 ∨ L) and C2 ⇒ 
(D2 ∨ ¬M) are step clauses, σ is
a most general unifier of the literals L and M such that σ does not map
variables from C1 or C2 into a constant or a functional term, Aσ is eligible
in (D1 ∨A)σ, and ¬Bσ is eligible in (D2 ∨ ¬B)σ.

C1 ⇒ 
(D1 ∨ L) D2 ∨ ¬M
C1σ ⇒ 
(D1 ∨D2)σ

,

where C1 ⇒ 
(D1 ∨ L) is a step clause, D2 ∨ ¬M is a universal clause,
and σ is a most general unifier of the literals L and M such that σ does not
map variables from C1 into a constant or a functional term, Nσ is eligible
in (D2 ∨ ¬N)σ, and Lσ is eligible in (D1 ∨ L)σ.

(5) Ordered fine-grained positive step factoring with selection.

C ⇒ 
(D ∨A ∨B)
Cσ ⇒ 
(D ∨A)σ

,

where σ is a most general unifier of the atoms A and B such that σ does
not map variables from C into a constant or a functional term, and Aσ is
eligible in (D ∨A ∨B)σ.

(6) Clause conversion. A step clause of the form C ⇒ 
⊥ is rewritten to the
universal clause ¬C.

Let ordered fine-grained resolution with selection be the calculus consisting of
the rules (1) to (6) above, together with the ground and non-ground eventuality
resolution rules, restricted to loops found by the FG-BFS algorithm which now
uses the rules (1) to (5) above instead of their unrefined variants. We denote this
calculus by IS,�

FG
. Again, the calculus can be extended by first-order redundancy

elimination rules as well as analogous rules for step clauses.
Note that for ordered fine-grained step resolution with selection, the ordering

and selection function only influence which literals on the right-hand side of a
step clause are eligible, literals on the left-hand side are not taken into account.

Theorem 5. Ordered fine-grained resolution with selection is sound and com-
plete for constant flooded monodic temporal problems over expanding domains.

Proof. [Sketch] Soundness of IS,�
FG

is straightforward as any derivation in IS,�
FG

is also a derivation in IFG, which is sound according to Theorem 4.
The proof of completeness proceeds along the lines of the completeness proof

of IFG presented in [14]. Assume that Pc = 〈U0, I,S, E〉 is a constant flooded
monodic temporal problem and Δ = U0, . . . ,Un is a derivation from Pc in Ie

such that Un contains ⊥, that is, Ie is able to derive a contradiction from Pc.
By induction on the length of the derivation we show that this derivation can be
simulated by IS,�

FG
. We construct a refutation Δ′ = C1

0 , . . . , Cn0
0 , . . . , C1

n, . . . , Cnk
n



Deciding Monodic Fragments by Temporal Resolution 215

of the clausification Cls(Pc) of Pc where each step in Δ will correspond to one
or more steps in Δ′. At the start Δ just consists of U0 and the corresponding
derivation Δ′ consists of all the clauses C1

0 , . . . , Cn0
0 in Cls(Pc). Let U(Δ′) and

I(Δ′) denote the set of all universal and initial clauses in Δ′, respectively. By
the fact that clausification preserves satisfiability, U0 is satisfiable iff U(Δ′) is
satisfiable and U0 ∪ I is satisfiable iff U(Δ′) ∪ I(Δ′) is satisfiable. Furthermore,
if U0 would contain ⊥, then Δ′ would contain the empty clause.

Now, in each step of Δ a first-order formula ui, 1 ≤ i ≤ n, is added to Ui−1

to obtain Ui, where ui is the conclusion of one the deduction rules of Ie applied
to 〈Ui−1, I,S, E〉. We show that using IS,�

FG we can derive a clause Cni

i from the
clauses in the derivation Δ′ constructed so far such that the universal closure
of Cni

i implies ui. This also implies that Ui is satisfiable iff U(Δ′) ∪ {Cni

i } is
satisfiable and Ui ∪ I is satisfiable iff U(Δ′) ∪ I(Δ′) ∪ {Cni

i } is satisfiable. We
then add Cni

i and all intermediate clauses C1
i , . . . , Cni−1

i used in its derivation
to Δ′. To show the existence and derivability of Cni

i we consider which deduction
rule of Ie has been used to derive ui.

Suppose ui has been derived by an application of the termination rule (which
implies that ui is ⊥). Then the set Ui−1∪I of first-order formulae is unsatisfiable,
which, by induction hypothesis, implies that U(Δ′) ∪ I(Δ′) is unsatisfiable. By
completeness of first-order ordered resolution with selection (see, e.g. [1]), we
will be able to derive the empty clause from the clauses in U(Δ′) ∪ I(Δ′) using
the resolution and factoring rules of IS,�

FG
for universal and initial clauses, that

is, rules (1) to (3), and extend Δ′ accordingly.
Suppose ui has been derived by an application of the step resolution rule.

Then there is a merged derived step clauseA⇒ 
B such that the formula Ui−1∪
{B} is unsatisfiable. The merged derived step clause A ⇒ 
B is constructed
from some step clauses pj ⇒ 
qj , 1≤j≤m1, Pk(ck) ⇒ 
Qk(ck), 1≤k≤m2, and
Pl(xl) ⇒ 
Ql(xl), 1≤l≤m3, in S which are also present in Δ′. Define a set
L(B) of literals as {qj | 1≤j≤m1} ∪ {Qk(ck) | 1≤k≤m2} ∪ {Ql(xl) | 1≤l≤m3}.
Again, due to the completeness of first-order ordered resolution with selection,
a derivation of the empty clause from L(B) ∪ U(Δ′) exists. Then inspection
of the rules (4) and (5) for ordered fine-grained step resolution with selection
and for ordered right positive factoring with selection, respectively, shows that
we can also construct a derivation from {pj ⇒ 
qj | 1≤j≤m1} ∪ {Pk(ck) ⇒
Qk(ck) | 1≤k≤m2}∪{Pl(xl) ⇒ 
Ql(xl) | 1≤l≤m3}∪U(Δ′). This will not be
a derivation of the empty clause, but of a step clause P ⇒ 
⊥ where P is a con-
junction of literals in {Pj | 1≤j≤m1}∪{Pk(ck) | 1≤k≤m2}∪{Pl(xl) | 1≤l≤m3},
though not necessarily all of them. An application of rule (6) for clause conver-
sion allows us to derive the universal clause ¬P . We can show that the universal
closure of ¬P implies ui. We add all the clauses in the derivation of P ⇒ 
⊥
to Δ′ as C1

i , . . . , Cni−1
i for some ni, and also add ¬P as Cni

i .
Finally, concerning the ground and non-ground eventuality resolution rules

and the use of the FG-BFS algorithm to compute loops, we simply observe that
using rules (1) to (5) in the algorithm will not change the loops the algorithm
will compute. This follows from the considerations above. �
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6 Decidability by Ordered Fine-Grained Resolution with
Selection

Ordered fine-grained resolution with selection allows us to transfer decidability
results and decision procedures obtained for fragments of first-order logic to the
corresponding fragments of monodic first-order temporal logic.

We present two examples. First, we consider the temporalisation TrenGF of
the guarded fragment by renaming according to Definition 3 and we show how
a decision procedure can be constructed from the procedure for the guarded
fragment developed in [9]. Second, using the same approach we derive a decision
procedure for TrenK and TrenDK based on the procedure for K and DK developed
in [13] (DK is the class containing all conjunctions of formulae of the class K).

Ganzinger and de Nivelle [9] use the following ordering *GF and selection
function SGF to decide the guarded fragment: *GF is an arbitrary lexicographic
path ordering on terms and atoms based on a precedence * on function and
predicate symbols such that f * c * p for any non-constant function sym-
bol f , constant c, and predicate symbol p. The selection function SGF selects
one of the guards in any clause that is non-functional5 and contains at least one
guard; it selects one of the functional negative literals in a clause containing such
literals; and it does not select any literal in a clause containing a positive func-
tional literal but no negative functional literal. On guarded clauses, that is, the
class of clauses which contains the clause normal form of any guarded formula,
the selection function SGF is well-defined. In addition, the decision procedure
in [9] requires that in the computation of the clausification of guarded formulae
structural transformation [7,20] is used to introduce surrogates for universally
quantified subformulae. Let STGF denote this transformation.

We can use exactly the same ordering and selection function to obtain a
decision procedure for TrenGF .

Theorem 6. Let *GF and SGF be the ordering and selection function defined
above. Then I

SGF ,�GF
FG decides the satisfiability problem of TrenGF.

Proof. By Theorem 5, I
SGF ,�GF
FG is sound and complete. It remains to show ter-

mination. Let ϕ be a formula in TrenGF and Pc be the corresponding constant
flooded temporal problem. In analogy to [9], we use the structural transfor-
mation STGF in the computation of the clausification of Pc. Let Pc

Cls denote
Cls(STGF(Pc)). First, we give a syntactical characterisation of the clauses in
Pc

Cls and of the clauses we might have derived from it. To do so, we extend the
notion of a guarded clause to step clauses as follows. A step clause C ⇒ 
D
is guarded iff the first-order clause ¬C ∨D is guarded and C is monadic. Then
all the universal, initial, and step clauses in Pc

Cls are guarded. We can also show
that all inference steps possible by I

SGF ,�GF
FG on guarded (step) clauses will re-

sult in a guarded (step) clause. Second, the number of guarded (step) clauses
(up to variable renaming) over the signature Σ of Pc

Cls is finitely bounded, more
5 An expression is functional if it contains a constant or a function symbol, and non-

functional otherwise.
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precisely, there is a double exponential upper bound in the size of Σ on their
number. Consequently, any derivation from Pc

Cls will either eventually produce
the empty clause or no new clauses can be added to the derivation. �

Our second example is a decision procedure for TrenK and TrenDK based on
the resolution decision procedure for K and DK by Hustadt and Schmidt [13].
The procedure uses an atom ordering *K which is a recursive path ordering
based on a total precedence * on function and predicate symbols which basically
gives precedence to symbols of greater arity. The selection function SK maps
any clause to the empty set. The decision procedure also uses an additional
inference rule, namely splitting, to perform case analysis on clauses consisting of
variable-disjoint subclauses. While it is possible to extend the calculus IS,�

FG by a
splitting inference rule, it is easier to use splitting through new predicate symbols
instead [3,21]. Here, whenever we have a clause C ∨ D such that C and D are
variable-disjoint, we replace it by two clauses C ∨p and ¬p∨D, where p is a new
predicate symbol of arity 0 smaller than any other predicate symbol. Finally,
the procedure requires the use of structural transformation in the computation
of the clausification of formulae in K and DK. Here, certain occurrences of one-
variable literals with constant or duplicate variable arguments have to replaced
by surrogates (see [13] for details). Let STK denote this transformation.

Theorem 7. Let *K and SK be the ordering and selection function defined
above. Then I

SK,�K
K decides the satisfiability problem of TrenK and TrenDK.

Proof. Along the lines of the proof of Theorem 6. Let ϕ be a formula in TrenK
or TrenDK, let Pc be the corresponding constant flooded temporal problem, and
let Pc

Cls be Cls(STK(Pc)). The characterisation of clauses in Pc
Cls and of the

clauses we derive from it is based on the notions of (strongly) k-regular and
(strongly) CDV-free clauses introduced in [13]. Again, we need to extend these
notions to step clauses. We can then show that all universal, initial, and step
clauses in Pc

Cls are strongly CDV-free and k-regular, or strongly k-regular if ϕ
belongs to TrenDK. Inference steps restricted by *K and SK will also only derive
clauses with these properties. There is a double exponential upper bound on the
number of (strongly) k-regular, (strongly) CDV-free clauses in the size of the
signature of Pc

Cls . This shows termination of any derivation in I
SK,�K
K . �

7 Future Work

One motivation for our interest in classes decidable by ordered fine-grained reso-
lution with selection is that with the theorem prover TeMP [12] we have an im-
plementation of fine-grained resolution. TeMP takes advantage of the arithmetic
translation of temporal problems which allows us to use a first-order theorem
prover, in our case Vampire, to implement the inference rules of fine-grained reso-
lution. Consequently, we will have to transfer the restrictions imposed by ordered
fine-grained resolution with selection to the level of the first-order theorem prover
employed by TeMP to realise the decision procedures presented in this paper.
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Abstract. We show that for special types of extensions of a base theory,
which we call local, efficient hierarchic reasoning is possible. We identify
situations in which it is possible, for an extension T1 of a theory T0, to
express the decidability and complexity of the universal theory of T1 in
terms of the decidability resp. complexity of suitable fragments of the
theory T0 (universal or ∀∃). These results apply to theories related to
data types, but also to certain theories of functions from mathematics.

1 Introduction

Many problems in mathematics and computer science and, in particular, prob-
lems involving reasoning in and about complex systems, can be reduced to prov-
ing the satisfiability of conjunctions of literals modulo some background theory.
This theory may be quite complex: it can for instance be the extension of a base
theory with additional functions (free, monotone, or recursively defined) or a
combination of theories. It is therefore extremely important to find methods for
efficient reasoning in extensions and combinations of theories.

In this paper we address the problem of reasoning in extensions of theories.
We show that for special types of theory extensions, which we call local, hierar-
chic reasoning in which a theorem prover for the base theory is used as a “black
box” is possible. Many theories important for computer science or mathematics
are local extensions of a base theory. Examples are theories of data structures,
e.g. theories of lists (or arrays cf. [6]); but also theories of monotone functions or
of functions satisfying the Lipschitz conditions at a given point. We identify sit-
uations where the decidability of the universal theory of an extension of a theory
is a consequence of the decidability of a certain fragment of the base theory.

The notion of local extension of a theory which we introduce in this paper
generalizes the notion of locality of a theory introduced by Givan and McAllester
[7,8], and of locality of equational theories studied by Ganzinger [4]. For local
theories, validity of ground Horn clauses can be checked in polynomial time.
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Similar ideas also occurred in algebra. To prove that the uniform word problem
for lattices is decidable in polynomial time, Skolem (1920) used the following
idea: replace the lattice operations ∨ and ∧ by ternary relations r∨ and r∧,
required to be functional, but not necessarily total. The lattice axioms were
translated to a relational form, by flattening them and then replacing every
atom of the form x ∨ y ≈ z with r∨(x, y, z) (similarly for ∧-terms). Additional
axioms were added, stating that equality is an equivalence and that the relations
are compatible with equality and functional. This new presentation, consisting
only of Horn, function-free clauses, can be used for deciding in polynomial time
the uniform word problem for lattices. The correctness and completeness of
the method relies on the fact that every partially-ordered set (where ∨ and
∧ are partially defined) embeds into a lattice. The idea described above was
extended by Burris [2] to quasi-varieties of algebras. He proved that if a quasi-
variety axiomatized by a set K of Horn clauses has the property that every finite
partial algebra which is a partial model of the axioms in K can be extended to
a total algebra model of K then the uniform word problem for K is decidable in
polynomial time.

In [4], Ganzinger established a link between proof theoretic and semantic
concepts for polynomial time decidability of uniform word problems. He defined
two notions of locality for equational Horn theories, and established relation-
ships between these notions of locality and corresponding semantic conditions,
referring to embeddability of partial algebras into total algebras.

Our paper continues this line of research. Its main contributions are the fol-
lowing. First, we generalize in several ways the notion of locality of an equational
theory:

– We consider local extensions T0 ⊆ T1, where the base theory T0 can be
arbitrary. If T0 is the empty theory the original notion of locality is recovered.

– In defining locality of a theory extension T0 ⊆ T1 by a set K of formulae we
allow K to be an arbitrary set of clauses (not necessarily Horn).

Second, we relate the extended notions of locality we consider with semantic
properties, involving embeddability of partial algebras into total algebras.

Third, we use these results for hierarchic reasoning in local theory extensions,
and identify situations in which this allows us to express the complexity of the
universal theory of the extension as a function of the complexity of appropriate
fragments of the base theory. We also sketch a possibility of extending the results
beyond universally quantified formulae.

Structure of the Paper: Section 2 contains basic notions and notations. In Sec-
tion 3, embeddability conditions are introduced and illustrated by examples; in
Section 4 notions of locality of an extension are defined. The main contributions
of the paper are contained in Sections 5 and 6: In Section 5 we establish links
between various notions of locality of a theory extension and semantic proper-
ties, involving embeddability of partial algebras into total algebras. This helps
to identify cases in which suitable locality conditions for theory extensions hold.
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In Section 6 we establish parameterized complexity results of the universal the-
ory of the extension in terms of the complexity of fragments of the base theory.
Section 7 sketches a possibility of going beyond the universal fragment.

1.1 Idea

We illustrate the idea of our approach. Let R∪ Lλ1

f ∪ Lλ2
g be the extension of the

theory R of reals with function symbols f, g satisfying the following axioms:

(Lλ1

f ) |f(x)− f(c0)| ≤ λ1 · |x− c0| (Lλ2
g ) |g(x)− g(c0)| ≤ λ2 · |x− c0|

where c0, λ1, and λ2 are constants and the free variable x is, in both cases,
implicitly universally quantified. We want to prove:

R ∪ (Lλ1

f ) ∪ (Lλ2
g ) |= ∀x(|f(x) + g(x)− (f(c0) + g(c0))| ≤ (λ1 + λ2) · |x− c0|).

Standard theorem provers for first order logic cannot always be used in such
situations, as these can usually handle only approximations of the theory of real
numbers. Provers for reals do not know about additional functions. The Nelson-
Oppen method for reasoning in combinations of theories cannot be used either.
The method we propose reduces the task of proving the formula above to the
problem of checking the satisfiability of a set of constraints over R as follows:

Negate. Let K = (Lλ1

f ) ∪ (Lλ2
g ). Note that R ∪ K |= ∀xC(x) (where C(x) is

(|f(x) + g(x) − (f(c0) + g(c0))| ≤ (λ1 + λ2) · |x− c0|)) if and only if R ∪ K ∪G
is unsatisfiable, where G = |f(c) + g(c)− (f(c0) + g(c0))| �≤ (λ1 + λ2) · |c− c0| is
the set of ground clauses obtained from ¬∀xC(x) by Skolemization.

Take Ground Instances of Extension Axioms. We will show that R∪K∪G
is satisfiable if and only if R∪K[G]∪G has a partial model in which all terms in
the set st(K, G) consisting of all ground subterms in K or in G are defined (and
hence f(c0), g(c0), f(c), g(c) are defined). (K[G] denotes the set of all instances of
K in which the terms starting with f or g are in st(K, G).) We compute K[G]∪G
and flatten replacing the ground terms starting with f or g with new constants:

(K[G] ∪G)flat := f(c) ≈ d ∧ f(c0) ≈ d0 ∧ g(c) ≈ e ∧ g(c0) ≈ e0 ∧
|d− d0| ≤ λ1 · |c− c0| ∧ |d0 − d0| ≤ λ1 · |c0 − c0| ∧
|e− e0| ≤ λ2 · |c− c0| ∧ |e0 − e0| ≤ λ2 · |c0 − c0| ∧
|(d + e)− (d0 + e0)| ≤ (λ1 + λ2) · |c− c0|

Relational Translation. We compute the relational translation of the clauses
above, using instead of f and g the functional binary predicates rf and rg:

(K[G] ∪G)∗ := rf (c, d) ∧ rf (c0, d0) ∧ rg(c, e) ∧ rg(c0, e0) ∧
|d− d0| ≤ λ1 · |c− c0| ∧ |d0 − d0| ≤ λ1 · |c0 − c0| ∧
|e− e0| ≤ λ2 · |c− c0| ∧ |e0 − e0| ≤ λ2 · |c0 − c0| ∧
|(d + e)− (d0 + e0)| ≤ (λ1 + λ2) · |c− c0|

Fun := x1 ≈ x2 ∧R(x1, y1) ∧R(x2, y2) → y1 ≈ y2 for R = rf or R = rg

We will show that we only need to consider those instances Fun∗ of Fun in which
the rf resp. rg literals are the ground literals already occurring in (K[G] ∪G)∗,
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and that R ∪ (K[G] ∪ G)∗ ∪ Fun∗ has a (relational) model if and only if the
following set of constraints in R is satisfiable:

{λ1>0, λ2>0, (c≈c0 → d≈d0), (c≈c0 → e≈e0), (|d− d0| ≤ λ1 · |c− c0|),
(|e− e0| ≤ λ2 · |d− c0|), |(d + e)− (d0 + e0)| �≤ (λ1 + λ2) · |c− c0|}.

We proved the unsatisfiability of this set of non-linear constraints using the
redlog demo [3] (we considered the disjunction over the cases c ≤ c0 and
c > c0 and used quantifier elimination).

2 Basic Notions and Notations

Local Theories. The notion of local theory was introduced in [7,8] by Givan
and McAllester. A local theory is a set of Horn clauses K such that, for any
ground Horn clause C, K |= C only if alreadyK[C] |= C (where K[C] is the set of
instances of K in which all terms are subterms of ground terms in either K or C).
In [4], Ganzinger defined locality and stable locality of equational Horn theories,
and established relationships between these notions of locality and embeddability
of partial algebras into total algebras.

Total and Partial Algebras. We now present some generalities on partial
algebras. Further details on partial algebras can be found in [1].

A partial Σ-algebra is a structure (A, {fA}f∈Σ), where A is a non-empty set
and for every f ∈ Σ with arity n, fA is a partial function from An to A. A (total)
Σ-algebra is a partial Σ-algebra where all functions fA are total. In what follows
we usually denote with the same symbol both an algebra and its support.

The notion of evaluating a term t with respect to a variable assignment
β : X → A for its variables in a partial algebra A is the same as for total
algebras, except that this evaluation is undefined if t = f(t1, . . . , tn) and either
one of β(ti) is undefined, or else (β(t1), . . . , β(tn)) is not in the domain of fA.

A total map h : A → B between partial Σ-algebras A and B is called a
weak Σ-homomorphism if whenever fA(a1, . . . , an) is defined in A, then also
fB(h(a1), . . . , h(an)) isdefinedinB andh(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an)).
Apartial algebraAweaklyembeds intoa (total)algebraB if there exists an injective
weak Σ-homomorphism from A to B.

In what follows we will consider structures (A, {fA}f∈Σ, {PA}P∈Pred), where
Pred is a set of predicate symbols and (A, {fA}f∈Σ) is a partial Σ-algebra. We
will refer to this type of structures as Π-algebras (or Π-models), where Π =
(Σ, Pred). We say that a partial Π-algebra A weakly embeds into a (total) Π-
algebra B if there exists i : A → B which is an injective weak Σ-homomorphism
from A to B, and an embedding with respect to Pred.

We define Evans validity in structures (A, {fA}f∈Σ, {PA}P∈Pred), where Pred
is a set of predicate symbols and (A, {fA}f∈Σ) is a partial Σ-algebra. In what
follows the symbol ≈ standing for formal equality will be considered to be sym-
metric also syntactically, so s ≈ t denotes at the same time also t ≈ s. Let
β : X → A.
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(1) (A, β) |= t ≈ s if and only if (a) β(t) and β(s) are both defined and equal; or
(b) β(s) is defined, t = f(t1, . . . , tn) and β(ti) is undefined for at least one
of the direct subterms of t; or (c) both β(s) and β(t) are undefined.

(2) (A, β) |= t �≈ s if and only if (a) β(t) and β(s) are both defined and different;
or (b) at least one of β(s) and β(t) is undefined.

(3) (A, β) |= P (t1, . . . , tn) if and only if (a) β(t1), . . . , β(tn) are all defined and
(β(t1), . . . , β(tn))∈PA; or (b) at least one of β(t1), . . . , β(tn) is undefined.

(4) (A, β) |= ¬P (t1, . . . , tn) if and only if (a) β(t1), . . . , β(tn) are all defined and
(β(t1), . . . , β(tn)) �∈ PA; or (b) at least one of β(t1), . . . , β(tn) is undefined.

(A, β) satisfies a clause C (notation: (A, β) |= C) if (A, β) |= L for at least one
literal L in C. A satisfies C (notation: A |= C) if (A, β) |= C for all assignments
β. A satisfies a set of clauses K (notation: A |= K) if A |= C for all C ∈ K.

The notion of weak validity is obtained from Evans validity by replacing con-
ditions (1)(b) and (c) in the definition of truth of equality atoms with condition

(b’) at least one of β(s), β(t) is undefined.

Validity of non-equality literals is the same. The notion of weak validity extends
to clauses and sets of clauses in the usual way. We use the notation: (A, β) |=w L
for a literal L; (A, β) |=w C; A |=w C for a clause C, etc.

Example 1. Let A be a partial Σ-algebra, where Σ = {car/1, nil/0}. Assume
that nilA is defined and carA(nilA) is not defined. Then A �|= car(nil) ≈ nil (since
carA(nil) is undefined in A, but nil is defined in A); and A |= car(nil) �≈ nil,
A |=w car(nil) ≈ nil, A |=w car(nil) �≈ nil (because one term is not defined in A).

Theory Extensions. In this paper we consider extensions of theories, in which
the signature is extended by new function symbols. For the sake of simplicity we
assume that the set of predicate symbols remains unchanged in the extension.
A theory can be regarded as a set of formulae. Then extension with a set of
formulae is set union. In what follows we regard theories as sets of formulae. 1

Let T0 be an arbitrary theory with signature Π0 = (Σ0, Pred), where the
set of function symbols is Σ0. We consider extensions T1 of T0 with signature
Π = (Σ, Pred), where the set of function symbols is Σ = Σ0 ∪ Σ1. We assume
that T1 is obtained from T0 by adding a set K of (universally quantified) clauses.

A partial model of T1 with totally defined Σ0 function symbols is a partial
Π-algebra A where (i) the reduct A|Π0 of A to the signature Π0 is a model of
T0 (in the classical sense, i.e. all operations in Σ0 are total); (ii) A satisfies (in
the Evans sense) all clauses in K.

A partial Π-algebra A is a weak partial model of T1 with totally defined Σ0

function symbols if (i) A|Π0 is a (classical) model of T0 and (ii’) A weakly satisfies
all clauses in K.
1 If a theory T0 is regarded as a collection of models, then its extension with a set K

of formulae consists of all structures (in the extended signature) which are models
of K and whose reduct to the signature of T0 is in T0. All the notions defined in this
paper can easily be reformulated to a setting in which T0 is a collection of models.
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In what follows, if the base theory T0 and its signature are clear from the
context, we will refer to partial models of T1, resp. weak partial models of T1.
We will denote by PMod(Σ1, T1) the class of all partial models of T1 in which
the functions in Σ1 are partial, and all other function symbols are total; and
by PModw(Σ1, T1) the class of all weak partial models of T1 in which the Σ1

functions are partial and all the other function symbols are total. We denote by
PModf(Σ1, T1), resp. PModf

w(Σ1, T1) the class of all finite partial models (resp.
weak partial models) of T1, with total Σ0 functions, and partial Σ1 functions.
Mod(T1) denotes the class of all models of T1 in which all functions in Σ0 ∪ Σ1

are totally defined. Note that Mod(T1) ⊆ PMod(Σ1, T1) ⊆ PModw(Σ1, T1).

3 Embeddability

For theory extensions T0 ⊆ T1 = T0 ∪K, where K is a set of clauses, and for the
classes of partial algebras mentioned above we consider the following conditions:

(Emb) Every A ∈ PMod(Σ1, T1) weakly embeds into a total model of T1.
(Embw) Every A ∈ PModw(Σ1, T1) weakly embeds into a total model of T1.

Weaker conditions, which only refer to embeddability of finite partial models can
also be defined. These will be denoted by (Embf), resp. (Embf

w). We also define
stronger notions of embeddability, which we call completability:

(Comp) Every A ∈ PMod(Σ1, T1) weakly embeds into a total model B of T1
such that A|Π0 and B|Π0 are isomorphic
(or, more generally: elementarily equivalent).

(Compf), (Compw) and (Compf
w) are defined analogously.

Example 1. We present several examples of theory extensions for which em-
bedding conditions among those mentioned above hold.

(1) Shallow extensions: Suppose that T0 ⊆ T1 is a shallow theory extension,
i.e. T1 = T0 ∪K, where K is a set consisting only of clauses in which partial
function symbols occur only in equality atoms, only positively and only at
the root of terms. Assume that all extension functions are declared partial.
Then the extension T0 ⊆ T1 satisfies the embeddability condition (Comp) [6].
Extensions with functions defined by tail recursions are shallow [6].

(2) Extensions with free functions: Any extension of a theory T0 with a set
of free function symbols satisfies condition (Compw).

(3) Extensions with selector functions: Let T0 be a theory with signature
Π0 = (Σ0, Pred), let c ∈ Σ0 with arity n, and let Σ1 = {s1, . . . , sn} consist
of n unary function symbols. Let T1 = T0 ∪ Sel (a theory with signature
Π = (Σ0∪Σ1, Pred)) be the extension of T0 with the set Sel of clauses below.
Then the extension T0 ⊆ T1 satisfies condition (Comp).
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If in addition T0 satisfies the (universally quantified) formula Inj(c) (i.e.
c is injective in T0) then the extension T0 ⊆ T1 satisfies condition (Compw).

(Sel) s1(c(x1, . . . , xn)) ≈ x1

· · ·
sn(c(x1, . . . , xn)) ≈ xn

x ≈ c(x1, . . . , xn) → c(s1(x), . . . , sn(x)) ≈ x

(Inj(c)) c(x1, . . . , xn) ≈ c(y1, . . . , yn)→ (
n∧

i=1

xi ≈ yi)

(4) Extensions with monotone functions: Let T0 be one of the following
theories: (1) P (posets), (2) T (totally-ordered sets), (3) DO (dense totally-
ordered sets), (4) S (semilattices), (5) L (lattices), (6) DL (distributive lat-
tices), (7) B (Boolean algebras), (8) R (theory of reals).

Let Monf be the monotonicity axiom:

(Monf )
n∧

i=1

xi ≤ yi → f(x1, . . . , xn) ≤ f(y1, . . . , yn).

The extension T0 ⊆ T0∪Monf satisfies condition (Embw) in the cases (1)–(5);
satisfies condition (Compf

w) in the cases (6) and (7); and satisfies condition
(Compw) in case (8).

(5) Lipschitz functions: The extension R ⊆ R∪(Lλ
f ) of R with a unary function

which is λ-Lipschitz in a point x0 (for λ > 0) satisfies condition (Compw).

(Lλ
f ) ∀x |f(x)− f(x0)| ≤ λ · |x− x0|

4 Local Theory Extensions

We now define two notions of locality of a theory extension which generalize the
notion of local equational theory studied by Ganzinger in [4] and of locality of
a theory in general [7,8].

Let K be a set of clauses in the signature Π = (Σ0 ∪ Σ1, Pred). In what
follows, when we refer to sets G of ground clauses we assume that they are in
the signature Πc = (Σ ∪Σc, Pred), where Σ = Σ0 ∪Σ1, and Σc is a set of new
constants.

If Ψ is a set of ground Σ0∪Σ1∪Σc-terms, where Σc is a set of (new) constants,
we denote by KΨ the set of all instances of K in which all terms starting with
a Σ1-function symbol are ground terms in Ψ . We denote by KΨ the set of all
instances of K in which all variables occurring below a Σ1-function symbol are
instantiated with ground terms in the set TΣ0(Ψ) of Σ0-terms generated by Ψ .

If G is a set of ground clauses and Ψ = st(K, G) is the set of ground subterms
occurring in either K or G then we write K[G] := KΨ , and K[G] := KΨ .

We identify the following types of locality of a theory extension T0 ⊆ T1,
where T1 = T0 ∪ K with K a set of (universally quantified) clauses:
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(Loc) For every set G of ground clauses T1 ∪G |=⊥ iff T0 ∪ K[G] ∪G has
no weak partial model in which all terms in st(K, G) are defined.

(SLoc) For every set G of ground clauses T1 ∪G |=⊥ iff T0 ∪ K[G] ∪G has
no partial model in which all terms in st(K, G) are defined.

Weaker notions (Locf), resp. (SLocf) can be defined if we require that the re-
spective conditions hold only for finite sets G of ground clauses. An extension
T0 ⊆ T1 is local (stably local) if it satisfies condition (Locf) (resp. (SLocf)). A local
(stably local) theory [4] is a local (stably local) extension of the empty theory.

5 Locality and Embeddability

We establish links between the notions of locality and embeddability. This ex-
tends the results established for local equational theories in [4].

Let T0 be an arbitrary theory with signature Π0 = (Σ0, Pred). Let T1 be
an extension of T0 by a set K of clauses in signature Π = (Σ0 ∪ Σ1, Pred).
Under appropriate assumptions, locality implies embeddability. The converse,
which is proved in this section, will be used to provide examples of local theory
extensions.

5.1 Flattening of Goals

We first show that in the locality condition we can assume, w.l.o.g., that G
consists only of flat and linear (resp. purified) clauses.

We say that a ground clause is Σ1-flat if only constants appear as arguments
of function symbols in Σ1. A Σ1-flat ground clause is Σ1-linear if whenever a
constant occurs in two terms in the clause starting with function symbols in Σ1,
the two terms are identical, and if no term starting with a function symbol in
Σ1 contains two occurrences of the same constant.

Any set G of ground clauses in a signature Σ containing Σ1 can be trans-
formed into a set Gflin(Σ1) of ground clauses in which subterms starting with
function symbols in Σ1 are flat and linear. This can be done by introducing, in
a bottom-up manner, new constants for subterms occurring below functions in
Σ1, and adding the corresponding definitions to the set of clauses. A set G of
ground clauses can be transformed into a purified set of clauses Gsep(Σ1) (i.e. the
function symbols in Σ1 are separated from the other symbols) by introducing,
in a bottom-up manner, new constants ct for subterms t = f(g1, . . . , gn) with
f ∈ Σ1, gi ground Σ0 ∪Σc-terms (where Σc is a set of constants which contains
the constants introduced by flattening), together with corresponding definitions
ct ≈ t. These transformations preserves satisfiability and unsatisfiability with
respect to total algebras, and also with respect to partial algebras in which all
ground subterms which are flattened are defined.

Lemma 1. Let K be a set of clauses containing only Σ1-flat ground subterms.
Assume that for any set G of Σ1-flat and Σ1-linear (resp. purified, resp. flat,
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linear and purified) ground clauses, if T0 ∪ K ∪ G |=⊥ then T0 ∪ K[G] ∪ G has
no partial algebra model in which all terms in st(K, G) are defined. Then the
extension T0 ⊆ T0 ∪ K satisfies condition (Loc).

5.2 Embeddability of Weak Partial Models Implies Locality

We prove that for extensions which are Σ1-flat and Σ1-linear embeddability of
weak partial models into total models implies locality.

A non-ground clause is Σ1-flat if function symbols (including constants) do
not occur as arguments of function symbols in Σ1. A Σ1-flat non-ground clause
is called Σ1-linear if whenever a variable occurs in two terms in the clause which
start with function symbols in Σ1, the two terms are identical, and if no term
which starts with a function in Σ1 contains two occurrences of the same variable.

Theorem 2. Let K be a set of clauses which are Σ1-flat and Σ1-linear, and let
T1 = T0 ∪ K. Then the following hold:

(1) If the extension T0 ⊆ T1 satisfies (Embw) then it satisfies (Loc).
(2) Assume that T0 is a locally finite universal theory, and that K contains only

finitely many ground subterms. If the extension T0 ⊆ T1 satisfies (Embf
w),

then T0 ⊆ T1 satisfies (Locf).

Proof : (1) Assume that T0 ∪ K is not a local extension of T0. Then there exists
a set G of ground clauses (with additional constants) such that T0 ∪ K ∪G |=⊥
but T0 ∪ K[G] ∪ G has a weak partial model P in which all terms in st(K, G)
are defined. By Lemma 1 we can assume w.l.o.g. that G = G0 ∪ G1, where G0

contains no function symbols in Σ1 and G1 consists of ground unit clauses of the
form f(c1, . . . , cn) ≈ c, where c1, . . . , cn, c are constants in Σ0∪Σc and f ∈ Σ1.2

We construct another structure, A, having the same support as P , which
inherits all relations in Pred and all maps in Σ0 ∪Σc from P , but on which the
domains of definition of the Σ1-functions are restricted as follows: for every f ∈
Σ1, fA(a1, . . . , an) is defined if and only if there exist constants c1, . . . , cn such
that f(c1, . . . , cn) is in st(K, G) and ai = ci

P for all i ∈ {1, . . . , n}. In this case
we define fA(a1, . . . , an) := fP (c1

P , . . . , cn
P ). The reduct of A to (Σ0 ∪ Σc, Pred)

coincides with that of P . Thus, A is a model of T0∪G0. By the way the operations
in Σ1 are defined in A it is clear that A satisfies G1, so A satisfies G.

To show that A |=w K we use the fact that if D is a clause in K and β : X → A
is an assignment in which β(t) is defined for every term t occurring in D, then
(by the way Σ1-functions are defined in A) we can construct a substitution σ
with σ(D) ∈ K[G] and β ◦ σ = β. As (P, β) |=w σ(D) we can infer (A, β) |=w D.

As A |=w K, A weakly embeds into a total algebra B satisfying T0 ∪ K. But
then B |= G, so B |= T0 ∪ K ∪G, which is a contradiction.

2 All results below hold if only purified goals are considered; flattening and linearity
of goals is not absolutely necessary.
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(2) Proof similar to (1), with the difference that we start with a finite set G of
ground clauses, and as support for A we take {tP | t ∈ TΣ0(st(K, G))}; all opera-
tions and relations are defined as above. T0 is a universal theory, so A|Π0 (a Π0-
substructure of P|Π0) is also a model of T0. As st(K, G) is finite and T0 is locally
finite, A is finite, so (Embf

w) is sufficient to find a total model B of T0 ∪K∪G. �

Example 2. The following theory extensions T0 ⊆ T1 are local:

(1) Any extension T1 of a theory T0 with a set of free function symbols.
(2) Any extension T1 of a theory T0 with a set of selectors {s1, . . . , sn} for an

n-ary function c which is injective in T0.
(3) The extension of any of the theories T0 in Example 1(4) with monotone

functions: T1 = T0 ∪ Monf , where Monf is the monotonicity axiom of the
n-ary function f .

(4) The extension of the theory of reals with a λ-Lipschitz function at x0.

Proof : (Sketch) Locality follows from the embeddability properties in Example 1.
Ad (3): To prove condition (Locf) when T0 is DL or B it suffices to show that
(Embf

w) holds, because these theories are universal and locally finite. �

5.3 Embeddability of Evans Partial Models Implies Stable Locality

We now show that, for an extension T1 = T0 ∪ K of a universal theory T0,
embeddability of Evans partial models into total models implies stable locality.

Theorem 3. Let T0 be a universal theory and K be a set of clauses. Then:

(1) If the extension T0 ⊆ T1 satisfies (Emb) then it satisfies (SLoc).
(2) Assume that T0 is a locally finite universal theory, and that K contains only

finitely many ground subterms. If the extension T0 ⊆ T1 satisfies (Embf),
then T0 ⊆ T1 satisfies (SLocf).

Proof : The proof is similar to that of Theorem 2. The first difference is in
the construction of the partial model A of T0 ∪ K ∪ G. Let A = {tP | t ∈
TΣ0(st(K, G))}. Define the functions and relations in Π0 as in P . If f ∈ Σ1 is an
n-ary function and t1P , . . . , tnP ∈ A, then fA(t1P , . . . , tnP ) is defined and equal to
tP if and only if tP = f(t1, . . . , tn)P ∈ A. A|Π0 is a Π0-substructure of P|Π0 . As
T0 is a universal theory, A|Π0 is a total model of T0. As all terms in st(K, G) are
defined both in P and in A, and P |= G, A satisfies all clauses in G. To show
that A satisfies K note that every assignment β : X → A defines at least one
substitution σ : X → TΣ0(st(K, G)) such that (σ(t))P = β(t). Then σ(D) is an
instance of D in K[G], so P |= σ(D), hence (A, β) |= D. It follows that A satisfies
T0 ∪ K ∪G. The existence of a total model of T0 ∪K ∪G follows from (Emb).

(2) If G is a finite set of clauses then the additional conditions guarantee
that A is finite, so only embeddability of finite partial models is necessary in the
proof. �
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Example 3. (1) A shallow extension of a universal theory is stably local.
(2) Let T0 be a universal theory with signature Π0 = (Σ0, Pred), and let c ∈
Σ0 be a function symbol with arity n. Let Π = (Σ0 ∪ Σ1, Pred), where Σ1 =
{s1, . . . , sn}. Let T1 = T0 ∪ Ksel be the extension of T0 with the selector axioms
for the unary functions s1, . . . , sn. Then T0 ⊆ T1 satisfies condition (SLoc).

6 Relational Encodings, Decidability and Complexity

The locality conditions we consider relate satisfiability in total models to satisfi-
ability of certain ground instances with respect to partial models. We can replace
reasoning about partially defined functions with reasoning about relations.

For the signature Π = (Σ0∪Σ1, Pred) let Π∗ denote the signature (Σ0, Σ
∗
1 ∪

Pred), where every n-ary function symbol f in Σ1 is replaced by an (n+1)-ary re-
lation symbol rf . If A is a Π-algebra, its relational variant is the Π∗-structure A∗

for which rf
A(a1, . . . , an, a) if and only if fA(a1, . . . , an) is defined and equal to a.

The idea of the relational translation is to replace each atom f(c1, . . . , cn) ≈ c
with the rf (c1, . . . , cn, c).

We use the relational translation to establish relationships between the de-
cidability resp. complexity of the universal clause theory of the extension and
the decidability resp. complexity of a suitable fragment of the base theory.

6.1 Flattening and Relational Encoding

The locality conditions defined in Section 4 require that T1 ∪ G is satisfiable
(where G is a set of ground clauses) if and only if T0 ∪K∗[G] ∪G has a (Evans,
weak, finite) partial model with additional properties, where, depending on the
notion of locality, K ∗ [G] is K[G] or K[G]. In these sets of clauses the function
symbols in Σ1 only occur at the root of ground terms. Therefore, they can be
flattened as explained in Section 5.1. They can also be purified (i.e. the func-
tion symbols in Σ1 are separated from the other symbols) by introducing, in a
bottom-up manner, new constants ct for subterms t = f(g1, . . . , gn) with f ∈ Σ1,
gi ground Σ0 ∪Σc-terms (where Σc is a set of constants which contains the con-
stants introduced by flattening, resp. purification), together with corresponding
definitions ct ≈ t. The set of clauses thus obtained has the formK0∪G0∪D, where
D is a set of ground unit clauses of the form f(g1, . . . , gn)≈c, where f ∈ Σ1, c
is a constant, g1, . . . , gn are ground terms without function symbols in Σ1; and
K0 and G0 are clauses without function symbols in Σ1. (If we flatten and then
purify K ∗ [G] ∪G we ensure that D consists of ground unit clauses of the form
f(c1, . . . , cn)≈c, where f ∈ Σ1, and c1, . . . , cn, c are constants.) These flattening
and purification transformations preserve both satisfiability and unsatisfiability
with respect to total algebras, and also with respect to partial algebras in which
all ground subterms which are flattened are defined.

For the sake of simplicity in what follows we will always flatten and then
purify G and K ∗ [G]. All results also hold if only purification is applied.
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Lemma 4. Let K be a set of clauses and G a ground clause, and let K0∪G0∪D
be obtained from K∗[G] ∪ G by flattening and purification, as explained above.
Then the following are equivalent:

(1) T0∪K∗[G]∪G has a partial model in which all terms in st(K, G) are defined.
(2) T0∪K0∪G0∪D has a partial model with all terms in st(K0, G0, D) defined.
(3) T0∪K0∪G0∪Fun(D∗)∪D∗ has a relational model, where D∗={rf (c1, . . . , cn, c) |

(f(c1, . . . , cn) ≈ c) ∈ D} and Fun(D∗) = {
∧n

i=1 ci ≈ di ∧ rf (c1, . . . , cn, c) ∧
rf (d1, . . . , dn, d) → c ≈ d | f ∈ Σ1, r

f (c1, . . . , cn, c), rf (d1, . . . , dn, d) ∈ D∗}.
(4) T0 ∪ K0 ∪G0 ∪N0 has a (total) model, where N0 = {

∧n
i=1 ci ≈ di → c = d |

rf (c1, . . . , cn, c), rf (d1, . . . , dn, d) ∈ D∗}.

6.2 Decidability and Complexity

Let T0 be an arbitrary Π0-theory, where Π0 = (Σ0, Pred) and let T1 = T0 ∪ K,
where K is a finite set of clauses in a signature Π = (Σ0 ∪Σ1, Pred).

Theorem 5. Assume that the theory extension T0 ⊆ T1 either (1) satisfies con-
dition (Locf), or else (2) satisfies condition (SLocf) and T0 is locally finite. Then:

(a) If all variables in the clauses in K occur below some function symbol from
Σ1 and if the universal theory of T0 is decidable, then the universal theory
of T1 is decidable.

(b) If the ∀∃ theory of T0 is decidable then the universal theory of T1 is decidable.

Proof : It is sufficient to show that the universal clause theory of T1 is decidable.
We present the proofs under hypotheses (1) and (2) in parallel.

Let C be a clause in the signature Π with variables x1, . . . , xn. Obviously,
T0 ∪ K |= ∀x1 . . .xnC if and only if T0 ∪ K ∪ G is unsatisfiable, where G is the
set of ground unit clauses obtained from ∃x1 . . .xn¬C by Skolemization. By the
locality assumption, the last statement is equivalent to saying that T0∪K∗[G]∪G
has no (weak) partial model in which all terms in st(K, G) are defined (where
K∗[G] is K[G] in the case of local extensions and K[G] for stably local extensions).
Let K0 ∪G0∪D be the flattened form of K∗ [G]∪G. By Lemma 4 we know that
T0 ∪ K ∗ [G] ∪G has no (weak) partial model in which all terms in st(K, G) are
defined if and only if T0∪K0∪G0∪N0 has a total model, where N0 = {

∧n
i=1 ci ≈

di → c ≈ d | f(c1, . . . , cn) ≈ c, f(d1, . . . , dn) ≈ d ∈ D}.
Flattening and purification increase the size (i.e. the total number of symbols)

of clauses only by a linear factor. So the size of K0 is linear in the size of K ∗ [G]
and the size of G0 ∪D is linear in the size of G ∪ K. N0 contains at most |D|2
clauses, so the number of clauses in N0 is quadratic in the number of Σ1 ground
terms occurring in K and G. The maximal length of the clauses in N0 is m + 1,
where m is the maximal arity of a function symbol in Σ1. The only difference
between (1) and (2) is the number of clauses in K ∗ [G].

(1) For a local extension, K ∗ [G] = K[G]. If K is finite then K[G] has at most
nc · nt · |st(K, G)| clauses, where nc is the number of clauses in K and nt the
maximal number of distinct Σ1 terms in a clause in K. Then K0 ∪ G0 ∪ N0 is
finite, of size polynomial in the size of K ∪G.
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(2) For a stably local extension, K∗ [G] = K[G]. If K is finite and T0 is locally
finite then there are only finitely many equivalence classes in TΣ0(st(K, G)) with
respect to equality modulo T0 (say nK,G). If we only choose the representatives
for instantiation in K[G], the resulting set of clauses is finite, of size polynomial
in nK,G and in the size of K ∪G. Then K0 ∪G0 ∪N0 is finite.

The proof now continues for both local and stably local extensions:

(a) Assume that for every clause in K, every variable occurs below a Σ1 function.
Then K[G] (and K0) consists only of ground clauses. If checking the satisfiability
of (existentially quantified) conjunctions of clauses w.r.t. T0 is decidable, then
the universal clause theory of T1 is decidable, and its complexity is determined
by the complexity of satisfiability checking for sets of clauses in T0 and the size
of K0 ∪ G0 ∪ N0. The problem of checking the satisfiability of conjunctions of
clauses is decidable iff the universal theory of T0 is decidable: if {k1, . . . , km} is
the set of all constants that occur in K0 ∪G0 ∪N0 the following are equivalent:

(i) T0 ∪
∧

C∈K0∪G0∪N0
C(k1, . . . , km) |=⊥.

(ii) T0 ∪ ∃x1, · · ·xm(
∧

C∈K0∪G0∪N0
C(x1, . . . , xm)) |=⊥.

(iii) T0 |= ∀x1, · · ·xm(
∨

C∈K0∪G0∪N0
¬C(x1, . . . , xm)).

(b) If some variables in clauses in K do not occur below Σ1-function symbols then
the clauses in K0 are not necessarily ground: they contain variables {y1, . . . , yk},
and constants in {c1, . . . , cn}. The following statements are equivalent:

(i) T0∪
(∧

C∈K0
∀y1 . . . ∀yk C(c1, . . . , cn, y1, . . . , yk) ∧

∧
C∈G0∪N0

C(c1, . . . , cn)
)
|=⊥ .

(ii) T0 ∪∃x1 . . . xn

(∧
C∈K0

∀y1 . . . ykC(x1 . . . xn, y1 . . . yk)∧
∧

C∈G0∪N0
C(x1. . . xn)

)
|=⊥

.

(iii) T0 |=∀x1 . . . xn

(∨
C∈K0

∃y1 . . . yk¬C(x1 . . . xn, y1 . . . yk) ∨
∨

C∈G0∪N0
¬C(x1 . . . xn)

)
.

If the ∀∃ fragment of T0 is decidable then we can use this and the equivalence
of (i) and (iii) to check whether T0 ∪ K0 ∪ G0 ∪ N0 is satisfiable. The size of
K0 ∪ G0 ∪N0 and the complexity of the ∀∃ fragment of T0 then determine the
complexity of the universal fragment of T1. �

Corollary 6. Let T0 be a theory for which the satisfiability of a set of ground
clauses of size n can be checked in time at most g(n), and let T0 ⊆ T0 ∪ K be
a local theory extension where in every clause in K each variable occurs below
some extension function. The validity of a set of clauses in the extension can be
checked in time g(c · n2), where c is a constant. This holds for:

(1) Extensions with free function symbols (alternative proof of results in [5,10]).
(2) Extensions with monotone functions (see also Example 4)
– If T0 is the theory DL (of distributive lattices) or B (of Boolean algebras) the

complexity of the universal clause theory of an extension of T0 with monotone
functions is in co-NP.

– If T0 is the theory L (of lattices) or SL (of semilattices) then the complexity
of the universal clause theory of an extension of T0 with monotone functions
is in co-NP, and that of the universal Horn theory of T1 is in ptime.
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(3) Extensions of theories of injective constructors with selectors.
(4) Extensions of R with Lipschitz functions: the universal clause theory is in

exptime (an example was already presented in Section 1.1).

Example 4. Let T0 be a theory (with a binary predicate ≤), and T1 a local
extension of T0 with two monotone functions f and g. Consider the following
problem:

T0 ∪Monf ∪Mong |= ∀x, y, z, u, v(x ≤ y ∧ f(y ∨ z) ≤ g(u ∧ v) → f(x) ≤ g(v))

The problem reduces to the problem of checking whether T0∪Monf∪Mong∪G |=⊥,
where G = c0 ≤ c1 ∧ f(c1 ∨ c2) ≤ g(c3 ∧ c4) ∧ f(c0) �≤ g(c4).

After flattening, using the locality of the extension T0 ⊆ T1, making the rela-
tional translation, and computing N0, we obtain the following set of clauses:

c0 ≤ c1 rf (d1, e1) d1 = c0 → e1 = e3 d1 ≤ c0 → e1 ≤ e3

d1 = c1 ∨ c2 rf (c0, e3) d2 = c4 → e2 = e4 c0 ≤ d1→ e3 ≤ e1

d2 = c3 ∧ c4 rg(c4, e4) d2 ≤ c4 → e2 ≤ e4

e1 ≤ e2 rg(d2, e2) d4 ≤ d2 → e4 ≤ e2

e3 �≤ e4

(1) Assume T0 is DL or B. The universal clause theory of DL (resp. B) is the
theory of the two element lattice (resp. two element Boolean algebra), so testing
Boolean satisfiability is sufficient. (This is in NP.) We proved unsatisfiability
using spass [11], but SAT solvers such as, e.g. Chaff [9], can be used as well.
(2) If T0 = L we can reduce the problem above to the problem of checking the
satisfiability of a set of ground Horn clauses (via the relational translation of
Skolem described in the introduction). This can be checked in ptime.
(3) If T0 = R we first need to explain what ∨ and ∧ are. For this, we replace
d1 = c1 ∨ c2 with (c1 ≤ c2 → d1 = c2) ∧ (c2 < c1 → d1 = c2) and similarly for
d2 = c3 ∧ c4. We proved unsatisfiability using the redlog demo [3].

We can therefore conclude that in all cases above:
T1 |= ∀x, y, z, u, v(x ≤ y ∧ f(y ∨ z) ≤ g(u ∧ v) → f(x) ≤ g(v)).

7 Beyond the Universal Fragment

Analyzing the proof of Theorems 2 and 3 we notice that the embeddability con-
ditions (Comp) and (Compw) imply, in fact, stronger locality conditions. Con-
sider a theory extension T0 ⊆ T0 ∪ K with a set K of formulae of the form
∀x1 . . .xn(Φ(x1, . . . , xn) ∨ C(x1, . . . , xn)), where Φ(x1, . . . , xn) is an arbitrary
first-order formula in the base signature Π0 with free variables x1, . . . , xn, and
C(x1, . . . , xn) is a clause in the signature Π .

We can extend the notion of locality of an extension accordingly:

(ELoc) For every formula Γ = Γ0 ∪G, where Γ0 is a Π0-sentence and G is a
set of ground clauses, T1 ∪ Γ |=⊥ iff T0 ∪K[Γ ] ∪ Γ has no weak
partial model in which all terms in st(K, G) are defined.

A stable locality condition (ESLoc) can be defined similarly. The proofs of The-
orems 2 and 3 can be adapted with minimal changes to prove a stronger result:
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Theorem 7. (1) Assume all terms of K starting with a Σ1 function are flat and
linear. If the extension T0 ⊆ T1 satisfies (Compw) then it satisfies (ELoc).

(2) Assume that T0 is a universal theory. If the extension T0 ⊆ T1 satisfies
(Comp) then it satisfies (ESLoc).

Proof : (Idea) By (Comp), the partial model and its total completion have sup-
ports whose Π0-reducts are isomorphic, hence elementarily equivalent. Therefore
the (weak) embedding guaranteed by (Compw) resp. (Comp) preserves and re-
flects the truth of all first-order formulae in the base signature. �

Further generalizations are possible (concerning both the form of the set of
extension formulae, and the form of the goals). This is work in progress.

8 Conclusions

We introduced notions of locality for theory extensions and showed that for local
theory extensions we may regard w.l.o.g. the extension functions as functional
relations. Using a relational translation we identified situations where it is pos-
sible to express the decidability (complexity) of an extension T1 in terms of the
decidability (complexity) of a fragment of the base theory T0 (universal or ∀∃).
These results apply to theories of data types and to some theories of functions
from algebra or mathematical analysis.

There seem to exist relationships with results on combinations of non stably
infinite theories [10]. The result on extensions of an arbitrary theory with free
functions which we obtain as an example was discovered independently in a dif-
ferent context by Ganzinger [5] and Tinelli and Zarba [10]. However, here we go
beyond analyzing mere combinations of theories: we look at proper extensions,
in which the extension axioms contain functions from the base theory. In this
paper we restrict ourselves to one-sorted theories. Similar results can be obtained
in a many-sorted framework.
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rect result of discussions and joint work with Harald Ganzinger during the last
years. Some of the ideas on local extensions sketched in [6] are now presented
in full detail and generalized. I thank Uwe Waldmann for discussions on partial
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Abstract. Proof planning is an automated reasoning technique which
improves proof search by raising it to a meta-level. In this paper we apply
proof planning to First-Order Linear Temporal Logic (FOLTL), which
can be seen as a quantified version of Linear Temporal Logic, overcoming
its finitary limitation. Automated reasoning in FOLTL is hard, since it
is non-recursively enumerable; but its expressiveness can be exploited
to precisely model the behaviour of complex, infinite-state systems. In
order to demonstrate the potentiality of our technique, we introduce a
case-study inspired by the Feature Interactions problem and we model it
in FOLTL; we then describe a set of methods which tackle and solve the
validation problem for a number of properties of the model; and lastly
we present a set of experimental results showing that the methods we
propose capture the common patterns in the proofs presented, guide the
search at the object level and let the overall system build large and highly
structured proofs. This paper to some extent improves over previous work
that showed how proof planning can be used to detect such interactions.

1 Introduction

Conceived in the early 80s by Bundy, Proof Planning [2] has proved along the
years to be a sophisticated, effective technique for doing automated reasoning in
complex frameworks, where standard theorem proving can do little; especially,
e.g., in mathematical reasoning, proof by induction [4] and non-standard analysis
[23]. (For more details about proof planning, see also [3,22,24]).

In proof planning search is raised to a meta-level. Rather than exploring
a space of inference rules applied backwards to a goal formula, as is standard
in theorem proving, in proof planning first a proof plan is generated, roughly
comparable to a proof tree, but in which nodes are labelled by possibly unsound
macro-steps of reasoning (methods) rather than by inference rules. Standard
examples of methods are case-splits and induction schemas. If a proof plan is
found, its soundness is verified by extracting a proof from it; this is accomplished
by having tactics attached to methods, which (partially) specify how a single
method is translated to a set of inference rules. The key idea is that the meta-
search space is typically orders of magnitude smaller than the original one, and
little or no backtracking is likely to occur. This enables proof planning to tackle
logics (and the associated problems) normally beyond the capacity of standard
theorem provers. Of course, no claim of completeness can be made about the
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process — proof planning can fail either at the planning level (no plan could be
found) or at the proving level (no proof of the input formula could be extracted
from the plan); therefore this technique is best applied to very complex logics
for which an incomplete approach is better than no approach at all.

In this paper we apply proof planning to such a complex logic, First-Order
Linear Temporal Logic (FOLTL), which can be seen as the first-order-style
quantified counterpart of Linear Temporal Logic (LTL). FOLTL is not only
undecidable but indeed non-recursively enumerable [19]; but it is also very ex-
pressive, so that it can be used, as is the case here, to precisely model complex
systems beyond the reach of finitary methods like model-checking, automata- or
LTL-based methods. As far as we know, so far there are no effective, general-
purpose automated reasoning approaches to FOLTL1; the aim of this paper is
to show that proof planning can actually make the situation better.

We choose to study a well-known problem in Formal Methods, Feature In-
teractions in Telecommunication Systems (FIs, see [7]). We build an abstract
FOLTL model of part of the problem and devise a set of proof planning meth-
ods which let us validate a number of interesting properties of the model. Al-
though the case-study is not yet ready to be presented as a general solution
to the problem of FIs, we believe it is an interesting application of proof plan-
ning, and can be extended and refined to eventually become a tool for Formal
Methods, possibly and likely in combination with push-button techniques such
as model-checking. In view of this, we recall that previous work, e.g., [17,16,11]
already showed how proof planning can actually be used to detect FIs, although
that usually requires reasoning by refutation; whereas, so far, our approach only
works by proving statements.

Proof plans can be compared to sketches of human proofs, reflecting the
intuitions of the mathematician, while the details are left to a subsequent phase.
The experimental results we show indicate that this actually is the case, at least
for the case-study considered: several similar properties are planned using the
same sets of methods, and the proofs then generated share a common structure.
Moreover, the approach requires a reasonable amount of computer resources,
and an amount of human intervention which, though initially high, decreases as
more and more problems are tackled.

The paper is structured as follows: Section 2 gives some preliminaries about
FOLTL and proof planning; Section 3 introduces our case-study and the way
we build the model of the problem; Section 4 describes the methods devised to
solve it; Section 5 shows the experimental results and comments on them; lastly
Section 6 contains comparison with related work, conclusions and future work.

2 Preliminaries

In this Section we first sketch our presentation of FOLTL and the sequent
calculus we will be using. For more details, the reader can refer to [10].
1 Interesting results have been obtained, though, in applying clausal resolution to the

monodic fragment of FOLTL, see, e.g., [13].
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FOLTL. Our presentation of FOLTL extends first-order logic with the unary
temporal operators � (“always”), ♦ (“eventually”) and © (“next”) and the
binary temporal operators U (“until”) and W (“weak until”). The semantics
is standard [1], assuming constant domains and rigid designators; this means
that no objects in the domain of quantification, D, are created or destroyed
along time, and that the only “dynamic” objects are predicates. An example of
FOLTL formula, akin to those we are about to see in our case-study, is this:

∀x.� [state1(x)⊃ (state1(x)W (trans12(x) ∨ ∃t.trans13(x, t)))]

Assuming the domain of quantification represents individuals which can be,
at any given time, in a certain state, the informal (but accurate) reading of the
above example is: any individual, at any time, being in state 1, will remain in
that state forever, or will eventually take a transition to state 2, or to state 3. In
general, pWq stands for “either p will hold forever, or eventually q will hold, with
p holding meanwhile”. The standard semantics of W is exploited here to make
sure that the individual will stay in state 1 while it is waiting for something to
happen, or that no transitions will ever be taken. Notice that the way states and
transitions are represented is a free mixture of first-order predicates and possibly
quantifiers.

The proof system we use is a sequent calculus based upon those presented in
[12] for quantified modal logics; it is an extension of QS4.3, sound and complete
for the quantified logic of reflexive, transitive, weakly connected frames, with
rules for©,U andW . The resulting calculus is called CFOLTL and its soundness
follows straightforwardly from the semantics of the operators modelled.

3 Case-Study

By using FOLTL complex systems can be modelled and verified with no finitary
limitation; but also, we use its expressivity to keep the model small and intuitive.
Typically, in a large telephone network, if a customer subscribes to one or more
features (such as, e.g., ring-back when free, reject anonymous calls etc.) it can be
the case that interactions arise among different features, if not between a feature
and the basic service, where an interaction is an unexpected, unwanted behaviour
arising from insufficient, inconsistent and/or wrong specifications. Hence the
need of detecting interactions as soon as possible, e.g., at specification time,
or as well, to validate the model with respect to some property stating that
no interactions arise. The problem has received great attention both from the
academical and the industrial world, see, e.g., [18]; it is complex: any user, from
an unbounded pool, can subscribe to any feature(s), and each feature must
behave correctly for each user, in any possible scenario. Traditionally, it has
been solved by approximating the scenario in a finitary way and then using well-
known techniques such as model-checking [17,8] or Boolean satisfiability (see [7]
for an exhaustive survey); but in this case a positive answer is not definitive; if,
e.g., the approximation assumes there are 3 users, an interaction involving more
users would go undetected.
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The case-study we present is an abstraction and simplification of FIs as
stated in [9], to our knowledge one of the most effective approaches so far to
the problem; in particular we show how compatibility of properties of a basic
call service plus a feature can be verified. The phone network is modelled as a
set of users, each of which enjoys the abilities of answering the phone, dialling
a number etc., the so-called Basic Call Service (BCS). The environment must
take care of establishing connections among users. We model the generic user
as a set of FOLTL formulae defining the behaviour of the automaton given in
Figure 1.

idle(x)
ready(x)

trying(x,y)

busytone(x)

oringing(x,y)

oconnected(x,y)
down(x)

tringing(x,y)

tconnected(x,y)

offhook(x)

onhook(x)

not idle(y) idle(y)

onhook(x)

offhook(y)

onhook(y)

onhook(y)

trying(y,x)

onhook(x)

onhook(x)

offhook(x)

offhook(x)

onhook(x)

dial(x,y)

Fig. 1. A graphical representation of the BCS automaton

In the Figure, the ovals and arrows are labelled respectively by states in
which a user can be (e.g., idle) and transitions that take a user to another state
(e.g., offhook). The behaviour of the generic user with BCS is then enforced
via a set of FOLTL formulae:

1. (Initial state) Every user is initially idle:
∀x.idle(x)

2. (Progress) For each state, either the user remains in the state forever, or a
transition happens; e.g.,
∀x.� idle(x)⊃ idle(x)W (offhook(x) ∨ ∃t.trying(t, x))

3. (Trigger) For each state and transition, if they happen simultaneously then
the user will be in a new state at the next instant; e.g.,
∀x.� idle(x) ∧ offhook(x)⊃ (©ready(x) ∨©down(x))

Additionally, a few first-order invariants are needed:

1. (Persistence of states) Each user is always at least in a state, e.g.,
∀x.�

∨
state(x)

where state(x) denotes the generic state predicate such as idle, ready and
so on.
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2. (System axioms) relating states to one another, e.g.,
∀x, y.� oconnected(x, y) ↔ tconnected(y, x)

The above model concisely and intuitively models the behaviour of a user
overcoming a number of standard pitfalls; for instance, as already noted in [9],
the use of W in progress formulae is much better than, e.g., �(p⊃ ♦q). Indeed
this formulation is too weak, since (a) it would be true in a scenario in which the
user hears the busy tone later on, not necessarily as a result of this very call; (b)
it would be false in a scenario in which the user failed to progress infinitely often,
that is, for some reason the network took an infinite time to process her call. In
fact W specifies what must hold while we are waiting for an event to happen,
and we can also be satisfied if the event never happens. It seems reasonable, in
this case, not to force any fairness constraint on the system — it seems legal to
have a user waiting for something to happen forever; fairness constraints could
be anyway imposed on any transition(s) by using U , which forces the releasing
event to eventually happen.

Notice also that this model (i) enforces some subtle properties of a real
phone network, such as, e.g., that a user that has been called (the terminator)
cannot terminate a call, whereas the user who has called (the originator) can —
this is the customary behaviour of a standard phone network, modelled via
two predicates tconnected and oconnected; (ii) enjoys a high degree of non-
determinism: a state can have more than one successor state even if the action is
the same, and as well a user can permanently remain in the current state; (iii)
there is no restriction on the number of users.

We also introduce a simple feature called Originating Call Screening (OCS),
according to which a user subscribing to OCS has a predefined list of users,
calling whom is prohibited. A new predicate, ocs(x, y), declares that user x has
user y on his screening list; an axiom is added, stating that nobody can be
on his own’s screening list: ∀x.� ¬ocs(x, x); and, in order to prevent calling
a screened user, the trigger formula determining the transition from ready to
trying is modified to ∀x, y.� ready(x)∧ dial(x, y)∧¬ocs(x, y)⊃ ©trying(x, y).
The revised version of BCS is called BCS’.

3.1 Properties

In this Subsection we list the properties we are interested in proving. They resem-
ble the properties stated in [9] and are expressed, as the model is, in FOLTL; the
goal is to prove that the model enjoys them, which is achieved through standard
logical implication.

Reachability. There are capabilities the system must enjoy at least under suitable
(good) conditions; for example, it must be eventually possible to connect any
two users, if the originator dials, if the line is available, if the terminator hangs
up and so on. These properties correspond to looking for a path in the graph of
Figure 1 from the initial state to the required state. Assume we can somehow
collect all good conditions in a formula φ(x); then we want to prove that:
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Reach1. Under suitable conditions, any user can get ready:
∀x.φ(x)⊃ ♦ ready(x)
Reach2. Under suitable conditions, any user can connect any other user:
∀x.φ(x)⊃ ♦ ∃t.oconnected(x, t)
Reach3. Under suitable conditions, any user can be connected to any other
user:
∀x.φ(x)⊃ ♦ ∃t.tconnected(t, x)

First-Order Properties. By a first-order property we denote a �-formula not
containing temporal operators other than ©, and we are interested in checking
whether the property always holds. Thus we look at:

FO1. The user we are trying to dial is the same as the user we have just dialled:
∀x, y.� (ready(x) ∧ dial(x, y))⊃ ©trying(x, y)
FO2. If I am ringing y and she hangs up, I will be next connected to her:
∀x, y.� (oringing(x, y) ∧ offhook(y))⊃ ©oconnected(x, y)
FO3. If I am ringing y and she hangs up, she will be next connected to me:
∀x, y.� (oringing(x, y) ∧ offhook(y))⊃ ©tconnected(y, x)

These properties are similar to trigger formulae, but in general they can have
a quite more complex first-order structure.

Weak-Until Properties. An interesting class of properties employ the W opera-
tor. We look at:

WU1. If I dial myself, I will hear the busy tone before getting back to idle:
∀x.� (ready(x) ∧ dial(x, x))⊃ (¬idle(x)W busytone(x))

The semantics of the operator here helps establishing what must not hold
between two events. A slightly different kind of weak-until properties are:
WU2. If I am trying to connect y, I will keep on trying until I will hear the
busy tone or I will be ringing her:
∀x, y.� trying(x, y)⊃ trying(x, y)W (busytone(x) ∨ oringing(x, y))
WU3. If I am ready, I will stay ready until I will get back to idle or I will be
trying to connect to someone:
∀x, y.� ready(x)⊃ ready(x)W (idle(x) ∨ ∃t.trying(x, t))

Notice that, although WU2 and WU3 may look similar to progress proper-
ties, they are indeed different, since in general the event on the right-hand side
of W cannot immediately be found in a progress formula.

OCS. Once we add OCS to the system we have to state and prove the charac-
teristic property of OCS itself:

OCS. Assuming user x has a user alice on his screening list, x can never be
connected to t as originator:
∀x.� (ocs(x, alice)⊃ ¬oconnected(x, alice))

When the user enjoys OCS, we expect some of the above properties to be still
provable, while some others are not. In particular, we are interested in proving
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that WU1 is still valid (no user may have himself on his screening list), whereas
WU3 is no longer (a ready user trying to dial a screened user will never be
trying to connect to her).

4 Proof Planning for the Case-Study

We employ the proof planner λCLAM, written in λProlog (see [25]). A proof plan
is a tree whose nodes are labelled by pairs (method, sequent); every method
is associated to a tactic. In the style of [15], a (basic) tactic is a rule of in-
ference plus some operational content (for instance, which formula in the se-
quent the rule must be applied to); more complex (compound) tactics enforce,
e.g., repeated, conditional and exhaustive application of tactics. The object-level
theorem prover we have devised, FTL, written in λProlog too, is actually tactic-
based, in order to be seamlessly integrated with λCLAM. First the input sequent
is translated into λCLAM’s internal syntax and λCLAM’s planning engine is called;
if a plan is found, it is translated to a tactic tree, which FTL runs on the input
sequent. If the result is a proof of the sequent, soundness of CFOLTL rules ensures
the sequent is valid. Due to space limitations, we explain in detail the first sets
of methods only, tailored for reachability properties, and informally sketch the
others. The interested reader is referred, once again, to [10].

Reachability. This method mimics backward-reachability:

method exists_path

repeat:

1 (init) if we are in the initial state, stop; otherwise,

2 (trig) find a trigger formula leading to the current state;

then for each associated transition,

3 (prog) find a progress formula leading to the current transition;

for each associated state, make it the current state and

go back to 1.

Methods such as this are called compound since they apply other methods,
indicated in parentheses. The loop at steps 1-3 takes care of finding all possible
trigger and progress formulae that may lead to the current state. The hope is
that, eventually, a path from idle to it will be found. Notice that the above
scheme only shows the operational content of the method, without committing
to the structure of the proof plan; in general, every method may open several
branches, leading to the construction of a proof plan as a tree. Then, if the proof
plan is found, in order to build a proof of the goal formula, tactics attached to
each method are glued together, building a tactic tree; and the tactic tree is
finally executed, possibly leading to a proof of the goal formula. Tactics take
care of filling the gaps left by the proof plan.

An example will clarify. Consider Reach1 (and Figure 1). We start from
ready; since it is not the initial state (step 1), we find all trigger formulae that
can lead to it. There is just one: ∀x.� idle(x) ∧ offhook(x) ⊃ (©ready(x) ∨
©down(x)). So, in order to get to ready, idle and offhook must have happened
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in the past (step 2). The only progress formula related to this is ∀x.� idle(x)⊃
idle(x)W (offhook(x) ∨ ∃t.trying(t, x)) (step 3). So we now know that, if the
user is idle, under suitable conditions, it will get to ready. Since idle is the initial
state, we are done.

Proof planning here also takes care of dynamically building the assumptions
φ(x) needed to prove the statement. Initially, φ(x) is instantiated with a logical
variable2. While looking for the plan, methods (trig) and (prog) neglect all
transitions not leading toward the state we want to reach, and collect them into
φ(x). Consider the application of method (trig) in the above example: the
method simply “forgets” that idle and offhook may lead to down, as well as to
ready, and records it in φ(x). When it comes to building the tactic tree, φ(x)
is used in the hypotheses, and the method forces a tactic called close tac to
close the proof branch related to the neglected transition. At the object level,
one can view this tactic as a very carefully controlled application of the cut
rule: assuming that the right transitions are taken, the statement can be proved.
In general, for each trigger formula found by (trig) having n transitions (for
instance, there are three possible transitions out of idle) the resulting proof
employs close tac n − 1 times. Something analogous happens with method
(prog), since in general one can nondeterministically progress to more than one
transition from each state.

In this case, proof planning literally “directs” the search at the object level
and builds the correct assumptions on-the-fly.

First-order properties. In order to plan and prove these properties we use the
“persistence of states” invariant (see Section 3) with the following compound
method:

method all_paths

repeat until closed:

1 (inv) introduce an invariant in the hypotheses

2 (mlor) open a branch for each disjunction

3 (mutex) either close by mutual exclusion, or

4 (pl) try and close the branch by first-order logic

The method works like this: open up n branches using the invariant in the
hypotheses; then, in n − 1 branches, close thanks to the detection of mutual
exclusion, while the remaining branch is closed by first-order reasoning. The lat-
ter task is devoted to the object-level theorem prover and therefore delayed to
the proving phase. Mutual exclusion between states (i.e., that no user can be
simultaneously in two different states) is realized via a further method which de-
tects the presence in the hypotheses of two state predicates; the associated tactic
selects the appropriate system axioms and works by propositional reasoning.

Notice how this method somehow resembles a well-known inductive reasoning
technique which consists of showing that a certain property is preserved over all
possible states of the system, in case there is a finite number of (classes of)
2 Recall that the system is written in a higher-order language, so that logical variables

may well stand for predicates and formulae.
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them. Here the invariant consists of an n-ary disjunction appearing among the
hypotheses, and that is how n search branches are opened.

Weak-until properties. Once again, the proving strategy is inspired by model
checking, this time by forward reachability. Consider Property WU1: we start
from the state specified in the antecedent of the goal (in this case, ready(x)) and
find a trigger formula telling us what happens if we take the transition specified
in the same place (in this case, dial(x, x)). Open one branch for each transition
found; then for each branch, that is, following each possible path forward, check
whether we have reached the state on the right hand side of the W in the goal
(in this case, busytone(x)). If it is the case, stop. Otherwise, find a progress
formula and identify what transitions can be taken from this state; again, open
a branch for each possible transition and, for each one, close the branch by
mutual exclusion detection. Then go back to the beginning.

Slightly simpler than the previous one, Properties WU2 and WU3 are
proved in a similar way, but trying to identify a trigger formula correspond-
ing to the required goal. If this is not the case, the same method seen above is
employed to let the system progress.

OCS is proved using a slight variation of the previously mentioned invariant.
The associated method opens a search branch for each possible state user x is
in; all of them but one are closed by detection of mutual exclusion, while the
remaining one goes through by propositional reasoning — this is reasonable,
since the use of the OCS axiom ∀x.� ¬ocs(x, x) should match with the condition
¬ocs(x, x) when dealing with the transition from ready to trying.

As far as WU1 is concerned, we expect the very same methods employed to
prove its validity with BCS to carry the proof on in this case; on the other hand,
proving that WU3 interacts with OCS is slightly more complex; we prove that
user alice, not being on anyone’s screening list, validates the property. This is
due to the fact that our approach cannot work, so far, by refutation; therefore,
if a property fails to be provable, there is no way to tell whether that is due to
incompleteness of the system or to an interaction actually arising. The formula
stating this should be provable via the same set of methods used for Property
WU2, and in fact it is.

Discussion. Although applied to this particular case-study, it is worth noting
that the methods outlined above are in principle applicable to any model for-
malised in FOLTL along the guidelines given in Section 3. In fact, the main
points in building the model and devising a proof planning strategy for it are
those of (i) exploiting the expressivity and complexity of FOLTL in order to
accurately model the behaviour of the system, and (ii) taking advantage of the
shape of the goal formulae in order to try and plan / prove them.

5 Experimental Results

Since our approach is not push-button, it seems fair to give an overview of the
time spent by the user in devising the approach, beside showing CPU times.
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We adopt Cantu et al.’s three-fold classification of the time required by the user
[14]: human time is divided into User Time, spent in formalising a problem,
Proof Time, spent in tuning proof techniques without modifying the tool, and
Tool Time, used for debugging. The properties outlined in Section 4 have been
verified by the system λCLAM/FTL; Table 1 shows the results. Columns contain,
for each property, data about the proof plan and the proof (depth d, number of
nodes #N, CPU Time in seconds), total CPU Time in seconds, and human time
required to devise the solution (User, Proof, Tool time and total, in man-hours).
The last two rows show averages and totals. All experiments were run on a PC
equipped with an AMD K6 200MHz processor, 256 MB on board memory and
Linux 2.4.7. We employed a patched version of the λProlog environment Teyjus
v1.0-b33 and λCLAM v4.0.0 (2002). The heap space of the λProlog compiler /
simulator was raised to 512 MB in order to avoid heap overflow.

Table 1. Experimental results

Proof plan Proof Human time
Property d #N Time d #N Time U P T
Reach1 13 15 11 23 31 2 13 2 100 200 302
Reach2 19 21 24 66 92 7 31 1 10 1 12
Reach3 15 17 15 38 52 3 18 1 1 1 3

FO1 28 44 49 39 322 17 66 4 10 20 34
FO2 28 44 58 39 321 20 78 1 1 2 4
FO3 28 44 58 39 327 20 78 1 1 5 7

WU1 17 19 20 48 97 10 30 10 70 100 180

WU2 14 16 11 41 112 14 25 4 10 10 24
WU3 14 16 11 43 111 14 25 1 1 1 3

BCS’+WU1 17 19 21 57 112 13 34 1 1 1 3
BCS’+OCS 32 80 76 41 341 96 172 8 5 20 33
BCS’+WU3 14 16 11 47 110 20 31 20 10 10 40

Averages 20 29.6 30.4 43.4 169 19.7 3.5 18.3 30.9
Totals 365 236 601 54 220 371 645

We now comment on each single experiment, analysing the structure of the
plans and proofs obtained and the CPU and human time needed.

Reachability. The planner finds a path from idle to the required state, and the
depth of each plan is related to the distance on the graph. Consider Figure 1: to
prove Reach1 the proof planner needs discover that any user can get to ready
from idle in “one step”; analogously for Reach2 (four steps) and Reach3 (two
steps). Timings, depths and numbers of nodes roughly reflect this proportion; the
structures of plans and proofs also look very similar from a qualitative point of
view. This is a clear indication that the employed methods capture the common
structure in the three proofs. Unsurprisingly, planning time dominates proof
checking time, as expected, and Reach2 is the hardest.
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The ratio between the depth and number of nodes of both the plans and the
proofs are low, meaning that the associated trees are quite narrow; the planner
is actually guiding the search in an efficient way, i.e., cutting away useless search
branches. As far as human time is concerned, consider Reach1: it was no great
problem to invent the proof plans (User time 2 man-hours) but it was quite hard
to build the correct machinery, both in terms of methods (Proof time 100 man-
hours) and in terms of adjusting the system (Tool time 200 man-hours). In fact
this was the very first attempt, and, as expected, took a long time to set up. The
times scale down radically, however, if we proceed on to the other properties,
especially because the very same set of methods, with slight modifications, work
fine for all three of them.

First-order properties. Proof plans and proofs of these Properties present
remarkable similarities in structure. The high number of nodes of the proofs
comes from 8 similar search branches opened up by the use of an invariant.
Notice also that these proofs do not include the proof of the invariant itself. On
a smaller scale, there is a pattern in human times which is similar to that one
can see for the previous set of Properties. Tool time appears a little larger (5
man-hours) for Property FO3 since it was necessary to code and use a system
axiom in that case, in order to have the proof go through.

WU1. This problem required a big effort in human terms, as shown in the
Table, since it was necessary for the first time to devise a way of proving an
invariant with a W operator in it. In particular, a number of different methods
were required, and it was not clear in the beginning how to translate the intuitive
ideas to tactics.

WU2, WU3. Another two similar plans and proofs, proved by the same set of
methods. The first one required some effort on the human side, while the second
was proved quite easily. Actually, the experience gathered for WU1 helped.

BCS’. That WU1 still holds with OCS on could be proved with little or no
modification to the methods explained above. As one can see, the human time
required was small. If compared with the figures above, for BCS+WU1, the
proof is somehow deeper and larger because of the added complexity of the OCS
feature. Validating OCS requires the largest effort of the whole benchmark set,
due to the use of the OCS invariant, which introduces complexity in each branch
of both the proof plan and the proof. Lastly, WU3 proved to be quite complex,
as is witnessed by the human time. Actually, there is still no systematic way
of determining how to detect an interaction when there is one, and this single
problem needed some 20 man-hours to find out how to discover it.

Statistics. Consider the “Averages” row. One can see that the average proof
plan is 20 nodes deep and contains about 30 nodes in total (ratio: 0.66): proof
plans are narrow and deep and not very large overall. This indicates that the
proof planner chooses the right methods quite easily, also taking into account
that basically no backtracking happens. In short, the abstract search space is
tractable. On the other hand, the average proof is about 43 nodes deep and has
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169 nodes in total (ratio: 0.25), which seems to suggest that there is a lot more
“decoration” in a proof than in a proof plan — this agrees with the idea that the
proof plan abstracts away much more than is allowed in a proof. Considering
that here the search space is infinite and the object logic is non recursively
enumerable, such a depth is remarkable. The plan is directing the search, which
is the idea behind proof planning.

Proof planning time dominates over proof checking time by a factor of 3 to
2. This is sensible as well, since most of the “intelligence” of the system lies in
the plan rather than in the proof, although the tactics in the methods can be
rather involved, let alone requiring some degree of automation themselves. For
instance, in some places the planner closes a branch assuming it can be closed at
the object level too via propositional reasoning — the mutual exclusion detection
method works exactly like this — but then the object level theorem prover must
exhaustively apply propositional reasoning in order to carry the proof to the end.
Most of the time spent by the planner is required for reasoning on the shape of
the formulae present in the sequent; in this case, higher order unification plays
a leading role.

The whole set of benchmarks can be solved on a rather slow machine in
something more than 10 minutes of CPU time, and the total human time required
to set the machinery up was some 4 man-months full-time, assuming one man-
month full-time is 160 man-hours; since this is a novel approach, such an effort
appears reasonable, since it also takes into account the time spent to debug a
system which is still prototypical. To this extent, it is worth noting that there
is definite dominance of Tool time over Proof time, and of Proof time over User
time: detecting and fixing bugs is harder than designing methods and tactics, at
least in the initial phase of the development of a novel approach.

Notice, lastly, that the human time reported in Table 1 is not time spent
in human interaction with the system; once the methods and tactics have been
devised, the process is automatic, if it runs to the end. Rather, one can think
of User and Proof Time as time spent by the user in programming the planning
and proof search of the system, and of Tool Time as time spent in debugging
the system. This approach is quite different from standard interactive theorem
proving.

6 Conclusions, Related and Future Work

This paper outlines a new application field and methodology for Proof Planning,
by showing that FOLTL can be used to model complex systems, and that proof
planning applied to this logic can be used to prove interesting properties of such
models. In particular, (i) we have built an abstract model of part of a well-known
problem of Formal Methods, that of Feature Interactions, using the complexity
and expressivity of FOLTL to keep the model both accurate and small; (ii) we
have devised a set of general-purpose proof planning methods which, applied to
such a model, lead to the verification of a number of interesting properties of
the model itself; (iii) a set of experimental results shows that the approach is vi-
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able: solving the problems required a reasonable amount of computer resources;
human time, though quite high in absolute terms, is shown to decrease steadily
once the initial attempts are made. In particular, it is worth noting that the
proofs obtained under the guidance of proof planning are remarkably structured
and that most of the useless search is cut away in the planning phase, thanks to
the fact that the structure of proofs is captured by the methods employed.

Calder and Miller’s work (see e.g., [5,8,9]) is the main source of inspiration
to the experimental test-set presented in this paper. It is difficult to quantita-
tively compare the results obtained by Calder and Miller and ours, since (1) the
machines used are rather different, and (2) there is no indication on the human
time required by Calder and Miller’s approach in their papers; from a qualita-
tive point of view our approach has, in general, a precise advantage over Calder
and Miller’s (and any other model-checking-based approach), since our proofs
use no finitary approximation whatsoever and need find no suitable abstraction
for that — this characteristic comes “for free” from the use of FOLTL. But it
must as well be remarked that, in [6], the authors extend their approach to an
unbounded number of users, thanks to an abstraction-based technique. More-
over, their model is much more detailed and realistic than ours, also thanks to
the use of a well-established modelling language such as ProMeLa [20,21]. As a
final remark, notice that in [9] the authors solve the problem for a wider set of
properties than ours.

The present paper can be seen as an extension and a generalisation of the
preliminary result of [11]; in particular, in that paper, the required User Time
was unacceptably long, and concentrated in a single, big tactic, containing some-
thing like 150 basic tactics. Some of them had to be applied to a precise formula
in the antecedents or consequent of a sequent — that is, the user had to specify
not only what sequent rule was to be used, but also on which formula. Moreover,
the order in which basic tactics appeared in that tactic was absolutely crucial.
One wrong position and the execution would not go through any more, prevent-
ing the system from proving soundness of the proof plan. In short, the methods
devised were non reusable and had very little generality. In this work, we have
built a set of methods which can be used, with little or no modification, to
tackle analogous problems for any FOLTL model resembling the one presented
in Section 3. For instance, under such an assumption, method exists path (see
Section 4) will be able to find and prove reachability properties in a number of
cases.

Future work, in fact, will mainly focus along two orthogonal directions: on
one hand, finding more problems like the case-study presented, in order to prove
the extensibility and generality of the approach; on the other hand, extending
the model toward the full set of features, and making it more concrete, possibly
by extracting it out of a formal specification. Also, a systematic way of detecting
interactions still has to be devised: the main drawback of our approach seems,
right now, that it cannot work by refutation, requiring statements to be proved
in order to catch interactions; but the work reported in, e.g., [17,16,11,10] shows
how the theorem-proving approach can be used to detect interactions, and that
is one of the main lines of future research.
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1 Introduction

The CASC competitions among automated theorem provers show that there is no
single system that outperforms all other systems in all domains. One reaction to
this observation is the combination of several systems in a competitive (e.g., the
SSCPA system) or cooperative manner (e.g., the CSSCPA and TECHS systems).
Thereby, general-purpose heuristics select promising systems to be executed and
promising intermediate results to be exchanged. Typically, exchanged results
are restricted to clauses or equations that are accepted by all systems. The
use of particular domain-specific services for particular subtasks such as the
construction of mathematical objects and their flexible cooperation with other
services guided by mathematically motivated control knowledge is not possible.

Multi-strategy proof planning [10] provides a framework for the flexible col-
laboration of independent services, so-called strategies, that can realize various
operations on proof plans guided by explicitly represented control knowledge.
This paper describes the realization of multi-strategy proof planning in the
Multi system and illustrates its application in conducted case studies. Although
Multi focuses to proof planning techniques, its architecture and concepts are
generally applicable for a flexible and knowledge-based cooperation of indepen-
dent services in theorem proving.

2 Proof Planning and Multi-Strategy Proof Planning

Proof planning [1,11] is a theorem proving technique, which constructs a proof
at the abstract level of so-called methods, i.e., tactics enriched by explicit pre-
and postconditions. Methods result from the analysis of common structures or
common procedures of a family of proofs. They can encode not only general
proof steps but also steps particular to a mathematical domain. Mathematically
motivated heuristics are encoded in the control knowledge employed in the search
for a solution plan consisting of a sequence or hierarchy of methods.

The idea of multi-strategy proof planning is to combine services instead of
performing simple proof planning at the level of methods only. These sepa-
rate but flexibly collaborating services, so-called strategies, realize various proof
plan modifications and refinements. For instance, strategies can realize different

R. Nieuwenhuis (Ed.): CADE 2005, LNAI 3632, pp. 250–254, 2005.
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kinds of backtracking or they can provide particular services of external systems
that can be flexibly integrated with strategies that apply methods. Thereby,
the search for applicable strategies introduces an additional hierarchical level
into proof planning that allows for the incorporation of further mathematically
motivated knowledge.

3 The Multi System

Algorithms and Strategies. Multi distinguishes algorithms and strategies.
Algorithms are independent and parameterized proof plan refinement and mod-
ification processes. Currently, Multi employs 6 different algorithms that all
work on partial proof plans: PPlanner for method introduction, InstVar for the
instantiation of variables, BackTrack for the deletion of steps from the plan un-
der construction, Exp for the expansion of complex methods, ATP for closing a
goal by calling traditional automated theorem provers, and CPlanner for case-
based planning. The former three algorithms are decoupled and parameterized
functionalities of a simple proof planning process, whereas the latter three algo-
rithms introduce new functionalities. The framework is open to introduce further
algorithms that can contribute to proof plan construction.

Strategies specify different services or behaviors of the algorithms. Strategies
result from instantiations of the parameters of an algorithm. For instance, the
parameters of PPlanner include a set of methods. When such a strategy is ex-
ecuted, then PPlanner introduces only steps that use the methods specified in
the strategy. A parameter of InstVar is the function that determines how the in-
stantiation for a variable is computed. A parameter of BackTrack is the function
that computes a set of refinement steps that will be deleted from the proof plan.

Technically, strategies are implemented as data structures with three slots:
(1) an application condition stating when the strategy is applicable, i.e., the legal
applicability knowledge, (2) the algorithm which is employed by the strategy, and
(3) the parameter setting with which the algorithm is employed. Examples of
strategies can be found in [7,8].

Strategic Control. The heuristic knowledge of the utility of the application of
strategies under certain conditions is separated from the strategies. It is declara-
tively encoded in strategic control rules, which provide the basis for meta-reasoning
and a global guidance in Multi. Technically, a control rule is an IF-THEN pair,
where the IF-part is a predicate about the proof planning status and the THEN-
part is an action that ranks or prunes possible strategy applications.

Architecture. In order to allow for the flexible cooperation of the independent
strategies guided by meta-reasoning, Multi uses a blackboard architecture. In
blackboard systems [5], independent components, so-called knowledge sources,
collaborate to solve a problem whose solution state is placed on a blackboard that
all knowledge sources can access. Figure 1 shows the blackboard architecture of
Multi, which is similar to the BB1 blackboard system (see [5]). The architecture



252 A. Meier and E. Melis

has two blackboards and two kinds of knowledge sources, one for the proof
planning problem and one for the control problem, i.e., the problem of deciding
which strategy to apply next.

Strategy 4

Strategy 3

Strategy 2

Strategy 1

Memory

ST
R

A
T

E
G

IE
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MetaReasoner

Scheduler

Blackboard

Job Offers

Demands

Control

Blackboard
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Proof Plan

History

Fig. 1. Multi’s blackboard architecture

The proof blackboard con-
tains the current proof plan
as well as the history of the
proof planning process. The
strategies are the knowledge
sources that work on this
proof blackboard. The control
blackboard contains job of-
fers, demands, and a memory.
When a strategy’s condition
part is satisfied, the strategy
posts its applicability infor-
mation, i.e., a job offer, onto
the control blackboard. The
MetaReasoner is the knowl-
edge source working on the
control blackboard. It ranks
the job offers by evaluating the strategic control-rules. The Scheduler looks up
the control blackboard, takes the highest ranked job offer and executes it.

A strategy that is executed changes the proof plan and records its steps in the
history. Executed strategies can also post demands and memory entries onto the
control blackboard, which allows to interleave strategy executions. For instance,
if the currently executed strategy S can continue only, if another strategy S’ is
executed first, then S is interrupted, its status is saved in the memory, and a
demand for S’ is placed onto the control blackboard. After the execution of S’
the strategy S can be re-invoked from the memory.

How Multi Operates. In a nutshell, Multi operates according to the follow-
ing cycle, in which no order or sequence of strategies is hard-coded:

– Job Offers: Applicable strategies post their applicability (for the current
partial plan) as ‘job offers’ onto the control blackboard.

– Guidance: Strategic control rules are evaluated to rank the job offers.
– Invocation: The strategy with the highest ranked job offer is invoked.
– Execution: The strategy works on the proof blackboard and can place new

demands and memory entries onto the control blackboard.

Discussion. To achieve more autonomous strategies the heuristic knowledge
could be part of the strategies as well. This would result in a multi-agent ap-
proach where the strategies negotiate with each other which strategy to apply
next. Our reason for separating heuristic utility and legal feasibility knowledge
and for implementing a blackboard architecture is the availability of global con-
trol knowledge that favors a central control mechanism over many interacting
and locally deciding agents.
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4 Experiences and Case Studies

Multi’s strategy level allows for the formalization and incorporation of proof
knowledge in strategies and strategic control rules that is beyond the method-
level and its control. The knowledge encoded can be diverse. For instance, strate-
gies can describe different techniques to prove a class of problems. Strategies
can also describe different ways of backtracking or different ways of constructing
mathematical objects to instantiate variables. Strategic control rules can de-
scribe, for instance, in which order to try several applicable strategies. They can
also guide failure handling. In order to illustrate the advantages of Multi’s strat-
egy level we briefly discuss its application to the residue class domain (see [8] for
a detailed description). Other major case studies conducted with Multi tackle
ε–δ–proofs [7] and permutation group problems [2].

Residue class conjectures classify given residue class structures wrt. their
algebraic category. An example theorem is “the residue class structure (Z5, +̄)
is associative”. Other problems from this domain concern the isomorphy of two
algebraic structures, e.g., “the residue class structures (Z5, +̄) and (Z5, ∗̄) are
not isomorphic”. We proved about 19.000 residue class conjectures with Multi.

Although the problems in this domain are within the range of difficulty a
traditional automated theorem prover can handle (see experiments in [8]), it
is nevertheless an interesting case study for proof planning, since with Multi
it is possible to generate substantially different and intuitive proofs based on
entirely different proof ideas. The parameters of PPlanner can configure strategies
taking advantage of different proof settings that mirror proof techniques existing
in mathematics. For instance, we realized the three intuitive techniques naive
case-split, equational reasoning, and reduction to known facts for this domain in
three PPlanner strategies, with different sets of methods and control rules. The
availability of three techniques to tackle the problems of the domain extends
the robustness of the combined proof planning approach in the sense that if one
strategy does not succeed, then another one may continue. A strategic control
rule attempts to use the generally most efficient strategy first and the most
reliable one last. Moreover, since Multi supports the switching of strategies,
different subproblems in one proof process can be tackled by different strategies.

Reasoning about impasses is a natural ingredient of meta-reasoning at the
strategic level: strategic control rules can analyze and exploit failures to guide
subsequent strategy applications (see also [7]). In the residue class domain, there
exists knowledge of suitable backtrack points for certain failures and proof situ-
ations. This knowledge is encoded into strategic control rules, which guide the
application of different BackTrack strategies that realize the appropriate back-
tracking. This considerably prunes the traversed search space.

Multi’s concept of strategies and algorithms explicitly supports the incorpo-
ration of external systems to provide services and to solve subtasks. For instance,
to prove that two given residue class structures are not isomorphic, we realized
discriminating in Multi, which requires finding a property P such that P holds
for the one structure but not for the other. Discriminating is mainly realized by a
main PPlanner strategy, which, however, is interleaved with the call of 3 different
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external systems in different strategies (see [9] for details). The computation of
P is provided by the theory formation system HR [3], which is called in an Inst-
Var strategy. In order to show that P holds for the one structure but not for the
other, computer algebra systems are employed within another InstVar strategy.
Finally, the resolution prover Spass is used in a strategy of ATP to prove that
∀X ∀Y P (X) ∧ ¬P (Y ) ⇒ X �∼ Y holds (while this step is fairly obvious for a
mathematician, it is crucial for a formal proof).

5 Conclusion and Availability

We presented the multi-strategy proof planner Multi. The most important fea-
tures of Multi are the usage of independent strategies realizing various proof
plan services and their flexible cooperation guided by declaratively represented
strategic meta-reasoning. Multi differs from other approaches of proof planning
embodied by λCLAM [12] and IsaPlanner [4] (1) by its notion of strategies
that covers diverse services such as different kinds of backtracking or calls of
external systems and (2) by its flexible combination of strategies that is not
pre-defined in compound hierarchies of steps as in λCLAM and IsaPlanner.

Multi is implemented in Allegro Common Lisp as a component of the math-
ematical assistant system Ωmega [6]. Its source code is available as part of the
Ωmega source code, see http://www.ags.uni-sb.de/~omega. Further informa-
tion can be found at: http://www.ags.uni-sb.de/~ameier/multi.html.
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Abstract. The UCLID verifier models a hardware or software system as an ab-
stract state machine, where the state variables can be Boolean or integer val-
ues, or functions mapping integers to integers or Booleans. The core of the ver-
ifier consists of a decision procedure that checks the validity of formulas over
the combined theories of uninterpreted functions with equality and linear integer
arithmetic. It operates by transforming a formula into an equisatisfiable Boolean
formula and then invoking a SAT solver. This approach has worked well for the
class of logic and the types of formulas encountered in verification.

1 Introduction

Formal verification of high-level system models requires decision procedures that scale
to very large formulas, but over a limited set of theories. Compared to other efforts in
developing automated theorem provers, we are not trying to prove the great theorems
of mathematics. Rather, our task is to show that a hardware or software designer has
successfully implemented a set of interlocks and state consistency constraints to ensure
safe operation. Typical verification tasks include proving that a distributed cache mem-
ory system maintains a consistent view of the global shared memory, or that a pipelined
microprocessor correctly implements a sequential instruction set. By exploiting the lim-
ited expressiveness of our modeling language, we have developed a decision procedure
that greatly outperforms more general-purpose procedures within its limited domain.

This paper presents our UCLID verifier and its decision procedure. It describes
some of the performance-enhancing features of the decision procedure that could have
broader applicability.

2 The UCLID Verifier and Decision Procedure

The UCLID verifier represents systems at a more abstract level than existing model
checkers [9]. Like a model checker, we view a system as having a collection of state
variables that are updated by each step of system operation, but we allow a richer set of
state variables than simple Boolean values. UCLID supports the following state variable
types:

� This research was supported by the Semiconductor Research Corporation, Contract RID
1029.001, and by ARO grant DAAD19-01-1-0485.
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– Boolean
– Integer
– Functions mapping integers to integers (referred to as function state elements).
– Functions mapping integers to Booleans (referred to as predicate state elements).

We use integer state variables to abstract data words and addresses. We also abstract
most operations on data using uninterpreted functions. The goal is to capture the control
logic of a system in complete detail, but abstract as much of the data processing logic
as possible.

The combination of functional state elements and integers (to describe pointers)
allows us to model a rich variety of memory structures, including random-access arrays,
queues, stacks, and content-addressable memories [4]. That is, we view a memory (or
an array) as a function mapping addresses (respectively, indices) to the value stored at
the indicated location. A write operation at a location mutates the function, changing
the value returned by future read operations from that location. We represent a mutated
function as a lambda expression. Functional state elements provide greater modeling
generality than the theories of arrays provided by other decision procedures, in that we
can model memories in which multiple elements are updated simultaneously.

Whereas a conventional model checker can only verify one particular system con-
figuration, e.g., an eight-node shared memory system, the abstraction capabilities of
UCLID enable it to verify an entire class of systems via parametric modeling. By defin-
ing the model in terms of a symbolic constant n, we can verify an n-node memory
system or a system with an n-entry FIFO buffer, for all possible values of n.

UCLID supports only a limited set of operations on integers, namely addition by a
constant, and comparison for equality and ordering. These operations are sufficient to
express the pointer manipulations for representing different memory structures. More
complex operations must be abstracted as uninterpreted functions. As a result, the
UCLID decision procedure need only support a combination of two theories:

– Uninterpreted functions with equality
– Difference logic, with predicates of the form x ≤ y + c, where x and y are integer

variables, and c is a numeric constant.

More recently, we have generalized from difference logic to arbitrary linear predicates
over integers [13].

The UCLID decision procedure [8] is invoked to prove the validity of a formula (in
the above combination of theories) indicating that the desired system property holds. It
operates by performing a series of transformations to yield an equi-satisfiable proposi-
tional formula, on which a Boolean satisfiability solver is invoked. First, it applies beta
reduction to eliminate the lambda expressions describing mutations to the functional
state variables. This can potentially cause an exponential blow-up, but we have not ex-
perienced this in practice. Second, uninterpreted functions are eliminated using our own
technique based on conditional expression expansion [2,3]. Finally, the difference con-
straints can be encoded into propositional logic using either a direct approach, where
Boolean variables are used to represent the valuations of different ordering predicates,
or with a small-model approach in which bounded-range integer variables are encoded
using bit-level representations. We automatically combine and select between these two
methods using a procedure that was optimized via machine learning [14,12].
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3 Useful Ideas

In the course of developing UCLID, we have uncovered several design principles that
could prove useful in other contexts.

Develop Custom Decision Procedures. Although it is very appealing to have a decision
procedure that supports as many theories as possible, this generality incurs a significant
performance penalty. In addition, some theories, such as integer linear arithmetic, are
difficult to implement using general-purpose techniques for supporting combinations of
theories [11].

We can tune the decision procedure to exploit the characteristics of formulas gen-
erated for a specific application. In UCLID, we have devised ways to exploit the sparse
structure of linear predicates [13], the sparse structure of equality and ordering predi-
cates [5,6], and the polarity of equations [2,3].

Of course, creating a customized decision procedure for every possible applica-
tion could incur considerable redundancy and overspecialization. With UCLID, we have
sought to support a sufficiently rich set of modeling capabilities to capture a wide va-
riety of systems. The ability to abstract functionality with uninterpreted functions has
proved especially important in providing a general modeling capability.

Preserve Conditional Structure. The formulas UCLID derives by symbolic execution of
a system model yields conditional expressions of the form ITE(φ, T1, T2), where T1

and T2 are integer expressions describing two possible outcomes, depending on whether
formula φ evaluates to true or false. The standard approach to proving the validity of a
formula ψ containing conditional expressions of the form shown above, is to “flatten”
out the conditionals. That is, a symbolic integer constant u is introduced, and ψ is
rewritten as

[(φ ∧ u=T1) ∨ (¬φ ∧ u=T2)]⇒ ψ′

where ψ′ is identical to ψ, except that the conditional expression has been replaced by
the constant u. Expanding the implication gives a formula of the form:

(φ ∧ u �=T1) ∨ (¬φ ∧ u �=T2) ∨ ψ′

In performing this transformation, we have introduced two equality tests having neg-
ative polarity in the formula. This limits the ability to exploit positive equality [2,3],
cases where we can prove the validity of a formula by considering only a restricted set
interpretations of the uninterpreted functions and symbolic constants. By directly sup-
porting conditional expressions with our decision procedure, the polarity structure of
the original expressions is more clearly preserved.

Preserve Boolean Structure. Classical ground decision procedures only handle a for-
mula consisting of a conjunction of literals, where each literal is either an atomic for-
mula or its negation [11]. To deal with formulas containing disjunctions, they must
flatten the formula into disjunctive normal form (DNF). This often leads to exponential
blow-up.
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Even recent decision procedures [1,7,15] using SAT solvers at their core can be
viewed as dynamically generating conjunctions of literals. Only by “learning” clauses
expressing theory-specific constraints do they avoid enumerating a complete DNF rep-
resentation of the formula.

UCLID, by contrast, maintains the Boolean structure of the original formula while
transforming it to propositional logic. Its eager encoding approach (described below)
avoids any enumeration of a conjunction that does not also satisfies the theory-specific
constraints.

Exploit the Clause Management Capabilities of Modern SAT Solvers. The development
of the CHAFF Boolean satisfiability solver [10] has led to a new generation of solvers
that can deal with very large sets of clauses. They are remarkably effective at determin-
ing that a large formula is unsatisfiable for the case where a small subset of the clauses
lead to a contradiction. This structure occurs for our decision procedures based on our
eager encodings of theory properties into propositional logic [14]. For example, in en-
coding the equality predicates in a formula, we introduce a sufficient set of predicates to
imply all of the transitivity constraints implied by these equalities [5,6]. By exploiting
the sparse structure of the equations in the formula, we can avoid the cubic blowup that
would be required to completely axiomatize the transitivity of equality.
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Abstract. We describe an algorithm for deciding the first-order multisorted theory
BAPA, which combines 1) Boolean algebras of sets of uninterpreted elements (BA)
and 2) Presburger arithmetic operations (PA). BAPA can express the relationship
between integer variables and cardinalities of a priory unbounded finite sets, and
supports arbitrary quantification over sets and integers.

Our motivation for BAPA is deciding verification conditions that arise in the
static analysis of data structure consistency properties. Data structures often use an
integer variable to keep track of the number of elements they store; an invariant of
such a data structure is that the value of the integer variable is equal to the number of
elements stored in the data structure. When the data structure content is represented
by a set, the resulting constraints can be captured in BAPA. BAPA formulas with
quantifier alternations arise when verifying programs with annotations containing
quantifiers, or when proving simulation relation conditions for refinement and
equivalence of program fragments. Furthermore, BAPA constraints can be used
for proving the termination of programs that manipulate data structures, and have
applications in constraint databases.

We give a formal description of a decision procedure for BAPA, which implies
the decidability of BAPA. We analyze our algorithm and obtain an elementary
upper bound on the running time, thereby giving the first complexity bound for
BAPA. Because it works by a reduction to PA, our algorithm yields the decidability
of a combination of sets of uninterpreted elements with any decidable extension
of PA. Our algorithm can also be used to yield an optimal decision procedure for
BA through a reduction to PA with bounded quantifiers.

We have implemented our algorithm and used it to discharge verification condi-
tions in the Jahob system for data structure consistency checking of Java programs;
our experience with the algorithm is promising.

1 Introduction

Program analysis and verification tools can greatly contribute to software reliability,
especially when used throughout the software development process. Such tools are even
more valuable if their behavior is predictable, if they can be applied to partial programs,
and if they allow the developer to communicate the design information in the form of
specifications. Combining the basic idea of [18] with decidable logics leads to analysis
tools that have these desirable properties. Such analyses are precise (because formulas
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represent loop-free code precisely) and predictable (because the checking of verification
conditions terminates either with a realizable counterexample or with a sound claim that
there are no counterexamples).

A key challenge in this approach to program analysis and verification is to iden-
tify a logic that captures an interesting class of program properties, but is nevertheless
decidable. In [29] we identify the first-order theory of Boolean algebras (BA) as a use-
ful language for reasoning about dynamically allocated objects: BA allows expressing
generalized typestate properties and reasoning about data structures as dynamically
changing sets of objects. (We are interested in BA of all subsets of some set; this theory
was shown decidable already in [31, 46], see [22] for the discussion of other models of
Boolean algebra axioms.)

The motivation for this paper is the fact that we often need to reason not only about
the data structure content, but also about the size of the data structure. For example, we
may want to express the fact that the number of elements stored in a data structure is
equal to the value of an integer variable that is used to cache the data structure size, or
we may want to introduce a decreasing integer measure on the data structure to show
program termination. These considerations lead to a natural generalization of the first-
order theory of BA of sets, a generalization that allows integer variables in addition to set
variables, and allows stating relations of the form |A| = k meaning that the cardinality
of the set A is equal to the value of the integer variable k. Once we have integer variables,
a natural question arises: which relations and operations on integers should we allow? It
turns out that, using only the BA operations and the cardinality operator, we can already
define all operations of PA. This leads to the structure BAPA, which properly generalizes
both BA and PA.

As we explain in Section 2, a version of BAPA was shown decidable already in [14]
(which also proves the well-known Feferman-Vaught theorem [19, Section 9.6] about
the products of first-order theories). Recently, a decision procedure for a fragment of
BAPA without quantification over sets was presented in [55], cast as a multi-sorted
theory. Starting from [29] as our motivation, we have observed in [26] the decidability
of the full BAPA (which was initially left open in [55]). An algorithm for a single-sorted
version of BAPA was presented independently in [42] as a way of evaluating queries in
constraint databases; [42] leaves open the complexity of the satisfiability problem.

Our paper gives the first formal description of a decision procedure for the full first-
order theory of BAPA. Furthermore, we analyze our decision procedure and show that
it yields an elementary upper bound on the complexity of BAPA. Our result is the first
upper complexity bound on BAPA; along with a lower bound from PA, we obtain a
good estimate of BAPA worst-case complexity. We have also implemented our decision
procedure; we report on our initial experience in using the decision procedure in the
context of a system for checking data structure consistency.

Contributions. We summarize the contributions of our paper as follows.

1. As a motivation for BAPA, we show in Section 3 how BAPA constraints can be
used for program analysis and verification by expressing 1) data structure invariants,
2) the correctness of procedures with respect to their specifications, 3) simulation
relations between program fragments, and 4) termination conditions for programs
that manipulate data structures.
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2. We present an algorithm α (Section 4) that translates BAPA sentences into PA
sentences by translating set quantifiers into integer quantifiers.

3. We analyze our algorithm α and show that it yields an elementary upper bound on
the worst-case complexity of the validity problem for BAPA sentences that is close
to the bound on PA sentences themselves (Section 5). This is the first complexity
bound for BAPA, and is the main contribution of this paper.

4. We discuss our initial experience in using our implementation of BAPA to discharge
verification conditions generated in the Jahob verification system [23].

5. In addition, we note the following related results:

(a) PA sentences generated by translating BA sentences without cardinalities can
be decided in optimal alternating time (Section 5.2);

(b) Our algorithm extends to countable sets with a predicate distinguishing finite
and infinite sets (Section 7);

(c) In contrast to the undecidability of MSOL with equicardinality operator, we
identify a decidable combination of MSOL over trees with BA (Section 7).

A preliminary version of our results, including the algorithm and complexity analysis
appear in [26], which also contains proofs and further details of our results.

2 The First-Order Theory BAPA

Figure 3 presents the syntax of Boolean Algebra with Presburger Arithmetic (BAPA),
which is the focus of this paper. We next present some justification for the operations
in Figure 3. Our initial motivation for BAPA was the use of BA to reason about data
structures in terms of sets [28]. Our language for BA (Figure 1) allows cardinality
constraints of the form |A| = K where K is a constant integer. Such constant cardinality
constraints are useful and enable quantifier elimination for the resulting language [31,46].
However, they do not allow stating constraints such as |A| = |B| for two sets A and B,
and cannot represent constraints on changing program variables. Consider therefore the
equicardinality relation A ∼ B that holds iff |A| = |B|, and consider BA extended with
relation A ∼ B. Define the ternary relation plus(A, B, C) ⇐⇒ (|A| + |B| = |C|) by
the formula ∃x1. ∃x2. x1 ∩x2 = ∅ ∧ A ∼ x1 ∧ B ∼ x2 ∧ x1 ∪x2 = C. The relation
plus(A, B, C) allows us to express addition using arbitrary sets as representatives for
natural numbers; ∅ can represent the natural number zero, and any singleton set can
represent the natural number one. (The property of A being a singleton is definable
using e.g. the first-order formula A �= ∅ ∧ ∀B.A ∩ B = B ⇒ (B = ∅ ∨ B = A).)
Moreover, we can represent integers as equivalence classes of pairs of natural numbers
under the equivalence relation (x, y) ≈ (u, v) ⇐⇒ x + v = u + y; this construction
also allows us to express the unary predicate of being non-negative. The quantification
over pairs of sets represents quantification over integers, and quantification over integers
with the addition operation and the predicate “being non-negative” can express all PA
operations, presented in Figure 2. Therefore, a natural closure under definable operations
leads to our formulation of the language BAPA in Figure 3, which contains both sets
and integers.
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F ::= A | F1 ∧ F2 | F1 ∨ F2 | ¬F |
∃x.F | ∀x.F

A ::= B1 = B2 | B1 ⊆ B2 |
|B| = K | |B| ≥ K

B ::= x | 0 | 1 | B1 ∪B2 | B1 ∩ B2 | Bc

K ::= 0 | 1 | 2 | . . .

Fig. 1. Formulas of Boolean Algebra (BA)

F ::= A | F1 ∧ F2 | F1 ∨ F2 | ¬F |
∃k.F | ∀k.F

A ::= T1 = T2 | T1 < T2 | C dvdT

T ::= K | T1 + T2 | K · T

K ::= . . .−2 | −1 | 0 | 1 | 2 . . .

Fig. 2. Formulas of Presburger Arithmetic (PA)

F ::= A | F1 ∧ F2 | F1 ∨ F2 | ¬F |

∃x.F | ∀x.F | ∃k.F | ∀k.F

A ::= B1 = B2 | B1 ⊆ B2 |
T1 = T2 | T1 < T2 | C dvd T

B ::= x | 0 | 1 | B1 ∪ B2 | B1 ∩B2 | Bc

T ::= k | K | MAXC | T1 + T2 | K · T | |B|

K ::= . . .−2 | −1 | 0 | 1 | 2 . . .

Fig. 3. Formulas of Boolean Algebra with Presburger Arithmetic (BAPA)

The argument above also explains why we attribute the decidability of BAPA to [14,
Section 8], which showed the decidability of BA over sets extended with the equicar-
dinality relation ∼, using the decidability of the first-order theory of the addition of
cardinal numbers.

The language BAPA has two kinds of quantifiers: quantifiers over integers and quan-
tifiers over sets; we distinguish between these two kinds by denoting integer variables
with symbols such as k, l and set variables with symbols such as x, y. We use the
shorthand ∃+k.F (k) to denote ∃k.k ≥ 0 ∧ F (k) and, similarly ∀+k.F (k) to denote
∀k.k ≥ 0 ⇒ F (k). In summary, the language of BAPA in Figure 3 subsumes the
language of PA in Figure 2, subsumes the language of BA in Figure 3, and contains
non-trivial combination of these two languages in the form of using the cardinality of a
set expression as an integer value.

The semantics of operations in Figure 3 is the expected one. We interpret integer terms
as integers, and interpret set terms as elements of the powerset of a finite set. The MAXC
constantdenotes thesizeof thefiniteuniverseU , so werequireMAXC = |U| in allmodels.
Our resultsgeneralize to theBoolean algebraofpowersetsof acountableset, seeSection7.

3 Applications of BAPA

This section illustrates the importance of BAPA constraints. Section 3.1 shows the
uses of BAPA constraints to express and verify data structure invariants as well as
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procedure preconditions and postconditions. Section 3.2 shows how a class of simulation
relation conditions can be proved automatically using a decision procedure for BAPA.
Section 3.3 shows how BAPA can be used to express and prove termination conditions
for a class of programs.

3.1 Verifying Data Structure Consistency

Figure 4 presents a procedure insert in a language that directly manipulates sets. Such
languages can either be directly executed [13] or can arise as abstractions of programs
in standard languages [29]. The program in Figure 4 manipulates a global set of objects
content and an integer field size. The program maintains an invariant I that the size of
the set content is equal to the value of the variable size. The insert procedure inserts
an element e into the set and correspondingly updates the integer variable. The requires
clause (precondition) of the insertprocedure is that the parameter e is a non-null reference
to an object that is not stored in the set content. The ensures clause (postcondition) of the
procedure is that the size variable after the insertion is positive. Note that we represent
references to objects (such as the procedure parameter e) as sets with at most one element.
An empty set represents a null reference; a singleton set {o} represents a reference to
object o. The value of a variable after procedure execution is indicated by marking the
variable name with a prime.

The insert procedure maintains an invariant, I , which captures the relationship be-
tween the size of the set content and the integer variable size. The invariant I is implicitly
conjoined with the requires and the ensures clauses of the procedure. The Hoare triple in
Figure 5 summarizes the resulting correctness condition for the insertprocedure. Figure 6

var content : set;
var size : integer;
invariant I ⇐⇒ (size = |content|);

procedure insert(e : element)
maintains I
requires |e| = 1 ∧ |e ∩ content| = 0
ensures size′ > 0
{

content := content ∪ e;
size := size + 1;

}

Fig. 4. An Example Procedure

{
|e| = 1 ∧ |e ∩ content| = 0 ∧ size = |content|

}
content := content ∪ e; size := size + 1;{

size′ > 0 ∧ size′ = |content′|
}

Fig. 5. Hoare Triple for insert Procedure

∀e. ∀content. ∀content′. ∀size. ∀size′.
(|e| = 1 ∧ |e ∩ content| = 0 ∧ size = |content| ∧
content′ = content ∪ e ∧ size′ = size + 1) ⇒

size′ > 0 ∧ size′ = |content′|

Fig. 6. Verification Condition for Figure 5
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presents a verification condition corresponding to the Hoare triple in Figure 5. Note that
the verification condition contains both set and integer variables, contains quantification
over these variables, and relates the sizes of sets to the values of integer variables. Our
small example leads to a formula without quantifier alternations; in general, formulas
that arise in verification may contain alternations of existential and universal variables
over both integers and sets. This paper shows the decidability of such formulas and
presents the complexity of the decision procedure.

3.2 Proving Simulation Relation Conditions

BAPA constraints are also useful when proving that a given binary relation on states is a
simulation relation between two program fragments. Figure 7 shows one such example.
The concrete procedure start1 manipulates two sets: a set of running processes and a
set of suspended processes in a process scheduler. The procedure start1 inserts a new
process x into the set of running processes R, unless there are already too many running
processes. The procedure start2 is a version of the procedure that operates in a more
abstract state space: it maintains only the union P of all processes and the number k of
running processes. Figure 7 shows a forward simulation relation r between the transition
relations for start1 and start2. The standard simulation relation diagram condition is
∀s1.∀s′1.∀s2.(t1(s1, s

′
1)∧ r(s1, s2)) ⇒ ∃s′2. (t2(s2, s

′
2)∧ r(s′1, s

′
2)). In the presence of

preconditions, t1(s1, s
′
1) = (pre1(s1) ⇒ post1(s1, s

′
1)) and t2(s2, s

′
2) = (pre2(s2) ⇒

post2(s2, s
′
2)), and sufficient conditions for simulation relation are:

1. ∀s1.∀s2.r(s1, s2) ∧ pre2(s2)⇒ pre1(s1)
2. ∀s1.∀s′1.∀s2.∃s′2. r(s1, s2) ∧ post1(s1, s

′
1) ∧ pre2(s2)⇒ post2(s2, s

′
2) ∧ r(s′1, s′2)

Figure 7 shows BAPA formulas that correspond to the simulation relation conditions in
this example. Note that the second BAPA formula has a quantifier alternation, which
illustrates the relevance of quantifiers in BAPA.

3.3 Proving Termination of Programs

We next show that BAPA is useful for proving program termination. A standard tech-
nique for proving termination of a loop is to introduce a ranking function f that maps
program state into a non-negative integer, then prove that the value of the function de-
creases at each loop iteration. In other words, if t(s, s′) denotes the relationship between
the state at the beginning and the state at the end of each loop iteration, then the con-
dition ∀s.∀s′.t(s, s′) ⇒ f(s) > f(s′) holds. Figure 8 shows an example program that
processes each element of the initial value of set iter; this program can be viewed as ma-
nipulating an iterator over a data structure that implements a set. Using the the ability to
take cardinality of a set allows us to define a natural ranking function for this program.
Figure 9 shows the termination proof based on such ranking function. The resulting
termination condition can be expressed as a formula that belongs to BAPA, and can
be discharged using our decision procedure. In general, we can reduce the termination
problem of programs that manipulate both sets and integers to showing a simulation
relation with a fragment of a terminating program that manipulates only integers, which



266 V. Kuncak, H.H. Nguyen, and M. Rinard

var R : set;
var S : set;

procedure start1(x)
requires x �⊆ R ∧ |x| = 1 ∧ |R| < MAXR
ensures R′ = R ∪ x ∧ S′ = S
{

R := R ∪ x;
}

var P : set;
var k : integer;

procedure start2(x)
requires x �⊆ P ∧ |x| = 1 ∧ k < MAXR
ensures P′ = P ∪ x ∧ k′ = k + 1
{

P := P ∪ x;
k := k + 1;

}

Simulation relation r:
r((R, S), (P, k)) = (P = R ∪ S ∧ k = |R|)

Simulation relation conditions in BAPA:
1. ∀x, R, S,P, k.(P = R ∪ S ∧ k = |R|) ∧ (x �⊆ P ∧ |x| = 1 ∧ k < MAXR) ⇒

(x �⊆ R ∧ |x| = 1 ∧ |R| < MAXR)
2. ∀x, R, S,R′, S′, P, k.∃P′, k′.((P = R ∪ S ∧ k = |R|) ∧ (R′ = R ∪ x ∧ S′ = S) ∧

(x �⊆ P ∧ |x| = 1 ∧ k < MAXR))⇒
(P′ = P ∪ x ∧ k′ = k + 1) ∧ (P′ = R′ ∪ S′ ∧ k′ = |R′|)

Fig. 7. Proving simulation relation in BAPA

var iter : set;

procedure iterate()
{

while iter �= ∅ do
var e : set;
e := choose iter;
iter := iter \ e;
process(e);

done
}

Fig. 8. Terminating program

Ranking function:
f (s) = |s|

Transition relation:
t(iter, iter′) = (∃e. |e| = 1 ∧ e ⊆ iter ∧ iter′ = iter \ e)

Termination condition in BAPA:
∀iter.∀iter′. (∃e.|e| = 1 ∧ e ⊆ iter ∧ iter′ = iter \ e)

⇒ |iter′| < |iter|

Fig. 9. Termination proof for Figure 8

can be proved terminating using techniques [38]. The simulation relation condition can
be proved correct using our BAPA decision procedure whenever the simulation relation
is expressible with a BAPA formula.

4 Decision Procedure for BAPA

This section presents our algorithm, denoted α, which decides the validity of BAPA
sentences. The algorithm reduces a BAPA sentence to an equivalent PA sentence with
the same number of quantifier alternations and an exponential increase in the total size
of the formula. This algorithm has several desirable properties:
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1. Given the space and time bounds for PA sentences [41], the algorithm α yields
reasonable space and time bounds for deciding BAPA sentences (Section 5).

2. The algorithm α does not eliminate integer variables, but instead produces an equiv-
alent quantified PA sentence. The resulting PA sentence can therefore be decided
using any decision procedure for PA, including the decision procedures based on
automata [21, 30].

3. The algorithm α can eliminate set quantifiers from any extension of PA. We thus
obtain a technique for adding a particular form of set reasoning to every extension
of PA, and the technique preserves the decidability of the extension. One example
of decidable theory that extends PA is MSOL over strings, see See Section 7.

4. For simplicity we present the algorithm α as a decision procedure for formulas
with no free variables, but the algorithm can be used to transform and simplify
formulas with free variables as well, because it transforms one quantifier at a time
starting from the innermost one. Because of this feature, we can use the algorithm
α to project out local state components from formulas that describe invariants and
transition relations, and simplify the resulting formulas.

We next describe the algorithm α for transforming a BAPA sentence F0 into a PA
sentence. As the first step of the algorithm, transform F0 into prenex form

Qpvp. . . . Q1v1. F (v1, . . . , vp)

where F is quantifier-free, and each quantifier Qivi is of one the forms ∃k, ∀k, ∃y, ∀y
where k denotes an integer variable and y denotes a set variable.

The next step of the algorithm is to separate F into BA part and PA part. To achieve
this, replace each formula x = y where x and y are sets, with the conjunction x ⊆ y∧y ⊆
x, and replace each formula x ⊆ y with the equivalent formula |x ∩ yc| = 0. In the
resulting formula, each set x occurs in some term |t(x)|. Next, use the same reasoning
as when generating disjunctive normal form for propositional logic to write each set
expression t(x) as a union of cubes (regions in Venn diagram). The cubes have the form∧n

i=1 xαi

i where xαi

i is either xi or xc
i ; there are m = 2n cubes s1, . . . , sm. Suppose

that t(x) = sj1 ∪ . . .∪ sja ; then replace the term |t(x)| with the term
∑a

i=1 |sji |. In the
resulting formula, each set x appears in an expression of the form |si|where si is a cube.
For each si introduce a new variable li. Then the resulting formula is equivalent to

Qpvp. . . . Q1v1.
∃+l1, . . . , lm.

∧m
i=1 |si| = li ∧ G1

(1)

where G1 is a PA formula. Formula (1) is the starting point of the main phase of algo-
rithm α. The main phase of the algorithm successively eliminates quantifiers Q1v1, . . . ,
Qpvp while maintaining a formula of the form

Qpvp . . . Qrvr.
∃+l1 . . . lq .

∧q
i=1 |si| = li ∧ Gr

(2)

where Gr is a PA formula, r grows from 1 to p + 1, and q = 2e where e for 0 ≤ e ≤ n
is the number of set variables among vp, . . . , vr. The list s1, . . . , sq is the list of all 2e

partitions formed from the set variables among vp, . . . , vr.
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We next show how to eliminate the innermost quantifier Qrvr from the formula (2).
During this process, the algorithm replaces the formula Gr with a formula Gr+1 which
has more integer quantifiers. If vr is an integer variable then the number of sets q remains
the same, and if vr is a set variable, then q reduces from 2e to 2e−1. We next consider
each of the four possibilities ∃k, ∀k, ∃y, ∀y for the quantifier Qrvr.

Consider first the case ∃k. Because k does not occur in
∧q

i=1 |si| = li, simply move
the existential quantifier to Gr and let Gr+1 = ∃k.Gr, which completes the step.

For universal quantifiers, it suffices to let Gr+1 = ∀k.Gr, again because k does not
occur in

∧q
i=1 |si| = li.

We next show how to eliminate an existential set quantifier ∃y from

∃y. ∃+l1 . . . lq .

q∧
i=1

|si| = li ∧ Gr (3)

which is equivalent to ∃+l1 . . . lq. (∃y.
∧q

i=1 |si| = li) ∧ Gr. This is the key step of the
algorithm and relies on the following lemma (see [26] for proof).

Lemma 1. Let b1, . . . , bn be finite disjoint sets, and l1, . . . , ln, k1, . . . , kn be natural
numbers. Then the following two statements are equivalent:

1. There exists a finite set y such that
∧n

i=1 |bi ∩ y| = ki ∧ |bi ∩ yc| = li
2.
∧n

i=1 |bi| = ki + li.

In the quantifier elimination step, assume without loss of generality that the set variables
s1, . . . , sq are numbered such that s2i−1 ≡ s′i ∩ yc and s2i ≡ s′i ∩ y for some cube s′i.
Then apply Lemma 1 and replace each pair of conjuncts

|s′i ∩ yc| = l2i−1 ∧ |s′i ∩ y| = l2i

with the conjunct |s′i| = l2i−1 + l2i, yielding formula

∃+l1 . . . lq.

q′∧
i=1

|s′i| = l2i−1 + l2i ∧ Gr (4)

for q′ = 2e−1. Finally, to obtain a formula of the form (2) for r + 1, introduce fresh
variables l′i constrained by l′i = l2i−1 + l2i, rewrite (4) as

∃+l′1 . . . l′q′ .
q′∧

i=1

|s′i| = l′i ∧ (∃l1 . . . lq.

q′∧
i=1

l′i = l2i−1 + l2i ∧ Gr)

and let

Gr+1 ≡ ∃+l1 . . . lq .

q′∧
i=1

l′i = l2i−1 + l2i ∧ Gr

This completes the description of elimination of an existential set quantifier ∃y.
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To eliminate a set quantifier ∀y, observe that

¬(∃+l1 . . . lq .

q∧
i=1

|si| = li ∧ Gr)

is equivalent to ∃+l1 . . . lq.
∧q

i=1 |si| = li ∧ ¬Gr, because the existential quantifier
is used as a let-binding, so we may first substitute all values li into Gr, then perform
the negation, and then extract back the definitions of all values li. By expressing ∀y
as ¬∃y¬, we can show that the elimination of ∀y is analogous to elimination of ∃y:
introduce fresh variables l′i = l2i−1 + l2i and let

Gr+1 ≡ ∀+l1 . . . lq. (
q′∧

i=1

l′i = l2i−1 + l2i) ⇒ Gr

After eliminating all quantifiers as described above, we obtain a formula of the form
∃+l. |U| = l ∧Gp+1(l). We define the result of the algorithm, denoted α(F0), to be the
PA sentence Gp+1(MAXC).

This completes the description of the algorithm α. Given that the validity of PA
sentences is decidable [39], the algorithm α is a decision procedure for BAPA sentences.

Theorem 2. The algorithm α described above maps each BAPA-sentence F0 into an
equivalent PA-sentence α(F0).

Formalization of the Algorithm α. To formalize the algorithm α, we wrote a concise
implementation in O’Caml, see [26]. As an illustration, when we run the implementation
on the BAPA formula in Figure 6 which represents a verification condition, we immedi-
ately obtain the PA formula in Figure 10. Note that the structure of the resulting formula
mimics the structure of the original formula: every set quantifier is replaced by the cor-
responding block of quantifiers over non-negative integers constrained to partition the
previously introduced integer variables. Figure 11 presents the correspondence between
the set variables of the BAPA formula and the integer variables of the translated PA for-
mula. Note that the relationship content′ = content∪e translates into the conjunction of
the constraints |content′∩(content∪e)c| = 0∧ |(content∪e)∩content′

c| = 0, which
reduces to the conjunction l100 = 0∧ l011 + l001 + l010 = 0 using the translation of set
expressions into the disjoint union of partitions, and the correspondence in Figure 11.

5 Complexity

In this section we analyze the algorithm α from Section 4 and obtain space bounds on
BAPA from the corresponding space bounds for PA. We then show that the new decision
procedure is optimal for BA if applied to BA formulas. Moreover, by construction, our
procedure reduces to the procedure for PA formulas if there are no set quantifiers. In
summary, our decision procedure is optimal for BA, does not impose any overhead for
pure PA formulas, and the complexity of the general BAPA validity has the same height
of the tower of exponentials as the complexity of PA itself.
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∀+l1.∀+l0. MAXC = l1 + l0 ⇒
∀+l11.∀+l01.∀+l10.∀+l00.
l1 = l11 + l01 ∧ l0 = l10 + l00 ⇒
∀+l111. ∀+l011. ∀+l101. ∀+l001.
∀+l110. ∀+l010. ∀+l100. ∀+l000.
l11 = l111 + l011 ∧ l01 = l101 + l001 ∧
l10 = l110 + l010 ∧ l00 = l100 + l000 ⇒
∀size.∀size ′.
(l111 + l011 + l101 + l001 = 1 ∧
l111 + l011 = 0 ∧
l111 + l011 + l110 + l010 = size ∧
l100 = 0 ∧
l011 + l001 + l010 = 0 ∧
size ′ = size + 1)⇒
(0 < size ′ ∧
l111 + l101 + l110 + l100 = size ′)

Fig. 10. The translation of the BAPA sentence from
Figure 6 into a PA sentence

general relationship:
li1,...,ik = |seti1

q ∩ seti2
q+1 ∩ . . . ∩ setik

S |
q = S − (k − 1)

(S is number of set variables)

in this example:
set1 = content′

set2 = content
set3 = e

l000 = |content′c ∩ contentc ∩ ec|
l001 = |content′c ∩ contentc ∩ e|
l010 = |content′c ∩ content ∩ ec|
l011 = |content′c ∩ content ∩ e|
l100 = |content′ ∩ contentc ∩ ec|
l101 = |content′ ∩ contentc ∩ e|
l110 = |content′ ∩ content ∩ ec|
l111 = |content′ ∩ content ∩ e|

Fig. 11. The Correspondence between In-
teger Variables in Figure 10 and Set Vari-
ables in Figure 6

5.1 An Elementary Upper Bound

We next show that the algorithm in Section 4 transforms a BAPA sentence F0 into a PA
sentence whose size is at most exponential and which has the same number of quantifier
alternations.

If F is a formula in prenex form, let size(F ) denote the size of F , and let alts(F )
denote the number of quantifier alternations in F . Define the iterated exponentiation
function expk(x) by exp0(x) = x and expk+1(x) = 2expk(x).

Lemma 3. For the algorithm α from Section 4 there is a constant c > 0 such that
size(α(F0)) ≤ 2c·size(F0) and alts(α(F0)) = alts(F0). Moreover, the algorithm α runs
in 2O(size(F0)) time and space.

We next consider the worst-case space bound on BAPA. Recall first the following
bound on space complexity for PA.

Fact 1. [15, Chapter 3] The validity of a PA sentence of length n can be decided in
space exp2(O(n)).

From Lemma 3 and Fact 1 we conclude that the validity of BAPA formulas can be
decided in space exp3(O(n)). It turns out, however, that we obtain better bounds on
BAPA validity by analyzing the number of quantifier alternations in BA and BAPA
formulas.

Fact 2. [41] The validity of a PA sentence of length n and the number of quantifier
alternations m can be decided in space 2nO(m)

.

From Lemma 3 and Fact 2 we obtain our space upper bound, which implies the upper
bound on deterministic time.
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Theorem 4. The validity of a BAPA sentence of length n and the number of quantifier
alternations m can be decided in space exp2(O(mn)), and, consequently, in determin-
istic time exp3(O(mn)).

If we approximate quantifier alternations by formula size, we conclude that BAPA valid-
ity can be decided in space exp2(O(n2)) compared to exp2(O(n)) bound for PA from
Fact 1. Therefore, despite the exponential explosion in the size of the formula in the
algorithm α, thanks to the same number of quantifier alternations, our bound has the
same number of exponentials as the bound for PA.

5.2 BA as a Special Case

We next analyze the result of applying the algorithm α to a pure BA sentence F0. By
a pure BA sentence we mean a BA sentence without cardinality constraints, containing
only the standard operations ∩,∪, c and the relations ⊆, =. At first, it might seem that
the algorithm α is not a reasonable approach to deciding BA formulas given that the
best upper bounds for PA [15, Chapter 3] are worse than the corresponding bounds
for BA [22]. However, we identify a special form of PA sentences PABA = {α(F0) |
F0 is in BA} and show that such sentences can be decided in alternating time optimal
for BA [22].

Let F0 be a pure BA formula and let S be the number of set variables in F0 (the set
variables are the only variables in F0). Let l1, . . . , lq be the free variables of the formula
Gr(l1, . . . , lq) in the algorithm α. Then q = 2e for e = S + 1 − r. Let w1, . . . , wq be
integers specifying the values of l1, . . . , lq . We then have the following lemma.

Lemma 5. For each r where 1 ≤ r ≤ S, formula Gr(w1, . . . , wq) is equivalent to
formula Gr(w̄1, . . . , w̄q) where w̄i = min(wi, 2r−1).

Consider a formula F0 of size n with S variables. Then α(F0) = GS+1. By Lemma 3,
size(α(F0)) is O(nS2S). By Lemma 5, it suffices for the outermost quantified variable of
α(F0) to range over the integer interval [0, 2S], and the range of subsequent variables is
even smaller. Therefore, the value of each of the 2S+1−1 variables can be represented in
O(S) space. Because α(F0) has S quantifier alternations, α(F0) the values of all bound
variables can be guessed in alternating time O(S). The truth value of a PA formula for
given values of variables can be evaluated in time polynomial in the size of the formula,
so deciding α(F0) can be done in alternating time bounded by na2bS for some constants
a, b. Because S ≤ n, we conclude that the algorithm α can be used to decide a pure
BA formula by alternating Turing machine running in time 2cn for some c > 0 and
performing n alternations. The class of all such problems is called Berman complexity
class STA(∗, 2cn, n). Theorem 5.6 in [22] shows that BA (even if interpreted only over
all finite Boolean algebras) is in fact complete for the class STA(∗, 2cn, n). Therefore,
our algorithm α allows optimal decision procedure for BA, if the PA decision procedure
exploits the special structure of the generated formula α(F0); this special structure is
given by Lemma 5. Note that the class STA(∗, 2cn, n) is contained in the deterministic
exponential space, which is equal to alternating exponential time, the only difference
being that the number of alternations in STA(∗, 2cn, n) is restricted to be linear.
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6 Experience Using Our Decision Procedure for BAPA

We have experimented with BAPA in the context of Jahob system [23] for verifying data
structure consistency of Java programs. Jahob parses Java source code annotated with
formulas in Isabelle syntax written in comments, generates verification conditions, and
uses decision procedures and theorem provers to discharge these verification conditions.
Jahob currently contains interfaces to the Isabelle interactive theorem prover [36], the
Simplify theorem prover [12] as well as the Omega Calculator [40] and the LASH [30]
decision procedures for PA.

Using Jahob, we have generated verification conditions for several Java program
fragments that require reasoning about sets and their cardinalities, for example, to prove
the equality between the set representing the number of elements in a list and the integer
field size after they have been updated. The formulas arising from examples in Section 3
have also been discharged using our current implementation. By comparing different
decision procedures, we have found that Simplify is able to deal with some of the formulas
involving only sets or only integers, but not with formulas that relate cardinalities of
operations on sets to cardinalities of the individual sets. These formulas can be proved
in Isabelle, but require user interaction in terms of auxiliary lemmas. On the other hand,
our implementation of the decision procedure automatically discharges these formulas.

Our initial experience indicates that the direct implementation of the basic algorithm
works fast as long as the number of set variables is small; typical timings are fractions
of a second for 4 or less set variables, less than 10 seconds for 5 variables. More than 5
set variables cause the PA decision procedure to run out of memory. (We have used the
Omega Calculator to decide PA formulas because we found that it outperforms LASH in
the formulas generated from our examples.) On the other hand, the decision procedure is
much less sensitive to the number of integer variables in BAPA formulas, because they
translate into the same number of integer variables in the generated PA formula.

Our current implementation makes use of certain formula transformations to reduce
the size of the generated PA formula. We found that eliminating set variables by sub-
stitution of equals for equals is an effective optimization. We also observed that lifting
quantifiers to the top level noticeably improves the performance of the Omega Calcu-
lator. These transformations extend the range of formulas that the current system can
handle. A possible alternative to the current approach is to interleave the elimination of
integer variables with the elimination of the set variables and perform formula simplifica-
tions during this process [26, Section 5.2]; this alternative approach does not yield good
worse-case complexity bounds but could be useful for subclasses of BAPA formulas.

7 Further Observations

We next sketch some further observations about BAPA, see [26] for details.

Countable Sets. A generalization of BAPA where set variables range over subets of an
arbitrary (not necessarily finite) set is decidable, which follows from the decidability of
the first-order theory of the addition of cardinals [14]. We here consider the case of all
subsets of a countable set, and argue that the complexity results we have developed so
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far still apply. We first generalize the language of BAPA and the interpretation of BAPA
operations, as follows. Introduce function inf(b) which returns 0 if b is a finite set and
1 if b is a countable set. Define |b| to be some arbitrary integer (for concreteness, zero)
if b is infinite, and the cardinality of b if b is finite. A countable or finite cardinal can
therefore be represented in PA using a pair (k, i) of an integer k and an infinity flag i.
The relation representing the addition of cardinals (k1, i1) + (k2, i2) = (k3, i3) is then
definable by formula

(i1 = 0 ∧ i2 = 0 ∧ i3 = 0 ∧ k1 + k2 = k3) ∨ ((i1 �= 0 ∨ i2 �= 0) ∧ i3 = 1 ∧ k3 = 0)

Moreover, we have the following generalization of Lemma 1.

Lemma 6. Let b1, . . . , bn be disjoint sets, l1, . . . , ln, k1, . . . , kn be natural numbers,
and p1, . . . , pn, q1, . . . , qn ∈ {0, 1}. Then the following two statements are equivalent:

1. There exists a set y such that

n∧
i=1

|bi ∩ y| = ki ∧ inf(bi ∩ y) = pi ∧ |bi ∩ yc| = li ∧ inf(bi ∩ yc) = qi

2.
n∧

i=1

(pi = 0 ∧ qi = 0 ⇒ |bi| = ki + li) ∧ (inf(bi) = 0⇔(pi = 0 ∧ qi = 0))

The algorithm for the case of countable set then generalizes using Lemma 6 in the natural
way; the resulting PA formulas are at most polynomially larger than for the finite case,
so we obtain the same complexity bounds.

Relationship to MSOL. The monadic second-order logic (MSOL) over strings is a
decidable logic that can encode Presburger arithmetic by encoding addition using one
successor symbol and quantification over sets. There are two important differences be-
tween MSOL over strings and BAPA: (1) BAPA can express relationships of the form
|A| = k where A is a set variable and k is an integer variable; such relation is not
definable in MSOL over strings; (2) when MSOL over strings is used to represent PA
operations, the sets contain binary integer digits whereas in BAPA the sets contain un-
interpreted elements. Note also that MSOL extended with a construct that takes a set
of elements and returns an encoding of the size of that set is undecidabe, because it
could express MSOL with equicardinality, which is undecidable by a reduction from
Post correspondence problem. Despite this difference, the algorithm α gives a way to
combine MSOL over strings with BA yielding a decidable theory. Namely, α does not
impose any upper bound on the complexity of the theory for reasoning about integers, so
it implies the decidability of the BAPA extension where the constraints on cardinalities
of sets are expressed using relations on integers definable in MSOL over strings; these
relations go beyond PA [48, Page 400], [7].
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8 Related Work

Our paper is the first result that shows a complexity bound for the first-order theory
of BAPA. The decidability for BAPA, presented as BA with equicardinality constraints
was shown in [14] (see Section 2). A decision procedure for a special case of BAPA
was presented in [55], which allows only quantification over elements but not over sets
of elements. [42] shows the decidability of a single-sorted version of BAPA that only
contains the set sort. Note that bound integer variables can be simulated using bound set
variables, but there are notational and efficiency reasons to allow integer variables.

Presburger Arithmetic. The original result on decidability of PA is [39]. The best
known bound on formula size is [15]. An analysis based on the number of quantifier
alternations is presented in [41]. Our implementation uses quantifer-elimination based
Omega test [40]. Among the decision procedures for full PA, [9] is the only proof-
generating version, and is based on [11]. Decidable fragments of arithmetic that go
beyond PA include [6, 21].

Boolean Algebras. The first results on decidability of BA are from [31], [1, Chapter 4]
and use quantifier elimination, from which one can derive small model property; [22]
gives the complexity of the satisfiability problem. [33] studies unification in Boolean
rings. The quantifier-free fragment of BA is shown NP-complete in [32]; see [27] for a
generalization of this result using parameterized complexity of the Bernays-Schönfinkel-
Ramsey class of first-order logic [5, Page 258]. [8] gives an overview of several fragments
of set theory including theories with quantifiers but no cardinality constraints and theories
with cardinality constraints but no quantification over sets. Among the systems for in-
teractively reasoning about richer theories of sets are Isabelle [36], HOL [17], PVS [37],
TPS [2]; first-order frameworks such as Athena [3] can use axiomatizations of sets along
with calls to resolution-based theorem provers such as Vampire [51] to reason about sets.

Combinations of Decidable Theories. The techniques for combining quantifier-free
theories [35,43] and their generalizations such as [49,50,53,54] are of great importance
for program verification. Our paper shows a particular combination result for quanti-
fied formulas, which add additional expressive power in writing specifications. Among
the general results for quantified formulas are the Feferman-Vaught theorem for prod-
ucts [14] and term powers [24,25]. While we have found quantifiers to be useful in several
contexts, many problems can be encoded in quantifier-free formulas, so it is interesting
to consider a combination of BAPA with solvers for quantifier-free formulas [16, 47],
which would likely improve the efficiency on common verification conditions compared
to the current direct use of Omega decision procedure. Description logics [4] support
sets with cardinalities as well as relations, but do not support quantification over sets.

Analyses of Dynamic Data Structures. In addition to the new technical results, one
of the contributions of our paper is to identify the uses of our decision procedure for
verifying data structure consistency. We have shown how BAPA enables the verifica-
tion tools to reason about sets and their sizes. This capability is particularly important
for analyses that handle dynamically allocated data structures where the number of ob-
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jects is statically unbounded [34, 45, 52]. Recently, these approaches were extended to
handle the combinations of the constraints representing data structure contents and con-
straints representing numerical properties of data structures [10,44]. Our result provides
a systematic mechanism for building precise and predictable versions of such analyses.
Among other constraints used for data structure analysis, BAPA is unique in being a
complete algorithm for an expressive theory that supports arbitrary quantifiers. In addi-
tion to applications in Section 3, possible applications of our decision procedure include
query evaluation in constraint databases [42] and loop invariant inference [20].

9 Conclusion

Motivated by static analysis and verification of relations between data structure content
and size, we have presented an algorithm for deciding the first-order theory of Boolean
algebras with Presburger arithmetic (BAPA), showed an elementary upper bound on the
worst-case complexity, implemented the algorithm and applied it to discharge verifica-
tion conditions. Our experience indicates that the algorithm will be useful as a component
of a decision procedure of our data structure verification system.

Acknowledgements. We thank Alexis Bes, Chin Wei-Ngan, Calogero Zarba, Peter
Revesz, Andreas Podelski, Bruno Courcelle, Cesare Tinelli, Konstantin Korovin, Stan-
ford REACT group, Berkeley CHESS group, and CADE-20 reviewers on useful com-
ments.

References

1. W. Ackermann. Solvable Cases of the Decision Problem. North Holland, 1954.
2. P. B. Andrews, S. Issar, D. Nesmith, and F. Pfenning. The TPS theorem proving system. In

10th CADE, volume 449 of LNAI, pages 641–642, 1990.
3. K. Arkoudas, K. Zee, V. Kuncak, and M. Rinard. Verifying a file system implementation. In

Sixth International Conference on Formal Engineering Methods (ICFEM’04), volume 3308
of LNCS, Seattle, Nov 8-12, 2004 2004.

4. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors. The
Description Logic Handbook: Theory, Implementation and Applications. CUP, 2003.
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Abstract. Basically, the connection of two many-sorted theories is ob-
tained by taking their disjoint union, and then connecting the two parts
through connection functions that must behave like homomorphisms on
the shared signature. We determine conditions under which decidability
of the validity of universal formulae in the component theories trans-
fers to their connection. In addition, we consider variants of the basic
connection scheme.

1 Introduction

The combination of decision procedures for logical theories arises in many areas
of logic in computer science, such as constraint solving, automated deduction,
term rewriting, modal logics, and description logics. In general, one has two
first-order theories T1 and T2 over signatures Σ1 and Σ2, for which validity of a
certain type of formulae (e.g., universal, existential positive, etc.) is decidable.
These theories are then combined into a new theory T over a combination Σ of
the signatures Σ1 and Σ2. The question is whether decidability transfers from
T1, T2 to their combination T .

One way of combining the theories T1, T2 is to build their union T1 ∪ T2.
Both the Nelson-Oppen combination procedure [16,15] and combination pro-
cedures for the word problem [19,17,5] address this type of combination, but
for different types of formulae to be decided. Whereas the original combination
procedures were restricted to the case of theories over disjoint signatures, there
are now also solutions for the non-disjoint case [8,22,6,9,11,3], but they always
require some additional restrictions since it is easy to see that in the unre-
stricted case decidability does not transfer. Similar combination problems have
also been investigated in modal logic, where one asks whether decidability of
(relativized) validity transfers from two modal logics to their fusion [12,20,23,4].
The approaches in [11,3] actually generalize these results from equational theo-
ries induced by modal logics to more general first-order theories satisfying certain
model-theoretic restrictions: the theories T1, T2 must be compatible with their
shared theory T0, and this shared theory must be locally finite (i.e., its finitely
generated models are finite). The theory Ti is compatible with the shared theory
T0 iff (i) T0 ⊆ Ti; (ii) T0 has a model completion T ∗

0 ; and (iii) every model of Ti

embeds into a model of Ti ∪ T ∗
0 .

In [13], a new combination scheme for modal logics, called E-connection, was
introduced, for which decidability transfer is much simpler to show than in the
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case of the fusion. Intuitively, the difference between fusion and E-connection can
be explained as follows. A model of the fusion is obtained from two models of
the component logics by identifying their domains. In contrast, a model of the E-
connection consists of two separate models of the component logics together with
certain connecting relations between their domains. There are also differences in
the syntax of the combined logic. In the case of the fusion, the Boolean operators
are shared, and all operators can be applied to each other without restrictions. In
the case of the E-connection, there are two copies of the Boolean operators, and
operators of the different logics cannot be mixed; the only connection between
the two logics are new (diamond) modal operators that are induced by the
connecting relations.

If we want to adapt this approach to the more general setting of combining
first-order theories, then we must consider many-sorted theories since only the
sorts allow us to keep the domains separate and to restrict the way function
symbols can be applied to each other. Let T1, T2 be two many-sorted theories that
may share some sorts as well as function and relation symbols. We first build the
disjoint union T1(T2 of these two theories (by using disjoint copies of the shared
parts), and then connect them by introducing connection functions between the
shared sorts. These connection functions must behave like homomorphisms for
the shared function and predicate symbols, i.e., the axioms stating this are added
to T1 ( T2. This corresponds to the fact that the new diamond operators in the
E-connection approach distribute over disjunction and do not change the false
formula ⊥. We call the combined theory obtained this way the connection of T1

and T2.
This kind of connection between theories has already been considered in au-

tomated deduction (see, e.g., [1,24]), but only in very restricted cases where both
T1 and T2 are fixed theories (e.g., the theory of sets and the theory of integers in
[24]) and the connection functions have a fixed meaning (like yielding the length
of a list). In categorical logic, this type of connection can be seen as an instance
of a general co-comma construction in bicategories associated with theories and
syntactic interpretations (see, e.g., [25]). However, in this general setting, com-
putational properties of the combined theories have not been considered yet.

This paper is a first step towards providing general results on the transfer of
decidability from component theories to their connection. We start by consider-
ing the simplest case where there is just one connection function, and show that
decidability transfers whenever certain model-theoretic conditions are satisfied.
These conditions are weaker than the ones required in [3] for the case of the
union of theories.1 In addition, both the combination procedure and its proof
of correctness are much simpler than the ones in [11,3]. The approach easily ex-
tends to the case of several connection functions. We will also consider variants
of the general combination scheme where the connection function must satisfy
additional properties (like being surjective, an embedding, or an isomorphism),
or where a theory is connected with itself. The first variant is, for example, in-

1 Our conditions are in general not weaker than the ones in [11], although this is the
case for all the theories we have considered until now.



280 F. Baader and S. Ghilardi

teresting since the combination result for the union of theories shown in [11]
can be obtained from the variant where one has an isomorphism as connection
function. The second case is interesting since it can be used to reduce the global
consequence problem in the modal logic K to propositional satisfiability, which
is a surprising result.

2 Notation and Definitions

In this section, we fix the notation and give some important definitions, in par-
ticular a formal definition of the connection of two theories.

We use standard many-sorted first-order logic (see, e.g., [10]), but try to avoid
the notational overhead caused by the presence of sorts as much as possible.
Thus, a signature Ω consists of a non-empty set of sorts S together with a set of
function symbols F and a set of predicate symbols P . The function and predicate
symbols are equipped with arities from S∗ in the usual way. For example, if the
arity of f ∈ F is S1S2S3, then this means that the function f takes tuples
consisting of an element of sort S1 and an element of sort S2 as input, and
produces an element of sort S3. We consider logic with equality, i.e., the set of
predicate symbols contains a symbol ≈S for equality in every sort S. Usually, we
will just use ≈ without explicitly specifying the sort. In this paper we usually
assume that signatures are at most countable.

Terms and first-order formulae over Ω are defined in the usual way, i.e., they
must respect the arities of function and predicate symbols, and the variables
occurring in them are also equipped with sorts. An Ω-atom is a predicate symbol
applied to (sort-conforming) terms, and an Ω-literal is an atom or a negated
atom. A ground literal is a literal that does not contain variables. We use the
notation φ(x) to express that φ is a formula whose free variables are among the
ones in the tuple of variables x. An Ω-sentence is a formula over Ω without free
variables. An Ω-theory T is a set of Ω-sentences (called the axioms of T ). If T, T ′

are Ω-theories, then we write (by a slight abuse of notation) T ⊆ T ′ to express
that all the axioms of T are logical consequences of the axioms of T ′.

From the semantic side, we have the standard notion of an Ω-structure A,
which consists of non-empty and pairwise disjoint domains AS for every sort
S, and interprets function symbols f and predicate symbols P by functions fA

and predicates PA according to their arities. By A we denote the union of all
domains AS . Validity of a formula φ in an Ω-structure A (A |= φ), satisfiability,
and logical consequence are defined in the usual way. The Ω-structure A is a
model of the Ω-theory T iff all axioms of T are valid in A. If φ(x) is a formula
with free variables x = x1, . . . , xn and a = a1, . . . , an is a (sort-conforming)
tuple of elements of A, then we write A |= φ(a) to express that φ(x) is valid in
A under the assignment {x1 �→ a1, . . . , xn �→ an}. Note that φ(x) is valid in A
iff it is valid under all assignments iff its universal closure is valid in A.

An Ω-homomorphism between two Ω-structures A and B is a mapping μ :
A → B that is sort-conforming (i.e., maps elements of sort S in A to elements
of sort S in B), and satisfies the condition
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(∗) A |= α(a1, . . . , an) implies B |= α(μ(a1), . . . , μ(an))

for all Ω-atoms α(x1, . . . , xn) and (sort-conforming) elements a1, . . . , an of A.
In case the converse of (∗) holds too, μ is called an Ω-embedding. Note that
an embedding is something more than just an injective homomorphism since
the stronger condition must hold not only for the equality predicate, but for all
predicate symbols. If the embedding μ is the identity on A, then we say that A
is a Ω-substructure of B.

We say that Σ is a subsignature of Ω (written Σ ⊆ Ω) iff Σ is a signature
that can be obtained from Ω by removing some of its sorts and function and
predicate symbols. If Σ ⊆ Ω and A is an Ω-structure, then the Σ-reduct of A is
the Σ-structure A|Σ obtained from A by forgetting the interpretations of sorts,
function and predicate symbols from Ω that do not belong to Σ. Conversely, A
is called an expansion of the Σ-structure A|Σ to the larger signature Ω. If μ :
A→ B is an Ω-homomorphism, then the Σ-reduct of μ is the Σ-homomorphism
μ|Σ : A|Σ → B|Σ obtained by restricting μ to the sorts that belong to Σ, i.e., by
restricting the mapping to the domain of A|Σ .

Given a set X of constant symbols not belonging to the signature Ω, but
each equipped with a sort from Ω, we denote by ΩX the extension of Ω by these
new constants. If A is an Ω-structure, then we can view the elements of A as a
set of new constants, where a ∈ AS has sort S. By interpreting each a ∈ A by
itself, A can also be viewed as an ΩA-structure. The positive diagram Δ+

Ω(A)
of A is the set of all ground ΩA-atoms that are true in A, and the diagram
ΔΩ(A) of A is the set of all ground ΩA-literals that are true in A. Robinson’s
diagram theorems [7] say that there is a homomorphism (embedding) between
the Ω-structures A and B iff it is possible to expand B to an ΩA-structure in
such a way that it becomes a model of the positive diagram (diagram) of A.

Basic Connections

In the remainder of this section, we introduce our basic scheme for connecting
many-sorted theories, and illustrate it with the example of E-connections of
modal logics. Let T1, T2 be theories over the respective signatures Ω1,Ω2, and
let Ω0 be a common subsignature of Ω1 and Ω2. We call Ω0 the connecting
signature. In addition, let T0 be an Ω0-theory2 that is contained in both T1 and
T2. We define the new theory T1 >T0 T2 (called the connection of T1 and T2 over
T0) as follows.

The signature Ω of T1 >T0 T2 contains the disjoint union Ω1(Ω2 of the signa-
tures Ω1 and Ω2, where the shared sorts and the shared function and predicate
symbols are appropriately renamed, e.g., by attaching labels 1 and 2. Thus, if
S (f , P ) is a sort (function symbol, predicate symbol) contained in both Ω1

and Ω2, then Si (f i, P i) for i = 1, 2 are its renamed variants in the disjoint

2 When defining the connection of T1, T2, the theory T0 is actually irrelevant; all we
need is its signature Ω0. However, for our decidability transfer results to hold, T0

and the Ti must satisfy certain model-theoretic properties.
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union, where the arities are accordingly renamed. In addition, Ω contains a new
function symbol hS of arity S1S2 for every sort S of Ω0.

The axioms of T1 >T0 T2 are obtained as follows. Given an Ωi-formula φ, its
renamed variant φi is obtained by replacing all shared symbols by their renamed
variants with label i. The axioms of T1 >T0 T2 consist of

{φ1 | φ ∈ T1} ∪ {φ2 | φ ∈ T2},

together with the universal closures of the formulae

hS(f1(x1, . . . , xn)) ≈ f2(hS1(x1), . . . , hSn(xn)),
P 1(x1, . . . , xn) → P 2(hS1(x1), . . . , hSn(xn)),

for every function (predicate) symbol f (P ) in Ω0 of arity S1 . . .SnS (S1 . . .Sn).
Since the signatures Ω1 and Ω2 have been made disjoint, and since the

additional axioms state that the family of mappings hS behaves like an Ω0-
homomorphism, it is easy to see that the models of T1 >T0 T2 are formed by
triples of the form (M1,M2, hM), where M1 is a model of T1, M2 is a model
of T2, and hM is an Ω0-homomorphism hM : M1

|Ω0
→ M2

|Ω0
between the re-

spective Ω0-reducts.

Example 1. The most basic variant of the E-connection scheme introduced in [13]
is an instance of our approach if one translates it into the algebraic setting. The
abstract description systems considered in [13], which cover all the usual modal
and description logics, are closely related to to Boolean-based equational theories
(see [2] for details). The theory E is called Boolean-based equational theory [3]
iff its signature Σ has just one sort, equality is the only predicate symbol, the
set of function symbols contains the Boolean operators �,�,¬,�,⊥, and its set
of axioms consists of identities (i.e., the universal closures of atoms s ≈ t) and
contains the Boolean algebra axioms.

For example, consider the basic modal logic K, where we use only the modal
operator ♦ (since � can then be defined). The Boolean-based equational theory
EK corresponding to K is obtained from the theory of Boolean algebras by
adding the identities ♦(x � y) ≈ ♦(x) � ♦(y) and ♦(⊥) ≈ ⊥.

Let us illustrate the notion of an E-connection also on this simple example.
To build the E-connection of K with itself, one takes two disjoint copies of
K, obtained by renaming the Boolean operators and the diamonds, e.g., into
�i,�i,¬i,�i,⊥i, ♦i for i = 1, 2. The signature of the E-connection contains all
these renamed symbols together with a new symbol ♦. However, it is now a
two-sorted signature, where symbols with index i are applied to elements of sort
Si and yield as results an element of this sort. The new symbol has arity S1S2.3

The semantics of this E-connection can be given in terms of Kripke structures.
A Kripke structure for the E-connection consists of two Kripke structures K1,K2

3 In the E-connection scheme introduced in [13], there is also an inverse diamond
operator ♦− with arity S2S1, but the algebraic approach introduced in the present
paper cannot treat this case (see the conclusion for a discussion).
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for K over disjoint domains W1 and W2, together with an additional connecting
relation E ⊆ W2 × W1. The symbols with index i are interpreted in Ki, and
the new symbol ♦ is interpreted as the diamond operator induced by E, i.e., for
every X ⊆W1 we have

♦(X) := {x ∈ W2 | ∃y ∈ W1. (x, y) ∈ E ∧ y ∈ X}.

This interpretation of the new operator implies that it satisfies the usual iden-
tities of a diamond operator, i.e., ♦(x �1 y) ≈ ♦(x) �2 ♦(y) and ♦(⊥1) ≈ ⊥2,
and that these identities are sufficient to characterize its semantics. Thus, the
equational theory corresponding to the E-connection of K with itself consists of
these two axioms, together with the axioms of EK1 and EK2 .

Obviously, this theory is also obtained as the connection of the theory EK

with itself, if the connecting signature Ω0 consists of the single sort of EK,
the predicate symbol ≈, and the function symbols �,⊥. As theory T0 we can
take the theory of semilattices, i.e., the axioms that say that � is associative,
commutative, and idempotent, and that ⊥ is a unit for �.

Example 2. The previous example can be varied by including � in the connecting
signature, and taking as theory T0 the theory of distributive lattices with a least
element ⊥. It is easy to see that this corresponds to the case of an E-connection
where the connecting relation E is required to be a partial function.

3 Positive Algebraic Completions and Compatibility

In order to transfer decidability results from the component theories T1, T2 to
their connection T1 >T0 T2 over T0, the theories T0, T1, T2 must satisfy certain
model-theoretic conditions, which we introduce below. The most important one
is that T0 has a positive algebraic completion. Before we can define this concept,
we must introduce some notions from model theory [7].

The formula φ is called open iff it does not contain quantifiers; it is called
universal iff it is obtained from an open formula by adding a prefix of universal
quantifiers; and it is called geometric iff it is built from atoms by using conjunc-
tion, disjunction, true, false, and existential quantifiers.4

The main property of geometric formulae is that they are preserved un-
der homomorphisms in the following sense: if μ : A → B is a homomorphism
between Ω-structures and φ(x1, . . . , xn) is a geometric formula over Ω, then
A |= φ(a1, . . . , an) implies B |= φ(μ(a1), . . . , μ(an)) for all (sort-conforming)
a1, . . . , an ∈ A. Open formulae are related to embeddings in various ways. First,
they are preserved under building sub- and superstructures, i.e., if A is a sub-
structure of B, φ(x1, . . . , xn) is an open formula, and a1, . . . , an ∈ A are sort-
conforming, then A |= φ(a1, . . . , an) iff B |= φ(a1, . . . , an). Moreover, two Ω-
theories T, T ′ entail the same set of open formulae iff every model of T can be
embedded into a model of T ′ and vice versa (see [7] for these and related results).
4 The latter formulae are called “geometric” in categorical logic [14] since they are

preserved under inverse image geometric morphisms.
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The theory T is a universal theory iff its axioms are universal sentences; it is a
geometric theory iff it can be axiomatized by using universal closures of geometric
sequents, where a geometric sequent is an implication between two geometric
formulae. Note that any universal theory is geometric since open formulae are
conjunctions of clauses and clauses can be rewritten as geometric sequents.

Definition 1. Let T be a universal and T ∗ a geometric theory over Ω. We say
that T ∗ is a positive algebraic completion of T iff the following properties hold:

1. T ⊆ T ∗;
2. every model of T embeds into a model of T ∗;5

3. for every geometric formula φ(x) there is an open geometric formula φ∗(x)
such that T ∗ |= φ ↔ φ∗.

It can be shown that the models of T ∗ are exactly the algebraically closed models
of T (see [2]). In particular, this means that the positive algebraic completion of
T is unique, provided that it exists.

When trying to show that Property 3 of Definition 1 holds for given theories
T, T ∗, it is sufficient to consider simple existential formulae φ(x), i.e., formulae
that are obtained from conjunctions of atoms by adding an existential quantifier
prefix. In fact, any geometric formula φ can be normalized to a disjunction
φ1∨. . .∨φn of simple existential formulae φi by using distributivity of conjunction
and existential quantification over disjunction. In addition, if T ∗ |= φi ↔ φ∗

i for
geometric open formulae φ∗

i (i = 1, . . . , n), then φ∗
1 ∨ . . .∨φ∗

n is also a geometric
open formula and T ∗ |= (φ1 ∨ . . . ∨ φn) ↔ (φ∗

1 ∨ . . . ∨ φ∗
n).

The following lemma will turn out to be useful later on.

Lemma 1. Assume that T, T ∗ satisfy Property 2 of Definition 1. If φ(x) is a
simple existential formula and φ∗(x) is an open formula, then T ∗ |= φ → φ∗

implies T |= φ → φ∗.

This is an immediate consequence of the facts that φ → φ∗ is then equivalent to
an open formula, and open formulae are preserved under building substructures.

The first ingredient of our combinability condition is the following notion
of compatibility, which is a variant of analogous compatibility conditions intro-
duced in [11,3] for the case of the union of theories.

Definition 2. Let T0 ⊆ T be theories over the respective signatures Ω0 ⊆ Ω1.
We say that T is T0-algebraically compatible iff T0 is universal, has a positive
algebraic completion T ∗

0 , and every model of T embeds into a model of T ∪ T ∗
0 .

The second ingredient is that T0 must be locally finite, i.e., all finitely gener-
ated models of T0 are finite. To be more precise, we need the following effective
variant of local finiteness defined in [11,3]. Let T0 be a universal theory over the
finite signature Ω0. Then T0 is called effectively locally finite iff for every tuple
of variables x, one can effectively determine terms t1(x), . . . , tk(x) such that, for
every further term u(x), we have that T0 |= u ≈ ti for some i = 1, . . . , k.
5 Equivalently, T and T ∗ entail the same universal sentences.
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4 The Main Combination Result

We are interested in deciding the universal fragments of our theories, i.e., validity
of universal formulae (or, equivalently open formulae) in a theory T . This is the
decision problem also treated by the Nelson-Oppen combination method (albeit
for the union of theories). It is well known that this problem is equivalent to the
problem of deciding whether a set of literals is satisfiable in some model of T .
We call such a set of literals a constraint.

By introducing new free constants (i.e., constants not occurring in the axioms
of the theory), we can assume without loss of generality that such constraints
contain no variables. In addition, we can transform any ground constraint into
an equisatisfiable set of ground flat literals, i.e., literals of the form

a ≈ f(a1, . . . , an), P (a1, . . . , an), or ¬P (a1, . . . , an),

where a, a1, . . . , an are (sort-conforming) free constants, f is a function symbol,
and P is a predicate symbol (possibly also equality).

Theorem 1. Let T0, T1, T2 be theories over the respective signatures Ω0,Ω1,Ω2,
where Ω0 is a common subsignature of Ω1 and Ω2. Assume that T0 ⊆ T1 and
T0 ⊆ T2, that T0 is universal and effectively locally finite, and that T2 is T0-
algebraically compatible. Then the decidability of the universal fragments of T1

and T2 entails the decidability of the universal fragment of T1 >T0 T2.

To prove the theorem, we consider a finite set Γ of ground flat literals over the
signature Ω of T1 >T0 T2 (with additional free constants), and show how it can
be tested for satisfiability in T1 >T0 T2. Since all literals in Γ are flat, we can
divide Γ into three disjoint sets Γ = Γ0 ∪ Γ1 ∪ Γ2, where Γi (i = 1, 2) is a set
of literals in the signature Ωi (expanded with free constants), and Γ0 is of the
form

Γ0 = {h(a1) ≈ b1, . . . , h(an) ≈ bn}

for free constants a1, b1, . . . , an, bn. Here and in the following we omit the sort
index when writing the connection functions hS.

Proposition 1. The constraint Γ = Γ0 ∪ Γ1 ∪ Γ2 is satisfiable in T1 >T0 T2 iff
there exists a triple (A,B, ν) such that

1. A is an Ω0-model of T0, which is generated by {aA
1 , . . . , aA

n };
2. B is an Ω0-model of T0, which is generated by {bB1 , . . . , bBn};
3. ν : A→ B is an Ω0-homomorphism such that ν(aA

j ) = bBj for j = 1, . . . , n;
4. Γ1 ∪ΔΩ0(A) is satisfiable in T1;
5. Γ2 ∪ΔΩ0(B) is satisfiable in T2.

Proof. The only-if direction is simple. In fact, as noted in Section 2, a modelM
of T1 >T0 T2 is given by a triple (M1,M2, hM), whereM1 is a model of T1,M2

is a model of T2, and hM :M1
|Ω0

→M2
|Ω0

is an Ω0-homomorphism between the
respective Ω0-reducts. Assume that this modelM satisfies Γ . We can take as A
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the substructure ofM1
|Ω0

generated by (the interpretations of) a1, . . . , an, as B
the substructure of M2

|Ω0
generated by (the interpretations of) b1, . . . , bn, and

as homomorphism ν the restriction of hM to A. It is easy to see that the triple
(A,B, ν) obtained this way satisfies 1.–5. of the proposition.

Conversely, assume that (A,B, ν) is a triple satisfying 1.–5. of the proposition.
Because of 4. and 5., there is an Ω1-modelN ′ of T1 satisfying Γ1∪ΔΩ0(A) and an
Ω2-model N ′′ of T2 satisfying Γ2∪ΔΩ0 (B). By Robinson’s diagram theorem, N ′

has A as an Ω0-substructure and N ′′ has B as an Ω0-substructure. We assume
without loss of generality that N ′ is at most countable and that N ′′ is a model
of T2∪T ∗

0 . The latter assumption is by T0-algebraic compatibility of T2, and the
former assumption is by the Löwenheim-Skolem theorem since our signatures
are at most countable. Let us enumerate the elements of N ′ as

c1, c2, . . . , cn, cn+1, . . . ,

where we assume that ci = aA
i (i = 1, . . . , n), i.e., c1, . . . , cn are generators of A.

We define an increasing sequence of sort-conforming functions νk : {c1, . . . ck}→
N ′′ (for k ≥ n) such that, for every ground Ω

{c1,...,ck}
0 -atom α we have

N ′
|Ω0
|= α(c1, . . . , ck) implies N ′′

|Ω0
|= α(νk(c1), . . . , νk(ck)).

We first take νn to be ν. To define νk+1 (for k ≥ n), let us consider the con-
junction ψ(c1, . . . , ck, ck+1) of the Ω

{c1,...,ck+1}
0 -atoms that are true in N ′

|Ω0
: this

conjunction is finite (modulo taking representative terms, thanks to local finite-
ness of T0). Let φ(x1, . . . , xk) be ∃xk+1.ψ(x1, . . . , xk, xk+1) and let φ∗(x1, . . . , xk)
be a geometric open formula such that T ∗

0 |= φ ↔ φ∗.
By Lemma 1, T0 |= φ → φ∗, and thus we have N ′

|Ω0
|= φ∗(c1, . . . , ck) and

also N ′′
|Ω0
|= φ∗(νk(c1), . . . , νk(ck)) by the induction hypothesis. Since N ′′

|Ω0
is a

model of T ∗
0 , there is a b such that N ′′

|Ω0
|= ψ(νk(c1), . . . , νk(ck), b) for some b. We

now obtain the desired extension νk+1 of νk by setting νk+1(ck+1) := b. Taking
ν∞ =

⋃
k≥n νk, we finally obtain a homomorphism ν∞ : N ′

|Ω0
→ N ′′

|Ω0
such that

the triple (N ′,N ′′, ν∞) is a model of T1 >T0 T2 that satisfies Γ0 ∪ Γ1 ∪ Γ2. ��

The above proof uses the assumption that T0 is locally finite. By using heavier
model-theoretic machinery, one can also prove the proposition without using
local finiteness of T0 (see [2]). However, since the proof of Theorem 1 needs this
assumption anyway (see below), we gave the above proof since it is simpler.

To conclude the proof of Theorem 1, we describe a non-deterministic decision
procedure that effectively guesses an appropriate triple (A,B, ν) and then checks
whether it satisfies 1.–5. of Proposition 1. To guess an Ω0-model of T0 that is
generated by a finite set X , one uses effective local finiteness of T0 to obtain an
effective bound on the size of such a model, and then guesses an Ω0-structure
that satisfies this size bound. Once the structures A,B are given, one can build
their diagrams, and use the decision procedures for T1 and T2 to check whether
4. and 5. of Proposition 1 are satisfied. If the answer is yes, then A,B are also
models of T0: in fact, if for instance Γ1 ∪ΔΩ0(A) is satisfiable in the model M
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of T1, then M has A as a substructure, and this implies A |= T0 because T0 is
universal and T0 ⊆ T1. Finally, one can guess a mapping ν : A → B that satisfies
ν(aA

j ) = bBj , and then use the diagrams of A,B to check whether ν satisfies the
homomorphism condition (∗).

The proof of Proposition 1 shows that our decidability transfer result can eas-
ily be extended to the case of several connection functions, possibly going in both
directions. In fact, one simply considers several Ω0-homomorphisms between A
and B in 3. of the proposition, and extends them separately to homomorphisms
between N ′ and N ′′ (see [2] for more details). If there are also connection func-
tions in the other direction (and thus homomorphisms from B to A), then T1

must also be T0-algebraically compatible.

Examples

When trying to axiomatize the positive algebraic completion T ∗
0 of a given uni-

versal theory T0, it is sufficient to produce for every simple existential formula
φ(x) an appropriate geometric and open formula φ∗(x). Take as theory T ∗

0 the
one axiomatized by T0 together with the formulae φ ↔ φ∗ for every simple exis-
tential formula φ. In order to complete the job, it is sufficient to show that every
model of T0 embeds into a model of T ∗

0 . It should also be noted that one can
without loss of generality restrict the attention to simple existential formulae
with just one existential quantifier since more than one quantifier can then be
treated by iterated elimination of single quantifiers.

In the next example we encounter a special case where the formulae φ ↔ φ∗

are already valid in T0. In this case, we have T0 = T ∗
0 , and thus the model-

embedding condition is trivially satisfied. In addition, any theory T with T0 ⊆ T
is T0-algebraically compatible.

Example 3. Recall from [3] the definition of a Gaussian theory. Let us call a
conjunction of atoms an e-formula. The universal theory T0 is Gaussian iff for
every e-formula φ(x, y) it is possible to compute an e-formula ψ(x) and a term
s(x, z) with fresh variables z such that

T0 |= φ(x, y) ↔ (ψ(x) ∧ ∃z.(y ≈ s(x, z))). (1)

Any Gaussian theory T0 is its own positive algebraic completion. In fact, it is
easy to see that (1) implies T0 |= (∃y.φ(x, y)) ↔ ψ(x), and thus the comment
given above this example applies.

As a consequence, our combination result applies to all the examples of effec-
tively locally finite Gaussian theories given in [3] (e.g., Boolean algebras, vector
spaces over a finite field, empty theory over a signature whose sets of predicates
consists of ≈ and whose set of function symbols is empty): if the universal theory
T0 is effectively locally finite and Gaussian, and T1, T2 are arbitrary theories con-
taining T0 and with decidable universal fragment, then the universal fragment
of T1 >T0 T2 is also decidable.

Example 4. Let T0 be the theory of semilattices (see Example 1). This theory is
obviously effectively locally finite. In the following, we use the disequation s 0 t
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as an abbreviation for the equation s � t ≈ t. Obviously, any equation s ≈ t can
be expressed by the disequations s 0 t ∧ t 0 s.

The theory T0 has a positive algebraic completion, which can be axiomatized
as follows. Let φ(x) be a simple existential formula with just one existential
quantifier. Using the fact that z1�. . .�zn 0 z is equivalent to z1 0 z∧. . .∧zn 0 z,
it is easy to see that φ(x) is T0-equivalent to a formula of the form

ψ(x) ∧ ∃y.((y 0 t1) ∧ · · · ∧ (y 0 tn) ∧ (u1 0 s1 � y) ∧ · · · ∧ (um 0 sm � y)), (2)

where ψ(x), ti, sj, uk do not contain y. Let φ∗(x) be the formula

ψ(x) ∧
n∧

i=1

m∧
j=1

(uj 0 sj � ti), (3)

and let T ∗
0 be obtained from T0 by adding to it the universal closures of all

formulae φ ↔ φ∗.
We prove that T ∗

0 is contained in the theory of Boolean algebras. In fact, the
system of disequations (2) is equivalent, in the theory of Boolean algebras, to

ψ(x)∧∃y.((y 0 t1)∧ · · · ∧ (y 0 tn)∧ (u1 �¬s1 0 y)∧ · · · ∧ (um �¬sm 0 y), (4)

and hence to

ψ(x) ∧ (u1 � ¬s1 0 t1 � . . . � tn) ∧ · · · ∧ (um � ¬sm 0 t1 � . . . � tn). (5)

Finally, it is easy to see that (5) and (3) are equivalent.
Since every semilattice embeds into a Boolean algebra [2], this shows that

T ∗
0 is the positive algebraic completion of T0. In addition, this implies that any

Boolean-based equational theory T is T0-algebraically compatible since T ∗
0 is

contained in T . Consequently, Theorem 1 covers the case of a basic E-connection
(see Example 1) for arbitrary classical modal logics as components.

In [2] we show a similar result for the case where the theory T0 is the theory
of distributive lattices with ⊥. Thus, our result also covers the case of connecting
relations that are partial functions (see Example 2).

Complexity Considerations

The complexity of the combined decision procedure described in the proof of
Theorem 1 is usually higher than the complexity of the decision procedures for
the components. There are two main reasons for this complexity increase. First,
one must guess the Ω0-structures A,B as the well as the mapping ν : A → B.
This can be done by a non-deterministic procedure whose complexity depends
on the bound on the size of Ω0-models of T0 with n generators given by the
effective local finiteness of T0. Second, the decision procedures for T1 and T2 are
respectively applied to Γ1 ∪ΔΩ0(A) and Γ2 ∪ΔΩ0(B). The size of the diagrams
again depends on the bound on the size of finitely generated Ω0-models of T0.
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Let us consider the case where T0 is the theory of semilattices (see Examples 1
and 4) in more detail. Given generators a1, . . . , an, there are 2n representative
terms, namely all terms of the form ai1 � · · · � aik

for {i1, . . . , ik} ⊆ {1, . . . , n}
(where the empty disjunction corresponds to ⊥). Atoms are of the form t1 ≈ t2
where t1, t2 are such representative terms, and thus there are 2n · 2n = 22n

atoms. One can now guess a possible diagram of an Ω0-structure by guessing (in
non-deterministic exponential time) a subset S of the set of atoms. Given such
a subset, the potential diagram is ΔS := {α | α ∈ S} ∪ {¬α | α �∈ S}. Of course,
not every such set ΔS is indeed the diagram of an Ω0-structure, but the ones
that are not will lead to unsatisfiability when satisfiability in Ti of Γi ∪ ΔS is
tested. Since the size of ΔS is O(n ·22n), the complexity of this satisfiability test
is one exponential higher than the complexity of the satisfiability problem in Ti.

Assume that we have guessed sets S1, S2 determining the diagrams of semi-
lattices A,B generated by a1, . . . , an and b1, . . . , bn, respectively. Guessing an
Ω0-homomorphism ν : A → B is not really necessary. In fact, if it exists, such
a homomorphism ν is uniquely determined by the requirement that ν(ai) = bi

(i = 1, . . . , n) since the semilattice A is generated by the a1, . . . , an. Obviously,
an Ω0-homomorphism ν : A→ B with ν(ai) = bi exists iff α(a1, . . . , an) ∈ S1 im-
plies α(b1, . . . , bn) ∈ S2 for all Ω0-atoms α(x1, . . . , xn). Thus, if one first guesses
S1, then one can start with S′

1 := {α(b1, . . . , bn) | α(a1, . . . , an) ∈ S1} and add
some additional atoms when guessing S2.

To sum up, in the case of T0 being the theory of semilattices, our combined de-
cision procedure has the following complexity. Its starts with a non-deterministic
exponential step that guesses potential diagrams ΔS1 and ΔS2 such that the ho-
momorphism condition (∗) is satisfied. Then it tests Γi ∪ ΔSi (i = 1, 2) for
satisfiability in Ti. Since the size of ΔSi is exponential, the complexity of this
step is one exponential higher than the complexity of deciding the universal frag-
ment of Ti. This shows that our combination procedure has the same complexity
as the one for E-connections described in [13].

Let us consider the complexity increase caused by the combination proce-
dure in more detail for the complexity class ExpTime, which is often encoun-
tered when considering the global satisfiability problem in modal logic. Thus,
assume that the decision procedures for the universal fragments of T1 and T2

are in ExpTime, and that T0 is the theory of semilattices. The combined de-
cision procedure then generates doubly-exponentially many decision problems
of exponential size for the component procedures. Each of these component de-
cision problems can be decided in double-exponential time. Thus, the overall
complexity of the combined decision procedure is 2ExpTime.

5 A Variant of the Connection Scheme

Here we consider a slightly different combination scheme where a theory T is
connected with itself rather than with a copy of itself. Let T0 ⊆ T be theories
over the respective signatures Ω0 ⊆ Ω. We use T>T0 to denote the theory whose
models are models M of T endowed with a homomorphism h :M|Ω0 →M|Ω0 .
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Thus, the signature Ω′ of T>T0 is obtained from the signature Ω of T by adding
a new function symbol hS of arity SS for every sort S of Ω0. The axioms of
T>T0 are obtained from the axioms of T by adding

hS(f(x1, . . . , xn)) ≈ f(hS1(x1), . . . , hSn(xn)),
P (x1, . . . , xn) → P (hS1(x1), . . . , hSn(xn)),

for every function (predicate) symbol f (P ) in Ω0 of arity S1 . . .SnS (S1 . . .Sn).

Example 5. An interesting example of a theory obtained as such a connection
is the theory EK corresponding to the basic modal logic K (see Example 1). In
fact, let T be the theory of Boolean algebras, and T0 the theory of semilattices
over the signature Ω0 as defined in Example 1. If we use the symbol ♦ for the
connection function, then T>T0 is exactly the theory EK.

Theorem 2. Let T0, T be theories over the respective signatures Ω0,Ω, where
Ω0 is a subsignature of Ω. Assume that T0 ⊆ T , that T0 is universal and ef-
fectively locally finite, and that T is T0-algebraically compatible. Then the de-
cidability of the universal fragment of T entails the decidability of the universal
fragment of T>T0 .

To prove the theorem, we consider a finite set Γ ∪ Γ0 of ground flat literals over
the signature Ω′ of T>T0 , where Γ is a set of literals in the signature Ω of T
(expanded with free constants), and Γ0 is of the form

Γ0 = {h(a1) ≈ b1, . . . , h(an) ≈ bn}.

The theorem is an easy consequence of the following proposition, whose proof is
similar to the one of Proposition 1.

Proposition 2. The constraint Γ ∪ Γ0 is satisfiable in T>T0 iff there exists a
triple (A,B, ν) such that

1. A is an Ω0-model of T0, which is generated by {aA
1 , . . . , aA

n };
2. B is an Ω0-model of T0, which is generated by {bB1 , . . . , bBn};
3. ν : A→ B is an Ω0-homomorphism such that ν(aA

j ) = bBj for j = 1, . . . , n;
4. Γ ∪ΔΩ0(A) ∪ΔΩ0(B) is satisfiable in T .

Applied to the connection of BA with itself w.r.t. the theory of semilattices
considered in Example 5, the theorem shows that deciding the universal theory of
EK can be reduced to deciding the universal theory of BA. It is well-known that
deciding the universal theory of EK is equivalent to deciding global consequence
in K, and that deciding the universal theory of BA is equivalent to proposi-
tional reasoning. Thus, we have shown the (rather surprising) result that the
global consequence problem in K can be reduced to purely propositional reason-
ing. However, if we directly apply the non-deterministic combination algorithm
suggested by Proposition 2, then the complexity of the obtained decision pro-
cedure is worse then the known ExpTime-complexity [20] of the problem. The
deterministic combination procedure described below overcomes this problem.
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A Deterministic Combination Procedure

As pointed out in [18], Nelson-Oppen style combination procedures can be made
deterministic in the presence of a certain convexity condition. Let T be a theory
over the signature Ω, and let Ω0 be a subsignature of Ω. Following [21], we say
that T is Ω0-convex iff every finite set of ground ΩX -literals (using additional
free constants from X) T -entailing a disjunction of n > 1 ground ΩX

0 -atoms,
already T -entails one of the disjuncts. Note that universal Horn Ω-theories are
always Ω-convex. In particular, this means that equational theories (like BA)
are convex w.r.t. any subsignature.

Let T0 ⊆ T be theories over the respective signatures Ω0,Ω, where Ω0 is a
subsignature of Ω. If T is Ω0-convex, then Theorem 2 can be shown with the
help of a deterministic combination procedure. (The same is actually also true
for Theorem 1, but will not explicitly be shown here.)

Let Γ ∪ Γ0 be a finite set of ground flat literals (with free constants) in the
signature of T>T0 ; suppose also that Γ does not contain the symbol h and that
Γ0 = {h(a1) ≈ b1, . . . , h(an) ≈ bn}. We say that Γ is Γ0-saturated iff for every
Ω0-atom α(x1, . . . , xn), T ∪ Γ |= α(a1, . . . , an) implies α(b1, . . . , bn) ∈ Γ.

Theorem 3. Let T0, T be theories over the respective signatures Ω0,Ω, where
Ω0 is a subsignature of Ω. Assume that T0 ⊆ T , that T0 is universal and ef-
fectively locally finite, and that T is Ω0-convex and T0-algebraically compatible.
Then the following deterministic procedure decides whether Γ ∪ Γ0 is satisfiable
in T>T0 (where Γ, Γ0 are as above):

1. Γ0-saturate Γ ;
2. check whether the Γ0-saturated set Γ̂ obtained this way is satisfiable in T .

The saturation process (and thus the procedure) terminates because T0 is locally
finite. In addition, if Γ ∪Γ0 is satisfied in a modelM of T>T0 , then the reduct of
M to the signature Ω obviously satisfies Γ̂ . Conversely, if the Γ0-saturated set
Γ̂ is satisfiable in T , then one can use Γ̂ to construct a triple (A,B, ν) satisfying
1.–4 of Proposition 2 (see [2] for details).

Example 5 (continued). Let us come back to the connection of T := BA with
itself w.r.t. the theory T0 of semilattices, which yields as combined theory the
equational theory EK corresponding to the basic modal logic K. In this case,
checking during the saturation process whether T ∪Γ |= α(a) amounts to check-
ing whether a propositional formula φΓ (whose size is linear in the size of Γ )
implies a propositional formula of the form ψ1 ⇔ ψ2, where ψ1, ψ2 are disjunc-
tions of the propositional variables from a. Since there are only exponentially
many different formulae of the form ψ1 ⇔ ψ2, the saturation process needs at
most exponentially many such propositional tests, and the size of the interme-
diate sets Γ and of the Γ0-saturated set Γ̂ is at most exponential. However, all
these sets contain only the free constants a. Since propositional reasoning can
be done in time exponential in the number of propositional variables, this shows
that both the saturation process and the final satisfiability test of Γ̂ in T can be
done in time exponential in the number of free constants a.
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Consequently, we have shown that Theorem 3 yields an ExpTime decision
procedure for the global consequence relation in K, which thus matches the
known worst-case complexity of the problem.

6 Conditions on the Connection Functions

Until now, we have considered connection functions that are arbitrary homomor-
phisms. In this section we impose the additional conditions that the connection
functions be surjective, embeddings, or isomorphisms: in this way, we obtain
new combined theories, which we denote by T1 >s

T0
T2, T1 >em

T0
T2, T1 >iso

T0
T2,

respectively. For these combined theories one can show combination results that
are analogous to Theorem 1: one just needs different compatibility conditions.

To treat embeddings and isomorphisms, we use the compatibility condition
introduced in [11,3] for the case of unions of theories (see also the introduction
of this paper). Following [11,3], we call this condition T0-compatibility in the
following.

Theorem 4. Let T0, T1, T2 be theories over the respective signatures Ω0,Ω1, Ω2,
where Ω0 is a common subsignature of Ω1 and Ω2. Assume that T0 ⊆ T1 and
T0 ⊆ T2, and that T0 is universal and effectively locally finite.

1. If T2 is T0-compatible, then the decidability of the universal fragments of T1

and T2 entails the decidability of the universal fragment of T1 >em
T0

T2.
2. If T1 and T2 are T0-compatible, then the decidability of the universal frag-

ments of T1 and T2 entails the decidability of the universal fragment of
T1 >iso

T0
T2.

A proof of this theorem, which is similar to the proof of Theorem 1, can be found
in [2]. It is easy to see that the problem of deciding the universal fragment of
T1 >iso

T0
T2 is interreducable in polynomial time with the problem of deciding the

universal fragment of T1 ∪ T2. Consequently, the proof of part 2. of Theorem 4
yields an alternative proof of the combination result in [11].

To treat T1 >s
T0

T2, we must dualize the notions “algebraic completion” and
“algebraic compatibility” (see [2] for the definitions of these dual notions, and
the formulation and proof of the corresponding combination result).

7 Conclusion

We have introduced a new scheme for combining many-sorted theories, and have
shown under which conditions decidability of the universal fragment transfers
from the component theories to their combination. Though this kind of combi-
nation has been considered before in restricted cases [13,1,24], it has not been
investigated in the general algebraic setting considered here.

In this paper, we mainly concentrated on the simplest case of connecting
many-sorted theories where there is just one connection function. The approach
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was then extended to the case of several independent connection functions, and
to variants of the general combination scheme where the connection function
must satisfy additional properties or where a theory is connected with itself.

On the one hand, our results are more general than the combination results
for E-connections of abstract description systems shown in [13] since they are
not restricted to Boolean-based equational theories, which are closely related to
abstract description systems (see Example 1). For instance, we have shown in
Example 3 that any pair of theories T1, T2 extending a universal theory T0 that
is effectively locally finite and Gaussian satisfies the prerequisites of our transfer
theorem. Examples of such theories having nothing to do with Boolean-based
equational theories can be found in [3].

On the other hand, in the E-connection approach introduced in [13], one usu-
ally considers not only the modal operator induced by a connecting relation E
(see Example 1), but also the modal operator induced by its inverse E−1. It is
not adequate to express these two modal operators by independent connection
functions going in different directions since this does not capture the relation-
ships that must hold between them. For example, if ♦ is the diamond operator
induced by the connecting relation E, and �− is the box operator induced by
its inverse E−, then the formulae x → �−♦x and ♦�−y → y are valid in the
E-connection. In order to express these relationships in the algebraic setting
without assuming the presence of the Boolean operators in the shared theory,
one can replace the logical implication → by a partial order ≤, and require that
x ≤ r(�(x)) and �(r(y)) ≤ y hold for the connection functions r, � generalizing
the diamond and the inverse box operator. If �, r are also order preserving, then
this mean that �, r is a pair of adjoint functions for the partial order ≤. This sug-
gests a new way of connecting theories through pairs of adjoint functions. Again,
we can show transfer of decidability provided that certain algebraic conditions
are satisfied.
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Abstract. We present a fully proof-producing implementation of a quantifier
elimination procedure for real closed fields. To our knowledge, this is the first
generally useful proof-producing implementation of such an algorithm. While
many problems within the domain are intractable, we demonstrate convincing
examples of its value in interactive theorem proving.

1 Overview and Related Work

Arguably the first automated theorem prover ever written was for a theory of linear
arithmetic [8]. Nowadays many theorem proving systems, even those normally clas-
sified as ‘interactive’ rather than ‘automatic’, contain procedures to automate routine
arithmetical reasoning over some of the supported number systems like N, Z, Q, R and
C. Experience shows that such automated support is invaluable in relieving users of
what would otherwise be tedious low-level proofs. We can identify several very com-
mon limitations of such procedures:

– Often they are restricted to proving purely universal formulas rather than dealing
with arbitrary quantifier structure and performing general quantifier elimination.

– Often they are not complete even for the supported class of formulas; in partic-
ular procedures for the integers often fail on problems that depend inherently on
divisibility properties (e.g. ∀x y ∈ Z. 2x + 1 �= 2y)

– They seldom handle non-trivial nonlinear reasoning, even in such simple cases as
∀x y ∈ R. x > 0 ∧ y > 0⇒ xy > 0, and those that do [18] tend to use heuristics
rather than systematic complete methods.

– Many of the procedures are standalone decision algorithms that produce no certifi-
cate of correctness and do not produce a ‘proof’ in the usual sense. The earliest
serious exception is described in [4].

Many of these restrictions are not so important in practice, since subproblems aris-
ing in interactive proof can still often be handled effectively. Indeed, sometimes the
restrictions are unavoidable: Tarski’s theorem on the undefinability of truth implies that
there cannot even be a complete semidecision procedure for nonlinear reasoning over
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the integers. At the other end of the tower of number systems, one of the few imple-
mentations that has none of the above restrictions is described in [16], but that is for the
complex numbers where quantifier elimination is particularly easy.

Over the real numbers, there are algorithms that can in principle perform quan-
tifier elimination from arbitrary first-order formulas built up using addition, multipli-
cation and the usual equality and inequality predicates. In this paper we describe the
implementation of such a procedure in the HOL Light theorem prover [14], a recent
incarnation of HOL [11]. It is in principle complete, and can handle arbitrary quantifier
structure and nonlinear reasoning. For example it is able to prove the criterion for a
quadratic equation to have a real root automatically:

∀a b c. (∃x. ax2 + bx + c = 0)⇔ a = 0 ∧ (b = 0⇒ c = 0) ∨ a �= 0 ∧ b2 ≥ 4ac

Similar — and indeed more powerful — algorithms have been implemented before,
the first apparently being by Collins [7]. However, our algorithm has the special feature
that it is integrated into the HOL Light prover and rather than merely asserting the
answer it proves it from logical first principles.

The second author has previously implemented another algorithm for this subset in
proof-producing style [15] but the algorithm was so inefficient that it never managed
to eliminate two nested quantifiers and has not been useful in practice. The closest
previous work is by Mahboubi and Pottier in Coq [21], who implemented precisely the
same algorithm as us — in fact we originally learned of the algorithm itself via Pottier.
However, while it appeared to reach a reasonable stage of development, this procedure
seems to have been abandoned and there is no version of it for the latest Coq release.
Therefore, our algorithm promises to be the first generally useful version that produces
proofs.

2 Theoretical Background

In this section we describe the theoretical background in more detail. Some of this
material will already be familiar to the reader.

2.1 Quantifier Elimination

We say that a theory T in a first-order language L admits quantifier elimination if for
each formula p of L, there is a quantifier-free formula q such that T |= p ⇔ q. (We
assume that the equivalent formula contains no new free variables.) For example, the
well-known criterion for a quadratic equation to have a (real) root can be considered as
an example of quantifier elimination in a suitable theory T of reals:

T |= (∃x. ax2 + bx + c = 0)⇔ a �= 0 ∧ b2 ≥ 4ac ∨ a = 0 ∧ (b �= 0 ∨ c = 0)

If a theory admits quantifier elimination, then in particular any closed formula (one
with no free variables, such as ∀x. ∃y. x < y) has a T -equivalent that is ground, i.e.
contains no variables at all. In many cases of interest, we can quite trivially decide
whether a ground formula is true or false, since it just amounts to evaluating a Boolean
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combination of arithmetic operations applied to constants, e.g. 2 < 3 ⇒ 42 + 5 < 23.
(One interesting exception is the theory of algebraically closed fields of unspecified
characteristic, where quantifiers can be eliminated but the ground formulas cannot in
general be evaluated without knowledge about the characteristic.) Consequently quan-
tifier elimination in such cases yields a decision procedure, and also shows that such a
theory T is complete, i.e. every closed formula can be proved or refuted from T . For a
good discussion of quantifier elimination and many explicit examples, see [19].

2.2 Real-Closed Fields

We consider a decision procedure for the theory of real arithmetic with addition and
multiplication. While we will mainly be interested in the real numbers R, the same
procedure can be exploited for more general algebraic structures, so-called real closed
fields. The real numbers are characterized up to isomorphism by the axioms for an
ordered field together with some suitable second-order completeness axiom (e.g. ‘every
bounded nonempty set of reals has a least upper bound’). The real-closed field axioms
are those for an ordered field together with the assumptions that every nonnegative
element has a square root:

∀x. x ≥ 0⇒ ∃y. x = y2

and second that all polynomials of odd degree have a root, i.e. we have an infinite set of
axioms, one like the following for each odd n:

∀a0, . . . , an. an �= 0⇒ ∃x. anx
n + an−1x

n−1 + . . . + a1x + a0 = 0.

We will implement quantifier elimination for the reals using quite a number of an-
alytic properties. All of these have been rigorously proven in HOL Light starting from
a definitional construction of the reals [15]. However, these proofs sometimes rely on
the completeness property, which is true for the reals but not for all real-closed fields.
With more work, we could in fact show that all these analytic facts follow from the real-
closed field axioms alone, and hence make the procedure applicable to other real-closed
fields (e.g. the algebraic or computable reals). However, since we don’t envisage any
practical applications, this is not a high priority.

2.3 Quantifier Elimination for the Reals

A decision procedure for the theory of real closed fields, based on quantifier elimina-
tion, was first demonstrated by Tarski [30]1. However, Tarski’s procedure, a generaliza-
tion of the classical technique due to Sturm [29] for finding the number of real roots
of a univariate polynomial, was both difficult to understand and highly inefficient in
practice. Many alternative decision methods were subsequently proposed; two that are
significantly simpler were given by Seidenberg[27] and Cohen[6].

1 Tarski actually discovered the procedure in 1930, but it remained unpublished for many years
afterwards.
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Perhaps the most efficient general algorithm currently known, and the first actually
to be implemented on a computer, is the Cylindrical Algebraic Decomposition (CAD)
method introduced by Collins[7]. A relatively simple but rather inefficient, algorithm
is also given in [19] (see [9] for a more leisurely description). Another even simpler
but generally rather more efficient algorithm is given by Hörmander [17] based on an
unpublished manuscript by Paul Cohen2 (see also [10,3] and a closely related algorithm
due to Muchnik [26,22]). It was this algorithm that we chose to implement.

2.4 Fully-Expansive Decision Procedures

Theorem provers like HOL Light belong to the tradition established in Edinburgh LCF
[12], where all theorems must be produced by application of simple primitive logical
rules, though arbitrary programmability can be used to compose them. Thus, we need
a procedure that does not simply assert that a formula is a quantifier-free equivalent of
the input, but proves it from first principles.

At first sight, implementing decision procedures such that they produce proofs
seems a daunting task. Indeed, it is in general significantly harder than simply writ-
ing a standalone ‘black box’ that returns an answer. However, if we want to really be
sure about correctness, the only other obvious alternative, often loosely called ‘reflec-
tion’ [13], is to formally prove a standalone implementation correct. This is generally
far more difficult again, and has so far only been applied to relatively simple algorithms.
Moreover, it is of no help if one wants an independently checkable proof for other rea-
sons, e.g. for use in proof-carrying code [23].

Even discounting the greater implementation difficulty of a proof-producing deci-
sion procedure, what about the cost in efficiency of producing a proof? In many cases
of practical interest, neither the implementation difficulty nor the inefficiency need be
as bad as it might first appear, because it is easy to arrange for a more computation-
ally intensive phase not so different from a standalone implementation to produce some
kind of certificate that can then be checked by the theorem prover. Since inference only
needs to enter into the second phase, the overall slowdown is not so large. The first
convincing example seems to have been [20], where a pretty standard first-order prover
is used to search for a proof, which when eventually found, is translated into HOL in-
ferences. Blum [2] generalizes such observations beyond the realm of theorem proving,
by observing that in many situations, having an algorithm produce an easily checkable
certificate is an effective way of ensuring result correctness, and more tractable than
proving the original program correct.

In a more ‘arithmetical’ vein, the second author has recently been experimenting
with a technique based on real Nullstellensatz certificates to deal with the universal
subset of the present theory of reals [24]. This involves a computationally expensive
search using a separate semidefinite programming package, but this search usually re-
sults in a compact certificate which needs only a few straightforward inferences to ver-
ify. For example, using this procedure we can verify the ‘universal half’ of the quadratic
example:

2 ‘A simple proof of Tarski’s theorem on elementary algebra’, mimeographed manuscript, Stan-
ford University 1967.
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∀a b c x. ax2 + bx + c = 0⇒ b2 − 4ac ≥ 0

by considering the certificate:

b2 − 4ac = (2ax + b)2 − 4a(ax2 + bx + c)

Since the first term on the right is a square, and the second is zero by hypothesis, it
is clear that the LHS is nonnegative. Almost all the computational cost is in coming up
with the appropriate square term and multiple of the input equation to make this identity
hold; checking it is then easy.

However, Hörmander’s algorithm (in common with all others for the full theory that
we are familiar with) does not seem to lend itself to this kind of separation of ‘search’
and ‘checking’, and so we need to essentially implement all the steps of the procedure
in a theorem-producing way. However, we can make this somewhat more efficient, as
well as more intellectually manageable, by proving very general lemmas that apply to
large families of special cases. By coding up relatively complicated syntactic structures
using logical constructs, we avoid re-proving many analytical lemmas for many differ-
ent cases. This will be seen more clearly when we look at the implementation of the
algorithm in detail.

3 The Algorithm

Our procedure was designed by systematically modifying to produce proofs a stan-
dalone implementation of Hörmander’s algorithm in OCaml.3 We will sometimes ex-
plain the algorithm with reference to this code, since it shows the detailed control flow
explicitly; it is hoped that this will still be clarifying even though it sometimes con-
tains other functions that are not explained. In the next section we consider some of
the special problems that arise when reimplementing the procedure in proof-producing
style. It is instructive to see the parallels and differences: the basic control flow is all but
identical, yet we produce theorems at each stage, replacing ad hoc term manipulation
by logical inference.

Note first that, since our terms are built up from constants by negation, addition,
subtraction and multiplication, we can rewrite all the atomic formulas in the form
p(x1, . . . , xn) �# 0 where p(x1, . . . , xn) is a polynomial in x1, . . . , xn and �# is an
equality or inequality predicate (=, ≤, <, �= etc.) It greatly helps if we initially rewrite
the polynomials into a canonical representation and maintain this throughout the algo-
rithm. In particular, we regard a multivariate polynomial p(x1, . . . , xn) as a polynomial
in xn with parameters polynomials in p(x1, . . . , xn−1), each of those in turn regarded
as a polynomial in xn−1 etc., where the sorting of the variables is determined by the
nesting of quantifiers, x1 being the outermost and xn the innermost.

3.1 The Role of Sign Matrices

The key idea of the algorithm is to obtain a ‘sign matrix’ for a set of univariate poly-
nomials p1(x), . . . , pn(x). Such a matrix is a division of the real line into a (possibly

3 Available from http://www.cl.cam.ac.uk/users/jrh/atp in real.ml with
some support functions from other files.
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empty) ordered sequence of m points x1 < x2 < · · · < xm representing precisely the
zeros of the polynomials, with the rows of the matrix representing, in alternating fash-
ion, the points themselves and the intervals between adjacent pairs and the two intervals
at the ends:

(−∞, x1), x1, (x1, x2), x2, . . . , xm−1, (xm−1, xm), xm, (xm,+∞)

and columns representing the polynomials p1(x), . . . , pn(x), with the matrix entries
giving the signs, either positive (+), negative (−) or zero (0), of each polynomial pi at
the points and on the intervals. For example, for the collection of polynomials:

p1(x) = x2 − 3x + 2
p2(x) = 2x− 3

the sign matrix looks like this:

Point/Interval p1 p2

(−∞, x1) + −
x1 0 −

(x1, x2) − −
x2 − 0

(x2, x3) − +
x3 0 +

(x3,+∞) + +

Note that x1 and x3 represent the roots 1 and 2 of p1(x) while x2 represents 1.5,
the root of p2(x). However the sign matrix contains no numerical information about
the location of the points xi, merely specifying the order of the roots of the various
polynomials and what signs they take there and on the intervening intervals. It is easy to
see that the sign matrix for a set of univariate polynomials p1(x), . . . , pn(x) is sufficient
to answer any question of the form ∃x. P [x] where the body P [x] is quantifier-free and
all atoms are of the form pi(x) �#i 0 for any of the relations =, <, >, ≤, ≥ or their
negations. We simply need to check each row of the matrix (point or interval) and see
if one of them makes each atomic subformula true or false; the formula as a whole can
then simply be “evaluated” by recursion.

In order to perform general quantifier elimination, we simply apply this basic op-
eration to all the innermost quantified subformulas first (we can consider a universally
quantified formula ∀x. P [x] as ¬(∃x. ¬P [x]) and eliminate from ∃x. ¬P [x]). This can
then be iterated until all quantifiers are eliminated. The only difficulty is that the coeffi-
cients of a polynomial may now contain other variables as parameters; we will consider
the univariate case first for simplicity, and then consider the fairly straightforward gen-
eralization to the parametrized case.

We will explain the key parts of the algorithm both in English and with refer-
ence to the OCaml code. We use a simple representation of the sign matrix as a list
of lists of sign values, the sign values belonging to a four-member enumerated type
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{Positive,Negative,Zero,Nonzero}. The top-level list corresponds to the se-
quence of points and intervals, and each sublist gives the sign values for the various
polynomials there. For example, the sign matrix given above would be represented by

[[Positive; Negative];
[Zero; Negative];
[Negative; Negative];
[Negative; Zero];
[Negative; Positive];
[Zero; Positive];
[Positive; Positive]]

3.2 Computing the Sign Matrix

The following simple observation is key. To find the sign matrix for

p, p1, . . . , pn

it suffices to find one for the set of polynomials

p′, p1, . . . , pn, q0, q1, . . . , qn

where p′, which we will sometimes write p0 for regularity’s sake, is the derivative of p,
and qi is the remainder on dividing p by pi. For suppose we have a sign matrix for the
second set of polynomials. We can proceed as follows.

First, we split the sign matrix into two equally-sized parts, one for the p′, p1, . . . , pn

and one for the q0, q1, . . . , qn, but for now keeping all the points in each matrix, even
if the corresponding set of polynomials has no zeros there. We can now infer the sign
of p(xi) for each point xi that is a zero of one of the polynomials p′, p1, . . . , pn, as
follows. Since qk is the remainder of p after division by pk, p(x) = sk(x)pk(x)+qk(x)
for some sk(x). Therefore, since pk(xi) = 0 we have p(xi) = qk(xi) and so we can
derive the sign of p at xi from that of the corresponding qk. If the point xi is not a
zero of one of the p′, p1, . . . , pn, or we are dealing with an interval, we just arbitrarily
assign Nonzero;4 it will be dealt with in the next step. The following code, given
sign matrices pd for p′, p1, . . . , pn and qd for q0, . . . , qn, gives a corresponding sign
matrix for p, p′, p1, . . . , pn, with the correct signs for p at the points, but not in general
at intervals. (Here index gets the position index of the first occurrence of an element
in a list, and el gets an indexed element.)

let inferpsign pd qd =
try let i = index Zero pd in el i qd :: pd
with Failure _ -> Nonzero :: pd;;

Now we can throw away the second sign matrix, giving signs for the q0, . . . , qn,
and retain the (partial) matrix for p, p′, p1, . . . , pn. We next ‘condense’ this matrix to
remove points that are not zeros of one of the p′, p1, . . . , pn, but only of one of the qi.
The signs of the p′, p1, . . . , pn in an interval from which some other points have been
removed can be read off from any of the subintervals in the original subdivision — they
cannot change because there are no zeros for the relevant polynomials there.

4 It may so happen that the value of p(xi) is actually zero. This does not effect the correctness
of the algorithm, as that entry in the sign matrix is eliminated in the next step. We must be
somewhat more careful in the proof-producing implementation.
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let rec condense ps =
match ps with
int::pt::other -> let rest = condense other in

if mem Zero pt then int::pt::rest else rest
| _ -> ps;;

Now we have a sign matrix with correct signs at all the points that are zeros of the
the set of polynomials it involves, but with undetermined signs for p on the intervals,
and the possibility that there may be additional zeros of p inside these intervals. But note
that since there are certainly no zeros of p′ inside the intervals, there can be at most one
additional root of p in each interval. Whether there is one can be inferred, for an internal
interval (xi, xi+1), by seeing whether the signs of p(xi) and p(xi+1), determined in the
previous step, are both nonzero and are different. If not, we can take the sign on the
interval from whichever sign of p(xi) and p(xi+1) is nonzero (we cannot have them
both zero, since then there would have to be a zero of p′ in between). Otherwise we
insert a new point y between xi and xi+1 which is a zero (only) of p, and infer the signs
on the new subintervals (xi, y) and (y, xi+1) from the signs at the endpoints. Other
polynomials have the same signs on (xi, y), y and (y, xi+1) that had been inferred for
the original interval (xi, xi+1). For external intervals, we can use the same reasoning
if we temporarily introduce new points −∞ and +∞ and infer the sign of p(−∞)
by flipping the sign of p′ on the lowest interval (−∞, x1) and the sign of p(+∞) by
copying the sign of p′ on the highest interval (xn,+∞). (Because the extremal behavior
of polynomials is determined by the leading term, and those of p and p′ are related by a
positive multiple of x.) The following function assumes that these ‘infinities’ have been
added first:

let rec inferisign ps =
match ps with
pt1::int::pt2::other ->

let res = inferisign(pt2::other)
and tint = tl int and s1 = hd pt1 and s2 = hd pt2 in
if s1 = Positive & s2 = Negative then

pt1::(Positive::tint)::(Zero::tint)::(Negative::tint)::res
else if s1 = Negative & s2 = Positive then

pt1::(Negative::tint)::(Zero::tint)::(Positive::tint)::res
else if (s1 = Positive or s2 = Negative) & s1 = s2 then

pt1::(s1::tint)::res
else if s1 = Zero & s2 = Zero then

failwith "inferisign: inconsistent"
else if s1 = Zero then

pt1::(s2 :: tint)::res
else if s2 = Zero then

pt1::(s1 :: tint)::res
else failwith "inferisign: can’t infer sign on interval"

| _ -> ps;;

The overall operation is built up following the above lines. We structure it in such
a way that it modifies a matrix and rather than returning it, passes it to a continua-
tion function cont. As we will see later, this makes the overall implementation of
the algorithm smoother. (Here unzip separates a list of pairs into two separate lists,
chop list splits a list in two at a numbered position, replicate k a makes a list
containing k copies of a, tl is the tail of a list and butlast returns all but the very
last element.)
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let dedmatrix cont mat =
let n = length (hd mat) / 2 in
let mat1,mat2 = unzip (map (chop_list n) mat) in
let mat3 = map2 inferpsign mat1 mat2 in
let mat4 = condense mat3 in
let k = length(hd mat4) in
let mats = (replicate k (swap true (el 1 (hd mat3))))::mat4@

[replicate k (el 1 (last mat3))] in
let mat5 = butlast(tl(inferisign mats)) in
let mat6 = map (fun l -> hd l :: tl(tl l)) mat5 in
cont(condense mat6);;

3.3 Multivariate Polynomials

Note that this reasoning relies only on fairly straightforward observations of real anal-
ysis. Essentially the same procedure can be used even for multivariate polynomials,
treating other variables as parameters while eliminating one variable. The only slight
complication is that instead of literally dividing one polynomial s by another one p:

s(x) = p(x)q(x) + r(x)

we may instead have only a pseudo-division

aks(x) = p(x)q(x) + r(x)

where a is the leading coefficient of p, in general a polynomial in the other variables. In
this case, to infer the sign of p(x) from that of r(x) where q(x) = 0 we need to know
that a �= 0 and what its sign is. Determining this may require a number of case-splits
over signs or zero-ness of polynomials in other variables, complicating the formula if
we then eliminate other variables. We will maintain an environment of sign hypotheses
sgns, and when we perform pseudo-division, we will check that a �= 0 and make sure
that the signs of s(x) and r(x) are the same, by negating r(x) or multiplying it by a
when necessary, depending on how much we know about the sign of a and whether k
is odd or even. (Here pdivide is a raw syntactic pseudo-division operation with no
check on the nature of the divisor’s head coefficient.)

let pdivides vars sgns q p =
let s = findsign vars sgns (head vars p) in
if s = Zero then failwith "pdivides: head coefficient is zero" else
let (k,r) = pdivide vars q p in
if s = Negative & k mod 2 = 1 then poly_neg r
else if s = Positive or k mod 2 = 0 then r
else poly_mul (tl vars) (head vars p) r;;

We will also need to case-split over positive/negative status of coefficients, and the
following function fits a case-split into the continuation-passing framework; there is a
similar function split zero used as well:

let split_sign vars sgns pol cont_p cont_n =
let s = findsign vars sgns pol in
if s = Positive then cont_p sgns
else if s = Negative then cont_n sgns
else if s = Zero then failwith "split_sign: zero polynomial" else
let ineq = Atom(R(">",[pol; Fn("0",[])])) in
Or(And(ineq,cont_p (assertsign vars sgns (pol,Positive))),

And(Not ineq,cont_n (assertsign vars sgns (pol,Negative))));;
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We have explained a recursive algorithm for determining a sign matrix, but we
haven’t explained where to stop. If we reach a constant polynomial, then the sign will
be determined (perhaps after case splitting) independent of the main variable, so we
want to be able to insert a fixed sign at a certain place in a sign matrix. Again, we use a
continuation-based interface:

let matinsert i s cont mat = cont (map (insertat i s) mat);;

The main loop will use the continuation to convert the finally determined sign matrix
(of which there may be many variants because of case splitting) to a formula. However,
note that because of the rather naive case-splitting, we may reach situations where an
inconsistent set of sign assumptions is made — for example a < 0 and a3 > 0 or just
a2 < 0. This can in fact lead to the ‘impossible’ situation that the sign matrix has two
zeros of some p(x) with no zero of p′(x) in between them — which in inferisign
will generate an exception. We do not want to actually fail here, but we are at liberty
to return whatever formula we like, such as ⊥. This is dealt with by the following
exception-trapping function:

let trapout cont m =
try cont m with Failure "inferisign: inconsistent" -> False;;

The main loop is organized as mutually recursive functions. The main function
matrix assumes that the signs of all the leading coefficients of the polynomials are
known, i.e. in sgns. If the set of polynomials is empty, we just apply the continuation
to the trivial sign matrix, remembering the error trap. If there is a constant among the
polynomials, we remove it and set up the continuation so the appropriate sign is re-
inserted. Otherwise, we pick the polynomial with the highest degree, which will be the
p in our explanation above, and recurse to splitzero, adding logic to rearrange the
polynomials so that we can assume p is at the head of the list.

let rec matrix vars pols cont sgns =
if pols = [] then trapout cont [[]] else
if exists (is_constant vars) pols then
let p = find (is_constant vars) pols in
let i = index p pols in
let pols1,pols2 = chop_list i pols in
let pols’ = pols1 @ tl pols2 in
matrix vars pols’ (matinsert i (findsign vars sgns p) cont) sgns

else
let d = itlist (max ** degree vars) pols (-1) in
let p = find (fun p -> degree vars p = d) pols in
let p’ = poly_diff vars p and i = index p pols in
let qs = let p1,p2 = chop_list i pols in p’::p1 @ tl p2 in
let gs = map (pdivides vars sgns p) qs in
let cont’ m = cont(map (fun l -> insertat i (hd l) (tl l)) m) in
splitzero vars qs gs (dedmatrix cont’) sgns

The function splitzero simply case-splits over the zero status of the coefficients
of the polynomials in the list pols, assuming those in dun are already fixed:

and splitzero vars dun pols cont sgns =
match pols with
[] -> splitsigns vars [] dun cont sgns

| p::ops -> if p = Fn("0",[]) then
let cont’ = matinsert (length dun) Zero cont in
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splitzero vars dun ops cont’ sgns
else split_zero (tl vars) sgns (head vars p)

(splitzero vars dun (behead vars p :: ops) cont)
(splitzero vars (dun@[p]) ops cont)

When all polynomials are dealt with, we recurse to another level of splitting where
we split over positive-negative status of the coefficients that are already determined to
be nonzero:

and splitsigns vars dun pols cont sgns =
match pols with
[] -> dun

| p::ops -> let cont’ = splitsigns vars (dun@[p]) ops cont in
split_sign (tl vars) sgns (head vars p) cont’ cont’

That is the main loop of the algorithm; we start with a continuation that will perform
an appropriate test on the sign matrix entries for each literal in the formula, and we
construct the sign matrix for all polynomials that occur in the original formula.

4 Proof-Producing Implementation

The proof-producing version, by design, follows the same structure. In this section we
concentrate on interesting design decisions for this variant.

4.1 Polynomials

Our canonical representation of polynomials is as lists of coefficients with the constant
term first. For example, the polynomialx3−2x+6 is represented by the list [6;−2; 0; 1].
The corresponding ‘evaluation’ function is simply expressed as a primitive recursive
definition over lists:

� (poly [] x = &0) ∧
(poly (CONS h t) x = h + x * poly t x)

This representation is used in a nested fashion to encode multivariate polynomials.
A key point is that we can prove many analytical theorems such as special intermediate-
value properties generically for all polynomials just by using poly l for a general
list of reals l (the proofs usually proceed by induction over lists). Thus we can avoid
proving many special cases for the actual polynomials we use: they are deduced by a
single primitive inference step of variable instantiation from the generic versions.

4.2 Data Structures

The first difficult choice we encountered was how to represent our current knowledge
about the state of the sign matrix. We were faced with the task of organizing the follow-
ing information, for example, giving a partial sign matrix for the polynomials

p0(x) = x2

p1(x) = x− 1
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(Here, x0 and x1 correspond to the roots 0 of λx. x2 and 1 of λx. x− 1 respectively.)

∀x. x < x0 ⇒ p0(x) > 0
∀x. x < x0 ⇒ p1(x) < 0
p0(x0) = 0
p1(x0) < 0
∀x. x0 < x < x1 ⇒ p0(x) > 0
∀x. x0 < x < x1 ⇒ p1(x) < 0
p0(x1) > 0
p1(x1) = 0
∀x. x1 < x⇒ p0(x) > 0
∀x. x1 < x⇒ p1(x) > 0

As the matrices become larger (which is immediate due to the exponential nature of
the procedure), the task of managing these facts using simple data types like lists and
products becomes daunting. Instead, we chose to define a series of predicates that allow
us to organize this data in a succinct fashion. We begin by defining an enumerated type
of signs with members Zero, Pos, Neg, Nonzero, Unknown. The additional element
Unknown is useful in order to be able to make rigorous proven statements at intermediate
steps, whereas in the original we could just say ‘the setting of this sign may be wrong
now but we’ll fix it in the next step’. We then define a predicate which, given a domain
and a polynomial, interprets the sign:

interpsign S p Zero := (∀x.x ∈ S ⇒ (p(x) = 0))
interpsign S p Pos := (∀x.x ∈ S ⇒ (p(x) > 0))
interpsign S p Neg := (∀x.x ∈ S ⇒ (p(x) < 0))
interpsign S p Nonzero := (∀x.x ∈ S ⇒ (p(x) �= 0))
interpsign S p Unknown := (∀x.x ∈ S ⇒ (p(x) = p(x)))

Now, the previous set of formulas can be written as follows:

interpsign (λx.x < x0) p0 Pos

interpsign (λx.x < x0) p1 Neg

interpsign (λx.x = x0) p0 Zero

interpsign (λx.x = x0) p1 Neg

interpsign (λx.x0 < x < x1) p0 Pos

interpsign (λx.x0 < x < x1) p1 Neg

interpsign (λx.x = x1) p0 Pos

interpsign (λx.x = x1) p1 Zero

interpsign (λx.x1 < x) p0 Pos

interpsign (λx.x1 < x) p1 Pos
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These formulas are of a very regular form. We can thus use HOL Light ’s cababilities
for making primitive recursive definitions:

ALL2 P [] l2⇔ (l2 = []))
ALL2 P (CONS h1 t1) l2⇔

if l2 = [] then F else (P h1 (HD l2)) ∧ (ALL2 P t1 (TL l2))

This allows us to compact the formulas for a given set with another predicate:

interpsigns polys S signs = ALL2 (interpsign S) polys signs

Our formulas can now be represented slightly more succinctly:

interpsigns (λx.x < x0) [p0, p1] [Pos, Neg]
interpsigns (λx.x = x0) [p0, p1] [Zero, Neg]
interpsigns (λx.x0 < x < x1) [p0, p1] [Pos, Neg]
interpsigns (λx.x = x1) [p0, p1] [Pos, Zero]
interpsign (λx.x1 < x) [p0, p1] [Pos, Pos]

Now, given a predicate OrderedList which indicates that the points in the list are
sorted, and a function PartitionLine that breaks the real line into intervals based on
the points of the list, we can represent the entire matrix with a final predicate.

interpmat points polys signs =
OrderedList points ∧
ALL2 (interpsigns polys) (PartitionLine points) signs

Thus, our entire set of formulas is represented by the simple formula

interpmat [x0, x1] [p0, p1] [[Pos, Neg], [Zero, Neg], [Pos, Neg], [Pos, Zero], [Pos, Pos]]

As the sign matrix is the primary data structure in the algorithm, this succinct rep-
resentation makes the implementation much smoother than dealing with the formulas
individually.

One potential drawback to this approach is the time spent assembling and disassem-
bling the representation to extract or add formulas. While in a high level programming
language this would not be a concern, for large matrices this is a substantial amount of
term rewriting.

On the other hand, we can take advantage of the representation to improve effi-
ciency. For a simple example, suppose we’ve deduced that p2 = p0 and would like to
replace p0 by p2 in the sign matrix. This is a trivial one step rewrite for our represen-
tation, while many rewrites would be required to achieve the same result if the matrix
were represented by individual formulas. For a more interesting example, recall the part
of the dedmatrix function where we add points at infinity. This complex step can be
encapsulated by proving a number of general theorems such as:
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|- !p ps r1 x s2 r2 r3.
interpmat [x]
(CONS (\x. poly p x) (CONS (\x. poly (poly_diff p) x) ps))
[CONS Unknown (CONS Neg r1);CONS s2 r2;CONS Unknown (CONS Pos r3)] ==>

nonconstant p ==>
?xminf xinf.
interpmat [xminf; x; xinf]
(CONS (\x. poly p x) (CONS (\x. poly (poly_diff p) x) ps))

[CONS Pos (CONS Neg r1);
CONS Pos (CONS Neg r1);
CONS Unknown (CONS Neg r1);
CONS s2 r2;
CONS Unknown (CONS Pos r3);
CONS Pos (CONS Pos r3);
CONS Pos (CONS Pos r3)]

We originally coded the addition of these points by breaking up the sign matrix. The
optimization using rewriting with theorems similar to this one runs 10 times faster than
the orignial version. While these kinds of general theorems are much more difficult to
prove in HOL Light , rewriting data structures directly has been the most important step
in producing reasonable performance.

4.3 Effort Comparison

Generating proofs for each step of the code above was a significant challenge. To com-
pare the procedures, we first consider the amount of code that was necessary to imple-
ment the procedure. The OCaml source code given above is somewhat less than 300
lines. In contrast, our version runs around 1300. This does not include the additional
8000 lines of proof scripts which prove lemmas needed at various points in the proce-
dure.

5 Results

It is well-known that quantifier elimination for the reals is in general computationally
intractable, both in theoretical complexity [31] and in the limited success on real ap-
plications. So we cannot start with high expectations of routinely solving really inter-
esting problems. This applies with all the more force since proof production makes the
algorithm considerably slower, apparently about 3 orders of magnitude for our current
prototype.

However, in the field of interactive theorem proving, the algorithm could be an
important tool. A great deal of time can be spent proving trivial facts of real arithmetic
that do not fall into one of the well known decidable (and implemented) subsets, such as
linear arithmetic, or linear programming. One author spent many hours proving simple
lemmas in preparation for implementing this procedure. Some indicative examples are

∀x∀y. x · y > 0⇔ (x > 0 ∧ y > 0) ∨ (x < 0 ∧ y < 0)
∀x∀y. x · y < 0⇔ (x > 0 ∧ y < 0) ∨ (x < 0 ∧ y > 0)
∀x∀y. x < y ⇒ ∃z. x < z ∧ z < y

Our procedure easily dispenses with such problems, and compares favorably with
the time it takes to prove such problems “by hand”. Thus, it could be a potentially
valuable tool in the day to day use of theorem provers like HOL Light.
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5.1 Times

Without further ado, we give some of the problems the algorithm can solve and running
times. The procedure is written in OCaml and was run uncompiled on a 3GHz Pentium
4 processor running Linux kernel 2.4. Times are in seconds unless otherwise indicated.

Univariate Examples. We’ve arranged the results into loose categories. We first con-
sider some routine univariate examples, the results collected in Table 1. A final pair of
examples demonstrates the key bound properties of the first two “Chebyshev Polyno-
mials” which are useful in function approximation; these had running times of 4.7 and
13.7 seconds respectively.

∀x. − 1 ≤ x ∧ x ≤ 1⇒ −1 ≤ 2x2 − 1 ∧ 2x2 − 1 ≤ 1

∀x. − 1 ≤ x ∧ x ≤ 1⇒ −1 ≤ 4x3 − 3x ∧ 4x3 − 3x ≤ 1

Table 1. Runtimes on simple univariate examples

Category Formula Result Running Time
Linear ∃x. x− 1 > 0 T 0.2
Linear ∃x. 3− x > 0 ∧ x− 1 > 0 T 0.7

Quadratic ∃x. x2 = 0 T 0.4
Quadratic ∃x. x2 + 1 = 0 F 0.5
Quadratic ∃x. x2 − 2x + 1 = 0 T 0.5

Cubic ∃x. x3 − 1 = 0 T 1.1
Cubic ∃x. x3 − 3x2 + 3x− 1 > 0 T 0.8
Cubic ∃x. x3 − 4x2 + 5x− 2 > 0 T 2.0
Cubic ∃x. x3 − 6x2 + 11x− 6 = 0 T 1.6

Quartic ∃x.x4 − 1 > 0 T 1.2
Quartic ∃x.x4 + 1 < 0 F 1.0
Quartic ∃x.x4 − x3 = 0 T 0.8
Quartic ∃x.x4 − 2 ∗ x2 + 2 = 0 T 2.9
Quintic ∃x.x5 − 15 ∗ x4 + 85 ∗ x3 − 225 ∗ x2 + 274 ∗ x− 120 = 0 T 19

Multivariate Examples

– Here is an instance of a more complicated quantifier structure. Our implementation
returns the theorem in 11.6 seconds.

(∀a f k. (∀e. k < e⇒ f < a · e)⇒ f ≤ a · k)

– Here is an example arising as a polynomial termination ordering for a rewrite sys-
tem for group theory, which takes 23.5 seconds.

1 < 2 ∧ (∀x. 1 < x⇒ 1 < x2)∧
(∀x y. 1 < x ∧ 1 < y ⇒ 1 < x(1 + 2y))
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– We can use open formulas to determine when polynomials have roots, as in the case
mentioned above of a quadratic polynomial, ∃x. ax2 + bx + c = 0 The following
identity is established in 4.7 seconds.

val it : thm =
|- (?x. a * x pow 2 + b * x + c = &0) <=>

(&0 + a * &1 = &0) /\
((&0 + b * &1 = &0) /\ (&0 + c * &1 = &0) \/
˜(&0 + b * &1 = &0) /\ (&0 + b * &1 > &0 \/ &0 + b * &1 < &0)) \/

˜(&0 + a * &1 = &0) /\
(&0 + a * &1 > &0 /\
((&0 + a * ((&0 + b * (&0 + b * -- &1)) + a * (&0 + c * &4)) = &0) \/
˜(&0 + a * ((&0 + b * (&0 + b * -- &1)) + a * (&0 + c * &4)) = &0) /\
&0 + a * ((&0 + b * (&0 + b * -- &1)) + a * (&0 + c * &4)) < &0) \/

&0 + a * &1 < &0 /\
((&0 + a * ((&0 + b * (&0 + b * -- &1)) + a * (&0 + c * &4)) = &0) \/
˜(&0 + a * ((&0 + b * (&0 + b * -- &1)) + a * (&0 + c * &4)) = &0) /\
&0 + a * ((&0 + b * (&0 + b * -- &1)) + a * (&0 + c * &4)) > &0))

While this is not particularly readable, it does give the necessary and sufficient
conditions. We can express the answer in a somewhat nicer form by “guessing”,
and the proof takes 816 seconds:

∀a∀b∀c.(∃x.ax2 + bx + c = 0)⇔
(((a = 0) ∧ ((b �= 0) ∨ (c = 0)))∨
(a �= 0) ∧ b2 ≥ 4ac)

– Robert Solovay has shown us a method by which formulas over general real vector
spaces can be reduced to the present subset of reals. Consider the following for-
mula, where x and y are vectors and u a real number, x ·y is the inner (dot) product
and ||x|| is the norm (length) of x:

∀x y. x · y > 0⇒ ∃u. 0 < u ∧ ||uy − x|| < ||x||

Our implementation of Solovay’s procedure returns the following formula over the
reals that provably implies the original. (Note that the body can be subjected to
some significant algebraic simplification, but this gets handled anyway by our tran-
sition to canonical polynomial form.) Our procedure proves this in 8.8 seconds.

∀a b c. 0 ≤ b ∧ 0 ≤ c ∧ 0 < ac
⇒ ∃u. 0 < u ∧ u(uc− ac)− (uac− (a2c + b)) < a2c + b

6 Future Work

The underlying algorithm is quite naive, and could be improved in many ways at rela-
tively little cost in complexity. One very promising improvement is to directly exploit
equations to substitute. At its simplest, if we are eliminating an existential quantifier
from a conjunction containing an equation with the variable on one side, we can sim-
ply replace the variable with the other side of the equation. (At present, our algorithm
uses the inefficient general sign-matrix process even when such obvious simplifica-
tions could be made.) Slightly more complicated methods can yield very good results
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for low-degree equations like quadratics [32]. More generally, even more complicated
higher-degree equations can be used to substitute, and we can even try to factor. For
example, consider the assertion that the logistic map x �→ rx(1 − x) has a cycle with
period 2:

∃x. 0 ≤ x ∧ x ≤ 1 ∧ r(rx(1 − x))(1 − rx(1 − x)) = x ∧ ¬(rx(1 − x) = x)

By factoring the equation and then using the remaining factor to substitute, we can
reach the following formula, where the degree of x has been reduced, making the prob-
lem dramatically easier for the core algorithm:

∃x. 0 ≤ x ∧ x ≤ 1 ∧ r2x2 − r(1 + r)x + (1 + r) = 0 ∧ ¬(2rx = 1 + r)

This can be solved by our algorithm in about 5 hours.
The translation to a proof-producing version was done quite directly, and there is

probably considerable scope for improvement by making some of the inference steps
more efficient. In the last example, the HOL Light implementation runs over 103 slower
than the unchecked version. It seems that this gap can be significantly narrowed.

One reason for the large gap is our representation of the sign matrix. The use of
lists made proving proforma theorems awkward. For an extreme example, to attempt
to prove a general theorem regarding the inferpsign step, we proved the following
lemma which states that if p(x) = s(x) ∗ q(x) + r(x), q(x) = 0, and r(x) > 0, then
we can replace the unknown sign for p at x by Pos.

let INFERPSIGN_ZERO_EVEN = prove_by_refinement(
‘!a n p ps q qs pts r rs s s1 s2 s3 rest sgns.
interpmat pts
(APPEND (CONS p ps) (APPEND (CONS q qs) (CONS r rs)))
(APPEND sgns

(CONS (APPEND (CONS Unknown s1)
(APPEND (CONS Zero s2) (CONS Zero s3))) rest)) ==>

(LENGTH ps = LENGTH s1) ==>
(LENGTH qs = LENGTH s2) ==>
ODD (LENGTH sgns) ==>
(!x. a pow n * p x = s x * q x + r x) ==>
(a <> &0) ==>
EVEN n ==>
interpmat pts
(APPEND (CONS p ps) (APPEND (CONS q qs) (CONS r rs)))
(APPEND sgns

(CONS (APPEND (CONS Zero s1)
(APPEND (CONS Zero s2) (CONS Zero s3))) rest))‘,

A number of arithmetic steps were necessary at each application of this lemma to
prove the antecedents. It ended up being faster to expand all the definitions, do some
simple real arithmetic, and reassemble the matrix. This is drastically inefficient and we
are currently experimenting with new representations that will allow us to avoid such
tedious and expensive logic.

One interesting continuation of the current work would be to see how easily our
implementation could be translated to another theorem prover such as Isabelle [25].
Finally, there is the potential to use this procedure in a fully automated combined deci-
sion procedure environment such as CVC-Lite [1]. We have not explored these lines of
research in any detail.
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7 Conclusion

It is difficult to foresee the practical benefits of using general decision procedures such
as this one in the field of interactive theorem proving. As this case study shows, even
when they exist, it is not at all clear whether, due to complexity constraints, they will
be applicable to even moderately difficult problems. Considering the examples given
above, one might even dismiss such procedures outright as entirely too inefficient. For
the user of such a system, however, it is procedures like this one which automate tedious
low level tasks that make the process of theorem proving useful and enjoyable, or at
least tolerable.

In conclusion, the work described above can be seen in two different lights. On the
one hand, it is a rather inefficient implementation of an algorithm which, while mathe-
matically and philosophically interesting, and theoretically applicable to an enormous
range of difficult problems, is not yet practically useful for those problems. On the other
hand, it can be viewed as another tool in the (human) theorem prover’s tool chest. One
that, given the wide range of applications of the real numbers in theorem proving, could
be an important practical achievement.
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1 Introduction

Satisfiability Modulo Theories (SMT) can be seen as an extended form of propositional
satisfiability, where propositions are either simple boolean propositions or quantifier-
free atomic constraints in a specific theory. In this paper we present MATHSAT version
3 [6,7,8], a DPLL-based decision procedure for the SMT problem for various theories,
including those of Equality and Uninterpreted Functions (EUF ) 1, of Separation Logic
(SEP ), and of Linear Arithmetic on the Reals (LA(R)) and on the integers (LA(Z)).
MATHSAT is also able to solve the SMT problem for combined EUF +SEP , EUF
+LA(R), and EUF +LA(Z), either by means of Ackermann’s reduction [1] or using
our new approach called Delayed Theory Combination (DTC) [6], which is alternative
to the classical Nelson-Oppen or Shostak integration schemata.

MATHSAT is based on the approach of integrating a state-of-the-art SAT solver with
a hierarchy of dedicated theory solvers. It is a re-implementation of an older version
of the same tool [3,4], supporting more extended theories, and their combination, and
implementing a number of important optimization techniques 2.

MATHSAT has been and is currently used in many projects, both as a platform
for experimenting new automated reasoning techniques, and as a workhorse reasoning
procedure onto which to develop formal verification tools. Our main target application
domains are those of formal verification of RTL circuit designs, and of timed and hy-
brid systems. MATHSAT has been and is currently widely used by many authors for
empirical tests on SMT problems (see, e.g., [11,12,2]).

For lack of space, in this paper we omit any description of empirical results, which
can be found in [6,7,8]. A Linux executable of the solver, together with the papers
[6,7,8] and the benchmarks used there, is available from http://mathsat.itc.it/.

$ This work has been partly supported by ISAAC, an European sponsored project, contract no.
AST3-CT-2003-501848, by ORCHID, a project sponsored by Provincia Autonoma di Trento,
and by BOWLING, a project sponsored by a grant from Intel Corporation. The work of T.
Junttila has also been supported by the Academy of Finland, projects 53695 and 211025.

1 More precisely, EUF with some extensions for arithmetic predicates and constants.
2 We notice that some ideas related to the mathematical solver(s) presented in this paper (i.e.,

layering, stack-based interfaces, theory-deduction) are to some extent similar to ideas pio-
neered by Constraint Logic Programming (see, e.g., [14]).
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2 The Main Procedure

MATHSAT is built on top of the standard “online” lazy integration schema used in
many SMT tools (see, e.g., [3,11,2]). In short: after some preprocessing to the input
formula φ, a DPLL-based SAT solver is used as an enumerator of (possibly partial) truth
assignments for (the boolean abstraction of) φ; the consistency in T of (the set of atomic
constraints corresponding to) each assignment is checked by a solver T -SOLVER. This
is done until either one T -consistent assignment is found, or all assignments have been
checked.

MATHSAT 3 [6,7,8] is a complete re-implementation of the previous versions
described in [3,4], supporting more theories (e.g., EUF , EUF +LA(R), EUF
+LA(Z)) and a richer input language (e.g., non-clausal forms, if-then-else). It features
a new preprocessor, a new SAT solver, and a much more sophisticate theory solver,
which we describe in this section. It also features new optimization techniques, which
we describe in the next sections. 3

2.1 The Preprocessor

First, MATHSAT allows the input formula to be in non-clausal form and to include op-
erations such as if-then-else’s over non-boolean terms. The preprocessor translates the
input formula into conjunctive normal form by using a standard linear-time satisfiability
preserving translation. Second, the input formula may contain constraints that mix the-
ories in a way that cannot be handled either by the EUF solver or the linear arithmetic
solver alone (e.g., f (x)+ f (z) = 4). To handle these constraints, the preprocessor either
(i) eliminates them by applying Ackermann’s reduction [1] or (ii) purifies them into a
normal form if the Delayed Theory Combination scheme [6] is applied.

2.2 The SAT Solver

In MATHSAT, the boolean solver is built upon the MINISAT solver [10]. Thus it in-
herits for free conflict-driven learning and backjumping [15], restarts [13], optimized
boolean constraint propagation based on the two-watched literal scheme [16], and an
effective splitting heuristics VSIDS [16]. It communicates with T -SOLVER through a
stack-based interface that passes assigned literals, T -consistency queries and backtrack-
ing commands to T -SOLVER, and gets back answers to the queries, T -inconsistent sets
(theory conflict sets) and T -implied literals.

2.3 The Theory Solver T -SOLVER

T -SOLVER gets in input a set of quantifier-free constraints μ and checks whether μ is
T -satisfiable or not. In the first case, it also tries to perform and return deductions in

3 In order to distinguish what is new in MATHSAT 3 wrt. previous versions, in the next sections
we label by “[3,4]” those techniques which were already present in previous versions, with
“[7,8]” the new techniques, and with “[3,4,7,8]” those techniques which have been proposed
in earlier versions and have been significantly improved or extended in MATHSAT 3.
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the form μ′ |=T l s.t. l is a literal representing a truth assignment to a not-yet-assigned
atom occurring in the input formula, and μ′ ⊆ μ in the (possibly minimal) set of literals
entailing l. In the second case, it returns the (possibly minimal) sub-assignment μ′ ⊆ μ
which caused the inconsistency (conflict set). Due to the early pruning step (see § 3), T -
SOLVER is typically invoked on incremental assignments. When a conflict is found, the
search backtracks to a previous point, and T -SOLVER then restarts from a previously
visited state. Based on these considerations, T -SOLVER has a persistent state, and is
incremental and backtrackable: incremental means that it avoids restarting the compu-
tation from scratch whenever it is given as input an assignment μ′ such that μ′ ⊃ μ and
μ has already been proved satisfiable; backtrackable means that it is possible to return
to a previous state on the stack in a relatively efficient manner.

T -SOLVER consists mainly on two main layers: an Equational Satisfiability Proce-
dure for EUF and a Linear Arithmetic Procedure for SEP , LA(R) and LA(Z).

The Equational Satisfiability Procedure The first layer of T -SOLVER is provided by
the equational solver, a satisfiability checker for EUF with minor extensions for arith-
metic predicates and constants. The solver is based on the congruence closure algorithm
presented in [17], and reuses some of the data structures of the theorem prover E [19]
to store and process terms and atoms. It is incremental and supports efficient backtrack-
ing. The solver generates conflict sets and produces deductions for equational literals. It
also implicitly knows that syntactically different numerical constants are semantically
distinct, and efficiently detects and signals if a new equation forces the identification of
distinct domain elements.

The Linear Arithmetic Procedure The second layer of T -SOLVER is given by
a procedure for the satisfiability of sets of linear arithmetic constraints in the form
(∑i civi �� c j), with ��∈ {=, �=,>,<,≥,≤}. The linear solver is layered, running faster,
more general solvers first and using slower, more specialized solvers only if the early
ones do not detect an inconsistency. The control flow through the linear solver is given
in Fig. 1.

First, we consider only those constraints that are in the difference logic fragment,
i.e., the subassignment of μ consisting of all constraints of the forms vi− v j �� c and
vi �� c, with ��∈ {=, �=,<,>,≤,≥}. Satisfiability checking for this subassignment is
performed by an incremental version of the Bellman-Ford algorithm [9], which allows
for deriving minimal conflict sets. Second, we try to determine if the current assign-
ment μ is consistent over the reals, by means of the Cassowary constraint solver. Cas-
sowary [5] is a simplex-based solver over the reals, using slack variables to efficiently
allow the addition and removal of constraints and the generation of a minimal conflict
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set. Cassowary has been extended by an ad-hoc technique to handle disequalities on R
and with arbitrary precision arithmetic.

If the variables are interpreted over the integers, and the problem is unsatisfiable
in the reals, then it is so in the integers. When the problem is satisfiable in the reals, a
simple form of branch-and-cut is carried out, to search for solutions over the integers,
using Cassowary’s incremental and backtrackable machinery. If branch-and-cut does
not find either an integer solution or a conflict within a small, predetermined amount of
search, the Omega constraint solver [18] is called on the current assignment.

3 Tightly-Integrated SAT and Theory Solvers

In MATHSAT the naive DPLL+T -SOLVER integration schema is enriched by the fol-
lowing optimization techniques [3,4,7,8]. Apart from theory-driven backjumping and
learning, all these optimizations can be disabled/enabled by the user.

Early Pruning [3,4] Before every boolean decision step, T -SOLVER is invoked on the
current assignment μ. If this is found unsatisfiable, then there is no need to proceed, and
the procedure backtracks.

Theory-Driven Backjumping [3,4,7,8] When T -SOLVER finds the assignment μ to be
T -unsatisfiable, it also returns a conflict set η causing the unsatisfiability. This enables
MINISAT to backjump in its search to the most recent branching point in which at least
one literal l ∈ η is not assigned a truth value, pruning the search space below.

Theory-Driven Learning [3,4,7,8] When T -SOLVER returns a conflict set η, the
clause ¬η can be added in conjunction to ϕ: this will prevent MINISAT from gen-
erating again any branch containing η.

Theory-Driven Deduction (and Learning) [3,4,7,8] With early pruning, if a call to
T -SOLVER produces some deduction in the form μ′ |=T l (e.g., by the EUF solver),
then l is returned to the SAT solver, which uses it for boolean constraint propagation,
triggering new boolean simplification. Moreover, the implication clause μ → l can be
learned and added to the main formula, pruning the remaining boolean search.

Static Learning [7,8] Before the main solver is invoked, short clauses valid in T like,
e.g., ¬(t = 1)∨¬(t = 2), ¬(t1− t2 ≤ 3)∨ (t2− t1 >−4), (t1− t2 ≤ 3)∧ (t2− t3 < 5) →
(t1− t3 < 9), are added off-line to the input formula φ if their atoms occur in φ. This
helps pruning the search space at the boolean level.

Clause Discharge [7,8] MATHSAT inherits MINISAT’s feature of periodically dis-
carding some of the learned clauses to prevent explosion of the formula size. However,
because the clauses generated by theory-driven learning and theory deduction mecha-
nisms may have required a lot of work in T -SOLVER, as a default option they are never
discarded.

Control on Split Literals [3,4,7,8] In MATHSAT it is possible to initialize the weights
of the literals in the VSIDS splitting heuristics so that either boolean or mathematical
atoms are preferred as splitting choices early in the DPLL search.
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4 An Optimized Theory Solver

In MATHSAT, T -SOLVER benefits of the following optimization techniques [3,4,7,8].
All these optimizations can be disabled/enabled by the user.

Clustering [7,8] At the beginning of the search, the set of all atoms occurring in the
formula is partitioned into disjoint clusters L1, ...,Lk: intuitively, two atoms (literals)
belong to the same cluster if they share a variable. Thus, instead of having a single,
monolithic solver for linear arithmetic, k different solvers are constructed, each respon-
sible for the handling of a single cluster. This allows for “dividing-and-conquering” the
mathematical component of search, and for generating shorter conflict sets.

EQ-Layering [7,8] The equational solver can be used not only as a solver for EUF ,
but also as a layer in the arithmetic reasoning process. In that case, all constraints, in-
cluding those involving arithmetic operators, are passed to the equational solver. Arith-
metic function symbols are treated as fully uninterpreted. However, the solver has a
limited interpretation of the predicates < and ≤, knowing only that s < t implies s �= t,
and s = t implies s ≤ t and ¬(s < t). Thus, the equational interpretation is a (rough)
approximation of the arithmetic interpretation, and all conflicts and deductions found
by the equational solver under EUF semantics are valid under fully interpreted se-
mantics. Hence, they can be used to prune the search. Thus, given the efficiency and the
deduction capabilities of the equality solver, this process in many cases significantly
improves the overall performances [8].

Filtering [3,4,7,8] MATHSAT simplifies the set of constraints passed to T -SOLVER

by “filtering” unnecessary literals. If an atom ψ which occurs only positively (resp.,
negatively) in the input formula φ is assigned to false (resp., true) in the current truth
assignment μ, then it is dropped from μ without loosing correctness and completeness.
If an atom ψ is assigned by unit propagation on clauses resulting from theory-driven
learning, theory-driven deduction, or static learning, then it is dropped from the set of
constraints μ to check because it is a consequence in T of other literals in μ.

Weakened Early Pruning [7,8] During early pruning calls, T -SOLVER does not have
to detect all inconsistencies; as long as calls to T -SOLVER at the end of a search branch
faithfully detect inconsistency, correctness is guaranteed. We exploit this by using a
faster, but less powerful version of T -SOLVER for early pruning calls. Specifically, as
the theory of linear arithmetic on Z is much harder, in theory and in practice, than that
on R, during early pruning calls, T -SOLVER looks for a solution on the reals only.

5 Delayed Theory Combination of T -Solvers

In the standard Nelson-Oppen’s (or Shostak’s) approaches, the T -solvers for two dif-
ferent theories T1, T2 interact with each other by deducing and exchanging (disjunctions
of) interface equalities in the form (vi = v j), vi,v j being variables labeling terms in the
different theories; the SAT solver interacts with this integrated T1∪T2-solver according
to the standard SMT paradigm.

In Delayed Theory Combination (DTC) [6], instead, the SAT solver is in charge of
finding suitable truth value assignments not only to the atoms occurring in the formula,
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but also for their relative interface equalities. Each T -solver works in isolation, without
direct exchange of information, and interacts only with the SAT solver, which gives it
as input not only the set of atomic constraints for its specific theory, but also the truth
value assignment to the interface equalities. Under such conditions, two theory-specific
models found by the two T -solvers can be merged into a model for the input formula.

We notice the following facts [6]. DTC does not require the direct combination of
T -solvers for T1 and T2; the construction of conflict sets involving multiple theories is
straightforward; with DTC the T -solvers are not required to have deduction capabilities
(though, the integration benefits from them); DTC extends naturally to the case of more
than two theories; DTC does not suffer in the case of non-convex theories, like LA(Z).
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Abstract. We introduce XOR constraints, and show how they enable
a theorem prover to reason effectively about security critical subsystems
which employ bitwise XOR. Our primary case study is the API of the
IBM 4758 hardware security module. We also show how our technique
can be applied to standard security protocols.

1 Introduction

The application program interfaces (APIs) of several secure cryptographic hard-
ware modules, such as are used in cash machines and electronic payment devices,
have been shown to have subtle flaws which could be used to mount financially
lucrative attacks, [5,9]. These flaws were, however, only discovered after laborious
hand analysis. This suggests them as promising candidates for formal analysis
in a theorem prover. The APIs can be thought of as defining a set of two-party
protocols, and modelled in a similar way to security protocols, which have at-
tracted a large amount of attention from formal methods researchers in recent
years. However, one key difference is that the specifications of the APIs are at
the concrete bit by bit level, rather than at the abstract level of public or sym-
metric key cryptography. It has been by exploiting bit-level operations in the
APIs that attacks have been found. One example of such an operation is bitwise
exclusive-or (XOR). In the IBM 4758 Common Cryptographic Architecture API,
XOR is used extensively. In an attack discovered by Bond, [5], the self-inverse
property of XOR can be exploited, together with some other coincidences in
the API transaction set, to reveal a customer’s PIN. However, the combinatorial
possibilities caused by the associative, commutative and self-inverse properties
of XOR pose a significant challenge to formal analysis. It this challenge we ad-
dress in the work described in this paper. We introduce XOR constraints, which
state that two terms must be equal modulo XOR. We describe first-order theo-
rem proving in a calculus modified to use these constraints, and show how this
allows models of such APIs to be reasoned with effectively.

In the rest of this paper, we will first, in §2, give some more background in
the field of secure hardware API analysis. In §3, we describe our approach using
XOR constraints. Our results using this method are given in §4. We conclude in
§5, with some evaluation and comparison to related work.

R. Nieuwenhuis (Ed.): CADE 2005, LNAI 3632, pp. 322–336, 2005.
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2 Background

Hardware security modules (HSMs) are widely used in security critical systems
such as electronic payment and automated teller machine (ATM) networks. They
typically consist of a cryptoprocessor and a small amount of memory inside a
tamper-proof enclosure. They are designed so that should an intruder open the
casing, or insert probes to try to read the memory, it will auto-erase in a matter
of nanoseconds. In a typical application, this tamper-proof memory will be used
to store the master keys for the device. Further keys will then be stored on the
hard drive of a computer connected to the HSM, encrypted under the HSM’s
master key. These keys can then only be used by sending them back into the
HSM, together with some other data, under the application program interface
(API). The API will typically consist of a several dozen key management and
PIN processing commands, and their prescribed responses. Although carefully
designed, various subtle flaws in these APIs have been found, for example by
Bond, [5], and Clulow, [9].

One can think of the API as defining a number of two-party protocols between
a user and the HSM. This suggests that we might profitably employ methods
developed for the analysis of security protocols, e.g. [23,18,3]. However, there
are some important differences in the scenario to be modelled. We are concerned
only with two ‘agents’, the HSM itself and a malicious intruder. The HSM itself
is (usually) ‘stateless’, in the sense that no information inside the HSM changes
during transactions. This means we need only concern ourselves with the knowl-
edge of the intruder, and not with any other information about the state of
the protocol participants. Readers familiar with conventional security protocol
analysis will appreciate that this constitutes a significant simplification of the
general problem. However, there are other aspects which add complexity not
normally considered in standard protocol analysis. In order to look for attacks,
we must analyse the composition of several dozen short two-party protocols, that
may be combined in any order. This is a significant increase in complexity com-
pared to analysing key exchange protocols, which typically entail half a dozen
messages at most. Additionally, it is not sufficient to model APIs in a ‘perfect
encryption’ or free algebra model, where algebraic properties of the crypto func-
tions are ignored. Most of the attacks that have been found exploit properties
of these functions. The example we look at in this paper is the XOR function,
which is widely used in the Common Cryptographic Architecture (CCA) API of
the IBM 47581.

The attacks on the 4758 CCA were first discovered by Bond and Anderson,
[5]. They exploit the way the 4758 constructs keys of different types. The CCA
supports various key types, such as data keys, key encrypting keys, import keys
and export keys. Each type has an associated ‘control vector’ (a public value),
which is XORed against the master key, km , to produce the required key type. So
if data is the control vector for data keys, then all data keys will be stored outside

1 http://www-3.ibm.com/security/cryptocards/pcicc.shtml
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the 4758 box encrypted under km⊕data2. Under the API, only particular types
of keys will be accepted by the HSM for particular operations. For example, data
keys may be used to encrypt given plaintext, but PIN derivation keys may not.
Bond discovered an attack whereby the attacker changes the type of a key he
has by exploiting the properties of XOR. In Bond’s attack, the API’s Key Part
Import command is used to generate keys with a known difference. The Key
Import command can then be used to change a key of one type to any other
type. This allows a PIN derivation key to be converted to a data key, and then
used to encrypt data, which is a critical flaw: a customer’s PIN is just his account
number encrypted under a PIN derivation key. So, the attack allows a criminal
to generate a PIN for any card number. Recent versions of the CCA manual
(2.41 onwards) give procedural restrictions on the key part import commands
to prevent the attack.

After discovering the attack, Bond made an effort to formalise the problem
and rediscover the attack, using the theorem prover Spass, [26]. He produced
a first-order model with one predicate, P , to indicate that a term was known
outside the box (and therefore available to an intruder). The XOR operation
was modelled by equational axioms giving its associative, commutative and self-
inverse properties. However, Spass was unable to rediscover the attack, even
after days of run time, and with only the three relevant commands from the API
included in the model. Bond was able to prove that the attack was in the search
space modelled, by inserting various hints and proving intermediate conjectures,
but the combinatorial blow-up caused by the AC and self-inverse properties, and
the fact that the spy can XOR together any two terms he knows to create a new
term, prevented a genuine rediscovery.

Ganapathy et al. have recently attacked the same rediscovery problem using
bounded model checking, [12]. They successfully rediscovered the part of the
attack where a key’s type is changed. However, they included only two of the
APIs commands in their model, so there was very little search involved. Again,
associativity, commutativity and self-inverse were modelled by explicit axioms
in the model.

The aim of the work described in this paper was to develop a framework for
handling XOR that allows the whole of an API to be modelled and reasoned
with effectively. Our approach involved adapting a theorem prover supporting
AC unification (daTac, [25]) to handle constraints specifying equality between
terms modulo XOR. Constraints have been used before in first-order theorem
proving, for a variety of purposes. They provide a natural way of implementing
ordering restrictions, [20], and the basicness restriction, [2], handling AC unifica-
tion, [21,25], and incorporating the axioms of Abelian groups, [13]. As has been
remarked e.g. in [22], they are an attractive solution for bringing domain knowl-
edge into deduction systems, because they provide a clean separation between
the general purpose logic, and the special purpose constraints. Our results using
the XOR constraint framework include a rediscovery of Bond’s attack in a model
formalising the whole of the CCA key-management transaction set. Additionally,

2 We use ⊕ as the infix XOR operator.
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we rediscovered a second, stronger, and more complex attack which, although
already discovered by Bond, had not been previously modelled. We have also
used our XOR constraint technique to rediscover an attack on a variant of the
Needham-Schroeder-Lowe protocol, using XOR, given in [7]. As far as we are
aware, this attack had also not been rediscovered automatically before.

3 XOR Constraints

We will first explain how our work on API analysis suggested the development
of XOR constraints. We then define deduction, redundancy checking and simpli-
fication with XOR constraints. Finally, we discuss some implementation details.

3.1 The Need for XOR Constraints

The attacks we are concerned with on the 4758 CCA all employ the Key Im-
port command. This command is designed to be used, for example, to im-
port a key from another 4758 unit. Keys are transported between 4758s un-
der ‘key encrypting keys’, or KEK s. Here is the command as a two-message
protocol:

Key Import:

1. User → HSM : {| KEY1 }| KEK⊕TYPE, TYPE, {| KEK }| km⊕imp

2. HSM → User : {| KEY1 }| km⊕TYPE

We write the master key km and the import control vector imp in lowercase to
show these are values specific to a particular 4758, and other values in caps to
show these are in effect variables; for these, any values (modulo a certain amount
of error checking) can be used. In the above protocol, the HSM does not know
in advance the key required to decrypt the first packet, {| KEY1 }|KEK⊕TYPE. It
must first decrypt the final packet to obtain KEK , and then XOR this against
TYPE , which is given in the clear. The result can then be used as a key to
decrypt the first packet. It is this XORing together of parts that is exploited in
Bond’s attacks, the first variant of which runs like this, [4, §7.3.4]:

Suppose some corrupt bank insider has seen {| pp }| kek⊕pin, a PIN deriva-
tion key (pp), encrypted under some key-encrypting key, kek , XORed
against the appropriate control vector, pin . This is the form in which
it would be sent to a 4758 in a bank. Additionally, we suppose that an
attacker has access to, and can tamper with, a ‘key part’ for the key.
Keys are divided into parts to allow two (or more) separate people to
physically transfer key information to another 4758 module. The idea of
dividing the key into parts is that attacks requiring collusion between
multiple employees are considered infeasible. The key parts for the 4758
are combined using XOR. Because of the properties of XOR, no single
officer, in possession of a single key part, has any information about the
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value of the final key. Here is the sequence of commands required to
import a two-part key k1 = k1a ⊕ k1b:

Key Part Import(1):
1. Host → HSM : k1, TYPE
2. HSM → Host : {| k1a }| km⊕kp⊕TYPE

Key Part Import(2):
1. Host → HSM : {| k1a }| km⊕kp⊕TYPE, k1b, TYPE
2. HSM → Host : {| k1a⊕ k1b}| km⊕TYPE

The kp control vector indicates that a key is still only partially complete.
For Bond’s attack, we suppose the attacker is a single corrupt insider
responsible for adding the final key part. So, he has a partial key which
looks like {| kek⊕ k2 }| km⊕imp⊕kp, where k2 is his own key part. Before
addng his own key part, he XORs it against data and pin . The final key
part import command will then yield {| kek⊕ data⊕ pin}| km⊕imp, which
he can use in the Key Import command in the following way:

1. User → HSM : {| pp }| kek⊕pin, data, {| kek ⊕ data ⊕ pin }| km⊕imp

2. HSM → User : {| pp }| km⊕data

On receiving message 1, the HSM forms kek ⊕ data ⊕ pin ⊕ data, but
with the self-inverse cancellation of bitwise XOR, this is the same as
kek ⊕ pin . So the encrypted key pp is output successfully, but instead
of being under its correct control vector, as a PIN derivation key, it is
now returned as a data key, allowing the attacker to generate customer’s
PINs using the Encrypt Data command3:

1. User → HSM : {| pp }| km⊕data, PAN
2. HSM → User : {| PAN }| pp

In order to capture these kinds of attacks, we must model the command
in the way it is implemented, i.e. we must model the HSM constructing the
decryption key for packet 1, KEK ⊕ TYPE , from the other two packets. This
seemingly requires us to abandon the so-called ‘implicit decryption’ assumption
usually used in modelling protocols, [19]. Instead, we must model the decryption
of packet 1 explicitly, like this4:

P (crypt(xkek1⊕ xtype1, xk1))∧
P (xtype2) ∧ P (crypt(km⊕ imp, xkek2))
→ P (crypt(km⊕ xtype2,

decrypt(xkek2⊕ xtype2,
crypt(xkek1⊕ xtype1, xk1))))

and introduce the cancellation rule:
3 PAN stands for ‘personal account number’. Recall that a PIN is just a customer’s

account number encrypted under a PIN derivation key.
4 We follow Bond’s original model, with the P predicate signifying a term known

outside the HSM.
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→ decrypt(x1, crypt(x1, x2)) = x2

This brings the attacks into the search space, but only allows them to be found
by forward search through the model. This is because the result of the key im-
port command will not unify with the result required in the attack (which is
P (crypt(km ∗ data, pp))) until after the equations specifying the self-cancelling
properties of XOR, and the encrypt/decrypt cancellation rule above, have been
applied. To allow this to happen in backwards search, we would have to allow
the cancellation rules to be applied in reverse, which would cause an enormous
blow-up in the search space. When searching forwards, the branching rate is still
very large, since for any terms x and y, if we have P (x) and P (y), we can always
combine these with XOR to produce P (x⊕y). We have to search a large space of
these possible combinations in order to derive the terms required to make attacks.

Our solution is to introduce XOR constraints to state that in the key import
command, the key used to encrypt the first packet, and the key derived by the
HSM from the other packets, must be equal modulo XOR. This allows us to use
implicit encryption. The clause to model the command now looks like this:

P (crypt(x1, xk1)), P (xtype), P (crypt(km⊕ imp, xkek2))
→ P (crypt(km⊕ xtype, xk1))
IF xkek2⊕ xtype =XOR x1

Semantically, the constraints are a restriction on the universally quantified vari-
ables in the clauses. Rather than generating instantiations to solve the con-
straints directly, we allow the search to proceed normally, but check after each
deduction that the constraints remain soluble. Note that the output of the new
form of the command will now unify with terms in a backwards search from the
goal. To encourage this, we employ the ‘basic strategy’, [2], which seems highly
effective for these problems.

3.2 Deduction with XOR Constraints

We employ the constrained resolution/paramodulation calculus of [25], with the
addition of XOR constraints. The XOR constraints of two resolving clauses are
combined in the resolvent using logical AND, just like the pre-existing ordering
constraints and substitution constraints. When generating new inferences we ap-
ply the substitution required for the inference to the constraints before checking
for solubility. Because of the self-cancelling property of XOR, this amounts to
checking whether the constraint is ground and has been solved, or whether there
are still variables at positions which could solve the constraint. More formally,
solubility of an XOR constraint s1⊕. . .⊕sm =XOR t1⊕. . .⊕tn is checked like this:

1. If any of s1, . . . , sm, t1, . . . , tn contain variables, the constraint is regarded as
soluble.

2. If all s1, . . . , sm, t1, . . . , tn are ground, then first discard zeros, and then count
up the number of occurrences of each term in the set {s1, . . . , sm, t1, . . . , tn}.
If all terms occur an even number of times, the constraint is soluble. If not,
it is insoluble.
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Only inferences producing clauses with soluble constraints are permitted. These
simple syntactic checks can be made very quickly. Note that condition 1 may al-
low us to keep some clauses with constraints which cannot be solved. We do not
attempt to check that, in the theory in question, the variable may eventually be
instantiated to a value which satisfies the constraint. However, we will certainly
only discard genuinely insoluble constraints, thereby preserving completeness.
We can eliminate some further insoluble sets of XOR constraints by a simple
pairwise check for inconsistency. If two constraints, both attached to the same
clause, equate the same variables to different ground terms, then they are incon-
sistent and the clause can be pruned away. Again, this check may allow some
insoluble constraints through, but it is quick to perform, preserves completeness
and seems useful in practice.

3.3 Subsumption with XOR Constraints

Simplification and checking for redundancy are of paramount importance in
practical theorem proving. Modifications to the resolution/paramodulation cal-
culus which prevent the use of subsumption checking rules are usually useless
in practice, whatever their apparent theoretical advantages. The use of XOR
constraints allows subsumption checking, though with the following restriction:
the solutions of the constraints in a clause that is subsumed must be a subset
of the solutions of the clause we retain. For XOR constraints, this occurs just
when:

1. The more general clause has no XOR constraint, or
2. The XOR constraints of the subsumed clause and the subsuming clause are

identical (modulo AC), after any substitution required to make the sub-
sumption has been applied to the XOR constraint.

This is similar to the standard rule for subsumption in the constrained cal-
culus, [25, §5.1]. To see why condition 2 is not only sufficient but necessary to
ensure that all solutions of some constraint, T1, are solutions of another, T2,
the reader is invited to write down two identical constraints, and then add a
single variable or ground term to either. Immediately it is possible to construct
solutions of the first which are not solutions of the second, and vice versa.

In practice, many checks for subsumption are ruled out because of incom-
patible XOR constraints. Fortunately, the check can be made quite quickly (see
§3.5, below).

3.4 Simplification with XOR Constraints

Reduction of newly produced clauses by demodulation, clausal simplification,
etc. is also permissible for XOR-constrained clauses. In our implementation,
we only allow demodulation by clauses with no XOR constraint, since in our
experiments, it seems to be only these clauses we would like to use.
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3.5 Implementation

Our prototype implementation is in daTac, [25], which uses the constrained basic
calculus we require. It also supports AC-unification, implemented via constraints.
We store XOR constraints in a normal form, v1 ⊕ . . .⊕ vm =XOR t1 ⊕ . . .⊕ tn,
where the vi are pure variables, and the tj are atoms or complex terms. After
an inference, we apply the required substitution to the XOR constraint, and
then re-normalise it, by first moving any non-variables from the vi to the right
hand side of the equality, and then by removing from the tj any occurrences of
the identity element for XOR, and any pairs of identical ground terms. We also
order the vi and tj according to some arbitrary total ordering. After the sim-
plification, our checks for solubility described in §3.2 can be readily performed.
Additionally, keeping the constraints in a normal form speeds up the check for
identical constraints required in §3.3.

4 Results

We present first our results on the command set of the 4758 API. Then, we
present results from experiments using XOR constraints in the modelling of a
standard key-exchange protocol, which has an attack that can only be found
when the properties of XOR are taken into account. All the model files and re-
sults are available via http at http://homepages.inf.ed.ac.uk/gsteel/xor/

4.1 The 4758 CCA Attacks

Our model for the first variant of Bond’s attack includes all the symmetric
key management commands in the 4758 CCA API, except those which do not
output keys (MAC Generate, MAC Verify and Key Test). We employ XOR
constraints to model any command in which the HSM must decrypt a packet
using a key formed by XOR. In the 4758 CCA, the Key Import command and
the Key Translate command require XOR constraints. The XOR operation is
modelled by an operator (*) which is declared to be AC. We add the following
two equations to the model to define an identity element for the XOR operation:

x1 ∗ id = x1
x1 ∗ x1 = id

These properties of the XOR function are also implicitly modelled by the
way we check the solubility of XOR constraints, as described in §3.2. However,
the XOR constraints will only account for these properties when the XOR can-
cellation happens during a command being executed by the HSM. We have to
add these equations to allow for the possibility of the attacker doing his own
manipulations outside the HSM.

The intruder in our model is given the initial knowledge specified by Bond
(see §3.1), along with some other public terms such as the values of all the control
vectors. We chose a precedence ordering which set the P predicate largest, the
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XOR operator smallest, and put the key and control vector identifiers in a set
of symbols of equal precedence in between. The conjecture is that a term of the
form {| PAN}| PDK, i.e. a PIN, may become public. daTac finds the attack in just
under 1 second5, generating 162 new clauses for a model with 21 initial clauses.

We also modelled the second, stronger variant of Bond’s attack, the key
import/export attack, described in [4, §7.3.5]. This attack does not require the
intruder to have seen a PIN derivation key being sent to the 4758 under attack,
nor does it require him to have access to a key part for that PDK. Instead, he
converts a PDK already imported for use on the box into a data key by first
creating a pair of import/export keys with a known difference. The cleartext
value of these keys is unknown – they are generated by a process known as ‘key
conjuring’, [4, §7.2.3], where random values are tried until one is accepted by
the HSM. We approximate this by explicitly adding the conjured parts to the
model. The idea is to export the PDK under the exporter key, then to re-import
it under the importer key to turn it into a data key, using the same XOR trick
as in the previous attack. In fact, in this attack, the ‘trick’ must be used twice:
once to create the related import export pair from conjured key parts, and once
to use it to change the type of the PDK. In our model for this experiment, in
addition to the conjured key parts, we include in the intruder’s initial knowledge
a PIN derivation key encrypted under km⊕pin (instead of kek ⊕pin , as before).
The attack is found after 1.47 seconds, and the generation of 601 clauses in a
model with 23 initial clauses.

As a further experiment, we modelled the attack exhibited by IBM engineers
in their response to Bond’s discovery, described in [9, p. 54]. This attack requires
that we take into account the fact that the true value of the ‘data’ control vector
is 0. This we model with the additional rule:

P (crypt(xk ∗ data, x)) → P (crypt(xk, x))

1 The attack is quite simple, and is found in 0.2 seconds after generating 229
clauses from an initial theory of 21 clauses. Together, these results represent a
qualitative improvement over the previous efforts to reason with XOR described
in §2. We have found stronger, and more complex attacks on the whole com-
mand set, while Bond’s original model, and the Ganapathy et al. model, both
required hints and/or simplifications to discover even part of the original, shorter
attack. We believe it is the XOR constraints that make the difference, and to
investigate this, we tried a version of the model without them, modelling the
key import command with explicit encryption and decryption, as described in
§3.1. If we model only the commands required for the attack, daTac finds the
attack after about 5 minutes, generating more than 10 000 clauses. If the whole
command set is used, the attack is not found after more than 24 hours run-time.
This supports the hypothesis that it is the XOR constraints that are making the
difference.

5 Running under Linux 2.4.20 on a 2GHz Pentium 4 machine.
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4.2 Attacking a Variant of the Needham–Schroeder–Lowe Protocol

In [7], Chevalier et al. exhibit a variant of the well known Needham–Schroeder–
Lowe protocol, [17], which uses XOR to bind Bob’s identifier to Alice’s nonce in
message 2. They show that this protocol can be attacked, but only when the AC
and self-inverse properties of XOR are taken into account. We were keen to see
if our XOR constraints could be more generally applied to security problems,
so we formalised this protocol. Our model for the protocol is based on the first-
order model devised by Jacquemard, Rusinowitch and Vigneron, [14]. They also
used daTac, since the model uses AC unification to deal with the set of intruder
knowledge, and to model the set of states of agents. The protocol in question
runs like this:

1. A → B : {| NA, A}| pubKB

2. B → A : {| NA ⊕B, NB}| pubKA

3. A → B : {| NB}| pubKB

To attack the protocol, we assume Alice starts a session with our intruder, I,
who is accepted as an honest agent. He forwards on the nonce and identifier to
the victim, Bob, after XORing the nonce against B and I. He can now carry
out Lowe’s classic man-in-the middle attack:

1. A → I : {| NA, A}| pubKI

1′. IA → B : {| NA ⊕B ⊕ I, A}| pubKB

2′. B → IA : {| NA ⊕B ⊕ I ⊕B, NB}| pubKA

2. I → A : {| NA ⊕B ⊕ I ⊕B, NB}| pubKA

3. A → I : {| NB}| pubKI

3.′ IA → B : {| NB}| pubKB

In our model, we use an XOR constraint to model the fact that A will accept
message 2 from B only if, after XORing it against the identifier for B, it is
equal to the nonce she sent to B in message 1. In the Jacquemard et. al model,
agents move into a state of waiting for an appropriate response at the same
time as they send a message. So in this protocol, a single clause models A
sending a message 1 containing nonce NA, and moving into a state of waiting
for a response containing NA ⊕ B. We simply change the clause so that A is
waiting for a response containing some fresh variable X , and add the constraint
X ⊕B =XOR NA. We also allow the intruder to XOR arbitrary terms he knows
against each other to generate new ones, and allow him to send these terms in
messages.

These modifications bring the attack into the search space, but we are faced
with the usual XOR problem: there are simply too many ways the spy can
combine terms together. However, we can fix this problem using the same trick
Jacquemard et al. used for modelling intruder knowledge: use AC unification. In
all protocols, it will only pay the intruder to consider the self-inverse prop-
erties of XOR when he is trying to fool other agents. This we model with
XOR constraints, which take into account self-inverse. Now XOR is just an
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AC combinator, equivalent to the set combinator used in the model to col-
lect together terms. When faking a message, the spy simply picks a term from
his knowledge by unification, and we allow the XOR constraints mechanism to
check whether this term is satisfactory when the combinator is considered to be
XOR.

Using this model, daTac finds the attack presented in [7] in 12.35 seconds,
deriving 1652 clauses. This is in the middle of the range of times reported in [8],
where daTac was used to find flaws in a number of protocols in a free algebra
model. One should bear in mind that the first-order model had by then evolved
a little from the one reported in [14], and hardware used was probably slower
(details are not given in the paper). Even so, we have succeeded in automatically
discovering a protocol attack in a model using XOR. We compare this to related
work in the next section.

5 Conclusions

In the experiments we have performed, the use of XOR constraints has greatly
improved the performance of the theorem prover on the problems examined. In
the analysis of the 4758 CCA API, the greatest benefit seems to come from the
fact that XOR constraints allow us to use a goal-directed search, via the basic
strategy, in a model where explicit encryption and decryption would otherwise
prevent this. Experiments with using a positive strategy on the same models
yielded no proofs after 24 hours run-time. For the protocol considered in §4.2,
the benefit is that by considering the self-inverse properties of XOR only in the
constraints, we can treat XOR as a standard AC combinator, and so use AC
unification to build the terms we need to satisfy the constraints. Again, running
daTac on a model where XOR terms must be built up explicitly yields no proofs
after hours of run-time.

In the early nineties, Longley and Rigby were the first to look at the prob-
lem of automatically analysing the key-management schemes presented by HSM
APIs, [16]. They searched for attacks by querying a PROLOG database of API
rules with terms that an attacker might try to obtain. They did not consider any
algebraic properties of the cryptofunctions used, however. In §2, we mentioned
more recent related work by Ganapathy et al., which did consider the properties
of XOR. In §4.1, we showed how our results have improved on theirs, by allowing
attack discovery even when the whole symmetric-key management command set
is modelled, and by discovering the more complex key import/export attack,
which had not been modelled before.

In the field of security protocol analysis, several researchers have recently
started to consider algebraic properties of crypto functions, such as XOR. The
decidability of insecurity for protocols using XOR, provided the number of ses-
sions is bounded, has been shown in [7] and [10]. Their decision procedures for
insecurity are, however, purely theoretical. We can relate decidability of inse-
curity for APIs, specified in the way we have shown in this paper, to these
decidability results: first, observe that if we bind the number of times each API
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command can be executed, there are a bound number of ways these commands
can be chosen and ordered. Consider each command as a two message protocol,
as we have suggested in this paper. Consider each choice and ordering of the
commands as a complete protocol. Then a bound API specifies a set of bound
protocols. We can now augment an NP decision procedure for XOR protocols
by first guessing a protocol from our set. Unfortunately, this is not quite enough
to settle the question of decidability, since we also have to change the formalism
for protocols to allow for steps like the Key Import command, where a key used
for decryption must be generated using XOR in the same step. Delaune and
Jacquemard have proposed a decidability procedure for protocols with explicit
encryption and decryption, which we could adapt to such API commands, [11].
Unfortunately, they have so far been unable to show whether the XOR operation
can be covered by their results. We suspect that one of these works could indeed
be adapted to show decidability of insecurity for bound API transaction sets.
However, for the moment, it remains an open question.

In further work, we plan to improve the performance of the prover when
handling XOR constraints. We have observed that in our proof searches, often
very early a clause is derived containing just P (x1) ∧ . . . ∧ P (xm) ⇒, and an
XOR constraint x1 ⊕ . . .⊕ xm =XOR t1 ⊕ . . .⊕ tn, with all the terms ti needed
to solve the constraint available in the domain of P . However, it still takes a
long time to finally resolve this to the empty clause, since there are still many
ways the XOR combination rule, P (x)∧P (y) ⇒ P (x⊕ y), can be applied to the
clause. We discovered this by using viz, our tool for visualising first-order proof
search, [24]. The output from viz for the first 4758 attack is given in Figure 1.
Note that viz produces output in scalable vector graphics (SVG) format, which is
designed to be viewed interactively in a viewer supporting zooming and panning.
However, for small proofs, even a straight printout of the search space can be
revealing, as in this case. The nodes on the graph are clauses, and the edges mark
logical dependency. Nodes on the ‘critical path’, i.e. ones used in the proof, are
diamond-shaped. The nodes are coloured to indicate when they were generated
in the search. Darker nodes were generated first, and lighter nodes generated
later. The circle we have added to the diagram surrounds Clause 50, a clause of
the form we have just described, which appears like this in the daTac output:

Clause 50: P(x1), P(x2) => \
IF x1 * x2 =x data * pin * k2

Clause 50 is eventually solved to give the proof, but we can see from Figure 1 that
most of the work in the proof search is just to find the terms requires to solve
Clause 50’s XOR constraint (this is what is happening in the large collection of
nodes in the bottom portion of the diagram). Finding the combination of API
commands required to effect the attack takes a relatively small amount of search
(in the top of the diagram). To address this problem, we could perhaps employ
our AC unification trick again somehow, or use a specialised ‘terminator’ tactic,
[1], to try to finish off these clauses.

There are many other electronic payment and banking APIs waiting to be
formalised. They pose more challenges, such as reasoning about the relative



334 G. Steel

Fig. 1. The search for the first 4758 attack
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complexity of breaking different crypto functions. We will be continuing our
research in this area.
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Abstract. Security protocols employing cryptographic primitives with algebraic
properties are conveniently modeled using Horn clauses modulo equational the-
ories. We consider clauses corresponding to the class H3 of Nielson, Nielson
and Seidl. We show that modulo the theory ACU of an associative-commutative
symbol with unit, as well as its variants like the theory XOR and the theory
AG of Abelian groups, unsatisfiability is NP-complete. Also membership and
intersection-non-emptiness problems for the closely related class of one-way
as well as two-way tree automata modulo these equational theories are NP-
complete. A key technical tool is a linear time construction of an existential Pres-
burger formula corresponding to the Parikh image of a context-free language. Our
algorithms require deterministic polynomial time using an oracle for existential
Presburger formulas, suggesting efficient implementations are possible.

1 Introduction

In [1], Blanchet proposes to use first-order Horn clauses for verifying secrecy of cryp-
tographic protocols. Among others, this approach has later-on also been advocated by
Goubault-Larrecq and Parrennes [10], Comon-Lundh and Cortier [5] and Seidl and
Verma [19] who consider rich decidable fragments of clauses which still allow us to
model many useful protocols. While traditional methods for verifying cryptographic
protocols have been based on the perfect cryptography assumption, a more accurate
analysis of these protocols requires us to take into account algebraic properties of cryp-
tographic primitives, modeled using equational theories. For example modeling of pro-
tocols based on modular exponentiation must account for properties like associativity
and commutativity [11]. In general what we require most often in protocols are the as-
sociative and commutative theories ACU, XOR and AG (i.e., the theory of Abelian
groups) [6]. While the case of protocols with bounded numbers of sessions has al-
ready received considerable attention [2], there exist very few decidability results in
the case of unbounded number of sessions, in the presence of equational theories. Horn
clauses modulo equational theories provide a suitable framework for modeling such
protocols. A decidable class of clauses with the theory XOR is studied in [5] where
a non-elementary upper bound is proposed. In [11,20], this problem has been attacked
by forms of Horn clauses corresponding to two-way automata (see e.g. [4], Chapter
7), in the presence of several variants of the theory of associativity and commutativity.
In this framework, automata-theoretic problems like membership and intersection-non-
emptiness correspond to the unsatisfiability problem for clauses.
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Dealing with first order clauses in the presence of equational theories, in particu-
lar associative-commutative theories, is also of more general interest, and has received
considerable interest in the past [16]. While most work has focused on obtaining sound
and complete inference systems for general forms of clauses, very little work has been
done on obtaining decidable fragments of clauses in the presence of such theories.

In this paper, we start from the class H3 of Horn clauses which has been proposed
in [13] for control-flow analysis and also is used by Goubault-Larrecq for cryptographic
analysis of C programs [10]. This class is closely related to two-way automata [20,4]
and has a polynomial unsatisfiability problem. We extend this class by operators sat-
isfying associative-commutative theories. We show that unsatisfiability then becomes
NP-complete for the theories XOR and AG. For the theory ACU of an associative-
commutative symbol with unit, the same holds true under suitable restrictions.

Independently of the application to cryptographic protocols, related notions of tree
automata have also been studied by others [14,3], notably for applications to XML
document processing [17,18,12]. The languages accepted by unordered Presburger tree
automata [17], for example, are essentially those accepted by our one-way ACU au-
tomata. While very general classes of these automata have been shown to be decidable,
their complexity remains mostly unknown. A common idea underlying all these classes
is their connection to Parikh images of context free languages [15], i.e. semilinear or
Presburger-definable sets [9] which are closed under Boolean operations. For example
in [20], to decide intersection-non-emptiness of two ACU automata, the product au-
tomaton is computed by first computing semilinear sets corresponding to the automata
and then computing intersection of the semilinear sets. Both steps are expensive, and
such ideas are unlikely to give us optimal algorithms.

In this paper we show how to obtain optimal algorithms for H3 clause sets, or
two-way tree automata, modulo associative-commutative theories, without computing
product automata. A key technique we rely on is a linear time construction of an ex-
istential Presburger formula corresponding to the Parikh image of a context-free lan-
guage, allowing us to show that membership and intersection-non-emptiness for one-
way as well as two-way tree automata modulo the theories ACU,XOR and AG are NP-
complete. NP-completeness of the membership problem for one-way ACU automata is
also shown in [14], although the complexity of the intersection-non-emptiness problem
is left open there. We resolve both questions for each of the theories ACU,XOR and
AG, besides others like the theory XORp which contains the axiom

∑p
i=1 x = 0 be-

sides the axioms of ACU (XOR is the special case p = 2). We further extend these
complexity results to two-way automata as well. As a consequence the non-emptiness
problem, which requires linear time in the one-way case, is also NP-complete in the
two-way case. Further we obtain NP-completeness of the unsatisfiability problem for
H3 modulo ACU,XOR,AG and XORp. Note that the technique of [14] is not useful
here since it is specific to the membership problem and to one-way automata.

Outline. We start in Section 2 by introducing our classes of automata and clauses, and
demonstrate how they model cryptographic protocols. To deal with these classes, we
give in Section 3 a linear time construction of existential Presburger formulas corre-
sponding to Parikh images of context free languages. This is used to deal with one-way
ACU automata in Section 4. The one-way XOR and AG cases are similarly dealt with
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in Section 5. These results are used to deal with two-way automata andH3 in Section 6.
The readers are also referred to [20] which uses similar techniques to show decidability
of most of the problems which we show here to be NP-complete.

2 Clauses, Automata and Cryptographic Protocols

Fix a signature Σ of function symbols. Since we deal with variants of the ACU theory,
we assume that Σ contains at least the symbols + and 0, and additionally the symbol
− when dealing with the theories ACUD or AG, defined below. Symbols in Σf =
Σ \ {+,−, 0}, are free. Free symbols of zero arity are constants. Terms of the form
f(t1, ..., tn) where f is free are functional terms. The equational theory ACU consists
of the equations x + (y + z) = (x + y) + z, x + y = y + x and x + 0 = x. The
other theories we deal with are obtained by adding equations to this theory. The theory
XOR is obtained by adding the equation x + x = 0. More generally, the theory XORp

for p ≥ 2 is obtained by the equation
∑p

i=1 x = 0. The theory AG is obtained by the
equation x + (−x) = 0. The theory ACUD, obtained by the equations −(x + y) =
(−x) + (−y) and −(−x) = x, is weaker than AG and is introduced as a tool to deal
with the theory AG which is of interest to us. The equation x + x = x gives the theory
ACUI of idempotent commutative monoids. Throughout this paper, if s =ACU t or
s =ACUD t then s and t are treated as the same object.

A clause is a finite set of literals A (a positive literal) or −A (a negative literal),
where A is an atom P (t1, . . . , tn). A Horn clause contains at most one positive literal.
The clause A∨−A1 ∨ . . .∨−An is written as A⇐ A1 ∧ . . .∧An and called a definite
clause. The clause−A1∨ . . .∨−An is written as⊥ ⇐ A1∧ . . .∧An and called a goal
clause. A is head of the first clause, while −A1 ∨ . . . ∨−An is the tail of both clauses.
Satisfiability of clauses modulo equational theories is defined as usual. To every clause
C we can associate a variable dependence graph GC whose nodes are the literals of C,
and two literals are adjacent if they share a variable. A clause C is called H3 if

(1) every literal of C is linear, i.e. no variable occurs twice in the literal
(2) GC is acyclic, and adjacent literals in GC share at most one variable.
(3) the symbol + does not occur in non-ground negative literals, except in case of

theories XOR and AG.

The classH3 consists of finite sets of H3 clauses. The first two conditions above are
as in [13] in the non-equational case. In the equational case, we now also impose the
third condition. Without this restriction, the unsatisfiability problem in the ACU case
would subsume [7,22] the provability problem in MELL (Multiplicative Exponential
Linear Logic) which itself subsumes the reachability problem in VASS (Vector Addition
Systems with States). The latter is decidable and EXPSPACE-hard, while decidability
of the former is still open. Examples of H3 clauses are one-way and two-way equational
tree automata clauses defined below.

An (equational) tree automaton A is a finite set of definite clauses involving only
unary predicates. We read an atom P (t) as “term t is accepted at state P ”. We write
A/E to emphasize the equational theory E modulo which the automaton is considered.
Derivations of ground atoms in the automaton are defined using the following two rules:
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P1(t1σ) . . . Pn(tnσ)
(P (t)⇐ P1(t1) ∧ . . . ∧ Pn(tn) ∈ A)

P (tσ)

P (s)
(s =E t)

P (t)

where substitution σ maps all variables to ground terms, and =E is the congruence on
terms induced by E . Hence the derivable atoms are exactly the elements of the least Her-
brand model modulo E . We define the language LP (A/E) = {t | P (t) is derivable}.
When E is the empty theory, we also write it as LP (A). If in addition some state P
is designated as final then the language accepted by the automaton is LP (A/E). For a
language L we define E(L) = {s | ∃t ∈ L · s =E t}. Note that automata-theoretic
problems are closely related to the unsatisfiability problem of Horn clauses:

Lemma 1. Let A be a tree automaton and E an equational theory.

(i) LP (A/E) �= ∅ iff A ∪ {⊥ ⇐ P (x)} is unsatisfiable modulo E .
(ii) t ∈ LP (A/E) iff A ∪ {⊥ ⇐ P (t)} is unsatisfiable modulo E , where t is ground.
(iii) LP (A/E)∩LQ(A/E) �= ∅ iffA∪{⊥ ⇐ P (x)∧Q(x)} is unsatisfiable modulo E .

Hence the results in this paper can be interpreted from an automata-theoretic view-
point as well as from a logical viewpoint. One-way automata consist of clauses:

P (f(x1, ..., xn))⇐ P1(x1) ∧ ... ∧ Pn(xn) (1) P (x)⇐ P1(x) (2)

which we call pop clauses and ε-clauses respectively. In (1), the variables x1, ..., xn

are mutually distinct. In the non-equational case, one-way automata are exactly the tree
automata usually found in the literature, and which accept regular tree languages. We
also recall from [20]:

Lemma 2. We have LP (A/E) = E(LP (A)) for any one-way automatonA and equa-
tional theory E . In particular, emptiness for one-way E tree-automata is decidable in
linear time.

Because of the form of signatures that we consider, the pop clauses in our automata
are of the following form,

P (x + y)⇐ P1(x) ∧ P2(y) (3)

P (0) (4)

P (a) where a is a constant (5)

P (−x)⇐ P1(x) (6)

P (f(x1, ..., xn))⇐ P1(x1) ∧ ... ∧ Pn(xn) (f is free) (7)

called +-pop clauses, zero clauses, constant clauses, minus clauses and free pop
clauses. Clauses (5) are special cases of clauses (7). For E ∈ {ACU,XOR,AG,
ACUD}, one-way E-tree automata are sets of clauses (2–7) (clause (6) is present only
when − ∈ Σ). We define two-way automata by adding the following kind of clauses

Q(xi)⇐ P (f(x1, ..., xn)) ∧
∧

j∈{1,...,n}\{i}
Qj(xj) (f is free, 1 ≤ i ≤ n) (8)

called push clauses, to one-way automata (the variables x1, ..., xn are mutually dis-
tinct.) Hence two-way automata are sets of clauses (2–8) (clause (6) is included only
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when − ∈ Σ). For a two-way automatonA, we let Aeq denote the set of ε-clauses, +-
pop clauses, zero clauses and− clauses inA. These are the equational clauses ofA. Let
us discuss the side-conditions in the above push clause. We first prohibit the variable xi

to occur twice in the tail of the clause. Removing this restriction allows us to encode al-
ternating tree automata. In the non-equational case, this leads to an EXPTIME-complete
emptiness problem. In case of the theories ACU,AG and ACUD, the emptiness prob-
lem becomes undecidable [20]. The XOR case is decidable [21], though the complexity
seems high. Secondly we have restricted f to be free. In the ACU case, the justification
is as forH3 clauses. In case of the theory XOR the clause P (x)⇐ Q(x+ y)∧R(y) is
equivalent to the clause P (x + y) ⇐ Q(x) ∧ R(y). In the AG case, the former clause
is equivalent to the clauses P (x + y) ⇐ Q(x) ∧ R′(y) and R′(−y) ⇐ R(y) for fresh
R′. Push clauses P (x) ⇐ Q(−x) involving the − symbol are equivalent to the minus
clause P (−x)⇐ Q(x) modulo our equational theories.

Note that we have restricted each xj �= xi to occur exactly twice in the tail. Our
complexity results hold even if we allow more atoms of the form Q1

j(xj), Q2
j(xj) . . . in

the tail provided the number of repetitions of each variable is bounded by a constant.
Allowing the variables xj to occur an arbitrarily large number of times in the tail makes
the non-emptiness problem subsume the intersection-non-emptiness problem for a se-
quence of tree automata, leading to EXPTIME-hardness already in the non-equational
case. In the equational case, the complexity is likely to be higher.

2.1 Modeling Cryptographic Protocols

To demonstrate the modeling of protocols using equational H3 clauses, we take the fol-
lowing variant of the Needham-Schroeder-Lowe protocol from [2], in standard notation.
The operator + obeys XOR laws. Note that the analysis of [2] is for bounded number
of sessions whereas our interest is in the analysis for unbounded number of sessions.

A→ B : {NA, A}KB

B → A : {NB, NA + B}KA

A→ B : {NB}KB

We model it using Horn clauses as in [5]. We let the function symbols { } and 〈 , 〉
denote encryption and pairing. Each protocol step is repeated arbitrarily many times,
although only finitely many nonces are used. For every pair of distinct agents a and b
we choose constants n1

ab and n2
ab representing the nonces NA and NB which are used in

sessions between A and B. We choose a predicate known to represent messages known
to the adversary. For every pair of agents a and b, we have the following three clauses
corresponding to the three protocol steps:

known({〈n1
ab, a〉}Kb

)
known({〈n2

ab, x + b〉}Ka)⇐ known({〈x, a〉}Kb
)

known({x}Kb
)⇐ known({〈x, n1

ab + b〉}Ka)

This is based on the well known assumption that the adversary has full control over
the network. All messages sent by agents are sent to him and all messages received by
agents are received from him. The second clause for example represents the fact that if
b receives the message {〈x, a〉}KB for any x then he will send the message {〈n2

ab, x +
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b〉}Ka . In place of x, b expects some nonce generated by a, however the adversary can
fool b by sending a message with something else in place of x. We need other clauses
to represent the ability of the adversary to compute new messages from existing mes-
sages. We have the clause known({x}y) ⇐ known(x) ∧ known(y) to represent the
ability of the adversary to encrypt messages. His decryption ability is represented by
clauses known(x) ⇐ known({x}k) ∧ known(k−1) for every key k, where k−1 is the
inverse of k. The ability of the adversary to pair and unpair messages is represented
by the clauses known(〈x, y〉) ⇐ known(x) ∧ known(y), known(x) ⇐ known(〈x, y〉)
and known(y)⇐ known(〈x, y〉). The clause known(x + y) ⇐ known(x) ∧ known(y)
represents the ability of the adversary to apply the + operation on known messages.
The adversary’s knowledge of other messages m like identities of agents, public keys,
private keys of dishonest agents, is represented by clauses known(m). Finally to check
secrecy of a message S we add the clause ⊥ ⇐ known(S) and check that the result-
ing clause set is satisfiable. All these clauses are H3. Our modeling used only finitely
many nonces in infinitely many sessions. This is a safe abstraction: we detect all attacks
against the protocols. However the secrecy problem is still undecidable. Indeed not all
protocols can be modeled using H3 clauses without further safe abstractions.

As further examples, note that the modeling in [11] of the IKA.1 initial key agree-
ment protocol requires only H3, or two-way automata clauses, modulo ACU. The ver-
ification in [11] is done using approximation techniques since the known algorithms
for two-way ACU automata were too expensive. Our improved algorithms in this paper
should let us dispense with approximation techniques in dealing with clauses required
for such protocols. The clauses required for the modeling of the example protocol using
XOR in [5] are also H3, whereas the upper bound provided for their class of clauses
modulo XOR is non-elementary. The results in this paper are likely to provide efficient
techniques for dealing with a large number of protocols in practice.

3 Parikh Images of Context-Free Grammars

Our equational tree automata are closely related to Parikh images of context free lan-
guages and Presburger formulas, as we show in this section. The Parikh image P(x)
of a string x on some alphabet maps each symbol a to the number of occurrences of a
in x. The Parikh image of a set of strings is the set of Parikh images of its members.
It is well-known [15] that Parikh images of context-free languages are semilinear sets,
which are exactly the sets definable by (existential) Presburger formulas. We first im-
prove this result by showing that for every context-free grammar G one can compute
in linear time an existential Presburger formula φG which characterizes the Parikh im-
age of the language L(G) generated by G. The proof combines a result from [8] with
techniques from [18]. Recall that existential Presburger formulas φ are defined by the
following grammar and interpreted over natural numbers:

t ::= 0 | 1 | x | t1 + t2 φ ::= t1 = t2 | t1 > t2 | φ1 ∧ φ2 | φ1 ∨ φ2 | ∃x · φ1

The result in [8] is formulated in terms of communication-free Petri nets whose defi-
nition we recall next. A Net N = (S, T,W ) consists of a set S of places, a set T of
transitions and a weight function W : (S × T ) ∪ (T × S) → N. If W (x, y) > 0 we
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say that there is an edge from x to y of weight W (x, y). A net is communication-free,
if for each transition t there is at most one place s with W (s, t) > 0 and furthermore
W (s, t) = 1. A marking M associates a number of tokens which each place, formally it
is simply a function S → N. A communication-free Petri net is a pair (N,M0), where
N is a communication-free net and M0 is a marking. A marking M enables a transition
t in a communication-free Petri net if M(s) > 0, for the place s with W (s, t) > 0. If a
transition t is enabled for a marking M , then it can occur resulting in the marking M ′

defined by M ′(s) = M(s) + W (t, s) −W (s, t), for every place s. A marking M ′ is
reachable from a marking M , if there is a sequence σ = t1 · · · tm of transitions and a
sequence of markings M0 = M,M1, . . . ,Mm = M ′ such that, for each i the occur-
rence of ti in (N,Mi−1) results in Mi. We say also that σ can occur at M in that case.
The following result was shown in [8] (Lemma 3.1 and Theorem 3.1).

Theorem 3. Let (N,M0) be a communication-free Petri net with transition set T and
let X be a function from T to N. There exists a sequenceσ of transitions withP(σ) = X
that can occur in (N,M0) if and only if the following two conditions hold.

(a) For each place s, it holds M0(s) +
∑

t∈T [(W (t, s)−W (s, t))X(t)] ≥ 0, and
(b) in the subgraph of N which is induced by the transitions t ∈ T with X(t) > 0,

every place is reachable (in the graph-theoretical sense) from some place s with
M0(s) > 0.

The intimate relationship between context-free grammars and communication-free
Petri nets can be seen as follows. Let G be a grammar with non-terminal set V , terminal
set U , start symbol A0 and set P of productions. With G we associate a net NG =
(V ∪ U,P,W ). If A → α is a production p from P then W (A, p) = 1 and W (p,B)
is the number of times which B occurs in α, for each B ∈ V ∪ U . The Petri net
(NG,MG) is then obtained by setting MG(A0) = 1 and MG(A) = 0 for all other A.
Note that it is communication-free. An application of a production p now corresponds
to the occurrence of the transition p in the net. Hence, it is not hard to see that X is
is the Parikh image of a sequence that can occur in (NG,MG) if and only if there is a
derivation of G in which each production p is used exactly X(p) times.

Given a context-free grammar G on terminals a1, . . . , ap, we now compute an ex-
istential Presburger formula φG(xa1 , . . . , xap) representing its Parikh image, i.e. such
that φG(n1, . . . , np) holds iff some string in L(G) contains each ai exactly ni times.
For this it basically remains to express requirement (b) of Theorem 3. This can be done
analogously as in [18].

Theorem 4. Given a context-free grammar G, one can compute an existential Pres-
burger formula φG for the Parikh image of L(G) in linear time.

Proof. Let G = (V, U, P,A0) be context-free and let NG and MG be defined as above.
Let, for each A ∈ U , xA be a variable, and for each p ∈ P , let yp be a variable. Clearly,
the free variables of φG will be the variables xA with A ∈ U . We need three kinds of
quantifier-free subformulas.

– First, for each A ∈ V there is one equation which is directly determined from
requirement (a) of Theorem 3. To this end, let p1, . . . , pk be all productions with



344 K.N. Verma, H. Seidl, and T. Schwentick

A on the left-hand side and let, for each production p, A(p) denote the number
of occurrences of A on the right hand side of p. Then φG contains the equation
MG(A) +

∑
p∈P A(p)yp −

∑k
i=1 ypi = 0. Note that we have = 0 instead of ≥ 0

here, as we have to make sure that the derivation under consideration is complete,
i.e., there are no remaining non-terminals. Note further, that we do not need such
subformulas for A ∈ U as such A only occur on right-hand sides of productions.

– Next, we have to make sure that the values xA are consistent with the yp. To this
end, we have, for each A ∈ U an equation xA =

∑
p∈P A(p)yp.

– Finally, it remains to express requirement (b) of Theorem 3. For this purpose, we
use additional variables zA, for each A ∈ U ∪ V . The idea is that the zA reflect the
distance of A from A0 in a spanning tree on the subgraph of NG induced by those
p with yp > 0. To this end, we use the following kinds of formulas.
• We have xA = 0 ∨ zA > 0, for each A ∈ U .
• If p1, . . . , pl are the productions with A on the right-hand side and B1, . . . , Bl

are their corresponding left-hand sides then we have a formula (zA = 0) ∨∨l
i=1(zA = zBi + 1 ∧ ypi > 0∧ zBi > 0). If one of the Bi is the start symbol

A0 the corresponding disjunct is replaced by zA = 1 ∧ ypi > 0.

It is not hard to prove that the resulting formula φG, in which all variables, except the
xA with A ∈ U , are existentially quantified, characterizes exactly the Parikh image of
L(G). For the one direction, if a vector is in the Parikh image of L(G), the variables
can be chosen such that they correspond to a derivation of G. Otherwise, if a vector
satisfies φG then the equations for the zA make sure that condition (b) of Theorem 3 is
fulfilled and the remaining equations verify that there is a derivation of a string with the
corresponding numbers of symbols.

Finally, the size of φG is linear in the size of G, i.e., basically the size of P . Note
that, in the sums over p ∈ P only summands with A(p) > 0 are taken. Implemented
thoroughly on a register machine, the construction of φG is possible in linear time. ��

Recall also that to check satisfiability of an existential Presburger formula, we can
first move quantifiers to the top, then non-deterministically replace subformulas φ1∨φ2

by φ1 or φ2, and check satisfiability of the resulting formula ∃x1 · . . .∃xn · φ where φ
is a conjunction of equations and inequations. As satisfiability for formulas in the latter
form is NP-complete, we have:

Lemma 5. Satisfiability of existential Presburger formulas is NP-complete.

It remains to relate equational tree automata to context free grammars. Let A be a
constants-only ACU automaton on constants a1, . . . , ap. Modulo ACU, the terms are
then of the form n1a1+. . .+npap, equivalently tuples (n1, . . . , np) ∈ Np. We consider
A as a context-free grammar. States ofA are non-terminals and constants are terminals.
Clauses P (0), P (a), P (x) ⇐ Q(x) and P (x + y) ⇐ P1(x) ∧ P2(y) are productions
P → λ, P → a, P → Q and P → P1P2 respectively where λ is the empty string. The
final state P is the start symbol. From Theorem 4 we obtain an existential Presburger
formula, which we denote as φA,P (xa1 , . . . , xap), such that φA,P (n1, . . . , np) holds iff
n1a1 + . . . + npap ∈ LP (A/ACU).

Lemma 6. For any constants-only ACU automatonA and state P we can compute in
linear time an existential Presburger formula φA,P describing LP (A/ACU).
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4 One-Way ACU Automata

We show in this section that membership and intersection-non-emptiness for one-way
ACU automata are NP-complete. We first make the following observation from [20]
about derivations in ACU automata, allowing us to reuse certain parts of derivations.

Lemma 7. Let E be any set of equations containing ACU. Consider a derivation δ
of an atom P (t) modulo E . Let δ1, ..., δn be non-overlapping subderivations of δ such
that outside the δi’s, the only equations used are ACU and the set S of clauses used
contains only equational clauses (see Figure 1.) Suppose the conclusions of δ1, ..., δn

are P1(t1), ..., Pn(tn). Then

1. t =ACU t1 + ... + tn
2. If there are derivations δ′1, ..., δ

′
n of atoms P1(s1), ..., Pn(sn) modulo E then there

is a derivation δ′ of P (s1 + ... + sn) modulo E , containing δ′i’s as subderivations,
such that outside the δ′i’s, the only equations used are ACU, and all clauses used
belong to S.

P (t1 + ... + tn)

... ... ... ...

P (s1 + ... + sn)

P1(t1) Pn(tn) Q1(0) Qk(0) P1(s1) Pn(sn) Q1(0) Qk(0)

δ′1 δ′nδ1 δn

clauses (2), (3)

modulo ACU

clauses (2), (3)

modulo ACU

Fig. 1. Reuse of ACU derivations

The following definition from [20] gives one way of computing such δi’s and Pi(ti)’s:

Definition 1. Consider a derivation δ of an atom P (t) in a one-way automaton modulo
ACU. Let δ1, ..., δn be the set of maximal subderivations of δ in which the last step
used is an application of a free pop clause (or base clause). Suppose the conclusions of
δ1, ..., δn are P1(t1), ..., Pn(tn) (in which case t1, ..., tn must be functional). Then we
will say that the (unordered) list of atoms P1(t1), ..., Pn(tn) is the functional support of
the derivation δ. (From Lemma 7 we have t =ACU t1 + ... + tn).

Lemma 7 tells us how to reuse an arbitrarily large derivation involving only +-pop
clauses, zero clauses and ε-clauses. Sets of such derivations can also be represented by
Presburger-formulas, by using some constants to represent the effect of other clauses.
Formally consider a set S of +-pop clauses, zero clauses, ε-clauses on some set of pred-
icates P. Introduce constants aP,Q for states P and Q. Intuitively aP,Q represents terms
accepted by both P and Q. For a set Z ⊆ P2, define constants-only ACU automaton
S[Z] = S ∪ {P (aP,Q), Q(aP,Q) | (P,Q) ∈ Z}. Lemma 6 then allows us to represent
the languages LP (S[Z]/ACU) by existential Presburger formulas φS[Z],P .

We now show how to decide intersection-non-emptiness of one-way ACU au-
tomata. The procedure can be thought of as marking of non-empty states in the
product automaton computed in [20]. The relations �ACU and �free below allow
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us to mark new states. The proof of the NP upper bound then involves guessing
an increasing sequence of marked states. Formally, consider one-way automata A
and B on sets of states P and Q. Given Z ⊆ P × Q and (P,Q) ∈ P × Q, if
LP (Aeq[Z]/ACU) ∩ LQ(Beq[Z]/ACU) �= ∅ then we say that Z �ACU (P,Q). In-
tuitively this means that if the pairs of states in Z have non-empty intersection, then
on the basis of the equational clauses in A and B we can conclude that P and Q have
non-empty intersection. A term in LP (Aeq[Z]/ACU) represents the effect of an arbi-
trarily large derivation using equational clauses ofA, starting from derivations of terms
in intersections of pair of states of Z , and ending at P . Formally:

Lemma 8. If LP ′(A/ACU) ∩ LQ′(B/ACU) �= ∅ for all (P ′, Q′) ∈ Z and Z �ACU

(P,Q) then LP (A/ACU) ∩ LQ(B/ACU) �= ∅.

Proof. For each (P ′, Q′) ∈ Z we have terms tP ′,Q′ such that P ′(tP ′,Q′) and Q′(tP ′,Q′)
are derivable inA/ACU and B/ACU respectively. As Z �ACU (P,Q) hence we have
some aP1,Q1 + . . .+aPn,Qn ∈ LP (Aeq [Z]/ACU)∩LQ(Beq[Z]/ACU). From the defi-
nition ofAeq [Z] the derivation of P (aP1,Q1+. . .+aPn,Qn) inAeq[Z]/ACU has a func-
tional support P1(aP1,Q1), . . . , Pn(aPn,Qn). Also Pi(tPi,Qi) are derivable in A/ACU.
By Lemma 7 P (tP1,Q1 + . . . + tPn,Qn) is derivable in A/ACU. Similarly Q(tP1,Q1 +
. . . + tPn,Qn) is derivable in B/ACU. Hence LP (A/ACU) ∩ LQ(B/ACU) �= ∅. ��

We write Z �free (P,Q) to mean that A has some free pop clause
P (f(x1, . . . , xn)) ⇐ P1(x1) ∧ . . . ∧ Pn(xn) and B has some free pop clause
Q(f(x1, . . . , xn))⇐ Q1(x1) ∧ . . . ∧ Pn(xn) such that {(Pi, Qi)} ∈ Z for 1 ≤ i ≤ n.
Intuitively this means that if the pairs of states in Z have non-empty intersection, then
on the basis of the free pop clauses in A and B we can conclude that P and Q have
non-empty intersection.

We write Z � (P,Q) to say that there are some (P1, Q1), . . . , (Pn, Qn) ∈ P× Q
such that (Pn, Qn) = (P,Q) and for 1 ≤ i ≤ n we have

Z ∪ {(P1, Q1), . . . , (Pi−1, Qi−1)} (�ACU ∪�free) (Pi, Qi).

Intuitively this represents the effect of a sequence of conclusions using the �ACU and
�free rules. This rule suffices for detecting all pairs having non-empty intersection:

Lemma 9. If LP (A/ACU) ∩ LQ(B/ACU) �= ∅ then ∅� (P,Q).

Proof. We do induction on the size of the given term t ∈ LP (A/ACU)∩LQ(B/ACU).
Let t = t1 + . . . + tm where ti = fi(t1i , . . . , t

ki

i ) is functional for 1 ≤ i ≤ m. The
derivation of P (t) has some functional support P1(t1), . . . , Pm(tm) where for 1 ≤ i ≤
m the derivation of Pi(ti) uses a clause Pi(fi(x1, . . . , xki))⇐ P 1

i (x1)∧. . .∧P ki

i (xki)
and the derivations of P 1

i (t1i ), . . . , P
ki

i (tki

i ). Similarly the derivation of Q(t) has some
functional support Q1(t1), . . . , Qm(tm) where for 1 ≤ i ≤ m the derivation of Qi(ti)
uses a clause Qi(fi(x1, . . . , xki)) ⇐ Q1

i (x1) ∧ . . . ∧ Qki

i (xki ) and the derivations of
Q1

i (t
1
i ), . . . , Q

ki

i (tki

i ). Hence tji ∈ LP j
i
(A/ACU)∩LQji (B/ACU) for 1 ≤ i ≤ m, 1 ≤

j ≤ ki. By induction hypothesis we have ∅ � (P j
i , Q

j
i ) for 1 ≤ i ≤ m, 1 ≤ j ≤ ki.

For 1 ≤ i ≤ m, {(P j
i , Q

j
i ) | 1 ≤ j ≤ ki} �free (Pi, Qi). Hence ∅ � (Pi, Qi)
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for 1 ≤ i ≤ m. Also because of the above two functional supports we know from
Lemma 7 that a(P1,Q1) + . . . + a(Pm,Qm) ∈ LP (Aeq [Z]/ACU) ∩ LQ(Beq[Z]/ACU)
where Z = {(Pi, Qi) | 1 ≤ i ≤ m}. Hence Z �ACU (P,Q). Hence ∅� (P,Q). ��

Lemma 10. Intersection-non-emptiness for one-way ACU automata is in NP.

Proof. Let P andQ be the final states of A and B respectively. From Lemmas 8 and 9
LP (A/ACU)∩LQ(B/ACU) �= ∅ iff ∅� (P,Q). The latter is equivalent to existence
of (mutually distinct) pairs (P1, Q1), . . . , (Pn, Qn) ∈ P × Q such that (Pn, Qn) =
(P,Q) and for 1 ≤ i ≤ n, we have

Zi = {(P1, Q1), . . . , (Pi−1, Qi−1)}(�ACU ∪�free)(Pi, Qi).

There are polynomially many such pairs. Checking Zi �free (Pi, Qi) requires poly-
nomial time. To check that Zi �ACU (Pi, Qi) we check satisfiability (Lemma 5) of

φAeq [Zi],Pi
(xaP1 ,Q1

, . . . , xaPi−1,Qi−1
) ∧ φBeq [Zi],Qi

(xaP1 ,Q1
, . . . , xaPi−1,Qi−1

)

which can be computed in polynomial time using Lemma 6. ��

Hence the membership problem is also in NP. It is in fact NP-complete since the
membership problem for Parikh images of languages generated by context free gram-
mars is NP-hard [8]. This is also shown in [14], but the complexity of the intersection-
non-emptiness problem is left open there. Indeed the technique of [14] is too specific to
the membership problem. We now have:

Theorem 11. The membership and intersection-non-emptiness problems for one-way
ACU automata are NP-complete.

5 Theories XOR and AG

We now show NP-completeness of membership and intersection-non-emptiness for
one-way automata modulo other theories including XOR and AG. First we describe
the XOR case. For n ∈ N if n is odd then define n∗ = 1 otherwise define n∗ = 0. If
a1, . . . , ak are mutually distinct constants then define (n1a1 + . . .+ nkak)∗ = n∗

1a1 +
. . .+n∗

kak. For a set L of such terms define L∗ = {t∗ | t ∈ L}. Because of the cancella-
tion axiom, we also need to decide intersection-non-emptiness of all pairs of states in the
same automaton. Hence we consider a single one-way automatonA on set of states P,
instead of two different automata as in the ACU case. Given Z ⊆ P2 and (P,Q) ∈ P2,
we say Z �XOR (P,Q) to mean that (LP (Aeq [Z]/ACU))∗∩(LQ(Aeq [Z]/ACU))∗ �=
∅. This is the counterpart of the �ACU relation in the ACU case. Intuitively, because
of the cancellation axiom of XOR, we only need to check whether a constant occurs
an even or odd number of times. The relations �free and � are redefined as expected.
As in the ACU case, states P and Q have non-empty intersection iff ∅ � (P,Q). The
construction is easily generalized to the XORp theory for any (fixed) p ≥ 2: we need
to consider intersection-non-emptiness for p-tuples of states.

Lemma 12. Intersection-non-emptiness for one-way XORp automata is in NP. This
holds in particular for the theory XOR.
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Proof. (Sketch:) The algorithm works as in the ACU case. To check thatZ={(P1, Q1),
. . . , (Pn, Qn)}�XOR (P,Q) we check that the formula

φAeq [Z],P (xaP1 ,Q1
, . . . , xaPn,Qn

) ∧ φBeq [Z],Q(yaP1,Q1
, . . . , yaPn,Qn

)

∧
∧

1≤i≤n(even(xaPi,Qi
) ∧ even(yaPi,Qi

) ∨ odd(xaPi,Qi
) ∧ odd(yaPi,Qi

))

is satisfiable where even(x) ≡ ∃y · x = 2y and odd(x) ≡ ∃y · x = 2y + 1. ��

Next we prove NP-hardness of membership.

Lemma 13. Membership for one-way XORp automata is NP-hard for p ≥ 2.

Proof. (Sketch:) We use a reduction from the 3-colorability problem for undirected
graphs. For a graph G = (V,E) we define the automaton AG as follows. We have
the set {r, b, g} of three colors. For every vertex v, color c and edge e adjacent on v,
introduce a fresh constant ae,v,c, representing the assignment of color c to v. For every
edge e joining u and v, introduce a fresh predicate Pe. For every pair (c1, c2) of distinct
colors, add clause Pe(ae,u,c1 + ae,v,c2) to AG. For every vertex v introduce a fresh
predicate Pv . For every color c, add the clause Pv(

∑
e∈E,e adjacent on v(p − 1)ae,v,c) to

AG. Finally add the clause P (
∑

v∈V xv +
∑

e∈E xe)⇐
∧

v∈V Pv(xv)∧
∧

e∈E Pe(xe)
to AG. Then 3-colorability of G is equivalent to 0 ∈ LP (AG/XORp). ��

Theorem 14. The membership and intersection-non-emptiness problems for one-way
XORp automata are NP-complete for p ≥ 2. This holds in particular for XOR.

To deal with the AG case, we use the ACUD theory as a tool. This is similar to the
way the XOR case was dealt with using the ACU theory. The ACUD theory allows us
to normalize terms by pushing the − symbol downwards to functional terms. First we
consider constant only ACUD automata. Σf is the set of constants in our signature. Let
Σf be a set of fresh constants {a | a ∈ Σf}. Terms built from Σf ∪ {+,−, 0}modulo
ACUD are of the form a1 + ... + am − b1 − ... − bn (m,n ≥ 0) while those built
from Σf ∪ Σf ∪ {+, 0} modulo ACU are of the form a1 + ... + am + b1 + ... + bn

(m,n ≥ 0). Hence there is a natural 1-1 correspondence between terms (languages) on
Σf ∪ {+,−, 0} modulo ACUD and terms (languages) on Σ ∪ Σf ∪ {+, 0} modulo
ACU. Then modulo this correspondence of languages we have [20]:

Lemma 15. The language accepted by a constants-only ACUD automaton A with
constants from Σf is also accepted by a constants-only ACU automaton B with con-
stants from Σf ∪Σf . B is computable in linear time from A.

For a set S of +-pop clauses, minus clauses, zero clauses and ε-clauses, and a
set Z of pairs of states, the automaton S[Z] is defined as before. If the elements of
Z are (P1, Q1), . . . , (Pk, Qk) then using Lemmas 6 and 15 we can compute in poly-
nomial time an existential Presburger formula φS[Z],P (xaP1,Q1

, . . . , xaPk,Qk
, x′

aP1,Q1
,

. . . , x′
aPk,Qk

) such that φS[Z],P (n1, . . . , nk,m1, . . . ,mk) holds iff n1aP1,Q1 + . . . +
nkaPk,Qk

−m1aP1,Q1 − . . .−mkaPk,Qk
∈ LP (S[Z]/ACUD).

We now show how to decide intersection-non-emptiness of one-way AG automata.
Consider a one-way automatonA on set of states P. Given Z ⊆ P2 and (P,Q) ∈ P2, we
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say Z �AG (P,Q) to mean that some n1aP1,Q1 + . . .+npaPp,Qp −m1aP1,Q1 − . . .−
mpaPp,Qp ∈ LP (A/ACUD) and some n′

1aP1,Q1 + . . .+n′
paPp,Qp−m′

1aP1,Q1− . . .−
m′

paPp,Qp ∈ LQ(A/ACUD) where (P1, Q1), . . . , (Pp, Qp) are the mutually distinct
elements of Z and ni −mi = n′

i −m′
i for 1 ≤ i ≤ p. This corresponds to the relations

�ACU and �XOR in the ACU and XOR cases respectively, and takes care of possible
cancellations using the AG axioms. Note the use of ACUD above instead of ACU. The
relations �free and � are defined as expected. We use a generalization of Lemma 7 to
the ACUD case. The rest works as in the previous cases, and we have:

Theorem 16. The membership and intersection-non-emptiness problems for one-way
AG automata are NP-complete.

Note that the above lower bound is inherited from the ACU case. Also, while we
introduced the ACUD theory only as a tool to deal with the AG theory, these techniques
clearly also work in the ACUD case. In fact the proofs become simpler because we do
not have to deal with cancellations. The lower bound is also inherited from the ACU
case. We merely state the result:

Theorem 17. The membership and intersection-non-emptiness problems for one-way
ACUD automata are NP-complete.

6 H3 and Two-Way Automata

We now show how to deal with two-way automata and H3. First note that mem-
bership and intersection-non-emptiness modulo our equational theories are NP-hard,
as for the one-way case. While non-emptiness in the one-way case is decidable in
linear time, in the two-way case it becomes NP-hard because the intersection-non-
emptiness problem reduces to the non-emptiness problem. To decide intersection-non-
emptiness of states P1 and P2 we create fresh states P3, P4 and P5 and add clauses
P3(0), P4(f(x, y)) ⇐ P1(x) ∧ P3(y) and P5(x) ⇐ P4(f(x, y)) ∧ P2(y). Then non-
emptiness of P5 is equivalent to intersection-non-emptiness of P1 and P2. We now first
show that the NP-upper bound holds also for two-way automata modulo our equational
theories. We illustrate the techniques for the XOR case, the other cases are similar.

The key idea is to add new ε-clauses to the automata till the push clauses be-
come redundant. For example the push clause P (x) ⇐ Q(f(x)) and the pop clause
Q(f(x))⇐ R(x) can be ”short-cut” to produce the ε-clause P (x)⇐ R(x). This is the
main idea in the non-equational case. In the XOR case, there can be arbitrarily many
applications of +-pop clauses in between the applications of the free pop clause and
the push clause. However after cancellations using the XOR axioms, only a functional
term should be left before application of the push clause. This is formalized as follows,
as in [20]. Consider a two-way automaton A. For any two-way automaton A′, A′

ow

denotes the subset of A without the push clauses. If there is some Z ⊆ P2 such that

(1) R(xi)⇐ P (f(x1, . . . , xn)) ∧
∧

j∈{1,...,n}\{i} Rj(xj) ∈ A
(2) Q(f(x1, . . . , xn))⇐ Q1(x1) ∧ . . . ∧Qn(xn) ∈ A
(3) aQ,Q + 2n1aP1,P ′

1
+ . . . + 2nmaPm,P ′

m
∈ LP (Aeq [Z ∪ {(Q,Q)}]/ACU)
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(4) LPj (Aow/XOR) ∩ LP ′
j
(Aow/XOR) �= ∅ for 1 ≤ j ≤ m

(5) for j ∈ {1, . . . , n} \ {i}, LQj (Aow/XOR) ∩ LRj (Aow/XOR) �= ∅

then we write A � A ∪ {R(xi) ⇐ Qi(xi)} provided R(xi) ⇐ Qi(xi) /∈ A. Note
that the pairs (Pj , P

′
j) in (3) are necessarily from Z ∪ {(Q,Q)}. The relation � is one-

step of our saturation procedure. It does not affect the set of derivable atoms modulo
XOR[20]. From Theorem 4 we now know that the validity of a saturation step is in NP.

Note that there are only polynomially many ε-clauses possible. Given a two-way
automaton A, we can keep on adding new ε-clauses as long as possible. In the end we
have an automaton B. We then remove all push clauses to get one-way automaton Bow.
This last step does not affect the set of derivable atoms modulo XOR[20]. This gives us
a way of deciding intersection-non-emptiness in NP. We guess the saturated automaton
by choosing a sequence of saturation steps. We then remove all push clauses and check
intersection-non-emptiness on the resulting one-way automaton. The same techniques
work in the case of other theories, and we have:

Theorem 18. Let E ∈ {ACU,XOR,AG,ACUD,XORp | p ≥ 2}. The membership,
non-emptiness and intersection-non-emptiness problems for two-way E tree automata
are NP-complete.

This also allows us to deal with the class H3. For this we apply the transformation
given in [13] which takes polynomial time and produces a set of H3 clauses of the form

(1) P (xi)⇐ Q(f(x1, . . . , xn)) ∧
∧

j∈{1,...,n}\{i} Pj(xj)
(2) P (x1, . . . , xn)⇐ P1(x1) ∧ . . . ∧ Pn(xn) ∧

∧
1≤i≤m Qi()

(3) P (xi)⇐ Q(x1, . . . , xn) ∧
∧

j∈{1,...,n}\{i} Pj(xj)
(4) P ()⇐ Q(x1, . . . , xn) ∧

∧
1≤i≤n Pi(xi)

besides one-way automata clauses. The transformation preserves satisfiability. Also
condition (3) of the definition of H3 clauses ensures that + does not occur in the tail
of clauses except in case of theories XOR or AG. In these cases, + can be removed
from tails as in Section 2. The symbol − is also removed from tails as in Section 2.
Next to get rid of predicates with arbitrary arities, we encode atoms P (t1, . . . , tn) as
P ′(fn(t1, . . . , tn)). Then we are left with just two-way automata clauses, except for the
presence of nullary predicates. The saturation procedure above is easily generalized to
take care of nullary predicates: it can now generate clauses of the form P (). Clauses
⊥ ⇐ A1 ∧ . . . ∧ An are also treated as definite clauses by treating ⊥ as a nullary
predicate. To check unsatisfiability we check that the clause ⊥ can be generated using
saturation steps.

Theorem 19. Unsatisfiability for H3 modulo each of the theories ACU,XOR,AG,
ACUD and XORp for p ≥ 2 is NP-complete.

In case of the related theory ACUI of idempotent commutative monoids, it is known
that two-way automata are powerful enough to encode alternation [20]. Hence the as-
sociated problems become EXPTIME-hard, though they are decidable using the tech-
niques of [21]. This is similar to the XOR case, whereas alternating automata are un-
decidable in the case of the theories ACU,AG and ACUD.
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7 Conclusion

We have shown that the polynomially decidable class H3 of Horn clauses can be ex-
tended with the theories ACU,XOR,AG,ACUD and XORp for p ≥ 2, to obtain
NP-complete unsatisfiability problems. This improves known algorithms for one-way
as well as two-way tree automata modulo these theories: essentially all problems are
NP-complete. Our algorithms require deterministic polynomial time using an oracle for
existential Presburger formulas, suggesting efficient implementations are possible.

While these decidability results can also be extended to the theory ACUI of idem-
potent commutative monoids, the complexity is EXPTIME-hard and probably higher.
In the ACU case, we have forbidden the symbol + to appear in non-ground negative
literals. Without this restriction, the decidability question is still open. However the
problems involved subsume other problems which are known to be EXPSPACE-hard
and whose decidability is still open.
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Abstract. We present a combination method for generating inter-
polants for a class of first-order theories. Using interpolant-generation
procedures for individual theories as black-boxes, our method modularly
generates interpolants for the combined theory. Our combination method
applies for a broad class of first-order theories, which we characterize as
equality-interpolating Nelson-Oppen theories. This class includes many
useful theories such as the quantifier-free theories of uninterpreted func-
tions, linear inequalities over reals, and Lisp structures. The combination
method can be implemented within existing Nelson-Oppen-style decision
procedures (such as Simplify, Verifun, ICS, CVC-Lite, and Zap).

1 Introduction

Given two logical formulas A and B such that A ∧ B is unsatisfiable, an in-
terpolant I is a formula such that (i) A implies I, (ii) I ∧ B is unsatisfiable,
and (iii) every non-logical symbol that appears in I appears in both A and B.
Craig interpolation theorem [2], a classic result in logic, proves the existence of
interpolants for all first-order formulas A and B.

Motivation. While interpolation theorems are of great theoretical significance,
our interest in interpolants is particularly motivated by their use in program
analysis and model checking [12,11,13]. When A represents the current state of
a system, and B represents the error state of the system, an interpolant I for
A and B can be used as a goal-directed over-approximation of A. [12] uses this
technique to achieve faster termination while model checking finite state systems,
and [13] explores the possibility of using interpolants for model checking infinite
systems. Such applications typically require an efficient procedure to generate
an interpolant of A and B from the proof of unsatisfiability of A ∧ B. Existing
procedures are either too expensive or work only for specific first-order theories
(see Sec. 6).

In this paper, we provide a novel combination method for generating inter-
polants for a class of first-order theories. Using interpolant-generation procedures
for component theories as black-boxes, this method generates interpolants for
formulas in the combined theory. Provided the individual procedures for the
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component theories can generate interpolants in polynomial time, our method
generates interpolants for the combined theory in polynomial time.

Our combination method relies on the Nelson-Oppen [14] framework for com-
bining decision procedures. In this framework, the decision procedures for com-
ponent theories communicate by propagating entailed equalities. The crucial idea
behind our combination method is to associate a partial interpolant (Sec. 3.1)
with each propagated equality. Whenever a component theory propagates an
equality, the combination method uses the interpolant-generation procedure for
that theory to generate the partial interpolant for the equality. When a theory
detects a contradiction, the combination method uses the partial interpolants of
all propagated equalities to compute the interpolant for the input formulas.

Our method places some restrictions on the theories that can be combined.
The Nelson-Oppen combination method requires that the component theories
have disjoint signatures and be stably-infinite [14,16]. Our method naturally
inherits these restrictions. Additionally, our combination method restricts the
form of equalities that can be shared by the component theories. Specifically, if
a propagated equality contains a symbol that appears only in the input formula
A, then it does not contain symbols that appear only in B, and vice versa. We
show that this restricted form of equality propagation is sufficient for a class of
theories, which we characterize as equality-interpolating theories (Sec. 4). Many
useful theories including the quantifier-free theories of uninterpreted functions,
linear arithmetic, and Lisp structures are equality-interpolating, and thus can
be combined with our method.

Our method handles arbitrary quantifier-free input formulas. To handle
Boolean structure in the input formula and to extend the combination to non-
convex theories [14], we use an extended version of Pudlák’s algorithm for gener-
ating interpolants for the propositional part. To show correctness of interpolants
generated this way, we give an alternative explanation of Pudlák’s algorithm
based on partial interpolants.

The combination method has definite advantages over an interpolant gen-
eration procedure that is specific to a particular theory [17] or specific to a
particular combination of theories [13]. First, by being modular, this method
greatly simplifies the exposition, the proof of correctness, and the implementa-
tion of interpolant-generation procedures. More importantly, the combination
method makes it easy to incrementally extend interpolant generation for ad-
ditional theories. From a practical perspective, our combination method can
be easily integrated with existing Nelson-Oppen-style decision procedures, such
as [3,1,4,5], greatly enhancing their utility for program analysis.

In summary, this paper makes the following contributions. First, the paper
presents an efficient method to generate interpolants for a general class of first-
order theories, namely the union of equality-interpolating theories. Second, this
paper shows that the classic Nelson-Oppen framework for combining decision
procedures can be extended in a novel way to combine interpolant-generation
procedures. Finally, we show that the basic combination algorithm can be gener-
alized to work for both convex and non-convex theories. Due to a lack of space,
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this version does not contain proofs and contains only a partial discussion of the
results. For a full version, the reader is referred to our technical report [19].

2 Preliminaries

Throughout this paper we use A and B to denote logical formulas of interest,
restricting the syntax of A and B in different sections. Free variables in all
formulas are implicitly existentially quantified, as we are checking satisfiability.
We use symbol to refer to non-logical symbols and variables.1

Let V(φ) be the set of symbols that appear in a formula or a term φ. Given
formulas A and B, a symbol is A-local if it is in V(A)−V(B). Similarly, a symbol
is B-local if it is in V(B)−V(A). A symbol is AB-common if it is in V(A)∩V(B).
A formula or a term φ is AB-pure when either V(φ) ⊆ V(A) or V(φ) ⊆ V(B).
Otherwise, φ is AB-mixed. Note that an AB-mixed formula or term contains
at least one A-local symbol and at least one B-local symbol. Throughout this
paper, we use a to refer to an A-local variable, b to refer to a B-local variable,
and c, x and y to refer to a AB-common variables.

We use the standard notations �, ⊥, and � for entailment, contradiction,
and tautology.

Definition 1. (Craig interpolant) Given two first-order logical formulas A
and B such that A ∧ B � ⊥, an interpolant for 〈A, B〉 is a first-order formula
I such that (i) A � I, (ii) I ∧ B � ⊥, and (iii) I refers only to AB-common
symbols.

Example 1. A is (a = c) ∧ (f(c) = a) and B is (c = b) ∧ ¬(b = f(c)). The
variables a, b, c are respectively A-local, B-local, AB-common variables, and f
is an AB-common function symbol. The interpolant f(c) = c for 〈A, B〉 involves
only AB-common symbols f and c. By definition, A and B contain only AB-
pure terms and formulas, however, AB-mixed terms and formulas may appear
in the proof of unsatisfiability of A∧B. In this example, an AB-mixed equality
a = b can be generated in a proof of unsatisfiability of A∧B, as discussed later.

2.1 Theory-Specific Interpolants

As opposed to a well-known definition of Craig interpolants (Def. 1), interpolants
for a specific first-order theory can be defined in several ways. In this section,
we provide the definition used in this paper, and discuss alternative definitions
in [19]. We adapt Def. 1 to the context of a specific first-order theory T . We
use �T to denote entailment in theory T . A theory T can contain uninterpreted

1 Like much literature on decision procedures and model-checking, we use the term
“variables” to refer to what in logic and theorem proving are “free constants.”
Similarly, “variables” in quantifier-free formulas refer to the corresponding Skolem-
constants, as the formulas are implicitly existentially quantified.
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symbols (e.g., uninterpreted functions), as well as a designated set of interpreted
symbols (with intended meaning in T , or implicitly defined by T ). 2

Definition 2. (theory-specific interpolant) Let T be a first-order theory of
a signature Σ and let L be the class of quantifier-free Σ-formulas. Let ΣT ⊆ Σ
denote a designated set of interpreted symbols in T . Let A and B be formulas in
L such that A ∧ B �T ⊥, i.e., the formula A ∧ B is unsatisfiable in the theory
T . We define a theory-specific interpolant for 〈A, B〉 in T to be a formula I in
L such that (i) A �T I, (ii) I ∧B �T ⊥, and (iii) I refers only to AB-common
symbols, and symbols in ΣT (interpreted by the theory T ).

This definition differs from the traditional notion of an interpolant in two
important ways. First, we require a theory-specific interpolant to be a quantifier-
free formula. Second, a theory-specific interpolant can contain a symbol inter-
preted by the theory, even when if the symbol is A-local, or B-local or does not
appear at all in A and B. The following example and discussion motivates these
differences.

Example 2. Let A be c2 = car(c1) ∧ c3 = cdr(c1) ∧ ¬atom(c1) and B be
¬c1 = cons(c2, c3) in the theory of Lisp structures [15]. This theory interprets all
function symbols that appear in this example, i.e., ΣT = {car, cdr, cons, atom}.
The variables c1, c2, and c3 are AB-common, cons is B-local, and other func-
tion symbols are A-local. A ∧B is unsatisfiable in the theory of Lisp structures
because A entails c1 = cons(c2, c3) using the axiom: ∀x, y, z : ¬atom(x) ⇒
cons(car(x), cdr(x)) = x. According to Def. 2, c1 = cons(c2, c3) is a theory-
specific interpolant for 〈A, B〉. Note that if we do not allow cons, car, cdr, and
atom to appear in the interpolant, then there is no first-order formula that is an
interpolant for 〈A, B〉.

A theory T has no interpolants (or does not have the interpolation theorem),
if there exists a pair of input formulas A and B in L such that A ∧ B �T ⊥
but there exists no formula in L that satisfies conditions (i)-(iii). If we allow any
first-order Σ-formula as a theory-specific interpolant (instead of a quantifier-free
Σ-formula), then every theory has theory-specific interpolants, as follows from
Craig interpolation theorem. In practice however, we are interested in quantifier-
free interpolants to guarantee that the satisfiability checks involving interpolants
are complete, say in the subsequent stages of a program analysis. 3

If we strengthen requirement (iii) from Def. 2 to eliminate interpreted sym-
bols as well, then many interesting theories do not have interpolants (even if the
generated interpolants are not restricted to quantifier-free formulas). Example 2
demonstrates that the theory of Lisp structures does not have interpolants under
2 The details of how T is defined (e.g., set of axioms, set of models) are not essential

to our method.
3 In general, the language L of input formulas A and B is not necessarily the same as

the language of the generated interpolants. For example, one could require quantifier-
free formulas as input, but allow that generated interpolants contain quantifiers. Our
method applies to this generalized definition of theory-specific interpolants [19].
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this stronger requirement. However, a weaker requirement, as stated in Def. 2,
is sufficient for our purposes, because in program analysis interpolants are used
to eliminate state information, encoded by uninterpreted symbols, whereas in-
terpreted symbols encode persistent semantics of statements, such as arithmetic
operations and memory manipulations.

2.2 Interpolants for Combined Theories

In this paper, we address the problem of computing interpolants for a combined
theory T . Without loss of generality, let T be a combination of two theories T1

and T2.4 Let Ti be a first-order theory of signature Σi, with a set of interpreted
symbols ΣTi ⊆ Σi, and Li be a class of Σi-formulas, for i = 1, 2. The signature
Σ of the combined theory T is a union of Σ1 and Σ2; also, the set of interpreted
symbols of T is ΣT = ΣT1 ∪ΣT2 . Let L be a class of Σ-formulas.

The input of the combination method consists of two L-formulas A and B.
Note that the input may contain mixed terms from both Σ1 and Σ2, but it does
not contain AB-mixed terms, by definition. An interpolant for 〈A, B〉 in the
combined theory T is an L-formula which may contain mixed terms from both
Σ1 and Σ2, but contains only AB-common uninterpreted symbols, or symbols
interpreted by T1 and T2.

Example 3. Consider a combination of the theory of uninterpreted functions and
the theory of linear inequalities (where the symbols {+, <,≤} have the standard
interpretation over reals) with the input formulas:

A
def= (f(x1) + x2 = x3) ∧ (f(y1) + y2 = y3) ∧ (y1 ≤ x1)

B
def= (x2 = g(b)) ∧ (y2 = g(b)) ∧ (x1 ≤ y1) ∧ (x3 < y3)

The first subformula of A contains a mixed term, with both f from the theory
of uninterpreted functions and + from the theory of linear inequalities.

We assume that T1 and T2 are stably-infinite theories with disjoint signatures,
i.e., the only common symbol for Σ1 and Σ2 is equality. Each Ti has a decision
procedure for satisfiability of a (quantifier-free) conjunction of Σi-literals (a lit-
eral is an atomic formula or its negation). These are standard requirements of
the component theories in the Nelson-Oppen framework. In addition, we assume
that each Ti has an efficient interpolant generation procedure that takes as in-
put a pair of conjunctions of Σi-literals Ai and Bi, (i.e., Ai and Bi are pure Σi

formulas). It returns an Li-formula as a theory-specific interpolant for Ai and
Bi. Finally, we make the assumption that each Ti is an equality-interpolating
theory; we explain and justify it in the next sections.

3 The Combination Method

This section deals with the simple case in which (i) input formulas are con-
junctions of pure literals, and (ii) all theories are convex, i.e., if a disjunction
4 As usual, combination of theories means union of axioms or, equivalently, intersection

of sets of models.
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of equalities between variables is entailed, then at least one of the disjuncts is
entailed [14]. These restrictions greatly simplify our description, while capturing
the intuition behind our algorithm; they are relaxed in the following sections.

Purification. Our method uses the Nelson-Oppen framework [14] to compute
an interpolant for the combined theory. We assume that the unsatisfiability of
input formula ψ was proved by a Nelson-Oppen procedure. The first step of the
Nelson-Oppen procedure is purification. Given a mixed formula ψ, it constructs
an equisatisfiable formula ψ1 ∧ ψ2, where ψi consists only of pure Σi-literals.
Purification introduces new variables to replace terms of one signature that
appear as sub-terms of terms in the other signature. Equalities defining these
variables are added to the input formulas.

In our setting, the input ψ is a conjunction A ∧ B. We purify A and B
separately. This guarantees that the new variables generated by the purification
of A do not appear in the interpolant, because these variables are A-local. The
result of purification of A is A1 ∧ A2 such that Ai contains only symbols from
Σi and A1 ∧A2 is satisfiable if and only if A is satisfiable; similarly, for B.

Example 4. After purifying A and B from Example 3 separately, we have that
A = AUIF ∧ALI and B = BUIF ∧BLI , where

AUIF
def= a1 = f(x1) ∧ a2 = f(y1)

ALI
def= a1 + x2 = x3 ∧ a2 + y2 = y3 ∧ y1 ≤ x1

BUIF
def= x2 = g(b) ∧ y2 = g(b)

BLI
def= x1 ≤ y1 ∧ x3 < y3

a1 and a2 are A-local variables, b is a B-local variables, and f and g are A-
local and B-local function symbols, respectively. We will use this as a running
example.

Equality Propagation. Let A and B be conjunctions of pure literals in the
signature Σ of the combined theory T . A is A1 ∧ A2 such that Ai contains
only symbols from Σi; similarly, for B. Let ψi

def= Ai ∧ Bi, for i = 1, 2. Note
that ψi is a pure formula in Σi, but it is not AB-pure. Suppose that a Nelson-
Oppen procedure shows the unsatisfiability of ψ1 ∧ ψ2 in T . It generates the
set of equalities between variables, denoted by Eq.5 Eq is sufficient to show the
unsatisfiability of A ∧B using only one of the theories; assume, without loss of
generality, that this theory is T1. That is, A∧B �T ⊥ follows from the fact that
Eq ∧A1 ∧B1 �T1 ⊥.

Example 5. The input A∧B from Example 4 is not satisfiable, because A∧B �T

x1 = y1 ∧ a1 = a2 ∧ x2 = y2 ∧ x3 = y3, which contradicts x3 < y3 from
B. The set of equalities Eq = {x1 = y1, a1 = a2, x2 = y2} is sufficient to
derive a contradiction using only the theory of linear inequalities: ALI ∧BLI ∧
5 [14] shows that it is sufficient to propagate only equalities between variables.
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Eq �LI ⊥. An interpolant for 〈A, B〉 is y1 < x1 ∨ x2 − y2 = x3 − y3. Note that
the symbols g and f are eliminated because they denote local uninterpreted
functions, but theory-specific interpreted functions + and < are not eliminated,
recall the discussion of Def. 2(iii).

Overview of Our Combination Method. The idea is to use an interpolant
generated by T1 from a proof of unsatisfiability of Eq ∧A1 ∧B1, to generate an
interpolant for 〈A, B〉 in the combined theory T .

The interpolant-generation procedure for T1 takes as input two formulas A′

and B′ for which the conjunction A′ ∧ B′ is not satisfiable. In our case, the
unsatisfiable conjunction is Eq ∧ A1 ∧ B1. The question is how to split it into
two formulas, A′ and B′. The condition for splitting is that the common symbols
for 〈A′, B′〉 should be (a subset of) AB-common symbols, because we would like
to use the resultant interpolant for 〈A′, B′〉 as a part of an interpolant for the
original A and B.

Suppose that Eq contains only AB-pure equalities. We split Eq into an A-
part and a B-part: all the equalities from Eq that involve A-local symbols are
added to the A-part; the B-part contains the rest of Eq.6 We define A′ to be
a conjunction of A1 and the A-part of Eq, and similarly for B′. Now, we can
generate an interpolant for 〈A′, B′〉 in theory T1, using the interpolant generation
procedure for T1, as we planned.

It is important to note that the theory-specific interpolant for 〈A′, B′〉 in
theory T1 is not an interpolant for the input formula 〈A, B〉 in the combined
theory T . It uses only AB-common symbols, i.e., satisfies property (iii) of Def. 2,
but it need not satisfy the properties (i) and (ii). The reason, intuitively, is that
A does not imply A′, because A′ contains equalities which cannot be derived
without information from B, as shown in the following example:

Example 6. In Example 5, the theory of linear inequalities derives a contra-
diction from A′ = ALI ∧ a1 = a2 and B′ = BLI ∧ x1 = y1 ∧ x2 = y2. The
theory-specific partial interpolant for 〈A′, B′〉 is x2 − y2 = x3 − y3. It is not an
interpolant for the input 〈A, B〉, because A does not entail x2− y2 = x3− y3 (in
the combined theory), as A alone does not entail a1 = a2.

To address this problem, we attach, for each propagated equality, addi-
tional information, called “partial interpolant”. This notion is formally defined in
Sec. 3.1, and used along with a theory-specific interpolant for 〈A′, B′〉 in theory
T1 to generate an interpolant for 〈A, B〉 in T .

Finally, if Eq contains AB-mixed equalities, we construct an equivalent set
of AB-pure equalities, as explained in Sec. 4. This is the reason for restricting
our method only to equality-interpolating theories.
6 For equalities with only AB-common variables, the question as to whether to add

them “to B or not to B” can be answered in either way, as long as the answer is
always the same for a given variable, and consistent for all equalities that appear
in the proof of unsatisfiability. This gives us some control over how precise the
interpolant is (how “close” it is to A or B), but we have not explored this direction
yet. In all our examples, we add AB-common equalities to the B-part.
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3.1 Partial Interpolants

In the following definitions we assume that all equalities generated in the Nelson-
Oppen framework are AB-pure equalities, as guaranteed by Sec. 4.

A partial interpolant is a formula associated with each formula derived by
the theories in the proof of unsatisfiability. To simplify the definitions, we as-
sociate a (trivial) partial interpolant with each input formula as well. A partial
interpolant for ⊥ is the interpolant for the input formula 〈A, B〉. The crucial
part of our combination method is a way to associate a partial interpolant with
each propagated equality. Whenever a decision procedure for a component the-
ory Ti generates an equality e that needs to be propagated, our method provides
a partial interpolant for that equality. Our method does not require a special
interface for generating partial interpolants, but uses the interpolant-generation
procedures of the component theories. A partial interpolant is a boolean com-
bination of the partial interpolants for the inputs and a theory-specific partial
interpolant. A theory-specific partial interpolant is generated by T1 using only
the input formulas and equalities generated for other theories, without using
their partial interpolants.

Definition 3. (projection) Let Θ be a conjunction of AB-pure literals. Let
Θ|A be a conjunction of A-local literals of Θ, and Θ|B be a conjunction of B-
local and AB-common literals of Θ. Note that Θ = Θ|A ∧Θ|B.

Definition 4. (theory-specific partial interpolant) Let A′ and B′ be con-
junctions of pure literals in Σi, and let e be an AB-pure atomic formula gen-
erated by the decision procedure for the theory Ti, i.e., A′ ∧ B′ �Ti e (thus,
A′ ∧B′ ∧ ¬e �Ti ⊥).

An interpolant generated for 〈A′ ∧ ¬(e|A′), B′ ∧ ¬(e|B′)〉 by Ti’s procedure is
a theory-specific partial interpolant for e w.r.t. 〈A′, B′〉, denoted by φi

A′,B′(e).

Intuitively, we add ¬e to A′ if e contains an A-local symbol, otherwise we add
it to B′, using the assumption that e is AB-pure, i.e., e cannot contain both
A-local and B-local symbols. Thus, any theory-specific partial interpolant for e
contains only AB-common symbols.

Example 7. The first step of a proof of unsatisfiability in Example 4 uses the
theory of linear inequalities to derive the equality x1 = y1 from A′ def= ALI ,
which contains the literal (y1 ≤ x1), and B′ def= BLI , which contains the literal
(x1 ≤ y1). We use interpolant generation of the theory of linear inequalities
to derive an interpolant for (y1 ≤ x1) and (x1 ≤ y1) ∧ ¬(x1 = y1). Trivially,
the interpolant is y1 ≤ x1, which is the theory-specific partial interpolant for
x1 = y1, denoted by φLI

A′,B′(x1 = y1).

Let e be an AB-pure equality such that A ∧ B � e. We define a partial
interpolant for e w.r.t. 〈A, B〉 as follows.

Definition 5. (partial interpolant) Suppose that e is derived from A ∧B in
the Nelson-Oppen framework by a theory Ti. Suppose that Ti derives e from two
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conjunctions of pure literals in Σi, denoted by Ai and Bi, and a set of AB-pure
equalities Eq: Ai ∧Bi ∧ Eq � e.

A partial interpolant for e w.r.t. 〈A, B〉 denoted by φA,B(e) is defined induc-
tively. The base cases: If e ∈ Ai then φA,B(e) is ⊥. If e ∈ Bi then φA,B(e) is �.
The inductive definition: Let A′ def= Ai ∧ Eq|A and B′ def= Bi ∧ Eq|B.

φA,B(e) = (φi
A′,B′(e) ∨

∨
a∈A′

φA,B(a)) ∧
∧

b∈B′
φA,B(b) (1)

Note that this definition includes the special case when e is ⊥.

Example 8. Table 1 shows the partial interpolants generated by the combination
method for the input formulas from Example 4. In the second step of the proof,
the decision procedure for the theory of uninterpreted functions generates the
equality a1 = a2 from the input AUIF and BUIF defined in Example 4, and the
equality (x1 = y1). First, we compute a theory-specific partial interpolant for
a1 = a2, denoted by φUIF

A′,B′(a1 = a2), where A′ = AUIF and B′ = BUIF ∧ (x1 =
y1), because x1 and y1 are AB-common. By Def. 4, we run the interpolant-
generation procedure of the theory of uninterpreted functions with the input
A′ ∧ ¬(a1 = a2) and B′, and we get ¬(x1 = y1), which is φUIF

A′,B′(a1 = a2).
We compute a partial interpolant φA,B(a1 = a2) using φUIF

A′,B′(a1 = a2) =
¬(x1 = y1) and φA,B(x1 = y1) = (y1 ≤ x1) (and the partial interpolant for the
input equality x1 = y1, generated in the previous step). The result φA,B(a1 = a2)
is (y1 ≤ x1) ∧ ¬(x1 = y1).

Table 1. Partial interpolants generated by the combination method for the input
formulas from Example 4. In each step of the process, the decision procedure for the
component theory T generates a formula e and the corresponding partial interpolant

Theory T e φT
A′,B′(a1 = a2) φA,B(e)

LI x1 = y1 y1 ≤ x1 y1 ≤ x1

UIF a1 = a2 ¬(x1 = y1) y1 < x1

UIF x2 = y2 � �
LI ⊥ x2 − y2 = x3 − y3 x2 − y2 = x3 − y3 ∨ y1 < x1

If a theory proves unsatisfiability, the partial interpolant φA,B(⊥) is an inter-
polant for 〈A, B〉, as shown in the following lemma.

Lemma 1. The partial interpolant φA,B(e) from Def. 5 is an interpolant for
A∧¬(e|A) and B ∧¬(e|B) in the combined theory T . In the special case when e
is ⊥, φA,B(⊥) is an interpolant for 〈A, B〉.

Example 9. In the last step, φA,B(⊥) is x2 − y2 = x3 − y3 ∨ y1 < x1. It is easy
to verify that φA,B(⊥) is an interpolant for the input formulas A and B from
Example 3.
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4 Equality-Interpolating Theories

The combination method in Sec. 3 requires that each component theory only
propagates AB-pure equalities. This restriction arose as partial interpolants are
not defined for AB-mixed equalities. This section justifies the restriction by
showing that for a class of first-order theories, defined as equality-interpolating
theories, it is sufficient to share AB-pure equalities. Also, this section shows that
many interesting theories including the quantifier-free theories of uninterpreted
functions, linear arithmetic, and Lisp structures are equality-interpolating.

The basic idea behind equality-interpolating theories is the following. When-
ever a decision procedure for a component theory generates an equality a = b,
where a is an A-local variable and b is a B-local variable the combination method
requires that the theory also produce an AB-common term t, such that a = t
and t = b. Instead of propagating a = b, the theory now propagates these two
AB-pure equalities separately. For an equality-interpolating theory, such an AB-
common term t exists for all entailed AB-mixed equalities:

Definition 6. (equality-interpolating theory) Theory T is equality-
interpolating when for all A and B in T , and for all AB-mixed equalities be-
tween variables a = b such that A ∧B �T a = b, there exists a term t such that
A ∧B � a = t ∧ t = b and t contains only AB-common symbols. We say that t
is an equality-interpolating term for a = b w.r.t. 〈A, B〉.
Example 10. This example shows that not all theories are equality-interpolating.
Consider a theory with two relation symbols P and Q, and the axiom ∀abc P (a, c)
∧Q(c, b) ⇒ a = b. When A contains P (a, c) and B contains Q(c, b), A∧B � a = b.
However, there is no equality-interpolating term for a = b.

The proof of correctness of the combination method for equality-interpolating
theories follows from Def. 6 and Lem. 1. Whenever a decision procedure for
a component theory generates an AB-mixed equality a = b, the combination
method propagates two equalities a = vt and vt = b, where vt is a previously
unseen variable representing the equality-interpolating term t. The combination
method treats these new variables vt as AB-common symbols, thus the two
equalities propagated instead of a = b are AB-pure and so the correctness of
the combination method described in Sec. 3 applies. After the interpolant is
generated, occurrences of vt in it are replaced by the associated term t. By
Def. 6, t contains only AB-common symbols, thus the interpolant is an AB-
common formula, as required.

The modification mentioned above does not affect the Nelson-Oppen frame-
work in terms of complexity, termination or soundness. All component theories
contain equality axioms, thus each theory can infer a = b from the equalities
a = vt and vt = b. Moreover, as the variable vt is previously unseen, this is
the only inference the theories can make. Note, the number of new variables vt

generated in this process is bounded by the number of AB-mixed equalities used
in the proof of unsatisfiability of A ∧B.

In the remainder of this section, we prove that some useful theories are
equality-interpolating.
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The Theory of Uninterpreted Functions. A decision procedure for the
theory of uninterpreted functions can be easily modified to generate only AB-
pure equalities. The idea is to modify the implementation of the congruence
closure algorithm [15] to choose a representative for an equivalence class to be
an AB-common term, whenever an equivalence class contains at least one such
term. When an equivalence class contains both A-local and B-local terms, it also
contains an AB-common term, as follows from:

Lemma 2. The theory of uninterpreted functions is equality-interpolating.

Sketch of Proof: We prove a stronger claim: there exists an interpolating term t
for all equalities of the form ta = tb entailed by A ∧ B, where ta is an A-local
term (involves at least one A-local symbols or variable) and tb is a B-local term.

Note that ta = tb is an AB-mixed equality, but it does not contain AB-mixed
terms. Every proof of ta = tb that uses AB-mixed terms can be transformed into
a proof of ta = tb, in which all derivations involve only AB-pure terms. Assume
that a proof of ta = tb from A ∧ B uses only AB-pure terms in all derivations.
The proof proceeds by induction on the proof tree of ta = tb from A ∧B.

The Theory of Lisp Structures. A decision procedure for the theory of Lisp
structures based on the congruence closure algorithm is described in [15]. A proof
generated by the decision procedure for the theory of Lisp structures can contain
proof rules of the theory of uninterpreted functions and an additional rule:

z = cons(x, y)
x = car(z) ∧ y = cdr(z) ∧ ¬atom(z)

(2)

The interpolant-generation procedure for the theory of uninterpreted functions
[13] can be adapted to the theory of Lisp structures, as follows. Given a proof
P of unsatisfiability of A ∧ B in the theory of Lisp structures, we replace each
derivation in P that uses proof rule (2) by the formula it derives, which is
treated as an axiom. The result is a proof of unsatisfiability PUIF in the theory
of uninterpreted functions, where the symbols car, cdr, cons, and atom are
treated as uninterpreted function symbols.

Let H be the set of new axioms added to P . Using Lem. 2, we can ensure that
all formulas in H are AB-pure. Thus, the interpolant generated for A ∧ (H |A)
and B ∧ (H |B) by the theory of uninterpreted functions using the proof PUIF ,
is the interpolant for 〈A, B〉 in the theory of Lisp structures.

The Theory of Linear Inequalities. To show that the theory of linear in-
equalities is equality-interpolating, we first show that there is an inequality-
interpolating term for every AB-mixed inequality between variables, entailed by
A ∧B.

Definition 7. (inequality-interpolant) For an AB-mixed inequality a ≤ b
such that A ∧ B � a ≤ b, an inequality-interpolant is an AB-common term t
such that A ∧B � a ≤ t ≤ b.
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If A ∧B � (a ≤ b) ∧ (b ≤ a) and t1, t2 are the inequality-interpolating terms for
a ≤ b and b ≤ a respectively, it follows that a = b = t1 = t2. Thus, t1 (or t2) is
an equality-interpolating term for a = b.

Lemma 3. Given conjunctions of linear arithmetic constraints A, B, an
inequality-interpolant exists for every AB-mixed inequality a ≤ b entailed by
A ∧B.

Proof: Consider an AB-mixed inequality a ≤ b derived from A ∧ B. Let A and
B respectively contain m and n linear constraints. These constraints are of the
following form

A ≡
∧

1≤i≤m

0 ≤ si + ti and B ≡
∧

1≤j≤n

0 ≤ s′j + t′j

where the terms si are A-local, the terms s′j are B-local, and the terms ti and
t′j are AB-common. Any linear inequality that can be derived from A and B
can be obtained by a linear combination of the constraints in A and B. As
A ∧ B � a ≤ b (or equivalently 0 ≤ −a + b), there exist non-negative constants
d1, d2, . . . , dm, d′1, d

′
2, . . . , d

′
n such that

0 ≤
m∑

i=1

di(si + ti) +
n∑

j=1

d′j(s
′
j + t′j) = −a + b (3)

Consider the linear combination in Equation 3 restricted to the terms in A. As
the terms s′j and t′j contain no A-local variables, we have 0 ≤

∑m
i=1 di(si +

ti) = −a + t for some AB-common term t. Similarly, considering the linear
combination restricted to terms in B, we have 0 ≤

∑n
j=1 d′j(s

′
j + t′j) = t′ + b

for some AB-common term t′. From Equation 3 it follows that t = −t′. Thus,
A ∧B � (a ≤ t) ∧ (t ≤ b), and t is the inequality-interpolating term for a ≤ b.

Lemma 4. Theory of linear arithmetic is equality-interpolating.

Proof: Directly follows from Lem. 3 and the discussion following Def. 7.

5 Interpolants for Arbitrary Quantifier-Free Formulas

Sec. 3 describes the combination of interpolant-generation procedures for con-
vex theories with disjoint signatures, when the input formulas A and B are
conjunctions of literals. This section relaxes these constraints. First, we describe
Pudlák’s algorithm for generating propositional interpolants [17]. Then, we in-
tegrate our method with an extended version of Pudlák’s algorithm in the lazy-
proof-explication framework for checking satisfiability of quantifier free first-order
formulas with arbitrary boolean structure.
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Pudlák’s Algorithm. We describe Pudlák’s algorithm for generating proposi-
tional interpolants and give an alternative correctness argument based on partial
interpolants. This algorithm takes as input a proof of unsatisfiability of a propo-
sitional formula A ∧ B and generates a propositional interpolant I for 〈A, B〉.
The algorithm generates a partial interpolant p(c) for each clause c derived in
the proof, as described below. The partial interpolant generated for the empty
clause p(⊥) is an interpolant I for 〈A, B〉.

Definition 8. Given two clauses of the form c1
def= x∨ c′1 and c2

def= ¬x∨ c′2, the
resolution of c1 and c2 is a clause c

def= c′1 ∨ c′2, denoted by c = resolvex(c1, c2),
where x is called the pivot variable.

Let 〈A, B〉 be a pair of clause sets such that A ∧B � ⊥. Let T be a proof of
unsatisfiability of A ∧ B. The propositional formula p(c) for a clause c in T is
defined by induction on the proof structure:

(i) if c is one of the input clauses then
(a) if c ∈ A, then p(c) := ⊥;
(b) if c ∈ B, then p(c) := �.

(ii) otherwise, c is a result of resolution, i.e., c = resolvex(c1, c2)
(a) if x ∈ A and x /∈ B (x is A-local), then p(c) := p(c1) ∨ p(c2)
(b) if x /∈ A and x ∈ B (x is B-local), then p(c) := p(c1) ∧ p(c2)
(c) otherwise (x is AB-common), p(c) := (x ∨ p(c1)) ∧ (¬x ∨ p(c2)).

The correctness of the algorithm is guaranteed by the following invariant: for
each clause c ∈ T , the partial interpolant p(c) is an interpolant for 〈gA(c), gB(c)〉
where gA(c) def= A∧((¬c)|A) and gB(c) def= B∧((¬c)|B) When c is an empty clause
⊥, we get that 〈gA(⊥), gB(⊥)〉 is 〈A, B〉, and the formula p(⊥) is the result.

Lazy Proof-Explication Framework. In order to leverage advances in SAT
solving, state-of-the-art decision procedures [1,4,5] based on the Nelson-Oppen
framework use a SAT solver to perform propositional reasoning. Given an input
formula, the SAT solver treats all atomic formulas occurring in the input formula
as free boolean variables. Suppose that the SAT solver finds an assignment to
the boolean variables that satisfies the input formula propositionally. This as-
signment is a conjunction of (first-order) literals. It is passed to a Nelson-Oppen
decision procedure.

The decision procedure attempts to derive a contradiction from this conjunc-
tion of literals. If it cannot derive a contradiction, the input formula is declared
as satisfiable. If a contradiction is detected, the negation of the current assign-
ment is added to the SAT solver as a new conflict clause. Because this new clause
is in conflict with the current assignment, the SAT solver backtracks, searching
for a new assignment. If it cannot find another assignment, it has proved that
the propositional abstraction is unsatisfiable. Thus, the input formula is unsat-
isfiable.
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Integration with an Extended Pudlák’s Algorithm. We assume that the
unsatisfiability of A and B in theory T is proved by a lazy proof-explication
framework. That is, a SAT solver proved propositional unsatisfiability of A and B
using a set of conflict clauses C. For each conflict clause c in C, ¬c is a conjunction
of (first-order) literals. By construction, we have a proof of unsatisfiability of ¬c.
Also, it is guaranteed that ¬c contains only AB-pure literals, as it contains
only the original literals from A or B (each of which is AB-pure by definition).
Therefore, we can use the method described in Sec. 3 to generate an interpolant
between the A-part of ¬c and the B-part of ¬c, which is also called a partial
interpolant for the conflict clause c.

Definition 9. (partial interpolants for clauses) Let A ∧B �T ⊥ be proved
by a decision procedure for T using a corresponding set of conflict clauses C,
such that A ∧ B ∧ C is propositionally unsatisfiable. A partial interpolant for
a clause c is denoted by φA,B(c). If c ∈ A, then φA,B(c) = ⊥, if c ∈ B, then
φA,B(c) = �, otherwise, for a conflict clause c ∈ C, a partial interpolant φA,B(c)
is the interpolant for 〈(¬c)|A, (¬c)|B〉 in theory T , where the projection operation
is given in Def. 3.

We use partial interpolants φA,B(c) defined above as initial values for p(c)
in the extended version of Pudlák’s algorithm, instead of using the standard
initialization of Pudlák’s algorithm from Def. 8(i). (To see why this change is
necessary, recall that a conflict clause may involve both A-local and B-local
literals.) Partial interpolants in Def. 9 satisfy the invariant of Pudlak’s algorithm.

There is no change in phase (ii) of Def. 8. The input for the extended algo-
rithm consists of three clause sets, denoted by 〈A, B; C〉, all three of them are
necessary for an unsatisfiability proof. However, in each resolution step, the pivot
is guarantee to be in A or B, because all literals in conflict clauses C appear in
the original formulas A and B. Note that the result is a first-order interpolant,
which is a combination of the original clauses and the interpolants generated for
the conflict clauses. The correctness of the interpolant generated by the extended
Pudlák’s algorithm follows from the correctness of theory-specific interpolants
for conflict clauses.

Lemma 5. The interpolant for 〈A, B; C〉 generated by the extended Pudlak’s
algorithm using partial interpolants for clauses as in Def. 9 is an interpolant for
the input 〈A, B〉 in theory T .

6 Related Work

Interpolants are of great theoretical and practical significance. Our interest in
interpolants is particularly motivated by their use in program analysis and model
checking. [12] uses interpolants to achieve faster termination while model check-
ing finite state systems, and [13] explores the possibility of using interpolants for
model checking infinite systems.



A Combination Method for Generating Interpolants 367

Craig interpolation theorem for first-order logic [2] shows the existence of
a first-order interpolant for any pair of formulas in first-order logic. While con-
structive proofs of Craig interpolation theorem exist [6,18,9], these proofs are (to
the best of our knowledge) based on cut elimination and result in very expensive
interplation-generation procedures. (See [8] for references on the complexity of
cut elimination.)

On the other hand, interpolants can be generated efficiently for formulas
in a restricted subclass of first-order logic. When the input formulas A and
B are propositional, or when they are both conjunctions of linear constraints,
Pudlák [17] provides interpolant-generation procedures that are linear in the
proof of unsatisfiability of A ∧ B. McMillan [13] extends these procedures to
compute interpolants for quantifier-free formulas in the combined theory of un-
interpreted functions and linear arithmetic.

Finally, the Nelson-Oppen framework is being constantly improved. For ex-
ample, a recent work by [7] defines sufficient conditions for extending the Nelson-
Oppen framework to theories with non-disjoint signatures, e.g., the theory of
bit-vectors, presburger arithmetic, a theory of Lists with length operator, or
theories of many-sorted logics. In the extended framework, the theories can ex-
change atomic formulas over the intersection of their signatures, and not only
equalities between variables. Our method, by being modular, is well-suited to
support such advances in the Nelson-Oppen framework. Given the unsatisfiabil-
ity proof with only AB-pure equalities, our method can generate interpolants
for non-disjoint theories, because partial interpolants in Def. 4 and Def. 5 do not
assume that the theories exchange only equalities.

7 Conclusions and Future Work

The combination method for equality-interpolating theories presented in this
paper proves existence of quantifier-free interpolants for a combined theory, if all
the component theories have quantifier-free interpolants. If some of the theories
has quantified interpolants, our method produces correct, quantified interpolant
for the combined theory. Currently, our method applies only to quantifier-free
input formulas. We believe the method can be extended to handle quantified
formulas, because the proof of unsatisfiability contains a finite instantiation of
the quantified variables.

Our method shows how to integrate interpolant generation for various theo-
ries within the existing satisfiability-checking tools, adding only a small overhead.
This provides a practical way to use interpolants for speeding up termination of
software model checking and real-time model checking.

Finally, the combination of interpolant-generation procedures demonstrates
that equality propagation in the Nelson-Oppen framework can be used to combine
operations other than satisfiability checking. Recently, [10] have used a similar
approach to combine abstract domains. We believe that similar combination
methods for operations would enhance program analysis tools while retaining the
flexibility of the Nelson-Oppen framework to extend with additional theories.
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Abstract. We present sKizzo, a system designed to evaluate and certify QBFs
by means of propositional skolemization and symbolic reasoning.

1 Introduction

We present sKizzo [2,3], a software suite for dealing with Quantified Boolean For-
mulas (QBFs). sKizzo is mainly aimed at evaluating prenex CNF formulas by means
of a novel symbolic skolemization technique[4]. In addition, it enables the user to (A)
experiment with quantifier trees[6], (B) certify the (un)satisfiability of formulas[5] and
(possibly) extract unsatisfiable cores, and (C) compute, manage, and query stand-alone
certificates of satisfiability for QBFs. Both quantifier tree extraction and answer certifi-
cation have never been attempted so far on QBFs.

At the hearth of sKizzo stays a new kind of symbolic representation for clauses
and formulas, based on Binary Decision Diagrams (BDDs). As opposed to previous
BDD-based approaches to propositional logic, sKizzo’s one employs a two-level
data structure [2] designed to take advantage of the distinguishing features of QBFs.
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Besides allowing for a novel style of (complete/incomplete) symbolic
reasoning, such representation makes it possible to unify within a co-
herent framework all the other approaches to QBF-satisfiability imple-
mented so far. Namely: DPLL-like branching reasoning, q-resolution
based algorithms, and compilation-to-SAT techniques.

2 Representation of QBF Instances

Three representation spaces for QBFs coexist within sKizzo. They are
interconnected by two satisfiability-preserving trasformations (applied
one-way), as reported in the picture aside. The first transformation lever-
ages outer skolemization to map any (prenex CNF) instance F ∈ QBFs
onto a symbolic formulaF = SymbSk(F ), which is said to be symbolic
as it couples list-based and BDD-based data structures to compactly
represent a (possibly) exponentially less succinct propositional formula.
The sentenceF encodes the definability of a set of Skolem functions that
capture a model (if any) of the original instance, according to the sym-
bolic skolemization technique presented in [4]. A formal semantics is as-

sociated to symbolic formulas in such a way that F
sat≡ SymbSk(F ) for

every F . The other transformation—called groundization—translates a

R. Nieuwenhuis (Ed.): CADE 2005, LNAI 3632, pp. 369–376, 2005.
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symbolic formula F into a purely existential CNF propositional instance Prop(F) (a

SAT problem) such that F
sat≡ SymbSk(F )

sat≡ Prop(SymbSk(F )).
The role of these representations is as follows: Plain QBFs are handled in a preprocess-
ing phase. Then, sKizzo moves to the symbolic representation and performs its work
thereon. Zero or more CNF instances are generated/solved during the whole process.

aa

b
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c

de

gh

a ¬c

c ¬d
c a ¬

a h
¬a c e ¬

¬b ¬f
¬a b f

[h]
a

0 1

e

0 1

a
[c,¬h]

Symbolic skolemization (and most of the
processes described below) relies on the exis-
tence of a quantifier tree stating which existen-
tial variables are in the scope of which univer-
sal variables. Such tree-shaped structures are ex-
tracted out of the flat prenex input according
to [6]. They replace linear prefixes so to more
closely reflect the intrinsic dependencies in the
matrix. A sample quantifier tree for the QBF
∀a∀b∃c∀d∀e∃f∃g∃h.(a∨¬c) ∧ (a∨h) ∧ (c∨¬d∨g) ∧
(¬a∨b∨f) ∧ (¬a∨c∨e∨¬h) ∧ (¬b∨¬f) ∧ (a∨c∨¬g)
is depicted aside. The symbolic representation
is designed to allow for efficient forms of sym-
bolic reasoning (Section 2), where universal rea-
soning is taken apart form existential reason-
ing (ROBDDs conveniently deal with the former,
list-based representations with the latter). A sym-
bolic formula is made up by symbolic clauses.
During symbolic skolemization, one symbolic
clause is extracted out of each QBF clause. The
two major components of a symbolic clause ΓI

are a list Γ of existential literals and an index-set I represented via a ROBDD
whose support set is the set of universals dominating the existential node at which the
clause is attached in the quantifier tree. For example, the symbolic clauses [h]{00,01}
and [c,¬h]{10} are extracted out of a ∨ h and ¬a ∨ c ∨ e ∨ ¬h respectively (see
the picture). Each symbolic clause ΓI compactly represents a set Prop(ΓI) of |I|
propositional clauses, in such a way that F is sat iff Prop(F) is sat. For example,
Prop([c, g]{01,10}) = {c0∨g01, c1∨g10}. The symbolic size ofF is |F|, its ground size
is |Prop(F)|: The initial symbolic size of F is thus linear in |F |. For details, see [4].

3 Inference Strategy

The inference strategy followed by sKizzo changes accordingly to a finite state ma-
chine whose inference states Sinf = {G, S, R, B, G} are traversed.

Q: Ground
     QBF
     Reasoning

S:  Incomplete
     Symbolic
     Reasoning

B: Branching
     Reasoning

G: SAT-based
     CNF
     Reasoning

R:  Complete
      Symbolic
      Reasoningsy
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Each state in Sinf is associated to the application of an inference style. Each tran-
sition x → y in the picture, x, y ∈ Sinf , is labeled by a condition that triggers the shift
from the style x to y (possibly requiring a satisfiability-preserving transformation).We
now describe each state and transition.

Q: Ground QBF Reasoning

Q1:  Normalization

Q3:  Bounded Var.

        Elimination 

Q2:  Tree Recon-

         struction

S

Q: Ground QBF Reasoning. In the Q-state sKizzo
works in the original QBF space, as represented aside. The
step Q1 amounts to apply the quantified form of three sim-
ple (incomplete) inference rules: unit clause propagation,
pure literal elimination, and forall-reduction. The transi-
tion Q1 → Q2 is triggered when all these rules reach
their fixpoint. Bounded variable elimination (Q3) applies
q-resolution to eliminate a selected existentially quantified
variable v in the deepest existential scope of some branch
of the quantifier tree. This is done by substituting all the
clauses containing v with the set of all the resolvents over v.
As repeated applications of variable elimination often lead
to an unmanageable explosion of the number of clauses, a bounded form of elimination
is employed: Only variables whose elimination shrink the overall number of literals or
clauses are eligible for elimination. The transition Q3 → Q1 is selected when at least
one variable has been eliminated during the last round, Q3 → S is followed otherwise.

S: Incomplete Symbolic Reasoning. The instance is attacked by means of a set of (in-
complete) symbolic inference rules, designed after their ground counterparts to achieve
in one single application on symbolic clauses the same result they would obtain if ap-
plied to each ground clause separately.

SUCP (Symbolic Unit Clause Propagation). This rule builds on top of the observation
that each symbolic unit clause [γ]I in the formula represents a set {γi|i ∈ I}
of ground unit literals. All of them are symbolically assigned at once to avoid an
immediate contradiction.

SPLE (Symbolic Pure Literal Elimination). This rule computes a symbolic representa-
tion for the set of pure literals, then simplify the formula by assigning all of them at
once. It comes in two flavors: a monolitic (one variable per step) and an incremental
(one clause per step) version.

SSUB (Symbolic SUBsumption). This rules removes all the symbolic clauses that are
subsumed by other clauses (forward subsumption). It employs scheduling heuris-
tics, lazy computations, and a signature-based mechanism to minimize the overall
effort. This rule complements the backward subsumption mechanism which is ap-
plied on-the-fly at each clause insertion.

SHBR (Symbolic Hyper Binary Resolution). This rules enumerates all the resolution
chains of binary symbolic clauses in the formula, looking for contradictions. Each
such contradiction determines a necessary consequence of the formula, compactly
represented as a unit symbolic clause which is added to the instance (SUCP then
draws all the entailed consequences).
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SER (Symbolic Equivalency Reasoning). This rules look for non-empty strongly con-
nected components in the symbolic binary implication graph[2] of the formula, and
applies the resulting symbolic equivalences to simplify the formula.

A carefully designed application schedule is necessary to profit from the above set of
rules as a whole. sKizzo implements the following dynamic scheduling policy.

1. The inference process is divided into subsequent inference rounds. At each round,
the rules that have the rights to do so (see below) are sequentially executed.

2. The rule currently working is monitored during its execution. When certain re-
source limits are exceeded (inference steps undertaken, time elapsed, memory allo-
cated, etc.), the rule is preemptively stopped (the rule’s context is saved to re-start
working from the interruption point).

3. When all the rules in the inference round have been executed, they are ranked ac-
cording to their relative efficiency. The resource limits for the next rounds are re-
distributed on a meritocratic basis: the better a rule has proved to be, the larger the
resources it will be granted next.

4. Rules failing to be effective loose the right to execute for a number of inference
steps that enlarges with the number of rounds they have been performing poorly.
The longer they keep on being ineffective, the more sparingly they are given a try.

The assessment of rules’ efficiency is a major issue in the above policy. As all the
rules reduce the ground size of the instance at each application (conversely, the sym-
bolic size might be enlarged), the ground-size-shrink-percentage-per-resource-unit is
assumed as a measure of efficiency. This measure needs itself resources to be com-
puted. When BDD primitives and lazy evaluation do not suffice to keep the cost of
assessment within pre-established limits, sKizzo resorts to approximated measures.
The transition S → G is triggered if the ground size of the current problem becomes
affordable via SAT-based reasoning (see the G-style), unless the symbolic reasoning is
behaving so efficiently that ground reasoning is estimated not to pay back. The tran-
sition S → R is activated when the rules adopted come out to be unable to solve the
problem. This happens under two circumstances: (1) the overall fixpoint is reached but
no decision is obtained, or (2) the rate at which the problem is being shrunk has been
staying below a certain threshold since a given number of inference rounds.

R: Complete Symbolic Reasoning. This state is similar to S, with one major excep-
tion: a refutationally complete rule is inserted in the pool of symbolic rules exercised at
each inference round.

SDR (Symbolic Directional Resolution). This rules eliminates one symbolic variable
per step by substituting the set of resolving clauses with the set of their symbolically
computed resolvents.

Efficiency as size-shrinking measurement is unfair for SDR. This rule may need to
pass through intermediate clause-sets that are much larger than the originating instance
to come to a solution. So, SDR is given the change to consume more and more re-
sources regardless of the size of the formula it is constructing. The other rules are still
applied/evaluated in a round robin way (SSUB is especially useful here to reduce the
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redundancy SDR generates). Two outcomes are possible: (1) the largest intermediate
result fits within the physical memory of the machine on which sKizzo is running—so
the instance is solved, or (2) an out-of-memory condition occurs. As sKizzo keeps
on monitoring its own resource consumption, he is able to detect the latter occurrence
and give up resolution-based reasoning. The transition R → B is triggered. As usual,
the transition R → G is followed if (and as soon as) the current problem becomes
affordable via SAT-based reasoning (see the G-style).

A checkpointing mechanism is implemented against the unlucky possibilities that
no consistent formula representation exists when mem-out occurs, or the formula
yielded by SDR is so larger than the input formula that we would prefer to restart
working on the original version: Symbolic formulas have to be explicitly committed
or rolled-back depending on their eventual characteristics. This ensures that blow-up
phenomena do not negatively affect the rest of the inference process.

B: Branching Reasoning. In this status, a search-based branching decision procedures
extending the DPLL approach to the quantified case is applied. Models are searched
following the left-to-right prefix order of variables during a depth-first visit of the se-
mantic evaluation tree of the formula. Existential variables generate or nodes, universal
quantifiers are associated to and nodes. Distinguishing features of sKizzo:

– Both universal and existential splits are performed symbolically.
– The partial order induced by the internal structure of the quantifier tree is substi-

tuted for the left-to-right order of variables in the prefix. The main advantage is that
nodes with more than one child induce sets of disjoint sub-instances that are solved
in isolation of one another.

– After each existential split, the cofactored matrix undergoes further incomplete
symbolic normalization (transition B → S and back). This mechanism extends the
unit-clause-propagation based form of look-ahead used in purely branching solvers.

– The base case of the recursion does not deal with trivial sub-formulas. Well in ad-
vance, either symbolic reasoning (transition B → S, whenever the current instance
falls within its deductive power) or ground reasoning (transition B → G, whenever
the ground version of the problem is affordable) decide every sub-instance, acting
as powerful look-ahead tools.

Many enhancements to the basic DPLL procedure are implemented. A conflict-analysis
machinery is employed in the event of inconsistent partial assignment to isolate the
branching steps responsible for the contradiction to arise. This information is used to
perform a conflict-directed backjumping. As contradictions follow in general from a
mix of branching steps, symbolic reasoning, and SAT-based reasoning, the three of these
inference styles share a common conflict-analysis engine. A symbolic learning mecha-
nism extracts symbolic clauses out of contradictions (prune the rest of the search). Size-
bounded and relevance-bounded heuristics are used to constraint the required amount of
memory. Branching heuristics are also enrolled: MOMS and VSDIS are implemented.

G: SAT-Based Ground Reasoning. We explicitly construct Prop(SymbSk(F )) and
solve it via state-of-the-art SAT solvers (they come out to be very efficient on such
instances). This amounts to (1) build an encoding from the structured namespace of



374 M. Benedetti

symbolic literals/clauses onto a flat propositional space, (2) generate all the necessary
clauses, (3) make the SAT solver handle the resulting instance: Quite some “almost-
existential” families of instances are successfully dealt with in the G status (hash-table
based mechanism are implemented to make the translation fast). A transition x → G,
x ∈ {S, R, B}, is triggered as soon as the groundization of the current formula becomes
affordable. At the beginning, this notion is simply given in terms of memory require-
ments: The ground version of the instance fits into the memory and leaves enough space
for the SAT solver to work. By construction, the transitions x → G, x ∈ {S, R} are
triggered at most once, yielding an instance SAT-equivalent to the original QBF prob-
lem. Conversely, B generates a (long) chain of SAT instances, each one encoding the
outcome of the exploration of an entire sub-tree of the QBF semantic evaluation tree.
Along this chain, the notion of affordability is adjusted by a learning algorithm that
tries to guess a good switch size between B and G. Furthermore, for the G-state to ac-
tively participate in conflict analysis, we map unsatisfiable ground cores (extracted by
analyzing the ground inference trace) onto symbolic cores, then onto branching choices.

4 Certification

sKizzo implements a mechanism to certify its claims of (un)satisfiability. Evaluation
and certification are completely decoupled, with almost no overhead for the former.
The two meshes of the chain are connected through an inference log, produced by the
solver and subsequently red by an external certifier. The log contains information about
(1) the context switches between inference styles, (2) the sequence of the (symbolic)
instantiations of inference rules undertaken (resolutions, substitutions, assignments),
(3) entries for rollback/commit points and other control information.
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By reading the log forward, the cer-
tifier is able to reproduce the deriva-
tion of the empty clause (unsat in-
stances) and its graph of dependen-
cies, thus extracting an unsatisfiable
core. On sat instances, the certi-
fier applies an inductive model re-
construction[5] procedure while pars-
ing the log backward. It constructs
a stand-alone, BDD-based sat-certificate encoding a QBF model. As an exam-
ple, the picture aside depicts the sat-certificate produced for ∀a∀b∃c∀d∃e∃f.
(¬b∨e∨f)∧ (a∨c∨f)∧ (a∨d∨e)∧ (¬a∨¬b∨¬d∨e)∧ (¬a∨b∨¬c)∧ (¬a∨¬c∨¬f)∧
(a∨¬d∨¬e)∧ (¬a∨d∨¬e)∧ (a∨¬e∨¬f). A model is encoded into such certificate: By
assigning the existential variable e (similarly for c and f ) to TRUE when e+(a, b, d) = 1
and to FALSE when e−(a, b, d) = 1 the matrix is always satisfied.

5 Implementation and Experimentation

sKizzo is a 50k-line piece of code written in C using an object-oriented program-
ming style. It has been developed on a PowerPC/MacOS X platform, then migrated to
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Table 1. On the left: some 2004-hard instances (remained unsolved during the SAT04 evaluation)
solved by sKizzo. On the right: evaluation compared to SAT-certification. We report: number of
existential/universal variables (∃/∀), quantifier alternations (Al.), time to solve/reconstruct/verify
(Ts,Tr,Tv), number of steps in the log (|L|), and number of nodes in the certificate (|C|)

Instance Al. Ts

adder12 3 190.0
adder14 3 670.0
adder16 3 1200.0
cnt09re 18 259.6
cnt10r 20 67.5
cnt10e 20 923.1
cnt11r 22 190.38
cnt12r 24 548.68

Instance Al. Ts

cnt15 30 33.2
cnt16 32 44.7
s713_d3_s 2 384.7
s499_d7_s 2 107.5
s499_d10_s 2 493.1
s386_d3_s 2 23.9
s386_d4_s 2 631.0
s386_d5_s 2 795.3

instance ∀ ∃ Al. Ts Tr Tv |L| |C|
adder-16 1672 3096 3 1200.0 2025.2 1.1 3.5·103 2.4·105

Adder2-10 545 7424 5 360.0 97.8 0.1 8.5·103 6.1·104

cnt09re 9 609 18 280.0 0.4 0.1 5.8·103 9.0·101

cnt16 16 1650 32 45.0 36.0 0.1 3.4·105 5.9·102

k_grz_n18 24 767 16 55.0 0.8 0.1 1.8·103 3.2·103

k_poly_n18 110 1354 112 4.8 11.6 0.1 4.5·103 1.1·103

k_ph_n15 10 4833 4 86.0 1.5 0.4 1.1·104 2.8·103

k_d4_n16 69 1368 40 11.0 149.0 0.3 1.1·104 4.8·104

Ayari’s benchmarks Biere’s benchmarks
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Fig. 1. Number of solved instances (Y) for each timeout up to 1000s (X). Solvers: QuBE-LRN [8],
v. 1.3, a search-based solver featuring lazy data structures and conflict/solution learning.
Quantor [7], v. 2004.01.25, a solver employing q-resolution and expansion to eliminate quan-
tifiers. SEMPROP [10], v. 24.02.02, a search-based solver featuring directed backtracking and
lemma/model caching. yQuaffle [11], v. 09.30.04, a search-based solver featuring conflict-
driven learning, inversion of quantifiers, solution-based backtracking

i386/Linux. It relies on the CUDD package 2.4.0 and DDDMP 2.0 for BDD manipu-
lations, and on zChaff 2004.5.13 and siege v4 for SAT solving. Command-line options
allow the user to individually (de)activate inference rules, and to construct solving per-
sonalities by forbidding the visit of some states of the inference FSM. Syntactic trees,
CNF instances and certificates may be dumped to secondary memory.

The experimental evaluation of our suite yields a large amount of data, for which
we refer the reader to [3]. Here we limit our presentation to a performance compari-
son (shown in Figure 1 and performed on a 2.6 GHz P4, 1Gb main memory, running
Linux v2.4) between sKizzo and the best publically available state-of-the-art QBF
solvers [9] over two challenging groups of QBF instances extracted from the QBFLIB’s
archive [8]: Biere’s benchmarks [7], made up of 64 instances divided into 4 families,
where the n-th instance in each family refers to a model checking problem on a n-bit
counter, and Ayari’s benchmarks [1], made up of 72 instances divided into 5 families,
obtained from real-world verification problems on circuits and protocol descriptions.
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Table 1 presents a few more results showing that sKizzo has solved instances
never solved before. In addition, the results concerning SAT-certificate extraction sug-
gest that certification is actually feasible. Although QBF verification cannot be in gen-
eral accomplished in polynomial time, the task of building and verifying a certificate
comes out not to be overwhelming on application-related instances: sKizzo has been
able to certify all the satisfiable formulas it has solved.
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Abstract. We prove that, if the initial knowledge of the intruder is given
by a deterministic bottom-up tree automaton, then the insecurity prob-
lem for cryptographic protocols with atomic keys for a bounded number
of sessions is NP-complete. We prove also that if regural languages (given
by tree automata) are used in protocol descriptions to restrict the form
of messages, then the insecurity problem is NexpTime-complete.

Furthermore, we define a class of cryptographic protocols, called regu-
lar protocols, such that the knowledge which the intruder can gain during
an unlimited number of sessions of a protocol is a regular language.

1 Introduction

Formal verification of cryptographic protocols has been attracting much atten-
tion in the recent years (see [10,4] for an overview). It has been very succesful in
finding flaws in cryptographic protocols. Althout the general verification prob-
lem is undecidable [6,1,7], there are interesting and important decidable variants
[5,6,13,2]. One of them is the insecurity problem of protocols analyzed w.r.t. a
bounded number of sessions, in presence of the so-called Dolev-Yao intruder,
which is NP-complete [13]. In this case, one assumes that the initial knowledge
of the intruder is a finite set of terms.

In this paper, we prove the decidability of security for bounded number of
sessions, when the initial knowledge of the intruder is a regular language, with
the assumption that keys used in protocols are atomic. We show that if the initial
knowledge of the intruder is given by a deterministic bottom-up tree automaton,
then the existence of an attack remains NP-complete.

A regular language which represents the initial knowledge of the intruder
can be an approximation or an exact representation of the set of messages which
could have been intercepted during an unbounded number of prior executions of
some protocols. In fact, approximating the knowledge of the intruder by means
of finite tree automata or similar formalisms has been studied by several authors
(see e.g. [9,11]). As a complementary result we define also a class of crypto-
graphic protocols, called regular protocols, such that the exact knowledge which
the intruder can gain during an unbounded number of sessions of a protocol is a
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regular language given by an alternating tree automaton of polynomial size w.r.t.
the size of the protocol. The security problem for such protocols is DexpTime-
complete. As an immediate consequence we obtain also an NexpTime algorithm
for deciding protocols which consist of two phases: in the first one, only regular
rules can be used, these rules can be, however, executed an unbounded number
of times. Then, in the second phase, non-regular rules (i.e. rules of an arbitrary
form as long as they have atomic keys) can be used a fixed number of times.

We extend also our decidability result to protocols which regular constraints,
i.e. protocols which impose some well-formness constraints on messages that can
be sent. In [13], a receive-send action of a principal is described by a rewrite rule
t → s (where t, s are terms). The meaning of such a rule is that a principal after
receiving any ground instance tθ of t (for any ground substitution θ), replies
sθ. It is impossible to model the behaviour of a principal who replies only if
the term tθ has some form which cannot be expressed by patern matching (e.g.
if tθ is list of encrypted messages). Protocols with regular constraints allow us
to express required form of messages by constraints of the form x ∈ L, where
L is a regular language (given by some tree automaton). Such constraints may
express some integrity requirements. For instance, a checksum for a message m
can be simulated by a term f(m) (where f is a new function symbol), which
can be adequate, if checksums are collision-free. This approach can be however
inadequate, when weak checksums (in which, given a checksum of a message, it
is possible to produce another message that evaluates to the same checksum)
are considered. Modeling the set {〈m, c〉 | c is the checksum of m} by a regular
language, and using regular constraints can give more precise results.

We show that the insecurity problem of protocols with regular constraints,
and with the initial knowledge of the intruder given by finite tree automata
is NexpTime-complete (it is NexpTime-hard, when the used automata are
deterministic, and remains in NexpTime even for alternating tree automata).

In this paper, we make the following abstractions. We use the Dolev-Yao
model of the intruder [5], which is a standard practice in formal verification of
cryptographic protocols. We formulate protocols in the rule-based model used
in [2,3,13]. In the case of regular protocols, where unbounded number of sessions
is considered, this model cannot express fresh nonces which have to be replaced
by constants (or some other terms). It implies that some false attacks can be
found. It should be mentioned, that this approach is also quite standard, since
verification of protocols with nonces is undecidable even in the restricted case,
where the size of messages is bounded.

Related Work. The security problem of protocols when the initial knowledge of
the intruder is given by finite automata has not been considered so far. Similarly,
there are no previous decidability results for protocols with regular constraints.

There are, however, many results related to regular protocols defined in
Sect. 5. Regular protocols are a generalization of regular unary-predicate pro-
grams proposed in [8]. They are also closely related to a class of monadic Horn
theories defined in [15]. Our regular protocols are more general than the classH1
defined in [12]. In [1], the authors specify a class of protocols (without nonces,



Regular Protocols and Attacks with Regular Knowledge 379

and satisfying so called independence condition) which is DexpTime-hard. Reg-
ular protocols are also more general than this class.

Structure of the Paper. Sect. 2 contains some basic definitions. In Sect. 3,
we prove that the insecurity problem for bounded number of sessions, when
the initial intruder knowledge is given by a deterministic tree automaton is
NP-complete. Sect. 4 contains complexity results for protocols with regular con-
straints. In Sect. 5, we define regular protocols, and prove their properties.

2 Preliminaries

Terms and Term-DAGs. Let T (Σ, V ) denote the set of terms over the signa-
ture Σ and the set of variables V . If V = ∅, then we can write T (Σ) instead of
T (Σ, V ). A term is ground, if it does not contain variables. A (ground) substi-
tution is a mapping from variables to (ground) terms, which, in a natural way,
is extended to a mapping from term to terms.

For a given signature Σ, a term-dag D is a labelled directed acyclic or-
dered graph such that, if a node v is labelled with a function symbol f of arity
n, then it has n ordered immediate successors v1, . . . , vn. In such a case we
write v =D f(v1, . . . , vn). For a term-dag D, and a vertex v =D f(v1, . . . , vn),
we recursively define the term t(v, D) represented by v in D by the equation
t(v, D) = f(t(v1, D), . . . , t(vn, D)).

Unary Definite Logic Programs. Let Σ be a signature, V be a set of vari-
ables, and P be a set of predicate symbols (we assume here that all predicates
are unary). If p ∈ P , and t ∈ T (Σ, V ), then p(t) is an atomic formula. An atomic
formula p(t) is ground, if t is ground. A unary definite logic program is a finite
set of clauses of the form a0 ← a1, . . . , an, where a0, . . . , an are atomic formulas.

We will use the following notation. Let P be a unary definite logic program,
let A, B be sets of ground atomic formulas. We write A �P B, if there exists
a proof of B with respect to P assuming A, i.e. a sequence a1, . . . , an of atomic
formulas such that each element of B occurs in a1, . . . , an, and, for each i =
1, . . . , n, we have either (i) ai ∈ A, or (ii) there exists a clause b0 ← b1, . . . , bm

in P , and a substitution θ such that ai = b0θ, and each of b1θ, . . . , bmθ occurs
in a1, . . . , ai−1.

For a set of atomic formulas A, and an atomic formula a, we write A �P a
for A �P {a}. We write also �P B for ∅ �P B. It is easy to show that A �P a, if
and only if a is in the least Herbrand Model of P ∪A.

Messages, Protocols, and Intruder. Messages are ground terms over the
signature Σ consisting of constants (atomic messages such as principal names,
nonces, keys), and the following binary function symbols: 〈·, ·〉 (pairing) {·}·
(symmetric encryption), and {·}p

· (public key encryption), with the restriction
that keys used in public key encryption are constants, i.e. that a term of the form
{t}p

s is valid only if s is a constant. We assume that there is a bijection ·−1 on
atomic messages which maps every public (private) key k to its corresponding
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I(〈x, y〉)← I(x), I(y), I(x)← I(〈x, y〉), I(y)← I(〈x, y〉), (1)

I({x}y) ← I(x), I(y), I(x)← I({x}y), I(y), (2)

I({x}p
k) ← I(x), I(k), I(x)← I({x}p

k), I(k−1) (for each key k) (3)

Fig. 1. TI — Intruder Rules

private (public) key k−1. We assume that Σ contains special constant Sec (a
secret). We will sometimes omit 〈·, ·〉, and write, for instance, {t, s}k instead of
{〈t, s〉}k.

A principal Π is a sequence (ri → si)n
i=1 of rules, where, for each i = 1, . . . , n,

we have ri, si ∈ T (Σ, V ), for a set of variables V , and every variable in si occurs
in r1, . . . , ri. By |Π | we denote the number of rules of Π (i.e. the length of
the sequence Π). A rule (r → s) is intended to specify receive-send action of a
principal who after receiving rθ, for a ground substitution θ, replies sθ. A protocol
is a finite set of principals. This method of representing principals and protocols
follows [13,3,2], where examples of modeling protocols in this framework can be
found. The set of variables occurring in a protocol P will be denoted by Var(P ).

In the Dolev-Yao model [5], the intruder has the entire control over the
network. He can intercept and memorize messages, generate new messages and
send them to participants with a false identity. We express the ability of the
intruder to generate (derive) new messages from a given set of messages by the
program TI in Figure 1, where the predicate symbol I is intended to describe the
intruder knowledge. The rules (1) express his ability to construct new messages
by pairing known messages, and by deconstructing them. The rules (2) and (3)
express his ability to crypt and decrypt messages, when he has appropriate keys.
For a set A of messages, let I(A) = {I(t) | t ∈ A}. We will say that the intruder
can derive a message t from messages A, if I(A) �TI I(t).

Now we give a definition of an attack for a bounded number of sessions. In
an attack, the intruder chooses some execution order of the rules of the given
protocol and then produces input messages for these rules. These input messages
have to be derived from the intruder’s initial knowledge and the output messages
obtained so far. The aim of the intruder is to derive the secret message Sec . Note
that in this definition of an attack, only security (or more precisely secrecy) is
the concern. We do not study here properties like for instance authentication or
liveness. If some number of interleaving sessions of a protocol is to be analyzed,
then these sessions have to be encoded into the protocol, which is the standard
approach when protocols are analyzed w.r.t. a bounded number of sessions (see,
for instance [13,2]).

Formally, given a protocol P = {Π1, . . . , Πl}, a protocol execution scheme is
a sequence of rules π = π1, . . . , πn such that each element of π can be assigned to
one of the participants Π1, . . . , Πl, and, for each participant Πk (k = 1, . . . , l),
the subsequence of the elements of π assigned to Πk is Π1

k , . . . , Πm
k , for some
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m ≤ |Π |, where Πi
k is the i-th rule of Πk.1 An attack with an initial knowledge

A0 is a pair (π, σ), where π is a protocol execution scheme, and σ is a ground
substitution such that, for all i = 1, . . . , n, we have

I(A0), I(s1σ), . . . , I(si−1σ) �TI I(riσ), and (4)
I(A0), I(s1σ), . . . , I(snσ) �TI I(Sec ). (5)

A protocol is insecure, if there exists an attack on it.

Finite Tree Automata. We will express finite tree automata by means of
unary logic programs. We say that a logic program T with a set of accepting
predicate symbols QF is an alternating finite tree automaton, if each rule of T
has the form

p0(f(x1, . . . , xn)) ← p1(y1), . . . , pm(ym) (6)

where x1, . . . , xn are distinct variables, and for each i = 1, . . . , m, the variable
yi ∈ {x1, . . . , xn}. A program is a nondeterministic finite tree automaton, if each
its rule has the form

p0(f(x1, . . . , xn)) ← p1(x1), . . . , pn(xn). (7)

where x1, . . . , xn are distinct variables. A program T is a deterministic bottom-
up finite tree automaton, if each its rule has the form (7), and for each function
symbol f and each sequence of predicate symbols p1, . . . , pn, the program con-
tains at most one clause of the form (7). It is easy to see that, in this case, for
each term t, there exists at most one predicate symbol p such that �T p(t).

Let T with QF be an automaton. A term t is accepted by (T, QF ), if �T q(t),
for some q ∈ QF . The set of terms accepted by (T, QF ) will be denoted by
L(T, QF ).

3 Attacks with Regular Knowledge

In this section we consider the insecurity problem of protocols analyzed w.r.t. a
bounded number of sessions, assuming that the initial knowledge of the intruder
is a regular language given by a finite tree automaton. We assume that keys
(both in symmetric and public key encryption) are atomic, which is the only
assumption not made in [13], where only keys used in public key encryption were
assumed to be atomic (in other respects, the result presented here subsumes the
decidability result from [13]).

The rest of this section is devoted to prove that, when the initial knowledge
of the intruder is given by a deterministic bottom-up tree automaton, then the
insecurity problem is NP-complete. The proof proceeds in two steps. First, in
1 More formally, a sequence π1, . . . , πn of rules is a protocol execution scheme, if there

is a function f : {1, . . . , n} → {1, . . . , l} such that, for each k = 1, . . . , l, assuming
that integers i1 < · · · < im are all the elements of f−1(k), we have πij = Πj

k, for
each j = 1, . . . , m.
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Section 3.1, we introduce stage theories of protocols which allow us to repre-
sent attacks in more uniform way. Next, in Section 3.2, we introduce the no-
tion of adags which are labelled term-dags suitable to represent attacks. We
show that if an adag exists, then there exists an adag of polynomial size. It
gives rise to the nondeterministic polynomial-time algorithm for the insecurity
problem.

3.1 Stage Theories

In this subsection we express the existence of an attack, using a stage theory
of a protocol which takes into account the fact that A0 is a regular language
represented by a logic program (and hence A0 and the intruder inference rules can
be represented in a uniform way). Second, instead of representing the knowledge
of the intruder by the predicate I, the family of predicate symbols I0, . . . , Im is
used to represent his knowledge at different stages of an attack.

Let P be a protocol, and A0 be the initial knowledge of the intruder, rep-
resented by a finite tree automaton (T, QF ). Let K be the set consisting of the
constant Sec , and all the keys of the given protocol. We can assume without loss
of generality that no rule of P have the form a → s, for a ∈ K (if it is the case,
we can replace it by e.g. 〈a, a〉 → s, obtaining a protocols which is equivalent
w.r.t. the existence of an attack).

Let π = (ri → si)n
i=1 be a protocol execution scheme, and Ω = K∪{1, . . . , n}.

A sequence e = e1, . . . , em of elements of Ω is called a stage sequence for π, if
e contains all the elements Sec , 1, . . . , n, and whenever ei = k and ej = l, for
i < j, then k < l.

For e ∈ Ω, let us define er, and es by the equations er = re, es = se,
if e ∈ {1, . . . , n}, and er = es = e, otherwise. Let Er

i = {er
1, . . . , e

r
i}, and

Es
i = {es

1, . . . , e
s
i}. The set Es

i represents keys and terms of the form sjσ available
to the intruder at the i-th stage of an attack. The set Er

i represents keys and
terms of the form rjσ which should be known to the intruder before the i-th
stage. Let Te denote the program T extended with the stage theory for T and e
(Figure 2), where QI = {I0, . . . , Im} are fresh predicate symbols. The predicate
symbol Ik is intended to describe the intruder knowledge at the k-th stage of an
attack with a substitution σ, where the terms from {tσ | t ∈ Es

k} are available
to him.

Ii(f(x1, . . . , xn))← q1(x1), . . . , qn(xn) (8)

whenever q0(f(x1, . . . , xn))← q1(x1), . . . , qn(xn) is a rule of T , and q0 ∈ QF ;

Ii(〈x, y〉)← Ij(x), Ik(y) if i ≥ j, k (9)

Ii(x)← Ij(〈x, y〉) Ii(y)← Ij(〈x, y〉) if i ≥ j (10)

Ii(x)← Ij({x}a) Ii(x)← Ij({x}p

a−1) if i ≥ j, and a ∈ Es
i , (11)

Ii({x}a)← Ij(x) Ii({x}p
a)← Ij(x) if i ≥ j, and a ∈ Es

i . (12)

Fig. 2. The Stage Theory for T and e
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Lemma 1. Let π be a protocol execution scheme, and σ be a ground substitution.
The pair (π, σ) is an attack iff there is a stage sequence e for π such that

I1(es
1σ), . . . , Im(es

mσ) �Te I0(er
1σ), . . . , Im−1(er

mσ). (13)

Proof. First, suppose that (13) holds, for some π, e, and σ, and that Δ is a
proof of it. Without loss of generality, we can assume that Ik(t) occurs in Δ
before Il(s), if k < l. Let Δi denote the subsequence of Δ containing only facts
of the form Ii(t), and let Δ≤i be the concatenation of Δ1, . . . , Δi. Let Δ∗

≤i

be the sequence obtained from Δ≤i by substituting Ik by I. One can show, by
induction on i, that Δ∗

≤i is a proof w.r.t. TI which uses only assumptions from
I(A0)∪{I(sjσ) : sj ∈ Es

i} (i.e. Δ∗
≤i is a proof of I(A0)∪{I(sjσ) : sj ∈ Es

i} �TI ∅).
Now, let k be any integer from {1, . . . , n}. There exists i such that ei = k.
By the definition of Es

i , we have es
i = sk /∈ Es

i−1. Moreover, if sl ∈ Es
i−1,

then l < k. So, Δ∗
≤i−1 is a proof w.r.t. TI which uses only assumption from

I(A0), I(s1σ), . . . , I(sk−1σ). By the definition of Δ, we have Ii−1(rkσ) ∈ Δ≤i−1

(because rk = er
i), hence Δ∗

≤i−1 is a proof of I(A0), I(s1σ), . . . , I(sk−1σ) � I(rkσ).
Similarly, we show that (5) holds. So, we can conclude that (π, σ) is an attack.

Now, suppose that we have an attack (π, σ). Let Πi be a proof of (4), for i =
1, . . . , n, and let Πn+1 be a proof of (5). We split each Πk (for k = 1, . . . , (n+1))
into the maximal (w.r.t. its length) sequence Π1

k , . . . , Πmk

k such that the last el-
ement of Πi

k, for 1 ≤ i < mk, is of the form I(a) for a ∈ K, and this occurrence
of I(a) is the only one in Π1, . . . , Πk−1, Π

1
k , . . . , Πi

k. We want to re-index the ob-
tained sequence of Πi

k, so let Π̂1, . . . , Π̂N = Π1
1 , . . . , Πm1

1 , . . . , Π1
n+1, . . . , Π

mn+1
n+1 .

For i = 1, . . . , N , let Δi be the sequence of facts obtained from Π̂i by sub-
stituting each I(t) by Ii−1(t), and let ei be equal to k, if Π̂i = Πmk

k , for some
k, and, otherwise, let ei be a, where I(a) is the last element of Π̂i. Finally, let
S = {t ∈ A0 | I(t) occurs in Π1, . . . , Πn+1}, and let Δ0 be a proof of �Te I0(S).
One can prove that the concatenation of Δ0, . . . , ΔN is a proof of (13).2 ��

A proof is normal, if for each term t, it contains at most one fact of the form
Ik(t) (for some k). The following fact is easy to prove.

Lemma 2. It holds (13) iff there is a normal proof Δ of

I1(es
1σ), . . . , Im(es

mσ) �Te Ii1(e
r
1σ), . . . , Iim(er

mσ), (14)

where, for each k = 1, . . . , m, we have 0 ≤ ik < k.

3.2 DAG of the Attack

Suppose that we have a protocol P , a protocol execution scheme π = (ri →
si)n

i=1, and a stage sequence e for π. We denote by T (P ) the set of subterms of
{ri, si}ni=1 ∪ K. Suppose that the initial knowledge of the intruder is given by a
deterministic bottom-up automaton (T, QF ) with the set of predicate symbols
Q, and the set of accepting predicate symbols QF . Let Z be the set of elements
of the form ε, and I

↓
k, I

↑
k (for 0 ≤ k ≤ |e|).

2 We use here the assumption that no rule of P is of the form a → s, for a ∈ K.
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Definition 1. A dag of the attack (an adag for short) for P, e is a tu-
ple 〈D, α, δ1, δ2〉 where D is a term-dag over Σ with the set of vertices V ,
δ1 : V → Q, δ2 : V → Z, and α is a mapping from T (P ) to V such that

(i) if α(f(t1, . . . , tn)) = v, then v =D f(v1, . . . , vn), and α(ti) = vi, for i =
1, . . . , n,

(ii) if v0 =D f(v1, . . . , vn), and δ1(vi) = qi, for i = 0, . . . , n, then T contains
the rule q0(f(x1, . . . , xn)) ← q1(x1), . . . , qn(xn),

(iii) if δ2(v) = I
↑
i , then we have either (a) δ1(v) ∈ QF , or (b) for each child

v′ of v, δ2(v′) = I
↓
j or δ2(v′) = I

↑
j , for some j ≤ i, and if v =D {v′}a or

v =D {v′}p

a then a ∈ Es
i ,

(iv) if δ2(v) = I
↓
i , then either (a) v = α(sk), for sk = es

i, or (b) for some parent
v′ of v, δ2(v′) = I

↓
j , for some j ≤ i, and if v′=D {v}a or v′=D {v}p

a−1 , then
a ∈ Es

i ,
(v) if v = α(er

i), then δ2(v) = I↓j or δ2(v) = I↑j , for some j < i.

The following lemma links the existence of an attack and the existence of an
adag for a given protocol and stage sequence.

Lemma 3. Let P be a protocol. There exists an attack on P iff there exists a
stage sequence e and an adag for P, e.

Proof. Suppose that there is an attack (π, σ). By Lemma 1 and Lemma 2, there
is a sequence e, and a normal proof Δ of (14). Let D be the dag representing
all the terms of the form tσ, where t ∈ T (P ) (i.e. for each term s of the form
tσ, D contains a vertex v representing s). For t ∈ T (P ), let α(t) be the vertex v
such that t(v, D) = tσ. For a vertex v of D, let δ1(v) be (the only) state which
T assigns to tv = t(v, D). Let δ2(v) = ε, if Δ does not contain Ij(tv), for any
j. If Ij(tv) occurs in Δ, then let δ2(v) be I

↑
j , if Ij(tv) is obtained using (9) or

(12), and let δ2(v) be I
↓
j , otherwise (in this case either tv = skσ, for sk = es

j, or
Ij(tv) is obtained in Δ using (10) or (11)). One can show that 〈D, α, δ1, δ2〉 is an
adag.

Now, suppose that 〈D, α, δ1, δ2〉 is an adag for P, e. Let σ(x) = t(α(x), D).
We produce the following sequence of facts: First, we put all the fact of the form
Ik(t), where δ2(v) = I

↓
k (for some k), and t = t(v, D), in such a way that q(t)

is before q′(t′), if t > t′. Second, we put all the facts of the form p(t), where
δ1(v) = p, for t = t(v, D), and all the facts of the form Ik(t) (for some k), where
δ2(v) = I

↑
k, for t = t(v, D), in such a way that q(t) is before q′(t′), if t < t′. One

can prove that this sequence is a normal proof of (14), which by Lemma 1 and
Lemma 2, implies that there exists an attack. ��

Lemma 3 is a crucial step of our construction, because it characterizes the
existence of an attack by a structure which is defined by some local properties
((i)–(v) of Definition 1). As we will see, it allows us to minimize adags, roughly
speaking, by merging vertices which are indistinguishable from the point of view
of this local properties.
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Let D be an adag. We say that v ∈ V is free, if v �= α(t), for each t ∈ T (P ).
Let δ(v) = (δ1(v), δ2(v)). A vertex v is said to be a push vertex, if δ2(v) = I

↓
k, for

some k; otherwise it is a non-push vertex. A vertex v is a top vertex, if δ2(v) = I
↓
i

(and so it is a push vertex), and v = α(sk), for sk = es
i (and so we do not have

to use its parents in order to ensure that (iv) of Definition 1 is met).
Now, we will show that if there exists an adag (for some P, e) then there

exists an adag of polynomial size. The proof proceeds in two steps. First, in
Lemma 4, we minimize the number of non-push vertices. It is a simple step
which resembles the proof of pumping lemma for regular (tree) languages. In the
second step (Lemma 5), we show how to minimize the number of push vertices.
To explain this step, it is convenient to think that Item (iv) of Definition 1 allows
us to transfer labels of the form I

↓
k down the adag, so that it can be used by

pop vertices (Item (iii)). Now, roughly speaking, if a number of pop vertices is
polynomially bounded, then a polynomially bonded number of push vertices is
sufficient to transfer the necessary information from top vertices to pop-vertices
(which is expressed by the pushing relation in the proof of Lemma 5).

Lemma 4. If there is an adag D, then there is an adag D′ with the same
number of push vertices, and with the set of non-push free vertices of the size
at most c = m · (2n + 1), where n is the length of e, and m is the number of
predicate symbols of T .

Proof. Let v, v′ be free non-push vertices of D with δ(v) = δ(v′). We can assume
that v �< v′ (if it is not the case, we can switch them). Let us remove v and replace
it by v′ (i.e. whenever v was a child of u, we make v′ a child of u instead). One
can show that in this way we obtain an adag. We repeat this step until there
are no two distinct free non-push vertices with the same value of δ. ��

Lemma 5. If there is an adag D, then there is an adag D∗ of polynomial size
w.r.t. the size of the given protocol, and the program T .

Proof. Suppose that D is an adag Let D′ be the adag obtained from D using
Lemma 4. Let W be the set of all the push vertices of D′ which either are not
free, or are children of some non-push vertices. Note that |W | ≤ 2c + |P |, where
c is the constant from Lemma 4.

For each non-top vertex v with δ2(v) = I
↓
k, we chose one of its parents h(v)

such that δ2(h(v)) = I
↓
k′ , for some k′ ≤ k (so h(v) can be used to verify the

point (iv) of Definition 1). We will write v′ �→h v, if v′ = h(v), and denote the
transitive closure of �→h by �→∗

h. We will call �→h a pushing relation of D. Note
that �→h defines a forest such that the roots of its trees are top vertices, and
every push vertex is a node of this forest. Let us denote this forest by Th. For a
push vertex v, let G(v) be the set {w ∈ W | v �→∗

h w} (note that if v ∈ W , then
v ∈ G(v)).

Now, we perform the following changes in D′. Let us set δ2 to ε in each
free push vertex v such that G(v) = ∅. One can show that in this way we
obtain an adag Next, suppose that v, v′ are distinct free vertices such that
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δ(v) = δ(v′) = (q, I↓k) with G(v) = G(v′) �= ∅. Note that v �→∗
h v′ or v′ �→∗

h v.
We assume the former case. Let us remove v and replace it by v′, and put
h(v′) = h(v). Let δ2(u) be set to ε in each push vertex u such that v �→∗

h u, and
v′ ��→∗

h u. One can prove that what we have obtained is an adag Note that no
vertex from W has been removed, and moreover, for v ∈ W , the value of δ(v)
has not been changed.

We repeat this step until there are no two distinct free push vertices v, v′

with δ(v) = δ(v′) and G(v) = G(v′). Note that each time we modify the adag
we modify also its pushing relation. Let D′′ be the adag obtained in this way,
and let �→h′′ be its pushing relation. Because W is polynomial, Th′′ is polynomial
as well: this forest has at most |W | leafs (each leaf is an element of W ), and each
its path is not longer than |W | · c (note that c is the number of distinct values of
δ, and |W | is the maximal number of distinct values of the function G on each
path). Each push vertex of D′′ is in Th′′ , so the number of push vertices in D′′

is polynomial. Let us apply Lemma 4 to D′′ obtaining D∗. The number of push
vertices is unchanged, and the number of free non-push vertices is polynomial.
Thus D∗ has polynomial size. ��
Theorem 1. Protocol insecurity for a bounded number of sessions, with the ini-
tial knowledge of the intruder given by a deterministic bottom-up tree automaton
is NP-complete.

Proof. For deciding a protocol, we guess a protocol execution scheme, a sequence
e for it, then we guess an adag of polynomial size (verifying whether such
a guessed structure is an adag can be easily done in polynomial time). NP-
hardness follows from NP-hardness of deciding protocols without composed keys,
with the initial knowledge of the intruder given as a finite set [13]. ��

4 Protocols with Regular Constraints

Definition 2. A protocol with regular constraints is a tuple (P,D), where P is
a protocol, and D is a domain assignment which assigns a regular language Dx

(the domain of x) to each variable x ∈ Var(P ).
For a protocol with regular constraint (P,D), a pair (π, σ) is an attack on

(P,D), if it is an attack on P , and furthermore, for each x ∈ Var(P ), we have
xσ ∈ Dx.

We consider the problem of deciding protocols with regular constraints, where
both the initial knowledge of the intruder, and languages Dx are given by finite
tree automata. As we will see the choice of the type of automata (deterministic,
nondeterministic, alternating) does not have any impact on the complexity of
the problem: in all these cases the problem turns out to be NexpTime-complete.

Proposition 1. The problem of deciding a protocol with constraints (P,D),
where the initial knowledge of the intruder and the languages Dx, for x ∈ Var(P ),
are given by alternating tree automata can be reduced to the problem of deciding
a protocol (without constraints) with a regular initial knowledge of the intruder
given by an alternating automaton.
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Proof. Suppose that (P,D) is a protocol with regular constraints, and that
Var(V ) = {x1, . . . , xm}. Let A0 and {Ai}mi=1 be alternating tree automata which
describe the initial knowledge of the intruder and the languagesDxi , respectively.
We assume that these automata have disjoint sets of states, and that the accept-
ing state of Ai is qi (for 0 ≤ i ≤ m). Let A denote the union of A0, . . . , Am with
the accepting state q0 (recall that it is the accepting state of A0).

Let P ′ be the protocol P with one additional principal having the only rule

Sec , {x1}k1
, . . . , {xm}km

→ Sec ′,

where k1, . . . , km and Sec ′ are fresh constants. Let A′ be the automaton A with
additional transitions that assign the state q0 to a term {t}ki

only if t can be
assigned the state qi. One can show that the intruder with the initial knowledge
given by A0 can derive Sec in the protocol (P,D), if and only if the intruder
with the initial knowledge given by A′ can derive Sec ′ in the protocol P ′. ��

It is known that, for an alternating tree automaton, one can construct an
equivalent deterministic bottom-up tree automaton of exponential size. Hence,
Proposition 1, and Theorem 1 have the following consequence.

Theorem 2. The insecurity of a protocol (P,D) with the initial knowledge of
the intruder and the languages Dx given by alternating tree automata is in Nex-
pTime.

One can show that the exponential bounded tiling problem (which is Nexp-
Time-hard) can be reduced to the problem of deciding a protocol with regular
constraints which use deterministic automata only. Thus we have the following
result (the proof is given the extended version of this paper [14]).

Theorem 3. The insecurity of a protocol (P,D) with regular constraints is
NexpTime-hard, even if the initial knowledge of the intruder and languages
Dx are given by bottom-up deterministic tree automata.

Let us note that the reduction given in the proof of Proposition 1 has the
following property: if the initial knowledge of the intruder and the languages
Dx are given by nondeterministic (but not alternating) tree automata, then the
resulting automaton A′ is also nondeterministic (does not use alternations). We
can use this fact and Theorem 3 to obtain the following result, which shows
that the assumption about the determinism of the automaton in Theorem 1 is
essential.

Corollary 1. The insecurity problem of protocols (without constraints) with
the initial intruder knowledge given by nondeterministic tree automata
is NexpTime-hard.

5 Regular Protocols

The aim of this section is to specify a (possibly general) class of protocols such
that each protocol P in this class has the following property: the knowledge which
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the intruder can gain during an unbounded number of sessions of P is a regular
language. The class defined here is closely related to regular unary-predicate
programs defined in [8], and to a class of monadic Horn theories defined in [15].

In this section we consider the analysis w.r.t. unbounded number of sessions.
We should note that in this case, the formalism used do describe protocols does
not model nonces (in the case of a bounded number of sessions nonces can be
modeled by constants). Hence, we can assume without loss of generality, that a
protocol is just a set of (independent) rules3, and that each of its rules r → s
says that if the intruder knows a term rθ, than it can also know sθ, for any
ground substitution θ.

Definition 3. A term s covers x in a term t, if either s = x, or s = f(s1, . . . , sn),
for some f ∈ Σ, and each occurrence of x in t is in the context of one of s1, . . . , sn.

For instance, s = 〈{x}b, y〉 covers x in t = {{x}b, {y, {x}b}a}a (because each
occurrence of x in t is in the context of {x}b), but s does not cover x in {{x}c}b.
Note also that any term covers x in {y}a.

Definition 4. Let ϕ be the function, which assigns a set of terms to a term,
defined by the equations ϕ(t) = ϕ(t1) ∪ ϕ(t2), if t = 〈t1, t2〉, and ϕ(t) = {t},
otherwise.

For instance ϕ(〈{b}k, 〈{b, c}k, d〉〉) = {{b}k, {b, c}k, d}.

Definition 5. A rule r → s is regular, if for each s′ ∈ ϕ(s) the following condi-
tions hold: s′ is linear, and each term r′ ∈ ϕ(r) can be assign a subterm γs′(r′)
of s′, such that:

(i) for each r′ ∈ ϕ(r) and each x ∈ Var(s′), the term γs′(r′) covers x in r′,
(ii) for each r′, r′′ ∈ ϕ(r), if a variable y /∈ Var(s′) occurs in both r′ and r′′,

then γs′(r′) = γs′(r′′).

A protocol is regular, if it consists of regular rules only.

Example 1. The rule r → s, where r={NA, x, B, {x, A}p

KB
}p

KA
and s = {x, A}p

KB

is regular. In fact, for γs(r) = x, the conditions of Definition 5 hold (it is because
x covers x in any term, and Var(s) = {x}; note also that ϕ(r) = {r} and
ϕ(s) = {s}). Similarly, one can easily check that each rule which has only one
occurrence of a variable on the right-hand side, is regular.

Example 2. The rule {{x, y}a, z}b, {z, z}c → {{y, x}b, d}c, {z, {x, y}a}c is regu-
lar. To show it, let us denote the left hand side by r, and the right-hand side
by s. Note that ϕ(r) = {r1, r2}, where r1 = {{x, y}a, z}b and r2 = {z, z}c, and

3 If it is not the case, each principal {ri → si}n
i=1 can be transformed to n principals

with rules r1, . . . , ri → si, for each i = 1, . . . , n. It is easy to check that this transfor-
mation is correct in the following sense: the sets of messages the intruder can gain
during an unbounded number of sessions of the original protocol and the protocol
after the transformation are the same.
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ϕ(s) = {s1, s2}, where s1 = {{y, x}b, d}c and s2 = {z, {x, y}a}c. Clearly, terms
s1 and s2 are linear. So, let γs1(r1) = γs1(r2) = 〈y, x〉 (note that 〈y, x〉 is a sub-
term of s1, because {y, x}b is a shorthand for {〈y, x〉}b), and γs2(r1) = γs2(r2) =
〈z, {x, y}a〉. One can see that 〈y, x〉 covers x and y in r1 and r2. One can also
see that 〈z, {x, y}a〉 covers x, y, and z in r1 and r2.

Similarly, we can show that the rule {z, {{y}a, x}b}a → {{x, {y}a}b, z
′}

c
is

regular. The rule {{x}b, y}a → {x, {y}b}a is not regular.

Theorem 4. The knowledge which the intruder can gain during an unbounded
number of sessions of a regular protocol, can be described by an alternating tree
automaton with the polynomial number of states w.r.t. the size of the protocol.
Moreover, such an automaton can be computed in exponential time.

Proof (sketch). First, we translate a given regular protocol to a logic program:
for each rule r → s, we produce clauses of the form I(s′) ← I(r1), . . . , I(rn), where
s′ ∈ ϕ(s), and {r1, . . . , rn} = ϕ(r). Suppose that T is a logic program obtained
in this way Let T ′ = T ∪TI. One can show that the knowledge that the intruder
can gain during the protocol execution is the interpretation of I in the least
Herbrand model of T ′. Moreover one can show that each clause s ← r1 . . . rn of
T ′ meets the following conditions: s is linear, and each term ri (for i = 1, . . . , n)
can be assign a subterm γ(ri) of s, such that: (i) for each i = 1, . . . , n, and each
x ∈ Var(s), the term γ(ri) covers x in ri, (ii) for each i, j = 1, . . . , n, if a variable
y /∈ Var(s) occurs in both ri and rj , then γ(ri) = γ(rj). We will call clauses of
this form regular.

Now, T ′ can be translated to equivalent program T ′′ which consists of rules
of the following form only:

p(f(x1, . . . , xn)) ← p1(t1), . . . , pn(tn), where f(x1, . . . , xn) is linear. (15)

In order to obtain T ′′, one can first eliminate clauses with the head of the form
p(x) (we assume that we have a fixed signature). Now, suppose that a clause has
the form p(〈s1, s2〉) ← p1(t1), . . . , pn(tn) (for other function symbols the proof
proceeds similarly). Let γ be as in the definition of regular clauses. We divide
the literals p1(t1), . . . , pn(tn) into three groups A, B, C such that p(ti) ∈ A iff
γ(ti) = 〈s1, s2〉, ti ∈ B iff γ(ti) ≤ s1, and ti ∈ C iff γ(ti) ≤ s2. We remove the
rule, and add the following ones:

p(〈x, y〉) ← A[s1/x, s2/y], p′(x), p′′(y), p′(s1) ← B, p′′(s2) ← C,

where p′ and p′′ are fresh predicate symbols. We recursively repeat this procedure
for p′ and p′′. One can show that the size of T ′′ is polynomial w.r.t. the size of T .

Monadic Horn theories consisting of clauses of the form (15) are considered in
[15], where it is shown that they can be finitely saturated by a sort resolution4.
We can proceed similarly. Roughly speaking, we saturate P ′, successively adding
simpler clauses, and finally, we remove all the clauses which are not of the form
4 One can also show that the program T ′′ is in the class H1 defined in [12], and so,

by Theorem 1 of [12], is normalizable.
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(6) (see page 381). Thus the obtained program is just an alternating automaton.
We show that the saturation process stops after at most exponential number of
steps, and that the obtained program is equivalent to P . The detailed proof can
be found in the extended version of the paper [14].

Theorem 5. Secrecy of a regular protocol is DexpTime-complete.

Proof. To decide a secrecy of a regular protocol, we build (in exponential time)
an alternating tree automaton A of polynomial number of states which describes
the knowledge of the intruder, and check whether Sec ∈ L(A), which can be done
in exponential time.

We prove DexpTime-hardness by reduction of the emptiness of the inter-
section of regular tree languages given by n finite automata. We build a pro-
tocol that encode all these automata in such a way that the i-th automaton
recognizes a term t iff the intruder knows the term {t}ki

. We add the rule
{x}k1

, . . . , {x}kn
→ Sec to the protocol. One can see that the protocol is in-

secure, iff the intersection of the given automata is not empty. ��

By a very similar technique, regular protocols can be extended to work with
regular constraints: we can encode a finite state automaton A by some regular
rules so that t ∈ L(A) iff I({t}kA

), and add terms of the form {x}kA to the
left-hand side of rules.

The results of this section and Sections 3 can be easily combined to achieve
decidability of secrecy of the following two-phases protocols. Suppose that a pro-
tocol, which uses only atomic keys, consists of some regular rules P1, and some
rules P2 of arbitrary form. The intruder can execute rules from P1 unbounded
number of times (building a knowledge which is a regular language), and then
he can execute the rules of P2 at most once. Because, for an alternating tree
automaton, one can construct an equivalent deterministic bottom-up tree au-
tomaton of exponential size, by Theorems 4 and 1, the insecurity problem of
such a protocol can be decided in NexpTime.

6 Conclusions

We have extended the decidability result for protocols analyzed w.r.t. a bounded
number of sessions to the case when the initial knowledge of the intruder is a
regular language. We have shown that if this language is given by a deterministic
bottom-up automaton, then the insecurity problem of a protocol is NP-complete,
assuming that complex keys are not allowed. We have showed also that if we add
to protocols regular constraints which guarantee that messages have a required
form, then the problem of deciding protocols is NexpTime-complete. These
results can be a starting point for developing practical algorithms for detecting
attacks with regular initial knowledge.

We have also defined a family of protocols such that the set of messages that
the intruder can gain during unbounded number of sessions is exactly a regular
language.
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An open problem is decidability of the security of protocols with complex
keys against attacks with regular initial knowledge.
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A. Cortesi and G. Filé, eds., vol. 1694 of Lecture Notes in Computer Science,
Springer, 1999, pp. 149–163.

12. F. Nielson, H. R. Nielson, and H. Seidl, Normalizable horn clauses, strongly
recognizable relations, and spi., in SAS, vol. 2477 of Lecture Notes in Computer
Science, Springer, 2002, pp. 20–35.

13. M.RusinowitchandM.Turuani,Protocolinsecuritywithafinitenumberofsessions,
composed keys is NP-complete., Theor. Comput. Sci., 1-3 (2003), pp. 451–475.

14. T. Truderung, Regular protocols and attacks with regular knowledge. Extended
version, 2005. Available at http://www.ii.uni.wroc.pl/~tt/papers/.

15. C. Weidenbach, Towards an automatic analysis of security protocols in first-order
logic., in CADE, vol. 1632 of Lecture Notes in Computer Science, Springer, 1999,
pp. 314–328.



The Model Evolution Calculus with Equality

Peter Baumgartner1 and Cesare Tinelli2

1 Max-Planck Institute for Computer Science, Saarbrücken
baumgart@mpi-sb.mpg.de

2 Department of Computer Science, The University of Iowa
tinelli@cs.uiowa.edu

Abstract. In many theorem proving applications, a proper treatment of equa-
tional theories or equality is mandatory. In this paper we show how to integrate
a modern treatment of equality in the Model Evolution calculus (ME), a first-
order version of the propositional DPLL procedure. The new calculus, MEE, is
a proper extension of the ME calculus without equality. Like ME it maintains
an explicit candidate model, which is searched for by DPLL-style splitting. For
equational reasoning MEE uses an adapted version of the ordered paramodu-
lation inference rule, where equations used for paramodulation are drawn (only)
from the candidate model. The calculus also features a generic, semantically justi-
fied simplification rule which covers many simplification techniques known from
superposition-style theorem proving. Our main result is the correctness of the
MEE calculus in the presence of very general redundancy elimination criteria.

1 Introduction

The Model Evolution (ME) Calculus [4] has recently been introduced by the authors of
this paper as a first-order version of the propositional DPLL procedure [7]. Compared
to its predecessor, the FDPLL calculus [2], it lifts to the first-order case not only the
core of the DPLL procedure, the splitting rule, but also DPLL’s simplification rules,
which are crucial for effectiveness in practice.

Our implementation of the ME calculus, the Darwin system [3], performs well in
some domains, but, unsurprisingly, it generally performs poorly in domains with equal-
ity. In this paper we address this issue and propose an extension of the ME calculus
with dedicated inference rules for equality reasoning. These rules are centered around
a version the ordered paramodulation inference rule adapted to the ME calculus. The
new calculus, MEE, is a proper extension of the ME calculus without equality. Like
ME, it searches for a model of the input clause set by maintaining and incrementally
modifying a finite representation, called a context, of a candidate model for the clause
set. In MEE, equations from the context, and only those, are used for ordered paramod-
ulation inferences into the current clause set. The used equations are kept together with
the clause paramodulated into and act as passive constraints in the search for a model.

In this paper we present the calculus and discuss its soundness and completeness.
The completeness proof is obtained as an extension of the completeness proof of the
ME calculus (without equality) by adapting techniques from the Bachmair/Ganzinger
framework developed for proving the completeness of the superposition calculus [1,11,

R. Nieuwenhuis (Ed.): CADE 2005, LNAI 3632, pp. 392–408, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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e.g.]. The underlying model construction technique allows us to justify a rather gen-
eral simplification rule on semantic grounds. The simplification rule is based on a
general redundancy criterion that covers many simplification techniques known from
superposition-style theorem proving.

Related Work. Like ME, the MEE calculus is related to instance based methods (IMs),
a family of calculi and proof procedures developed over the last ten years. What has
been said in [4] about ME in relation to IMs also applies to MEE when equality is not
an issue, and the points made there will not be repeated here in detail. Instead, we focus
on instance based methods that natively support equality reasoning.

Among them is Ordered Semantic Hyperlinking (OSHL) [12]. OSHL uses rewriting
and narrowing (paramodulation) with unit equations, but requires some other mecha-
nism such as Brand’s transformation to handle equations that appear in nonunit clauses.

To our knowledge there are only two instance-based methods that have been ex-
tended with dedicated equality inference rules for full equational clausal logic. One is
called disconnection tableaux, which is a successor of the disconnection method [6].1

The other is the IM described in [9]. Both methods are conceptually rather different
from ME in that the main derivation rules there are based on resolving pairs of comple-
mentary literals (connections) from two clauses, whereas ME’s splitting rule is based
on evaluating all literals of a single clause against a current candidate model.

The article [10] discusses various ways of integrating equality reasoning in dis-
connection tableaux. It includes a variant based on ordered paramodulation, where
paramodulation inferences are determined by inspecting connections between literals
of two clauses. Only comparably weak redundancy criteria are available.

The instance based method in [9] has been extended with equality in [8]. Beyond
what has been said above there is one more conceptual difference, in that the inference
step for equality reasoning is based on refuting, as a subtask, a set of unit clauses (which
is obtained by picking clause literals).

Paper Organization. We start with an informal explanation of the main ideas behind
the MEE calculus in Section 2, followed by a more formal treatment of contexts and
their associated interpretations in Section 3. Then, in Section 4, we present what we
call constrained clauses and a way to perform equality reasoning on them. We describe
the MEE calculus over constrained clauses in Section 6, and discuss its correctness in
Section 7. For space constraints we cannot provide proofs of the results presented in
this paper. Also, we must assume that the reader has already some familiarity with the
ME calculus. All proofs as well as a more detailed exposition the calculus can be found
in the paper’s extended version [5].

2 Main Ideas

The ME calculus of [4], and by extension the MEE calculus, is informally best de-
scribed with an eye to the propositional DPLL procedure, of which ME is a first-order

1 Even in that early paper a paramodulation-like inference rule was considered, however a rather
weak one.



394 P. Baumgartner and C. Tinelli

lifting. DPLL can be viewed as a procedure that searches the space of possible inter-
pretations for a given clause set until it finds one that satisfies the clause set, if it exists.
This can be done by keeping a current candidate model and repairing it as needed until
it satisfies every input clause. The repairs are done incrementally by changing the truth
value of one clause literal at a time, and involve a non-deterministic guess (a “split”) on
whether the value of a selected literal should be changed or kept as it is. The number of
guesses is limited by a constraint propagation process (“unit propagation”) that is able
to deduce deterministically the value of some input literals.

Both ME and MEE lift this idea to first-order logic by maintaining a first-order can-
didate model, by identifying instances of input clauses that are falsified by the model,
and by repairing the model incrementally until it satisfies all of these instances. The
difference between the two calculi is that MEE works with equational models, or E-
interpretations, that is, Herbrand interpretations in which the equality symbol is the
only predicate symbols and always denotes a congruence relation.

The current E-interpretation is represented (or more precisely, induced) by a con-
text, a finite set of non-ground equations and disequations directly processed by the
calculus. Context literals can be built over two kinds of variables: universal and para-
metric variables. The difference between the two lies in how they constrain the possible
additions of further literals to a context and, as a consequence, the possible repairs to its
induced E-interpretation. As far as the induced E-interpretation is concerned, however,
the two types of variables are interchangeable. The construction of this E-interpretation
is best explained in two stages, each based on an ordering on terms/atoms: the usual
instantiation preordering � with its strict subset �, and an arbitrary reduction order-
ing * total on ground terms. Using the first we associate to a context Λ, similarly to
the ME calculus, a (non-equational) interpretation IΛ. Roughly, and modulo symme-
try of ≈, this interpretation satisfies a ground equation s′′ ≈ t ′′, over an underlying
signature Σ, iff s′′ ≈ t ′′ is an instance of an equation s ≈ t in Λ without being an in-
stance of any equation s′ ≈ t ′ such that s ≈ t � s′ ≈ t ′ and s′ �≈ t ′ ∈ Λ. For instance, if
Λ = { f (u) ≈ u, f (a) �≈ a} where u is a (parametric) variable and the signature Σ con-
sists of the unary function symbol f and the constant symbols a and b, then IΛ is the
symmetric closure of { f n+1(b)≈ f n(b) | n≥ 0} ∪ { f n+1(a)≈ f n(a) | n≥ 1}.

In general IΛ is not an E-interpretation. Its purpose is merely to supply a set of
candidate equations that determine the final E-interpretation induced by Λ. This E-
interpretation, denoted by RE

Λ, is defined as the smallest congruence on ground Σ-terms
that includes a specific set RΛ of ordered equations selected from IΛ. The set RΛ is con-
structed inductively on the reduction ordering * by adding to it an ordered equation
s → t iff s≈ t or t ≈ s is in IΛ, s* t and both s and t are irreducible wrt. the equations
of RΛ that are smaller than s → t. This construction guarantees that RΛ is a convergent
rewrite system. In the example above, RΛ is { f (b) → b, f ( f (a)) → f (a)} for any re-
duction ordering *; the E-interpretation RE

Λ induced by Λ is the congruence closure of
{ f (b)≈ b, f ( f (a)) ≈ f (a)}. Since RΛ is convergent by construction for any context Λ,
any two ground Σ-terms are equal in RE

Λ iff they have the same RΛ-normal form.

Now that we have sketched how the E-interpretation is constructed, we can ex-
plain how the calculus detects the need to repair the current E-interpretation and how
it goes about repairing it. To simplify the exposition we consider here only ground in-
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put clauses. A repair involves conceptually two steps: (i) determining whether a given
clause C is false in the E-interpretation RE

Λ, and (ii) if so, modifying Λ so that the new
RE

Λ satisfies it.
For step (i), by congruence it suffices to rewrite the literals of C with the rewrite

rules RΛ to normal form. If C↓RΛ denotes that normal form, then RE
Λ fasifies C iff all

equations in C↓RΛ are of the form s ≈ t with s �= t, and all disequations are of the
form s �≈ s. In the earlier example, if C = f (a) ≈ a∨ f ( f (a)) ≈ b∨ f (b) �≈ b then
C↓RΛ = f (a)≈ a∨ f (a)≈ b∨b �≈ b, meaning that RE

Λ indeed falsifies C.
For step (ii), we first point out that the actual repair needs to be carried out only on

the literals of C↓RΛ , not on the literals of C. More precisely, the calculus considers only
the positive equations of C↓RΛ , as the trivial disequations s �≈ s in it do not provide any
usable information. To repair the E-interpretation it is enough to modify Λ so that RΛ
contains one of the positive equations s≈ t of C ↓RΛ . Then, by congruence, RE

Λ will also
satisfy C, as desired. Concretely, Λ is modified by creating a choice point and adding
to Λ one of the literals L of C↓RΛ

or its complement. Adding L—which is possible only
provided that neither L not its complement are contradictory, in a precise sense defined
later, with Λ—-will make sure that the new RE

Λ satisfies C. Adding the complement
of L instead will not make C satisfiable in the new candidate E-model. However, it is
necessary for soundness and marks some progress in the derivation because it will force
the calculus to consider other literals of C ↓RΛ for addition to the context.

Referring again to our running example, of the two positive literals of C↓RΛ =
f (a) ≈ a∨ f (a) ≈ b∨ b �≈ b, only f (a) ≈ b can be added to the context Λ = { f (u) ≈
u, f (a) �≈ a} because neither it nor its complement is contradictory with Λ (by con-
trast f (a)≈ a is contradictory with Λ). With Λ = { f (u)≈ u, f (a) �≈ a, f (a)≈ b}, now
RΛ = { f (b) → b, f (a) → b} and C↓RΛ becomes b ≈ a∨ b ≈ b∨ b �≈ b, which means
that C is satisfied by RE

Λ.
We point out that adding positive equations to the context is not always enough.

Sometimes it is necessary to add negative equations, whose effect is to eliminate from
RΛ rewrite rules that cause the disequations of C to rewrite to trivial disequations. The
calculus takes care of this possibility as well. To achieve that we found it convenient to
have MEE work with a slightly generalized data structure. More precisely, instead of
clauses C we consider constrained clauses C ·Γ, where Γ is a set of rewrite rules. The
constraint Γ consists just of those (instances of) equations from a context Λ that were
used to obtain C from some input clause (whose constraint is empty).

Reusing our example, the clause C would be represented as the constraint clause
C ·Γ = f (a)≈ a∨ f ( f (a))≈ b∨ f (b) �≈ b · /0, with its RΛ-normal form being C ↓RΛ ·Γ =
f (a) ≈ a∨ f (a) ≈ b∨b �≈ b · f ( f (a) → f (a), f (b) → b for Λ = { f (u) ≈ u, f (a) �≈ a}.
Now, the rewrite rule f (b) → b used to obtain the normal form is available in the
constraint part, as written. The calculus may add its negation f (b) �≈ b to Λ, with
the effect of removing f (b) → b from RΛ. The resulting context and rewrite system
would be, respectively, Λ′′ = { f (u) ≈ u, f (a) �≈ a, f (b) �≈ b}, and RΛ′′ = { f ( f (b)) →
f (b), f ( f (a)) → f (a)}. It is easy to see that the new IE

RΛ
satisfies C as well, as desired.

While the above informal description illustrates the main ideas behind MEE, it is
not entirely faithful to the actual calculus as defined later in the paper. Perhaps the most
significant differences to mention here are that (i) the calculus works with non-ground



396 P. Baumgartner and C. Tinelli

clauses as well (by treating them, as usual in refutation-based calculi, as schematic for
their ground instances and relying heavily on unification), and (ii) the normal form of a
constrained clause is not derived in one sweep, as presented above. Instead the calculus,
when equipped with a fair strategy, derives all intermediate constrained clauses as well.
It does so by a suitably defined paramodulation rule, where the equations paramodulat-
ing (only) into the clause part of a constrained clause are drawn from the current context
Λ. The rationale is that the rewrite system RΛ is in general not available to the calculus.
Hence rewriting (ground) clause literals with rules from RΛ, which would theoretically
suffice to obtain a complete calculus at the ground level, is approximated by ordered
paramodulation with equations from Λ instead.

3 Contexts and Induced Interpretations

We start with some formal preliminaries. We will use two disjoint, infinite sets of vari-
ables: a set X of universal variables, which we will refer to just as variables, and another
set V , which we will always refer to as parameters. We will use u and v to denote el-
ements of V and x and y to denote elements of X . We fix a signature Σ throughout the
paper and denote by Σsko the expansion of Σ obtained by adding to Σ an infinite number
of fresh (Skolem) constants. If t is a term we denote by V ar(t) the set of t’s variables
and by P ar(t) the set of t’s parameters. A term t is ground iff V ar(t) = P ar(t) = /0.

A substitution ρ is a renaming on W ⊆ (V ∪ X) iff its restriction to W is a bijection
of W onto itself; ρ is simply a renaming if it is a renaming on V ∪ X . A substitution
σ is p-preserving (short for parameter preserving) if it is a renaming on V . If s and t
are two terms, we write s � t, iff there is a substitution σ such that sσ = t.2 We say
that s is a variant of t, and write s ∼ t, iff s � t and t � s or, equivalently, iff there is a
renaming ρ such that sρ = t. We write s � t if s � t but s �∼ t. We write s ≥ t and say
that t is a p-instance of s iff there is a p-preserving substitution σ such that sσ = t. We
say that s is a p-variant of t, and write s 4 t, iff s ≥ t and t ≥ s; equivalently, iff there
is a p-preserving renaming ρ such that sρ = t. The notation s[t]p means that the term t
occurs in the term s at position p, as usual.

All of the above is extended from terms to literals in the obvious way.
In this paper we restrict to equational clause logic. Therefore, and essentially with-

out loss of generality, we assume that the only predicate symbol in Σ is ≈. An atom
then is always an equation, and a literal then is always an equation or the negation of
an equation. Literals of the latter kind, i.e., literals of the form ¬(s ≈ t) are also called
negative equations and generally written s �≈ t instead. We call a literal trivial if it is
of the form t ≈ t or t �≈ t. We denote literals by the letters K and L. We denote by L
the complement of a literal L, and by Lsko the result of replacing each variable of L by
a fresh Skolem constant in Σsko \Σ. We denote clauses by the letters C and D, and the
empty clause by �. We will write L∨C to denote a clause obtained as the disjunction
of a (possibly empty) clause C and a literal L.

A (Herbrand) interpretation I is a set of ground Σ-equations—those that are true in
the interpretation. Satisfiability/validity of ground Σ-literals, Σ-clauses, and clause sets

2 Note that many authors would write s � t in this case.
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in a Herbrand interpretation is defined as usual. We write I |= F to denote the fact that
I satisfies F , where F is a ground Σ-literal or a Σ-clause (set). An E-interpretation is an
interpretation that is also a congruence relation on the Σ-terms. If I is an interpretation,
we denote by IE the smallest congruence relation on the Σ-terms that includes I, which
is an E-interpretation. We say that I E-satisfies F iff IE |= F . Instead of IE |= F we
generally write I |=E F . We say that F E-entails F ′, written F |=E F ′, iff every E-
interpretation that satisfies F also satisfies F ′. We say that F and F ′ are E-equivalent iff
F |=E F ′ and F ′ |=E F .

The Model Evolution calculus, with and without equality, works with sequents of
the form Λ � Φ, where Λ is a finite set of literals possibly with variables or with
parameters called a context, and Φ is a finite set of clauses possibly with variables.
As in [4], we impose for simplicity that literals in a context can contain parameters or
variables but not both, but this limitation can be overcome.

Definition 3.1 (Context [4]). A context is a set of the form {¬v} ∪ S where v ∈ V and
S is a finite set of literals each of which is parameter-free or variable-free.

Differently from [4], we implicitly treat any context Λ as if it contained the symmetric
version of each of its literals. For instance, if Λ = {¬v, f (u) ≈ a, f (x) �≈ x} then a ≈
f (u), f (u) ≈ a,x �≈ f (x), f (x) �≈ x are all considered to be literals of Λ, and we write,
for instance, a≈ f (u) ∈ Λ.

Where L is a literal and Λ a context, we write L ∈∼ Λ if L is a variant of a literal
in Λ, write L ∈4 Λ if L is a p-variant of a literal in Λ, and write L ∈≥ Λ if L is a p-
instance of a literal in Λ. A literal L is contradictory with a context Λ iff Lσ = Kσ for
some K ∈4 Λ and some p-preserving substitution σ. A context Λ is contradictory iff it
contains a literal that is contradictory with Λ. Referring to the context Λ above, f (v) �≈ a,
a �≈ f (v),a ≈ f (a), f (a) ≈ a all are contradictory with Λ. Notice that an equation s≈ t
is contradictory with a context Λ if and only if t ≈ s is so. The same applies to negative
equations.

We will work only with non-contradictory contexts. Thanks to the next two notions,
such contexts can be used as finite denotations of (certain) Herbrand interpretations. Let
L be a literal and Λ a context. A literal K is a most specific generalization (msg) of L in
Λ iff K � L and there is no K′ ∈ Λ such that K � K′ � L.

Definition 3.2 (Productivity [4]). Let L be a literal, C a clause, and Λ a context. A
literal K produces L in Λ iff (i) K is an msg of L in Λ, and (ii) there is no K′ ∈≥ Λ such
that K � K′ � L. The context Λ produces L iff it contains a literal K that produces L in
Λ.

Notice that a literal K produces a literal L in a context Λ if and only if K produces
the symmetric version of L in Λ. For instance, the context Λ above produces f (b) ≈ a
and a ≈ f (b) but Λ produces neither f (a) ≈ a nor a ≈ f (a). Instead it produces both
a �≈ f (a) and f (a) �≈ a.

A non-contradictory context Λ uniquely induces a (Herbrand) Σ-interpretation IΛ,
defined as follows:

IΛ := {l ≈ r | l ≈ r is a positive ground Σ-equation and Λ produces l ≈ r}
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For instance, if Λ = {x ≈ f (x)} and Σ consists of a constant a and the unary function
symbol f then IΛ = {a≈ f (a), f (a) ≈ a, f (a)≈ f ( f (a)), f ( f (a)) ≈ f (a), . . .}.

A consequence of the presence of the pseudo-literal ¬v in every context Λ is that Λ
produces L or L for every literal L. Moreover, it can be easily shown that whenever IΛ |=
L then Λ produces L, even when L is a negative literal. This fact provides a “syntactic”
handle on literals satisfied by IΛ. The induced interpretation IΛ is not an E-interpretation
in general.3 But we will use it to define a unique E-interpretation associated to Λ.

4 Equality Reasoning on Constrained Clauses

The MEE calculus operates with constrained clauses, defined below. In this section
we will introduce derivation rules for equality reasoning on constrained clauses. These
derivation rules will be used by the MEE calculus in a modular way. The section con-
cludes with a first soundness and completeness result, which will serve as a lemma for
the completeness proof of the MEE calculus.

As an important preliminary remark, whenever the choice of the signature makes
a difference in this section, e.g. in the definition of grounding substitution, we always
implicitly meant the signature Σ, not the signature Σsko.

Constrained Clauses. A (rewrite) rule is an expression of the form l → r where l and
r are Σ-terms. Given a parameter-free Σ-clause C = L1∨·· ·∨Ln and a set of parameter-
free Σ-rewrite rules Γ = {A1, . . . ,Am}, the expression C ·Γ is called a constrained clause
(with constraint Γ). Instead of C · {A1, . . . ,Am} we generally write C ·A1, . . . ,Am. The
notation C ·Γ,A means C ·Γ ∪ {A}.

A constrained clause C ·Γ is a constrained clause without expansion constraints
iff Γ contains no expansion rules, i.e., rules of the form x → t, where x is a variable
and t is a term. A constrained clause set without expansion constraints is a constrained
clause set that consists of constrained clauses without expansion constraints. The MEE

calculus works only with such constrained clause sets.4

Applying a substitution σ to C ·Γ, written as (C ·Γ)σ, means to apply σ to C and all
rewrite rules in Γ. A constrained clause C ·Γ is ground iff both C and Γ are ground. If
γ is a substitution such that (C ·Γ)γ is ground, then (C ·Γ)γ is called a ground instance
of C ·Γ, and γ is called a grounding substitution for C ·Γ. We say that C ·Γ properly
subsumes C′ ·Γ′ iff there is a substitution σ such that Cσ⊂C′ and Γσ⊆ Γ′ or Cσ⊆C′

and Γσ ⊂ Γ′. We say that C ·Γ non-properly subsumes C′ ·Γ′ iff there is a substitution
σ such that Cσ = C′ and Γσ = Γ′. The constrained clauses C ·Γ and C′ ·Γ′ are variants
iff C ·Γ non-properly subsumes C′ ·Γ′ and vice versa. For a set of constrained clauses
Φ, Φgr denotes the set of all ground Σ-instances of all constrained clauses in Φ.

In principle, a constraint clause C ·Γ = L1∨·· ·∨Lm · lm+1 → rm+1, . . . , ln → rn could
be understood as standing for the ordinary clause L1∨·· ·∨Lm∨ lm+1 �≈ rm+1∨·· ·∨ ln �≈
rn, which we call the clausal form of C ·Γ and denote by (C ·Γ)c. In effect, however,
constrained clauses and their clausal forms are rather different from an operational point

3 In fact, in the earlier example a≈ f ( f (a)) /∈ IΛ.
4 As will become clear later, disallowing expansion constraints comes from the fact that

paramodulation into variables is unnecessary in MEE as well.
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of view. The derivation rules for equality reasoning below, in particular paramodulation,
are never applied to constraints—as a consequence, the calculus cannot be said to be a
resolution calculus.

Orderings. We suppose as given a reduction ordering* that is total on ground Σ-terms.
It has to be extended to rewrite rules, equations and constrained clauses. Following
usual techniques [1,11, e.g.], rewrite rules and equations are compared by comparing
the multisets of their top-level terms with the multiset extension of the base ordering
*. There is no need in our framework to distinguish between positive and negative
equations. It is important, though, that when comparing constrained clauses the clause
part is given precedence over the constraint part. This can be achieved by defining C ·
Γ*C′ ·Γ′ iff (C,Γ) is strictly greater than (C′,Γ′) in the lexicographical ordering over
the multiset extension of the above ordering on equations and rewrite rules. (See [5] for
an alternative definition.) This way, the calculus’ derivation rules RefME and ParaME

for equality reasoning defined in Section 5 work in an order-decreasing way.

Derivation Rules. We first define two auxiliary derivation rules for equality reasoning
on constrained clauses. The rules will be used later in the MEE calculus.

Ref(σ)
s �≈ t ∨C ·Γ

(C ·Γ)σ
if σ is a mgu of s and t.

We write s �≈ t ∨C ·Γ ⇒Ref(σ) (C ·Γ)σ to denote a Ref inference.5

Para(l ≈ r,σ)
L[t]p∨C ·Γ

(L[r]p∨C ·Γ, l → r)σ
if

⎧⎪⎨⎪⎩
t is not a variable,

σ is a mgu of t and l, and

lσ �& rσ.

We write L[t]p∨C ·Γ ⇒Para(l≈r,σ) (L[r]p∨C ·Γ, l → r)σ to denote a Para inference.
A Ref or Para inference is ground if both its premise and conclusion are ground and

as well as the equation l ≈ r in the Para case. If from a given Ref or Para inference a
ground inference results by applying a substitution γ to the premise, the conclusion and
the used equation l ≈ r in case of Para, we call the resulting ground inference a ground
instance via γ (of the inference).

As in the superposition calculus, model construction, redundancy and saturation
are core concepts for the understanding of the MEE calculus.

Model Construction. A rewrite system is a set of Σ-rewrite rules. A ground rewrite
system R is ordered by* iff l* r, for every rule l → r∈R. As a non-standard notion, we
define a rewrite system without overlaps to be a ground rewrite system R that is ordered
by *, and whenever l → r ∈ R then there is no other rule in R of the form s[l] → t
or s → t[l]. In other words, no rule can be reduced by another rule, neither the left
hand side nor the right hand side. Any rewrite system without overlaps is a convergent
ground rewrite system. In the sequel, the letter R will always denote a (ground) rewrite
system without overlaps.

5 An inference is an instance of a derivation rule that satisfies the rule’s side condition.
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We show how every non-contradictory context Λ induces a ground rewrite system
RΛ without overlaps. The general technique is taken from the completeness proof of the
superposition calculus [1,11] but adapted to our needs.

First, for a given non-contradictory context Λ and positive ground Σ-equation s≈ t
we define by induction on the literal ordering * sets of rewrite rules εΛ

s≈t and RΛ
s≈t as

follows. Assume that εΛ
s′≈t′ has already been defined for all ground Σ-equations s′ ≈ t ′

with s≈ t * s′ ≈ t ′. Where RΛ
s≈t =

⋃
s≈t*s′≈t′ εΛ

s′≈t′ , define

εΛ
s≈t =

{
{s → t} if IΛ |= s≈ t, s* t, and s and t are irreducible wrt. RΛ

s≈t

/0 otherwise

Then, RΛ =
⋃

s≈t εΛ
s≈t where s and t range over all ground Σ-terms.

By construction, RΛ has no critical pairs, neither with left hand sides nor with right
hand sides, and thus is a rewrite system without overlaps. Since * is a well-founded
ordering, RΛ is a convergent rewrite system by construction. The given context Λ comes
into play as stated in the first condition of the definition of εΛ

s≈t , which says, in other
words, that Λ must produce s ≈ t as a necessary condition for s → t to be contained
in RΛ. An important detail is that whenever Λ is non-contradictory and produces s≈ t,
then it will also produce t ≈ s. Thus, if s ≺ t then s ≈ t may still be turned into the
rewrite rule t → s in RΛ by means of its symmetric version t ≈ s.

Where the ME calculus would associate to a sequent Λ � Φ the interpretation IΛ as a
candidate model of Φ, the MEE calculus will instead associate to it the E-interpretation
RE

Λ, the congruence closure of RΛ (or, more correctly, of the interpretation containing
the same equations as RΛ). There is an interesting connection between the two interpre-
tations: if L is a ground literal and L↓RΛ is the normal form of L wrt. RΛ then RE

Λ |= L
(or, equivalently, RΛ |=E L) iff IΛ |= L↓RΛ or L↓RΛ is a trivial equation. This connection
is fundamental to MEE, as it makes it possible to reduce satisfiability in the intended
E-interpretation RE

Λ to satisfiability in IΛ.
For an example for the model construction let Λ = {a ≈ u,b ≈ c,a �≈ c} a non-

contradictory context. With the ordering a * b * c the induced rewrite system RΛ is
again {b → c}. To see why, observe that the candidate rule a → c is assigned false by
IΛ, as Λ does not produce a ≈ c, and that the other candidate a → b is reducible by
the smaller rule b → c. Had we chosen to omit in the definition of ε the condition “t is
irreducible wrt RΛ

s≈t”
6 the construction would have given RΛ = {a → b,b → c}. This

leads to the undesirable situation that a constrained clause, say, a �≈ c · /0 is falsified by
RE

Λ. But the MEE calculus cannot modify Λ to revert this situation, and to detect the
inconsistency (ordered) paramodulation into variables would be needed.

Semantics of Constrained Clauses. Let C ·Γ be a ground constrained clause and R a
ground rewrite system. We say that R is an E-model of C ·Γ and write R |=E C ·Γ iff
Γ �⊆ R or R |=E C (in the sense of Section 3, by treating R as an interpretation). We write
R |=E Φ for a set Φ of constrained clauses iff R |=E C ·Γ for all C ·Γ ∈ Φ. If F is a
non-ground constrained clause (set) we write R |=E F iff R |=E Fgr.

6 This condition is absent in the model construction for the superposition calculus. Its presence
in the end explains why paramodulation into smaller sides of equations is necessary.
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The general intuition for this notion of satisfiability for constrained clauses is that
ground constrained clauses whose constraint is not a subset of a rewrite system R are
considered to be trivially satisfied by R, while the other constrained clauses are consid-
ered to be satisfied by R exactly when their non-constraint part is E-satisfied by R. Note
that for constrained clauses C · /0 with an empty constraint, R |=E C · /0 iff R |=E C.

If Φ and Φ′ are sets of constrained clauses, we say that Φ entails Φ′ wrt. R, written
as Φ |=R Φ′, iff R |=E Φ implies R |=E Φ′.

Redundancy. Let Φ be a set of constrained clauses and C ·Γ a ground constrained
clause. Define ΦC·Γ = {C′ ·Γ′ ∈ Φgr |C′ ·Γ′ ≺C ·Γ} as the set of ground instances of
clauses from Φ that are smaller than C ·Γ.

Let R be a rewrite system without overlaps. We say that the ground constrained
clause C ·Γ is redundant wrt. Φ and R iff ΦC·Γ |=R C ·Γ, that is, iff C ·Γ is entailed
wrt. R by smaller ground instances of clauses from Φ. Notice that if Γ �⊆ R then C ·Γ is
trivially redundant wrt. every constrained clause set and R (as R is ordered by *). For
a (possibly non-ground) constrained clause C ·Γ we say that C ·Γ is redundant wrt. Φ
and R iff all ground instances of C ·Γ are redundant wrt. Φ and R.

Suppose C ·Γ ⇒D C′ ·Γ′ is a ground inference, for some constrained clause C′ ·Γ′,
where D stands for Ref(ε) or Para(l ≈ r,ε) (with l ≈ r ground). The ground inference is
called redundant wrt. Φ and R iff ΦC·Γ |=R C′ ·Γ′. We say that a Ref or Para inference
is redundant wrt. Φ and R iff every ground instance of it is redundant wrt. Φ and R.

Saturation. Let Λ be a context. Let RΛ
s≈t =

⋃
s≈t*s′≈t′ εΛ

s′≈t′ be the rewrite system de-
fined earlier and consisting of those ground rules true in IΛ that are smaller than s≈ t.

Definition 4.1 (Productive Constrained Clause). Let C ·Γ = A1 ∨ ·· · ∨ Am ·Γ be a
ground constrained clause, for some m≥ 0, where Ai is a positive non-trivial equation
for all i = 1, . . . ,m. We say that C ·Γ is productive wrt. Λ iff Γ ⊆ RΛ and Ai is irre-
ducible wrt. RΛ

Ai
for all i = 1, . . . ,m. A (possibly non-ground) constrained clause C ·Γ is

productive wrt. Λ iff some ground instance of C ·Γ is productive wrt. Λ.

Intuitively, if C ·Γ is a productive ground constrained clauses wrt. Λ then C provides
positive equations, all irreducible in the sense as stated, at least one of which must be
satisfied by IΛ, so that in consequence RE

Λ satisfies C ·Γ. The following definition turns
this intuition into a demand on Λ (in its second item).

Definition 4.2 (Saturation up to Redundancy). A sequent Λ � Φ is saturated up to
redundancy iff for all C ·Γ ∈ Φ such that C ·Γ is not redundant wrt. Φ and RΛ, the
following hold:

1. For every inference C ·Γ ⇒D C′ ·Γ′, where D stands for Ref(σ) or Para(l ≈ r,σ)
with a parameter-free l ≈ r ∈∼ Λ, the clause (C ·Γ)σ is redundant wrt. Φ and RΛ
or the inference C ·Γ ⇒D C′ ·Γ′ is redundant wrt. Φ and RΛ.

2. For every grounding substitution γ for C ·Γ, if C �= � and (C ·Γ)γ is productive wrt.
Λ and non-redundant wrt. Φ and RΛ, then IΛ |= Cγ.

Referring back to our informal explanation of the calculus, and ignoring the redun-
dancy concepts in Definition 4.2, ground instances of constrained clauses that are not
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productive wrt. Λ are subject to the first condition. It requires a sufficient number of
applications of the Ref and Para rules to reduce (lifted versions of) such constrained
clauses to constrained clauses productive wrt. Λ. The equality reasoning rules in MEE,
which are based on Ref and Para, together with the Split rule, all defined in the next
section, make sure that both conditions will be met in the limit of a derivation.

The next proposition clarifies under what conditions RE
Λ is a model for all con-

strained clauses Φ in a sequent Λ � Φ saturated up to redundancy.

Proposition 4.3. Let Λ � Φ be a sequent saturated up to redundancy and suppose Φ
is a constrained clause set without expansion constraints. Then, RΛ |=E Φ if and only
if Φ contains no constrained clause of the form � · Γ that is productive wrt. Λ and
non-redundant wrt. Φ and RΛ.

Notice that Proposition 4.3 applies to a statically given sequent Λ � Φ. The connec-
tion to the dynamic derivation process of the MEE calculus will be given later, and
Proposition 4.3 will be essential then in proving the correctness of the MEE calculus.

5 MEE Calculus

Like its predecessor, the MEE calculus consists of a few basic derivation rules and a
number of optional ones meant to improve the performance of implementations of the
calculus. The basic derivation rules include rules for equality reasoning and two rules,
namely Split and Close, which are not specific to the theory of equality. We start with a
description of the basic rules.

Derivation Rules for Equality Reasoning. The following rules RefME and ParaME,
the only mandatory ones for equational reasoning, extend the derivation rules of Sec-
tion 4 to sequents.

RefME(σ)
Λ � Φ, C ·Γ

Λ � Φ, C ·Γ, C′ ·Γ′
if

{
C ·Γ ⇒Ref(σ) C′ ·Γ′, and

Φ ∪ {C ·Γ} contains no variant of C′ ·Γ′.

ParaME(l ≈ r,σ)
Λ � Φ, C ·Γ

Λ � Φ, C ·Γ, C′ ·Γ′
if

⎧⎪⎪⎪⎨⎪⎪⎪⎩
l ≈ r is a parameter-free fresh variant

of a Σ-equation in Λ,

C ·Γ ⇒Para(l≈r,σ) C′ ·Γ′, and

no variant of C′ ·Γ′ is in Φ ∪ {C ·Γ}.

The purpose of both the RefME and ParaME rules is to reduce the question of sat-
isfiability of a constrained clause in the intended E-interpretation RE

ΛB
, where ΛB is a

certain limit context (cf. Section 6), to deriving a smaller one and answering the ques-
tion wrt. that one. Notice that constraints have a rather passive rôle in both derivation
rules. In particular, Para is not applicable to constraints. The requirement in ParaME

that l ≈ r be a parameter-free variant of an equation in the context guarantees that all
constrained clause sets derivable by the calculus are parameter-free.

Basic Derivation Rules. The mandatory rules Split and Close below are taken with
only minor modifications from the ME calculus without equality [4]. This is possible
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because the equality reasoning is done only by the RefME and ParaME rules above.
Both the Split and Close rule are based on the concept of a context unifier.

Definition 5.1 (Context Unifier). Let Λ be a context and C = L1 ∨ ·· · ∨ Lm an or-
dinary clause. A substitution σ is a context unifier of C against Λ iff there are fresh
p-variants K1, . . . ,Km ∈4 Λ such that σ is a most general simultaneous unifier of the
sets {K1,L1}, . . . ,{Km,Lm}.

For each i = 1, . . . ,m, we say that a literal K ′i ∈Λ is a context literal of σ if K′i 4Ki,
and that Liσ is a remainder literal of σ if (P ar(Ki))σ �⊆ V. We say that σ is productive
iff Ki produces Liσ in Λ for all i = 1, . . . ,m.

A context unifier σ of C against Λ is admissible (for Split) iff every remainder literal
L of σ is parameter- or variable-free and for all distinct remainder literals L and K of σ
V ar(L) ∩ V ar(K) = /0.

Split(L,σ)
Λ � Φ, C ·Γ

Λ, L � Φ, C ·Γ Λ, L
sko � Φ, C ·Γ

if

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

C = A1∨·· ·∨Am with m≥ 0
and for all i = 1, . . . ,m, Ai is a
positive non-trivial equation, σ
is an admissible context unifier
of (C ·Γ)c against Λ with
remainder literal L, and neither
L nor Lsko is contradictory with
Λ.

A Split inference is productive iff σ is a productive context unifier of (C ·Γ)c against Λ.
To obtain a complete calculus Split needs to be applied only when C · Γ has an

RΛ-irreducible ground instance that is falsified by the E-interpretation RE
Λ. Technically,

these ground instances are approximated by the productive ones, in terms of Defini-
tion 4.1, and a productive context unifier is guaranteed to exist then. Applying a Split
inference then will modify the context so that it E-satisfies such a ground instance af-
terwards, which marks some progress in the derivation.

Close(σ)
Λ � Φ,C ·Γ

Λ � � · /0
if

⎧⎪⎨⎪⎩
Φ �= /0 or C ·Γ �= � · /0, and

σ is a context unifier of (C ·Γ)c against Λ
with no remainder literals.

The purpose of the Close rule is to detect a trivial inconsistency between the context
and a constrained clause.

Optional Derivation Rules. Like DPLL, the ME calculus includes an optional deriva-
tion rule, called Assert, to insert a literal into a context without causing branching. In
ME this rule bears close resemblance to the unit-resulting resolution rule. The MEE

calculus has a suitable version of the Assert rule which is also more general than the
one in ME. To define it we need some more preliminaries first.

Let us fix a constant a from the signature Σsko \ Σ and consider the substitution
α := {v �→ a | v ∈ V}. Given a literal L, we denote by La the literal Lα. Note that La

is ground if, and only if, L is variable-free. Similarly, given a context Λ, we denote by
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Λa the set of unit clauses obtained from Λ by removing the pseudo-literal¬v, replacing
each literal L of Λ with La, and considering it as a unit clause.7

Assert(L)
Λ � Φ

Λ, L � Φ
if

⎧⎪⎨⎪⎩
Λa ∪ Φc |=E La,

L is non-contradictory with Λ, and

there is no K ∈4 Λ such that K ≥ L.

As an example, Assert is applicable to the sequent ¬v,P(u,b) ≈ t,b ≈ c � P(x,y) �≈
t∨ f (x)≈ y · /0 to yield the new context equation f (u)≈ c.

The third condition of Assert avoids the introduction of superfluous literals in the
context. The first condition is needed for soundness. This condition is not decidable in
its full generality and so can only be approximated. This, however, is not a problem
given that Assert is an optional rule in MEE. See [5] for an explanation of how the
Assert rule of ME (with its concrete preconditions) can be seen as a special case of
Assert above.

Simplification. The purpose of simplification is to replace a constrained clause by a
simpler one. The optional Simp rule below is general enough to accomodate the simpli-
fication rules of ME 8 and also various new simplification rules connected with equality.
To formulate it we need one more notion.

For any context Λ, a (ground) rewrite system R without overlaps is compatible with
Λ iff there is no l → r ∈ R and no parameter-free s �≈ t ∈ Λ such that s≈ t � l ≈ r.

Simp
Λ � Φ, C ·Γ
Λ � Φ, C′ ·Γ′

if

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(i) C′ ·Γ′ ∈ Φ and C′ ·Γ′ non-properly subsumes C ·Γ, or

(ii) for every rewrite system R compatible with Λ:

C ·Γ is redundant wrt. Φ ∪ {C′ ·Γ′} and R,

C′ ·Γ′ is a constrained clause over Σ without

expansion constraints, and

Λa ∪ (Φ ∪ {C ·Γ})c |=E (C′ ·Γ′)c.

The last condition in the definition of the Simp rule guarantees soundness.
As a simple instance of the Simp rule, any constrained clause C ·Γ of the form

s ≈ s∨D ·Γ can be simplified to t ≈ t · /0. This simplification step actually yields the
same effect as if C ·Γ were deleted. Dually, any constrained clause C ·Γ of the form s �≈
s∨D ·Γ can be simplified to D ·Γ. Also, as observed previously, when the constraint Γ
of a constrained clause C ·Γ contains a rule l → r such that l ≺ r then this rule is trivially
redundant wrt. any rewrite system ordered by * and so the clause can be simplified to
t≈ t · /0. As a simple example that takes the context into account, consider the sequent
f (x) �≈ x � a ≈ b · f (a) → a. Now, no rewrite system compatible with { f (x) �≈ x}
can contain f (a) → a. The constrained clause can therefore again be simplified to t≈
t · /0. Dually, in the sequent f (x) ≈ x � a ≈ b · f (a) → a the constrained clause can be
simplified to a≈ b · /0. (Notice in particular that this simplification is indeed sound.)

7 Here and below Φc denotes the set of clausal forms of all constrained clauses in Φ.
8 Except for the Subsume rule.
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As illustrated by the last two examples, the practically important unit-resolution like
rule of ME, Resolve, is covered by the Simp rule.

Derivation Example. The following excerpt from an MEE derivation demonstrates
Para, Simp and Split in combination. It follows the example in Section 2 by taking the
same context Λ = { f (u)≈ u, f (a) �≈ a}. However, to be more instructive, it uses a lifted
version f (x)≈ x∨ f ( f (x)) ≈ b∨ f (b) �≈ b of the ground clause there.

. . .

¬v, f (u)≈ u, f (a) �≈ a � . . . , f (x)≈ x∨ f ( f (x))≈ b∨ f (b) �≈ b · /0

¬v, f (u)≈ u, f (a) �≈ a � . . . ,
f (x)≈ x∨ f ( f (x))≈ b∨ f (b) �≈ b · /0,
f (x)≈ x∨ f (x)≈ b ∨ f (b) �≈ b · f ( f (x)) → f (x) (By Para)

¬v, f (u)≈ u, f (a) �≈ a � . . . ,
f (x)≈ x∨ f ( f (x))≈ b∨ f (b) �≈ b · /0,
f (x)≈ x∨ f (x)≈ b ∨ f (b) �≈ b · f ( f (x)) → f (x)
f (x)≈ x∨ f (x)≈ b ∨ b �≈ b · f ( f (x)) → f (x), f (b) → b

(By Para)

¬v, f (u)≈ u, f (a) �≈ a � . . . ,
f (x)≈ x∨ f ( f (x))≈ b∨ f (b) �≈ b · /0,
f (x)≈ x∨ f (x)≈ b ∨ f (b) �≈ b · f ( f (x)) → f (x)
f (x)≈ x∨ f (x)≈ b · f ( f (x)) → f (x), f (b) → b

(By Simp)

Among the alternatives to proceed now we focus on possible Split inferences. Con-
sider the last sequent with the constrained clause f (x) ≈ x ∨ f (x) ≈ b · f ( f (x)) →
f (x), f (b) → b and its clausal form f (x) ≈ x∨ f (x) ≈ b∨ f ( f (x)) �≈ f (x)∨ f (b) �≈ b.
Simultaneous unification of that clause literals with fresh variants of the context liter-
als f (a) �≈ a,¬v, f (u)≈ u, f (u)≈ u, respectively, gives the (productive and admissible)
context unifier σ = {x �→ a, . . .}. The remainder literals of σ are f (a) ≈ b, f ( f (a)) �≈
f (a) and f (b) �≈ b (notice that the clause instance literal f (a)≈ a is contradictory with
the context and hence is a non-remainder literal). Each of them can be selected for Split.
The effect of selecting f (a)≈ b or f (b) �≈ b was already described in Section 2.

6 Correctness of the MEE Calculus

Similarly to the ME calculus, derivations in MEE are formally defined in terms of
derivation trees. The purpose of the calculus is to build for a given clause set a derivation
tree all of whose branches are failed iff the clause set is unsatisfiable. The soundness
argument for the calculus is relatively straightforward and analogous to the one for the
ME calculus. Therefore, in this section we concentrate just on completeness. A detailed
soundness proof can be found in [5].

A derivation tree of a set {C1, . . . ,Cn} of Σ-clauses is a finite tree over sequents in
which the root node is the sequent ¬v � C1 · /0, . . . ,Cn · /0, and each non-root node is the
result of applying one of the derivation rules to the node’s parent.

Let T be a derivation tree presented as a pair (N,E), where N is the set of the nodes
of T and E is the set of the edges of T. A derivation D = (Ti)i<κ in MEE is a possibly
infinite sequence of derivation trees defined in the obvious way. Each derivation D =



406 P. Baumgartner and C. Tinelli

((Ni,Ei))i<κ determines a limit tree T := (
⋃

i<κ Ni,
⋃

i<κ Ei). It is easy to show that a
limit tree of a derivation D is indeed a tree. But note that it will not be a derivation tree
unless D is finite.

Now let T be the limit tree of some derivation, let B = (Ni)i<κ be a branch in T
with κ nodes, and let Λi � Φi be the sequent labeling node Ni, for all i < κ. Define
ΛB =

⋃
i<κ
⋂

i≤ j<κ Λ j and ΦB =
⋃

i<κ
⋂

i≤ j<κ Φ j, the sets of persistent context literals
and persistent clauses, respectively. These two sets can be combined to obtain the limit
sequent ΛB � ΦB (of T).

As usual, the completeness of MEE relies on a suitable notion of fairness.

Definition 6.1 (Exhausted Branch). Let T be a limit tree, and let B = (Ni)i<κ be a
branch in T with κ nodes. For all i < κ, let Λi � Φi be the sequent labeling node
Ni. The branch B is exhausted iff for each constrained clause C ·Γ ∈ ΦB that is not
redundant wrt. Φ j and RΛB , for some j < κ, all of the following hold, for all i < κ such
that C ·Γ ∈Φi:

(i) if RefME is applicable to Λi � Φi with selected constrained clause C ·Γ and under-
lying Ref inference C ·Γ ⇒Ref(σ) C′ ·Γ′, and (C ·Γ)σ is not redundant wrt. Φi and
RΛB , then there is a j < κ such that the inference C ·Γ ⇒Ref(σ) C′ ·Γ′ is redundant
wrt. Φ j and RΛB .

(ii) if ParaME is applicable to Λi � Φi with selected constrained clause C ·Γ and under-
lying Para inference C ·Γ ⇒Para(l≈r,σ) C′ ·Γ′, where l ≈ r ∈∼ ΛB and ΛB produces
(l ≈ r)σ, and (C ·Γ)σ is not redundant wrt. Φi and RΛB , then there is a j < κ such
that the inference C ·Γ ⇒Para(l≈r,σ) C′ ·Γ′ is redundant wrt. Φ j and RΛB .

(iii) if Split is applicable to Λi � Φi with selected constrained clause C ·Γ and productive
context unifier σ such that every context literal K of σ is a Σ-literal9 and K ∈4
ΛB, and (C ·Γ)σ is productive wrt. ΛB, then there is a j < κ such that (C ·Γ)σ is
redundant wrt. Φ j and RΛB or there is a remainder literal L of σ and a j ≥ i with
j < κ such that Λ j produces L but not L.

(iv) Close is not applicable to Λi � Φi with selected constrained clause C ·Γ and any
context unifier σ such that K ∈4 ΛB for every context literal K of σ.

(v) Φi �= {� · /0}.

A limit tree of a derivation is fair iff it is a refutation tree that is, a finite tree all of whose
leafs are conclusions of the Close rule, or it has an exhausted branch. A derivation is
fair iff its limit tree is fair.

It is not hard to see that actually carrying out a RefME or ParaME inference renders
the underlying Ref or Para inference redundant wrt. any rewrite system ordered by *.
Concerning Split, like in the ME calculus carrying out a Split inference also achieves
what fairness demands for. These considerations indicate that a fair proof procedure
indeed exists. It should not be too difficult to modify the proof procedure (and imple-
mentation) for the Model Evolution calculus described in [3] accordingly.

Definition 6.1 provides a framework for fair derivations based on redundant clauses
and redundant inferences. The redundancy criteria are formulated wrt. RΛB , an object

9 Note the restriction to Σ-literals; it is not possible to restrict condition (iv) in the same way.
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not available during a derivation. The redundancy tests are therefore impossible to ef-
fectively realize in their full strength. Nethertheless, there are some effective and inex-
pensive redundancy tests similar to those discussed in conjunction with the Simp rule.

Proposition 6.2 (Exhausted Branches are Saturated up to Redundancy). If B is an
exhausted branch of a limit tree of some fair derivation then (i) ΛB � ΦB is saturated
up to redundancy, (ii) ΦB is a constrained clause set without expansion constraints, and
(iii) ΦB contains no constrained clause of the form � ·Γ that is productive wrt. ΛB and
that is not redundant wrt. ΦB and RΛB .

Propositions 6.2 and 4.3 together entail our main result:

Theorem 6.3 (Completeness of MEE). Let Ψ be a parameter-free Σ-clause set, and
T be the limit tree of a fair derivation of Ψ. If T is not a refutation tree, then Ψ is
satisfiable; more specifically, for every exhausted branch B of T, RΛB |=E Ψ.

7 Conclusions

We have presented the MEE calculus, an extension of the Model Evolution calculus by
paramodulation-based inference rules for equality. Our main result is its correctness,
in particular the completeness in combination with redundancy criteria. As for future
work, we will extend the implementation of the model evolution calculus, the Darwin
system [3] to the MEE calculus.

There are also some theoretical issues to be addressed. The perhaps most press-
ing theoretical question is if or when paramodulation into smaller sides of equations
can be avoided. It is clear that the current completeness proof breaks down when such
inferences are no longer subject to fairness. Other questions concern further, useful in-
stantiations of our simplification rule.

Acknowledgements. We would like to thank the reviewers for their valuable comments.
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Abstract. Some results on expressibility and complexity issues in model
representation are presented. In particular, the relation between so-called
‘contexts’ as recently introduced in [4] for the model evolution calculus
and the more traditional ‘disjunctions of implicit generalizations’ (DIGs)
[21] is clarified: contexts are as expressible as DIGs, but DIGs may repre-
sent the same model exponentially more succinctly. The clause evaluation
problem and the equivalence problem for DIGs and contexts, respec-
tively, are all shown to be coNP-complete.

Keywords: Model computation, model representation, clause
evaluation.

1 Introduction

Computations that refer to model structures arise in many areas of computer
science. Even when the attention is restricted to first-order clause logic and cor-
responding Herbrand models (term models), a rich research field emerges. Obvi-
ously, since Herbrand models are infinite objects, one has to devise formalisms
for the finite representation of models to render computations with models ef-
fective. Automated Model Building studies algorithms that extract such repre-
sentations of models from satisfiable sets of clause. Much of the work along this
line of research is summarized in the forthcoming monograph [8]. A somewhat
more general point of view on the relevant research issues is expressed by the
term ‘Model Computation’. Vivid interest in this topic is documented, e.g., by
workshops on Model Computation at CADE-17 and CADE-19.1

Besides the general interest in Model Computation, we are motivated by the
fact that the calculus of model evolution, which has recently been introduced by
Baumgartner and Tinelli [4,5], relies heavily on a particular model representation
formalism. Moreover, a very similar form of model representation is also used in
disconnection calculi (see, e.g., [6,23,24]).

Model evolution amounts to a sophisticated generalization to first-order
clause logic of the well-known DPLL procedure for propositional logic and

1 See the proceedings at http://www.uni-koblenz.de/∼peter/CADE17-WS-MODELS/
http://www.uni-koblenz.de/∼peter/models03/, respectively.

R. Nieuwenhuis (Ed.): CADE 2005, LNAI 3632, pp. 409–423, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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promises to lift at least some of the properties that make DPLL so success-
ful to the first-order level. We will not study the deduction mechanism of model
evolution directly, but investigate in detail a crucial component of it: so-called
contexts, which, being a computationally motivated mechanism for model rep-
resentation, are also of independent interest.

Contexts are related to disjunctions of implicit generalizations (DIGs), a
more traditional formalism for representing sets of ground terms and therefore
also Herbrand models (cf. [21]). We prove that the ‘expressive power’ of contexts
is equivalent to that of DIGs, in the sense that for every context there is a DIG
representing the same model, and vice versa. However whereas, given a context,
one can construct an equivalent DIG in polynomial time, we show that DIGs
can be exponentially more succinct than shortest equivalent contexts.

In reference to general principles of Model Representation, we investigate the
computational complexity of the following decision problems:

– Given a clause C and a DIG Δ (a context Λ), is C true in the model repre-
sented by Δ (by Λ)?

– Given two DIGs (contexts), are they representing they same model?

We show that all four decision problems are coNP-complete.
A number of related mechanisms for model representation have been studied

in the literature. An overview can be found in [29] and [8]. We will comment
on related work in Section 5, but it is important to take note right away of an
essential difference between our scenario and that of most other forms of model
representation: Whereas usually the underlying signature is assumed to be finite,
contexts (and therefore also the corresponding DIGs) refer to a signature that
contains infinitely many different constants.

Because of space restrictions some (parts of) proofs are not reproduced here.
They will be included in a forthcoming journal version of this paper.

2 Basic Concepts of Model Representation

A model representation is a syntactic structure D associated with a unique
model M(D) over a given signature. Throughout this work we restrict our at-
tention to first-order clause logic without equality. For the intended applications,
a model representation D should satisfy the following properties (cf. [14]):

(1) For ground atoms A, it can be checked efficiently whether A is true inM(D).
(2) Given a clause C, it is decidable whether C is true in M(D).
(3) Given another structure D′ (of the same type as D), it is decidable whether
M(D′) =M(D).

A paradigmatic example of model representation is the explicit specification
of a finite model by tables (‘diagrams’) for each predicate and function symbol,
that record the value for each tuple of domain elements. However, in our case,
representations of Herbrand models (term models) are more important. We will
only deal with Herbrand models and therefore simply speak of a model. Since



Model Representation via Contexts and Implicit Generalizations 411

there are uncountably many such models over a given signature in general, only
a subset of all corresponding models can be represented by a given syntactic
formalism. Thus, in contrast to finite models, the issue of ‘expressive power’ of a
model representation formalism arises. Clearly, a trade-off between the expres-
siveness of a formalism and the corresponding complexity of the above mentioned
decision problems is to be expected.

A model is identified with the set of ground atoms that are true in it. In the
light of condition (1) model representation formalisms seek to specify this set as
explicitly as possible. The simplest form of a (Herbrand) model representation
consists in a finite set of ground atoms. Clearly, the range of models in which
only finitely many ground atoms are true is very limited. The expressive power
is easily enhanced by stipulating general atoms to represent the set of all its
ground instances. Such atomic representations of models (ARMs) were used and
investigated, e.g., in [13,14,15,8]. We only remark in passing that hyperresolution
directly generates an atomic representation of a model of a set of Horn clauses S
whenever it terminates on the input clauses S without deriving the empty clause.
Generalizations of this model building mechanism to classes of clause sets that
are not necessarily Horn have been studied in [13,14].

2.1 Contexts and Model Evolution

Recently Baumgartner and Tinelli [4,5,1] have introduced a calculus for clause
logic, called model evolution, that relies heavily on a particular form of model
representation. Model evolution can be seen as belonging to the family of calculi
known as ‘model elimination’ and are related to ‘connection tableaux’ (see, e.g.,
[22]) and ‘disconnection tableaux’ (see, e.g., [6,23,24]), that also integrate de-
duction and model building. We will not directly investigate deduction in model
evolution, which is a rather sophisticated form of lifting the well-known DPLL-
procedure for propositional logic to the first-order level. To motivate our investi-
gation of the underlying model representation mechanism it suffices to point out
that each inference step in model evolution refers to models that are represented
by so-called ‘contexts’. We will investigate the expressiveness of contexts and
the complexity of clause evaluation and of testing equivalence for contexts.

Formally a context is simply a finite set of literals. However, an important
ingredient is the distinction between ‘universal variables’ and ‘parameters’. The
latter can be viewed as a form of variables, that do not necessarily admit instan-
tiation by arbitrary ground terms; whereas universal variables can be understood
as placeholders for arbitrary terms of the Herbrand universe. (A corresponding
distinction appears in [24], where parameters are called ‘shared variables’ and
universal variables are called ’local variables’).

Throughout this paper we fix a signature Σ that contains infinitely many
constants. This is motivated by the intended use of contexts and amounts to an
important difference to representation formalisms based on finite signatures. We
will use 0, 1, a, b, c, and d (possibly with subscripts) to denote constants; f will
denote a function symbol. There is an infinite set of (universal) variables, as well
as an infinite set of parameters. We will use x, y, z to denote variables, and u,
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v, w for parameters. Terms (s, t, . . . ) and atoms (A, B, . . . ) are built up from
constants, variables, and parameters, using function and predicate symbols, as
usual. Literals (denoted by K, L, M) are either atoms, called positive literals,
or negated atoms, called negative literals. We write L for the literal that is dual
to L; i.e., A = ¬A and ¬A = A. A clause C = L1 ∨ · · · ∨ Lk is a disjunction of
literals. Terms, literals and clauses are called ground if no variables or parameters
occur in them.

Substitutions are mappings from variables and parameters to terms that have
fixpoints almost everywhere. A substitution is called a renaming if it is a per-
mutation that maps variables to variables and parameters to parameters. If the
restriction of a substitution σ to parameters is a renaming, then we call σ p-
preserving.

We write s � t if s is an instance of t; i.e.: if there is a substitution σ such
that s = tσ. The term t is called a generalization of s. If s = tσ is a ground
term then s is called ground instance of t and σ is called ground substitution. In
case σ is a renaming then we call s a variant of t. A term t ∈ T is called most
specific among a set of terms T if T does not contain a proper instance of t.
In particular, we say that t is a most specific generalization (for short, an msg)
of s in S, if t is most specific in T = {s′ ∈ S | s � s′}. These definitions are
generalized from terms to atoms and literals in the obvious way.

In addition to ordinary literals, the parameter v is used as a pseudo-atom,
potentially representing all ground atoms. The dual of v is the pseudo-literal ¬v.
Every positive (negative) literal is considered a proper instance of the pseudo-
literal v (¬v). The pseudo-literal ¬v is used to guarantee that all atoms that are
not explicitly specified to be true are false by default in contexts.

We assume the reader is familiar with unification and most general unifiers.
We write ϑ = mgu{E1, . . . , En} to denote that ϑ is the most general unifier of
the terms or atoms Ei (1 ≤ i ≤ n).

From now on, we will assume that each atom only contains either variables or
parameters, but not both. Correspondingly, we speak of universal atoms (literals)
and parameter atoms (literals), respectively.2 (Only ground atoms are parameter
atoms and universal at the same time.)

Definition 1. A context Λ is a finite set of literals containing the pseudo-
literal ¬v. Λ is contradictory iff Lσ = Kσ for some variants L,K of elements
in Λ and a p-preserving substitution σ.

Example 1. The context Λ1 = {¬v, P (x, f(y)),¬P (a, x)} is contradictory, since
P (x, f(y)) and P (a, x′) are unifiable, and the corresponding unifier is p-preser-
ving (since no parameters occur in the atoms). However the context Λ2 = {¬v,
P (x, f(y)),¬P (a, u)} is non-contradictory since, for all substitutions σ such that
P (x, f(y))σ = P (a, u)σ holds, the parameter u has to be instantiated. Likewise
the (pseudo-)parameter v has to be instantiated when unified with P (x, f(y)).

2 In [4,5], the simultaneous occurrence of parameters and variables in an atom is
allowed, but not used in the formalism. In fact the restriction does not affect the
expressive power of the formalism.
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Important Remark. From now on we only consider non-contradictory contexts
and thus drop the adjective, unless we want to emphasize this property.

Below, we present a definition for the production of ground atoms, that differs
from the corresponding one in [4,5], but makes the different roles of universal
literals and parameter literals more transparent. Moreover, our Definition 2 can
be easily shown to be equivalent to the corresponding definition in [4,5].

Definition 2. A ground atom A is produced by a context Λ iff one the following
conditions holds:

1. A is an instance of some universal literal in Λ, or
2. A is an instance of a parameter literal L ∈ Λ, but ¬A is not an instance of

a literal ¬B ∈ Λ, where B is either universal or a proper instance of L.

Note that a literal is a (proper) instance of another literal L iff it is a (proper)
instance of a variant of L. Consequently the literals of a context can always be
assumed to be variable and parameter disjoint.

Informally, Definition 2 can be paraphrased as follows: All instances of uni-
versal atoms are produced; in contrast, the (potential) production of an instance
A of a parameter atom L is blocked if ¬A is an instance of a more specific literal
or of a universal literal in the context.

Example 2. Consider the context Λ = {¬v, P (c, x, y), P (u, a, v), ¬P (u, u, b),
P (u, v, b)}. Since all instances of P (c, x, y) are produced, Λ produces all atoms
of the form P (c, s, t), for arbitrary ground terms s and t. P (u, a, v) and therefore
Λ produces, for instance, the atom P (a, a, a). On the other hand, ¬P (u, u, b)
prevents P (u, v, b) from producing P (d, d, b). Thus P (d, d, b) is not produced by
Λ. Note that ¬P (u, u, b) also prevents P (u, v, b) from producing P (a, a, b) and
P (c, c, b). Nevertheless, both P (a, a, b) and P (c, c, b) are produced by Λ, namely
by P (u, a, v) and P (c, x, y), respectively.

Definition 3. M(Λ), the model induced by the context Λ, is the set of ground
atoms that are produced by a context Λ. We call a model N context representable
if N =M(Λ) for some context Λ.

By the above definition of M(Λ) and Definition 2, it is clear that the truth
value of a ground atom A in a model represented by a context Λ can be computed
efficiently. In fact, this can be easily done in deterministic polynomial time, since
it only requires linearly many matching tests.

Example 3. The reader is invited to check that the context Λ of Example 2
induces the model M(Λ) = {P (r, s, t) | r = c ∨ s = a ∨ (r �= s ∧ t = b)}.

2.2 Explicit and Implicit Generalizations

As already mentioned, a simple form of model representation is constituted
by a finite set of atoms, stipulated to represent the set of all their ground
instances. In fact, this amounts to a special case of contexts: Every set Λ =
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{¬v}∪{A1, . . . , An}, where the Ai are (universal or parameter) atoms, is a con-
text. The represented model M(Λ) is the set of all ground instances of the Ai

(1 ≤ i ≤ n). In this respect {A1, . . . , An} is also called an atomic representation
ofM(Λ) (see, e.g., [14]).

An atom is sometimes understood as the explicit generalization of all its
ground instances. Consequently, an atomic representation can alternatively be
viewed as a disjunction of explicit generalizations.

Following ideas in [21], these notions can be generalized as follows:

Definition 4. An implicit generalization Γ is an expression of the form A/B,
where A is an atom and B is a finite set of atoms. We simply write A for A/{}.
Every ground atom that is an instance of A, but not an instance of any B ∈ B
is said to be contained in A/B.

A disjunction of implicit generalizations Δ (shortly: DIG) is defined as an
expression of the form A1/B1 � . . . � An/Bn, also written as

⊔
1≤i≤n Ai/Bi. A

ground atom is said to be contained in Δ if it is contained in Ai/Bi for some
i ∈ {1, . . . , n}.

The modelM(Δ) represented by a DIG Δ is the set of all ground atoms that
are contained in Δ. We call a model N DIG representable if N = M(Δ) for
some DIG Δ.

Remark. Note that our notation differs slightly from the one in [21], where
implicit generalizations are written in the form t/{t1 ∨ . . . ∨ tn}. In particular,
“disjunctions” are indeed denoted by “∨”. In order to avoid confusion with
clauses of the form C = L1∨ . . .∨Ln, we have decided to write DIGs in the way
described above. In particular, “disjunctions” are denoted by “�”. Of course,
this is only syntactic sugar.

That DIGs denote a natural and useful concept is highlighted by the fact that
they seem to have been (re)discovered several times. In particular, Baumgartner
et. al. [3,2] introduce them as ‘atoms with exceptions (AWEs)’ and describe their
use in tableau based inference in the context of their ‘Living Book’ technology.
Further applications of implicit generalizations are mentioned in Section 5.

Although the difference between universal variables and parameters is, in
principle, irrelevant for DIGs, we will from now on assume that DIGs consist
of parameter atoms only. This is in accordance with the intended semantics of
parameters as ‘variables that may not be instantiated arbitrarily’.

The truth value of a ground atom A in a model represented by a DIG Δ
can be computed efficiently. As in the case of models represented by a context,
checking whether A ∈M(Δ) reduces to linearly many matching tests.

Note that for any implicit generalization A/B, every B ∈ B can be replaced
by Bσ, where σ is the mgu of (parameter disjoint copies of) A and B, without
affecting the set of contained ground atoms. If Bσ is a variant of A (i.e., if A
is an instance of B) then M(A/B) is empty. In other words: for any implicit
generalization A/B one may assume without loss of generality that the atoms
in B are proper instances of A. We call a DIG normalized if, for all implicit
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generalizations A/B in it, B consists only of proper instances of A and, moreover,
all atoms occurring in the DIG are pairwise parameter disjoint.

Note that a single normalized implicit generalization can be considered as a
special form of contexts. Indeed, the following equivalence follows immediately
from the Definitions 2, 3, and 4:

Proposition 1. For any normalized implicit generalization Γ = A/B the set
ΛΓ = {¬v} ∪ {A} ∪ {¬B | B ∈ B} is a context with M(ΛΓ ) =M(Γ ).

3 Expressive Power of DIGs and Contexts

In this section, we show that contexts and DIGs have the same expressive power,
i.e., the set of models representable by one formalism coincides with the models
representable by the other formalism (see Theorem 1). However, if we also take
into account the actual cost of transforming one model representation into the
other, then a significant difference between contexts and DIGs emerges, namely:
DIGs can represent models significantly more succinctly than contexts (see The-
orems 2 and 3).

Theorem 1. Contexts and DIGs have the same expressive power; i.e., a model
N is context representable ⇔ N is DIG representable.

Proof.
“⇒”: Let Λ = {¬v}∪Λ+

u ∪Λ+
p ∪Λ−

u ∪Λ−
p be a context, where Λ+

u are the positive
universal literals, Λ+

p are the positive parameter literals, Λ−
u are the negative

universal literals, and Λ−
p are the negative parameter literals of Λ, respectively.

Moreover, let the DIG ΔΛ be defined by:

ΔΛ =
⊔

K∈Λ+
u

K �
⊔

K∈Λ+
p

K/
(
{L | L ∈ Λ−

p , L � K} ∪ {L | L ∈ Λ−
u }
)

The definition of ΔΛ above makes immediate use of Definition 2, i.e., an atom
K ∈ Λ+

u produces all its ground instances, while an atom K ∈ Λ+
p produces a

ground instance only if this production is not prevented by the negative literals
in Λ−

u and Λ−
p . It is straightforward to check thatM(ΔΛ) =M(Λ), i.e., ΔΛ and

Λ represent the same model.

“⇐”: Let Δ = A1/B1 � . . . � An/Bn be a normalized DIG. Moreover let ΛΔ be
the context defined as follows:3

ΛΔ = {¬v} ∪ {Ai | 1 ≤ i ≤ n}
∪ {¬B1ϑ[= . . . = ¬Bkϑ] | ϑ = mgu{B1, . . . , Bk} ∧ cond1 ∧ cond2},

3 Recall from Section 2.2 that we assume that DIGs contain only parameters (and no
universal variables). Of course, this assumption is not necessary; but it makes the
definition of ΛΔ much simpler (and more readable).
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where

cond1 = {B1, . . . , Bk} ⊆
⋃

1≤i≤n Bi

cond2 = (∀1 ≤ � ≤ n){B1, . . . , Bk} ∩ B� = ∅ implies B1ϑ �� A�.

The idea of cond1 is obvious: For all negative literals ¬B ∈ ΛΔ, the dual B must
either occur on the right-hand side of some implicit generalization A�/B� or B
must be the mgu of such atoms. The purpose of cond2 is to make sure that a
negative literal ¬B ∈ ΛΔ does not prevent A� from producing any atom unless
B is obtained via unification with some atom Bj ∈ B�. Note that cond2 also
guarantees that the resulting context ΛΔ is non-contradictory. In fact, since ΛΔ

contains only parameter literals, the only possibility of a contradiction is that
ΛΔ contains two literals ¬B1ϑ and A� where B1ϑ is a variant of A�. However,
by cond2, B1ϑ is obtained via unification with some atom Bj ∈ B�. Moreover,
since Δ is normalized, Bj (and thus also B1ϑ) is a proper instance of A�.

Again, it is rather straightforward to check thatM(Δ) =M(ΛΔ). �

Example 4. Recall the context Λ = {¬v, P (c, x, y), P (u, a, v),¬P (u, u, b), P (u, v,
b)} from Example 2. By the proof of Theorem 1, Λ represents the same model
as ΔΛ = P (c, x, y) � P (u, a, v) � P (u, v, b)/{P (u, u, b)}. It is now obvious that
the description ofM(Λ) in Example 3 is correct.

Example 5. Consider the DIG Δ = P (u1, u2)/{P (w1, b)}�P (u3, u4)/{P (a, w2)}.
Clearly, Δ represents all atoms P (s, t), s.t. either s �= a or t �= b. In other words,
Δ is equivalent to the implicit generalization P (u1, u2)/{P (a, b)}.

Analogously to the notation in the proof of Theorem 1, let A1 = P (u1, u2),
B1 = {P (w1, b)}, A2 = P (u3, u4), and B2 = {P (a, w2)}. The context ΛΔ is com-
puted as follows: {¬v}∪{Ai | 1 ≤ i ≤ 2} = {¬v, P (u1, u2), P (u3, u4)}. Moreover,
{¬B1ϑ | ϑ = mgu{B1, . . . , Bk} ∧ cond1} = {¬P (w1, b),¬P (a, w2),¬P (a, b)}. It
remains to check which of the negative literals in this set also fulfill cond2:
{P (w1, b)} ∩ B2 = ∅ but P (w1, b) � A2. Likewise, {P (a, w2)} ∩ B1 = ∅ but

P (a, w2) � A1. Hence, in either case, cond2 is violated. On the other hand,
P (a, b) = P (w1, b)ϑ with ϑ = mgu{P (w1, b), P (a, w2)}. Hence, P (a, b) fulfills
cond2 and, therefore, ΛΔ = {¬v, P (u1, u2), P (u3, u4),¬P (a, b)}. Of course, the
atom P (u3, u4) is redundant, but it does no harm. It is easy to see that ΛΔ is
indeed equivalent to P (u1, u2)/{P (a, b)} and hence also to Δ.

Theorem 2. Given a context Λ, a normalized DIG Δ withM(Λ) =M(Δ) can
be computed in polynomial time.

Proof. The construction of ΔΛ in the proof of Theorem 1 only involves some
instance checks and thus clearly is polynomial. However, note that in general
ΔΛ is not normalized. As described in Section 2.2, normalization requires the
computation of (linearly many) most general unifiers. Using appropriate data
structures, the corresponding instances can be generated in polynomial time. �

Theorem 3. There exists a sequence Δn (n > 1) of DIGs, where the size of Δn

is polynomial (in n), such that all contexts representing the same model as Δn

are of exponential size (in n).
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Proof. Let Δn =
⊔

1≤i≤n

P (u1, . . . , un)/{P (u1, . . . , ui−1, 0, ui+1, . . . , un),
P (u1, . . . , ui−1, 1, ui+1, . . . , un)},

where the ui (1 ≤ i ≤ n) are pairwise distinct parameters.
Note that the represented model M(Δn) consists in all ground instances of

P (u1, . . . , un) except those where all parameters ui are replaced by either 0 or 1.
Let us denote the corresponding set of negative literals by Λ−

n ; i.e.:

Λ−
n = {¬P (d1, . . . , dn) | di ∈ {0, 1}, 1 ≤ i ≤ n}

Clearly |Λ−
n | = 2n. It remains to show that for every context Λn withM(Λn) =

M(Δn) we have Λ−
n ⊆ Λn.

Let c1, . . . , cn be fresh, pairwise distinct constants, i.e., the ci do not occur in
Λn or Δn. In particular, the ci are all different from 0 and 1. Clearly, the atom
P (c1, . . . , cn) is in M(Δn). But then Λn must contain an atom P (u1, . . . , un),
where the ui are pairwise distinct parameters. Note that the ui cannot be vari-
ables since this would mean that every ground instance of P (u1, . . . , un) is in
M(Λn); including those, where the ui are instantiated by 0 or 1.

Let ¬P (d1, . . . , dn) ∈ Λ−
n , i.e., di ∈ {0, 1} for all i. By P (u1, . . . , un) ∈ Λn,

the context Λn has to contain some negative literal ¬P (s1, . . . , sn) with

P (d1, . . . , dn) � P (s1, . . . , sn) � P (u1, . . . , un)

in order to prevent Λn from producing P (d1, . . . , dn) (cf. Definition 2). Let
¬P (s1, . . . , sn) be most specific among the literals in Λn with this property.
It can be shown that P (s1, . . . , sn) neither contains variables nor parameters
since otherwise it would also prevent the production of atoms that are indeed
contained in the modelM(Δn). Thus, we have si = di for all 1 ≤ i ≤ n. �

4 Clause Evaluation and Testing Equivalence

Recall from Section 2 the conditions (1), (2), and (3) that any model repre-
sentation formalism should fulfill. The fact that condition (1) (i.e., the efficient
evaluation of ground atoms) holds for both contexts and DIGs, follows directly
from the observations of Section 2. In this section we are going to show that also
conditions (2) and (3) (i.e., the decidability of clause evaluation and of equiva-
lence) hold. More formally, we investigate the following four decision problems:

Context-Clause-Evaluation Context-Equivalence

Input: A clause C and a context Λ. Input: Two contexts Λ and Λ′.
Question: Is C true in the model M(Λ)? Question: Does M(Λ) =M(Λ′) hold?

DIG-Clause-Evaluation DIG-Equivalence

Input: A clause C and a DIG Δ. Input: Two DIGs Δ and Δ′.
Question: Is C true in the model M(Δ)? Question: Does M(Δ) =M(Δ′) hold?

Below we not only provide algorithms for these decision problems but we also
prove upper and lower bounds for these problems.
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For the upper bounds, the following proposition is helpful:

Proposition 2. Let A1, . . . , An, A′
1, . . . , A

′
m be parameter atoms that do not

share parameters with any of the parameter atoms in {B1, . . . , Bn, B′
1, . . . , B

′
m}.

It can be checked in deterministic polynomial time whether∧
1≤i≤n

Aiγ � Bi ∧
∧

1≤j≤m

A′
jγ �� B′

j

for some ground substitution γ.

Proof. W.l.o.g., we may assume that the atoms B1, . . . , Bn, B′
1, . . . , B

′
m are pair-

wise parameter disjoint. We claim that γ exists ⇔ the following conditions hold:

1. A simultaneous mgu σ of
(
{A1, B1}, . . . , {An, Bn}

)
exists and

2. A′
jσ �� B′

j for all j ∈ {1, . . . , m}.

Obviously these conditions can be tested in polynomial time with an efficient
unification algorithm (see [28]). We show the two directions of the equivalence
separately:

“⇒”: Suppose that the desired ground substitution γ exists. Then, since Aiγ �
Bi and the Bi are pairwise parameter disjoint, there is a most general simulta-
neous unifier σ of all pairs {Ai, Bi}; i.e., condition 1 holds. As for condition 2, it
suffices to note that γ = σϑ for some substitution ϑ and consequently A′

jγ �� B′
j

implies A′
jσ �� B′

j .

“⇐”: Suppose conditions 1 and 2 hold. Let ν be a substitution that maps each
parameter that occurs in one of the atoms Aiσ or A′

jσ into a distinct, fresh
constant. (By ‘fresh’ we mean that the constant does not occur in any of the Ai,
Bi, A′

j , or B′
j .) We claim that γ = σν is the desired ground substitution. Since

Aiγ is an instance of Aiσ = Biσ, we have Aiγ � Bi. On the other hand, by the
particular form of ν, A′

jσ �� B′
j implies A′

jγ = A′
jσν �� B′

j . �

Note that the “⇐”-direction in the above proof (and hence, the PTIME-
upper bound in Proposition 2) only holds because we are considering models
over an infinite signature Σ here. Indeed, when considering a finite signature,
we end up with an NP-lower bound for the analogous decision problem:

Proposition 3. Let Σ be a finite signature with at least two distinct constant or
function symbols. Moreover, let A1, . . . , An, A′

1, . . . , A
′
m be parameter atoms that

do not share parameters with any parameter atoms in {B1, . . . , Bn, B′
1, . . . , B

′
m}.

Then it is NP-hard to check whether there exists a ground substitution γ, s.t. the
following condition holds:∧

1≤i≤n

Aiγ � Bi ∧
∧

1≤j≤m

A′
jγ �� B′

j .

Proof. The proof is by reduction from the non-emptiness problem of implicit
generalizations whose NP-hardness was shown independently in [19] and [18], i.e.:
Given an implicit generalization Γ = A/{Ā1, . . . , Ām} over some finite signature
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Σ with at least 2 distinct function symbols, does there exist a ground instance
of A that is not an instance of any atom Āi on the right-hand side?

W.l.o.g., the atom A has no parameters in common with the atoms Āj . Now
let A′

1 = A′
2 = · · · = A′

m = A and B′
j = Āj for all j ∈ {1, . . . , m}. Then

the above non-emptiness problem of implicit generalizations is equivalent to the
condition that there exists a ground substitution γ with

∧
1≤j≤m

A′
jγ �� B′

j . �

Lemma 1. DIG-Clause-Evaluation is in coNP.

Proof. Let C = A1 ∨ · · · ∨ Ak ∨ ¬A′
1 ∨ · · · ∨ ¬A′

� and Δ =
⊔

1≤i≤n Bi/Bi. By
definition, C is false inM(Δ) iff for some ground instance Cγ none of the positive
literals in Cγ, but all negative literals in Cγ are contained in Δ. In other words,
C evaluates to false in M(Δ) iff there exists a ground substitution γ such that

k∧
j=1

n∧
i=1

(
Ajγ �� Bi ∨

∨
B∈Bi

Ajγ � B
)
∧

�∧
j=1

n∨
i=1

(
A′

jγ � Bi ∧
∧

B∈Bi

A′
jγ �� B

)
Note that, w.l.o.g., we may assume that the atoms Ai, A′

j do not share para-
meters with the (parameter) atoms Bi and those in Bi. Therefore, the problem
is reduced to one which has the form exhibited in Proposition 2 by correctly
guessing a disjunct (of the form Ajγ �� Bi or Ajγ � B) for each of the conjuncts
of the conjunction on the left-hand side of the formula, as well as a disjunct
(of the form A′

jγ � Bi ∧
∧

B∈Bi
A′

jγ �� B) for each j (1 ≤ j ≤ �) at the right-
hand side of the formula. Hence it follows from Proposition 2 that clauses can
be checked to be false in M(Δ) in non-deterministic polynomial time. In other
words: checking whether a clause is true in such a model is in coNP. �

Lemma 2. DIG-Equivalence is in coNP.

Proof. It suffices to show that, given DIGs Δ and Δ′, it can be tested by a
coNP-algorithm whether M(Δ) ⊆ M(Δ′). Let Δ =

⊔
1≤i≤n Bi/Bi. Note that

M(Bi/Bi) ⊆ M(Δ′) iff M(Bi) ⊆ M(Δ′′
i ), where Δ′′

i = Δ′ �
⊔

B∈Bi
B. In

other words, we have: M(Δ) ⊆ M(Δ′) iff for all i ∈ {1, . . . , n} the positive
unit clause Bi is true in the modelM(Δ′′

i ). We have thus polynomially reduced
the equivalence test to (linearly many) clause evaluations. Therefore the coNP-
membership follows from Lemma 1. �

Lemma 3. Context-Clause-Evaluation is coNP-hard. It remains coNP-hard if the
clauses to be evaluated are simply (non-ground) atoms.

Proof. We prove the coNP-hardness by reducing the well-known NP-complete
problem 3SAT to the co-problem of Context-Clause-Evaluation.

An instance of the 3SAT problem is given through a set X = {x1, . . . , xk} of
propositional variables and a Boolean formula E = (l11 ∨ l12 ∨ l13) ∧ · · · ∧ (ln1 ∨
ln2 ∨ ln3), s.t. the lij are literals over the variables in X , i.e.: every lij is either
of the form xγ or ¬xγ for some γ ∈ {1, . . . , k}. Correspondingly, we define A =
P (a, . . . , a, y1, . . . , yk), where P is a predicate symbol of arity n+k, a is a constant



420 C.G. Fermüller and R. Pichler

and the yi are pairwise distinct variables. Moreover, let u1, . . . , un, v1, . . . , vk be
pairwise distinct parameters. We set ΛE = {¬v} ∪ Λ+

E ∪ Λ−
E where Λ+

E and Λ−
E

are defined as follows:

Λ+
E = {P (a, u2, . . . , un, v1, . . . , vk), P (u1, a, u3, . . . , un, v1, . . . , vk), . . . , P (u1, . . . ,

un−1, a, v1, . . . , vk)}, i.e., each atom in Λ+
E has the constant a as one of the

first n arguments. The remaining n + k − 1 arguments are (pairwise distinct)
parameters.

Λ−
E = {¬B11,¬B12,¬B13,¬B21,¬B22,¬B23, . . . ,¬Bn1,¬Bn2,¬Bn3} with

Bij =
{

P (u1, . . . , ui−1, a, ui+1, . . . , un, v1, . . . , vγ−1, 1, vγ+1, . . . , vk) if lij = xγ

P (u1, . . . , ui−1, a, ui+1, . . . , un, v1, . . . , vγ−1, 0, vγ+1, . . . , vk) if lij =¬xγ

It can be easily checked that the resulting context Λ is non-contradictory. Indeed,
since Λ contains only parameter literals, a contradiction is only possible if ΛE

contains some atom plus its dual, which is obviously not the case.
This transformation can clearly be done in polynomial time. Moreover, it is

straightforward to check that E is satisfiable iff A evaluates to false inM(Λ). �

Lemma 4. Context-Equivalence is coNP-hard.

Proof. The coNP-hardness of the equivalence problem can be shown by reducing
the co-3SAT problem to it. Let the Boolean formula E as well as the atom A
and the context Λ be defined as in the proof of Lemma 3. We claim that the
Boolean formula E is unsatisfiable ⇔ the contexts Λ and Λ′ = Λ ∪ {A} are
equivalent. Of course, all ground atoms true inM(Λ) are also true inM(Λ′). It
thus remains to show that E is unsatisfiable ⇔ all ground atoms produced by
Λ′ are also produced by Λ. This is straightforward, but omitted here for lack of
space. �

By the polynomial time reduction from contexts to DIGs shown in Theo-
rem 2, the upper bounds on DIGs clearly carry over to contexts and, likewise,
the lower bounds on contexts carry over to DIGs. We thus immediately get:

Theorem 4. The four decision problems Context-Clause-Evaluation, DIG-Clause-
Evaluation, Context-Equivalence, and DIG-Equivalence are coNP-complete.

5 Related Work

We have shown that DIGs and contexts have the same expressive power for rep-
resenting models. But DIGs are known to be equivalent to yet another impor-
tant model representation formalism, namely atoms with equational constraints
(‘constrained atoms’, for short). Models represented by constrained atoms have
been extensively studied by Caferra, Peltier et al. (see [9,10,8]). Translating
DIGs into sets of constrained atoms is straightforward; the translation of con-
strained atoms into DIGs can be done effectively via results in [25]. However,
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the latter translation has non-elementary complexity in the worst-case, if arbi-
trary quantifier alternations are allowed in the constraining formula (see [31]).
The equivalence between DIGs and constrained atoms implies that the set of
expressible models is closed under union, intersection and complement (using re-
sults presented, e.g., in [11]). Similar formalisms are investigated, e.g., in [7,11].
The dissertation [29] and, more recently, chapter 5 of [8] provides an overview
of alternative model representation formalisms.

Besides their intended use in Automated Deduction, constrained atoms and
related representations of Herbrand models have also received attention in Logic
Programming and in Nonmonotonic Reasoning. In particular, [12] and [16] use
certain forms of constrained atoms to represent stable models for logic programs
with negation. Likewise, implicit generalizations (or equivalent notions) have
been applied to many fields of Computer Science, like Machine Learning and the
design of logic programming languages (cf. [21]), Program Verification and Pro-
gram Transformation (cf. [26]), Functional Programming (cf. [20]), etc. However,
the decision problems studied so far have been primarily the following ones:

1. The emptiness problem: Given an implicit generalization Γ = A/B over some
fixed signature Σ, is every ground instance of A also a ground instance of at
least one element B ∈ B (i.e., is Γ empty)?

2. The explicit representability problem: Given an implicit generalization Γ =
A/B over some fixed signature Σ, does there exist an equivalent explicit
generalization A = {A1, . . . , An}, i.e., every ground atom contained in Γ is
a ground instance of some atom Ai ∈ A and vice versa?

Related problems arise in the area of equational algebraic specifications (where
the “sufficient-completeness” problem is of interest, see [18]) and in automating
inductive proofs in equational theories (where the “ground reducibility” problem
is fundamental, see [17]). Actually, both the emptiness problem and the explicit
representability problem were shown to be coNP-complete for a finite signature Σ
(see [18,19,26,27]). These coNP-completeness results still hold if we generalize
these problems to disjunctions of implicit generalizations (see [30]).

Note that the situation changes completely if we consider implicit general-
izations over an infinite signature, as is done here. It is shown in [21] that then
the above two decision problems are in fact trivial and hence, clearly solvable in
deterministic polynomial time. Conversely, if clause evaluation and the equiva-
lence problem were studied over a finite signature, then the proof of Proposition 2
would be wrong. Indeed, the PTIME-upper bound shown in Proposition 2 for an
infinite signature contrasts with the NP-lower bound shown in Proposition 3 for
a finite signature. Hence, also the upper bounds shown in Lemma 1 and Lemma 2
would not necessarily hold any longer if we considered a finite signature here.

6 Conclusion

In the light of our results, DIGs may be considered superior to contexts as a rep-
resentation formalism: as we have seen, they may allow one to represent models
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considerably more succinctly without sacrificing expressive power. However, con-
texts have been specifically designed for the stepwise, systematic construction of
model descriptions in a calculus which supports efficient proof search [4,5]. It re-
mains unclear whether DIGs can be used alternatively. (See [3,2] for a promising
approach.) Moreover, one may seek to characterize the set of those models for
which optimal DIG representations are indeed exponentially more succinct than
all context representations. The fact that clause evaluation and the equivalence
test are not harder for DIGs than for contexts (cf. Theorem 4) suggests that
there are many models for which the representation as a context is not signif-
icantly longer than the representation as a DIG. In particular, this is the case
for the family of contexts constructed in the NP-hardness proof in Lemma 3.

Another problem for future investigation is whether even more succinct rep-
resentations of models (of the same class) are possible by, e.g., nesting the ex-
ception operator ‘/’ used for DIGs. Moreover it might be interesting to identify
fragments of contexts, DIGs, and other mechanisms that allow for polynomial-
time clause evaluation.

Finally, recall that we have considered the case of an infinite signature here
(motivated by the intended use of contexts). As has already been mentioned, the
complexity results derived in Section 4 (in particular the upper bounds) may no
longer hold if we switch to a finite signature. The precise complexity in the latter
case has yet to be determined.
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Abstract. This paper proves two basic properties of the model of a
single attack point-free event ordering system, developed by NTT. This
model is based on an incremental construction of Merkle trees, and we
show the correctness of (1) completion and (2) an incremental sanity
check. These are mainly proved using the theorem prover MONA; espe-
cially, this paper gives the first proof of the correctness of the incremental
sanity check.

Keywords: Merkle tree, theorem prover, temporal authentication.

1 Introduction

With the growth of the Internet, resilient temporal authentication for system
failure and/or malicious attacks becomes important. The standard method is to
use a timestamp based on a public-key cryptosystem. However, it has relatively
short time span (most public keys are renewed each 5 years), and once the
cryptography is compromised, all certificates become invalid.

With the aim for long-term validity (say, 20-30 years), NTT developed the
event ordering system [5] based on a Merkle tree [8], which is a labeled binary
tree such that a label of a node is recursively computed from labels of its child
nodes using a hash function. Although an event ordering has relatively rough
precision on a time scale, it relies only on the collision-resistance (and one-
wayness) of a hash function, which is believed to be much harder than public
key cryptosystems. Thus, this system is complementary to a timestamp system
based on a public key cryptosystem; with its supplementary use, we can obtain
both precision and long-term validity.

The event ordering system receives a hash value of a timestamp, and con-
structs a Merkle tree in an incremental manner. It issues a certificate immediately
after a hash value is registered to a leaf label of a partially constructed Merkle
tree. A newly registered hash value is recursively propagated in this bottom-up
way, and a certificate is the known part of minimum information to compute
the hash value at the root of a Merkle tree. When a whole Merkle tree has been
constructed, the hash value at its root is released as a public witness.
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Such an incremental construction has been proposed in literature [3,2,12,9,7],
and these studies support

– for long-term validity, the systems relay on only collision-resistance (and
one-wayness) of a hash function, and

– each transaction message is kept in O(log n) wrt the number of events; thus,
they are scalable.

Our system further enhances these systems:

– single attack point free.
– even if the system halts, an intermediate snapshop supports relative correct-

ness of temporal authentication.

This paper proves two basic properties of the incremental construction of a
Merkle tree: (1) correctness of completion and (2) correctness of an incremental
sanity check. They are mainly proved using theorem prover MONA [1]; especially,
this paper first prove (2) correctness of incremental sanity check.

Sections 2 and 3 explain what Merkle trees and MONA are, respectively.
Section 4 briefly introduces the event ordering system; terminology for an incre-
mental Merkle forest and our protocol design are explained. Section 6 gives the
proof of correctness of completion of an incremental Merkle forest. The proof is
performed both by manual induction and by MONA for comparison. Section 7
gives the proof of correctness of the incremental sanity check proposed in [5].
This property has been checked by experiments with large-scale data, but with-
out the proof. Although the proof is not fully formal, the main lemmata are
verified by MONA.

2 Merkle Tree

T = (V (T ), E(T )) is a directed graph if E(T ) ⊆ V (T ) × V (T ). We call an
element in V (T ) a node, and an element in E(T ) an edge. A path is a sequence
(t0, · · · , tn) of nodes such that for each 1 ≤ i ≤ n, (ti−1, ti) ∈ E(T ). A directed
graph T is acyclic if there are no paths that visit the same node twice.

We say that an acyclic directed graph T = (V (T ), E(T )) is a binary tree
with the (unique) root denoted by root(T ) if

– root(T ) ∈ V (T ),
– for each node t ∈ V (T ), there exists the unique path (t0, · · · , tn) such that

t0 = root(T ) and tn = t, and
– for each node t ∈ V (T ), if ({t} × V (T )) ∩ E(T ) �= ∅, there are exactly two

edges (t, t′) and (t, t′′) in E(T ) (we call t′ and t′′ the child nodes of t).

To distinguish the child nodes of t, we will give the explicit ordering denoted
by t.0 (left-child) and t.1 (right-child). s ≤ s′ is equivalent to v̄ ∈ {0, 1}∗ being
a prefix of w̄ ∈ {0, 1}∗ where s = t.v̄ and s′ = t.w̄. We also say that t.0 is the
brother of t.1, and vice versa. Note that the brother relation is symmetric, but
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not reflexive, i.e., t.0 and t.1 are not brothers of themselves, respectively. We
say that a node t is a leaf if t has no child nodes, and the set of leaves in T is
denoted by leaves(T ).

The position of t ∈ V (T ) is the sequence of 0’s and 1’s such that the cor-
responding the sequence of choice of left- and right-child from the root root(T )
results the path to t.

In the following, T = (V (T ), E(T )) is always a binary tree with a root.
T ′ = (V (T ′), E(T ′)) is a subtree of T = (V (T ), E(T )), if V (T ′) ⊆ V (T )
and there exists t′ ∈ V (T ′) such that T ′ is a binary tree with the root t′ (i.e.,
root(T ′) = t′).

As convention, we will denote binary trees by T, T1, T2, ..., nodes by s, t,
u, v, ... and t0, t1, ..., sets of nodes by X, Y, Z, ..., the set of labels by L, and
descriptions in MONA by type writer fonts.

Definition 1. Let g : L × L → L be a binary function where L is the set
of labels. Let T = (V (T ), E(T )) be a binary tree with the root root(T ), where
V (T ) and E(T ) are the sets of nodes and edges, respectively. A Merkle tree
MT = (V (T ), E(T ), α) is a L-labeled binary tree with a labeling function α :
leaves(T ) → L. The label for non-leaf nodes is recursively defined by α(t) =
g(α(t.0), α(t.1)).

We will often overload a tree T and a Merkle tree MT when it is clear from
the context.

Remark 1. Originally, a Merkle tree was defined such that each path to a leaf
from root(T ) has the same length [8]. We generalize a Merkle tree, such that
paths to leaves may have different lengths. This generalization makes proof of
the target properties easier and expressible in WS2S.

In our design of the event-ordering system, we assume that g is a collision-
resistant one-way hash function. Although theoretically it may be difficult to
guarantee a collision-resistant and one-way function, in practice we can set an
appropriate function.

An event sequence corresponds to the set of leaves of a Merkle tree (in which
each path to a leaf has the same length); as default, we consider that time
proceeds in a left-to-right manner. Thus, if the level (the length from the root to
a leaf) of a Merkle tree T is n, the start leaf is root(T ). 0 · · · 0︸ ︷︷ ︸

n

and the end leaf is

root(T ). 1 · · · 1︸ ︷︷ ︸
n

. At each time unit, the referred leaf shifts to the next (i.e., right

neighborhood) leaf. When an event occurs, it put a label (e.g., the hash value of
the transaction to be certificated) at the currently referred leaf. The label of each
node is computed recursively when the labels of its both children are computed.
Thus, if a referred leaf reaches to the end leaf, the label of root(T ) is computed.

If g is a collision-resistant one-way hash function, bottom-up computation of
hash values (i.e., hash values of both child nodes are concatenated by suitable
injective binary operation, and a hash function computes the hash value of their
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parent node) is easy; but topdown computation (i.e., from the label of a parent,
guess labels of its child nodes) is infeasible. In other words, to interpolate the
labels of children is expected to be practically impossible.

In the following definition, the authentication path at a node t is the mini-
mum information to compute the label at root(T ) from the label of t, the left
authentication path at a node t is the set of labels that were computed before
t, and the right authentication path at a node t is the set of labels that will
be computed after t. Note that our definition of an authentication path is not
restricted to a leaf, but is also for a node.

Definition 2. Let t ∈ V (T ) and let (root(T ), t1, · · · , tn−1, t) be a path from
root(t) to t.

– The authentication path of t, denoted by CAT (t), is the set of brothers of
t1, · · · , tn−1, t.

– The left authentication path of t, denoted by LAT (t), is the intersection of
CAT (t) and {root(T ).0, t1.0, · · · , tn−1.0} (i.e., left brothers).

– The right authentication path of t, denoted by RAT (t), is the intersection
of CAT (t) and {root(T ).1, t1.1, · · · , tn−1.1} (i.e., right brothers).

– The root path of t, denoted by pathT (t), is {root(T ), t1, · · · , tn−1, t}.
– The path closure of t, denoted by pCls(t), is pathT (t) ∪ CAT (t).

We often omit T in CAT (t), LAT (t), RAT (t), pathT (t), and pClsT (t) as
CA(t), LA(t), RA(t), path(t), and pCls(t), if T is clear from the context.

Remark 2. A left (resp. right) authentication path is called a freshness (resp. an
existential) token.

3 Monadic Second Order Logic

3.1 (W )S2S

Monadic second order logic SnS is a logic on n-ary (possibly infinite) trees. We
focus on S2S, a logic on binary trees, consisting of

– First order variable, s, t, u, · · ·
– Second order variable, X, Y, Z, · · ·
– Quantifiers, ∀, ∃
– Logical connectives, ∧, ∨, ¬, ⇒
– Set operations, ∈, ⊆, ∪, ∩, \
– Function symbols, root, s0, s1

– Position relation, <, ≤

These are interpreted as logical operations on nodes of a binary tree. root is
the unique constant that represents the root of a binary tree. The order s < t
on nodes means that s is placed between root and t, i.e., s is nearer to the root
than t. Note that the satisfiability of an S2S-formula is decidable; that is, the
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satisfiability of an S2S-formula is equivalent to the emptiness problem of a Büchi
tree automata [11].

WS2S (weak S2S) is the restricted logic of S2S such that the range of set
variables (second-order variables) runs on sets of finite trees. The satisfiability
of a WS2S-formula corresponds to the emptiness problem of a tree automata.

3.2 MONA

MONA is a batch-style satisfiability checker for WS2S [1]. Although complexity
of the satisfiability is non-elementary, MONA is efficiently implemented and
practically quite usable. MONA’s syntax for WS2S formulae consists of

– First order variable, s, t, u, · · ·
– Second order variable, X, Y, Z, · · ·
– Variable declaration, var1, var2
– Quantifiers, all1, ex1, all2, ex2
– Logical connectives, &, |, ∼, =>
– Set operations, in, notin, sub, union, inter, \

# s is properly lefter than t

pred lefter(var1 s,t) = ex1 u: (u.0 <= s & u.1 <= t);

# u = glb(s,t)

pred glb(var1 s,t,u) =

u <= s & u <= t & all1 v: ((v <= s & v <= t) => v <= u);

# s.1...1 = t

pred rightmost(var1 s,t)=s < t & all1 u: ((s <= u & u < t) => u.1 <= t);

# Each pair of nodes in A is incomparable

pred incomparable(var2 A) =

all1 s,t : ((s in A & t in A) => (s = t | (~(s < t) & ~(t < s))));

# t is the last node in A

pred last(var1 t, var2 A) =

t in A & all1 s: ((s in A & s ~= t) => lefter(s,t));

# t is the next node of s in A

pred next(var1 s,t, var2 A) =

s in A & t in A & lefter(s,t) &

all1 u : ((u in A & lefter(u,t)) => (u = s | lefter(u,s)));

# Y is the lower bound node set of X

pred lower_bound(var2 X,Y) =

incomparable(Y) & all1 s: (s in X => ex1 t: (t in Y & t <= s));

# X is a (sub)bintree rooted at node s

pred bintree_at(var1 s, var2 X) =

s in X & all1 t:((s <= t =>((t notin X =>(t.0 notin X & t.1 notin X)) &

(t in X => (t.0 in X <=> t.1 in X)))) &

(~(s <= t) => t notin X));

# Y is the subtree of X below s

pred below(var1 s, var2 X,Y) = all1 t: ((s <= t & t in X) <=> t in Y);

Fig. 1. Library for proofs by MONA



Proving Properties of Incremental Merkle Trees 429

– Function symbols, root, t.0, t.1, t^
– Position relation, <, <=

The difference with WS2S is:

– Quantifiers are explicitly classified for first- or second-order variables.
– Free variables used in a formula need the variable declarations var1, var2

depending on whether they are first- or second-order free variables.
– Since negation (complement of tree automata) is an exponentially heavy

operation, notin is prepared.
– t^ is prepared for the ancestor node of t.

Note that <= is a prefix relation between positions and => is a logical impli-
cation. The library used in the paper is shown in Fig. 1.

Example 1. The example below shows predicate definitions and a WS2S-formula
that means the closure operation is idempotent.

ws2s;
var2 X,Y,Z;
pred closed(var2 Y) = all1 t: ((t.0 in Y & t.1 in Y) => t in Y);
pred closure(var2 X,Y) =
closed(Y) & X sub Y & all2 Z:((closed(Z) & X sub Z) => Y sub Z);

(closure(X,Y) & closure(Y,Z)) => closure(X,Z);

The predicate closed(Y) means that for each node t, if both children t.0 (left
child) and t.1 (right child) are in Y, then t is in Y. The predicate closure(X,Y)
means that Y is the minimum set such that Y is closed and includes X. The last
line describes the formula to be checked. When these lines are saved as, say,
example.mona, type “mona example.mona”; then it is computed to be VALID.

4 Scalable Event-Ordering System

4.1 Incremental Merkle Forest

Definition 3. Let T be a Merkle tree and let t ∈ V (T ). The incremental Merkle
forest IMFT (t) is the union of binary sub-trees T ′ of T satisfying either

– s = root(T ′) where s is the minimum node such that s.1 · · · 1 = t, or
– s.0 = root(T ′) where s.1 ≤ t and s. 1 · · ·1︸ ︷︷ ︸

m

�= t for ∀m.

We will often omit T in IMFT (t) as IMF (t) when T is clear from the
context. Note that IMF (t) is the set of subtrees in which the label (hash value)
of each node is defined. In MONA, “Z is the set of roots of subtrees in IMF (t)”
is described as IMFroot(t,Z) below.

pred defined(var1 s,t) = lefter(s,t) | rightmost(s,t) | s = t;
pred preIMF(var1 t, var2 Z) = all1 s: (s in Z => defined(s,t));
pred IMFroot(var1 t, var2 Z) =
preIMF(t,Z) & all2 Y: (preIMF(t,Y) => lower_bound(Y,Z));
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Remark 3. It is tempting to directly define IMF (t, Z) as

pred IMF(var1 t, var2 Z) = all1 s: (s in Z <=> defined(s,t));

but, this makes Z in IMF(t,Z) run on infinite sets, i.e., beyond the scope of
WS2S. For instance, WS2S assumes that Z in preIMF(t,Z) runs on finite sets.

Note that the restriction to nodes in an incremental Merkle forest does not
affect a left authentication path; however, it does affect a right authentication
path. We say that for s, t ∈ V (T ), s is lefter than t (in T ) if there exists u ∈ V (T )
such that u.0 ≤ s and u.1 ≤ t (which corresponds to lefter(s,t in Fig. 1).

Definition 4. Let s, t ∈ V (T ) and let s be lefter than t. A The relative right
authentication path RAT,t(s) of s wrt t is RAT (t) ∩ IMFT (t).

We often omit T in RAT,t(s), if T is clear from the context. In MONA,
CA(t), LA(t), RAt(s), and pClsT (t) are described as

# Authentication path
pred preCA(var1 t, var2 Y) = (all1 s : s.0 <= t => s.1 in Y) &

(all1 s : s.1 <= t => s.0 in Y);
pred CA(var1 t, var2 Y) =
preCA(t,Y) & all2 Z : (preCA(t,Z) => Y sub Z);

# Left authentication path
pred preLA(var1 t, var2 Y) = all1 s : (s.1 <= t => s.0 in Y);
pred LA(var1 t, var2 Y) =
preLA(t,Y) & all2 Z : (preLA(t,Z) => Y sub Z);

# Right authentication path
pred preRA(var1 s,t, var2 Y) =
ex2 Z: (IMFroot(t,Z) &

all1 u: ((u.0 <= s & ex1 v: (v in Z & v <= u.1))
=> u.1 in Y));

pred RA(var1 s,t, var2 Y) =
preRA(s,t,Y) & (all2 Z : preRA(s,t,Z) => Y sub Z);

# Path closure
pred pCls(var1 t, var2 X) =
all1 s: (s in X <=> (s <= t | (ex2 Y: (CA(t,Y) & s in Y))));

Note that PCls(t) = Cls(CA(t) ∪ {t}) where Cls(X) is a closure operator
is defined below.

Definition 5. Let T be a Merkle tree. For X ⊆ V (T ), the closure Cls(X) is
the minimum set satisfying

– X ⊆ Cls(X), and
– if both child nodes of t is in Cls(X), then t is in Cls(X).

In MONA, “Y = Cls(X)” is described as closure(X,Y) (see Example 1).
For notational convenience, we define LS(t) = LA(t) ∪ {t} and LSRt(s) =

LS(s) ∪ RAt(s), where s, t ∈ V (T ) such that s is lefter than t. In MONA, they
are described as
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pred LS(var1 t, var2 X) = ex2 Y: (LA(t,Y) & X = Y union {t});
pred LSR(var1 s,t, var2 Z) =
ex2 X,Y: (LS(s,X) & RA(s,t,Y) & Z = X union Y);

4.2 Incremental Scheme for Optimal Slice Replication

Let A = {t1, · · · , tk} be a set of leaf nodes of T where one user requests to
register events. An incremental Merkle forest IMF (tk) is also called a temporal
slice at tk. A spatial slice of A is the union of path closures of nodes in A (i.e.,
∪ti∈A pCls(ti)), and an optimal slice of A is the intersection of the temporal
slice at tk and the spatial slice of A (i.e., (∪ti∈A pCls(ti)) ∩ IMF (tk)).

A path slice of ti at tj (for i < j) is the intersection of the root path of ti and
the temporal slice at tj , i.e., the fragment of the root path of ti in which each
hash value is known at tj .

Fig. 2 shows the spatial/temporal/optimal slices of of A = {t1, t2, t3, t4, t5}.
The area surrounded by the dotted line is the spatial slice of A, the area sur-
rounded by the thin line is the temporal slice at t5, and their intersection is the
optimal slice of A. The set of circled nodes is the left authentication path LA(t4)
at t4, the set of two boxed nodes is the right authentication path RA(t4), and
RAt5(t4) consists of the node boxed with the line. The thick line that stems from
t4 shows the path slice of t4 at t5.

t1 t2 t3 t4 t5

Spatial slice of  {t1, t2, t3, t4, t5}

Temporal slice at t5

Fig. 2. Incremental Merkle forest

The protocol of our event-ordering system proceeds with the following trans-
action at each request from a user. The detailed algorithm is described in [5].

– For the request at t1, return a pair (∅, LS(t1)).
– For a request at ti with 1 < i ≤ k, return a pair (RAti(ti−1), LS(ti)).
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Theorem 1 guarantees that one can recover the optimal slice of A only from
LSRti+1(ti)’s (for 1 ≤ i < k) and LS(tk), which are obtained by transactions
of the protocol. This is called completion. Each message at a transaction is
logarithmically small, and this gives an efficient optimal slice replication.

The event ordering system is designed to use this protocol between an au-
ditor and a server, as well as an user and a server. One auditor is assumed to
periodically register events a1, a2, · · ·. If these are sufficiently frequent, there will
be an auditor’s request aj between one user’s requests ti and ti+1. In such situa-
tion, the left authentication path LS(aj) has an overlap with the path slice of ti
at ti+1. Then, the auditor can confirm that ti occurs before aj by comparing a
hash value of an overlapping node at the user side and that at the auditor side.

The systems studied in [3,2,12,9,7] can perform similar event ordering, but
only after a whole Merkle tree has been constructed; users need to collect infor-
mation on right authentication paths from a server. Our system can perform the
same thing without information from a server, because each participant keeps its
own optimal slice replication. Thus, our system is safe from a server clash.

The optimal slice replication also enables participants to check each other
without making inquiries to a server. We also assume that there are multiple
auditors; this enables them to detect a malicious auditor even if a server halts.
This setting guarantees single attack point free.

Theorem 2 guarantees the correctness of an efficient incremental sanity check,
i.e., consistency among labels of nodes in {LSRti+1(ti) | 1 ≤ i < k} ∪ {LS(tk)}
can be incrementally verified by weak consistency between each pair of neighbors
(LSRti+1(ti), LS(ti+1)) for 1 ≤ i < k.

During an incremental optimal slice replication, hash values may be com-
puted at different moments even for the same node. The consistency among
multiple definitions enables us (including a server itself) early detection of server
errors and/or malicious attacks.

The proof of Theorem 1 (in Section 6) is fully performed by MONA, because
it can be described in terms of nodes in a binary tree T . However, the proof
of Theorem 2 (in Section 7) is only partially performed by MONA; the use
of MONA is restricted to proofs of the main lemmata, which are essential for
inductive steps in the full proof. MONA is fully automatic, thus its scope and
ability are restricted. The main limitations here are:

– MONA lacks induction, and
– MONA lacks a description for equality between labels.

5 Characterization as a Pivoted Forest

Although the characterization given in this section is more than that needed in
later sections (what we need in the proof of Lemma 8 is the fact that the union
and the intersection of a forest of binary trees are again a forest of binary trees),
this will clarify the perspective.
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pivot

root(T)

tk

binary
trees

Fig. 3. IMF (tk) as a pivoted forest

Definition 6. Let T be a Merkle tree. A node t ∈ V (T ) is a pivot if either

– t = root(T ), or
– t is the left child of a node.

A forest X ⊆ V (T ) of binary trees is a pivoted forest (wrt a pivot t) if X =
∪s∈LS(t)Xs where Xs is a binary tree with root(Xs) = s.

In MONA, “X is a pivoted forest wrt t” is given as pivoted forest(t, X).

pred pivoted_forest(var1 t, var2 X) =
all2 Y: (LS(t,Y) =>

(lower_bound(X,Y) & Y sub X &
all1 s: (s in Y =>

(all2 Z: (below(s,X,Z) => bintree_at(s,Z))))));

Let A = {t1, · · · , tk} be a set of leaf nodes of T such that ti is lefter than ti+1.
We first show that an incremental Merkle forest IMF (tk) is a pivoted forest, as
described in Fig. 3.

Lemma 1. An incremental Merkle forest IMF (t) is a pivoted tree where its
pivot is the root of the rightmost component of IMF (t).

In MONA, Lemma 1 is described below and verified as VALID.

(IMFroot(t,X) & last(s,X)) => pivoted_forest(s,X);

Second, ClsT (LSRti+1(ti)) for 1 ≤ i < k, ClsT (LS(tk)), and their union are
also pivoted forests.

Lemma 2. 1. ClsT (LS(s)) is a pivoted forest wrt u where u is the minimum
node with s = u.1 · · · 1.

2. Let s, t ∈ V (T ) such that s is lefter than t and let v = glb(s, t). Then,
ClsT (LSR(s, t)) is a pivoted forest wrt u where u is
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– the minimum node with t = u.1 · · ·1 if t = v.1 · · · 1, and
– v.0 otherwise.

To describe Lemma 2, we prepare predicates that describe

– “X = ClsT (LS(s))” as LSclosure(s,X),
– “X = ClsT (LSRt(s))” as LSRclosure(s,t,X),
– “u is a pivot of ClsT (LS(s))” as LSpivot(s,u), and
– “u is a pivot of ClsT (LSRt(s, u))” as LSRpivot(s,t,u).

pred LSclosure(var1 t, var2 X) = ex2 Y: (LS(t,Y) & closure(Y,X));
pred LSRclosure(var1 s,t, var2 X) =

ex2 Y: (LSR(s,t,Y) & closure(Y,X));
pred LSpivot(var1 s,t) =

(t = s | rightmost(t,s)) &
(all1 u: ((u = s | rightmost(u,s)) => t <= u));

pred LSRpivot(var1 s,t,u) =
all1 v: (((glb(s,t,v) & rightmost(v,t)) => LSpivot(t,u)) &

((glb(s,t,v) & ~rightmost(v,t)) => u = v.0));

In MONA, the statement of Lemma 2 is described as

(LS(s,X) & closure(X,Y) & LSpivot(s,t)) => pivoted_forest(t,Y);
(lefter(s,t) & LSR(s,t,X) & LSRpivot(s,t,u) & closure(X,Y))

=> pivoted_forest(u,Y);

and is verified as VALID.

Lemma 3. Let X, Y be pivoted forests wrt to pivots s, t, respectively. If s ∈ Y ,
then X ∪ Y (resp. X ∩ Y ) is a pivoted forest wrt t (resp. s).

In MONA, this statement is described as

(pivoted_forest(s,X) & pivoted_forest(t,Y) & s in Y) =>
((pivoted_forest(t, X union Y) & pivoted_forest(s, X inter Y)));

and is verified as VALID.

Lemma 4. If s is lefter than t, the pivot of Cls(LSRt(s)) is in Cls(LS(t)).

This is described as

(lefter(s,t) & LSRpivot(s,t,u) & LSclosure(t,X)) => t in X;

is verified as VALID by MONA. Thus, next Corollary is immediate.

Corollary 1. (∪1≤i<k ClsT (LSRti+1(ti))) ∪ ClsT (LS(tk)) is a pivoted forest
wrt u where u is the minimum node satisfying u.1 · · · 1 = tk.
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6 Completion

6.1 Completion in Incremental Merkle Forest

Intuitively, completion is a process to collect all nodes in an incremental Merkle
forest such that their hash values can be computed only from issued certificates.
Its correctness is, whether an optimal slice at the moment can be computed
(Theorem 1) at a user side well a a server side.

Theorem 1. (Theorem 1 in [5]) Let A = {t1, t2, · · · , tk} be leaves in a Merkle
tree T such that ti is lefter than ti+1 for 1 ≤ i < k. Then,

(∪1≤i≤k pCls(ti)) ∩ IMF (tk) = Cls(∪1≤i<k LSRti+1(ti) ∪ LS(tk)).

In the system, completion can be done efficiently by a right-to-left incre-
mental closure operations. For notational convenience, we define a path closure
slice pClsSlct(s) = pCls(s) ∩ IMF (t) where s is lefter than t. In MONA,
pClsSlct(s) is described as pClsSlc(s,t,X).

pred pClsSlc(var1 s,t, var2 X) =
ex2 Y,Z: (pCls(s,Y) & IMFroot(t,Z) &

all1 u:(u in X<=>(u in Y & ex1 v:(v in Z & v <= u))));

By the distributive law

(∪1≤i≤k pCls(ti)) ∩ IMF (tk) = ∪1≤i≤k (pCls(ti) ∩ IMF (tk)),

the completion is enough to compute pClsSlctk
(ti) for 1 ≤ i ≤ k. Then, the

completion algorithm (guaranteed by Lemma 5) is:

1. Compute pClsSlctk
(tk), which is Cls(LS(tk)).

2. When pClsSlctk
(ti+1) (for 1 ≤ i < k) is computed, compute pClsSlctk

(ti),
which is contained in Cls(pClsSlctk

(ti+1) ∪ LSRti+1(ti)).

Note that during computation, each step requires only logarithmic time.

Lemma 5. Let A = {t1, t2, · · · , tk} be leaves in a Merkle tree T such that ti is
lefter than ti+1 for 1 ≤ i < k. Then,

– pClsSlctk
(tk) = Cls(LS(tk)).

– pClsSlctk
(ti) ⊆ Cls(pClsSlctk

(ti+1) ∪ LSRti+1(ti)).

Section 6.2 will show a manual proof of Theorem 1, and Section 6.3 will show
a formal proof by MONA for comparison of proofs by human and machine.

6.2 Proving Theorem 1 by Induction

Let A = {t1, t2, · · · , tk} such that for ti is lefter than ti+1 for 1 ≤ i < k.
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Proof of Theorem 1 by Induction on k. By induction on k. If k = 1,
obvious. For k > 1, by induction hypothesis,

(∪2≤i≤k pCls(ti)) ∩ IMF (tk) = Cls(∪2≤i<k LSRti+1(ti) ∪ LS(tk)).

Let u = glb(t1, t2). We denote the left child node of u by u.0 and the right
child node by u.1, respectively. Since t1 is lefter than t2, u.0 ≤ t1 and u.1 ≤ t2.
Since u.0 ∈ LS(t2), u.0 ∈ IMF (tk). Thus, u.0 ∈ pClsSlctk

(t1).
Let X1 = {t ∈ pClsSlctk

(t1) | u.0 ≤ t} and X2 = pClsSlctk
(t1) \X1. Then,

X1 ⊆ Cls(LSRt2(t1)) and X2 ⊆ pClsSlctk
(u.0) ⊆ pClsSlctk

(t2). Therefore

(∪1≤i≤k pCls(ti)) ∩ IMF (tk) ⊆ Cls(∪1≤i<k LSRti+1(ti) ∪ LS(tk)).

The opposite direction is obvious.
The proof of Lemma 5 can be performed similarly to that of Theorem 1.

6.3 Proving Theorem 1 by MONA

Let A = {t1, t2, · · · , tk} such that ti is lefter than ti+1 for 1 ≤ i < k. Define:

– “X = ∪1≤i<k LSRti+1(ti) ∪ LS(tk)” is denoted by LSRunion(A,X).
– “X = ∪1≤j≤k pCls(tj)” is denoted by spatial slice(A,X).
– “X = (∪1≤j≤k pCls(tj)) ∩ IMF (tk)” is denoted by opt slice(A,X).

pred LSRunion(var2 A,X) =
all1 s: (s in X <=>

ex1 t: ((ex1 u: ex2 Y: (next(t,u,A)&LSR(t,u,Y)&s in Y)) |
(ex2 Z: (last(t,A) & LS(t,Z) & s in Z))));

pred spatial_slice(var2 A,X) =
all1 s: (s in X <=>

ex1 t: ex2 Y: (t in A & pCls(t,Y) & s in Y));
pred opt_slice(var2 A,X) =
ex1 t: ex2 Y,Z: (last(t,A) & IMFroot(t,Y) & spatial_slice(A,Z) &

all1 u: (u in X <=>
(u in Z & ex1 s: (s in Y & s <= u))));

The statement of Theorem 1 is described as

(incomparable(A) & opt_slice(A,X) & LSRunion(A,Y) & closure(Y,Z))
=> X = Z;

and is verified as VALID by MONA. The statement of Lemma 5 is described as

(LS(t,X) & pClsSlc(t,t,Y) & closure(X,Z)) => Y = Z;
(lefter(s,t) & (lefter(t,u) | t = u) & LSR(s,t,X) &
pClsSlc(s,u,Y) & pClsSlc(t,u,Z) & closure(X union Z,C))=>Y sub C;

and also verified as VALID.
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7 Incremental Sanity Check

7.1 Consistency

Let A = {t1, t2, · · · , tk} such that for each pair (ti, ti+1) with 1 ≤ i < k, ti is
lefter than ti+1. Upon completion, there may be nodes in a Merkle tree such
that their labels are computed from different LSRti+1(ti)’s. If multiple compu-
tations of the label of a node coincide, this will be an indication of no system
failures and/or no malicious attacks. This check of a server can be also performed
by users and auditors, as well as self check by a server itself. This is called a
sanity check; however, the naive way will be too expensive. We will show that
an incremental sanity check that verifies weak consistency between each pair of
neighbors (LSRti+1(ti), LS(ti+1)) is enough.

To formalize the sanity check, we need to distinguish generated labels at each
transaction; we associate a labeling (partial) function αi : leaves(T ) → L to each
pair (LSRti+1(ti), LS(ti)). Note that during the sanity check, g : L × L → L is
fixed.

Definition 7. Let Ui ⊆ V (T ) be a set of incomparable nodes in a Merkle tree
T and let αi : Ui → L be a labeling (partial) function such that αi is extended
by αi(t) = g(αi(t.0), αi(t.1)) for t ∈ cCLST (Ui).

– {(Ui, αi)} is weakly consistent if t ∈ cCLST (Ui) ∩ cCLST (Uj) implies
αi(t) = αj(t).

– {(Ui, αi)} is consistent if for each t ∈ ClsT (∪ Ui), α(t) is well-defined where

α(t) =
{

αi(t) when t ∈ leaves(Ui)
g(α(t.0), α(t.1)) when t �∈ leaves(∪ Ui)

Note that α(t) may have multiple definitions, i.e., t may be a leaf node of
some Ui and simultaneously t may be a non-leaf node of some Uj.

Theorem 2. If (LSRti+1(ti), αi) and (LS(ti+1), αi+1) are weakly consistent for
1 ≤ i < k, {(LSRti+1(ti), αi) | 1 ≤ i < k} ∪ {(LS(tk), αk)} is consistent.

Note that weak consistency between (LSRti+1(ti), αi) and (LS(ti+1), αi+1)
can be checked quite efficiently. That is, by Lemma 2, 3, and 4, the set of min-
imum nodes in ClsT (LSRti+1(ti)) ∩ ClsT (LS(ti+1)) is LS(u) where u is the
pivot of ClsT (LS(ti+1)). In practice, we assume a collision-resistant one-way
hash function g; thus, it is enough to check whether each hash value by αi at a
node in LS(u) coincides with that by αi+1.

7.2 Proving Weak Consistency

For the former half of the proof of Theorem 2, we will prove that if (LSRti+1(ti),
αi) and (LS(ti+1), αi+1) are weakly consistent for each i with 1 ≤ i < k, then
{(LSRti+1(ti), αi) | 1 ≤ i < k} ∪ {(LSRtk

(tk), αk)} is weakly consistent.
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Lemma 6. Let s, t, u, v, w ∈ V (T ) such that s is lefter than t, t is lefter than
or equal to u, u is lefter than or equal to v, and v is lefter than w. Then,

1. LSRt(s) ∩ LSRw(v) ⊆ LS(u), and
2. ClsT (LSRt(s)) ∩ ClsT (LSRw(v)) ⊆ ClsT (LS(u)).

In MONA, the statement of Lemma 6 is described as

(lefter(s,t) & (t = u | lefter(t,u)) & (u = v | lefter(u,v)) &
lefter(v,w) & LSR(s,t,X) & LS(u,Y) & LSR(v,w,Z))

=> X inter Z sub Y;
(lefter(s,t) & (t = u | lefter(t,u)) & (u = v | lefter(u,v)) &
lefter(v,w) & LSRclosure(s,t,X) & LSclosure(u,Y)

& LSRclosure(v,w,Z)) => X inter Z sub Y;

and is verified as VALID.

Lemma 7. If (LSRti+1(ti), αi) and (LS(ti+1), αi+1) are weakly consistent for
each i with 1 ≤ i < k, then {(LSRti+1(ti), αi) | 1 ≤ i < k} ∪ {(LS(tk), αk)} is
weakly consistent.

Proof. By induction on k. If k = 1, obvious. Assume k > 1 and the statement
holds for k − 1. Let X = (∪1≤i<k−1 ClsT (LSRti+1(ti)) ∪ ClsT (LS(tk−1)).

It is enough to consider the intersection X1 = X ∩ ClsT (LSRtk
(tk−1)) and

X2 = X ∩ ClsT (LS(tk)).
From Lemma 6, X1, X2 ⊆ ClsT (LS(tk−1)). Since (LSRtk

(tk−1), αk−1) and
(LS(tk), αk) are weakly consistent, Lemma is proved.

Note that MONA cannot verify Lemma 7, because it cannot describe the
equality between labels.

7.3 Proving Consistency

For the latter half of the proof of Theorem 2, we will prove that if

{(LSRti+1(ti), αi) | 1 ≤ i < k} ∪ {(LS(tk), αk)}

is weakly consistent, they are consistent. This complete the proof of Theorem 2.

Lemma 8. If {(LSRti+1(ti), αi) | 1 ≤ i < k} ∪ {(LS(tk), αk)} is weakly con-
sistent, they are consistent.

For notational convenience, we define

LSRA(ti) =
{

LSRti+1(ti) for 1 ≤ i < k
LS(tk) for i = k

for A = {t1, · · · , tk}.
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Proof. Let X = (∪1≤i<k ClsT (LSRti+1(ti)) ∪ ClsT (LS(tk)). From Corollary 1,
X is a pivoted forest; thus, for each t ∈ X , t.0 ∈ X if and only if t.1 ∈ X .

For each t ∈ X , we will prove that the labeling function α : V (X) → L is
well-defined by induction on the size of X ∩ Tt where Tt = {s ∈ V (T ) | t ≤ s}.
If |X ∩ Tt| = 1, this means t ∈ LSRA(ti) or t �∈ ClsT (LSRA(ti)) for each i.
Since LSRA(ti)’s are weakly consistent, α(t) is well-defined.

Assume |X ∩ Tt| > 1. Since X ∩ Tt is a forest of binary trees, t.0, t.1 ∈ X ∩ Tt.
If t ∈ ClsT (LSRA(ti)), either t.0, t.1 ∈ ClsT (LSRA(ti)) or t ∈ LSRA(ti).

Since |X ∩ Tt.0|, |X ∩ Tt.1| < |X ∩ Tt|, induction hypothesis implies that
α(t.0) and α(t.1) are well-defined. Let I0 = {i | t.0, t.1 ∈ ClsT (LSRA(ti))} and
I1 = {i | t ∈ LSRA(ti)}. Since |X ∩ Tt| > 1, I0 �= ∅.

Let j ∈ I0; then αj(t) = g(α(t.0), α(t.1)). Weakly consistency of LSRA(ti)’s
implies that αj(t) = αi(t) for each i ∈ I1. Thus, α(t) = αj(t) is well-defined.

Theorem 2 is immediate from Lemma 7 and 8. Note that MONA cannot
verify Lemma 8, because it cannot describe the equality between labels.

8 Conclusion

This paper proved two basic properties

1. correctness of completion
2. correctness of incremental sanity check

of an incremental Merkle forest, which is used in the event ordering system [5]
developed by NTT. Especially, this paper is the first to prove (2) the correctness
of an incremental sanity check.

During the proofs, we mainly used the automata-based theorem prover
MONA [1]. Although MONA can treat only decidable properties, this does not
mean that its use is easy. We need to find suitable formalization and key lem-
mata, which are essential in the whole proof and still provable by MONA. For
instance, during the use of MONA, we have also simplified the manual proof
of Theorem 1 (the original proof, by induction on the homogeneous depth of a
Merkle tree, takes more than 1 page in two-column style).

Another notable example of WSnS is an optimal reduction strategy of a
strongly sequential term rewriting system [6]. This is known to be intricate;
however it was clearly re-described in terms of WSnS [4].

A drawback is that an automata-based prover does not give a deductive proof.
Thus, incomplete descriptions may be easily neglected; instead, we often found
them by test data. On the other hand, it is extremely powerful for detecting over-
sights and gaps in a proof draft, which are often found in tentative proof goals. At
the moment, support for theorem prover is not enough; but, we feel it is possible
for theorem provers to be an assistance even for constructing a new proof.

For future work, we are planning:

– full formal proof of Theorem 2 by combining MONA and an induction-based
prover Isabelle/HOL [10].

– proofs for more detailed properties of the event ordering system.
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Abstract. Tarski raised the High School Problem, i.e., whether a set of
11 identities (denoted by HSI) serves as a basis for all the identities which
hold for the natural numbers. It was answered by Wilkie in the negative,
who gave an identity which holds for the natural numbers but cannot be
derived from HSI. This paper describes some computer searching efforts
which try to find a small model of HSI rejecting Wilkie’s identity. The
experimental results show that such a model has at least 11 elements.
Some experiences are reported, and some issues are discussed.

1 Introduction

One learns in high school that the following identities are true in the set N of
positive integers:

x + y = y + x
x + (y + z) = (x + y) + z
x ∗ 1 = x
x ∗ y = y ∗ x
x ∗ (y ∗ z) = (x ∗ y) ∗ z
x ∗ (y + z) = (x ∗ y) + (x ∗ z)
1x = 1
x1 = x
xy+z = xy ∗ xz

(x ∗ y)z = xz ∗ yz

(xy)z = xy∗z

The above set of identities is denoted by HSI. Tarski’s High School Problem
is: does HSI serve as a basis for all the identities of N? In other words, can
any identity which holds for the natural numbers be derived from HSI using
equational reasoning? For more details about this problem, see [2].

In 1981, Wilkie gave the following identity, denoted by W (x, y), and showed
that it holds in N, but cannot be derived from HSI:
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(P x + Qx)y ∗ (Ry + Sy)x = (P y + Qy)x ∗ (Rx + Sx)y

where P = 1+x, Q = 1+x+x∗x, R = 1+x∗x∗x, and S = 1+x∗x+x∗x∗x∗x.
Wilkie’s original proof was purely syntactic. Alternatively we can try to build

a finite model of HSI in which W (x, y) does not hold. In fact, Gurevic̆ [4] con-
structed such a model which has 59 elements. Models like this are called G-
algebras later in [1]. In this paper, such a model will be called a Gurevic̆-Burris
Algebra (GBA). A GBA serves as a counterexample showing that the Wilkie
identity does not follow from HSI. In the sequel, we use the constants a and b
to denote a pair of elements in a GBA such that W (a, b) does not hold.

A question naturally arises: what is the smallest GBA? It is proved in [1]
that the size of any GBA is at least 7 and that a 15-element GBA exists. In [5],
the lower bound is increased to 8, and the upper bound is decreased to 14. More
recently, Burris and Yeats found a 12-element GBA [2].

All the above lower bounds are proved mathematically. Alternatively, we may
also try to find a small GBA using computers. This sounds quite interesting, and
also feasible, given that there have been significant advances in computer hard-
ware and search algorithms. Over the past 10 years, we have attempted to search
for a small GBA for several times. But it is a bit disappointing that no GBA was
found. However, since the search algorithm is complete, the experimental results
still tell us something (i.e., GBAs of certain sizes do not exist). This paper gives
a brief summary of our experiments.

2 Search Programs

In the early 1990’s, we developed a general-purpose search program for finding
finite models, called FALCON [11,13]. Typically its input consists of a set of
equations E and a positive integer n. The input may also include an inequation
of the form s != t, where s and t are terms. The output of FALCON is an
n-element model of E, if there is such a model. Usually we assume that the
domain of the model is Dn = {0, 1, . . . , n−1}. Such a model is an interpretation
of the function symbols in Dn, such that every equation (inequation) holds.

SEM [14] can be regarded as a successor of FALCON. It is more efficient,
and it can accept non-unit first-order clauses. To use SEM to find a 4-element
GBA, we may give it the following input file:

4.

s(x,y) = s(y,x).
s(x,s(y,z)) = s(s(x,y),z).
p(x,1) = x.
p(x,y) = p(y,x).
p(x,p(y,z)) = p(p(x,y),z).
p(x,s(y,z)) = s(p(x,y),p(x,z)).
e(1,x) = 1.
e(x,1) = x.
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e(x,s(y,z)) = p(e(x,y),e(x,z)).
e(p(x,y),z) = p(e(x,z),e(y,z)).
e(e(x,y),z) = e(x,p(y,z)).

c = p(a,a).
P = s(1,a).
Q = s(P,c).
R = s(1,p(a,c)).
S = s(s(1,c),p(c,c)).
p(e(s(e(P,a),e(Q,a)),b),e(s(e(R,b),e(S,b)),a)) !=
p(e(s(e(P,b),e(Q,b)),a),e(s(e(R,a),e(S,a)),b)).

Here the first line denotes the size of the model, and the rest of the file gives the
formulas (in clausal form). The function symbols s, p and e denote summation,
product and exponentiation, respectively. The variable x, y and z are assumed
to be universally quantified.

In our recent experiments, we also used Mace4 [7], another general-purpose
model searching program.

All of these programs work by backtracking search, which is exhaustive in
nature. If such a program terminates without finding a model, it means that
there is no model of the given size (assuming that the program is correct).

Let us briefly explain the search process. Suppose n = 4. Then we need to
find suitable values for all the constants and these terms:

s(0, 0), s(0, 1), s(0, 2), s(0, 3), s(1, 0), . . . , p(0, 0), p(0, 1), . . . , e(3, 3).

Each of them can take a value from the domain D4, i.e., { 0, 1, 2, 3 }. Some
of the terms should get certain values, e.g., e(1, 0) = e(1, 1) = 1. But for other
terms, we can only “guess” their values. For instance, s(0, 0) may take either
of the four values. So we assign each value to s(0, 0) and check if there is any
contradiction. Similarly for other terms and constants.

3 Useful Mathematical Results

To show that a GBA has at least seven elements, Burris and Lee [1] first establish
some lemmas. They are basically properties of elements x and y in an HSI-
algebra which guarantee W (x, y) holds in the algebra. Some of the lemmas (and
theorems) are also helpful to computer search.

Following Burris and Lee (page 154 of [1]), we use “HSI � Σ → W (x, y)” to
denote that

HSI � ∀x∀y [Σ → W (x, y)].

Here Σ is an identity. We also use “u | v” to denote that ∃w (v = u ∗ w).
It is shown by Lee (Lemma 8.7 of [1]) that HSI � x | y → W (x, y). Thus

in a GBA, a | b does not hold. In other words, for any x,

(L1) b �= a ∗ x.



444 J. Zhang

It is also shown by Lee (Lemma 8.13 of [1]) that, if Σ is one of the following
conditions:

P | Q
Q | P
R | S
S | R

then we have HSI � Σ → W (x, y).

Similarly, we can conclude from the first 4 conditions that, for any x,

(L2) Q �= P ∗ x
(L3) P �= Q ∗ x
(L4) S �= R ∗ x
(L5) R �= S ∗ x

As in [1,2], we call the following elements of an HSI-algebra integers :

1, 2 = 1 + 1, 3 = 2 + 1, . . .

In [1], it is proved that a GBA must have at least 3 integers. Moreover, if W (x, y)
fails at a, b, then a and b should be distinct non-integer elements. Thus in a GBA,
the elements 1, 2, 3, a, b are different from each other.

In addition, Lemma 8.20 of [1] tells us that, if Σ is one of the following
conditions:

1 + x = 1
2 + x = 1
x + x = 1
x ∗ x = 1
1 + x ∗ x = 1
x ∗ x ∗ x = 1
1 + x = x
2 + x = x
x + x = x
x ∗ x = x
1 + x ∗ x = x
2 + x = 1 + x
x ∗ x = 1 + x
x ∗ x ∗ x = 1 + x
x ∗ x = 2 + x
x ∗ x = x + x
1 + x ∗ x = x ∗ x
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then we have HSI � Σ → W (x, y). Thus in a GBA,

(M01) 1 + a �= 1
(M02) 2 + a �= 1
(M03) a + a �= 1
(M04) a ∗ a �= 1
(M05) 1 + a ∗ a �= 1
(M06) a ∗ a ∗ a �= 1
(M07) 1 + a �= a
(M08) 2 + a �= a
(M09) a + a �= a
(M10) a ∗ a �= a
(M11) 1 + a ∗ a �= a
(M12) 2 + a �= 1 + a
(M13) a ∗ a �= 1 + a
(M14) a ∗ a ∗ a �= 1 + a
(M15) a ∗ a �= 2 + a
(M16) a ∗ a �= a + a
(M17) 1 + a ∗ a �= a ∗ a

Finally, let us quote Jackson (Lemma 1 in [5]):

Let y = n+n1x+n2x
2+. . .+nmxm, where n, n1, n2, . . . , nm are integers.

Then HSI �W (x, y).

Thus, to search for a GBA, we may add the following lemmas:

(J11) b �= 1 + 1 ∗ a
(J12) b �= 1 + 2 ∗ a
(J21) b �= 2 + 1 ∗ a
. . .

In mathematical terms, b can not be in the core generated by a.

4 Search for 7-Element and 8-Element GBAs

4.1 Size 7 by FALCON

In 1993 and 1994, while developing the finite algebra search program FALCON,
the author chose the HSI problem as an “exercise” for the program. Since the
program deals mainly with equations, we started from some partial models of
HSI, and tried to extend each of them to a GBA.

For the 7-element case, there are 3 partial models initially:

(1) The integers are 0, 1, 2, with s(0,0) = 1, s(0,1) = s(1,0) = 2; and a = 3, b
= 4.

(2) The integers are 0, 1, 2, 3, with s(0,0) = 1, s(0,1) = s(1,0) = 2, s(1,1) =
s(0,2) = s(2,0) = 3; and a = 4, b = 5.
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(3) The integers are 0, 1, 2, 3, 4, with s(0,0) = 1, s(0,1) = s(1,0) = 2, s(0,2) =
s(1,1) = s(2,0) = 3, and s(0,3) = s(1,2) = s(2,1) = s(3,0) = 4; and a = 5,
b = 6.

Several lemmas in (M01)–(M17) are added to the input of FALCON. In
addition, we established our own lemmas. When a partial model satisfies certain
conditions, it will not be extended, because these conditions guarantee that
Wilkie’s identity holds. Some heuristics are also used in the search. For example,
when choosing an unknown, we not only consider the number of possible values
for it, but also consider the number of new assignments which may be generated
when the unknown is assigned a value. More details are given in [11].

The search for a 7-element GBA was completed on SUN SPARCstations. It
lasted for several days.

4.2 Size 8 by SEM

The search for an 8-element GBA was completed on HP workstations running
UNIX, using SEM [14]. It also lasted for several days. As in the case of size 7, we
started from many partial models and tried to extend each of them using SEM.
The initial partial models were obtained by hand. The search was performed in
1995, during the author’s visit to the University of Iowa, U.S.A.

5 Recent Experimental Results

In August 2004, we completed the search for 9-element and 10-element GBAs.
No model was found. The searches were mainly performed on a desktop (Dell
Optiplex GX270: Pentium 4, 2.8 GHz CPU, 2G memory) running RedHat Linux.
Other similar machines were also used when searching for an 11-element GBA.
We used both SEM [14] and Mace4 [7] (mace4-2004-C).

5.1 Problem Formulation

In addition to the lemmas (M01)–(M17), we also added the lemmas (L1), (L2),
(L3), (L4), (L5). The basic formulation is given in the Appendix. But in indi-
vidual searches, we used more formulas representing different partial models.

5.2 The Case of Size 9

This case is divided further into several subcases:

(1) There are 3 integers: 1, 2, 3.
(2) There are 4 integers: 1, 2, 3, 4.

(a) s(4,1) = 4.
(b) s(4,1) = 3.
(c) . . .

(3) There are 5 integers: 1, 2, 3, 4, 5.
(4) There are 6 integers: 1, 2, 3, 4, 5, 6.
(5) There are 7 integers: 1, 2, 3, 4, 5, 6, 7.
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5.3 The Case of Size 10

The “search tree” is roughly like the following:

(1) There are 3 integers: 1, 2, 3.
(2) There are 4 integers: 1, 2, 3, 4.

(a) s(4,1) = 4.
i. s(0,0) = 2.
ii. s(0,0) = 6.

(b) s(4,1) = 3.
(c) . . .

(3) There are 5 integers: 1, 2, 3, 4, 5.
(4) There are 6 integers: 1, 2, 3, 4, 5, 6.
(5) There are 7 integers: 1, 2, 3, 4, 5, 6, 7.
(6) There are 8 integers: 1, 2, 3, 4, 5, 6, 7, 8.

5.4 The Case of Size 11

The search for an 11-element counterexample has not been completed yet. So
far we have only eliminated some subcases. Our conclusion is that, if a GBA of
size 11 exists, it should have 3 or 4 integers.

This case is much more difficult than the search for smaller models. For
example, when the size is 10, the subcase of 6 integers takes SEM a little more
than 10 minutes; but when the size is 11, the subcase of 6 integers takes SEM
more than 150 hours.

As previously, we examine many partial models and try to extend each of
them. The longest completed single run of Mace4 lasted for about 11 days. For
some subcases, Mace4 did not complete the search after running for two weeks,
and the process was killed.

6 Some Experiences

In addition to SEM and Mace4, we have tried other programs such as Paradox
[3] and Gandalf [10]. A problem with Gandalf is that it starts the search from
1-element model to 2-element model and so on. There is no convenient way to
ask it to search for 9-element model only, for example.

The GBA problem is highly “first-order”. It seems that SAT-based tools are
not so advantageous as on other problems. The running times of MACE2 [6] are
not satisfactory. This may be due to the inefficiency of its internal SAT solver.
The performance of Paradox (version 1.0-casc) is similar to that of SEM.

The problem is also highly “equational”, since most of the (ground) clauses
are equations/identities. We found that it is better to turn off the negative
propagation rules in SEM and Mace4, as shown in Table 1. Informally speaking,
such rules try to deduce from negated equations or try to generate negated
equations, while ordinary (positive) propagation rules deduce equations from
equations.
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Table 1. Negative Propagation

size program neg prop time
7 SEM Yes 0.24
7 SEM No 0.18
8 SEM Yes 7.96
8 SEM No 5.32
7 Mace4 Yes 0.64
7 Mace4 No 0.39
8 Mace4 Yes 25.14
8 Mace4 No 11.41

Table 2. Using Lemmas

size program lemma time
7 SEM Yes 0.24
7 SEM No 19.36
7 Mace4 Yes 0.64
7 Mace4 No 43.76

The lemmas (esp. short lemmas) are quite useful in general. Table 2 compares
the performances of SEM and Mace4, when the input has or does not have the
lemmas (L1)–(L5). In both cases, the lemmas (M01)–(M17) are included in the
input file, and negative propagation is not used.

In Table 1 and Table 2, “size” denotes the size of the model. The running
times (“time”) are given in seconds. The data were obtained on a Dell Optiplex
GX270 (Pentium 4, 2.8 GHz CPU, 2G memory, RedHat Linux).

From Table 2 we see that the five lemmas can greatly reduce the search time.
We briefly described the search process at the end of Sec. 2. During the search,
some terms get values, while others do not. Let us look at lemma (L1) which
says, for any x, b �= a∗x. Usually we can assume that a = 0 and the integers are
1, 2, 3, . . . With the above lemma, if we know the value of b, we can safely exclude
this value from consideration when trying to find a value for p(0, 0). Similarly
for p(0, 1), p(0, 2) and so on. Thus the number of choices is reduced, and the
search time is reduced too. We note that, about ten years ago, Slaney et al. [9]
also used some extra constraints when solving the quasigroup problems.

Although the lemmas are generally helpful, there are also some exceptions.
For example, consider the subsubcase in 11-element GBA search where there
are 7 integers and 7 + 1 = 7. If we add the Jackson lemmas (J11, . . . , J77), the
running time of Mace4 is 257 seconds. But without these lemmas, the running
time is 144 seconds.

Electricity outage occurred once (in a weekend). Fortunately, SEM did not
run for too long before it was interrupted. We think it wise to set a time limit on
each run. The ‘-t’ and ‘-f’ options of SEM can be helpful. When the time limit
is reached, SEM saves the current path of the search tree in a file called “_UF”.
From this file, we can restart the search later. We can also see the (approximately
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maximum) depth of the search tree. The deepest search path in our _UF files has
61 branches/decisions (i.e., assignments to cells).

7 Concluding Remarks

Search for a small GBA is an interesting problem for mathematicians. In this
paper, we summarize some computer search results, which show that the smallest
counterexample to Wilkie’s identity has at least 11 elements.

Of course, this conclusion is not proved mathematically. It is possible that the
programs have some bugs, or the user (myself) made some errors. Like Slaney [8],
we believe that it is valuable to double check the results using other programs.
This may increase their reliability.

The following picture shows some recent attempts to increase the lower bound
and decrease the upper bound on the size of the smallest GBA:

Refs.

bound

� �� � � � � � � � �
7 8 9 10 11 12 13 14 15

[1]
[5]
[11] [14] ∗ ∗ [2] [5] [1]

In the picture, related papers and documents are given above the line. For ex-
ample, it was established in [14] that the lower bound is 9 (because there is no
8-element model). The “∗” denotes this paper. When the lower bound and the
upper bound meet, the problem will be solved.

In addition to its implications for mathematics, GBA search should also
stimulate research in automated reasoning. It can be a challenging problem for
first-order model searching programs, SAT solvers and more general constraint
solvers. It was suggested as a benchmark problem more than 10 years ago [12].
Due to the advancement in hardware, improvements on algorithms and data
structures, as well as useful mathematical results, we can now easily solve prob-
lem instances that were very difficult in the early 1990’s. We hope that they will
become even easier in the near future.

There are still some issues which deserve further investigation. First of all,
are there more “efficient” specifications of the problem? Of course, this depends
on which tool you are using. But it appears that certain short lemmas are always
helpful. Secondly, can we prove the correctness of the search results (rather than
the correctness of the search programs, which is very difficult)? Finally, we should
pay more attention to the “engineering” aspects of model searching, when the
problem is very difficult.
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Appendix

The SEM input for a 7-element GBA search can be like the following:

7.

s(x,y) = s(y,x).
s(x,s(y,z)) = s(s(x,y),z).
p(x,1) = x.
p(x,y) = p(y,x).
p(x,p(y,z)) = p(p(x,y),z).
p(x,s(y,z)) = s(p(x,y),p(x,z)).
e(1,x) = 1.
e(x,1) = x.
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e(x,s(y,z)) = p(e(x,y),e(x,z)).
e(p(x,y),z) = p(e(x,z),e(y,z)).
e(e(x,y),z) = e(x,p(y,z)).
c = p(0,0).
P = s(1,0).
Q = s(P,c).
R = s(1,p(0,c)).
S = s(s(1,c),p(c,c)).
p(e(s(e(P,0),e(Q,0)),b),e(s(e(R,b),e(S,b)),0)) !=
p(e(s(e(P,b),e(Q,b)),0),e(s(e(R,0),e(S,0)),b)).

2 = s(1,1).
b != 0.
b != 1.
b != 2.
b != p(0,x).
P != p(Q,x).
Q != p(P,x).
R != p(S,x).
S != p(R,x).
s(1,0) != 1.
s(2,0) != 1.
s(0,0) != 1.

c != 1.
s(1,c) != 1.
p(c,0) != 1.
s(1,0) != 0.
s(2,0) != 0.
s(0,0) != 0.

c != 0.
s(1,c) != 0.
s(2,0) != s(1,0).

c != s(1,0).
p(c,0) != s(1,0).

c != s(2,0).
c != s(0,0).

s(1,c) != c.

Here we assume that a is the element 0. Given the above input, SEM and Mace4
can complete the search very quickly when the size is 7 or 8. See Table 1.
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Abstract. Pocket KRHyper is a reasoning system for Java-enabled mo-
bile devices. The core of the system is a first order theorem prover and
model generator based on the hyper tableau calculus.

The development of Pocket KRHyper was motivated by the arising
need for reasoning on mobile devices for mobile semantic web applica-
tions. To satisfy this need, a Description Logics (DL) interface is pro-
vided, which allows DL reasoning by transforming DL Expressions into
first order clausal logic.

1 Introduction

Pocket KRHyper is a Java 2 Mobile Edition (J2ME1) software library for au-
tomated reasoning. It can be embedded in applications on mobile devices like
PDAs, smartphones, and cell phones, but can also be used in Java 2 Standard
Edition (J2SE2) applications.

The reasoning engine is based on the hyper tableau calculus [5] and can
be considered as a resource optimized version of the KRHyper [16] system. The
original KRHyper system has been used successfully in a multitude of knowledge
management applications (See [4,6,7]), but is not designed for running on mobile
devices.

Pocket KRHyper was developed explicitly for use in mobile devices with
modest resources, and is actually the first reasoner for mobile devices able to
tackle useful first order logic problems.

1.1 The Need for Mobile Reasoning

The need for mobile reasoning has arisen through the development of mobile
semantic web services (See [13,15]). To provide reasoning support on a mobile
device, the easiest solution was to connect to a special reasoning server on the
Internet. Unfortunately, mobile Internet connections are usually quite expensive,
and even if bandwidth is expected to become cheaper for mobile devices, there
are some other good reasons to do the reasoning on your own device.
1 http://java.sun.com/j2me
2 http://java.sun.com/j2se
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First of all, the computing power of modern mobile devices is quite impressive
considering their size. Pocket KRHyper may not solve open TPTP problems,
but it tackles many small and useful semantic web or knowledge management
problems in acceptable time.

Second, there are many places where a cellular Internet connection is not
available or possible, like, for example, some basement pubs or restaurants. Mo-
bile applications may rely on their bluetooth interface or the built-in camera
to receive semantically annotated information. In these cases the independence
from an Internet connection is a big advantage for such mobile reasoning appli-
cations.

Another problem of centralized Internet reasoning servers is that they don’t
scale well. Many mobile devices accessing the same reasoning server on the In-
ternet cause trouble. If the reasoning tasks are distributed to the devices that
use them, scalability is no longer an issue.

Finally, there is a privacy issue. The reasoning data may be confidential like,
for example, a user profile. Many people will not feel comfortable if their private
data is sent to an Internet server to be processed and might prefer not to use
such services at all.

These points show that indeed, there is a need for mobile reasoning. Pocket
KRHyper satisfies this need without relying on reasoning servers on the Internet.

2 Features of Pocket KRHyper

2.1 Hyper Tableaux Calculus

Pocket KRHyper is an implementation of the hyper tableau calculus [5,2]. Here
we will only present some of the features of Pocket KRHyper, but restrain from
describing the calculus.

In comparison to the desktop KRHyper system [16], Pocket KRHyper lacks
some features like default negation and term indexing, but it is also very resource
friendly so it can run on mobile devices. It still provides all the main features
that made the original KRHyper a useful tool.

Pocket KRHyper can tackle first order logic problems in clausal form. The
heads of clauses may contain disjunctions, but the literals in the head may not
share variables. If they do, an exception is thrown. The reasoning process is very
similar to the one of the original KRHyper system and is described in more
detail in [16].

2.2 Description Logics Transformation

Common to Semantic Web applications is the use of ontologies and queries cor-
responding to DL formalisms. The transformation of these DL formula into sets
of clauses enables the Pocket KRHyper to be used in this context. Matchmak-
ing requires both the annotation as well as the profile to be represented by a
DL concept. A match is detected by the subsumption or the satisfiability of the
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// import onto logy and transform to se t o f c l au se s
// take snapshot of knowledgebase
// import p r o f i l e and transform to se t o f c l au se s
kb . se tProf i l eBoundary ( ) ; // remember p ro f i l e snapshot
Reasoner krh = new KrHyper ( ) ; // ins tanc ia t e the reasoner
krh . setKnowledgeBase ( knowledgeBase ) ;
int currentMatch = MatchMaker .MATCHNOMATCH;
try { // t e s t the s a t i f i a b i l i t y of in t e r se c t ion

// add message annotation to knowledgebase here
kb . startQuery ( ) ;
kb . addClause ( LogicFactory . newClause ( ”message ( a ) . ” ) ) ;
kb . addClause ( LogicFactory . newClause ( ” p r o f i l e ( a ) . ” ) ) ;
i f ( krh . reason (minTermWeight , maxTermWeight , t imeout ) )

kb . removeQuery ( ) ; // model found , s a t i s f i a b l e in t e r se c t ion
currentMatch = MatchMaker .MATCH INTERSECT;
kb . startQuery ( ) ; // t e s t for subsumption
kb . addClause ( LogicFactory . newClause ( ”message ( a ) . ” ) ) ;
kb . addClause ( LogicFactory . newClause ( ”:− p r o f i l e ( a ) . ” ) ) ;
i f ( ! krh . reason (minTermWeight , maxTermWeight , t imeout ) )

currentMatch = MatchMaker .MATCH PLUGIN;
// re fu ta t ion ind ica te s message subsumed by p r o f i l e

}
}
kb . removeQuery ( ) ;

} catch . . . // handle a l l k inds of except ions
kb . t runca t eToPro f i l e ( ) ; // drop the messageannotation
return ( currentMatch ) ;

Fig. 1. Matchmaking of profile and message

intersection of these concepts with respect to a terminology (see [11,13].) The
terminology is considered to be a finite set of axioms C 0 D and C ≡ D, where
C, D are concepts of the DL ALC extended by inverse roles and role hierar-
chies (see [1].) The syntax follows the lisp-like KRSS [12] and is a subset of the
RACER-syntax [10]. Thus the development of the terminology may use standard
desktop applications.

The transformation into sets of clauses does not enforce blocking [9] of gen-
erated role-successors. The termination of the proof is limited to acyclic ter-
minologies. A more sophisticated transformation, that is compatible with the
hyper tableau calculus is given in [4], but will be used in the resource restricted
environment only if the terminology requires blocking.

Because KRHyper does not enforce the clauses to be Horn clauses, this ap-
proach supports terminologies beyond DLP [8] and enables the addition of rules
and constraints.

To reduce the resource consumption, the knowledgeBase (a set of clauses) is
partitioned into the terminological, profile, and query sets of clauses. Methods to
manage these parts reset the knowledge base to its state before the addition of a
query or profile. This allows for a single transformation of the terminological part.

The code snippet in Fig. 1 details the matchmaking of a given profile with
the annotation of a message. Both are represented by a DL concept. At most two
invocations of the reasoner check the satisfiability of the intersection profile �
message and the subsumption message 0 profile with respect to the ontology.
The clauses derived from the annotation and the tests are removed afterwards.
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public static void main ( S t r i ng [ ] args ){
int minTermWeight = 5 ; // i n i t i a l search depth i s a term weight of 5
int maxTermWeight = 0 ; //no maximum term weight
int t imeout = 1000 ; // stop a f t e r 1000 ms
boolean model = fa l se ;
KnowledgeBase kb = new KnowledgeBase ( ) ;
kb . addClause ( LogicFactory . newClause ( ” ufo ( e n t e r p r i s e ) . ” ) ) ;
kb . addClause ( LogicFactory . newClause ( ” f a l s e :−ufo (X) . ” ) ) ;
Reasoner krhyper = new KrHyper ( ) ;
krhyper . setKnowledgeBase (kb ) ;
try {

model = krhyper . reason (minTermWeight , maxTermWeight , t imeout ) ;
i f ( ! model ){

// Refutation Found
} else {

// Model Found
Vector model = krhyper . getModel ( ) ;

}
} catch ( ProofNotFoundException ex ){

//Timeout reached
} catch (OutOfMemoryError e r r ){

//Out of Memory
}

}

Fig. 2. Pocket KRHyper Code Example

3 Using Pocket KRHyper

Pocket KRHyper is a Java library designed for the Java 2 Platform, Micro Edi-
tion (J2ME), supporting both Connected Limited Device Configuration
(CLDC3) version ≥ 1.0 and Mobile Information Device Profile (MIDP4) ver-
sion ≥ 1.0. The library can however also be used within Standard or Enterprise
Edition Java applications.

3.1 Using the First Order Reasoner

To use the first order reasoner, you need to create an instance of KnowledgeBase,
fill it with some Clause objects and pass it to the Reasoner instance. Figure 2
shows a small example program using Pocket KRHyper.

The code example shows the basic usage of the Pocket KRHyper library.
First, a KnowledgeBase instance is created. Then, using the special
LogicFactory static class, some Clause instances are created by giving a string
in Protein [3] syntax as a parameter. After the knowledge base contains all the
clauses for your reasoning problem, you pass it to the reasoner using
Reasoner.setKnowledgeBase(KnowledgeBase kb).

To start the reasoner, use Reasoner.reason(int mintermweight, int
maxtermweight, int timeout). The reasoning algorithm performs an iterative
deepening search for a model, expanding the proof tree in each iteration up to

3 http://java.sun.com/products/cldc
4 http://java.sun.com/products/midp
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a certain term weight. The term weight parameters control with which bound
the search is started and after which bound the search is completely abandoned.
The timeout parameter sets the maximum time allowed for performing a search.
If maxtermweight or timeout are set to 0, they are ignored.

The reasoning process may terminate in several different ways. Optimally,
it has either found a refutation or a model. A model can be retrieved us-
ing the Reasoner.getModel() method. There are some other reasons why the
reasoning process can stop. Either it is interrupted by the user (Reasoner.
interruptReasoner()), a timeout has occurred or the maximum term weight
bound is exceeded. In these cases, the reasoner throws a ProofNotFound
Exception. If the virtual machine runs out of memory, an OutOfMemoryError
is thrown. Exceptions and errors can be caught safely (See the example code in
Fig. 2) without causing the whole application to crash.

In the case that the programmer chose not to set a timeout or maximum term
weight bound, the calculus may not terminate (e.g. if the problem has an infinite
model). The programmer should be aware of this pitfall and always provide a
means to manually interrupt the reasoning process.

4 Performance Evaluation

Pocket KRHyper was evaluated mainly on a Sony-Ericsson P910i smartphone
with four different subsets of the TPTP library v.3.0.0 [14], namely Horn sat-
isfiable and unsatisfiable problems, and non-Horn satisfiable and unsatisfiable
problems. Problems with status open or unknown are excluded, as are those with
equality, which is not supported. Also, only range restricted non-Horn problems
have been evaluated, since Pocket KRHyper can’t handle clauses with shared
variables in the head without preprocessing.

With a timeout setting of 10 seconds and no term weight upper bound, 35%
of Horn satisfiable problems, 29% of Horn unsatisfiable problems, 54% non Horn
satisfiable problems, and 39% of non Horn unsatisfiable problems have been
solved. Memory was not an issue.

4.1 Conclusions

Pocket KRHyper, a first order theorem prover and model generator system for
mobile devices, has been presented. It runs on most Java platforms, including
J2ME, J2SE, J2EE. The system is intended to be used in mobile semantic web
applications, to which end a description logics interface is also provided.

The reasoner has been tested with a subset of TPTP problems with sat-
isfying results. As future work, we will evaluate the reasoner with more real-
world related problems. A sample mobile application using Pocket KRHyper
can be downloaded from http://www.uni-koblenz.de/~{}iason/downloads.
It requires a MIDP 2.0 and CLDC 1.0 compliant mobile device to run.
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