
D. Lowe and M. Gaedke (Eds.): ICWE 2005, LNCS 3579, pp. 478�488, 2005.
© Springer-Verlag Berlin Heidelberg 2005

As Easy as �Click�: End-User Web Engineering

Jochen Rode1, Yogita Bhardwaj1, Manuel A. Pérez-Quiñones1,
Mary Beth Rosson2, and Jonathan Howarth1

1 Virginia Polytechnic Institute and State University, Center for Human-Computer Interaction
3160 Torgersen Hall, Blacksburg, VA 24061

{jrode,yogitab,jhowarth}@vt.edu, perez@cs.vt.edu
2 Pennsylvania State University, Information Sciences & Technology,

330 IST Building, University Park, PA 16802
mrosson@ist.psu.edu

Abstract. We are investigating the feasibility of end-user web engineering. The
main target audience for this research is webmasters without programming ex-
perience � a group likely to be interested in building web applications. Our tar-
get domain is web-based data collection and management applications. As an
instrument for studying the mental models of our audience and collecting re-
quirements for an end-user web programming tool, we are developing Click, a
proof-of-concept prototype. We discuss end-user related aspects of web engi-
neering in general and describe the design rationale for Click. In particular, we
elaborate on the need for supporting evolutionary prototyping and opportunistic
and ad hoc development goals. We also discuss strategies for making end-user
web engineering scalable and for encouraging end-user developers to continu-
ally increase their level of sophistication.

1 Introduction

Years after the introduction of CGI-scripting, the creation of a web application is still
difficult, requiring a broad range of skills. Professional programmers develop the
skills needed to create interactive web applications, but most nonprogrammers en-
gaged in web development are limited to the creation of static websites. We believe
that with the right tools and techniques even nonprogrammers may be able to develop
web applications. By making web development possible for a wider audience, we
may see a greater variety of useful applications being developed, including function-
ality not yet envisioned. For organizations unable or unwilling to hire professional
programmers, end-user development may help streamline work flows and increase
productivity and client satisfaction. Indeed, the WWW itself is an excellent example
of what happens when technology becomes accessible to "the rest of us". In the words
of Deshpande and Hansen [6], it is time for the web engineering community to �de-
vise methods and processes to assist end users� which would help to increase the
reliability of applications and �release the creative power of people.�

Apart from empowering end users to pursue new goals, the web engineering com-
munity should also be considering how best to help novice developers create websites
that are more secure, cross-platform-compatible, and universally accessible. User-
friendly but �dangerously powerful" web programming languages like PHP [15] are
becoming popular even among people who do not have the necessary training and
experience to develop web applications of high quality. Harrison [10] calls this the

As Easy as �Click�: End-User Web Engineering 479

�dangers of end-user programming�. The web engineering community may advocate
abstinence from end-user web development (but see it happen nonetheless) or em-
brace the needs and motivations of nonprofessional developers and support them as
much as possible. We choose the latter.

A good starting point is to focus on the needs and preferences of sophisticated end
users, people who are experienced with web design in general but not (yet) with the
programming required for interactive applications (e.g., input validation, database
access, authentication). Our preliminary studies of university webmasters [18] indi-
cates that a substantial fraction of these sophisticated end-users� web application
needs are quite simple and similar. For instance, in one survey of Virginia Tech web-
masters (n=67) we found that about one third of the applications described by these
users are basic data collection, storage, and retrieval applications (such as service
request forms, searchable publication databases, staff databases, and surveys). An-
other 40% of the requests could be satisfied through customization of five generic
web applications (resource scheduling, shopping cart and payment, message board,
content management, and calendar). Research on tailorability demonstrates that cus-
tomizability is an achievable design goal (e.g., [12]). Diverse requests for more ad-
vanced applications comprised the remaining 25%. Based on these analyses, we have
focused our efforts on tools for end-user development of web applications (EUDWeb)
that revolve around basic data collection and management.

In the balance of this paper we first consider related work in web engineering and
end-user development and discuss strategies for making web engineering easier for
nonprogrammers. Then, we present our approach to EUDWeb, focusing on features
and design rationale for Click (Component-based Lightweight Internet-application
Construction Kit), our proof-of-concept EUDWeb tool [20].

2 Related Work

Two complementary domains of research and practice � web engineering and end-
user development � have focused on methods and tools for the creation of web appli-
cations. Research in web engineering has concentrated on making web professionals
more productive and the websites that they produce more usable, reusable, modular-
ized, scalable, and secure. In contrast, research on end-user development for the web
has attempted to empower nonprogrammers to autonomously create websites and web
applications. Within the web engineering community, one research focus has been on
model-based approaches to the design of hypermedia systems (e.g., [23], [5]). While
these top-down design approaches address many problems related to productivity,
consistency, security, and platform-independence, they normally assume a high-level
of abstraction unsuited for nonprofessional web developers. The approach we advo-
cate can be seen as an alternative to model-based, top-down development. Another
focus of research and practice is tools that assist web developers in becoming more
productive. Many powerful CASE/RAD tools have been developed for experienced
developers like Web Models� WebRatio [25], IBM�s Rational Web Developer for
WebSphere Software [11], or Microsoft�s Visual Web Developer 2005 [13]. Even
though these tools may simplify professionals' web development process by providing
wizards and visual tools, none of them have been targeted at nonprogrammer devel-
opers, so in general they assume the knowledge, working culture, and expectations of

480 Jochen Rode et al.

an experienced programmer. In 2004 we reviewed selected state-of-the-art web de-
velopment tools designed for end users [21] such as Microsoft FrontPage or Macro-
media Dreamweaver. Most of the end-user tools that we reviewed do not lack func-
tionality but rather ease of use. For instance, even apparently simple problems such as
implementing the intended look and feel become difficult when a novice has to use
HTML-flow-based positioning instead of the more intuitive pixel-based positioning.
Although most end-user tools offer wizards and other features to simplify particular
aspects of development, none of the tools that we reviewed addresses the process of
development as a whole, supporting end-user developers at the same level of com-
plexity from start to finish. Fraternali�s and Paolini�s observation about available web
tools [8] seems equally true today as it did five years ago: ��a careful review of their
features reveals that most solutions concentrate on implementation, paying little atten-
tion to the overall process of designing a Web application.�

The possibilities of web application development by end users have only recently
become a topic of research. WebFormulate [1] is a tool for building web applications
that is itself web-based. FAR [4] combines ideas from spreadsheets and rule-based
programming with drag-and-drop web page layout to help end users develop online
services. The WebSheets tool [26], although currently limited in power, uses a mix of
programming-by-example, query-by-example, and spreadsheet concepts to help non-
programmers develop fully functional web applications. Although the prior EUDWeb
work has investigated many particular aspects and opportunities of web development,
we are not aware of any research that has approached the problem in a holistic man-
ner, starting with the needs of developers, analyzing the barriers and then prototyping
tools. This is what we strive to provide.

3 Web Engineering for End Users

Web engineering is complex, but many aspects of its current complexity are not in-
herent to the process. For data management applications, much of what makes web
development difficult is what Brooks [3] has termed �accidental complexity��barriers
introduced by the supporting technology rather than the problem at hand. Examples of
accidental complexity and corresponding hurdles for web developers include [19]:

• Ensuring security;
• Handling cross-platform compatibility;
• Integrating technologies (e.g., HTML, CSS, JavaScript, Java, SQL); and
• Debugging web applications.

Our empirical studies of nonprogrammers' intuitions about web programming has
yielded an even longer list of concerns, for example the stateless nature of HTTP and
the necessity for explicit session management, parameter passing between pages or
modules of an application, input validation, and establishing and managing database
connections [18]. If web development is to become �end-user friendly�, accidental
complexity must be eliminated or hidden as much as possible..

A common approach to creating processes and tools that better match end users�
goals and expectations is to make the tools specific to the users' problem domain [14].
We have adopted this perspective: Rather than looking for an EUDWeb �silver bul-
let� that is as general and powerful as possible, our approach is to identify classes of

As Easy as �Click�: End-User Web Engineering 481

needs and build tools that target these domains specifically, while at the same time
planning for extensibility as users' requirements grow and evolve.

Empirical studies of professional programmers have shown that software develop-
ers do not always follow a systematic design approach. Sometimes programmers
develop top-down; sometimes they �dive into� details and build parts of an applica-
tion bottom-up [7]. Furthermore, software developers rarely construct an application
in one step but rather perfect it incrementally through evolutionary prototyping [22].
Although there are few if any empirical studies of novice web developers, our infor-
mal observations and interviews lead us to believe that this phenomenon extends to
these more casual developers just as much (if not more so). Therefore, EUDWeb tools
should support or even encourage opportunistic behavior.

A critical tradeoff for every end-user development tool is the relationship of usabil-
ity and expressiveness. Ideally a tool�s complexity will be proportional to the problem
to be solved: If a developer wants to take the next small step, the learning and effort
required should be small as well. In practice however, most tools� learning curve
exhibits large discontinuities (e.g. having to learn many new concepts such as session
management, database communication, and encryption before being able to imple-
ment a basic authentication feature). One of our EUDWeb design goals is to make the
effort required more proportional to the complexity of the problem at hand. We advo-
cate a �gentle slope of complexity� [12], arguing for tools that adapt and grow with
users' needs in a layered fashion. For the Agentsheets simulation tool, Repenning and
Ioannidou [16] show how an end-user development tool can offer different layers of
functionality that require different degrees of sophistication, in this case ranging from
direct manipulation visual construction to a full-fledged programming language. We
recommend a similar approach for EUDWeb.

We turn now to a presentation and discussion of the Click prototype, which was
built as a demonstration of these EUDWeb requirements and recommendations.

4 Click: A Prototype End-User Web Engineering Tool
We are developing Click [20] as an EUDWeb prototype that is specifically targeted at
end users who want to develop web-based data collection, storage and retrieval appli-
cations. Before we discuss Click�s main contributions in detail, we will briefly illus-
trate how an end-user developer might use it to create a web application.

4.1 Developing Web Applications with Click

To construct a web application, an end user developer starts with a blank page or a
predefined application template (e.g., service request form, online registration, staff
database). The construction process is not predetermined; the developer can begin
either by placing components on the screen (using drag-and-drop) or by defining a
database structure. Figure 1 shows Click being used to define a "Register" button that
(ultimately) will save user-entered data into a database and display another web page.
Click applications are developed iteratively, with user input mechanisms added and
their behavior specified as the developer needs them. Deployment is as easy as �de-
claring� a web application as public (in response, Click generates a URL that can be
used to access the working application).

482 Jochen Rode et al.

Fig. 1. Defining a �Register� button and associated action using the form-based UI of Click

4.2 Hiding Unnecessary Complexity

Click is an integrated web-based environment that contains visual development tools,
code editing features, a preview mode, and a database management interface. No
installation or configuration is required by the end-user developer. When the devel-
oper instantiates and positions components for a page under construction, Click gen-
erates corresponding HTML and component template code (Figure 2).

Separately, Click generates behavioral code that expresses the selected actions via
high-level functions (e.g., sendEmail, saveToDatabase, goToPage) that are
implemented on top of PHP (Figure 3). These functions are designed to be under-
standable by novice programmers who want to go beyond the dialog/form-based fa-
cilities.

Click�s pre-defined components have been selected based on several analyses of
both existing web applications and end users� mental models of interactive web pro-
gramming [18]. The components provide the functionality needed to implement a
typical data storage and retrieval application (e.g. a data table, dynamic text output).
Click has been designed to make session management, authentication, database man-
agement, and so on, relatively automatic and invisible, so that only minimal learning
is required. For example, by default, all data entered by a user on a web page persist
even after the page has been submitted, so that the web application can continue to
refer to and use this data at any point in time (we found that end users assume that
once information has been entered, the system should "know" about it).

As Easy as �Click�: End-User Web Engineering 483

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1DTD/xhtml1-transitional.dtd">
<html>
<head>
 <title>Event registration</title>
 <link rel="stylesheet" type="text/css" href="styles/default.css">
</head>
<body>
<com:Form>
<%include Pages.showOnEveryPage %>
<com:HtmlText ID="htmltext1" X="16" Y="17" Z="61">
 <prop:Text><h1>Welcome! Please register below.</h1></prop:Text>
</com:HtmlText>
<com:InputText ID="firstname" X="14" Y="61" Z="66" Columns="20" Rows="1"
TextMode="SingleLine" DbFieldName="data:firstname" InputRequired="false" Val-
ueType="Characters" MinValue="1" MaxValue="30">
 <prop:Label>First name:
</prop:Label>
 <prop:ErrorMessage>Please enter between 1-30 characters.</prop:ErrorMessage>
</com:InputText>
<com:InputText ID="lastname" X="14" Y="113" Z="67" Columns="20" Rows="1"
TextMode="SingleLine" DbFieldName="data:lastname" InputRequired="true"
ValueType="Characters" MinValue="1" MaxValue="50">
 <prop:Label>Last name:
</prop:Label>
 <prop:ErrorMessage>Please enter between 1-50 characters.</prop:ErrorMessage>
</com:InputText>
<com:InputText ID="email" X="14" Y="165" Z="68" Columns="20" Rows="1"
TextMode="SingleLine" DbFieldName="data:email" InputRequired="false">
 <prop:Label>E-Mail:
</prop:Label>
 <prop:ErrorMessage>Please enter a valid e-mail address.</prop:ErrorMessage>
 <prop:RegularExpression>\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-
.]\w+)*</prop:RegularExpression>
</com:InputText>
<com:Button ID="registerbutton" Text="Register" X="13" Y="223" Z="70" On-
Click="registerbutton_runActions" />
</com:Form>
</body>
</html>

Fig. 2. The �Layout code� view for the screen seen in Fig. 1

function registerbutton_runActions($button, $parameter) {
 $condition1 = $this->newCondition('{email}','empty');
 if ($condition1->isTrue())
 {
 $this->runAction('saveToDatabase','registerpage');
 $this->runAction('resetInputFields','registerpage');
 $this->runAction('goToPage','thankyoupage');
 }
 $condition2 = $this->newCondition('{email}','notEmpty');
 if ($condition2->isTrue())
 {
 $this->runAction('saveToDatabase','registerpage');
 $this->runAction('sendEmail','conference@vt.edu','{email}',
 'Conference registration','Dear {firstname} {lastname},
 this confirms your conference registration!');
 $this->runAction('resetInputFields','registerpage');
 $this->runAction('goToPage','confirmationpage');
 }
}

Fig. 3. The �Behavior code� view for the screen seen in Fig. 1

A recent review of state-of-the-art web development tools [21] revealed that one
problem is that such tools rarely provide �holistic guidance� for developers, instead
expecting them to know the exact steps required to implement a web application.
Click does not attempt to predict and interrupt a developer�s workflow in the way an
�intelligent� software agent might do since the risk and costs of false guesses would

484 Jochen Rode et al.

likely be high [17]. However, Click maintains a non-intrusive �To-do� list (see upper
right of Figure 1) that keeps track of the developer�s progress and gives recommenda-
tions about possible or required future tasks. The messages in the to-do list notify the
developer about such undesirable or faulty states as for example:

• pages or input components with generic names (e.g., recalling whether �input-
text4� or �inputtext5� was the input field for the user�s first name may be difficult
when the developer wants to make references elsewhere),

• a data table component that links to a details page that contains no components to
display the details,

• a missing login page in an application that contains pages requiring authentication.

Furthermore, Click is able to automatically create new database fields and web
pages if the developer refers to them in a rule (for example in a saveToDatabase or
goToPage action). This eliminates the interruption and distraction caused when a
programmer must pause his or her problem-solving process to set up supporting struc-
tures.

The layout feature of Click allows developers to place components using drag-and-
drop and absolute positioning. This allows for quick prototyping and shields novice
web developers from the difficulties of HTML table-based or CSS-based layout.
More advanced users can edit the layout code directly and add HTML and CSS code
in order to gain more control over the presentation.

Instead of exposing the developer to the page-submit-cycle metaphor typically
found in web development tools, Click implements an event-based programming
model similar to that found in ASP.NET or Java Server Faces (or programming tools
for desktop applications such as Visual Basic). In this model, buttons and links have
event handlers whose actions can be defined either by completing a Click form or by
using the high-level PHP functions mentioned earlier (sendEmail, goToPage, etc.)
The developer is shielded from the details of passing parameters to a page via HTTP�s
GET or POST methods, receiving and validating these inputs, and so on.

When the developer selects the Sitemap tab, Click automatically generates and dis-
plays a graphical representation of the application as it has been defined so far (using
AT&T�s Graphviz library [2]). Figure 4 shows an example of a sitemap for a �ride
board� application. The sitemap is intended to provide an overview of the dynamic
relationships between pages, database tables and the authentication system. Color
coding is used to differentiate simple hyperlinks (blue) from page transitions or ac-
tions initiated by a button (green) or automatic page redirects for pages that require
authentication (red). Solid lines show the control flow while dashed lines show the
data flow (between pages and database tables). Besides providing a general overview,
the sitemap helps developers to discover under-specification such as unreferenced
pages or database tables (for example table �users� in Figure 4).

Finally, Click recognizes that EUDWeb will rarely occur solely on an individual
level but rather that it is a collaborative process [14]. As a web-based system, Click
easily supports multi-user projects. Each web application under development can have
one or more "developers". Each of these developers can log into Click and modify the
application. Because Click offers different layers of complexity and power (as we will
describe later), one possible scenario is that a more novice developer asks an ad-
vanced colleague to extend Click by writing a custom component or behavior.

As Easy as �Click�: End-User Web Engineering 485

Fig. 4. A sitemap automatically generated by Click

4.3 Evolutionary Prototyping and Opportunistic Development

Supporting iterative and opportunistic development is a key design requirement for
Click. Contrary to common code-generation approaches that make late changes to the
user interface or behavior expensive to implement, Click allows modifications to the
layout, behavior, and database schema at any point in time. Moreover, changes take
effect immediately, thereby facilitating a rapid build-test cycle. We call this paradigm
design-at-runtime. The design-at-runtime concept builds on the ideas of direct ma-
nipulation [24] and on the �debugging into existence� [22] observed for professional
programmers working in a prototyping context. In its core it is similar to the auto-
matic recalculation feature of spreadsheets. A critical piece of the concept is that the
user is able to develop and use the application without switching back and forth be-
tween design and runtime modes (Click additionally provides an explicit preview-
only mode; this requirement was discovered through formative usability evaluation).
That is, the application is always usable to the fullest extent that it has been pro-
grammed. The end-user developer alternates between constructing and �using� the
application until he or she tries to use an object whose behavior has not yet been de-
fined. At this point the user is guided through a dialog to define the missing behavior.
This interleaving of development and use continues until the whole application has
been defined and tested. Of course, the usefulness of working with live data instead of
placeholders at design time has been realized before. In Macromedia Dreamweaver
MX, developers can switch to the so-called �Live Data View�. In this mode live web
pages are shown and some adjustments can be made. However, Dreamweaver does
not support full use of an application�for example, hyperlinks do not work in this
mode.

4.4 A Gentle Slope of Complexity

Tools for end users often have a low ceiling with respect to expressiveness. There is a
natural tendency to hide complexity to improve usability, but the cost is often a con-
comitant loss of power. We hope to make EUDWeb highly expressive, and to provide
a gentle learning curve to even greater power and functionality.

486 Jochen Rode et al.

Layer 1 Customizing template web applications
Layer 2 Using Wizards to create related sets of components
Layer 3 Designing via WYSIWYG, direct manipulation, parameter forms
Layer 4 Editing layout code (similar to HTML, ASP.NET, JSF)
Layer 5 Editing high-level behavior code
Layer 6 Modifying and extending the underlying component framework
Layer 7 Editing PHP code

Fig. 5. Layers of Click's programming support that illustrate a �gentle slope of complexity�

Click�s design provides several layers of programming support (see Figure 5).
At Layer 1, developers may customize existing web applications; ease-of-use is

high but trades off with flexibility (assuming that existing applications are not com-
plete matches). At Layer 2, developers may use Click�s wizards (e.g. overview-detail
page wizard, search form wizard) to create a related set of components. At the next
layer, developers can use Click�s form-based user interface to insert new components,
customizing the component behavior through parameterization. If the visual layout
tools are too inflexible, at Layer 4 the developer can manually edit the layout code
(Figure 2; this is comparable to hand-editing HTML). The predefined high-level func-
tions may be modified by editing the behavioral code (Layer 5; see Figure 3). At this
level, developers have the flexibility to define Boolean conditions of nearly unlimited
complexity but are not required to write low-level PHP code. At Layer 6 (not yet
implemented), developers may access the component-based PRADO framework [27],
which like ASP.NET or JSF, abstracts many of the details of web programming. Us-
ing PRADO, advanced developers can define new components (by composing exist-
ing components or creating new ones from scratch) similar to that supported by
WCML [9]. At this level developers can also modify Click�s high-level functions
(e.g., change saveToDatabase) or create a new high-level function (e.g., receiv-
eRssData) for use by themselves or other Click users. At the final and most powerful
layer 7 (not yet implemented), experienced developers have full access to the
capabilities of PHP. To gain ultimate flexibility, Click can export the full application
code so that it may be used stand-alone on a separate web server.

We do not expect all users to take advantage of all layers. Rather, we anticipate
that novice developers will start with the visual tools, and only explore more ad-
vanced features when they become necessary for their work. Indeed many end users
may never reach the state of hand-writing code. We also do not see these layers as a
"natural progression" for developers as they gain experience. More probably the use
of these features will be quite opportunistic and vary on an individual basis.

The layers summarized in Figure 5 are specific to Click but future web develop-
ment tools may implement similar facilities, perhaps leaving out, changing or intro-
ducing new layers. Our intention is for Click to have a gentle slope of complexity:
offering features and flexibility that grow proportionally with the developer�s needs.

4.5 Implementation and Evaluation

Click is implemented in an object-oriented manner using PHP Version 5 [15].
MySQL Version 4 provides the database layer and the PRADO framework [27] pro-
vides an underlying extensible component model. PRADO exposes an event-driven

As Easy as �Click�: End-User Web Engineering 487

programming model similar to that of ASP.NET and JSP and cleanly separates layout
from behavior. Click uses many open-source third-party components such as the
HTMLArea WYSIWYG editor and a JavaScript-based drag-and-drop library and is
itself freely available as open-source software (for references see [20]).

Click is still under development. A series of three formative evaluation sessions (4-
6 participants each) has shown that novice web developers can implement a basic 3-
page conference registration website within about one hour of time. Although many
usability problems are left to be resolved, Click appears to facilitate the first steps into
web engineering. However, we still have to evaluate how Click supports the construc-
tion of more complex projects. Just now we have begun to evaluate how novice de-
velopers manage when asked to autonomously implement non-trivial software (such
as an online ride board application) from start to finish.

5 Summary of Contributions and Future Work

We have discussed the opportunities and challenges of EUDWeb and argued that
supporting end users in web application development is not only a promising and
important opportunity, but also a realistic endeavor. Our Click prototype demonstrates
that we can provide high-level functionality that helps even nonprogrammers develop
fully functional web-based data collection, storage, and retrieval applications. As an
alternative to web engineering approaches that address problems in a top-down,
model-based way, we support the natural tendencies of developers to work in a more
opportunistic fashion. Also, we recognize that novice developers are likely to handle
concrete representations (such as components on screen) more easily than abstract
models of an application (e.g., content, navigation, or presentation models). Finally,
we advocate web development tools that expose functionality in a layered fashion to
facilitate a gentle slope of complexity.

Much work needs to be done before we can claim that end-user web engineering is
a reality. We must validate the efficacy of the concepts of design-at-runtime and
gradual introduction to layers of functionality. We must also continue to analyze and
develop components best suited for the needs and skills of our target audience. The
work we have presented here is an early step into the promising future of end user
web development and we hope that other research will follow.

References
1. Ambler, A., J. Leopold (1998). Public Programming in a Web World. Visual Languages,

Nova Scotia, Canada.
2. AT&T (2005). Graphviz � Graph Visualization Software. http://www.graphviz.org/
3. Brooks, F. (1987). No Silver Bullet: Essence and Accidents of Software Engineering.

Computer Magazine. April 1987
4. Burnett, M., S. K. Chekka, R. Pandey (2001). FAR: An End user Language to Support Cot-

tage E-Services. HCC � 2001 IEEE Symposia on Human-Centric Computing Languages
and Environments, Stresa, Italy.

5. Ceri, S., P. Fraternali, A. Bongio (2000). Web Modeling Language (WebML): A Modeling
Language for Designing Web Sites. Computer Networks 33(1-6): 137-157.

6. Deshpande, Y., S. Hansen (2001). Web Engineering: Creating a Discipline among Disci-
plines. IEEE MultiMedia 8(2): 82-87.

488 Jochen Rode et al.

7. Détienne, F. (2002). Software Design � Cognitive Aspects. Springer.
8. Fraternali, P., and P. Paolini (2000). Model-driven development of web applications: The

Autoweb system. ACM Transactions on Information Systems, 28(4): 323�382.
9. Gaedke, M., C. Segor, H.W. Gellersen (2000). WCML: Paving the Way for Reuse in Ob-

ject-Oriented Web Engineering. 2000 ACM Symposium on Applied Computing (SAC
2000), Villa Olmo, Como, Italy.

10. Harrison, W. (2004). From the Editor: The Dangers of End-User Programming. IEEE
Software 21(4): 5-7.

11. IBM (2005). IBM Rational Web Developer for WebSphere Software.
http://www.ibm.com/software/awdtools/developer/web/

12. MacLean, A., Carter, K., Lövstrand, L., Moran, T. (1990). User-Tailorable Systems: Press-
ing Issues with Buttons. ACM. Proceedings of CHI 1990: 175-182.

13. Microsoft (2005). Visual Web Developer. http://lab.msdn.microsoft.com/express/vwd/
14. Nardi, B. (1993). A Small Matter or Programming � Perspectives on End User Computing.

MIT Press. Cambridge, Massachusetts, USA, London, England.
15. PHP (2005). PHP: Hypertext Preprocessor. http://www.php.net/
16. Repenning, A. and A. Ioannidou (1997). Behavior Processors: Layers between End-Users

and Java Virtual Machine. IEEE VL 1997. Capri, Italy. Sep. 23-26
17. Robertson, T. J., Prabhakararao, S., Burnett, M., Cook, C., Ruthruff, J.R., Beckwith, L.,

Phalgune, A. (2004). Impact of Interruption Style on End-User Debugging. ACM Confer-
ence on Human Factors in Computing Systems, Vienna, Austria, April 2004

18. Rode, J., M. B. Rosson (2003). Programming at Runtime: Requirements & Paradigms for
Nonprogrammer Web Application Development. IEEE VL/HCC 2003. Auckland, NZ.

19. Rode, J., M.B. Rosson, M. A. Pérez-Quiñones (2002). The challenges of web engineering
and requirements for better tool support. Virginia Tech Computer Science Tech Report
#TR-05-01.

20. Rode, J., Y. Bhardwaj, M. Pérez-Quiñones, M.B. Rosson, J. Howarth (2005). Click: Com-
ponent based Lightweight Internet-application Construction Kit.
http://phpclick.sourceforge.net

21. Rode, J., J. Howarth, M. Pérez-Quiñones, M.B. Rosson (2004). An End-User Development
Perspective on State-of-the-Art Web Development Tools. Virginia Tech Computer Science
Tech Report #TR-05-03.

22. Rosson, M. B. and J. M. Carroll (1996). The reuse of uses in Smalltalk programming. ACM
Transactions on Computer-Human Interaction 3(3): 219-253.

23. Schwabe, D., G. Rossi, S.D.J. Barbosa (1996). Systematic Hypermedia Application Design
with OOHDM. ACM Hypertext �96, Washington DC, USA.

24. Shneiderman, B. (1983). Direct Manipulation: A Step Beyond Programming Languages.
IEEE Computer. 16: 57-69.

25. Web Models (2005). WebRatio. http://www.webratio.com
26. Wolber, D., Y. Su, Y. T. Chiang (2002). Designing Dynamic Web Pages and Persistence in

the WYSIWYG Interface. IUI 2002. Jan 13-16. San Francisco, CA, USA.
27. Xue, Q. (2005). The PRADO Framework. http://www.xisc.com

	As Easy as "Click": End-User Web Engineering
	1 Introduction
	2 Related Work
	3 Web Engineering for End Users
	4 Click: A Prototype End-User Web Engineering Tool
	4.1 Developing Web Applications with Click
	4.2 Hiding Unnecessary Complexity
	4.3 Evolutionary Prototyping and Opportunistic Development
	4.4 A Gentle Slope of Complexity
	4.5 Implementation and Evaluation

	5 Summary of Contributions and Future Work
	References

