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Abstract. Advanced inter-enterprise applications operate in an envi-
ronment that changes rapidly as autonomous services dynamically join
and leave a community of interest at will. Well-designed integrated infor-
mation views simplify inter-enterprise application development by hiding
details of data distribution, extraction, filter and transformation from
inter-enterprise applications, thereby shielding them from unwanted en-
vironment changes. Recently, the local-centric local-as-view (LAV) ap-
proach to integrated information view specification has attracted atten-
tion because of its maintainability advantage over the traditional global-
as-view (GAV) approach. This paper introduces a first-order predicate
calculus mapping language that admits LAV, GAV and global-and-local-
as-view (GLAV) view mapping specifications over distributed database
tables and service functions. Mapping patterns that apply to a wide range
of integration problems are presented in the language. A case-study inter-
enterprise application is used to illustrate the patterns in action.

1 Introduction

Despite a long and rich research history, data integration remains a key chal-
lenge in practice for modern business enterprises. Consumers are demanding that
enterprises improve both the efficiency of internal processes and their internal
knowledge of the dynamic and historical behaviour of their business. At the same
time, rapidly changing business environments require rapid changes in business
partner relationships and corporate structures. These two factors put enormous
pressure on enterprise information sytems to keep up with the businesses they
serve. Inevitably, data integration is required as information is extracted from
legacy information systems and recombined and repurposed for new ones.

Lenzerini [1] formalizes an integration system I as consisting of 〈G,S,M〉,
where G is the global (integrated) schema, S are source schemas, andM is a set
of assertions relating elements of the global schema with elements of the source
schemas. G, S and M are specified in some (though possibly different) suitable
language. There are four flavours of mapping specification forM: global-as-view
(GAV), local-as-view (LAV), global-and-local-as-view (GLAV), and peer-to-peer,
which we do not address further here.

In a GAV integration system, each mapping inM defines part of the global
schema G in terms of queries over source schemas S, in much the same way as
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one defines a view in SQL as a query over other relations or views. In a LAV
setting, each mapping in M defines a source schema S in terms of queries over
the global schema G. The advantage of LAV mappings is that they treat sources
independently: a mapping is phrased in terms of the relationship between a single
source schema and the global view, without reference to other sources. GLAV
mappings aim to exploit the value of a combined local and global approach.
GLAV integration systems admit mappings M that are a mixture of GAV and
LAV mappings, and may relate queries over multiple sources to queries over the
global schema.

It is always possible to transform a LAV integration system into a GAV
integration system [2], however the reverse is not always possible. The value of
a GLAV approach is not well explored [3, 4], but there are two key reasons
for preferring it. Despite the advantages of LAV for dynamic source integration,
LAV alone does not permit the phrasing of mapping rules that take advantage
of within-source joins, nor across-source joins through queries against the global
schema.

Whatever style (GAV, LAV, GLAV) of integration mapping is applied, there
are specific challenges that integration systems must meet. Data integration, ac-
cording to [5], involves eight tasks, of which the sixth requires creating mappings
between sources and the global schema. This step encapsulates the knowledge
gained from all the previous steps, so it is important that the mapping language
is sufficiently expressive to deal with the range of possible variation in the un-
derstanding developed in the previous steps. It is our goal to ensure that the
mappings are both human-readable and directly computer-interpretable in order
to actuate the data integration process at run-time (the final step).

In this paper we present such a mapping language, called iMaPl, based
on the first-order predicate calculus (FOPC). It is a GLAV language, which
means that it can express LAV and GAV mappings as degenerate cases. It is
a declarative language, which means that it is amenable to interpretation and
optimisation by computational means. We present mapping patterns that can
be applied in many situations, to assist DBAs or domain experts to formulate
the mappings they require for particular data integration projects. We have
developed a comprehensive run-time environment for actuation of the mappings
for data integration, but this is not presented here.

Outline. The paper is organised as follows. Next we describe a case-study appli-
cation, Sydney’s Information Highway. Then we introduce iMaPl. In section 4
we describe problems in information integration and the patterns expressed in
iMaPl that apply to those problems, illustrated by reference to the case study.
We then outline further work and conclude.

2 Case Study: Sydney’s Information Highway

For an example in this paper we describe a case study of government information
sharing associated with a major transport route in Sydney, Australia, known as
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the Sydney Information Highway (SIH) [6]. Local and state government agen-
cies contribute information services to an inter-enterprise application that per-
mits map-based search and display. Basic information services remain under the
control and data management responsibility of the originating data custodians,
being served to the Web from their own IT infrastructure. Users, including land
developers, real estate investors, local government planning authorities and the
general public have seamless access to information with a whole-of-government
perspective. We introduce a conceptual model of the global schema for Sydney’s
Information Highway, together with sources and their schemas shown in figure 1.

Fig. 1. Schemas

3 iMaPl Mapping Language

3.1 Preliminaries

For this paper, we will favour logic programming terminology and notation as
defined in [7]. The iMaPl language consists of terms, atomic formulas, and com-
pound formulas. A term is either a constant symbol (we use lowercase symbols,
quoted symbols or numbers such as a, “a”, 50), a variable symbol (strings start-
ing with uppercase symbols X , or for an anonymous variable that is distinct
from every other variable), or a compound term consisting of a function sym-
bol and a sequence of terms such as f(a, X). A predicate consists of a predicate
symbol (lowercase or quoted symbols such as p or ’p@s’) and a sequence of terms
(such as p(X1, ..., Xn)). Constraints are binary operators Op ∈ {<, >, >=, =<}
applied to pairs of terms (such as A < 23). Compound formulas are formed
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in the usual way from predicates, constraints, logical connectives (conjunction
∧, disjunction ∨, implication → or ←) and quantifiers Quant ∈ {∀, ∃}. Quan-
tified expressions are of the form ∀( ¯V ar, P ) and ∃( ¯V ar, P ) for formula P . By
convention, we may omit universal quantifiers. Where notational detail is not
important, we simplify term sequences such as X1, ..., Xn with X̄ and indicate
omission of detail with ‘...’.

Describing sources within the 〈G,S,M〉 model requires a mapping language
to connect a language for S to a language for G. The @ operator (’p@s’) identifies
source predicates from S distinguishing them from global predicates in G.

3.2 Language Definition

Our mapping language admits three forms of mapping statements: GAV, LAV
and GLAV. M is comprised of assertions of these forms.

Each mapping statement is of the form Quant( ¯V ar,(P → Q)). The logical
connective implication (→) partitions the statement into “if [P] then [Q] is a
consequence”. The implication (Q ← P) is a notational variation. This provides
a convenient way to express what bindings are exchanged between expressions
P and Q without having to write expressions using the logical connectives ∼, ∧
or ∨.

The antecedent [P] and consequent [Q] are compound formulae comprised of
predicates, quantifiers, constraints, conjuncts and disjuncts but never including
negation or implication. All variables appearing in [Q] must also appear in [P]
or else be existentially quantified. Free variables in a mapping statement are
assumed to be universally quantified over the scope of the statement.

Using the @ operator to partition our S and G schemas, we can now establish
syntactic patterns for GAV, LAV and GLAV mapping statements. One of the
features of these patterns is that mapping expressions logically constrain models
for G but they do not constrain models for S. That is, mapping statements are
unable to create new S entities–these must come from the sources themselves–
and are unable to create inconsistencies in the sources. Therefore they are well
suited to autonomous service-based systems. If necessary, integrity constraints
can be used to ensure that agreed data quality standards are met.

GAV Mappings. GAV mappings are mapping implications (P → Q) where
the [P] expression is a compound formula and the [Q] expression consists of only
one G schema predicate. This corresponds to conventional view definitions.

LAV Mappings. LAV mappings are mapping implications (P→ Q) where the
[P] expression consists of one S predicate; the [Q] expression consists of conjuncts
of G schema predicates. Quantifiers may be used within [P] and [Q].

Applying the LAV mapping scheme to the leichhardt schema at the Leich-
hardt source results in a mapping expression

leichhardt( , , SuburbName, )@Leichhardt→
suburb(SuburbName)∧suburbName(SuburbName, SuburbName)
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Which corresponds to the intention “if we obtain a value for SuburbName
from leichhardt@Leichhardt then both suburb(SuburbName) and
suburbName(SuburbName, SuburbName) hold in a model for G”.

GLAV Mappings. GLAV mappings are mapping implications (P→ Q) where
the [P] expression is unconstrained (i.e consists of zero or more S or G predi-
cates conjuncts, disjuncts, quantifiers or constraint operators); the [Q] expression
consists of conjuncts of G schema predicates and quantifiers.

4 Integration Patterns

The generic language definition patterns of Sect. 3 provide useful templates for
GAV, LAV and GLAV mapping statements. These templates are common build-
ing blocks for the problem-centric patterns of schema mismatch, value mismatch
and coverage constraints.

Mismatch between source and target schemas and values is a very common
problem. Examples of schema mismatch include explicit vs implicit representa-
tion of concepts; tabular vs structured representations of entities; and composite
vs atomic vs missing entity identifiers. The patterns of Sect. 4.1 are well suited
to problems of schema mismatch. Value mismatches cover domain issues such as
inconsistent units of measure (m/s vs ft/s), as well as formatting mismatches
(capitalized vs lowercase vs camel case) and data entry errors. Section 4.2 doc-
uments patterns for addressing value mismatches between sources and the inte-
grated schema. Often both value and schema mismatches occur simultaneously.

4.1 Patterns for Schema Mismatch

Problem: Making Implicit Information Explicit. Successfully incorporat-
ing legacy systems into an integrated federation often requires understanding the
implicit assumptions developers made. In our example, both Drummoyne and
Leichhardt record property information such as street name, number and sub-
urb. Neither system explicitly understands that the suburbs and streets within
their domain are administered by the respective council. The council entity and
the administers relationship between Council and Suburb is implicit knowledge
for both Leichhardt and Drummoyne.

Pattern: Integration Meta-data. While some data is not available directly
from the participating source, we can use our knowledge of the environment
to record the data directly within the integration schema. Within a mapping
specification M, one might use this GLAV pattern to augment an integrated
G schema predicate with additional database instances that are missing from a
source.

Example 1. Integration Meta-data

council(leichhardt)∧
councilName(leichhardt, “Leichhardt”)←
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Problem: Structural G Schema Constraints. The token leichhardt used
to identify Leichhardt as a member of council in ex. 1, is somewhat arbitrary,
as the service representing Leichhardt cannot itself supply one. However, the re-
lationship between council and councilName is a G schema constraint requiring
that we use the same token (whatever it may be). Our example dependency is
modest, but there are variations of this structural constraint problem that apply
to more complex document structures [8, 9].

Pattern: Quantification. Existential ∃( ¯V ar, Formula) and universal
∀( ¯V ar, Formula) quantification enables mapping specifications to quantify what
is known about individuals that meet criteria expressed in the statement scope.
Existential quantification is useful where there are discrepancies in mapping at-
tributes between S and G schemas i.e. where the G schema has more attributes
than a source can contribute. More formally, if x is a variable and P is a well
formed formula, then ∃x(P ) is an existential quantification of x over the scope
P ; “there exists [x] such that [P]”; and universal quantification “for each [x] such
that [P]”.

By using the same quantified variable within an expression scope covering
structural constraints, it is possible to tie together G schema entities in a way
that satisfies the structural constraints as well as provide values for known in-
formation.

Patterns in Action. In example 2, we rewrite the mapping statement of ex. 1
to replace occurrences of the token leichhardt with an existentially quantified
variable C and simultaneously express a mapping implication to map tokens
from our Leichhardt source onto the G schema entity suburbName.

Example 2. Quantification

∃(C, (council(C)∧
councilName(C, “Leichhardt”)∧
∀(SuburbName, leichhardt( , , SuburbName, )@Leichhardt→
∃(Suburb, (suburb(Suburb)∧
suburbName(Suburb, SuburbName)∧
administers(C, Suburb))))))

Informally, this mapping expression captures our desire that “there exists
a C such that council(C) and councilName(C,"Leichhardt") and if we ob-
tain a value for SuburbName from leichhardt@Leichhardt then there exists a
Suburb such that suburb(Suburb) and suburbName(Suburb, SuburbName) and
administers(C,Suburb)”

Problem: Transitive Closures. GLAV mappings open the possibility to write
recursive mapping statements, for example to generate the transitive closure of a
relation. Transitive closures may be needed when dealing with transitive relations
obtained from multiple sources [10].
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Pattern: Recursive Mappings. Recursive mapping expressions will generally
have one or more base (non-recursive) cases, followed by a recursive case. In the
example below, we use a recursive mapping pattern to obtain the connected
relation through functional source operators nextTo.

Pattern in Action

Example 3. Recursive Mapping

suburb(“Glebe”)←

suburb(S)∧nextTo(S, P )@Leichhardt→ connected(S, P )∧suburb(P )

suburb(S)∧connected(S, P )∧nextTo(P, Q)@Leichhardt
→connected(S, Q)∧suburb(Q)

4.2 Patterns for Value Mismatch

Problem: Normalized Representation. Our example has shown how to
obtain tokens representing suburb names from a source. Leichhardt council pro-
vides sentence case names while LIC provides uppercase names. Sometimes a G
schema will require a single representation for tokens for a domain; suburb name
in our example has two S representations, and with a G schema requirement for
lowercase, neither S representation matches. The challenge for a mapping lan-
guage is to enable encoding of transformations so that raw data from a source is
processed into the normalized representation required by the integrated schema.

Pattern: Source Specific Normalization. The source specific normalization
pattern encodes transformation knowledge directly into the M expression. The
idea is that variables from data producers are connected directly to transforma-
tion operators, whose output is placed into the G schema. Source specific nor-
malization follows the scheme: [P (..., X̄)@Si] ∧[F (..., X̄, ...Ȳ )@Sj ] →[G(...Ȳ )].

Patterns in Action. Example 4 shows this pattern applied to directly trans-
forming Leichhardt source suburb names to lowercase expressed by a within-
source join.

Example 4. Source Specific Normalization

leichhardt( , , SuburbNameS, )@Leichhardt∧
to lowercase(SuburbNameS, SuburbName)@Leichhardt
→
∃(Suburb, (suburb(Suburb)∧
suburbName(Suburb, SuburbName)))))
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This pattern brings up a knowledge-engineering issue. Knowledge about how
to manipulate and transform domain values (e.g transform the S specific domain
SuburbNameS into the G schema SuburbName) has been tightly merged with
knowledge about how to populate a schema from a source.

The following patterns encode an alternative strategy to formulating and
writing mapping statements when a separation of knowledge about transforming
data representations from populating domains is required.

Pattern: Domain Specific Normalization. In the domain specific normal-
ization pattern, type domains are explicitly described in the G schema; and we set
up domain-specific type transformation schemas, capturing our desire to trans-
form data from one representation into another. These domain specific trans-
formation schemas are global predicates that require implementations. These
implementations will of course be delegated to the set of underlying operations
offered by sources.

Our source mapping statements will then populate the appropriate G predi-
cates by appealing to the domain specific transformation offered by the G schema.
This pattern requires recursive mapping expressions. It is similar to techniques
described in [10] for dealing with functional dependencies among G schema pred-
icates; and [11] for dealing with sources with limited capabilities.

In our running example, we have a number of sources offering graphic entities.
On closer inspection, one might discover that RTA offers point graphic entities
of type OGISPoint, Leichhardt offers graphics of type mifmid, while LIC offers
graphic entities of type OGISPolygon. Furthermore, the functionsRus service
offers a suite of transformation operations: toMifMid, toOgisFeature, toSVG
and toJPG, each of which is capable of transforming input data from a source
type to a target type. The transform services form a directed graph (containing
cycles) over the types.

The first part of the pattern requires setting up our domain for graphic enti-
ties; we use typeOf(V, T) to denote that values of V have type T. This domain
functor provides a placeholder for two things: making statements (assertions)
about data after it is retrieved from a source or transformed by a service; and
acting as a constraint requiring that data be in a specified format. Example 5
shows how this pattern might apply to graphic data elements retrieved from
Leichhardt. Similar statement patterns apply for the remaining resources.

Example 5. Populating Domain from Sources

leichhardt(..., Graphic)@Leichhardt
→
graphic(typeOf(Graphic, mifmid))

The second part of the pattern requires setting up a typeTransform type
transformation operator. This operator has two parts: an equality theory for the
domain (a statement that says transformations between data in the same type
is a no-op and a statement about the transitivity of type transformations); and
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statements about the services that implement the operator. Assume a functional
dependency from input (first variable) to output. In example 6, the global op-
erator will have implementations delegated to the appropriate service specific
operations. Furthermore, notice the use of the domain functor typeOf(V, T) as
a constraint (or precondition) on the type of information sent to the operation.

Example 6. Domain Rules & Type Transform Implementations

Domain Rules
typeT ransform(typeOf(X, Y ), typeOf(X, Y )))←

typeT ransform(X, Y )∧typeT ransform(Y, Z)
→
typeT ransform(X, Z))

Mapping Rules
toSV G(Graphic1, Graphic2)@functionsRus∧
(((V ector = shapeF ile)∨(V ector = mifmid))
→
typeT ransform(typeOf(Graphic1, V ector), typeOf(Graphic2, svg)))
...

Queries over the G schema use typeTransform(X,Y) and typeOf to trigger
the necessary type conversions. For example:

q(Y )←graphic(X)∧typeT ransform(X, typeOf(Y, svg)).

Problem: Object Reconciliation. For multiple data sources, shared error-
free identifying fields are uncommon. We have shown two techniques, source
specific normalization and domain normalization, which are suitable for cases
where normalizing is a viable strategy.

Alternatively, value mismatch may be resolved by record linking techniques.
There is a large literature focussed on record linkage techniques, software and
methods [12–16].

Pattern: Object Reconciliation. In [17], steps for specifying a sequence
of virtual services encapsulated in a composition for record linking are given.
The virtual service has a G schema of link(DataA, DataB, LinkedData)
relying on support predicates such as standardize, index, compare and
classify. Intuitively, values from two sources are compared and a proba-
bilistic match score is returned indicating the likelihood that values are the
same. A pattern for mapping sources to any of the support predicates (F )
follows: [SFm(..., X̄, ..., Z̄)@Sa]∧[SFn(Z̄, ..., Ȳ )@Sz]→[F (stepi−1(X̄), stepi(Ȳ ))]
The support predicates have function terms such as stepi which work together
to ensure that services are sequenced correctly.
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4.3 Coverage Constraints

Problem: Logical Fragmentation. A coverage constraint is, informally, a
statement about the range of values held for a relation in a particular source
database. We should use coverage constraints in query planning to exclude
sources from mapped queries when we know from the coverage constraint that
those sources cannot contribute to the answers to our query. A coverage con-
straint is quite different to an integrity constraint, although these can also pro-
vide information to assist query planning [18].

Pattern: Coverage Constraint. Constraint expressions are formed from the
standard constraint operators Op ∈ {<, >, >=, =<} applied to terms. Our pat-
tern for using coverage constraints requires that the constraints appear on the
antecedent of the implication, all variables appearing in the constraint expres-
sion are universally quantified (the quantifier may be omitted by convention):
∀(X̄, [P (..., X̄, ...)∧ Op(X̄)]→[Q])

In general, constraint reasoning (see [19] for example) is required to either
eliminate mappings from source specific plans or tighten the source specific query
bounds.

Patterns in Action. RTA data sources offer accident data based on date.
Consider two RTA sources, one contributing data for 1994, and the other for
subsequent years. This example demonstrates both coverage constraint and do-
main specific normalization.

Example 7. Coverage Constraint

rta1994(..., Spatial)@rta1994∧
ADate = 1994
→
accident(ADate, ..., Spatial)∧graphic(typeOf(Spatial, ogisPoint))

rta(ADate, ..., Spatial)@rta∧
ADate > 1996
→
accident(ADate, ..., Spatial)∧graphic(typeOf(Spatial, ogisFeature))

Queries can constrain a predicate thus:

q(T )←accident(D, ..., S)∧typeT ransform(S, typeOf(T, svg))∧D > 2000.

Constraint reasoning techniques are required to tighten the query bounds (and
thus remove the redundant constraint Date > 1996 [19]) on the requests sent to
sources. The coverage constraint pattern also applies to categorical domains as
well as integer domains as we have shown in example 7.
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5 Conclusion and Further Work

We have applied recent research on local-as-view query planning to the problem
of dynamically building integration plans in response to user-defined requests.
Our approach relies heavily on the run-time interpretation of expressive mapping
rules that relate sources of data and functional data transformations to global
concepts. In this paper we have defined a range of mapping patterns that are
designed to address commonly-occurring integration problems. These patterns,
expressed in the language of first order predicate calculus, may be interpreted
by suitable planning engines, such as one we have under development. Because
they are declarative, with a well-defined semantics, they may also be used as a
benchmark for evaluating the capabilities of information integration systems.

Our approach subsumes well known GAV, LAV and GLAV mapping patterns
for query planning, and extends to offer declarative local database coverage con-
straints, data type coercion, and recursive mappings. We have defined patterns
that address specific information integration problems for schema and value mis-
match and object reconciliation.

We are aware of some problems not adequately covered by these patterns,
for example, negation, nested implication and mapping expressions that require
second-order predicates. Some of these shortcomings in our mapping language
arise from our goal for both human readability of the language and sound compu-
tational interpretation. We have preferred a syntactic description of the mapping
language for ease of adoption by developers at the expense of admitting more
expressive mappings that may be safely interpreted only if complex conditions
about their construction are met. Ongoing work is extending our pattern set.
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