
Static Deadlock Detection for Java Libraries

Amy Williams, William Thies, and Michael D. Ernst

Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology,

Cambridge, MA 02139 USA
{amy, thies, mernst}@csail.mit.edu

Abstract. Library writers wish to provide a guarantee not only that
each procedure in the library performs correctly in isolation, but also that
the procedures perform correctly when run in conjunction. To this end,
we propose a method for static detection of deadlock in Java libraries.
Our goal is to determine whether client code exists that may deadlock
a library, and, if so, to enable the library writer to discover the calling
patterns that can lead to deadlock.

Our flow-sensitive, context-sensitive analysis determines possible
deadlock configurations using a lock-order graph. This graph represents
the order in which locks are acquired by the library. Cycles in the graph
indicate deadlock possibilities, and our tool reports all such possibilities.
We implemented our analysis and evaluated it on 18 libraries comprising
1245 kLOC. We verified 13 libraries to be free from deadlock, and found
14 distinct deadlocks in 3 libraries.

1 Introduction

Deadlock is a condition under which the progress of a program is halted as each
thread in a set attempts to acquire a lock already held by another thread in the
set. Because deadlock prevents an entire program from working, it is a serious
problem.

Finding and fixing deadlock is difficult. Testing does not always expose dead-
lock because it is infeasible to test all possible interleavings of a program’s
threads. In addition, once deadlock is exhibited by a program, reproducing the
deadlock scenario can be troublesome, thus making the source of the deadlock
difficult to determine. One must know how the threads were interleaved to know
which set of locks are in contention.

We propose a method for static deadlock detection in Java libraries. Our
method determines whether it is possible to deadlock the library by calling some
set of its public methods. If deadlock is possible, it provides the names of the
methods and variables involved.

To our knowledge, the problem of detecting deadlock in libraries has not been
investigated previously. This problem is important because library writers may
wish to guarantee their library is deadlock-free for any calling pattern. For ex-
ample, the specification for java.lang.StringBuffer in Sun’s Java Development
Kit (JDK) states:

A.P. Black (Ed.): ECOOP 2005, LNCS 3586, pp. 602–629, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Static Deadlock Detection for Java Libraries 603

class BeanContextSupport {
protected HashMap children;

public boolean remove(Object targetChild) {
synchronized(BeanContext.

globalHierarchyLock) {
...
synchronized(targetChild) {

...
synchronized (children) {

children.remove(targetChild);
}
...

}
}
return true;

}

public void
propertyChange(PropertyChangeEvent pce) {

...
Object source = pce.getSource();
synchronized(children) {

if ("beanContext".equals(propertyName)
&& containsKey(source)
&& ((BCSChild)children.get(source)).

isRemovePending()) {
BeanContext bc = getBeanContextPeer();
if (bc.equals(pce.getOldValue())

&& !bc.equals(pce.getNewValue())) {
remove(source);

} else {
...

}}}}}

Fig. 1. Simplified code excerpt from the
BeanContextSupport class in the java.

beans.beancontext package of Sun’s JDK

Object source
= new Object();

BeanContextSupport support
= new BeanContextSupport();

BeanContext oldValue
= support.getBeanContextPeer();

Object newValue
= new Object();

PropertyChangeEvent event
= new PropertyChangeEvent(source,

"beanContext",
oldValue,
newValue);

support.add(source);
support.vetoableChange(event);

thread 1: support.propertyChange(event);
thread 2: support.remove(source);

Fig. 2. Client code that can cause
deadlock in methods from Figure 1.
In thread 1, children is locked, then
BeanContext.globalHierarchyLock

is locked (via a call to remove) while
in thread 2, the ordering is reversed.
Deadlock occurs under some thread
interleavings. The initialization code
shown above is designed to elicit the
relevant path of control flow within
the library

The [StringBuffer] methods are synchronized where necessary so that
all the operations on any particular instance behave as if they occur in
some serial order that is consistent with the order of the method calls
made by each of the individual threads involved.

If the operations are to behave as if they occurred in some serial order, deadlock
between StringBuffer methods should not be possible. No serial ordering over
the StringBuffer methods could lead to deadlock because locks acquired by
Java’s synchronized construct (which StringBuffer uses) cannot be held between
method calls. Nonetheless, our tool reports a calling pattern that causes deadlock
in StringBuffer.

Libraries are often vulnerable to deadlock. We have induced 14 distinct in-
stances of deadlock in 3 libraries (for detailed results, see Section 6). Simplified
code for one of the deadlocks found in Sun’s JDK is shown in Figure 1. In the
BeanContextSupport class of the java.beans.beancontext package, the remove()

and propertyChange() methods obtain locks in a different order. The client code

604 A. Williams, W. Thies, and M.D. Ernst

shown in Figure 2 can induce deadlock using these methods. Several other meth-
ods in the same package use the same locking order as remove() and thus exhibit
the same deadlock vulnerability.

This deadlock has a simple solution: the propertyChange() method can syn-
chronize on BeanContext.globalHierarchyLock before children, or it could lock
only globalHierarchyLock. Section 6.1 describes solutions for other deadlocks.

An overview of our analysis is given in Section 3. We have implemented our
technique and analyzed 18 libraries consisting of 1245k lines of code, obtained
from SourceForge, Savannah, and other open source resources. Using our tool,
we verified 13 of these libraries to be free of deadlock, and confirmed 14 distinct
instances of deadlock in 3 libraries.

Detecting deadlock across all possible calls to a library is different than de-
tecting deadlock in a whole program. Concrete aliasing relationships exist and
can be determined for a whole program, whereas the analysis of a library must
consider all possible calls into the library, which includes a large number of alias-
ing possibilities. In a program, the number of threads can often be determined,
but a client may call into a library from any number of threads, so our anal-
ysis must model an unbounded number of threads. These differences combine
to yield a much larger number of reports than would be present in a program,
which makes it important to suppress false reports.

The remainder of this paper is organized as follows. Section 2 explains the
semantics of locks in the Java programming language. Section 3 discusses our
analysis at a high level, and Section 4 provides a more detailed description of
the analysis. Section 5 describes techniques for reducing the number of spuri-
ous reports. Section 6 gives our experimental results. Related work is given in
Section 7, and Section 8 concludes.

2 Locks in Java

In Java, each object conceptually has an associated lock; for brevity, we will
sometimes speak of an object as being a lock. The Java “synchronized (expr) {
statements }” statement evaluates the expression to an object reference, acquires
the lock, evaluates the statements in the block, and releases the lock when the
block is exited, whether normally or because of an exception. This design causes
locks to be acquired in some order and then released in reverse (that is, in
LIFO order), a fact that our analysis takes advantage of. A Java method can
be declared synchronized, which is syntactic sugar for wrapping the body in
synchronized (this) { ... } for instance methods, or synchronized (C.class)

{ ... }, where C is the class containing the method, for static methods.
A lock that is held by one thread cannot be acquired by another thread until

the first one releases it. A thread blocks if it attempts to acquire a lock that is
held by another thread, and does not continue processing until it successfully
acquires the lock.

Static Deadlock Detection for Java Libraries 605

A lock is held per-thread; if a given thread attempts to re-acquire a lock,
then the acquisition always succeeds without blocking.1 The lock is released
when exiting the synchronized statement that acquired it.

The wait(), notify(), and notifyAll() methods operate on receivers whose
locks are held. An exception is thrown if the receiver’s lock is not held. The
wait() method releases the lock on the receiver object and places the calling
thread in that object’s wait set. While a thread is in an object’s wait set, it
is not scheduled for processing. Threads are reenabled for processing via the
notify() and notifyAll() methods, which, respectively, remove one or all the
threads from the receiver object’s wait set. Once a thread is removed from an
object’s wait set, the wait() method attempts to reacquire the lock for the object
it was invoked on. The wait() method returns only after the lock is reacquired.
Thus, a thread may block inside wait() as it attempts to reacquire the lock for
the receiver object.

Java 1.5 introduces new synchronization mechanisms in the java.util.con-

current package that allow a programmer to acquire and release locks without
using the synchronized keyword. These mechanisms make it possible to acquire
and release locks in any order (in particular, acquires and releases need not be
in LIFO order). Our tool does not handle these new capabilities in the Java
language. However, most synchronization can be expressed using the primitives
from Java 1.4, and we therefore expect that our technique will be applicable
under current and future releases of Java.

3 Analysis Synopsis

We consider a deadlock to be the condition in which a set of threads cannot
make progress because each is attempting to acquire a lock that is held by an-
other member of the set. Our deadlock detector uses an interprocedural analysis
to track possible sequences of lock acquisitions within a Java library. It repre-
sents possible locking patterns using a graph structure—the lock-order graph,
described below. Cycles in this graph indicate possibilities of deadlock.

For each cycle, our tool reports the variable names of the locks involved in the
deadlock as well as the methods that acquire those locks (see Section 4.4). Our
tool is conservative and reports all deadlock possibilities. However, the conser-
vative approximations cause the tool to consider infeasible paths and impossible
alias relationships, resulting in false positives (spurious reports).

3.1 Lock-Order Graph

The analysis builds a single lock-order graph that captures locking information
for an entire library. This graph represents the order in which locks are acquired

1 For our purposes, it is sufficient to consider multiple synchronized statements over
the same object in one thread as a no-op. A Java virtual machine tracks the number
of lock/unlock actions (entrance and exit of a synchronized block) for each object.
A counter is updated for each synchronized statement, but if the current thread
already holds the target lock, no change is made to the thread’s lock set.

606 A. Williams, W. Thies, and M.D. Ernst

(BeanContextSupport.propertyChange() locks BeanContextSupport.children,
BeanContextSupport.remove() locks BeanContext.globalHierarchyLock)

(BeanContextSupport.remove() locks BeanContext.globalHierarchyLock,
BeanContextSupport.remove() locks BeanContextSupport.children)

Object HashMap

Fig. 3. Relevant portion of the lock-order graph for the code in Figure 1. The nodes
represent the set of all Objects and HashMaps, respectively. Each edge is annotated by
the sequence of methods (and corresponding variable names) that acquire first a lock
from the source set, then a lock from the destination set

via calls to the library’s public methods. Combining information about the lock-
ing behavior of each public method into one graph allows us to represent any
calling pattern of these methods across any number of threads.

Each node of the lock-order graph represents a set of objects that may be
aliased. (Types are an approximation to may-alias information; Section 5.1 gives
a finer but still lightweight approximation applicable to fields.) An edge in the
graph indicates nested locking of objects along some code path. That is, it in-
dicates the possibility of locking first an object from the source node, then an
object from the destination node.

A cycle consisting of nodes N1 and N2 means that along some code path, an
object o1 ∈ N1 may be locked before some object o2 ∈ N2, and along another
(or the same) path, o2 may be locked before o1. In general, a cycle exposes code
paths leading to cyclic lock orders, and, when the corresponding paths are run
in separate threads, deadlock may occur. Figure 3 shows the lock-order graph
for the code in Figure 1.

To build the graph, the analysis iterates over the methods in the library,
building a lock-order graph for each of them. All possible locking configurations
of a method are modeled, including locks acquired transitively via calls to other
methods. At a call site, the callee’s graph is inserted into the caller. After each
method’s lock-order graph has reached a fixed point, the public methods’ lock-
order graphs are merged into a single graph for the library. Cycles are then
detected, and reports are generated.

3.2 Deadlocks Detected by Our Technique

Our goal is to detect cases in which a sequence of client calls can cause deadlock
in a library, or to verify that no such sequence exists. Our tool reports deadlock
possibilities in which all deadlocked threads are blocked within a single library,
attempting to acquire locks via Java synchronized statements or wait() calls.
Under certain assumptions about the client and the library, our tool reports all
such possibilities.

Our analysis focuses on deadlocks due to lock acquisitions via Java synchro-

nized statements and wait() calls: progress of a program is halted as each thread

Static Deadlock Detection for Java Libraries 607

in a set attempts to acquire a lock already held by another thread in the set.
We are not concerned with other ways in which a program may fail to make
progress. A thread might hang forever while waiting for input, enter an infinite
loop, suffer livelock, or fail to call notify() or to release a user- or library-defined
lock (that is, using a locking mechanism not built into Java). These problems
in one thread can prevent another thread or the whole program from making
progress: consider a call to Thread.join() (which waits for a given thread to
terminate) on a thread that does not terminate. Detecting all of these problems
is outside the scope of this paper.

Assumptions About Client Code. We make three assumptions about client
code. If a client deviates from these assumptions, our tool is still useful for
detecting deadlock, but it cannot detect deadlocks introduced by the deviant
behavior. First, we assume that the client does not include a class that extends
a library class or belongs to a library package. If such a class exists, it needs to be
inspected by our analysis and treated as part of the library. Second, we assume
that that the client does not invoke library methods within callbacks from the
library; that is, all client methods M are either unreachable from the library,
or the library is unreachable from M . For example, if a client class overrides
Object.hashCode() such that it calls a synchronized method in the library, then
any library method calling hashCode() should model that synchronization. The
class therefore needs to be analyzed as though it is part of the library. Third, we
assume that the client code is well-behaved: either it does not lock any objects
locked by the library, or it does so in disciplined ways (as explained below).

Without the assumption of well-behavedness, it is difficult or impossible to
guarantee deadlock freedom for a library without examining client code. An
adversarial client can induce deadlock if it has access to two objects locked by a
library. For example, suppose that a library has a synchronized method:

class A {

synchronized void foo() { ... }

}

Then a client could cause deadlock in the following way:

A a1 = new A(), a2 = new A();

thread 1: synchronized(a1) { a2.foo(); }

thread 2: synchronized(a2) { a1.foo(); }

A client that locks a different set of objects than those locked by the library
is always well-behaved. This is the case for arbitrary clients if the locks used
by the library do not escape it; that is, if they are inaccessible to the client.
Section 5.1 describes a method for detecting some inaccessible locks.

Even if the client and the library share a set of locks, the client can be
well-behaved if it acquires those locks in a restricted pattern. These restrictions
could be part of the library’s specification—and such documentation could even
be automatically generated for the library by a tool like ours. As above, one

608 A. Williams, W. Thies, and M.D. Ernst

sufficient restriction is that clients do not lock objects that the library may
lock; this requires the library to specify the set of objects that it will lock. A
more liberal but sufficient restriction is that the client acquires locks in an order
compatible with the library. In this scenario, the library specifies the order of lock
acquisitions (say, as a lock-order graph), and clients are forbidden from acquiring
locks in an order that introduces cycles into the graph. We believe that these
restrictions are quite reasonable, and that information about the locks acquired
by a library are a desirable part of its specification.

Assumptions About Library Code. In practice, libraries do not exist in
isolation. Rather, each library uses additional libraries (e.g., the JDK) to help
it accomplish its task. One approach to analyzing such cascaded libraries is to
consider all of the libraries together, as if they were a single library. However,
this hampers modularity, as the guarantees offered for one library depend on
the implementation of other libraries. It also hampers scalability, as the effective
library size can grow unwieldy for the analysis. For these reasons, our analysis
considers each library independently. Consider that the “main” library under
consideration relies on several “auxiliary” libraries. Under certain assumptions
about the main library, our analysis detects all deadlock possibilities in which
all threads are blocked within the main library. It does not report cases in which
some threads are blocked in the main library and other threads are blocked in
auxiliary libraries.

We make the following assumptions about library code. First, as the library
under consideration (the main library) may be a client of some auxiliary libraries,
it must satisfy the client assumptions (described previously) to guarantee dead-
lock freedom for its own users. Second, the main library cannot perform any
synchronization in methods that are reachable via callbacks from auxiliary li-
braries (e.g., in Object.hashCode()). Callbacks through the auxiliary libraries
are inaccessible to the analysis. Third, the library cannot use reflection. Reflec-
tion can introduce opaque calling sequences that impact the lock ordering. As
with the client code, our analysis operates as usual even if these assumptions
are broken, but it can no longer guarantee that all deadlock possibilities are
reported.

4 Algorithm Details

The deadlock detector employs an interprocedural dataflow analysis for con-
structing lock-order graphs. The analysis is flow-sensitive and context-sensitive.
At each program point, the analysis computes a symbolic state modeling the
library’s execution state. The symbolic state at the end of a method serves as a
method summary. The analysis is run repeatedly over all methods until a fixed
point is reached; termination of the analysis is guaranteed.

The type domains for the analysis are given in Figure 4. For simplicity, we
present the algorithm for a language that models the subset of Java relevant to
our analysis. The language omits field assignments; they are not relevant because

Static Deadlock Detection for Java Libraries 609

T ∈ Type
v ∈ LocalVar

method ∈ MethodDecl = Tr m(T1 v1, T2 v2, . . . , Tn vn) { stmt }
where v1 = this if m is instance method

library ∈ Library = set-of MethodDecls
stmt ∈ Statement = T v | branch stmt1 stmt2

| v := new T | synchronized (v) { stmt }
| v1 := v2 | v := m(v1, . . . , vn)
| v1 := v2.f | wait(v)
| stmt1; stmt2

pp ∈ ProgramPoint⊥
o = 〈pp, T〉 ∈ HeapObject = ProgramPoint × Type

g ∈ Graph = directed-graph-of HeapObjects
roots ∈ Roots = set-of HeapObjects
env ∈ Environment = LocalVar → HeapObject

s = 〈g, roots, locks, ∈ State = Graph × Roots × list-of HeapObjects ×
env, wait〉 Environment × set-of HeapObjects

Fig. 4. Type domains for the lock-order dataflow analysis. Parameters are con-
sidered to be created at unique points before the beginning of a method. The
“branch stmt1 stmt2” statement is a non-deterministic branch to either stmt1 or stmt2

our analysis does not track the flow of values through fields. Synchronized meth-
ods are modeled in this language using their desugaring (see Section 2) and loops
are supported via recursion. Our implementation handles the full Java language.

Our analysis operates on symbolic heap objects. Each symbolic heap object
represents the set of objects created at a given program point [6]; it also contains
their type. For convenience, we say that a symbolic heap object o is locked when
a particular concrete object drawn from o is locked.

The state is a 5-tuple consisting of:

– The current lock-order graph. Each node in the graph is a symbolic heap
object. The graph represents possible locking behavior for concrete heap
objects drawn from the sets modeled by the symbolic heap objects. A path
of nodes o1 . . . ok in the graph corresponds to a potential program path in
which o1 is locked, then o2 is locked (before o1 is released), and so on.

– The roots of the graph. The roots represent objects that are locked at some
point during execution of a given method when no other lock is held.

– The list of locks that are currently held, in the order in which they were
obtained.

– An environment mapping local variables to symbolic heap objects. The
environment is an important component of the interprocedural analysis, as it
allows information to propagate between callers and callees. It also improves
precision by tracking the flow of values between local variables.

– A set of objects that have had wait called on them without an enclosing
synchronized statement in the current method.

610 A. Williams, W. Thies, and M.D. Ernst

4.1 Dataflow Rules

The dataflow rules for the analysis are presented in Figure 5. Helper functions
appear in Figure 6, and mathematical operators (including the join operator)
are defined in Figure 7. Throughout the following explanation, we define the
current lock as the most recently locked object whose lock remains held; it is the
last object in the list of currently held locks, or tail(s.locks).

The symbolic state is updated in the visit stmt procedure (in Figure 5)
which visits each statement in a method. A variable declaration or initialization
introduces a fresh heap object. An assignment between locals copies an object
within the local environment. A field reference introduces a fresh object (the
analysis does not model the flow of values through fields). A branch models
divergent paths and is handled by the join operator below. Calls to wait() are
described in Section 4.2.

The rule for synchronized statements handles lock acquires; there are two
cases. First, if the target object o is not currently locked (i.e., if o /∈ s.locks),
then an edge is added to the lock-order graph from the current lock to o, and o is
appended to s.locks. If no objects were locked before the synchronized statement,
o becomes a root in the graph (roots are important at a call site, as discussed
below). Next, the analysis descends into the body of the synchronized block.
Upon completion, the analysis continues to the next statement, preserving the
lock-order graph from the synchronized block but restoring the list of locked
objects valid before the synchronized statement. This is correct, since Java’s
syntax guarantees that any objects locked within the synchronized block are
also released within the block.

In the second case for synchronized statements, the target is currently locked.
Though the body is analyzed as before, the synchronization is a no-op and does
not warrant an edge in the lock-order graph. To exploit this fact, the analysis
needs to determine whether nested synchronized statements are locking the same
concrete object. Though symbolic heap objects represent sets of concrete objects,
they nonetheless can be used for this determination: if nested synchronized state-
ments lock variables that are mapped to the same heap object (during analysis),
then they always lock the same concrete object (during execution). This is true
within a method because each heap object is associated with a single program
point; as this simplified language contains no loops, any execution will visit that
point at most once and hence create at most one concrete instance of the heap
object. This notion also extends across methods, as both heap objects and con-
crete objects are directly mapped from caller arguments into callee parameters
as described below. Thus, repeated synchronization on a given heap object is
safely ignored, significantly improving the precision of the analysis.

Method calls are handled by integrating the graph for the callee into the caller
as follows. In the case of overridden methods, each candidate implementation’s
graph is integrated. The analysis uses the most recent lock-order graph that has
been calculated for the callee. Recursive sequences are iterated until reaching a
fixed point. The calling context is first incorporated into a copy of the callee’s
graph either by removing the formal parameters (if the corresponding argument

Static Deadlock Detection for Java Libraries 611

visit stmt(stmt , s) returns State s′

s′ ← s
switch(stmt)

case T v | v := new T
s′.env ← s.env[v := 〈 program point(stmt), T 〉]

case v1 := v2

s′.env ← s.env[v1 := s.env[v2]]
case v1 := v2.f

s′.env ← s.env[v1 := 〈 program point(stmt), declared type(v2.f) 〉]
case stmt1; stmt2

s1 ← visit stmt(stmt1, s)
s′ ← visit stmt(stmt2, s1)

case branch stmt1 stmt2
s′ ← visit stmt(stmt1, s) � visit stmt(stmt2, s)

case synchronized (v) { stmt }
o ← s.env[v]
if o ∈ s.locks then

// already locked o, so synchronized statement is a no-op
s1 ← s

else
// add o to g under current lock, or as root if no locks held
if s.locks is empty // below, • denotes list concatenation

then s1 ← 〈s.g ∪ o, s.roots ∪ o, s.locks • o, s.env, s.wait〉
else s1 ← 〈s.g ∪ o ∪ edge(tail(s.locks) → o), s.roots, s.locks • o,

s.env, s.wait〉
s2 ← visit stmt(stmt , s1)
s′ ← 〈s2.g, s2.roots, s.locks, s2.env, s2.wait〉

case v := m(v1, . . . , vn)
s′.env ← s.env[v := 〈 program point(stmt), return type(m) 〉]
∀ versions of m in subclasses of env[v1].T:

sm ← visit method(method decl(m))
s′m ← rename from callee to caller context(sm, s, n)
// connect the two graphs, including roots
s′.g ← s′.g ∪ s′m.g
if s.locks is empty then // connect current lock to roots of s′m

s′.roots ← s′.roots ∪ s′m.roots
s′.wait ← s′.wait ∪ s′m.wait

else
∀ root ∈ s′m.roots:

s′.g ← s′.g ∪ edge(tail(s.locks) → root)
∀ o ∈ s′m.wait: if tail(s.locks) 	= o then

s′.g ← s.g ∪ o ∪ edge(tail(s.locks) → o)
case wait(v)

o ← s.env[v]
if s.locks is empty then

s′.wait ← s.wait ∪ o
else if tail(s.locks) 	= o then

// wait releases then reacquires o: new lock ordering
s′.g ← s.g ∪ o ∪ edge(tail(s.locks) → o)

Fig. 5. Dataflow rules for the lock-order data-flow analysis

612 A. Williams, W. Thies, and M.D. Ernst

program point(stmt) returns the program point for statement stmt

visit method(Tr m(T1 v1, . . . , Tn vn) { stmt }) returns State s′

s′ ← empty State
∀ parameters Ti vi (including this):

s′ ← visit stmt(Ti vi, s
′) // process formals via “T v” rule

s′ ← visit stmt(stmt , s′)

rename from callee to caller context(sm, s, n) returns State s′m
s′m ← sm

∀j ∈ [1, n] : formalj ← sm.env[vj] // formal parameter
∀j ∈ [1, n] : actual j ← s.env[vj] // actual argument
∀o ∈ sm.g : // for all objects o locked by the callee

if ∃ j s.t. o = formalj
// o is formal parameter j of callee method
then if actualj ∈ s.locks

// caller locked o, remove o from callee graph
then s′m.g, s′m.roots ← splice out node(sm.g, sm.roots, o)
// caller did not lock o, rename o to actual arg
else s′m.g, s′m.roots ← replace node(sm.g, sm.roots, o, actualj)

// o is not from caller, rename o to bottom program point pp⊥
else s′m.g, s′m.roots ← replace node(sm.g, sm.roots, o, 〈pp⊥, o.T〉)

s′m.wait ← ∅
∀o ∈ sm.wait // for all objects in wait set

if ∃ j s.t. o = formalj
then s′m.wait ← s′m.wait ∪ actualj
else s′m.wait ← s′m.wait ∪ 〈pp⊥, o.T〉

splice out node(g, roots, o) returns Graph g′, Roots roots ′

g′ ← g \ o
∀ edges(src → o) ∈ g s.t. o 	= src :

∀ edges(o → dst) ∈ g s.t. o 	= dst :
g′ ← g′ ∪ edge(src → dst)

roots ′ ← roots \ o
if o ∈ roots then

∀ edges(o → dst) ∈ g s.t. o 	= dst :
roots ′ ← roots ′ ∪ dst

replace node(g, roots, oold , onew) returns Graph g′, Roots roots ′

g′ ← (g \ oold) ∪ onew

∀ edges(src → oold) ∈ g : g′ ← g′ ∪ edge(src → onew)
∀ edges(oold → dst) ∈ g : g′ ← g′ ∪ edge(onew → dst)
if oold ∈ roots

then roots ′ ← (roots \ oold) ∪ onew

else roots ′ ← roots

Fig. 6. Helper functions for the lock-order dataflow analysis

actual j is locked at the call site, in which case the lock acquire is a no-op from
the caller’s perspective) or by replacing them with the caller’s actual arguments
(if actual j is not locked at the call site). The non-formal parameter nodes are

Static Deadlock Detection for Java Libraries 613

g1 ∪ g2 returns Graph g′

// nodes are HeapObjects: equivalent values are collapsed
nodes(g′) = nodes(g1) ∪ nodes(g2)
// edges are pairs of HeapObjects: equivalent pairs are collapsed
edges(g′) = edges(g1) ∪ edges(g2)

g \ o returns Graph g′

nodes(g′) = nodes(g) \ o
edges(g′) = edges(src → dst) ∈ g s.t. o 	= src ∧ o 	= dst

s1 � s2 returns State s′

s′.g ← s1.g ∪ s2.g
s′.roots ← s1.roots ∪ s2.roots
s′.locks ← s1.locks // s1.locks = s2.locks
∀v ∈ {v′ | v′ ∈ s1.env ∨ v′ ∈ s2.env} :

if s1.env[v] = s2.env[v]
then s′.env ← s′.env[v := s1.env(v)]
else s′.env ← s′.env[v := 〈program point(join point(v)), T1 � T2 〉]

s′.wait ← s1.wait ∪ s2.wait

T1 � T2 returns lowest common superclass of T1 and T2

Fig. 7. Union and difference operators for graphs, and join operator for symbolic state

then replaced with nodes of the same type and with a special program point of
pp⊥, indicating that they originated at an unknown program point (bottom).
The callee’s wait set is adjusted in a similar fashion. At this point, an edge is
added from the current lock in the caller to each of the roots of the modified
callee graph. Finally, the two graphs are merged, collapsing identical nodes and
edges.

The join operator (�) in Figure 7 is used to combine states along confluent
paths of the program (e.g., if statements). We are interested in locking patterns
along any possible path, which, for the graphs, roots, and wait sets, is simply the
union of the two incoming states’ values. The list of current locks does not need to
be reconciled between two paths, as the hierarchy of synchronized blocks in Java
guarantees that both incoming states will be the same. The new environment
remains the same for mappings common to both paths. If the mappings differ for
a given variable then a fresh heap object must be introduced for that variable.
The fresh object is assigned a program point corresponding to the join point
for the variable (each variable is considered to join at a separate location). The
strongest type constraint for the fresh object is the join of the variables’ types
along each path—their lowest common superclass.

The algorithm for constructing the entire library’s lock-order graph is given
in Figure 8. The top level procedure first computes a fixed point state value
for each method in the library. Termination is guaranteed since there can be at
most |PP| · |Type| heap objects in a method and the analysis only adds objects
to the graph at a given stage. After computing the fixed points, the procedure
performs a post-processing step to account for subclassing. Because the analysis

614 A. Williams, W. Thies, and M.D. Ernst

top level(library) returns Graph g
s1, . . . , sn ← dataflow fixed points over public methods in library
g ← post process(s1, . . . , sn)

post process(s1, . . . , sn) returns Graph g
g ← empty Graph
∀i ∈ [1, n] :

∀ edges (o1 → o2) ∈ si.g:
// Add edges between all possible subclasses of locked objects.
// All heap objects now have bottom program point pp⊥.
∀ subclasses T1 of o1.T , ∀ subclasses T2 of o2.T :

oT1 ← 〈pp⊥, T1〉
oT2 ← 〈pp⊥, T2〉
g ← g ∪ oT1 ∪ oT2 ∪ edge(oT1 → oT2)

Fig. 8. Top-level routine for constructing a lock-order graph for a library of methods

for each method was based on the declared type of locks, extra edges must be
added for all possible concrete types that a given heap object could assume.
While it is also possible to modify the dataflow analysis to deal with subclassing
at each step, it is simpler and more efficient to use post-processing.

4.2 Calls to wait()

A call to wait() on object o causes the lock on o to be released and subsequently
reacquired, which is modeled by adding an edge in the lock-order graph from
the most recently acquired lock to o. However, this edge can be omitted if o is
also the most recently acquired lock, as releasing and reacquiring this lock has
no effect on the lock ordering. In contrast to synchronized statements, wait()

can influence the lock-order graph even though its receiver is locked at the time
of the call. For example, before the wait() call in Figure 9, a is locked before
b. However, during the call to wait(), a’s lock is released and later acquired
while b’s lock remains held, so a is also locked after b. Deadlock is therefore
possible.

It is illegal to call wait() on an object whose lock is not held; if this happens
during program execution, Java throws a runtime exception. Even so, it is pos-
sible for a method to call wait() outside any synchronized statement, since the
receiver could be locked in the caller. When a method calls wait() outside any
synchronized statement, our analysis needs to consider the calling context to
determine the effects of the wait() call on the lock-order graph. For this reason,
when no locks are held and wait() is called, the receiver object is stored in the
wait set and later accounted for in a caller method.

None of the libraries we analyzed reported any potential deadlocks due to
wait(). This suggests that programmers most often call wait() on the most
recently acquired lock.

Static Deadlock Detection for Java Libraries 615

void m1(Object a, Object b) {
synchronized(a) {

synchronized (b) {
a.wait();
...

}}}

void m2(Object a, Object b) {
synchronized(a) {

a.notify();
synchronized (b) {

...
}}}

Object a = new Object();
Object b = new Object();

thread 1: m1(a, b);
thread 2: m2(a, b);

Fig. 9. Method m1() imposes both lock orderings a→b and b→a, due to the call to
a.wait(). Method m2(), which imposes the lock ordering a→b, can cause deadlock
when run in parallel with m1(), as illustrated in the third column

4.3 Dataflow Example

An example of the dataflow analysis appears in Figure 10. The example contains
a class A with two methods, foo() and bar(). The symbolic state sfoo represents
the method summary for foo(). Program points are represented as a variable
name and a line number corresponding to the variable’s assignment. For example,
〈ppb1:5, B〉 is a symbolic heap object, of type B, for parameter b1 on line 5 of
foo(); 〈pplock:11, B〉 is a symbolic heap object, also of type B, for the field lock

as referenced on line 11 of foo() (though lock is declared on line 2, each field
reference creates a fresh heap object). The lock-order graph for foo() illustrates
that parameters b1 and c1 can each be locked in sequence, with lock locked
separately. Note that the graph contains two separate nodes for b1 and lock—
both of type B—in case one of them can be pruned when integrating into the
graph of a caller.

The symbolic state in bar() immediately before the call to foo() is repre-
sented by sbar1 . Since bar() is a synchronized method, a heap object for this

appears as a root of the graph. The graph illustrates that parameters b2 and c2

can be locked while the lock for this is held. The list of locks held at the point
of the call is given by sbar1 .locks; it contains this and c2.

The most interesting aspect of the example is the method call from bar()

to foo(). This causes the graph of sfoo to be adjusted for the calling context
and then integrated into the graph of sbar1 with edges added from the node for
the current lock, c2. The calling context begins with the actual parameter b2.
Since b2 is not locked in sbar1 at the point of the call, the formal parameter b1

is replaced by b2 throughout the graph of sfoo . However, the actual parameter
c2 is locked in sbar1 , so the corresponding formal parameter c1 is removed from
the graph of sfoo . The last node in foo() corresponds to lock, which is a field
reference rather than a formal parameter; thus, its program point is replaced with
pp⊥ before integrating into bar(). The result, sbar2 , has one new node (pp⊥) and
two new edges (from c2 to both b2 and pp⊥). The other state components in
sbar2 are unchanged from sbar1 .

The last component of Figure 10 gives the overall lock-order graph, treating
foo() and bar() as a library of methods. As there is no subclassing in this
example, the final lock-order graph can be obtained simply by taking the union
of graphs from sfoo and sbar2 , setting all program points to pp⊥. The cycle in
the lock-order graph corresponds to a real deadlock possibility in which foo()

and bar() are called concurrently with the same arguments.

616 A. Williams, W. Thies, and M.D. Ernst

class A {

 B lock;

 public

 void foo(B b1, C c1) {

 synchronized (b1) {

 synchronized (c1) {

 ...

 }

 }

 synchronized (lock) {

 ...

 }

 }

 public

 synchronized void bar(B b2,

 C c2) {

 synchronized (b2) {

 ...

 }

 synchronized (c2) {

 foo(b2, c2);

 }

 }

}

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

sfoo

sbar1

sbar2

g = ppb1:5, B< <
ppc1:5, C< <pplock:11, B< <

roots = {〈ppb1:5, B〉,
〈pplock:11, B〉}

locks = {}
env = {this �→ 〈ppthis:5, A〉, b1 �→ 〈ppb1:5, B〉,

c1 �→ 〈ppc1:5, C〉}

g = ppthis:16, A< <
ppb2:16, B< < ppc2:16, C< <

roots = {〈ppthis:16, A〉}
locks = {〈ppthis:16, A〉,

〈ppc2:16, C〉}
env = {this �→ 〈ppthis:16, A〉, b2 �→ 〈ppb2:16, B〉,

c2 �→ 〈ppc2:16, C〉}

pp , B< < pp , C< <

pp , A< <

Overall lock-order graph
for foo and bar.

g = ppthis:16, A< <
ppb2:16, B< << ppc2:16, C <

pp , B< <

roots = sbar1 .roots

locks = sbar1 .locks

env = sbar1 .env

Fig. 10. Example operation of the dataflow analysis. The symbolic state is shown for
the method summary of foo, as well as for two points in bar (before and after a call
to foo). The wait sets (not shown) are empty in each case. The top-level lock-order
graph for this library of methods is shown at bottom left

4.4 Reporting Possible Deadlock

To report deadlock possibilities, the analysis finds each cycle in the lock-order
graph, using a modified depth-first search algorithm. Once a cycle is found, a
report is constructed using its edge annotations. Each edge in the lock-order
graph has a pair of annotations, one for the source lock and one for the des-
tination lock. Each annotation consists of the variable name of the lock and
the method that acquires it. As graphs are combined, edges may come to have
multiple annotations.

A report is given for each distinct set of lock variables. These reports include
each of the sets of methods that acquire that set of locks. In this way, methods
with the same or similar locking behavior are presented to the user together. In
our experience with the tool, most of the grouped method sets constitute the
same locking pattern, so this style can save significant user effort.

Static Deadlock Detection for Java Libraries 617

C

EB

DA

Fig. 11. The path {C, A, B, C, D, E} is a non-simple cycle: it visits node C twice

public void println(String s)
{

synchronized (this) {
print(s);
newLine();

}
}

public void print(String s) {
if (s == null) {

s = "null";
}
write(s);

}

private void write(String s) {
try {

synchronized (this) {
...

}
}
...

}

Fig. 12. Code excerpt from Sun’s java.io.PrintStream class. Due to the repeated
synchronization on this, an intraprocedural analysis reports a spurious deadlock pos-
sibility while an interprocedural analysis does not

The analysis reports every simple cycle (also known as an elementary circuit)
in a given graph. A cycle is simple if it does not visit any node more than
once. Given a node that is involved in more than one simple cycle, one can
construct a non-simple cycle by traversing each cycle in sequence (see Figure 11).
It is possible to construct cases where a non-simple cycle causes deadlock even
though the component cycles do not [26]. However, as we have never observed
such a case in practice, the analysis reports only the simple cycles as a way of
compressing the results. For completeness, the user should consider these cycles
in combination.

4.5 Intraprocedural Weaknesses

Our analysis is interprocedural, because our experience is that an intraprocedural
analysis produces too many false reports. For example, Figure 12 illustrates part
of Sun’s java.io.PrintStream class, in which both println() and write() attempt
to lock this. An intraprocedural analysis cannot prove that the same object is
locked in both methods. Thus, it reports a deadlock possibility corresponding to
the case when two concurrent calls to println() result in different locking orders
on a pair of PrintStream objects. However, because the objects locked are always
equivalent, the second synchronization does not affect the set of locks held. This
spurious report is omitted by our interprocedural analysis.

5 Reducing False Positives

Like many static analyses, our tool reports false positives. A false positive is a re-
port that cannot possibly lead to deadlock, because (for example) it requires an

618 A. Williams, W. Thies, and M.D. Ernst

infeasible aliasing relationship or an infeasible set of paths through the program.
False positives reduce the usability of the tool because verifying that the re-
port is spurious can be tedious. We have implemented sound optimizations that
reduce the number of false reports without eliminating any true reports. This
section describes some of the optimizations; two additional implemented opti-
mizations handle synchronization over an object and one of its internal fields,
and synchronization over method call return values [26].

5.1 Unaliased Fields

An unaliased field is one that always points to an object that is not pointed to by
another variable in the program. As an optimization, our analysis detects these
fields, and assigns a unique type to each of them. This can decrease the number of
deadlock reports by disambiguating unaliased field references from other nodes
in the lock-order graph. (It is necessary to create a node for these fields, rather
than discarding information about synchronization over them. Although they
have no aliases, they may still be involved in deadlock.)

The following analysis is used to discover unaliased fields. Initially, all non-
public fields are assumed to be unaliased. As the analysis visits each statement
in the library, that assumption is nullified for a field f if any of the following
patterns apply:

1. f is assigned a non-null, non-newly-allocated expression.
2. f appears on the right-hand side of an assignment expression.
3. f appears outside any of the following expressions: a synchronized statement

target, a comparison expression (e.g., foo == bar), an array access or array
length expression, or as an argument to a method that does not allow it to
escape.

A simple iterative escape analysis determines which arguments escape a
method. Calls from the library to its methods as well as calls to the JDK are
checked; arguments are assumed to escape methods where no source is available.

The analysis presented in Section 4.1 introduces a new symbolic heap object
for every reference to a field. This is necessary because the analysis does not
model the possible values of fields. Unaliased fields are restricted in the possible
values they may hold. In particular, they are always assigned new objects, and,
if they are reassigned, their old objects cannot be accessed. Because of this
property, nested synchronization over the same field of a given object can be
treated as a no-op (thereby eliminating spurious reports), since only one of the
values locked is accessible. That is, one of the two synchronized statements is
on a lock that no longer exists and should therefore be ignored. The analysis
uses the same heap object for all references to the same unaliased field within
a given object, thereby regarding nested synchronizations as no-ops as desired.
This heap object propagates across call sites rather than being mapped to pp⊥.

In addition to detecting unaliased fields, our analysis stores the set of possible
runtime types of these fields. This information is readily available for unaliased
fields, as they are only assigned fresh objects (created with the new keyword).

Static Deadlock Detection for Java Libraries 619

With this information, the analysis can determine a more precise set of possible
callee methods when an unaliased field is used as a receiver.

Detecting and utilizing unaliased fields can be very beneficial. For example,
this optimization reduces the number of reports from over 909 to only 1 for the
jcurzez library, and from 66 to 0 for the httpunit library.

5.2 Callee/Caller Type Resolution

Accurate knowledge about dynamic types prevents locks on one object from
being conservatively assumed to apply to other objects. In general, the dynamic
types of arguments are a subclass of the declared parameter types; likewise, the
dynamic type of the receiver is a subclass of its declared type in the caller.
Callee/caller type resolution collects extra type information by leveraging the
fact that the declared types of objects in callees and callers sometimes differ.

To understand the benefits of type resolution, consider the following:
Object o;

o.hashCode();

When analyzing a particular implementation of hashCode(), say, in class Date,
the receiver is known to be of type Date, not Object as it was declared in the
above code. The callee/caller type resolution optimization takes advantage of
this information when integrating the lock-order graph for a callee such as
Date.hashCode() into that of the caller. Instead of using the callee or caller type
exclusively, the more specific type is used. This results in more precise type in-
formation in the overall lock-order graph, thereby decreasing the size of the alias
sets. Type resolution can have a large impact on spurious reports: reports for
the croftsoft library decrease from 1837 to 2, and reports for the jasperreports
library decrease from 28 to 0.

5.3 Final and Effectively-Final Fields

For final fields, all references are to the same object. Our analysis takes ad-
vantage of this fact by using the same heap object for each of the references to
the same final field within a given object. The analysis also detects fields that
are effectively-final: non-public fields that are not assigned a value (except null)
outside their constructor. Exploiting final fields reduces the number of reports
from 46 to 32 for the Classpath library.

6 Results

We implemented our deadlock detector in the Kopi Java compiler [9], which
inputs Java source code. Our benchmarks consist of 18 libraries, most of which
we obtained from SourceForge and Savannah2. The results appear in Figure 13.

2 ProActive [16], Jess [12], SDSU [20], and Sun’s JDK [23] are not from SourceForge
or Savannah, but are freely available online.

620 A. Williams, W. Thies, and M.D. Ernst

Code size Graph size
Library sync Classes kLOC Nodes Edges Reports Deadlocks

JDK 1.4 1458 1180 419 65 278 70 ∗ ≥7
Classpath 0.15 754 1074 295 15 22 32 ∗ ≥5
ProActive 1.0.3 199 407 63 3 3 3 ∗ ≥2
Jess 6.1p6 111 125 27 12 30 23 ∗ ≥0
sdsu (1 Oct 2002) 69 139 26 2 2 3 ∗ ≥0
jcurzez (12 Dec 2001) 24 27 4 1 1 1 0
httpunit 1.5.4 17 117 23 0 0 0 0
jasperreports 0.5.2 11 271 67 0 0 0 0
croftsoft (09 Nov 2003) 11 108 14 1 1 2 0
dom4j 1.4 6 155 41 1 1 1 0
cewolf 0.9.8 6 98 7 0 0 0 0
jfreechart 0.9.17 5 396 125 0 0 0 0
htmlparser 1.4 5 111 22 1 1 0 0
jpcap 0.01.15 4 58 8 0 0 0 0
treemap 2.5.1 4 47 7 0 0 0 0
PDFBox 0.6.5 2 127 28 0 0 0 0
UJAC 0.9.9 1 255 63 0 0 0 0
JOscarLib 0.3beta1 1 77 6 0 0 0 0

∗ Unsound filtering heuristics used (see Section 6.3)

Fig. 13. Number of deadlock reports for each library. The table indicates the size of
each library in terms of number of synchronized statements (given in the column
labeled sync), number of classes (source files), and number of lines of code (in thou-
sands). The size of the lock-order graph is measured after pruning nodes and edges
that are not part of a strongly connected component. “Deadlocks” shows the numbers
of confirmed deadlock cases in each library. The JDK and Classpath results are for
packages in java.*. We were unable to compile 6 source files in JDK due to bugs in our
research compiler

The analysis ran in less than 3 minutes per library on a 3.60GHz Pentium 4
machine. For the larger libraries, it is prohibitively expensive to compute all
possible deadlock reports, so we implemented a set of unsound heuristics to
filter them (see Section 6.3).

6.1 Deadlocks Found

We invoked 14 deadlocks in 3 libraries; 12 of these deadlocks were previously
unknown to us. We verified each instance by writing client code that causes
deadlock in the library. There are at least 7 deadlocks in the JDK, 5 in GNU
Classpath, and 2 in ProActive.

As described in Section 4.4, our analysis groups reports based on the lock vari-
ables involved. Some of the deadlocks described below can be induced through
calls to any of a number of different methods with the same locking pattern; we

Static Deadlock Detection for Java Libraries 621

Deadlocks Due to Cyclic Data Structures. Of the 14 deadlocks we found, 7
are the result of cycles in the underlying data structures. As an example, consider
java.util.Hashtable. This class can be deadlocked by creating two Hashtable

objects and adding each as an element of the other, i.e., by forming a cyclic re-
lationship between the instances. In this circumstance, calling the synchronized
equals() method on both objects in different threads can yield deadlock. The
equals() method locks its receiver and calls equals() on its members, thus lock-
ing any of its internal Hashtable objects. When run in two threads, each of the
calls to equals() has a different lock ordering, so deadlock can result.

Although this example may seem degenerate, the JDK Hashtable implemen-
tation attempts to support this cyclic structure: the hashCode() method prevents
a potential infinite loop in such cases by preventing recursive calls from execut-
ing the hash value computation. A comment within hashCode() says, “This code
detects the recursion caused by computing the hash code of a self-referential
hash table and prevents the stack overflow that would otherwise result.”

In addition to Hashtable, all synchronized Collections and combinations of
such Collections (e.g., a Vector in a cyclic relationship with a Hashtable) can be
deadlocked in a similar fashion. This includes Collections produced via calls to
Collections.synchronizedCollection(), Collections.synchronizedList(), Col-

lections.synchronizedSortedMap(), etc. For the purposes of reporting, all these
cases are counted as a single deadlock in both the JDK and Classpath.

Deadlock resulting from cyclic data structures is quite difficult to correct.
Locks must be acquired in a consistent order, or they must be acquired simul-
taneously. To do either of these things requires knowing which objects will be
locked by calling a given method. Determining this information without first
locking the container object is problematic since its internals may change during
inspection. It appears that the only solution is to use a global lock for synchro-
nizing instances of all Collection classes. This solution is undesirable, however,
because it prevents multi-threaded uses of different Collection objects. Library
writers may instead choose to leave these deadlock cases in place, but document
their existence and describe how to appropriately use the class.

Not only do these cyclic data structures lead to deadlock, but they may also
result in a stack overflow due to infinite recursion. A number of the classes having
this kind of deadlock also have methods that produce unbounded recursion for
the case of cyclic data structures. It seems that these deadlock cases reveal
intended structural invariants (i.e., that a parent object is not reachable through
its children) about the classes they involve.

The remaining 5 cyclic deadlocks are similar to that described above. Dead-
lock can be induced in java.awt.EventQueue from both JDK and Classpath, in
java.awt.Menu from JDK, in java.util.logging.Logger from Classpath, and in
AbstractDataObject from Proactive. Each class has a method that allows a cyclic
relationship to be formed, and another method (or set of methods) that locks
the containing object and the internal one.

only describe a single case, and report the number of deadlocks in this conser-
vative fashion.

622 A. Williams, W. Thies, and M.D. Ernst

Other Deadlock Cases. In addition to the cyclic case described above, ProAc-
tive exhibits a subtle deadlock in the ProxyForGroup class. Through a sequence of
calls, the asynchronousCallOnGroup() method of ProxyForGroup can be made to
lock both this and any other ProxyForGroup. Instantiating two or more ProxyFor-

Group objects and forcing each to lock the other induces deadlock. The state
necessary to produce this scenario is relatively complex. The offending method
contains, within four nested levels of control flow, a method call that returns an
Object; under certain circumstances, the object returned is a ProxyForGroup, as
needed to produce deadlock. We would not expect a library writer to notice this
deadlock possibility without using a tool like ours.

We invoked 4 additional deadlocks in the JDK. One deadlock is in Bean-

ContextSupport as described in Section 1. A second deadlock is in StringBuffer.

append(StringBuffer), as illustrated in Figure 14. This deadlock occurs because
append() is a synchronized method (i.e., it locks this), and it locks its argument.
Thus, using the client code in Figure 14, if a is locked in thread 1, and b is locked
in thread 2 before it is in thread 1, deadlock results. Note that this is an example
of a case where only a single method is used to cause deadlock.

class StringBuffer {
synchronized StringBuffer

append(StringBuffer sb) {
...
// length() is synchronized
int len = sb.length();
...

}
}

(StringBuffer.append(StringBuffer)
locks StringBuffer.this,
StringBuffer.length()
locks Parameter[sb])

StringBuffer

StringBuffer a =
new StringBuffer();

StringBuffer b =
new StringBuffer();

thread 1: a.append(b);
thread 2: b.append(a);

Fig. 14. Library code, lock-order graph, and client code that deadlocks JDK’s
StringBuffer class. This deadlock is also present in Classpath

Another deadlock from the JDK occurs in java.io.PrintWriter and java.io.

CharArrayWriter. Simplified code for this deadlock is shown in Figure 15. The
PrintWriter and CharArrayWriter classes both contain a lock field for synchro-
nizing I/O operations. In PrintWriter, the lock is set to the output stream out,
while in CharArrayWriter, the lock is set to this.

The last deadlock in the JDK is located in java.awt.dnd.DropTarget. This
class can be deadlocked by calling setComponent() with an argument (of type
Component) having a valid DropTarget set. When this call is made, the receiver is
locked followed by the argument’s DropTarget. Thus, the code in Figure 16 can
lead to deadlock.

GNU Classpath exhibits 2 deadlocks besides those described so far. The first
is in StringBuffer, and is analogous to the JDK bug described above. The second
is in java.util.SimpleTimeZone. The SimpleTimeZone.equals(Object) method is
synchronized and locks its argument; it is therefore susceptible to the same style
of deadlock as that of StringBuffer.append().

Static Deadlock Detection for Java Libraries 623

DropTarget a = new DropTarget(), b = new DropTarget();
Component aComp = new Button(), bComp = new Button();

aComp.setDropTarget(a);
bComp.setDropTarget(b);

thread 1: a.setComponent(bComp);
thread 2: b.setComponent(aComp);

Fig. 16. Client code that induces deadlock in the JDK’s DropTarget class

It is interesting to note that JDK and Classpath implementations of Simple-

TimeZone and Logger differ in their locking behavior: it is not possible to invoke
deadlock in these classes using the JDK. Similarly, the Classpath implementa-
tions of PrintWriter and CharArrayWriter do not deadlock; other relevant por-
tions of Classpath are not fully implemented.

Fixing Deadlocks. There are a number of viable solutions to the deadlocks
presented above. The methods performing synchronization could be written to
acquire the needed locks in a set order. Java could be extended with a syn-
chronization primitive to atomically acquire multiple locks. A utility routine
could be written to accomplish the same effect as this primitive, taking as ar-
guments a list of locks to acquire and a thunk to execute, then acquiring the
locks in a fixed order. These solutions require knowledge of the set of locks to
be acquired. Sometimes this is immediately apparent from the code; otherwise,
a method that determines the locks required for an operation could be added
to an interface. In all these cases, the implementation could order the locks us-
ing System.identityHashCode(), breaking ties arbitrarily but consistently. Note
however, that these solutions assume that the needed locks will not change while
they are being determined. If they might change, it may be necessary to use a
global lock for the classes involved in the deadlock.

class PrintWriter {
PrintWriter(OutputStream o) {

lock = o;
out = o;

}

void write(char buf[],
int off, int len) {

synchronized (lock) {
out.write(buf, off, len);

}
}

}

class CharArrayWriter {
CharArrayWriter() {

lock = this;
}

void writeTo(Writer out) {
synchronized (lock) {

out.write(buf, 0,
count);

}
}

}

// c.lock = c
c = new CharArrayWriter();
// p1.lock = c
p1 = new PrintWriter(c);
// p2.lock = p1
p2 = new PrintWriter(p1);

thread 1: p2.write("x",0,1);
thread 2: c.writeTo(p2);

Fig. 15. Simplified library code from PrintWriter and CharArrayWriter from Sun’s
JDK, and, on the right, client code that causes deadlock in the methods. In thread
1, p1 is locked first, then c; in thread 2, c is locked, then p1. Because the locks are
acquired in different orders, deadlock occurs under some thread interleavings

624 A. Williams, W. Thies, and M.D. Ernst

6.2 Verifying Deadlock Freedom

Using our tool, we verified 13 libraries to be free from the class of deadlocks
described in Section 3.2. Note that these libraries may perform callbacks to
client code, some extend the JDK, and most perform reflection; our technique
does not model synchronization resulting from these behaviors. For 10 of these
libraries, the verification is fully automatic, with 0 reports from our tool. Across
the other 3 libraries, our tool reports a total of 4 deadlocks, which we manually
verified to be false positives.

The false report in jcurzez is for a scenario in which an internal field f of
the same type as its containing class is set to a parameter of the constructor.
To eliminate this report, the analysis would have to combine several facts and
additional optimizations. Croftsoft gives two spurious reports because an object
involved in the synchronization cannot have the runtime type that our tool con-
servatively assumes to be possible. The final report is for dom4j, and is spurious
because of infeasible control flow.

6.3 Unsound Filtering Heuristics

For the larger libraries, the number of reports given by our algorithm is too high
(more than 100,000 for the JDK) for each to be considered by hand. In addition,
it is computationally demanding to report every deadlock possibility. In order to
make the tool more usable for large libraries (both in terms of number of reports
and time needed to gather them) our tool uses unsound filtering heuristics. These
heuristics aim to identify reports that have the greatest likelihood of representing
a true deadlock. However, as unsound heuristics, they also have the potential to
eliminate true deadlock cases from consideration.

Our tool applies two filtering heuristics on certain of the libraries in Figure 13.
One heuristic is to restrict attention to cycles in the lock-order graph that are
shorter than a given length. For the filtered libraries, only cycles with two or
fewer nodes were reported. Shorter cycles contain fewer locks, and are easier to
examine manually. In addition, shorter cycles might be more likely to correspond
to actual deadlocks, as each edge in a cycle represents a pair of lock acquisitions
that has some chance of being infeasible (due to infeasible control flow or aliasing
relationships).

The second filtering heuristic is to assume that the runtime type of each object
is the same as its declared type. This reduces the number of reports in two ways.
First, the analysis ceases to account for dynamic dispatch, as it assumes that
there is exactly one target of each method call. This causes the lock-order graph
for a given method to be integrated at fewer call-sites, thereby decreasing the
number of edges in the overall graph. Second, this heuristic causes the top level
routine (Figure 8) to forgo expansion of each edge into edges between all possible
subclasses. This heuristic has some intuitive merit because it restricts attention
to code that operates on a specific type, rather than a more general type. For
example, it considers the effects of all synchronized methods of a given class,
but it eliminates the assumption that all objects could be aliased with a field of
type Object that may be locked elsewhere.

Static Deadlock Detection for Java Libraries 625

7 Related Work

The long-standing goal of ensuring that concurrent programs are free of deadlock
remains an active research focus. Mukesh reviews the various approaches [22].

Several researchers have developed static deadlock detection tools for Java
using lock-order graphs [17, 1, 24]. To the best of our knowledge, the Jlint static
checker [17] is the first to use a lock-order graph. The original implementation of
Jlint considers only synchronized methods; it does not model synchronized state-
ments. Artho and Biere [1] augment Jlint with limited support for synchronized

statements. However, their analysis does not report all deadlock possibilities. It
only considers cases they reason are most fruitful for finding bugs: 1) all fields and
local variables are assumed to be unaliased, meaning that two threads must lock
exactly the same variable to elicit a deadlock report, 2) nested synchronized

blocks are tracked only within a single class, not across methods in different
classes, and 3) inheritance is not fully considered.

von Praun detects deadlock possibilities in Java programs using a lock-order
graph and context-sensitive lock sets [24–pp.105–110]. Our analysis was devel-
oped independently [25]. While von Praun’s alias analysis is more sophisticated
than ours, it is unclear how to adapt it to model all possible calls to a library.
Also, in an effort to reduce false positives, the analysis suppresses reports in
which all locks belong to the same alias set; as a consequence, it does not find
12 of the 14 deadlocks exposed by our tool. While von Praun’s analysis could be
trivially modified to report such cases, it would then report, in addition, all of
the benign cases that repeatedly lock a single object (as in Figure 12). Suppress-
ing these reports is the motivation for the flow-sensitive and interprocedural
aspects of our analysis: our analysis can recognize that two object references
are identical, thereby qualifying repeated synchronizations on a given object as
benign. von Praun’s analysis does not offer this benefit, in part because it is
flow-insensitive and unification-based. Also, it does not consider that wait() can
introduce a cyclic locking pattern (as in Figure 9). Our tool reports all deadlock
possibilities.

RacerX [10] is a flow-sensitive, context-sensitive tool for detecting deadlocks
and race conditions in C systems code. Because our tool analyzes Java instead
of C, it operates under a different set of constraints. We fully account for objects
and inheritance, reporting all deadlock possibilities; RacerX operates on a pro-
cedural language, and might fail to report every deadlock case due to function
pointers and high-overhead functions. Our tool analyzes unmodified Java code,
while RacerX requires annotations to indicate the locking behavior of system-
specific C functions. Our tool exploits the hierarchical synchronization primitives
in Java; in C, precision is sacrificed due to the decoupling of lock and unlock
operations (sometimes on different paths of the same function, as noted by the
authors).

Several groups have taken a model-checking approach to finding deadlock in
Java programs. Demartini, Iosif, and Sisto [8] translate Java into the Promela
language, for which the SPIN model checker verifies deadlock freedom. Their

626 A. Williams, W. Thies, and M.D. Ernst

verification reports all deadlock possibilities so long as the program does not
exceed the maximum number of modeled objects or threads.

Java Pathfinder also performs model checking by translating Java to Promela,
including support for exceptions and polymorphism [13]. It has also been used
to analyze execution traces; a deadlock vulnerability is reported if two threads
obtain locks in a different order at runtime [14]. This approach can detect “gate
locks”: a shared lock that guards each thread’s entry into a hazardous out-of-
order locking sequence, thereby preventing deadlock. The technique has evolved
into a general online monitoring environment called Java PathExplorer [15].

Breuer and Valls describe static detection of deadlock in the Linux kernel [3].
They target deadlocks caused by threads that call sleep while still holding a
spinlock. Chaki et al. [4] use counterexample-guided abstraction refinement and
the MAGIC verification tool [5] to detect deadlock in message-passing C pro-
grams. The technique is compositional and efficient (compared to traditional
model checking) because the abstraction for each thread can be refined inde-
pendently until the overall system exhibits a bug or is proven free of deadlock.
However, the number of threads and locks (and their interaction) must be known
statically.

The Ada programming language allows rendezvous communication between
a call statement in one task and an accept statement in another. Most anal-
yses for Ada aim to verify that rendezvous communication succeeds, rather
than considering the order of synchronization on shared resources (locks). For
example, Masticola and Ryder [19] give a polynomial-time algorithm for re-
porting all possible rendezvous deadlocks for a subset of Ada (they also report
false positives). Corbett [7] evaluates three methods for finding deadlock in Ada
programs. Many analyses rely on the common case where Ada tasks are fixed
and initiated together, in contrast to Java threads which are always created
dynamically.

Boyapati, Lee, and Rinard [2] augment Java with ownership types to ensure
deadlock freedom at compile time. While this is an elegant solution, it requires
translating existing programs to use new type annotations, and some computa-
tions might be hard to express. Flanagan and Qadeer describe a type and effect
system for atomicity [11]. In this system, a method is atomic if it appears to
execute serially, without interleaving of other threads. They identify an atom-
icity violation in StringBuffer.append, providing part of the impetus for our
work.

Zeng and Martin augment a Java Virtual Machine with a deadlock avoid-
ance mechanism [28]. This technique constructs a lock-order graph dynamically,
tracking the actual objects that are locked during execution. As cycles form in
the graph, “ghost locks” are introduced to prevent multiple threads from enter-
ing the cyclic regions. While this avoids deadlock later in the execution, deadlock
could still occur while the graph is being built.

Zeng describes a system that uses exceptions to indicate various kinds of
deadlock in a Java Virtual Machine [27]. Such a mechanism allows a client to in-

Static Deadlock Detection for Java Libraries 627

system mechanism that detects general deadlocks via speculative execution of
blocked processes. There is also a large body of work on dynamically detecting
deadlock in the context of databases and distributed systems [21, 22].

8 Conclusions

Library writers wish to ensure their libraries are free of deadlock. Because this
assurance is difficult to obtain by testing or by hand, a tool for identifying possi-
ble deadlock (or verifying freedom from deadlock) is desirable. Model checking is
a possible approach to the problem, but the well-known state explosion problem
makes it impractical for most libraries.

We have presented a flow-sensitive, context-sensitive analysis for static de-
tection of deadlock in Java libraries. Out of 18 libraries, we verified 13 to be
free of deadlock, and found 14 reproducible deadlocks in 3 libraries. The anal-
ysis uses lock-order graphs to represent locking configurations extracted from
libraries. Nodes in these graphs represent alias sets, edges represent possible
lock orderings, and cycles indicate possible deadlocks.

Our analysis is quite effective at verifying deadlock freedom and finding dead-
lock, but it still produces a sizable number of false reports. Rather than asking
the user to investigate these reports, the reports could be dispatched to a model
checker which could automatically check for deadlock. In this framework, our
tool would serve to limit the search space of the model checker, possibly allow-
ing sound verification of large libraries.

Just as static verification of all possible program executions offers stronger
guarantees than dynamic analysis of one or a few executions, verification that a
library cannot deadlock is preferable to checking that a particular client program
does not deadlock while using the library. To our knowledge, our tool is the
first to address the problem of deadlock detection in libraries. However, the
technique is also applicable to whole programs, and may prove to be effective in
that context.

Acknowledgments

We thank Viktor Kuncak, Manu Sridharan, Huu Hai Nguyen, Wilson Hsieh, and
Stephen McCamant for their feedback and suggestions on this work, and Mar-
tin Lackner for support with Kopi. The second author thanks Saman Amaras-
inghe for supporting his participation in this project. We also thank the anony-
mous reviewers for their comments. This work is supported in part by NSF
grant CCR-0133580, the MIT-Oxygen Project, and an NSF Graduate Research
Fellowship.

telligently respond to deadlock in a library component. Pulse [18] is an operating

628 A. Williams, W. Thies, and M.D. Ernst

References

1. Artho, C., Biere, A.: Applying static analysis to large-scale, multi-threaded Java
programs. In: ASWEC. (2001) 68–75

2. Boyapati, C., Lee, R., Rinard, M.: Ownership types for safe programming: pre-
venting data races and deadlocks. In: OOPSLA. (2002) 211–230

3. Breuer, P.T., Garcia-Valls, M.: Static deadlock detection in the Linux kernel. In:
Ada-Europe. (2004) 52–64

4. Chaki, S., Clarke, E., Ouaknine, J., Sharygina, N.: Automated, compositional and
iterative deadlock detection. In: MEMOCODE. (2004)

5. Chaki, S., Clarke, E.M., Groce, A., Jha, S., Veith, H.: Modular verification of
software components in C. IEEE TSE 30 (2004) 388–402

6. Chase, D.R., Wegman, M., Zadeck, F.K.: Analysis of pointers and structures. In:
PLDI. (1990)

7. Corbett, J.C.: Evaluating deadlock detection methods for concurrent software.
IEEE TSE 22 (1996) 161–180

8. Demartini, C., Iosif, R., Sisto, R.: A deadlock detection tool for concurrent Java
programs. Software: Practice and Experience 29 (1999) 577–603

9. DMS Decision Management Systems GmbH: The Kopi Project (2004) http://

www.dms.at/kopi/.
10. Engler, D., Ashcraft, K.: RacerX: Effective, static detection of race conditions and

deadlocks. In: SOSP. (2003) 237–252
11. Flanagan, C., Qadeer, S.: A type and effect system for atomicity. In: POPL. (2003)

338–349
12. Friedman-Hill, E.: Jess, the Java expert system shell (2004) http://herzberg.ca.

sandia.gov/jess/.
13. Havelund, K., Pressburger, T.: Model checking Java programs using Java

PathFinder. STTT 2 (2000) 366–381
14. Havelund, K.: Using runtime analysis to guide model checking of Java programs.

In: SPIN. (2000) 245–264
15. Havelund, K., Roşu, G.: Monitoring Java programs with Java PathExplorer. In:

RV. (2001)
16. INRIA: Proactive (2004) http://www-sop.inria.fr/oasis/ProActive/.
17. Knizhnik, K., Artho, C.: Jlint (2005) http://jlint.sourceforge.net/.
18. Li, T., Ellis, C.S., Lebeck, A.R., Sorin, D.J.: Pulse: A dynamic deadlock detection

mechanism using speculative execution. In: USENIX Technical Conference. (2005)
31–44

19. Masticola, S.P., Ryder, B.G.: A model of Ada programs for static deadlock detec-
tion in polynomial time. Workshop on Parallel and Distributed Debugging (1991)

20. San Diego State University: SDSU Java library (2004) http://www.eli.sdsu.edu/
java-SDSU/.

21. Shih, C.S., Stankovic, J.A.: Survey of deadlock detection in distributed concurrent
programming environments and its application to real-time systems. Technical
report, UMass UM-CS-1990-069 (1990)

22. Singhal, M.: Deadlock detection in distributed systems. IEEE Computer 22 (1989)
37–48

23. Sun Microsystems, Inc.: Java Development Kit (2004) http://java.sun.com/.
24. von Praun, C.: Detecting Synchronization Defects in Multi-Threaded Object-

Oriented Programs. PhD thesis, Swiss Federal Institute of Technology, Zurich
(2004)

Static Deadlock Detection for Java Libraries 629

25. Williams, A., Thies, W., Ernst, M.D.: Static deadlock detection in Java libraries.
Research Abstract #102, MIT Computer Science and Artificial Intelligence Labo-
ratory (February, 2004)

26. Williams, A.L.: Static detection of deadlock for Java libraries. Master’s thesis,
MIT Dept. of EECS (2005)

27. Zeng, F.: Deadlock resolution via exceptions for dependable Java applications. In:
DSN. (2003) 731–740

28. Zeng, F., Martin, R.P.: Ghost locks: Deadlock prevention for Java. In: MASPLAS.
(2004)

	Introduction
	LocksinJava
	Analysis Synopsis
	Lock-Order Graph
	Deadlocks Detected by Our Technique

	Algorithm Details
	Dataflow Rules
	Calls to wait()
	Dataflow Example
	Reporting Possible Deadlock
	Intraprocedural Weaknesses

	Reducing False Positives
	Unaliased Fields
	Callee/Caller Type Resolution
	Final and Effectively-Final Fields

	Results
	Deadlocks Found
	Verifying Deadlock Freedom
	Unsound Filtering Heuristics

	Related Work
	Conclusions
	References

