

Lecture Notes in Computer Science 3586
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Andrew P. Black (Ed.)

ECOOP 2005 –
Object-Oriented
Programming

19th European Conference
Glasgow, UK, July 25-29, 2005
Proceedings

13

Volume Editor

Andrew P. Black
Portland State University
Maseeh College of Engineering and Computer Science
Department of Computer Science
Portland OR 97207, USA
E-mail: black@cs.pdx.edu

Library of Congress Control Number: 2005929057

CR Subject Classification (1998): D.1, D.2, D.3, F.3, C.2, K.4, J.1

ISSN 0302-9743
ISBN-10 3-540-27992-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-27992-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11531142 06/3142 5 4 3 2 1 0

Andrew P. Black (Ed.)

ECOOP 2005 -
Object-Oriented
Programming
19th European Conference
Glasgow, Scotland, UK, July 2005
Proceedings

Volume Editor

Andrew P. Black
Department of Computer Science
Maseeh College of Engineering and Computer Science
Portland State University
Portland OR 97207, USA
E-mail: black@cs.pdx.edu

Preface

The 19th Annual Meeting of the European Conference on Object-Oriented
Programming—ECOOP 2005—took place during the last week of July in
Glasgow, Scotland, UK. This volume includes the refereed technical papers pre-
sented at the conference, and two invited papers. It is traditional to preface a
volume of proceedings such as this with a note that emphasizes the importance
of the conference in its respective field. Although such self-evaluations should
always be taken with a large grain of salt, ECOOP is undisputedly the preem-
inent conference on object-orientation outside of the United States. In its turn,
object-orientation is today’s principal technology not only for programming, but
also for design, analysis and specification of software systems. As a consequence,
ECOOP has expanded far beyond its roots in programming to encompass all of
these areas of research—which is why ECOOP has remained such an interesting
conference.

But ECOOP is more than an interesting conference. It is the nucleus of a
technical and academic community, a community whose goals are the creation
and dissemination of new knowledge. Chance meetings at ECOOP have helped
to spawn collaborations that span the boundaries of our many subdisciplines,
bring together researchers and practitioners, cross cultures, and reach from one
side of the world to the other. The ubiquity of fast electronic communication
has made maintaining these collaborations easier than we would have believed
possible only a dozen years ago. But the role of conferences like ECOOP in
establishing collaborations has not diminished. Indeed, as governments make it
harder to travel and emphasize the divisions between nations, it becomes ever
more important that we strengthen our personal and professional networks and
build bonds between individuals, institutions, and countries.

As we have moved into the electronic age, we have realized that it is not so
much a shared locality or a shared language that defines a community, but a
shared set of values. As a scientific community, we value evidence-based inquiry.
We value truth, and demand a high standard of evidence in ourselves and in our
colleagues as we search for it. We value integrity, because without integrity we
cannot build upon the results of our colleagues, and the scientific process will
grind to a halt. We value technology, because technology gives us new tools in the
search for truth. We value clear communication, because without communication
new knowledge cannot be evaluated by our colleagues, or influence the way
that others think. We value the slow social process by which one individual’s
discoveries become accepted knowledge, because we recognize that this process
is the best way yet found to minimize subjectivity.

ECOOP’s refereed technical program consisted of 24 papers that were se-
lected by the Program Committee from 172 submissions. Every paper was read
by at least three members of the Program Committee; some papers, which

VI Preface

appeared controversial, were read by four or five PC members. In addition,
the committee sought the opinions of 147 co-reviewers, selected because of their
expertise on particular topics. As is usual, the selection took place at a two-
day meeting. However, because of the difficulty that many of the European PC
members would have experienced in traveling to my home institution in the
United States, the meeting was held in Bern, Switzerland. I am very grateful
to Prof. Oscar Nierstrasz, a founding member of AITO and Programme Chair
for ECOOP ’93, for offering the use of his facilities at the SCG in Bern, and to
Oscar, Therese Schmid and the students of the SCG who went to extraordinary
lengths to help me with the local arrangements.

For many of us, the invited talks, tutorials and workshops at ECOOP are at
least as important as the talks based on refereed papers. This year, we featured
two invited technical talks, described more fully on page VII, in addition to
the banquet address, which was given by Dr. Gilad Bracha. The schedule for
the week included 19 workshops and 16 tutorials, selected for their topicality,
interest and diversity. Many of the tutorials were offered more than once, to
reduce scheduling conflicts for attendees who wished to attend multiple events.
It also gave me great pleasure to host Prof. Emeritus Peter Wegner as guest
of honor at the conference banquet. Peter has the distinction of having defined
the term “object-oriented language” in his 1987 OOPSLA paper, and has been
involved with ECOOP as a workshop participant and panelist at least since 1988.
While traveling to Lisbon to give the banquet address at ECOOP ’99, Peter was
struck down by a bus in London, and suffered life-threatening injuries. He has
made a most remarkable recovery, and I was absolutely delighted to be able to
welcome him back into the ECOOP community.

The continued success of ECOOP depends on the dedication and hard work of
a large number of people; not only is most of this work performed voluntarily, but
we compete with each other to volunteer! In addition to me, 24 distinguished re-
searchers served on the Program Committee, writing sometimes lengthy reviews
of many papers, working very long hours to meet the conference deadlines, and
behaving (almost always!) in a most professional manner. The conference could
not have taken place at all without the efforts of the 373 authors who submit-
ted papers, the board of AITO, which sponsored the conference, the conference
Organizing Committee, the Tutorials and Workshops Committees, and the local
organizers and student volunteers. Richard van de Stadt also deserves a special
mention for the excellence of his technical support through CyberChairPRO.

June 2005 Andrew P. Black
ECOOP 2005 Program Chair

The AITO Dahl-Nygaard Prize

It was a great loss to our community when both Ole-Johan Dahl and Kristen
Nygaard passed away in 2002, not long after ECOOP in Málaga. Pioneers in the
areas of programming and simulation, their foundational work on object-oriented
programming, made concrete in the Simula language, can now be seen as one
of the most significant inventions in software engineering. Their key ideas took
shape around 1965, but more than 20 years were to pass before these ideas were
fully absorbed into and appreciated by the broader software community. Since
then, object-orientation has profoundly transformed the landscape of software
design and the process of software development.

In remembrance of Dahl and Nygaard’s scholarship and their enthusiastic en-
couragement of young researchers, AITO has established a pair of annual prizes.
The senior prize is awarded to a researcher with outstanding career contributions,
and the junior prize is awarded to a younger researcher who has demonstrated
great potential for following in the footsteps of these pioneers.

This year, the first time that the prizes have been awarded, the Prize Com-
mittee selected Bertrand Meyer to receive the Dahl-Nygaard Senior Prize, and
Gail Murphy to receive the Dahl-Nygaard Junior Prize.

Bertrand Meyer was one of the most influential researchers in the 1980s, in the
initial period of wide adoption of object-oriented programming. He designed the
Eiffel language, which pioneered the concept of design by contract. He provided
strong arguments for object-oriented software architecture in his book “Object-
Oriented Software Construction”, which remains to this day a highly influential
work. Many of his contributions have proven to be of lasting value.

Like Nygaard, Meyer has not backed away from controversy and has consis-
tently followed his own vision of object orientation. Design by contract estab-
lished an essential bridge between axiomatic specification and object-oriented
programming. Bertrand Meyer is currently Professor of Software Engineering at
ETH Zürich in Switzerland. His research on trusted components continues to
explore challenging problems in software engineering.

Gail Murphy has shown promising potential as a young researcher by propos-
ing innovative ideas and by proving that these are conceptually sound and re-
alistically implementable. She focuses her research and teaching on software
engineering, and she has made contributions to understanding and reducing the
problems associated with the evolution of large software systems.

Gail Murphy is currently an Associate Professor at the University of British
Columbia in Canada. Like Dahl and Nygaard, Murphy challenges students to
examine new proposals with a disciplined and questioning eye. She is preparing a
new generation of researchers by encouraging the development of sound theories
backed by solid prototype implementations.

VIII The AITO Dahl-Nygaard Prize

Both Meyer and Murphy agreed to present lectures at ECOOP 2005. Invited
papers corresponding to these lectures are included in this volume. Meyer’s paper
is entitled “Attached Types and Their Application to Three Open Problems of
Object-Oriented Programming” and begins on page 1. Murphy’s paper is entitled
“The Emergent Structure of Development Tasks” and begins on page 33.

June 2005 Jean Bézivin
Markku Sakkinen

Dave Thomas
AITO Dahl-Nygaard Prize Committee

Organization

ECOOP 2005 was organized by the Universities of Glasgow and Strathclyde,
under the auspices of AITO (Association Internationale pour les Technologies
Objets), and in cooperation with ACM SIGPLAN.

Executive Committee

General Co-chairs
Peter Dickman (University of Glasgow)
Paddy Nixon (University of Strathclyde)

Program Chair
Andrew P. Black (Portland State University)

Organizing Chair
Peter Dickman (University of Glasgow)

Organizing Committee

Workshops
Marc Roper (University of Strathclyde)
Wolfgang De Meuter (Vrije Universiteit Brussels)

Tutorials
Karen Renaud (University of Glasgow)
Elisa Baniassad (The Chinese University of Hong Kong)

Demos and Posters
Rob Pooley (Heriott-Watt University)

PhD Workshop/Doctoral Symposium
Alex Potanin (Victoria University of Wellington)
David Lievens (University of Strathclyde)

Treasurer
David Watt (University of Glasgow)

Catering Liaison/Coordination
Simon Gay (University of Glasgow)

Venue Liaison/Coordination
Sotirios Terzis (University of Strathclyde)

IT Facilities Liaison
Tony Printezis (Sun Microsystems Laboratories)

X Organization

Registration
Murray Wood (University of Strathclyde)

Sponsorship
Steve Neely (University of Strathclyde)

Publicity and Web
Ian Ferguson (University of Strathclyde)
Richard Cooper (University of Glasgow)
Karen Renaud (University of Glasgow)

Workshops Review Committee
Marc Roper (University of Strathclyde)
Wolfgang De Meuter (Vrije Universiteit Brussels)
Martine Devos (Avaya Labs Research)
Michel Tilman (Real Software)
Maximo Prieto (Universidad de la Plata)
Stéphane Ducasse (University of Bern)
Ralf Lämmel (CWI Amsterdam)

Doctoral Symposium Committee
Alex Potanin (Victoria University of Wellington)
David Lievens (University of Strathclyde)
István Zólyomi (Eötvös Loránd University)
Gregory de Fombelle (Thales Research and UPMC (Paris 6))
Jérôme Darbon (Ecole Nationale Supérieure des Télécommunications)

As Organizing Chair I would like to thank the support staff and event planners
at the Glasgow Convention Bureau, the Scottish Exhibition and Conference Cen-
tre, the Moat House Hotel Glasgow, the Glasgow Science Centre and the Arches.
Administrative and support staff at the Universities of Glasgow and Strathclyde
also contributed to the organization of ECOOP 2005 and their efforts are much
appreciated. Most importantly, thanks are due to the many student volunteers
who kept things running smoothly during the meeting and who were critical to
the success of the conference.

Peter Dickman

Organization XI

Program Committee

Mehmet Akşit University of Twente, Netherlands
Luca Cardelli Microsoft, UK
Shigeru Chiba Tokyo Institute of Technology, Japan
Yvonne Coady University of Victoria, Canada
William Cook University of Texas, Austin, USA
Theo D’Hondt Vrije Universiteit Brussel, Belgium
Christophe Dony Montpellier-II University, France
Stphane Ducasse University of Bern, Switzerland
Erik Ernst University of Aarhus, Denmark
Richard P. Gabriel Sun Microsystems, USA
Tony Hosking Purdue University, USA
Jean-Marc Jzquel Irisa/Univ. Rennes 1, France
Eric Jul University of Copenhagen, Denmark
Luigi Liquori INRIA, France
James Noble Victoria University of Wellington, New Zealand
Martin Odersky EPFL, Switzerland
Christian Queinnec Universit Pierre et Marie Curie, France
Martin Robillard McGill University, Canada
Jrg Striegnitz Research Centre Jlich, Germany
Peri Tarr IBM Research, USA
Dave Thomas Bedarra, Canada
Mads Torgersen University of Aarhus, Denmark
Todd Veldhuizen Chalmers University, Sweden
Allen Wirfs-Brock Microsoft, USA

Referees

Jonathan Aldrich
Davide Ancona
Francoise André
Gabriela Arévalo
Uwe Assmann
Thomas Baar
Arnaud Bailly
Jennifer Baldwin
Daniel Bardou
Mike Barnett
Don Batory
Benoit Baudry
Klaas van den Berg
Alexandre Bergel
Lodewijk Bergmans

Gavin Bierman
Stephen Blackburn
Mireille Blay-Fornarino
Bard Bloom
Guillaume Bonfante
Chandrasekhar Boyapati
Gilad Bracha
Jean-Pierre Briot
Pim van den Broek
Dennis Brylow
Michele Bugliesi
Cristiano Calcagno
Michelle Cart
Emmanuel Chailloux
Stephen Chong

XII Organization

Mark C. Chu-Carroll
Dave Clarke
Thomas Cleenewerck
Pierre Cointe
Pascal Costanza
Vincent Cremet
Tom Van Cutsem
Ferruccio Damiani
Jessie Dedecker
Robert DeLine
Marcus Denker
Iulian Dragos
Sophia Drossopoulou
Roland Ducournau
Pascal Durr
Peter Ebraert
Tatjana Eitrich
Burak Emir
Jean Ferrié
John Field
Franck Fleurey
Remi Forax
Robert Fuhrer
Markus Gälli
Vladimir Gapeyev
Jacques Garrigue
Sofie Goderis
Paul Grace
Orla Greevy
Wolfgang Grieskamp
Dan Grossmann
Gurcan Gulesir
Mads Haahr
Richard Hamlet
William Harrison
Tom Hirschovitz
Marianne Huchard
Atsushi Igarashi
Radha Jagadeesan
Suresh Jagannathan
Nadeem Jamali
Harmen Kastenberg
Andy Kellens
Pertti Kellomäki
Andrew Kennedy

Joseph Kiniry
Shriram Krishnamurthi
Neel Krishnaswami
Doug Lea
Christopher League
Gary T. Leavens
Thérèse Libourel
Henry Lieberman
Hanbing Liu
Cristina Videira Lopes
Roberto Lopez-Herrejon
Jacques Malenfant
Jean-Yves Marion
Michel Mauny
Wolfgang De Meuter
Isabel Michiels
Nikolay Mihaylov
Todd Millstein
Stijn Mostinckx
Peter Müller
Gail Murphy
Istvan Nagy
Srinivas Nedunuri
Philippe Nguyen
Joost Noppen
Johan Nordlander
Nathaniel Nystrom
Harold Ossher
Ellen Van Paesschen
Amit Paradkar
Didier Parigot
Renaud Pawlak
Frédéric Peschanski
Filip Pizlo
Noël Plouzeau
Erik Poll
Laura Ponisio
Anne Pons
Isabelle Puaut
Philip Quintslund
Vadakkedathu T. Rajan
Arend Rensink
Coen De Roover
Guido van Rossum
Claudio Russo

Organization XIII

Barbara Ryder
Amr Sabry
Lionel Seinturier
Bernard Serpette
Manuel Serrano
Jesper Honig Spring
Nathanael Schärli
Jim Steel
Gerson Sunyé
Bedir Tekinerdoğan
Hendrik Tews
Peter Thiemann
Robert Tolksdorf
Mads Torgersen

Yves Le Traon
Christelle Urtado
Sylvain Vauttier
Mirko Viroli
Jan Vitek
John Vlissides
Adam Welc
Ben Wiedermann
Rebecca Wirfs-Brock
Tobias Wrigstad
Roel Wuyts
Matthias Zenger
Tewfik Ziadi

Table of Contents

Invited Talks

Attached Types and Their Application to Three Open Problems of
Object-Oriented Programming

Bertrand Meyer . 1

The Emergent Structure of Development Tasks
Gail C. Murphy, Mik Kersten, Martin P. Robillard,
Davor Čubranić . 33

Java

Loosely-Separated “Sister” Namespaces in Java
Yoshiki Sato, Shigeru Chiba . 49

Efficiently Refactoring Java Applications to Use Generic Libraries
Robert Fuhrer, Frank Tip, Adam Kieżun, Julian Dolby,
Markus Keller . 71

Sharing the Runtime Representation of Classes Across Class Loaders
Laurent Daynès, Grzegorz Czajkowski . 97

Aspects and Modularity

Aspect-Oriented Programming Beyond Dependency Injection
Shigeru Chiba, Rei Ishikawa . 121

Open Modules: Modular Reasoning About Advice
Jonathan Aldrich . 144

Evaluating Support for Features in Advanced Modularization
Technologies

Roberto E. Lopez-Herrejon, Don Batory, William Cook 169

Separation of Concerns with Procedures, Annotations, Advice and
Pointcuts

Gregor Kiczales, Mira Mezini . 195

Expressive Pointcuts for Increased Modularity
Klaus Ostermann, Mira Mezini, Christoph Bockisch 214

XVI Table of Contents

Sustainable System Infrastructure and Big Bang Evolution: Can
Aspects Keep Pace?

Celina Gibbs, Chunjian Robin Liu, Yvonne Coady 241

Language Design

First-Class Relationships in an Object-Oriented Language
Gavin Bierman, Alisdair Wren . 262

The Essence of Data Access in Cω
Gavin Bierman, Erik Meijer, Wolfram Schulte . 287

Prototypes with Multiple Dispatch: An Expressive and Dynamic
Object Model

Lee Salzman, Jonathan Aldrich . 312

Efficient Multimethods in a Single Dispatch Language
Brian Foote, Ralph E. Johnson, James Noble . 337

Program Analysis

Interprocedural Analysis for Privileged Code Placement and Tainted
Variable Detection

Marco Pistoia, Robert J. Flynn, Larry Koved,
Vugranam C. Sreedhar . 362

State Based Ownership, Reentrance, and Encapsulation
Anindya Banerjee, David A. Naumann . 387

Consistency Checking of Statechart Diagrams of a Class Hierarchy
Vitus S.W. Lam, Julian Padget . 412

Types

Towards Type Inference for JavaScript
Christopher Anderson, Paola Giannini, Sophia Drossopoulou 428

Chai : Traits for Java-Like Languages
Charles Smith, Sophia Drossopoulou . 453

A Type System for Reachability and Acyclicity
Yi Lu, John Potter . 479

Table of Contents XVII

Testing

Eclat: Automatic Generation and Classification of Test Inputs
Carlos Pacheco, Michael D. Ernst . 504

Lightweight Defect Localization for Java
Valentin Dallmeier, Christian Lindig, Andreas Zeller 528

Concurrency

Extending JML for Modular Specification and Verification of
Multi-threaded Programs

Edwin Rodŕıguez, Matthew Dwyer, Cormac Flanagan, John Hatcliff,
Gary T. Leavens, FNU Robby . 551

Derivation and Evaluation of Concurrent Collectors
Martin T. Vechev, David F. Bacon, Perry Cheng, David Grove 577

Static Deadlock Detection for Java Libraries
Amy Williams, William Thies, Michael D. Ernst 602

Author Index . 631

Attached Types and Their Application to Three Open
Problems of Object-Oriented Programming

Bertrand Meyer

ETH Zurich and Eiffel Software
http://se.inf.ethz.ch — http://www.eiffel.com

Abstract. The three problems of the title — the first two widely discussed in
the literature, the third less well known but just as important for further de-
velopment of object technology — are:

• Eradicating the risk of void calls: x.f with, at run time, the target x not
denoting any object, leading to an exception and usually a crash.

• Eradicating the risk of “catcalls”: erroneous run-time situations, almost
inevitably leading to crashes, resulting from the use of covariant argument
typing.

• Providing a simple way, in concurrent object-oriented programming, to
lock an object handled by a remote processor or thread of control, or to
access it without locking it, as needed by the context and in a safe way.

A language mechanism provides a combined solution to all three issues.

This mechanism also allows new solutions to two known problems: how
to check that a certain object has a certain type, and then use it accordingly
(“Run-Time Type Identification” or “downcasting”), for which it may pro-
vide a small improvement over previously proposed techniques; and how to
provide a “once per object” facility, permitting just-in-time evaluation of cer-
tain object properties.

The solution relies on a small extension to the type system involving a sin-
gle symbol, the question mark. The idea is to declare certain types as “at-
tached” (not permitting void values), enforce some new validity rules that
rule out void calls, and validate a number of common programming schemes
as “Certified Attachment Patterns” guaranteed to rule out void calls. (In ad-
dition, the design replaced an existing type-querying construct by a simpler
one.)

The mechanism is completely static: all checks can be performed by com-
pilers as part of normal type system enforcement. It places no undue burden
on these compilers — in particular, does not require dataflow analysis — and
can be fairly quickly explained to programmers. Existing code, if reasonably
well-written, will usually continue to work without change; for exceptions to
this rule, often reflecting real risks of run-time crashes, backward-compatible
options and a clear transition path are available.

The result is part of the draft ECMA (future ISO) standard for Eiffel.

There is one and only one kind of acceptable language extension: the
one that dawns on you with the sudden self-evidence of morning mist.
It must provide a complete solution to a real problem, but usually that
is not enough: almost all good extensions solve several potential prob-

A.P. Black (Ed.): ECOOP 2005, LNCS 3586, pp. 1 – 32, 2005.
© Springer-Verlag Berlin Heidelberg 2005

From “Notes on Language Design and Evolution” in [6]

1 Overview

The design of a programming language is largely, if the designer cares at all about reli-
ability of the resulting programs, the design of a type system. Object-oriented program-
ming as a whole rests on a certain view of typing, the theory of abstract data types; this
makes it natural, when searching for solutions to remaining open problems, to turn for
help to typing mechanisms.

One such problem is void-safety: how to guarantee that in the fundamental object-
oriented operation, a feature call x.f (args), the target x will always, at execution time,
denote an object. If it does not — because x is “void” — an exception will occur, often
leading to a crash.

This article shows that by fine-tuning the type system we may remove this last sig-
nificant source of run-time errors in object-oriented programs. The basic language
extension is just one symbol (the question mark).

As language extensions should, the mechanism yields other benefits beyond its ini-
tial purpose. It provides a solution to the “catcall” issue arising from covariant argument
redefinition; a better technique of run-time object type identification; a flexible
approach to object locking in concurrent programming; and a simple way to perform
lazy computation of attributes (“once per object”).

1.1

Here is a capsule description of the mechanism:

• A call x.f (args) is only valid (as enforced statically) if its target x is attached.

• The simplest way for a variable to be attached is to be declared of an “attached
type”, guaranteeing that no value can be void. Types are indeed attached by de-
fault. To get the “detachable” version of a type T (permitting void values) use ? T.

lems at once, through a simple addition. It must be simple, elegant, ex-
plainable to any competent user of the language in a minute or two. (If
it takes three, forget it.) It must fit perfectly within the spirit and letter
of the rest of the language. It must not have any dark sides or raise any
unanswerable questions. And because software engineering is engi-
neering, and unimplemented ideas are worth little more than the
whiteboard marker with serves to sketch them, you must see the imple-
mentation technique. The implementors' group in the corner of the
room is grumbling, of course — how good would a nongrumbling im-
plementor be? — but you and they see that they can do it.

When this happens, then there is only one thing to do: go home
and forget about it all until the next morning. For in most cases it
will be a false alarm. If it still looks good after a whole night, then
the current month may not altogether have been lost.

Mechanism Summary

2 B. Meyer

• For variables of a detachable type, some simple and common program schemes
guarantee a non-void value. For example, immediately after create x... or the
test if x /= Void then ... , x is not void. The mechanism uses a small catalog of
such “Certified Attachment Patterns” or CAPs, easy for programmers to under-
stand and for compilers to implement. A variable used in such a CAP is attached
(again, statically), even if its type is not. CAPs are particularly important in en-
suring that reasonably-written existing software will run unmodified. Initial eval-
uation suggests that this will be the case with the vast majority of current code.

• Outside of these patterns, a call of target x requires x to be of an attached type. The
remaining problem is to guarantee that such a variable will never be void. The basic
rule concerns assignment and argument passing: if the target is attached, the source
must be attached too. This leaves only the question of initialization: how to ensure
that any attached variable is, on first access, not void.

• Some types guarantee non-void initialization by providing a default initialization
procedure that will produce an object. We call them “self-initializing types”.

• A variable that is not of such a type may provide its own specific initialization
mechanism. We call it a “self-initializing variable”.

• Generic classes can use a question mark to specify a self-initializing type parameter.

• This leaves only the case of a variable that could be accessed while void (because
no CAP applies, the type is not self-initializing, and neither is the variable itself).
The “Object Test” construct makes it possible to find out if the variable is attached
to an object of a specific type, and then to use it safely.

1.2

The basic idea of typed object-oriented languages is to ensure, thanks to validity rules
on program texts enforced statically (at compile-time), that the typical object-oriented
operation, x.f (args), known as a “qualified call”, will never find x attached to an object
not equipped to execute the operation f. The validity rules essentially require the pro-
grammer to declare every variable, routine argument, routine result and other entity with
an explicit type (based on a class, which must include the appropriate f with the appro-
priate arguments), and to restrict polymorphic assignments x := y, as well as actual-to-
formal argument associations, to those in which the type of y conforms to the type of
x; conformance is governed by inheritance between classes, so that if f is available for
the type of y it will also be available, with a compatible signature, for the type of x.

This technique, pioneered by Eiffel and Trellis-Owl and since implemented in various
ways in typed O-O languages, eliminates many potential run-time errors, and has suc-
ceeded in establishing static typing firmly. But — notice the double negation in the above
phrasing of the “basic idea” — it only works if the target entity, x, is attached to an object
at the time of execution. Rather than directly denoting an object, x is often a reference to
a potential object; to support the description of flexible data structures, programming lan-
guages generally permit a reference to be void, or “null”, that is to say attached to no object.
If x is void at the time of the call, an exception will result, often leading to a crash.

The initial goal for the work reported here was once and for all to remove this sword
of Damocles hanging over the execution of even a fully type-checked program.

The Void Safety Issue

Attached Types and Their Application to Three Open Problems 3

1.3

The basis of the solution is to extend the type system by defining every type as “at-
tached” or “detachable”, where an attached type guarantees that the corresponding val-
ues are never void. Attached is the default. A qualified call, x.f (args), is now valid
only if the type of x is attached. Another new validity rule now allows us to assign (or
perform argument passing) from the attached version of a type to the detachable ver-
sion, but not the other way around without a check of non-voidness. Such a check, ap-
plied to an expression exp of a detachable type, is a new kind of boolean expression:
an “Object Test” of the form {x: T} exp, where T is the desired attached type and x is a
fresh variable. In the Conditional instruction

if the Object Test evaluates to true, meaning that exp is indeed attached to an object of
type T, x is bound to that value of exp over the “scope” of the Object Test, here the
whole then clause. Calls of target x are then guaranteed to apply to a non-void target
over that scope. It is necessary to use such a locally bound variable, rather than directly
working on exp, because if exp is a complex expression or even just an attribute of the
class many kinds of operation occurring within the then clause, such as calls to other
routines of the class, could perform assignments that make exp void a gain and hence
hang the sword of Damocles back up again. The variable x is a “read-only”, like a for-
mal routine argument in Eiffel: it cannot figure as the target of an assignment, and hence
will keep, over the scope of the Object Test, the original value of exp, guaranteed to be
non-void.

The Object Test resembles mechanisms found in typed object-oriented languages
under names such as “Run-Time Type Identification”, “type narrowing”, “downcas-
ting”, and the “with” instruction of Oberon; it addresses their common goal in a com-
pact and general form and is intended to subsume them all. In particular, it replaces Eif-
fel’s original “Assignment Attempt” instruction, one of the first such mechanisms, writ-
ten x ?= exp with (in the absence of a specific provision for attached types) the
semantics of assigning exp to x if exp happens to be attached to an object of the same
type as x or conforming, and making x void otherwise. An assignment attempt is typi-
cally followed by an instruction that tests x against Void. The Object Test, thanks to its
bound variable and its notion of scope, merges the assignment and the test.

Relying on the Object Test instruction alone would yield a complete solution of the
Void Call Eradication problem, but would cause considerable changes to existing code.
Sometimes it is indeed necessary to add an Object Test for safety, but in a huge number
of practical cases it would do nothing but obscure the program text, as the context guar-
antees a non-void value. For example, immediately after a creation instruction create
Result..., we know that Result, even if declared of a detachable type, has an attached
value and hence can be used as the result of a function itself declared attached. We cer-
tainly do not want in such a case to be forced to protect Result through an Object Test,

if {x: T} exp then /1/
... Instructions, in particular calls of the form x.f (args)...

end

General Description

4 B. Meyer

which would be just noise. An important part of the mechanism is the notion of Certi-
fied Attachment Patterns: a catalog of program schemes officially guaranteeing that a
certain variable, even if declared of an attached type, will in certain contexts always
have a certifiably attached value. The catalog is limited to cases that can be safely and
universally guaranteed correct, both easily explainable to programmers and easily
implementable by compilers; these cases cover a vast number of practical situations,
ensuring that the Object Test, however fundamental to the soundness of the approach
as a whole, remains — as it should be — a specialized technique to be used only rarely.

An immediate consequence of these techniques will be to remove preconditions,
occurring widely in libraries of reusable classes as well as in production applications,
of the form require x / = Void for a routine argument x (sometimes for an attribute as
well). Informal surveys shows that in well-written Eiffel code up to 80% of routines
contain such a precondition. With the new type system, it is no longer necessary if we
declare x of an attached type. Going from preconditions to a static declaration, and
hence a compile-time check, is a great boost to reliability and a significant simplifica-
tion of the program text.

To go from these basic ideas to a full-fledged language mechanism that delivers on
the promise of total, statically-enforced Void Call Eradication, the solution must
address some delicate issues:

• In a language framework guaranteeing for reliability and security that all varia-
bles, in particular object fields, local variables of routines and results of functions,
are automatically initialized (an idea also pioneered by Eiffel and widely adopted
by recent languages), how to ensure that variables declared of an attached type are
indeed initialized to attached values.

• How to handle attached type in the context of genericity. For example, the Eiffel
library class ARRAY [G] is generic, describing arrays of an arbitrary type G.
Sometimes the corresponding actual parameter will be attached, requiring — or
not! — automatic initialization of array entries; sometimes it will be detachable,
requiring automatic initialization of all entries to Void. It would be really unpleas-
ant, for this and all other container classes, to have to provide two versions, one
for detachable types and one for attached types, or even three depending on initial-
ization requirements for attached types. The solution to this issue is remarkably
simple (much shorter to explain than the details of the issue itself): if a generic class
needs to rely on automatic initialization of variables of the formal generic type
(here G), make this part of the declaration for the parameter, requiring clients to
provide an initialization mechanism for actual parameters that are attached types.

• How to make the whole mechanism as invisible as possible to programmers using
the language. We must not force them to use any complicated scheme to attain
ordinary results; and we must guarantee an “effect of least surprise”. In other
words they should be able to write their application classes in a simple and intui-
tive way, the way they have always done, even if they do not understand all the
subtleties of attachment, and it is then our responsibility to ensure that they get
safely operating programs and the semantics corresponding to their intuition.

Attached Types and Their Application to Three Open Problems 5

• How to ensure that the resulting type system achieves its goal of total Void Call
Eradication. The authors of Spec#, a previous design which influenced this work,
write that they expect “fewer unexpected non-null reference exceptions” [3]. We
are more ambitious and expect to remove such exceptions entirely and forever.
Here it must be mentioned that although we believe that the design described here
reaches this goal we have not provided a mathematical proof or, for that matter,
do not yet have a formal framework in which to present such a proof.

• In the case of Eiffel, a well-established language with millions of lines of produc-
tion code, how to provide a smooth transition to the new framework. The design-
ers of Spec# have the advantage of working on a new research language; Eiffel
has commercial implementations with heavy customer investment in business-
critical applications, and we must guarantee either backward compatibility or a
clear migration path. This alone is a make-or-break requirement for any proposed
Eiffel solution.

Our solutions to these issues will be described below.

In finalizing the mechanism we realized that it appears to help with two other pend-
ing issues, one widely discussed and the other more esoteric at first sight but important
for the future of object technology:

• A covariant type system (where both arguments and results of functions can be
redefined in descendant classes to types conforming to their originals) raises, in a
framework supporting polymorphism and dynamic binding, the specter of run-
time type mismatches, or “catcalls”, another source of crashes. We suggest the
following solution to remove this other threat to the reliability of our software:
permit covariant redefinition of an argument (covariant result types are not a
problem) only if the new type is detachable. Then the new version must perform
an Object Test, and no catcall will result. This is a way of allowing the program-
mer to perform covariant redefinition but forcing him to recognize that polymor-
phism may yield at run time an actual argument of the old type, and to deal with
that situation explicitly. The rule also applies to the case of “anchored types”,
which is a form of implicit covariance, and appears to resolve the issue.

• An analysis of what it takes to bring concurrent programming to the level of qual-
ity and trust achieved by sequential programming, and bring it up to a comparable
level of abstraction, has led to the development of the SCOOP mechanism [11]
based on the transposition to a concurrent context of the basic ideas of Design by
Contract. One of the conclusions is to allow a call x.f (args) to use a target x rep-
resenting a “separate” object — an object handled by a different processor — and
hence to support asynchronous handling, one of the principal benefits of concur-
rency, only if x is one of the formal arguments of the enclosing routine. Then a
call to that routine, using as actual argument for x a reference to such a separate
object, will block until the object becomes available, and then will place an exclu-
sive hold on it for the duration of the routine’s execution. But it turns out that, con-
versely, a call using a separate actual argument should not always reserve the ob-
ject; for example we might only want to pass to another routine a reference to that
object, without performing any call on it. It would not be appropriate to decide on

6 B. Meyer

the basis of the routine’s code whether object reservation is needed or not, as a kind
of compiler optimization: clients should not have to know that code, and in any
case the body of a routine may be redefined along the inheritance hierarchy, so that
the language would not guarantee a specific semantics for a routine under poly-
morphism. Instead, the rules will now specify that passing a separate object as ac-
tual argument causes the call to place a reservation on the object if and only if the
corresponding formal argument is declared of an attached type. If not, the routine
can assign the argument to another variable, or pass it on to another routine; the
target of the assignment, or the corresponding formal argument, must themselves
be of an unattached type in accordance with the basic rule stated above. To perform
a call using such an argument as target, one must check its attachment status, re-
lying as usual on an Object Test; the final new semantic rule is that an Object Test
on a separate expression will (like its use as actual argument to a routine with a
corresponding attached formal) cause reservation of the object. So a simple con-
vention to define the effect of combining two type annotations, “separate” and “at-
tached”, appears to provide the flexible and general solution sought.

In passing, we will see that the mechanism additionally addresses two problems for
which solutions were available before, but perhaps addresses them better. One of the
problem is Run-Time Type Identification: the Object Test construct provides a simple
and general approach to this issue. The other, for which Eiffel already provided a spe-
cific mechanism, is “once per object”: how to equip a class with a feature that will be
computed only once for a given object, and only if needed at execution time. For exam-
ple a field in objects representing the stock of a company might denote the price history
of the share over several years. If needed, this field, pointing to a large list of values,
will have to be initialized from a database. If only because of the time and space cost,
we want to retrieve these values only if needed, and then the first time it is needed.

The following sections detail the mechanism and these applications.

2

The “non-null types” of Spec# are the obvious inspiration for the design presented here.
It is a pleasure to acknowledge the influence of that work. Our goal has been to try for
a simpler and more general mechanism. The reader who would like to compare the two
designs should note that references to Spec# in this article are based on 2003-2004 pub-
lications [3] [1] and check more recent work since Spec# has been progressing rapidly.

Other work addressing some of the same issues has included the Self language’s
attempt to eliminate Void values altogether [2] and my own earlier (too complicated)
attempt to provide void-avoidance analysis [10]. I also benefited from early exposure
to the type system work of Erik Meijer and Wolfram Schulte [5].

The design reported here resulted from the work of the ECMA standardization
effort for Eiffel (ECMA TC39-TG4), intended to yield an ISO standard [4]. The basic
ideas are due to Éric Bezault, Mark Howard, Emmanuel Stapf (TG4 convener and
secretary) and Kim Waldén. Mark Howard first proposed, I believe, the idea of
replacing Eiffel’s Assignment Attempt by a construct also addressing void call
eradication. The actual design of that construct, the Object Test, is due to Karine Arnout

Previous Work, Context and Acknowledgments

Attached Types and Their Application to Three Open Problems 7

and Éric Bezault. This article largely reports on the ideas developed by this group of
people. As the editor of the standard I bear responsibility for any remaining mistakes in
the mechanism and of course in this article.

Numerous discussions with Peter Müller from ETH have been particularly fruitful
in shaping the ideas. The application of the mechanism to SCOOP (the last problem) is
part of joint work with Piotr Nienaltowski of ETH. Also helpful have been comments
on the Eiffel draft standard from David Hollenberg and Paul-Georges Crismer.

In addition I am grateful to Andrew Black and Richard van de Stadt for their toler-
ance and kind assistance (extending beyond the normal duties of editors) in getting this
article to press.

3

In Eiffel’s spirit of simplicity the advances reported here essentially rely on one single-
letter symbol: it is now permitted to prefix a type by a question mark, as in

instead of the usual x: T. (The other syntactical novelty, Object Test, is not an addition
but a replacement for the previous Assignment Attempt mechanism.) The question
mark turns the type from attached to detachable. It is also possible to prefix a formal
generic parameter with a question mark, as in

with semantics explained in section 7.

The standards committee decided that in the absence of a question mark types are
attached by default and hence do not support Void as a possible value. This is based
on the analysis that void values are of interest to authors of fundamental data structure
libraries such as EiffelBase [7], which include classes representing linked data struc-
tures such as void-terminated linked lists, but much less to authors of application pro-
grams; classes COMPANY_STOCK in a financial application or LANDING_ROUTE
in an aeronautic application are unlikely to require support for void values. So we ask
professional library developers working on the basic “plumbing” to specify the possi-
bility of void values when they need it, by using detachable types for example in the
declaration of the neighboring item in class LINKABLE [G] describing linked list items:

but leave application programmers in peace when, as should usually be the case, they
don’t care about void values and, more importantly, don’t want to worry about the re-
sulting possibility of void calls.

x: ? T

class ARRAY [? G] ...

right: ? LINKABLE [G]
right item

(LINKABLE)

Syntax Extension

8 B. Meyer

This choice of default semantics raises a backward compatibility problem in the
context, mentioned above, of preserving the huge commercial investment of Eiffel
users; in the previous versions of the language, reference types support void by default,
and some programs take advantage of that convention. To address this issue, we provide
the symbol ! as a transition facility. ! T means the attached version of type T. In standard
Eiffel this will mean the same as T, so the exclamation mark symbol is redundant. But
offering an explicit symbol enables compilers to provide a migration option whereby
the default semantics is reversed (T means ? T), compatible with the previous conven-
tion. Programmers can then continue to use their existing classes with their original
semantics, while starting to take advantage of void-call avoidance guarantees by declar-
ing attached types with the explicit !. In the final state, the need for ! will go away. In
the rest of this article we stick with the Standard option: we don’t need to use ! at all,
with the understanding that T means ! T.

The ? and ! symbols are inspired by the conventions of Spec#. There has been crit-
icism on the part of some Eiffel users that these are cryptic symbols (“it looks like
C++ !”) not in the Eiffel style; the symbol ! in particular has bad karma since it was part
of a short-lived syntax variant for the creation instruction now written in the normal Eif-
fel style as create x. Although the symbols have the benefit of brevity, they might sim-
ilarly go away in favor of keywords, not affecting the validity rules, semantics and dis-
cussion of the present article.

To understand the rest of that discussion, note that Eiffel has two kinds of type: ref-
erence types, the default, whose values are reference to objects (or void in the case of
detachable types); and expanded types, equipped with copy semantics. (The “value”
types of C# are a slightly more restricted form of expanded types.) A type is expanded
if it is based on a class declared as expanded class C ... rather than just class C ...
Expanded types serve in particular to represent subobject fields of objects, as well as to
model the basic types such as INTEGER and REAL, enabling Eiffel to have a consist-
ent type system entirely based on the notion of class. Obviously expanded types do not
support Void as one of their possible values. In the rest of this discussion the term
“attached type” covers both non-detachable reference types (the most common case)
and expanded types; that is to say, every type except a (reference) detachable type
declared explicitly as ? T.

4

The fundamental new constraint ensuring avoidance of void calls restricts the target of
a qualified call:

An expression a is said to be attached, in the usual case, if its type is attached. This no-
tion will be slightly generalized below.

Target Validity rule
A qualified call a.f or a.f (args) is valid only if the target expression a
is attached.

Constraints on Calls and Attachment

Attached Types and Their Application to Three Open Problems 9

A general note on the style of language description: “validity rules” in the specifi-
cation of Eiffel [6] [4] [12] stand between syntax and semantics; they supplement the
syntax by placing constraints (sometimes known as “static semantics”) on acceptable
language elements. Unlike in many other language descriptions, Eiffel’s validity rules
are always phrased in “if and only if” style: they don’t just list individual permitted and
prohibited cases, but give an exhaustive list of the necessary and sufficient conditions
for a construct specimen to be valid, thus reinforcing programmer’s confidence in the
language. This property obviously does not apply to the rules as given in this article,
since it is not a complete language description. The Target Validity rule, for example,
appears above in “only if” style since it supplements other clauses on valid calls (such
as a being of a type that has a feature f with the appropriate arguments, exported to the
given client). The rules respect the spirit of the language definition, however, by essen-
tially specifying all the supplementary clauses added to the existing rules.

The Target Validity rule will clearly ensure eradication of void calls if attached
types live up to their name by not permitting void values at run time; the discussion will
now focus on how to meet this requirement.

The other principal new constraint on an existing construct governs attachment. The
term “attachment”, for source y and target x, covers two operations: the assignment x
:= y, and argument passing f (..., y, ...) or a.f (..., y, ...) where the corresponding formal
argument in f is x. The basic existing rule on attachment is conformance or convertibil-
ity of the source to the target; conformance, as mentioned, is based on inheritance (with
provision for generic parameters), and convertibility is based on the Eiffel mechanism,
generalizing ordinary conversions between basic types such as INTEGER and REAL,
and allowing programmers to specify conversions as part of a class definition. Now we
add a condition:

This rule is trivially satisfied for expanded types (the only type that conforms to an ex-
panded type ET is ET itself) but new for attached reference types.

A companion rule lets us, in the redefinition of a feature in a descendant of the orig-
inal class, change a result type from detachable to attached, and an argument type from
attached to detachable. The rationale is the same, understood in the context of polymor-
phism and dynamic binding.

This rule narrows down the risk of void call by guaranteeing that if a void value
arises somewhere it will not be transmitted, through assignment or argument passing,
to variables of attached types. There remains to guarantee that the values initially set for
targets of attached type can never be void. This sometimes delicate initialization issue
will indeed occupy most of the remaining discussion.

Attachment Consistency rule
An attachment of source y and target x, where the type of x is attached, is
permitted only if the type of y is also attached.

10 B. Meyer

Initialization affects not just variables but the more general notion of “entity”. An entity
is any name in the program that represents possible values at run time. This covers:

• Variables: local variables of routines, attributes of classes (each representing a
field in the corresponding instances).

• “Read-only” entities: manifest constants, as in the declaration Pi: REAL =
3.141592, formal arguments of routines, Current representing the current ob-
jects (similar to this or self).

A variable x can be the target of an assignment, as in x := y. Read-only entities can’t,
as they are set once and for all. More precisely: a constant has a fixed value for the du-
ration of the program; Current is set by the execution (for the duration of a call x.f,
the new current object will be the object attached to x, as evaluated relative to the pre-
vious current object); formal arguments are attached to the value of the corresponding
actuals at the time of each call, and cannot be changed during the execution of that call.

Local variables include a special case, the predefined local Result denoting the
result to be returned by a function, as in the following scheme:

This example also illustrates the creation instruction, here using the creation procedure
make. Unlike the constructors of C++, Java or C#, creation procedures in Eiffel are
normal procedures of the class, which happen to be marked as available for creation (the
class lists them in a clause labeled create).

The example also shows a typical context in which the initialization issue arises:
WINDOW being an attached type, we must make sure that Result is attached (non-
void) on exit. Clearly a creation instruction (first branch) produces an attached result.
The second branch will work too if the function displaying, returning a WINDOW and
hence required to produce an attached result, satisfies this requirement.

5.2

In earlier versions of Eiffel, initialization has always been guaranteed for all variables,
to avoid the kind of run-time situation, possible in some other languages, where the pro-
gram suddenly finds a variable with an unpredictable value as left in memory by the ex-

clicked_window (address: URL) : WINDOW /2/
-- Window showing URL for address: depending on user
-- request, either same as current display window or
-- newly created one.

do
if must_open_in_new_window then

create Result.make (address)
else -- Keep current window, but display address

Result := display_window.displaying (address)
end

end

5 Initialization

5.1 Variables and Entities

Self-initializing Types

Attached Types and Their Application to Three Open Problems 11

ecution of a previous program if any. This would be a reliability and security risk. Any
solution to the initialization issue must continue to avoid that risk.

Since read-only entities are taken care of, it remains to ensure that every variable
has a well-defined value before its first use, meaning more precisely:

• For local variables of a routine r, including Result for a function: the first use in
any particular call to r.

• For attributes: the first use for any particular object. This doesn’t just mean the
first use in a routine call x.r (...) where r is a routine of the class: it can also be
during a creation operation create x.make (...) at the time the object is being
created, where make may try to access the attribute; or, if contract monitoring is
on, in the evaluation of the class invariant, before or after the execution of a rou-
tine call.

Eiffel’s earlier initialization rules were simple:

1 A variable of a reference type was initialized to Void. This policy will be retained
for detachable types, but we need a different one for attached types; this is the
crux of our problem.

2 The basic types BOOLEAN, CHARACTER, INTEGER, REAL, all of them ex-
panded types, specify default initialization values, respectively False, null char-
acter, 0, 0.0.

3 Programmer-defined expanded types were required to include default_create
among their creation procedures. default_create is a procedure defined in class
ANY (the top-level class of which all other classes are descendants, similar to Ob-
ject in other frameworks but in the context of multiple inheritance) where it does
nothing; any class can redefine it to implement a specific initialization scheme.
Although implicitly present in every class, default_create is not necessarily
available as a creation procedure; this happens only if the class lists it explicitly
in its create clause.

Case 2 is in fact an application of case 3, assuming proper versions of default_create
in the basic types. Note that default_create only needs to create a new object in the
case of reference types; for variables of expanded types, it can simply apply its algo-
rithm to an existing object.

It is tempting to keep this default_create requirement for expanded types, extend
it to attached types, and declare victory. This was, however, found too restrictive. First,
it would break most existing code: as noted above, we would like to assume that most
application classes do not need void values, and so can effortlessly be reinterpreted,
under the new scheme, as attached; but we cannot assume that all or even a majority
already support default_create as creation procedure. In fact this is not such a common
case since most non-trivial class invariants require creation procedures with arguments.
Even for new classes, the default_create requirement is not one we can easily impose
on all application programmers.

Even if we can’t use impose it universally, this requirement does address the initial-
ization problem for variables of the corresponding types, so we may rely on it when
applicable. We give such types a name:

12 B. Meyer

For variables of self-initializing types we adopt a policy of lazy initialization. The pre-
vious policy was systematically to initialize object fields (corresponding to attributes)
on object creation, prior to the execution of any creation procedure such as make
above, and local variables on routine entry, using in both cases the default value, lan-
guage-set or provided by default_create. Instead, we can now afford a more flexible
policy: no sweeping general initialization, but, on first access to a variable of a self-in-
itializing type, check whether it has already been set; if not, call default_create. This
actually implies a slight change of semantics for expanded types:

• Under the previous rules, the semantics for expanded types was that a variable di-
rectly denoted an object of that type, rather than a reference. For an attribute, this
means a subobject of the current object; for a local variable, the compiler-gener-
ated code may allocate the object directly on the stack rather than on the heap.
One of the disadvantages of this approach, apart from its too greedy approach to
initialization with default_create, is that it requires a special rule prohibiting cy-
cles in the client relation between expanded types: if both A and B are expanded
classes, you can’t have A declare an attribute of type B and conversely, since this
would mean that every object of type A has a subobject of type B and conversely.

• The new semantics is simply that expanded types simply represent objects with
copy semantics rather than the default reference semantics. Using such an object
as source of an assignment will imply copying, rather than assign a reference.

• As a result, the clumsy prohibition of no client cycles between expanded classes
goes away.

• We also removed the requirement that expanded types provide default_create
for creation; in other words, they do not have to be self-initializing. When they
are not, the same alternative initialization techniques as for attached reference
types, discussed below, are available to them, and the same lazy initialization se-
mantics.

• Compilers can now implement expanded types through references; this is purely
a matter of implementation, as the only requirement is copy semantics.

• In the vast majority of cases, there are indeed no cycles in the client relation; com-
pilers can then optimize the representation by using subobjects and stack-based
allocation as before. In the general spirit of the language’s evolution, the idea is
to make things simpler and more easy to learn for programmers (just talk about
copy semantics, don’t worry about implementation), remove hard-to-justify re-
strictions, and expect a little more of the compiler writer.

Definition: Self-initializing type
A type is self-initializing if it is one of:
• A detachable type.
• A type (including the basic types) based on a class that makes

default_create from ANY available for creation.

Attached Types and Their Application to Three Open Problems 13

• Previously, a creation instruction create x.make (...), where make can be
default_create, would not (as noted) create an object for expanded x, but simply
apply make to an existing stack object or subobject. Now it may have to create
an object, in particular if the relation does have cycles. This is an implementation
matter not affecting the semantics.

• Whether or not it actually creates an object, the creation instruction will be trig-
gered the first time the execution needs a particular expanded variable. This
change from a greedy policy (initialize everything on object creation or routine
entry) to a lazy one can break some existing code if make or default_create per-
forms some significant operations on the current object and others: this initializa-
tion can occur later, or not at all. The new policy seems better, but maintainers of
existing software must be warned of the change and given a backward-compati-
bility option to keep the old semantics.

Except for copy semantics, the rest of this discussion applies to self-initializing refer-
ence types as well as to expanded types.

To summarize the results so far, we have narrowed down the initialization problem
by taking care of one important case: self-initializing types, for which the policy will be
to create the object (or possibly reinitialize an existing object in the expand case) if its
first attempted use finds it uninitialized.

This leaves — apart from generic parameters — the case of non-self-initializing types.

5.3

If the type is not self-initializing, we can make an individual attribute (instance varia-
ble) self-initializing. (The technique will not be available for local variables.)

Here, especially for readers steeped in C++ or its successors such as Java and C#, a
little digression is necessary about what I believe to be a misunderstanding of object-ori-
ented principles in a specific aspect of the design of these languages. They consider an
attribute (also called instance variable, member variable or field) as fundamentally differ-
ent from a function (or method); this is illustrated by the difference in call syntax, as in

y := x.my_attribute /3/
versus

y := x.your_function () -- Note the parentheses /4/
which makes it impossible to change your mind — go from a storage-based implemen-
tation to a computation-based one for a certain query returning information on objects
of a certain type — without affecting every single client using the query in the above
styles. The Principle of Uniform Access [8] requires instead that such a choice of im-
plementation should not be relevant to clients. In Eiffel (as already in Simula 67) the
syntax in both cases is simply

x.her_query
which could call either an attribute or a function; the term “query” covers both cases.

The problem goes further. Because a class in C++ etc., when it exports an attribute,
exports the information that it is an attribute (rather than just a query), it exports it for
both reading and writing, permitting remote assignments to object fields, such as

Self-initializing Attributes

14 B. Meyer

x.my_attribute = new_value /5/
This scheme is widely considered bad practice since it violates the principles of infor-
mation hiding and data abstraction, which would require a procedure call

x.set_my_attribute (new_value) /6/
with a proper set_my_attribute procedure. As a result, textbooks warn against export-
ing attributes — always a bad sign, since if a language design permits a construct offi-
cially considered bad the better solution would be to remove it from the language itself
— and suggest writing instead an exported function that will return the value of the at-
tribute, itself declared secret (private), so that instead of the plain attribute access /3/ one
will call, in style /4/, a function whose sole purpose is to access and return the secret
attribute’s value. But this leads to lots of noise in the program text, with secret attributes
shadowed by little functions all of the same trivial form (one line to return the value).
“Properties”, as introduced by Delphi and also present in C#, handle such cases by let-
ting the programmer associate with such a secret attribute a “getter” function and a “set-
ter” procedure, which will respectively return the value and set it. The advantage is to
permit the assignment syntax /5/ with the semantics of a procedure call /6/ (as also now
possible in Eiffel, with examples below). But the price is even more noise: in C#, alto-
gether three keywords (value, set, get) in the language, and still two separate features
in the class — the attribute and the property — for a single query.

The Eiffel policy is different. The Uniform Access Principle suggests that we
should make as little difference as possible between attributes and functions. Each is
just a query; if exported, it is exported as a query, for access only. The interface of a
class (as produced by automatic documentation tools) doesn’t show the difference
between an attribute and a function; nor, as we have seen above, does the call syntax
(no useless empty parentheses).

Standard Eiffel goes further in the application of the principle. In particular, it was
previously not possible, largely for fear of performance overhead, to redefine an
attribute into a function in a descendant class (while the reverse was permitted). Partly
as a result, attributes could not have contracts — preconditions and postconditions —
as functions do; postcondition properties can be taken care of in the class invariant, but
there is no substitute for preconditions. These restrictions are now all gone, in part
because of the availability of better implementation techniques that avoid penalizing
programs that don’t need the extended facilities. With a new keyword attribute, one
can equip an attribute with a contract:

bounding_rectangle: RECTANGLE /7/
-- Smallest rectangle including whole of current figure

require
bounded

attribute
ensure

Result.height = height
Result.width = width
Result.lower_left = lower_left
Result.contains (Current)

end

Attached Types and Their Application to Three Open Problems 15

With this convention the attribute can freely be redefined into a function and converse-
ly. Note that Result, previously meaningful for functions only, is now available for at-
tributes too; the example uses it for its postcondition. This further enhances the symme-
try between the two concepts. The previous syntax for declaring an attribute, x:
SOME_TYPE, remains available as an abbreviation for

End of digression. This new generality of the concept of attribute suggests another sim-
ple mechanism taking care of explicit attribute initialization, and making attributes even
more similar to functions: give them an optional algorithm by allowing instructions af-
ter attribute, the same way a function has instructions after do (see e.g. /2/). So we can
for example provide shadow with an explicit initialization:

The semantics is to call this code if — and only if — execution finds, for a particular
object, the attribute uninitialized on first use of that object.

An interesting benefit of this technique is to provide a “once per object” mecha-
nism, letting us performing a certain operation at most one time on any object, and only
when needed, in a lazy style. That’s what the algorithm for bounding_rectangle does.
Here is another example, from a class COMPANY_STOCK:

The stock history list might be huge, so we only want to retrieve it into memory from
the database for a particular company if, and when, we need it. This could be done man-

x: SOME_TYPE
attribute

bounding_rectangle: FIGURE /8/
-- Smallest rectangle including whole of current figure
-- (Computed only if needed)

require
bounded

attribute
create Result.set (lower_left, width, height)

ensure
-- As above

end

stock_history: LIST [VALUATION] /9/
-- Previous valuations over remembered period

attribute
if {l: LIST [VALUATION]}

database.retrieved (ticker_symbol) then
Result := l -- Yields list retrieved from database

else
create Result -- Produces empty list

end
ensure

-- ...
end

16 B. Meyer

ually by keeping a boolean attribute that says whether the list has been retrieved, but the
technique is tedious is there are many such “lazy” queries. Self-initializing attributes
solve the problem in a simpler way. Note the use of an Object Test to check whether the
object structure retrieved from the database is of the expected type.

The presence of self-initialization for a particular attribute will, in the semantics,
take precedence over self-initialization at the class level if also present.

This concept of self-initializing attribute further narrows down the initialization
issue. But it does not yet solve it completely:

• It does not apply to local variables. In fact we could devise a similar notion of
“self-initializing local”, where the declaration includes an initialization algo-
rithm. But this seems overkill for such a narrowly-scoped notion.

• For both attributes and local variables the requirement of self-initialization cannot
be the only possibility. In some cases a human reader sees immediately that for
every use of a variable at run time an assignment or creation will have happened
before, giving it a well-defined attached value. Then the lazy initialization-on-de-
mand of either self-initializing types or self-initializing attributes is not necessary,
and would in fact be deceptive in the program text since the initialization code
will be never be executed. We should simply let things go as originally written,
after checking that there is no risk of undefined or void value.

5.4 Certified Attachment Patterns

The last observation leads to the third and last initialization technique: rely on compilers
(or other static checking tools) to verify that explicit assignment or creation will have
occurred before every use. The authors of Spec# have reached a similar conclusion, tak-
ing advantage of modern compiler technology; they write [1]:

Spec# stipulates the inference of non-nullity for local variables. This inference
is performed as a dataflow analysis by the Spec# compiler.

We differ from this assessment in only one respect: it is not possible in Eiffel to refer to
“the compiler”. There are a number of Eiffel compilers, and one of the principal purposes
of the ECMA standard is precisely to keep maintaining their specific personalities while
guaranteeing full syntactical, validity and semantic interoperability for the benefit of us-
ers. Even if there were only one compiler as currently with Spec#, we do not wish to let
programmers depend on the smartness of the particular implementation to find out — by
trying a compilation and waiting for possible rejection — if a particular scheme will work
or not. There should be precise rules stating what is permissible and what is not. These
rules should be available in a descriptive style, like the rest of a good language specifi-
cation, not in an operational style dependent on the functioning of a compiler. They
should be valid for any implementation; after all, much of the progress in modern pro-
gramming language description has followed from the decision to abstract from the prop-
erties of a particular compiler and provide high-level semantic specifications instead.

Apart from this difference of view, the Eiffel rules result from the same decision of
relying — for cases not covered by self-initializing types or attributes — on statically
enforceable rules of good conduct. We call them Certified Attachment Patterns:

Attached Types and Their Application to Three Open Problems 17

Here is a typical Certified Attachment Pattern, for an arbitrary attribute or local variable
x. If the body of the routine starts with a creation instruction or assignment of target x,
then the immediately following instruction position is a CAP for x. This is a very im-
portant pattern; in fact (as the reader may have noted) neither of the last two examples
/8/ /9/ would be valid without it, because they rely on a create Result ... instruction
to ensure that Result is non-void on return from the attribute evaluation. This property
is trivial — since the create instruction is the last in the routine — but without the CAP
there would be no way to rely on it.

The stock history example /9/ also relies on another CAP: if cap1 and cap2 are two
Certified Assignment Patterns for x, then so is if c then cap1 else cap2 end for any
condition c.

Here is a third CAP, assuming that x is a local variable or formal routine argument:

The then branch is a CAP for x. It would not be a valid CAP if x were an attribute, as
the “Instructions” could include procedure calls that perform an assignment (of a pos-
sible void value) to x. But for a local variable we can ascertain just by looking locally
at the then branch that there is no such assignment.

Certified Attachment Patterns, from the above definition, apply to “non-self-initial-
izing variables”. This includes variables of attached types that are not self-initializing,
but also variables of detachable types, which we had not considered for a while. In fact,
as the reader may have noted, /10/ is meaningful only for a detachable type; if the type
of x is attached, and not self-initializing, then the attempt to evaluate it in the test
x /= Void of /10/ would not work; and the test is meaningless anyway for x of an
attached type. But for detachable x the CAP is useful, as it allows us to perform a call
of target x as part of the Instructions.

Such calls are indeed valid. The Target Validity Rule, the basic constraint of the
void-safe type system, stated that “A qualified call a.f is only valid if a is attached”.
As noted, this usually means that the type of a is attached, but we can generalize the
definition to take advantage of CAPs:

Definition: Certified Attachment Pattern (CAP)
A Certified Attachment Pattern for a non-self-initializing variable x is a
general program context in which x is guaranteed to be non-void.

if x /= Void then /10/
... Any Instructions here, except for assignments of target x.

end

Definition: Attached expression
An expression a is attached if and only if either:
• Its type is an attached type.
• It occurs as part of a Certified Attachment Pattern for a.

18 B. Meyer

Without this CAP, we would have, for every use of a local variable x of a detachable
types, to write an Object Test (with the need to shadow x with an explicitly declared
Object-Test-Local y, as in if {y: TYPE_OF_X} x then ...) every time we want to use
x as target of a call. Occasion ally this cannot be avoided, but often the routine’s algo-
rithm naturally includes if x /= Void then ..., which the CAP allows us to use as it
stands, in the way we would normally do.

An associated CAP is for x in the else part of if x = Void then ... else ... end.
Another one for x, particularly important for class invariants, is in other_condition in

where and then is the nonstrict conjunction operator, guaranteeing that the second op-
erand will not be evaluated if the first evaluates to false. This also works if we replace
and then by implies (implication, nonstrict in Eiffel, i.e. a implies b is defined with
value true if a has value false, even if b is not defined); it works for or else if we
change the test to x = Void.

Another Certified Attachment Pattern, similar to the first, is particularly important
for loops iterating on linked data structure. It is of the form

If x is a local variable (again, not an attribute), it remains attached throughout the In-
structions. This makes possible, without further ado — in particular, without any Ob-
ject Test — a whole range of common traversal algorithms, such as this one for search-
ing in a linked list:

(Result starts out false; the loop will set it to true if and only if the item in one of the
list cells has an item field equal to sought_value. x is as before a local variable) The
CAP enables us to write the loop exactly as we would write it anyway, with the guar-
antee that it will not produce any void call. A look the previous version of the EiffelBase
library suggests that many existing loops will similarly compile and run “as is”; occa-

x /= Void and then other_condition

from
...

until
x = Void

loop
... Any Instructions not assigning to x ...

end

Attached Types and Their Application to Three Open Problems 19

sionally, application of the Target Validity rule will require a slight rewrite, at worst in-
clusion of some instructions in an Object Test. This is extremely encouraging (especial-
ly given the complexity of some of the intermediate suggestions, some involving chang-
es to the loop construct, that were experimented before we arrived at the general
solution reported here). More generally, we see as particularly attractive the prospect of
replacing, in such a library, hundreds of occurrences of

by just

with the non-void test turned into a compile-time guarantee (SOME_TYPE being an
attached type) that x indeed represents an object, so that we can concentrate on the more
meaningful contractual properties such as x.some_property.

A CAP, very useful in practice, applies to the instructions that immediately follow
a series of creation instructions create a ..., for one or more a: these instructions are a
CAP for such a. Beyond local variables, this also applies to attributes, somewhat
neglected by the previous CAPs, and enables us to handle many simple cases such as
guaranteeing that a just created Result of a function, as in /8/ and /9/, is attached as
expected.

Finally, as a concession to programmers who prefer to run the risk of an exception
in the case of a variable that shouldn’t be void but is, we include as CAP the position
immediately following

taking advantage of Eiffel’s check instruction. This instruction will raise an exception
if x is void. This CAP is an escape valve, as we do not feel like preventing programmers
from using an exception-based style if that’s their choice (which we may disapprove).

Using CAPs to guarantee attachment is a pessimistic policy, erring, if at all, on the
side of safety: if we cannot absolutely guarantee the impossibility of a void value, the
Target Validity rule will (except, as noted, under backward-compatibility compiler
options, to avoid breaking existing code) reject the code. The design rule for CAPs is
not that they support all correct cases, but that they reject any incorrect case. We can
afford to miss some correct cases if they do not occur too frequently; the only drawback

some_routine (x: SOME_TYPE)
require

x /= Void
x.some_property

some_routine (x: SOME_TYPE)
require

x.some_property

check
x /= Void

end

20 B. Meyer

will be that programmers may have, in some extreme and (we hope) rare situations, an
Object Test that appears unnecessary. (Remember that one of the reasons those cases
are so rare is that CAPs are only a technique of next-to-last resort, and Object Tests of
the last one: in many practical cases the Eiffel programmer can rely on self-initializing
types or variables.) As a result we can afford not to care too much about cases that worry
the Spec# designers [3] [1], such as a creation procedure that needs to access an attribute
that one is not sure has already been initialized. In Eiffel, the attribute will often be of
a self-initializing type, or itself be declared attribute ... so that it is self-initializing; if
not, there might be a matching CAP; if not, the programmer can always get away with
an Object Test or, if that’s the preferred style, force a CAP with a check instruction as
above. We don’t have to turn our compilers into prodigies of dataflow analysis.

We do not, in fact, want CAPs to be too sophisticated. They should cover situations
where it is immediately obvious to a human reader (and, besides, true!) that an expres-
sion cannot take on a void value even though it is neither of an attached type nor self-
initializing. The argument should be simple and understandable. If it is convoluted, it
may be just as well to force a slight rewrite of the immediate context to make the safety
argument compelling. In other works, when it comes to establishing guaranteed attach-
ment status, we do not want Eiffel compilers to be too smart about possible voidness.
The argument should always remain clearly understandable to the reader of the pro-
gram, in the Eiffel spirit of clarity and quality-focused software engineering. (There is
still a great need for sophisticated dataflow analysis and more generally for very smart
compiler writers: generate the fastest and most compact code possible.)

This approach rests under the assumption that a small number of simple CAPs cap-
ture the vast majority of practical situations. This seems to be the case with the set of
CAPs sketched above, covering most of what has been included in the Eiffel standard,
where they are of course specified much more precisely. On the organizational side, the
existence of an international standards committee provides a good framework: even if
the CAP catalog remains separate from the Eiffel standard proper, permitting more fre-
quent additions, it should remain subject to strict quality control and approval by a
group of experts after careful evaluation. Technically (beyond “proof by committee”),
the goal should be, with the development of a proper mathematical framework, to prove
— through machine-validated proofs — the validity of proposed CAPs. The three cri-
teria that must remain in force throughout that process are:

• A guarantee of correctness beyond any doubt.

• Simple enforceability by any reasonable compiler, without dataflow analysis.

• Understandability of all CAPs by any reasonably qualified programmer.

The Object Test form of boolean expression, {x: T} exp, was presented in the Overview,
which gave the essentials. T is an attached type; exp is an expression; x is a fresh name
not used for any entity in the enclosing context, and is known as the Object-Test-Local
of the expression. Evaluation of the expression:

Attached Types and Their Application to Three Open Problems 21

6 Object Tests and Their Scopes

• Yields true if and only if the value of exp is attached to an object of type T (and
so, as a particular consequence, not void).

• Has the extra effect of binding x to that value for the subsequent execution of the
program extract making up the scope of the Object Test. x is a Read-Only entity
and hence its value can never be changed over that scope.

The scope depends on where the Object Test appears. We saw that in if ot then ... else
... end, with ot an Object Test, the scope is the then part. Also, if a condition is of the
form ot and then boolexp or ot implies boolexp, the scope includes boolexp as
well. With a negated Object Test, not {x: T} exp, the scope, in a conditional instruction,
is the else part; such negated variants are particularly important for loops, since in

the whole loop clause — the loop body — is part of the scope.

The notion of scope has been criticized by some experienced Eiffel programmers
who in line with the Eiffel method’s emphasis on command-query separation [8] do not
like the idea of an expression evaluation causing initialization of an entity as a side
effect. But apart from some unease with the style there seems to be nothing fundamen-
tally wrong there, and the construct does provide a useful and general scheme.

In particular, it is easier to use than Eiffel’s earlier Assignment Attempt mechanism
x ?= y. Although an effective and widely used method of run-time type ascertainment,
the Assignment Attempt treats the non-matching case by reintroducing a void value (for
x), which in light of this entire discussion doesn’t seem the smartest idea. An Assign-
ment Attempt almost always requires declaring the target x specially as a local variable;
with Object Test we integrate the declaration in the construct. It should almost always
be followed by a test x /= Void, yet it is possible for programmers to omit that test if
they think the object will always match; this is a source of potential unreliability. Here
we essentially force such a test through the notion of scope.

In general, the Object Test seems an attractive alternative to the various run-time
type identification and ascertainment (including downcasting) in various languages; it
seems to subsume them all.

Perhaps the most delicate part of the attachment problem is the connection with generic-
ity. There turns out to be a remarkably simple solution. (This needs to be pointed out
from the start, because the detailed analysis leading to that solution is somewhat long-
ish. But the end result is a four-line rule that can be taught in a couple of minutes.)

Consider a container class such as ARRAY [G] (a Kernel Library class) or LIST
[G]. G is the “formal generic parameter”, representing an arbitrary type. To turn the
class into a type, we need to provide an “actual generic parameter”, itself a type, as
in ARRAY [INTEGER], LIST [EMPLOYEE]. This process is called a “generic deri-
vation”. The actual generic parameter may itself be generically derived, as in ARRAY
[LIST [EMPLOYEE]].

from ... until not {x: T} exp loop ... end

22 B. Meyer

7 Generic Classes

Genericity can be constrained, as in HASH_TABLE [ELEMENT, KEY –>
HASHABLE] which will accept a generic derivation HASH_TABLE [T, STRING]
only if STRING conforms to (inherits from) the library class HASHABLE (in the Eiffel
Kernel Library it does). Unconstrained genericity, as in ARRAY [G], is formally an
abbreviation for ARRAY [G –> ANY].

None of these class declarations places any requirement on the attachment status of
a type. You can use — subject to restrictions discussed now — ARRAY [T] as well as
ARRAY [? T]. The same holds even for constrained genericity: attachment status does
not affect conformance of types. (So if U inherits from T, ? U still conforms to T. It’s
only for entities and expressions that the rules are stricter: With x: T and y: ? U, y does
not conform to x, prohibiting the assignment x := y.) Without such rules, we would have
to provide two versions of ARRAY and any other container class: once for attached
types, one for detachable types. Not an attractive prospect.

Now consider a variable of type G in a generic class C [G]. What about its initiali-
zation ? G stands for an arbitrary type: detachable or attached; if attached, self-initial-
izing or not. Within the class we don’t know. But a client class using a particular generic
derivation needs to know! Perhaps the most vivid example is array access. Consider the
declarations and instruction

This sets a certain entry to a certain value. Now the client may want to access an array
entry, the same or another:

T is an attached type. Instruction /11/ will indeed store an attached value into the i-th
entry, assuming the array implementation does its job properly. Since the class ARRAY
[G] will, as one may expect, give for function item the signature

and the actual generic parameter for arr is T, instruction /12/ correspondingly expects
the call arr.item (j) to return a T result, for assignment to y. This should be the case for
j = i, but what about other values of j, for which the entry hasn’t been explicitly set by
a put yet?

We expect default initialization for such items of container data structures, as for
any other entities. But how is class ARRAY [G], or any other container class, to perform
this initialization in a way that will work for all possible actual generic parameters:

x, y: T
i, j: INTEGER
arr: ARRAY [T]
...
arr.put (x, i) -- Sets entry of index i to x; Can also be /11/

-- written more conventionally as arr [i] := x

y := arr.item (j) -- Can also be written as y := arr [j] /12/

item (i: INTEGER): G

Attached Types and Their Application to Three Open Problems 23

detachable, as in ARRAY [? T], expanded, or attached as with ARRAY [T] but with T
either self-initializing or not?

The tempting solution is to provide several versions of the class for these different
cases, but, as already noted, we’d like to avoid that if at all possible. We must find a way
to support actual generic parameters that are detachable, easy enough since we can
always initialize a G variable to Void, or attached, the harder case since then we must
be faithful to our clients and always return an attached result for queries such as item
that yield a G.

The result of such a query will be set by normal instructions of the language, for
example creations or assignments. For example the final instruction of a query such as
item may be Result := x for some x. Then Result will be attached if an only if x is
attached. Although x could be a general expression, the properties of expressions are
deducible from those of their constituents, so in the end the problem reduces to guaran-
teeing that a certain entity x of the class, of type G, is attached whenever the corre-
sponding actual parameter T is. Let’s consider the possible kinds of occurrence of x:

G1 x may be a formal argument of a routine of C. From the conformance rules, which
state that only G itself conforms to G, x will be of type T (the actual generic pa-
rameter of our example), detachable or attached exactly as we want it to be. Per-
fect! Other cases of read-only entities are just as straightforward. From then on
we consider only variables.

G2 We may be using x as a target of a creation instruction create x.make (...) or
just create x. That’s the easiest case: by construction, x will always be attached,
regardless of the status of T. (To make such creation instructions possible the for-
mal generic parameter must satisfy some rules, part of the general Eiffel con-
straints: it must specify the creation procedures in the generic constraint, as in C
[G –> C create make end], where make is a procedure of C, or similarly C [G
–> ANY create default_create end]. Then the actual generic parameter T must
provide the specified procedures available as creation procedures.)

G3 We may be using x as the target of an assignment x := y. Then the problem is just
pushed recursively to an assessment of the attachment status of y.

G4 The last two cases generalize to that of an occurrence in a Certified Assignment
Pattern resulting from the presence of such a creation instruction or assignment
instruction guaranteed to yield an attached target, for example at the beginning of
a routine.

G5 So the only case that remains in doubt is the use of x — for example in the source
of an assignment — without any clear guarantee that it has been initialized. If x’s
type were not a formal generic, we would then require x to be self-initializing: ei-
ther by itself, through an attribute clause, or by being of a self-initializing type.
But here — except if we get a self-initializing attribute x of type G, a possible but
rare case — we expect the guarantee that G represents a self-initializing type.

We don’t have that guarantee in the general case; T, as noted, may be of any kind. And
yet if T is not self-initializing we won’t be able to give the client what it expects. So
what we need, to make the mechanism complete, is language support for specifying that
a generic parameter must be self-initializing (that is to say, as defined earlier, either de-

24 B. Meyer

tachable or providing default_create as a creation procedure). The syntax to specify
this is simply to declare the class, instead of just C [G], as

This syntax is subject to criticism as it reuses a convention, the ? of detachable types,
with a slightly different meaning. But it seemed preferable to the invention of a new
keyword; it might change if too many people find it repulsive, but what matters here is
the semantic aspect, captured by the validity rule:

A formal generic parameter of the form is known as a self-initializing formal; clearly
we must add this case to the list of possibilities in the definition of self-initializing types.

In the Standard these are two separate validity rules. There are both very easy to
state and apply. The first is for the authors of generic classes — typically a relatively
small group of programmers, mostly those who build libraries — and the second for
authors of clients of such classes; they’re a much larger crowd, typically including all
application programmers, since it’s hard to think of an application that doesn’t rely on
generic classes for arrays, lists and the like.

Class ARRAY will fall under clause 1, declared as ARRAY [? G]; this makes it
possible to have arrays of T elements for an attached type T. The rule is very easy to
explain to ordinary application programmers (the second group): ARRAY gives you a
guarantee of initialization — you’ll never get back a void entry from an ARRAY [T],
through arr.item (i), or arr [i] which means the same thing —, so you must provide that
default initialization yourself by equipping T with a default_create. Now if you can’t,
for example if T is really someone else’s type, then don’t worry, that’s OK too: instead
of an ARRAY [T] use an ARRAY [? T]; simply don’t expect arr [i] to give you back a
T, it will give you a ? T, possibly void, which you’ll have to run through an Object Test
if you want to use it as attached, for example as the target of a call. Fair enough, don’t
you agree?

This ? G declaration leading to a requirement of self-initializing actual generic
parameters applies to class ARRAY because of the specific nature of arrays, where ini-
tialization has to sweep through all entries at once. It doesn’t have to be carried through
to data structures subject to finer programmer control. For example, in class LIST [G]
and all its EiffelBase descendants representing various implementations of sequential

class C [? G] ...

Generic Initialization rule
Consider a formal generic parameter G of a class C.

1. If any instruction or expression of C uses an entity of type G in a state in which
it has not been provably initialized, the class declaration must specify ? G
rather than just G.

2. If the class declaration specifies ? G, then any actual generic parameter for G
must be self-initializing.

Attached Types and Their Application to Three Open Problems 25

lists, such as LINKED_LIST [G], TWO_WAY_LIST [G], ARRAYED_LIST [G] etc.,
the basic operation for inserting an item is your_list.extend (x), adding x at the end,
with implementations such as

Then, to get the items of a list, we access fields of list cells, of type LINKABLE [G] for
the same G, through queries that return a G. This is case G1, the easiest one, in the
above list, guaranteeing everything we need to serve our attached and detachable clients
alike.

Most generic classes will be like this and will require no modification whatsoever,
taking just a G rather than a ? G. ARRAY and variants (two-dimensional arrays etc.)
are an exception, very important in practice, and of course there will be a few other
cases.

Having completed Void Call Eradication, we come to the second major problem, whose
discussion (to reassure the reader) will be significantly shorter; not that the problem is
easier or less important, but simply because the solution will almost trivially follow
from the buildup so far.

Typed object-oriented programming languages are almost all novariant: if you
redefine a routine in a descendant of the class containing its original declaration, you
cannot change its signature — the type of its arguments and results.

And yet... modeling the systems of the world seems to require such variance. As a
typical example, consider (see the figure on the opposing page) a class VEHICLE with
a query and command

A vehicle has a driver, of type DRIVER (a companion class) and a procedure register
that assigns a driver. No we introduce descendant classes TRUCK and BICYCLE of
VEHICLE, and TRUCKER and BIKER of DRIVER. Shouldn’t driver change type,
correspondingly, in TRUCK and BICYCLE, to TRUCKER and BIKER respectively?
All signs are that it should. But novariance prevents this.

The policy that would allow such type redefinitions is called covariance (from ter-
minology introduced by Luca Cardelli); “co” because the redefinition follows the direc-
tion of inheritance.

extend (x: G)
-- Add x at end.

local
new_cell: LINKABLE [G]

do
create new_cell.make (x)

end

driver: DRIVER
register (d: DRIVER) do driver := d end /13/

26 B. Meyer

8 Getting Rid of Catcalls

In fact there is no type risk associated with redefining query results, such as driver, co-
variantly. Still, most languages don’t permit this, probably because then programmers
wouldn’t understand why they can also redefine routine arguments covariantly. If you
redefine driver, you will also want to redefine register so that its signature reads

and so on. Eiffel allows you to do this and in fact provides an important abbreviation;
if you know ahead of time (that is to say, in the ancestor class) that an entity will be co-
variant, you can avoid redefinitions altogether by declaring the entity from the start as
“anchored” to another through the like keyword: here in TRUCK you can replace /13/
by

where the like type declaration anchors d to driver, so that the redefinitions of /14/ and
/15/ are no longer needed explicitly (but the effect is the same). like, avoiding explicit
“redefinition avalanche”, is the covariant mechanism par excellence.

With covariant arguments we have a problem [9] because of polymorphism and
dynamic binding. The declarations and call

look reasonable enough; but what the call is preceded by the assignments

register (d: TRUCKER) do driver := d end -- in TRUCK /14/
register (d: BIKER) do driver := d end -- in BIKE /15/

register (d: like driver) ... Rest as before ... -- in VEHICLE /16/

v: VEHICLE
d: DRIVER
...
v.register (d)

v := some_truck
d := some_biker

driver: TRUCKER
assign (d: TRUCKER)

TRUCKER

DRIVER

BIKER

Inherits from

BIKE

VEHICLE

TRUCK

Client of

driver: DRIVER
assign (d: DRIVER)

Attached Types and Their Application to Three Open Problems 27

with the types of the assignment sources as implied by their names? We end up assign-
ing to a truck a driver qualified only to ride a bike. Then when the execution attempts,
on an object of type TRUCKER, to access a feature of the driver — legitimately as-
sumed to be a truck driver, on the basis of the redefinition —, for example driv-
er.license_expiration_date, we get a crash, known as a catcall (assuming truck li-
censes expire, but bike licenses don’t). This is the reason novariance is the general rule:
even though catcalls happen rarely in well-written programs, they are just as much of a
risk as void calls.

The solution proposed here is simple: force the programmer who makes a covariant
argument redeclaration to recognize the risk through the following rule:

In our example an explicit redeclaration will have to be written, instead of /14/

and an anchored one, instead of /16/:

This requires the body of the routine (in the redefined version for the first case, already
in the original version for the second case) to perform an explicit Object Test if it wants
to apply a call to the argument, ascertaining it to be of the covariantly redefined type.
Catcalls clearly go away.

The semantics of ? U in the covariant redefinition of an argument x originally of
type T is slightly different from the usual one involving possible void values. It really
means “from T down to U”. It also requires a particular convention rule for the seman-
tics of a new precondition clause of the form require else x.some_U_property (we
interpret it as {y: U} x and then y.some_U_property). So there is a certain amount
of kludginess on the theoretical side. But in practice the technique seems to allow us to
keep covariance for expressiveness, while removing the dangers.

This technique is not so far from what programmers instinctively do in languages
such as C++, Java and C# which enforce novariance. The modeled system, as noted,
often cries for covariance. So in the descendant class the programmer will introduce a
variable of the new type, the one really desired, and “downcast” (the equivalent of an
Object Test) the novariant argument to it. One finds numerous examples of this pattern
in practical code from the languages cited. The above rule leads us to a similar solution,
but it is more explicit and, one may argue, better for modeling realism: the programmer
specifies, in the redefinition, the “true” new type of the argument (like TRUCKER); the

Covariant argument redeclaration rule
The type of a covariant argument redeclaration, or of an anchored (like)
argument declaration, must be detachable.

register (d: ? TRUCKER) ... -- in TRUCK /17/

register (d: ? like driver) ... -- in VEHICLE /18/

28 B. Meyer

type system accepts his covariant behavior, but forces him to recognize the risk to of
that behavior to others around him, specifically to “polymorphic perverts” (callers of
the original routine which, through polymorphism, actually use the new argument type
disguised under the old one), and to handle that risk by checking explicitly for the type
of the actual objects received through the formal argument.

The third major problem to which the ideas discussed here provide a solution is lazy ob-
ject reservation in concurrent object-oriented programming.

Concurrency is badly in need of techniques that will make concurrent programs
(multithreaded, multi-processed, networked, web-serviced...) as clear and trustworthy as
those we write for sequential applications. Common concurrent mechanisms, most nota-
bly thread libraries, still rely on 1960-era concepts, such as semaphores and locks. Dead-
locks and data races are a constant concern and a not so infrequent practical occurrence.

An effort to bring concurrent programming to the same level of abstraction and
quality that object technology has brought to the sequential world led to the definition
of the SCOOP model of computation (Simple Concurrent Object-Oriented Program-
ming [11], with a first implementation available from ETH). This is not the place to go
through the details of SCOOP, but one aspect is directly relevant. If an entity x denotes
a “separate” object — one handled by a thread of control, or “processor”, other than
the processor handling calls to the current object — it appears essential to permit a call
of the form x.f only if x is an argument of the enclosing routine r. Then a call to r, with
the corresponding actual argument a representing a separate object, will proceed only
when it has obtained exclusive access to that object, and then will retain that access for
the duration of the call. Coupled with the use of preconditions as wait conditions, this
is the principal synchronization mechanism, and leads to elegant algorithms with very
little explicit synchronization code (see for example the Dining Philosophers in [11]).

The rule then is:

A specific consequence of this policy is of direct interest for this discussion:

Validity and semantics of separate calls
A call on a separate object is permitted only if the object is known through
a formal argument to the enclosing routine.
Passing the corresponding separate actual arguments to the routine will
cause a wait until they are all available, and will reserve them for the
duration of the call.

Object Reservation rule
Passing a separate actual argument a to a routine r reserves the associated
object.

Attached Types and Their Application to Three Open Problems 29

9 An Application to Concurrency

The corresponding formal argument x in r must also be declared as separate, so that
it is immediately clear, from the interface of r, that it will perform an object reservation.

So far this has implied the converse rule: if a is separate, r (a) will wait until the
object is available, and then will reserve it.

But this second part is too restrictive. If r doesn’t actually include any call x.f where
x is the formal argument corresponding to a, we don’t need to wait, and the policy could
actually cause deadlock. For example in

we just use x as source of an assignment. The actual calls will be done later using
keep_it, which we will have to pass (according to the above validity rule) as actual ar-
gument to some other routine, which performs such calls. But in a call to this r we don’t
need to wait on x, and don’t want to.

This could be treated as a compiler optimization: the body of r doesn’t perform any
call on x, so we can skip the object reservation. But this is not an acceptable solution,
for two reasons:

• The semantics — including waiting or not — should be immediately clear to cli-
ent programmers. They will see only the interface (signature and contracts), not
the do clause.

• In a descendant class, we can redefine r so that it now performs a call of target x.
Yet under dynamic binding a client could unwittingly be calling the redefined
version!

We need a way to specify, as part of the official routine interface, that a formal argument
such as x above is, although separate, non-blocking.

The solution proposed is: use a detachable type, here ? separate T. With the dec-
laration

no reservation will occur.

With this policy, whether reservation occurs is part of the routine’s specification as
documented to client programmers. The rule is consistent with the general property of
detachable and attached types: we need x to be attached only if we are going to perform
a call on it.

In the example, we can only retain the assignment to keep_it if this attribute is itself
detachable. If it is attached, declared as separate T rather than ? separate T, we must
rewrite the assignment as

keep_it: separate T -- An attribute

r (x: separate T)
-- Remember a for later use.

do
keep_it := x

end

r (x: ? separate T) -- The rest as above

30 B. Meyer

with the obvious semantic rule that an object test of separate type causes reservation
of the object. Unlike in the case of an argument, this rule is acceptable since no infor-
mation hiding is involved: we are looking at implementation, not a routine’s interface.

The technique also fits well with inheritance. If r had an argument of type ? sepa-
rate T, we cannot of course redefine it as separate T in a descendant (the reverse is,
as always, possible). But if the descendant version does need to perform a call on x,
whereas the original didn’t, it can achieve the result through an Object Test:

which will cause a wait — not on entry to the routine (which could contradict the se-
mantics advertised to the client) but as part of that routine’s implementation.

It appears then that the distinction between attached and detachable types, and the
general-purpose Object Test with its semantics adapted to the concurrent (separate)
case, solve this particular problem of concurrent object-oriented programming too.

It was impossible to resist including the self-citation that opens this article, but hard to
resist the temptation of removing the parts that don’t quite fit, especially the bit about
the two or three minutes. The ideas presented here didn’t come with the self-evidence
of morning mist; it was more like the icy rain of an endless Baltic winter. Yet the mech-
anism is indeed a minuscule syntax extension, the ? symbol (even if used with two
slightly different semantics), combined with the replacement of an existing instruction,
the assignment attempt, by a simpler and more general mechanism, the Object Test.
With a few validity rules that any reasonable program should meet without the program-
mer thinking much about them — even though the presentation in this article may have
appeared long-winded since it took into account many details, special cases, compati-
bility issues and the rationale for every decision — the result does address several major
problems in one sweep; one of these problems, the starting point for the whole effort, is
the only remaining source of crashes in typed object-oriented programs, and hence of
critical practical importance. The second one has also been the subject of a considerable
literature. The third one is less well known, but of importance for concurrent applica-
tions. And in passing we have seen that for two issues that had been addressed by pre-
vious mechanisms — Run-Time Type Identification, possible in many languages, and
“once per object”, for which Eiffel already had a solution — the mechanisms allows
new techniques that may offer at least an incremental improvement on those already
known.

if {y: separate T} x then
keep_it := y

end

if {y: separate T} x then
y.some_operation

end

Attached Types and Their Application to Three Open Problems 31

10 Conclusion

So while it is for the reader to judge whether the citation is arrogant, I do hope that
the mechanisms presented above, as available in Standard Eiffel, will have a lasting
effect on the quality of software that we can produce, using the best of object technology.

References

[1] Mike Barnett, Rustan Leino and Wolfram Schulte: The Spec# Programming System; CAS-
SIS proceedings, 2004.

[2] Craig Chambers et al., papers on the Self language at http://research.sun.com/self/papers/
papers.html.

[3] Manuel Fähndrich and Rustan Leino: Declaring and Checking Non-null Types in an Ob-
ject-Oriented Language; in OOPSLA 2003, SIGPLAN Notices, vol. 38 no. 11, November
2003, ACM, pp. 302-312.

[4] ECMA Technical Committee 39 (Programming and Scripting Languages) Technical
Group 4 (Eiffel): Eiffel Analysis, Design and Programming Language, Draft international
standard, April 2005.

[5] Erik Meijer and Wolfram Schulte: Unifying Tables, Objects, and Documents; in Proc. DP-
COOL 2003, also at http://research.microsoft.com/~emeijer/Papers/XS.pdf.

[6] Bertrand Meyer: Eiffel: The Language, Prentice Hall 1990 (revised printing 1991). See
also [12].

[7] Bertrand Meyer: Reusable Software: The Base Object-Oriented Component Libraries,
Prentice Hall, 1994.

[8] Bertrand Meyer: Object-Oriented Software Construction, 2nd edition, Prentice Hall, 1997.
[9] Bertrand Meyer, reference [8], chapter 17: “Typing”.

[10] Bertrand Meyer, Prelude to a Theory of Void; in Journal of Object-Oriented Program-
ming, vol. 11, no. 7, November-December 1998, pages 36-48.

[11] Bertrand Meyer, reference [8], chapter 30: Concurrency, distribution, client-server and the
Internet.

[12] Bertrand Meyer, Standard Eiffel, new edition of [6], in progress.

3 B. Meyer2

The Emergent Structure of Development Tasks

Gail C. Murphy1, Mik Kersten1, Martin P. Robillard2, and Davor Čubranić3

1 Department of Computer Science, University of British Columbia
murphy@cs.ubc.ca, beatmik@acm.org
2 School of Computer Science, McGill University

martin@cs.mcgill.ca
3 Department of Computer Science, University of Victoria

cubranic@cs.uvic.ca

Abstract. Integrated development environments have been designed and engi-
neered to display structural information about the source code of large systems.
When a development task lines up with the structure of the system, the tools in
these environments do a great job of supporting developers in their work. Unfor-
tunately, many development tasks do not have this characteristic. Instead, they
involve changes that are scattered across the source code and various other kinds
of artifacts, including bug reports and documentation. Today’s development en-
vironments provide little support for working with scattered pieces of a system,
and as a result, are not adequately supporting the ways in which developers work
on the system. Fortunately, many development tasks do have a structure. This
structure emerges from a developer’s actions when changing the system. In this
paper, we describe how the structure of many tasks crosscuts system artifacts, and
how by capturing that structure, we can make it as easy for developers to work
on changes scattered across the system’s structure as it is to work on changes that
line up with the system’s structure.

1 Introduction

The tools that developers use to build a large software system provide an abundance
of information about the structure of the system. Integrated development environments
(IDEs), for example, include views that describe inheritance hierarchies, that present
the results of system-wide searches about callers of methods, and that report misuses
of interfaces. These IDEs have made it easier for developers to cope with the complex
information structures that comprise a large software system.

However, some of our recent work suggests that the focus on providing extensive
structural information may be having two negative effects on development:

– developers may be spending more time looking for relevant information amongst
the morass presented than working with it [10], and

– developers may not always be finding relevant information, resulting in incomplete
solutions that lead to faults [4, 19].

We believe that these problems can be addressed by considering how a developer
works on the system. More often than not, development tasks require changes that are

A.P. Black (Ed.): ECOOP 2005, LNCS 3586, pp. 33–48, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

34 G.C. Murphy et al.

scattered across system artifacts. For instance, a developer working on a change task
might change parts of several classes, may read and edit comments on parts of a bug
report, may update parts of a web document, and so on. As a developer navigates to and
edits these pieces, a structure of the task emerges.

In this paper, we describe how this structure crosscuts the structures of system arti-
facts and we explore how the capture and description of task structure can be used to
present information and support operations in an IDE in a way that better matches how a
developer works. We believe support for task structure can improve the effectiveness of
existing tools and can enable support for new operations that can improve a developer’s
individual and group work.

We begin with a characterization of how tasks crosscut system artifacts, provid-
ing data about the prevalence of scattered changes and arguing that the changes have
structure that is crosscutting (Sect. 2). We then introduce a working definition of task
structure (Sect. 3) and describe what an IDE with task structure might provide to a de-
veloper (Sect. 4). We then elaborate on the possibilities, explaining some of our initial
efforts in making task structure explicit (Sect. 5), discuss some open questions (Sect. 6),
and describe how our ideas relate to earlier efforts (Sect. 7).

2 Tasks Crosscut Artifacts

Building a software system involves many different kinds of tasks. A one-year diary
study of 13 developers who were involved in building a large telecommunications sys-
tem found 13 different kinds of tasks, including estimation, high-level design, code,
and customer documentation [15]. In this paper, we focus on change tasks that affect
the functionality of the system in some way, by fixing bugs, improving performance,
or implementing new features. To simplify the discourse in this paper, we use the term
task to mean change task.

To complete a task, a developer typically has to interact with several kinds of arti-
facts, including source code, bug descriptions,1 test cases, and various flavours of docu-
mentation. Conceptually, these artifacts form an information space from which an IDE
draws information to display to a developer. Since the source code tends to form the
majority of the structure, we focus our characterization mainly on it, returning to the
more general information space in later sections of the paper.

2.1 Occurrence of Scattered Changes

It has long been a goal of programming language and software engineering research
to make it possible to express a system such that most modification tasks require only
localized changes to a codebase [14]. To achieve this goal, modularity mechanisms have
been introduced into the programming languages we use (e.g., classes in object-oriented
languages) and various design practices have evolved (e.g., design patterns [6]). Despite
these advances, we contend that the completion of many tasks still requires changes that
are scattered across a code base.

1 Bug descriptions, or reports, at least in many open-source projects, are used to track not just
faults with the system, but enhancements and other desired changes.

The Emergent Structure of Development Tasks 35

Fig. 1. The number of files (x-axis) involved in check-in transactions (y-axis) for Eclipse and
Mozilla

To illustrate that many changes have this property, Fig. 1 shows the number of files
checked-in as part of transactions from two large open-source projects — Eclipse and
Mozilla.2 Following a common heuristic used for open-source projects, a transaction is
defined as consisting of file revisions that were checked in by the same author with the
same check-in comment close in time [13]. For both of these systems, over 90% of the
transactions involve changes to more than one file.

To provide some insight into the relationship between the changes and the structure
of the system, we randomly sampled 20 transactions that involved four files from the
Eclipse data. Of these transactions, fifteen involved changes in multiple classes located
close together (i.e., within the same package). These changes are scattered, but it might
be considered that they are contained within some notion of module (i.e., a Java pack-
age). However, five transactions included changes across packages, and of these five,
two included changes across more than one plug-in (a significant grouping of related
functionality in Eclipse). Assuming that a transaction roughly corresponds to a task,3 a
reasonable number of tasks (25% of those sampled) involved changes scattered across
non-local parts of the system structure.

2.2 Crosscutting Structure of Changes

Are scattered changes simply the result of a bad system structure or is there some struc-
ture to the scattering? To provide some insight into these questions, we consider a typi-

2 The Eclipse project can be found at eclipse.org and the Mozilla project can be found
at mozilla.org. The check-in data for Eclipse comes from 2001/04/28 until 2002/10/01
and the check-in data for Mozilla comes from 1998/03/27 until 2002/05/08. Only data for
transactions involving 20 or less files is shown.

3 This is a reasonable assumption because of the work practices used in developing this open-
source system.

36 G.C. Murphy et al.

cal change in the Eclipse code base. We chose to use an example from Eclipse because
it is generally considered to be well-designed and extensible. We follow Eclipse docu-
mentation guidelines in the approach we take to implementing the change.

The task of interest involves a change to a hypothetical Eclipse plug-in to support
the editing and viewing of an HTML document. This HTML plug-in provides an outline
view that displays the structure of an HTML document as a tree, where the headings
and paragraphs are nodes in the tree. Imagine that your task is to modify the outline
view of the HTML plug-in to add nodes that represent hyperlinks.

To perform this task, you need to update both the HTML document model and the
view. Assuming the recommended structure for Eclipse plug-ins, this means chang-
ing methods in a ContentProvider, a LabelDecorator and a Selection-
Listener class. You also need to add a menu action and update appropriate toolbars
which requires modifying another class. In addition, you need to declare the new ac-
tion and any associated icon in an XML file (i.e., plugin.xml). In total, this simple
change task involves modifications scattered across four Java classes, two parts of an
XML file, and an icon resource.

Although these changes are scattered, there is structure to the change task; the struc-
ture happens to crosscut multiple parts of multiple artifacts. In simple terms, two struc-
tures crosscut each other if neither can fit neatly inside the structure provided by the
other [12]. A developer well-versed in Eclipse plug-in development would be able to
explain this structure, and much of it is recorded in the documentation about how to
extend Eclipse. The structure of the source code has been chosen to make adding a new
listener to a view a change that is localized in the structure, whereas adding a brand-new
element (as in our task) is a change that crosscuts the structure.

We believe that many of the tasks involving scattered changes are not ad hoc, but
that they do have a crosscutting structure. In our work, we have found that this cross-
cutting structure emerges from how a developer works with the code base [19, 10]. In
the remainder of the paper, we show how this structure, once made explicit, can be used
to make IDEs work better for developers.

3 Task Structure

To ground our discussion, we introduce a simple working definition of task structure.

A task structure consists of the parts of a software system and relationships
between those parts that were changed to complete the task.

Conceptually, consider forming a graph based on information found in all of the ar-
tifacts comprising the system. In this graph, the nodes are structural parts of the artifacts
and the edges are relationships between those parts. The structure of a task consists of
a collection of subgraphs from this graph. Each node in the graph includes information
about the artifact in which it appears, the name of the part, and the type of the part: each
kind of artifact will have its own types of parts. For example, the types of parts found in
a Java class include method definitions, field definitions, and inner class definitions. As
another example, the types of parts found in a bug report include dates when the report
is opened or closed, and text fields with discussions about the report. Each edge in the

The Emergent Structure of Development Tasks 37

Fig. 2. A graph showing parts of artifacts and relationships between the parts comprising a simple
system. The highlighted portions represent the structure of one task performed on the system

graph includes information about the artifact in which it appears (if any) and the type
of the relationship. Some relationships will be defined explicitly in a project’s artifacts,
whereas others may be inferred by tools. For example, a call between two methods in a
Java program appears explicitly in the source code, whereas a relationship that indicates
a file revision helped solve a particular bug may be inferred by a tool [3].

As a concrete example, we return to the task of adding a new element to an ex-
isting view in an Eclipse plug-in. Figure 2 shows a portion of the graph of parts and
relationships from artifacts comprising the system.4 Even though only a fraction of the
structure of a small number of artifacts is included in the graph, the amount of infor-
mation is overwhelming. However, only small parts of the graph relate to the task; the
highlighted nodes and edges in Fig. 2 form the structure of the task.

Our definition of task structure is based on completed tasks. An advantage of this
definition is that the task structure can be determined with certainty if the time points at
which the task started and finished are known. However, we also want to make use of
task structure as a task is being performed. We use task context as a means of approx-
imating task structure and as a means of describing the subgraphs of the information
space of interest when performing a task.

A task context consists of parts and relationships of artifacts relevant to a
developer as they work on the task.

4 The graph was generated using prefuse [9].

38 G.C. Murphy et al.

This definition of task context relies on the concept of relevance of parts of a system
to a task. Relevance can be defined in a number of ways, all of which include some
element of cognitive work on the part of a developer [26]. A simple way to determine
relevance is for a developer to manually mark the parts and relationships as relevant as
they are exploring code [20]. Automatic determinations of relevance are also possible.
For example, we are investigating two approaches in which relevance is based on the
interaction of the developer with the information in the environment, such as which
program elements are selected. In one approach, the interaction information is used
to build a model of the degree to which a developer is interested in different parts
of the system [10]. This degree-of-interest model is then used to predict interest in
other elements and in related project artifacts. In the second approach, relevance is
determined by analyzing the interaction information according to the frequency of visits
to a program element, the order of visits, the navigation mechanism used to find an
element (e.g., browsing, cross-reference search, etc.), and an analysis of the structural
dependencies between elements visited [21].

In the rest of this paper, we assume that task structure and task context information
is available and focus on providing some examples of how it might be used to improve
a developer’s work environment.

4 Improving a Developer’s Work with Task Structure

Imagine that you are a developer working with an IDE that includes support for cap-
turing, saving and operating on task contexts and task structures. In this section, we
describe what it might be like to use this IDE to work on a development task. As we
indicate in the scenario, several features we describe have been built or proposed as
part of earlier efforts. Task structure enables these operations to be more focused and to
provide more semantic information, without any significant input from the developer.

The system on which you are working allows a user to draw points and lines in
a window, and to change their colour.5 The system also has a mode, which when set
through a radio button, supports the undo of actions taken by the developer through the
user interface.

Your current task involves adding support to enforce the use of a predetermined
colour scheme in a drawing. A radio button is to be provided to turn the colour scheme
enforcement on and off. When the enforcement is on, the colours of points and lines in
the drawing are to be modified to meet the colour scheme and any subsequent request
to change a colour will be mapped to the colour scheme.

You start the task by navigating through some of the code attempting to find relevant
parts. As you navigate, the IDE is building up your task context based on your selections
and edits. After some navigation you determine that you need to add some code in the
ButtonsPanel class to add in the necessary radio button. At this point, your task
context includes information about several methods you have visited and the constructor
in ButtonsPanel. As you add in the call to add a new radio button, a green bug icon

5 This example is based on a simple figure editor used to teach the AspectJ language [11].

The Emergent Structure of Development Tasks 39

Fig. 3. Based on the task context, a green bug icon appears indicating another bug report may be
relevant to the task being performed

appears in the left gutter of the editor (Fig. 3).6 This icon appears because a tool in the
IDE, running in the background, has determined that there is a completed change task
whose task structure is similar to your task context.

You decide to click on the bug icon. A popup window appears that describes some
information about the bug (Fig 3). You read the description of the bug and you realize
that it is similar to the task on which you are working.7 Since the related bug has been
resolved, it has an associated task structure. You expand this task structure and the
tree view of the structure shows you which parts overlap with your task context (the
highlighted nodes in Fig. 4). You notice the HistoryUpdating aspect listed in the
task structure that supports the undo functionality. You have not considered whether you
will use an aspect to complete your task. However, you look at the code for the aspect
and realize that it implements similar functionality to what is needed for your task. After
considering the options, you decide to use an aspect-oriented approach and you create
a ColourControl aspect based on the HistoryUpdating aspect. Guided by the
previous task context, you also add an image for the new action to the system.

Before you check-in the code for your completed task, you want to ensure your
changes will not conflict with concurrent changes being made by other members of
your team. As you check-in your code using the facilities of the IDE, you select an
option to compare your task structure with any task contexts that your team members
have made available (by selecting an option in the IDE). The IDE tool supporting this
comparison looks for overlap between your task structure and your team members task
contexts and if it finds overlap, it considers any effect, using static analyses, each task
has had on the overlapping parts.

6 The user interfaces described are mock-ups of how the described functionality might be pro-
vided.

7 This type of functionality is similar to our Hipikat tool [3]. We sketch the differences between
the Hipikat approach and using task structure for this purpose in Sect. 5.

40 G.C. Murphy et al.

Fig. 4. The task structure of the completed task with highlights indicating overlap with the current
task context

Fig. 5. A comparison of your task structure with a team member’s task context identifies a possi-
ble conflict. The conflict is determined by statically analyzing the effect of each task context and
comparing the results

Figure 5 shows the results of the comparison for the task you are about to complete.
It shows that part of your local task structure includes a call to a setColor method
(left side of Fig. 5). It also shows that one of your team member’s task context’s has
modified the HistoryUpdating aspect to add advice that narrows setColor [17].
Narrowing advice may result in the setColor method not being called under some
circumstances. Given this information, you can contact your colleague to determine
how to resolve the conflicts between your changes.8

8 This type of fine-grained conflict determination has similarities to soft locking in Coven [2].

The Emergent Structure of Development Tasks 41

As noted, several of the features that task structure makes possible in this hypotheti-
cal scenario have been proposed previously. In comparison to these existing approaches,
task structure provides three benefits over existing approaches:

1. it can be determined with minimal effort from the developer as it emerges from
how the developer works on the system,

2. it provides a conceptual framework and model that can be built into an IDE to make
task-related tools easier to build, and

3. it provides information that may be used to focus views in the IDE, allowing a
greater density of relevant information to be displayed.

5 Making Use of Task Structure

The scenario described in the last section illustrates how explicit support of task struc-
ture in an IDE can benefit a developer. In this section, we elaborate on these points
and describe more possibilities. Through this section, we use the term task structure to
simplify the discourse as it should be clear when the use of task context would be more
precise.

5.1 Improving IDE Tools

An ideal IDE would present the information a developer needs, when it is needed,
and with a minimum of interaction from the developer. Such an IDE would reduce
the amount of time a developer spends trying to find relevant information. We outline
four ways that an IDE with support for task structure could help move towards this goal.

Reducing Overload in Views and Visualizations. IDEs present system structure
mostly in lists and tree views, with some graphical visualizations [24]. When used on
large systems, these existing presentation mechanisms tend to overload the developer
with information, making it difficult to find the information of interest. For example the
Package Explorer, a commonly used tree view in Eclipse which shows the decompo-
sition of Java source into packages, files, classes, and other structural elements, often
contains tens of thousands of nodes when used on a moderately-sized system (e.g., see
the left-hand side of Fig. 6; notice that the tree structure is not visible). A task’s struc-
ture can be used to determine what information should be made more conspicuous to a
developer. For instance, the task structure can be highlighted [22]. Or, the task structure
can be used to filter the view so as to show only task-relevant information as is the case
in our Mylar prototype (see the right-hand side of Figure 6; the bolded parts are the
elements that are the most important to the task) [10]. Either way, the views can make
it clear to the developer the elements important to the task.

Scoping Queries. Task structure can be used to scope the execution of code queries
performed by a developer. A default setting, for instance, may be to query code only
within one or two relationships in the overall graph of structural information (Sect. 3)
from the code on which the query is invoked. Scoping queries with task structure could
have two potential benefits: queries may execute more quickly for large systems, and the
information returned may be more relevant, reducing the time needed for a developer
to wade through search results.

42 G.C. Murphy et al.

Fig. 6. A view of the containment hierarchy of a system without Mylar active (left-hand side)
and with Mylar active (right-hand side). In the Mylar view, the focus provided by task context
enables the relevant information to fit on the screen without a scrollbar, and enables the structural
relationships to be visible

Performing Queries Automatically. In addition to scoping queries, parts in the task
structure can be used to seed queries that run automatically. We call these active queries
and they could be used to seed active views [10]. For example, the active search view in
the Mylar prototype eagerly finds and displays all Java, XML, and bug reports related to
parts in the task structure [10]. This kind of view provides a developer with the structural
information they need when it is needed. The result could be a reduction in the number
of interruptions a developer must typically make to think about and formulate a query,
as the most relevant queries are formulated and executed automatically. Active queries
also do away with the need to wait on query execution, since queries are executed
automatically in the background.

The concept may also be helpful in the implementation of the IDE. The Eclipse
IDE, for instance, requires the Abstract Syntax Tree (AST) for a class to be in memory
in order to support features such as semantic highlighting.9 However, operations that
span multiple files, such as the rename method refactoring, are time consuming and
require the developer to wait until all related ASTs are loaded into memory. The task
structure could be used to define the slices of ASTs that should be kept in memory in
order to make common refactorings instantaneous (i.e., as quick for changes across files
as they are for changes within the file).

Supporting Task Management. IDEs provide little to no support for managing the
tasks a developer is performing. The best support may be an ability to read and manage
bug reports within the IDE. Task structure can improve this situation. For example,
as part of our Mylar project, we have prototyped support for enabling developers to

9 Semantic highlighting refers to the ability to highlight code according to properties such as
whether the code is an abstract method invocation, a reference to a local variable, etc.

The Emergent Structure of Development Tasks 43

associate task structures with specific tasks and to switch between them. Mylar can
then filter the views of the system according to the selected task. The task structure
can also be attached to a bug report, enabling a developer to re-start if they return to
the bug at a later time. The task structure, in effect, is a form of externalization of the
developer’s memory of the task.

5.2 Improving Collaboration

Over the lifetime of a system many developers work on many tasks. We believe that
communicating this structure to other developers as they work, and storing it as the
system evolves, can provide collaborative tools with an effective representation of group
memory.

Forming and Accessing a Group Memory. It is not uncommon when working on
a software development project to come across a problem that is reminiscent of a past
problem with the system that has since been solved (Sect. 4). In earlier work, we demon-
strated the benefits of processing the artifacts comprising a software system to form a
group memory that may then be searched for relevant information as a developer is
performing a task [3, 4]. One benefit is that developers may be more aware of subtle,
but relevant, information. For example, in an experiment we conducted, newcomers to a
project took into account additional information presented from the group memory and
finished an assigned task more completely than experts who did not have access to the
group memory [4]. Our previous work treated task structure implicitly, forming links
automatically between parts of related artifacts. Explicitly stored task structures enable
more focused comparisons between a past system and a current system and allow new
operations across the group memory, such as an analysis tool that could identify all of
the third party APIs involved in commonly reported defects.

Sharing Task Structure. Task structure encapsulates a developer’s knowledge about
the system. As discussed above, developers may want to store this knowledge in order
to access it at a later time. In addition, they may want to share it with others. For ex-
ample, a developer delegating a task could include the task structure in order to help
the team member pick up the task where it was left off. Sharing of task structure could
also be done in real-time in order to make developers aware of the activities of their
team members. For example, in an open-source project where team members are dis-
tributed across time zones, knowing the parts of the system that have been worked on
by others can encourage dialog and prevent merge problems. In comparison to exist-
ing approaches to providing such awareness [23], task structure can enable a deeper
comparison, seeding automated handling by tools or discussions between involved de-
velopers with more information.

5.3 Improving the IDE Platform

In addition to improving the developer’s experience, task structure may help solve is-
sues related to a number of tools provided by an IDE, and may help simplify the devel-
opment of tools.

44 G.C. Murphy et al.

Capturing and Recommending Workflow. In this paper, we have focused on in-
formation overload that developers face when working on the content of large sys-
tems. These developers also face information overload in the user interfaces of IDEs.
Enterprise-application development tools, such as IBM’s Rational Software Architect,
offer sophisticated support for development across the lifecycle, which results in dozens
of views and editors, and hundreds of user interface actions. It can be difficult for devel-
opers to know what features exist, let alone try to find them. Adaptive interfaces [7] and
Eclipse’s capabilities10 address this in a general way, based on aggregate information
about how features are used. We see potential for making the user interface more aware
of the task being performed by capturing the task structure of developers who use these
tools effectively, and then mining this information for task-specific interaction patterns
of the user interface. Mined patterns may suggest ways to focus the user interface on
only those tools needed for the completion of a particular task [22].

Simplifying Tool Development. IDE platforms such as Eclipse make it easy to build
new tools that expose system structure. For example, a new view that shows all methods
overriding the currently-selected method is easy to add. In our experience, it is harder
to add tools that depend on some notion of task, and each tool must develop its own ad
hoc model of task. While it is possible to layer task information on the models provided
by the IDE through an index over existing elements and relationships, we see potential
for task information to be more central. For example, it would be beneficial to be able to
tag an element as being part of some named task, and to then be able to trigger an action
based on when an attempt is made to synchronize that element with the repository. Task
structure information could also be used to arbitrate user interface issues; for example,
a tool might use a task’s structure to determine which of several competing annotations
are most applicable to show in the gutter of an editor.

6 Open Questions

Our working definition of task structure is simple and extensional. These characteristics
make it easy to describe the possibilities of task structure and do not unduly constrain
what a task is or how developers work on tasks. It is an open question as to whether
this definition is too simple. It may be that tools built on this definition require infor-
mation about why artifacts were changed, or the order in which they were changed, to
provide meaningful information to a developer. It may also be necessary to include in
the definition notions of what constitutes a task, whether a task is worked on in one time
period or across various blocks of time, amongst others. These questions will need both
empirical and formal investigation.

Regardless of the programming language and software engineering technologies
used, we believe many change tasks have an emergent crosscutting structure because it
is impossible to simultaneously modularize a system for all kinds of changes that may
occur. This statement deserves investigation, such as a characterization of task structure

10 A capability in Eclipse is a feature set that can be enabled or disabled by a user. Capabilities
are pre-defined and configured when the IDE is shipped.

The Emergent Structure of Development Tasks 45

for changes performed on systems intended for a variety of domains, written in a variety
of languages, of different ages, and so on. It is also an open question as to whether, at
this point, more benefit to the developer might result from better support for explicit
task structure than new means of expressing sophisticated modularity.

7 Related Work

7.1 Tasks and Desktop Applications

Explicit capture and manipulation of task information has been studied in the domain of
desktop applications (e.g., document processors and email clients). Of these, the project
most similar to some of our efforts is TaskTracer [5], which is intended to help knowl-
edge workers deal effectively with interruptions, and which seeks to help knowledge
workers reuse information about tasks completed in the past. TaskTracer monitors a
worker’s interaction with desktop application resources, such as mail messages and web
documents, attempting to build up a grouping of resources related to a particular task.
The worker has to name the task being worked upon when they start the task. Although
some of our goals overlap, we differ fundamentally from TaskTracer in our intention
to maintain fine-grained structural information across artifacts; TaskTracer works only
at the level of resources or files. We believe the collection of fine-grained information
provides several benefits. For instance, we can support detailed comparisons about how
a current and a past task compare. As a second example, we can trigger the recall of
potentially useful information for a task based on the current task context.

7.2 Tasks and Development Environments

In the context of development environments, the term task has largely been used from
a tool builder’s point of view. For example, the Gandalf project recognized the variety
of tasks that needed to be supported by the software development process and created a
suite of tools to support the generation of an environment particular to a project [8]. The
researchers recognized the need to deal with such issues as expertise of the developer,
but focused on the problems that were more important at that time, such as handling the
syntax and semantics of the languages being used to develop a system.

More recently, IDEs have introduced user-defined scopes as a way of approximating
a concept of task similar to the way that we use the term in this paper. For example, in
Eclipse, a developer can define a working set which is a set of resources related through
the system’s containment hierarchy over which queries may be executed and saved.
Working sets are more coarse-grained than task structure and a developer must evolve
working sets as they change tasks, as opposed to our concept of task structure which
evolves from a developer’s work.

7.3 Manipulating Program Fragments

The size and complexity of software systems has led to many approaches for extracting
and operating on fragments of a system. We describe four approaches that are simi-
lar to our idea of task structure as a collection of system fragments. Tarr and colleagues

46 G.C. Murphy et al.

introduced the idea of multi-dimensional software decomposition to support fragments
that correspond to concerns [25]. Task structure is similar in cutting across artifacts, but
a task need not have the same conceptual coherence that one expects from a concern. In
multi-dimensional software decomposition the main operation supported on a fragment
is the integration of code into a system, whereas we have considered how task structure
supports development-oriented operations, such as work conflicts between team mem-
bers. Our earlier work on concern graphs is also related to modelling and manipulating
fragments of a system’s structure that relate to concerns [20]. A main operation sup-
ported on a concern graph is the detection of inconsistencies between a version of a
system in which a concern graph is defined and an evolved version of the system [18].
The support of inconsistency detection is possible because a concern graph captures
more intentional information than task structure. As a third example, virtual source
files were proposed to allow a programmer to define an organization for parts of the
system appropriate for a task [1]. A virtual source file is defined intentionally based on
queries and can be used for such operations as determining conflicting changes between
team members (similar to our description in Sect. 4). In contrast to virtual source files,
task structure emerges from how a developer works on the system as opposed to requir-
ing the developer to state their intention on a structure of parts of artifacts relevant to a
task. Finally, Quitslund’s MView source code editor supports the juxtaposition of code
elements selected by a query in a single view [16]. Although a fragment in his system
is restricted to the results from a set of queries over source code, it shares a similarity
with task structure in enabling a development-oriented operation over the fragments,
namely enabling editing of the code in a single window. Dealing with fragments in a
task-oriented manner may enable better integration of the various fragment ideas into
the work environments of developers.

8 Summary

Tools are supposed to make us work more effectively. IDEs have served this purpose for
developers in recent years. However, as systems grow more complex, the effectiveness
of these development environments is breaking down because they do not adequately
support tasks that involve changes to multiple artifacts. In this paper, we have described
how many of these tasks do have a structure; the structure emerges from the way in
which a developer works with the system. This emergent task structure can be identified
and used by an IDE to focus existing views and enable new operations. This support
matches the way a developer works, allowing them to modify a system without being
overwhelmed by its complexity.

Acknowledgement

Gail Murphy would like to thank AITO for the honour of the Dahl-Nygaard Junior
Prize, which made this paper possible. The authors would also like to thank Andrew
Black for encouraging a paper to be written, Annie Ying for contributing data and com-
ments, and the inspirational work of Rob Walker, Elisa Baniassad, and Al Lai. The pa-
per is much better for the insightful comments provided by John Anvik, Wesley Coelho,

The Emergent Structure of Development Tasks 47

Brian de Alwis, Jan Hannemann, Gregor Kiczales, and Eric Wohlstadter. Projects con-
tributing to the ideas presented in this paper were funded by NSERC and IBM.

References

1. M. Chu-Carroll and J. Wright. Supporting distributed collaboration through multidimen-
sional software configuration management. In SCM, volume 2649 of LNCS, pages 40–53.
Springer, 2001.

2. M. C. Chu-Carroll and S. Sprenkle. Coven: Brewing better collaboration through software
configuration management. In SIGSOFT ’00/FSE-8: Proc. of the 8th ACM SIGSOFT Int’l
Symp. on Foundations of Software Engineering, pages 88–97. ACM Press, 2000.

3. D. Čubranić and G. C. Murphy. Hipikat: Recommending pertinent software development
artifacts. In ICSE ’03: Proc. of the 25th Int’l Conf. on Software Engineering, pages 408–
418. IEEE Computer Society, 2003.

4. D. Čubranić, G. C. Murphy, J. Singer, and K. S. Booth. Learning from project history: a case
study for software development. In CSCW ’04: Proc. of the 2004 ACM Conf. on Computer
Supported Cooperative Work, pages 82–91. ACM Press, 2004.

5. A. N. Dragunov, T. G. Dietterich, K. Johnsrude, M. McLaughlin, L. Li, and J. L. Herlocker.
TaskTracer: A desktop environment to support multi-tasking knowledge workers. In IUI ’05:
Proc. of the 10th Int’l Conf. on Intelligent User Interfaces, pages 75–82. ACM Press, 2005.

6. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

7. S. Greenberg and I. H. Witten. Adaptive personalized interfaces – a question of viability.
Behaviour and Information Technology - BIT, 4:31–45, 1985.

8. A. N. Habermann and D. Notkin. Gandalf: software development environments. IEEE Trans.
Software Engineering, 12(12):1117–1127, 1986.

9. J. Heer, S. K. Card, and J. A. Landay. prefuse: a toolkit for interactive information visual-
ization. In CHI ’05: Proc. of the SIGCHI Conf. on Human Factors in Computing Systems,
pages 421–430. ACM Press, 2005.

10. M. Kersten and G. C. Murphy. Mylar: a degree-of-interest model for IDEs. In AOSD ’05:
Proc. of the 4th Int’l Conf. on Aspect-oriented Software Development, pages 159–168, 2005.

11. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An overview
of AspectJ. In ECOOP ’01: Proc. of the 15th European Conf. on Object-Oriented Program-
ming, pages 327–353. Springer, 2001.

12. H. Masuhara and G. Kiczales. Modular crosscutting in aspect-oriented mechanisms. In
ECOOP ’03: Proc. of the 17th European Conf. on Object-Oriented Programming, pages
2–28. Springer, 2003.

13. A. Mockus, R. T. Fielding, and J. Herbsleb. Two case studies of open source software devel-
opment: Apache and Mozilla. ACM Trans. Software Engineering Methodology, 11(3):309–
346, 2002.

14. D. L. Parnas. On the criteria to be used in decomposing systems into modules. Communica-
tions of the ACM, 15(12):1053–1058, 1972.

15. D. E. Perry, N. Staudenmayer, and L. G. Votta. People, organizations, and process improve-
ment. IEEE Software, 11(4):36–45, 1994.

16. P. J. Quitslund. Beyond files: programming with multiple source views. In Eclipse ’03: Proc.
of the 2003 OOPSLA Workshop on Eclipse Technology eXchange, pages 6–9. ACM Press,
2003.

17. M. Rinard, A. Salcianu, and S. Bugrara. A classification system and analysis for aspect-
oriented programs. In SIGSOFT ’04/FSE-12: Proc. of the 12th ACM SIGSOFT Int’l Symp.
on Foundations of Software Engineering, pages 147–158. ACM Press, 2004.

48 G.C. Murphy et al.

18. M. P. Robillard. Representing Concerns in Source Code. PhD thesis, University of British
Columbia, 2003.

19. M. P. Robillard, W. Coelho, and G. C. Murphy. How effective developers investigate source
code: An exploratory study. IEEE Trans. Software Engineering, 30(12):889–903, 2004.

20. M. P. Robillard and G. C. Murphy. Concern graphs: Finding and describing concerns using
structural program dependencies. In ICSE ’02: Proc. of the 24th Int’l Conf. on Software
Engineering, pages 406–416. ACM Press, 2002.

21. M. P. Robillard and G. C. Murphy. Automatically inferring concern code from program
investigation activities. In ASE ’03: Proc. of the 18th Int’l Conf. on Automated Software
Engineering, pages 225–234. IEEE Computer Society Press, 2003.

22. M. P. Robillard and G. C. Murphy. Program navigation analysis to support task-aware soft-
ware development environments. In Proc. of the ICSE Workshop on Directions in Software
Engineering Environments, pages 83–88. IEE, 2004.

23. A. Sarma, Z. Noroozi, and A. van der Hoek. Palantr: Raising awareness among configuration
management workspaces. In ICSE ’03: Proc. of the 25th Int’l Conf. on Software Engineering,
pages 444–454. IEEE Computer Society, 2003.

24. M.-A. D. Storey, D. Čubranić, and D. M. German. On the use of visualization to support
awareness of human activities in software development: A survey and a framework. In
SoftVis ’05: Proc. of the 2005 ACM Symp. on Software Visualization, pages 193–202. ACM
Press, 2005.

25. P. Tarr, H. Ossher, W. Harrison, and S. Sutton Jr. N degrees of separation: Multi-dimensional
separation of concerns. In ICSE ’99: Proc. of the 21st Int’l Conf. on Software Engineering,
pages 107–119. IEEE Computer Society Press, 1999.

26. D. Woods, E. Patterson, and E. Roth. Can we ever escape from data overload? A cognitive
system diagnosis. Cognition, Technology & Work, 4(1):22–36, 2002.

Loosely-Separated “Sister” Namespaces in Java

Yoshiki Sato� and Shigeru Chiba

Dept. of Mathematical and Computing Sciences,
Tokyo Institute of Technology

{yoshiki, chiba}@csg.is.titech.ac.jp

Abstract. Most modern programming systems such as Java allow us
to link independently developed components together dynamically. This
makes it possible to develop and deploy software on a per component
basis. However, a number of Java developers have reported a problem,
ironically called the version barrier, imposed by the strict separation of
namespaces. The version barrier prohibits one component from passing
an instance to another component if each component contains that class
type. This paper introduces a novel concept for Java namespaces, called
sister namespaces, to address this problem. Sister namespaces can relax
the version barrier between components. The main purpose of this paper
is to provide a mechanism for relaxing the version barrier, while still
allowing type-safe instance accesses between components with negligible
performance penalties in regular execution.

1 Introduction

Practically all modern programming environments allow developers to utilize
some kind of component system (e.g., JavaBeans [9], EJB [22], CORBA [25],
.NET/DCOM/ActiveX [24], Eclipse plug-ins [29]). A component system allows
programmers to develop a component-based application, which can be developed
and then deployed per component. Most of the component systems for Java adopt
a single class loader per component, and thereby create a unique namespace for
each application component. A namespace is a map from the class names to
the class definitions. A set of classes included in the same component joins 1 its
own namespace and thus naming conflicts between components can be avoided.
Moreover, a component can be dynamically and individually updated without
restarting the whole execution environment.

One significant drawback of such component systems for Java is the difficulty
for components to communicate across class loader boundaries in the Java Vir-
tual Machine (JVM) [13, 20, 8, 14]. In fact, such communication is well known to
frequently cause a cast error ClassCastException or a link error LinkageError.
Most of the link errors are just bugs; an error is caused when a class is wrongly

� Currently, Mitsubishi Research Institute, Inc., Japan.
1 A class joining a namespace means it is being loaded by the class loader that creates

the namespace.

A.P. Black (Ed.): ECOOP 2005, LNCS 3586, pp. 49–70, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

50 Y. Sato and S. Chiba

loaded by both parent and child loaders [16]. These bugs can be easily avoided
if developers are careful. However, cast errors are extremely difficult to avoid
since this problem is caused by the strict separation of namespaces, ironically
called the version barrier. The version barrier is a mechanism that prevents a
version of a class type from being converted to another version of that specific
class type. For instance, it restricts an instance of the former type to be assigned
to the variable of the latter type.

In Java, a class type is uniquely identified at runtime by the combination of
a class loader and a fully qualified class name. If two class definitions with the
same class name are loaded by different loaders, two versions of that class type
are created and they can co-exists, although they are regarded as distinct types.
The version barrier is a mechanism for guaranteeing that different versions of a
class are regarded as different types. This guarantee is significant for performance
reasons. If different versions of a class were not regarded as different types, the
advantages of being a statically typed language would be lost. Moreover, if the
same class definition (i.e., class file) is loaded by different class loaders, different
versions of that class are created and regarded as distinct types. Therefore, if
two components load the same class file individually, one component cannot pass
an instance of that class type to the other.

This paper presents our novel concept of namespaces in Java, which we call
sister namespaces, and the design of that mechanism. Sister namespaces can
relax the version barrier between application components. An instance can be
carried beyond the version barrier between sister namespaces if the type of that
instance is compatible between these namespaces. The main purpose of this pa-
per is to provide a mechanism for relaxing the version barrier while keeping
type-safe instance accesses with negligible performance penalties in regular ex-
ecution. The mechanism of sister namespaces is implemented by extending the
type checker and the class loader of the JVM.

The rest of this paper is organized as follows. Section 2 describes two prob-
lems that cause trouble for component-based application developers. Section 3
presents the design and implementation of the sister namespace. Section 4 dis-
cusses a few implementation issues. Section 5 presents the results of our exper-
iments. Section 6 compares the sister namespace mechanism to other related
work. Section 7 concludes this paper.

2 Problems of the Version Barrier

This section presents two problems that developers often encounter when de-
veloping a component-based application in Java. These problems are actually
caused by the version barrier between namespaces.

2.1 J2EE Components

Most J2EE platforms, either commercial (e.g., Websphere, Weblogic) or open-
source (e.g., JBoss, Tomcat), support both the development and the deployment

Loosely-Separated “Sister” Namespaces in Java 51

EstimateServlet
SessionCache cache
= session.getCache();
Cart cart = new Cart();
cart.put(item);
cache.add(session, cart);

runs in a servlet in WAR1.

⇐⇒

OrderServlet
SessionCache cache = session.getCache();
Object object = cache.get(session);
Cart cart = (Cart) object;

runs in a servlet in WAR2,
and throws a ClassCastException.

Fig. 1. Passing the session cache from one WAR component to another

of pluggable component archives (EJB-JARs, WARs, and EARs). A Web Ap-
plication Archive (WAR file) is used to deploy a web-based application. This
file can contain servlets, HTML files, Java Server Pages (JSPs), and all asso-
ciated images and resource files. An Enterprise Application Archive (EAR file)
may contain one or more Enterprise JavaBeans (EJBs) and WARs. The func-
tionality of the so-called hot deployment enables such J2EE components to be
plugged and unplugged at runtime without restarting the application servers.
Thus, a J2EE application can be dynamically customized on a per-component
basis. This dramatically improves the productivity of software development. For
enabling hot deployment, each component joins a distinct namespace, loaded by
a distinct class loader.

However, the version barrier makes it impossible to pass instances of each ver-
sion of a class across the boundary of J2EE components, or namespaces. Such
instances are typically caches, cookies, or session objects or beans. For example,
consider the following scenario. An instance of the Cart class must be passed
between servlets included in different web application archives (that is, from the
EstimateServlet included in one web archive, WAR1, to the OrderServlet
in another web archive, WAR2). The class file of the Cart class is packaged
into a Java Archive (JAR) file, and identical copies of that JAR file reside
in the WEB-INF/lib directories in each web archive. Thus, each class loader
loads the Cart class separately. Figure 1 illustrates the implementation of these
servlets: EstimateServlet puts an instance of Cart into the session cache and
OrderServlet pulls that instance out of the cache. When casting it from Object
to Cart, the JVM will throw a ClassCastException. Since the Cart class refer-
enced by the EstimateServlet class is a distinct type from the type referenced
by the OrderServlet class, the version barrier prevents assignment of that in-
stance to the variable cart in the OrderServlet class by throwing a cast error
in advance.

Some readers might think the delegation model of class loaders in Java is a
solution to the problem above. These WAR components can share the same ver-
sion of a class if they delegate the loading of that class to their common parent,
such as the EAR class loader (Figure 2). In fact, the typical J2EE platform has
such a common parent loader. Child class loaders can have their parent loader
load a class if they want to share the same version of that class. In the case
of J2EE, the SystemClassLoader is the parent of all EAR class loaders and
an EAR class loader is, in turn, the parent of all WAR class loaders included

52 Y. Sato and S. Chiba

Fig. 2. A parent EAR class loader
is used for sharing class types be-
tween WAR1 and WAR2. The rounded
box represents a namespace for the
J2EE component. The overlapping
part means the overlapped namespace

Fig. 3. The JBoss application server
based on the unified class loader archi-
tecture makes a parent-child relation-
ship between the communicating com-
ponents

Fig. 4. All inter-component communications are realized by a remote call

in that EAR. However, the solution using a parent class loader tightly couples
several irrelevant J2EE components together. Such coarse-grained composition
decreases the maintainability and availability of all related software components.
For example, consider the two components DVDStore and Pizzeria: the former
models an online 24-hour DVD store and the latter models an online home deliv-
ery pizzeria available from hours 10 to 21. If both of these components share the
abovementioned application component including Cart and if this component
is packaged into Pizzeria, then undeploying Pizzeria for maintenance stops
the service by DVDStore. Since DVDStore must run 24 hours a day, it is almost
impossible to decide the maintenance schedule of Pizzeria.

To solve this problem, the JBoss application server provides the unified class
loader (UCL) architecture [21] for sharing across components across the J2EE
components. A collection of UCLs acts as a single class loader, which places into
a single namespace all the classes to be loaded. All classes are loaded into the
shared repository and managed by this repository. However, this architecture
disables different J2EE components with the same name (Figure 3).

Another technique, considered a last resort, is using the Java Serialization
API to exchange objects between different J2EE components through a byte
stream, which is the referred to as Call-by-Value (Figure 4). Typical J2EE plat-
forms adopt this approach for inter-EAR communications. However, even if an
EAR wants to transfer an object to another EAR deployed in the same container
(or JVM), it must execute a remote call. This remote call is a waste of I/O re-

Loosely-Separated “Sister” Namespaces in Java 53

sources and it decreases the overall performance. Although the Local Interface
mechanism introduced in EJB2.0 allows communications between components
without remote calls (Call-by-Reference), these components must be packaged
together in the same archive.

2.2 Eclipse Plug-in Framework

The Eclipse platform [37], an integrated development environment for Java, can
be considered as a component system due to its advanced plug-in framework. A
plug-in module can contain all sorts of resources, including code and documenta-
tion. A plug-in module must also contain sufficient information for the platform
to incorporate the code or documentation into itself. The plug-in framework al-
lows us to easily add, update and remove discrete portions of the contents. In
addition, since a separate class loader (called a plug-in class loader) is created
for each plug-in module, each plug-in module has its unique namespace and is
dynamically deployable.

However, the Eclipse plug-in framework has a structural problem due to the
version barrier. For example, consider the Eclipse help system plug-in mod-
ule [12]. It is a useful plug-in module that allows users to develop and de-
ploy professional-quality, easy-to-use, and searchable online documentation. The
Eclipse help system can be used as an infocenter, which is an application im-
plemented as a web component and accessible from a web browser. However,
to be used as an infocenter, the current Eclipse help system needs to run on
a separate process from the process of the web server (Figure 5). The web
server must make new processes for the help system and the minimum Eclipse
system, and then the web server must dispatch all requests to the help sys-
tem. Thus, every communication for dispatching requests from the web server
to the help system is a remote call, which involves marshalling all passed
instances.

A real problem of the example above is that, no matter which namespace
the help system joins, all instances must be marshaled and unmarshaled with
performance penalties to avoid trouble due to the version barrier when they are
passed between the web server and the help system. This is true even if the
help system is run on the same process as the web server. Suppose that the

Fig. 5. The Eclipse help system must run as a separate process

54 Y. Sato and S. Chiba

Fig. 6. The Xerces archives are loaded in duplicate for the Eclipse help system and the
infocenter

Fig. 7. Loading all components by a class
loader breaks the isolation of each names-
pace

Fig. 8. Delegating the Xerces archives to
the web component class loader breaks the
isolation of the help system

help system runs on the same JVM as the infocenter, and both the help system
and the infocenter use the Apache Xerces [36] archive, which contains an XML
parser in the WEB-INF/lib directory. If the help system joins a namespace inde-
pendent of the namespace of the infocenter (Figure 6), the version barrier does
not allow the instances of an XML parse tree to be exchanged between the help
system and the infocenter, since the copies of the Xerces archive are loaded in
duplicate and then different versions of the tree-node class types are created for
each archive. If the help system joins the same namespace as the infocenter by
deploying as a WAR file into the WEB-INF/lib directory (Figure 7), the XML
parse tree can be exchanged between the two components. However, this obvi-
ously breaks the isolation of the help system from the infocenter. For example,
several core components of the Eclipse platform must also be loaded together
with the help system, and these core components cause naming conflicts with
the infocenter. Furthermore, all the components must be redeployed together
when some of the components are redeployed for maintenance. Finally, if the
help system joins a descendant namespace of the infocenter (Figure 8), delegat-
ing the Xerces archives to the parent class loader also allows sharing the Xerces
archives. However, it ends up breaking separated namespaces, too.

Loosely-Separated “Sister” Namespaces in Java 55

2.3 Extending Assignment Compatibility

The problems illustrated above can be solved if the algorithm for computing as-
signment compatibility in the Java programming language is extended to include
version conversions between different versions of a class type. Here, the version
conversion means a conversion from a version of a class type to any other ver-
sion of that class type. If this conversion is chosen in the context of assignment,
casting, and method invocation conversions such as widening and narrowing
conversions, instances could be easily passed across the version barrier 2. For
example, this extension of assignment compatibility would allow assignments
between different versions of a class type. Thus, a component would be able
to pass instances into and from another component, even if both components
load and define that class type separately. The OrderServlet class in Figure 1
would not throw a cast error. Moreover, the Eclipse platform would not need
to care about where and how many Xerces libraries are available in the current
execution environment.

However, naively relaxing the version barrier by extending the assignment
compatibility causes a serious security problem. For example, a program may
access a non-existing field or method and then crash the JVM. In fact, the ver-
sion barrier of Sun JDK 1.1 was wrongly relaxed, and thus it had a security
hole known as the type-spoofing problem, first reported by Saraswat [26]. This
security hole had been solved by the loader constraint scheme [18], which rather
strengthens the version barrier. To avoid this security problem while relaxing
the version barrier, it would be necessary to have runtime type checking, as is
found in dynamically typed languages such as CLOS, Self, and Smalltalk. In
such languages, since a variable is not statically typed, any type of instance
can be assigned to it. For security, several interpreters for dynamically typed
languages perform runtime type checks, called guard tests, so that an excep-
tion can be thrown at runtime if a non-existing method or field is accessed.
A drawback of this approach is that it requires frequent runtime type checks,
which implies non-negligible performance degradation, whereas the JVM per-
forms these runtime type checks. Another technique is to perform runtime type
checks at every assignment operation, such as the aastore Java bytecode in-
struction, which is used for storing an object reference in an array object. This
operation verifies that the stored object is type-safe. However, this approach also
causes performance degradation, since the JVM must perform a type-check for
not only aastore but also for a large number of other assignment instructions.

3 Sister Namespaces

We propose sister namespaces, which can relax the version barrier between
namespaces. Different versions of a class type that join sister namespaces can be

2 If two class types have assignment compatibility with each other, one type can be
converted to the other type in the context of not only assignment conversions but
also casting and method invocation conversions.

56 Y. Sato and S. Chiba

assignment compatible with each other if these versions have differences while
still preserving the version compatibility. Our challenge is to relax the version
barrier while keeping type-safe instance accesses efficient. In this section, we
first define extended assignment compatibility, which is based on Java binary
compatibility [7] (Section 3.1). Next, we show the sister-supported type checker,
which takes the central role in relaxing the version barrier for sister namespaces
(Section 3.3). The type checker blocks illegal objects when they move across the
version barrier, and thus no subsequent extra check is needed for these objects.
This is enabled because it is prohibited for a namespace to become a sister of
its parent or child namespace. In addition, we present the sister loader con-
straint (Section 3.4) and then the schema class loading scheme (Section 3.5).
They prevent eager class loading and type inconsistencies, respectively.

We implemented the sister namespaces on the IBM Jikes Research Virtual
Machine (JRVM) [1]. The extensions to the JRVM are only the sister-namespace
API, a sister-supported class loader, and a sister-supported type checker. The
API is provided as an extension to the existing java.lang.ClassLoader in the
GNU Classpath libraries. These extensions consist of several core classes of the
JRVM such as class and object representations.

3.1 Version Compatibility

This section provides the definition of version compatibility, which securely ex-
tends the assignment compatibility between different versions of a class type.
We define two versions of a class type, Cver1 and Cver2, as assignment compati-
ble with each other if Cver1 is version compatible with Cver2 and vice versa. A
class type Cver2 is version compatible with Cver1 if all the class types that could
previously link with Cver1 and work with an instance of Cver1 without errors
are able to also correctly work with instances of Cver2 without other assignment
compatibility rules such as a subtyping relation. Thus, if Cver1 and Cver2 are
version compatible, then an instance of Cver1 can be securely converted to the
type Cver2 when it is assigned to a variable of Cver2 and vice versa. Here, be-
ing secure means that every operation on Cver2 is applicable to the instance of
Cver1 without errors; any method call, field access, or type casting applied to
the variable does not fail.

The following are the differences that programmers are permitted to make
between two versions of a class while preserving version compatibility between
the two versions:

– Differences of declared static members such as a static field, a static method,
a constructor, or an initializer.

– Differences of the implementation of instance members, such as an instance
method.

The differences are derived from the study of the binary compatible changes
mentioned in the Java language specification [11].

Version compatibility is based on the idea of binary compatibility; it means
that an instance rather than a class can work with the binary of another ver-

Loosely-Separated “Sister” Namespaces in Java 57

sion of the class type. Java binary compatibility defines a set of changes that
developers are permitted to make to a package or to a class or interface type
while preserving the compatibility with the preexisting binaries. A change to a
class type is binary compatible with preexisting binaries if preexisting binaries
that previously linked without errors will continue to link without recompiling.
Version compatibility defines differences between two versions of a class type
that preserve the binary compatible property between an instance of one version
and the binary of the other version. Unlike the original binary compatibility, the
version compatibility allows any change to static members since static member
accesses are irrelevant to instances. Version compatibility deals with the compat-
ibility between an instance and the binary of another version of that class type.
Therefore, to be version compatible, two versions of a class type must have the
same set of private members, although the implementations of those members
may differ. This is a difference from the binary compatibility, which allows the
two versions to have a different set of private members. Since a private member
can be accessed from not only this instance but also from other instances of
another version of that class type, version compatibility requires that the two
versions have the same set of private members.

3.2 Creating Sister Namespaces

A sister namespace is a first-class entity, but it is created implicitly when a class
loader is instantiated with a class loader given as a parameter. The ClassLoader
class provides the new constructor as follows:

protected ClassLoader(ClassLoader parent, ClassLoader sister)

The class loader obtained from this constructor becomes a sister class loader of
the class loader specified by the parameter sister. The latter class loader also
becomes a sister of the former one. These two sister class loaders construct their
own sister namespaces; the version barrier between them is relaxed if the version
compatibility is satisfied. The sister class loaders must not have a parent-child
relationship. This rule is significant for the efficient type checking we describe
later. If the sister class loaders have such a relationship, the construction of the
sister namespaces fails. In this paper, if a version of a class type is loaded earlier
(or later) than other versions, it is called a younger (or older) sister version of
that class type. This young-old relationship is independent of the creation order
of the sister class loaders.

In the case described in Section 2.1, the application programmers can ex-
change instances between two namespaces for WAR1 and WAR2 if they are
sister namespaces. Each namespace can contain a different version of the type of
the exchanged instance. WAR1 and WAR2 must be loaded by the class loaders
created as follows:

ClassLoader ear = new EARClassLoader();
ClassLoader war1 = new WARClassLoader(ear);
ClassLoader war2 = new WARClassLoader(ear, war1);

58 Y. Sato and S. Chiba

Fig. 9. The notation CLi
Ld

represents a class type, where C denotes the name of the
class, Ld denotes the class’s defining loader, and Li denotes the loader initiated class
loading. An inclusion relation represents a parent-child relationship. For example, the
class loader L1 is a parent of both L2 and L2’. And the classes A, B, C, and the system
classes are visible in the namespaces L2, L2’, L3, L3’, L4, and L4’. In this figure, the
sister namespace L3 and L3’ have a sister relationship

The ear, war1, and war2 are instances of the ClassLoader class. The third new
operation creates sister namespaces for WAR1 and WAR2. Both war1 and war2
have the same parent class loader ear. In general, application programmers of
components, such as Applets, Servlets, Eclipse plug-ins, and EJB, do not have
to be aware of namespaces or class loaders. These are implicitly managed by the
application middleware. Creating sister namespaces by using the ClassLoader
constructor above is the work of middleware developers. A sister namespace can
make another plain namespace its sister on demand. Since the sister relationship
is transitive, if a namespace becomes a sister of a namespace and then it becomes
a sister of another namespace, all three namespaces become sisters of each other.
Programmers can incrementally create a new namespace and make it another
sister of the other sister namespaces. This feature would be useful in cases of
incremental development processes and routine maintenance work.

Note that all class types defined by a sister class loader can be version compat-
ible with the corresponding sister version of that class type, even if the loading
of these class types are initiated by the child class loaders. An initiating class
loader, which initiates the loading of a class type, does not have to actually load
a class file. Instead, it can delegate to the parent class loader. The class loader
that actually loads a class file and defines that type is called a defining class
loader of that type. This delegation mechanism is used for sharing the same ver-
sion of class type between the initiating and defining class loaders. In Figure 9, if
two sister namespaces are created between class loaders L3 and L3’, the classes
F and H can be version compatible with F’ and H’, respectively. The pairs E
and E’ or G and G’ are not compatible with each other since they are defined
by other class loaders.

Loosely-Separated “Sister” Namespaces in Java 59

3.3 Sister-Supported Type Checking

The version barrier is relaxed by a type checker that considers the sister names-
paces. In Java programs, most bytecode instructions such as the method in-
vocation instructions invokevirtual and invokenonvirtual, and field access
instructions such as getfield and putfield are statically typed. These instruc-
tions do not perform dynamic type checking. Therefore, these instructions as they
are can work correctly with any version of class type if they are version compat-
ible. On the other hand, several instructions such as instanceof, checkcast,
invokeinterface, athrow, and aastore entail dynamic type checking. The type
checking by those instructions must be enhanced if the version barrier is relaxed
so that version compatible instances can be passed between sister namespaces.
The algorithm of enhanced type checking for sister namespaces is shown in Fig-
ure 10. After the regular type checks are performed, and if they fail (line 2),
the extra checks are executed (lines 3–6). First, a sister relationship is exam-
ined (line 3). If the left-hand side class type (LHS) and the right-hand side class
type (RHS) have a sister relationship, then the type checker determines whether
one class type has undergone the schema compatible loading process against the
other type (line 4). Schema compatible loading is introduced later.

Note that these extra checks for sister namespaces are executed only after
the regular type checks fail. Since typical programs do not frequently cause type
errors, this enhancement for the built-in type checker implies no performance
penalties as long as instances are not passed between sister namespaces.

The sister-supported type checker only prohibits a version incompatible in-
stance from being passed between sister namespaces. A version incompatible
class can join each of the sister namespaces if an instance of that version stays
within the namespace. To avoid the security problem described in Section 2.3
(naively relaxing the assignment compatibility), sister namespaces must detect
a version incompatible instance being passed between sister namespaces. This
detection is executed by only the checkcast instruction. In other words, the de-
tection is not executed by other instructions for method invocation, field access,

1: if LHS is a subtype of RHS then true
2: else if LHS is not a subtype of RHS then
3: if LHS is a sister type of RHS &&
4: LHS is version compatible with RHS then true
5: else false
6: end
7: end

Fig. 10. Pseudo code for enhanced type checking for sister namespaces. A type check is
the determination of whether a value of one type, hereafter the right-hand side (RHS)
type , can legally be converted to a variable of a second type, hereafter the left-hand
side (LHS) type. If so, the RHS type is said to be a subtype of the LHS type and the
LHS type is said to be a supertype of the RHS type

60 Y. Sato and S. Chiba

Fig. 11. Downcast enforced by the bridge-safety property satisfied between namespaces

and assignment. This is mainly due to the design of sister namespaces, which
must not have a parent-child relationship between them. This rule brings the
bridge-safety [26] property to all classes included in the sister namespaces. This
property guarantees that an instance of a class type is always examined by the
checkcast instruction when it is passed between sister namespaces. It must be
first upcast to a type loaded by the common parent class loader of the two sister
class loaders, and then it must be downcast before it is assigned to the class
type loaded by the sister class loader at the destination. For example, when an
instance of Cart is passed, it will be first upcast to a super class of Cart, such
as the Object class, and then downcast to another version of the Cart class
(Figure 11). Therefore, the checkcast instruction is always executed when the
instance is downcast to Cart.

To implement the sister-supported type check, we modified the
VM DynamicTypeCheck class in the JRVM. We extended that class and the TIB
(Type Information Block) for fast type checking to consider sister relationships.
The original TIB holds several arrays of type identifiers. For example, the arrays
of extended superclass types and of implemented interface types are stored in the
TIB for fast type checking without looking up the whole type hierarchy [3][2].
Similarly, the extended TIB holds two arrays of sids. The sid is the identifier of
a sister relationship. The two arrays are of the sids of the extended superclasses
and the sids of the implemented interfaces. The sid of a class can be obtained
from a VM Class object representing that class. We extended the VM Class class
to hold the sid of the class.

3.4 Sister Loader Constraint

A straightforward implementation of the sister-supported type checker requires
eager class loading. Even if the sister-supported type checker verifies that the
type of an instance is version compatible, that instance cannot be fully trusted.
The instance may contain a version incompatible instance as a field value or
return it as a result of a method execution. That is, the untrusted instance may
relay an incompatible instance. Since an instance is type checked only when it
is downcast, the types of the instance that may be relayed must also be type

Loosely-Separated “Sister” Namespaces in Java 61

checked at the same time. Therefore, the type checker verifies all the class types
occurring in the class definition of that instance, such as parameter types3, re-
turn types, and field types. It also recursively verifies the class types occurring
in the definitions of those types. However, if this recursive type check is naively
implemented, all the related classes would have to be eagerly loaded. This eager
loading is practically unacceptable, since the advantages of the dynamic fea-
tures of Java would be lost. The sister-supported type checker must be able to
work with the scheme of lazy class loading. Note that the original class loading
mechanism of Java is based on lazy class loading.

To examine version compatibility while enabling lazy class loading, the JVM
maintains a set of sister loader constraints, which are dynamically updated when
the sister-supported type checker works. If the type checker finds a class type
that must be verified but has not been loaded yet, the JVM does not eagerly load
that class; instead, it records a sister loader constraint. For example, if the type
checker attempts to verify that a version of class C is version compatible with
another version C ′, but C or C ′ has not been loaded yet, the JVM records as a
constraint that C must be version compatible with C ′. This constraint is later
verified when C or C ′ is loaded. If the type checker detects that this constraint is
not satisfied, it throws a LinkageError. While the type checker is verifying that
constraint, if it finds another class type that must be verified but is not loaded,
a new sister loader constraint is recorded. If the type checker finds a class type
that must be verified and has been already loaded, it recursively verifies that
class type at the same time. Note that every constraint is verified only once. The
result of the verification is recorded to avoid further verification.

In summary, the JVM needs to maintain the invariant: Each class type co-
existing in the namespace satisfies all the sister loader constraints. The invariant
is maintained as follows:

Every time a new class joins a sister namespace, the JVM verifies whether that
class type will violate an existing sister loader constraint.

If the class type being loaded violates an existing sister loader constraint,
loading that class type fails since that class type is untrusted in the namespace.
If there is no constraint referring to that class type, the JVM loads that class
type, although that class type might be version incompatible. It is verified later
when a new constraint referring to that class type is recorded.

Every time a new sister loader constraint is recorded, the JVM verifies whether
that constraint is satisfied with the class types that have been already loaded.

If a class type that has already been loaded does not satisfy a newly recorded
constraint, loading the class type that starts the type checking process producing
the new constraint is untrusted and hence the loading is aborted. If any class
types needed for verifying that constraint have not been loaded, the verification

3 If a parameter type is not version compatible, an incompatible instance may be sent
back without type checking to the namespace that has sent the instance of the class
type including that parameter type.

62 Y. Sato and S. Chiba

is postponed until those classes are loaded. Otherwise, if all the class types
needed for the verification have been loaded and the constraint is successfully
verified, the constraint is removed from the record.

For efficient verification of constraints, we added an array of flags to VM Class.
Each flag indicates whether the version of the class type represented by a
VM Class object has been recursively type checked with another sister version.
The flag is true only if the two versions of the class type are version compatible
and if the type checker has verified that those two versions never relay a version
incompatible instance. Since there might be multiple sisters, the VM Class object
holds an array of the flags, each of which indicates the result of the type check
with each sister version. The JVM uses these flags for executing a recursive type
check only once.

3.5 Schema Compatible Loading

Even if two versions of a class type satisfy the version compatibility, these in-
stances may have schema incompatibility. This means that the layout of the
internal type information blocks (TIBs) may not be identical between the two
versions of the class type. The TIB holds fields and function pointers to a cor-
responding method body. The order of the TIB entries depends on the JVM
or compilers; it does not depend on the order of the member declarations in a
source file or a class file. Thus, even if two versions of a class type have version
compatibility, the layout of the TIBs may not be identical.

The sister-supported class loader guarantees that layouts of the TIBs are
identical between two versions of a class type if the class types are version com-
patible. Since the JVM uses a constant index into the TIB when it accesses a
field or a method, the JVM cannot correctly execute the bytecode if the lay-
outs of the TIBs are not identical between compatible versions of the class type.
Therefore, when the class loader loads a younger version of a class type, the
JVM constructs the TIB of that version of the class so that the layout of the
TIB is identical to that of the TIB of an older version of the class. This loading
process is called schema compatible loading. Note that this process is given up
against the incompatible class type that has no binary compatibility with the
older sister version of that class type. This result is employed by the JVM to
quickly examine whether a class type is trusted or not.

In the JRVM, a TIB is constructed during the execution of the resolvemethod
in VM Class. The resolve method is invoked during the class resolution process
by the VM ClassLoader class, an instance of which represents a class loader. The
resolve method has been extended to perform the schema compatible loading.

4 Discussion

4.1 Canceling JIT Compilations

Just-In-Time (JIT) compiled code sometimes needs to be canceled since a de-
virtualized method call does not correctly refer to a method declared in a sis-

Loosely-Separated “Sister” Namespaces in Java 63

ter version of the class type. Recent optimizing JIT compilers [15, 32] perform
the devirtualization optimization that transforms not only a final and a static
method but also a virtual method call to a static method. For a given virtual
call, the compiler determines whether or not the call can be devirtualized by
analyzing the current class hierarchy. If the method can be devirtualized and its
code size is small enough, the compiler inlines the method. Therefore, if the type
of an instance is converted to a sister version of that class type, the JVM would
continue to invoke the original inlined code instead of the real method of that
instance. This is because the JIT compiler does not consider sister namespaces;
method bodies might be different among sister versions of the same class type.

To avoid this problem, the JIT compiler must cancel devirtualization when
a new sister version of a class type is loaded. Fortunately, most optimizing JIT
compilers have an efficient cancellation mechanism for dynamic class loading.
Since a whole class hierarchy cannot be statically determined in Java, JIT com-
pilers can dynamically replace [32] or rewrite [15] inlined code. This is performed
when a new subclass is loaded and the subclass overrides a method that has not
been overridden by the other subclasses. The JIT compiler that supports sister
namespaces also cancels devirtualization when version compatibility is verified
and a new sister version of a class type is available.

4.2 Eager Notifications of Version Incompatibility

Version incompatibility checks between sister versions of a class type may ea-
gerly throw a cast error before any incompatible class types actually co-exist
in one namespace. For example, if the type checker detects that a class type
may relay a version incompatible instance, it throws a cast error. This eager
notification strategy is similar to the loader constraint scheme [18]. The JVM
prohibits different versions of a class type from even being loaded if the JVM
encounters an operation that relays instances from one namespace to the other.
If the JVM has already loaded these versions of the class, the JVM throws
a link error. However, except for the loader constraint scheme, verification of
compatibility and error notification are not performed at loading time but are
done later by the linker, while the linker resolves the constant pool items (e.g.,
NoSuchMethodError, IllegalAccessError, IncompatibleClasChangeError).
If a Java program includes binary incompatibility, it continues to run until it
actually executes an illegal operation caused by that incompatibility. This lazy
verification and notification are useful in practice.

However, we have adopted the eager strategy for avoiding performance penal-
ties due to version compatibility checks. To delay notifications of incompatibility
as long as the program continues to run without errors, a number of guard tests
must be embedded into the incompatible class. In Java, once the JVM executes
a method invocation or a field access, the operation is linked with the call site
and replaced with efficient code that does not perform type checking anymore.
Therefore, the guard tests must be embedded for verifying version compatibility
after the version incompatibility is found. It requires the JIT compiler to recom-
pile the code that refers the incompatible class type. Moreover, the guard tests

64 Y. Sato and S. Chiba

imply the non-negligible performance overhead mentioned in Section 2.3; thus,
we do not delay the notifications of incompatibility.

5 Experimental Results

This section reports the results of our performance measurements. We performed
all the experiments on the IBM Jikes Research Virtual Machine 2.3.2 with Linux
kernel 2.4.25, which were running on a Pentium4 1.9GHz processor with 1GB
memory. Both the Jikes RVM and our modified RVM were compiled to use
the baseline compiler for building the boot image with the semi-space garbage
collector.

Baseline Performance. To measure the baseline performance, we ran the
SPECjvm98 [31] benchmarks on both our JVM and the unmodified JVM. The
problem sizes of all the benchmarks were 100 (maximum). Table 1 lists the
results. The numbers are the average execution time for 20 repetitions. The
baseline overhead due to the sister namespace was negligible.

Cost of Loading Classes Into Sister Namespaces. We measured the time
for loading classes with a plain class loader or a sister class loader. This exper-
iment shows the performance penalty incurred by the sister class loader, which
executes schema compatible loading and verifies the version compatibility be-
tween classes. We took nine application programs, listed in Table 2, to measure
the total loading time. The loading process includes delegating to the parent
class loader, searching for a class file in a specified classpath, and resolving, ini-
tializing, and instantiating that class type in the JVM. All loading processes are
iterated 20 times. The results show that the performance penalty varied among
those applications from around 14% to 67%. The penalties mostly depended on
the number of declared methods and fields. Thus, the largest application showed
the largest overhead.

Table 1. SPECjvm98 benchmark results on both our JVM and the unmodified JVM

Benchmark Program Jikes RVM Sister-supported SVM
(JRVM) JRVM (SVM) /JRVM

201 compress 47.293 ms 46.218 ms 97.7%
202 jess 40.258 ms 38.726 ms 96.2%
205 raytrace 22.704 ms 23.404 ms 103.1%
209 db 65.628 ms 67.075 ms 102.2%
213 javac 54.698 ms 57.759 ms 105.6%
222 mpegaudio 29.344 ms 29.210 ms 99.5%
227 mtrt 25.812 ms 24.563 ms 95.2%
228 jack 28.372 ms 28.047 ms 98.9%

Total 314.109 ms 315.002 ms 100.3%

Loosely-Separated “Sister” Namespaces in Java 65

Table 2. Total loading time using an ordinary class loader and a sister class loader.
All classes are sequentially loaded by the loadClass() method

Program Total loading time sister
(No. of classes) plain namespace sister namespace /plain

JDOM (72 classes) 328 ms 382 ms 116.5%
Crimson (144 classes) 569 ms 696 ms 122.3%
jaxen (191 classes) 802 ms 919 ms 114.6%
dom4j (195 classes) 1,308 ms 1,487 ms 113.7%
SAXON (351 classes) 1,749 ms 2,113 ms 120.8%
XT (466 classes) 1,223 ms 1,422 ms 116.3%
XercesJ 1 (579 classes) 2,495 ms 3,046 ms 122.1%
XercesJ 2 (991 classes) 4,144 ms 6,177 ms 149.1%
XalanJ 2 (1,548 classes) 12,884 ms 15,290 ms 166.6%

JDOM [38] : A simple Java representation of an XML document, version 1.0
Crimson [34] : A Java XML parser included with JDK 1.4 and greater, version 1.1.3
jaxen [39] : An XPath engine, version 1.0.
dom4j [23] : The flexible xml framework for Java, version 1.5.2
SAXON [17] : An XSLT and XQuery processor, version 6.5.3
XT [19] : A fast, free implementation of XSLT in java, version 20020426a
XercesJ 1 : The Xerces Java Parser 1.4.4.
XercesJ 2 : The Xerces2 Java Parser 2.6.2.
XalanJ 2 [35] : An XSLT processor for transforming XML documents, version 2.6.0.

Cost of the Checkcast Instruction. Finally, we measured the execution time
for type checking. The sister-supported type checking includes not only the or-
dinary checkcast operation but also the checking of trusted instances. We ran
a program that executes the checkcast instruction for every class included in
a given application, and then we measured the total execution time of all the
checkcast instructions. Both experiment programs ran after all the classes had
been loaded and then the version compatibility of all the classes was verified. We
successively ran the program twice; the execution time of the second run indi-
cates the execution time of checkcast after the version compatibility of all the
possibly relayed classes is verified during the first run. Some of the first checks
also make use of the results of previous verifications.

Table 3 lists the results. The results are the average of 10,000 iterations. The
total execution time of the first checks was from about 10 to 40 times slower
than the ordinary checkcast operation. This is because the sister-supported
type checker traverses all possibly relayed class types. Since each application has
a different number of possibly relayed classes, the relative performance varies for
each application. On the other hand, the second checks included only around
160% overhead compared to the ordinary checkcast operation. Note that this
overhead is incurred only when checkcast examines the type of an instance
coming from another sister namespace. The overhead is negligible in regular
cases.

We also compared the execution time of the type check with the time for mar-
shalling and unmarshalling several XML data objects. Remember that the most
harmless practice for the inter-component communication described in Section 2

66 Y. Sato and S. Chiba

Table 3. Total execution time of the type check by checkcast

Program checkcast Sister namespaces Relative performance
(No. of classes) first second first second

JDOM (72 classes) 33.3 us 1,205.7 us 53.7 us 3,721% 261.3%
Crimson (144 classes) 69.0 us 1,659.7 us 112.6 us 2,505% 263.1%
jaxen (191 classes) 89.2 us 1,573.1 us 139.8 us 1,864% 256.7%
dom4j (195 classes) 109.7 us 4,371.7 us 185.8 us 4,085% 269.3%
SAXON (351 classes) 295.7 us 5,141.3 us 499.8 us 1,839% 269.0%
XT (466 classes) 381.5 us 4,505.8 us 698.7 us 1,281% 283.1%
XercesJ 1 (579 classes) 644.4 us 7,824.3 us 1,041.3 us 1,314% 261.5%
XercesJ 2 (991 classes) 1,158.6 us 11,534.6 us 1,798.0 us 1,096% 255.1%
XalanJ 2 (1,548 classes) 1,650.6 us 22,627.8 us 2,696.2 us 1,471% 263.3%

is using a remote call, which passes an object by means of the call-by-value.
This practice lets us avoid the problem of the version barrier, but it implies
overhead due to the marshalling and unmarshalling for parameter passing. On
the other hand, sister namespaces also let us avoid the problem, and it implies
extra overhead only due to the type check. We measured the execution time
for marshalling and unmarshalling DOM objects created by XercesJ 2.6.2 from
33 XML files taken from the Eclipse help system, which includes the Platform,
Workbench, JDT, Plug-in and PDE document plug-ins. The overall file size was
about 400KB. The measured execution time was 3 million times larger than the
execution time of the ordinary checkcast operation. Of course, actual inter-
component communication using a remote call would spend much more time for
the network data transportations. Therefore, this result shows the sister names-
pace is a significantly faster solution compared to the solution of passing objects
by a remote call.

6 Related Work

In the object database community, several schema evolution techniques such
as schema or class versioning [5, 30] have been studied. These techniques allow
multiple co-existing versions of a schema or a class. Instances are evolved when
passing through the version barrier into the modified application or other ap-
plications. Using such evolvable object databases is a workable alternative for
component-based applications. However, our work concentrates on programming
environments, especially where runtime overheads due to schema evolution must
be severely minimized.

There have been other research activities tackling the version barrier problem
in the programming language and environment community. Most of the previ-
ous research regarded the version barrier as a temporal boundary between old
and new components and thus focused on dynamic software updates or evolu-
tion. That is, multiple versions of the same class type could not simultaneously
co-exist in the running program. Therefore, our problems were not directly ad-

Loosely-Separated “Sister” Namespaces in Java 67

dressed. In this research area, the main topic is which existing object should be
adapted to an updated version of the class type and how and when. For exam-
ple, the work on the hotswapping of classes falls into this category. Malabarba et
al. [20] modified the JVM to make a class reloadable at runtime so that all exist-
ing objects can be updated incrementally. The JPDA (Java Platform Debugger
Architecture) [33] and the java.lang.instrument package of the Java2 SDK5.0
provide the restricted hotswap functionality, whereby existing instances can be
considered as the new version of the class type without being updated. Hjalm-
tysson and Gray [13] implemented dynamic classes in C++ by using templates.
Users can selectively update some but not all objects with the help of wrapper
(or proxy) classes and methods. Hnětynka et al. [14] proposed the renaming ap-
proach using a bytecode manipulation tool. A class loader using this renaming
approach allows the reloading of a class, although it renames that class.

Our work mainly focuses on the spatial version barriers among multiple com-
ponents. An older version of a class type remains after a new version is loaded.
Dynamic type changes such as predicate classes [4], reclassifying objects [6], and
wide classes [28] may allow relaxing of the spatial version barrier, since multiple
class members can be implicitly merged by the explicit composition operation.
Type-based hotswapping proposed by Duggan et al. [8] is similar to our work
but classified into the same category as the above systems. The .NET counter-
parts of the Java class loaders are application domains, which are used to load
and execute assemblies and can run in a single process. However, they adopt the
call-by-value semantics on inter-component communication between application
domains using the .NET Remoting Framework. Of course, dynamic typing lan-
guages, such as CLOS, Self, and Smalltalk, provide more flexible mechanisms
for allowing types to be changed at runtime. However, our challenge is relax-
ing only the version barrier in the strictly typing object-oriented world with
negligible performance penalties. Our contribution is that we have provided a
simple mechanism for relaxing the version barrier, which has been confusing Java
programmers because of the complicated semantics.

7 Conclusion

This paper presented the design and implementation of loosely-separated sis-
ter namespaces in Java. Combining multiple namespaces as sister namespaces
can relax the version barrier between them. It thereby allows an instance to be
assigned to a different version of that class type in that sister namespace. This
mechanism was implemented on the IBM Jikes RVM for evaluation of the perfor-
mance overhead. Our experiment showed that, once an instance passes into the
sister namespace across the version barrier, all instances of that class type can go
back and forth between the sister namespaces with significantly low performance
overhead. Our experiment also demonstrated that the execution performance has
only negligible overhead unless an instance is passed across the version barrier.

We plan to develop a dynamic AOP (Aspect-Oriented Programming) system
based on sister namespaces. We have developed a Java-based dynamic AOP sys-

68 Y. Sato and S. Chiba

tem called Wool [27]. It allows weaving aspects with a program at runtime by
using the hotswap mechanism of the standard debugger interface called JPDA
(Java Platform Debugger Architecture) [33]. The version compatible changes
shown in this paper are almost the same as that supported by the JPDA. There-
fore, using sister namespaces will make our dynamic AOP system simpler and
more efficient while keeping the equivalent flexibility.

Currently, our primary focus for future work is the formal proof of the type
safety on the sister namespaces. We will also examine this issue with respect to
the Java security architecture [10].

Acknowledgement

We would like to express our deep gratitude to the anonymous reviewers. Hide-
hiko Masuhara gave helpful comments on an early draft of this paper. We also
thank Romain Lenglet for his great efforts to fix numerous English problem in
this paper. This research was partly supported by the CREST program of Japan
Science and Technology Corp.

References

1. Alpern, B., Attanasio, C.R., Barton, J.J., Burke, M.G., Cheng, P., Choi, J.D.,
Cocchi, A., Fink, S.J., Grove, D., Hind, M., Hummel, S.F., Lieber, D., Litvinov,
V., Mergen, M.F., Ngo, T., Russell, J.R., Sarkar, V., Serrano, M.J., Shepherd,
J.C., Smith, S.E., Sreedhar, V.C., Srinivasan, H., Whaley, J.: The Jalapeno virtual
machine. IBM System Journal 39 (2000) 211–238

2. Alpern, B., Cocchi, A., Fink, S.J., Grove, D., Lieber, D.: Efficient implementa-
tion of java interfaces: Invokeinterface considered harmless. In: Proceedings of
the 2001 ACM SIGPLAN Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA 2001). Number 11 in SIGPLAN Notices,
vol.36, Tampa, Florida, USA, ACM (2001) 108–124

3. Alpern, B., Cocchi, A., Grove, D.: Dynamic type checking in jalapeño. In: Java
Virtual Machine Research and Technology Symposium. (2001)

4. Chambers, C.: Predicate classes. In: ECOOP’93 - Object-Oriented Programming,
7th European Conference. Volume 707 of Lecture Notes in Computer Science.,
Kaiserslautern, Germany, Springer-Verlag (1993) 268–296

5. Clamen, S.M.: Type evolution and instance adaptation. Technical Report CMU-
CS-92–133, Carnegie Mellon University School of Computer Science, Pittsburgh,
PA (1992)

6. Drossopoulou, S., Damiani, F., Dezani-Ciancaglini, M., Giannini, P.: Fickle : Dy-
namic object re-classification. In: ECOOP 2001 - Object-Oriented Programming,
15th European Conference. Volume 2072 of Lecture Notes in Computer Science.,
Budapest, Hungary, Springer (2001) 130–149

7. Drossopoulou, S., Wragg, D., Eisenbach, S.: What is java binary compatibility?
In: Proceedings of the 1998 ACM SIGPLAN Conference on Object-Oriented Pro-
gramming Systems, Languages & Applications (OOPSLA ’98), Vancouver, British
Columbia, Canada (1998) 341–361

Loosely-Separated “Sister” Namespaces in Java 69

8. Duggan, D.: Type-based hot swapping of running modules. In: Proceedings of
the Sixth ACM SIGPLAN International Conference on Functional Programming
(ICFP ’01). Volume 10 of SIGPLAN Notices 36., Florence, Italy, ACM (2001)
62–73

9. Englander, R.: Developing Java Bean. O’Reilly and Associates, Inc. (1997)
10. Gong, L., Ellison, G., Dageforde, M.: Inside Java2TM Platform Security: Archi-

tecture, API Design, and Implementation 2nd Edition. Addison-Wesley, Boston,
Mass. (2003)

11. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification Second
Edition. Addison-Wesley, Boston, Mass. (2000)

12. Halsted, K.L., Roberts, J.H.J.: Eclipse help system: an open source user assistance
offering. In: Proceedings of the 20st annual international conference on Documen-
tation, SIGDOC 2002, Toronto, Ontario, Canada, ACM (2002) 49–59

13. Hjálmtyśson, G., Gray, R.: Dynamic C++ Classes: A lightweight mechanism to up-
date code in a running program. In: Proceedings of the USENIX Annual Technical
Conference, New Orleans, Louisiana, USENIX (1998)

14. Hnětynka, P., Tůma, P.: Fighting class name clashes in java component systems. In:
Modular Programming Languages, Joint Modular Languages Conference, JMLC
2003. Volume 2789 of Lecture Notes in Computer Science., Klagenfurt, Austria,
Springer (2003) 106–109

15. Ishizaki, K., Kawahito, M., Yasue, T., Komatsu, H., Nakatani, T.: A study of
devirtualization techniques for a javatm just-in-time compiler. In: Proceedings of
the 2000 ACM SIGPLAN Conference on Object-Oriented Programming Systems,
Languages & Applications (OOPSLA 2000). Number 10 in SIGPLAN Notices,
vol.35, Minneapolis, Minnesota, USA, ACM (2001) 294–310

16. JUnit FAQ: Why do I get an error (ClassCastException or LinkageError) using
the GUI TestRunners?, available at: http://junit.sourceforge.net/doc/faq/faq.htm.
(2002)

17. Kay, M.: SAXON The XSLT and XQuery Processor, available at: http://saxon.
sourceforge.net/. (2001)

18. Liang, S., Bracha, G.: Dynamic Class Loading in the Java Virtual Machine. In:
Proceedings of OOPSLA’98, Proceedings of the 1998 ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages & Applications. Number 10
in SIGPLAN Notices, vol.33, Vancouver, British Columbia, Canada, ACM (1998)
36–44

19. Lindsey, B.: XT, available at: http://www.blnz.com/xt/. (2002)
20. Malabarba, S., Pandey, R., Gragg, J., Barr, E., Barnes, J.F.: Runtime Support

for Type-Safe Dynamic Java Classes. In: Proceedings of ECOOP 2000 - Object-
Oriented Programming, 14th European Conference. Volume 1850 of Lecture Notes
in Computer Science., Springer-Verlag (2000) 337–361

21. Marc Fleury, F.R.: The JBoss Extensible Server. In: ACM/IFIP/USENIX In-
ternational Middleware Conference. Volume 2672 of Lecture Notes in Computer
Science., Rio de Janeiro, Brazil, Springer (2003) 344–373

22. Matena, V., Stearns, B.: Applying Enterprise JavaBeansTM : Component-Based
Development for the J2EETM Platform. Pearson Education (2001)

23. Metastaff, Ltd.: dom4j: the flexible xml framework for Java, available at: http://
www.dom4j.org/. (2001)

24. Nathan, A.: .NET and COM: The Complete Interoperability Guide. Sams (2002)
25. OMG: The Common Object Request Broker: Architecture and Specification. Re-

vision 2.0. OMG Document (1995)

70 Y. Sato and S. Chiba

26. Saraswat, V.: Java is not type-safe. (1997)
27. Sato, Y., Chiba, S., Tatsubori, M.: A Selective, Just-In-Time Aspect Weaver.

In: Second International Conference on Generative Programming and Component
Engineering (GPCE’03), Erfurt Germany (2003) 189–208

28. Serrano, M.: Wide classes. In: ECCOP’99 - Object-Oriented Programming, 13th
European Conference. Volume 1628 of Lecture Notes in Computer Science., Lisbon,
Portugal, Springer-Verlag (1999) 391–415

29. Shavor, S., D’Anjou, J., Fairbrother, S., Kehn, D., Kellerman, J., McCarthy, P.:
The Java Developer’s Guide to Eclipse. Addison-Wesley (2003)

30. Skarra, A.H., Zdonik, S.B.: The management of changing types in an object-
oriented database. In: Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA’86). Volume 11 of SIGPLAN Notices 21.,
Portland, Oregon (1986) 483–495

31. Spec - The Standard Performance Evaluation Corporation: SPECjvm98. (1998)
32. Sun Microsystems: The Java HotSpot Performance Engine Architecture, available

at: http://java.sun.com/products/hotspot/whitepaper.html. (1999)
33. Sun Microsystems: JavaTM Platform Debugger Architectuer, available at:

http://java.sun.com/j2se/1.4/docs/guide/jpda. (2001)
34. The Apache XML Project: Crimson Java Parser, available at: http://xml.apache.

org/crimson. (2000)
35. The Apache XML Project: Xalan Java XSLT Processor, available at:

http://xml.apache.org/xalan-j. (2002)
36. The Apache XML Project: Xerces2 Java Parser, available at:

http://xml.apache.org/xerces2-j. (2002)
37. The Eclipse Foundation: Eclipse.org, homepage : http://www.eclipse.org/. (2001)
38. The JDOMTM Projec: JDOM, available at: http://www.jdom.org/. (2000)
39. The Werken Company: jaxen: universal java xpath engine, available at: http://

jaxen.org/. (2001)

Efficiently Refactoring Java Applications to Use
Generic Libraries

Robert Fuhrer1, Frank Tip1, Adam Kieżun2, Julian Dolby1, and Markus Keller3

1 IBM T.J. Watson Research Center, P.O.Box 704, Yorktown Heights, NY 10598, USA
{rfuhrer, ftip, dolby}@us.ibm.com

2 MIT Computer Science & AI Lab, 32 Vassar St, Cambridge, MA 02139, USA
akiezun@mit.edu

3 IBM Research, Oberdorfstrasse 8, CH-8001 Zürich, Switzerland
markus keller@ch.ibm.com

Abstract. Java 1.5 generics enable the creation of reusable container classes with
compiler-enforced type-safe usage. This eliminates the need for potentially un-
safe down-casts when retrieving elements from containers. We present a refac-
toring that replaces raw references to generic library classes with parameterized
references. The refactoring infers actual type parameters for allocation sites and
declarations using an existing framework of type constraints, and removes casts
that have been rendered redundant. The refactoring was implemented in Eclipse,
a popular open-source development environment for Java, and laid the grounds
for a similar refactoring in the forthcoming Eclipse 3.1 release. We evaluated
our work by refactoring several Java programs that use the standard collections
framework to use Java 1.5’s generic version instead. In these benchmarks, on
average, 48.6% of the casts are removed, and 91.2% of the compiler warnings
related to the use of raw types are eliminated. Our approach distinguishes itself
from the state-of-the-art [8] by being more scalable, by its ability to accommo-
date user-defined subtypes of generic library classes, and by being incorporated
in a popular integrated development environment.

1 Introduction

Java 1.5 generics enable the creation of reusable class libraries with compiler-enforced
type-safe usage. Generics are particularly useful for building homogeneous collections
of elements that can be used in different contexts. Since the element type of each
generic collection instance is explicitly specified, the compiler can statically check
each access, and the need for potentially unsafe user-supplied downcasts at element
retrieval sites is greatly reduced. Java’s standard collections framework in package
java.util undoubtedly provides the most compelling uses of generics. For Java 1.5,
this framework was modified to include generic versions of existing container classes1

such as Vector. For example, an application that instantiates Vector<E> with, say,
String, obtaining Vector<String>, can only add and retrieve Strings. In the

1 For convenience, the word “class” will frequently be used to refer to a class or an interface.

A.P. Black (Ed.): ECOOP 2005, LNCS 3586, pp. 71–96, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

72 R. Fuhrer et al.

previous, non-generic version of this class, the signatures of access methods such as
Vector.get() refer to type Object, which prevents the compiler from ensuring
type-safety of vector operations, and therefore down-casts to String are needed to
recover the type of retrieved elements. When containers are misused, such downcasts
fail at runtime, with ClassCastExceptions.

The premise of this research is that, now that generics are available, programmers
will want to refactor [10] their applications to replace references to non-generic li-
brary classes with references to generic versions of those classes, but performing this
transformation manually on large applications would be tedious and error-prone [15].
Therefore, we present a refactoring algorithm for determining the actual type parame-
ters with which occurrences of generic library classes can be instantiated2. This refac-
toring rewrites declarations and allocation sites to specify actual type parameters that
are inferred by type inference, and removes casts that have been rendered redundant.
Program behavior is preserved in the sense that the resulting program is type-correct
and the behavior of operations involving run-time types (i.e., method dispatch, casts,
and instanceof tests) is preserved. Our approach is applicable to any class library for
which a generic equivalent is available, but we will primarily use the standard collec-
tions framework to illustrate the approach.

Our algorithm was implemented in Eclipse (see www.eclipse.org), a popular
open-source integrated development environment (IDE), and parts of this research im-
plementation will be shipped with the forthcoming Eclipse 3.1 release. We evaluated
the refactoring on a number of Java programs of up to 90,565 lines, by refactoring these
to use Java 1.5’s generic container classes. We measured the effectiveness of the refac-
toring by counting the number of removed downcasts and by measuring the reduction
in the number of “unchecked warnings” issued by the Java 1.5 compiler. Such warn-
ings are issued by the compiler upon encountering raw occurrences of generic classes
(i.e., references to generic types without explicitly specified actual type parameters). In
the benchmarks we analyzed, on average, 48.6% of all casts are removed, and 91.2%
of the unchecked warnings are eliminated. Manual inspection of the results revealed
that the majority of casts caused by the use of non-generic containers were removed
by our refactoring, and that the remaining casts were necessary for other reasons. The
refactoring scales well, and takes less than 2 minutes on the largest benchmark.

The precision of our algorithm is comparable to that by Donovan et al. [8], which is
the state-of-the-art in the area, but significant differences exist between the two ap-
proaches. First, our approach is more scalable because it does not require context-
sensitive analysis. Second, our method can infer generic supertypes for user-defined
subtypes of generic library classes3 (e.g., we can infer that a class MyIterator ex-
tends Iterator<String>). The approach of [8] is incapable of making such infer-
ences, and therefore removes fewer casts on several of the benchmarks we analyzed.
Third, Donovan et al. employ a strict notion of preserving behavior by demanding that
the program’s erasure [4] is preserved. In addition to this mode, our tool supports more

2 This problem is referred to as the instantiation problem in [8].
3 The version of our refactoring that will be delivered in Eclipse 3.1 will not infer generic su-

pertypes and will always preserve erasure.

Efficiently Refactoring Java Applications to Use Generic Libraries 73

relaxed notions of preserving behavior that allow the rewriting of other declarations.
Our experiments show that, in some cases, this added flexibility enables the removal
of more casts and unchecked warnings. Fourth, our implementation is more practical
because it operates on standard Java 1.5 source code, and because it is fully integrated
in a popular IDE.

The remainder of the paper is organized as follows. Section 2 overviews the Java
1.5 generics, and Section 3 presents a motivating example to illustrate our refactoring.
Sections 4–6 present the algorithm, which consists of the following steps. First, a set of
type constraints [17] is inferred from the original program’s abstract syntax tree (AST)
using two sets of generation rules: (i) standard rules that are presented in Section 4 and
(ii) generics-related rules that are presented in Section 5. Then, the resulting system
of constraints is solved, the program’s source code is updated to reflect the inferred
actual type parameters, and redundant casts are removed, as discussed in Section 6.
Section 7 discusses the implementation of our algorithm in Eclipse, and experimental
results are reported in Section 8. We report on experiments with a context-sensitive ver-
sion of our algorithm in Section 9. Finally, related work and conclusions are discussed
in Sections 10 and 11, respectively.

2 Java Generics

This section presents a brief, informal discussion of Java generics. For more details,
the reader is referred to the Java Language Specification [4], and to earlier work on the
Pizza [16] and GJ [5, 13] languages.

In Java 1.5, a class or interface C may have formal type parameters T1, · · · , Tn that
can be used in non-static declarations within C. Type parameter Tj may be bounded
by types B1

j , · · · , Bk
j , at most one of which may be a class. Instantiating a generic class

C<T1, · · · , Tn> requires that n actual type parameters A1, · · · , An be supplied, where
each Aj must satisfy the bounds (if any) of the corresponding formal type parameter Tj .
Syntactically, (formal and actual) type parameters follow the class name in a comma-
separated list between ‘<’ and ‘>’, and bounds on formal type parameters are specified
using the keyword extends (multiple bounds are separated by ‘&’). A class may in-
herit from a parameterized class, and its formal type parameters may be used as actual
type parameters in instantiating its superclass. For example:
class B<T1 extends Number>{ ... }
class C<T2 extends Number> extends B<T2>{ ... }
class D extends B<Integer>{ ... }

shows: (i) a class B that has a formal type parameter T1 with an upper bound of
Number, (ii) a class Cwith a formal type parameter T2 (also bounded by Number) that
extends B<T2>, and (iii) a non-parametric class D that extends B<Integer>. B and
C can be instantiated with any subtype of Number such as Float, so one can write:
B<Float> x = new C<Float>();
B<Integer> y = new D();

Unlike arrays, generic types are not covariant: C<A> is a subtype of C if and
only if A = B. Moreover, arrays of generic types are not allowed [14].

74 R. Fuhrer et al.

Type parameters may also be associated with methods. Such parameters are supplied
at the beginning of the generic method’s signature, after any qualifiers. For example, a
class may declare a generic method as follows:

public <T3> void zap(T3 z){ ... }

Calls to generic methods do not need to supply actual type parameters because these
can be inferred from context.

Wildcards [21] are unnamed type parameters that can be used in declarations. Wild-
cards can be bounded from above or below, as in ? extends B, or ? super B,
respectively. For example, interface Collection<E> of the Java 1.5 standard collec-
tions library defines a method

boolean addAll(Collection<? extends E> c){ ... }

in which the wildcard specifies the “element type” of parameter c to be a subtype of
formal type parameter E, thus permitting one to add a collection of, say, Floats to a
collection of Numbers.

For backward compatibility, one can refer to a generic class without specifying type
parameters. Operations on such “raw types” result in compile-time “unchecked warn-
ings”4 in cases where type-safety cannot be guaranteed (e.g., when calling certain meth-
ods on a receiver expression of a raw type). Unchecked warnings indicate the potential
for class-cast exceptions at run-time, and the number of such warnings is a rough mea-
sure of the potential lack of type safety in the program.

3 Motivating Example

We will use the Java standard collections library in package java.util to illustrate
our refactoring. In Java 1.5, Collection and its subtypes (e.g., Vector and List)
have a type parameter representing the collection’s element type, Map and its subtypes
(e.g., TreeMap and Hashtable) have two type parameters representing the type of
its key and its value, respectively, and Iterator has a single type parameter repre-
senting the type of object returned by the next() method.

Figure 1 shows a Java program making nontrivial use of several kinds of contain-
ers. In this program, class IntList contains an array of ints, and provides an iter-
ator over its elements, and a method for summing its elements. The iterator()
method creates a ListIterator, a local implementation of Iterator that re-
turns Integer objects wrapping the values stored in an IntList. Class Example’s
main() method creates IntLists as well as several objects of various standard li-
brary types. Executing the example program prints the list [[2.0, 4.4]]. The ex-
ample program illustrates several salient aspects of the use of standard container classes:

– nested containers (here, a Vector of Vectors), on line 14,
– iterators over standard containers, on line 19,

4 Unchecked warnings are issued by Sun’s javac 1.5 compiler when given the
-Xlint:unchecked option.

Efficiently Refactoring Java Applications to Use Generic Libraries 75

(1) public class Example{
(2) public static void main(String[] args){
(3) Map m1 = new HashMap();
(4) Double d1 = new Double(3.3);
(5) Double d2 = new Double(4.4);
(6) IntList list1 = new IntList(new int[]{ 16, 17 });
(7) IntList list2 = new IntList(new int[]{ 18, 19 });
(8)

�����������

m1.put(d1,
���������

list1);
������������

m1.put(d2,
��������

list2);
(9) Vector v1 = new Vector();
(10)

�����������

v1.add(new
���������������

Float(2.0));
(11) List list5 = new ArrayList();
(12)

���������������������

list5.add(find(m1,
������

37));
(13)

������������������

v1.addAll(list5);
(14) Vector v2 = new Vector();
(15)

�����������

v2.add(v1);
(16) System.out.println(v2);
(17) }
(18) static Object find(Map m2, int i){
(19) Iterator it = m2.keySet().iterator();
(20) while (it.hasNext()){
(21) Double d3 = (Double)it.next();
(22) if (((IntList)m2.get(d3)).sum()==i) return d3;
(23) }
(24) return null;
(25) }
(26) }
(27) class IntList{
(28) IntList(int[] is){ e = is; }
(29) Iterator iterator(){ return new ListIterator(this); }
(30) int sum(){ return sum2(0); }
(31) int sum2(int j){

return (j==e.length ? 0 : e[j]+sum2(j+1)); }
(32) int[] e;
(33) }
(34) class ListIterator implements Iterator{
(35) ListIterator(IntList list3){

list4 = list3; count = 0; }
(36) public boolean hasNext(){

return count+1 < list4.e.length; }
(37) public Object next(){

return new Integer(list4.e[count++]); }
(38) public void remove(){

throw new UnsupportedOperationException(); }
(39) private int count;
(40) private IntList list4;
(41) }

Fig. 1. Example program that uses non-generic container classes. Program constructs that give
rise to unchecked warnings are indicated using wavy underlining

76 R. Fuhrer et al.

(1) public class Example{
(2) public static void main(String[] args){
(3) Map<Double,IntList> m1 = new HashMap<Double,IntList>();
(4) Double d1 = new Double(3.3);
(5) Double d2 = new Double(4.4);
(6) IntList list1 = new IntList(new int[]{ 16, 17 });
(7) IntList list2 = new IntList(new int[]{ 18, 19 });
(8) m1.put(d1, list1); m1.put(d2, list2);
(9) Vector<Number> v1 = new Vector<Number>();
(10) v1.add(new Float(2.0));
(11) List<Double> list5 = new ArrayList<Double>();
(12) list5.add(find(m1, 37));
(13) v1.addAll(list5);
(14) Vector<Vector<Number>> v2 = new Vector<Vector<Number>>();
(15) v2.add(v1);
(16) System.out.println(v2);
(17) }
(18) static Double find(Map<Double,IntList> m2, int i){
(19) Iterator<Double> it = m2.keySet().iterator();
(20) while (it.hasNext()){
(21) Double d3 = it.next();
(22) if ((m2.get(d3)).sum() == i) return d3;
(23) }
(24) return null;
(25) }
(26) }
(27) class IntList{
(28) IntList(int[] is){ e = is; }
(29) ListIterator iterator(){ return new ListIterator(this); }
(30) int sum(){ return sum2(0); }
(31) int sum2(int j){

return (j==e.length ? 0 : e[j]+sum2(j+1)); }
(32) int[] e;
(33) }
(34) class ListIterator implements Iterator<Integer>{
(35) ListIterator(IntList list3){

list4 = list3; count = 0; }
(36) public boolean hasNext(){

return count+1 < list4.e.length; }
(37) public Integer next(){

return new Integer(list4.e[count++]); }
(38) public void remove(){

throw new UnsupportedOperationException(); }
(39) private int count;
(40) private IntList list4;
(41) }

Fig. 2. Refactored version of the program of Figure 1. Underlining indicates declarations and
allocation sites for which a different type is inferred, and expressions from which casts have been
removed

Efficiently Refactoring Java Applications to Use Generic Libraries 77

– methods like Collection.addAll() that combine the contents of containers,
on line 13,

– methods like Map.keySet() that expose the constituent components of standard
containers (namely, a java.util.Set containing the Map’s keys), on line 19,

– a user-defined subtype (ListIterator) of a standard container type, on line 34,
and

– the need for down-casts (lines 21 and 22) to recover type information.

Compiling the example program with Sun’s javac 1.5 compiler yields six unchecked
warnings, which are indicated in Figure 1 using wavy underlining. For example,
for the call m1.put(d1, list1) on line 8, the following message is produced:
“warning: [unchecked] unchecked call to put(K,V) as a member of the raw type
java.util.Map”.

Figure 2 shows the result of our refactoring algorithm on the program of Fig-
ure 1. Declarations and allocation sites have been rewritten to make use of generic
types (on lines 3, 9, 11, 14, 18, and 19), and the down-casts have been removed
(on lines 21 and 22). Moreover, note that ListIterator (line 34) now imple-
ments Iterator<Integer> instead of raw Iterator, and that the return type of
ListIterator.next() on line 37 has been changed from Object to Integer.
This latter change illustrates the fact that inferring a precise generic type for declara-
tions and allocation sites may require changing the declared types of non-containers in
some cases. The resulting program is type-correct, behaves as before, and compiling it
does not produce any unchecked warnings.

4 Type Constraints

This paper extends a model of type constraints [17] previously used by several of the
current authors for refactorings for generalization [20] and for the customization of Java
container classes [7]. We only summarize the essential details of the type constraints
framework here, and refer the reader to [20] for more details.

In the remainder of the paper, P will denote the original program. Type constraints
are generated from P’s abstract syntax tree (AST) in a syntax-directed manner. A set of
constraint generation rules generates, for each program construct in P , one or more type
constraints that express the relationships that must exist between the declared types of
the construct’s constituent expressions, in order for that program construct to be type-
correct. By definition, a program is type-correct if the type constraints for all constructs
in that program are satisfied. In the remainder of this paper, we assume that P is type-
correct.

Figure 3 shows the notation used to formulate type constraints. Figure 4 shows the
syntax of type constraints5. Figure 5 shows constraint generation rules for a number

5 In this paper, we assume that type information about identifiers and expressions is available
from a compiler or type checker. Two syntactically identical identifiers will be represented by
the same constraint variable if only if they refer to the same entity. Two syntactically identical
expressions will be represented by the same constraint variable if and only if they correspond
to the same node in the program’s abstract syntax tree.

78 R. Fuhrer et al.

M, M ′ methods (signature, return type, and a reference to the method’s
declaring class are assumed to be available)

m, m′ method names
F, F ′ fields (name, type, and declaring class are assumed to be available)
f, f ′ field names
C, C′ classes and interfaces
K, W, V, T formal type parameters
E, E′, E1, E2, . . . expressions (corresponding to a specific node in the program’s AST)

[E] the type of expression or declaration element E
[E]P the type of E in the original program P
[M] the declared return type of method M
[F] the declared type of field F
Decl(M) the class that declares method M
Decl(F) the class that declares field F
Param(M, i) the i-th formal parameter of method M
T (E) actual type parameter T in the type of the expression E
T (C) actual type parameter T of class C

RootDefs(M) { Decl(M ′) | M overrides M ′, and there exists no M ′′(M ′′ �= M ′)
such that M ′ overrides M ′′ }

Fig. 3. Notation used for defining type constraints

α = α′ type α must be the same as type α′

α≤α′ type α must be the same as, or a subtype of type α′

α≤α1 or · · · or α≤αk α≤αi must hold for at least one i, (1 ≤ i ≤ k)

Fig. 4. Syntax of type constraints. Constraint variables α, α′, . . . represent the types associated
with program constructs and must be of one of the following forms: (i) a type constant, (ii) the
type of an expression [E], (iii) the type declaring a method Decl(M), or (iv) the type declaring a
field Decl(F)

of language constructs. These rules are essentially the same as in [20, 7], but rely on a
predicate isLibraryClass to avoid the generation of constraints for: (i) calls to methods
(constructors, static methods, and instance methods) declared in generic library classes,
(ii) accesses to fields in generic library classes, and (iii) overriding relationships involv-
ing methods declared in generic library classes. Note the assumption that the program
is already using a generic version of the library. Therefore, [E]P may denote a generic
type. Section 5 will discuss the generation of constraints that are counterparts to (i)–(iii)
for references to generic library classes.

We now study a few of the constraint generation rules of Figure 5. Rule (1) states
that an assignment E1 = E2 is type correct if the type of E2 is the same as or a subtype
of the type of E1. For a field-access expression E ≡ E0.f that accesses a field F

declared in class C, rule (2) defines the type of E to be the same as the declared type
of F and rule (3) requires that the type of expression E0 be a subtype of the type C

in which F is declared. Here, the predicate IsLibraryClass(C) is used to restrict the
generation of these constraints to situations where class C is not a library type.

Efficiently Refactoring Java Applications to Use Generic Libraries 79

P contains assignment E1 = E2

[E2]≤[E1] (1)

P contains field access E ≡ E0.f to field F , C = Decl(F), ¬IsLibraryClass(C)

[E] = [F] (2)
[E0]≤C (3)

P contains constructor call E ≡ new C(E1, · · · , Ek)

[E] = C (4)

P contains constructor call new C(E1, · · · , Ek) to constructor M ,
¬IsLibraryClass(C), E′

i ≡ Param(M, i), 1 ≤ i ≤ k

[Ei]≤[E′

i] (5)

P contains call E0.m(E1, · · · , Ek) to virtual method M ,
RootDefs(M) = { C1, · · · , Cq }

[E0]≤C1 or · · ·or [E0]≤Cq (6)

P contains call E ≡ E0.m(E1, · · · , Ek) to virtual method M ,
¬IsLibraryClass(Decl(M)), E′

i ≡ Param(M, i), 1 ≤ i ≤ k

[E] = [M] (7)
[Ei]≤[E′

i] (8)

P contains direct call E ≡ C.m(E1, · · · , Ek) to static method M ,
¬IsLibraryClass(C), E′

i ≡ Param(M, i), 1 ≤ i ≤ k

[E] = [M] (9)
[Ei]≤[E′

i] (10)

P contains cast expression E ≡ (C)E0

[E] = C (11)

P contains down-cast expression E ≡ (C)E0, C is not an interface, [E0]P is not an interface

C≤[E0] (12)

M contains an expression E ≡ this, C = Decl(M)

[E] = C (13)

M contains an expression E ≡ return E0

[E0]≤[M] (14)

M ′ overrides M , 1 ≤ i ≤ NrParams(M ′), Ei ≡ Param(M, i), E′

i ≡ Param(M ′, i),
¬IsLibraryClass(Decl(M))

[Ei] = [E′

i] (15)
[M ′]≤[M] (16)

Fig. 5. Inference rules for deriving type constraints from various Java constructs.

Rules (6)–(8) are concerned with a virtual method call E ≡ E0.m(E1, · · · , Ek)
that refers to a method M . Rule (6) states that a declaration of a method with the same

80 R. Fuhrer et al.

signature as M must occur in some supertype of the type of E0. The complexity in
this rule stems from the fact that M may override one or more methods M1, · · · ,Mq

declared in supertypes C1, · · · , Cq of Decl(M), and the type-correctness of the method
call only requires that the type of receiver expression E0 be a subtype of one of these Ci.
This is expressed by way of a disjunction in rule (6) using auxiliary function RootDefs
of Figure 3. Rule (7) defines the type of the entire call-expression E to be the same as
M ’s return type. Further, the type of each actual parameter Ei must be the same as or a
subtype of the type of the corresponding formal parameter E′

i (rule (8)).
Rules (11) and (12) are concerned with down-casts. The former defines the type of

the entire cast expression to be the same as the target type C referred to in the cast. The
latter requires this C to be a subtype of the expression E0 being casted.

The constraints discussed so far are only concerned with type-correctness. Addi-
tional constraints are needed to ensure that program behavior is preserved. Rules (15)
and (16) state that overriding relationships in P must be preserved in the refactored pro-
gram (note that covariant return types are allowed in Java 1.5). Moreover, if a method
m(E1, · · · , Ek) overloads another method, then changing the declared type of any for-
mal parameter Ei may affect the specificity ordering that is used for compile-time over-
load resolution [11]. To avoid such behavioral changes, we generate additional con-
straints [Ei] = [Ei]P for all i (1 ≤ i ≤ k) to ensure that the signatures of overloaded
methods remain the same. Constraints that have the effect of preserving the existing
type are also generated for actual parameters and return types used in calls to methods
in classes for which source code cannot be modified.

5 Type Constraints for Generic Libraries

Additional categories of type constraints are needed for: (i) calls to methods in generic
library classes, (ii) accesses to fields in generic library classes6, and (iii) user classes that
override methods in generic library classes. We first discuss a few concrete examples of
these constraints, and then present rules that automate their generation.

5.1 New Forms of Type Constraints

Consider the call m1.put(d1,list1) on line (8) of Figure 1, which resolves to
method V Map<K, V>.put(K, V). This call is type-correct if: (i) the type of the
first actual parameter, d1, is a subtype of the first actual type parameter of receiver m1,
and (ii) the type of the second actual parameter, list1, is a subtype of the second
actual type parameter of m1. These requirements are expressed by the constraints [d1
]≤K(m1) and [list1]≤V(m1), where the notation T (E) is used for a new kind of
constraint variable that denotes the value of actual type parameter T in the type of the
expression E. Similar constraints are generated for return values of methods in generic
library classes. For example, the call to m2.get(d3) on line (22) of Figure 1 refers to
method V Map<K, V>.get(Object). Here, the type of the entire expression has

6 These can be handled in the same way as calls to methods in generic library classes, and will
not be discussed in detail.

Efficiently Refactoring Java Applications to Use Generic Libraries 81

P contains call Erec.put(Ekey, Evalue) to method V Map < K, V > .put(K, V)

[Ekey] ≤ K(Erec)
[Evalue] ≤ V(Erec)

[Erec.put(Ekey, Evalue)] = V(Erec)

[put]

P contains call Erec.get(Ekey) to method V Map < K, V > .get(Object)

[Erec.get(Ekey)] = V(Erec)
[get]

P contains call Erec.addAll(Earg) to method
boolean Collection < E > .addAll(Collection <? extends E >)

[Earg] ≤ Collection
E(Earg) ≤ E(Erec)

[addAll]

Fig. 6. Constraint generation rules for calls to V Map<K,V>.put(K,V), V
Map<K,V>.get(Object), and boolean Collection<E>.addAll(Collection<?
extends E>)

the same type as the second actual type parameter of the receiver expression m2, which
is expressed by: [m2.get(d3)] = V(m2). Wildcards are handled similarly. For ex-
ample, the call v1.addAll(list5) on line (13) of Figure 1 resolves to method
boolean Collection<E>.addAll(Collection<? extends E>). This
call is type-correct if the actual type parameter of list5 is a subtype of the actual
type parameter of receiver v1: E(list5) ≤E(v1).

Figure 6 shows rules that could be used to generate the type constraints for the calls
to put, get, and addAll that were just discussed. Observe that the formal parameter
of the get method has type Object and no relationship exists with the actual type
parameter of the receiver expression on which get is called7.

We generate similar constraints when a user class overrides a method in
a generic library class, as was the case in the program of Figure 1 where
ListIterator.next() overrides Iterator.next(). Specifically, if a user
class C overrides a method in a library class L with a formal type parameter T , we
introduce a new constraint variable T (C) that represents the instantiation of L from
which C inherits. Then, if a method M ′ in class C overrides a method M in L, and the
signature of M refers to a type parameter T of L, we generate constraints that relate the
corresponding parameter or return type of M ′ to T (C).

For example, method ListIterator.next() on line (37) of
Figure 1 overrides Iterator<E>.next(). Since the return type of
Iterator.next() is type parameter E, we generate a constraint
[ListIterator.next()] = E(ListIterator). Note that this con-

7 While it might seem more natural to define get as V Map<K,V>.get(K) instead of
V Map<K,V>.get(Object), this would require the actual parameter to be of type K at
compile-time, and additional instanceof-tests and downcasts would need to be inserted if
this were not the case. The designers of the Java 1.5 standard libraries apparently preferred the
flexibility of being able to pass any kind of object over the additional checking provided by
a tighter argument type. They adopted this approach consistently for all methods that do not
write to a container (e.g., contains, remove, indexOf).

82 R. Fuhrer et al.

straint precisely captures the required overriding relationship because
ListIterator.next() only overrides Iterator<Integer>.next() if
the return type of ListIterator.next() is Integer.

5.2 Constraint Generation Rules for Generic Libraries

While type constraint generation rules such as those of Figure 6 can be written by the
programmer, this is tedious and error-prone. Moreover, it is clear that their structure
is regular, determined by occurrences of type parameters in signatures of methods in
generic classes. Figure 7 shows rules for generating constraints for calls to methods
in generic classes. For a given call, rule (r1) creates constraints that define the type
of the method call expression, and rule (r2) creates constraints that require the type of
actual parameters to be equal to or a subtype of the corresponding formal parameters.
A recursive helper function CGen serves to generate the appropriate constraints, and
is defined by case analysis on its second argument, T . Case (c1) applies when T is a
non-generic class, e.g., String. Case (c2) applies when T is a type parameter. In the
remaining cases the function is defined recursively. Cases (c3) and (c4) apply when T is
an upper or lower-bounded wildcard type, respectively. Finally, case (c5) applies when
T is a generic type.

CGen(α, T , E, op) =

{α op C} when T ≡ C (c1)

{α op Ti(E)} when T ≡ Ti (c2)

CGen(α, τ, E,≤) when T ≡ ? extends τ (c3)

CGen(α, τ, E,≥) when T ≡ ? super τ (c4)

{α op C} ∪ when T ≡ C < τ1, . . . , τm > (c5)
CGen(Wi(α), τi, E, =) and C is declared as

C < W1, . . . , Wm >, 1 ≤ i ≤ m

P contains call E ≡ Erec.m(E1, . . . , Ek) to method M, 1 ≤ i ≤ k

CGen([E], [M]P , Erec, =) ∪ (r1)
CGen([Ei], [Param(M, i)]P , Erec, ≤) (r2)

Fig. 7. Constraint generation rules for calls to methods in generic classes

We will now give a few examples that show how the rules of Figure 7 are used to
generate type constraints such as those generated by the rules of Figure 6. As an exam-
ple, consider again the call m1.put(d1, list1) to V Map<K,V>.put(K,V)
on line 8 of the original program P . Applying rule (r1) of Figure 7 yields CGen([
m1.put(d1, list1)], V, m1, =), and applying case (c2) of the definition of CGen
produces the set of constraints {[m1.put(d1, list1)] = V(m1)}. Likewise, for
parameter d1 in the call m1.put(d1, list1) on line 8, we obtain m1.put(d1,
list1)

r2
⇒ CGen([d1], K, m1, ≤) c2

⇒{[d1]≤ K(m1)}. Two slightly more interesting
cases are the following:

Efficiently Refactoring Java Applications to Use Generic Libraries 83

line 13: v1.addAll(list5)
r2
⇒

CGen([list5], Collection<? extends E>, v1, ≤) c5
⇒

{[list5] ≤ Collection} ∪ CGen(E(l), ? extends E, v1, =) c3
⇒

{[list5] ≤ Collection} ∪ CGen(E(l), E, v1, ≤) c2
⇒

{[list5] ≤ Collection} ∪ {E(l) ≤ E(v1)}

line 19: m2.keySet()
r1
⇒ CGen([m2.keySet()], Set<K>, m2, =) c5

⇒

{[m2.keySet()] = Set} ∪ CGen(E(m2.keySet()), K, m2, =) c2
⇒

{[m2.keySet()] = Set} ∪ {E(m2.keySet()) = K(m2)}

Table 1 below shows the full set of generics-related type constraints computed for
the example program in Figure 1. Here, the appropriate rules and cases of Figure 7 are
indicated in the last two columns.

Our algorithm also creates type constraints for methods in application classes that
override methods in generic library classes. For example, the last row of Table 1 shows
a type constraint required for the overriding of method E Iterator<E>.next()
in class ListIterator. The rules for generating such constraints are similar to those
in Figure 7 and have been omitted due to space limitations.

Table 1. Generics-related type constraints created for code from Figure 1. The labels in the two
rightmost columns refer to rules and cases in the definitions of Figure 7

line code type constraint(s) rule cases
[d1] ≤ K(m1) r2 c2

8 m1.put(d1, list1) [list1] ≤ V(m1) r2 c2
[m1.put(d1, list1)] = V(m1) r1 c2
[d2] ≤ K(m1) r2 c2

8 m1.put(d2, list2) [list2] ≤ V(m1) r2 c2
[m1.put(d2, list2)] = V(m1) r1 c2

10 v1.add(new Float(2.0)) [new Float(2.0)] ≤ E(v1) r2 c2
12 list5.add(find(m1, 37)) [find(m1, 37)] ≤ E(list5) r2 c2
13 v1.addAll(list5) [list5] ≤ Collection r2 c5, c3, c2

E(list5) ≤ E(v1)
15 v2.add(v1) [v1] ≤ E(v2) r2 c2
19 m2.keySet() [m2.keySet()] = Set r1 c5, c2

E(m2.keySet()) = K(m2)
19 m2.keySet().iterator() [m2.keySet().iterator()] = r1 c5, c2

Iterator
E(m2.keySet().iterator()) =

E(m2.keySet())
21 it.next() [it.next()] = E(it) r1 c2
22 m2.get(d3) [m2.get(d3)] = V(m2) r1 c2
37 override of [ListIterator.next()]=

E Iterator<E>.next() E(ListIterator)

84 R. Fuhrer et al.

5.3 Closure Rules

Thus far, we introduced additional constraint variables such as K(E) to represent the
actual type parameter bound to K in E’s type, and we described how calls to methods
in generic libraries give rise to constraints on these variables. However, we have not yet
discussed how types inferred for actual type parameters are constrained by language
constructs such as assignments and parameter passing. For example, consider an as-
signment a = b, where a and b are both declared of type Vector<E>. The lack of
covariance for Java generics implies that E(a) = E(b). The situation becomes more
complicated in the presence of inheritance relations between generic classes. Consider
a situation involving class declarations8 such as:

interface List<El> { ... }
class Vector<Ev> implements List<Ev> { ... }

and two variables, c of type List and d of type Vector, and an assignment c = d.
This assignment can only be type-correct if the same type is used to instantiate El in the
type of c and Ev in the type of d. In other words, we need a constraint El(c) = Ev(d).
The situation becomes yet more complicated if generic library classes are assigned
to variables of non-generic supertypes such as Object. Consider the program frag-
ment:

Vector v1 = new Vector();
v1.add("abc");
Object o = v1;
Vector v2 = (Vector)o;

Here, we would like to infer Ev(v1) = Ev(v2) = String, which would require tracking
the flow of actual type parameters through variable o9.

The required constraints are generated by a set of closure rules that is given in Fig-
ure 8. These rules infer, from an existing system of constraints, a set of additional con-
straints that unify the actual type parameters as outlined in the examples above. In
the rules of Figure 8, α and α′ denote constraint variables that are not type constants.
Rule (17) states that, if a subtype constraint α≤α′ exists, and another constraint im-
plies that the type of α′ or α has formal type parameter T1, then the types of α and
α′ must have the same actual type parameter T1

10. This rule thus expresses the invari-
ant subtyping among generic types. Observe that this has the effect of associating type
parameters with variables of non-generic types, in order to ensure that the appropriate
unification occurs in the presence of assignments to variables of non-generic types. For
the example code fragment, a constraint variable Ev(o) is created by applying rule (17).

8 In the Java collections library, the type formal parameters of both Vector and List have the
same name, E. In this section, for disambiguation, we subscript them with v and l, respectively.

9 In general, a cast to a parameterized type cannot be performed in a dynamically safe manner
because type arguments are erased at run-time. In this case, however, our analysis is capable
of determining that the resulting cast to Vector<String> would always succeed.

10 Unless wildcard types are inferred, which we do not consider in this paper.

Efficiently Refactoring Java Applications to Use Generic Libraries 85

α≤α′ T1(α) or T1(α
′) exists

T1(α) = T1(α
′)

(17)

T1(α) exists
C1〈T1〉 extends/implements C2〈T 〉

C2 is declared as C2〈T2〉

CGen(T2(α), T , α, =)
(18)

Fig. 8. Closure rules

Values computed for variables that denote type arguments of non-generic classes (such
as Object in this example) are disregarded at the end of constraint solution.

Rule (18) is concerned with subtype relationships among generic library classes
such as the one discussed above between classes Vector and List. The rule states
that if a variable T1(α) exists, then a set constraints is created to relate T1(α) to the
types of actual type parameters of its superclasses. Note that rule (18) uses the function
CGen, defined in Figure 7. For example, if we have two variables, c of type List and
d of type Vector, and an initial system of constraints [d] ≤ [c], and String ≤
Ev(d), then using the rules of Figure 8, we obtain the additional constraints Ev(d) =
Ev(c), El(d) = Ev(d), El(c) = El(d) and El(c) = Ev(d).

We conclude this section with a remark about special treatment of the clone()
method. Although methods that override Object.clone() may contain arbitrary
code, we assume that implementations of clone() are well-behaved (in the sense
that the returned object preserves the type arguments of the receiver expression) and
generate constraints accordingly.

6 Constraint Solving

Constraint solution involves computing a set of legal types for each constraint variable
and proceeds in standard iterative fashion. In the initialization phase, an initial type es-
timate is associated with each constraint variable, which is one of the following: (i) a
singleton set containing a specific type (for constants, type literals, constructor calls,
and references to declarations in library code), (ii) the singleton set { B } (for each
constraint variable K(E) declared in library code, where K is a formal type param-
eter with bound B, to indicate that E should be left raw), or (iii) the type universe
(in all other cases). In the iterative phase, a work-list is maintained of constraint vari-
ables whose estimate has recently changed. In each iteration, a constraint variable α

is selected from the work-list, and all type constraints that refer to α are examined.
For each type constraint t = α≤α′, the estimates associated with α and α′ are up-
dated by removing any element that would violate t, and α and/or α′ are reentered on
the work-list if appropriate (other forms of type constraints are processed similarly).
As estimates monotonically decrease in size as constraint solution progresses, termina-
tion is guaranteed. The result of this process is a set of legal types for each constraint
variable.

86 R. Fuhrer et al.

Since the constraint system is typically underconstrained, there is usually more than
one legal type associated with each constraint variable. In the final solution, there needs
to be a singleton type estimate for each constraint variable, but the estimates for differ-
ent constraint variables are generally not independent. Therefore, a single type is cho-
sen from each non-singleton estimate, after which the inferencer is run to propagate that
choice to all related constraint variables, until quiescence. The optimization criterion of
this step is nominally to select a type that maximizes the number of casts removed. As a
simple approximation to this criterion, our algorithm selects an arbitrary most specific
type from the current estimate (which is not necessarily unique). Although overly re-
strictive in general (a less specific type may suffice to remove the maximum number of
casts/warnings), and potentially sub-optimal, the approach appears to be quite effective
in practice. The type selection step also employs a filter that avoids selecting “tagging”
interfaces such as java.lang.Serializable that define no methods, unless such
are the only available choices11.

In some cases, the actual type parameter inferred by our algorithm is equal to the
bound of the corresponding formal type parameter (typically, Object). Since this does
not provide any benefits over the existing situation (no additional casts can be removed),
our algorithm leaves raw any declarations and allocation sites for which this result is
inferred. The opposite situation, where the actual type parameter of an expression is
completely unconstrained, may also happen, in particular for incomplete programs. In
principle, any type can be used to instantiate the actual type parameter, but since each
choice is arbitrary, our algorithm leaves such types raw as well.

There are several cases where raw types must be retained to ensure that program
behavior is preserved. When an application passes an object o of a generic library class
to an external library12, nothing prevents that library from writing values into o’s fields
(either directly, or by calling methods on o). In such cases, we cannot be sure what
actual type parameter should be inferred for o, and therefore generate an additional
constraint that equates the actual type parameter of o to be the bound of the corre-
sponding formal type parameter, which has the effect of leaving o’s type raw. Finally,
Java 1.5 does not allow arrays of generic types [4] (e.g., type Vector<String>[]
is not allowed). In order to prevent the inference of arrays of generic types, our al-
gorithm generates additional constraints that equate the actual type parameter to the
bound of the corresponding formal type parameter, which has the effect of preserving
rawness.

Constraint solution yields a unique type for each constraint variable. Allocation sites
and declarations that refer to generic library classes are rewritten if at least one of its
inferred actual type parameters is more specific than the bound of the corresponding for-
mal type parameter. Other declarations are rewritten if their inferred type is more spe-
cific than its originally declared type. Any cast in the resulting program whose operand
type is a subtype of its target type is removed.

11 Donovan et al. [8] apply the same kind of filtering.
12 The situation where an application receives an object of a generic library type from an external

library is analogous.

Efficiently Refactoring Java Applications to Use Generic Libraries 87

7 Implementation

We implemented our algorithm in the context of Eclipse, using existing refactoring
infrastructure [3], which provides abstract syntax trees (with symbol binding resolu-
tion), source rewriting, and standard user-interface componentry. The implementation
also builds on the type constraint infrastructure that was developed as part of our ear-
lier work on type-related refactorings [20]. Much engineering effort went into making
the refactoring scalable, and we only mention a few of the most crucial optimizations.
First, a custom-built type hierarchy representation that allows subtype tests to be per-
formed in constant time turned out to be essential. This is currently accomplished by
maintaining, for each type, hash-based sets representing its supertypes and subtypes.
However, we plan to investigate the use of more space-efficient mechanisms [22]. Sec-
ond, as solution progresses, certain constraint variables are identified as being identi-
cally constrained (either by explicit equality constraints, or by virtue of the fact that
Java’s generic types are invariant, as was discussed in Section 2). When this happens,
the constraint variables are unified into an equivalence class, for which a single esti-
mate is kept. A union-find data structure is used to record the unifications in effect as
solution progresses. Third, a compact and efficient representation of type sets turned
out to be crucially important. Type sets are represented using the following expressions
(in the following, S denotes a set of types, and t, t′ denote types): (i) universe, rep-
resenting the universe of all types, (ii) subTypes(S), representing the set of subtypes
of types in S, (iii) superTypes(S), representing the set of supertypes of types in S,
(iv) intersect(S, S), (v) arrayOf (S), representing the set of array types whose ele-
ments are in S, and (vi) {t, t′, . . .}, i.e., explicitly enumerated sets. In practice, most
subtype queries that arise during constraint solving can be reduced to expressions for
which obvious closed forms exist, and relatively few sets are ever expanded into ex-
plicitly represented sets. Basic algebraic simplifications are performed as sets are cre-
ated, to reduce their complexity, as in intersect(subTypes(S), S)) = subTypes(S).
Fourth, we use a new Eclipse compiler API that has been added to improve perfor-
mance of global refactorings, by avoiding the repeated resolution of often-used symbol
bindings.

The refactoring currently supports three modes of operation. In basic mode arbitrary
declarations may be rewritten, and precise parametric supertypes may be inferred for
user-defined subtypes of generic library classes. In noderived mode, arbitrary declara-
tions may be rewritten, but we do not change the supertype of user-defined subtypes
of generic library classes. The preserve erasure mode is the most restrictive because it
does not change the supertype of user-defined subtypes of generic library classes and
it preserves the erasure of all methods. In other words, it only adds type arguments to
declarations and hence preserves binary compatibility.

The forthcoming Eclipse 3.1 release will contain a refactoring called INFER
GENERIC TYPE ARGUMENTS, which is largely based on the concepts and models pre-
sented in this paper and has adopted important parts of the research implementation.
Currently, only the preserve erasure mode is supported.

88 R. Fuhrer et al.

8 Experimental Results

We evaluated our method on a suite of moderate-sized Java programs13 by inferring
actual type parameters for declarations and allocation sites that refer to the standard
collections. In each case, the transformed source was validated using Sun’s javac
1.5 compiler. Table 2 states, for each benchmark, the number of types, methods, total
source lines, non-blank non-comment source lines, and the total number of declarations,
allocation sites, and casts. We also give the number of allocation sites of generic types,
generic-typed declarations, subtypes of generic types, and “unchecked warnings.”

We experimented with the three modes—basic, noderived, and preserve erasure—
that were discussed in Section 7. The results of running our refactoring on the bench-
marks appear in Table 3. The first six columns of the figure show, for each of the three

Table 2. Benchmark characteristics

benchmark benchmark size generics-related measures
types methods LOC NBNC LOC decls allocs casts allocs decls subtypes warnings

JUnit 59 382 5,265 2,394 1,012 305 54 24 48 0 27
V_poker 35 279 6,351 3,097 1,044 198 40 12 27 1 47
JLex 22 121 7,842 4,333 668 146 71 17 33 1 40
DB 32 222 8,594 3,363 939 225 78 14 36 1 652
JavaCup 36 302 11,087 3,833 1,065 341 595 19 62 0 55
TelnetD 52 397 11,239 3,219 995 128 46 16 28 0 22
Jess 184 756 18,199 7,629 2,608 654 156 47 64 1 692
JBidWatcher 264 1,830 38,571 21,226 5,818 1,698 383 76 184 1 195
ANTLR 207 2,089 47,685 28,599 6,175 1,163 443 46 106 3 84
PMD 395 2,048 38,222 18,093 5,163 1,066 774 75 286 1 183
HTMLParser 232 1,957 50,799 20,332 4,895 1,668 793 72 136 2 205
Jax 272 2,222 53,897 22,197 7,266 1,280 821 119 261 3 158
xtc 1,556 5,564 90,565 37,792 14,672 3,994 1,114 330 668 1 583

Table 3. Experimental results

benchmark casts removed unchecked warnings remaining program entities rewritten (basic) time (sec.)
basic noderived preserve basic noderived preserve generic generic all generic (basic)

erasure erasure allocs decls decls subtypes
JUnit 24 24 21 2 2 8 24 57 79 0 9.9
V_poker 32 25 25 0 0 1 12 31 31 1 8.4
JLex 48 47 47 6 6 6 16 28 29 1 5.7
DB 40 40 37 0 634 634 13 32 43 1 8.7
JavaCup 488 488 486 2 2 2 19 70 81 0 9.0
TelnetD 38 38 37 0 0 0 15 27 30 0 6.8
Jess 83 83 82 9 642 642 42 58 68 1 15.9
JBidWatcher 207 204 177 5 5 25 74 195 238 3 64.5
ANTLR 86 84 82 5 7 8 45 80 202 1 32.1
PMD 154 135 132 21 35 36 64 278 322 9 42.0
HTMLParser 172 170 168 7 13 13 70 154 220 2 34.6
Jax 158 139 132 82 82 82 87 188 301 2 45.4
xtc 398 394 327 71 73 136 315 664 1,138 3 113.9

13 For more details, see: www.junit.org, www.cs.princeton.edu/∼appel/modern/
java/JLex/, www.cs.princeton.edu/∼appel/modern/java/CUP/,
www.spec.org/osg/jvm98/, vpoker.sourceforge.znet,
telnetd.sourceforge.net,www.antlr.org,jbidwatcher.sourceforge.net,
pmd.sourceforge.net, htmlparser.sourceforge.net, and
www.ovmj.org/xtc/.

Efficiently Refactoring Java Applications to Use Generic Libraries 89

38
.9

%

62
.5

%

66
.2

%

47
.4

%

81
.7

%

80
.4

%

52
.6

%

46
.2

%

18
.5

%

17
.1

%

21
.2

%

16
.1

% 29
.4

% 44
.5

%

44
.4

%

62
.5

%

66
.2

%

51
.3

%

82
.0

%

82
.6

%

53
.2

%

53
.3

%

19
.0

%

17
.4

%

21
.4

%

16
.9

%

35
.4

% 46
.6

%

44
.4

%

80
.0

%

67
.6

%

51
.3

%

82
.0

%

82
.6

%

53
.2

%

54
.0

%

19
.4

%

19
.9

%

21
.7

%

19
.2

% 35
.7

% 48
.6

%

JUnit
V_poker

JLex
DB

JavaCup
TelnetD

Jess
JBidWatcher

ANTLR
PMD

HTMLParser
Jax

xtc
AVERAGE

0%

20%

40%

60%

80%

100%

BASIC NODERIVED PRESERVE ERASURE

Fig. 9. Percentages of casts removed, for each of the three modes

70
.4

%

97
.9

%

85
.0

%

2.
8%

96
.4

%

10
0.

0%

7.
2%

87
.2

%

90
.5

%

80
.3

% 93
.7

%

48
.1

%

76
.7

%

72
.0

%

92
.6

%

10
0.

0 %

85
.0

%

2.
8%

96
.4

%

10
0.

0 %

7.
2%

97
.4

%

91
.7

%

80
.9

% 93
.7

%

48
.1

%

87
.5

%

75
.6

%92
.6

%

10
0.

0 %

85
.0

% 10
0.

0%

96
.4

%

10
0.

0%

98
.7

%

97
.4

%

94
.0

%

88
.5

%

96
.6

%

48
.1

%

87
.8

%

91
.2

%

JUnit
V_poker

JLex
DB

JavaCup
TelnetD

Jess
JBidWatcher

ANTLR
PMD

HTMLParser
Jax

xtc
AVERAGE

0%

20%

40%

60%

80%

100%

BASIC NODERIVED PRESERVE ERASURE

Fig. 10. Percentages of unchecked warnings eliminated, for each of the three modes

modes, the number of casts removed and unchecked warnings eliminated. The next four
columns show, for the basic mode only, the number of generic allocation sites rewritten,
the number of generic declarations rewritten, the total number of declarations rewrit-
ten, and the number of user-defined subtypes for which a precise generic supertype is
inferred, respectively. The final column of the figure shows the total processing time
in basic mode (the processing times for the other modes are similar). Processing xtc,
our largest benchmark, took slightly under two minutes on a 1.6GHz Pentium M14 and
about 500Mb of heap space. These results clearly demonstrate our algorithm’s scalabil-
ity and we expect our technique to scale to programs of 500 KLOC or more.

8.1 Casts Removed

Figure 9 shows a bar chart that visualizes the percentage of casts removed in each
benchmark, for each of the three modes. As can be seen from this figure, the basic
mode removes an average of 48.6% of all casts from each benchmark, the noderived
mode is slightly less effective with an average of 46.6% of all casts removed, and the

14 The processing time for xtc can be broken down as follows: 26.6 seconds for constraint gener-
ation, 71.1 seconds for constraint solving, and 16.3 seconds for source rewriting.

90 R. Fuhrer et al.

preserve erasure mode is the least effective with 44.5% of all casts removed. When
considering these numbers, the reader should note that the total number of casts given in
Table 2 includes casts that are not related to the use of generic types. However, a manual
inspection revealed that our tool removes the vast majority of generics-related casts,
from roughly 75% to 100%. For example, we estimate that only one-fifth of ANTLR’s
total number of casts relates to the use of collections, which is close to our tool’s 19.4%
removal rate.

8.2 Unchecked Warnings Eliminated

A clearer indication of the effectiveness of our algorithm is apparent in the high pro-
portion of “unchecked warnings” eliminated. This statistic is a rough measure of the
improvement in the degree of type safety in the subject program. Figure 10 visualizes
the percentage of unchecked warnings eliminated in each benchmark, for each of the
three modes. As can be seen from this figure, the basic mode eliminates an average of
91.2% of all unchecked warnings for each benchmark, followed by the noderived mode
with an average of 75.6% and the preserve erasure mode with 72.0%. Note that the
lower averages for the noderived and and preserve erasure mode are largely due to the
very low percentages of unchecked warnings removed on the DB and Jess benchmarks.
We will discuss these cases in detail shortly.

8.3 Analysis of Results

We conducted a detailed manual inspection of the source code of the refactored bench-
marks, in order to understand the limitations of our analysis. Below is a list of several
issues that influenced the effectiveness of our analysis.

Arrays. Several benchmarks create arrays of collections. For example, JLex creates an
array of Vectors, and xtc creates several arrays of HashMaps. Since Java 1.5 does not
permit arrays of generic types, raw types have to be used, resulting in several unchecked
warnings, and preventing some casts from being removed (8 casts in the case of JLex).

Wildcard Usage. Several benchmarks (JBidWatcher, HTMLParser, JUnit, Jax and xtc)
override library methods such as java.lang.ClassLoader.loadClass() that
return wildcard types such as java.lang.Class<?>. Our method is incapable of
inferring wildcard types, and leaves the return types in the overriding method defini-
tions raw, resulting in unchecked warnings.

Polymorphic Containers. In several benchmarks (JBidWatcher, Jax, Jess, and xtc),
unrelated types of objects are stored into a container. In such cases, the common upper
bound of the stored objects is java.lang.Object, and the reference is left raw. The
most egregious case occurs in Jax, where many different Hashtables are stored in a
single local variable. Splitting this local variable prior to the refactoring results in the
elimination of an additional 71 unchecked warnings.

Use of Various benchmarks (JBidWatcher, JUnit, JavaCup, Jess, ANTLR, and
xtc) invoke the clone() method on container objects, and cast the result to a raw con-
tainer type. Although our analysis tracks the flow of types through calls to clone(),

clone().

Efficiently Refactoring Java Applications to Use Generic Libraries 91

rewriting the cast is not helpful, because the compiler would still produce a warning15.
Our tool does not introduce casts to parameterized types, which means that unchecked
warnings will remain.

Static Fields. The xtc benchmark contains 11 references to
Collections.EMPTY LIST, a static field of the raw type List. Several
declarations will need to remain raw, resulting in unchecked warnings. It is interesting
to note that the Java 1.5 standard libraries provide a generic method <T> List<T>
emptyList() that enables polymorphic use of a shared empty list.

User-Defined Subtypes of Generic Library Classes. In most cases, the in-
ference of precise generic supertypes for user-defined subclasses of generic
library classes has little impact on the number of casts removed and warn-
ings eliminated. However, the DB and Jess benchmarks both declare a sub-
class TableOfExistingFiles of java.util.Hashtable that con-
tains 600+ calls of the form super.put(s1,s2), where s1 and s2 are
Strings. In basic mode, TableOfExistingFiles is made a subclass
of Hashtable<String,String> and the unchecked warnings for these
super-calls are eliminated. In the noderived and preserve erasure modes,
TableOfExistingFiles remains a subclass of raw Hashtable, and a
warning remains for each call to put, thus explaining the huge difference in the
number of unchecked warnings.

9 Context Sensitivity

Conceptually, our analysis can be extended with context-sensitivity by simply gener-
ating multiple sets of constraints for a method, one for each context. In principle, this
can result in tighter bounds on parametric types when collections are used in polymor-
phic methods, and in the removal of more casts. Moreover, we could introduce type
parameters on such polymorphic methods to accommodate their use with collections
with different type parameters.

Figure 11(a) shows an example program that illustrates this scenario using a method
reverse() for reversing the contents of a Vector. The reverse() method is in-
voked by methods floatUse() and intUse(), which pass it Vectors of Floats
and Integers, respectively. Applying the previously presented analysis would deter-
mine that both vectors reach method reverse() and infer an element type that is a
common upper bound of Float and Integer such as Number. Therefore, all allo-
cation sites and declarations in the program would be rewritten to Vector<Number>,
and neither of the two casts could be removed.

However, if we create two analysis contexts for reverse—one for each call site—
then one can infer bounds of Float and Integer for the two creation sites of vec-

15 While casts to parameterized types such as Vector<String> are allowed in Java 1.5, such
casts will succeed if the expression being casted is an instance of the corresponding erased
type (Vector), and compilers produce a warning to inform users of this unintuitive behavior.

92 R. Fuhrer et al.

class ContextExample {
void floatUse() {

Vector v =
new Vector();

v.add(new Float(3.14));
reverse(v);
Float f = (Float)v.get(0);

}
void intUse() {

Vector v =
new Vector();

v.add(new Integer(6));
reverse(v);
Integer i = (Integer)v.get(0);

}
void reverse(Vector v) {

for(int i=0;i<v.size()/2;i++){
Object temp = v.get(i);
v.set(i,v.get(v.size() - i));
v.set(v.size() - i,temp);

}
}

}

class ContextExample {
void floatUse() {

Vector<Float> v =
new Vector<Float>();

v.add(new Float(3.14));
reverse(v);
Float f = v.get(0);

}
void intUse() {

Vector<Integer> v =
new Vector<Integer>();

v.add(new Integer(6));
reverse(v);
Integer i = v.get(0);

}
<T> void reverse(Vector<T> v) {

for(int i=0;i<v.size()/2;i++){
T temp = v.get(i);
v.set(i,v.get(v.size() - i));
v.set(v.size() - i,temp);

}
}

}

(a) (b)

Fig. 11. Example program that illustrates the need for context-sensitive analysis

tors. Conceptually, this is equivalent to analyzing a transformed version of the pro-
gram that contains two clones of the reverse() method, one of which is called from
intUse(), the other from floatUse(). The two contexts of reverse would re-
ceive different type estimates for parameter v, and our code transformation could ex-
ploit this information by transforming reverse() into a generic method, and remove
both casts. This result is shown in Figure 11(b).

We implemented a context-sensitive version of the previously presented algorithm,
in which we used a low-cost variant of Agesen’s Cartesian Product Algorithm [1, 2]
to determine when different contexts should be created for a method, and reported the
results in a previous technical report [19]. To our surprise, we could not find any non-
synthetic benchmarks where the use of context-sensitive analysis resulted in the removal
of additional casts. We believe that there are two major reasons why context-sensitive
analysis was not useful. The first is that the standard libraries already provide a rich set
of functionality, and there is relatively little need for writing additional helper methods.
Second, the relatively few applications that do define helper methods that operate on
collections tend to use these methods monomorphically. An investigation of larger ap-
plications might turn up more opportunities for context-sensitive analysis, but it is our
conjecture that there will be relatively few such opportunities.

10 Related Work

The work most closely related to ours is that by Donovan et al. [8], who also designed
and implemented a refactoring for migrating an application to a generic version of a
class library that it uses. Like us, Donovan et al. evaluate their algorithm by inferring

Efficiently Refactoring Java Applications to Use Generic Libraries 93

generic types for occurrences of the standard collections in a set of Java benchmarks,
and measure their success in terms of the number of casts that can be removed. There
are a number of significant differences between the two approaches.

First, the approach by Donovan et al. relies on a context-sensitive pointer analysis16

based on [24, 1] to determine the types stored in each allocation site for a generic li-
brary class. Moreover, Donovan et al. create “guarded” constraints that may or may not
be applied to the type constraint system depending on the rawness of a particular decla-
ration, and their solving algorithm may require (limited) backtracking if such a rawness
decision leads to a contradiction later on. Our approach is simpler because it requires
neither context-sensitive analysis nor backtracking, and therefore has greater potential
for scaling to large applications. The differences in observed running times seem to
bear this out (Donovan et al. report a running time of 462 seconds on the ∼27 KLOC
HTMLParser using a 3GHz Pentium 4 with 200Mb heap, while our tool requires 113.9
seconds on a ∼90 KLOC program using a 1.6GHz Pentium M using 512Mb heap).

Second, there are several differences in the kinds of source transformations allowed
in the two works: (i) Donovan et al. restrict themselves to transformations that do not
affect the erasure of a class, while our approach allows the modification of declarations,
(ii) Donovan’s work was done prior to the release of Java 1.5 and their refactoring tool
conforms to an earlier specification of Java generics, which does not contain wildcard
types and which allows arrays of generic types, and (iii) our method is capable of infer-
ring precise generic supertypes for subtypes of generic library classes that are defined in
application code (see, e.g., Figure 2 in which we infer that class MyIterator extends
Iterator<String>). Third, our tool is more practical because it is fully integrated
in a popular integrated development environment.

For a more concrete comparison, we manually inspected the source generated by
both tools for 5 of the 7 benchmarks analyzed in [8]: JLex, JavaCup, JUnit, V poker
and TelnetD. A head-to-head comparison on ANTLR and HTMLParser was impossible
due to differences in the experimental approach taken17.

In most cases, our tool was able to remove the same or a higher number of generics-
related casts than did Donovan’s, in a small fraction of the time. The differences in
casts removed derive from several distinct causes. First, our tool’s ability to infer type
parameters for user-defined subtypes of parametric types permits the removal of addi-
tional casts (e.g., 6 additional casts could be removed in V poker in clients of a local
class extending Hashtable). Second, Donovan’s tool was implemented before the
final Java 1.5 specification was available and conforms to an early draft, in which pa-
rameterized types were permitted to be stored in arrays; the final specification, however,
requires that such generic types be left raw. As a result, Donovan’s tool infers non-raw
types for certain containers in JLex that our tool (correctly) leaves raw, preventing the

16 The context-sensitive variant of our algorithm [19] discussed in Section 9 is also based on the
Cartesian Product Algorithm, but it uses context-sensitivity for a different purpose, namely to
identify when it is useful to create generic methods.

17 Donovan et al. identified classes in these benchmarks that could be made generic, manually
rewrote them accordingly, and treated them as part of the libraries. As a result, the number
of removed casts that they report cannot be directly compared to ours, as it includes casts
rendered redundant by the generics that they manually introduced.

94 R. Fuhrer et al.

removal of certain casts. Third, our algorithm models Object.clone() so that type
parameter information is not lost across the call boundary. As a result, our tool removes
all 24 generics-related casts from JUnit, while Donovan’s tool only removes 16.

Von Dincklage and Diwan [23] address the problems of converting non-generic Java
classes to use generics (parameterization) and updating non-generic usages of generic
classes (instantiation). Their approach, like ours, is based on constraints. Von Dinck-
lage’s tool employs a suite of heuristics that resulted in the successful parameterization
of several classes from the Java standard collections. However, the code of those classes
had to be manually modified to eliminate unhandled language constructs before the tool
could be applied. The tool’s correctness is based on several unsound assumptions (e.g.,
public fields are assumed not to be accessed from outside their class, and the type of
the argument to equals is assumed to be identical to the receiver’s type), and it can
alter program behavior by modifying virtual method dispatch due to changed overriding
relationships between methods. No results are given about how successful the tool is in
instantiating non-generic classes with generic information.

The problem of introducing generic types into a program to broaden its use has
been approached before by several researchers. Siff and Reps [18] focused on trans-
lating C functions into C++ function templates by using type inference to detect latent
polymorphism. In this work, opportunities for introducing polymorphism stem from
operator overloading, references to constants that can be wrapped by constructor calls,
and from structure subtyping. Duggan [9] gives an algorithm (not implemented) for
genericizing classes in a small Java-like language into a particular polymorphic vari-
ant of that language. This language predated the Java 1.5 generics standard by several
years and differs in a nontrivial number of respects. Duggan does not address the prob-
lem of migrating non-generic code to use generics. The programming environments
CodeGuide [6] and IntelliJ IDEA [12] provide “Generify’’ refactorings that are similar
in spirit to ours. We are not aware of the details of these implementations, nor of the
quality of their results.

11 Conclusions and Future Work

We have presented a refactoring that assists programmers with the adoption of a generic
version of an existing class library. The method infers actual type parameters for decla-
rations and allocation sites that refer to generic library classes using an existing frame-
work of type constraints. We implemented this refactoring in Eclipse, and evaluated the
work by migrating a number of moderate-sized Java applications that use the Java col-
lections framework to Java 1.5’s generic collection classes. We found that, on average,
48.6% of the casts related to the use of collections can be removed, and that 91.2% of the
unchecked warnings are eliminated. Our approach distinguishes itself from the state-
of-the-art [8] by being more scalable and by its ability to accommodate user-defined
subtypes of generic library classes. The “Infer Generic Type Arguments” in the forth-
coming Eclipse 3.1 release is largely based on the concepts presented in this paper, and
has adopted important parts of our implementation.

Plans for future work include the inference of wildcard types. As indicated in Sec-
tion 8.3, doing so will help remove additional casts and unchecked warnings.

Efficiently Refactoring Java Applications to Use Generic Libraries 95

Acknowledgments

We are grateful to Alan Donovan and Michael Ernst for many useful discussions about
comparisons between our two algorithms, and for sharing information about the bench-
marks used in [8]. The anonymous ECOOP reviewers, Michael Ernst, and Bartek Klin
provided many helpful comments and suggestions.

References

1. AGESEN, O. The cartesian product algorithm: Simple and precise type inference of para-
metric polymorphism. In Proc. of ECOOP (1995), pp. 2–26.

2. AGESEN, O. Concrete Type Inference: Delivering Object-Oriented Applications. PhD thesis,
Stanford University, December 1995.

3. BÄUMER, D., GAMMA, E., AND KIEŻUN, A. Integrating refactoring support into a Java
development tool. In OOPSLA’01 Companion (October 2001).

4. BRACHA, G., COHEN, N., KEMPER, C., ODERSKY, M., STOUTAMIRE, D., THORUP, K.,
AND WADLER, P. Adding generics to the Java programming language, final release. Tech.
rep., Java Community Process JSR-000014, September 2004.

5. BRACHA, G., ODERSKY, M., STOUTAMIRE, D., AND WADLER, P. Making the future safe
for the past: Adding genericity to the Java programming language. In Proc. of OOPSLA
(1998), pp. 183–200.

6. Omnicore codeguide. http://www.omnicore.com/codeguide.htm.
7. DE SUTTER, B., TIP, F., AND DOLBY, J. Customization of Java library classes using type

constraints and profile information. In Proc. of ECOOP (2004), pp. 585–610.
8. DONOVAN, A., KIEŻUN, A., TSCHANTZ, M., AND ERNST, M. Converting Java programs

to use generic libraries. In Proc. of OOPSLA (Vancouver, BC, Canada, 2004), pp. 15–34.
9. DUGGAN, D. Modular type-based reverse engineering of parameterized types in Java code.

In Proc. of OOPSLA (1999), pp. 97–113.
10. FOWLER, M. Refactoring. Improving the Design of Existing Code. Addison-Wesley, 1999.
11. GOSLING, J., JOY, B., STEELE, G., AND BRACHA, G. The Java Language Specification

(3rd Edition). Addison-Wesley, 2000.
12. JetBrains IntelliJ IDEA. http://www.intellij.com/idea/.
13. IGARASHI, A., PIERCE, B. C., AND WADLER, P. Featherweight Java: a minimal core

calculus for Java and GJ. ACM TOPLAS 23, 3 (2001), 396–450.
14. LANGER, A., AND KREFT, K. Arrays in Java Generics. Manuscript

http://www.langer.camelot.de.
15. MUNSIL, W. Case study: Converting to Java 1.5 type-safe collections. Journal of Object

Technology 3, 8 (2004), 7–14.
16. ODERSKY, M., AND WADLER, P. Pizza into Java: Translating theory into practice. In Proc.

of POPL (1997), pp. 146–159.
17. PALSBERG, J., AND SCHWARTZBACH, M. Object-Oriented Type Systems. John Wiley &

Sons, 1993.
18. SIFF, M., AND REPS, T. W. Program generalization for software reuse: From C to C++. In

Foundations of Software Engineering (1996), pp. 135–146.
19. TIP, F., FUHRER, R., DOLBY, J., AND KIEŻUN, A. Refactoring techniques for migrating

applications to generic Java container classes. Tech. Rep. Research Report RC 23238, IBM
Research, June 2004.

20. TIP, F., KIEŻUN, A., AND BÄUMER, D. Refactoring for generalization using type con-
straints. In Proc. of OOPSLA (Anaheim, CA, 2003), pp. 13–26.

96 R. Fuhrer et al.

21. TORGERSEN, M., HANSEN, C. P., ERNST, E., VON DER AHÉ, P., BRACHA, G., AND
GAFTER, N. M. Adding wildcards to the Java programming language. In Proc. of ACM
Symposium on Applied Computing (SAC) (Nicosia, Cyprus, 2004), pp. 1289–1296.

22. VITEK, J., HORSPOOL, R. N., AND KRALL, A. Efficient type inclusion tests. In Proc. of
OOPSLA (1997), pp. 142–157. SIGPLAN Notices 32(10).

23. VON DINCKLAGE, D., AND DIWAN, A. Converting Java classes to use generics. In Proc.
of OOPSLA (Vancouver, BC, Canada, 2004), pp. 1–14.

24. WANG, T., AND SMITH, S. Precise constraint-based type inference for Java. In Proc. of
ECOOP (2001), pp. 99–117.

Sharing the Runtime Representation of Classes
Across Class Loaders

Laurent Daynès and Grzegorz Czajkowski

Sun Microsystems Laboratories
{Laurent.Daynes, Grzegorz.Czajkowski}@sun.com

Abstract. One of the most distinctive features of the JavaTM program-
ming language is the ability to specify class loading policies. Despite the
popularity of class loaders, little has been done to reduce the cost as-
sociated with defining the same class by multiple loaders. In particular,
implementations of the Java virtual machine (JVMTM) create a complete
runtime representation of each class regardless of how many class loaders
already define the same class. This lack of sharing leads to poor memory
utilization and to replicated run-time work. Recent efforts achieve some
degree of sharing only when dynamic binding behaves predictably across
loaders. This limits sharing to class loaders whose behavior is fully con-
trolled by the JVM. As a result applications that implement their own
class loading policies cannot enjoy the benefit of sharing.

We present a novel technique for sharing the runtime representation of
classes (including bytecodes and, under some conditions, compiled code)
across arbitrary user-defined class loaders. We describe how our approach
is applied to the multi-tasking virtual machine (MVM). The new multi-
tasking virtual machine retains the fast start-up time of the original
MVM while extending the scope of footprint savings to applications that
exploit user-defined class loaders.

1 Introduction

One of the most distinctive features of the JavaTM programming language [10]
is the ability to define class loading policies [13]. Class loaders are exploited in a
wide range of applications, such as scripting environments, IDEs, runtime code
injection tools, aspect-oriented programming platforms, web browsers, servlet
engines, and application servers.

Class loaders are popular for several reasons. They provide separate names-
paces, which allows a program to link components regardless of whether they
include different versions of the same classes or different classes with the same
name. This feature enables the implementation of a form of isolation, where care-
fully crafted software modules can be loaded multiple times without interfering
with one another [4]. Class loaders also give programs control over the location
where classes are loaded from, and an opportunity to transparently enhance
third-party code by providing mechanisms for its interception and modification

A.P. Black (Ed.): ECOOP 2005, LNCS 3586, pp. 97–120, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

98 L. Daynès and G. Czajkowski

(via bytecode transformations) before it is linked with the rest of the managed
execution environment.

Using class loaders comes at a cost, however. JVM implementations typically
replicate the entire runtime representation of a class in memory for each class
loader that defines the class1. Defining a class multiple times also replicates
the effort to create an optimized runtime representation, by repeating class file
parsing, construction of main-memory data structures, bytecode verification,
(optional) bytecodes quickening, resolution of constants, and identification and
recompilation of frequently used methods.

The use of delegation relationships between class loaders, where one class
loader can delegate the definition of a class to another, helps to limit these prob-
lems but can rapidly become error prone as the complexity of the delegation
relationships increases. Besides, not all uses of class loaders can be accommo-
dated with delegation. For example, delegation is inadequate when multiple in-
stances of the same software component must be loaded and isolated from one
another.

The cost of user-defined class loaders is a consequence of the inability of
current JVM implementations to share the main-memory representation of a
class between multiple definitions of that class. JVMs typically construct the
executable image of a program at runtime in several incremental steps: first by
loading class files from locations specified by their loaders and building corre-
sponding main memory representations, then by linking them to other classes
as symbolic references are encountered during method execution, and eventually
by compiling performance-critical methods. This evolution of a program image
is a consequence of dynamic binding and of the use of an architecture-neutral
format of class files, as required by the specification of the Java programming
language [10] (JLS). Both make the building of a sharable image at runtime dif-
ficult and prevent applying well-established shared library techniques used for
less dynamic programming languages (e.g. [3]).

Several recent efforts have achieved some degree of sharing of the runtime
representation of classes between executing programs [5, 6, 19, 8]. However, they
can only do so when dynamic binding has a predictable behavior across loaders,
e.g., when a symbolic link from a class A to a class B is guaranteed to resolve
identically across all class loaders. Thus, sharing is only supported for those
class loaders whose behavior is fully controlled by the JVM. Sharing is not
supported when classes are defined by user-defined loaders. Systems based on
static compilation (e.g., [20]) face similar issues (see Section 6).

This paper presents a novel technique for sharing the runtime representation
of classes between multiple arbitrary defining class loaders, and describes its
application to the Multi-Tasking Virtual Machine (or MVM) [5]. This new im-
plementation of MVM is called hereafter CLSVM (Class Loader Sharing Virtual
Machine). CLSVM is a significant step forward in the technology of transpar-

1 The character strings representing symbols are usually shared across representations
of all classes though.

Sharing the Runtime Representation of Classes 99

ent sharing of safe language meta-data, and improves on MVM by bringing the
benefits of sharing to user-defined class loaders.

CLSVM’s sharing of the runtime representation of a class is orthogonal to
sharing by delegation. Sharing by delegation makes a class type visible to mul-
tiple loaders and has an impact on program semantics, while sharing of the
runtime representation of classes is transparently and automatically performed
by the JVM, has no impact on program behavior, and does not violate or impact
type safety.

In CLSVM, sharing is achieved by splitting the runtime representation of
a class into loader-dependent and loader-independent parts, and by making
bytecode interpretation loader re-entrant so that the bytecodes of methods are
sharable across multiple loaders. The loader-dependent part is replicated for each
loader that defines the class. Classes loaded by the bootstrap loader are treated
specially in order to exploit the predictability of symbolic link resolution and
consequently to maximize sharing.

A consequence of such a design is that some of the class loading and run-time
compilation effort is shared across multiple class loaders. In particular, class file
parsing, and most of the building of a main-memory runtime representation of
the class is done only once. Post-processing of bytecodes that may take place at
link time is also done once.

CLSVM’s dynamic compiler mixes two strategies to reduce the overhead
of dynamic compilations. Whenever possible, the compiler attempts to share
compiled code across multiple defining loaders. When sharing is not possible, the
compiler constructs a new version of the compiled code. Even in this situation
opportunities for compilation time savings arise: only if the method has not
been compiled at all is it compiled from its bytecodes. Otherwise, instead of
recompiling the method, the compiler clones the compiled code and modifies its
loader-dependent part.

The rest of this paper is organized as follows. Section 2 describes principles for
sharing between multiple loaders. Section 3 details a prototype implementation
of CLSVM based on MVM, which in turn extends the Java HotSpotTM virtual
machine [16] (referred to as HSVM). Section 4 discusses how dynamic compila-
tions take advantage of sharing across loaders. Section 5 reports a quantitative
assessment of the impact of sharing on the performance and memory footprint
of programs written in the Java programming language (or Java programs). Re-
lated work is discussed in Section 6. Section 7 summarizes the contributions of
this work.

2 Design Overview

Sharing an element of the runtime representation of a class between class loaders
is possible when the element is independent of its defining loaders. Loader depen-
dencies arise from symbolic links to other classes, which may resolve at runtime
to different class definitions from one loader to another, and from references
from a class’s runtime representation to data that are private to a loader, such

100 L. Daynès and G. Czajkowski

as instances of java.lang.Class or static variables. At first sight, a significant
amount of the runtime representation of a class appears independent of the loader
that defines it. In particular, it should be possible to share across two loaders,
each defining a class described by the same class file, the bytecodes of that class,
the constant part of its constant pool (i.e., the part that can never resolve to dif-
ferent objects at runtime, such as constant values), and meta-data describing the
class itself (e.g., tables holding description of fields, methods, and exceptions).

However, several obstacles make sharing across multiple loaders difficult.
First, loaders may resolve the super class of the same class differently. This
may result in different object layouts (since one super-class may declare more
fields than the other, and of different types), and different virtual tables (since
one super-class may declare a different number of methods, with different sig-
natures, and different methods may be overridden). Second, interpreters often
exploit resolved symbolic links to rewrite bytecodes into faster versions that
need not test whether links should be resolved or whether classes should be
initialized. Such quickened bytecodes become, in effect, loader-dependent. The
dynamic compiler also exploits information derived from resolved symbolic links
and makes compiled code loader dependent. These obstacles taken together seem
to contradict the first intuition that a significant amount of meta-data can be
shared across loaders.

Our design overcomes these problems as follows. First, sharing is allowed only
if some conditions on inheritance are met, so as to avoid dealing with cases where
object layout and virtual tables would be different. Second, the interpretation of
bytecodes is made loader re-entrant by re-organizing the runtime representation
of classes so as to efficiently access each loader’s private data, and by adding bar-
riers to guarantee that link resolutions and class initializations are performed
upon their first use by a loader. Third, the dynamic compiler maintains infor-
mation to help determine if native code can be shared between loaders, and if
not, to help build a new version of compiled code without paying the cost of a
full-blown compilation from the method’s bytecodes.

2.1 Terminology and Notation

We use the terminology and notation of [13] to describe relations between classes
and class loaders. Namely, a class type is denoted as < C,Ld >Li , where C
denotes the name of the class, Ld denotes the class’s defining loader, and Li

denotes its initiating loader. The initiating loader of a class (i.e., the loader
invoked to load the class) is not necessarily the loader that defines the class, due
to the API of class loaders that enables one loader to delegate the definition of a
class to another. The simplified notation < C,Ld > is used when the initiating
loader of a class is not relevant. Similarly, CLi denotes a situation when the
defining loader is not relevant. By definition < C,L1 >=< C,L2 >⇒ L1 = L2.

We extend this notation with the ∼ operator to denote that two class types
satisfy the same sharing conditions (see Section 2.2) and can therefore share their
runtime representation. By definition < C,L1 >∼< C,L2 >⇒< C,L1 >�=<
C,L2 > (this restriction simplifies discussion that follows). For convenience, we

Sharing the Runtime Representation of Classes 101

introduce the following notation: < C,L1 >∼=< C,L2 > to denote < C,L1 >∼<
C,L2 > ∨ < C,L1 >=< C,L2 >.

2.2 Sharing Conditions

Let us consider two distinct loaders L1 and L2, each defining a class C. The
conditions that enable < C,L1 >∼< C,L2 >, that is, the sharing of the runtime
representations of < C,L1 > and < C,L2 >, are defined below.

The first condition for < C,L1 >∼< C,L2 > is that the class files submit-
ted to the JVM by L1 and L2 must be identical. For simplicity, two class files
(either residing on a disk or dynamically generated) are considered identical if
the classes are byte-per-byte equal, although this is a fairly coarse method for
determining if two class files encode the same class definition. A more precise
implementation would require parsing the class files and determining equiva-
lence of the declarations. This approach is substantially more expensive and, in
practice, is unlikely to be much more effective.

The second condition requires that the super-classes SL1 , SL2 of < C,L1 >
and < C,L2 > respectively are such that SL1 ∼= SL2 .

The third condition is that < C,L1 > and < C,L2 > have the same abstract
methods. Note that this property holds if the two sharing conditions above are
satisfied and if C does not implement any interfaces. The third condition is
specifically directed at classes that implement interfaces. It guarantees that all
classes that share their runtime representation have the same unimplemented
methods, that is, methods that are not defined by the class but yet are declared in
an interface. For example, let us consider a class C that implements an interface
I that declares a single method m. Method m is unimplemented if neither C
nor any of its super-classes implement m. In this case, m must be treated as a
public abstract method of C.

The sharing conditions guarantee several properties that simplify sharing.
First, they guarantee that < C,L1 > and < C,L2 > have the same number of
static variables, that their respective instances have the same number of fields
(whether directly defined by the class or inherited), and that fields with the same
name have the same signature and will be at the same offset. This property
allows the JVM to lay out identically the instances of classes whose runtime
representation is shared, to share reference maps used for garbage collections,
and to share the descriptions of fields. Second, the sharing conditions guarantee
that the methods of < C,L1 > and < C,L2 >, whether declared directly by
these classes or inherited, have the same name, signature, protection level, and
bytecodes, and that they can be assigned the same index in a virtual method
table (the Java programming language inheritance model enables table-driven
implementation of virtual method dispatch).

Although the sharing conditions guarantee that < C,L1 > and < C,L2 >
implement the same number of interfaces, and have the same unimplemented
methods, they do not mandate that these interfaces declare exactly the same
methods. Consider the example in Figure 1. In this case, the sharing conditions
allow the runtime representation of C to be shared across L1 and L2, although
they implement different interfaces.

102 L. Daynès and G. Czajkowski

interface A { // In L1 interface A { // In L2

int foo(int i); Integer foo(Integer i);

long foo(long l); void bar(int i);

void bar(int i);

} }
abstract class C implements A { // Defined by both L1 and L2

int foo(int i){...}
Integer foo(Integer i){...}
long foo(long l){...}

} // bar is the only unimplemented method in both L1 and L2

Fig. 1. The sharing conditions can be satisfied despite different interface definitions

3 The Design of CLSVM

CLSVM extends MVM, the multi-user, multi-tasking virtual machine [5, 7] with
the ability to share meta-data across user-defined class loaders. The parts of the
design of MVM relevant to CLSVM are briefly reviewed before discussing the
actual design of CLSVM.

3.1 Background on MVM

MVM is an implementation of the JVM that co-locates the execution of multiple
programs in a single operating system process. Each program execution is carried
out by an isolate [11]. Isolates provide a program with the illusion of a standalone
JVM: programs have the same behavior as if they were running on a JVM of their
own. Each isolate has its own primordial loader and hierarchy of class loaders.
No sharing of objects can take place between isolates and the JVM safeguards
against most types of inter-isolate interference.

MVM substantially reduces the footprint of programs by implementing a
form of sharing that we call task re-entrance. Task re-entrance is supported only
for classes defined by class loaders whose behavior is fully controlled by MVM,
that is, the primordial and system loader of each isolate.

The primordial loader is a special class loader that bootstraps the class load-
ing mechanism. It is used to load the base classes that are intimately associated
with a JVM implementation and are essential to its functioning (such as classes
of the java.* packages). The system loader is the loader that defines the main
class of a program. It typically obtains class files from the local file system at a
fixed location specified at program start-up. MVM forces this location to be the
same for all programs it executes, and requires that class files stored there remain
unchanged for the duration of its execution. The system loader serves class load-
ing requests by first delegating them to the primordial loader, and only defines
classes that the primordial loader failed to define. This behavior is predictible,
and a class loaded by a primordial or a system loader of any task is always built
from the same class file. Further, symbolic references from classes defined by a
primordial or a system loader always resolve identically across all tasks.

Sharing the Runtime Representation of Classes 103

This allows for a simplified form of sharing where only the mutable state
part of the runtime representation of a class (e.g., static variables, class initial-
ization state, protection domain, instance of java.lang.Class etc.) needs to be
replicated per loader. In particular, information derived from resolved symbolic
links, such as field offsets, virtual table indexes, static method addresses, etc.,
can be shared across loaders, further increasing the amount of sharing. In MVM
no form of sharing is supported for classes defined by program-defined loaders.

Like MVM, CLSVM implements task re-entrance for classes loaded by pri-
mordial loaders. For all user-defined loaders CLSVM implements loader re-
entrance, which allows sharing of the runtime representation of a class with
any other class that satisfies the sharing conditions described earlier. The type
of re-entrance implemented for system loaders can be chosen at start-up time: by
default, CLSVM uses task re-entrance, like in MVM. All other aspects of MVM,
such as isolate management and termination, per-isolate garbage collection, and
fast inter-isolate communication, are left unchanged in CLSVM.

The rest of this section focuses on the following aspect of loader re-entrance:
(i) how to organize the runtime representation of a class so as to maximize
sharing while minimizing its overhead, (ii) how to efficiently retrieve loader-
private information from shared code, and (iii) how to make the interpretation
of shared bytecodes loader re-entrant.

3.2 Runtime Representation of Classes

The runtime representation of a class consists of data structures that mirror
the architecture-neutral binary representation of that class, in a main memory
format optimized for the various sub-systems of the JVM.

In CLSVM, the runtime representation of a class is split in a loader-
independent and a loader-dependent representation (LIR and LDR, respectively).
Loaders that satisfy the sharing conditions for a class share the same LIR, but
each has its own LDR for the class. LIRs include a reference to a LDR template.
The template serves two functions: it is a blueprint for constructing an LDR,
and, to minimize space overhead, it is always used as the LDR of one loader.

Figure 2 illustrates this organization. It depicts the runtime representation
of two classes satisfying the same sharing conditions: < B,L1 >, whose LDR
acts as a template, and < B,L2 > that was built using < B,L1 >.

The LIR contains most of the runtime representation of a class. It consists of
a sharedRep object which includes a reference map for garbage collection, ref-
erences to an array of fields declared by the class template, to a shared constant
pool, and to the LDR currently used as a template.

Each sharedRep of a LIR S also includes a reference to the super shared-
Rep of the LIR shared by the runtime representation of the super-classes of
all classes that have S for their LIR. Recall that the second sharing condition
requires that the super-classes of two classes < C,L1 > and < C,L2 > such
that < C,L1 >∼< C,L2 > are either the same class or share their runtime
representation. In either case, this means that the sharedReps of the super-
classes of < C,L1 > and < C,L2 > are the same.

104 L. Daynès and G. Czajkowski

Fig. 2. CLSVM runtime representation of classes

The LDR of a class consists of an instanceKlass object, which includes
storage for its virtual method table (vtable) and its interface table (itable),
and a reference to the sharedRep object it was built from. The runtime rep-
resentation of classes that are task re-entrant is structured slightly differently
in that most of the LDR is also shared across the task re-entrant loaders, ex-
cept for non-re-entrant state, such as the class’s static variables, the instance of
java.lang.Class and java.lang.ClassLoader for the class, and its initializa-
tion state. This non-re-entrant state is embedded in the instanceKlass object
for loader re-entrant classes. This arrangement is not possible for task re-entrant
classes since the whole instanceKlass object is shared among all isolates. In-
stead, the non-re-entrant state of each isolate sharing the instanceKlass is
stored in a separate object accessible via a table indexed by isolate identifiers;
the reference to the table is stored in the instanceKlass.

An example of this is shown on Figure 2: a class O is defined by the primordial
loaders of two isolates, I1 and I2. The resulting class type < O,P > is represented
by the same instanceKlass for both I1 and I2, and only task-dependent state
is replicated for each task. Regardless of whether their class is task re-entrant or
not, class instances (i.e., Java objects) contain in their header a pointer to the
instanceKlass that represents their class.

As mentioned earlier, the sharing conditions guarantee that the vtable in-
dexes are the same across all loaders that satisfy them. They also guarantee
that methods are inherited and overridden in exactly the same way across class

Sharing the Runtime Representation of Classes 105

loaders. However, entries in vtables must refer to loader-dependent method rep-
resentations. Methods have two runtime representations: a loader-dependent rep-
resentation, called a method object, and a shared method object. Method objects
consist of an invocation counter and references to a shared method object, to
a class pool, and to native code produced by the dynamic compiler, if any (see
Section 4). Shared method objects encapsulate the bulk of a method definition,
most notably, the method bytecodes. All of the shared method object is loader-
independent, except for a loader-specific header. This header comprises the same
information as in method objects, except for the shared method object reference.
This organization allows one instanceKlass (typically, the LDR template’s) to
use the shared methods directly (like< B,L1 > on Figure 2), thus avoiding
the space overhead of systematically splitting the runtime representation of a
method.

The interpreter and the compiler dynamically resolve links using the class
pool, the shared constant pool, and the constant pool cache of the class that
defines the method being executed. The class pool and the shared constant pool
are built directly from the constant pool defined in a class file. The class pool
is filled only with symbolic links to classes. All other constant pool entries are
entered into the shared constant pool, which contains only loader-independent
information, namely indexes to class pool or shared constant pool entries, con-
stant numerical and string values, or symbols. Loader-dependent information,
other than symbolic links to classes, is confined to the constant pool cache, con-
structed at class link time. It contains information built from resolved symbolic
links to fields, methods, and interfaces to enable faster interpretation of some
bytecodes.

3.3 Class Loading

Classes loaded by the JVM are recorded in a system dictionary that maps
keys composed of a fully qualified class name and a class loader reference to
an instanceKlass. Multiple entries in the dictionary can refer to the same
instanceKlass as a result of delegation between loaders.

A shared class repository maps linked lists of sharedRep objects to unique
fingerprints computed over the bytes of class files. All sharedReps in a given
linked list are constructed from class files that all have the same fingerprint
value. Having more than one shared runtime representation of a class for the
same class file can occur because of possible violations of the sharing conditions
between defining loaders (e.g., if the shared representation of the super classes of
the defined classes are different). Fingerprints are computed as SHA-1 digests [18]
of class files.

The class loading machinery uses the system dictionary and the shared class
repository to determine whether a loader’s request for defining a class can use
an existing shared runtime representation for the newly defined class. When
instructed by a loader to define a class, CLSVM fetches a class file from the
specified input stream and computes its SHA-1 digest. The digest is used to
retrieve all the shared representations of classes that were built with a class file

106 L. Daynès and G. Czajkowski

of equal value. Note that the format of the class file does not need verification
before computing the SHA-1 digest, since if the specified class file does not
conform to a valid class file format, its digest cannot map to an existing entry
of the shared class repository. If the digest does not map to any sharedRep, the
format of the class file is verified and parsed to create a new sharedRep object,
which is then entered into the repository.

If a linked list of sharedRep objects is found in the repository, an element
that satisfies the sharing conditions for the defining loader is looked up. Let L be
that loader, and < C,L > the class type being defined. The first of the sharing
conditions already holds since all sharedReps from the list have a digest equal
to that of the class file submitted by the loader. To test the second condition,
the system dictionary is searched for the instanceKlass of < C,L >’s super
class. If the search is not successful, class loading proceeds recursively to load the
super-class. Once the instanceKlass of the super class is retrieved, its reference
to its sharedRep is compared with the super reference of the sharedRep under
evaluation. The second sharing condition holds if the two references are equal.

Lastly, < C,L > must define the same unimplemented methods as other
classes already sharing the evaluated sharedRep. Because the first two sharing
conditions already hold, only unimplemented methods of < C,L >’s declared
interfaces need to be verified. Hence the third condition is automatically satisfied
if < C,L > does not declare any interfaces. If it does, then unimplemented
methods are looked up in the sharedRep and compared to those of < C,L >.
The third condition holds if the number of unimplemented methods and their
names and types are the same.

If none of the existing sharedReps satisfies the sharing condition for < C,L >,
a new one must be created. Creating a new sharedRep in this case does not re-
quire parsing the class file. Instead, an existing sharedRep is cloned and changed
only in those places that depend on the super class and the unimplemented ab-
stract methods, since a violation of the sharing conditions corresponds to having
different values for some of these.

3.4 Sharing Bytecodes

The runtime representation of classes described above is not sufficient to al-
low sharing of methods. Bytecode interpretation must also be made loader re-
entrant. This requires efficient access to a class loader’s copy of static variables,
and proper triggering of link resolution and class initialization once for each
loader that shares the bytecodes. Both are achieved by using the constant pool
cache associated with the private representation of the current class, i.e., the
class that defines the method being executed. The reference to the current class is
stored, upon method invocation, in a dedicated location on the invoked method’s
stack frame. Short sequences of instructions called barriers trigger link resolution
and class initialization.

A link resolution barrier (LRB) is required for all bytecodes that refer to a
loader-dependent symbolic link. In CLSVM, the bytecodes in this category are
the quickened versions of getfield, putfield, invokevirtual, invokespecial,

Sharing the Runtime Representation of Classes 107

invokeinterface. LRBs are redundant in presence of class initialization barri-
ers, so the former is not necessary if the latter is already required. A class ini-
tialization barrier (CIB) is needed when interpreting the quickened versions of
the four bytecode instructions that might trigger class initialization: getstatic,
putstatic, invokestatic and new.

Both LRBs and CIBs work along the same principle: the operand of a quick-
ened bytecode is an index to an entry of the current class’s constant pool cache
that holds information necessary to interpret the bytecode (e.g., a field offset, a
vtable index, etc.). The information is initialized with a distinguishable marker
that is tested by the interpreter. On SPARC� processors, these barrier tests
add only a single branch on register value. For instance, offsets and vtable index
information are typically initialized to a negative value so that LRBs just consist
of a single branch on negative value, as shown below:

ld [Rcache + // Retrieve offset to field
(header size + 2*wordSize)], Roffset

brgz,pt Roffset, resolved // LRB
ld [Robject + Roffset], Rvalue // load field

Upon detecting the marker by a barrier, execution is routed to a stub that calls
the runtime to perform the action associated with the barrier (link resolution
or class initialization). Before resuming interpreted execution, the marker is re-
placed with the information needed by the interpreter in the constant pool entry,
so that subsequent interpretation of bytecodes indexing that entry with the same
class loader will not trigger link resolution. The first interpretation of the same
bytecode instruction, but on behalf of a different loader, will trigger the barrier
again since each loader uses a distinct constant pool cache.

4 Impact on Dynamic Compilation

HSVM mixes bytecode interpretation with dynamic compilation to achieve high-
performance. Methods are initially interpreted. Per-method invocation counters
are incremented on each invocation to detect frequently called methods. Methods
that reach a given threshold of interpreted invocations are compiled. Subsequent
invocations result in executing their compiled code.

This approach can be improved so that the effort of compiling the methods
of a class is amortized across the loaders that define it. One possible strategy
is to make the code produced by the dynamic compiler loader re-entrant, so
that different defining loaders of the same method always share the same native
code. This strategy has several advantages. First, compilation costs are paid only
once per shared representation of a method, no matter how many loaders define
that method, hence the cost of compilation is amortized across loaders. Second,
because the code is re-entrant, it can be used immediately by any loader defining
the method, eliminating bytecode interpretation. Third, memory footprint is
reduced by sharing the compiled code across loaders.

108 L. Daynès and G. Czajkowski

However, making compiled code loader re-entrant introduces some overhead
otherwise eliminated by a dynamic compiler. Dynamic compilation exploits the
runtime knowledge of resolved links to remove the overhead of dynamic linking.
For example, a dynamic compiler can determine the offset of a field of an object
and generate a simple load instruction that does not use any meta-information
(such as the runtime constant pool cache) at runtime. Such optimizations are
not possible with loader re-entrant code because a level of indirection is required
wherever a symbolic link to another class is used. So, for instance, loading a field
of an object requires determining, at runtime, the current loader and then finding
out the offset to the field in the context of that loader. Whereas the impact of
such indirection may be benign to the performance of interpreted methods, it
may be prohibitive in compiled code.

CLSVM employs a three-pronged strategy for dynamic compilation that
mixes task re-entrance, cloning, and sharing of loader-dependent code.

As in MVM, methods of task re-entrant classes are compiled into task re-
entrant code. Such code is produced by adding class initialization barriers before
every possible first use of a class, and generating code to access static variables in
a task re-entrant way. That is, static variables are retrieved from the class’s table
of per-isolate class state using an isolate identifier stored in a current thread’s
descriptor (see [5] for details). Past experience with MVM showed that the im-
pact of task re-entrance on performance is negligible compared with the benefits
of sharing compiled code for method of classes defined by task re-entrant loaders.

For methods of loader re-entrant classes, the compiler produces code optimized
for a particular set of loader dependencies, i.e., using information derived from
symbolic links as resolved by a particular loader. The code is annotated along the
way with information identifying the loader-dependent sequences of instructions
and what they depend on. The annotations are then used to determine if the
code can be used as is by other loaders, or if a new version should be produced
according to a new set of dependencies. In the latter case, instead of compiling
the method for each defining loader from scratch, the compiler clones an existing
version of it, and modifies its loader-dependent part only. This makes generation
of native code faster as steps for parsing bytecodes, building an intermediate
representation, performing optimization, and generating code are avoided.

Loader-dependent code sharing is based on the observation that the loader-
dependent information derived from symbolic links may be constant across load-
ers that share the runtime representation of the class that defines the compiled
method. For example, the offset to an instance variable of a class B is constant
across all defining loaders of B that satisfy the same sharing conditions. In other
words, a symbolic link to an instance variable of B from a class A is constant
across two loaders L1 and L2 that share the runtime representation of A (i.e.,
< A,L1 >∼< A,L2 >) if BL1 ∼= BL2 . Thus, if the only symbolic links used in a
method m of A are to instance variables of B, the compiled code for m can be
shared between < A,L1 > and < A,L2 >. In this strategy a method is compiled
from bytecodes only once, no matter how many loaders define its class. Once
compiled, native code for the method is obtained through cloning or sharing.

Sharing the Runtime Representation of Classes 109

The compiler assumes the linkages of the loader that triggered the compila-
tion, and exploits information obtained from resolved links, effectively making
the native code dependent on a (potentially empty) set of resolved links. To
enable sharing and cloning, the location of each loader-dependent sequence of
native instructions is recorded along with the position of the corresponding byte-
code instruction. This position offers a compact and loader-independent way of
documenting a dependency: given a bytecode position and a loader-dependent
method representation, one can retrieve the type of its dependency (e.g., offset
of an instance field), and the class the dependency refers to (through the class
pool of the method’s class). Thus, code annotations consist of pairs of offsets:
an offset to the first instruction of a loader-dependent sequence of native code,
and another offset to a bytecode instruction. These pairs are recorded in a table
of dependencies.

The table of dependencies is used to determine if native code listed in the
shared method, and produced for a particular loader, can be used by another
loader that shares the runtime representation of the method. Sharing of native
code is possible if there are no dependencies, or if loaders have exactly the same
dependencies. For example, a method that only manipulates instance variables
of its class is loader-independent since the sharing conditions guarantee that
offsets to these fields are the same across loaders that satisfy the same sharing
conditions. In another example, a method may refer only to symbols of classes
defined by the primordial loader in all loaders. In this case, the native code for the
method can be shared between loaders since symbolic links to methods and vari-
ables of task re-entrant classes will refer to exactly the same item in all loaders.

The sharing of compiled code can be permitted even if the classes referred to
by the code are not the same. For example, let us consider classes A and B:

class A { class B {
private int x; static int Y = 94;

private static int X; }
int getx(){ return x;}
int getxX(){ return x * X;}
int foo(C c){ return x * c.z;}
int bar(){ return x * B.Y;}

}

Let us further assume that class A has been defined by two loaders L1 and L2

such that < A,L1 >∼< A,L2 >. Although < A,L1 >�=< A,L2 >, the native
code produced for method getx can be shared between < A,L1 > and < A,L2 >
since the only dependency of the compiled code is the offset to the instance
variable x, which is guaranteed by the sharing conditions (see Section 2.2) to
be the same for both loaders. Such symbolic link references do not need to be
recorded in the dependency table. By contrast, the native code produced for
the getxX method cannot be shared between the loaders as it depends on the
address of the static variable X which differs for each defining loader. The case
for foo is more subtle: if CL1 ∼= CL2 , then the native code can be shared since

110 L. Daynès and G. Czajkowski

Table 1. Modifications required for each type of dependencies to adapt a clone of a
compiled method to a new loader Lr is the requesting loader, Lu is an owner of the
original compiled code

Type of Conditions for What to change if
symbolic link leaving code condition is false

unchanged

instance variable CLr ∼= CLu offset in load/store instruction
dynamically bound method CLr ∼= CLu reset inline cache for virtual

method/interface invocation
static variable CLr = CLu address of static variable
class CLr = CLu class address and instance size

in immediate value register load
statically bound method CLr = CLu address of method entry point

in call instruction

z resolves to the same offset for both loaders, either because CL1 = CL2 , or
because the sharing conditions guarantee this. Otherwise, the method cannot be
shared. Similarly, the native code for the bar method can be shared between L1

and L2 if BL1 = BL2 . More generally, let Lr be a loader that requests native
code for a method m of class A, Lu the loader of one of the users of native code of
method m, and C a class on which m depends. Table 1 lists, for each dependency
type, the conditions for leaving the corresponding instructions unchanged, and
what changes are required otherwise. If no condition is violated, no change is
needed, and the code can be shared by Lu and Lr.

To determine whether any changes to the code are required, the compiler iter-
ates over the dependent class listed in the dependency table. For each dependent
class C, the compiler first determines if the link to CLr has been resolved, by
examining the entry in Lr’s class pool at the index recorded in the dependency
table. If the link to CLr is not resolved, the determination for code sharing can-
not be made, and sharing is prohibited. The compiler then selects the condition
that determines if code change is needed based on the dependencies for class C
(see also Table 1). If the condition CLr = CLu is required, the compiler com-
pares the references to CLr and CLu obtained from the class pool of < A,Lr >
and < A,Lu > respectively, at the index recorded in the dependency table. If
the condition CLr ∼ CLu is required, the compiler compares the references to
the sharedRep objects from CLr and CLu .

To clone the native code of a method, the compiler first copies the native
code and walks over the dependency table to identify classes for which changes
are required in the native code. For each such class, the compiler iterates over
the corresponding dependencies section. Using the bytecode position recorded
there it retrieves the corresponding bytecode from the method template. Each
such bytecode maps to a function that implements the logic for modifying the
sequence of native code according to the operands of the bytecode instruction
and the class pool of the recipient of the clone.

Sharing the Runtime Representation of Classes 111

Since native code cloning or sharing is cheaper than compilation from byte-
codes, switching from bytecode interpretation to native code execution takes
place earlier for methods that have been already compiled.

5 Experiments

This section compares MVM and CLSVM with respect to memory footprint,
program start-up time, and application execution time.

The aim of the presented techniques is to reduce the footprint of programs that
extensively relyonuser-definedclass loaders, by sharing the runtime representation
of classes across loaders of the same or of different programs. Another equally
important goal is to avoid performance and start-up time regression with respect
to MVM. Our prototype of CLSVM implements task re-entrance for both the
primordial and system loaders, and loader re-entrance for user-defined loaders.

CLSVM is a derivative of MVM, which in turn derives from HSVM (the Java
HotSpotTM virtual machine [16]) version 1.3.1 with the client compiler. All re-
sults are reported relative to HSVM. The experiments were performed on a Sun
Blade 1000TM equipped with 8 GB of main memory and two UltraSPARC�
III+ processors clocked at 1015 MHz, running the SolarisTM 10 Operating
Environment.

5.1 Start-Up Time

In both MVM and CLSVM programs can be started either from the command
line or directly (programmatically) by an isolate. The former option involves
the creation of a process that communicates with a login isolate to request the
launching of a new isolate and to establish input/output bindings between the
isolate and the initiating process (see [7] for further details).

Start-up time can be approximated by running an empty program (i.e., one
whose main() methods consists of just a return statement). Table 2 reports
the results for CLSVM and MVM, for both ways of starting a program (cli for
command line start-up, and java for start-up from within an isolate). The results
are expressed as speed-up with respect to the time to execute the empty program
with HSVM (e.g., in cli, MVM starts a program 1.84 times faster than HSVM).
They indicate that support for loader re-entrance has no negative impact on
start-up performance. This is expected since none of the features of loader re-
entrance are exercized at start-up.

Table 2. Start-up improvements relative to HSVM

cli java

MVM 1.84 26.82
CLSVM 1.85 26.21

112 L. Daynès and G. Czajkowski

5.2 Footprint

To quantify the impact of the design of CLSVM on memory usage, we exper-
imented with two popular real-world applications: Apache Ant (version 1.6.2),
and Apache Tomcat servlet engine (version 4.2.1). The latter was used to run
JSPWiki [2], a Wiki clone implemented with Java Server Pages [1]. Tomcat
maintains a hierarchy of class loaders to allow its components and applications
it hosts to access different repositories of available classes and resources. Ant
uses class loaders in a similar fashion, to customize per-user access to different
libraries and resources.

Another common use of class loaders is to transparently inject code at run-
time, either for profiling purposes or to enhance application code with an aspect
(e.g., persistence). Typically a loader uses a bytecode editing library to trans-
form the contents of fetched class files and submits the modified bytecodes to
define the class. Our third experiment, referred to as the bytecode transforma-
tion workload, emulates this behavior using Apache’s BCEL toolkit. We applied
it to programs from the SPECjvm98 suite. The transformation was relatively
simple: counting the number of dynamic (run-time) accesses to static variables
by application code.

Memory footprint measurements were obtained with the help of the pmap
command from the Solaris Operating Environment and then correlated with the
JVM-specific runtime information regarding its use of virtual memory regions.
Memory accounting was thus accurate for all memory regions, such as the heap
area used for application data, runtime representations of classes, and compiled
code area. The numbers reported exclude memory regions shared across pro-
cesses, such as read-only parts of shared libraries and read-only memory-mapped
jar files.

The data in the following figures were obtained as follows. For non-server tests
(Ant, SPECjvm98 benchmarks), multiple instances of a given program were ex-
ecuted in sequence. Each program instance was artificially kept alive through a
shutdown hook. Each hook would send a notification to an external supervis-
ing process then wait for an answer before exiting. Upon receiving a shutdown
hook notification, the supervising process would obtain memory usage before
starting the next program instance. Commands to exit were sent to the shut-
down hooks only once all programs had been executed and their memory usage
captured.

Recourse to shutdown hooks to maintain Wiki servers alive is unnecessary
since these stay up and running until explicitly instructed to terminate. There-
fore, the experiment proceeded by starting one Wiki server, submitting 100 re-
quests, and capturing memory usage before repeating this sequence up to the
desired number of servers. The same mix of 100 requests was sent to each server.
It consisted of requests for pages’ content, for editing them, and either saving or
cancelling the edits.

Figure 3 shows the data obtained for Ant (up to 5 instances) and Tom-
cat/JSPWiki (up to 5 servers). The left-hand part of the figure shows memory

Sharing the Runtime Representation of Classes 113

clsvm mvm clsvm mvm
-1

1

3

5

7

9

11

13

15

17

Perm Gen

Code Cache

Process Heap

Shared Libs rw

Heap

B
re

ak
do

w
n

of
 s

av
in

gs
 f

or
 5

 in
st

an
ce

s
(M

B
)

1 2 3 4 5 1 2 3 4 5
-15%

-10%

-5%

0%

5%

10%

15%

20%

25%

30%

clsvm

mvm

Fo
ot

pr
in

t s
av

in
gs

 /
H

SV
M

AntJSPWikiJSPWiki Ant

Fig. 3. Footprint savings for JSPWiki on Tomcat and for Ant. The left-hand part shows
savings relatively to HSVM as the number of program instance grows. The right-hand
part shows the breakdown of savings for 5 running programs

footprint reduction relative to HSVM; the right-hand part shows a breakdown
of the savings for 5 instances of the measured programs.

When executing a single program, both MVM and CLSVM fare worse than
HSVM, because the memory overhead of the login isolate is not amortized.
This results in footprint increase ranging from 7.2% to 12.7%. The overhead for
CLSVM is larger than for MVM, because of (i) the additional data structures
required for loader re-entrance (e.g., the shared class repository, SHA digests),
which are not amortized due to the absence of sharing; (ii), the extra overhead
due to the classes used by CLSVM to compute SHA digests of class files (e.g.,
java.security.MessageDigest); and, (iii), the systematic decomposition of the
runtime representation of all classes, including task re-entrant ones, into loader-
dependent and loaded-independent parts, which, in the absence of loader re-
entrant sharing, brings no benefits.

As soon as more than one application is executed, the benefits of sharing
outweigh the overhead of the login isolate, and both MVM and CLSVM reduce
the aggregate footprint of programs when compared to HSVM. The savings
increase with the number of running programs, and increase faster with CLSVM
than with MVM. The breakdown of savings shown in the right-hand part of
Figure 3 offers insight into the reasons for this behavior. There are four sources
of savings: the permanent generation (a garbage collected area that holds most
of the runtime representation of classes); the code cache (where the compiled
code produced by the dynamic compiler resides); the JVM’s process C-heap
(which stores some of the dynamic data structures of the JVM); and the private
segments of the shared libraries used by the JVM.

114 L. Daynès and G. Czajkowski

Table 3. Population of classes for the programs used in the experiments

defining loader(s) Ant Tomcat db javac mpegaudio jack

Primordial 343 476 316 316 315 316
System 149 14 256 269 263 260
User-defined 540 806 9 149 57 60

The permanent generation and the process’s heap are the main contributors
to memory footprint reduction. Code cache can also contribute to savings, de-
pending on the amount of re-entrant compiled methods. Sharing the runtime
representation of classes across user-defined loaders mostly affects the perma-
nent generation. For both Ant and Tomcat/JSPWiki, the permanent generation
of CLSVM grows three times slower than that of MVM with each additional
program instance. All other memory areas grow at almost the same pace.

The above demonstrates that CLSVM can bring benefits to these applica-
tions over and beyond what MVM already provides. CLSVM’s gains, relative
to MVM’s, depend on the ratio of the number of classes defined by program-
defined loaders (and their size) to the number of other classes. Both Ant and
Tomcat/JSPWiki heavily exploit user-defined loaders: over 50% of classes are
defined by them (see Table 3).

The bytecode transformation workload gives a more contrasted picture due
to the much smaller proportion of classes defined by user-defined loaders2: across
the SPECjvm98 programs, the population of user-defined classes (i.e., the classes
subjected to runtime bytecode transformation) is between 4 (javac) to 60 (db)
times smaller than the population of other classes. The bytecode transformation
tool alone accounts for between 35% to 42% of the total population of loaded
classes. Despite this the sharing across loaders of CLSVM brings visible benefits.

The left-hand part of Figure 4 compares the footprint savings from MVM and
CLSVM for a sample of the SPECjvm98 programs. The sample is chosen for its
differing footprint characteristics: javac (respectively, db) has the largest (respec-
tively, smallest) population of classes defined by user-defined loaders; megpaudio
and jack have almost the same population of loaded classes, but they vastly differ
in terms of memory usage, as shown on the right-hand part of Figure 4: when
run with HSVM, the heap in jack accounts only for 30% of the total footprint,
compared to 50% for mpegaudio, and over 60% for both javac and db. As a result,
the benefits of sharing are more pronounced for jack than for the other programs.
Like before, the overhead of the login isolate is felt for the first program invo-
cation, and erased as soon as more than one program is run. The footprint of
db is initially worse with CLSVM than MVM because of the very small number
of loader re-entrant classes. In this case, the overhead of the systematic de-

2 The bytecode editing loader rewrites only the classes from the SPECjvm98 programs,
not the JDK classes these programs use.

Sharing the Runtime Representation of Classes 115

ja
va

c

db

m
pe

ga
ud

io

ja
ck

0%

20%

40%

60%

80%

100%

Heap Perm
Gen +
Code

process
+ shared
lib

1 2 5 1 2 5 1 2 5 1 2 5
-25%

-15%

-5%

5%

15%

25%

35%

45%

55%

clsvm

mvm

Number of programs

Fo
ot

pr
in

t s
av

in
gs

 /
H

SV
M

javac db mpegaudio jack

Fig. 4. Footprint savings for the bytecode transformation workload

composition of the runtime representation of classes into loader-dependent and
loaded-independent parts slightly disadvantages CLSVM.

Likewise, when user-defined loaders are not used by programs, this decom-
position adds an almost unnoticeable regression in footprint compared to MVM
(less than 0.3% across all the SPECjvm98 programs).

5.3 Performance

One of our goals is to ensure that loader re-entrance does not negatively impact
performance when user-defined class loaders are not used, or when there are no
opportunities for sharing. The left-hand part of Figure 5 shows the performance
improvement relative to HSVM on a sample of the SPECjvm98 benchmarks.

Both CLSVM and MVM improve performance noticeably when compared
to HSVM. This is due to two factors. First, methods of classes defined by the
primordial and system loaders are compiled into task re-entrant code that is
shared across multiple programs, whether these execute concurrently or serially.
Thus, programs benefit from the elimination of dynamic compilation and inter-
pretation costs. Second, the invocation counters of methods are shared across
program execution, which allows identifying and compiling more hot methods
that what can be identified with a single program execution. As a result, a larger
set of compiled methods is available for programs in MVM and CLSVM than in
HSVM.

CLSVM slightly degrades performance compared to MVM on these bench-
marks. We attribute this to the overhead of dealing with two method representa-
tions, which adds runtime tests to the calling convention of interpreted methods
in CLSVM.

116 L. Daynès and G. Czajkowski

jes
s

ray
tra

ce
jav

ac

mpe
ga

ud
io

mtrt jac
k

-5%

0%

5%

10%

15%

20%
clsvm

mvm

Bytecode transformation workload

Pe
rf

or
m

an
ce

 im
pr

ov
em

en
t /

 H
SV

M
jes

s

ray
tra

ce
jav

ac

mpe
ga

ud
io

mtrt jac
k

0%

3%

6%

9%

12%
clsvm

mvm

SPECjvm98

P
er

fo
rm

an
ce

 im
pr

ov
em

en
t

/ H
S

V
M

Fig. 5. Performance with respect to HSVM. The right-hand part shows performance
improvement with programs from the SPECjvm98 programs. The left-hand part show
performance improvement with the bytecode transformation workload

CLSVM further attempts to share compiled code across user-defined load-
ers or to produce new code by cloning existing code and changing its loader-
dependent part. The effect of this strategy can be observed on the right-hand
part of Figure 5, which shows the performance of the bytecode transformation
workload applied to a sample of the SPECjvm98 suite. CLSVM’s strategy for
amortizing the cost of dynamic compilation across user-defined class loaders im-
proves performance relatively to MVM. The impact depends on the proportion
of loader-dependent compiled methods to the total number of compiled methods,
and to the amount of loader-dependent code that can be shared. For example,
24% of compiled methods pertains to classes defined by user-defined loaders in
jess and 30% for raytrace. However, only 12% of these are shared across load-
ers for jess, whereas nearly 45% are shared for raytrace. Thus raytrace benefits
much more from CLSVM. The current prototype of CLSVM is not capable of
sharing or cloning code that inlines loader re-entrant methods. In this case, the
method needs to be recompiled. This limitation impacts directly jess, javac, and
mpegaudio, since these have a substantial amount3 of compiled loader re-entrant
methods that inlines other loader re-entrant methods.

CLSVM outperforms MVM on mpegaudio because of differences in how static
fields are accessed in both.

The frequency of mpegaudio’s accesses to static fields is about two orders
of magnitute higher than for other SPECjvm98 benchmark. The difference in
how static fields are accessed in both virtual machines explains why CLSVM

3 31%, 14% and 11% for, respectively, jess, javac and mpegaudio.

Sharing the Runtime Representation of Classes 117

outperforms MVM on this benchmark, and also why MVM performs worse than
HSVM. Specifically, MVM incurs the cost of an additional level of indirection
when accessing static fields, regardless of whether the class defining the variable
is task re-entrant or not.

Performance data obtained with Ant (not shown here) indicate 3.3% im-
provement of CLSVM over MVM, bringing performance relative to HSVM from
26.4% to 28.8%.

6 Related Work

Our work relates to recent efforts to share the main-memory runtime represen-
tation of classes between programs. This form of sharing can reduce both the
footprint of Java programs and factor out the runtime costs of transforming class
file to an optimized, architecture-specific class type representation.

One approach to sharing consists of launching for each Java program a sep-
arate OS process to execute an instance of the JVM, and to store the sharable
part of the runtime representation of classes in an area of memory shared by
the JVM processes [6, 8]. What is made sharable varies according to implemen-
tations: at the minimum, the bytecodes of methods, which are by far the largest
part of the runtime representation of classes are shared4. The immutable part
of the runtime representation of classes, such as symbol constants and some of
the meta-description of methods and fields, can also be shared [6]. Additional
information necessary to reconstruct the mutable part of the runtime representa-
tion of a class can also be stored in the shared area, to avoid parsing the original
class file when constructing the process-private part of the class’s representation.
ShMVM-C [6] goes one step further by also making the output of the dynamic
compiler program re-entrant so that multiple JVM processes can share it.

An alternative to storing the sharable part of a class in shared memory is to
encode the whole runtime representation of classes in a binary format natively
supported by the host OS’s shared libraries mechanism. For instance, SLVM [19]
encodes the main-memory representation of classes in the ELF format. The re-
sulting binaries are relocatable. Loading and relocation are performed by the
linker. Better memory utilization can result from this approach, due to the sys-
tematic copy-on-write policy implemented by the linker on any page of mutable
sections of the shared library.

Another approach to transforming Java classes into shared libraries is exem-
plified by GCJ [9], a portable, optimizing, ahead-of-time compiler for the Java
programming language. The run-time system of GCJ supports program-defined
class loaders and dynamic class loading, but code loaded this way can only be
interpreted. [20] describes an extension to GCJ that supports sharing of code
compiled ahead of time across program even if the class is not linked to classes

4 The implementation of class data sharing in the Java HotSpot Virtual machine 1.5.0
is a variant of this, where method bytecodes of boot classes are stored in a file that
is memory-mapped at program startup [17].

118 L. Daynès and G. Czajkowski

with the same definition in each program. To this end [20] re-introduces runtime
functions and data structures commonly found in standard virtual machine (e.g.,
vtables are constructed at runtime and each class is associated with a table of
links to external symbols that get filled up at class load-time).

MVM [5] tackles the memory footprint problem by collocating multiple Java
programs in the same OS process, and executing them within a single JVM ca-
pable of multi-tasking. Most of the runtime representation of classes, including
compiled code, is made program re-entrant and shared across all tasks. Interfer-
ence among programs is prevented by replicating the program-dependent part
of the runtime representation of classes.

None of the systems mentioned above is capable of sharing, either within the
same program or across programs, the runtime representation of classes defined
by arbitrary user-defined class loaders, especially when they edit bytecodes or
generates class file at runtime.

Like MVM and CLSVM, Microsoft’s .NET allows for isolated execution of
multiple applications in the same process [14]. The platform can be configured
to transparently share some meta-data, although not as aggressively as CLSVM.
Decisions concerning the trade-off between memory footprint and performance
can be made at deployment time. Domain-neutral deployments result in slower
execution as non-static meta-data is shared while static data and static code
are replicated. The additional logic that directs callers to the appropriate static
code or data is thus needed to provide application isolation. The standard form
of application deployment in .NET does not have this feature, thus potentially
providing better performance at the expense of memory footprint.

QuickSilver [15] amortizes the cost of producing a high-performance runtime
image of a program by compiling the methods of a class into a relocatable format
and storing the result of the compilation in files. Compiled method files can be
generated off-line, or when an instance of the JVM exits. Subsequent executions
of the program load the compiled method files, if available, upon the class defini-
tion. Before its use, the compiled code is subjected to validation tests that deter-
mine if the code can be re-used by the running program. If validation succeeds,
the code is “stitched” according to the state of the running JVM. Otherwise, the
code undergoes standard dynamic compilation. In its latest version [12], Quick-
Silver generates code that uses an indirection mechanism in order to make most
of the compiled code of methods read-only, thus reducing the aggregate footprint
of multiple JVM instances. However, the indirection mechanism makes the code
dependent on the address of an indirection table specific to one class loader. As
a result, code cannot be shared across multiple class loaders within the same
JVM instance. This limits the usefulness of this approach, especially for server
environments where class loader-based containers are often used.

7 Conclusions

Defining class loading policies is a commonly used feature of the Java program-
ming language. The reliance on class loaders is likely to grow, partly due to a

Sharing the Runtime Representation of Classes 119

growing popularity of load-time bytecode transformations applicable to aspect-
oriented programming. However, existing implementations of the JVM poorly
support class loaders with regard to resource utilization.

This paper describes CLSVM, a multi-tasking implementation of the JVM
capable of transparently sharing the runtime representation of classes, including
their bytecodes and compiled code, across multiple defining loaders. Sharing is
achieved by separating out the part of the runtime representation of a class
that depends on symbolic link resolution and by making bytecode interpretation
loader re-entrant. Re-entrance is implemented by the addition of class resolution
and initialization barriers and by efficient access to loader-dependent components
of the runtime representation of classes. The dynamic compiler exploits sharing
by maintaining loader dependencies and using them to determine when sharing
of compiled methods across loaders is possible. If the required sharing conditions
are not met, the code is cloned to avoid its compilation from bytecodes.

The presented techniques enhance MVM so as to extend the scope and benefits
of code sharing to classes defined by arbitrary class loaders, regardless of whether
these loaders pertain to different programs or the same one. Further, classes sub-
jected to bytecode transformation at runtime also benefit from sharing.

The impact of the mechanisms implemented by CLSVM on end-to-end ap-
plication performance is highly dependent on the proportion of compiled loader
re-entrant methods that can be shared. Performance relative to MVM varies be-
tween −3% to +12.8%, the highest improvements corresponding to cases when
sharing of loader-reentrant compiled methods can be exploited. When compared
to the Java HotSpot virtual machine, the gains are between 0.9% to 17%. Appli-
cation start-up time is almost identical for both CLSVM and MVM, and between
1.85 (command-line launching of applications) and 26 (programmatic launching
of applications) times faster than for the Java HotSpot virtual machine.

Along with not degrading start-up time and bringing about a modest im-
provement in end-to-end performance compared to MVM, the main motivation
for this work, was to decrease memory footprint of applications that exploit user-
defined class loading. This goal has been achieved: for example, for applications
like Ant and Tomcat CLSVM improves the memory savings already achieved
by MVM by between 15% to 40%, bringing total memory footprint down by
11.6% to 28% with respect to the Java HotSpot virtual machine. When class
loading mechanisms are not used, memory overhead relative to MVM remains
below 3%.

References

1. http://java.sun.com/products/jsp.
2. http://www.jspwiki.org.
3. J. Arnold. Shared Libraries on UNIX System V. In Summer USENIX Conference,

Atlanta, GA, 1986.
4. D. Balfanz and L. Gong. Experience with Secure Multi- Processing in Java. Tech-

nical Report 560-97, Department of Computer Science, Princeton University, Sept.
1997.

120 L. Daynès and G. Czajkowski

5. G. Czajkowski and L. Daynès. Multitasking without Compromise: A Virtual Ma-
chine Evolution. In ACM OOPSLA’01, Tampa, FL, Oct. 2001.

6. G. Czajkowski, L. Daynès, and N. Nystrom. Code Sharing among Virtual Ma-
chines. In ECOOP’02, Malaga, Spain, June 2002.

7. G. Czajkowski, L. Daynès, and B. Titzer. A multi-user virtual machine. In
USENIX, San Antonio, TX, 2003.

8. D. Dillenberger, R. Bordawekar, C. W. Clark, D. Durand, D. Emmes, O. Gohda,
S. Howard, M. F. Oliver, F. Samuel, and R. W. S. John. Building a JavaTM

Virtual Machine for Server Applications: The JVM on OS/390. IBM Systems
Journal, 39(1), 2000.

9. Free Software Foundation (FSF). GCJ: The GNU Compiler for Java., 2003.
10. J. Gosling, B. Joy, G. Steele, and G. Bracha. The JavaTM Language Specification.

The JavaTM Series. Addison Wesley, second edition edition, Sept. 2000.
11. Java Community Process. JSR 121: Application Isolation API., 2003.
12. P. G. Joisha, S. P. Midkiff, M. J. Serrano, and M. Gupta. A framework for efficient

reuse of binary code in java. In International Conference on Supercomputing, pages
440–453, 2001.

13. S. Liang and G. Bracha. Dynamic Class Loading in the Java Virtual Machine. In
ACM OOPSLA’98, Oct. 1998.

14. Microsoft Corp. Programming with Application Domains and Assemblies.
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/
html/cpconprogrammingwithapplicationdomainsassemblies.asp, 2005.

15. M. J. Serrano, R. Bordawekar, S. P. Midkiff, and M. Gupta. Quicksilver: a Quasi-
Static Compiler for Java. In ACM OOPSLA’00, Oct. 2000.

16. Sun Microsystems Inc. The Java HotSpot Performance Engine Architecture.
http://java.sun.com/products/hotspot/whitepaper.html, 1999.

17. Sun Microsystems Inc. Class Data Sharing. http://java.sun.com/j2se/1.5.0/docs/
guide/vm/class-data-sharing.html, 2004.

18. US Department of Commerce. Secure hash standard, Apr. 1995.
19. B. Wong, G. Czajkowski, and L. Daynès. Dynamically loaded classes as shared

libraries. In Proceedings of IEEE International Parallel and Distributed Processing
Symposium (IPDPS), Nice, France, 2003.

20. D. Yu, Z. Shao, and V. Trifonov. Supporting binary compatibility with static
compilation. In 2nd Java Virtual Machine Research and Technology Symposium
(JVM’02), pages 165–180, 2002.

Aspect-Oriented Programming Beyond
Dependency Injection

Shigeru Chiba and Rei Ishikawa

Dept. of Mathematical and Computing Sciences,
Tokyo Institute of Technology

Abstract. Dependency injection is a hot topic among industrial de-
velopers using component frameworks. This paper first mentions that
dependency injection and aspect-oriented programming share the same
goal, which is to reduce dependency among components for better reus-
ability. However, existing aspect-oriented programming languages/
frameworks, in particular, AspectJ, are not perfectly suitable for ex-
pressing inter-component dependency with a simple and straightforward
representation. Their limited kinds of implicit construction of aspect
instances (or implementations) cannot fully express inter-component de-
pendency. This paper points out this fact and proposes our aspect-
oriented programming system named GluonJ to address this problem.
GluonJ allows developers to explicitly construct and associate an aspect
implementation with aspect targets.

1 Introduction

A key feature of the new generation of component frameworks like the Spring
framework [10] is dependency injection [6]. It is a programming technique for re-
ducing the dependency among components and thereby improving the reusabil-
ity of the components. If a component includes sub-components, reusing only
that component as is independently of those sub-components is often diffi-
cult. For example, if one of those sub-components is for accessing a particular
database, it might need to be replaced with another sub-component for a dif-
ferent database when the component is reused. The original program of that
component must be edited for the reuse since it includes the code for instantiat-
ing the sub-component. The idea of dependency injection is to move the code for
instantiating sub-components from the program of a component to a component
framework, which makes instances of sub-components specified by a separate
configuration file (usually an XML file) and automatically stores them in the
component.

Dependency injection is a good idea for reducing inter-component depen-
dency. However, since existing component frameworks with dependency injec-
tion are implemented with a normal language, mostly in Java, the independence
and reusability of components are unsatisfactory. For example, the programs of
components depend on a particular component framework and thus they must
be modified when they are reused with a different framework.

A.P. Black (Ed.): ECOOP 2005, LNCS 3586, pp. 121–143, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

122 S. Chiba and R. Ishikawa

This paper mentions that dependency injection and aspect-oriented pro-
gramming (AOP) share the same goal from a practical viewpoint. Hence in-
troducing the ideas of aspect-oriented programming into this problem domain
provides us with better ability for reducing dependency among components.
However, existing aspect-oriented systems used with component frameworks
are mostly based on the architecture of AspectJ [12] and thus their design has
never been perfectly appropriate for reducing inter-component dependency. In
fact, aspect-oriented programming and dependency injection have been
regarded as being orthogonal and used for different applications and purposes.
Otherwise, aspect-oriented programming is just an implementation mechanism
of dependency injection.

This paper presents our aspect-oriented programming framework named Glu-
onJ, which we designed for dealing with dependency among components in Java.
Although the basic design of GluonJ is based on that of AspectJ, GluonJ allows
developers to explicitly associate an aspect implementation with aspect targets.
The aspect implementation is a component implementing a crosscutting concern
and the aspect targets are components that the concern cuts across. Existing
aspect-oriented systems only allow implicit association and hence they cannot
fully express inter-component dependency as an aspect.

The organization of the rest of this paper is followings. In Section 2, we discuss
dependency injection and problems of the current design. Section 3 presents
our aspect-oriented programming framework named GluonJ. Section 4 mentions
comparison between GluonJ and AspectJ. Section 5 briefly describes related
work and Section 6 concludes this paper.

2 Loosely Coupled Components

This section first overviews the idea of dependency injection. Then it mentions
that dependency injection makes components dependent on a particular compo-
nent framework and a naive aspect-oriented solution is not satisfactory.

2.1 Dependency Injection

Dependency injection enables loosely-coupled components, which are thereby
highly reusable. If a component contains a sub-component, it will be usually
difficult to reuse without the sub-component since these two components will be
tightly coupled. For example, suppose that the program of that component is as
following (Figure 1):

public class MyBusinessTask {
Database db;

public MyBusinessTask() {
db = new MySQL();

}

Aspect-Oriented Programming Beyond Dependency Injection 123

public void doMyJob() {
Object result = db.query("SELECT USER.NAME FROM USER");
System.out.println(result);

}
}

Note that this component contains a MySQL object as a sub-component.
MySQL is a class implementing a Database interface. Since MyBusinessTask is
tightly coupled with MySQL, the constructor of MyBusinessTask must be modi-
fied if MyBusinessTask is reused with another database accessor, for example, a
PostgreSQL object. The new constructor would be:

public MyBusinessTask() {
db = new PostgreSQL(); // not new MySQL()

}

Dependency injection loosens the connection between MyBusinessTask and
MySQL. It enables us to reuse MyBusinessTask without modification even if we
must switch a database accessor from MySQL to PostgreSQL. The program of
MyBusinessTask would be changed into this:

public class MyBusinessTask {
Database db;

public void setDb(Database d) {
db = d;

}

public void doMyJob() {
Object result = db.query("SELECT USER.NAME FROM USER");
System.out.println(result);

}
}

Now, no constructor in MyBusinessTask initializes the value of the db field.
It is initialized (or injected) by a factory method provided by the framework

Fig. 1. Class diagram for our example scenario

124 S. Chiba and R. Ishikawa

supporting dependency injection. Thus, a MyBusinessTask object must not be
constructed by the new operator but the factory method (or, otherwise, a My-
BusinessTask object constructed by the new operator must be explicitly passed
to a method provided by the component framework for performing dependency
injection). For example, the code snippet below constructs a MyBusinessTask
object:

XmlBeanFactory factory = new XmlBeanFactory(
new InputStreamResource(new FileInputStream("beans.xml")));

MyBusinessTask myTask = (MyBusinessTask)factory.getBean("myTask");

Here, XmlBeanFactory is a factory class provided by a component framework.
The getBean method constructs an instance of MyBusinessTask and initializes
the value of the db field. It constructs a MySQL object and assigns it to the
db field. This initialization is executed according to an XML configuration file
beans.xml. The parameter to getBean is a key to find a configuration entry for
MyBusinessTask in beans.xml.

Reusing MyBusinessTask with not MySQL but PostgreSQL is easy. We do not
have to modify the program of MyBusinessTask but we have only to modify the
configuration file beans.xml, which specifies how the db field is initialized. Ac-
cording to the configuration file, the getBean method will construct a PostgreSQL
object and assign it to the db field.

However, using a factory method is annoying. Furthermore, if the hierarchy
of components is more complicated, the program of the components depends
on a particular component framework. Suppose that MyBusinessTask is a sub-
component of another component MyService. The program of MyService would
be something like this:

public class MyService {
MyBusinessTask task;

public MyService(XmlBeanFactory factory) {
task = factory.getBean("myTask");

}

public void serve() {
task.doMyJob();

}
}

MyService and MyBusinessTask do not require to be modified when they are
reused with either MySQL or PostgreSQL. Only the configuration file must be
modified.

However, the program above includes XmlBeanFactory, which is a class pro-
vided by the component framework. MyService and MyBusinessTask, therefore,
depend on the component framework. We cannot reuse them as is with another
component framework. If we switch component frameworks, we also have to
modify the MyService class. This problem can be avoided if we also construct
a MyService object through an XmlBeanFactory object. Since the component

Aspect-Oriented Programming Beyond Dependency Injection 125

framework constructs a MyBusinessTask object for injecting it into the task field
in a MyService object, the constructor of MyService does not have to explicitly
call the getBean method on factory. We can write the program of MyService with-
out referring to XmlBeanFactory. However, this solution requires all components
to be constructed through an XmlBeanFactory object. For example, MyService
might be always reused with MyBusinessTask since these two components are
tightly coupled. If so, dependency injection is not necessary for MyService but we
must write a configuration file for MyService and construct the MyBusinessTask
component through an XmlBeanFactory object. This programming convention is
somewhat awkward.

2.2 Aspect-Oriented Programming

The programming problem of dependency injection mentioned above is that
the programs of components depend on a particular component framework; we
cannot switch component frameworks without modifying the programs of the
components. We must stay with a particular component framework. As we de-
velop a larger collection of useful components, switching component frameworks
becomes more difficult.

This problem can be easily solved if we accept aspect-oriented programming.
Since the source of this problem is that we cannot intercept object construction
within confines of regular Java, we can solve the problem by using aspect-oriented
programming for intercepting object creation. For example, if we use AspectJ,
we can intercept construction of MyBusinessTask by the following program:

privileged aspect DependencyInjection {
after(MyBusinessTask s):

execution(void MyBusinessTask.new(..)) && this(s) {
s.db = new MySQL();

}
}

This aspect corresponds to an XML configuration file of the component frame-
work shown in the previous subsection. If we define this aspect, the definition of
MyService can be written without a factory method:

public class MyService {
MyBusinessTask task;

public MyService() {
task = new MyBusinessTask();

}

public void serve() {
task.doMyJob();

}
}

If this class is compiled with the aspect, the construction of MyBusinessTask is in-
tercepted and then a MySQL object is assigned to the db field in MyBusinessTask.

126 S. Chiba and R. Ishikawa

Although this solution using AspectJ requires our development environments to
support a new language — AspectJ, we can use a Java-based aspect-oriented
framework such as JBoss AOP[9] and AspectWerkz [1] if we want to stay with
regular Java.

The solution with aspect-oriented programming enables reusable components
that are even independent of component frameworks. We can switch component
frameworks and aspect-oriented programming systems without modifying the
definition of MyService. Only the DependencyInjection aspect must be rewritten
if the aspect-oriented programming system is changed.

2.3 Is This Really a Right Solution?

Although AspectJ could make a MyService component independent of a compo-
nent framework, this solution would not be a good example of aspect-oriented
programming. This solution uses AspectJ only as an implementation mechanism
for intercepting object construction. It can be implemented with not only As-
pectJ but another mechanism such as a metaobject protocol [11, 3, 7, 20], which
also enables intercepting object construction. In fact, the description in the
DependencyInjection aspect does not directly express the dependency relation
among components. It is procedural and includes implementation details. The
level of abstraction is relatively low.

However, we mention that aspect-oriented programming is a right approach
to solve the problem illustrated above, and more generally, to reduce depen-
dency among components. In other words, aspect-oriented programming and
dependency injection share the same goal, which is to reduce inter-component
dependency for better component reusability. Aspect-oriented programming is
known as a paradigm for implementing a crosscutting concern as an indepen-
dent and separated component. A concern is called crosscutting if the imple-
mentation of that concern in a non aspect-oriented language is tangled with the
implementation of other components. Another interpretation of this definition is
that aspect-oriented programming is a paradigm for separating tightly coupled
components so that they will be less dependent on each other and hence easily
reusable. This is the same goal of dependency injection although dependency
injection can reduce only a particular kind of dependency while aspect-oriented
programming covers a wider range of dependency.

Unfortunately, existing aspect-oriented programming systems represented by
AspectJ are not perfectly suitable to reduce inter-component dependency. A
main problem is that they implicitly associate an aspect implementation with
an aspect target. Here, the aspect implementation is a component implementing
a crosscutting concern and the aspect target is a component that the concern
cuts across. If program execution reaches a join point specified by a pointcut,
an advice body is executed on the aspect implementation associated with the
aspect target including that join point. In AspectJ, an aspect implementation
is not a regular Java object but an instance of aspect. Thus we cannot use
an existing component written in Java as an aspect implementation. To avoid
this problem, several frameworks such as JBoss AOP and AspectWerkz allow

Aspect-Oriented Programming Beyond Dependency Injection 127

using a regular object as an aspect implementation. Pointcuts are described in
an aspect-binding file, that is, an XML file. However, such a regular object is
implicitly constructed and associated with the aspect target. An aspect instance
of AspectJ is also implicitly constructed and associated.

This implicit association between an aspect implementation and an aspect
target has two problems. First, expressing dependency injection is made difficult.
Dependency injection can be regarded as associating a component with another.
An injected component corresponds to an aspect implementation. If develop-
ers do not have full control of the association, they cannot naturally express
dependency injection with aspect-oriented programming.

The other problem is that the implicit association does not provide suffi-
cient expressive power enough to express various relations of inter-component
dependency as aspects. Although AspectJ lets developers select a scheme from
issingleton, perthis, and so on, these options cover only limited kinds of relations
among components. Developers might want to associate an aspect implementa-
tion with a group of aspect targets. AspectJ does not support this kinds of asso-
ciation. The relations among components in general do not always form a simple
tree structure. Hence an aspect implementation is not always a sub-component
owned by a single aspect target. It may be referred to by several different as-
pect targets. It may be a singleton and hence shared among all aspect targets.
Existing aspect-oriented programming systems allow only selecting from limited
types of the relation and they implicitly construct an aspect implementation
and associate it with the aspect target according to the selected option. There-
fore, developers must often redesign the relations among components so that the
relations fit one of the types provided by the system.

3 GluonJ

This section presents GluonJ, which is our new aspect-oriented programming
framework for Java. The design of GluonJ is based on the pointcut-advice archi-
tecture of AspectJ. However, this architecture has been restructured for GluonJ
to provide a simpler programming model for reducing inter-component depen-
dency.

GluonJ separates aspect bindings from aspect implementations. Aspect im-
plementations are regular Java objects, which implement a crosscutting concern.
They corresponds to an aspect instance in AspectJ. Aspect binding is the glue
code described in XML. It specifies how an aspect implementation is associated
with aspect targets, which the aspect implementation cuts across, at specified
join points. The aspect binding includes not only pointcuts but also code frag-
ments written in Java. These code fragments explicitly specify which aspect im-
plementation is associated with the aspect targets. If program execution reaches
a join point specified by a pointcut, then the code fragment is executed. It can
explicitly construct an aspect implementation and call a method on that aspect
implementation to execute a crosscutting concern. Since GluonJ was designed
for reducing inter-component dependency, GluonJ lets developers to describe

128 S. Chiba and R. Ishikawa

Fig. 2. The aspect of GluonJ is glue, which connects two components. Unlike the
aspect of AspectJ, the aspect of GluonJ is not part of the Logger component or the
MyBusinessTask component

the code fragments in the aspect binding to explicitly express various relations
between aspect targets and aspect implementations.

3.1 Logging Example

To illustrate the usage of GluonJ, we below show the implementation of a logging
concern in GluonJ. The logging concern is a well-known crosscutting concern,
which is often used for showing the usage of an aspect-oriented programming
system. The goal of this example is to extend the behavior of MyBusinessTask so
that a log message will be printed when a method in MyBusinessTask is executed.
However, we cannot modify the program of MyBusinessTask for this extension
since modifying that program means that MyBusinessTask includes part of the
implementation of the logging concern. The logging concern must be imple-
mented as an independent component separated from the other components.

In GluonJ, we first define a Logger class in Java:

public class Logger {
public void log() {
System.out.println("method execution");

}
}

Logger is a class for the logging concern. Unlike AspectJ, GluonJ uses a regular
Java object as an aspect implementation, which is a component implementing a
crosscutting concern such as the logging concern.

In GluonJ, an aspect means the aspect binding written in XML, for example,
for describing the dependency between a Logger object and other objects. It glues
a Logger object to the objects that must produce log messages (Figure 2). The
aspect does not include an aspect implementation, which is the Logger class. For
example, the following aspect specifies that a log message is printed just after a
method in MyBusinessTask is executed:

<aspect>
<injection>
Logger MyBusinessTask.aspect = new Logger();

</injection>
<advice>
<pointcut>

Aspect-Oriented Programming Beyond Dependency Injection 129

execution(* MyBusinessTask.*(..))
</pointcut>
<after>

Logger.aspectOf(this).log();
</after>

</advice>
</aspect>

This aspect makes it possible to keep the two components MyBusinessTask and
Logger loosely coupled with low dependency on each other. The GluonJ compiler
automatically transforms the program of MyBusinessTask according to this as-
pect at compilation time. Thus, we can change the behavior of MyBusinessTask
without manually modifying the program of MyBusinessTask.

The statement surrounded with the injection tag specifies a connection be-
tween a MyBusinessTask object and a Logger object. It means that, when a
MyBusinessTask is constructed, a Logger object is also constructed and then as-
sociated with that MyBusinessTask object. The syntax of this statement is the
same as the intertype field declaration in AspectJ except aspect is not a field
name but a special keyword.

The elements surrounded with the advice tag are pointcut and after advice.
The pointcut is surrounded with the pointcut tag. It is the almost same language
element as AspectJ’s pointcut except the syntax. In the aspect shown above, the
pointcut picks out as join points method execution on MyBusinessTask objects.
The code snippet surrounded with the after tag is an advice body, which is
executed just after a thread of control reaches the execution point specified by
the pointcut. The code snippet is written in regular Java except that a special
form aspectOf is available in that code snippet. In the aspect shown above,
Logger.aspectOf(this) is used to obtain the Logger object associated with the
MyBusinessTask object referred to by this. aspectOf is a special form that is used
in the following form:

<class name>.aspectOf(<object>)

This special form is used to obtain an object associated with another object by
the injection tag. It returns the object that is of the <class name> type and is
associated with the given <object>.

The advice body, which is the code snippet surrounded with the after tag,
is executed in the context of the join point picked out by a pointcut. In the
case of our example, the advice body is executed on an MyBusinessTask object
since the join points picked out are the execution points when a method is
executed on that object. Therefore, this appearing in the advice body refers to
that MyBusinessTask object although it refers to an aspect instance in AspectJ. If
needed, the advice body can access private fields and methods in MyBusinessTask.
This is not allowed in AspectJ unless the aspect is privileged. On the other hand,
the advice body in GluonJ cannot access private fields or methods in Logger.
The visibility scope is determined by the execution context of the advice body.
In AspectJ, it is an instance of the aspect while it is the same context as the
join point in GluonJ.

130 S. Chiba and R. Ishikawa

A unique feature of GluonJ is that an aspect implementation must be explic-
itly constructed in the aspect. In our example, a Logger object was constructed
in the statement surrounded with the injection tag. Then it is associated with
the MyBusinessTask object and used in the advice body. If program execution
reaches a join point specified by a pointcut, the advice body is executed and it
explicitly calls a method on the associated aspect implementation, that is, the
Logger object. Note that GluonJ never instantiates an aspect since the aspect is
glue code in GluonJ. From the implementation viewpoint, the code snippet in the
aspect is merged into the methods of the aspect target, that is, MyBusinessTask.

3.2 Using the injection Tag for Dependency Injection

An advice body in GluonJ can be any Java code. It does not have to call aspectOf.
For example, if a MyBusinessTask object had a field and that field refers to a
Logger object, an advice body could call the log method on the object referred
to by that field instead of the object returned by aspectOf.

The special form aspectOf and the injection tag are provided for adding a new
field to an existing class while avoiding naming conflict. An aspect can give a
specific name to an added new field, for example, by the following description:

<injection>
Logger MyBusinessTask.link = new Logger();

</injection>

This adds a new field named link to the MyBusinessTask class and it initializes
the value of that field so that it refers to a Logger object. The type of that field
is Logger. However, this may cause naming conflict if another aspect adds a link
field to the MyBusinessTask class.

If a special keyword aspect is specified as the name of the added field, this
field becomes an anonymous field, that is, a field that has no name. An anony-
mous field can be accessed only through the special form aspectOf. For example,
Logger.aspectOf(p) represents the anonymous field that is Logger type and be-
longs to the object p. We do not have to manually choose a unique field name
for avoiding naming conflict.

There is also another rule with respect to the name of a newly added field.
If the specified field name is the same as an already existing field in the same
class, a new field is never added to the class. The initial value specified in the
block surrounded with injection is assigned to that existing field with the same
name.

This rule allows us to describe dependency injection with a simple aspect.
For example, the example shown in the previous section can be described with
the following aspect:

<aspect>
<injection>
Database MyBusinessTask.db = new MySQL();

</injection>
</aspect>

Aspect-Oriented Programming Beyond Dependency Injection 131

This aspect specifies that a MySQL object is constructed and assigned to the
db field in MyBusinessTask when an MyBusinessTask object is constructed. Since
the db field already exists, no new field is added to MyBusinessTask. The as-
pect does not have to include a pointcut for picking out the construction of a
MyBusinessTask object.

Although the block surrounded with the injection tag is similar to the inter-
type field declaration of AspectJ, it is not the same language element as the
intertype field declaration. The added fields in GluonJ are private fields only ac-
cessible in the class to which those fields are added. On the other hand, private
fields added by intertype field declarations of AspectJ are not accessible from the
class to which those fields are added. They are only accessible from the aspect
(implementation) that declares those fields.

3.3 Dependency Reduction

GluonJ was designed particularly for addressing inter-component dependency,
which is a common goal to aspect-oriented programming and dependency injec-
tion. Thus GluonJ provides mechanisms for dealing with the two sources of the
dependency: connections and method calls among components.

A component depends on another component if the former has a connection
to the latter (i.e. the former has a reference to the latter) and/or the former
calls a method on the latter. This dependency becomes a problem if the latter
component implements a crosscutting concern. Let us call the former component
the caller and the latter one the callee. In the example in Section 3.1, the caller
is MyBusinessTask and the callee is Logger.

The inter-component dependency makes it difficult to reuse the caller-side
component as is. If the callee is a crosscutting concern, it is not a sub-component
of the caller; it is not contained in the caller or invisible from the outside of the
caller. Therefore, those components should be independently reused without
each other. For example, since Logger is a crosscutting concern and hence it is
not crucial for implementing the function of MyBusinessTask, MyBusinessTask
may be reused without Logger. Reusing the callee without the caller is easy; the
program of that component can be reused as is for other software development.
On the other hand, in regular Java, reusing the caller without the callee, for
example, reusing MyBusinessTask without Logger needs to edit the program of
the caller-side component MyBusinessTask since it includes method calls to the
callee. These method calls must be eliminated from the program before the
component is reused.

Connections Among Components: For reducing dependency due to con-
nections among components, GluonJ provides the block surrounded with the
injection tag. Although this dependency can be reduced with the technique of
dependency injection, GluonJ enables framework independence discussed in Sec-
tion 2.2 since it is an aspect-oriented programming (AOP) system. Furthermore,
GluonJ provides direct support for expressing this dependency although in other
AOP systems this dependency is indirectly expressed by advice intercepting
object creation. We adopted this design of GluonJ because addressing the de-

132 S. Chiba and R. Ishikawa

pendency due to inter-component connections is significant in the application
domain of GluonJ.

Method Calls Among Components: For reducing dependency due to
method calls, GluonJ provides the pointcut-advice architecture. For example,
as we showed in Section 3.1, the dependency between MyBusinessTask and Log-
ger due to the calls to the log method can be separately described in the block
surrounded with the advice tag. This separation makes the method calls implicit
and non-invasive and thus MyBusinessTask will be reusable independently of
Logger. The reuse does not need editing the program.

Note that the method call on the Database object within the body of My-
BusinessTask in Section 2.1 does not have to be implicit by being separately
described in XML. This call is a crucial part of the function of MyBusinessTask
and hence MyBusinessTask will never be reused without a component implement-
ing the Database interface. We do not have to reduce the dependency due to this
method call.

Since the pointcut-advice architecture of GluonJ was designed for reducing
dependency due to method calls, the aspect implementation that a method is
called on is explicitly specified in the advice body written in Java. That aspect
implementation can be any regular Java object. It can be an object constructed in
the block surrounded with injection but, if needed, it can be any other object. It is
not flexible design to enable calling a method only on the aspect implementation
that the runtime system implicitly constructs and associates with the aspect
target. We revisit this issue in Section 4.

3.4 The Tags of GluonJ

A block surrounded with the aspect tag may include blocks surrounded with
either the injection tag or the advice tag. We below show brief overview of the
specifications of these tags.

Injection Tag: In a block surrounded with the injection tag, an anonymous field
can be declared. For example, the following declaration adds a new anonymous
field to the MyBusinessTask class:

<injection>
Logger MyBusinessTask.aspect = new Logger(this);

</injection>

The initial value of the field is computed and assigned right after an instance of
MyBusinessTask is constructed. The expression computing the initial value can
be any Java expression. For example, it can include the this variable, which refers
to that MyBusinessTask object in the example above.

If the declaration above starts with static, then a static field is added to the
class. The initial value is assigned when the other static fields are initialized.

The field added by the declaration above is accessible only in the aspect.
To obtain the value of the field, the special form aspectOf must be called. For
example, Logger.aspectOf(t) returns the Logger object stored in the anonymous

Aspect-Oriented Programming Beyond Dependency Injection 133

field of the MyBusinessTask object specified by t. If the anonymous field is static,
then the parameter to aspectOf must be a class name such as MyBusinessTask.

A real name can be given to a field declared in an injection block. If an valid
field name is specified instead of aspect, it is used as the name of the added field.
That field can be accessed with that name as a regular field in Java. If there
already exists the field with that specified name, a new field is not added but
only the initial value specified in the injection block is assigned.

An anonymous field can be added to an object representing a control flow
specified by the cflow pointcut designator. This mechanism is useful to obtain
similar functionality to a percflow aspect instance in AspectJ. To declare such a
field, the aspect should be something like this:

<injection>
Logger Cflow(call(* MyBusinessTask.*(..)).aspect

= new Logger();
</injection>

An anonymous field is added to an object specified by Cflow. It represents a
control flow from the start to the end of the execution of a method in MyBusi-
nessTask. It is automatically created while the program execution in that control
flow. To obtain the value of this anonymous field, aspectOf must be called with
the thisCflow special variable. For example,

Logger.aspectOf(thisCflow).log();

aspectOf returns the Logger object stored in thisCflow. thisCflow refers to the
Cflow object representing the current control flow.

An anonymous field can be used to associate a group of objects with another
object. This mechanism provides similar functionality to the association aspects
[17]. For example,

<injection>
Logger MyBusinessTask.aspect(Session) = new Logger(this, args);

</injection>

This declaration associates multiple Logger objects with one MyBusinessTask. this
and args are special variables. These Logger objects are identified by a Session
object given as a key. The type of the key is specified in the parentheses following
aspect. Multiple keys can be specified. The associated objects are obtained by
aspectOf. For example,

Logger.aspectOf(task, session).log();

This statement calls the log method on the Logger object associated with a com-
bination of task and session. aspectOf takes two parameters: the first parameter is
a MyBusinessTask object and the second one is a Session object. aspectOf returns
an object associated with the combination of these objects passed as parame-
ters. If any object has not been associated with the given combination, aspectOf
constructs an object and associates it with that combination. In other words, an

134 S. Chiba and R. Ishikawa

associated object is never constructed until aspectOf is called. In the case of the
example above, a Logger object is constructed with parameters this and args. this
refers to the first parameter to AspectOf (i.e. the MyBusinessTask object) and
args refers to an array of Object. The elements of this array are the parameters
to aspectOf except the first one. In this example, args is an array containing only
the Session object as an element.

Advice Tag: A block surrounded with the advice tag consists of a pointcut
and an advice body. The pointcut is specified by the pointcut tag. The syntax
of the pointcut language was borrowed from AspectJ although the current im-
plementation of GluonJ does not support the if and adviceexecution pointcut
designators. Although && and || must be escaped, AND and OR can be used
as substitution. The current implementation of GluonJ has neither supported a
named pointcut. A pointcut parameter is defined by using the param tag. For
example, the following aspect uses an int parameter i as a pointcut parameter.
It is available in the pointcut and the advice body.

<advice>
<param><name>i</name><type>int</type></param>
<pointcut>
execution(* MyBusinessTask.*(..)) AND args(i)

</pointcut>
<after>
Logger.aspectOf(this).log(i);

</after>
</advice>

An advice body can be before, after, or around. It is executed before, af-
ter, or around the join point picked out by the pointcut. Any Java statement
can be specified as the advice body although the < and > operators must be
escaped since an advice body is written in an XML file. A few special forms
aspectOf(), thisCflow, and thisJoinPoint are available in the advice body. The
thisCflow variable refers to a Cflow object representing the current control flow.
The thisJoinPoint variable refers to an object representing the join point picked
out by the pointcut. If the proceed method is called on thisJoinPoint, it executes
the original computation at the join point. The return type of proceed() is Object.
The proceed method is only available with around advice.

Reflection: Although aspectOf is available only in a advice body, GluonJ pro-
vides a reflection mechanism [18] for accessing anonymous fields from regular
Java objects. Table 1 lists the static methods declared in Aspect for reflective
accesses.

4 Comparison to AspectJ

Although GluonJ has borrowed a number of ideas from AspectJ, there are a
few significant differences between them. The first one is the visibility rule. The

Aspect-Oriented Programming Beyond Dependency Injection 135

Table 1. The static methods in the Aspect class

void add(Object target, Object aspect, Class clazz)
assigns aspect to an anonymous field of target. clazz represents the type of
the anonymous field.

void add(Object target, Collection aspects, Class clazz)
associates all the elements in aspects with target. clazz represents the class
of the associated elements.

Object get(Object target, Class clazz)
obtains the value of an anonymous field of target. clazz represents the type
of the anonymous field.

Collection getAll(Object target, Class clazz)
obtains the collection associated with target. clazz represents the type of the
collection elements.

void remove(Object target, Object aspect, Class clazz)
unlinks aspect associated with target. clazz represents the type of
the anonymous field.

void remove(Object target, Collection aspects, Class clazz)
unlinks all the elements in aspects associated with target. clazz represents
the type of the collection elements.

advice body in GluonJ can access private members of the aspect target since it is
glue code. On the other hand, the advice body in AspectJ cannot access except
the members added by the intertype declarations. This is because the advice
body in AspectJ belongs to the aspect implementation.

Another difference is how to specify which aspect implementation is associ-
ated with an aspect target. This section illustrates comparison between GluonJ
and AspectJ with respect to this issue. Although GluonJ is similar to JBoss AOP
and AspectWerkz rather than AspectJ, we compare GluonJ to AspectJ since the
readers would be more familiar to AspectJ. In fact, AspectJ, JBoss AOP, and
AspectWerkz are based on the same idea with respect to the association of as-
pect implementations. Note that, like GluonJ, JBoss AOP and AspectWerkz
separate aspect bindings in XML from aspect implementation in Java. Although
their aspect implementations are Java objects, they are implicitly constructed
and associated as in AspectJ. On the other hand, an aspect implementation in
GluonJ is explicitly constructed and associated.

4.1 Example

To illustrate that explicit association of aspect implementations in GluonJ en-
ables a better expression of inter-component dependency than AspectJ, we present
an implementation of simple caching mechanism in AspectJ and GluonJ. If a
method always returns the same value when it is called with the same arguments,
the returned value should be cached to improve the execution performance. Sup-
pose that we would like to cache the result of the doExpensiveJob method in the
following class:

136 S. Chiba and R. Ishikawa

public class MyTask {
private int sessionId;
public MyTask (int id) {
sessionId = id;

}
public String doExpensiveJob(String s) {
// the execution of this method takes a long time.
// the result is computed from s and sessionId.

}
}

Note that the returned value from doExpensiveJob depends only on the parameter
s and the sessionId field. Thus we share cache memory among MyTask objects
with the same session id.

We below see how GluonJ and AspectJ express the dependency between
MyTask and the caching component. The goal is to implement the caching com-
ponent to be independent of MyTask and naturally connect the two components
by an aspect.

4.2 GluonJ

We first show the implementation in GluonJ (Figure 3). The following is the
class for a caching component:
public class Cache {
private HashMap cache = new HashMap();
public Object getValue(JoinPoint thisJoinPoint, Object arg) {
Object result = cache.get(arg);
if (result == null) {

try {
result = thisJoinPoint.proceed();
cache.put(arg, result);

} catch (Throwable e) {}
}
return result;

}
// create a cache for each session.
private static HashMap cacheMap = new HashMap();
private static Cache factory(int sessionId) {
Integer id = new Integer(sessionId);
Cache c = (Cache)cacheMap.get(id);
if (c == null) {

c = new Cache();
cacheMap.put(id, c);

}

Fig. 3. The caching component in GluonJ

Aspect-Oriented Programming Beyond Dependency Injection 137

return c;
}

}

This component holds a hash table for caching the value returned from a method.
factory is a factory method for constructing a Cache object for each session.

The Cache component is associated with a MyTask object. This association
is described in the following aspect:

<aspect>
<injection>
Cache MyTask.aspect = Cache.factory(this.sessionId);

</injection>
<advice>
<param><name>s</name> <type>String</type></param>
<pointcut>

execution(String MyTask.doExpensiveJob(..)) AND args(s)
</pointcut>
<around>

return (String)Cache.aspectOf(this)
.getValue(thisJoinPoint, s);

</around>
</advice>

</aspect>

This aspect adds an anonymous field to MyTask. The value of this field is a
Cache object for the session that the MyTask object belongs to. Then, if the
doExpensiveJob method is executed, this aspect calls the getValue method on
the associated Cache object.

Note that a Cache object is explicitly constructed in the aspect by calling a
factory method. It is thereby associated with multiple MyTask objects belonging
to the same session. The resulting object graph in Figure 3 naturally represents
that the caching concern is per-session cache.

4.3 AspectJ (Using Intertype Declaration)

The caching mechanism can be also implemented in AspectJ. However, since As-
pectJ does not allow us to associate an aspect instance with a group of MyTask
objects belonging to the same session, we must implement the per-session cache
with a little bit complex programming. This is an example of the inflexibility for
the implicit association of aspect instances in AspectJ. The following is an im-
plementation using a singleton aspect and intertype field declaration (Figure 4):

privileged aspect CacheAspect {
private HashMap MyTask.cache; // intertype declaration

after(MyTask t): execution(MyTask.new(..)) && this(t) {
t.cache = factory(t.sessionId);

}

String around(MyTask t, String s): this(t) && args(s)
&& execution(String MyTask.doExpensiveJob(..)) {

138 S. Chiba and R. Ishikawa

String result = (String)t.cache.get(s);
if (result == null) {

result = proceed(t, s);
t.cache.put(s, result);

}
return result;

}

// create a cache for each session.
private static HashMap cacheMap = new HashMap();
private static HashMap factory(int sessionId) {
Integer id = new Integer(sessionId);
HashMap map = (HashMap)cacheMap.get(id);
if (map == null) {

map = new HashMap();
cacheMap.put(id, map);

}
return map;

}
}

Although the CacheAspect looks similar to the implementation in GluonJ,
the resulting object-graph is different. It is far from the natural design. A sin-
gle caching component, which is an instance of CacheAspect, manages the hash
tables for all the sessions while each caching component in GluonJ manages a
hash table for one session. Since there is only one caching component in AspectJ,
a hash table for each MyTask object is stored in the cache field of the MyTask
object. cache is the field added by intertype declaration. Hence the implemen-
tation of the caching concern is not only encapsulated within CacheAspect but
also cutting across MyTask. Since AspectJ is a powerful aspect-oriented lan-
guage, the implementation is not cutting across multiple components at the
source-code level; it is cleanly modularized into CacheAspect. However, at the
design level, the implementation of the caching concern involves MyTask. The
developer must be aware that a hash table is contained in not CacheAspect but
MyTask.

Another problem is that the caching concern is not really separated from
other components since the dependency description (i.e. pointcut and advice) is

Fig. 4. The caching aspect using intertype declaration

Aspect-Oriented Programming Beyond Dependency Injection 139

Fig. 5. The caching aspect using perthis

contained in the caching component. The caching component depends on My-
Task since the class name MyTask is embedded in the intertype declaration in
CacheAspect. If we reuse CacheAspect with another class other than MyTask, we
must modify the definition of CacheAspect so that the cache field is added to
that class. Although AspectJ provides abstract pointcut for parameterizing a
class name occurring in a pointcut definition, it does not provide such a param-
eterization mechanism for intertype declarations.

Finally, since this aspect must access the sessionId field, which is private, it
is declared as being privileged. A privileged aspect is not subject to the access
control mechanism of Java. Thus, this implementation violates the encapsulation
principle.

4.4 AspectJ (Using perthis)

The caching concern can be implemented with a perthis aspect (Figure 5). In the
following implementation, an instance of CacheAspect2 is constructed for each
MyTask object. This policy of aspect instantiation is specified by the perthis
modifier. See the following program:

privileged aspect CacheAspect2 perthis(execution(* MyTask.*(..)) {
private HashMap cache; // aspect member

after(MyTask t) : execution(MyTask.new(..)) && this(t) {
cache = factory(t.sessionId);

}

String around(String s)
: execution(String MyTask.doExpensiveJob(..)) && args(s) {
String result = (String)cache.get(s);
if (result == null) {

result = proceed(s);
cache.put(s, result);

}
return result;

}

// create a cache for each session.
// :
// (the same as the factory method in CacheAspect)

}

140 S. Chiba and R. Ishikawa

Note that the hash table is stored in the cache field of the aspect instance. This
aspect does not include intertype declaration. The cache field is a member of
this aspect itself.

This implementation is simpler than the previous one since an instance of
CacheAspect2 manages only one hash table stored in a field of that instance.
CacheAspect2 does not have to access a field in MyTask. However, this implemen-
tation produces redundant aspect instances. The role of each aspect instance is
merely a simple bridge between a MyTask object and a hash table. It has nothing
elaborate. This is not appropriate from the viewpoint of either program design
or efficiency.

Note that, in this implementation, both the caching component and the de-
pendency description (with pointcuts and advice) are also tangled in CacheA-
spect2. However, separating the dependency description from the program of the
caching component is not difficult if abstract pointcuts are used. We can define
an aspect only for the caching mechanism and then define another aspect that
extends the former aspect and implements the abstract pointcut for describing
the dependency. The perthis modifier must be defined in the latter aspect.

Fig. 6. The caching aspect using a hash table

4.5 AspectJ (Using a Hash Table)

The implementation we finally show uses a singleton aspect but it does not use
an intertype field declaration or an aspect member field. In this implementation,
either MyTask or CacheAspect3 do not include the cache field. The hash table is
obtained from the factory method when the around advice is executed (Figure 6):

privileged aspect CacheAspect3 {
String around(MyTask t, String s): this(t) && args(s)

&& execution(String MyTask.doExpensiveJob(..)) {
HashMap cache = factory(t.sessionId); // obtain from factory()
String result = (String)cache.get(s);
if (result == null) {

result = proceed(t, s);
cache.put(s, result);

}
return result;

}

Aspect-Oriented Programming Beyond Dependency Injection 141

// create a cache for each session.
// :
// (the same as the factory method in CacheAspect)

}

This would be the best implementation among the three AspectJ-based ones.
The caching aspect is separated and independent of MyTask. No redundant as-
pect instance is produced. However, it is never highly efficient to call the factory
method whenever the doExpensiveJob method is executed. Furthermore, this cen-
tralized design of caching mechanism is implementation-oriented. It would not
be the design easily derived after the modeling phase. The easily derived design
would be something like Figure 3 achieved by GluonJ. Figure 6 shown here would
be the design that we could obtain by modifying that easily derived design to
be suitable for implementation in a particular language.

Note that, in the implementation shown above, the dependency description
(with pointcuts and advice) is also tangled with the caching component. How-
ever, separating the dependency description from the program of the caching
component is possible by using abstract pointcuts.

5 Related Work

There are a number of aspect-oriented languages and frameworks that separate
aspect binding and aspect implementation. Like GluonJ, JBoss AOP [9] and
AspectWerkz [1] uses XML for describing aspect binding while Aspectual Com-
ponents [13], Caesar [14] and JAsCo [19] uses extended language constructs.
JAC [16] uses a programming framework in regular Java. Even AspectJ pro-
vides abstract aspects for this separation [8]. However, these systems allow only
implicit association of an aspect implementation and hence they have a problem
discussed in this paper. An aspect implementation is automatically constructed
and implicitly associated with the aspect target in the specified scheme such
as issingleton and perthis of AspectJ. Although JBoss AOP provides customiza-
tion interface in Java for extending the behavior of perthis, it complicates the
programming model.

The dynamic weaving mechanism of Caesar [14] allows associating an as-
pect implementation at runtime when the developers specify. It provides better
flexibility but an aspect implementation is still automatically constructed and
implicitly associated with the aspect target.

Association aspect [17] allows implementing a crosscutting concern by an
explicitly constructed instance of an aspect. It is an extension to AspectJ and
it is a language construct focusing on associating an aspect instance to a tuple
of objects. GluonJ can be regarded as a framework generalizing the idea of
association aspect and applying it to dependency reduction among components.

The implicit association of an aspect implementation (and an aspect instance
in AspectJ) might be the ghost of the metaobject protocol [11], which is one of
the origins of aspect-orientated programming. Although this design is not a
problem if an aspect crosscuts only a single other concern, it should be revised

142 S. Chiba and R. Ishikawa

to fully bring out the power of aspect orientation. Otherwise, advantages of
aspect-oriented programming might be small against metaobject protocols.

AspectJ2EE [4] is an aspect-oriented programming system for J2EE. It re-
stricts an aspect implementation to being associated with only a single aspect
target. Therefore, it has the problem discussed in this paper.

Alice [5], JBoss AOP [9], and AspectWerkz [1] allow pointcuts that capture
Java 5 annotations. This feature can be used for performing dependency injection
on the fields annotated with @inject. Although this provides better syntax sup-
port, the developers must still define an aspect like DependencyInjection shown
in Section 2.2.

The branch mechanism of Fred [15] provides basic functionality of aspect-
oriented programming. It is similar to GluonJ since both of them provide only
a dispatching mechanism based on pointcut and advice but they do not allow
instantiation of aspects unlike AspectJ. However, Fred is a very simple Scheme-
based language and it provides only a limited mechanism for dealing with de-
pendency among components.

6 Conclusion

Reducing inter-component dependency is the goal of dependency injection but
aspect-oriented programming can give a better solution to this goal. However,
existing aspect-oriented programming systems have a problem. They can express
only limited kinds of dependency relation since they implicitly associate an as-
pect implementation with an aspect target. The developers cannot fully control
this relation.

To address this problem, this paper proposed GluonJ, which is our aspect-
oriented framework for Java. A unique feature of GluonJ is that an aspect im-
plementation is explicitly associated with aspect targets. An aspect in GluonJ
consists of pointcuts and glue code written in Java. This glue code explicitly
constructs an aspect implementation and associates it with appropriate aspect
targets. The aspect implementation in GluonJ is a regular Java object.

We have implemented a prototype of GluonJ as a bytecode translator built
on top of Javassist [2]. It supports most pointcut designators of AspectJ except
cflow, which will be implemented in near future.

References

1. Boner, J., Vasseur, A.: AspectWerkz 1.0. http://aspectwerkz.codehaus.org/

(2002)
2. Chiba, S.: Load-time structural reflection in Java. In: ECOOP 2000. LNCS 1850,

Springer-Verlag (2000) 313–336
3. Chiba, S., Masuda, T.: Designing an extensible distributed language with a meta-

level architecture. In: Proc. of the 7th European Conference on Object-Oriented
Programming. LNCS 707, Springer-Verlag (1993) 482–501

Aspect-Oriented Programming Beyond Dependency Injection 143

4. Cohen, T., Gil, J.Y.: AspectJ2EE = AOP + J2EE : Towards an aspect based,
programmable and extensible middleware framework. In: Proceedings of the Euro-
pean Conference on Object-Oriented Programming. Number 3086 in LNCS (2004)
219–243

5. Eichberg, M., Mezini, M.: Alice: Modularization of middleware using aspect-
oriented programming. In: Software Engineering and Middleware (SEM) 2004.
(2004)

6. Fowler, M.: Inversion of control containers and the dependency injection pattern.
http://www.martinfowler.com/articles/injection.html (2004)

7. Golm, M., Kleinöder, J.: Jumping to the meta level, behavioral reflection can be
fast and flexible. In: Proc. of Reflection ’99. LNCS 1616, Springer (1999) 22–39

8. Hannemann, J., Kiczales, G.: Design pattern implementation in java and aspectj.
In: Proc. of ACM Conf. on Object-Oriented Programming Systems, Languages,
and Applications. (2002) 161–173

9. JBoss Inc.: JBoss AOP 1.0.0 final. http://www.jboss.org/ (2004)
10. Johnson, R., Hoeller, J.: Expert One-on-One J2EE Development without EJB.

Wrox (2004)
11. Kiczales, G., des Rivières, J., Bobrow, D.G.: The Art of the Metaobject Protocol.

The MIT Press (1991)
12. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An

overview of AspectJ. In: ECOOP 2001 – Object-Oriented Programming. LNCS
2072, Springer (2001) 327–353

13. Lieberherr, K., Lorenz, D., Mezini, M.: Programming with Aspectual Components.
Technical Report NU-CCS-99-01, College of Computer Science, Northeastern Uni-
versity, Boston, MA (1999)

14. Mezini, M., Ostermann, K.: Conquering aspects with caesar. In: Proc. of Int’l
Conf. on Aspect-Oriented Software Development (AOSD’03), ACM Press (2003)
90–99

15. Orleans, D.: Incremental programming with extensible decisions. In: AOSD ’02:
Proceedings of the 1st international conference on Aspect-oriented software devel-
opment, ACM Press (2002) 56–64

16. Pawlak, R., Seinturier, L., Duchien, L., Florin, G.: Jac: A flexible solution for
aspect-oriented programming in java. In: Metalevel Architectures and Separation
of Crosscutting Concerns (Reflection 2001). LNCS 2192, Springer (2001) 1–24

17. Sakurai, K., Masuhara, H., Ubayashi, N., Matsuura, S., Kimoya, S.: Association
aspects. In: Aspect-Oriented Software Development. (2004) 16–25

18. Smith, B.C.: Reflection and semantics in Lisp. In: Proc. of ACM Symp. on Prin-
ciples of Programming Languages. (1984) 23–35

19. Suvée, D., Vanderperren, W., Jonckers, V.: Jasco: An aspect-oriented approach
tailored for component based software development. In: Proc. of Int’l Conf. on
Aspect-Oriented Software Development (AOSD’03), ACM Press (2003) 21–29

20. Welch, I., Stroud, R.: From dalang to kava — the evolution of a reflective java
extension. In: Proc. of Reflection ’99. LNCS 1616, Springer (1999) 2–21

Open Modules: Modular Reasoning
About Advice

Jonathan Aldrich

Carnegie Mellon University, Pittsburgh, PA 15213, USA
jonathan.aldrich@cs.cmu.edu

Abstract. Advice is a mechanism used by advanced object-oriented
and aspect-oriented programming languages to augment the behavior
of methods in a program. Advice can help to make programs more mod-
ular by separating crosscutting concerns more effectively, but it also chal-
lenges existing ideas about modularity and separate development.

We study this challenge using a new, simple formal model for advice
as it appears in languages like AspectJ. We then add a module system
designed to leave program functionality as open to extension through
advice as possible, while still enabling separate reasoning about the code
within a module. Our system, Open Modules, can either be used directly
to facilitate separate, component-based development, or can be viewed
as a model of the features that certain AOP IDEs provide. We define
a formal system for reasoning about the observational equivalence of
programs under advice, which can be used to show that clients are un-
affected by semantics-preserving changes to a module’s implementation.
Our model yields insights into the nature of modularity in the presence
of advice, provides a mechanism for enforceable contracts between com-
ponent providers and clients in this setting, and suggests improvements
to current AOP IDEs.

1 Modularity and Advice

The Common Lisp Object System introduced a construct called advice, which
allows a developer to externally augment the behavior of a method [2]. Advice
comes in at least three flavors: before advice is run before the execution of a
method body, around advice wraps a method body, and after advice runs after
the method body. In general, advice can view or change the parameters or result
of a method, or even control whether the method body is executed, allowing a
rich set of adaptations to be implemented through this mechanism.

This paper examines advice in the context of Aspect-Oriented Programming
(AOP), the most widely-used application of advice today [12]. The goal of AOP
is to modularize concerns that crosscut the primary decomposition of a software
system. AOP systems allow developers to modularize these crosscutting concerns
within a single, locally-defined module, using an advice mechanism to allow
definitions in that module to affect methods defined elsewhere in the system.

A.P. Black (Ed.): ECOOP 2005, LNCS 3586, pp. 144–168, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Open Modules: Modular Reasoning About Advice 145

Although AOP in general and advice in particular provide many benefits to
reasoning about concerns that are scattered and tangled throughout the code
in conventional systems, questions have been raised about the ability to reason
about and evolve code that is subject to advice. Advice appears to make reason-
ing about the effect of calling a method more challenging, for example, because
it can intercept that call and change its semantics. In turn, this makes evolving
AOP systems without tool support error-prone, because seemingly innocuous
changes to base code could break the functionality of an aspect that advises
that code.

For example, an important issue in separate development is ensuring that
improvements and bug-fixes to a third-party component can be integrated into an
application without breaking the application. Unfortunately, however, because
the developer of a component does not know how is deployed, any change she
makes could potentially break fragile pointcuts in a client [13] Although we could
solve the problem by prohibiting all advice to third-party components, we would
prefer a compromise that answers the research question:

1. How can developers specify an interface for a library or component that per-
mits as many uses of advice as possible, while still allowing the component
to be changed in meaningful ways without affecting clients?

Another important issue is protecting the internal invariants of component
implementations in the presence of advice. For example, consider the Java stan-
dard library, which is carefully designed to provide a ”sandbox” security model
for running untrusted code. In general, it is unsafe for a user to load any code that
advises the standard library, because the advice could be used by an attacker to
bypass the sandbox.

One possible solution to ensuring the security of the Java library is to prohibit
all advice to the standard library. Unfortunately, this rule would prohibit many
useful applications of advice. A better solution to the problem would allow as
much advice as possible, while still preserving the internal invariants of the Java
standard library. We thus use our formal model of modularity to address a second
research question:

2. How can developers specify an interface for a library or component that per-
mits as many uses of advice as possible, while still ensuring correctness prop-
erties of the component implementation?

The research questions above imply a solution that prohibits certain uses
of advice in the case of separate development. However, in practice, some ap-
plications may only be able to reuse a library or component if they can get
around these prohibitions. We think this should be an option for developers,
but it should be a conscious choice: a developer should know when she is writ-
ing an aspect that may break when a new version of a component is released,
and when she is writing an aspect that is resilient to new releases. Similarly, a
user uploading code should know whether that code only includes advice that is
guaranteed not to violate the Java sandbox, or whether the code contains advice

146 J. Aldrich

that might violate the sandbox, and therefore ought to be signed by a trusted
principal. Our research is aimed at providing developers and users with these
informed choices.

1.1 Outline and Contributions

The next section of the paper describes Open Modules, a novel module system for
advice that provides informal answers to the research questions. Open Modules
is the first module system that supports many beneficial uses of advice, while
still ensuring that security and other properties of a component implementation
are maintained, and verifying that advice to a component will not be affected
by behavior-preserving changes to the component’s implementation.

We would like to make these answers precise, and to do so, Section 3 pro-
poses TinyAspect, a novel formal model of AOP languages that captures a few
core advice constructs while omitting complicating details. Section 4 extends
TinyAspect with Open Modules, precisely defining the semantics and typing
rules of the system.

Section 5 describes a formal system for reasoning about the observational
equivalence of modules in the presence of advice. This is the first result to show
that complete behavioral equivalence reasoning can be done on a module-by-
module basis in a system with advice, providing a precise answer to research
question 2. It also precisely defines what changes can be made to a component
without affecting clients, answering research questions 1.

Section 6 discusses lessons learned from our formal model. Section 7 describes
related work, and Section 8 concludes.

2 Open Modules

We propose Open Modules, a new module system for languages with advice that
is intended to be open to extension with advice but modular in that the imple-
mentation details of a module are hidden. The goals of openness and modularity
are in tension (at least in the case of separate development), and so we try to
achieve a compromise between them.

In AOP systems, advice is used as a way to reach across module bound-
aries to capture crosscutting concerns. We propose to adopt the same advice
constructs, but limit them so that they respect module boundaries. In order to
capture concerns that crosscut the boundary of a module, we use AOP’s pointcut
abstraction to represent abstract sets of events that external modules may be
interested in advising. As suggested by Gudmundson and Kiczales [9], exported
pointcuts form a contract between a module and its client aspects, allowing
the module to be evolved independently of its clients so long as the contract is
preserved.

Figure 1 shows a conceptual view of Open Modules. Like ordinary module
systems, open modules export a list of data structures and functions such as
moveBy and animate. In addition, however, open modules can export pointcuts
denoting internal semantic events. For example, the moves pointcut in Figure 1

Open Modules: Modular Reasoning About Advice 147

Fig. 1. A conceptual view of Open Modules. The shape module exports two functions
and a pointcut. Clients can place advice on external calls to the exported functions, or
on the exported pointcut, but not on calls that are internal to the module

is triggered whenever a shape moves. Since a shape could move multiple times
during execution of the animate function, clients interested in fine-grained mo-
tion information would want to use this pointcut rather than just placing advice
on calls to animate.

By exporting a pointcut, the module’s maintainer is making a promise to
maintain the semantics of that pointcut as the module’s implementation evolves,
just as the maintainer must maintain the semantics of the module’s exported
functions.

Open Modules are “open” in two respects. First, their interfaces are open to
advice; all calls to interface functions from outside the module can be advised
by clients. Second, clients can advise exported pointcuts.

On the other hand, open modules encapsulate the internal implementation
details of a module. As usual with module systems, functions that are not ex-
ported in the module’s public interface cannot be called from outside the module.
In addition, in the case of separate development, calls between functions within
the module cannot be advised from the outside—even if the called function is in
the public interface of the module. For example, a client could place advice on
external calls to moveBy, but not calls to moveBy from another function within
the shape module.

In concurrent work, Kiczales and Mezini propose the notion of Aspect-Aware
Interfaces, which are ordinary functional interfaces augmented with information
about the advice that applies to a module. They point out that in a local devel-
opment setting, analysis tools such as the AspectJ plugin for Eclipse (AJDT) [4]
can compute aspect-aware interfaces automatically given whole-program infor-
mation. Their work shows that in the case of local development and tool support,
the benefits of Open Modules can be attained with no restrictions on the use of
aspects. Instead, whenever an aspect that depends on internal calls is defined,
the tools simply add a new pointcut to the module’s aspect-aware interface, so
that the new aspect conforms to the rules of Open Modules.

We now provide a canonical definition for Open Modules, which can be used
to distinguish our contribution from previous work:

148 J. Aldrich

Definition [Open Modules]: Open Modules describes a module system that:

– allows external advice to interactions between a module and the outside world
(including external calls to functions in the interface of a module)

– allows external advice to pointcuts in the interface of a module
– does not allow external modules to directly advise internal events within the

module, such as calls from within a module to other functions within the
module (including calls to exported functions).

3 Formally Modeling Advice

In order to reason formally and precisely about modularity, we need a formal
model of advice. The most attractive models for this purpose are based on small-
step operational semantics, which provide a very simple and direct formalization
and are amenable to standard syntactic proof techniques.

Jagadeesan et al. have proposed an operational semantics for the core of As-
pectJ, incorporating several different kinds of pointcuts and advice in an object-
oriented setting [10]. Their model is very rich and is thus ideal for specifying the
semantics of a full language like AspectJ [11]. However, we would like to define
and prove the soundness of a strong equivalence reasoning framework for the
language, and doing so would be prohibitively difficult in such a complex model.

Walker et al. propose a much simpler formal model incorporating just the
lambda calculus, advice, and labeled hooks that describe where advice may ap-
ply [19]. As a foundational calculus, their model is ideal for studying compila-
tion strategies for AOP languages. However, because their model is low-level, it
lacks some essential characteristics of advice in AOP, including the oblivious-
ness property since advice applies to explicit labels [8]. The low-level nature of
their language also means that certain properties of source-level languages like
AspectJ—including the modularity properties we study—do not hold in their
calculus. Thus, previous small-step operational models of aspects are inappro-
priate for our purposes.

Fig. 2. TinyAspect Source Syntax

Open Modules: Modular Reasoning About Advice 149

3.1 TinyAspect

We have developed a new functional core language for aspect-oriented program-
ming called TinyAspect. The TinyAspect language is intentionally small, mak-
ing it feasible to rigorously prove strong properties such as the soundness of
logical equivalence in Section 5. Although TinyAspect leaves out many features
of full languages, we directly model advice constructs similar to those in As-
pectJ. Thus our model retains the declarative nature and oblivious properties of
advice in existing AOP languages, helping to ensure that techniques developed
in our model can be extended to full languages.

Because our paper is focused on studying modular reasoning for advice, we
omit many of the powerful pointcut constructs of AOP languages like AspectJ.
We do include simple pointcuts representing calls to a particular function in order
to show how pointcuts in the interface of a module can contribute to separate
reasoning in the presence of advice. Our system can easily be extended to other
forms of static pointcuts, but an extension to a dynamic pointcut language with
constructs like cflow [11] is beyond the scope of this work.

Figure 2 shows the syntax of TinyAspect. Our syntax is modeled after
ML [18]. Names in TinyAspect are simple identifiers. Expressions include the
monomorphic lambda calculus—names, functions, and function application. To
this core, we add a primitive unit expression, so that we have a base case for
types. We could add primitive booleans and integers in a completely standard
way, and constructs like let can be encoded using lambdas. Since these constructs
are orthogonal to aspects, we omit them for simplicity’s sake.

In most aspect-oriented programming languages, including AspectJ, the
pointcut and advice constructs are second-class and declarative. So as to be
an accurate source-level model, a TinyAspect program is made up of a sequence
of declarations. Each declaration defines a scope that includes the following dec-
larations. A declaration is either the empty declaration, or a value binding, a
pointcut binding, or advice. The val declaration gives a static name to a value
so that it may be used or advised in other declarations.

The pointcut declaration names a pointcut in the program text. A point-
cut of the form call(n) refers to any call to the function declaration n, while
a pointcut of the form n is just an alias for a previous pointcut declaration
n. The around declaration names some pointcut p describing calls to some
function, binds the variable x to the argument of the function, and specifies
that the advice e should be run in place of the original function. Inside the
body of the advice e, the special variable proceed is bound to the original
value of the function, so that e can choose to invoke the original function if
desired.

TinyAspect types τ include the unit type and function types of the form
τ1 → τ2. We syntactically distinguish pointcut types π and declaration types β
in order to enforce the second-class nature of these constructs (e.g., they can-
not be computed by functions, nor can they be used to simulate fully general
references).

150 J. Aldrich

3.2 Fibonacci Caching Example

We illustrate the language by writing the Fibonacci function in it, and writing
a simple aspect that caches calls to the function to increase performance. While
this is not a compelling example of aspects, it is standard in the literature and
simple enough for an introduction to the language.

Figure 3 shows the TinyAspect code for the Fibonacci function. Integers,
booleans, and if statements have been added to illustrate the example.

TinyAspect does not include a fixpoint operator for defining recursion, but
advice can express the same thing. In the fib function above, we define the
base case as an ordinary function definition, returning 1. We then place around
advice that intercepts calls to fib and handles the recursive cases. The body
of the advice checks to see if the argument is greater than 2; if so, it returns
the sum of fib(x-1) and fib(x-2). These recursive calls are intercepted by the
advice, rather than the original function, allowing recursion to work properly.
In the case when the argument is less than 3, the advice invokes proceed with
the original number x. Within the scope of an advice declaration, the special
variable proceed refers to the advised definition of the function. Thus, the call
to proceed is forwarded to the original definition of fib, which returns 1.

In the lower half of the figure is an aspect that caches calls to fib, thereby
allowing the normally exponential function to run in linear time. We assume
there is a cache data structure and three functions for checking if a result is in
the cache for a given value, looking up an argument in the cache, and storing a
new argument-result pair in the cache.

So that we can make the caching code more reusable, we declare a
cacheFunction pointcut that names the function calls to be cached—in this
case, all calls to fib. Then we declare around advice on the cacheFunction
pointcut which checks to see if the argument x is in the cache. If it is, the advice
gets the result from the cache and returns it. If the value is not in the cache, the
advice calls proceed to calculate the result of the call to fib, stores the result
in the cache, and then returns the result.

val fib = fn x:int => 1
around call(fib) (x:int) =

if (x > 2)
then fib(x-1) + fib(x-2)
else proceed x

(* advice to cache calls to fib *)
val inCache = fn ...
val lookupCache = fn ...
val updateCache = fn ...

pointcut cacheFunction = call(fib)
around cacheFunction(x:int) =

if (inCache x)
then lookupCache x
else let v = proceed x

in updateCache x v; v

Fig. 3. The Fibonacci function written in TinyAspect, along with an aspect that caches
calls to fib

Open Modules: Modular Reasoning About Advice 151

In the semantics of TinyAspect, the last advice to be declared on a declara-
tion is invoked first. Thus, if a client calls fib, the caching advice will be invoked
first. If the caching advice calls proceed, then the first advice (which recursively
defines fib) will be invoked. If that advice in turn calls proceed, the original
function definition will be invoked. However, if the advice makes a recursive call
to fib, the call will be intercepted by the caching advice. Thus, the cache works
exactly as we would expect—it is invoked on all recursive calls to fib, and thus
it is able to effectively avoid the exponential cost of executing fib in the näıve
way.

3.3 Operational Semantics

We define the semantics of TinyAspect more precisely as a set of small-step
reduction rules. These rules translate a series of source-level declarations into
the values shown in Figure 4.

Expression-level values include the unit value and functions. In TinyAspect,
advice applies to declarations, not to functions. This is crucial for the modular
reasoning result described later, as declarations can be hidden behind a mod-
ule interface but first-class functions cannot. We therefore need to keep track
of declaration usage in the program text, and so a reference to a declaration
is represented by a label �. In the operational semantics, below, an auxiliary
environment keeps track of the advice that has been applied to each declaration.

A pointcut value can only take one form: calls to a particular declaration �.
In our formal system we model execution of declarations by replacing source-
level declarations with “declaration values,” which we distinguish by using the
≡ symbol for binding.

Figure 4 also shows the contexts in which reduction may occur. Call-by-value
reduction proceeds first on the left-hand side of an application, then on the right-
hand side. Reduction occurs within a value declaration before proceeding to the
following declarations. Pointcut declarations are atomic, and so they only define
an evaluation context for the declarations that follow.

Figure 5 describes the operational semantics of TinyAspect. A machine state
is a pair (η, e) of an advice environment η (mapping labels to values) and an
expression e. Advice environments are similar to stores, but are used to keep
track of a mapping from declaration labels to declaration values, and are mod-
ified by advice declarations. We use the η[�] notation in order to look up the
value of a label in η, and we denote the functional update of an environment as

Fig. 4. TinyAspect Values and Contexts

152 J. Aldrich

Fig. 5. TinyAspect Operational Semantics

η′ = [��→v] η. The reduction judgment is of the form (η, e) �→ (η′, e′), read, “In
advice environment η, expression e reduces to expression e′ with a new advice
environment η′.”

The rule for function application is standard, replacing the application with
the body of the function and substituting the argument value v for the formal
x. We normally treat labels � as values, and there is no rule � �→ η[�] because
we want to avoid “looking them up” before they are advised. However, when we
are in a position to invoke the function represented by a label, we use the rule
r-lookup to look up the label’s value in the current environment.

The next three rules reduce declarations to “declaration values.” The val
declaration binds the value to a fresh label and adds the binding to the current
environment. It also substitutes the label for the variable x in the subsequent
declaration(s) d. We leave the binding in the reduced expression both to make
type preservation easier to prove, and also to make it easy to extend TinyAspect
with a module system which will need to retain the bindings. The pointcut
declaration simply substitutes the pointcut value for the variable x in subsequent
declaration(s).

The around declaration looks up the advised declaration � in the current
environment. It places the old value for the binding in a fresh label �′, and then
re-binds the original � to the body of the advice. Inside the advice body, any
references to the special variable proceed are replaced with �′, which refers to
the original value of the advised declaration. Thus, all references to the original
declaration will now be redirected to the advice, while the advice can still invoke
the original function by calling proceed.

The last rule shows that reduction can proceed under any context as defined
in Figure 4.

3.4 Typechecking

Figure 6 describes the typechecking rules for TinyAspect. Our typing judgment
for expressions is of the form Γ ;Σ � e : τ , read, “In variable context Γ and

Open Modules: Modular Reasoning About Advice 153

Fig. 6. TinyAspect Typechecking

declaration context Σ expression e has type τ .” Here Γ maps variable names to
types, while Σ maps labels to types (similar to a store type).

The rules for expressions are standard. We look up the types for variables
and labels in Γ and Σ, respectively. Other standard rules give types to the ()
expression, as well as to functions and applications.

The interesting rules are those for declarations. We give declaration signa-
tures β to declarations, where β is a sequence of variable to type bindings. The
base case of an empty declaration has an empty signature. For val bindings,
we ensure that the expression is well-typed at some type τ , and then typecheck
subsequent declarations assuming that the bound variable has that type. Point-
cuts are similar, but the rule ensures that the expression p is well-typed as a
pointcut denoting calls to a function of type τ1 → τ2. When a val or pointcut
binding becomes a value, the typing rule is the same except that subsequent
declarations cannot see the bound variable (as it has already been substituted
in). The around advice rule checks that the declared type of x matches the ar-
gument type in the pointcut, and checks that the body is well-typed assuming
proper types for the variables x and proceed.

Finally, the judgment Σ � η states that η is a well-formed environment with
typing Σ whenever all the values in η have the types given in Σ. This judgment,
used in the soundness theorem, is analogous to store typings in languages with
references.

154 J. Aldrich

3.5 Type Soundness

We now state progress and preservation theorems for TinyAspect. The theorems
quantify over both expressions and declarations using the metavariable E, and
quantify over types and declaration signatures using the metavariable T . The
progress property states that if an expression is well-typed, then either it is
already a value or it will take a step to some new expression.

Theorem 1 (Progress). If ;Σ � E : T and Σ � η, then either E is a value
or there exists η′ such that (η, E) �→ (η′, E′).

Proof. By induction on the derivation of ;Σ � E : T .

The type preservation property states that if an expression is well-typed and
it reduces to another expression in a new environment, then the new expression
and environment are also well-typed.

Theorem 2 (Type Preservation). If ;Σ � E : T , Σ � η, and (η, E) �→
(η′, E′), then there exists some Σ′ ⊇ Σ such that ;Σ′ � E′ : T and Σ′ � η′.

Proof. By induction on the derivation of (η,E) �→ (η′, E′). The proof relies on
standard substitution and weakening lemmas.

Together, progress and type preservation imply type soundness. Soundness
means that there is no way that a well-typed TinyAspect program can get stuck
or “go wrong” because it gets into some bad state.

Our type soundness theorem is slightly stronger than the previous result of
Walker et al., in that we guarantee both type safety and a lack of run time errors.
Walker et al. model around advice using a lower-level exception construct, and so
their soundness theorem includes the possibility that the program will terminate
with an uncaught exception [19].

4 Formalizing Modules

We now extend TinyAspect with Open Modules, a module system that allows
programmers to enforce an abstraction boundary between clients and the im-
plementation of a module. Our module system is modeled closely after that
of ML, providing a familiar concrete syntax and benefiting from the design
of an already advanced module system. In a distributed development setting,
our module system places restrictions on aspects in order to provide the strong
reasoning guarantee in Section 5. In a local development setting, however, our
“module interfaces” could be computed by tools, and place no true restrictions
on developers.

Figure 7 shows the new syntax for modules. Names include both simple vari-
ables x and qualified names m.x, where m is a module expression. Declarations
can include structure bindings, and types are extended with module signatures
of the form sig β, where β is the list of variable to type bindings in the module
signature.

Open Modules: Modular Reasoning About Advice 155

Fig. 7. Module System Syntax, Values, and Contexts

Fig. 8. Fibonacci with Open Modules

First-order module expressions include a name, a struct with a list of decla-
rations, and an expression m :> σ that seals a module with a signature, hiding
elements not listed in the signature. The expression functor x:σ => m describes
a functor that takes a module x with signature σ as an argument, and returns the
module m which may depend on x. Functor application is written like function
application, using the form m1 m2.

4.1 Fibonacci Revisited

Figure 8 shows how a more reusable caching aspect could be defined using func-
tors. The Cache functor accepts a module that has a single element f that is a
pointcut of calls to some function with signature int->int. The around advice
then advises the pointcut from the argument module X.

The fib function is now encapsulated inside the Math module. The module
implements caching by instantiating the Cache module with a structure that
binds the pointcut f to calls to fib. Finally, the Math module is sealed with a
signature that exposes only the fib function to clients.

156 J. Aldrich

4.2 Sealing

Our module sealing operation has an effect both at the type system level and at
the operational level. At the type level, it hides all members of a module that are
not in the signature σ—in this respect, it is similar to sealing in ML’s module
system. However, sealing also has an operational effect, hiding internal calls
within the module so that in a distributed development setting, clients cannot
advise them unless the module explicitly exports the corresponding pointcut.

For example, in Figure 8, clients of the Math module would not be able to
tell whether or not caching had been applied, even if they placed advice on
Math.fib. Because Math has been sealed, external advice to Math.fib would
only be invoked on external calls to the function, not on internal, recursive calls.
This ensures that clients cannot be affected if the implementation of the module
is changed, for example, by adding or removing caching.

4.3 Exposing Semantic Events with Pointcuts

Figure 9 shows how the shape example described above could be modeled in
TinyAspect. Clients of the shape library cannot advise internal functions, be-
cause the module is sealed. To allow clients to observe internal but semantically
important events like the motion of animated shapes, the module exposes these
events in its signature as the moves pointcut. Clients can advise this pointcut
without depending on the internals of the shape module. If the module’s imple-
mentation is changed, the moves pointcut must also be updated so that client
aspects are triggered in the same way.

Explicitly exposing internal events in an interface pointcut means a loss of
some obliviousness in the distributed development case, since the author of the
module must anticipate that clients might be interested in the event. On the
other hand, we are still better off than in a non-AOP language, because the
interface pointcut is defined in a way that does not affect the actual implemen-
tation of the module, as opposed to an invasive explicit callback, and because
external calls to interface functions can still be obliviously advised.

Thus, sealing enforces the abstraction boundary between a module and its
clients, allowing programmers to reason about and change them independently.
However, our system still allows a module to export semantically important

structure shape = struct
val createShape = fn ...
val moveBy = fn ...
val animate = fn ...
...
pointcut moves = call(moveBy)

end :> sig
createShape : Description -> Shape
moveBy : (Shape,Location) -> unit
animate : (Shape,Path) -> unit
...
moves : pc((Shape,Location)->unit)

end

Fig. 9. A shape library that exposes a position change pointcut

Open Modules: Modular Reasoning About Advice 157

Fig. 10. Module System Operational Semantics

internal events, allowing clients to extend or observe the module’s behavior in a
principled way.

4.4 Operational Semantics

Figure 10 shows the operational semantics for Open Modules. In the rules, mod-
ule values mv mean either a struct with declaration values dv or a functor. The
path lookup rule finds the selected binding within the declarations of the module.
We assume that bound names are distinct in this rule; it is easy to ensure this
by renaming variables appropriately. Because modules cannot be advised, there
is no need to create labels for structure declarations; we can just substitute the
structure value for the variable in subsequent declarations. The rule for functor
application also uses substitution.

The rule for sealing uses an auxiliary judgment, seal, to generate a fresh
set of labels for the bindings exposed in the signature. This fresh set of labels
insures that clients can affect external calls to module functions by advising the
new labels, but cannot advise calls that are internal to the sealed module.

At the bottom of the diagram are the rules defining the sealing operation. The
operation accepts an old environment η, a list of declarations d, and the sealing

158 J. Aldrich

Fig. 11. Open Modules Typechecking

Fig. 12. Signature Subtyping

declaration signature β. The operation computes a new environment η′ and new
list of declarations d′. The rules are structured according to the first declaration
in the list; each rule handles the first declaration and appeals recursively to the
definition of sealing to handle the remaining declarations.

An empty list of declarations can be sealed with the empty signature, re-
sulting in another empty list of declarations and an unchanged environment η.
The second rule allows a declaration bind x ≡ v (where bind represents one
of val, pointcut, or struct) to be omitted from the signature, so that clients
cannot see it at all. The rule for sealing a value declaration generates a fresh
label �, maps that to the old value of the variable binding in η, and returns
a declaration mapping the variable to �. Client advice to the new label � will
affect only external calls, since internal references still refer to the old label
which clients cannot change. The rule for pointcuts passes the pointcut value
through to clients unchanged, allowing clients to advise the label referred to in
the pointcut. Finally, the rules for structure declarations recursively seal any
internal struct declarations, but leave functors unchanged.

4.5 Typechecking

The typechecking rules, shown in Figure 11, are largely standard. Qualified
names are typed based on the binding in the signature of the module m. Struc-
ture bindings are given a declaration signature based on the signature σ of
the bound module. The rule for struct simply puts a sig wrapper around
the declaration signature. The rules for sealing and functor application allow

Open Modules: Modular Reasoning About Advice 159

a module to be passed into a context where a supertype of its signature is
expected.

Figure 12 shows the definition of signature subtyping. Subtyping is reflex-
ive and transitive. Subtype signatures may have additional bindings, and the
signatures of constituent bindings are covariant. Finally, the subtyping rule for
functor types is contravariant.

4.6 Type Soundness

When extended with Open Modules, TinyAspect enjoys the same type sound-
ness property that the base system has. The theorems and proofs are similar,
and so we omit them.

5 Reasoning About Equivalence

The example programs in Section 4 are helpful for understanding the benefits of
TinyAspect’s module system at an intuitive level. However, we would like to be
able to point to a concrete property that enables separate reasoning about the
clients and implementation of a module.

Asking whether the implementation of a module is correct, or whether changes
can be made to the module without affecting clients, is asking about the equiv-
alence between a module implementation and a specification or between two
module implementations. For the purposes of this paper, we assume that a spec-
ification is given as a reference implementation, reducing both questions to com-
paring two implementations. This definition is limited, since many specifications
are intended to leave some behavior up to the implementor, but we leave a more
flexible definition to future work.

A natural definition of equivalence is called observational equivalence [17]
or contextual equivalence, meaning that no client context can distinguish two
different implementations of a component. A simple way to define contextual
equivalence is to use program termination as the observable variable: two ex-
pressions in a program are contextually equivalent if, for all client contexts, the
client will either terminate when linked to both implementations of a component,
or will run forever when linked to both implementations. We formalize this as
follows:

Definition [Contextual Equivalence]: Two expressions E1 and E2 are con-
textually equivalent, written E1 ≡ E2, if and only if for all contexts C such that
;�C[E1] : τ and ;�C[E2] : τ we have (,E1) �→∗ (η1, V1) ⇐⇒ (,E2) �→∗ (η2, V2).

By definition, two contextually equivalent modules cannot be distinguished
by any client.1 Thus, contextual equivalence is adequate to answer whether a

1 Note that since our formal system only models functional behavior, it cannot distin-
guish implementations with different performance characteristics.

160 J. Aldrich

Fig. 13. Logical Equivalence for Program Text

change to a module might affect clients, or whether an optimized implementation
of a module is semantically equivalent to a reference implementation.

5.1 Logical Equivalence

Although contextual equivalence intuitively captures the semantics of equiva-
lence, it is not very useful for actually proving that two modules are equivalent,
because it requires quantifying over all possible clients. Instead, we give a more
useful set of logical equivalence rules that can be used to reason about a module
in isolation from possible clients. We then prove that these rules are sound with
respect to the more natural, but less useful, contextual equivalence semantics.
Finally, we briefly outline how the logical equivalence rules can be used to prove
that two different implementations of a module are observationally equivalent.

Figure 13 defines logical equivalence for TinyAspect expressions. If two ex-
pressions diverge, they are logically equivalent. Otherwise, two expressions are
equivalent if, in the empty context, they both reduce to environment-value pairs
that obey a value equivalence relation, defined below. Note that these equiva-
lence rules apply only to closed expressions; this is not a significant limitation, as
expressions with free variables can easily be re-written as functions or functors.

The equivalence relation for values is somewhat more complex, because
whether two values are equivalent depends both on the environment bindings
for free labels in the value, and on which labels clients can advise. For example,
the Math module in Figure 8 is equivalent to the same module without caching
if clients cannot advise the internal recursive calls to fib, but would not be
equivalent if clients can advise these calls.

We define an value equivalence judgment of the form Λ, Σ � (η, V) � (η′, V ′) :
T . Here, Λ represents a set of hidden labels that a client cannot advise. Σ is the
type of labels that the client can advise (i.e., those not in Λ). The equivalence
judgment includes both values and their corresponding environments, because
whether two values are equivalent may depend on how they each use their private
labels in Λ. A similar judgment, Λ,Σ � η1 � η2, used in the second logical
equivalence rule and defined in Figure 14, verifies that two environments map
all labels not in Λ to logically equivalent values.

The second rule in Figure 13 sets Λ to be all of the labels in the two envi-
ronments that are not free in the values being compared (the set of free labels
in V is written fl(V)). For the Math module in Figure 8, only the label gen-
erated for the fib function as part of the module sealing operation is free in
the module value; all other labels, including the one that captures advice on

Open Modules: Modular Reasoning About Advice 161

Fig. 14. Logical Equivalence for Machine Values

recursive calls to fib, are hidden in Λ. This is the technical explanation for why
the special semantics of TinyAspect’s sealing operation are important; without
it, all internal calls to the public functions of a module would be available to
advice.

This rule also shows the critical importance of keeping advice second-class in
TinyAspect. In a system with second-class advice, clients can only advise the
free labels in a module value, as shown in the rule. If pointcuts and advice were
first-class, a function could compute a pointcut dynamically, return it to clients,
which could then advise the pointcut. Keeping track of which functions clients
could advise would be extremely difficult in this setting.

The rules for logical equivalence of value/environment pairs are defined in
Figure 14. In these rules, we consider machine configurations to be equivalent
up to alpha-conversion of label names in the environment.

Our rules are similar to typical logical relations rules, but have one impor-
tant difference. Because TinyAspect supports a limited notion of state through
the advice mechanism, logical equivalence is defined as a bisimulation [17]. That
is, equivalent functions must not only produce equivalent results given equiva-
lent arguments, they must also trigger advice on client-accessible labels in the

162 J. Aldrich

same sequence and with the same arguments. Another way of saying this is that
all possibly-infinite traces of pairs of (client-accessible label, argument value)
triggered by logically equivalent functions must be themselves equivalent.

This bisimulation cannot be defined inductively on types as is usual for logical
relations, because a function of type τ → τ ′ may trigger advice on labels whose
types are themselves bigger than τ or τ ′. Instead, the rules in Figure 14 should be
interpreted coinductively for ordinary types–and thus all the rules for ordinary
types τ are designed to be monotonic to ensure that the greatest fixpoint of the
equivalence relation exists. We can still use an inductive definition of equivalence
for module types σ, since module definitions cannot be advised To the best of our
knowledge, this coinductive interpretation of logical equivalence rules is novel.

The first rule states that all unit values are equivalent. The second states
that we can assume that any non-private label (i.e., one not in Λ) is equivalent
to itself. Other labels can be judged equivalent to another value by looking up
the label in the environment.

Two functions are equivalent if, when invoked with a fresh label, they execute
with that label in a bisimilar way (using the machine expression equivalence
judgment from Figure 15). We cannot use the usual logical relations rule for
function equivalence, because this rule quantifies over logically equivalent pairs
of arguments and is thus non-monotonic and incompatible with our co-inductive
definition of equivalence.

Two empty declarations are equivalent to each other. Two val declarations
are equivalent if they bind the same variable to the same label (since labels are
generated fresh for each declaration we can always choose them to be equal when
we are proving equivalence). Since the label exposed by the val declaration is
visible, it must not be in the private set of labels Λ. Pointcut and structure
declarations just check the equality of their components. All three declaration
forms ensure that subsequent declarations are also equivalent. Two first-order
modules are equivalent if the declarations inside them are also equivalent.

For functors, we use the usual logical relations rule: two functors are equiva-
lent if they produce logically-equivalent module results for any logically-
equivalent, closed module arguments. This definition is well-formed because
equivalence for module types σ is defined inductively rather than coinductively,
using the coinduction only for the base case of functions within modules.

Figure 15 shows the rules for logical equivalence of expression/environment
pairs. These rules enforce bisimilarity with respect to values returned by a func-
tion or functor, or values passed to a non-private label. Our definitions are sim-
ilar to weak bisimilarity in the π-calculus, with ordinary reductions or lookups
of private labels corresponding to τ -transitions in the standard notion of weak
bisimilarity.

The first rule states that two expressions are equivalent if they take any
number of non-observable steps (written �→∗

Λ) to reduce to values that are also
equivalent. The non-observable step relation →Λ is equivalent to ordinary reduc-
tion →, except that the r-lookup rule may only be applied to labels in Λ (i.e.,
those that cannot be advised by clients).

Open Modules: Modular Reasoning About Advice 163

Fig. 15. Logical Equivalence for Machine Expressions

The second rule allows two expressions to each take one or more non-observable
steps (indicated by the + superscript instead of the ∗ superscript for zero or more
steps), resulting in observationally-equivalent expressions. Finally, the last rule
states that if two equivalent expressions are both at the point where they need
to look up a label that is not in Λ in order to continue, we must verify that
the values to which the labels are applied are also equivalent, and that the con-
texts are equivalent once a fresh label (representing the result of the application,
which is unknowable due to client advice) is substituted into the contexts. Since
our definition of equivalence is coinductive, we can use an infinite sequence of
the second and third rules to conclude that two non-terminating expressions are
logically equivalent.

Now that we have defined logical equivalence, we can state a soundness the-
orem relating logical and contextual equivalence:

Theorem 3 (Soundness of Logical Equivalence). If E1
∼= E2 then E1≡E2.

For space reasons, we give only a brief sketch of the proof of soundness. More
details are available in a companion technical report [1]. The proof proceeds
by establishing a bisimulation between two programs that consist of the same
context with logically equivalent embedded values. The bisimulation invariant
states that the two programs are structurally equivalent except for embedded
closed values, which are themselves logically equivalent. The key lemma in the
theorem states that the bisimulation is sound; that is, the bisimulation invariant
is preserved by reduction.

We then observe that the logically equivalent expressions E1 and E2 either
both diverge, or both reduce to logically equivalent values. In the former case,
any context surrounding the expressions will also diverge, so the expressions
are contextually equivalent in this case. In the latter case, the expressions will
both reduce to values in the same context, which will then obey the bisimula-
tion invariant described above. The soundness of bisimulation implies that these
expressions will either both diverge or will reduce to logically equivalent values.
Thus, the expressions are contextually equivalent in this case as well.

164 J. Aldrich

5.2 Applying Logical Equivalence

The definition of logical equivalence can be used to ensure that changes to the
implementation of one module within an application preserve the application’s
semantics. For example, consider replacing the recursive implementation of the
Fibonacci function in Figure 8 with an implementation based on a loop. In
AspectJ, or any module system that does not include the dynamic semantics
of our sealing operation, this seemingly innocuous change does not preserve the
semantics of the application, because some aspect could be broken by the fact
that fib no longer calls itself recursively.

Open Modules ensure that this change does not affect the enclosing appli-
cation, and the logical equivalence rules can be used to prove this. When the
module in Figure 8 is sealed, fib is bound to a fresh label that forwards external
calls to the internal implementation of fib. We can show that the two imple-
mentations of the module are logically equivalent by showing that no matter
what argument value the fib function is called with, the function returns the
same results and invokes the external label in the same way. But the external
label is fresh and is unused by either fib function, so this reduces to proving
ordinary function equivalence, which can easily be done by induction on the ar-
gument value. We can then apply the abstraction theorem to show that clients
are unaffected by the change.

6 Discussion

In this section, we reconsider the research questions from the introduction in
light of the formal model of Open Modules and the logical equivalence definition.
Since the formal model can be used to represent the tool support provided by
IDEs like the AJDT, we consider how these tools might be enhanced in light of
the model.

1. How can developers specify an interface for a library or component
that permits as many uses of advice as possible, while still ensuring
critical properties of the component implementation?

They can do so by declaring explicit pointcuts in the interface of the compo-
nent that describe “supported” internal events. These pointcuts form a contract
between a component provider and a client: The provider promises that if the
client obeys the rules of the Open Module system, then the system will have
the desired properties, and upgrades to the component will preserve client func-
tionality. The client’s side of the contract can be enforced by a compiler, while
the component provider’s side can be verified using the logical equivalence rules
(and their principled extension to a full AOP language)

Once the proper interface has been declared, our logical equivalence rules
show how to prove the full functional correctness of a module in a completely
modular way, given that an aspect-aware interface has been computed and that
an appropriate specification (e.g., in the form of a reference implementation) is
available.

Open Modules: Modular Reasoning About Advice 165

Of course, this answer is also limited: we give formal rules for a core language,
and full languages are far more complex. However, our system could be used to
prove the correctness of compiler optimizations for the constructs that are ex-
pressed in the core language. Our system may also be the foundation for a richer
set of equivalence rules that can be applied to a full system. Finally, the formal
rules in our system may be most helpful by showing engineers how to reason
informally about the correctness of changes to an aspect-oriented program. Our
system yields strong theoretical support to the intuitive notion that changes to
a module will not affect clients as long as functions compute the same result and
trigger pointcuts in the same way as the original module does.

2. How can developers specify an interface for a library or component
that permits as many uses of advice as possible, while still allowing
the component to be changed in meaningful ways without affecting
clients?

The same kind of interface can be defined as in the question above. In the
context of software evolution, however, the logical equivalence rules can be used
to ensure that a proposed change to a module cannot affect that module’s clients,
even if the clients themselves are unknown. As long as the client code obeys the
Open Module interface, it cannot be broken by an upgraded version of a third-
party component.

Note that the client is free to choose to bypass the Open Module rules; a
future compiler for Open Modules might issue a warning but compile the code
anyway. In this case the client would lose the guarantee that upgrades would
preserve the correctness of client code, but gain the ability to reuse or adapt the
component in more flexible ways than are permitted by the Open Module system.
Depending on the precise circumstances, the reuse benefits might outweigh the
potential costs of fixing code that breaks after an upgrade.

Tool Support. As Parnas argued, the primary goal of modularity is to ease
software evolution. The model we have developed shows that evolving a mod-
ule’s implementation might also involve changing the pointcuts that act on the
module, so that they capture events in the new module’s implementation that
correspond to the events captured by the original pointcut in the original mod-
ule specification. Currently the AJDT IDE aids this process by identifying what
these pointcuts are, but the pointcuts must still be changed at their definition
points, making the implementation task non-local. Our model suggests an im-
provement to IDEs: providing an editable view of the portion of each pointcut
that intersects with a module’s source code would allow many changes to be
made in a more local way.

Language Design. Our modularity result suggests a number of guidelines for
AOP language designers who want to preserve modular reasoning. First, declar-
ative, second-class advice (as in TinyAspect) is easier to reason about than
first-class advice. Second, in a language with first-class functions, advice should
affect function declarations, not the functions themselves, again because this al-

166 J. Aldrich

lows a module system to scope the effect of advice. Finally, languages should
distinguish advice that affects only the interface of a module from more invasive
forms of advice that affect a module’s implementation.

7 Related Work

Formal Models. The most closely related formal models are the foundational
calculus of Walker et al. [19], and the model of AspectJ by Jagadeesan et al. [10],
both of which were discussed in the beginning of Section 3. In other work on
formal models of AOP, Lämmel provides a big-step semantics for method-call
interception in object-oriented languages [15]. Wand et al. give an untyped, de-
notational semantics for advice and dynamic join points [20].

Aspects and Modules. Dantas and Walker have extended the calculus of
Walker et al. to support a module system [7]. Their type system includes a novel
feature for controlling whether advice can read or change the arguments and
results of advised functions. In their design, pointcuts are first-class and advice
applies to functions, providing more flexibility compared to TinyAspect, where
pointcuts are second-class and advice applies to declarations. This design choice
makes it much more difficult to prove logical equivalence properties, however,
because either making pointcuts first-class or tying advice to functions allows
join points to escape from a module even if they are not explicitly exported in the
module’s interface. In their system, functions can only be advised if the function
declaration explicitly permits this, and so their system is not oblivious in this
respect [8]. In contrast, TinyAspect allows advice on all function declarations,
and on all functions exported by a module, providing significant “oblivious”
extensibility without compromising modular reasoning.

Lieberherr et al. describe Aspectual Collaborations, a construct that allows
programmers to write aspects and code in separate modules and then compose
them together into a third module [16]. Since they propose a full aspect-oriented
language, their system is much richer and more flexible than ours, but its seman-
tics are not formally defined. Their module system does not encapsulate internal
calls to exported functions, and thus does not provide as strong an abstraction
boundary as Open Modules does.

Other researchers have studied modular reasoning without the use of explicit
module systems. For example, Clifton and Leavens propose engineering tech-
niques that reduce dependencies between concerns in aspect-oriented code [5].
Other work has studied analyzing base code and advice separately using inter-
faces similar to those of Open Modules [14], and analyzing what advice might
be affected by a change to code [13].

Our module system is based on that of standard ML [18]. TinyAspect’s
sealing construct is similar to the freeze operator that is used to close a module
to future extensions in module calculi such as Jigsaw [3].

The name Open Modules indicates that modules are open to advice on func-
tions and pointcuts exposed in their interface. Open Classes is a related term
indicating that classes are open to the addition of new methods [6].

Open Modules: Modular Reasoning About Advice 167

8 Conclusion

This paper described TinyAspect, a minimal core language for reasoning about
aspect-oriented programming systems. TinyAspect is a source-level language
that supports declarative aspects. We have given a small-step operational se-
mantics to the language and proven that its type system is sound. We have
described a proposed module system for aspects, formalized the module system
as an extension to TinyAspect, and proved that the module system enforces
abstraction. Abstraction ensures that clients cannot affect or depend on the in-
ternal implementation details of a module. As a result, programmers can both
separate concerns in their code and reason about those concerns separately.

Acknowledgments

I thank Gregor Kiczales, Mira Mezini, Shriram Krishnamurthi, Ralf Lämmel,
Mitch Wand, Karl Lieberherr, David Walker, Tim Halloran, Curtis Clifton,
Derek Dreyer, Todd Millstein, Robert Harper, and anonymous reviewers for
comments on this material. This work was supported by the High Dependabil-
ity Computing Program from NASA Ames cooperative agreement NCC-2-1298,
NSF grant CCR-0204047, and the Army Research Office grant number DAAD19-
02-1-0389 entitled ”Perpetually Available and Secure Information Systems.”

References

1. J. Aldrich. Open Modules: Modular Reasoning about Advice.
Carnegie Mellon Technical Report CMU-ISRI-04-141, available at
http://www.cs.cmu.edu/˜aldrich/aosd/, Dec. 2004.

2. D. G. Bobrow, L. G. DiMichiel, R. P. Gabriel, S. E. Keene, G. Kiczales, and
D. A. Moon. Common Lisp Object System Specification. In SIGPLAN Notices
23, September 1988.

3. G. Bracha. The Programming Language Jigsaw: Mixins, Modularity and Multiple
Inheritance. Ph.D. Thesis, Dept. of Computer Science, University of Utah, 1992.

4. A. Clement, A. Colyer, and M. Kersten. Aspect-Oriented Programming with
AJDT. In ECOOP Workshop on Analysis of Aspect-Oriented Software, July 2003.

5. C. Clifton and G. T. Leavens. Observers and Assistants: A Proposal for Modular
Aspect-Oriented Reasoning. In Foundations of Aspect Languages, April 2002.

6. C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein. MultiJava: Modular
Open Classes and Symmetric Multiple Dispatch for Java. In Object-Oriented Pro-
gramming Systems, Languages, and Applications, October 2000.

7. D. S. Dantas and D. Walker. Aspects, Information Hiding and Modularity. Prince-
ton University Technical Report TR-696-04, 2004.

8. R. E. Filman and D. P. Friedman. Aspect-Oriented Programming is Quantification
and Obliviousness. In Advanced Separation of Concerns, October 2000.

9. S. Gudmundson and G. Kiczales. Addressing Practical Software Development
Issues in AspectJ with a Pointcut Interface. In Advanced Separation of Concerns,
July 2001.

168 J. Aldrich

10. R. Jagadeesan, A. Jeffrey, and J. Riely. An Untyped Calculus of Aspect-Oriented
Programs. In European Conference on Object-Oriented Programming, July 2003.

11. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An
Overview of AspectJ. In European Conference on Object-Oriented Programming,
June 2001.

12. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier,
and J. Irwin. Aspect-Oriented Programming. In European Conference on Object-
Oriented Programming, June 1997.

13. C. Koppen and M. Stoerzer. PCDiff: Attacking the Fragile Pointcut Problem. In
European Interactive Workshop on Aspects in Software, September 2004.

14. S. Krishnamurthi, K. Fisler, and M. Greenberg. Verifying Aspect Advice Modu-
larly. In Foundations of Software Engineering, Nov. 2004.

15. R. Lämmel. A Semantical Approach to Method-Call Interception. In Aspect-
Oriented Software Development, Apr. 2002.

16. K. Lieberherr, D. H. Lorenz, and J. Ovlinger. Aspectual Collaborations: Combining
Modules and Aspects. The Computer Journal, 46(5):542–565, September 2003.

17. R. Milner. Communicating and Mobile Systems: The π-Calculus. Cambridge Uni-
versity Press, 1999.

18. R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard
ML (Revised). MIT Press, Cambridge, Massachusetts, 1997.

19. D. Walker, S. Zdancewic, and J. Ligatti. A Theory of Aspects. In International
Conference on Functional Programming, 2003.

20. M. Wand, G. Kiczales, and C. Dutchyn. A Semantics for Advice and Dynamic Join
Points in Aspect-Oriented Programming. Transactions on Programming Languages
and Systems, 26(5):890–910, September 2004.

A.P. Black (Ed.): ECOOP 2005, LNCS 3586, pp. 169 – 194, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Evaluating Support for Features in Advanced
Modularization Technologies

Roberto E. Lopez-Herrejon, Don Batory, and William Cook

Department of Computer Sciences, University of Texas at Austin,
Austin, Texas, 78712, U.S.A

{rlopez, batory, wcook}@cs.utexas.edu

Abstract. A software product-line is a family of related programs. Each program
is defined by a unique combination of features, where a feature is an increment
in program functionality. Modularizing features is difficult, as feature-specific
code often cuts across class boundaries. New modularization technologies have
been proposed in recent years, but their support for feature modules has not
been thoroughly examined. In this paper, we propose a variant of the expression
problem as a canonical problem in product-line design. The problem reveals a
set of technology-independent properties that feature modules should exhibit.
We use these properties to evaluate five technologies: AspectJ, Hyper/J, Jiazzi,
Scala, and AHEAD. The results suggest an abstract model of feature
composition that is technology-independent and that relates compositional
reasoning with algebraic reasoning1.

1 Introduction

A feature is an increment in program functionality [53]. Researchers in software product-
lines use features as a defacto standard in distinguishing the individual programs in a
product-line, since each program is defined by a unique combination of features [24].
Features are the semantic building blocks of program construction; a product-line model
is a set of features and constraints among features that define legal and illegal
combinations. Product-line architects reason about programs in terms of features.

Despite their crucial importance, features are rarely modularized. The reason is that
feature-specific code often cuts across class and package boundaries, thus requiring
the use of preprocessors to wrap feature-specific code fragments in #if-#endif
statements. While the use of preprocessors works in practice, it is hardly an adequate
substitute for proper programming language support. Among the important properties
sacrificed are: static typing of feature modules, separate compilation of feature
modules, and specifications of feature modules that are independent of the
compositions in which they are used (a property critical for reusability). This sacrifice
is unacceptable.

In recent years, new technologies have been proposed that have the potential to
provide better support for feature modularity. These technologies have very different

1 This research is sponsored in part by NSF's Science of Design Project #CCF-0438786.

170 R.E. Lopez-Herrejon, D. Batory, and W. Cook

notions of modularity and composition, and as a consequence are difficult to compare
and unify. Thus it is increasingly important to advance standard problems and metrics
for technology evaluation. A few attempts have been made to compare technologies
and evaluate their use to refactor and re-implement systems that are not part of a
product family [13][19][30][37]. But for a few studies [16][52][35], the use of new
technologies to modularize features in a product line is largely unexplored.

In this paper we present a standard problem that exposes common and fundamental
issues that are encountered in feature modularity in product-lines. The problem
reveals technology-independent properties that feature modules should exhibit. We
use these properties to evaluate solutions written in five novel modularization
technologies: AspectJ [1][25], Hyper/J [41][48], Jiazzi [31][32][52], Scala
[45][38][39][40], and AHEAD [2][6]. The results suggest a technology-independent
model of software composition where the definition and composition of features is
governed by algebraic laws. The model provides a framework or set of criteria that a
rigorous mathematical presentation should satisfy. Further, it helps reorient the focus
on clean and mathematically justifiable abstractions when developing new tool-
specific concepts.

2 A Standard Problem: The Expressions Product-Line

The Expressions Product-Line (EPL) is based on the extensibility problem also
known as the “expression problem” [15][50]. It is a fundamental problem of software
design that consists of extending a data abstraction to support a mix of new operations
and data representations. It has been widely studied within the context of
programming language design, where the focus is achieving data type and operation
extensibility in a type-safe manner. Rather than concentrating on that issue, we
consider the design and synthesis aspects of the problem to produce a family of
program variations. More concretely, what features are present in the problem? How
can they be modularized? And how can they be composed to build all the programs of
the product-line?

2.1 Problem Description

Our product-line is based on Torgersen’s expression problem [49]. Our goal is to
define data types to represent expressions of the following language:

Two operations can be performed on expressions of this grammar:

1) Print displays the string value of an expression. The expression 2+3 is repre-
sented as a three-node tree with an Add node as the root and two Lit nodes as
leaves. The operation Print, applied to this tree, displays the string “2+3”.

2) Eval evaluates expressions and returns their numeric value. Applying the oper-
ation Eval to the tree of expression 2+3 yields 5 as result.

Exp :: = Lit | Add | Neg
Lit :: = <non-negative integers>
Add :: = Exp "+" Exp
Neg :: = "-" Exp

 Evaluating Support for Features in Advanced Modularization Technologies 171

We add a class Test that creates instances of the data type classes and invokes
their operations. We include this class to demonstrate additional properties that are
important for feature modules. Figure 1 shows the complete Java code for a program
of the product-line that implements all the data types and operations of EPL. Shortly
we will see what the annotations at the beginning of each line mean.

Fig. 1. Complete code of the Expressions Product Line

From a product-line perspective,
we can identify two different
feature sets [17]. The first is that of
the operations {Print, Eval},
and the second is that of the data
types {Lit, Add, Neg}. Using these
sets, it is possible to synthesize all
members of the product-line
described in Figure 2 by selecting
one or more operations, and one or
more data types. For instance, row 4
is the program that contains Lit
and Add with operations Print
and Eval. As with any product-line
design, in EPL there are constraints

Fig. 2. Members of the EPL

lp
lp
le
lp

ap
ap
ap
ap
ap
ap
ap
ap
ap
ae
ae
ae
ae
ap

np
np
np
np
np
np
np
np
ne
ne
ne
np

interface Exp {
 void print();
 int eval();
}

class Add implements Exp {
 Exp left, right;
 Add (Exp l, Exp r) {
 left = l; right = r; }
 void print() {
 left.print();
 System.out.print("+");
 right.print();
 }
 int eval() {
 return left.eval()
 + right.eval();
 }
}

class Neg implements Exp {
 Exp expr;
 Neg (Exp e) { expr = e; }
 void print() {
 System.out.print("-(");
 expr.print();
 System.out.print(")");
 }
 int eval() {
 return expr.eval() * -1;
 }
}

lp
lp
lp
lp
lp
lp
le
lp

lp
lp
ap
np
lp
lp
ap
np
lp
lp
lp
ap
np
le
ae
ne
lp
lp

class Lit implements Exp {
 int value;
 Lit (int v) { value = v; }
 void print() {
 System.out.print(value);
 }
 int eval() { return value; }
}

class Test {
 Lit ltree;
 Add atree;
 Neg ntree;
 Test() {
 ltree = new Lit(3);
 atree = new Add(ltree, ltree);
 ntree = new Neg(ltree);
 }
 void run() {
 ltree.print();
 atree.print();
 ntree.print();
 System.out.println(ltree.eval());
 System.out.println(atree.eval());
 System.out.println(ntree.eval());
 }
}

Data typesOperations

8

7

6

5

4

3

2

1

NegAddLitEvalPrintProgram

Data typesOperations

8

7

6

5

4

3

2

1

NegAddLitEvalPrintProgram

172 R.E. Lopez-Herrejon, D. Batory, and W. Cook

on how features are combined to form programs. For example, all members require
Lit data type, as literals are the only way to express numbers.

A common way to implement features in software product-lines is to use
preprocessor declarations to surround the lines of code that are specific to a feature. If
we did this for the program in Figure 1, the result would be unreadable. Instead, we
use an annotation at the start of each line to indicate the feature to which the line
belongs. This makes it easy to build a preprocessor that receives as input the names of
the desired features and strips off from the code of Figure 1 all the lines that belong to
unneeded features. As can be imagined, this approach is very brittle for problems of
larger scale and complexity. Never the less, the approach can be used as a reference to
define what is expected from feature modules in terms of functionality (classes,
interfaces, fields, methods, constructors), behaviour (sequence of statements
executed), and composition.

2.2 Feature Modularization

A natural representation of the expression problem, and thus for EPL, is a two-
dimensional matrix [15][50][22]. The vertical dimension specifies data types and
the horizontal dimension specifies operations. Each matrix entry is a feature module
that implements the operation, described by the column, on the data type, specified
by the row. As a naming convention throughout the paper, we identify matrix
entries by using the first letters of the row and the column, e.g., the entry at the
intersection of row Add and column Print is named ap and implements operation
Print on data type Add. This matrix is shown in Figure 3 where module names
are encircled.

Fig. 3. Matrix representation and Requirements

To compose any program from Figure 2, the modules involved are those at the
intersection of the selected columns and the selected rows. For example, program
number 1, that provides Print operation on Lit, only requires module lp. Another

∆Test
∆run()

∆Neg
int eval()

∆Test
Neg ntree

∆Test()
∆run()

Neg

Exp expr

Neg(Exp)

void print()

∆Test
∆run()

∆Add
int eval()

∆Test
Add atree

∆Test()
∆run()

Add

Exp left

Exp right

Add(Exp,Exp)

void print()

∆Test
∆run()

∆Lit
int eval()

∆Exp
int eval()

Test

Lit ltree

Test()

void run()

Lit

int value

Lit(int)

void print()

Exp

void print()

∆Test
∆run()

∆Neg
int eval()

∆Test
Neg ntree

∆Test()
∆run()

Neg

Exp expr

Neg(Exp)

void print()

∆Test
∆run()

∆Add
int eval()

∆Test
Add atree

∆Test()
∆run()

Add

Exp left

Exp right

Add(Exp,Exp)

void print()

∆Test
∆run()

∆Lit
int eval()

∆Exp
int eval()

Test

Lit ltree

Test()

void run()

Lit

int value

Lit(int)

void print()

Exp

void print()

Print Eval

Lit

Add

Neg

lele

aeae

nene

lplp

apap

npnp

 Evaluating Support for Features in Advanced Modularization Technologies 173

example is program 6, that implements operations Print and Eval on Lit and Neg
data types, requires modules lp, le, np, and ne.

The source code of a feature module are the lines that are annotated with the name
of the module. For instance, the contents of feature ap include:

a) Class Add with Exp fields left and right, a constructor with two Exp
arguments, and method void print(), and

b) An increment to class Test, because it is adding something to the class as
opposed to contributing a brand new class as is the case of class Add. This
increment is symbolized by Test in Figure 3. It adds: field atree, a
statement to the body of the constructor expressed with Test(), and a
statement to the body of method run expressed as run().

For clarity we decided to put the Exp interface inside module lp instead of
creating a separate row for it. This decision makes sense since the other data types are
built using Lit objects. Also, we put the constructors and fields of the data types in
column Print instead of refactoring them into a new column and have columns
Print and Eval implement only their corresponding methods. Later we will see an
interesting consequence of these two design decisions. Additionally, from the design
requirements we can infer dependencies and interactions among the feature modules.
For instance, if we want to build a program with module ap, we also need to include
module lp because ap increments the Test class which is introduced in lp. Later,
we briefly discuss this issue as compositional constraints, which are not the focus of
this paper. Constraints are discussed in [2][3][9].

3 Basic Properties for Feature Modularity

To give structure to our evaluation, we identify a set of basic properties about features
that can readily be inferred from, illustrated by, and assessed in EPL and its solutions
in the five technologies evaluated. Conceivably, there are other desirable properties
that feature modules should exhibit such as readability, ease of use, etc. However, for
sake of simplicity and breadth of scope, they are not part of this evaluation as their
objective assessment would require a larger case study that would prevent us from
comparing all five technologies together.

The properties are grouped into two categories, covering the basic definition of
features and their composition to create programs. The first properties in each
category follow from the structure of EPL, while the others come from the studied
solutions to EPL and are desirable from the software engineering perspective.

3.1 Feature Definition Properties

The first category of properties relate to the definition of the basic building blocks of
EPL, the representation of each piece, and their organization into features.

Program Deltas. The code in Figure 1 can be decomposed into a collection of
program deltas or program fragments. The kinds of program deltas required to solve
EPL are summarized in Figure 3, and include:

174 R.E. Lopez-Herrejon, D. Batory, and W. Cook

• New Classes, for example Lit in module lp.
• New Interfaces, for example Exp in module lp.
• New fields that are added to existing classes, like field atree in module ap is

added to class Test.
• New methods that are added to existing interfaces, like eval() in module le

is added to interface Exp.
• Method extensions that add statements to methods. For example, extension to

method run(), expressed by run(), in all modules except lp.
• Constructor extensions that add statements to constructors. For instance,

extensions to constructor Test(), expressed by Test(), in modules ap
and np.

There are other program deltas, such as new constructors, new static initializers,
new exception handlers, etc. that are not needed for implementing EPL and thus are
not considered in this paper. Nonetheless, we believe that EPL contains a sufficient
set of program deltas for an effective evaluation.

Cohesion. It must be possible to collect a set of program deltas and assign them a
name so that they can be identified and manipulated as a cohesive module.

Separate Compilation. Separate compilation of features is useful for two practical
reasons: a) it allows debugging of feature implementation (catching syntax errors) in
isolation, and b) it permits the distribution of bytecode instead of source code.

3.2 Feature Composition Properties

Once a set of feature modules has been defined, it must be possible to compose them
to build all the specific programs in the Expression Product Line.

Flexible Composition. The implementation of a feature module should be
syntactically independent of the composition in which it is used. In other words, a
fixed composition should not be hardwired into a feature module. Flexible
composition improves reusability of modules for constructing a family of programs.

Flexible Order. The order in which features are composed can affect the resulting
program. For instance, in EPL, the order of test statements in method run() affects
the output of the program. The program in Figure 1 is the result of one possible
ordering of features, namely (lp, ap, np, le, ae, ne). Another plausible order in
EPL is to have expressions printed and evaluated consecutively, as in order (lp, le,
ap, ae, np, ne). Hence, feature modules should be composable in different orders.

Closure Under Composition. Feature modules are closed under composition if one
or more features can be composed to make a new composite feature. Composite
features must be usable in all contexts where basic features are allowed. In EPL, it
would be natural to compose the Lit and Neg representations to form a LitNeg
feature which represents positive and negative numbers.

 Evaluating Support for Features in Advanced Modularization Technologies 175

Static Typing. Feature modules and their composition are subject to static typing
which helps to ensure that both are well-defined, for example, preventing method-not-
found errors. We base the evaluation of this property on the availability of a formal
typing theory or mechanism behind each technology.

Using these properties we evaluate AspectJ, Hyper/J, Jiazzi, Scala, and AHEAD in
the following sections.2 We use a concrete example to illustrate these alternatives, i.e.
the program that supports Print and Eval operations in Lit and Add data types
(program number 4 in Figure 2). Thus, the program has four modules: lp, ap, le,
and ae that we compose in this order (the same as in Figure 1). Throughout the paper,
we call this program LitAdd.

4 AspectJ

An aspect, as implemented in AspectJ3 [1][25], modularizes a cross-cut as it contains
code that can extend several classes and interfaces.

4.1 Feature Modules and Their Composition

The implementation of module lp is straightforward as it consists of Java
interface Exp and classes Lit and Test. In AspectJ literature, programs written
using only pure Java code are called base code. In Figure 4a, the names of files
that are base code are shown in italics, while those of aspect code are shown in all
capital letters.

Fig. 4. AspectJ Solution

2 For a more detailed description of the implementation see [29].
3 We used AspectJ version 1.1 for our evaluation.

public aspect LE {

// ∆Exp interface
public abstract int Exp.eval();

// ∆Lit class
public int Lit.eval() { return value; }

// ∆Test, advice that implements ∆run()
pointcut LPRun(Test t):

execution (public void Test.run())
&& target(t);

void around(Test t) : LPRun(t) {
proceed(t);
System.out.println("= " + t.ltree.eval());

}
}

NENeg,
NP

Neg

AEAdd,
AP

Add

LEExp,
Lit,

Test

Lit

EvalPrint

NENeg,
NP

Neg

AEAdd,
AP

Add

LEExp,
Lit,

Test

Lit

EvalPrint

(a) (b)

176 R.E. Lopez-Herrejon, D. Batory, and W. Cook

Alternatively, we could have declared the new classes and interfaces as nested
elements of an aspect. However, they would be subject to the instantiation of their
containing aspect, and their references would be qualified with the aspect name where
they are declared. For these reasons, we decided to implement classes and interfaces
in separate files.

From Figure 3, module le:

1) adds method eval() to interface Exp,
2) adds the implementation of eval() to class Lit, and
3) appends a statement to method run() of class Test that calls eval() on

field ltree.

The entire code of module le is implemented with the aspect shown in Figure 4b.
The first two requirements use AspectJ’s inter-type declaration, which is part of its
static crosscutting model [1][25]4. Method extensions, like that of the third
requirement, cannot be implemented as inter-type declarations because members with
the same signature can be introduced only once. Hence, to implement the last
requirement it is necessary to utilize AspectJ’s dynamic crosscutting model which
permits adding code (advice) at particular points in the execution of a program (join
points) that are specified through a predicate (pointcut).

Since it is required to execute an additional statement when method run() is
executed, we must capture the join point of the execution of that method. Also, since
the statement to add is a method call on field ltree of class Test, we must get a hold
of the object that is the target of the execution of method run() to access its
ltree field. These two conditions are expressed in pointcut LPRun of Figure 4b,
where t is the reference to the target object. Lastly, to add the extension statement we
use an around advice. This type of advice executes instead of the join points of the
pointcut, but it allows its execution by calling AspectJ’s special method proceed. We
add the new statement to run() after the call to method proceed(t).5

The implementation of feature module ap (not shown in Figure 4) uses two files.
The first is a Java class to implement data type Add. The second is an aspect to
implement the extensions to class Test. The first extension adds a new field to class
Test. This is done also using inter-type declaration in the following way:

public Add Test.atree;

The other two extensions of module ap, Test() and run(), are implemented in a
similar way to those of module le. The other modules ae, np, and ne have an
analogous implementation.

To compose program LitAdd, the AspectJ compiler (weaver) ajc, requires the file
names of the base code and the aspects of the feature modules. The composition is
specified as follows, where the order of the terms is inconsequential:

4 We could also implement the first requirement as follows:

public int Exp.eval() { return 0; }

 This alternative defines a default value for the method which can be subsequently overridden
by each class that implements Exp.

5 Method proceed, has the same arguments as the advice where it is used.

 Evaluating Support for Features in Advanced Modularization Technologies 177

ajc Exp.java Lit.java Test.java LE.java Add.java AP.java AE.java

-outjar LitAdd.jar (1)

The static crosscutting model of AspectJ has a simple realization that does not
depend on order, namely, members can only be introduced once. However, in the case
of dynamic crosscutting, i.e. pointcuts and advice, several pieces of advice can apply
to the same join point. In such cases, the order in which advice code is executed is in
general undefined6. This means that a programmer cannot know a priori, by simply
looking at the pointcut and advice code, in what order advice is applied. In program
LitAdd, this issue is manifested in the order of execution of method run() and its
extensions. The order that we want is that of Figure 1, namely, first the statement
from lp followed by those of ap, le and ae. However, the order obtained by
executing the program is statements from lp, ae, ap, and le7.

AspectJ provides a mechanism to give precedence to advice, thus imposing an
order, at the aspect level. In other words, it can give precedence to all the advice of an
aspect over those of other aspects. To obtain the order that we want for method
run(), we must define the following aspect:

public aspect Ordering {
declare precedence : AE, LE, AP;

}

and add it to the list of files in the specification (1). For further details on how
precedence clauses are built, consult [1][26].

 4.2 Evaluation

Feature Definition. AspectJ can describe all program deltas required for EPL. How-
ever, in cases like module ap which is implemented with class Add and aspect AP,
there is no way to express that both together form feature ap. In other words, AspectJ
does not have a cohesion mechanism to group all program deltas together and
manipulate them as a single module. Nonetheless, this issue can be addressed with
relatively simple tool support. Aspects cannot be compiled separately, as they need
have base code in which to be woven.

Feature Composition. AspectJ provides flexible composition and order. It can be
used to build all members of EPL in the order described in an auxiliary aspect that
contains a declare precedence clause. This type of clause can also be used inside
aspects that implement feature modules, like LE, but doing that could reduce order
flexibility as the order could be different for different programs where LE is used.
Feature modules implemented in AspectJ are not closed under composition for two
reasons: the absence of a cohesion mechanism and the lack of a general model of
aspect composition. The latter is subject of intensive research [18]. Static typing
support for AspectJ is also an area of active research [23][51].

6 There are special rules that apply for certain types of advice when advices are defined in
either the same aspect or in others [1]. These rules help determine the order in few cases but
not in general.

7 In AspectJ version 1.1.

178 R.E. Lopez-Herrejon, D. Batory, and W. Cook

5 Hyper/J

Hyper/J [48] is the Java implementation of an approach to Multi-Dimensional
Separation of Concerns (MDSoC) called Hyperspaces [41][47]. A hyperspace is a set
of units. A unit can be either primitive, such as a field, method, and constructor; or
compound such as a classe, interface, and package.

A hyperslice is a modularization mechanism that groups all the units that
implement a concern (a feature in this paper) which consists of a set of classes and
interfaces. Hyperslices must be declaratively complete. They must have a
declaration, that can be incomplete (stub) or abstract, for any unit they reference.
Hyperslices are integrated in hypermodules to build larger hyperslices or even
complete systems.

5.1 Feature Modules and Their Composition

The Hyper/J weaver performs composition at the bytecode level which makes a
natural decision to implement each hyperslice (feature module) as a package that
can be compiled independently. Hyperslices that contain only new classes and
interfaces, like module lp, have a straightforward implementation as Java
packages. The interesting case is hyperslices that extend units in other hyperslices.
For example, Figure 5a shows the package that implements feature le. It adds
method eval() to Exp (new method in an interface), the implementation in Lit
(new method in a class), and a call in method run() of class Test (method
extension).

Fig. 5. Hyper/J Implementation

class Lit implements Exp {
public int value; // stub lp
public Lit (int v) { } // req constructor
public int eval() { return value; }

}

interface Exp {
int eval();

}

class Test {
Lit ltree; // stub lp
public void run() {
System.out.println(ltree.eval());
}

}

class Lit implements Exp {
public int value; // stub lp
public Lit (int v) { } // req constructor
public int eval() { return value; }

}

interface Exp {
int eval();

}

class Test {
Lit ltree; // stub lp
public void run() {
System.out.println(ltree.eval());
}

}

(a) Package LE of feature le

Hypermodule (hm)
hypermodule LitAdd
hyperslices:
Feature.LP,
Feature.AP,
Feature.LE,
Feature.AE;

relationships:
mergeByName;

end hypermodule;

Hyperspace (hs)
hyperspace LitAdd
composable class LP.*;
composable class LE.*;
composable class AP.*;
composable class AE.*;

Concern Mapping (cm)
package LP : Feature.LP
package LE : Feature.LE
package AP : Feature.AP
package AE : Feature.AE

Hypermodule (hm)
hypermodule LitAdd
hyperslices:
Feature.LP,
Feature.AP,
Feature.LE,
Feature.AE;

relationships:
mergeByName;

end hypermodule;

Hyperspace (hs)
hyperspace LitAdd
composable class LP.*;
composable class LE.*;
composable class AP.*;
composable class AE.*;

Concern Mapping (cm)
package LP : Feature.LP
package LE : Feature.LE
package AP : Feature.AP
package AE : Feature.AE

(b) Composition Specification

 Evaluating Support for Features in Advanced Modularization Technologies 179

However, extra code is required to make a hyperslice declaratively complete so
that it can be compiled. For instance, variable value that is introduced in feature lp
is replicated in class Lit so that it can be returned by method eval(). Something
similar occurs with variable ltree in Test. Additionally, the Hyper/J weaver
requires stubs for non-default constructors. When the package is compiled, the
references of these variables are bound to the definitions in the package; however,
when composed with other hyperslices that also declare these variables, all the
references are bound to a single declaration determined by the composition
specification. The extension of methods and constructors is realized by appending the
code of their bodies one after the other. The rest of the feature modules are
implemented similarly.

The LitAdd composition is defined by the three files of Figure 5b: hyperspace
Lit-Add.hs, concern mapping LitAdd.cm, and hypermodule LitAdd.hm. The
hyperspace file lists all the units that participate in the composition. The concern
mapping divides the hyperspace into features (hyperslices) and gives them names.
Finally, the hypermodule specifies what hyperslices are composed and what
mechanisms (operators) to use. Our example merges units that have the same name.

5.2 Evaluation

Feature Definition. Hyper/J’s hyperslices can modularize all deltas, treat them as a
cohesive unit, and compile them separately. Though, separate compilation requires
manual completion of the hyperslices.

Feature Composition. Hyper/J provides flexible composition. The order is specified
in the hypermodule and can be done using several composition operators [48], thus
composition order is flexible. Hyperslices are by definition closed under
composition. To the best of our knowledge there is no theory to support static typing
of hyperslices.

6 Jiazzi

Jiazzi [31][32][52] is a component system that implements units [21][22] in Java. A
unit is a container of classes and interfaces. There are two types of units: atoms, built
from Java programs, and compounds built from atoms and other compounds. Units
are the modularization mechanism of Jiazzi. Therefore they are the focus of our
evaluation.

6.1 Feature Modules and Their Composition

Jiazzi programs use pure Java constructs. Jiazzi groups classes and interfaces in packages
that are syntactically identical to Java packages. Implementation of modules like lp are
thus standard Java packages with normal classes and interfaces. Consider the following
code contained in package le that implements the feature of the same name8:

8 Definition of non-default constructors is required but not shown.

180 R.E. Lopez-Herrejon, D. Batory, and W. Cook

public interface Exp extends lp.Exp {
int eval();

}
public class Lit extends lp.Lit
implements fixed.Exp {

public int eval() { return value; }
}
public class Test extends lp.Test {
public void run() {
super.run();
System.out.println(ltree.eval());

}
}

Two important things to note are: a) Exp, Lit and Test extend their
counterparts of feature lp, and b) class Lit implements fixed.Exp which refers
to the version of Exp that contains all the extensions in a composition.

Package le shows how methods can be added to existing classes and interfaces, and
how existing methods can be extended. Jiazzi also supports adding new classes, interfaces,
constructor extensions, and fields in a similar way to that of normal Java inheritance. The
rest of the feature modules are implemented along the lines of module le.

Composition in Jiazzi is elaborate. For simplicity, we illustrate unit composition
with units lp and le instead of LitAdd. From this readers can infer what the
composition of LitAdd entails.

We start with the definition of a signature which describes the structure of a package,
i.e., the interface it exports. The following code is the signature of package le9:

signature leS = l : lpS + {
package fixed;
public interface Exp { int eval(); }
public class Lit { public int eval(); }
public class Test { public void run(); }

}

Two relevant points are: a) the expression l:lpS + indicates that leS is an
extension of signature lpS, meaning that Exp, Lit, and Test of le extend their
counterparts in lp, and b) fixed is a package parameter that is used, as we have
seen, in the implementation of le. How this parameter is bound is explained shortly.

A unit definition consists of import and export packages followed (if necessary) by
a series of statements that establish relations among the packages which, in the case of
compound units, determines the order in which units are composed. Each of the fea-
tures in our problem is implemented by an atom, and a program in the EPL is
expressed by a compound unit. The following code defines unit le:

atom le {
import lp : lpS;
export le extends lp : leS;
import fixed extends le;

}

9 For convention in this section, we form signature names with the names of the packages they
described followed by a S.

 Evaluating Support for Features in Advanced Modularization Technologies 181

It asserts that atom le imports package lp with signature lpS and that it exports
package le of signature leS which is an extension of lp. It also states that it imports
package fixed, an extension of le which is bound, at composition time, to the
package parameter of the same name in the signature.

Jiazzi supports composition through the Open Class Pattern [31][32]. The key
element of this pattern is the creation of a package, called fixed in our example, that
contains all the extensions made by the units. This package is imported by the atom
units, creating a feedback loop that permits them to refer to the most extended version
of the classes and interfaces involved in a composition.

Fig. 6. Jiazzi Composition of le and lp

Figure 6a shows the code that composes these two units. Figure 6b illustrates this
composition. Consider the second part of the specification first. It states that the
composition contains two units (line 3): lpInst an instance of unit lp, and
leInst an instance of unit le. The packages of these two units are linked as
follows: a) line 4 states that the exported package le of leInst is bound to all the
fixed packages in the compound, b) line 5 sets the link between the export package
lp of lpInst to the import package lp of leInst.

To be useful, compound packages must export something, in our case it exports a
package that we named compLELP with signature leS (line 1) which is linked to
package le of unit leInst in line 6. Since compLELP has signature leS that contains
package parameter fixed we must bind it, in this case to itself, as done in line 2.

Signatures allow separate unit compilation. Jiazzi provides a stub generator that
uses the unit’s signature to create the packages and the code skeletons of the classes
and interfaces required to compile the unit. It also provides a linker that checks that
the compiled unit conforms to the unit’s signature and stores the unit’s binaries and
signature into a Java archive (jar) file that can be used to compose with other units.
For further details on the stub generator and linker refer to [33].

6.2 Evaluation

Feature Definition. Jiazzi units can modularize all program deltas of EPL in a
cohesive way. Furthermore, signatures allow separate compilation.

lpInst

fixed

lp

fixedlp

le

compLELP

compound lelp

export

import

link

unit

leInst

(a) (b)

compound lelp {

export compLELP : leS; (1)

bind package compLELP to compLELP@fixed; (2)

}{

link unit lpInst : lp, leInst : le; (3)

link package
leInst@le to *@fixed, (4)
lpInst@lp to leInst@lp, (5)

leInst@le to compLELP; (6)
}

182 R.E. Lopez-Herrejon, D. Batory, and W. Cook

Feature Composition. Jiazzi separates clearly the implementation of features from
their composition thus provides a flexible composition. The order of unit composition
is determined by the linking statements in compound units and therefore it is flexible.
By definition, units are closed under composition. Jiazzi is backed up with a formal
theory for type checking units and their compositions [21][22]. This theory permits
the linker to statically check and report errors in program composition.

Jiazzi’s type checking and separate compilation come with a price. Defining
signatures and wiring the relationships between units is a non-trivial task, especially
when dealing with multiple units with complex relations among them [52].

7 Scala

Scala is a strongly-typed language that fuses concepts from object-oriented program-
ming and functional programming [45][38]. Though Scala borrows from Java, it is
not an extension of it. We included Scala10 in our evaluation because it supports two
nontraditional modularization mechanisms: traits [44] and mixins [10].

7.1 Feature Modules and Their Composition

A trait in Scala can be regarded as an abstract class without state and parameterized
constructors. It can implement methods and contain inner classes and traits. We
implemented each feature module by a trait. Consider the implementation of feature
lp shown in Figure 7a. The trait contains:

• Abstract type exp with upper bound Exp. This means that exp is at least a
subtype of Exp and thus it leaves exp open for further extensions by other
features.

• Trait Exp declares method print(). A trait is used in this context because it
is roughly equivalent to a Java interface, as it declares a type with methods
whose implementations are not yet defined.

• Class Lit extends Exp.11 It has a primary constructor (or main constructor)
that receives an integer which is assigned to field value. It also provides an
implementation for method print() that displays this field.

• Class Test contains abstract field ltree of abstract type exp. Because of
this, class Test is also abstract. Test also contains method run() that
calls method print() on ltree.

Trait ap is implemented as an extension of trait lp , shown in Figure 7b, that
contains:

• Class Add that extends trait Exp of module lp. It has a two parameter
constructor to initialize the expression fields and the implementation of method
print().

10 We used version 1.3.0.10 for our evaluation.
11 Scala traits are conceptually not different from classes so that is why we use an extends

clause instead of implements.

 Evaluating Support for Features in Advanced Modularization Technologies 183

Fig. 7. Scala Solution

• Extension to class Test, that adds field atree and extends method run()
with the call to print() on this field 12. This class is also abstract because
atree’s type is abstract.

12 To prevent inadvertent overriding, Scala requires overriding methods to include an
override modifier as part of their definitions. Notice also that the overridden method can
still be called using super as in Java.

package epl;
abstract class Test1 extends lp with ap {

abstract class Test extends super.Test with super[ap].Test;
}
abstract class Test2 extends Test1 with le {

abstract class Test extends super.Test with super[le].Test;
}
abstract class Test3 extends Test2 with ae {

abstract class Test extends super.Test with super[ae].Test;
}
object LitAddObj extends Test3 {

type exp = Exp;
class Test extends super.Test {

val ltree = new Lit(3);
val atree = new Add(ltree, new Lit(7));

}
def main(args: Array[String]) : unit = {

var test = new Test();
test.run();

}
} (e)

package epl;
trait ae extends ap with le {
class Add(l: exp, r: exp) extends super.Add(l, r)

with Exp {
def eval(): int = left.eval() + right.eval()

}

abstract class Test extends super.Test {
override def run(): unit = {
super.run();
System.out.println(atree.eval());

}
}

}

(d)

package epl;
trait ap extends lp {
class Add(l: exp, r: exp) extends super.Exp {
val left = l; val right = r;
def print(): unit = {
left.print(); System.out.print("+");
right.print();
}

}
abstract class Test extends super.Test {
val atree: exp;
override def run(): unit = {
super.run(); atree.print();

}
}

} (b)

package epl;
trait le extends lp {
type exp <: Exp;
trait Exp extends super.Exp {
def eval(): int

}
class Lit(v: int) extends super.Lit(v) with Exp {
def eval(): int = value;

}
abstract class Test extends super.Test {
override def run(): unit = {
super.run();
System.out.println(ltree.eval());

}
}

} (c)

package epl;
trait lp {
type exp <: Exp;
trait Exp {
def print(): unit;

}
class Lit(v: int) extends Exp {
val value = v;
def print(): unit = System.out.print(value);

}
abstract class Test {
val ltree: exp;
def run(): unit = { ltree.print(); }

}
}

(a)

package epl;
trait ae extends ap with le {
class Add(l: exp, r: exp) extends super.Add(l, r)

with Exp {
def eval(): int = left.eval() + right.eval()

}

abstract class Test extends super.Test {
override def run(): unit = {
super.run();
System.out.println(atree.eval());

}
}

}

(d)

package epl;
trait ap extends lp {
class Add(l: exp, r: exp) extends super.Exp {
val left = l; val right = r;
def print(): unit = {
left.print(); System.out.print("+");
right.print();
}

}
abstract class Test extends super.Test {
val atree: exp;
override def run(): unit = {
super.run(); atree.print();

}
}

} (b)

package epl;
trait le extends lp {
type exp <: Exp;
trait Exp extends super.Exp {
def eval(): int

}
class Lit(v: int) extends super.Lit(v) with Exp {
def eval(): int = value;

}
abstract class Test extends super.Test {
override def run(): unit = {
super.run();
System.out.println(ltree.eval());

}
}

} (c)

package epl;
trait lp {
type exp <: Exp;
trait Exp {
def print(): unit;

}
class Lit(v: int) extends Exp {
val value = v;
def print(): unit = System.out.print(value);

}
abstract class Test {
val ltree: exp;
def run(): unit = { ltree.print(); }

}
}

(a)

184 R.E. Lopez-Herrejon, D. Batory, and W. Cook

Trait le is also implemented as an extension to trait lp and is shown in Figure 7c.
This trait has:

• Trait Exp extends Exp of feature lp by adding method eval().
• Abstract type exp that extends exp of feature lp, meaning that exp is now

at least a subtype of Exp that has print() and eval() methods.
• An extension of class Lit. This class uses mixin composition (expressed as
with Exp in the figure) to indicate that Lit is also a subtype of Exp and
thus it must implement both of its methods. Since it inherits print() from
trait lp it only needs to implement eval().

• An extension of class Test that modifies run() to invoke eval() on ltree.

Feature ae is implemented as an extension of feature ap and a mixin composition with
feature le because it provides an implementation of method eval() for class Add.
The code is shown in Figure 7d. Additionally this trait extends method run() of class
Test. The other two feature modules of EPL, np and ne, are implemented similarly.

To define program LitAdd is necessary to: a) specify the order in which method
extensions are composed, and b) to create an object, a singleton object of a new
class, to run the program. Figure 7e illustrates this. For the first part, we use deep
mixin composition [54] (mixin composition at trait level and nested class level), to
establish a linear order of Test classes as they contain extensions of method run().
For the second part, we define LitAddObj that extends Test3 (the most refined
abstract Test class), binds abstract type exp to concrete type Exp as defined by
Test3, and makes concrete class Test by creating instances for the test objects
ltree and atree. The main method creates an instance of Test and calls method
run() on it.

7.2 Evaluation

Feature Definition. Scala can implement all program deltas of EPL. Regarding
cohesion, traits provide a mechanism to collect program deltas under a single name.
Separate compilation in Scala requires traits and classes to be placed in named
packages, as it is illustrated by package epl in Figure 7.

Feature Composition. Scala provides flexible composition and flexible order
mechanism for implementing EPL. Scala uses inheritance and mixin composition to
compose program deltas that add new classes, traits, fields, methods and simple
constructor extensions. However, specifying the order of method extensions is a
verbose and non-trivial task. Scala traits are closed under composition. Scala is
supported by a sophisticated nominal type theory called vObj calculus [40].

8 AHEAD

AHEAD (Algebraic Hierarchical Equations for Application Design) is a feature
modularization and composition technology based on step-wise development

 Evaluating Support for Features in Advanced Modularization Technologies 185

 [6][4][2]. It was created to address the issues of feature-based development of
product-lines.

8.1 Feature Modules and Their Composition

AHEAD partitions features into two categories: constants that modularize any
number of classes and interfaces, and functions that modularize classes, interfaces and
their extensions.

AHEAD tools use a language, called Jak [4][5], that is a superset of Java. The
implementation of constant features like lp, whose elements are standard classes and
interfaces, uses pure Java constructs. To distinguish extensions of these elements, Jak
provides modifier keyword refines. Also, to refer to the method being extended, Jak
uses the construct Super.methodName(args). For example, here is the Jak code of
feature module le:

refines interface Exp { int eval(); }
refines class Lit implements Exp {
public int eval() { return value; }

}
refines class Test {
public void run() {
Super.run();
System.out.println(ltree.eval());

}
}

As described in Figure 3, this feature extends interface Exp with method eval(),
extends class Lit with the corresponding implementation, and extends class Test by
extending method run() with a call to eval() on ltree. Super.run() invokes the
previously defined method run(). In the case of LitAdd it calls the run() method
of ap. Constructor extensions follow a similar pattern, as illustrated in the following
example, which extends the constructor of Test of feature ap by assigning variable
atree a value:

refines Test() {
Add atree = new Add(ltree, ltree);

}

The remaining feature modules are implemented in a similar way. Each feature is rep-
resented by a directory that contains files for each class and interface definition and
extension. The command line to compose these directories to form LitAdd is:

composer -target=LitAdd lp ap le ae

8.2 Evaluation

Feature Definition. AHEAD can modularize all EPL program deltas into a cohesive
unit. AHEAD provides tools to compile feature modules to bytecode and compose
byte-code representations; however, this is not accomplished by separate compilation.
Compilation uses global knowledge of all possible classes, interfaces, and members
that can be present in a product-line [2].

186 R.E. Lopez-Herrejon, D. Batory, and W. Cook

Feature Composition. AHEAD feature modules are independent of the composition.
The order in which features are composed is the order in which they are listed on the
composer command line. AHEAD features are by definition closed under composition.
A static typing model of feature modules for AHEAD is under development.

9 Perspective Beyond Individual Technologies

Let us step back from these implementation details to assess the fundamental nature
of the problems that are being solved. We have seen that all five technologies can be
used to implement EPL and how they satisfy, in different degrees, the properties
required by feature modules. None of these technologies provide a satisfactory
solution to the problem of building product lines, that is, they do not meet all the
feature properties or express them in a verbose way. However, many common themes
can be identified, even as each technology has particular strengths in meeting one or
more of the properties.

In this section we show how the properties of feature definition and feature
composition can be understood in terms of an algebra of program deltas. This simple
algebra is an abstraction designed to express the underlying structure of feature
modularization in product-line development. By hiding the details of particular
technologies, this abstraction makes it easier to compare and contrast different
technologies and suggests areas where the technologies could be improved or
generalized. This discussion will, we hope, help encourage reliance on
mathematically justifiable abstractions when developing new tool-specific or
language-specific concepts [28].

A fundamental concept of metaprogramming is that programs are data and functions
(a.k.a. transforms) map programs [7][42]. From this starting point, a program delta can
be seen as a function that receives a program as input, adds something to it, and returns
the extended program as output. Consider run() of module ap. This delta adds a
statement to method run() of class Test of the program received as input. Another
example from ap is delta “Add atree”, which adds member atree to class Test.
For convenience, we refer to functions associated with program deltas by a single
name. Thus we omit return types, parameters and their types in our function
declarations. Using a mathematical notation, these two deltas are represented as:

run(P)-> P’ where P’ is program with run added to run() of Test of P

atree(Q)->Q’, where Q’ has field atree added to class Test of Q

When viewed in this way, a feature module like lp can be defined by:

lp = Test(Lit(Exp(Empty))) (2)

where Empty is the empty program, and Exp , Lit, and Test are program deltas
that add a new interface, and two new classes. To simplify notation further, we write
expressions like this using the + operation, because it intuitively conveys the notion that
we are building programs incrementally by adding program deltas. (2) now becomes:

lp = Test + Lit + Exp (3)

 Evaluating Support for Features in Advanced Modularization Technologies 187

where evaluation is from right to left. + denotes function composition; base terms are
to the right and extensions are to the left. The choice of operator + was deliberately
selected as (we will see) it exhibits composition properties that resemble those of
elementary algebra. Next, we examine properties of this operator and relate them to
the feature properties of Section 3.

Commutativity and Flexible Order. The order in which program deltas can be
composed follows two simple rules. First, a program delta that references a data
member or method must be composed after (to the left of) the delta that introduces that
member or method. (3) is an example: Exp defines an interface, Lit adds a class
that references this interface, and Test adds a class that references the class of Lit.

Second, program deltas that extend the same method are not commutative, because
if their order is swapped, a different program will result. For example, changing the
order in which print methods are added to method run() of class Test alters the
output of a program. Summation is commutative (A+B=B+A) for arbitrary program
deltas A and B if the first rule is not violated and A and B do not extend the same
method. The evaluation property of flexible order relies on the non-commutativity
property of operation +.

Substitution, Cohesion, and Closure. Module ap is defined by:

ap = run + Test + atree + Add (4)

That is, (reading from right to left) it adds class Add, member atree to class Test,
extends the Test constructor, and extends method run. When we compose ap with
lp, we know the following equality holds because of substitution (i.e., replacing
equals with equals):

ap + lp = (run + Test + atree + Add) + (Test + Lit + Exp)

That is, we know that the program produced by adding ap to lp must equal the sum
of their deltas. Cohesion is the property that we can assign names ap and lp to
summation expressions. Closure is the property that summation of deltas is itself a
delta.13

Associativity and Flexible Composition. A common situation in product-line design
is not only the addition of new features, but a refactoring of existing features into
more primitive features.

Recall that in our EPL design, the Print operation is implemented in the Print
column along with the declaration of the data types’ fields and constructors. This
design prevents, among other things, our ability to build programs without the Print
operation. The solution is to refactor the Print column into two columns: Print’
that implements operation Print exclusively, and Core that declares the data types
with their fields and constructors. Figure 8 shows the refactoring of module lp into
its core and non-core parts.

13 Object-oriented classes contain methods that are mutually referential. One can factor each
method into an empty (base) method and a program delta that adds the body. In this way,
simple algebraic expressions can be written for mutually referential methods.

188 R.E. Lopez-Herrejon, D. Batory, and W. Cook

Class Test of module lp can be decomposed as:

Superscript S stands for skeleton which is the declaration of the class without any
members, and superscript C stands for constructor. Class Lit has a similar
decomposition. Interface Exp can be decomposed as:

Our refactoring lp in Figure 8 is captured by the following algebraic derivation:

The first step recites (3). The second step substitutes the definitions of Test, Lit
and Exp as in (5) and (6). The third step rearranges terms using the commutativity
properties of summations. The last step uses an associativity property of summations
(whose proof is simple)14 and cohesion to express lp as a sum of lp’ and

Similar reasoning is applied to the other modules in the Print column to refactor
them into a core and non-core part. The ability to refactor expressions is the property
of flexible composition.

Compositional Reasoning, Static Typing, and Separate Compilation.
Compositional reasoning is the ability to prove properties of a program from the
properties of its components, which in our case are features, without reference to their

14 + denotes function composition. Function composition is associative.

Test = ∆run + run + TestC+ ltree + TestS where
TestS is class Test { };
ltree is Lit ltree;
TestC is Test() { ltree = new Lit(3); };
run is void run() { };
∆run is ltree.print(); (5)

Exp = printI + ExpS where
ExpS is interface Exp { };
printI is void print(); (6)

1) lp = Test + Lit + Exp
2) lp =(∆run + run + TestC + ltree + TestS) + (print + LitC+ value + LitS)

+ (printI + ExpS)
3) lp = (∆run + print + printI) +

(run + TestC + ltree + TestS + LitC+ value + LitS + ExpS)
4) lp = lp’ + lpCore

lpCore.

Fig. 8. Refactoring of lp to lp’ + lp
Core

// added to Exp
void print();

// added to Lit
void print() {
 System.out.print(value);
}

// added to run() of Test
ltree.print();

interface Exp { }

class Lit implements Exp {
int value;
Lit (int v) { value = v; }

}

class Test {
 Lit ltree;
 Test() {
 ltree = new Lit(3);

}
 void run() { }
}

(b) lpCore

(a) lp’

 Evaluating Support for Features in Advanced Modularization Technologies 189

individual features, it also computes (or verifies) an important property of a
composition. Similar examples can be given from other technologies. All of this can
be given an algebraic foundation. If we want property p of a summation, we need a
composition operator +p (read p-sum) that tells us how to compose properties of
constituent terms. So property p of module lp, denoted lp

p
, is a p-sum of the p

properties of its terms:

This idea (although not in an algebraic form) is common in the software architecture
and product-line communities [46], and has been demonstrated elsewhere [6]. In the
product-line and software architecture literature, feature modules map to functional
requirements, and properties of modules and their compositions (such as the property
of being statically typed) correspond to non-functional requirements.

The remaining property in our evaluation, separate compilation, is not a property
of an algebraic model, but rather an engineering requirement of any implementation
of the model.

10 Related Work

Relational query optimization is a classic example of the importance that algebra can
play in program specification, construction, and optimization. SQL queries are
translated to relational algebra expressions (i.e., compositions of relational algebra
operators). A query optimizer rewrites the expression into semantically equivalent
expressions where the goal is to minimize the expression (program) execution time.
Readers will see that this is an example of compositional reasoning: the relational
algebra expression defines the program, the optimizer composes a performance model
of each operator to produce a performance model of that program [6].

The expression problem originated in the works of Reynolds [43] and Cook [15].
Torgersen [49] presents a concise summary of the research on this problem and four
solutions that utilize Java generics. Though extensive, this literature focuses only on

lpp = Testp +p Litp +p Expp

in product-line development. Second, it changes our orientation on tool development
and creation. Instead of inventing new tools with new abstractions and new
conceptual models — e.g., the AspectJ, Hyper/J, Jiazzi, Scala, and AHEAD models
are hardly similar and are difficult to compare — we have a single simple algebraic
model that imposes clean abstractions onto tools, so that we can reason about
programs in a tool-implementation-independent way.

Jiazzi provides an example of compositional reasoning: each feature module is
statically typed. Jiazzi ensures that the composition of statically typed modules is
itself a statically typed module. So not only does Jiazzi compose the code of

are relating compositional reasoning with algebraic reasoning. Doing so can be a
substantial win for several reasons. First, an algebra provides a clean mathematical
foundation for compositional reasoning and automation — both of which are needed

implementation [36]. By equating program deltas with functions (summations), we

190 R.E. Lopez-Herrejon, D. Batory, and W. Cook

programming language design and separate compilation issues, and not about the
requirements of feature modularity.

Masuhara et al. describe a framework to model the crosscutting mechanisms of
AspectJ and Hyper/J [30]. Both are viewed as weavers parameterized by two input
programs plus additional information such as where, what, and how new code is
woven. Their focus is on the implementation of crosscutting semantics rather than on
the broader software design implications that these mechanisms have.

Murphy et al. [37] present a limited study that uses AspectJ and Hyper/J to refactor
features in two existing programs. The emphasis was on the effect on the program’s
structure and on the refactoring process, not in providing a general framework for
comparison. Along the same lines, Driver [19] describes a re-implementation of a web-
based information system that uses Hyper/J and AspectJ, but the evaluation is subjective
and expressed in terms of factors such as extensibility, plugability, productivity, or
complexity. Clarke et al. [13] describe how to map crosscutting software designs
expressed as composition patterns (extended UML models) to AspectJ and Hyper/J, and
evaluate their crosscutting capabilities to implement such patterns.

Coyler et al. [16] focus on refactoring tangled and scattered code into base code
and aspects that could be considered as the features of a product line. They indicate
that, based on their experience implementing middleware software, concerns
(features) are usually a mixture of classes and aspects; a finding that corroborates the
importance of feature cohesion.

For our evaluation we considered MultiJava, an extension of Java that supports
symmetric multiple dispatch and modular open classes[11][12]. However, its focus is
on solving the augmenting method problem, that consists on adding operations
(methods) to existing type hierarchies. Given this constraint, it is not possible to
implement EPL as it cannot add new fields, add new classes and interfaces, and
extend existing methods and constructors. Similarly, Classboxes [8] are modules that
provide method addition and method replacement (overriding without super
reference). However, it is unclear if classboxes can support other program deltas such
as adding new fields, or methods and constructor extensions.

The Concern Manipulation Environment (CME) [14] is a project that builds on the
experience of Hyper/J and MDSoC. Among its goals is to provide support for the
identification, encapsulation, extraction, and composition of concerns (features in this
paper). CME architecture is geared towards supporting multiple modularization
approaches. Thus it would be interesting to evaluate whether the software
composition model we propose in this paper can benefit from the tool support that
CME provides.

Mezini and Ostermann [35], present a comparison of variability management in
product lines between Feature-Oriented Programing (FOP), as in AHEAD, and
Aspect-Oriented Programming, as in AspectJ. They identify as weaknesses in these
technologies: a) features are purely hierarchical (extensions are made to some base
code), b) support for reuse (extensions are tied to names not functionality), c) support
for dynamic configuration (in FOP composition is static), and d) support for
variability (aspects are either applied or not to an entire composition). They propose

 Evaluating Support for Features in Advanced Modularization Technologies 191

Caesar[34] to address these issues. Caesar relies on Aspect Collaboration Interfaces,
or ACIs, which are interface definitions for aspects (Caesar’s aspects are similar to
AspectJ’s) whose purpose is to separate an aspect implementation from its binding.
The association between these two is implemented with a weavelet, which must be
deployed to activate advice either statically, when the object is created, or
dynamically, when certain program block is executed. How these ideas could be
applied to solve EPL is subject of an ongoing evaluation.

11 Conclusions and Future Work

Features express the kinds of variations product-line developers encounter in program
development, because features represent increments in program functionality. Thus, it
is natural to consider modularizing features as a way to modularize programs.
Unfortunately, the code for features often cuts across classes, and thus traditional
modularization schemes do not work well. New program modularization technologies
have been proposed in recent years that have shown promise in supporting feature
modularity. We have presented a classical problem in product-line design — called
the Expressions Product-Line — to identify properties that feature modules should
have. We have used these properties to compare and contrast five rather different
technologies: AspectJ, Hyper/J, Jiazzi, Scala, and AHEAD. Our results showed that
none of these technologies provide a satisfactory solution to the problem of building
product-lines.

Instead of debating the merits of particular technologies, we focused on a topic that
we believe has greater significance. Namely, product-line architects reason about
programs in terms of their features, not in terms of their code or implementing
technologies. We proposed an abstract model of features where compositional
reasoning was related to algebraic reasoning. We showed how virtually all of the
evaluation properties we identified in EPL were actually properties of an algebra.
Namely: program deltas are functions that map programs, cohesion and closure under
composition are associativity properties of function composition, flexible composition
and flexible order is a consequence of the non-commutativity of certain functions,
static typing is a property of a function (program delta) and is a property that can be
predicted from an expression (i.e., a composition of deltas). Only the property of
separate compilation dealt with engineering considerations of the algebra’s
implementation.

We believe the time has come for programming languages to play a more
supportive role in product-lines and feature-based development. A consolidation of
different modularization efforts is essential to this objective. We argued that such a
consolidation should relate compositional reasoning with algebraic reasoning,
because of its clean abstractions, the ability to automate compositional reasoning,
and for giving an algebraic justification when adding new modularization
concepts.

To continue this effort and because the full potential of the five technologies was
not required, we foresee extending EPL and designing other case studies to help

192 R.E. Lopez-Herrejon, D. Batory, and W. Cook

derive and illustrate further properties of feature modules (e.g. AOP quantification
[28]). We are currently collaborating with proponents of other modularization
technologies, such as Composition Filters [20], Caesar [34], and Framed Aspects [27],
for this purpose.

Acknowledgments. We thank Sean McDirmid and Bin Xin for their help with Jiazzi,
and Martin Odersky for his help with Scala. We are grateful to Axel Rauschmayer
and Awais Rashid for their feedback on drafts of the paper, and the anonymous
reviewers for their comments.

References

1. AspectJ. Programming Guide. aspectj.org/doc/proguide
2. AHEAD Tool Suite (ATS). www.cs.utexas.edu/users/schwartz
3. Batory, D., Geraci, B.J,: Composition Validation and Subjectivity in GenVoca Generators.

IEEE Trans. Soft. Engr., February (1997) 67-82
4. Batory, D., Lopez-Herrejon, R.E., Martin, J.P.: Generating Product-Lines of Product-

Families. Automated Software Engineering Conference (2002)
5. Batory, D., Liu, J., Sarvela, J.N.: Refinements and Multidimensional Separation of

Concerns. ACM SIGSOFT, September (2003)
6. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling Step-Wise Refinement. IEEE Trans.

Soft. Engr. June (2004)
7. Baxter, I.D.: Design Maintenance Systems. CACM, Vol. 55, No. 4 (1992) 73-89
8. Bergel, A., Ducasse, S., Wuyts, R.: Classboxes: A Minimal Module Model Supporting

Local Rebinding. Joint Modular Languages Conferences JMLC (2003)
9. Beuche, D.:Composition and Construction of Embedded Software Families. Ph.D. Otto-

von-Guericke-Universität Magdeburg (2003)
10. Bracha, G., Cook, W.: Mixin-based inheritance. OOPSLA (1990)
11. Clifton, C., Leavens, G.T., Millstein, T., Chambers, G.: MultiJava: Modular Open classes

and Symmetric Multiple Dispatch for Java. OOPSLA (2000)
12. Clifton, C., Millstein, T., Leavens, G.T., Chambers, G.: MultiJava: Design Rationale,

Compiler Implementation, and User Experience. TR #04-01, Iowa State University (2004)
13. Clarke, S., Walker, R.: Separating Crosscutting Concerns Across the Lifecycle: From

Composition Patterns to AspectJ and Hyper/J. Technical Report UBC-CS-TR-2001-05,
University of British Columbia, Canada (2001)

14. Concern Manipulation Environment (CME). www.eclipse.org/cme/
15. Cook, W.R.: Object-Oriented Programming versus Abstract Data Types. Workshop on

FOOL, Lecture Notes in Computer Science, Vol. 173. Spring-Verlag, (1990) 151-178
16. Coyler, A., Rashid, A., Blair, G.: On the Separation of Concerns in Program Families.

TRCOMP-001-2004, Computing Department, Lancaster University, UK (2004)
17. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and

Applications. Addison-Wesley (2000)
18. Douence, R., Fradet, P., Südholt, M.: Composition, reuse and interaction analysis of

stateful aspects. AOSD (2004)
19. Driver, C.: Evaluation of Aspect-Oriented Software Development for Distributed Systems.

Master’s Thesis, University of Dublin, Ireland, September (2002)
20. Filman, R.E., Elrad, T., Clarke, S., Aksit, M.: Aspect-Oriented Software Development.

Addison-Wesley (2004)

 Evaluating Support for Features in Advanced Modularization Technologies 193

21. Flatt, M., Felleisen, M.: Units: Cool modules for HOT languages. PLDI (1998)
22. Findler, R.B., Flatt, M.: Modular Object-Oriented Programming with Units and Mixins.

ICFP, (1998) 94-104
23. Jagadeesan, R., Jeffrey, A., Riely, J.: A Typed Calculus of Aspect Oriented Programs.

Submitted for publication.
24. Kang, K., et al.: Feature-Oriented Domain Analysis (FODA) Feasibility Study. CMU/SEI-

90-TR-21, Carnegie Mellon Univ., Pittsburgh, PA, Nov. (1990)
25. Kiczales, G., Hilsdale, E., Hugunin, J., Kirsten, M., Palm, J., Griswold, W.G.: An

overview of AspectJ. ECOOP (2001)
26. Laddad, R.: AspectJ in Action. Practical Aspect-Oriented Programming. Manning (2003)
27. Loughran, N., Rashid, A., Zhang, W., Jarzabek, S.: Supporting Product Line Evolution

with Framed Aspects. ACP4IS Workshop, AOSD (2004)
28. Lopez-Herrejon, R.E., Batory, D.: Improving Incremental Development in AspectJ by

Bounding Quantification. SPLAT Workshop at AOSD (2005)
29. Lopez-Herrejon, R.E., Batory, D., Cook, W.: Evaluating Support for Features in Advanced

Modularization Technologies. Extended Report. The University of Texas at Austin,
Department of Computer Sciences, Technical Report TR-05-16, April (2005)

30. Masuhara, H., Kiczales, G.: Modeling Crosscuting Aspect-Oriented Mechanisms. ECOOP
(2003)

31. McDirmid, S., Flatt, M., Hsieh, W.C.: Jiazzi: New age components for old-fashioned Java.
OOPSLA (2001)

32. McDirmid, S., Hsieh, W.C.: Aspect-Oriented Programming with Jiazzi. AOSD (2003)
33. McDirmid, S., The Jiazzi Manual (2002)
34. Mezini, M., Ostermann, K.: Conquering Aspects with Caesar. AOSD (2003)
35. Mezini, M., Ostermann, K.: Variability Management with Feature-Oriented Programming

and Aspects. SIGSOFT04/ FSE-12 (2004)
36. Misra, J.: A Discipline of Multiprogramming. Springer-Verlag (2001)
37. Murphy, G., Lai, A., Walker, R.J., Robillard, M.P.: Separating Features in Source Code:

An Exploratory Study. ICSE (2001)
38. Odersky, M., et al.: An Overview of the Scala Programming Language. September (2004),

scala.epfl.ch
39. Odersky, M., et al.: The Scala Language Specification. September (2004),

scala.epfl.ch
40. Odersky, M., Cremet, V., Röckl, C., Zenger, M.: A nominal theory of objects with

dependent types. ECOOP (2003)
41. Ossher, H., Tarr, P.: Multi-dimensional separation of concerns and the Hyperspace

approach. In Software Architectures and Component Technology, Kluwer (2002)
42. Partsch, H., Steinbrüggen, R.: Program Transformation Systems. ACM Computing

Surveys, September (1983)
43. Reynolds, J.C.: User-defined types and procedural data as complementary approaches to

data abstraction. Theoretical Aspects of Object-Oriented Programming, MIT Press, (1994)
44. Schärli, N., Ducasse, S., Nierstrasz, O., Black, A.: Traits: Composable units of behavior.

ECOOP (2003)
45. Schinz, M.: A Scala tutorial for Java programmers. September (2004), scala.epfl.ch
46. Software Engineering Institute. Predictable Assembly from Certified Components.

www.sei.cmu.edu/pacc
47. Tarr, P., Ossher, H., Harrison, W., Sutton, S.M.: N Degrees of Separation: Multi-

Dimensional Separation of Concerns. ICSE (1999) 107-119
48. Tarr, P., Ossher, H.: Hyper/J User and Installation Manual. IBM Corporation (2001)
49. Torgersen, M.: The Expresion Problem Revisited. Four new solutions using generics.

ECOOP (2004)

194 R.E. Lopez-Herrejon, D. Batory, and W. Cook

50. Wadler, P.: The expression problem. Posted on the Java Genericity mailing list (1998)
51. Walker, D., Zdancewic, S., Ligatti, J.: A Theory of Aspects. ICFP (2003)
52. Xin, B., McDirmid, S., Eide, E., Hsieh, W.C.: A comparison of Jiazzi and AspectJ.

Technical Report TR UUCS-04-001, University of Utah (2004)
53. Zave, P.: FAQ Sheet on Feature Interaction. www.research.att.com/~pamela/

faq.html
54. Zenger, M., Odersky, M.: Independently Extensible Solutions to the Expression Problem.

Technical Report TR IC/2004/33, EPFL Switzerland (2004)

A.P. Black (Ed.): ECOOP 2005, LNCS 3586, pp. 195 – 213, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Separation of Concerns with Procedures, Annotations,
Advice and Pointcuts

Gregor Kiczales and Mira Mezini

University of British Columbia, 201-2366 Main Mall,
Vancouver, BC V6R 1X4, Canada

gregork@acm.org
Technische Universität Darmstadt, Hochschulstrasse 10,

D-64289 Darmstadt, Germany
mezini@informatik.tu-darmstadt.de

Abstract. There are numerous mechanisms for separation of concerns at the
source code level. Three mechanisms that are the focus of recent attention –
metadata annotations, pointcuts and advice – can be modeled together with
good old-fashioned procedures as providing different kinds of bindings:
procedure calls bind program points to operations, annotations bind attributes to
program points; pointcuts bind sets of points to various descriptions of those
sets; named pointcuts bind attributes to sets of points; and advice bind the
implementation of an operation to sets of points. This model clarifies how the
mechanisms work together to separate concerns, and yields guidelines to help
developers use the mechanisms in practice.

1 Introduction
Programming language designers have developed numerous mechanisms for
separation of concerns (SOC) at the source code level, including procedures, object-
oriented programming and many others. In this paper we focus on three mechanisms –
metadata annotations [4], pointcuts [16] and advice [33] – that are currently attracting
significant research [9, 10, 19, 34] and developer interest [1, 11, 12, 14, 20].1

Our goal is understand what kinds of concerns each mechanism best separates, and
how the mechanisms work together to separate multiple concerns in a system. We
also seek to provide developers with answers to questions about what mechanism to
use in any given situation. To enable this, we study how the three newer mechanisms,
along with good old-fashioned procedures, separate concerns in a simple example.

The study is focused on four key design concerns within the example. We present
seven implementations of the example that use the mechanisms in different ways. We
also present ten change tasks and how they are carried out in each implementation.
Based on this, the paper provides:

1. An analysis of the degree to which the different mechanisms are able to separate
and clarify the four design concerns in the seven implementations.

1 The paper assumes a reading familiarity with pointcuts and advice as manifested by AspectJ

[16] as well as the Java 1.5 metadata facility [4]. Metadata annotations, pointcuts and advice
can appear in a wide range of other languages [3, 13, 21, 28, 31] [8, 30], but we do not
explicitly discuss that generalization here.

196 G. Kiczales and M. Mezini

2. An analysis of the degree of locality of each change task for each
implementation, and a comparison of that locality to the static separation.

3. A unified model of the four mechanisms showing how they work together to
separate concerns.

4. An initial set of guidelines for using the mechanisms in development practice.

The paper is structured as follows: Section 2 presents the example, its four key
design concerns and the seven implementations. Section 3 analyzes the static locality
of the concerns in each implementation, and the locality of the change tasks for each
implementation. Section 4 presents the unified model of the mechanisms. Section 5
presents the usage guidelines. We finish with related and future work and a summary.

2 The Example

Our comparison of the mechanisms is based on seven implementations of a simple
graphical shapes example [16, 18]. In this example, a number of graphical shapes are
shown on a display. Each shape has its own display state, and when that state changes,
the display must be signaled so it can refresh itself. This design is shown in Figure 1.

The key objects in the design are the shapes and the display. There is an abstract
Shape class, with concrete Point and Line subclasses. (Assume there are other
concrete shapes such as Triangle. To save space they are not discussed here.) There is
a single Display class, and, for simplicity, there is just a single system-wide display.

2.1 Four Design Concerns

In addition to concerns involving the functionality of the shapes, the design comprises
four key design concerns, which are shown as dotted line boxes in Figure 1.

Refresh-Implementation – What is the behavior and implementation of the actual
refresh operation?

Context-to-Refresh – What context from the actual display state change points
should be available to the refresh implementation?

When-to-Refresh – When should the display be refreshed?

What-Constitutes-Change – What operations change the state that affects how
shapes look on the display, i.e. their position?

As is common, these concerns are interconnected. Our design resolves When-to-
Refresh by deciding that refresh should happen immediately after each display state
changes. This brings What-Constitutes-Change into focus as a concern that must be
resolved. One could also argue the causality in the other direction, in that having
thought about display state changes one then decides they should cause refreshes.

2.2 Seven Implementations

This rest of this section presents the code for seven implementations of the example.
Discussion of the implementations is deferred until Section 3

 Separation of Concerns with Procedures, Annotations, Advice and Pointcuts 197

Fig. 1. The design of the graphical shapes program, showing the main classes and two
additional design concerns not separated as classes

Straw-Man
The first implementation is a straw man, no good programmer would write this code
today. Its purpose is to explicitly introduce procedures into the discussion.

In this implementation all of the methods that change display state directly include
several lines of code that implement the actual display refresh. For example, the setX
method looks like:

 void setX(int nx) {
 x = nx;
 Graphics g = Display.getGraphics();
 g.clear();
 for(Shape s : Display.getShapes()) {
 s.draw(g);
 }
 }

GOFP
This implementation uses a good old-fashioned procedure (GOFP) to capture the
refresh implementation. Each of the methods includes, at the end of the method, a call
to a procedure (static method in Java) that refreshes the display.

what context
from change

goes to refresh
implementation

refresh implementation

signal refresh
on display

state change

Display
moveBy(int, int)

Point

getX()
getY()
setX(int)
setY(int)
moveBy(int, int)

getP1()
getP2()
setP1(Point)
setP2(Point)
moveBy(int, int)

Line

Shape

what constitutes
display state change

198 G. Kiczales and M. Mezini

 void setX(int nx) {
 x = nx;
 Display.refresh();
 }

The body of that procedure is the several lines of code that was duplicated in I1.

 static void refresh() {
 Graphics g = getGraphics();
 g.clear();
 for(Shape s : getShapes()) {
 s.draw(g);
 }
 }

Annotation-Call
This implementation uses Java 1.5 metadata annotations [4]. Each method that
changes display state has an annotation that says that executing the method should
also refresh the display.

 @RefreshDisplay
 void setX(int nx) {
 x = nx;
 }

A single after advice declaration serves to ensure that execution of methods with
this tag calls Display.refresh(). The advice is written as:

 after() returning: execution(@RefreshDisplay * *(..)) {
 Display.refresh();
 }

There are other ways to associate run-time behavior with annotations, typically
involving ad-hoc post-processors. We use advice in this paper because it is simple and
compatible with the rest of the paper.

Annotation-Property
This implementation differs from the previous one only in the name of the annotation.
Here the annotation name describes a property of the method – that it changes state
that affects the display of the shape – rather than directly saying that executing the
method should refresh the display. So the methods look like

 @DisplayStateChange
 void setX(int nx) {
 x = nx;
 }

Again, a separate advice declaration says that execution of methods with the
DisplayStateChange annotation should call Display.refresh().

 after() returning: execution(@DisplayStateChange * *(..)) {
 Display.refresh();
 }

 Separation of Concerns with Procedures, Annotations, Advice and Pointcuts 199

Anonymous-Enumeration-Pointcut
This implementation uses an anonymous enumeration-based pointcut to identify
method executions that change display state. So the methods have no explicit
marking, and simply look like:2

 void setX(int nx) {
 x = nx;
 }

The entire implementation of signaling a display refresh consists of a single advice
on an anonymous pointcut that explicitly enumerates the six methods; the body of the
advice calls Display.refresh().

 after() returning: execution(void Shape.moveBy(int, int)
 || execution(void Point.setX(int))
 || execution(void Point.setY(int))
 || execution(void Line.setP1(Point))
 || execution(void Point.setP2(Point)) {
 Display.refresh();
 }

Named-Enumeration-Pointcut
In this implementation the pointcut from the previous implementation is pulled out
and given an explicit name. Again, the method bodies require no marking to enable
display refresh signaling.

 void setX(int nx) {
 x = nx;
 }

The pointcut and advice are:

 pointcut displayStateChange():
 execution(void Shape.moveBy(int, int)
 || execution(void Point.setX(int))
 || execution(void Point.setY(int))
 || execution(void Line.setP1(Point))
 || execution(void Point.setP2(Point));

 after() returning: displayStateChange() {
 Display.refresh();
 }

Named-Pattern-Pointcut
In this implementation only the pointcut differs from the previous implementation.
Rather than enumerating the signatures of the methods that change display state, this
implementation relies on the naming convention the methods follow to write a more
concise pointcut. Again, the method bodies require no marking to enable display
refresh signaling.

2 Even though the method is not explicitly marked by the programmer, IDE support such as the

ADJT Eclipse plug-in will show that the advice exists, for example with a gutter marker next
to the method declaration [27].

200 G. Kiczales and M. Mezini

 void setX(int nx) {
 x = nx;
 }

The pointcut and advice are:

 pointcut displayStateChange():
 execution(void Shape.moveBy(int, int)
 || execution(void Shape+.set*(..));

 after() returning: displayStateChange() {
 Display.refresh();
 }

The execution(void Shape+.set*(..)) pointcut means execution of any
method defined in Shape or a subclass of Shape, that returns void, has a name
beginning with ‘set’, and takes any number of arguments.

3 Analysis of the Implementations

Our analysis of the different mechanisms is based on assessing the degree to which
the seven implementations separate the four design concerns identified in Section 2.1.
The assessment uses three criteria: locality of implementation, degree to which the
implementation is explicit rather than implicit, and locality of change in a simple
evolution experiment. The assessment of locality and explicit implementation is
discussed in Section 3.1. The locality of change assessment is covered in Section 3.2.
All three assessments are summarized in Table 1.

3.1 Locality and Explicit Representation

One way to compare how the implementations separate these design decisions is
whether the code that implements the decision is localized. Another criterion is the
degree to which the implementation of the decision is captured explicitly as opposed
to implicitly. This analysis is summarized in the top part of Table 1.

The capture of Refresh-Implementation is implicit and non-localized in Straw-
Man. There is no single place in the code that explicitly says that display refresh is
implemented by the several lines of code. Instead, each method that the developer
decided constitutes a display state change includes code that implements refresh. In
the GOFP and subsequent implementations, the refresh procedure declaration captures
this concern in an explicit and localized way. The declaration is read as saying “this is
the refresh implementation – bind Display.refresh() to this code”.

The capture of Context-to-Refresh is implicit and non-localized in Straw-Man. No
single place in the code explicitly says that no values from the change context are
available to the display refresh implementation. In GOFP, the procedure declaration and
every call to the procedure explicitly say that no arguments are passed, so this concern is
explicit. But because this is expressed in the procedure and all the calls to it, it is non-
localized. In the Annotation implementations there is a single call to the procedure, so
this concern is captured explicitly and in two places. The same is true for the

 Separation of Concerns with Procedures, Annotations, Advice and Pointcuts 201

Anonymous-Enumeration-Pointcut implementation. In the last two implementations the
named pointcut also expresses this concern, so it is captured explicitly in three places.

The capture of the When-to-Refresh is implicit and non-localized in Straw-Man,
GOFP and Annotation-Call. It is localized but implicit in Anonymous-Enumeration-
Pointcut. No single place in these implementations explicitly says that execution of
methods that change display state should cause a display refresh. In GOFP the
scattered calls to Display.refresh() are implicitly about the fact that the affected
methods change display state and so must refresh; but all they say explicitly is that the
affected methods call Display.refresh(). The same is true for the scattered
RefreshDisplay tags in Annotation-Call. In Anonymous-Enumeration-Pointcut, the
pointcut localizes the description of what constitutes change, but because no name is
given to it, the binding of when to refresh is not to a clear notion of on display state
changes, but instead to an enumerated set of conditions. In the other implementations,
this concern is explicit and localized in the after advice declarations, which say that
any display state change should cause a refresh.

The capture of the What-Constitutes-Change is implicit and non-localized in
Straw-Man, GOFP and Annotation-Call – no single place in these implementations
explicitly says that execution of the four setter methods and the two moveBy methods
changes display state. In Annotation-Property, the DisplayStateChange annotations
capture this concern in an explicit, but non-localized way. In Anonymous-
Enumeration-Pointcut, this concern is localized, but implicit. In the two named
pointcut implementations this concern is localized and explicit. The Named-Pattern-
Pointcut captures the decision about what methods change display state, as well as a
rule for what methods are considered to change display state. The variation among the
pointcut based implementations is discussed in more depth in Section 5.

Names Matter
The two annotation-based implementations differ only in the name of the annotation,
but come out significantly different in our separation of concern analysis. Annotation-
Call has the same properties as GOFP with regard to When-to-Refresh and What-
Constitutes-Change. This should not be surprising since in Annotation-Call the
annotation name makes it feel like alternate syntax for a procedure call, or a syntactic
macro [6, 7]. So, like GOFP, Annotation-Call, is conflating these two concerns and
simply saying to call refresh at certain points.

On the other hand, in Annotation-Property, When-to-Refresh is captured explicitly
and in just one place in the code; What-Constitutes-Change is captured explicitly but
is not localized. The different annotation name causes both concerns to be explicit.
That names matter is not surprising to programmers, but it is important to note its
significance in this case. We return to this issue in Section 5.

3.2 Ease of Evolution

This section analyzes the implementations in terms of how well they fare when
performing a set of ten representative change tasks. Most tasks affect just a single
concern, reflecting a good modularity in the concern model itself. The question we
explore now is what must be done to the code to perform each task – how many edits
and how localized are they. The analysis is summarized in the lower part of Table 1

202 G. Kiczales and M. Mezini

by showing, for each change and each implementation, how many places in each
implementation have to be visited and possibly edited by the programmer.

Double-buffering – changes the refresh implementation to use double buffering. So
it is a change to just the Refresh-Implementation concern. In Straw-Man, the
programmer must edit the refresh implementation code that appears in all the display
state change methods. For GOFP and all other implementations only the
Display.refresh() procedure must be edited. In Table 1, the Double-Buffering row
shows ‘n’ in the first column and 1 in the remaining columns. This is one of the
reasons we have learned to introduce a procedure in such cases.

Pass-Changed-Object – provides the actual shape that has changed to the refresh
implementation, so that it can optimize refresh based on that information. This
constitutes a change to both Refresh-Implementation and Context-to-Refresh. In
Straw-Man, this change task involves editing all the state change methods. In GOFP it
involves editing the procedure declaration and the call sites in all the state change
methods. In the remaining implementations this involves editing the procedure, advice
and pointcut declarations. The procedure is edited to accept the shape as an argument,
the call sites are edited to pass the current object, and the pointcuts are edited to make
the current object accessible.

Disable-Refresh – simply disables activation of display refresh when the state of
shapes changes. So this is a change to just When-to-Refresh. In Straw-Man this
change requires editing all the state change methods to delete the refresh
implementation. GOFP and Annotation-Call require editing all the methods to remove
the call to the refresh procedure or the refresh annotation respectively. In the last four
implementations this change can be accomplished by removing the aspect containing
the advice from the system, or by editing the aspect to delete the advice if for some
reason the aspect should remain. The Disable-Refresh table row shows ‘n’ in the first
3 columns and ‘1’ in the last four.

One might argue that GOFP and Annotation-Call can accommodate Disable-
Refresh more expeditiously – for GOFP, one could simply “comment out” the body of
the refresh procedure declaration, and for Annotation-Call one could delete the advice
declaration. But these alternatives are problematic. There may be other callers of the
refresh procedure (or clients of the tag), since nothing has marked the procedure or
the tag as particular to handling this kind of refresh activation. Even if there are no
other callers, the expeditious changes make the code confusing – the reader sees a
call to refresh (or the annotation), but must learn elsewhere that they do not do
anything.

A programmer might deal with this by introducing an additional procedure,
perhaps called Shape.fireDisplayStateChange(), and have that procedure call
Display.refresh(). Then this change can be easily accommodated by making the body
of the new procedure empty. This has the same effect of introducing the intermediate
annotation, and has the same separation properties as Annotation-Property. Other
more elaborate rendezvous mechanisms could be used as well. Having this extra
procedure vs. not having it is similar to the difference between the two annotation-
based implementations.

Reuse-What-Constitutes-Change adds logging of display state changes. So it reuses
What-Constitutes-Change, but does not actually change any of the design concerns. In
Straw-Man all the state change methods are edited to add logging code. In GOFP all

 Separation of Concerns with Procedures, Annotations, Advice and Pointcuts 203

the state change methods are edited to add a call to a logging operation. In
Annotation-Call, each method gets an annotation and a new advice is defined. In the
last four implementations, a new advice is defined; in Annotation-Property it
references the @DisplayStateChange annotation, in the anonymous pointcut it
duplicates the anonymous enumeration-based pointcut, and in the named pointcut
implementations it references the displayStateChange pointcut. For all but Straw-Man
the table includes an extra count assuming the logging operation must be defined as a
procedure.

Again, one might argue that this can be accomplished more expeditiously in GOFP
and Annotation-Call, simply by directly editing the refresh procedure or the advice to
do the logging. This however, associates the logging with the activation of the refresh,
rather than directly with the state changes.

Refresh-Top-Level-Changes-Only ensures that in recursive state change methods
(e.g. moveBy on Line calls moveBy on Point, which calls setX and setY on Point) only
the top-level display state change method causes a refresh. This prevents multiple
refreshes for such methods. So it is a change to the When-to-Refresh concern. In
Straw-Man and GOFP this change requires editing all the state change methods, to
introduce some mechanism that can detect recursive state change method calls and
prevent the sub-calls from calling refresh. A common pattern for doing this is to add a
second parameter to all the state change methods, indicating whether they are part of a
recursive call. Often a second overloaded method is introduced to handle this. In Java
the programmer can use thread local state to do this in a more elegant way.

In the implementations that use pointcuts (all after GOFP), this can be done by
editing the pointcut to use the cflowbelow primitive to filter out recursive calls; in the
named pointcut implementations the AspectJ code for this would involve modifying
the advice to be:

 after() returning: displayStateChange()
 && !cflowbelow(displayStateChange()) {

 Display.refresh();
 }

which is read as saying to call refresh after any display state change that is not itself
within the control flow of another display state change.

The next five changes all affect What-Constitutes-Change in different ways.
Add-Related-Class adds a new Circle subclass of Shape. The new class has setX,

setY, setRadius and moveBy methods that constitute display state changes. This
represents a modification of the What-Constitutes-Change concern. Straw-Man,
GOFP and both annotation-based implementations each require that all the new state
change methods be appropriately edited. The two enumeration-based pointcut
implementations require that the pointcut be edited. The pattern-based pointcut does
not need to be edited, but it must be at least examined to ensure that the new methods
are covered by the pointcut.

The next two changes have the same implications for all implementations as Add-
Related-Class. They are included nonetheless because they are typical changes to
expect in such a system.

Add-Related-Method adds a new Line.setColor(Color) method that should be
considered to change display state.

204 G. Kiczales and M. Mezini

Table 1. Analysis of the seven implementations. The top part of the table shows many places in
the code implement the concern, and whether the implementation is Explicit or Implicit; ‘n’
means each of the display state change methods. The bottom part of the table summarizes the
change task analysis, showing the number of places each implementation must be edited for
each change. The ‘n’ notation indicates that the number goes up as the number of shape classes
increases, whereas other numbers are constant. The ‘*’ indicates that the code is only
examined, not edited. In this part of the table the first column shows what concerns each tasks
changes

Im
pl

em
en

ta
tio

ns

S
tr

aw
-M

an

G
O

F
P

A
nn

ot
at

io
n-

C
al

l

A
nn

ot
at

io
n-

P
ro

pe
rt

y

A
no

ny
m

ou
s-

E
nu

m
er

at
io

n-
P

tc
. N

am
ed

-E
nu

m
er

at
io

n-
P

tc
.

N
am

ed
-P

at
te

rn
-P

tc
.

Design Concerns

Refresh-Implementation I, n E, 1

Context-to-Refresh I, n E, n+1 E, 2 / 3

When-to-Refresh I, n E, 1 I, 1 E, 1

What-Constitutes-Change

I, n E, n I, 1 E, 1

Change Tasks Concerns

Double-Buffering RI n 1

Pass-Changed-Object RI, CtR n n+1 2 3

Disable-Refresh WtR n 1

Reuse-What-Constitutes-Change WCC n n+1 n+2 2

Refresh-Only-Top-Level-
Ch

WtR n 1 1 + 1

Add-Related-Class WCC each new method

Add-Related-Method WCC each new method

Rename-Methods WCC 0

1

1*

Add-Unrelated-Class WCC 0

Add-Unrelated-Method WCC 0 1

 Separation of Concerns with Procedures, Annotations, Advice and Pointcuts 205

Rename-Methods renames the Line.setP1(Point) and Line.setP2(Point) methods to
Line.setEnd1(Point) and Line.setEnd(2).

Add-Unrelated-Class adds an entirely unrelated class to the system. It does not
change any of the four concerns. None of the implementations require any editing or
examination to perform this change.

Add-Unrelated-Method adds a new Shape.setOwner(Owner) method that has
nothing at all to do with display state. This change also does not change any of the
four concerns. The first six implementations require no editing, but the pattern-based
pointcut must be edited to exclude the new setOwner method.

4 Uniform Characterization of Mechanisms

The above analysis suggests that one useful way to characterize the four mechanisms
is as establishing different kinds of bindings along a path from points in a program to
the implementation of an operation that must execute at those points. As shown in
Figure 2, each mechanism introduces an explicit intermediate step along the path, and
makes an explicit binding between those steps. These explicit steps and bindings work
together to separate larger, higher-level concerns such as the four discussed here.

In these terms, a procedure call binds a point in the program to an operation – it
says call this operation at this point in the program execution. A procedure declaration
binds the operation to an implementation. So the effect of using a procedure – a
declaration and one or more calls to it – is to introduce an explicit operation (the
procedure), bindings from points in the program to the operation (calls), and a binding
from the operation to the implementation (the declaration).3 Annotations, pointcuts
and advice introduce other explicit intermediate elements and bindings.

In discussing the relation between annotations and pointcuts, we use the following
terminology: Annotations are the syntactic identifiers described by JSR-175 [4] that
the programmer places in the program (i.e. @DisplayStateChange). Properties are the
characteristics of points on which pointcuts can match, including class and method
names, access modifiers etc. Pointcut names are the programmer defined names for
pointcuts. We use the term attribute to include both annotations and pointcut names.
In other words, attributes are user-defined names that can be attached to program
points.

Annotations bind attributes to program points. An annotation such as
@DisplayStateChange binds the DisplayStateChange attribute to the program point.

There are several different kinds of pointcuts. Enumeration-based pointcuts make a
set of points explicit, and establish a binding between the set and each of the points.

Pattern based pointcuts make a set of points and the fact that they conform to a
common pattern explicit; they also establish a binding between the set and the points.
Property-based pointcuts, such as ‘execution(public com.acme.*.*(..))’ do the same
for properties instead of patterns. Annotation-based pointcuts do this for annotations.

Named pointcut declarations establish a binding between an attribute (the pointcut
name) and a (possibly singleton) set of points.

3 We use the term procedure declaration to refer to a construct that defines both signature and

implementation, such as a static method declaration within a class in Java, as opposed to a
construct that just declares the procedure’s signature.

206 G. Kiczales and M. Mezini

Fig. 2. Intermediate elements and bindings established by the mechanisms. Elements are shown
in boldface, the mechanisms are in italics

Advice can be used with any kind of pointcut to bind between the intermediate step
that pointcut makes explicit and the implementation of an operation to execute at
those points.

This characterization provides an interesting perspective on one difference between
AspectJ and AspectWerkz [5]. In AspectJ, the body of an advice is a code block. But
in AspectWerkz, advice has no code block; instead it is written as a method, with an
annotation that contains the kind of advice and the pointcut.4 In terms of our model,
this means that in AspectWerkz, the advice construct binds to an operation, whereas
in AspectJ it binds to an operation implementation. So AspectWerkz provides an extra
binding step. In AspectJ the programmer can achieve the extra binding step simply by
having the advice body call a procedure.

5 Usage Guidelines

Our model of how the different mechanisms serve to separate concerns suggests a
way to approach the process of deciding which mechanism(s) to use in a given
situation. The following guidelines are organized around the binding steps in Figure 2
and work to help the programmer decide which path through the figure is most
appropriate in a given situation. For each guideline, we discuss how it is validated
from by the study described above.

Procedures
If an operation is needed at a given point, then using a procedure (call and
declaration) serves to make the operation explicit and local, and to make the binding

4 AspectJ 5 includes both alternatives.

named ptc.

point

operation

implementation

procedure
declaration set of points

 enumerated

 matching pattern

 with attribute

enumeration ptc.

annotation
pattern ptc.

annotation ptc.

advice

point w/
annotation

procedure
call

 Separation of Concerns with Procedures, Annotations, Advice and Pointcuts 207

from the point to the operation explicit. This can improve comprehensibility of both
the operation and the context, enable reuse of the operation in other contexts, and
facilitate later change to the operation.

Comparing Straw-Man to the subsequent implementations, we see that the use of a
procedure makes Refresh-Implementation explicit and local. Separating this concern
explicitly makes its implementation more clear, and also clarifies the contexts where
the operation is invoked (e.g. the setX method). The refresh procedure can easily be
called from other points (reused). When Refresh-Implementation changes in the
Double-Buffering and Pass-Changed-Object tasks the implementations that use the
procedure fare better. None of this is a surprise; we are all familiar with these
properties of using procedures. We are elaborating this here only to show how this set
of guidelines encompasses the familiar case of procedures and to lay a foundation for
discussion guidelines regarding annotations, pointcuts and advice.

Advice and Pointcuts
If an operation is needed at a given set of points then using advice and pointcuts
serves to make the binding from the set to the operation explicit and local, which can
improve comprehensibility and evolvability in some cases. In particular, consider
using advice and pointcut rather than multiple procedure calls if: (i) more than a
small number of points must invoke the operation, (ii) the binding between the points
and the operation may be disabled or otherwise be context-sensitive, or, (iii) the
calling protocol to the operation may change.

All the implementations that use advice and pointcuts (Annotation-Property and
on) make the calling protocol to Display.refresh explicit and localized. So they
support part iii of this guideline.

But in this regard it is worth looking carefully at the way the implementations that
use advice and pointcuts enhance the capture of When-to-Refresh (WtR) and What-
Constitutes-Change (WCC). Annotation-Call does not improve WtR or WCC over
GOFP. Annotation-Property makes WtR explicit and local and makes WCC explicit
but non-local. With Anonymous-Enumeration-Pointcut both concerns are local, but
are once again implicit. In the named pointcut implementations both concerns are
local and back to being explicit. Since all these implementations use advice and
pointcuts of some form, this suggests an interaction between using advice and the
form of the pointcut used in the advice, which leads to the next guideline.

Attributes – Named Pointcuts or Annotations
If a set of points used in an advice has a common attribute, then using a named
pointcut or an annotation can make that common attribute explicit. Using named
pointcuts makes the attribute explicit and local, annotations make it explicit and non-
local. When using named attributes, choose a name that describes what is true about
the points, rather than describing what a particular advice will do at those points.

This guideline is supported by the Annotation-Property and the two named pointcut
implementations. What-Constitutes-Change is made explicit in all three of these
implementations. It is made local in the two named pointcut implementations. In each
case, the capture of When-to-Refresh also benefits, which is the link to the previous
guideline.

As with procedures, the motivation to make the additional bindings and intermediate
steps explicit using advice and named attributes comes from comprehensibility, reuse,

208 G. Kiczales and M. Mezini

evolution and other considerations. Comprehensibility is subjective, but to our eye,
Annotation-Property and the two named pointcut implementations are the easiest to
understand because they make all the steps leading up to a refresh clear. They clearly say
“there is an explicit concept of display state change”, “here are points that constitute such
changes”; and “call refresh at those points”. Straw-Man, GOFP and Annotation-Call
make it clear that refresh is happening, but not why. Anonymous-Enumeration-Pointcut
makes it clear that there is a general condition that causes refresh to happen, but without a
pointcut name the abstraction of the condition is not clear.

In terms of reusability, because Annotation-Property and the two named pointcut
implementations make the (d/D)isplayStateChange attribute explicit, they make it
easy to reuse What-Constitutes-Change in the change task.

In terms of evolution, making the binding from the (d/D)isplayStateChange
attribute to the refresh signaling behavior explicit makes the Disable-Refresh change
task easy.

The Annotation-Call and Annotation-Property implementations demonstrate the
importance of choosing good annotation names. In Annotation-Call the name of the
annotation is such that it fails to introduce the intermediate step and make clear why
refresh is happening. A named pointcut with a similar name would have similar
problems.

Introducing additional attribute names does not always add value. When writing
procedural code, most programmers are unlikely to define a new onePlus procedure
for the expression ‘x + 1’. They could, but in this case the primitive expression is
sufficiently clear that it is usually left in line. Named abstraction has to stop at some
point, or else programs would never reach primitives.

The same is true for attributes. The pointcut ‘execution(public com.acme.*.*(..))’ is
sufficiently clear that it usually does not warrant a named pointcut. On the other hand
‘execution(* Shape+.set*(..))’ probably does warrant the displayStateChange named
pointcut.

Enumeration, Property, Pattern-Based Pointcuts and Annotations
The previous guidelines leave open the question of what mechanism to use to
establish the binding between the individual point(s) and the actual set of points. The
choices are enumeration-based pointcuts, name-pattern based pointcuts, property-
based pointcuts or annotations.

Prefer enumeration-based pointcuts when: (i) it is difficult to write a stable
property-based pointcut to capture the members and (ii) the set of points is relatively
small.

Prefer property- or pattern-based pointcuts when: (i) it is possible to write one
that is stable or (ii) the set of points is relatively large (more than ten).

Use annotations to mark points when three things are true: (i) it is difficult to write
a stable property-based pointcut to capture the points, (ii) the name of the annotation
is unlikely to change, and (iii) the meaning of the annotation is an inherent to the
points, rather than a context-dependent aspect of the points only true in some
configurations.

In addition, lean towards annotations when the property that defines inclusion in
the set is an inherent property of the points, and lean towards other pointcuts when
the binding from points to the set might change non-locally, or come into existence
non-locally.

 Separation of Concerns with Procedures, Annotations, Advice and Pointcuts 209

The implementations after GOFP provide some support for these guidelines, but
the example is too small to fully support them.

The difference between how Named-Enumeration-Pointcut and Named-Pattern-
Pointcut fare for Add-Unrelated-Method both shows the concern about pattern-based
pointcuts, and also shows that using stable patterns can mitigate that concern.5 For
example ‘Shape+.set*(*)’ means methods defined on Shape or a subtype of Shape, for
which the name begins with set, and that have a single argument. This pattern has
good stability both because it is restricted to a small part of the type hierarchy, and
because it is based on a well-established Java naming convention. By contrast,
‘set*(..)’ is less stable, it covers any type of object, and methods with any number of
arguments.

Once again, the difference between Annotation-Call and Annotation-Property
supports the importance of annotation names. As formulated above, the guideline is
intended to reduce the likelihood that the name will need to change, and will make it
more natural to reference the same annotation in other aspects or in compositions of
pointcuts based on the annotation. For example DisplayStateChange may be
reasonable as an annotation. But MakesRemoteCall may not be, because it may
depend on a particular deployment configuration rather than always being true of a
method.

While the guidelines for preferring property and pattern-based pointcuts when the
number of points is large and it is possible to write such pointcuts are not supported
by this study, they seem fairly straightforward, although it would be valuable to
validate them, and all the other above guidelines, in a larger case study.

6 Related Work

There have been a number of characterizations of aspect-oriented programming
(AOP) mechanisms: as a means for modularizing crosscutting concerns [16, 17], in
terms of obliviousness and quantification [10], in terms of a common join point model
framework [25] and others. By contrast, the focus of this paper is on analyzing the
separation of concern properties of annotations, pointcuts and advice, and describing
those as binding mechanisms similar to procedures.

The work described in [10] and [24] is closer to this paper in that they characterize
AOP mechanisms as a new step in “introducing non-locality in our programs” [10],
specifically as a means of binding points in the execution space [24]. But, they do not
consider annotations. They also do not focus on the way in which the mechanisms
compare for separating different kinds of concern or provide guidelines for choosing
among the mechanisms.

The discussion by Lopes et al. [22] shares with this paper the view that pointcuts
act as a kind of referencing mechanism. The focus in [22] is more on motivating and

5 Practicing AspectJ developer report that the restrictions that come from the use of name

patterns often benefits their code. The patterns force them to regularize the rules they use for
naming, and that helps with overall system comprehensibility. Nonetheless, this issue is
motivating a variety of important research in more powerful pointcut languages, that make it
possible to express pointcuts in terms of properties that are more accurate and robust than
name patterns [24, 35].

210 G. Kiczales and M. Mezini

speculating about future “more naturalistic” referencing mechanisms that go beyond
current pointcut mechanisms. On the contrary, our focus is on characterizing and
assessing state-of-the-art mainstream pointcut mechanisms and especially on
providing guidelines for using them.

Rinard et al. [29] propose a classification and an analysis system for AOP
programs that classifies interactions between aspects and methods to identify potentially
problematic interactions (e.g., caused by the aspect and the method both writing the same field),
and guide the developer’s attention to the causes of such interactions. Hence, their focus is
different than ours. They also do not discuss annotations, and only indirectly suggest
usage guidelines. To the extent they do suggest guidelines there appear to be no
conflicts between their work and ours.

Baldwin and Clark have developed a general framework for assessing the value of
modularity in technical systems [2]. Sullivan et al. [32] show how this framework can
be applied to software systems. Lopes and Bajracharya [23] went on to apply the
framework to AOP systems. The Baldwin and Clark framework is more heavy-weight
than ours, and seems more suitable for architectural decision making than what we
discuss here. But again, there does not appear to be any inherent conflict between the
analyses. One interesting next experiment would be to see how the guidelines we
develop interact with the analyses and net option value framework used by these
researchers.

Our guidelines are ‘bottom-up’ or in-situ in nature. They are focused on how a
developer makes isolated decisions about what mechanism to use guided by design
goals. By contrast, Jacobsen and Ng have proposed a methodology for designing
systems in an aspect-oriented style [15]. Again, there appears to be no contradictions
between our guidelines and their methodology.

The work presented in [26] also involves an assessment of pointcut mechanisms
with respect to how well programs using them fare in presence of change, as
compared to equivalent OO programs that use method calls only. That assessment
does not consider annotations, and is primarily on assessing the need for pointcut
mechanisms that refer to more dynamic properties of join points than possible today.
The design and implementation of such pointcuts is the main focus of their paper.

7 Future Work

The analysis and guidelines in this paper are based on first-principles analysis with a
single small example. Based on this, there are several attractive avenues for future
work.

One next step would be large-scale validation of these guidelines. There are (at
least) two dimensions of improvement. First, they could be validated against a larger
sample of code developed by experts. While attractive, at present there do not appear
to be large bodies of suitable open source code to work with, although this appears to
be changing rapidly.

A second line of work would be to validate these guidelines in some form of user
study in which programmers are asked to work with the guidelines in a controlled
experiment.

 Separation of Concerns with Procedures, Annotations, Advice and Pointcuts 211

As discussed in Section 6, it would also be interesting to develop a detailed account
of how the guidelines we propose interact with classifications such as in [29],
architectural analyses such as in [2], and design methodologies such as in [15].

8 Summary

Metadata annotations, pointcuts and advice are useful techniques for separating
concerns in source code. To better understand and be able to work with these
mechanisms, we propose a characterization in which each is seen as making a
different kind of binding: annotations bind attributes to program points; pointcuts
create bindings between sets of points and descriptions of those sets; named pointcuts
bind attributes to sets of points; and advice bind the implementation of an operation to
sets of points.

This characterization yields insight into how the mechanisms relate and suggests
areas for improvement. It also yields guidelines for how to choose among the
mechanisms in the course of programming with them. The guidelines can be phrased
in terms of deciding which kind of binding is appropriate in a given situation or they
can be formulated in more prescriptive terms that may be more appropriate in some
contexts.

The model and guidelines proposed here provide a good basis for further research
and near-term development. We expect improvements to the model and guidelines as
the combined use of annotations, pointcuts and advice grows.

Acknowledgements

The author would like to thank Mik Kersten, Mira Mezini and Gail Murphy for
fruitful discussions on the ideas developed in this paper. Thanks also go to Andrew
Eisenberg, Mik Kersten, Gail Murphy, Kevin Sullivan and Maria Tkatchenko who
provided detailed comments on earlier drafts of the paper.

This work is partially funded by the Natural Sciences and Engineering Research
Council of Canada (NSERC), IBM Canada Ltd. and the European Network of
Excellence in Aspect-Oriented Software Development (AOSD-Europe).

References

1. The Server Side Symposium: AOP Expert Panel, 2004,
http://www.theserverside.com/news/thread.tss?thread_id=30564.

2. Baldwin, C.Y. and Clark, K.B. Design Rules: The Power of Modularity. MIT Press, 2000.
3. Bergmans, L. and Aksit, M. Principles and Design Rationale of Composition Filters. in

Filman, R.E., Elrad, T., Aksit, M. and Clarke, S. eds. Aspect-Oriented Software
Development, Addison Wesley Professional, 2004, 63 - 95.

4. Bloch, J. A Metadata Facility for the Java Programming Language, 2004.
5. Boner, J., AspectWerkz http://aspectwerkz.codehaus.org/.
6. Bryant, A., Catton, A., Volder, K.D. and Murphy, G.C., Explicit programming. Aspect-

Oriented Software Development, 2002, ACM Press, 10-18.

212 G. Kiczales and M. Mezini

7. Cheatham, T.E., JR., The introduction of definitional facilities into higher level
programming languages. (AFIPS) Fall Joint Computer Conference, 1966, Spartan Books,
623-673.

8. Coady, Y., Kiczales, G., Feeley, M. and Smolyn, G., Using AspectC to improve the
modularity of path-specific customization in operating system code. Foundations of
Software Engineering (FSE), 2001, ACM Press, 88 - 98.

9. Elrad, T., Aksit, M., Kiczales, G., Lieberherr, K. and Ossher, H. Discussing aspects of
AOP. COMMUNICATIONS OF THE ACM, 44 (10). 33-38.

10. Filman, R.E., Elrad, T., Aksit, M. and Clarke, S. (eds.). Aspect-Oriented Software
Development. Addison Wesley Professional, 2004.

11. Gradecki, J. and Lesiecki, N. Mastering AspectJ: Aspect-oriented Programming in Java.
Wiley, Indianapolis, Ind., 2003.

12. Group, G., Hype Cycle for Application Development, 2004,
http://www4.gartner.com/DisplayDocument?doc_cd=120914.

13. Hirschfeld, R. AspectS - Aspect-oriented programming with squeak. Revised Papers from
the International Conference NetObjectDays on Objects, Components, Architectures,
Services, and Applications for a Networked World, 2591. 216-232.

14. Jacobson, I. and Ng, P.-W. Aspect-Oriented Software Development with Use Cases.
Addison-Wesley, 2003.

15. Jacobson, I. and Ng, P.-W. Aspect-Oriented Software Development with Use Cases.
Addison Wesley Professional, 2004.

16. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J. and Griswold, W.G., An
Overview of AspectJ. European Conference on Object-Oriented Programming (ECOOP),
2001, Springer, 327-355.

17. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J. and Irwin,
J., Aspect-oriented programming. European Conference on Object-Oriented Programming
(ECOOP), 1997, 220-242.

18. Kiczales, G. and Mezini, M., Aspect-Oriented Programming and Modular Reasoning.
ACM International Conference on Software Engineering, 2005 (to appear).

19. Krishnamurthi, S., Fisler, K. and Greenberg, M. Verifying aspect advice modularly.
Foundations of Software Engineering (FSE). 137 - 146.

20. Laddad, R. AspectJ in action: practical aspect-oriented programming. Manning,
Greenwich, CT, 2003.

21. Liberty, J. Programming C#. O'Reilly, Sebastopol, CA, 2003.
22. Lopes, C., Dourish, P., Lorenz, D. and Lieberherr, K. Beyond AOP: Toward naturalistic

programming. ACM SIGPLAN NOTICES, 38 (12). 34-43.
23. Lopes, C.V. and Bajracharya, S., An Analysis of Modularity in Aspect-Oriented Design.

Aspect-Oriented Software Development (AOSD'05), 2005 (to appear).
24. Masuhara, H. and Kawauchi, K., Dataflow Pointcut in Aspect-Oriented Programming.

Asian Symposium on Programming Languages and Systems (APLAS), 2003, 105--121.
25. Masuhara, H. and Kiczales, G., Modeling crosscutting in aspect-oriented mechanisms.

European Conference on Object-Oriented Programming (ECOOP), 2003, Springer, 2-28.
26. Ostermann, K., Mezini, M. and Bockisch, C., Expressive Pointcuts for Increased

Modularity. In Proc. of European Conference on Object-Oriented Programming (ECOOP),
2005, Springer.

27. Project, A., AJDT Demonstration, 2004, http://eclipse.org/ajdt/demos/.
28. Rajan, H. and Sullivan, K., Eos: instance-level aspects for integrated system design.

Foundations of Software Engineering (FSE), 2003, ACM Press, 297 - 306.

 Separation of Concerns with Procedures, Annotations, Advice and Pointcuts 213

29. Rinard, M., Salcianu, A. and Suhabe, B., A Classification System and Analysis for Aspect-
Oriented Programs. Foundations of Software Engineering (FSE), 2004, ACM Press, 147 -
158.

30. Schutter, K.D., What does aspect-oriented programming mean to Cobol? Aspect-Oriented
Software Development, 2005, ACM Press, (to appear).

31. Spinczyk, O., Gal, A. and Schröder-Preikschat, W., AspectC++: an aspect-oriented
extension to the C++ programming language. Fortieth International Confernece on Tools
Pacific: Objects for internet, mobile and embedded applications, 2002, Australian
Computer Society, 53 - 60.

32. Sullivan, K.J., Griswold, W.G., Cai, Y. and Hallen, B., The structure and value of
modularity in software design. Foundations of Software Engineering, 2001, ACM Press,
99 - 108.

33. Teitelman, W. PILOT: A Step Toward Man-Computer Symbiosis Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology, 1966.

34. Walker, D., Zdancewic, S. and Ligatti, J., A theory of aspects. International Conference on
Functional Programming, 2003, ACM Press, 127 - 139.

35. Walker, R. and Viggers., K., Implementing protocols via declarative event patterns. ACM
Sigsoft International Symposium on Foundations of Software Engineering (FSE-12), 2004.

Expressive Pointcuts for Increased Modularity

Klaus Ostermann, Mira Mezini, and Christoph Bockisch

Darmstadt University of Technology, D-64283 Darmstadt, Germany
{ostermann, mezini, bockisch}@informatik.tu-darmstadt.de

Abstract. In aspect-oriented programming, pointcuts are used to describe cross-
cutting structure. Pointcuts that abstract over irrelevant implementation details
are clearly desired to better support maintainability and modular reasoning.

We present an analysis which shows that current pointcut languages support
localization of crosscutting concerns but are problematic with respect to infor-
mation hiding. To cope with the problem, we present a pointcut language that
exploits information from different models of program semantics, such as the
execution trace, the syntax tree, the heap, static type system, etc., and supports
abstraction mechanisms analogous to functional abstraction. We show how this
raises the abstraction level and modularity of pointcuts and present first steps
toward an efficient implementation by means of a static analysis technique.

1 Introduction

In aspect-oriented programming (AOP for short), pointcuts are predicates that identify
sets of related points in the execution of a program, where to execute behavior pertain-
ing to crosscutting concerns. Given an aspect that modularizes a crosscutting concern,
its pointcuts serve as the interface between the crosscutting concern and the rest of the
system. As such, the abstraction level at which these predicates are expressed directly
affects the robustness of the design in the presence of change. Separation and localiza-
tion of concerns into individual units is a major feature of modular design - providing
interfaces that absorb local changes is another, equally important, feature.

It has been indicated elsewhere that a pointcut that merely enumerates relevant
points in the execution by their syntactic appearance in the program code is fragile w.r.t.
changes in the code [15, 20]. In this paper, we investigate the issue in more depth: We
compare object-oriented (OO for short) and aspect-oriented (AO for short) designs of
an exemplary problem with respect to their capability to remain stable in the presence
of change. We observe that with current pointcut languages one can indeed separate
crosscutting concerns into their own modular units, but the resulting design does not
actually perform much better in terms of absorbing changes than the OO design which
does not modularize the crosscutting concerns. This reduces the power of aspects to
merely supporting pluggability of crosscutting concerns, leaving out of the reach an-
other important modularity principle: Information hiding [30].

To cope with the problem, this paper proposes a pointcut language that allows to
specify pointcuts at a high-level of abstraction by providing (a) different rich models of
the program semantics and (b) abstraction mechanisms analogous to functional abstrac-
tion. The key insight is that various models of program semantics are needed to enable

A.P. Black (Ed.): ECOOP 2005, LNCS 3586, pp. 214–240, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Expressive Pointcuts for Increased Modularity 215

reasoning about program execution. For example, the abstract syntax tree (AST) alone
is not a very good basis for high-level pointcuts because it is a very indirect represen-
tation of the program execution semantics that makes it intractable to specify dynamic
properties.

We propose to base the pointcut language on a combination of models of the pro-
gramm’s semantics. In this paper, we concentrate on four such models: The AST, the
execution trace, the heap, and the static type assignment; if needed, other models such as
a profiling or a memory consumption model could be added. Pointcuts in our approach
are logic queries over the aforementioned models.

We have implemented a prototype of this approach as an interpreter for a small stati-
cally typed AO language, called ALPHA1. Pointcuts in ALPHA are logic queries written
in Prolog [36]; they operate on-line over databases representing the aforementioned
models of the program semantics. We show how AO designs expressed in this language
can be made robust against various kinds of changes.

We also present a technique for an efficient implementation of our approach that is
based on the notion of join point shadows [17]. The shadow of a dynamic join point is a
code structure (expression, statement or block) that statically corresponds to an execu-
tion of the dynamic join point. The idea is to compute the shadows of pointcuts off-line
by a static analysis of pointcuts and to evaluate or extend dynamic semantic models
only at these statically computed shadows. Our analysis is different from previous ap-
proaches in this direction [17, 28, 35] in that it works on a much more powerful and
open pointcut language.

Some concepts used in our approach have also been discussed elsewhere. For exam-
ple, logic queries have been used in other approaches [15, 19, 37]. The unique contribu-
tion of our proposal compared to related work is twofold. First, we present a detailed
study of the disadvantages of most current pointcut languages. Second, the openness of
the pointcut language, the ability to combine different program models, and the incor-
poration of the execution trace and heap together with the abstraction mechanisms of a
Prolog-like language is also unique. We will give a detailed account of the contribution
of this paper and the relation to other works after the technical presentation.

The remainder of the paper is organized as follows. Sec. 2 motivates the need for
better pointcut languages by a study of the robustness of aspect-oriented programs.
Sec. 3 introduces the ALPHA programming language. Sec. 4 presents some examples
in ALPHA and analyzes them in the light of the problems identified in Sec. 2. Sec. 5
describes the static analysis technique. Sec. 6 elaborates on the contribution of this
paper in comparison to related work. Sec. 7 describes future work and concludes. The
appendix contains different specifications of Prolog constructs that are used in various
places but whose specification is not necessary to follow the paper.

2 Pointcuts and Modularity

In this section, we identify the limitations of current pointcut languages by means of an
example problem. We focus on AspectJ’s pointcut-advice mechanism [21] first; other

1 Source code is available at [2].

216 K. Ostermann, M. Mezini, and C. Bockisch

pointcut languages will be discussed in the section on related work. We present an
object-oriented (OO) and an aspect-oriented (AO) solution to the problem and compare
them w.r.t robustness in the presence of change.

2.1 Example Problem and Its OO and AO Solutions

The example problem is about modeling a hierarchy of graphical objects like points and
lines which can be drawn on display objects; each display has a list of figures shown in
it. The solution should ensure that the state of figure elements and their corresponding
views on active displays is kept synchronized by having displays be updated when the
state of figure elements changes.

An OO solution for the problem that applies the observer pattern [14] is schemat-
ically shown in Fig. 12. To avoid unnecessary updates, the solution supports what we
call object precision and field precision. By object precision we mean that an update to
a figure element triggers a repaint only on those displays on which the figure element is
visible; in general, there are multiple different display objects active, whereby every fig-
ure element is visible only on a (possibly empty) subset of all displays. For this purpose,
each figure in Fig. 1 maintains an observer list with the displays it is shown in, if any;
when a figure f is added to a display, the display is added to the list of f’s observers as
well as to the observer lists of f’s children; e.g., showing a line on a display will cause
the display to be an observer of the line as well as of its start and end points. If a figure
f1 is not anymore a child of another figure, f2, the observers that f1 inherited from f2
are removed from the list of f1’s observers3.

By field precision we mean that only changes of the fields that contribute to the
graphical representation of a figure element should trigger display updates. The set of
the fields affecting the draw behavior generally depends on the dynamic control flow
and cannot be determined statically. Hence, it is not always easy to ensure field precision
especially if the system is complex. In the Line class in Fig. 1, it is easy to see that the
field name is never involved in the drawing behavior and that enable, start and end
are potentially read in the control flow of draw. Of the latter variables, only enabled
is always read - hence, a change to it always triggers a notification of the observers;
fields start and end are only read if enabled is true. Hence, changes to start or
end trigger a notification only if enabled is true (see comments on the methods noti-
fyObserversUnconditional(), notifyObservers() and setEnabled(...) in
class FigureElement, and Line.setEnd(...) in Fig. 1).

A functionally equivalent AO solution of the problem is schematically shown in
Fig. 2. This solution factors the observer management fields and methods out of the
figure element classes into the aspect using the inter-type declaration mechanism of As-
pectJ4. The aspect defines three pointcuts. The pointcut addFigure captures any call

2 Complete code for all examples and our ALPHA interpreter are available at [2].
3 If figures are shared by several parent-figures, reference counters are associated with observers

and an observer is actually removed from an observer list, only if its reference counter is zero.
4 The observer implementation proposed by Hannemann and Kiczales [16] uses hashtables in-

stead of introductions in order to increase the reusability of aspects, but this does not affect
the discussion in this paper.

Expressive Pointcuts for Increased Modularity 217

Display

+drawAll()
+draw(FigureElement)
+addFigure(FigureElement)
...

FigureElement

-enabled : boolean
-name : String

+draw(Display)
+setEnabled(boolean)
+addObserver(Display)
#notifyObservers()
#notifyObserversUnconditional()
...

-figures

*
*

Point

+draw(Display)
+setX(int)
...

-x : int
...

Line

+draw(Display)
+setEnd(Point)
...

-start
-end

2 *
-ch

ild
ren

*

*

-observers

Adds itself to the figure's
observers and calls drawAll()

on itself if the figure is enabled.

Sets the field enabled to the

passed value and calls
notifyObserversUnconditional().

Adds the display to its own observers, as
well as to its children's.

Calls draw(this) on all observers if

enabled is true.

Calls draw(this) on all observers.

Paints itself on the display if the figure is enabled.

Removes its own observers from the old end's observers,

sets the field end to the passed value, adds its observers

to the new end, and calls notifyObservers().

Calls drawAll() on itself.

Fig. 1. OO implementation of a precise version of the display updating

Similar to
their equiva-
lents in the
OO solution.

Adds d to f's observers and calls drawAll() on d.

Removes p's observers from c.

Adds p's observers to c.

Calls notifyObserversUnconditional(), if

field enabled changed, else

notifyObservers() on f.

FigureElement

-enabled : boolean
-name : String

+draw(Display)
+setEnabled(boolean)
...

-figures

* *

Point

+draw(Display)
+setX(int)
...

-x : int
...

Line

+draw(Display)
+setEnd(Point)
...

-start
-end

2 *

<<aspect>> DisplayUpdate

FigureElement.getChildren()
FigureElement.children : List;
…
FigureElement.addObserver()
FigureElement.observers : Hashtable;
…
FigureElement.notifyObservers()
FigureElement.notifyObserversUnconditional()

addFigure(FigureElement f, Display d) :
 call(void Display.addFigure(FigureElement)) &&
 args(f) && target(d)
setSubFigure(FigureElement f, FigureElement newValue) :
 set(FigureElement+ FigureElement+.*) &&
 target(f) && args(newValue);
change(FigureElement f) :
 set(* FigureElement+.*) && target(f) &&
 !(set(Hashtable FigureElement.observers) ||
 set(List FigureElement.children) ||
 set(String FigureElement.name))
...

after(f : FigureElement, d : Display) : addFigure(f, d)
before(p : FigureElement, c : FigureElement) : setSubFigure(p, c)
after(p : FigureElement, c : Figureelement) : setSubFigure(p, c)
after(f : FigureElement) : change(f)
...

Only sets the field enabled to the passed value.

introductions
pointcuts

advice

Display

+drawAll()
+draw(FigureElement)
+addFigure(FigureElement)
...

Fig. 2. First AO implementation of the precise display updating

to the method Display.addFigure(FigureElement); the after-advice associated
with this pointcut establishes a subject-observer relation between the receiver and the
argument.

The setSubFigure pointcut captures points in the execution, where parent-child
associations are changed - these are assignments on any field of type FigureElement
or a subtype thereof (denoted by the ”+”), declared in FigureElement or any of its
subclasses. The before and after advice associated with this pointcut make sure that the

218 K. Ostermann, M. Mezini, and C. Bockisch

observer lists are updated accordingly. The change() pointcut captures assignments
to those fields of figure element objects that affect the draw behavior - the set of rel-
evant fields includes any field declared in FigureElement or one of its subclasses,
excluding the fields FigureElement.name, FigureElement.observers and fig-
ureElement.children (the latter two are introduced by the aspect). The advice as-
sociated with this pointcut ensures that notifications are sent to relevant observers.

2.2 Comparison of the OO and AO Solutions

The main advantage of the AspectJ solution over the OO counterpart is that the display
updating protocol is made explicit and localized in one module. Due to this separation
changes to the display update protocol are localized within the aspect. For example,
assume that we decide to modify the protocol as follows. The display update signaling
currently performed within methods that change the state of figure elements, should
happen at caller sites of these methods (e.g., the because the caller object should be
logged, which is not possible at execution site). Changes needed to introduce the modi-
fied protocol are localized within the aspect code in the AO solution (alternatively a new
aspect can be implemented); the same changes are not localized in the OO solution. Fur-
thermore, the separation makes the display updating logic pluggable. The advantages
resulting from the separation of crosscutting concerns are discussed elsewhere [22, 16]
and are not in the focus of this paper.

Physical separation and localization of concerns, while important, is only one aspect
of modularity. Another, equally important aspect of modularity is about the interface
that controls the interaction of the separated logic with the rest of the system, thereby
employing abstraction mechanisms to hide implementation details. The interface of the
separated observer protocol to the rest of the system is defined by pointcuts in the aspect
in Fig. 2. A recent paper by Kiczales and Mezini [23] argues that this explicit interface
makes modular reasoning in the presence of change easier in an AO setting compared
to an OO setting, where there is no explicit interface between these two concerns.

In this paper, we go one step further and investigate the ability of the AO interfaces
to absorb change by means of information hiding. Unfortunately, interfaces supported
by current pointcut technology fall short in this respect. The set of points in the exe-
cution of figure elements where to update appropriate display objects are not defined
intentionally by some common semantic property, say, as points where ”changes occur
on fields that were previously read in the control flow of the last drawAll call”. Rather,
the pointcuts in our example mostly describe these points by their syntax, thus, expos-
ing implementation details of the figure element hierarchy to the aspect. The following
comparison of the OO and AO solutions from Fig. 1 and Fig. 2 shows that the lack of
proper support for information hiding makes the separated display update protocol ba-
sically as fragile w.r.t changes as the OO solution. The comparison is organized around
the change scenarios presented in Fig. 3, which also summarizes the robustness of the
AO and OO solution related to these change scenarios.

First, both scenarios are fragile with respect to scenarios Ch1 and Ch3. In both
solutions, moving parts of a figure element’s state to a helper class will cause changes
to those fields to escape observation, although they might have had effect on the drawing
behavior. Hence, they break w.r.t. Ch1. Also, renaming the field enabled, or adding a

Expressive Pointcuts for Increased Modularity 219

name description example OOAO
Ch1 Object graph change: Outsource part

of the drawing relevant state of a fig-
ure element to a class that is not in the
FigureElement hierarchy.

Use an object of type Pair to store the
coordinates of a Point.

– –

Ch2 Class hierarchy change: Inserting a
new type into the hierarchy of Fig-
ureElements.

Adding the class Circle extends
FigureElement.

+/–+/–

Ch3 Control flow change: Change the con-
dition under which a display update is
necessary.

Renaming the field enabled to visi-
ble, or adding a field hidden.

– –

Ch4 Class definition change: Inserting/re-
moving a field whose change makes
display update necessary.

Adding the field color to the class
FigureElement.

– +

Ch5 Class definition change: Inserting/re-
moving a field whose change does not
affect display.

Adding the field changeHistory to
the class FigureElement.

+ –

Fig. 3. Change scenarios with comparison of AO and OO solution

new field which also controls when figure elements are displayed, say hidden, will
break both the AO and OO protocols. This is because the names of such fields are
hard-coded in the implementation of notifyObservers(), which is the same in both
solutions. Hence, both solution fail to absorb Ch3.

The AO solution is more robust w.r.t Ch4. The OO protocol breaks in the sense that
the display update signaling for the field being added, needs to be adopted, respectively
encoded anew. The AO protocol that uses wildcards for pattern matching on names of
fields that affect drawing behavior carries over automatically. However, the AO solution
is less robust than the OO solution w.r.t Ch5. This is because the change pointcut in
Fig. 2 enumerates each field to exclude from the observation explicitly. Adding (or
removing) a field which does not influence the graphical representation of a figure will
break field precision of the aspect: Changes to these fields will cause the display to be
updated.

Finally, with regard to the scenario Ch2, we argue that both solutions perform more
or less the same under the assumption that the new class, in general, introduces both
fields that affect the drawing behavior as well as fields that do not affect drawing. The
AO solution performs better for fields that affect drawing: The protocol established by
the aspect automatically applies to the new class. This is not true for the OO solution:
The whole logic concerning children and field change should be manually coded in the
new class. However, the opposite is true for fields that do not affect drawing and, hence,
need to be excluded explicitly in the AO solution.

The use of wildcards for pattern matching on names might at first sight appear to
support some sort of abstraction by providing a means to identify relevant execution
points by some commonality. However, pattern matching on names only allows to ab-
stract over syntax, which is not always sufficient. Our investigation shows that wildcards
do not actually increase the ability to absorb change, beyond simple cases, where there
are no exceptions to be made from the rule defined by wildcards. As for our example,

220 K. Ostermann, M. Mezini, and C. Bockisch

we could as well have used an AO solution that does not use wildcards but enumerates
the relevant points. This solution would exhibit the same robustness w.r.t the change
scenarios as the OO solution5.

The discussion suggests that without more powerful mechanisms for information
hidingthepotentialofAOmechanismsforimprovingmodularitycannotfullybeunleashed.
This has been the motivation for us to work on a pointcut language that enables better
modularity and information hiding. This language will be presented in the following
section. Please note that the question is not whether AO mechanisms provide better
modularity than OO mechanisms; the question is rather how to further improve the power
of the modularity of AO mechanisms. As mentioned in the beginning of this sub-section,
AO does support better modularity by separating and localizing the display update logic
[22, 16] and by providing an explicit interface [23]. The point we want to improve is
that the focus of pointcuts should be when (under which conditions) a pointcut should
be triggered rather than where (lexically) the corresponding places in the code are.

3 The ALPHA Language

ALPHA is an AO extension of a toy OO core language implemented as an interpreter in
Java. The OO core of ALPHA is based on L2 [12] - a simple object-oriented language
in the style of Java. The formal syntax, semantics, and type system of L2 are described
in [12]. Here we present the OO core of ALPHA informally by means of the example in
Fig. 4 - a simplified variant of the example from the previous section. ALPHA supports
classes and single inheritance and has a standard static type system.

3.1 Pointcuts and Advice

Every class in ALPHA may define fields and methods and may also define pointcuts and
associate advice with them. Pointcuts are Prolog queries over a database of both static
and dynamic information about the program or program execution. A Prolog query is
a sequence of primitive queries combined by the and operator “,”. A simple pointcut
that denotes “all assignments to fields of objects of type point” is shown in the class
DisplayUpdate in Fig. 5.

In contrast to AspectJ and similar to Caesar [29], aspects in ALPHA become ef-
fective only after they are deployed. Further discussion of this strategy is available at
[29]. What matters is to note that the advice of DisplayUpdate will have semantic
effect once an instance of DisplayUpdate is deployed. For illustration, consider the
use of the aspect DisplayUpdate within the main() method of class Main in Fig. 5
- here, the advice of DisplayUpdate will be effective only during the execution of
doSomething().

In order to explain the pointcut in Fig. 5, it is necessary to understand the basic
structure of the database. The database contains both static and dynamic information
about the program organized in a set of relations. A very simple relation is the unary
relation now, denoted now/1. This relation has only one fact that contains the current

5 In [2], the reader can also find code for an AspectJ solution of the example problem that does
not uses wildcards.

Expressive Pointcuts for Increased Modularity 221

1 class FigureElement extends Object {
2 String name;
3 void draw(Display d) {}
4 }
5 class Point extends FigureElement {
6 int x, y;
7 boolean enabled;
8 void draw(Display d) {
9 if (this . enabled) d. paintPoint (this .x, this .y);

10 }
11 }
12 class Line extds FigureElement {
13 Point start , end;
14 void draw(Display d) {
15 if (this . enabled) d. paintLine (this . start , this .end);
16 }
17 }
18 class Display extends object {
19 FigureElement f1 , f2 ;
20 void drawAll() { this . f1 .draw(this); this . f2 .draw(this); }
21 void draw(FigureElement fe) { print (” display update :”); print (fe); this .drawAll (); }
22 void paintPoint (int x, int y) { ... }
23 void paintLine (Point start , Point end) { ... }
24 }

Fig. 4. Figure elements in ALPHA

class DisplayUpdate extends Object {
Display d;
after now(ID), set (ID, , P, ,), instanceof (P, ’ Point ’) { this .d.draw(P); }

}

class Main extends Object {
Display d; DisplayUpdate du;
void main() {

this .d = new Display (); this .du = new DisplayUpdate();
this .du.d = this .d;
deploy(this .du) { this .doSomething() }

}
void doSomething() { ... }
...

}

Fig. 5. Simple advice in ALPHA

timestamp. These timestamps are necessary in order to reason about temporal relations
between events. The query now(ID) in Fig. 5 retrieves the current timestamp and binds
it to the variable ID. In Prolog, all names starting with uppercase letters are considered
variables, whereas all names starting with lowercase letters or enclosed by single quotes
(’) are considered constants.

The second part of the query, set(ID, , P, ,), queries a relation set/5
that stores all assignments in the current execution. The first element of this relation is
the timestamp of this event, the second one is a reference into the syntax tree of the
program and denotes the expression in the syntax tree that corresponds to this event.
The third element is the object that contains the field, the fourth is the fieldname, and
the fifth is the value assigned to the field. By using the name ID for the first element
in the query set(ID, , P, ,), we specify that this pointcut will match only

222 K. Ostermann, M. Mezini, and C. Bockisch

class DisplayUpdate extends Object {
Display d; Point p;
after now(ID), set (ID, , @this.p, ,) {

this .d.draw(this .p);
}

}

Fig. 6. Inserting context into a pointcut

if the assignment has happened right now and not in some time in the past because a
variable (ID in this case) must be bound to the same value in all places where it is used.
The wildcard ” ” is used for anonymous variables that are not interesting; in the set part
of the pointcut in Fig. 5 the ” ” wildcards are used to denote that the pointcut matches
for any expression as well as for any field name and value being assigned. By using
the name P for the receiver element of the set/5 relation, we bind the receiver object
of each matching assignment to P. In the third part of the pointcut, instanceof(P,
’Point’), we constrain the set of eligible assignments even further by requiring P to
be an instance of the class Point.

Variables in a pointcut can be used both as constraints during the unification process
and as a means to make context available in the advice. In our example, we use P in the
advice body6. The form of advice is similar to AspectJ [21].

The kind of data in the database is obviously an important variation point of our
approach. In our prototype, the database contains four different program models: a rep-
resentation of the abstract syntax tree, a representation of the object store (heap), a rep-
resentation of the static type of every expression in the program, and a representation
of the trace of the program execution. These four structures are a natural choice, since
they represent the main entities used for interpreting a program. However, it would not
invalidate our approach to add or remove other entities, e.g., add a model about resource
consumption or remove the object store model. In the example above, theset/5 relation
belongs to the execution trace model, whereas the instanceof/2 relation belongs to
the object store model and the static type model. A full reference of the relations in the
database is available in the appendix in Fig. 14. The basic idea is that each of these mod-
els represents a partial view of the program semantics. By making as much information
available to the pointcut programmer as possible, the programmer can choose the pro-
gram model to be used to express his intention as directly and conveniently as possible.

The escape symbol @ can be used to evaluate an expression inside a query, such that
object-specific constraints involving values from the enclosing object can be expressed.
Fig. 6 shows a refined version of the display update aspect whose pointcut will match
only if the target of the assignment is this.p.

3.2 Pointcut Abstraction and Pointcut Libraries

The expressiveness of our pointcut language is due to the rich program models and its
abstraction mechanisms. Due to Prolog, it is easy to define new predicates that abstract

6 We use type inference to determine a static type for every variable inside a query, which is
used to type-check the advice body. We elaborate on this in Sec. 5.

Expressive Pointcuts for Increased Modularity 223

over the primitive generated predicates. Fig. 7 shows an excerpt of the standard pointcut
library building on this feature. Line 3 shows - by the example of the primitive set
predicate - how to define convenient abbreviations of the generated primitive execution
trace predicates for the case that we are not interested in past events or in the syntactic
location of the event. With these abbreviations the pointcut in Fig. 6 can be written more
conveniently as set(@this.p, ,).

Lines 6-9 demonstrate the usefulness of having the complete history of execution7.
The cflow query specifies under which conditions a join point ID0 is or has been in
the control flow of another join point ID1. Reasonably, this other join point may only
be a method call. Thus, ID1 must be the timestamp of a method call. Method calls are
stored in the database as pairs of calls/5 and endcall/3 facts denoting the beginning
respectively the end of a method call. The before/2 relation is a part of the execution
trace model and can be used to compare events w.r.t. their temporal order. The first
rule of the cflow query, applies when the ID1 call has completed (i.e., a corresponding
endcall fact is available). The second rule applies when ID1 is still on the call stack;
it uses the special control predicate \+, which succeeds, if the goal cannot be proven
(a.k.a. negation as failure).

Please note that this cflow construct is much more powerful than the AspectJ point-
cut designator with this name, since the AspectJ variant can only be used to refer to
control flows that are currently on the call stack (corresponding to our second cflow
rule), whereas our cflow also applies to control flows in the past8.

The pointcut library contains a set of other pointcut predicates that are only sketched
in Fig. 7. We have defined predicates to determine whether an object is reachable
from another object following a path of links in the object graph (reachable/2) and
to determine the class of an object (instanceof/2). Other predicates provide con-
venient access to the AST (class/2, method/3, field/3, within/3, subtype-
eq/2).

The pcflow/3 predicate predicts the control flow of a method based on the AST,
basically building the call graph of the method. This is achieved by computing the
transitive hull of all outgoing method calls, whereby all method implementations in all
subtypes are considered in order to take late binding into account.

The mostRecent/2 predicate finds the most recent occurence of an event pattern.
We will use this predicate to express things like “find the most recent occurence of a
call to draw”.

A very convenient property of Prolog is that these predicates can be used with arbi-
trary instantiation patterns. This means that the predicates can be used in any direction.
For example, the within/3 predicate can be used to find an expression within a given
method and class, or the other way around, to find a class and a method that lexically
contain an expression.

7 Due to the optimizations discussed in sec. 5 only parts of the execution history are recorded
that are relevant for the pointcuts in the program.

8 Note, however, that the main purpose of this paper is not to propose new control flow pointcut
designators. The cflow pointcut designator is just an illustration of the extensibility of our
pointcut language.

224 K. Ostermann, M. Mezini, and C. Bockisch

1 % abbrevations if we are only interested in the current event
2 set (Receiver , Field , Val) :− now(ID), set (ID, , Receiver , Field ,
3 Val).
4 % abbreviations for new, calls , get similarly
5

6 % is ID0 in the control flow of ID1?
7 cflow(ID0, ID1) :− calls (ID1, , , ,), before (ID1, ID0),
8

9 endcall (ID2, , ID1,), before (ID0, ID2).
10 cflow(ID0, ID1) :−
11 calls (ID1, , , ,), before (ID1, ID0), \+ encall (, , ID1,).
12

13 % is Obj2 reachable from Obj1 in the object graph?
14 reachable (Obj1,Obj2) :− ...
15

16 % is Obj an instance of C?
17 instanceof (Obj, C) :− ...
18

19 % convenient access to AST: query classes , methods, and fields
20 class (Name, CDef) :− ... meth(CName, MName, MDef) :− ...
21 field (CName, FName, FDef) :− ...
22

23 % is Expr within method MName of class CName
24 within (Expr, CName, MName,) :− ...
25

26 % is C1 subtype of C2?
27 subtypeeq(C1, C2) :− ...
28

29

30 % is Expr in the statically predicted control flow of CName.MName?
31 pcflow(CName, MName, Expr) :− ...
32

33 % find the most recent event matching a pattern X
34 mostRecent(ID,X) :− ...

Fig. 7. Excerpts of the pointcut library

The full definition of these predicates can be found in Fig. 15 in the appendix. For
the purpose of this work, the details of their definition are not very important. The inter-
esting point is that ALPHA has an open pointcut language, whereby new pointcuts can
be added on-demand in a declarative way. Simple pointcuts can be combined to more
powerful pointcuts, so we have the same kind of abstraction mechanism for pointcuts
that functional abstraction provides for functions.

We have developed a rudimentary module mechanism for pointcut libraries. Cur-
rently, we have a standard pointcut library, that is always available, and user-defined
pointcut libraries, that must have the same file name as the source file. A pointcut li-
brary can import other libraries using Prolog’s own module mechanism. It would be a
straightforward extension to make this a full-fledged module mechanism with explicit
imports and exports, namespaces, etc.

4 Programming with ALPHA

In this section, we demonstrate how information from different program models can
be combined to increase the abstraction level of pointcuts. Furthermore, we discuss the
implications of our pointcut language on the programming model.

Expressive Pointcuts for Increased Modularity 225

4.1 Expressiveness of Pointcuts

The class DisplayUpdate in Fig. 8 shows six different ways to specify a display up-
date pointcut in ALPHA, using different models of the program. We use these six dif-
ferents pointcuts in order to show how we can gradually increase the abstraction level
of the pointcuts by exploiting the available information in the database. The resulting
pointcuts differ in their support for robustness and precision, as discussed below and
summarized in Fig. 9.

1 class DisplayUpdate extends Object {
2 Display d;
3

4 // enum pointcut
5 after set (P, x,); set (P, y,); set (P, ’ start ’,); set (P, ’end’,),
6 instanceof (P, ’FigureElement’) { this .d.draw(P); }
7

8 // set∗ pointcut
9 after set (P, ,), instanceof (P, ’FigureElement’) { this .d.draw(P); }

10

11 // pcflow pointcut
12 after now(ID), set (ID, ExpID1, P, F,), instanceof (P, ’FigureElement ’),
13 pcflow(Display , ’drawAll’, (, get ((ExpID2,), F))),
14 hastype(ExpID2, ’FigureElement’) { this .d.draw(P); }
15

16 // cflow pointcut
17 after set (P, F,), get (T1, , P, F,), mostRecent(T2, calls (T2, , @this.d ,’ drawAll’,)),
18 cflow(T1, T2), instanceof (P, ’FigureElement’) { this .d.draw(P); }
19

20 // cflowreach pointcut
21 after set (P, F,), get (T1, , P, F,), mostRecent(T2, calls (T2, , @this.d ,’ drawAll’,)),
22 cflow(T1, T2), reachable (Q, P), instanceof (Q, ’FigureElement’) { this .d.draw(P); }
23 }

Fig. 8. Six display update pointcuts

The enum pointcut (line 5, Fig. 8) enumerates9 all assignments to fields that po-
tentially effect drawing behavior, namely to fields x, y, start, or end of any object
P of type FigureElement. It uses the names of the fields to identify the relevant as-
signments. By precisely enumerating the fields potentially involved with drawing, the
pointcut supports some sort of static field precision: It makes at least sure that changes
to fields that are never read in any control flow of drawAll() do not trigger display
updates. However, it requires the programmer to explicitly encode this knowledge. Fur-
thermore, it does not take into account the actual control flow of the concrete program
execution and, hence, cannot avoid e.g., updates after assignments to fields of disabled
points. Also, object precision is not supported. Precision w.r.t. fields involved in the
drawing behavior only under certain dynamic conditions - for convenience let us call
this dynamic field precision - and object precision require knowledge from dynamic
program models, which this pointcut does not make use of. With respect to robustness,
the enum pointcut exhibits the same behavior as the OO solution in Sec. 2.

The set* pointcut (line 9) is triggered by assignments to any field of a FigureEle-
ment object. Due to the use of the wildcard this pointcut may cover too many execu-

9 A semicolon denotes “or” in Prolog

226 K. Ostermann, M. Mezini, and C. Bockisch

criteria enum set* pcflow cflow cflowreach
static field precision + - + + +
dynamic field precision - - - + +
object precision - - - + +
Ch1 - - - - +
Ch2 +/- +/- + + +
Ch3 - - + + +
Ch4 - + + + +
Ch5 + - + + +

Fig. 9. Evaluation of pointcuts w.r.t. change scenarios from Fig. 3

tion points whose signature matches the pattern by accident [15, 20, 13]. As a result, the
pointcut performs poorly w.r.t. field precision: Any assignment to the field name which
is not at all involved with drawing will also trigger a display update. Similar to enum,
set* uses only static information, hence, it supports neither dynamic field precision nor
object precision. As far as robustness is concerned, set* exhibits the same behavior as
the AO solution in Sec. 2.

The pcflow pointcut (line 12) uses the pcflow predicate to approximate the con-
trol flow of Display.drawAll() based on the AST model and selects field read ex-
pressions in the approximated control flow; only assignments to such fields match the
pcflow pointcut. Similar to enum, this pointcut ensures that changes to fields that are
never read in the control flow of drawAll() do not trigger display updates. However,
neither object nor dynamic field precision is supported, since the pointcut only makes
use of the AST and not of the dynamic models of the program. The pointcut is not ro-
bust in the case of scenario Ch1 - outsourcing part of figure element state to external
objects. The pointcut explicitly requires P to be a FigureElement in order to be able
to pass it to the draw() method call. So, state outsourced to non FigureElement
objects escape the observation by this pointcut.

Note that while supporting the same precision as enum, pcflow is much more ro-
bust. This is due to the abstraction capabilities of the pointcut language (including func-
tional composition and higher-order pointcuts), which allows us to compose primitive
pointcuts into more powerful ones, such as pcflow. With a pointcut language that does
not support such abstraction mechanisms, e.g., AspectJ’s pointcut language that only
provides operations on sets - union (||), intersection (&&), negation (!) -, the program-
mer cannot express the intention to ”first identify all field accesses in the control flow of
a certain method and than select set operations to these fields” in terms of a generic de-
scription, if this functionality is not available as a primitive pointcut designator. (S)he is
basically left with the explicit enumeration of such field accesses, as in enum; the only
alternative to enumeration is to describe general rules by wildcards, which is actually
not better with regard to robustness.

The cflow pointcut (line 17) is similar to pcflow in that this pointcut also selects
field reads in the control flow of drawAll. The crucial difference is that cflow is
based on the actual control flow at runtime rather than on a conservative static approxi-
mation of it. As a result, cflow performs better than pcflow. It supports both dynamic

Expressive Pointcuts for Increased Modularity 227

and static field precision as well as object precision: Only assignments to a field F of
an object P that are read in the control flow of the particular display object denoted
by this.d (see the expression @this.d in the pcflow pointcut) trigger an update.
Changes of any field of any figure element that is not referred to by our active display
denoted by this.d do not trigger updates. By its use of the dynamic execution model
of the program, cflow significantly improves over pcflow. Note that it would not
be possible to express something similar with the AspectJ cflow construct because the
drawAll method call is in the past and not on the call stack. The only problem with
cflow is lack of robustness w.r.t. Ch1.

The cflowreach pointcut (line 21) solves the robustness problem of cflow
w.r.t Ch1. This pointcut composes the cflow pointcut with the reachable predi-
cate from Fig. 7/Fig. 15. That is, in addition to assignments to objects of type Fig-
ureElement, it also captures assignments to any object that is reachable in the ob-
ject graph from an instance of FigureElement. The use of the object graph model
makes cflowreach robust against Ch1. Since it also inherits all features of the cflow
pointcut, cflowreach fulfills the precision requirements and is robust w.r.t. all change
scenarios Ch1 to Ch5.

The foregoing analysis demonstrates how our approach enables robust and precise
pointcuts. The pointcuts cflow and cflowreach above encode minimal knowledge
about implementation details of the crosscutting structure they describe. They directly
express the semantic properties of the display update structure rather than relying on im-
plementationdetailsofhowthe latter syntacticallyappears in theprogramcode (thenames
of the variables involved with drawing are irrelevant for the display update behavior).

This is due to the rich models of program semantics underlying these pointcuts as
well as the abstraction mechanisms of the pointcut language. In our approach, the pro-
grammer can, however, choose which models of the program (s)he wants to use to ex-
press a pointcut: from pure syntactic to very dynamic, operational properties, whichever
describe the crosscutting best. In this context, please also note the role of unification in
elegantly expressing relations between join points. This is illustrated e.g., by the cflow
pointcut, where unification together with the cflow predicate is crucial in expressing
the temporal relation between points where variables are read respectively written in
the execution flow of drawAll.

4.2 Expressive Power, Openness, and Simplicity

In this section, we reason about the complexity of the programming model of our point-
cut language. We argue that in addition to increasing the expressiveness of the language,
the rich models of program semantics and the powerful abstraction mechanisms such
as Prolog’s unification also decrease the complexity of the programming model.

First, consider the version of ALPHA, call it Fixed-ALPHA with a fixed pointcut
language, including e.g., only the predicates defined in our standard library. The expres-
siveness of this language is increased as compared to AspectJ - all pointcuts in Fig.8
are written in this language. Nonetheless, the programming model is not more complex
than that of AspectJ-like languages [21]. Similar to AspectJ, the programmer needs to
understand the meaning of some predefined pointcuts, such as cflow, within, etc., as
well as the semantics of Prolog operators/unification for composing them.

228 K. Ostermann, M. Mezini, and C. Bockisch

Now let us consider the full ALPHA language, in which (domain-specific) pointcut
libraries can be defined as outlined in Sec. 3.2. One may argue that this introduces the
complexities of full meta-programming into AOP. Similar to [15], we argue that the
problems with full meta-programming occur only in an imperative type of language
where the programmer is directly involved with some sort of program transformation.

With ALPHA, the programmer only specifies where and what behavioral effect to
apply and is not concerned with how this effect is achieved in terms of operational de-
tails. To support our argumentation, two examples are discussed in the following which
demonstrate that richer program models and more powerful abstraction mechanisms
decrease rather than increase the complexity of the programming model.

First, we review the pointcuts cflow and pcflow from Fig. 8. They both identify
assignments involved in the display update crosscutting by their property of accessing
variables previously read in the control flow of drawAll. However, the models they
use are different. The cflow predicate uses a richer model that includes the execution
trace; pcflow’s model is the AST on top of which it approximates the dynamics.
We already argued in Sec. 4.1 that cflow specifies the crosscutting structure more
precisely. Nonetheless, cflow is less complex and easier to understand than pcflow
(see respective definitions in Fig. 15); The approximation of the dynamics of execution
based on the AST model adds accidental complexity to pcflow’s definition.

Second, we compare the ALPHA implementation of display updating using the
cflow pointcut in Fig. 8, with the AspectJ solution shown in Fig. 10. The latter is op-
erationally equivalent to the former: it tries to express the rule ”whenever changes are
performed on fields that were previously read in the control flow of the last drawAll
call, make an update” by quantifying over the dynamic control flow. However, to com-
pensate for the lack of the needed information about the dynamic execution trace, a
model of the latter is constructed and managed by the programmer within the aspect.
Especially, in lack of more powerful abstraction mechanisms beyond operations on sets,
building this model employs the imperative Turing-completeness of Java.

Concretely, the aspect administers observer lists for individual fields rather than for
whole objects; an instance field of type Hashtable is added into the class Fig-
ureElement, whose keys are field names and whose values are the corresponding
lists of observers, i.e., Display objects. A display is made an observer of those fields
that have been read during the last execution of its drawAll() method (see the after
advice associated with the pointcut reads in Fig. 10). The pointcut change captures
assignments to fields of figure elements binding the receiver object to f; the after advice
associated with it uses f together with the name of the assigned field to retrieve displays
that observe the field, if any. Before calling draw on each observer display, the latter is
removed from all observer lists it is in, since different fields might get read during the
next draw (field precision).

Like the cflow-based solution in ALPHA, the implementation in Fig. 10 is ro-
bust w.r.t. all change scenarios (but Ch1). However, the aspect schematically shown in
Fig. 10 is very complex as compared to the pointcut-advice cflow in Fig. 8. Instead
of declaratively defining the crosscutting structure employing functional abstraction, as
its ALPHA counterpart does, the aspect employs the imperative Turing-completeness

Expressive Pointcuts for Increased Modularity 229

<<aspect>> DisplayUpdate

FigureElement.getObserversForField(String) : List;
FigureElement.observersForFields : Hashtable;
…
Display.getObserved() : List;
Display.observed : List;
…

displayDraw(Display d):
 call(void Display.drawAll()) && target(d);
reads(Display d, FigureElement f):
 cflow(displayDraw(d)) &&
 get(* FigureElement+.*) && target(f) &&
 !get(java.util.Hashtable FigureElement.observersForFields);
change(FigureElement f):
 set(* FigureElement+.*) && target(f)

before(Display d): displayDraw(d)
after(Display d, FigureElement f) : reads(d,f)
after(FigureElement f): change(f)

introductions
pointcuts

advice
Management of observer lists for each field of each figure.

A list of the fields per instance observerd by each display.
This is necessary for the reset in the after advice for
pointcut displayDraw.

Denotes the action of drawing a display completely, i.e.,
each figure it knows.

Captures read accesses to any field in the
FigureElement hierarchy. The excluded field

observersForFields is introduced by the aspect.

Caputres write access to any field in the
FigureElement hierarchy.

Removes d from observers of all the fields it observes.

Adds d to the observers of the read field of the figure f.

Calls draw(f) on all observers of the changed field of

figure f.

Fig. 10. More robust AO implementation of the precise display updating

of Java to build up a complex infrastructure to basically reverse-engineer the dynamic
execution; trying to make it robust w.r.t Ch1 will further increase the complexity.

All the above said on the decreased rather than increased complexity of the pro-
gramming model, we would like to add that further investigation is still in place to
judge whether the Turing completeness of Prolog is actually needed. It would clearly
be desirable to have a simpler, but still sufficiently expressive, pointcut language, both
for further decreasing the complexity of the programming model as well as for making
an efficient implementation of the language simpler. We did not, however, want to re-
strict the expressiveness of our language from the very beginning and will consider this
issue in future investigation.

5 Abstract Interpretation of Pointcuts

A naive implementation of our approach that extends the Prolog database and evaluates
all pointcuts after every computation step is obviously not acceptable from both time
and space perspectives.

In this section, we present a new static analysis technique that evaluates pointcuts
statically in order to compute (a) a (small) set of expressions in the AST (i.e., join point
shadows) that will potentially influence the result of a pointcut, and (b) the lifetime
of facts that are generated at these shadows. The interpreter can take advantage of this
information by extending the database and evaluating the pointcuts only if an expression
from the aforementioned pre-computed set is evaluated, and by discarding data in the
database if its lifetime is over. A side-effect of the static analysis is that it also infers
static types for query variables used to type check advice bodies.

Our optimization is based on an abstract interpretation [8] of the pointcuts. Abstract
interpretation of a program uses its denotation to make computations in a universe of
abstract objects so that the result of an abstract execution gives some information on the
actual computation [8].

230 K. Ostermann, M. Mezini, and C. Bockisch

Domain Static abstraction
Time stamps {now,past}× Expression IDs
Values Types
Execution Trace Virtual Trace
Object Store Virtual Store

Fig. 11. Runtime domains and their static abstractions

In our case, we approximate the runtime domains shown in Fig. 11. The interpre-
tation is done by a special Prolog interpreter (written in Prolog itself) that evaluates
pointcut queries based on our abstract domains and collects data about join point shad-
ows and lifetime during the interpretation.

The virtual trace defines all predicates from the execution trace as rules over the
abstract syntax tree and the static type model. For illustration we will only consider
the calls/5 predicate. In a similar way, all other predicates of the execution trace are
approximated statically. Their exact definition can be found in the appendix in Fig. 16
and on the project website [2]. The call/5 predicate is defined as follows:

1 absval (RecTypeC), MName, absval(ArgTypeC)) :−
2 within ((ExprID, calls ((Rec,), MName,)), ,),
3 stype (Rec, RecType),
4 subtypeeq(RecTypeC, RecType),
5 meth(RecType, MName, meth(, MName, ArgType,)),
6 subtypeeq(ArgTypeC, ArgType),
7 addshadow((Time, ExprID)).

This rule uses the abstractions defined in Fig. 11 in order to create the virtual trace.
Timestamps are represented by a pair (Time,ExprID), whereby Time is either the
constant now or it is unbound. To achieve this, we fix the now predicate to the definition
now((now,)). This means that all queries getting the timestamp via the now/1 pred-
icate will have their timestamp in the abstraction fixed to the constant now. All other
queries will have an unbound variable in the first position of the timestamp; an unbound
variable in the first position denotes a query that might refer to the past.

Instead of values, the execution trace uses types of the form absval(SomeType).
All method calls (found in the AST via within) imply a corresponding calls predi-
cate, whereby the information from the static type system (stype/2 predicate) is used
in order to infer the type of the receiver. Subtyping is taken into account by correspond-
ing subtypeeq constraints.

Of particular interest is the addshadow part of the rule. This is a special predicate
that is intercepted by our static analysis. Whenever an addshadow goal is encountered,
the interpreter adds the corresponding join point shadow (i.e., ExprID) and its lifetime
(Time) to a list of shadows for the pointcut that is currently analyzed.

The definition of the virtual store is relatively straightforward: It defines the store
and classOf predicate in terms of types instead of values. The situation becomes a
bit complicated by taking subtype polymorphism into account. We deal with this by
letting store range over all possible combinations of types in an object – we ignored
performance and favored simplicity in our prototype analysis. The definition of the
virtual store is also available in the appendix (Fig. 16).

Expressive Pointcuts for Increased Modularity 231

subtypeeq(D, display),
shadows(

(set (P, F,), get (T1, , P, F,), calls (T2, , absval (D), draw,),
cflow(T1, T2), instanceof (P, figureElement)), ,S)

Fig. 12. Query for shadows of cflow pointcut (line 17, Fig. 8)

1 class Point extends FigureElement {
2 void draw(Display d) {
3 if (this.enabled) d. paintPoint (this.x , this.y);

4 }
5 }
6 class Line extends FigureElement {
7 void draw(Display d) {
8 this . foo(true);

9 if (this.enabled) d. paintLine (this.start , this.end);

10 }
11 }
12 class Main extends Object {
13 ...
14 void writeSomething() {
15 this .p2.y := false ; this .p1.x := true ;
16 this .p1.enabled := false ;
17 }
18 void main() {
19 this .p1 := new Point (); this .p2 := new Point ();
20 this .p2.enabled := true ;
21 this . l1 := new Line (); this . l1 . start := this .p1;
22 this . l1 .end := new point ;
23 this .d := new Display (); this .d. f1 := this . l1 ;
24 this .d. f2 := this .p2; this .du = new Displayupdate ();
25 this .du.d := this .d;

26 deploy(this .du) { this.d.drawAll() ; this .writeSomething (); }
27 }
28 }

Fig. 13. The result of abstract interpretation

Our pointcut interpreter is implemented as a meta-interpreter in Prolog. Meta-
interpreters are a common technique for abstract interpretation of logic programs [7].
Our meta-interpreter is basically the so-called vanilla meta-interpreter [36–Program
17.5] extended by a loop detection mechanism and an additional parameter that collects
shadows. In order to invoke the pointcut interpreter we first have to substitute the dy-
namic values in the pointcut expressions with their static abstraction. By evaluating the
pointcuts over the abstracted domains with our pointcut interpreter we basically per-
form a constant propagation analysis through the control flow of a pointcut. The code
of the meta-interpreter is available in the appendix (shadows predicate in Fig. 16).
We do not want to discuss its implementation here in detail because it uses some very
Prolog-specific mechanisms.

For illustrating the abstract interpretation process, the query to compute the shadows
for the cflow pointcut from line 17, Fig. 8 is shown in Fig. 12. The program expressions

232 K. Ostermann, M. Mezini, and C. Bockisch

inside the pointcut (e.g., the @this.d expression in Fig. 8) are replaced by an abstract
value that is constrained by its static type via a subtype constraint.

The meta-interpreter computes all solutions of the query on top of the virtual execu-
tion trace and virtual store (thereby collecting shadows triggered by addshadow goals).
It is important that all solutions are computed such that the back-tracking evaluation of
queries covers all possible evaluation scenarios at runtime. The abstract values (i.e.,
types) returned by the pointcut interpreter are also used to get a bound for the static
type of pointcut variables, which is then used to type-check advice bodies.

Fig. 13 illustrates the result of computing the shadows for the aforementioned
cflow pointcut (Fig. 8) in terms of the code from Fig. 4 and a sample main class.
The shadows identified by the pointcut-interpreter are framed in Fig. 13. If the life-
time of the produced facts is indefinite (i.e., constant now has not been found in the
timestamp, the expressions are also underlined, otherwise the lifetime is immediate.

For example, the call to draw and the field reads are marked as “indefinite lifetime”
because they could be relevant as past events in the evaluation of the get goal in line 17
of Fig. 8. The lifetime of the field assignments is marked as immediate because they
are only relevant for this query if they are the current now event.

5.1 Results and Limitations

The results of the static analysis are directly used in our interpreter in that Prolog facts/
queries are only evaluated at marked shadows. Also, events for shadows that are marked
with lifetime immediate are discarded immediately after the evaluation of the corre-
sponding query. Our interpreter can be run both with and without this optimization.
The performance gain depends directly on the relation between marked shadows and
unmarked shadows. The example in Fig. 8 runs approximately 4 times faster with the
abstract interpretation optimization turned on. In a different example, where the per-
centage of marked shadows to unmarked shadows is smaller, the program runs 300
times faster. This result is not surprising because extending the database and evaluating
queries is very expensive, but it indicates that it is possible to have a very expressive
pointcut language that is expensive only if pointcuts are used that cannot be projected
on a small set of shadows.

Our analysis technique still has several important limitations, though. First, the anal-
ysis itself, as it is presented here, is very slow and would not scale to real systems. It is
also hard to guarantee termination of the static analysis in all cases; a typical problem
of static analysis by meta-circular interpreters [7]. Our primary goal was to show the
feasibility of a static analysis only, so we favored simplicity over performance and com-
pleteness. We think that our analysis can be embedded into the conceptual framework
described by Codish and Søndergaard [7]. They use a different meta-interpreter, a so-
called “bottom-up” interpreter, that has better performance properties and is guaranteed
to terminate. This is part of our future work.

Another limitation is in the existence of the indefinite lifetime because this
means that such facts will never be removed from the database. A more fine-grained
analysis that computes lifetimes of the kind “this fact can be removed after some event
happened” would be desirable in order to remove this limitation. It is of course easy
to construct queries that will inherently require indefinite storage of previous events,

Expressive Pointcuts for Increased Modularity 233

but in these cases the static analysis could be used to detect those queries and signal an
error if the memory requirements cannot be restricted in a reasonable way.

How do we get from our prototype to an efficient implementation in a compiled
language? Besides the limitations mentioned above, our representation of the store is
not easy to implement efficiently. A trivial solution is to drop the store model from
the pointcut language - there are no conceptual dependencies of our approach on the
existence of the store (or any other) model. An alternative would be a database-like
organization of the store, which is actually part of our future work.

In order to make the evaluation of the queries itself more efficient, we plan to use
partial evaluation techniques such as Logen [26] to reduce dynamic pointcut evaluation
to a minimum and to inline the remaining dynamic checks at the computed join point
shadows.

6 Related Work

6.1 Pointcut Languages

Gybels’ and Brichau’s proposal [15] is related in several ways. Similar to our approach,
they use logic programming and unification for matching pointcuts. The insertion of
dynamic context into a pointcut similar to our @expr expressions is possible by means
of linguistic symbiosis [3]. As in our approach, pointcuts can be made reusable by means
of logic rules. The possibility of user-defined pointcut predicates or pointcut libraries is
not discussed in [15], but this is no conceptual limitation.

The most important difference to our approach is the data model upon which point-
cuts can be expressed. In their approach, the data model consists of a representation
of the current join point, syntax tree, and some special object reifying predicates. It is
hence not possible to encode queries that refer to the execution history or need access
to data from the store. An efficient implementation by computing shadows of pointcuts
is also discussed but the addition of the whole execution trace as in our case makes
the problem much harder. Other works from the same group [19, 37, 4] also use logic
meta-programming but consider only the static syntax of the program as data model.

LogicAJ [32] is an extension to AspectJ that uses logic variables and unification
instead of wildcards in order to make pointcuts more expressive. The data model upon
which the pointcuts operate is unchanged, though.

We have developed an extension of Alpha with which it is possible to refer to future
events [24]. Due to several limitations of the implementation, this extension should be
seen as an experiment to explore the limits of pointcuts and not as a proposal for a
practical programming language.

Walker et al have developed an extension to AspectJ for expressing temporal rela-
tions between join points [38]. These temporal relations can be expressed via context-
free grammars. The program trace is then “parsed” by an automaton for the grammar.
Information about the history of the execution is stored in the state of these automata,
which is an effective solution to reduce the amount of data that has to be stored. This
approach would not be directly applicable to our model because our pointcut language
is more powerful than context-free grammars.

234 K. Ostermann, M. Mezini, and C. Bockisch

Douence et al have proposed a special pattern matching language for execution
traces based on Haskell [11]. Other models besides the execution trace are not cov-
ered. Many of the issues presented in this paper (integration into the language, context
passing, efficient implementation) are not discussed.

Josh [5] is an AspectJ-like language with an extensible pointcut mechanism, built
on top of Javassist [6]. Josh does not support declarative pointcut specifications. Rather,
new PCDs in Josh are implemented as imperative meta-programs on the abstract syntax
tree using the Javassist library. Josh basically suffers from the problems of an imperative
meta-programming approach, especially with respect to the composability of the PCDs
implemented as meta-programs.

Eichberg et al discussed the usage of the functional query language XQuery as an
extensible pointcut language [13]. The data model in this approach is an XML represen-
tation of the abstract syntax tree. Due to functional abstraction and the module system
of XQuery, it is possible to organize reusable pointcuts in libraries. Other data models
or the integration into a programming language are not discussed.

Sakurei et al. [34] propose a design to extend AspectJ with object-specific aspects
and pointcuts. Our deploy statement can be used with a similar effect as the asso-
ciate statement in this approach. Since runtime values can be used directly in our
pointcut language, arbitrary object-specific constraints can be expressed and not just
those that are defined in a perObject clause. On the other hand, the proposal in [34]
has a more a efficient implementation if many instances of the same object-specific
aspect are active simultaneously.

6.2 Weaving and Static Analysis

Hilsdale and Hugunin have described the weaving mechanism in AspectJ [17]. The
AspectJ weaver also computes shadows for dynamic pointcuts. However, AspectJ has
only a fixed, predefined set of pointcut operators, hence it is easier to compute the set
of join point shadows statically. Due to the structure of pointcuts, only certain dynamic
checks that look at the class of objects or operate on special stacks (for cflow), are
required, such that these dynamic checks can be directly woven into the code.

A more semantics-based compilation model, based on a simplified model of As-
pectJ, can be found in [28]. Using partial evaluation, their model can explain several
issues in the compilation processes, including how to find places in program text to in-
sert aspect code and how to remove unnecessary run-time checks. Sereni and de Moor
describe a static analysis technique [35] for an even more simplified version of the As-
pectJ pointcut language that allows a more efficient implementation of some pointcuts
than the implementation proposed in [28].

Douence et al presented an analysis technique for detecting interactions between
aspects [10]. This is complementary to our static analysis, because we simply assume a
global ordering among aspects and concentrate on computing shadows of single point-
cuts. Nevertheless, our abstract interpretation implies a primitive interaction analysis for
free, namely in that it becomes trivial to detect whether two pointcuts have intersecting
shadows. However, this is not in the focus of our work.

Codish and Søndergaard [7] describe the usage of meta-interpreters for different
abstract interpretations of Prolog code. In contrast to their “bottom-up” approach, we

Expressive Pointcuts for Increased Modularity 235

use a conventional top-down meta-interpreter with loop-detection. We are not aware of
other works that use abstract interpretation for computing join point shadows.

6.3 Aspects and Modularity

Lopes et al. [27] motivate and speculate about future ”more naturalistic” referencing
mechanisms inspired by natural languages, such e.g., ”those (data) read in previous
sentence”, or even ”in this last operation”. By means of a simple example they illus-
trate how referencing mechanisms of current programming languages force program-
mers to circumscribe their intentions in terms of operational details of the underlying
machine. They argue that while pointcuts in AOP languages go one important step fur-
ther in supporting more powerful referencing they do not go far enough, e.g., in that they
lack means of temporal referencing. The prototype we presented in this paper provides
a very good basis to experiment with programming models that support more naturalis-
tic referencing mechanisms as those envisaged in [27]. Our prototype can be extended
to collect more and different kinds of information about the program to support more
”types of referencing”.

Aldrich [1] proposes module constructs that export pointcuts as part of the mod-
ule specification. The rationale for this is the lack of modular reasoning if pointcuts
depend on implementation details of a module. He shows that the implementation of
such modules can be changed without affecting the consistency of the whole system.
On the other hand, this approach is also a serious restriction to the programming model
because 1) pointcuts of a module have to be anticipated in its design, 2) the existence of
these pointcuts in the interface establishes an implicit coupling to the aspects that use
the pointcut, and 3) if pointcuts go across modules (as is inherent for crosscutting con-
cerns), the specification of the pointcut interfaces themselves becomes a crosscutting
concern. Our approach also tackles this problem, but with very different means, namely
by making the pointcut language more powerful, such that pointcut specifications can be
made more robust and less dependent on implementation details. On the other hand, we
can give no static guarantees because we cannot enforce implementation-independent
pointcuts.

6.4 Information Engineering in Program Models

There are also some interesting related works outside the domain of programming lan-
guage design. Efficient ways to manage and retrieve dynamic data about the execution
of a program have been discussed by De Pauw et al [9]. Both the works by Lange and
Nakamura [25] and by Richner and Ducasse [33] discuss the design of a static and a
dynamic model of the program semantics as well as the use of logic rules to collect and
combine information from these models in order to improve program understanding
and program visualizations. Abstraction mechanisms to select interesting events in the
execution of a program are also used in the domain of debugging, for example in the
work of Jahier and Ducasse [18]. Reiss and Renieris have developed a framework for
processing execution traces by reducing the amount of data as it is collected through
mechanisms such as automata or context-free grammars [31]. These techniques may be
helpful for us in order to further reduce the amount of collected data.

236 K. Ostermann, M. Mezini, and C. Bockisch

7 Summary and Future Work

In this paper we have presented an analysis which shows that current pointcut languages
support localization of crosscutting concerns but have some problems with respect to
information hiding. And we have described a new pointcut language in the form of logic
queries over different models of the program semantics. Together with the abstraction
facilities of logic programming, it becomes possible to raise the abstraction level of
pointcuts and hence increase the software quality of aspect-oriented code. We have
also presented a static analysis technique that can be the starting point of an efficient
implementation.

Our future work will concentrate on the embedding of our pointcut language into a
real compiled programming language and on further research in efficient implementa-
tion techniques that eliminate the limitations of our current analysis.

Acknowledgments

We would like to thank Gregor Kiczales, Michael Haupt and Michael Eichberg for
comments on drafts of this paper.

This work is partly supported by the European Network of Excellence on Aspect-
Oriented Software Development (AOSD-Europe).

References

[1] J. Aldrich. Open modules: Modular reasoning about advice. In ECOOP’05: European
Conference on Object-Oriented Programming. Springer LNCS, 2005.

[2] Alpha project. http://www.st.informatik.tu-darmstadt.de/pages/projects/alpha/.
[3] J. Brichau, K. Gybels, and R. Wuyts. Towards a linguistic symbiosis of an object-oriented

and a logic programming language. In Proceedings of the Workshop on Multiparadigm
Programming with Object-Oriented Languages (MPOOL 2002), 2002.

[4] J. Brichau, K. Mens, and K. D. Volder. Building composable aspect-specific languages
with logic metaprogramming. In Generative Programming and Component Engineering
(GPCE’02). Springer LNCS, 2002.

[5] S. Chiba and K. Nakagawa. Josh: An Open AspectJ-like Language. In Proceedings of
AOSD 2004, Lancaster, England, 2004. ACM Press.

[6] S. Chiba and M. Nishizawa. An Easy-to-Use Toolkit for Efficient Java Bytecode Transla-
tors. In Proceedings of GPCE ’03, Lecture Notes in Computer Science, pages 364–376.
Springer, 2003.

[7] M. Codish and H. Søndergaard. Meta-circular abstract interpretation in Prolog. In T. Mo-
gensen, D. Schmidt, and I. H. Sudburough, editors, The Essence of Computation: Complex-
ity, Analysis, Transformation, LNCS 2566. Springer, 2002.

[8] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In Symposium on Principles of
Programming Languages. ACM Press, 1977.

[9] W. De Pauw, D. Kimelman, and J. M. Vlissides. Modeling object-oriented program exe-
cution. In ECOOP ’94: Proceedings of the 8th European Conference on Object-Oriented
Programming, pages 163–182, London, UK, 1994. Springer-Verlag.

Expressive Pointcuts for Increased Modularity 237

[10] R. Douence, P. Fradet, and M. Südholt. A framework for the detection and resolution
of aspect interactions. In Proceedings of the ACM SIGPLAN/SIGSOFT Conference on
Generative Programming and Component Engineering (GPCE’02), volume 2487 of LNCS.
Springer-Verlag, 2002.

[11] R. Douence, O. Motelet, and M. Südholt. A formal definition of crosscuts. In Proc. of the
Third International Conference on Metalevel Architectures and Separation of Crosscutting
Concerns (Reflection 2001), volume 2192 of LNCS. Springer-Verlag, 2001.

[12] S. Drossoupolou. Lecture notes on the L2 calculus.
http://www.doc.ic.ac.uk/˜scd/Teaching/L1L2.pdf.

[13] M. Eichberg, M. Mezini, and K. Ostermann. Pointcuts as functional queries. In Second
ASIAN Symposium on Programming Languages and Systems (APLAS). LNCS, 2004.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison Wesley, 1995.
[15] K. Gybels and J. Brichau. Arranging language features for more robust pattern-based cross-

cuts. In Proceedings of the 2nd international conference on Aspect-oriented software de-
velopment, pages 60–69. ACM Press, 2003.

[16] J. Hannemann and G. Kiczales. Design pattern implementation in Java and AspectJ. In
Proceedings OOPSLA ’02. ACM SIGPLAN Notices 37(11), pages 161–173. ACM, 2002.

[17] E. Hilsdale and J. Hugunin. Advice Weaving in AspectJ. In Proc. of AOSD’04. ACM Press,
2004.

[18] E. Jahier and M. Ducasse. Generic program monitoring by trace analysis. In Theory
and Practice of Logic Programming Journal, volume 2(4-5). Cambridge University Press,
2002.

[19] D. Janzen and K. De Volder. Navigating and querying code without getting lost. In Pro-
ceedings of AOSD’03. ACM Press, 2003.

[20] G. Kiczales. Keynote talk at AOSD ’03, 2003.
[21] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An overview

of AspectJ. In Proceedings of ECOOP ’01, 2001.
[22] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J. Irwin.

Aspect-oriented programming. In Proceedings ECOOP’97, LNCS 1241, pages 220–242.
Springer, 1997.

[23] G. Kizcales and M. Mezini. Aspect-oriented programming and modular reasoning. In
Proceedings International Conference on Software Engineering (ICSE) ’05. ACM, 2005.

[24] K. Klose and K. Ostermann. Back to the future: Pointcuts as predicates over traces. In
Workshop on Foundations of Aspect-Oriented Languages (FOAL) at AOSD’05, 2005.

[25] D. B. Lange and Y. Nakamura. Interactive visualization of design patterns can help in
framework understanding. In OOPSLA ’95: Proceedings of the tenth annual conference on
Object-oriented programming systems, languages, and applications, pages 342–357, New
York, NY, USA, 1995. ACM Press.

[26] M. Leuschel, J. Jørgensen, W. Vanhoof, and M. Bruynooghe. Offline specialisation in
Prolog using a hand-written compiler generator. In Theory and Practice of Logic Program-
ming, volume 4, pages 139–191, 2004.

[27] C. V. Lopes, P. Dourish, D. H. Lorenz, and K. Lieberherr. Beyond AOP: Toward naturalistic
programming. In Proceedings Onward! Track at OOPSLA’03, Anaheim, 2003. ACM Press.

[28] H. Masuhara, G. Kiczales, and C. Dutchyn. A compilation and optimization model for
aspect-oriented programs. In Proceedings of Compiler Construction (CC2003), LNCS
2622. Springer, 2003.

[29] M. Mezini and K. Ostermann. Conquering aspects with Caesar. In Proceedings Conference
on Aspect-Oriented Software Development (AOSD) ’03, pages 90–99. ACM, 2003.

[30] D. L. Parnas. A technique for software module specification with examples. Communica-
tions of the ACM, 15(5):330–336, 1972.

238 K. Ostermann, M. Mezini, and C. Bockisch

[31] S. P. Reiss and M. Renieris. Encoding program executions. In International Conference on
Software Engineering, Toronto, Ontario, Canada, 2001. IEEE.

[32] T. Rho and G. Kniesel. Uniform genericity for aspect languages. Technical Report IAI-
TR-2004-4, Computer Science Department III, University of Bonn, Dec 2004.

[33] T. Richner and S. Ducasse. Recovering high-level views of object-oriented applications
from static and dynamic information. In ICSM ’99: Proceedings of the IEEE International
Conference on Software Maintenance, Washington, DC, USA, 1999. IEEE Computer So-
ciety.

[34] K. Sakurai, H. Masuhara, N. Ubayashi, S. Matsuura, and S. Komiya. Association aspects.
In Proc. of AOSD’04. ACM Press, 2004.

[35] D. Sereni and O. de Moor. Static analysis of aspects. In Proceedings of AOSD’03. ACM,
2003.

[36] L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1994.
[37] K. D. Volder and T. D’Hondt. Aspect-Oriented Logic Meta Programming. In Conf. Meta-

Level Architectures and Reflection, LNCS 1616. Springer, 1999.
[38] R. J. Walker and K. Viggers. Implementing protocols via declarative event patterns. In

Proceedings of the ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE-12), 2004.

Expressive Pointcuts for Increased Modularity 239

A Appendix

Format Example
prog(
[class(ClassName, SuperClass,
[field(FieldType, FieldName), ...
[meth(RetType, MethName, ArgType, Expr), ...],
[advice(before, Expr), ...]

] ...
)
where Expr has the form:
(ExprID, if(IfExpr, ThenExpr, ElseExpr)
(ExprID, get(ReceiverExpr, FieldName)
(ExprID, seq(Expr1, Expr2)
...

prog(
[class(point, figureElement,

[field(bool, xx), field(bool, yy),
field(bool, enabled)],

[meth(bool, draw, display),
('9:5', if(('9:13', get(('9:8',this),enabled)),

('10:7', '10:15', seq(
('10:13', get(('10:8', this), xx)),
('10:22', get(('10:17', this), yy)))),

('11:10', true))))],
[]%no advice
)%class point

]%classes
). %prog

stype(ExprID, Type) stype('2:26', bool)

new(ID, ExprID, ClassName, Obj)
calls(ID, ExprID, Receiver, MethodName, Arg)
set(ID, ExprID, Receiver, FieldName, Value)
get(ID, ExprID, Receiver, FieldName)
deploy(ID, ExprID, Obj)
endcall(ID, CallID, ReturnValue)

pred(ID1, ID2) % event ID1 happened
% immediately before event ID2

before(ID1, ID2) % transitive hull of pred
now(ID) % gives the current event ID

calls(3, '53:5', iota1, setP1, iota2)
set(4, '66:14', iota1, p1, iota2)
endcall(5, 3, false)

store(Obj, FieldName, Value)
classof(Obj, ClassName)

classof(iota2, point)
store(iota2, enabled, false)
store(iota2, yy, false)
store(iota2, xx, true)

Fig. 14. Format of the four program models (AST, static typing, execution trace, object store)
available for pointcuts in Alpha

240 K. Ostermann, M. Mezini, and C. Bockisch

1 % abbrevations if only interested in current event
2 new(ClassName, Obj) :−
3 now(ID), new(ID, , ClassName, Obj). ∗
4 calls (Receiver , Method, Arg) :−
5 now(ID), calls (ID, , Receiver , Method, Arg).
6 set (Receiver , Field , Val) :−
7 now(ID), set (ID, , Receiver , Field , Val).
8 get (Receiver , Field) :−
9 now(ID), get (ID, , Receiver , Field).
10 deploy(Receiver) :−
11 now(ID), deploy(ID, , deploy(Receiver)).
12

13 % is ID0 in the control flow of ID1?
14 cflow(ID0, ID1) :−
15 calls (ID1, , , ,), before (ID1, ID0),
16 endcall (ID2, , ID1,), before (ID0, ID2).
17 cflow(ID0, ID1) :−
18 calls (ID1, , , ,), before (ID1, ID0),
19 \+ encall (, , ID1,).
20

21 % is Obj2 reachable from Obj1?
22 reachable (Obj1,Obj2) :− reachablevia (Obj1,Obj2 ,[]).
23 reachablevia (Obj1,Obj2,) :− store (Obj1, , Obj2).
24 reachablevia (Obj1,Obj2,Via) :−
25 store (Obj1, , Obj3), \+ member(Obj1,Via),
26 reachablevia (Obj3, Obj2, [Obj3|Via]).
27

28 % convenient access of AST
29 class (Name, CDef) :−
30 prog(CDefs), member(CDef, CDefs),
31 CDef = class (Name, , , ,).
32 meth(CName, MName, MDef) :−
33 class (CName, class(, , , MDefs,)),
34 member(MDef, MDefs), MDef = meth(,

MName, ,).
35 field (CName, FName, FDef) :−
36 class (CName, class(, , FDefs, ,)),
37 member(FDef, FDefs), FDef = field (, FName).

1 within ((ExprID, Expr), CName, MName,) :−
2 meth(CName, MName, meth(, , , Body)),
3 subExpr(Body, (ExprID, Expr)).
4 subExpr(E, E).
5 subExpr(X, E) :−
6 X =.. [|List], member(E1, List), subExpr(E1, E).
7

8 % static subtype / subclass relation
9 directsubtype (C1, C2) :−
10 class (C1, class (, C2, , ,)).
11 subtypeeq(bool , bool).
12 subtypeeq(C, C) :− class (C,).
13 subtypeeq(C1, C2) :−
14 directsubtype (C1, C3), subtypeeq(C3, C2).
15

16 % add subtyping to static and dynamic types
17 hastype(ExprID, C) :−
18 stype (ExprID, D), subtypeeq(D, C).
19 instanceof (Obj, C) :−
20 classof (Obj, D), subtypeeq(D, C).
21

22 %predicted control flow
23 pcflow(CName, MName, E) :−
24 pcflow1(CName, MName, E, []).
25 pcflow1(CName, MName, E,) :−
26 within (E, CName, MName).
27 pcflow1(CName, MName, E, V) :−
28 within ((, calls ((RecID,), MName1,)), CName, MName),
29 stype (RecID, CName2),
30 (subtypeeq(CName1, CName2); subtypeeq(CName2, CName1)),
31 meth(CName1, MName1,),
32 \+ member((CName1, MName1), V),
33 pcflow1(CName1, MName1, E, [(CName1,MName1)|V]). ∗
34

35 %finding the most recent of an event pattern X
36 mostRecent(ID,X) :−
37 bagof(ID,X,IDs), maxlist (IDs,ID).

Fig. 15. Standard pointcut library

1 % virtual store
2 store (absval (CName), Field, absval (TypeC)) :−
3 subtypeeq(CName, CSuper),
4 field (CSuper, Field , field (Type,)),
5 subtypeeq(TypeC, Type).
6 classof (absval (CName),CName).
7

8 % virtual event trace
9 calls ((Time,ExprID), ExprID,

10 absval (RecTypeC), MName, absval(ArgTypeC))
11 :−
12 within ((ExprID, calls ((Rec,), MName,)), ,),
13 stype (Rec, RecType),
14 subtypeeq(RecTypeC, RecType),
15 meth(RecType, MName, meth(, MName, ArgType,)),
16 subtypeeq(ArgTypeC, ArgType),
17 addshadow((Time, ExprID)).
18 % similarly for set , get ,new,deploy, endcall

1 now(now).
2 before (,).
3 pred(,).
4 % the meta−interpreter
5 shadows(true , [],) :− !.
6 shadows((A,B), Shadows, Trail) :−
7 !, shadows(A, S1, Trail), shadows(B, S2, Trail),
8 append(S1, S2, Shadows).
9 shadows(X, [],) :−
10 predicate property (X, built in), !, X.
11 shadows(addshadow((Time,Token)), S,) :−
12 var(Time), !, S = [(Token, indefinite)].
13 shadows(addshadow((now,Token)), S,) :−
14 !, S = [(Token, immediate)].
15 shadows(A, S, Trail) :−
16 loop detect (A, Trail), !.
17 shadows(A, S0, Trail) :−
18 clause (A, B), shadows(B, S0, [A|Trail]).

Fig. 16. Meta-interpreter for computing pointcut shadows

A.P. Black (Ed.): ECOOP 2005, LNCS 3586, pp. 241 – 261, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Sustainable System Infrastructure and
Big Bang Evolution: Can Aspects Keep Pace?

Celina Gibbs, Chunjian Robin Liu, and Yvonne Coady

University of Victoria, British Columbia, Canada
{celinag, cliu, ycoady}@cs.uvic.ca

Abstract. Realistically, many rapidly evolving systems eventually require ex-
tensive restructuring in order to effectively support further evolution. Not sur-
prisingly, these overhauls reverberate throughout the system. Though several
studies have shown the benefits of aspect-oriented programming (AOP) from
the point of view of the modularization and evolution of crosscutting concerns,
the question remains as to how well aspects fare when the code that is crosscut
undergoes extensive restructuring. That is, when evolution is a big bang, can
aspects keep pace? The case study presented here considers several categories
of aspects – design invariants, dynamic analysis tools, and domain specific de-
sign patterns – and shows the concrete ways in which aspects had positive,
negative and neutral impact during the restructuring of the memory manage-
ment subsystem of a virtual machine. Compared with best efforts in a hierar-
chical decomposition coupled with a preprocessor, aspects fared better than the
original implementation in two out of four aspects, and no worse in the remain-
ing two aspects.

1 Introduction

Legacy systems eventually face upheavals in system structure. The dawn of new
system structure, marked by improved separation of concerns, is often preceded by a
darkness in which the old structure must be torn down. This explosive, big bang,
type of evolution forces simultaneous changes throughout the system. Though as-
pects have been shown to be effective as a locus of control for evolving crosscutting
concerns, the fact that they rely on explicit external interaction implies that aspects
could have negative impact under these extreme conditions – when the code that is
crosscut, or the dominant decomposition – is undergoing structural reorganization.

Low level system infrastructures need to be fast yet flexible – traits that are com-
monly at odds with each other. To reconcile this tension, standard practices within
this domain include preprocessor directives and system patch files. These mecha-
nisms are de facto standard in part because they introduce no performance overhead,
and in part because they provide at least rudimentary means to achieve better con-
figurability and extensibility than traditional language constructs in C and Java.
Though distasteful to many developers due to their lack of semantic levarage, they are
a reality in today’s system infrastructure software.

In order to test the sustainability of aspects in systems such as these, we conducted
an experiment using the rapidly evolving Memory Management Toolkit (MMTk) [2],

242 C. Gibbs, C.R. Liu, and Y. Coady

within the Jikes Research Virtual Machine (RVM) [15]. The RVM is a unique open
source project in Java. A basis for almost 100 publications over the last 5 years and
averaging several hundred CVS commits per month, the RVM is host to most of to-
day’s state-of-the-art java virtual machine technology. Its code-base affords research-
ers the opportunity to experiment with a variety of design and implementation alterna-
tives within an otherwise stable and consistently well maintained infrastructure.
Specifically, MMTk is a framework used within the RVM designed to support re-
search in new garbage collection (GC) strategies. MMTk provides a marked depar-
ture from traditional monolithic implementations by being both more modular and
efficient than its predecessors [2].

In the experiment described here, we compared the evolution of the original system
(MMTk) versus one where we introduced aspects (MMTkao). The aspects included
representatives from three different categories: design invariants, dynamic analysis
tools [29], and domain specific design patterns [2]. In the original implementation, the
Jikes RVM relies on preprocessor directives along with hierarchical decomposition to
achieve a highly efficient, configurable system. In order to determine if aspects could
keep pace with evolution in a system based on this composition, we considered evolu-
tionary restructuring tasks over an intensive change period of 10 months (version 2.3.3
from January – October 2004). In total, 12 significant restructurings across four as-
pects were considered in the study, where a single restructuring often had impact on
multiple aspects. The aspects were programmed using AspectJ [19, 14].

With respect to the impact of the 12 restructuring tasks, the results show that evo-
lution of aspects fared better than the original implementation in two of four aspects,
and no worse in the remaining aspects. Results from the DaCapo Benchmark for GC
[5] show the system sustained a worst-case performance penalty just under an average
of 10% as a result of one fine-grained aspect with of millions of advice invocations.
This study demonstrates the ways in which existing mechanisms for AOP can support
sustainable system infrastructure relative to their preprocessed/hierarchical counter-
parts in the somewhat inhospitable domain of system infrastructure software. Further,
the resulting system structure is arguably better suited for future trends in evolution.

This paper is organized as follows. After an overview of related work, the imple-
mentation and evolution of MMTk is described (section 2), followed by a description
of the same evolution applied to MMTkao (section 3). In terms of analysis, the
evaluation of sustainability considers each category of aspect, limitations of the study,
and preliminary performance considerations (section 4).

1.1 Related Work

AOP provides linguistic support aimed at improving modularity. The software engi-
neering community has repeatedly demonstrated that modularity plays a key role in
determining the cost of change [24, 6, 21]. Unfortunately, structural boundaries tend
to decay over time due to increasing dependencies between modules [27, 20]. Struc-
tural deficiency results in the need for non-local changes that require considerable
effort associated with non-local reasoning [32, 25]. Evolution thus becomes im-
paired over time, as modularity becomes compromised.

 Sustainable System Infrastructure and Big Bang Evolution: Can Aspects Keep Pace? 243

Original case studies involving AOP implementations generally reveal qualities as-
sociated with improved separation of concerns [22, 17, 12]. More recently, aspects
have been associated with higher quality code refactorings [28, 10], adaptability in
middleware [4, 33, 7], configurability in real time systems [30], and autonomic com-
puting in OS kernels [8]. In terms of evolution, Banniassad’s results show that the
lack of adequate separation of concerns can stand as an obstacle to evolution [1],
while Walker’s work demonstrates that explicit separation can have mixed results in
terms of understanding and evolving systems [31]. Rashid’s study of evolution in
database systems [26], and our own previous work in operating systems [3], have
uncovered some of the benefits of aspects in terms of evolution.

The case study presented here evaluates aspects in the context of a particularly in-
tense evolutionary scenario. The rapid refactoring of the memory management sub-
system of the Jikes RVM provides a rich testbed for assessing sustainability in terms
of modularity. In particular, the fact that the aspects needed to change in response to
changes in the code they crosscut provided an acid test for aspects. That is, we were
able to better establish, (1) the value of the internal structure of the aspects alongside,
(2) the changes that occurred to the external interaction explicitly defined by point-
cuts. This allowed us to view evolution of the dependencies between the concerns
from the perspective of the semantics of the woven system as a whole.

2 Evolution of MMTk

The evolution of MMTk reveals a move towards a more portable and manageable
subsystem. Portability is necessary as MMTk can now be used in other systems re-
quiring garbage collection, such as the Glasgow Haskell Compiler [13] and OVM
[23]. Manageability is necessary as MMTk serves as platform for developers to ex-
periment with new GC strategies. As a result of these two main motivating factors,
key evolutionary steps of MMTk include: (1) new adherence to a strict interface for
portability, and (2) new hierarchical decomposition and migration of code within
(sub)packages to better separate concerns. A high level overview of the extensive
nature of this evolution over a 10 month period is provided by Table 1, with more
detailed accounting of 12 major restructurings in Table 2.

Table 1. Evolution in MMTk: old and new class sturucture overview

TOP LEVEL
PACKAGE

OF OLD
CLASSES EVOLVED CLASSES

GCspy 14 moved out of MMTk
Plan 22 15 (new hierarchy)
Policy 10 15 (new hierarchy)
Utility 63 14 (+5 new subpackages)
VMInterface 17 redistributed in MMTk

244 C. Gibbs, C.R. Liu, and Y. Coady

Table 2. Detailed evolution of 12 restructuing tasks of MMTk over 10 months

BETTER
SEPARATION OF

MMTK FROM JIKES

BETTER SEPARATION
OF CONCERNS WITHIN

MMTK

GENERAL EVOLUTION
AND MAINTENANCE

1.1) Eliminated MMTk
and VM_Magic in-
teraction

2.1) Restructured plan pack-
age

3.1) One class changed to
implement synchroniza-
tion interface

1.2) Eliminated utility
classes

2.2) Restructured policy
package

3.2) Eliminated assertion or
failure methods

1.3) Relocated and re-
named VM_Address
class

2.3) Restructured utility
package

3.3) Introduced new classes

1.4) Relocated and re-
named synchroniza-
tion interfaces

2.4) Redistristributed and
eliminated
VM_Interface

3.4) Introduced calls to asser-
tion or failure methods

The 12 restructurings are significant as they form the basis of the experiment for
evolution in this study. The columns represent different categories of restructuring.
On the left, changes 1.1-1.4 were necessary to make MMTk more portable, and to
make its separation from Jikes specific code more hygienic. In the middle, changes
2.1-2.4 supported better separation of concerns within MMTk, making it easier for
developers to experiment with GC. The final column, changes 3.1-3.4 represent more
generic tasks associated with maintenance and evolution.

2.1 Inheritance and Preprocessing: Structured, Efficient, and Configurable

MMTk supports the selection of one of many different GC strategies or plans. In the
old implementation there was a package for each GC plan, which contained the im-
plementation of core features in the Plan class. The specific Plan class to be include
in a particular build of the system is determined by a command line option. In the
evolved implementation, these subdirectories were eliminated and each GC strategy
has its own distinctly named class (CopyMS.java, SemiSpace.java, etc.). The Plan
class was migrated outside of MMTk, and made a subclass of each of these classes
mutually exclusively, using preprocessor directives:

 //-#if RVM_WITH_SEMI_SPACE
 public class Plan extends SemiSpace implements Uninterruptible {
 //-#elif RVM_WITH_SEMI_SPACE_GC_SPY
 public class Plan extends SemiSpaceGCSpy implements Uninterruptible {
 //-#elif RVM_WITH_COPY_MS
 public class Plan extends CopyMS implements Uninterruptible {
 …
 (more plan classes)
 //-#endif

 Sustainable System Infrastructure and Big Bang Evolution: Can Aspects Keep Pace? 245

The Plan class highlights another way in which plans in MMTk evolved, further
leveraging hierarchical decomposition and this multiplexed approach.
Semi_Space_GC_Spy uses a different class than the regular Semi_Space plan. This
better separates instrumentation for the dynamic analysis tool, GCSpy, from the regu-
lar plan. Semi_Space_GC_Spy and Semi_Space are siblings under Semi_Space_Base.
Shared code is in the base class, functions instrumented for GCSpy are in the GC_Spy
child, and uninstrumented versions of those functions are in the regular class. Pre-
evolution, this separation was not supported by a class hierarchy. Instead, there were
two versions of Semi_Space plan, one with instrumentation and the other without.
Figure 1 overviews these two implementations.

StopTheWorldGC
invokes gcSpy methods
(if (Plan.WITH_GCSPY) …)

BasePlan
(4 empty gcSpy methods)

SemiSpaceBase
(core functionality, no gcspy)

SemiSpace
+ 3 uninstrumented methods
(postAlloc, allocCopy, postCopy)

SemiSpaceGCSpy
+ gcspy functionaity
+ 3 instrumented methods
(postAlloc, allocCopy, postCopy)

gcSpy

gcSpy

gcSpy !gcSpy

(multiplan system…)

Post-Evolution

StopTheWorldGC
invokes gcSpy methods
(if (Plan.WITH_GCSPY) …)

BasePlan
(4 empty gcSpy methods)

SemiSpaceSemiSpaceGCSpy
+ gcspy functionaity

gcSpy

gcSpy

gcSpy !gcSpy

(multiplan system…)

Pre-Evolution

Fig. 1. GCSpy in Pre and Post-evolution in MMTk

2.2 Empty Interfaces: When Implements Is a Lower Level Concern

One of the other interesting features of the Jikes system infrastructure is its light-
weight leveraging of empty interfaces to flag concerns handled by lower level system
code. For example, the majority of the classes in MMTk implement an interface
called VM_Uninterruptible (pre-evolution) or Uninterruptible (post-evolution).
Classes that implement this interface cannot be interrupted. The mechanism to supply
the functionality for this concern however, is actually provided by a lower level of the
system, outside of the implementation of the Jikes core.

3 Evolution in MMTkao

To build our aspect-oriented version of MMTk, called MMTkao, we took the pre-
evolution version of MMTk, before the 10 month evolution period, and factored out
aspects for the following four, diverse, crosscutting concerns:

246 C. Gibbs, C.R. Liu, and Y. Coady

Crosscutting concerns (CCC) Interacting Concerns (IC)
(in terms of packages)

DesignInvariants:
VerifyAssertions
Synchronization

MMTk.*

GCSpy plan, policy, utility
Prepare/Release Protocol plan

Detailed analysis of this original refactoring can be found in previous work [9].
The contribution of the work presented here focuses on the evolution of MMTkao, and
the sustainability of these aspects during an intense period of system evolution. An
overview of how the evolution of the interacting concerns (i.e., the code that is cross-
cut by these aspects) impacted each aspect is provided in the subsections that follow.

3.1 Design Invariant: Evolution of Assertions

Jikes RVM uses a boolean field, VerifyAssertions, as a global flag to enable assertion
checking. The VM class, which originally was home for this flag, has a comment
dictating the structure of this design invariant:

/* Note: code your assertion checks as
 "if (VM.VerifyAssertions) VM._assert(xxx);" */

During evolution, the VM_Interface class was reorganized as several new classes, one
of which was the Assert class, for better separation of this concern. Further
refactoring eliminated a previously core method from this concern. The general
structure of the design invariant remains across the evolution of the system, as shown
in Table 3 and Figure 2. Since the system is so performance critical, the
presence/absense of this code is significant, and evidence that it has been removed for
performance but restored for correctness appears in comments in the CVS logs.

Table 3. VerifyAssertions across two versions of the plan and policy packages

OCCURRENCE OF… PRE-EVOLUTION POST-EVOLUTOIN
if (verify_assertions) 98 instances, 19 classes 81 instances, 21 classes

call to _assert(..) 75 instances, 25 classes 68 instances, 23 classes
call to sysFail/fail(..) 29 instances, 9 classes 31 instances, 14 classes

call to spaceFailure(..)
14 instances, 8 classes no longer exists

In terms of accounting for changes inflicted upon this aspect by evolution of the
code it crosscuts, this aspect deals with new/removed calls to assert/failure methods
without requiring change (Table 2, 3.4), but still had a total of 8 points of change
during the evolution. During the separation of MMTk from Jikes, global fields used
by MMTk were moved to be within its boundaries (Table 2, 1.2). Cleaning of the

 Sustainable System Infrastructure and Big Bang Evolution: Can Aspects Keep Pace? 247

Assert class caused the removal of a method resulting in an obsolete pointcut/advice
(Table 2, 2.4, and 3.2). A performance assessment of this aspect is presented in sec-
tion 4.6.

Fig. 2. VerifyAssertions Aspect

3.2 Design Invariant: Evolution of Synchronization

The aspect used for synchronization is very simple. It has a specific set of classes that
do not need to implement a given interface that flags if the class is uninterruptible. As
the majority of the classes in the subsystem cannot be interrupted, this list is of the
exceptions to the rule. As previously mentioned, the interface itself is empty, and is
used by a lower level concern.

During evolution, new classes added to the system all required the interface. The
aspect deals with this correctly (Table 2, 3.3). In total, this aspect underwent two
points of change in the evolution: the interface was renamed (Table 2, 1.4), and the
BasePolicy class changed status (Table 2, 3.1), such that it required the interface
(shown in a comment in Figure 3).

PRE-EVOLUTION POST-EVOLUTION
privileged aspect VerifyingAssertions {

 pointcut GCstrategy():
 within(org.mmtk. *);

 pointcut asserting(boolean condition):
 call(void VM_Interface._assert(boolean))
 && args(condition)
 && GCstrategy();

 pointcut failing(String msg):
 call(void VM_Interface.sysFail(String))
 && args(msg)
 && GCstrategy();

 pointcut space_failure(VM_Address obj,
 byte space,
 String source):
 call(void Plan.spaceFailure(VM_Address,
 byte,
 String))
 && args(obj, space, source)
 && GCstrategy();

 void around(boolean b): asserting(b){
 if (VM_Interface.VerifyAssertions)
 proceed(b);
 }

 void around(String str): failing(str){
 if (VM_Interface.VerifyAssertions)
 proceed(str);
 }

 void around(VM_Address obj, byte space,
 String source):
 space_failure(obj,space,source) {
 if (VM_Interface.VerifyAssertions)
 proceed(obj,space,source);
 }
}

privileged aspect VerifyingAssertions {

 pointcut GCstrategy():
 within(org.mmtk.*);

 pointcut asserting(boolean condition):
 call(void Assert._assert(boolean))
 && args(condition)
 && GCstrategy();

 pointcut failing(String msg):
 call(void Assert.fail(String))
 && args(msg)
 && GCstrategy();

 void around(boolean b): asserting(b){
 if (Assert.VerifyAssertions)
 proceed(b);
 }

 void around(String str): failing(str){
 if (Assert.VerifyAssertions)
 proceed(str);
 }

}

248 C. Gibbs, C.R. Liu, and Y. Coady

privileged aspect Synchronization {

 declare parents:
 (org.mmtk.* || com.ibm.JikesRVM.memoryMangers.mmInterface.*) &&
 !(*Header
 || org.mmtk.utility.alloc.AllocAdvice
 || org.mmtk.utility.TracingConstants
 || org.mmtk.utility.CallSite
 // || org.mmtk.policy.BasePolicy
 || org.mmtk.vm.ScanStatics
 || org.mmtk.vm.Constants
 || com.ibm.JikesRVM.memoryManagers.mmInterface.MM_Constants
 || com.ibm.JikesRVM.memoryManagers.mmInterface.SynchronizationBarrier
 || com.ibm.JikesRVM.memoryManagers.mmInterface.VM_CollectorThread
 || com.ibm.JikesRVM.memoryManagers.mmInterface.VM_GCMapIteratorGroup
 || com.ibm.JikesRVM.memoryManagers.mmInterface.VM_Handshake)
 implements Uninterruptible;
}

Fig. 3. Synchronization Aspect

3.3 Evolution of GCSpy

The core implementation of GCSpy, a dynamic analysis tool for GC, involves two
parts: (1) gathering of data before and after garbage collection, and (2) connecting to a
GCSpy server and client-GUI for heap visualization. In order to instrument MMTk
with this code, the configuration of the system with GCSpy requires existing methods
to be instrumented, and new methods be added, as outlined in Table 4.

Table 4. Instrumentation of GCSpy

PACKAGE CLASS
OCCURRENCES OF

 IF (GCSPY) NEW METHODS

Plan (SemiSpace) 5 6

BasePlan 0 5 org.mmtk.plan

StopTheWorldGC 4 0

FreeListResource 1 0
org.mmtk.utility

MonoToneVMResource 2 2

MMInterface 2 0 com.ibm.JikesRVM.
memorymanagers mmInterface Total 14 13

In the original implementation, part of the configuration strategy for GCSpy in-
volves checking a global flag, if (VM_Interface.GCSPY), before invoking GCSpy
functionality (Table 4). The flag is set using preprocessor directives, as follows:

 public static final boolean GCSPY =
 //-#if RVM_WITH_GCSPY
 true;
 //-#else
 false;
 //-#endif

MainThread.java, part of the scheduler package, also uses the directive within its
imports and to start the server:

 Sustainable System Infrastructure and Big Bang Evolution: Can Aspects Keep Pace? 249

//-#if RVM_WITH_GCSPY
import com.ibm.JikesRVM.memoryManagers.mmInterface.MM_Interface;
//-#endif

…
public void run () {
 //-#if RVM_WITH_GCSPY
 MM_Interface.startGCSpyServer();
 //-#endif

In VM_BootRecord.java, part of the system’s runtime support package, 28 fields for
GCSpy are declared when this directive is true and VM_Syscall contains the methods:

//-#if RVM_WITH_GCSPY
 // GCspy entry points
 public VM_Address gcspyDriverAddStreamIP;
 public VM_Address gcspyDriverEndOutputIP;
 …
 public VM_Address gcspySprintfIP;
//-#endif

VM_Syscall.java, has 28 syscall entry points:

//-#if RVM_WITH_GCSPY
public static VM_Address
gcspyDriverAddStream (VM_Address driver, int it) {
 return null; }

public static void
gcspyDriverEndOutput (VM_Address driver) {}

…
public static int
gcspySprintf (VM_Address str, VM_Address format,
 VM_Address value) { return 0; }
//-#endif

An assortment of several other classes, not in MMTk, use this directive to selectively
import and introduce GCSpy functionality. The typical format for these classes is of
the form: #if RVM_WITH_GCSPY, <define method bodies>, #else <provide empty
bodies>. For example, in ObjectMap.java:

import com.ibm.JikesRVM.VM_SizeConstants;
import com.ibm.JikesRVM.VM_Uninterruptible;
import com.ibm.JikesRVM.VM_Address;

//-#if RVM_WITH_GCSPY
import org.mmtk.plan.Plan;
import org.mmtk.utility.Log;
…
//-#endif

/**
 * THIS CLASS IS NOT A GCSPY COMPONENT
 *
 …
*/

public class ObjectMap
 implements VM_SizeConstants, VM_Uninterruptible {

//-#if RVM_WITH_GCSPY
 private static final int LOG_PAGE_SIZE = 12;
 static final int PAGE_SIZE = 1<<LOG_PAGE_SIZE;

250 C. Gibbs, C.R. Liu, and Y. Coady

 …
 public ObjectMap() { }

 public final void boot() {
 objectMap_ = Util.malloc(OBJECTMAP_SIZE);
 VM_Memory.zero(objectMap_, OBJECTMAP_SIZE);

…
 }
 …
//-#else
 public ObjectMap() {}
 public final void boot() {}
 …
//-#endif
}

Refactoring the portions of GCSpy handled by the preprocessor directives was
straightforward. MMTkao enjoys the added benefit of being able to plug/unplug at
build time, instead of requiring the system to be first reconfigured and then rebuilt.

Within MMTkao, as opposed to the strategy of subclassing and introducing redun-
dant code to allow for the GCSpy functionality (Section 2.1 and Figure 1), with minor
refactoring of the plan, the aspect provides GCSpy functionality. Thus, the combina-
tion of global flags, preprocessor directives, and subclassing leveraged by the original
implementation become unnecessary in MMTkao.

As GCSpy was the most thinly scattered concern considered in the study, involving
many points in the execution of the system with almost a 1:1 ratio of pointcuts:advice,
it was impacted by a majority of the restructuring in Table 2 (9/12 tasks, 1.1-1.3, 2.*,
3.1,2).

3.4 Evolution of Prepare/Release Protocol

To understand how each GC plan is composed one must understand their relation-
ships with the various policies supplied in the RVM. Plan and policy are thus two key
features of the dominant decomposition of the RVM. Each policy has its own alloca-
tion and collection strategies, drawn from basic allocation and collection mechanisms.
The memory management GC plans in the RVM are composed of different combina-
tions of these policies. Currently, there are eight different memory management plans
available for download in the RVM.

Memory management in the RVM follows a simple algorithm of prepare, process-
all-work, and release for collection. Since each of the GC strategies share the code
base for process-all-work, the key differences between them are in the prepare and
release phases. With a closer inspection of the original implementation a further
breakdown of this design into global prepare, local prepare, local release and global
release can be seen and represented as a simple finite state machine as illustrated in
Figure 4. Each of these states is comprised of calls to the various policy mechanisms.

When the relationship between policy and plan is filtered out this way, a clear sym-
metry between the prepare and the release phases is uncovered. This symmetry is
present in both the local and global scopes. Each of the policies involved in the
global prepare are in turn involved in the global release and the same is true in the
case of the local scope.

Blackburn et. al. detail the domain specific design patterns used in the implementation
of MMTk, one being the Prepare/Release phases involved in garbage collection [2].

 Sustainable System Infrastructure and Big Bang Evolution: Can Aspects Keep Pace? 251

globa lP repare

loca lRe lease

loca lP repare

g loba lRe lease

 p repa re
P h ases
 re lease

 S co pe
g loba l loca l

Fig. 4. Finite state machine for prepare/release protocol

//handles Prepare/Release of SemiSpace GC plan
privileged aspect PolicyAspect {

 private int state = 0;
 private final int GLOBAL_PREPARE = 0;
 private final int LOCAL_PREPARE = 1;
 private final int LOCAL_RELEASE = 2;
 private final int GLOBAL_RELEASE = 3;

 after(Plan p):target(p)
 && (execution(* Plan.globalPrepare(..))
 || execution(*
Plan.threadLocalPrepare(..))
 || execution(*
Plan.threadLocalRelease(..))
 || execution(* Plan.globalRelease(..))) {

 switch(state){
 case(GLOBAL_PREPARE):
 CopySpace.prepare();
 ImmortalSpace.prepare();
 Plan.losSpace.prepare();
 state++;
 break;

 case(LOCAL_PREPARE):
 p.los.prepare();
 state++;
 break;

 case(LOCAL_RELEASE):
 p.los.release();
 state++;
 break;

 case(GLOBAL_RELEASE):
 Plan.losSpace.release();
 CopySpace.release();
 ImmortalSpace.release();
 state = GLOBAL_PREPARE;
 break;
 }
 }
}

//handles Prepare/Release of MarkSweep
plan
privileged aspect PolicyAspect {

 private int state = 0;
 private final int GLOBAL_PREPARE = 0;
 private final int LOCAL_PREPARE = 1;
 private final int LOCAL_RELEASE = 2;
 private final int GLOBAL_RELEASE = 3;

 after(Plan p):target(p)
 //same pointcut as SemiSpace

{
 switch(state){
 case(GLOBAL_PREPARE):

 Plan.msSpace.prepare();
 Immortal-
Space.prepare();

 Plan.losSpace.prepare();
 state++;
 break;

 case(LOCAL_PREPARE):
 p.ms.prepare();
 p.los.prepare();
 state++;
 break;

 case(LOCAL_RELEASE):
 p.ms.release();
 p.los.release();
 state++;
 break;

 case(GLOBAL_RELEASE):

 Plan.losSpace.release();

 Plan.msSpace.release();
 Immortal-
Space.release();
 state =
GLOBAL_PREPARE;
 break;
 }
 }
}

Fig. 5. Pre-evolution version of SemiSpace and MarkSweep aspects

The Prepare/Release aspects for SemiSpace and MarkSweep GC plans are shown in
Figure 5. By looking at the plans in such close proximity, the differences in policy
mechanisms employed by the two plans are evident. This same representation is
scalable to all plans, providing developers of new plans a clear view of current im-

 Sustainable System Infrastructure and Big Bang Evolution: Can Aspects Keep Pace? 253

looking at the IC column associated with each aspect, in all but one case, a change
occurs. In 3.1 however, no change occurs in the IC, but instead the aspect is changed
to flip the status of BasePolicy from interruptible to uninterruptible (as indicated by
the commented line in Figure 2). The fact that this change is already captured for the
IC is marked by the AC (automatically captured) in the IC column associated with the
Synchronization aspect.

Looking at the rows associated with the restructurings, 5 change tasks apply to
more than one aspect (1.4, 2.1, 2.2, 2.4, 3.3). In 3 of these, changes to ICs force
changes in aspects (1.4, 2.1, 2.4), one of them is automatically and completely ab-
sorbed by pointcuts (2.2), and the other is automatically absorbed by pointcuts in two
out of three aspects involved (3.3). Section 4.4 further considers changes that occur
to more than one aspect. However, before considering those, the following subsec-
tions consider the positive/negative/neutral impact each of the aspects had on the
evolution of the system as a whole. This section concludes with an overview of per-
formance benchmarks on MMTk and MMTkao respectively.

4.1 Design Invariants: Assertions and Synchronization

In both cases, the aspects that encapsulate design invariants have a positive impact in
that they provide a more precise and clearer representation of the internal structure of
the crosscutting concerns. Each is in line with growth trends in the system. In the
case of assertions, the (un)pluggable application of advice to all/no calls can be con-
cisely and accurately represented. In the case of synchronization however, the point-
cut enumerates a relatively long list, as the application of the advice must be selective
instead of all/nothing.

In terms of negative impact, checking all assert/failure calls in MMTkao means
there is some (small) amount of redundancy relative to MMTk, where several asser-
tions can be made consecutively in a compound statement. With synchronization, the
negative impact stems from the current lack of structure with respect to the otherwise
exhaustive list.

Neutral impact, where MMTk and MMTkao tie in terms of evolvability, stems from
the fact that changes to the location and existence of interacting concerns requires
cosmetic updating of the objects (MMTk) and aspect (MMTkao) in a similar fashion.
Even with the inversion of synchronization status in BasePolicy, there would have to
be one change made, either to the aspect or the class. We consider this a tie, with the
aspect having the slight edge because the nature of the change arguably falls within
the realm of the crosscutting concern and not the interacting concern. Similarly, with
respect to the renaming of the VM_Uninterruptible interface, in MMTkao this change
was local to the aspect, whereas in MMTk system-wide search and replace would
have to be applied throughout the code-base. The redistribution and elimination of
the VM_Interface class during evolution also affected a design invariant, when the
Assert class took over this functionality in the utility package, and one of the failure
functions was eliminated. This change caused a renaming of all references to the
function calls in the aspect in MMTkao, and throughout the code in MMTk.

Overall, however, we found that, though the Synchronization aspect does no worse
than its scattered counterpart in terms of evolution, the VerifyAssertions aspect fares
better due to its ability to grow/shrink correctly and precisely with the system.

254 C. Gibbs, C.R. Liu, and Y. Coady

4.2 GCSpy

Even though the aspect underwent numerous changes, its internal structure and exter-
nal interaction on the whole was sustained throughout the evolution. In terms of posi-
tive impact, it was able to eliminate some redundant code relative to the subclassed
SemiSpace_With_GCSpy in MMTk (section 2.1), and increase configurability by
consolidating what were previously a collection of preprocessor directives coupled
with global flags and subclassing.

In terms of negative impact, as a dynamic analysis tool, it is not surprising that
GCSpy crosscuts multiple objects across multiple packages of the system. There is
very little redundancy in the code captured by the GCSpy aspect, and thus there is a
almost a 1:1 ratio of pointcut:advice definitions. Because GCSpy crosses structural
and hierarchical boundaries in its interaction, it is subject to evolutionary changes at
those interaction points. Among other things, GCSpy interacts with policies, multiple
allocators, heap management, and the main collector thread. The evolution of the
system caused changes to all of these interacting concerns as well as changes to pre-
viously non-interacting concerns. The addition of new policies to the system and the
addition/removal of classes dealing with memory management forced changes in
interaction.

The GCSpy concern was also affected by the relocation/renaming/redistribution of
the VM_* classes, but the impact of this was no worse for the aspect than for the
original code. Specifically the redistribution and elimination of the VM_Interface
class in the system evolution required changes to all references made to its fields and
methods in both MMTk and MMTkao. MMTkao saw less change of this type due to
the elimination of the VerifyAssertion and GCSpy field checks throughout the sys-
tem. The case was the same for the relocation and renaming of the synchronization
classes. This change required seven changes to the aspect across five advice and two
inter-type declarations. Those same changes would have also taken place in the cor-
responding classes in MMTk. In this evolution the VM_Address class was also refac-
tored, renamed, relocated changing parameters and return types of functions part of
the GCSpy concern. These changes caused a refactoring of these functions and elimi-
nated the use of the VM_Magic class. These changes again would be made in both
the MMTkao and MMTk.

Overall, the GCSpy aspect allows for improved evolution in MMTkao due to the
fact that it (1) sustained no more changes than the original implementation and (2)
consolidates and unifies preprocessor directives/global flags/hierarchical decomposi-
tion as one manageable, locus of control for this dynamic analysis tool.

4.3 Prepare/Release Protocol

Though the positive impact of the prepare/release protocol aspect is the clarification
of the design pattern, and this clarification holds throughout evolution, the negative
impact involves the kinds of change that have to be made to the aspect as a result of
evolving interacting concerns. The changes to the restructuring of the plan package to
facilitate the move to unique naming of classes from the developers perspective had a
negative impact on this aspect. Instead of being able to consolidate this combination
of compiler directives and hierarchical decomposition, this aspect suffered from it. In

 Sustainable System Infrastructure and Big Bang Evolution: Can Aspects Keep Pace? 255

MMTk these changes are limited to the package itself and require no other changes in
the system. MMTkao leveraged the generic Plan.java naming convention in its origi-
nal design. As a result of this change, the aspect for a given plan requires six occur-
rences of renaming change across four pointcuts and one advice. In the event that this
prepare/release aspect is scaled across all plans, each of the plans would all have to
have the corresponding renaming done to their pointcuts and advice.

4. 4 Limitations and Future Work

Constructing MMTkao allowed us to ask what-if with respect to a diverse set of as-
pects faced with big bang evolution. Future work will consider the costs of an initial
refactoring for a system such as MMTkao, and the impact of tool support during the
process of evolution. With respect to this case study, changes were performed by a
single developer, and evolution of MMTkao was dictated by the actual evolution of
MMTk. It is reasonable to assume that given the original structure of MMTkao, evo-
lution most likely would have played out differently than it did from MMTk. Addi-
tionally, the aspects themselves were uncovered by manual inspection of the control
flow and the dominant decomposition of the system. Future work includes employing
mining tools to identify further aspects.

This study provides a coarse-grained assessment of how a diverse set of aspects
can be expected to fare during large-scale change to the system they crosscut. The
refactoring in this case study was intentionally done in such a way as to be least inva-
sive to the original system as possible. Based on our experience, we believe that to
truly leverage the power of AOP in these examples, a more aggressive refactoring is
required. For example, with respect to the semantics encompassed by the synchroni-
zation aspect, a stronger naming convention in the interacting concerns could influ-
ence the design of this aspect. Naming conventions are currently used within this
system to impart design understanding to developers and could easily be used in this
case to clarify which classes are in fact uninterruptible. This would facilitate the
creation a more property based aspect that would provide a greater understanding of
exactly what kind of classes fall into this synchronization family.

A further consideration for future work involves the fact that new concerns simul-
taneously impact multiple aspects. This confirms that the management issue of com-
positions of aspects requires a solution before the question of scalability can be more
completely resolved.

Table 6 supplies a summary of the positive/negative/neutral effects of these aspects
on evolution. The analysis presented here argues that the presence of aspects did not
introduce any penalty in terms of the change tasks required, and that two out of four
aspects provided evidence of better sustainability in that their structure facilitated
evolution and further evolutionary trends.

4.5 Discussion

Although the four examples in this case study are limited, their diversity provides a
basis for the categorization of aspect types and how each will hold up under system
change. Specifically looking at the example of the dynamic analysis tool GCSpy,
characterizations of the underlying nature of these types of tools – having a relatively

256 C. Gibbs, C.R. Liu, and Y. Coady

large number of interaction points within a system that are necessarily scattered
across many modules – begin to surface. It provides a general view of how an aspect
with many interaction points will react when any or all these points are changed.
Though future work includes a more detailed analysis of these and other kinds of
characterizations, we begin some of that here.

Table 6. Impact of aspects on system evolution

ASPECT POSITIVE NEGATIVE NEUTRAL

V
er

if
y

A
ss

er
tio

ns

(B
E

T
T

E
R

)

internal structure is
clear

plugability is useful

all or nothing – all
method calls captured
by invariant

some redundant field
checking relative to
MMTk

change of method
name used in a point-
cut

S
yn

ch
ro

ni
za

ti
on

(n
o

w
or

se
)

internal structure is
clear and identifies a
trend in design invari-
ant, but only to a subset
of classes (not all or
nothing)

localized change of and
access to interface

must explicitly specify
classes not to be cap-
tured in aspect (no
dominant pattern can
be leveraged)

change in class-
concern interaction

automatically captures
new classes

G
C

S
py

(B
E

T
T

E
R

) eliminates redundancy

increased configurabil-
ity

diverse interaction with
interacting concerns

evolution of some
interacting concerns

P
re

pa
re

/R
el

ea
se

(n
o

w
or

se
)

highlights domain
specific design pattern

clarifies relationship of
CCCs and its ICs with
finite state machine

one aspect per plan

evolution of MMTk
yielded a similar result

evolution of interact-
ing concerns

Looking at the results from the view given in Table 6, we can begin to generalize
some of our findings and shed some light on what underlying characteristics might
predispose certain kinds of aspects to positive/negative/neutral impact. The positive
impact of each aspect in this study results from the accepted benefits associated with
localization as applied to crosscutting concerns. The more debatable results are sum-
marized in the final two columns detailing the negative/neutral effects.

In the design invariant aspects, the interaction points are numerous, but the behav-
ior at those points is uniform and generalized. In this type of aspect, for example,

 Sustainable System Infrastructure and Big Bang Evolution: Can Aspects Keep Pace? 257

Synchronization, the negative impact stems from the weak representation of the in-
variant, inviting scenarios that may lead to new code unintentionally be encompassed
by the aspect. Again, with a more aggressive refactoring this abstraction may be im-
proved and the problem may be alleviated. Additionally, with proper tool support the
visibility of aspect interaction can be easily traced.

In the GCSpy and Prepare/Release aspects, the diversity of interaction fuels the
negative impact in terms of changes that ripple from interacting concerns to aspects.
 The GCSpy aspect's diversity is the result of the varied responsibilities at each of its
many interaction points, while the Prepare/Release aspect's diversity stems from the
leveraging of the generic naming convention which encompasses all plan types. As a
result of this diversity, negative/neutral impact encountered is tied to the number of
changes that must be made to the aspect when these interacting concerns were re-
named/relocated.

4.6 Fear of the Unknown: New Interactions, Multiple Aspects

No one can predict how a system will ultimately evolve. To get a slightly different
perspective on the results of this study, we further categorized the changes into 3
groups: modification of interaction, elimination of interaction (where an interacting
concern becomes a noninteracting concern, or NIC), and new interaction, as shown in
the 3 columns in Table 7. Restructurings not listed in the table do not require changes
to aspects.

Table 7 demonstrates that one aspect requires changes to existing interactions, two
aspects eliminate interactions, and all four aspects deal with new interactions. Fur-
thermore, of these new interactions, two out of four of them impact more than one
aspect (2.1, 2.4).

Table 7. Changes by categories per aspect

ICOLD ->ICNEW

CHANGE IN
INTERACTION OF CCC
WITH ICOLD

IC -> NIC

ELIMINATION OF
INTERACTION OF CCC WITH
IC

NIC -> ICNEW

INTRODUCTION OF INTERACTION
OF CCC WITH PREVIOUSLY NIC

CCC ∆ CCC ∆ CCC ∆

1.1 1.2 Prepare/Release 2.1

1.2
GCSpy

1.3 2.1

1.4
GCSpy

2.4

2.1

VerifyAssertions 3.2

VerifyAssertions 2.4

1.4

GCSpy

3.3 Synchronization
3.1

Arguably, these new interactions that require corresponding changes to multiple
aspects potentially pose the biggest threat to developers leery of AOP. The fact that
this data shows this kind of change impacts all the aspects in the study, coupled with

258 C. Gibbs, C.R. Liu, and Y. Coady

the fact that these changes simultaneously impact multiple aspects, confirms that this
indeed is an intensive, big bang style of evolution. Given that we believe this evolu-
tion scenario to be representative, if these kinds of changes cannot be effectively
managed, the scalability of collections of aspects in this infrastructure is still an open
question, and fertile ground for future work.

4.7 Performance

In the first set of tests considered here, the aspects included in MMTkao are those that
constitute its core functionality – Prepare/Release and Synchronization. Though the
results show some noise (the average of three runs are reported), there is no discern-
able performance penalty for these aspects. The results of running tests from the
DaCapo Benchmark Suite version beta050224 on the Jikes RVM v2.3.3, Linux 2.6.8-
1.521smp, gcc-3.3.3-7, AspectJ v1.2, using an AMP Dual Athlon MP 2400+ machine
with 1024 MB memory are shown below.

BENCHMARK MMTK MMTkao
Antlr 40708 ms 40937 ms (+0.56%)
Bloat 39752 ms 39550 ms (-0.51%)
Fop 14720 ms 14744 ms (0.16 %)
Jython 94148 ms 92297 ms (-1.97 %)
Pmd 42516 ms 43087 ms (1.34%)
Ps 87286 ms 86806 ms (-0.55%)

In order to stress-test a large, fine-grained aspect, we did a separate analysis of the
VerifyAssertions aspect. In its current incarnation, these tests hammer the code within
the aspect with 10s-100s of million invocations of assertion code, as reported below.

BENCHMARK
INVOCATIONS OF
ASSERTION CODE

Antlr 74781288

Bloat 86211537

Fop 35325811

Jython 217938922

Pmd 99554310

Ps 100534321

Results from the fast path (assertions turned off) and the slow path (assertions
turned on) introduces just under a 10% penalty1. In a future refactoring of the system

1 An alternative implementation that could be effective at providing lighter weight support for

this design invariant would be to rely on the declare warning construct in AspectJ to identify
infractions at compile time, and at no cost.

 Sustainable System Infrastructure and Big Bang Evolution: Can Aspects Keep Pace? 259

we plan to move all assertion checking into a composition of aspects, so that when
assertions are not required, the overhead would be removed.

Table 8. Fast path for assertions (off)

ASSERTIONS OFF

MMTk
(ms)

MMTkao
(ms)

Increase
(%)

Antlr 37114 39824 7.3

Bloat 34346 37779 10

Fop 12794 14232 11.24

Jython 81689 88987 8.93

Pmd 38419 41460 7.92

Ps 78867 81020 2.73

Table 9. Slow path for assertions (on)

 ASSERTIONS ON

 MMTk
(ms)

MMTkao
(ms)

Increase (%)

Antlr 40708 46281 13.69

Bloat 39799 44183 11.02

Fop
14720 16787 14.04

Jython 93373 103508 10.85

Pmd 42516 47945 12.77

Ps 87286 91116 4.39

5 Conclusions

When evolution is a big bang, can aspects keep pace? This work provides a real
world study comparing four crosscutting concerns in the original versus aspect-
oriented implementation of the memory management subsystem within the Jikes
RVM. One period of intense 10 month evolution of the dominant decomposition of
the system is considered. This comparison highlights specific ways in which represen-
tative aspects have positive/negative/neutral impact on evolution. Given that aspects
here did no harm in terms of a coarse-grained assessment of change tasks, and half of
them did better than the original implementation, the study provides compelling evi-
dence that aspects can indeed keep pace, and provide a means of better sustaining
separation of concerns in system infrastructure software.

260 C. Gibbs, C.R. Liu, and Y. Coady

References

[1] E. Baniassad, G. Murphy, C. Schwanninger, and M. Kircher. Managing crosscutting con-
cerns during software evolution tasks: an inquisitive study. In the Proceedings of the In-
ternational Conference on Aspect-Oriented Software Development (AOSD), 2002.

[2] S. Blackburn, P. Chung and K. McKinley, Oil and Water? High Performance Garbage
Collection in Java with MMTK, In the Proceedings of the International Conference on
Software Engineering (ICSE), 2004.

[3] Y. Coady and G. Kiczales. A retroactive study of aspect evolution in operating system
code. In the Proceedings of International Conference on Aspect-Oriented Software De-
velopment (AOSD), 2003.

[4] A. Colyer, A. Clement, Large-scale AOSD for Middleware. In the Proceedings of Inter-
national Conference on Aspect-Oriented Software Development (AOSD), 2004.

[5] Dacapo Benchmarks, http://www-ali.cs.umass.edu/DaCapo/
[6] E. W. Dijkstra, A Discipline of Programming, Englewood Cliffs, United States: Prentice

Hall, 1976.
[7] G. Duzan, J. Loyall, R. Schantz, Building Adaptive Distributed Applications with Mid-

dleware and Aspects. In the Proceedings of International Conference on Aspect-Oriented
Software Development (AOSD) 2004.

[8] M. Engel, B. Freisleben, Supporting Autonomic Computing Functionality via Dynamic
Operating System Kernel Aspects, In the Proceedings of the International Conference on
Aspect-Oriented Software Development (AOSD), 2005.

[9] C. Gibbs and Y.Coady, Aspect of Memory Management, Hawaiin International Confer-
ence On System Sciences (HICSS), 2005.

[10] M.E. Fiuczynski, R. Grimm, Y.Coady, D. Walker, patch(1) Considered Harmful, The
Tenth Annual Workshop on Hot Topics on Operating Systems (HotOS), 2005.

[11] B. Goetz, How does garbage collection work?, Developerworks, www-
106.ibm.com/developerworks/java/library/j-jtp10283/, 2003.

[12] J. Hannemann and G. Kiczales. Design pattern implementations in Java and AspectJ.
ACM Conference on Object-Oriented Programming, Systems, Languages and Applica-
tions (OOPSLA), 2002.

[13] Haskell Compiler, http://www.haskell.org/ghc/
[14] IBM, AspectJ Project, http://eclipse.org/aspectj/, 2004.
[15] IBM, Jikes Research Virtual Machine, www-124.ibm.com/developerworks/oss/

jikesrvm/, 2004.
[16] IBM, Jikes Research Virtual Machine User's Guide, www-124.ibm.com/developerworks/

oss/jikesrvm/user-guide/HTML/userguide.html, 2004.
[17] M. Kersten and G. Murphy. Atlas: A case study. ACM Conference on Object-Oriented

Programming, Systems, Languages and Applications (OOPSLA), 1999.
[18] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes, J.-M. Loingtier

and J. Irwin, Aspect-Oriented Programming. In the Proceedings of the 11th European
Conference on Object-Oriented Programming (ECOOP), 1997.

[19] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm and W. G. Griswold, An over-
view of AspectJ. In the Proceedings of 15th European Conference on Object-Oriented
Programming (ECOOP), 2001.

[20] L.L. Lehman and L.A. Belady, Program Evolution, APIC Studies in Data Processing,
Volume 3, 1985.

[21] Gail C. Murphy, Lightweight Structural Summarization as an Aid to Software Evolution,
Computer Science, University of Washington, PhD Thesis, 1996.

 Sustainable System Infrastructure and Big Bang Evolution: Can Aspects Keep Pace? 261

[22] G. Murphy, A. Lai, R. Walker, and M. Robillard. Separating features in source code: An
Exploratory Study. In the Proceedins of the International Conference on Software Engi-
neering (ICSE), 2001.

[23] OVM, http://www.ovmj.org/
[24] D.L. Parnas, On the Criteria To Be Used in Decomposing Systems into Modules, Com-

munications of the ACM, 15(12), 1972.
[25] D.L. Parnas and P.C. Clements, Software State-of-the-Art: Selected Papers, in T.

DeMarco and T. Lister, eds., A rational design process: How and why to fake it., Dorset
House Publishing., 1990.

[26] A. Rashid, N.A. Leidenfrost: Supporting Flexible Object Database Evolution with As-
pects. Generative Programming and Component Engineering (GPCE) 2004.

[27] W.P. Stevens, G.J. Meyers and L.L. Constantine, Structured Design, IBM Systems Jour-
nal, Volume 13, 1974.

[28] D. Sabbah, Aspects - from Promise to Realitys, Keynote, International Conference on
Aspect-Oriented Software Development (AOSD), 2004.

[29] Sun, GCspy: A Generic Heap Visualisation Framework, research.sun.com/projects/
GCSpy, 2004.

[30] A. Tesanovic, M. Amirijoo, M. Björk, J. Hansson, Empowering Configurable QoS Man-
agement in Real-Time Systems, International Conference on Aspect-Oriented Software
Development (AOSD), 2005.

[31] R. Walker, E. Baniassad, and G. Murphy, An Initial Assessment of Aspect-Oriented Pro-
gramming. In the Proceedings of the International Conference on Software. Engineering
(ICSE), 1999.

[32] W. Wulf and Mary Shaw, Global variable considered harmful. SIGPLAN Notices, 8(2),
1973.

[33] C. Zhang, G. Gao, H.A. Jacobsen, Towards Just-in-time Middleware Architectures. In
Proceedings of the International Conference on Aspect-Oriented Software Development
(AOSD), 2005.

First-Class Relationships in an Object-Oriented
Language

Gavin Bierman1 and Alisdair Wren2

1 Microsoft Research, Cambridge
gmb@microsoft.com

2 University of Cambridge Computer Laboratory
Alisdair.Wren@cl.cam.ac.uk

Abstract. In this paper we investigate the addition of first-class re-
lationships to a prototypical object-oriented programming language (a
“middleweight” fragment of Java). We provide language-level constructs
to declare relationships between classes and to manipulate relationship
instances. We allow relationships to have attributes and provide a novel
notion of relationship inheritance. We formalize our language giving both
the type system and operational semantics and prove certain key safety
properties.

1 Introduction

Object-oriented programming languages, and object modelling techniques more
generally, provide software engineers with useful abstractions to create large
software systems. The grouping of objects into classes and those classes into
hierarchies provides the software engineer with an extremely flexible way of
representing real-world semantic notions directly in code.

However, whilst object-oriented languages easily represent real-world entities
(e.g. students, lectures, buildings), the programmer is poorly served when trying
to represent the many natural relationships between those entities (e.g. ‘attends
lecture’, ‘is taught in’).

Relationships clearly can be represented in object-oriented languages—indeed
patterns have been established for the purpose [10]—but this important abstrac-
tion can get lost in the implementation that is forced upon the programmer by
the lack of first-class support. Different aspects of the relationship can be imple-
mented by fields and methods of the participating classes, but this distributes
information about the relationship across various classes. Alternatively, small
classes can be defined to contain references to the two related objects along with
any attributes of the relationship. In both cases, without great care the structure
can become internally inconsistent, especially in the presence of aliasing. Fur-
thermore, we argue that the application of standard class-based inheritance to
these ‘relationship classes’ does not adequately capture the intuitive semantics
of relationship inheritance, which must otherwise be encoded in standard Java.

A.P. Black (Ed.): ECOOP 2005, LNCS 3586, pp. 262–286, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

First-Class Relationships in an Object-Oriented Language 263

Student Course

mark : int

attends

(a) Association Class

Student

LazyStudent

Course

HardCourse

missedLectures : int

mark : int

reluctantlyAttends

attends

(b) Parallel Hierarchy

Fig. 1. Relationships represented as UML association classes

Such an encoding can only lead to further complexity and more opportunities
for inconsistency.

The importance of relationships is clearly reflected by their prominence in
almost all modelling languages: from (Extended) Entity-Relationship Diagrams
(ER-diagrams) [5] to Unified Modelling Language (UML) [9]. In Figure 1 we
give some examples of relationships expressed in UML (we use these as running
examples throughout this paper).

We argue that such important abstractions deserve first-class support from
programming languages. We are the not the first to do so; Rumbaugh also
pointed out the importance of first-class language support for relationships [13].
Noble and Grundy also proposed that relationships should persist from the mod-
elling to the implementation stage of program development [11]. Albano et al.
propose a similar extension to a language for managing object-oriented databases
(OODB) [1], but do so in a much richer data model and do not give a full de-
scription of their language.

In contrast to these works, our approach is more formal. We believe that
such a formal, mathematical approach is essential to set a firm foundation for
researchers, users and implementors of advanced programming languages. To
that end, our main contribution is a precise description of how Java (or any
other class-based, strongly-typed, object-oriented language) can be extended to
support first-class relationships. Our tool is a small core language, RelJ, which is
a subset of Java (much like Middleweight Java [4]) with suitable extensions for
the support of relationships. RelJ provides means to define relationships between
objects, to specify attributes associated with those relationships, and to create
hierarchies of relationships. RelJ is intended to capture the essence of these ex-
tensions to Java, yet is small enough to formalize completely. Other features
could be added to RelJ to make it a more complete language, but these would
not impact on the extensions for relationships.

The remainder of the paper is organized as follows. In Sect. 2 we introduce
our calculus and give a grammar. The type system of RelJ is defined in Sect. 3,
where the formal notion of subtyping is discussed and well-typed RelJ programs

264 G. Bierman and A. Wren

are characterized. Section 4 gives the dynamics of RelJ with a small-step op-
erational semantics. We outline a proof of type soundness for RelJ in Sect. 5.
Section 6 describes an extension to RelJ which allows the addition of UML-style
multiplicity restrictions to relationships. Finally, in Sect. 7, we conclude and
consider further and related work.

2 The RelJ Calculus

As mentioned earlier, the core of RelJ is a subset of Java, similar to other frag-
ments of Java-like languages [4, 7, 8]. The fragment we use consists of simple
class declarations that contain a number of field declarations and method dec-
larations. The exact form of the class declarations will be made more precise
later.

2.1 Relationship Model

The main feature of RelJ is its support for first-class relationships. In addition to
class declarations, therefore, a RelJ program consists of a number of relationship
declarations, which are written:

relationship r extends r′ (n, n′
) { FieldDecl∗ MethDecl∗ }

This defines a relationship, r, with a number of type/field name pairs, FieldDecl∗

and method declarations, MethDecl∗. The relationship is between n and n′ where
n, n′ range over classes and relationships. This provides a means for relationship
instances to participate in further relationships. This feature is known as aggre-
gation in ER-modelling [14]. An example is shown in Fig. 2: the Recommends
relationship specifies that a Tutor may recommend a Student to attend a par-
ticular Course by relating an instance of Tutor to an instance of Attends, the
relationship that specifies which students attend which courses. Relationships
are directed (one-way) and many-to-many—more on this in Sect. 6.

We relate two objects, o1 and o2, with a relationship, r, by creating an in-
stance of r, which then exists between o1 and o2, and stores the values for r’s
fields. Relationship instances are first-class runtime objects in RelJ and so can,
for example, be stored in variables and fields. This immediately introduces design
issues relating to the removal of relationship instances and consequent creation
(or not) of dangling pointers: these are discussed later.

We also support relationship inheritance, which is denoted idiomatically in
UML as inheritance between association classes (Fig. 1b). To the best of our
knowledge, our support for this inheritance is novel and, as we will detail later,
is significantly different from the standard class-based inheritance model.

2.2 Class Inheritance vs Relationship Inheritance

While class inheritance in RelJ is identical to that in Java, RelJ’s relationship
inheritance is based on a restricted form of delegation, as found in languages
such as Self [16] and, more recently, δ [2]. Consider the RelJ code for a simple
example, adapted from Pooley and Stevens [15], which is shown in Fig. 2.

First-Class Relationships in an Object-Oriented Language 265

class Student {

String name;

}

class LazyStudent extends Student {

int hoursOfSleep;

}

class Course {

String title;

}

class Tutor {

String name;

}

relationship Attends (Student, Course) {

int mark;

}

relationship ReluctantlyAttends extends Attends

(LazyStudent, Course) {

int missedLectures;

}

relationship CompulsorilyAttends extends Attends

(Student, Course) {

String reason;

}

relationship Recommends (Tutor, Attends) {

String reason;

}

...

alice = new LazyStudent();

programming = new Course();

typeSystems = new Course();

Attends.add(alice, programming); // Alice attends Programming

ReluctantlyAttends.add(alice, typeSystems);

// Alice reluctantly attends Type Systems

for (Course c : alice.Attends) {

print "Attends: " + c.title;

}; // Prints:

// Attends: Programming

// Attends: Type Systems

alice
CompulsorilyAttends

programming

Attends

ReluctantlyAttends

Relation

Fig. 2. Example RelJ code and possible instantiation

266 G. Bierman and A. Wren

When alice and programming are placed in the Attends relationship, an
instance of Attends is created between those objects. Subsequently, when alice
and programming are further placed in ReluctantlyAttends, an instance of
ReluctantlyAttends is created between alice and programming, but contains
only the missedLectures field. If that ReluctantlyAttends instance receives a
field look-up request for mark, it passes—delegates—the request to the Attends
instance—the super-instance—that exists between those same objects.

To ensure all instances are ‘complete’, specifically that they have all the fields
one would expect by inheritance, we impose the following invariant:

Invariant 1. Consider a relationship r2 which extends r1. For every instance of
relationship r2 between objects o1 and o2, there is an instance of r1, also between
o1 and o2, to which it delegates requests for r1’s fields.

By this invariant, if alice and programming were placed in the
ReluctantlyAttends relationship without first having been placed in the
Attends relationship, then an Attends instance would be implicitly created
between them.

Invariant 2. For every relationship r and pair of objects o1 and o2, there is at
most one instance of r between o1 and o2.

According to this second invariant, if alice and programming were later
placed in the CompulsorilyAttends relationship, then its instance and that
of ReluctantlyAttends would share a common super-instance: the Attends
instance between alice and programming. This situation is shown at the bottom
of Fig. 2, with the dotted lines indicating delegation of field lookups.

The motivation for such a mechanism is based on what one might intuitively
expect from relationships: Clearly, if Alice reluctantly attends a course, then she
also attends it and will receive a mark, thus we require sub-relationships to be
included in their super-relationship, giving rise to Invariant 1. Also, if Alice is
both compulsorily and reluctantly attending some course, the mark will be the
same regardless of whether one views her attendance as reluctant, compulsory
or without any annotation. Thus, for each pair of related objects, there should
be only one instance of each relationship so that relationship properties are
consistent, hence Invariant 2.

RelJ also allows the removal of relationship instances. For example, we could
extend the code of Fig. 2 to remove the fact that Alice attends programming:

...

Attends.rem(alice, programming); // Remove Alice attends Programming

for (Course c : alice.Attends){

print "Attends: " + c.title; // Prints:

} // Attends: Type Systems

In fact, both the relationship addition and removal operations are statement ex-
pressions. When used as an expression, add returns the relationship instance that
was created: this provides a convenient short-cut for setting the new instance’s

First-Class Relationships in an Object-Oriented Language 267

fields. For regularity, rem returns the instance that was removed, or null if the
relationship did not exist before the attempted removal.

We return now to the issue raised earlier concerning relationship instance
removal. Consider the following code:

bob = new Student();

bob.name = "Bob";

databases = new Course();

databases.title = "DB 101";

bobdb = Attends.add(bob, databases); // Add bob to databases

bobdb.mark = 99;

for (Course cs : bob.Attends) {

print cs.title;

}; // Prints DB 101

print bobdb.mark; // Prints 99

Attends.rem(bob, databases); // Remove bob from databases

for (Course cs : bob.Attends) {

print cs.title;

}; // Prints nothing

The second iteration shows that the relationship between bob and databases
has been correctly removed. We must then choose the fate of the reference to
the Attends-instance stored in bobdb: what happens if we append the statement
print bobdb.mark;?

There are clearly a number of options: either the instance is removed, in
which case we would expect a runtime error; or the runtime maintains some
liveness information so that an access to the variable bobdb would generate a
specific relationship exception; or finally, we could choose not to remove the
relationship instance at all, in which case the code would print 99. We have
chosen the third option. Thus, in RelJ, the relationship instance itself is not
removed upon deletion, but rather is treated like any other runtime value and
is removed by garbage collection. More experience in relationship programming
is needed before we can determine if this is the correct design decision.

2.3 Language Definition

We give the grammar for RelJ programs and types in Fig. 3.
The Java types used in RelJ are class names and a single primitive type,

boolean (the inclusion of further primitive types does not impact on the for-
malization). As discussed, we provide relationship names as types. To allow
relationship processing RelJ has a (generic) set type set<n>, that denotes a set
of values of type n. This set type is not a reference type, but is a primitive

268 G. Bierman and A. Wren

p ∈ Program ::= ClassDecl∗ RelDecl∗

ClassDecl ::= class c extends c′

{ FieldDecl∗ MethDecl∗ }
RelDecl ::= relationship r extends r′ (n, n′

)

{ FieldDecl∗ MethDecl∗ }

n ∈ NominalType ::= c | r

t ∈ Type ::= boolean | n | set<n>
FieldDecl ::= t f;

MethDecl ::= t m(t′ x) mb

mb ∈ MethBody ::= { s return e; }
v ∈ Value ::= true | false | null | empty
l ∈ LValue ::= x |

e.f field access

e ∈ Expression ::= v | value

l | l-value

e1 == e2 | equality test

e1 + e2 | e1 - e2 | set addition/removal

e.r | e:r | relationship access

e.from | relationship source

e.to | relationship destination

se statement expression

se ∈ StatementExp ::= new c() | instantiation

l = e | assignment

r.add(e,e′) | r.rem(e,e′) | relationship addition/removal

e.m(e′) method call

s ∈ Statement ::= ε | empty statement

se; s1 | expression

if (e) {s1} else {s2}; s3 | conditional

for (n x : e) {s1}; s2 set iteration

Fig. 3. The grammar of RelJ types and programs

(value) type, much like the generic literal types used by the ODMG [12].1 RelJ
does not support nested sets—sets of sets are not permitted. RelJ offers a for
iterator over set values (we adopt the same syntax as Java 5.0 for iterating over
collections). We also provide operators for explicitly adding an element to a set
(+), and for removing an element (-).

1 Having sets as a generic value type allows us to soundly support covariance—this is
discussed in more detail in Sect. 3.

First-Class Relationships in an Object-Oriented Language 269

C ∈ ClassTable : ClassName → ClassName × FieldMap × MethMap
R ∈ RelTable : RelName → RelName × NominalType × NominalType ×

FieldMap × MethMap
F ∈ FieldMap : FldName → Type

M ∈ MethMap : MethName → VarName × LocalMap × Type × Type × MethBody
L ∈ LocalMap : VarName → Type

Fig. 4. Signatures of class and relationship tables

For simplicity, we require some regularity in the class (and relationship) dec-
larations of RelJ programs: (1) we insist that all class declarations include the
supertype; (2) we write out the receiver of field access or method invocation in
full; (3) all methods take just one argument; (4) all method declarations end
with a return statement; and (5) we assume that in a RelJ program exactly one
class supports a main method. To be concise, we do not consider constructor
methods; field initialization, other than the provision of type-appropriate initial
values, is performed explicitly.

The metavariable c ranges over the set of class names, ClassName; r ranges
over the set of relationship names, RelName; n ranges over both ClassName and
RelName; f ranges over the set of field names, FldName; m ranges over the
set of method names, MethName; and x ranges over the set of variable names,
VarName, which we assume contains the element this, which cannot be on the
left-hand side of an assignment. Metavariables may not take the undefined value.

As usual for such language formalizations, we assume that given a RelJ pro-
gram, P , the class and relationship declarations give rise to class and relationship
tables that are denoted by CP and RP , respectively [6]. (We will drop the sub-
script when it is unambiguous.) A class (relationship) table is then a map from a
class (relationship) name to a class (relationship) definition. Signatures for these
maps are to be found in Fig. 4.

A class definition is a tuple, (c,F ,M), where c is the superclass; F is a
map from field names to field types; and M is a map from method names to
method definitions. Method definitions are tuples (x,L, t1, t2,mb) where x is
the parameter; L is a map from local variable names to their types; t1 is the
parameter type; t2 is the return type; and mb is the method body. For brevity,
we write Fc and Mc for the field and method definition maps of class c.

Relationship definitions are tuples (r′, n, n′,F ,M) where r′ is the super-
relationship; n and n′ are the types between which the relationship is formed
(the source and destination respectively); and F , M are the field map and
method map respectively, as found in class definitions. As for classes, we write
Fr for r’s field definition map and Mr for r’s method map.

In summary, RelJ offers the following operations to manipulate relationships:
e.r finds the objects related to the result of e through relationship r; e:r finds
the instances of r that exist between the result of e and the objects to which
it is related; and the pseudo-fields from and to are made available on relation-
ship instances, and return the source and destination objects between which the
instance exists (or existed). These are further described in the following sections.

270 G. Bierman and A. Wren

3 Type System

We provide Object for the root of the class hierarchy as usual, and Relation as
its counterpart in the relationship hierarchy, and assume appropriate entries in
C and R respectively. We define the usual subtyping relation P � t ≤ t′ where
t is a subtype of t′, directly populated with the information about immediate
super-types provided by C and R, then closed under transitivity and reflexivity.
P is omitted where the context makes it unambiguous.

We leave the less important typing rules to Appendix A, but two rules worth
particular note are shown here:

(STCov)

� n1 ≤ n2

� set<n1> ≤ set<n2>

(STObject)

� Relation ≤ Object

STCov makes set types covariant with their contained type. If set<− > were a
reference type, then this kind of covariance would be unsound. However, set<−>
is a value type, thus such values are not referenced or mutated, only copied.

To unify the relationship and class hierarchies—desirable in the absence of
generics—we take Relation as a subtype of Object in rule STObject.2

While Fc and Mc give us the fields and methods declared directly in c, we
define FDc and MDc to provide us with all the fields and methods available for
c’s instances, including those inherited from its superclasses, so that their types
might be checked in the later type rules:

FDc(f) =

{
Fc(f) if f ∈ dom(FP,c) or c = Object

FDc′(f) if f �∈ dom(FP,c) and C(c) = (c′, ,)

MD is defined similarly for class methods, as are FD andMD for relationships.
We type expressions and statements in the presence of a typing environment,

Γ , which assigns types to variable names. Selected typing judgements for RelJ
expressions are given below:

(TSRelObj)

Γ � e : n1

R(r) = (, n2, n3, ,)
� n1 ≤ n2

Γ � e.r : set<n3>

(TSRelInst)

Γ � e : n1

R(r) = (, n2, , ,)
� n1 ≤ n2

Γ � e:r : set<r>

TSRelObj types the lookup of objects related through r to the result of e.
As our relationships are implicitly many-to-many, the result of this lookup is a
set of r’s destination type, n2. The relationship instances that sit between the
result of e and the result of e.r are accessed through e:r. The result of such a
lookup is a set of r-instances, as specified in TSRelInst. There is a bias here
between the source and destination of a relationship: the relationship instances
may only be accessed from the source object. It is not difficult to extend the
language so that access from the destination objects is also possible.

2 If we added generics to RelJ it would be possible to remove this typing rule.

First-Class Relationships in an Object-Oriented Language 271

(TSFrom)

Γ � e : r
R(r) = (, n, , ,)

Γ � e.from : n

(TSTo)

Γ � e : r
R(r) = (, , n, ,)

Γ � e.to : n

Given an r-instance, the objects between which it exists (or between which
it once existed) can be accessed with the from and to properties. TSFrom and
TSTo assign types according to the relationship’s declaration—therefore, these
are typed covariantly with the relationship type, but this is sound as they are
immutable for all instances of such a relationship.

(TSRelAdd)

R(r) = (, n1, n2, ,)
Γ � e1 : n3

Γ � e2 : n4

� n3 ≤ n1

� n4 ≤ n2

Γ � r.add(e1,e2) : r

(TSRelRem)

R(r) = (, n1, n2, ,)
Γ � e1 : n3

Γ � e2 : n4

� n3 ≤ n1

� n4 ≤ n2

Γ � r.rem(e1,e2) : r

Finally, TSRelAdd and TSRelRem specify typing of the operators that
relate and unrelate objects. In both cases, e1 and e2 must be of the source and
destination type, respectively, of relationship r. The result of either operation
will be an instance of r; that which was created or removed. A removal may
evaluate to null where the results of e1 and e2 were unrelated by r.

The type-checking relation for statements is of the form Γ � s, the rules for
which are largely routine. We show some examples, however:

(TSExp)

Γ � se : t
Γ � s

Γ � se; s

(TSFor)

Γ � e : set<n1>

Γ [x 	→ n2] � s1

� n1 ≤ n2

Γ � s2
x �∈ dom(Γ)

Γ � for (n2 x : e) {s1}; s2

TSExp allows type-correct statement expressions to be used as statements,
while TSFor checks that the for construct is only asked to iterate over a set
of object references. Note that, to be consistent with the Java 5.0 syntax, we
require an explicit type for the iterating variable, although there is no reason
why this type could not be inferred. We also require that the iteration variable
is not already in scope.

The set validTypesP specifies the types that may be assigned to fields and
variables:

validTypesP = {boolean}∪ dom(CP)∪ dom(RP)∪{set<n> | n ∈ dom(CP)∪ dom(RP)}

In the following two rules, we check fields and methods in the presence of
their enclosing class or relationship:

272 G. Bierman and A. Wren

(TSField)

C(n) = (n′, ,) ∨ R(n) = (n′, , , ,)
1. f �∈ dom(FDn′)
2. Fn(f) ∈ validTypesP
3. R(f) = (, n1, n2,) ⇒ �� n ≤ n1

P, n � f

TSField checks that f is a good field for class or relationship n by verifying
(1) that f is not defined in any super-type of n; (2) that f ’s type is valid in a
well-typed program and (3) that there is no relationship with the same name as
f that might make references to f ambiguous.

(TSMethod)

CP (n) = (n′, ,Mn) ∨RP (n) = (n′, , , ,Mn)
Mn(m) = (x,L, t1, t2, { s return e; })

1. t1 ∈ validTypesP
2. this, x �∈ dom(L)
3. {x 	→ t1, this 	→ n} ∪ L � s
4. {x 	→ t1, this 	→ n} ∪ L � e : t′2
5. � t′2 ≤ t2
6. MDn′(m) = (, , t3, t4,) ⇒ � t3 ≤ t1 ∧ � t2 ≤ t4

P, n � m

TSMethod checks (1) that the input type of method m in class/relationship
n is valid; (2) that the parameter name and this do not clash with any local
variables; (3) that the method body is well-typed when the parameter, this and
the local variables are assigned the types specified in the class’ method table;
(4, 5) that the return expression has a subtype of the method’s declared return
type; and (6) that the input type of this method is a supertype of any previous
declaration of m in a super-type of c, and that the return type of m is a subtype
of any previous method declaration: that is, that this definition of m may be
used anywhere a supertype’s version of m can be used. We then specify the
validity of classes and relationships:

(TSClass)

C(c) = (c′ �= c,F ,M)
P � c′

∀f ∈ dom(F) : P, c � f
∀m ∈ dom(M) : P, c � m

P � c

(TSRelationship)

RP (r) = (r′ �= r, n1, n2,F ,M)
r′ ∈ validTypesP

1. RP (r′) = (, n′
1, n

′
2, ,)

2. � n1 ≤ n′
1

3. � n2 ≤ n′
2

∀f ∈ dom(F) : P, r � f
∀m ∈ dom(M) : P, r � m

P � r

TSClass specifies that a class type is well-formed if its superclass is well-formed,
and if all of its methods and fields are well-typed. TSRelationship imposes
many of the same restrictions as TSClass, with the addition of conditions 1–3,
which check the types related by r’s super-relationship are supertypes of those
that r relates.

First-Class Relationships in an Object-Oriented Language 273

4 Semantics

We specify evaluation rules for a small-step semantics. We use evaluation con-
texts to specify evaluation order [17], and use variable renaming to avoid the
need for an explicit frame stack [7].

The meta-variables used in the semantics range over addresses, values, errors,
objects and stores as follows:

ι ∈ Address
ιnull ∈ Address ∪ {null}

u ∈ DynValue = {null, true, false} ∪ Address ∪ P(Address)
w ∈ Error ::= NullPtrError | Ee[w] | Es[w] | { w return e; }
o ∈ Object
σ : Address → Object
ρ : (Address× Address× RelName) → Address
λ : VarName → DynValue

Objects, ranged over by o, are either class instances or relationship instances.
We write class instances as an annotated pair, 〈〈c||f1 : v1, . . . , fi : vi〉〉, containing
a mapping from field names to values, and the object’s dynamic type, c. Relation-
ship instances are written as an annotated 5-tuple, 〈〈r, ιnull, ι1, ι2||f1 : v1, . . . , fi :
vi〉〉, containing the familiar field value map and dynamic type, as well as the ob-
ject addresses the instance relates, ι1 and ι2, and a reference to the relationship
instance’s super-instance, ιnull; specifically, the instance of r’s super-relationship
which relates the same object addresses ι1 and ι2. Where r = Relation, there
is no super-relationship and this reference is null. For both types of object, we
take o(f) and dom(o) as if they were applied to o’s field value map.

Dynamic values (as opposed to syntactic value literals), ranged over by u,
are either addresses, ranged over by ι, sets of addresses, or true, false or null.
A small-step semantics means that expressions may at times be only partially
evaluated, so we include these run-time values and partially-evaluated method
bodies in language expressions by extending Expression as follows:

e ∈ DynExpression ::=

u | dynamic values

mb | method body

. . . terms from Expression grammar

DynLValue and DynStatement are generated from LValue and Statement in the
obvious way, and e, l and s will range over these new definitions from this point
onward.

A store, σ, is a map from addresses to objects, while local variables are given
values by a locals store, λ. A relationship store, ρ maps relationship tuples to
addresses such that ρ(r, ι1, ι2) indicates the address of the instance of r which
exists between ι1 and ι2.

During execution, the store and its constituent objects are modified by up-
dating the relevant map. Update of some map f is written f [a �→ b] such that

274 G. Bierman and A. Wren

Ee ∈ ExpContext ::=
• hole

| Ee.f field lookup
| Ee == e | u == Ee equality test
| Ee + e | u + Ee set addition
| Ee - e | u - Ee set removal
| Ee.r | Ee:r relationship access
| Ee.from | Ee.to relationship from/to
| { E return e; } | { return Ee; } method body
| Ee.f = e | x = Ee | u.f = Ee assignment
| Ee.m(e′) | u.m(Ee) method call
| r.add(Ee,e

′) | r.add(u,Ee) relationship addition
| r.rem(Ee,e

′) | r.rem(u,Ee) relationship removal

Es ∈ StatContext ::=
Ee; s expression

| for (n x : Ee) {s1}; s2 set iteration
| if (Ee) {s1} else {s2}; s3 conditional

Fig. 5. Grammar for evaluation contexts

f [a �→ b](a) = b and f [a �→ b](c) = f(a) where a �= c. Such substitutions are
commonly applied to stores (σ[ι �→ o]) and to objects (o[f �→ v]).

Substitution of variables in program syntax uses the standard notation,
e[x′/x], for the replacement of all variables x in e with x′, and similarly with
statements, s[x′/x].

Figure 5 gives the evaluation contexts for RelJ expressions and statements.
All contexts E contain a hole, denoted •, which indicates the position of the
sub-expression to be evaluated first—in this case the left-most, inner-most. An
expression may be placed in a context’s hole position by substitution, denoted
Ee[e]. Notice that we no longer distinguish between those expressions that may
or may not be used in statement position.

A configuration in the semantics is a 5-tuple of typing environment, heap,
relationship store, locals map, and a statement: 〈Γ, σ, ρ, λ, s〉. An error configu-
ration is a configuration 〈Γ, σ, ρ, λ, w〉, with an error in place of a statement. Γ
is included for the proof of type soundness.

Expression execution proceeds when a sub-expression in hole position may be
reduced, as specified by OSContextE. We elide the similar rule for expressions
in statement context:

(OSContextE)
〈Γ, σ, ρ, λ, e〉 P� 〈Γ ′, σ′, ρ′, λ′, e′〉

〈Γ, σ, ρ, λ, Ee[e]〉 P� 〈Γ ′, σ′, ρ′, λ′, Ee[e′]〉
We also execute statements inside partially-executed method bodies:

(OSInBody)
〈Γ, σ, ρ, λ, s〉 P� 〈Γ ′, σ′, ρ′, λ′, s′〉

〈Γ, σ, ρ, λ, { s return e; }〉 P� 〈Γ ′, σ′, ρ′, λ′, { s′ return e; }〉
It remains now to define the base cases for the operational semantics. We

begin with RelJ’s two relationship operations on an object address, ι: firstly, the

First-Class Relationships in an Object-Oriented Language 275

newPartP (r, ιnull, ι1, ι2)=〈〈r, ιnull, ι1, ι2||f1 : initialP (FP,r(f1)), . . . , fi : initialP (FP,r(fi))〉〉
where {f1, f2, . . . , fi} = dom(FP,r)

addRelP (r, ι1, ι2, σ1, ρ1) =

(σ1, ρ1) if ρ(r, ι1, ι2) = ι′′

(σ1[ι 	→ newPartP (r, null, ι1, ι2)], ρ1[(r, ι1, ι2) 	→ ι])
if r = Relation

(σ3, ρ3) otherwise
where ι �∈ dom(σ1) or dom(σ2)

r �= Relation ⇒ RP (r) = (r′, , ,)
(σ2, ρ2) = addRelP (r′, ι1, ι2, σ1, ρ1)
σ3 = σ2[ι 	→ newPartP (r, ρ2(r′, ι1, ι2), ι1, ι2)]
ρ3 = ρ2[(r, ι1, ι2) 	→ ι]

remRelP (r, ι1, ι2, ρ) = ρ \ {((r′, ι1, ι2) 	→ ι) | � r′ ≤ r}

fldUpd(σ, f, ι, u) =

{
σ[ι 	→ σ(ι)[f 	→ u]] if f ∈ dom(σ(ι))
fldUpd(σ, f, ι′, u) if σ(ι) = 〈〈r, ι′, , || . . .〉〉

Fig. 6. Definitions of auxiliary functions for creating relationship instances (newPart),
for putting objects in relationships (addRel) and for removing objects from relation-
ships (remRel). fldUpd demonstrates delegation of field updates to super-relationship
instances

objects related to ι by relationship r may be accessed using e.r; secondly, the
instances of r that relate those objects to ι may be accessed with e:r so that
relationship attributes may be read or modified:

OSRelObj: 〈Γ, σ, ρ, λ, ι.r〉 P� 〈Γ, σ, ρ, λ, {ι′ | ∃ι′′ : ρ(r, ι, ι′) = ι′′}〉
OSRelObjN: 〈Γ, σ, ρ, λ, null.r〉 P� 〈Γ, σ, ρ, λ, NullPtrError〉
OSRelInst: 〈Γ, σ, ρ, λ, ι:r〉 P� 〈Γ, σ, ρ, λ, {ι′′ | ∃ι′ : ρ(r, ι, ι′) = ι′′}〉

OSRelObj and OSRelObjN give the semantics for obtaining the objects
related to ι through r. Notice that the result is not just a matter of looking-up
the result in a table; the objects are found by querying ρ. If null is the target
of the lookup, a null-pointer error occurs. Similar rules are left for the appendix.

The pseudo-fields from and to provide access to the objects between which
a relationship instance exists, returning the source and destination objects re-
spectively:

OSFrom: 〈Γ, σ, ρ, λ, ι.from〉 P� 〈Γ, σ, ρ, λ, ι′〉 where σ(ι) = 〈〈 , , ι′, || 〉〉
OSTo: 〈Γ, σ, ρ, λ, ι.to〉 P� 〈Γ, σ, ρ, λ, ι′〉 where σ(ι) = 〈〈 , , , ι′|| 〉〉

OSRelAdd and OSRelRem give semantics to the relationship addition and
removal operators add and rem respectively, and are based entirely on addRel
and remRel from Fig. 6:

OSRelAdd: 〈Γ, σ1, ρ1, λ, r.add(ι1,ι2)〉 P� 〈Γ, σ2, ρ2, λ, ι3〉
where (σ2, ρ2) = addRelP (r, ι1, ι2, σ1, ρ1) and ι3 = ρ2(r, ι1, ι2)

276 G. Bierman and A. Wren

OSRelRem1: 〈Γ, σ, ρ1, λ, r.rem(ι1,ι2)〉 P� 〈Γ, σ, ρ2, λ, ρ1(r, ι1, ι2)〉
where (r, ι1, ι2) ∈ dom(ρ1) and ρ2 = remRelP (r, ι1, ι2, ρ1)

OSRelRem2: 〈Γ, σ, ρ, λ, r.rem(ι1,ι2)〉 P� 〈Γ, σ, ρ, λ, null〉
where (r, ι1, ι2) �∈ dom(ρ)

addRel adds an instance of r between ι1 and ι2 if such an instance does not
already exist. With a recursive call, it also ensures that instances of r’s super-
relationships exist between ι1 and ι2, ensuring Invariant 1 is maintained.

remRel removes an instance of r from between ι1 and ι2, but does not alter the
heap, only the relationship store, ρ. Again, to maintain Invariant 1, all instances
of sub-relationships to r are similarly removed from between ι1 and ι2.

In the case of a relationship addition in expression context, a reference is
returned to the relationship instance that was added. Relationship removal eval-
uates to the instance that was removed, if any. Where no such instance exists,
null is returned.

Field update is performed with an auxiliary function fldUpd, also found in
Fig. 6, which demonstrates the delegation of field lookup to super-relationship
instances:

OSFldAss: 〈Γ, σ, ρ, λ, ι.f = u〉 P� 〈Γ, fldUpd(σ, ι, f, u), ρ, λ, u〉

We conclude our discussion of the operational semantics with the two cir-
cumstances in which variables are scoped—method call, and the for iterator.

The semantics for method call is given in OSCall. Access to the formal
parameter, x, local variables, x1..i, and this must be scoped within the body
of m, so we freshen these syntactic names to x′, x′

1..i and x′
this in the style of

Drossopoulou et al. [7].

OSCall: 〈Γ1, σ, ρ, λ1, ι.m(u)〉 P� 〈Γ2, σ, ρ, λ2, { s2 return e2; }〉
where

σ(ι) = 〈〈n|| . . .〉〉 or σ(ι) = 〈〈n, , , || . . .〉〉
MDP,n(m) = (x,L, t1, , s1 return e1;)
dom(L) = {x1, . . . , xi}
x′, x′

this, x
′
1, . . . , x

′
i �∈ dom(λ1)

Γ2 = Γ1[x′ 	→ t1][x′
this 	→ n][x′

1..i 	→ L(x1..i)]
λ2 = λ1[x′ 	→ u][x′

this 	→ ι][x′
1..i 	→ initial(Γ2(x′

1..i))]
s2 = s1[x′/x][x′

1..i/x′
1..i][x

′
this/this]

e2 = e1[x′/x][x′
1..i/x1..i][x′

this/this]

We extend the typing environment, Γ2, with new local variable type bindings
for the fresh names (as well as those for the formal parameter and this), and
include appropriate initial values in the locals store, λ2. Finally, the old syn-
tactic names are updated in the method body, s, and return expression, e, by
substitution.

A similar strategy is used to avoid binding clashes for the for iterator:

OSFor1: 〈Γ, σ, ρ, λ, for (n x : ∅) {s1}; s2〉 P� 〈Γ, σ, ρ, λ, s2〉

First-Class Relationships in an Object-Oriented Language 277

OSFor2: 〈Γ1, σ, ρ, λ1, for (n x : u) {s1}; s2〉 P�
〈Γ2, σ, ρ, λ2, s3 for (n x : (u \ ι)) {s1}; s2〉

where
ι ∈ u, x �= x′ �∈ dom(λ1)
Γ2 = Γ1[x′ 	→ x], λ2 = λ1[x′ 	→ ι], s3 = s1[x′/x]

Iteration of the empty set evaluates immediately to ‘skip’, while iteration
over the non-empty set picks an element from the set, assigns this to the iterator
variable, and unfolds the statement block, in which the bound iterator variable
is freshened. We do not specify the order in which the elements of u are bound
to x.

5 Soundness

In this section we outline proofs of two key safety properties: that no type-correct
program will get ‘stuck’—except in a well-defined error state—and that types
are preserved during program execution.

Firstly, however, we define some well-formedness properties of stores and
values, so that we can check type preservation through subject reduction.

Value Typing and Well-Formedness
We redefine our typing relation to include the store, σ, so that values may be
typed—particularly important for showing subject-reduction. Typings of true
and false with boolean, and of null with any valid nominal type are elided.

Firstly, an address has a type, n, if the object at that address in the store
has a dynamic type (written dynType(σ(ι))) subordinate to n. This condition is
then mapped over the members of a set of addresses in DTSet:

(DTAddr)

� dynType(σ(ι)) ≤ n

P, Γ, σ � ι : n

(DTSet)

P � n
∀j ∈ 1..i : P, Γ, σ � ιj : n

P, Γ, σ � {ι1, . . . , ιi} : set<n>

We also provide a typing rule for the method body construction introduced
in Fig. 5:

(DTMethBody)

P, Γ, σ � s
P, Γ, σ � e : t

P, Γ, σ � { s return e; } : t

We make use of a ‘well-formed object’ relation, P, σ � o inst , when o is a
well-formed object in some store, the rules for which follow:

(WFField)

dynType(o) = n
FDP,n(f) = t

P, ∅, σ � o(f) : t

P, σ, o � f �fld

278 G. Bierman and A. Wren

WFField checks that the field f stores a value of appropriate type for its
definition in class or relationship n, according the dynamic typing relation given
above. This relation is mapped across the fields of classes and relationships in
the following rules:

(WFObject1)

P, σ � 〈〈Object||〉〉 �inst

(WFRelInst1)

ι1, ι2 ∈ dom(σ)
P, σ � 〈〈Relation, null, ι1, ι2||〉〉 �inst

(WFObject2)

{f1, . . . , fi} = dom(FDP,c)
∀j ∈ 1..i : P, σ, o � fj �fld

P, σ � 〈〈c||f1 : v1, . . . , fi : vi〉〉 �inst

(WFRelInst2)

RP (r) = (dynType(σ(ι)), n1, n2,F ,)
{f1, . . . , fi} = dom(F)

∀j ∈ 1..i : P, σ, o � fj �fld

� dynType(σ(ι1)) ≤ n1

� dynType(σ(ι2)) ≤ n2

P, σ � 〈〈r, ι, ι1, ι2||f1 : v1, . . . , fi : vi〉〉 �inst

WFObject1 and WFRelInst1 specify that instances of Object and
Relation, respectively, are valid. WFObject2, requires that all fields are well-
formed and that the class instance has precisely those fields that were declared
or inherited. WFRelInst2, checks that only those fields immediately declared
in r are present in the relationship instance; that those fields are well-formed;
that the super-instance, at ι, is present, and has a dynamic type equal to r’s su-
pertype; and that the r-instance sits between two instances of appropriate type
according to r’s definition.

We check that the relationships are properly specified in ρ according to the
following two rules:

(WFRelation1)

σ(ρ(Relation, ι1, ι2)) = 〈〈Relation, null, ι1, ι2||〉〉
P, σ, ρ � (Relation, ι1, ι2) �rel

(WFRelation2)

RP (r) = (r′, , , ,)
(r′, ι1, ι2) ∈ dom(ρ)

σ(ρ(r, ι1, ι2)) = 〈〈r, ρ(r′, ι1, ι2), ι1, ι2|| . . .〉〉
P, σ, ρ � (r, ι1, ι2) �rel

WFRelation2 ensures that the r-instance between ι1 and ι2 has a super-
instance that also sits between ι1 and ι2. WFRelation1 acts as a base-case for
Relation, instances of which do not take a super-instance.

We then map the conditions for well-formed instances, relations and local
variables over the heap, σ, the relationship heap, ρ, and the locals map, λ:

(WFHeap)

∀ι ∈ dom(σ) : P, σ � σ(ι) �inst

P � σ �heap

(WFRelHeap)

∀(r, ι1, ι2) ∈ dom(ρ) : P, σ, ρ � (r, ι1, ι2) �rel

P, σ � ρ �relheap

First-Class Relationships in an Object-Oriented Language 279

(WFLocals)

∀x ∈ dom(Γ) : P, Γ, σ � λ(x) : Γ (x)
P, Γ, σ � λ �locals

We consider a configuration 〈Γ, σ, ρ, λ, s〉 to be well-formed when σ, ρ and λ
are well-formed, and where s is type-correct. Error configurations, 〈Γ, σ, ρ, λ, w〉,
are well-formed under similar conditions.

Safety
Type safety is shown by a subject reduction theorem, central to which is the
idea that context substitution respects types:

Lemma 1 (Substitution). For expressions e1 and e2, which are typed t1 and t2
respectively, where t2 is a subtype of t1 and where Ee[e1] is typed t3, then Ee[e2] has a
subtype of t3.

The proof follows by induction on the structure of the typing derivation. Next,
we show type preservation, which follows naturally from the previous lemma, and
by induction on the structure of the derivation of execution:

Theorem 1 (Subject Reduction). In a well-typed program, P , where
〈Γ1, σ1, ρ1, λ1, s1〉 executes to a new configuration 〈Γ2, σ2, ρ2, λ2, s2〉, that configuration
will be well-formed. Furthermore, Γ1 ⊆ Γ2 and all objects in σ1 retain their dynamic
type in σ2.

Similarly where the original configuration executes to an error configuration.

Finally, we show that a well-typed program may always perform an execution
step:

Theorem 2 (Progress). For all well-typed programs, P , all well-formed configura-
tions 〈Γ1, σ1, ρ1, λ1, s1〉 execute to either:

i. an error configuration 〈Γ2, σ2, ρ2, λ2, w〉, or
ii. a new statement configuration 〈Γ2, σ2, ρ2, λ2, s2〉

By Theorems 1 and 2, any well-typed program can make a step to a new
well-formed configuration: well-typed programs do not go wrong.

6 Restricting Multiplicities

In UML, associations can be annotated with multiplicities, which restrict the
number of instances that may take part in any given relation. For example, it
could be that every student attends exactly eight courses, but that a course may
have any number of students:

Student Course
* 8attends

More exotic multiplicities can include ranges (‘1..7’), and comma-separated
ranges (‘1..7, 10..*’). There are a number of ways in which such restrictions
could be expressed in RelJ. We describe below both a flexible, but dynamically
checked approach, as well as a more restricted, statically checked approach.

280 G. Bierman and A. Wren

6.1 Dynamic Approach

The use of a run-time check at every relationship addition would allow us to
represent most of the possible multiplicities that can be expressed in UML.
When, say, too many courses are added to the Attends relationship, an exception
could be raised:

relationship Attends (many Student, 2 Course) { int mark; }
...
Attends.add(alice, programming);
Attends.add(alice, semantics);
Attends.add(alice, types); // Exception!

We deviate from UML slightly: an association annotated at one end with ‘2’
would always have exactly two associated instances. Instead, we interpret our 2
annotation on Course as ‘0..2’ in UML notation: that is, courses start without
any students.

6.2 Static Approach

Our preference, however, is for a static approach to the expression of multi-
plicities. While less flexible, we need not generate constraint-checking code for
relationship additions, and we provide more robust guarantees that the multi-
plicity constraints are satisfied. Rather than give the formal details, we shall give
an overview of this extension to RelJ.

We only allow one and many annotations. The former is equivalent to ‘0..1’
in UML, the latter to ‘0..*’:

relationship Attends (many Student, many Course);
relationship Failed (many PassedStudent, one Course);

In the declarations above, we see that students’ course attendance is unrestricted,
but that a PassedStudent may have failed at most one course.

We further restrict relationship inheritance so that a many-to-one relation-
ship may only inherit from a many-to-one or many-to-many relationship. We
impose similar restrictions on many-to-many and one-to-many relationship def-
initions. We then add to the invariants of Sect. 2.

Invariant 3. For a relationship r, declared “relationship r (n1, n2)”,
where n1 is annotated with one, there is at most one n1-instance related through
r to every n2-instance. The converse is true where n2 is annotated with one.

There is a tension between Invariants 1 and 3. Consider the following rela-
tionship definitions, where a course can only be taught by a single lecturer, and
where lecturers enjoy teaching hard courses, but teach them slowly:

relationship Teaches (one Lecturer, many Course);
relationship ExcitedlyTeaches extends Teaches

(one Lecturer, many HardCourse);

First-Class Relationships in an Object-Oriented Language 281

relationship SlowlyTeaches extends Teaches
(one Lecturer, many HardCourse);

charlie = new Lecturer();
deirdre = new Lecturer();
advancedWidgets = new HardCourse();

Suppose that charlie ExcitedlyTeaches advancedWidgets, then by Invari-
ant 1, charlie also Teaches advancedWidgets.

Now suppose that deirdre is to slowly teach advancedWidgets:

SlowlyTeaches.add(deirdre, advancedWidgets);

By Invariant 1, deirdre must also be related to advancedWidgets via
Teaches. However, by Invariant 3, charlie and deirdre cannot both Teach
advancedWidgets. In our formalised semantics, we remove charlie from
Teaches with advancedWidgets: the add becomes an assignment, rather than
an addition, in this case. Furthermore, by Invariant 1, charlie cannot be in
ExcitedlyTeaches with advancedWidgets once he has been removed from
Teaches—therefore, he is also removed from ExcitedlyTeaches.

This behaviour, where not only sub-relationships of r are altered by a change
to r’s contents, but possibly also the contents of parents and siblings of r, might
seem unexpected. At the same time, they make sense when examining examples,
and provide a means for avoiding run-time checks.

7 Conclusion

In this paper, we have presented RelJ, a core fragment of Java that offers first-
class support for first-class relationships. Unlike other work, we have formally
specified our language; giving mathematical definitions of its type system and
operational semantics. Given such definitions we are able prove an important
correctness property of our language.

7.1 Related Work

Modelling languages like UML [9] and ER-diagrams [5] provide associations and
relationships as core abstractions. Several database systems, for example object
databases adhering to the ODMG standard [12], also provide relationships as
primitives. Unfortunately, programming languages provide no first-class access
to such primitives, so weak APIs must be used instead.

As we mentioned earlier, Rumbaugh [13] was the first to point out that
relationships have an important rôle to play in general object-oriented languages,
and gave an informal description of a language based on Smalltalk. However, the
matter of relationship inheritance was mentioned only as an analogue to class
inheritance, and there was no formal treatment of this or the language as a whole.

Noble has presented some patterns for programming with relationships [10].
In fact, many of these patterns could be used in translating RelJ programs to

282 G. Bierman and A. Wren

‘pure’ Java. Noble and Grundy also suggested that relationships should be made
explicit in object-oriented programs [11]. Again, neither work provides any con-
crete details of language support for relationships.

After completing the first draft of this work we discovered the paper by
Albano, Ghelli and Orsini [1], which describes a language based on associations
(relationships) for use in an object-oriented database environment. Their data
model is quite different from ours; for example, they treat classes as containers,
or extents [12]. Thus values can inhabit multiple classes, and classes also support
multiple inheritance. In fact, classes turn out to be unary associations, which is
the core abstraction in Albano et al.’s model.

Their model also provides a rich range of constraints; for example, surjec-
tivity and cardinality constraints for associations, and disjointness constraints
on classes. These are compiled to the appropriate runtime checks. (They take
advantage of the underlying database infrastructure and utilize triggers and
transactions.) Finally, they give no formal description of the language.

Our work, in contrast, takes as its starting point the Java object model and
hence much of the complexity of Albano et al.’s model is simply not available.
However, a notion of ‘container’ can be easily coded up. First assume a class
Singleton and a single object of that class, called default. We can then define
containers for the Person and Student classes of Fig. 2 as follows (where we
assume a super-relationship Extent between Singleton and Object classes).

relationship Persons extends Extent

(Singleton, Person) {

}

relationship Students extends Persons

(Singleton, Student) {

}

So to place Tom in the Persons container we simply write
Persons.add(default, Tom). Similarly Students.add(default, Jerry)
would add the object Jerry to the Students container, and by delegation also
in the Persons container. The expression default.Persons would return the
current contents of the Persons container. (Syntactic sugar could easily be
added to make this code a little more compact.)

Interest in relationships is not restricted to modelling and programming lan-
guages. In the timeframe of the next generation of Microsoft Windows, code-
named ‘Longhorn’, the Windows storage subsystem will be replaced with a new
system called WinFS. WinFS provides a database-like file store, the core of which
is a collection of items, like objects, which represent data such as images, Outlook
contacts, and user-defined items. The other key component of the WinFS data
model is relationships, which are defined between items. WinFS thus represents
a move away from the traditional tree-based file system hierarchy to an arbi-
trary graph-based file system, where the key abstraction is the relationship. At
the time of writing, details of the API for WinFS are scarce, but it is clear that
a language such as RelJ would provide a more direct programming framework,
where various compile-time checks and optimizations would be possible. When

First-Class Relationships in an Object-Oriented Language 283

the details of WinFS are finalized and made public, it would be interesting to
compare various systems routines written in a language such as RelJ with those
written using the APIs.

7.2 Further Work

Clearly RelJ is just a first step in providing comprehensive first-class support of
relationships in an object-oriented language. There are several features available
in modelling languages, such as UML, that cannot currently be expressed in
RelJ; notably, we only support relationships that are one-way. We hope to add
relationships that may be traversed in both directions safely, as well as further
investigating multiplicities.

In this paper we have not given details of how RelJ can be implemented. To sup-
port it directly in the runtime would require considerable extension of the JVM.
The design and evaluation of such an extension is interesting future work. As an al-
ternative, we have informally specified a systematic translation of RelJ into ‘pure’
Java. In the future, we plan to formalize this translation and prove it correct.

Another direction we wish to consider is extending RelJ with more query-like
facilities (in a style similar to Cω [3]). For example, one might add a simple
filter facility, e.g. the expression alice.Attends[it.title.matches("*101")]
would return the beginners’ courses that alice is currently attending. (The
subexpression in square brackets is a simple boolean-valued expression, where
it is bound to each element of the relationship in turn.)

Finally, we conclude by recording our hope that our language may provide a
first step in the process of principled unification of modelling languages (UML,
ER-diagrams), programming languages (Java, C�), and data query and specifi-
cation languages (SQL, schema design).

Acknowledgments

Much of this work was completed whilst Bierman was at the University of Cam-
bridge Computer Laboratory and supported by EU grants Appsem-II and EC
FET-GC project IST-2001-33234 Pepito. Wren is currently supported by an
EPSRC studentship. We are grateful to Sophia Drossopoulou and her group for
useful comments on this work, as well as to Matthew Fairbairn, Giorgio Ghelli,
Alan Mycroft, James Noble, Matthew Parkinson, Andrew Pitts, Peter Sewell
and the attendees of FOOL 2005.

References

1. A. Albano, G. Ghelli, and R. Orsini. A relationship mechanism for a strongly typed
object-oriented database programming language. In Proceedings of VLDB, 1991.

2. C. Anderson and S. Drossopoulou. δ: An imperative object-based calculus with
delegation. In Proceedings of USE, 2002.

3. G. Bierman, E. Meijer, and W. Schulte. The essence of Cω. In Proceedings of
ECOOP, 2005.

284 G. Bierman and A. Wren

4. G. Bierman, M. Parkinson, and A. Pitts. MJ: A core imperative calculus for Java
and Java with effects. Technical Report 563, University of Cambridge Computer
Laboratory, 2003.

5. P. P.-S. Chen. The entity-relationship model – toward a unified view of data. ACM
Transactions on Database Systems, 1(1):9–36, 1976.

6. S. Drossopoulou. An abstract model of Java dynamic linking and loading. In
Proceedings of Types in Compilation (TIC), 2000.

7. S. Drossopoulou, T. Valkevych, and S. Eisenbach. Java type soundness revisited,
September 2000.

8. M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mixins. In Proceedings
of POPL, pages 171–183, 1998.

9. I. Jacobson, G. Booch, and J. Rumbaugh. The unified software development pro-
cess. Addison-Wesley, 1999.

10. J. Noble. Basic relationship patterns. In Pattern Languages of Program Design,
vol. 4. Addison Wesley, 1999.

11. J. Noble and J. Grundy. Explicit relationships in object-oriented development. In
Proceedings of TOOLS, 1995.

12. R.G.G.Cattell etal. TheObjectDataStandard:ODMG3.0.MorganKaufmann,2000.
13. J. Rumbaugh. Relations as semantic constructs in an object-oriented language. In

Proceedings of OOPSLA, pages 466–481, 1987.
14. J. Smith and D. Smith. Database abstractions: Aggregation and generalizations.

ACM Transactions on Database Systems, 2(2):105–133, 1977.
15. P. Stevens and R. Pooley. Using UML: software engineering with objects and

components. Addison-Wesley, 1999.
16. D. Ungar and R. B. Smith. Self: The power of simplicity. In Proceedings of

OOPSLA, pages 227–242. ACM Press, 1987.
17. A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Informa-

tion and Computation, 115(1):38–94, 1994.

A Details of Type System and Semantics

This appendix contains the details of the semantics not covered in the main
body of the paper.

A.1 Typing Rules

In addition to the subtyping rules given in Sect. 3, the following rules populate
the subtyping relation with the immediate supertypes provided by the language
syntax, and give the reflexive, transitive closure:

(STRef)

P � t

� t ≤ t

(STTrans)

� t1 ≤ t2
� t2 ≤ t3
� t1 ≤ t3

(STClass)

C(c1) = (c2, ,)
� c1 ≤ c2

(STRel)

R(r1) = (r2, , , ,)
� r1 ≤ r2

The typing rules for the RelJ statements and expressions not typed in Sect. 3
are shown in Fig. 7.

We omit the typing of literal values true, false, null and empty, which
are typed in the obvious way – boolean, n and set<n> respectively. Variables

First-Class Relationships in an Object-Oriented Language 285

(TSVar)

Γ (x) = t

Γ � x : t

(TSNew)

P � c

Γ � new c() : c

(TSEq)

Γ � e1 : n
Γ � e2 : n′

Γ � e1 == e2 : boolean

(TSFld)

Γ � e : n
FDn(f) = t

Γ � e.f : t

(TSAdd)

Γ � e1 : set<n1>

Γ � e2 : n2

� n1 ≤ n3

� n2 ≤ n3

Γ � e1 + e2 : set<n3>

(TSSub)

Γ � e1 : set<n1>

Γ � e2 : n2

� n1 ≤ n3

� n2 ≤ n3

Γ � e1 - e2 : set<n3>

(TSAss)

x �= this

Γ � x : t1
Γ � e : t2
� t2 ≤ t1

Γ � x = e : t2

(TSFldAss)

Γ � e1 : n
Γ � e2 : t1

FDn(f) = t2
� t1 ≤ t2

Γ � e1.f = e2 : t1

(TSCall)

Γ � e1 : n
Γ � e2 : t1

MDn(m) = (x,L, t2, t3,)
� t1 ≤ t2

Γ � e1.m(e2) : t3

(TSCond)

Γ � e : boolean
Γ � s1

Γ � s2

Γ � s3

Γ � if (e) {s1} else {s2}; s3

(TSSkip)

Γ � ε

Fig. 7. The remaining type rules of RelJ

are typed by TSVar simply by look-up in the typing environment. Note that
TSVar covers the type of this by its inclusion in VarName. New class-instance
allocation is typed in the obvious way. The equality test is valid as long as both
expressions are addresses. (Similar rules are required for e1 and e2 as set<−> or
boolean types, but these are obvious and omitted.) Field look-up is typed from
the field table of the receiver’s static type. Rules TSVarAdd to TSFldSub
demonstrate object addition and removal from set values. In all cases, the right-
hand operand must be the address of an object with a type subordinate to
the set’s static type. The entire expression takes the right-hand operand’s type.
Variables and fields may be assigned values subordinate to the left-hand side’s
declared type. Method call is typed directly from the method look-up table. The
for statement was typed in the body of the paper. The conditional’s typing-
checking is standard, recalling that we do not assign types to statements. All
statements require that their continuation statement is also well-typed, and we
explicitly type the empty statement (ε), which is usually omitted in program text.

Finally, a program is well-typed if all of its classes and relationships are well-
typed, if classes and relationships are disjoint, and if the subtyping relationship
is antisymmetric:

(TSProgram)

∀n ∈ dom(CP) ∪ dom(RP) : P � n
∀n1, n2 : P � n1 ≤ n2 ∧ P � n2 ≤ n1 ⇒ n1 = n2

� P

286 G. Bierman and A. Wren

A.2 Operational Semantics

First, we give full definitions of new, which returns an initialised class instance;
initial, which returns an appropriate initial value for a variable of type t; dynType,
which returns the dynamic type of an address in the store; and of fld, which
returns the value of field f in the object at ι in store σ, delegating the field
lookup to the superinstance as appropriate.

newP (c) =

{
〈〈Object||〉〉 if c = Object

〈〈c||f1 : initialP (FDP,c(f1)), . . . , fi : initialP (FP,c(fi))〉〉 otherwise

where {f1, f2, . . . , fi} = dom(FDP,c)

initialP (t) =

null if t = n′

false if t = boolean

∅ if t = set<n>

dynType(o) = n where o = 〈〈n|| . . .〉〉 ∨ o = 〈〈n, , , || . . .〉〉

fld(σ, f, ι) =

{
σ(ι)(f) if f ∈ dom(σ(ι)) or
fld(σ, f, ι′) if f �∈ dom(σ(ι)) ∧ σ(ι) = 〈〈r, ι′, , ||...〉〉

The remaining rules of the operation semantics are then as follows:

OSEmpty: 〈Γ, σ, ρ, λ, empty〉 P� 〈Γ, σ, ρ, λ, ∅〉
OSVar: 〈Γ, σ, ρ, λ, x〉 P� 〈Γ, σ, ρ, λ, λ(x)〉
OSFldN: 〈Γ, σ, ρ, λ, null.f〉〈Γ, σ, ρ, λ, NullPtrError〉
OSFld: 〈Γ, σ, ρ, λ, ι.f〉 P� 〈Γ, σ, ρ, λ, fld(σ, ι, f)〉
OSRelInstN: 〈Γ, σ, ρ, λ, null:r〉 P� 〈Γ, σ, ρ, λ, NullPtrError〉
OSEq: 〈Γ, σ, ρ, λ, u == u〉 P� 〈Γ, σ, ρ, λ, true〉
OSNeq: 〈Γ, σ, ρ, λ, u == u′〉 P� 〈Γ, σ, ρ, λ, false〉 where u �= u′

OSNew: 〈Γ, σ, ρ, λ, new c()〉 P� 〈Γ, σ[ι 	→ newP (c)], ρ, λ, ι〉 where ι �∈ dom(σ)
OSBody: 〈Γ, σ, ρ, λ, { return u; }〉 P� 〈Γ, σ, ρ, λ, u〉
OSAdd: 〈Γ, σ, ρ, λ, u + ι〉 P� 〈Γ, σ, ρ, λ, u ∪ {ι}〉
OSAddN: 〈Γ, σ, ρ, λ, u + null〉 P� 〈Γ, σ, ρ, λ, NullPtrError〉
OSSub: 〈Γ, σ, ρ, λ, u - ι〉 P� 〈Γ, σ, ρ, λ, u \ {ι}〉
OSSubN: 〈Γ, σ, ρ, λ, u - null〉 P� 〈Γ, σ, ρ, λ, NullPtrError〉
OSVarAss: 〈Γ, σ, ρ, λ, x = u〉 P� 〈Γ, σ, ρ, λ[x 	→ u], u〉
OSFldAssN: 〈Γ, σ, ρ, λ, null.f = u〉 P� 〈Γ, σ, ρ, λ, NullPtrError〉
OSRelAddN: 〈Γ, σ, ρ, λ, r.add(ιnull1 ,ιnull2)〉 P� 〈Γ, σ, ρ, λ, NullPtrError〉

where ιnull1 = null or ιnull2 = null

OSRelRemN: 〈Γ, σ, ρ, λ, r.rem(ιnull1 ,ιnull2)〉 P� 〈Γ, σ, ρ, λ, NullPtrError〉
where ιnull1 = null or ιnull2 = null

OSCallN: 〈Γ, σ, ρ, λ, null.m(u)〉 P� 〈Γ, σ, ρ, λ, NullPtrError〉
OSStat: 〈Γ, σ, ρ, λ, u; s〉 P� 〈Γ, σ, ρ, λ, s〉
OSCondT: 〈Γ, σ, ρ, λ, if (true) {s1} else {s2}; s3〉 P� 〈Γ, σ, ρ, λ, s1 s3〉
OSCondF: 〈Γ, σ, ρ, λ, if (false) {s1} else {s2}; s3〉 P� 〈Γ, σ, ρ, λ, s2 s3〉

The Essence of Data Access in Cω
The Power is in the Dot!

Gavin Bierman1, Erik Meijer2, and Wolfram Schulte3

1 Microsoft Research, UK
gmb@microsoft.com

2 Microsoft Corporation, USA
emeijer@microsoft.com
3 Microsoft Research, USA
schulte@microsoft.com

Abstract. In this paper we describe the data access features of Cω, an experi-
mental programming language based on C� currently under development at Mi-
crosoft Research. Cω targets distributed, data-intensive applications and accord-
ingly extends C�’s support of both data and control. In the data dimension it pro-
vides a type-theoretic integration of the three prevalent data models, namely the
object, relational, and semi-structured models of data. In the control dimension
Cω provides elegant primitives for asynchronous communication. In this paper
we concentrate on the data dimension. Our aim is to describe the essence of these
extensions; by which we mean we identify, exemplify and formalize their essen-
tial features. Our tool is a small core language, FCω, which is a valid subset of
the full Cω language. Using this core language we are able to formalize both the
type system and the operational semantics of the data access fragment of Cω.

1 Introduction

Programming languages, like living organisms, need to continuously evolve in response
to their changing environment. These evolutionary steps are typically quite modest:
most commonly the provision of better or reorganized APIs. Occasionally a more rad-
ical evolutionary step is taken. One such example is the addition of generic classes to
both Java [6] and C�[25].

We should like to argue that the time has come for another large evolutionary step
to be taken. Much software is now intended for distributed, web-based scenarios. It is
typically structured using a three-tier model consisting of a middle tier containing the
business logic that extracts relational data from a data services tier (a database) and
processes it to produce semi-structured data (typically XML) to be displayed in the
user interface tier.

It is the writing of these middle tier applications that we should like to address.
These applications are most commonly written in an object-oriented language such as
Java or C� and have to deal with relational data (essentially SQL tables), object graphs,
and semi-structured data (XML, HTML).

In addition, these applications are fundamentally concurrent. Because of the in-
herent latency in network communication, the more natural model of concurrency is

A.P. Black (Ed.): ECOOP 2005, LNCS 3586, pp. 287–311, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

288 G. Bierman, E. Meijer, and W. Schulte

asynchronous. Accordingly, Cω provides a simple model of asynchronous (one-way)
concurrency based on the join calculus [12]. For the rest of this paper, we shall focus
exclusively on the data access aspects of Cω; the concurrency primitives have been dis-
cussed elsewhere [3]. Thus when we write Cω, we mean the language excluding the
concurrency primitives.

Unfortunately common programming practice, and native API support for data ac-
cess (e.g. JDBC and ADO.NET) leave a lot to be desired. For example, consider the
following fragment taken (and mildly adapted) from the JDBC tutorial to query a SQL
database (a user-supplied country is stored in variable input).

Connection con = DriverManager.getConnection(...);

Statement stmt = con.createConnection();

String query = "SELECT * FROM COFFEES WHERE Country=’"+input+"’";

ResultSet rs = stmt.executeQuery(query);

while (rs.next()) {

String s = rs.getString("Cof_Name");

float n = rs.getFloat("Price");

System.out.println(s+" - "+n);

}

Using strings to represent SQL queries is not only clumsy but also removes any
possibility for static checking. The impedance mismatch between the language and the
relational data is quite striking; e.g. a value is projected out of a row by passing a
string denoting the column name and using the appropriate conversion function. Per-
haps most seriously, the passing of queries as strings is often a security risk (the ‘‘script
code injection” problem—e.g. consider the case when the variable input is the string
"’ OR 1=1; --") [17].

Unfortunately API support in both Java and C� for XML and XPath/XQuery is de-
pressingly similar (even those APIs that map XML values tightly to an object represen-
tation still offer querying facilities by string passing).

Our contention is that object-oriented languages need to evolve to support data ac-
cess satisfactorily. This is hardly a new observation; a large number of academic lan-
guages have offered such support for both relational and semi-structured data (see, e.g.
[1, 2, 20, 19, 15, 4]). In spite of the obvious advantages of these languages, it appears
that their acceptance has been hampered by the fact that they are ‘‘different” from more
mainstream application languages, such as Java and C�. For example, HaskellDB [19]
proposes extensions to the lazy functional language, Haskell; and TL [20] is a hybrid
functional/imperative language with advanced type and module systems. We approach
this language support problem from a different direction, which is to extend the com-
mon application languages themselves rather than creating another new language.

Closer to our approach is SQLJ [24]. This defines a way of embedding SQL com-
mands directly in Java code. Moreover the results of SQL commands can be stored in
Java variables and vice versa. Thus SQL commands are statically checked by the SQLJ
compiler. SQLJ compilation consists of two stages; first to pre-process the embedded
SQL, and second the ‘pure Java’ compilation. Thus the embedded SQL code is not part
of the language per se (in fact all the embedded code is prefixed by the keyword #sql).

The Essence of Data Access in Cω 289

The chief difference is that Cω offers an integration of both the XML and relational
data models with an object model.

Design Objectives of Cω. The aim of our project was to evolve an existing language,
C�, to provide first-class support for the manipulation of relational and semi-structured
data. (Although we have started with C�, our extensions apply equally well to other
object-oriented languages, including Java.)

Addressing the title of our paper, the essence of the resulting language, Cω, is
twofold: its extensions to the C� type system and, perhaps more importantly, the elegant
provision of query-like capabilities (the sub-title of our paper). Cω has been carefully
designed around a set of core design principles.

1. Cω is a coherent extension of (the safe fragment of) C�, i.e. C� programs should be
valid Cω programs with the same behaviour.

2. The type system of Cω is intended to be both as simple as possible and closely
aligned to the type system in the XPath/XQuery standard. Our intended users are
C� programmers who are familiar with XPath/XQuery.

3. From a programming perspective, the real power of Cω comes from its query-like
capabilities. These have been achieved by generalizing member access to allow
simple XPath-like path expressions.

Paper Organization. The rest of the paper is organized as follows. In §2 we give a
comprehensive overview to the Cω programming language.1 In §3.1 we identify and
formalize FCω, a core fragment of Cω. In §3.2 we detail a simpler fragment, ICω, and
in §3.4 show how FCω can be compiled to ICω. Using this compilation, we are able to
show a number of properties of FCω in §3.5, including a type soundness theorem. We
briefly discuss some related work in §4 and conclude in §5.

2 An Introduction to Cω

Our design goal was to evolve C� to provide an integration of the object, relational
and semi-structured data models. One possibility would be to add these data models to
our programming language in an orthogonal way, e.g. by including new types XML<S>
and TABLE<R>, where S and R are XML and relational schema respectively. We have
sought to integrate these models by generalization, rather than by ad-hoc specializa-
tions. In the rest of this section we shall present the key ideas behind Cω, and give a
number of small programs to illustrate these ideas. This section should serve as a pro-
grammer’s introduction to Cω. We assume that the reader is familiar with C�/Java-like
languages.

2.1 New Types

Cω is an extension of C�, so the familiar primitive types such as integers, booleans,
floats are present, as well as classes and interfaces. In this section we shall consider

1 An preliminary version of Cω was (informally) described in [22]. We have subsequently sim-
plified the language, and our chief contribution here is a formalization (§§3–4).

290 G. Bierman, E. Meijer, and W. Schulte

in turn the extensions to the type system—streams, anonymous structs, discriminated
unions, and content classes—and for each consider the new query capabilities.

Streams. The first structural type we add is a stream type; streams represent ordered
homogeneous collections of zero or more values. For example, int* is the type for
homogeneous sequences of integers. Streams in Cω are aligned with iterators, which
will appear in C� 2.0. Cω streams are typically generated using iterators, which are
blocks that contain yield statements. For example, the FromTo method:

virtual int* FromTo(int b, int e){

for (i = b; i <= e; i++) yield return i;

}

generates a finite, increasing stream of integers. Importantly, it should be noted that,
just as for C�, invoking such a method body does not immediately execute the iterator
block, but rather immediately returns a closure. (Thus Cω streams are essentially lazy
lists, in the Haskell sense.) This closure is consumed by the foreach statement, e.g.
the following code fragment builds a finite stream and then iterates over the elements,
printing each one to the screen.

int* OneToHundred = FromTo(1,100);

foreach (int i in OneToHundred) Console.WriteLine(i);

A vital aspect of Cω streams is that they are always flattened; there are no nested
streams of streams. Cω streams thus coincide with XPath/XQuery sequences which are
also flattened. This alignment is a key design decision for Cω: it enables the semantics
of our generalized member access to match the path selection of XQuery. We give
further details later.

In addition, flattening of stream types also allows us to efficiently deal with re-
cursively defined streams. Consider the following recursive variation of the function
FromTo that we defined previously:

virtual int* FromTo2(int b, int e){

if (b>e) yield break;

yield return b;

yield return FromTo2(b+1,e);

}

The statement yield break; returns the empty stream. The non-recursive call yield
return b yields a single integer. The recursive call yield return FromTo2
(b+1,n); yields a stream of integers. As the type system treats the types int* and
int** as equivalent this is type correct.

Without flattening we would be forced to copy the stream produced by the recursive
invocation, leading to a quadratic instead of a linear number of yields:

virtual int* FromTo3(int b, int e){

if (b>e) yield break;

yield return b;

foreach (int i in FromTo3(b+1,e)) yield return i;

}

The Essence of Data Access in Cω 291

Note that Cω’s flattening of stream types does not imply that the underlying stream
is flattened via some coercion; every element in a stream is yield-ed at most once. As
we will see in the operational semantics (§3.3), iterating over a stream will effectively
perform a depth-first traversal over the n-ary tree produced by the iterator.

Cω offers a limited but extremely useful form of covariance for streams. Covariance
is allowed provided that the conversion on the element type is the identity; for example
Button* is a subtype of object* whereas int* is not (as the conversion from int to
object involves boxing). This notion is a simple variant of the notion of covariance
for arrays in C�, although it is statically safe (unlike array covariance) as we can not
overwrite elements of streams.

The rationale for this is that implicit conversions should be limited to constant-time
operations. Coercing a stream of type Button* to type object* takes constant-time,
whereas coercing int* to object* would be linear in the length of the stream, as the
boxing conversion from int to object is not the identity.

A key programming feature of Cω is generalized member access; as the subtitle
suggests the familiar ‘dot’ operator is now much more powerful. Thus if the receiver
is a stream the member access is mapped over the elements, e.g. OneToHundred.
ToString() implicitly maps the method call over the elements of the stream
OneToHundred and returns a value of type string*. This feature significantly re-
duces the burden on the programmer. Moreover, member access has been general-
ized so it behaves like a path expression. For example, OneToHundred.ToString().
PadLeft(10) converts all the elements of the stream OneToHundred to a string, and
then pads each string, returning a stream of these padded strings.

Sometimes one wishes to map more than a simple member access over the elements
of a stream. Cω offers a convenient shorthand called an apply-to-all expression, written
e.{s}, which applies the block {s}, where s denotes a sequence of statements, to
each element in the stream e.2 The block may contain the variable it which plays a
similar role as the implicit receiver argument this in a method body and is bound to
each successive element of the iterated stream. (Such expressions are reminiscent of
Smalltalk do: methods.) For example, the following code first creates the stream of
natural numbers from 1 to 256, converts each of the elements to a hex string, converts
each of these to upper case, and then applies an apply-to-all expression to print the
elements to the screen:

FromTo(1,256).ToString("x").ToUpper().{ Console.WriteLine(it); };

Anonymous Structs. The second structural type we add are anonymous structs, which
encapsulate heterogeneous ordered collections of values. An anonymous struct is like
a tuple in ML or Haskell and is written as struct{int i; Button;} for example.
A value of this type contains a member i of type int and an unlabelled member of
type Button. We can construct a value of this type with the expression: new{i=42,
new Button()}.

To access components of anonymous structs we (again) generalize the notion of
member access. Thus assuming a value x of the previous type, we write x.i to ac-

2 We shall adopt the FJ shorthand [18] and write x to mean a sequence of x .

292 G. Bierman, E. Meijer, and W. Schulte

cess the integer value. Unlabelled members are accessed by their position; for exam-
ple x[1] returns the Button member. As for streams, member access is lifted over
unlabelled members of anonymous structs. To access the BackColor property of the
Button component in variable x we can just write x.BackColor, which is equivalent
to x[1].BackColor.

At this point we can reveal even more of the power of Cω’s generalized member
access. Given a stream friends of type struct{string name;int age;}*, the ex-
pression friends.age returns a stream of integers. The member access is over both
structural types. The following query-like statement prints the names of one’s friends:

friends.name.{ ConsoleWriteLine(it);};

Interestingly, Cω also allows repeated occurrences of the same member name within
an anonymous struct type, even at different types. For example, assume the following
declaration: struct{int i; Button; float i;} z; Then z.i projects the two i
members of z into a new anonymous struct that is equivalent to new{z[0],z[2]} and
of type struct{int;float;}.

Cω provides a limited form of covariance for anonymous structs, just as for streams.
For example, the anonymous struct struct{int;Button;} is a subtype of
struct{int; Control;}. However it is not a subtype of struct{object;
Control;} since the conversion from int to object is not an identity conversion.
Cω does not support width subtyping for anonymous structs.

Choice Types. The third structural type we add is a particular form of discriminated
union type, which we call a choice type. This is written, for example, choice{int;
bool;}. As the name suggests, a value of this type is either an integer or a boolean, and
may hold either at any one time. Unlike unions in C/C++ and variant records in Pascal
where users have to keep track of which type is present, values of a discriminated union
in Cω are implicitly tagged with the static type of the chosen alternative, much like
unions in Algol68. In other words, discriminated union values are essentially a pair of
a value and its static type.

There is no syntax for creating choice values; the injection is implicit (i.e. it is
generated by the compiler).

choice{int;Button;} x = 3;

choice{int;Button;} y = new Button();

Cω provides a test, e was τ , on choice values to test the value’s static type. Thus
x was int would return true, whereas y was int would return false.

Assuming that an expression e is of type choice{τ}, the expression e was τ is true
for exactly one τ in τ . This invariant is maintained by the type system. The only slight
complication arises from subtyping, e.g.

choice{Control; object;} z = new Button();

As Button is a subtype of both Control and object, which type tag is generated
by the compiler? A choice type can be thought of as providing a family of overloaded
constructor methods, one for each component type. Just as for standard object cre-
ation in Java/C�, the best constructor method is chosen. In the example above, clearly

The Essence of Data Access in Cω 293

Control is better than object. Thus z was Control returns true. The notion of
‘‘best” for Cω is the routine extension of that for C�.

As the reader may have guessed, member access has also been generalized over
discriminated unions. Here the behaviour of member access is less obvious, and has
been designed to coincide with XPath. Consider a value w of type choice{char;
Button;}. The member access w.GetHashCode() succeeds irrespective of whether
the value is a character or a Button object. In this case the type of the expression
w.GetHashCode() is int.

However the member may not be supported by all the possible component types,
e.g. w.BackColor. Classic treatments of union types would probably consider this to be
type incorrect [23–p.207]. However, Cω’s choice types follow the semantics of XPath
where, for example, the query foo/bar returns the bar nodes under the foo node if any
exist, and the empty sequence if none exist. Thus in Cω, the expression w.BackColor
is well-typed, and will return a value of type Color?. This is another new type in Cω
and is a variant of the nullable type to appear in C� 2.0. A value of type Color? can
be thought of as a singleton stream, thus it is either empty or contains a single Color
value (when w contains a Button). Again, we emphasize that this behaviour precisely
matches that of XPath.

Cω follows the design of C� in allowing all values to be boxed and hence all value
types are a subtype of the supertype object. Thus both anonymous structs and choice
types are considered to be subtypes of the class object.

Content Classes. To allow close integration with XSD and other XML schema lan-
guages, we have included the notion of a content class in Cω. A content class is a
normal class that has a single unlabelled type that describes the content of that class,
as opposed to the more familiar (named) fields. The following is a simple example of a
content class.

class friend{

struct{ string name; int age; };

void incAge(){...}

}

Again we have generalized member access over content classes. Thus the expression
Bill.age returns an integer, where Bill is a value of type friend.

From an XSD perspective, classes correspond to global element declarations, while
the content type of classes correspond to complex types. Further comparisons with the
XML data model are immediately below, but a more comprehensive study can be found
elsewhere [21].

2.2 XML Programming

It should be clear that the new type structures of Cω are sufficient to model simple XML
schema. For example, the following XSD schema

<element name="Address"><complexType><sequence>

<choice>

<element name="Street" type="string"/>

<element name="POBox" type="int"/>

294 G. Bierman, E. Meijer, and W. Schulte

</choice>

<element name="City" type="string"/>

</sequence></complexType></element>

can be represented (somewhat more succinctly!) as the Cω content class declaration:

class Address {

struct{

choice{ string Street; int POBox; };

string City;

};

}

The full Cω language supports XML literals as syntactic sugar for serialized object
graphs. For example, we can create an instance of the Address class above using the
following literal:

Address a = <Address>

<Street>13 Elm St</Street>

<City>Hollywood</City>

</Address>;

The Cω compiler contains a validating XML parser that deserializes the above lit-
eral into normal constructor calls. XML literals can also contain typed holes, much as
in XQuery, that allow us to embed expressions to compute part of the literal. This is
especially convenient for generating streams.

The inclusion of XML literals and the semantics of the generalized member access
mean that XQuery code can be almost directly written in Cω. For example, consider
one of the XQuery Use Cases [9], that processes a bibliography file (assume that this is
stored in variable bs) and for each book in the bibliography, lists the title and authors,
grouped inside a result element. The suggested XQuery solution is as follows.

for $b in $bs/book

return <result>{$b/title}{$b/author}<result>

The Cω solution is almost identical:

foreach (b in bs.book)

yield return <result>{b.title}{b.author}</result>;

The full Cω language adds several more powerful query expressions to those dis-
cussed in this paper. For instance, filter expressions e[e ′] return the elements in the
stream e that satisfy the boolean expression e ′. As labels can be duplicated in anony-
mous structs and discriminated unions, the full language also allows type-based selec-
tion. For example, given a value x of type struct{ int a; struct{string a;};}
we can select only the string member a by writing x.string::a.

Transitive queries are also supported in the full Cω language: the expression
e...τ::m selects all members m of type τ that are transitively reachable from e.
Transitive queries are inspired by the XPath descendant axis.

The Essence of Data Access in Cω 295

2.3 Database Programming

Relational tables are merely streams of anonymous structs. For example, the relational
table created with the SQL declaration:

CREATE TABLE Customer (name string, custid int);

can be represented in Cω: struct{string name; int custid}* Customer;

In addition to path-like queries, the full Cω language also supports familiar SQL ex-
pressions, including select-from-where, various joins and grouping operators. Per-
haps more importantly, these statements can be used on any value of the appropriate
type, whether that value resides in a database or in memory; hence, one can write SQL
queries in Cω code that does not access a database! One of the XQuery use-cases [9]
asks to list the title prices for each book that is sold by both booksellers A and BN. Using
a select statement and XML-literals, this query can be written in Cω as the following
expression:

select <book-with-prices>

<title>{a.title}</title>

<price-A>{a.price}</price-A>

<price-BN>{bn.price}</price-BN>

</book-with-prices>

from book a in A.book, book bn in BN.book

where a.title == bn.title

Note the use of XML placeholders {a.title} and {bn.price}: when this code is
evaluated new titles and new prices are computed from the bindings of the select-
from-where clause.

So far we have shown how we can query values using generalized member and SQL
expressions, but as Cω is an imperative language, we also allow to perform updates.
This paper, however, focuses on the type extensions and generalized member access
only.

3 The Essence of Cω

In the rest of this paper we study formally the essence of Cω, by which we mean we
identify its essential features. We adopt a formal, mathematical approach and define
a core calculus, Featherweight Cω, or FCω for short, similar to core subsets of Java
such as FJ [18], MJ [5] and ClassicJava [11]. This core calculus, whilst lightweight,
offers a similar computational ‘‘feel” to the full Cω language: it supports the new type
constructors and generalized member access. FCω is a completely valid subset of Cω
in that every FCω program is literally an executable Cω program.

The rest of this section is organized as follows. In §3.1 we define the syntax and
type system for FCω. Rather than give an operational semantics directly for FCω we
prefer to first ‘‘compile out” some of its features, in particular generalized member ac-
cess. This both greatly simplifies the resulting operational semantics and demonstrates
that Cω’s features do not require extensive new machinery. Thus in §3.2 we define a

296 G. Bierman, E. Meijer, and W. Schulte

target language, Inner Cω, or ICω, for this ‘‘compilation”. ICω is essentially the same
language, but for a handful of new language constructs and a much simpler type system.
In §3.3 we give an operational semantics for ICω programs. In §3.4 we specify the
compilation of FCω programs into ICω programs. This translation is, on the whole,
quite straightforward. We conclude the section in §3.5 by stating some properties of our
calculi and the compilation. Most important is the type-soundness property for ICω.
Space prevents us from providing any details of the proofs, but they are proved using
standard techniques and are similar to analagous theorems for fragments of Java [18, 5].

3.1 A Core Calculus: FCω

Syntax An FCω program consists of one or more class declarations. Each class decla-
ration defines zero or more methods and contains exactly one unlabelled type that we
call the content type. (We can code up a conventional C�/Cω class declaration with a
number of field declarations using an anonymous struct.) FCω follows C� and requires
methods to be explicitly marked as virtual or override. Given a program we assume
that there is a unique designated method within the class declarations that serves as the
entry point.

Program p ::= cd

Class Definition cd ::= class c:c {τ;md}
Method Definition md ::= virtual τ m(τ x){s}

| override τ m(τ x){s}

FCω supports two main kinds of types: value types and reference types. As usual, the
distinguished type void is used for methods that do not return anything; null is only
used to type null references, as with C�. Value types include the base types bool and
int and the structural types: anonymous structs and discriminated unions. Reference
types are either class types or streams. As usual only reference types have object identity
and are represented at runtime by references into the heap. We assume a designated
special class object.

Types
τ ::= γ Value types Reference Types

| ρ Reference types ρ ::= c Classes
| void | null Void and null types | σ* Stream types

Value Types | σ? Singleton stream type
γ ::= b Base types

| struct{fd} Anonymous structs Field Definition
| choice{κ} Choice types fd ::= τ f ; Named member

Base Types | τ; Unnamed member
b ::= bool |int

We employ the shorthand κ and σ to denote any type except a choice type and
stream type (singleton or non-singleton), respectively. As Cω flattens stream types, we
have made the simplification to FCω of removing nested stream types altogether from
the type grammar. We have also simplified FCω choice types so that the members are

The Essence of Data Access in Cω 297

unlabelled and we also exclude (for simplification) nested choice types. These can be
coded up in FCω using unlabelled anonymous structs.

FCω expressions, as for C�, are split into ordinary expressions and promotable ex-
pressions. Promotable expressions are expressions that can be used as statements. We
assume a number of built-in primitive operators, such as ==, || and &&. In the gram-
mar we write e ⊕ e, where ⊕ denotes an instance of one of these operators. We do not
formalize these operators further as their meaning is clear.

Expression
e ::= b | i Literals Promotable expression

| e ⊕ e Built-in operators pe ::= x = e Variable assignment
| x Variable | e.m(e) Method invocation
| null Null | e.{e} Apply-to-all
| (τ)e Cast Binding expression
| e is τ Dynamic typecheck be ::= f = e Named binding
| e was κ Static typecheck for choice values | e Unnamed binding
| new τ(e) Object creation
| new {be} Anonymous struct creation
| e.f Field access
| e[i] Field access by position
| pe Promotable expression

We have made a simplification in the interests of space to restrict apply-to-all ex-
pressions to contain an expression rather than a sequence of statements. This simplifies
the typing rules, but as apply-to-all expressions can be coded using foreach loops it is
not a serious restriction.

Statements in FCω are standard. As mentioned earlier we have adopted the yield
statement that will appear in C� 2.0 to generate streams.

Statement s ::= ; Skip
| pe; Promoted expression
| if (e) s else s Conditional
| τ x = e; Variable declaration
| return e; Return statement
| return; Empty return
| yield return e; Yield statement
| yield break; End of stream
| foreach (σ x in e) s Foreach loop
| while (e) s While loop
| {s} Block

In what follows we assume that FCω programs are well-formed, e.g. no cyclic class
hierarchies, correct method body construction, etc. These conditions can be easily for-
malized but we suppress the details for lack of space.

Subtyping. Before we define the typing judgements for FCω programs we need to
define a number of auxiliary relations. First we define the subtyping relation. We write
τ <: τ ′ to mean that type τ is a subtype of type τ ′. The rules defining this relation are
as follows.

298 G. Bierman, E. Meijer, and W. Schulte

[Refl]
τ <: τ

τ <: τ ′ τ ′ <: τ ′′
[Trans]

τ <: τ ′′ [Box]
γ <: object

class c : c′
[Sub]

c <: c′

[Null]
null <: ρ

τ <: τ ′ f = f ′
[FD]

τ f <: τ ′ f ′

σ <: σ′ IdConv(σ, σ′)
[Stream]

σ*/? <: σ′
*/?

[SBox]
σ* <: object

[SSub]
σ? <: σ*

[Sing]
σ <: σ?

fd <: fd ′ IdConv(fd , fd ′)
[Struct]

struct{fd} <: struct{fd ′}
[SubChoice]

κ <: choice{κ; κ′}

[Choice]
choice{κ} <: choice{κ κ′}

Most of these rules are straightforward. The rule [Stream] contains notation (σ*/?)
that we use throughout this paper. It is uses to denote two instances of the rule, one
where we select the left of the ‘/’ in all cases (in this case σ*) and one where we select
the right in all cases. It does not include cases where we individually select left and
right alternatives. The rules [Stream] and [Struct] make use of a predicate IdConv ,
which relates two types τ and τ ′ if there is an identity conversion between them. Thus
IdConv(Button, object) but not IdConv(int, object). In this short paper we shall
not give its straightforward definition.

Generalized Member Access. As we have seen a key programming feature of Cω is
generalized member access. Capturing this behaviour in the type system can be tricky,
but we have adopted a rather elegant solution, whereby we define two auxiliary rela-
tions. The first, written τ.f : τ ′, tells us that given a value of type τ accessing member
f will return a value of type τ ′. We define a similar relation for function member ac-
cess, written τ.m(τ ′) : τ ′′. Having generalized member access captured by a separate
typing relation greatly simplifies the typing judgements for expressions. As generalized
member access is a key feature of Cω, we shall give it in detail.

The definition of this relation over stream types is as follows.

σ.f : σ′

σ*.f : σ′
*

σ.f : σ′
*/?

σ*.f : σ′
*

σ.m(τ) : σ′

σ*.m(τ) : σ′
*

σ.m(τ) : σ′
*/?

σ*.m(τ) : σ′
*

σ.m(τ) : void

σ*.m(τ) : void

The first two rules map the member access over the stream elements, making sure that
we do not create a nested stream type. The next two rules for function member access
are similar. The last rule captures the intuition that mapping a void-valued method over
a stream, forces the evaluation of the stream and does not return a value.

Before defining the rules for member access over anonymous structs, we need to de-
fine rules for member access over named field definitions. This is pretty straightforward
and as follows.

τ f .f : τ

τ.m(τ ′) : τ ′′

τ f .m(τ ′) : τ ′′

The Essence of Data Access in Cω 299

Now we consider the rules for generalized member access over anonymous structs.
First we give the degenerate cases where only one component supports the member
access.

∃!k ∈ {1 . . . n}. fdk .f : τk

struct{fd1; . . . fdn;}.f : τk

∃!k ∈ {1 . . . n}. fdk .m(τ ′): τ ′′

struct{fd1; . . . fdn;}.m(τ): τ ′′

The non-degenerate cases are then as follows.

∃S ⊆ {1 . . . n}.|S | ≥ 2 ∧ p = |S | ∧ ∀k ∈ [1..p].fdSk .f : τk

struct{fd1; . . . fdn;}.f : struct{τ1; . . . τp ; }

∃S ⊆ {1 . . . n}.|S | ≥ 2 ∧ p = |S | ∧ ∀k ∈ [1..p]. fdSk .m(τ): τ ′
k

struct{fd1; . . . fdn;}.m(τ): struct{τ ′
1; . . . τ ′

p;}
Thus a subset, S , of the components support the member, and we map the member
access over these components in order. The overall return type is an anonymous struct
of the component return types.

We now consider the rules for generalized member access over choice types. Again
we consider these rules depending on how many components support the member ac-
cess. First we give the simple case when all possible components support the member
access.

∀k ∈ {1 . . . n}. κk .f : τ

choice{κ1; . . . κn;}.f : τ

∀k ∈ {1 . . . n}. κk .m(τ) : τ ′

choice{κ1; . . . κn;}.m(τ) : τ ′

We also have the case when only one of the possible components supports the mem-
ber access. These rules are as follows (we omit the nested cases).

∃!k ∈ {1 . . . n}. κk .f : σ n > 1

choice{κ1; . . . κn;}.f : σ?

∃!k ∈ {1 . . . n}. κk .m(τ) : σ n > 1

choice{κ1; . . . κn;}.m(τ) : σ?

The reader will recall that the return type of this generalized member access involves
a singleton stream type. Finally we give the cases where more than one of the possible
components supports the member access.

∃S ⊆ {1 . . . n}.|S | ≥ 2 ∧ p = |S | ∧ ∀k ∈ [1..p]. κSk .f : κ′
k

choice{κ1; . . . κn;}.f : choice{κ′
1; . . . κ′

p;}?

∃S ⊆ {1 . . . n}.|S | ≥ 2 ∧ p = |S | ∧ ∀k ∈ [1..p]. κSk .m(τ) : κ′
k

choice{κ1; . . . κn;}.m(τ) : choice{κ′
1; . . . κ′

p;}?

Generalized member access over singleton streams is relatively straightforward; the
only complication being again to ensure that no nested streams are generated.

σ.f : σ′

σ?.f : σ′
?

σ.f : σ′
*/?

σ?.f : σ′
*/?

σ.m(τ): σ′

σ?.m(τ): σ′
?

σ.m(τ): σ′
*/?

σ?.m(τ): σ′
*/?

Finally we need to define rules for generalized member access over classes. Clearly
these need to reflect the standard C� semantics: function member access on classes

300 G. Bierman, E. Meijer, and W. Schulte

searches the class hierarchy until a matching method is found. If we find a matching
method τ ′m(τ ′′) in class c, we need to check the actual types of the arguments to the
types expected by m . This behaviour is given by the following two rules.

class c:c′
{τ;md} τ ′m(τ ′′) ∈ md τ <: τ ′′

c.m(τ): τ ′

class c:c′
{τ;md} τ ′m(τ ′′) �∈ md c′.m(τ): τ ′

c.m(τ): τ ′

Next we consider the rules for generalized field access. There is a small subtlety
here concerning recursive class definitions; consider the following recursive class List
of lists of integers: class List { struct{ int head; List; } }

Given an instance xs of type List, we do not want xs.head to recursively select
all head fields in xs. However simply unfolding the content type and using the rules
given earlier for generalized access over anonymous structs that is precisely what would
happen!

There are a number of solutions, but in order to make the Cω type system as simple
as possible, we follow e.g. Haskell and SML and break recursive cycles at nominal
types. In our setting that means that we simply do not perform member lookup on
nominal members of the content of nominal types. Using these refined rules, the result
type of xs.head is int.

Formalizing this is trivial but time-consuming. We define another family of gener-
alized member access judgements, written τ • f : τ ′, which is identical to the previous
rules except they are not defined for nominal types. We elide the definitions here.

To define field access on nominal types, we first define formally the content type of
a class, written content(c) for some class c, as follows.

class c:object{τ;md}

content(c) = τ

class c : c′
{τ;md} content(c′) = τ ′

content(c) = struct{τ ′
;τ;}

The rule for generalized member access over classes simply searches for the mem-
ber f on the content type of class c, and is given by the following rule.

content(c) = τ τ • f : τ ′

c.f : τ ′

Generalized Index Access. As we mentioned earlier, elements of anonymous structs
can be accessed by position. This is captured by the following rule.

type(fdi) = τi

struct {fd1; . . . fdn;}[i]: τi

As the reader might have expected, this index access is generalized over the other types;
the rather routine details are omitted.

Typing Judgements. We are now able to define typing judgements for FCω. We de-
fine three relations corresponding to the three syntactic categories of expressions, pro-
motable expressions and statements. For all three judgements we write Γ to mean a

The Essence of Data Access in Cω 301

partial function from program identifiers to types. The judgements for expressions and
promotable expressions are written Γ � e: τ and Γ � pe: τ , respectively. These are
given in Fig. 1.

Most of these rules are routine; we shall discuss a few of the more interesting details
here. In the rule [TStruct], we have made use of a typing judgement for a binding
expression. This is defined as follows:

Γ � e: τ

Γ � f = e: τ f

The compactness of the rules [TField], [TIndex] and [TMeth] shows the elegance of
having captured generalized member access with auxiliary relations.

The rules [TAAExp1] and [TAAExp2] ensure that the return type of an apply-to-all
expression is not nested. The rule [TAAExp3] ensures the appropriate mixed flattening
of streams. The rule [TAAExp4] captures the intuition that applying a void-typed ex-
pression to a stream forces the evaluation of that stream and hence the overall type is
also void.

The typing judgement for FCω statements is written Γ ; τ � s and is intended to
mean that a statement s is well-typed in the typing environment Γ . If it returns a value
(either via a normal return or a yield return) then that value is of type τ .

The rules [TForeach1] and [TForeach2] reflect the fact that the type of the stream
elements can be cast to the type of the bound variable. This can be either via an upcast
([TForeach1]) or a downcast ([TForeach2]) (again this matches C� 2.0).

3.2 An Inner Calculus: ICω

Rather than consider further our featherweight calculus FCω, we shall in fact define
another core calculus for Cω. This inner calculus, called ICω, is intended to be similar
but lower-level than FCω; it can be thought of as the internal language of a compiler.

The chief simplification in ICω is that its type system does not support generalized
member access. The intention is that we compile out generalized member access when
translating FCω programs into ICω programs. We give some details of this compilation
in §3.4. Apart from a simplified type system, we can define quite simply an operational
semantics for ICω; this is given in §3.3.

The grammar of ICω is then a simple varianr of the grammar for FCω. Some extra
expression and statement forms are added (which reflects the lower-level nature of ICω)
and likewise a couple are removed from the grammar as they are redundant. We do not
expect these new syntactic forms to be made available to the Cω programmer (although
they could be). The extensions are as follows:

Expression
e ::= . . . Promotable expression

| new τ(s) Closure creation pe ::= . . .
| new (κ,e) Choice creation | τ({s}) Block expression
| e.Content Class content Statement
| e at κ Choice content s ::= . . .

| yield return (τ,e); Typed yield

302 G. Bierman, E. Meijer, and W. Schulte

Γ � e: τ and Γ � pe: τ

[TInt]
Γ � i : int

[TBool]
Γ � b: bool

[TId]
Γ, x : τ � x : τ

[TNull]
Γ � null: null

Γ � e: τ ′ (τ ′ <: τ) ∨ (τ <: τ ′)
[TSub]

Γ � (τ)e: τ

Γ � e: τ ′ (τ ′ <: τ) ∨ (τ <: τ ′)
[TIs]

Γ � e is τ : bool

Γ � e: choice{κ′ κ; κ′′}
[TWas]

Γ � e was κ: bool

Γ � be: fd
[TStruct]

Γ � new {be}: struct{fd}

Γ � e: τ τ <: content(c)
[TNew]

Γ � new c(e): c

Γ � e: τ τ.f : τ ′
[TField]

Γ � e.f : τ ′

Γ � e: τ τ [i] : τ ′
[TIndex]

Γ � e[i]: τ ′
Γ � x : τ Γ � e: τ ′ τ ′ <: τ

[TAss]
Γ � x=e: τ

Γ � e: τ Γ � e ′: τ ′ τ.m(τ ′): τ ′′
[TMeth]

Γ � e.m(e ′): τ ′′

Γ � e: σ*/? Γ, it : σ � e ′: σ′
[TAAExp1]

Γ � e.{e ′
}: σ′

*/?

Γ � e: σ*/? Γ, it : σ � e ′: σ′
*/?

[TAAExp2]
Γ � e.{e ′

}: σ′
*/?

Γ � e: σ*/? Γ, it : σ � e′: σ′
?/*

[TAAExp3]
Γ � e.{e ′

}: σ′
*

Γ � e: σ*/? Γ, it : σ � e ′: void
[TAAExp4]

Γ � e.{e ′
}: void

Γ ; τ � s

[TSkip]
Γ ; τ � ;

Γ ; τ � s
[TNest]

Γ ; τ � {s}

Γ � pe: τ
[TProm]

Γ ; τ ′ � pe;
[TRetV]

Γ ; void � return;

Γ � e: bool Γ ; τ � s
[TWhile]

Γ ; τ � while (e) s

Γ � e: bool Γ ; τ � s1 Γ ; τ � s2
[TIf]

Γ ; τ � if (e) s1 else s2

Γ � e: τ ′ τ ′ <: τ
[TRet]

Γ ; τ � return e;

[TYieldB]
Γ ; σ* � yield break;

Γ � e: σ′ σ′ <: σ
[TYield1]

Γ ; σ* � yield return e;

Γ � e: σ′
*/? σ′ <: σ′′ Γ, x : σ′′; τ � s

[TForeach1]
Γ ; τ � foreach (σ′′ x in e)s

Γ � e: σ* σ* <: σ′
*

[TYield2]
Γ ; σ′

* � yield return e;

Γ � e: σ′
*/? σ′′ <: σ′ Γ, x : σ′′; τ � s

[TForeach2]
Γ ; τ � foreach (σ′′ x in e)s

Fig. 1. Typing judgements for FCω expressions, promotable expressions and statements

The Essence of Data Access in Cω 303

Thus ICω includes expressions to create closure and choice elements. We include an
operator e.Content to extract the content element from an object e. Given an element
e of a choice type, we add an operation e at κ to extract its κ-valued content. (If it is
of another type, this will raise an exception.) We add (typed) block expressions to ICω,
and in addition we provide a typed yield statement.

The two syntactic forms that we removed from the grammar of FCω are: (1) We
remove field accesses e.f completely; they are replaced by positional access, i.e. e[i];
and (2) We remove the untyped yield statement; all yields in ICω are explicitly
typed.

We can define typing judgements for ICω expressions and statements, which are
written Γ � e: τ and Γ ; τ � s , respectively. Most of these rules are identical to those
for FCω; we shall just give the rules for the new syntactic forms. The rules for creating
closure and choice elements are as follows:

Γ ; σ*/? � s

Γ � new σ*/?(s): σ*/?

Γ � e: κ′ κ′ <: κ

Γ � new (κ,e): choice{κ;}

The typing rules for extracting the content of content class and choice elements are as
follows:

Γ � e: c

Γ � e.Content: content(c)

Γ � e: choice{κ;κ′}

Γ � e at κ: κ
The typing rule for block expressions and yield statements are as follows:

Γ ; τ � s τ �= void

Γ � τ({s}): τ Γ ; σ*/? � yield break;

Γ � e: σ′ σ′ <: σ

Γ ; σ*/? � yield return (σ′
,e);

Γ � e: σ*/? σ*/? <: τ τ �= object

Γ ; τ � yield return (σ*/?,e);

3.3 Operational Semantics for ICω

In this section we formalize the dynamics of ICω by defining an operational semantics.
We follow FJ [18] and MJ [5] and give this in the form of a small-step reduction relation,
although a big-step evaluation relation can easily be defined. Hence we use evaluation
contexts to encode the evaluation strategy in the now familiar way [11]—the definition
of ICω evaluation contexts is routine and omitted. First we define the value forms of
ICω expressions and statements (where bv is the value form of a binding expression):

Expression values Statement values
v ::= b | i | null | void Basic values sv ::= ; Skip

| r Reference | return v; Return value
| new {bv} Struct value | return;

| new (κ,v) Choice value | yield return (τ,v); Typed yield value
| yield break; End of stream value

Evaluation of ICω expressions and statements takes place in the context of a state,
which is a pair (H ,R), where H is a heap and R is a stack frame. A heap is represented

304 G. Bierman, E. Meijer, and W. Schulte

as a finite partial map from references r to runtime objects, and a stack frame is a finite
partial map from variable identifiers to values. A runtime object, as for C�, is a pair
(τ, cn) where τ is a type and cn is a canonical, which is either a value or a closure. A
closure is the runtime representation of a stream and is written as a pair (R, s)α where R
is a stack frame and s is a statement sequence. The superscript flag α indicates whether
the closure is fresh or a clone. We will explain this distinction later. In what follows we
assume that expressions and statements are well-typed.

In Fig. 2 we define the evaluation relation for ICω expressions, written S , e →
S ′, e ′, which means that given a state S , expression e reduces by one or possibly more
steps to e ′ and a (possibly updated) state S ′. (We use an auxiliary function value defined

as follows: value(f = v) def= v , value(v) def= v .) These rules are routine.
As is usual we have a number of cases that lead to a predicable error state, e.g.

following a dereference of a null object. These errors in ICω are CastX ,ChoiceX ,
NullX and NullableX . We say that a pair S , e is terminal if e is one of these errors, or
it is a value.

The evaluation relation for ICω promotable expressions is written S , pe → S ′, pe ′

and is also given in Fig. 2. The rules for method invocation deserve some explanation:
they are differentiated according to whether the method is void-returning. If it is not
then the method body is unfolded, and executed until it is of the form return v; where
v is a value. This value is then the result of the method invocation. If the method is
void-valued, then we unfold the method body and execute it until it is of the form
return;. The result is the special value void.

The evaluation relation for statements is written S , s → S ′, s ′ and in Fig. 3 we give
just some of the interesting cases, which are those dealing with foreach loops. As we
have mentioned, Cω streams are aligned with C� 2.0 iterators: there the foreach loop
is actually syntactic sugar: first of all an IEnumerator<T> is obtained from the iterator
block (which should be of type IEnumerable<T>) using the GetEnumerator method.
This is walked over using MoveNext and Current members. Semantically important
is that GetEnumerator actually copies the enumerable object. In our semantics we
faithfully encode this by tagging closures, and creating clones as appropriate. Thus
whilst iterating over a stream we update the reference in place (rules [FVC], [FSC] and
[FNC]), but every foreach creates its own copy from a fresh original (rules [FVF],
[FSF] and [FNF]). In rule [FBr] we write α to range over both clone and fresh.

Rules [FSF] and [FSC] embody the flattening of streams. To evaluate a foreach
loop we first evaluate the stream until it yields a value. If that value is itself a stream,
then we should first execute the foreach loop on this stream.

3.4 Compiling FCω to ICω

In this section we give some details of the compilation of FCω into ICω. Much of this
compilation is routine, so in the interests of space we shall concentrate only on the most
interesting aspect: generalized member access.

We employ a ‘‘coercion” technique, in that we translate the implicit generalized
member access of FCω into an explicit ICω code fragment. This can be expressed as
an inductively defined relation, written |τ.f : τ ′| � g and |τ.m(τ ′): τ ′′| � g for mem-
ber and function member access respectively. A judgement |τ.f : τ ′| � g is intended to

The Essence of Data Access in Cω 305

Expressions

(H ,R), x → (H ,R),R(x)

H (r) = (τ ′, cn) τ ′ <: τ

(H ,R), (τ)r → (H ,R), r

H (r) = (τ ′, cn) τ ′ �<: τ

(H ,R), (τ)r → (H ,R),CastX

H (r) = (τ ′, cn) τ ′ <: τ

(H ,R), r is τ → (H ,R), true

H (r) = (τ ′, cn) τ ′ �<: τ

(H ,R), r is τ → (H ,R), false S , new (κ, v) was κ → S , true

κ �= κ′

S , new (κ, v) was κ′ → S , false

r �∈ dom(H)

(H ,R), new c(v) → (H [r 	→ (c, v)],R), r

r �∈ dom(H)

(H ,R), new σ*/?(s) → (H [r 	→ (σ*/?, (R, s)fresh)],R), r

H (r) = (c, cn)

(H ,R), r.content → (H ,R), cn S , null.content → S ,NullX

0 ≤ i ≤ n

S , new {bv0, .., bvn}[i] →
S , value(bvi)

S , new (κ, v) at κ → S , v

κ �= κ′

S , new (κ, v) at κ′ →
S ,ChoiceX

Promotable expressions

(H ,R), x = v → (H ,R[x 	→ v]), v

(H ,R), s →∗ (H ′,R′), return v ; s ′

(H ,R), τ({s}) → (H ′,R′), v

S , null.m(v) → S ,NullX

H (r) = (c,) method(m, c) = τ ′(τ x){s} τ ′ �= void

(H , []), {c this = r;τ x = v;s} →∗ (H ′,R′), return v ′;s ′

(H ,R), r.m(v) → (H ′,R), v ′

H (r) = (c,) method(m, c) = void (τ x){s}
(H , []), {c this = r;τ x = v;s} →∗ (H ′,R′), return ;s ′

(H ,R), r.m(v) → (H ′,R), void

Fig. 2. Evaluation rules for ICω expressions and promotable expressions

mean that if invoking a member f on an element of type τ returns an element of type
τ ′, then g is the ICω coercion that encodes the explicit access of the appropriate mem-
ber. In Fig. 4 we give some details of the compilation of generalized member access
(GMA) for members, i.e. the |τ.f : τ ′| � g relation. (The version for function members

306 G. Bierman, E. Meijer, and W. Schulte

[FNull]
S , foreach (σ x in null)s → S , ;

H (r) = (τ ′, (R′, s ′)α) (H ,R′), s ′ →∗ (H ′,R′′), yield break ;s ′′
[FBr]

(H ,R), foreach (σ x in r) s → (H ′,R), ;

H (r) = (τ ′, (R′, s ′)fresh) r ′ �∈ dom(H ′)
(H ,R′), s ′ →∗ (H ′,R′′), yield return (σ′, v);s ′′ v �= null

[FVF]
(H ,R), foreach (σ x in r) s →
(H ′[r ′ 	→ (τ ′, (R′′, s ′′)clone)],R), {{σ x = v ; s} foreach (σ x in r ′) s}

H (r) = (τ ′, (R′, s ′)clone)
(H ,R′), s ′ →∗ (H ′,R′′), yield return (σ′, v);s ′′ v �= null

[FVC]
(H ,R), foreach (σ x in r) s →
(H ′[r 	→ (τ ′, (R′′, s ′′)clone)],R), {{σ x = v ; s} foreach (σ x in r) s}

H (r) = (τ ′, (R′, s ′)fresh) r ′ �∈ dom(H ′)
(H ,R′), s ′ →∗ (H ′,R′′), yield return (σ′*, v);s ′′ v �= null

[FSF]
(H ,R), foreach (σ x in r) s →
(H ′[r ′ 	→ (τ ′, (R′′, s ′′)clone)],R), {foreach (σ x in v) s foreach (σ x in r ′) s}

H (r) = (τ ′, (R′, s ′)clone)
(H ,R′), s ′ →∗ (H ′,R′′), yield return (σ′*, v);s ′′ v �= null

[FSC]
(H ,R), foreach (σ x in r) s →
(H ′[r 	→ (τ ′, (R′′, s ′′)clone)],R), {foreach (σ x in v) s foreach (σ x in r) s}

H (r) = (τ ′, (R′, s ′)fresh) r ′ �∈ dom(H ′)
(H ,R′), s ′ →∗ (H ′,R′′), yield return (τ, null);s ′′

[FNF]
(H ,R), foreach (σ x in r) s →
(H ′[r ′ 	→ (τ ′, (R′′, s ′′)clone)],R), foreach (σ x in r ′) s

H (r) = (τ ′, (R′, s ′)clone)
(H ,R′), s ′ →∗ (H ′,R′′), yield return (τ, null);s ′′

[FNC]
(H ,R), foreach (σ x in r) s → (H ′[r 	→ (τ ′, (R′′, s ′′)clone)],R), foreach (σ x in r) s

Fig. 3. Evaluation rules for ICω foreach loops

(methods) is similar and omitted.) In the definition we have employed a function-like
syntax for coercions, although they are really contexts, and we have dropped the types
from various block expressions. We have used the shorthand yield return′(τ,e);
to mean the statement sequence yield return(τ,e);yield break; and have also
used two functions: Value that returns the element of a singleton stream or raises an
exception if it empty, and HasValue that returns a boolean depending on whether the
singleton stream has an element or not. These can be coded directly and their definitions
are omitted.

The Essence of Data Access in Cω 307

Compiling GMA over streams

|σ.f : σ′| � g

|σ*.f : σ′
*| � z 	→ z.{g(it)}

Compiling GMA over anonymous structs

∃S ⊆ {1 . . . n}.|S | ≥ 2. ∧ p = |S | ∧ ∀k ∈ [1..p]. |fdSk .f : τk | � gk

|struct{fd1; . . . fdn;}.f : struct{τ1; . . . τp ; }| � z 	→ new{g1(z[1]), . . . ,gp(z[p])}

∃!k ∈ {1 . . . n}. |fdk .f : τk | � g

|struct{fd1; . . . fdn;}.f : τk | � z 	→ g(z[k])

Compiling GMA over choice types

∃S ⊆ {1 . . . n}.|S | ≥ 2 ∧ p = |S | ∧ ∀k ∈ [1..p]. |κSk .f : κ′
k | � gk

|choice{κ1; . . . κn;}.f : choice{κ′
1; . . . κ′

p;}?|
� z 	→

({if(z was κS1
)

{return new choice{κ′
1; . . . κ′

p;}?(yield return′(κS1
,new(κS1

,g1(z at κS1
))););}

· · · if(z was κSp)

{return new choice{κ′
1; . . . κ′

p;}?(yield return′(κSp,new(κSp,gp(z at κSp))););}
else return null;})

|κk .f : τ | � gk ∀k .1 ≤ k ≤ n

|choice{κ1; . . . κn;}.f : τ | � z 	→ ({ if(z was κ1) return g1(z at κ1); · · ·
if(z was κn) return gn(z at κn);})

∃!k ∈ {1 . . . n}. |κk .f : σ| � g n > 1

|choice{κ1; . . . κn ; }.f : σ?|
� z 	→ ({if(z was κk) return new σ?(yield return′(σ,g(z at κk)););

else return null;})

Compiling GMA over singleton streams

|σ.f : σ′| � g

|σ?.f : σ′?| � z 	→ ({if (HasValue(z)) return new σ′?(yield return′(σ′,g(Value(z))););
else return null;})

|σ.f : σ′
*/?| � g

|σ?.f : σ′*/?| � z 	→ ({if (HasValue(z)) return g(Value(z));
else return null;})

Fig. 4. Compilation of Generalized Member Access

308 G. Bierman, E. Meijer, and W. Schulte

For example, we can compile an instance of member access in FCω, e.f , as follows:
we first compile the expression e into ICω, yielding e ′, and also generate a coercion,
g , corresponding to the member access. The result of the compilation of e.f is then
simply g(e ′). We write the compilation of, e.g. an expression, e, as |Γ � e: τ | � e ′.

Incoherence by Design. Java and C� are by design incoherent [7]. Both languages use
a notion of ‘‘best” conversion when there is more than one conversion between two
types. If there does not exist a best conversion, a compile-time error is generated. In
compiling FCω to ICω we use this notion of a best conversion when dealing with rules
that use subtyping. We do not formalize this notion of ‘‘best” here; both the Java and
C� language specifications give precise details. The new types in Cω do not complicate
this notion greatly: For example, there are two conversions between int and object:
one using the rule [Box], the other using the rules [SubChoice] and [Box] along with
[Trans] (i.e. int <: choice{int;string;} <: object). It is clear that the first
conversion is better. The other critical pairs are similarly easy to resolve.

3.5 Properties of FCω and ICω

In this section we briefly mention some properties of FCω and ICω and the compilation.
We do not give any details of the proofs, as they are standard and follow analogous
theorems for Java [18, 5]; details will appear in a forthcoming technical report.

Our main result is that ICω is type-sound, which is captured by the following prop-
erties. (We use generalized judgements, e.g. Γ � (S , e): τ to mean that the expression e
is well-typed and also that the state S is well-formed with respect to Γ , in the familiar
way. As is usual [18] we also need to add ‘‘stupid” typing rules for the formal proof.)

Theorem 1 (Type soundness for ICω).

1. If Γ � (S , e): τ and (S , e) → (S ′, e ′) then ∃τ ′ such that Γ � (S ′, e ′): τ ′ and
τ ′ <: τ .

2. If Γ ; τ � s and (S , s) → (S ′, s ′) then ∃τ ′ such that Γ ; τ ′ � (S ′, s ′) and τ ′ <: τ .
3. If Γ �(S , e): τ then either (S , e) is terminal or ∃S ′, e ′ such that (S , e) → (S ′, e ′).
4. If Γ ; τ �(S , s) then either (S , s) is terminal or ∃S ′, s ′ such that (S , s) → (S ′, s ′).

We can also prove that our compilation of FCω to ICω is type-preserving, i.e. if
an FCω expression e in environment Γ has type τ , then there is a compilation of e
resulting in an ICω expression e ′, such that e ′ in Γ also has type τ .

Theorem 2 (Type preservation of compilation).

1. If Γ � e: τ then ∃e ′ such that |Γ � e: τ | � e ′ and Γ � e ′: τ .
2. If Γ ; τ � s then ∃s ′ such that |Γ ; τ � s| � s ′ and Γ ; τ � s ′.

4 Related Work

Numerous languages have been proposed formanipulating relational andsemi-structured
data. For reasons of space we focus here only on those for semi-structured data (some
of the languages for relational data were cited in §1).

The Essence of Data Access in Cω 309

A number of special-purpose functional languages [15, 4, 10] have been proposed
for processing XML values. This stands in contrast to our approach, which aims at
extending an existing widely-used object-oriented programming language.

The languages most similar to Cω are XJ [14] and Xtatic [13]. XJ adds XML and
XPath as a first-class construct to Java, and uses logical XML classes to represent XSDs.
In this way XJ allows compile time checking of XML fragments; however since the
impedance mismatch between XML and objects is quite large, it does not deal with a
mix of data from the the object and the XML world. One consequence is, for example,
that XPath queries are restricted to work on XML data only.

Xtatic extends C� with a separate category of regular expression types [16]. Subtyp-
ing is structural. While this gives a lot of flexibility this neither conforms with XML
Schema, where subtyping is defined by name through restrictions and extensions, nor
does it allow a free mix of objects and XML. Further, Xtatic uses pattern matching
for XML projections, which fits well with the chosen type system but lacks first-class
queries.

In contrast to XJ and Xtatic, Cω does not treat XML as a distinct and separate class.
Its ingenuity lies in the uniform integration of the new stream, choice and struct types
into the existing types and the generalization of member access— ‘‘the power is in
the dot”. In fact, generalized member access in Cω achieves many of the benefits that
other type systems try to solve. For example, a long standing problem is how to write a
query over data that comes from two sources that are similar, modulo some distribution
rules, but not the same [8]. The type algebra of regular expression types often allows
a factorization which makes this scenario possible. Generalized member access, on the
other hand, handles this problem itself, without the need for distribution rules at the
type level.

Another popular approach to deal with XML in an object-oriented language is by
using so called data-bindings. A data-binding generates some strongly typed object
representation from a given XML schema (XSD). JAXB for Java and xsd.exe in the
.NET framework generate classes from a given XSD. However, it is often impossible to
generate reasonable bindings, since the rich type system of XSDs cannot adequately be
mapped onto classes and interfaces. As a consequence the resulting mappings are often
weakly typed.

Cω takes a different but simpler view: XML is considered to be a serialization syntax
for the rich type system of Cω. We are not tied to a particular XML data model. While
Cω by design doesn’t support the entirety of the full XML stack, in our experience Cω’s
type system and language extensions are rich enough to support realistic scenarios. We
have written a large number of applications, including the complete set of XQuery Use
Cases, several XSL stylesheets, and a substantial application (50KLOC) to manage TV
listings.

5 Conclusions and Future Work

In this paper we have considered the problem of manipulating relational and semi-
structured data within common object-oriented languages. We observed that existing
methods using APIs provide poor support for these common application scenarios.

310 G. Bierman, E. Meijer, and W. Schulte

Therefore, we have proposed a series of elegant extensions to C� that provides type-
safe, first-class access to, and querying of, these forms of data. We also have built a full
compiler that implements our design. In this paper we have studied these extensions
formally.

This work represents an industrial application of formal methods; on the whole,
we found the process of formalizing our intuitions extremely useful, and indeed we
managed to trap a number of subtle design flaws in the process. (In addition we had to
formalize a fragment of C�, which was a little subtle in places. For example, we believe
that this paper gives the first formal operational semantics for iterators.) That said, we
also found it useful to be simultaneously developing a compiler. On a small number of
occasions we found that our formalization was too high-level, in that it failed to capture
some lower-level issues. Also whilst FCω is small enough to prove theorems about by
hand, we should have liked to formalized a larger fragment of the language. At the
moment, this seems unrealistic without more highly developed machine assistance.

One aspect of this project that we should like to consider further is the compilation.
The Common Type System (CTS) for the Common Language Runtime (CLR) whilst
general, lacks support for structural types. As our current compiler targets .NET 1.1,
this means that the choice and anonymous structs types have to be ‘‘simulated”. In
future work, we plan to study extending the CLR with structural types. This would also
enable more effective compilation of other languages that offer structural types, such
as functional languages. It would also be interesting to study whether the lightweight
covariance of Cω could be added to the CTS and other languages.

Implementation Status. A prototype Cω compiler is freely available. It covers the
entire safe fragment of C� and includes all the data access features described in this
paper (and more) and also the ‘‘polyphonic” concurrency primitives [3]. (Available
from http://research.microsoft.com/comega.)

References

1. A. Albano, G. Ghelli, and R. Orsini. Types for databases: the Galileo experience. In Pro-
ceedings of DBPL, 1989.

2. A. Albano, G. Ghelli, and R. Orsini. Fibonacci: A programming language for object
databases. Journal of Very Large Data Bases, 4(3):403–444, 1995.

3. N. Benton, L. Cardelli, and C. Fournet. Modern concurrency abstractions for C�. TOPLAS,
26(5):769–804, 2004.

4. V. Benzaken, G. Castagna, and A. Frisch. CDuce: An XML-centric general-purpose lan-
guage. In Proceedings of ICFP, 2003.

5. G.M. Bierman, M.J. Parkinson, and A.M. Pitts. MJ: An imperative core calculus for Java
and Java with effects. Technical Report 563, University of Cambridge, 2003.

6. G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the future safe for the past:
Adding genericity to Java. In Proceedings of OOPSLA, 1998.

7. V. Breazu-Tannen, T. Coquand, C.A. Gunter, and A. Scedrov. Inheritance as implicit coer-
cion. Information and computation, 93(1):172–221, 1991.

8. P. Buneman and B.C. Pierce. Union types for semistructured data. In Proceedings of IDPL,
1998.

9. D. Chamberlin et al. XQuery use cases. http://www.w3.org/TR/xquery-use-cases/.

The Essence of Data Access in Cω 311

10. S. Boag et al. XQuery. http://www.w3.org/TR/xquery.
11. M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mixins. In Proceedings of POPL,

1998.
12. C. Fournét and G. Gonthier. The reflexive chemical abstract machine and the join-calculus.

In Proceedings of POPL, 1996.
13. V. Gapeyev and B.C. Pierce. Regular object types. In Proceedings of ECOOP, 2003.
14. M. Harren, M. Raghavachari, O. Shmueli, M. Burke, V. Sarkar, and R. Bordawekar. XJ:

Integration of XML processing into Java. Technical report, IBM Research, 2003.
15. H. Hosoya and B.C. Pierce. XDuce: A typed XML processing language. In Proceedings of

WebDB, 2000.
16. H. Hosoya, J. Vouillon, and B.C. Pierce. Regular expression types for XML. In Proceedings

of ICFP, 2000.
17. M. Howard and D. LeBlanc. Writing Secure Code. Microsoft Press, 2003.
18. A. Igarashi, B.C. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus for

Java and GJ. ACM TOPLAS, 23(3):396–450, 2001.
19. D. Leijen and E. Meijer. Domain Specific Embedded Compilers. In Proceedings of Confer-

ence on Domain-Specific Languages, 1999.
20. F. Matthes, S. Müßig, and J.W Schmidt. Persistent polymorphic programming in Tycoon:

An introduction. Technical report, University of Glasgow, 1994.
21. E. Meijer, W. Schulte, and G.M. Bierman. Programming with circles, triangles and rectan-

gles. In Proceedings of XML, 2003.
22. E. Meijer, W. Schulte, and G.M. Bierman. Unifying tables, objects and documents. In

Proceedings of DP-COOL,, 2003.
23. B.C. Pierce. Types and programming languages. MIT Press, 2002.
24. J. Price. Java programming with Oracle SQLJ. O’Reilly, 2001.
25. D. Yu, A. Kennedy, and D. Syme. Formalization of generics for the .NET common language

runtime. In Proceedings of POPL, 2004.

Prototypes with Multiple Dispatch:
An Expressive and Dynamic Object Model

Lee Salzman and Jonathan Aldrich

Carnegie Mellon University, Pittsburgh, PA 15217, USA
lsalzman@alumni.cmu.edu

jonathan.aldrich@cs.cmu.edu

Abstract. Two object-oriented programming language paradigms—
dynamic, prototype-based languages and multi-method languages—
provide orthogonal benefits to software engineers. These two paradigms
appear to be in conflict, however, preventing engineers from realizing
the benefits of both technologies in one system. This paper introduces
a novel object model, prototypes with multiple dispatch (PMD), which
seamlessly unifies these two approaches. We give formal semantics for
PMD, and discuss implementation and experience with PMD in the dy-
namically typed programming language Slate.

1 Overview

We begin the paper by describing a motivating example that shows the limita-
tions of current, popular object-oriented languages for capturing how method
behavior depends on the interaction between objects and their state. The ex-
ample shows that multi-methods can cleanly capture how behavior depends on
the interaction between objects, while dynamic, prototype-based languages can
cleanly capture how behavior depends on object state. Unfortunately, unifying
highly dynamic, prototype-based languages with multi-methods is hard, because
traditional multi-methods assume a static class hierarchy that is not present in
dynamic prototype-based languages.

In section 3 we describe Prototypes with Multiple Dispatch (PMD), an object
model that combines the benefits of dynamic, prototype-based languages with
multi-methods. PMD supports both paradigms by introducing a role concept
that links a slot within an object to a dispatch position on a method, and
defining a dynamic multi-method dispatch mechanism that traverses the graph
of objects, methods, and roles to find the most specific method implementation
for a given set of receiver objects.

Section 4 defines the PMD model more precisely using operational semantics.
Section 5 demonstrates the expressiveness of PMD through the standard library
of Slate, a dynamically-typed language that implements the PMD object model.
Section 6 describes an efficient algorithm for implementing dispatch in Slate.
Section 7 describes related work, and section 8 concludes.

A.P. Black (Ed.): ECOOP 2005, LNCS 3586, pp. 312–336, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Prototypes with Multiple Dispatch 313

2 Motivating Example

In this section, we use a simple running example to examine the benefits and
limitations of two current trends in object-oriented programming: prototype-
based languages and multi-method languages. Objects were originally invented
for modeling and simulation purposes, and our example follows this tradition by
modeling a simple ocean ecosystem.

Figure 1 presents the running example in a conventional class-based language
like Java or C#. The inheritance hierarchy is made up of an abstract Animal
superclass and two concrete subclasses, Fish and Shark. An animal’s behavior
is defined by the encounter method. Fish swim away from healthy sharks, but
ignore other animals. If a shark is healthy, it will eat any fish it encounters
and fight other sharks; if the shark is not healthy it will swim away from other
animals. When a shark fights, it becomes unhealthy.

This example illustrates behavior that depends on both an object’s class
and its state, echoing many important real-world programming situations. For
example, a fish’s behavior depends on the type of animal that it encounters.
A shark’s behavior depends both on the type of animal it encounters and its
current health.

class Animal {
abstract method encounter (other : Animal);
method swimAway () { ... }

}

class Fish inheriting Animal {
method encounter (other : Animal) {

if (other.isShark())
if (other.isHealthy())

swimAway();
}

}

class Shark inheriting Animal {
variable healthy : boolean;
method isHealthy() {

return healthy;
}
method swallow (other : Animal) { ... }
method encounter (other : Animal) {

if (isHealthy())
if (other.isFish())

swallow (other);
else if (other.isShark())

fight (other);
else

swimAway();
}
method fight (other : Shark) {

healthy := False;
}

}

Fig. 1. A simple inheritance hierarchy modeling an ocean ecosystem. The encounter
method illustrates behavior that depends both on an object’s class (Shark or Fish)
and its state (healthy or not). In conventional class-based languages, the behavior
specification is complex, imperative, and hard to extend with additional classes

314 L. Salzman and J. Aldrich

In this example, object-oriented programming is beneficial in that it allows
us to encapsulate a shark’s behavior within the shark code and a fish’s behavior
within the fish’s code. However, it also shows problems with current object-
oriented languages. The specification of behavior is somewhat complex and hard
to understand–even for this simple example–because the control structure within
the encounter methods branches on many conditions. The program is also rela-
tively hard to extend with new kinds of animals, because in addition to defining
a new subclass of Animal, the programmer must add appropriate cases to the
encounter methods in Fish and Shark to show how these animals behave when
they encounter the new type of animal.

2.1 Multiple Dispatch

A language with multi-methods dispatches on the classes of all the argument
objects to a method, rather than on just the class of the receiver. Multiple
dispatch is useful for modeling functionality that depends on the type of multiple
interacting objects.

Figure 2 shows the ocean ecosystem modeled using multi-methods. Instead of
being written as part of each class, multi-methods are declared at the top level

class Animal { }
method swimAway (animal : Animal) { ... }

class Fish inheriting Animal { }
method encounter (animal : Fish, other : Animal) { }
method encounter (animal : Fish, other : Shark) {

if (other.isHealthy())
swimAway(animal);

}

class Shark inheriting Animal {
variable healthy : boolean;

}
method isHealthy (animal : Shark) {

return animal.healthy;
}
method swallow (animal : Shark, other : Animal) { ... }
method encounter (animal : Shark, other : Fish) {

if (animal.isHealthy())
swallow (animal, other);

else
swimAway(animal);

}
method encounter (animal : Shark, other : Shark) {

if (animal.isHealthy())
fight (animal, other);

else
swimAway(animal);

}
method fight (animal : Shark, other : Shark) {

animal.healthy := False;
}

Fig. 2. Modeling the ocean ecosystem using multi-methods. Here, the encounter

method dispatches on both the first and second arguments, simplifying the control
structure within the methods and making the system more declarative and easier to
extend

Prototypes with Multiple Dispatch 315

and explicitly include the first (or receiver) argument. Multi-methods dispatch
on all argument positions, so that one of four encounter methods can be called,
depending on whether the two animals are both sharks, both fish, or one of each
in either order.

Typically, multiple dispatch is resolved by picking the most specific method
that is applicable to all of the arguments, with a subtype relation among classes
determining this specificity. For example, if a fish encounters a shark, at least
two methods are applicable: the first method defined accepts a fish in the first
position and any animal in the second position, but the second is more spe-
cific, accepting a fish in the first position but only sharks in the second po-
sition. In this case the second method would be invoked because it is more
specific.

In cases where two methods are equally specific, languages differ. Languages
like Cecil that use symmetric dispatch would signal a message ambiguous er-
ror [5], while languages like CLOS and Dylan would choose a method by giving
the leftmost arguments greater priority whenever the specificities of two methods
are compared [2, 9].

The example shows that multiple dispatch has a number of advantages over
single dispatch. It is more declarative, concise, and easy to understand, because
the control-flow branches within the encounter method have been replaced with
declarative object-oriented dispatch. It is more extensible, because the system
can be extended with new objects and new methods without changing existing
objects and methods. These advantages are similar to the advantages that object-
oriented programming brings relative to procedural programming.

However, there remain problems with the example, as expressed. It is still
awkward to express stateful behavior; this is still represented by the control
flow branches inside encounter methods. Furthermore, the code describing that
unhealthy sharks swim away from all other animals is duplicated in two different
encounter methods. This redundancy makes the program harder to understand,
and creates the possibility that errors may be introduced if the duplicated code
is evolved in inconsistent ways.

2.2 Prototype-Based Languages

Prototype-based languages, pioneered by the language Self [17], simplify the
programming model of object-oriented languages by replacing classes with pro-
totype objects. Instead of creating a class to represent a concept, the programmer
creates an object that represents that concept. Whenever the program needs an
instance of that concept, the prototype object is cloned to form a new object
that is identical in every way except its identity. Subsequent modifications to
the clone diverge from the original and vice versa.

Prototype-based languages also emphasize the step-wise construction of ob-
jects over a static and complete description. Methods may be added as new
“slots” of an object at any time, and in languages like Self, inheritance relation-
ships may also be changed at any time. This emphasis on incremental construc-
tion occurs because objects are now self-sufficient entities that contain behavior

316 L. Salzman and J. Aldrich

object Animal;
object Fish;
object Shark;
object HealthyShark
object DyingShark

addDelegation (Fish, Animal);
addDelegation (Shark, Animal);
addDelegation (Shark, HealthyShark);

method Animal.swimAway () { ... }

method Fish.encounter(other) {
if (other.isHealthyShark())

swimAway();
}

method HealthyShark.swallow (other : Fish) { ... }
method HealthyShark.fight (other : Shark) {

removeDelegation(HealthyShark);
addDelegation(DyingShark);

}

method HealthyShark.encounter (other) {
if (other.isFish())

swallow (other);
else if (other.isShark())

fight (other);
}
method DyingShark.encounter (other) {

swimAway();
}

Fig. 3. Modeling the ocean ecosystem using a prototype-based language. Here, the
health of a shark is modeled by delegation to either the HealthyShark or the Dying-
Shark. These abstractions represent behavior more cleanly and declaratively compared
to the solutions described above

as a genuine component of their state, rather than being instances of a class
which merely describes their behavior for them.

Figure 3 shows how the ocean ecosystem can be expressed in a prototype-
based language. The programmer first creates a prototype Animal object, then
creates prototype Shark and Fish objects that delegate to the Animal.

The health of a Shark is represented by delegation to either a HealthyShark
object or a DyingShark object. These objects encapsulate the behavior of the
shark when it is healthy or dying, respectively. Sharks begin in the healthy
state, delegating to the HealthyShark object and thus inheriting its encounter
method. When a HealthyShark fights, the current object’s delegation is changed
from HealthyShark to DyingShark, and from that point on the shark inherits
the encounter method from DyingShark.

This example shows a strength of prototype-based languages: delegation can
easily be used to represent the dynamic behavior of an object. The behavior
can be changed dynamically when some event occurs simply by changing the
object’s delegation. Although we use dynamic inheritance as an illustration of
the malleability provided by prototype-based languages, other features of these
languages provide expressiveness benefits as well. For example, we could just as

Prototypes with Multiple Dispatch 317

easily have redefined Shark’s encounter method in the fight method to model
changes in health.

Despite the advantages that prototypes bring, some problems remain.
Like the original class-based code, the prototype-based implementation of the
encounter methods branch explicitly on the type of the object being encoun-
tered. As discussed earlier, this makes the code more difficult to understand and
harder to extend with new kinds of animals.

2.3 Discussion

The advantages of multiple dispatch and prototypes are clearly complementary.
Multiple dispatch allows programmers to more declaratively describe behavior
that depends on multiple interacting objects. Prototypes allow programmers to
more cleanly describe stateful behavior, in addition to other benefits accrued
by more malleable objects such as more accessible object representation, finer-
grained method definition, and arbitrary object extension.

Because of these complementary advantages, it is natural to suggest combin-
ing the two models. Such a combination is difficult, however, because multiple
dispatch depends on a predetermined hierarchy of classes, while prototypes gen-
erally allow a delegation hierarchy to change arbitrarily at any time.

Thus previous languages such as Cecil that combine these two models restrict
delegation and method definition to be relatively fixed at a global scope that may
be easily analyzed [5]. Unfortunately, restricting the manipulation of objects and
methods, without compensating with additional mechanisms, also eliminates
a key advantage of prototypes: the elevation of behavior to state. This fixed
delegation hierarchy and method definition becomes reminiscent of classes which
also, in general, emphasize this fixed inheritance and construction.

While other techniques for declaratively specifying the dependence of object
behavior on state do exist, [6, 8, 13], they are more complex and restricted than
dynamic inheritance and method update mechanisms in Self.

3 Prototypes with Multiple Dispatch

The contribution of this paper is describing how a dynamic, prototype-based
object model in the style of Self can be reconciled with multiple dispatch. Our
object model, Prototypes with Multiple Dispatch (PMD), combines the benefits
of these two previous object models.

Figure 4 shows the programmer’s view of PMD. The programmer creates
an object structure that mirrors the prototype code given earlier. When defin-
ing methods, however, the programmer declares all arguments (including the
receiver) explicitly, as in the multi-method code given earlier. Instead of giving
the class that each argument dispatches on, a prototype object is given.

The code in Figure 4 combines the best of both prototypes and multiple dis-
patch. As in the prototype case, the behavioral dependence on the health of the
shark is modeled as delegation to a HealthyShark or a DyingShark object. This
delegation can be changed, for example, if the shark is injured in a fight. At the

318 L. Salzman and J. Aldrich

object Animal;
object Fish;
object Shark;
object HealthyShark;
object DyingShark;

addDelegation (Fish, Animal);
addDelegation (Shark, Animal);
addDelegation (Shark, HealthyShark);

method swimAway (animal : Animal) { ... }

method encounter(animal : Fish, other : Animal) /* A */ { }
method encounter(animal : Fish, other : HealthyShark) /* B */ {

swimAway(animal);
}

method swallow (animal : Shark, other : Fish) { ... }
method fight (animal : HealthyShark, other : Shark) {

removeDelegation(animal, HealthyShark);
addDelegation(animal, DyingShark);

}

method encounter (animal : HealthyShark, other : Fish) /*C*/ {
swallow (animal, other);

}
method encounter (animal : HealthyShark, other : Shark) /*D*/ {

fight (animal, other);
}
method encounter (animal : DyingShark, other : Animal) /*E*/ {

swimAway(animal);
}

Fig. 4. Modeling the ocean ecosystem in Prototypes with Multiple Dispatch (PMD).
PMD combines multiple dispatch with a dynamic, prototype-based object model, lead-
ing to a declarative treatment of both state and dispatch

same time, behavioral dependence on multiple interacting objects is expressed
through multiple method declarations, one for each relevant case. In a sense, the
code is as clean and declarative as it could possibly be: no state variables or
control-flow branches remain.

3.1 Dispatch Model

The key insight that makes PMD work is that multi-methods must be internal-
ized into objects, rather than treated as external entities that dispatch across
a fixed inheritance hierarchy. Retaining a largely extrinsic dispatch process, as
in previous multi-method languages, inevitably restricts the capability of devel-
opers to manipulate the behavior of an object through dynamic inheritance or
method update.

In Self, methods are internalized by storing them in slots of the receiver
object. PMD cannot use this strategy, however, because a multi-method must
operate on multiple objects; there is no distinguished receiver.

We solve this challenge by introducing the concept of the role played by
a particular object in an interaction defined by a multi-method. Each multi-
method defines a role for each of its argument positions. For example, in the last

Prototypes with Multiple Dispatch 319

Fig. 5. A conceptual view of prototypes with multiple dispatch

method of Figure 4, the encounter method’s first role is played by a DyingShark
object, while the second role is played by an Animal object.

Each object keeps track of which roles it plays for which multi-methods. Fig-
ure 5 shows the roles that different objects play in different encounter methods.
Animal plays the second role in two different encounter method bodies: the
ones marked A and E in the code above. Fish plays the first role in the first two
methods (since their first parameter dispatches on Fish) and the second role in
method C.

Dispatch occurs by searching the delegation hierarchy for inherited methods
with the right name and appropriate roles for each of the arguments. For exam-
ple, consider what happens when a fish encounters a shark that is healthy (i.e.,
still is delegating to the HealthyShark object). Fish can play the “encounterer”
role (role #1) in both methods A and B. The shark can play the “encounteree”
role (role #2) in methods A and E, inherited from Animal, method B, inher-
ited from HealthyShark, and method D, defined in the Shark object itself. Only
methods A and B will work for both roles. We choose the method to invoke
by ordering the delegations for a given object, in case there are multiple such
delegations.

A number of semantics are possible for determining the precedence of differ-
ent applicable methods. The semantics we chose implements a total ordering of
methods by considering (first) arguments farther to the left to take precedence
over arguments to the right, (second) multiple delegations within a single object
to be ordered according to the most recent time of definition, and (third) meth-
ods closer in the delegation hierarchy to the supplied method arguments to be
more precise.

We chose a total order rather than a partial order, as in Cecil [5], to avoid
the possibility of ambiguity in dispatch. A left-to-right ordering is standard,
as is the criteria of closeness in the dispatch hierarchy. We chose to prioritize
more recent delegations because this gives developers more flexibility to affect
the behavior of objects by adding a new delegation. We prioritize first on the
argument position, then on the ordering of delegations, then on the distance in

320 L. Salzman and J. Aldrich

the delegation hierarchy, because this gives us a convenient depth-first search
algorithm to find the appropriate method (Section 6.1). This algorithm is both
more efficient and easier for a programmer to understand than a breadth-first
algorithm that would otherwise be required.1

4 Formal Model

This section provides a formal model of prototypes with multiple dispatch
through a new object calculus. Our calculus borrows ideas from several previous
object calculi, but the differences between PMD and previous object models are
too great to use a straightforward extension of a previous calculus. For example,
only one previous calculus that we know of supports imperative updates of meth-
ods [1]. However, this calculus, like most others [3], compiles away delegation by
simply copying methods from the delegatee into the delegator. This strategy
cannot possibly work in PMD because delegation can change after an object
is created. Thus, the representation of objects in the calculus must maintain
information about delegation to support this properly.

The most significant difference with all previous calculi is our modeling of
multiple dispatch through roles on objects; this makes the common approach
of modeling objects as records of methods inappropriate [10, 1, 3]. Although a
few object calculi model multi-methods [14, 4], they all model multi-methods
as external functions that dispatch over a fixed dispatch hierarchy, while PMD
allows the developer to change the methods that are applicable to an object, as
well as to modify the inheritance hierarchy at run time.

We instead sketch an untyped, imperative object calculus, PMD (Prototypes
with Multiple Dispatch), that precisely describes the semantics of our proposed
object model. The main contributions of the model are formalizing multi-method
dispatch based on roles, and exposing the choices language designers have for
determining dispatching strategies. We hope that the calculus can be extended
with a type system, but this remains challenging future work.

4.1 Syntax

Figure 6 explains syntax of PMD. This syntax provides lambda expressions for
defining method bodies, object construction through ordered delegation and
method definition, and roles that define the various connections between ob-
jects. As in Smalltalk [11], method selectors are themselves objects and can be
computed.

As PMD is an imperative calculus, the model further assumes a store mapping
a store location, used to represent object identity, to an object’s representation.
The object representation consists first of a sequence of locations denoting the

1 If depth in the delegation hierarchy were considered first, for example, then simply
adding an extra layer of delegation would affect dispatch, which seems extremely
counterintuitive.

Prototypes with Multiple Dispatch 321

l ∈ locations possible object identities in the store

f ::= λx.e lambda expressions defining a method body
e ::= x bindings

| l locations that the store maps to objects
| es(e) invokes method identified by selector es upon arguments e
| es(e) ← f defining a method at selector es with body f , dispatching on e
| clone(e) copies an object
| e � ed updates e to delegate to ed

| e � � removes the last delegation that was added to e
v ::= l reduced values
d ::= l delegations
r ::= (l, i, f) roles contain a method selector, a method parameter index,

and a method body
O ::= (

〈
d
〉
, {r}) objects contain a list of delegations and set of roles

S ::= l 	→ O store mapping object identity to representation

Fig. 6. The syntax of PMD. The notation z denotes a syntactic sequence of z

Animal
def
= clone(Root)

Fish
def
= clone(Root)

Shark
def
= clone(Root)

HealthyShark
def
= clone(Root)

DyingShark
def
= clone(Root)

Fish � Animal
Shark � Animal
Shark � HealthyShark
encounter(Fish, HealthyShark) ← λxy.swimAway(x)
encounter(Fish, Animal) ← λxy.x
fight(HealthyShark, Shark) ← λxy.x � � � DyingShark
encounter(HealthyShark, F ish) ← λxy.swallow(x, y)
encounter(HealthyShark, Shark) ← λxy.fight(x, y)

Fig. 7. The example scenario represented in the formal model

objects the particular object delegates to and then a set of roles identifying the
methods connected to the particular object.

The notation S[l] will be used to denote object representation corresponding
to the location l in the store S, and the notation S[l �→ O] will be used to denote
the store S adjusted to map the location l to the object representation O.

4.2 Example

Figure 7 presents the running example in the PMD calculus. It still retains all of
the conciseness and descriptiveness as the original PMD-inspired example and
differs little from it, despite being framed in terms of the lower-level calculus. The

322 L. Salzman and J. Aldrich

PMD semantics sufficiently captures the mechanisms that lead to the minimal
factoring of the running example.

The example assumes the existence of a distinguished empty object Root from
which blank objects may be cloned as well as sufficient unique objects defined to
cover all method selectors used in the example. Otherwise, the example remains
a straight-forward translation of the earlier informal PMD example.

4.3 Dynamic Semantics

Figure 8 presents the core dynamic semantics of PMD. These reduction rules
take the form S � e ↪→ e′, S′, to be read as ”with respect to a store S, the
expression e reduces in one step to e′, yielding a new store S′”. The reduction
rules define method invocation, method definition, object cloning, and delegation
addition and removal. The congruence rules define the order of evaluation in the
standard way.

The rule R-Invoke looks up the body of the most applicable method, with
respect to a method selector and a sequence of method arguments, given by
the lookup function (defined below in Figure 9). The method arguments are
then substituted into the lambda expression/method body which is the result.
Substitution occurs as in the lambda calculus.

The rule R-Method defines a new method body, to be invoked with a given
selector, and dispatching on the given set of objects. A new role is added to each
object vi, stating that the object (or any object that delegates to it) can play
the ith role in a dispatch on method selector vs to method body f . The object
representations are updated in the store to reflect this, yielding a new store.
The first condition ensures this definition is unique to the particular method
selector and arguments; there is no other method body defined upon this exact
invocation. The expression reduces to the first argument here only to simplify
presentation. We omit a rule for method removal for brevity’s sake, which would
be a straight-forward inversion of this particular rule.

Note that method definition here affects intrinsic properties of the supplied
argument objects’ representations, rather than appealing to some extrinsic se-
mantic device. This becomes significant in the rule R-Clone, which provides
the ubiquitous copying operation found in prototype-based languages. To en-
sure that the copied object, which bears a new location and representation in
the store, responds to all method invocations in similar fashion as the original
object, the rule only needs to do duplicate the list of delegations and set of roles.
This simple duplication of relevant dispatch information in turn simplifies the
implementation of these semantics.

The rules R-AddDelegation and R-RemoveDelegation together manip-
ulate the ordered list of delegations of an object in stack-like fashion. The rule
R-AddDelegation adds a target object as a delegation to the top of the or-
dered list of delegations of the origin object. The rule R-RemoveDelegation
removes the top of this ordered list and returns the removed delegation tar-
get. These two particular rules were merely chosen to simplify presentation, and
other alternative rules allowing for arbitrary modification of the list are certainly
possible.

Prototypes with Multiple Dispatch 323

Reduction Rules

lookup(S, vs, v) = λx.e

S � vs(v) ↪→ [v/x] e, S′ R-Invoke

� ∃f ′ (∀0≤i≤n (S0 [vi] = (〈· · · 〉 , {· · · , (s, i, f ′)})))
∀0≤i≤n

(
Si [vi] = (

〈
d
〉
, {r})∧

Si+1 = Si

[
vi 	→ (

〈
d
〉
, {r, (vs, i, f)})]

)
S0 � vs(v0 · · · vn) ← f ↪→ v0, Sn+1

R-Method

S [v] = O l �∈ dom(S) S′ = S [l 	→ O]
S � clone(v) ↪→ l, S′ R-Clone

S [vo] = (
〈
d
〉
, {r}) S′ = S

[
vo 	→ (

〈
d, vt

〉
, {r})]

S � vo � vt ↪→ vo, S
′ R-AddDelegation

S [v] = (〈d0 · · · dn〉 , {r}) n ≥ 0
S′ = S [v 	→ (〈d0 · · · dn−1〉 , {r})]

S � v � � ↪→ dn, S′
R-RemoveDelegation

Congruence Rules

S � es ↪→ e′s, S
′

S � es(e) ↪→ e′s(e), S′
S � es ↪→ e′s, S

′

S � es(e) ← f ↪→ e′s(e) ← f, S′

S � ei ↪→ e′i, S
′

S � vs(v0 · · · vi−1, ei, ei+1 · · · en) ↪→ vs(v0 · · · vi−1, e
′
i, ei+1 · · · en), S′

S � ei ↪→ e′i, S
′

S � vs(v0 · · · vi−1, ei, ei+1 · · · en) ← f ↪→ vs(v0 · · · vi−1, e
′
i, ei+1 · · · en) ← f, S′

S � eo ↪→ e′o, S
′

S � eo � et ↪→ e′o � et, S
′

S � et ↪→ e′t, S
′

S � v � et ↪→ v � e′t, S
′

S � eo ↪→ e′o, S
′

S � eo � � ↪→ e′o � �, S′

Fig. 8. The dynamic semantics of PMD

4.4 Dispatch Semantics

Figure 9 presents the dispatch semantics provided by the lookup function. The
rule R-Lookup is a straight-forward transcription of the idea of multiple dis-
patch. It states that a method body should be dispatched if it is applicable - a
member of the set of applicable methods - and it is the most specific of all such
method bodies, or rather, is the least method body according to an operator
that compares the applicable method bodies. The rank function and ≺ operator
together implement this comparison operator.

324 L. Salzman and J. Aldrich

f ∈ applic(S, vs, v)
∀f ′∈applic(S,vs,v) (f = f ′ ∨ rank(S, f, vs, v) ≺ rank(S, f ′, vs, v))

lookup(S, vs, v) = f
R-Lookup

applic(S, vs, v0 · · · vn)
def
=

{
f

∣∣∣∣∀0≤i≤n

(
delegates(S, vi) = 〈d0 · · · dm〉∧

∃0≤k≤m

(
S [dk] = (

〈
d′〉 , {· · · , (vs, i, f)}))

)}

rank(S, f, vs, v0 · · · vn)
def
=

∏
0≤i≤n

min
0≤k≤m

{
k

∣∣∣∣ delegates(S, vi) = 〈d0 · · · dm〉∧
S [dk] = (

〈
d′〉 , {· · · , (vs, i, f)})

}

Fig. 9. The dispatch semantics of PMD

We then define the applic set of methods as those methods for which every
argument either contains a satisfactory role for the method, or delegates to
an object with such a role. A role here is satisfactory if index of the method
argument on which it is found matches that in the role, and the method selector
matches that in the role as well. This definition relies on the delegates function,
which returns an ordered list of all delegated-to objects transitively reachable by
the delegation lists in objects, and including the original method argument itself.
In the case of a statically-fixed delegation hierarchy, this rule exactly mirrors the
applicability criteria in previous multi-method languages such as Cecil, Dylan
and CLOS.

Note that because of the first condition of R-Method, only one method body
can be directly defined on a tuple of objects at a particular selector. Thus, in
the absence of delegation, dispatch is trivial since the applicable set of methods
contains at most a single method body. Ranking the applicable methods is thus
a necessary consequence of delegation.

Finally, the rank function, conceptually, finds, among those methods in the
applic set, the distance at which the roles corresponding to some method ap-
peared. Given the ordered list of delegates for an argument described above, it
determines the minimal position at which a delegated-to object contains a satis-
factory role corresponding to the method. The

∏
operator, which also parameter-

izes the rank function, combines these minimal positions for each argument and
produces a single rank value - conceptually, a n-dimensional coordinate in the
ranking. The total ordering given by the delegates function facilitates the order-
ing that rank provides, without which these semantics would be trickier to define.

We assume here that a particular method body is unique to a single method
definition. So, in the absence of the rule R-Clone, for a specific method selector
and parameter index, there can only exist a single satisfactory role correspond-
ing to that particular method body. However, since we do include R-Clone,
and a role may thus be copied to another object, multiple satisfactory roles cor-
responding to the method body exist and the closest role among them in the
delegates ordering is chosen.

We leave the delegates function, the ≺ operator, and the
∏

operator un-
defined. The reader may define these arbitrarily to suit their intended dispatch

Prototypes with Multiple Dispatch 325

semantics. Slate’s semantics for these operators are defined along with Slate’s
dispatch algorithm in Section 6.1.

5 Slate

Prototypes with Multiple Dispatch has been implemented in Slate [16], a dynam-
ically typed programming language. Self [17], Cecil [5], and CLOS [2] directly
inspired the design of Slate and the PMD model on which it is based. How-
ever, due to the retained flexibility of prototypes in PMD, Slate most strongly
resembles Self and retains much of its language organization without greatly
compromising its simple object model.

The following section provides a taste of the Slate language through examples
from the Slate standard library illustrating the benefits of the PMD model.

5.1 Brief Overview

The syntax and system organization of Slate strongly resembles that of Self
and Smalltalk [11]. Due to space limitations, we omit a detailed discussion of
Slate’s syntax, which should be understandable to the reader familiar with these
languages; the syntax is also documented in detail elsewhere [16].

We briefly describe Slate’s method definition syntax, which is the primary
syntactic difference between Slate and Self or Smalltalk. A method definition
looks like a method send in Self or Smalltalk, except that one or more of the
arguments2 is qualified by the object on which the method dispatches. The
qualified argument syntax is of the form “parameterName @ roleArgument”,
with “roleArgument” identifying the object associated with this role of this
method body, and “parameterName” being a variable bound in the body of
the method. The “roleArgument” can be omitted, in which case the method
dispatches on the distinguished object “Root” to which most other objects in
Slate delegate. The presence of at least one parameter with a role argument
qualifier is what signals a method definition in the grammar (as opposed to a
method invocation).

Some important messages to be used in the subsequent examples include:

resend Resends the message that invoked the current method while ignoring
any methods of greater or equal precedence in the dispatch order than the
current method during dispatch.

prototype clone Returns a new copy of “prototype” that contains all the
same slots, delegation slots, and roles.

object addSlot: name valued: initialValue Adds a new slot to “object”
and defines the method “name” with which to access its value and the method
“name:” with which to set it. “name” must evaluate to a symbol. The slot’s
value is initially “initialValue”.

2 Note that in a language with multiple dispatch, the “arguments” to a method include
the receiver.

326 L. Salzman and J. Aldrich

object addDelegate: name valued: initialValue This method behaves ex-
actly like “addSlot:valued:”, except only that the slot is treated as a del-
egation slot. The value of the delegation slot is treated as an object that
“object” delegates to.

object traits Accessor message for the “traits” delegation slot, which holds a
class-like object sharing method roles for a whole family of “clone”-d objects.

block do Evaluates “block”.
collection do: block Evaluates “block” with each element of collection

“collection” supplied in turn as an argument.
cond ifTrue: trueBlock ifFalse: falseBlock Evaluates “trueBlock” if

“cond” evaluates to “True”, or instead “falseBlock” if it evaluates to
“False”.

5.2 Example: Instance-Specific Dispatch

Instance-specific dispatch is an extensively used idiom in Slate, benefiting from
its prototype-based model. When combined with multiple dispatch, it begins
to strongly resemble pattern-matching [15] while still within an object-oriented
framework. For example, much of the boolean logic code in Slate is written in a
strikingly declarative form using instance-specific dispatch:
_@True and: _@True [True].
_@(Boolean traits) and: _@(Boolean traits) [False].
_@False or: _@False [False].
_@(Boolean traits) or: _@(Boolean traits) [True].

The code dispatches directly on “True” and “False” to handle specific cases.
It then defines methods on “Boolean traits” to handle the remaining default
cases.

5.3 Example: Eliminating Double Dispatch

Smalltalk [11] and similar languages based on single dispatch typically rely on
an idiom called “double dispatch” to work around the limitations this model
imposes. In this idiom, a method dispatches on the receiver first, then invokes a
helper method (whose name encodes the receiver’s class) on the argument which
provides a second dispatch.

Double dispatch frequently surfaces in such places as Smalltalk numerics
system, making the code more inefficient and harder to understand and extend
compared to optimized multi-method dispatch. For example, when a new kind
of number is added to the system, all the double dispatch code for arithmetic,
distributed among many diverse classes, must be updated to take the new type
of number into account.

Slate’s native support for multiple dispatch avoids these problems. It is rel-
atively simple to extend Slate’s numerics system while keeping these extensions
well-encapsulated and without needing global changes to other objects. For ex-
ample, the following code illustrates how an epsilon object, a negligibly small
yet non-zero value, may be integrated into Slate’s library in a straightforward
and modular way:

Prototypes with Multiple Dispatch 327

numerics addSlot: #PositiveEpsilon valued: Magnitude clone.

_@PositiveEpsilon isZero
[False].
_@PositiveEpsilon isPositive
[True].
x@(Magnitude traits) + _@PositiveEpsilon
[x].

It is also common in Smalltalk to find many methods such as “asArray” or
“asDictionary” for converting a certain object to the type indicated by the
message name. This results in a unnecessary proliferation of related messages
and is effectively a manual encoding of the double dispatch idiom.

With the aid of PMD, Slate can support a more expressive and uniform
protocol for coercing objects of one type to another via the message “as:”. The
object to convert is supplied along with an instance (as opposed to a class) of
some object type the programmer would like the original to coerce to. To define
coercions, the programmer need only define a particular method for her new
objects as in the following code:

x@(Root traits) as: y@(Root traits)
[(x isSameAs: y)

ifTrue: [x]
ifFalse: [x conversionNotFoundTo: y]

].
c@(Collection traits) as: d@(Collection traits)
[d newWithAll: c].
s@(Sequence traits) as: ec@(ExtensibleCollection traits)
[| newEC |

newEC: (ec newSizeOf: s).
newEC addAll: s.
newEC

].
s@(Symbol traits) as: _@(String traits)
[s name].

5.4 Example: Supporting System Reorganization

Another benefit of using a prototype object system as the language core is that
it easily supports reorganizing the language to support new features or remodel
old ones.

For instance, Slate uses a depth-first search strategy for finding roles on
delegated-to objects. Whichever roles are found first according to this order
take precedence over ones found later. However, this simplistic scheme, while
allowing an efficient dispatch algorithm and providing the illusion of single
inheritance, easily becomes inappropriate in the presence of multiple
inheritance.

Figure 10 illustrates the problem. A ReadWriteStream is derived from both
a WriteStream and a ReadStream, and so its traits object delegates to both of
their traits objects as well. ReadStream, in particular, might override a method
“next” on the basic Stream prototype. However, should the dispatch algorithm
visit ReadWriteStream’s traits, WriteStream’s traits, ReadStream’s traits, and
Stream traits in that order, the “next” method on Stream will resurface
and take precedence over the version on ReadStream. Ideally, the search should

328 L. Salzman and J. Aldrich

Fig. 10. Slate’s original traits inheritance model. Multiple inheritance occasionally
results in problems with sequencing methods

Fig. 11. Slate’s new traits inheritance model allows the more desirable breadth-first
sequencing of methods

proceed breadth-first, so that Stream’s traits object is visited only after both
WriteStream’s and ReadStream’s traits objects have been visited.

This behavior became severely confusing at times, yet merely throwing an
error in this case forces the programmer to manually disambiguate it by defining
a new method. Instead of adding a barrier to object reuse, a simple reorganiza-
tion of the traits object system, still only replying upon native delegation and
dispatch of PMD, allowed a much more satisfactory behavior.

Instead of having traits directly delegate to their parent traits, an extra layer
of indirection was added in the form of a traits window. Objects now delegate to
this window instead of directly to traits, and this window merely keeps a list of
traits in the exact order they should be visited by the dispatch algorithm. This
has the added benefit that even orderings that are expensive to compute and
might otherwise defeat various optimizations Slate uses to enhance the perfor-
mance of dispatch may be freely used and customized at a whim without any
negative impacts. Figure 11 illustrates this new organization.

Yet, because Slate is based upon a prototype object system, this did not
require any profound changes to the language’s implementation to effect this
new organization. Most of the changes were localized within the standard library
itself, and mostly to utility methods used to construct new prototypes. Only a
few lines of code in the interpreter itself that depended on the structure of certain
primitively provided objects needed revision.

Prototypes with Multiple Dispatch 329

5.5 Example: Subjective Dispatch

In earlier work on the Self extension Us [18], it was noted that any language
with multiple dispatch can easily implement subjective dispatch similar to that
provided by Us. In this view of subjective dispatch, a subject is merely an extra
implicit participant in the dispatch process, supplied in ways other than directly
via a message invocation.

As PMD provides multiple dispatch, Slate supports subjective dispatch of this
sort with only slight changes to its semantics. It maintains a distinguished subject
in its interpreter state, which is implicitly appended to the argument lists of mes-
sage invocations and method definitions whenever either is evaluated within this
subject. The interpreter also provides a primitive message “changeSubject:” to
modify the current subject. The semantics of Slate otherwise remain unchanged;
programs which do not use subjects are not affected, as all methods dispatch on
the default subject.

Further, prototypes naturally support composition of subjects by delegation,
allowing for a sort of dynamic scoping of methods by merely linking subjects
together with dynamic extent. The message “seenFrom:” is easily implemented
to this effect:

addSlot: #Subject valued: Cloneable clone.
Subject addDelegate: #label.
Subject addDelegate: #previousSubject.

m@(Method traits) seenFrom: label
[| newSubject |

newSubject: Subject clone.
newSubject label: label.
newSubject previousSubject: (changeSubject: newSubject).
m do.
changeSubject: newSubject previousSubject

].

This subjective behavior can easily allow for the implementation of cross-
cutting aspects of a program, implementing behavior similar to cflow in As-
pectJ [12]. The following code illustrates this through the implementation of an
undoable transaction, which works by intercepting any modifications to objects
via the message “atSlotNamed:put”, logging the original value of the slot, then
allowing the modification to proceed:

addSlot: #Transaction valued: Cloneable clone.
Transaction addSlot: #undo valued: ExtensibleArray newEmpty.
Transaction addSlot: #replay valued: ExtensibleArray newEmpty.

t@Transaction log: object setting: slot to: newValue
[| oldValue |

oldValue: (object atSlotNamed: slot).
t undo addLast: [object atSlotNamed: slot put: oldValue].
t replay addLast: [object atSlotNamed: slot put: newValue].

].
t@Transaction undo
[t undo reverseDo: [| :action | action do]].
t@Transaction replay
[t replay do: [| :action | action do]].

330 L. Salzman and J. Aldrich

[object atSlotNamed: slot@(Symbol traits) put: value
[Transaction log: object setting: slot to: value.

resend
].

] seenFrom: Transaction.

6 Dispatch in Slate

Many optimizations have been explored to enhance the performance of programs
in Slate. This section details implementation strategies used in Slate and that
may be applied to implementations of PMD for other languages.

6.1 Dispatch Algorithm

The formalization presented in section 4 leaves open a number of practical con-
siderations about how to implement the core dispatch algorithm of PMD. These
issues include determining the proper order of delegations, the candidate set of
methods that may be applicable, and finally, the ranks of these methods and how
to represent them. Various optimizations also expediently reduce the memory
and processing requirements of the algorithm.

The programming language Slate serves as a canonical implementation of
PMD and utilizes a dispatch algorithm geared toward a lexicographic ordering

dispatch(selector, args, n) {

for each index below n {

position := 0

push args[index] on ordering stack

while ordering stack is not empty {

arg := pop ordering stack

for each role on arg with selector and index {

rank[role’s method][index] := position

if rank[role’s method] is fully specified {

if no most specific method

or rank[role’s method] ≺ rank[most specific method] {

most specific method := role’s method

}

}

}

for each delegation on arg {

push delegation on ordering stack if not yet visited

}

position := position + 1

}

}

return most specific method

}

Fig. 12. Pseudo-code for the basic dispatch algorithm used in Slate

Prototypes with Multiple Dispatch 331

of methods and a number of optimizations, including efficient encoding of rank
vectors, sparse representation of roles, partial dispatch, and method caching.
Slate’s dispatch algorithm guides and motivates the subsequent implementation
discussion.

Figure 12 outlines in pseudo-code a basic version of the dispatch algorithm.
The comparison operator ≺ is as in the formalism and may be chosen to imple-
ment either a partial or lexicographic ordering as desired, the latter of which is
used in Slate. The order in which delegations from a given object are pushed
onto and popped from the ordering stack, analogous to the delegates function
in the formalism, determines the ordering under multiple delegation and should
be chosen as is applicable to the implementation. A simple vector of positions
in a rank here provides the

∏
operator of the formalism. If one overlooks the

necessary bookkeeping for rank vectors, this algorithm strikingly resembles the
message lookup algorithm utilized by Self.

The process for constructing a depth-first ordering of delegations is straight-
forward. One maintains a stack of visited but not yet ordered objects from which
elements of the ordering are drawn. If the host language allows cyclic delegation
links, one also need maintain a set of objects already visited, easily represented
by marking the objects directly, to avoid traversing the same delegation twice.
If one further assumes object structure is represented by maps, as in Self, or
classes, this visited set may be stored on a per-map or per-class basis without
loss. The stack is then processed by popping objects off the top, assigning them
the next position in the ordering, and then pushing all their delegations onto
the stack unless they were already visited.

Role information is stored directly on the objects themselves (or their map
or class) and each role identifies a potentially applicable method, or rather, a
method that is supported by at least one of the arguments to the method invo-
cation. One may conveniently collect all the candidate methods and their ranks
while determining the delegation ordering, merely traversing an object’s roles,
for the given argument position and method selector, as it is popped off the
ordering stack. An auxiliary table, which may be cheaply distributed among the
methods themselves, stores the currently determined rank vector of the method,
augmenting the method invocation argument’s respective component of the rank
vector with the current position in the delegation ordering. When a method’s
rank becomes fully determined, the method is noted as the most specific method
(found so far) if its rank is less than the previously found most specific method, or
if it is the first such method found. Once the delegation stack has been fully pro-
cessed for each method invocation argument, the resulting most specific method,
if one exists, is a method whose rank is both minimal and fully specified at all
argument positions.

6.2 Rank Vectors

One may represent rank vectors themselves efficiently as machine words, with
a fixed number of bits assigned to each component up to some fixed number
of components. If one assumes method arguments have lexicographical ordering,

332 L. Salzman and J. Aldrich

then simple integer comparisons suffice to compare ranks, where more significant
components are placed in more significant bits of the integer represented in the
machine word. However, if one assigns each component of the rank number a
fixed number of representation bits and if the rank vectors themselves are fixed
size, the maximum length of a delegation ordering that may be reflected in each
component is also effectively fixed as well as the maximum number of method
parameters. One need only provide a fall-back algorithm using arbitrary precision
rank vectors in case the ordering stack overflows or if an excessive number of
arguments are present at a method invocation. Anecdotally, the majority of
methods contain small numbers of parameters and inheritance hierarchies (and
similarly delegation hierarchies) are small, so this fall-back algorithm is rarely
necessary, if ever.

6.3 Sparse Representation of Roles

In Slate, the delegation hierarchy is rooted at one specific object so that certain
methods may be defined upon all objects. However, since this object always
assumes the bottom position in the delegation ordering, any roles defined upon
it will always be found and always be the least specific such roles with respect
to other roles with the same method selector and argument position. These roles
do not aid in disambiguating the specificity of a given method since they occupy
the bottom of the ordering and, in effect, contribute no value to the rank vector.

The majority of methods in the Slate standard library dispatch on the root
object in most arguments positions, so representing these roles needlessly uses
memory and adds traversal overhead to the dispatch algorithm. In the interests
of reducing the amount of role information stored, one need not represent these
roles if one identifies, for each method, the minimum set of roles that need
be found for a rank vector to be fully specified and so allows the size of this
set of roles to be less than the number of actual method parameters. This set
of roles does not contain any roles specified on the root object. A method is
now applicable when this minimum set of roles is found during dispatch, rather
than a set of roles corresponding to all method parameters. In the interests of
reducing duplication of information, Slate stores information about the size of
this minimum set of roles on the method object linked by these roles.

6.4 Partial Dispatch

Because of Slate’s sparse representation of roles, the dispatch algorithm may
determine a method to be applicable, or rather, its minimal set of roles may be
found, before it has finished traversing the delegation orderings of all argument
positions. The basic algorithm, however, requires that the entire delegation or-
dering of all arguments be scanned to fully disambiguate a method’s specificity
and ensure it is the most specific. The majority of methods in the Slate standard
library not only dispatch on fewer non-root objects than the number of method
parameters, but only dispatch on a single non-root object, and are, in effect,
only singly polymorphic. Scanning the entire delegation orderings for all objects

Prototypes with Multiple Dispatch 333

under such conditions is wasteful and needless if an applicable method is unam-
biguously known to be the most-specific method and yet dispatch still continues.

The key to remedying this situation is to take advantage of Slate’s lexico-
graphic ordering of method arguments and also note that a role not only helps
identify an applicable method, but a role also indicates that some method is
possibly applicable in the absence of information about which other roles have
been found for this method. If no roles corresponding to a method are found,
then the method is not applicable. If at least at least one role corresponding to a
method is found, then this method may become applicable later in the dispatch
and effect the result should its determined rank vector precede the rank vectors
of other applicable methods.

Dispatch in Slate traverses method arguments from the lexicographically
most significant argument to the least significant argument. So, for any role
found, its contribution to the rank vector will necessarily decrease with each
successive argument position traversed. If some method is known to be the most
specific applicable method found so far, and a role for a contending method
is found whose contribution to its respective rank vector would still leave it
less specific than the most specific method, then no subsequent roles found for
the contending method will change the method result as they contribute lexi-
cographically less significant values. Thus, one only need maintain the partial
rank vector, representing the contention for most specific method, correspond-
ing to the lexicographically most significant roles found up to the current point
of traversal. If any applicable method’s rank vector precedes this partial rank
vector, then it is unambiguously the most specific method, since there are no
other more specific methods that may later become applicable.

For example, if one method singly dispatches on the Shark prototype, and
another similarly named method dispatches on the Animal prototype in a lexi-
cographically less significant or equally significant argument position, then dis-
patch will determine the Shark prototype’s method to be applicable as soon as
the Shark prototype is traversed and before traversing the Animal prototype.
If no other roles were found at lexicographically more significant positions, or
on preceding objects in the delegation ordering for the lexicographically equal
argument position, then there is no possible contention for the resulting most
specific method, and the Shark prototype’s method must be the most specific.

Intriguingly, this optimization reduces the cost of dispatch to the amount of
polymorphism represented in the entire set of candidate methods. So, if all meth-
ods only dispatch on their first argument, the dispatch algorithm effectively de-
generates to a traditional single dispatch algorithm and need never examine more
than the first argument or traverse farther down the delegation hierarchy than
where the first candidate method is found. The algorithm then only incurs the
cost of maintaining the rank information above the cost of single dispatching. Sin-
gle dispatching becomes a special-case optimization of the PMD dispatch seman-
tics. Further, almost all the dispatches in the Slate standard library were found
to terminate early due to this optimization, rather than requiring a full traversal.
This number closely corresponds to the fraction of methods dispatching on fewer
non-root objects than their number of arguments, which supports this intuition.

334 L. Salzman and J. Aldrich

6.5 Method Caching

Various global and inline method caching schemes may be extended to fit the
dispatching algorithm and provide an essentially constant time fast-path for
method invocation under PMD. Given partial dispatching and if for each method
selector one identifies the global polymorphism of the set of methods it identifies
(the set of argument positions any roles have been specified in), one only need
store the significant arguments positions, as given by the global polymorphism, as
the keys of the cache entries. However, cache entries must still have a capacity to
store up to the maximally allowable amount of polymorphism for caching. In the
degenerate case of global polymorphism of only the first argument, this extended
caching scheme degenerates to an ordinary single dispatch caching scheme. The
method caching optimization assumes that there are no changes to delegation
relationships and no method addition or removal; if these changes are made, the
caches must be invalidated in the general case.

7 Related Work

Section 4 described related work in the area of formal object models. Three
programming languages significantly influenced the development of PMD and
the implementation in Slate: Self [17], CLOS [2], and Cecil [5].

Self attempted to provide a Smalltalk [11] better suited for interactive
programming and direct manipulation of objects by dispensing with classes
and providing self-representing objects. These objects simply contain slots -
modifiable, named value-holders - which can serve as ordinary bindings, method
definitions, or delegations. Further, objects are used to more flexibly represent
traditionally fixed implementation facilities such as namespaces, shared behavior,
and user interfaces. Slate, to date, borrows and benefits from much of this system
organization while expanding upon the notion of method definition as in PMD.

CLOS [2] is an extension to Common Lisp that provides object-oriented pro-
gramming through classes and generic functions. Generic functions are functions
made up multiple method cases, which a multiple dispatch algorithm chooses
among by examining the classes of all the arguments to a method call. A sub-
typing relation between the classes of parameters and arguments determines
the applicable method bodies and their relative specificities. CLOS linearly (to-
tally) orders both the class and method. The class hierarchy is sequenced into
a precedence list to disambiguate any branches in the hierarchy as a result of
multiple inheritance. Leftmost parameters also take precedence over the right-
most, disambiguating cases where not all the parameter classes of one method
are subtypes of the respective parameter classes of another. The formalism of
PMD borrows the idea of a total ordering of inheritance and method arguments
in its dispatch semantics to avoid appealing to subtyping, but dispenses with
classes and the extrinsic notion of generic functions.

Dylan [9] is another dynamically-typed object-oriented language with multi-
methods. Like CLOS, it gives precedence to the leftmost parameter of a function
during multi-method dispatch.

Prototypes with Multiple Dispatch 335

Cecil [5] is the first language known by the authors to integrate a prototype-
inspired object model with multiple dispatch. Cecil dispenses with the slot-based
dynamic inheritance of Self, opting instead to fix delegation between objects at
the time an object is instantiated. Method definition is similarly limited to a
global scope, restricting certain higher-order uses. Cecil provides multiple dis-
patch by a form of subtyping upon this relatively fixed delegation hierarchy. This
multiple dispatch only provides a partial ordering among objects and method
arguments. Dispatch ambiguities arise from the use of multiple delegation or in-
complete subsumption among the methods according to the subtyping relation.
Such ambiguities raise an error when encountered, and recent work has focused
on finding these ambiguities statically [14].

Instead of the slot-based dynamic inheritance of Self, however, Cecil provides
predicate classes [6] wherein a fixed delegation relationship is established to a
predicate class that is qualified by a predicate. When the predicate of a predicate
class is satisfied for some object delegating to it, the object delegating to it
will inherit its behavior. When this predicate is not satisfied, this behavior will
not be inherited. Predicate dispatch is thus ideal for capturing behavior that
depends on a formula over the state of the object, while the dynamic delegation
mechanism in PMD captures behavior changes due on program events more
cleanly. More recently, predicate classes have been generalized to a predicate
dispatch [8, 13] mechanism which unifies object-oriented dispatch with pattern-
matching in functional programming languages [15].

Another alternative to dynamic inheritance is changing the class of an object
dynamically, as in the Fickle system [7]. This solution is somewhat less expressive
than dynamic inheritance, but can be statically typechecked.

One other closely related system is Us, an extension of Self to support subject-
oriented programming [18]. Subject-oriented programming allows a method to
behave differently depending on the current subject in scope. Intuitively, subject-
oriented programming can be modeled as an additional layer of dispatch, and
multiple dispatch is a natural mechanism for implementing this concept, espe-
cially when combined with flexible objects with which to dynamically compose
subjects, as the authors of Us noted. However, as Us extends a language only
providing single-dispatch, the authors of Us instead chose to separate objects
into pieces, all addressed by a single identity. Dynamically composable layer
objects implicitly select which piece of the object represents it, effectively im-
plementing a specialized form of multiple dispatch only for this extension. Since
PMD provides multiple dispatch and dynamic inheritance, it naturally supports
subjects with only a bit of syntactic sugar.

8 Conclusion

This paper introduced a new object model, Prototypes with Multiple Dispatch,
that cleanly integrates prototype-based programming with multiple dispatch.
The PMD model allows software engineers to more cleanly capture the dynamic
interactions of multiple, stateful objects.

336 L. Salzman and J. Aldrich

Acknowledgments

We thank William Cook, Aaron Greenhouse, Jonathan Moody, and the anony-
mous reviewers for their feedback on earlier drafts of this material. This work was
supported by the High Dependability Computing Program from NASA Ames
cooperative agreement NCC-2-1298, NSF grant CCR-0204047, and the Army
Research Office grant number DAAD19-02-1-0389 entitled ”Perpetually Avail-
able and Secure Information Systems.”

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, New York, 1996.
2. D. G. Bobrow, L. G. DiMichiel, R. P. Gabriel, S. E. Keene, G. Kiczales, and

D. A. Moon. Common Lisp Object System Specification. In SIGPLAN Notices
23, September 1988.

3. V. Bono and K. Fisher. An Imperative, First-Order Calculus with Object Exten-
sion. In European Conference on Object-Oriented Programming, 1998.

4. G. Castagna, G. Ghelli, and G. Longo. A Calculus for Overloaded Functions with
Subtyping. In Lisp and Functional Programming, 1992.

5. C. Chambers. Object-Oriented Multi-Methods in Cecil. In European Conference
on Object-Oriented Programming, July 1992.

6. C. Chambers. Predicate Classes. In European Conference on Object-Oriented
Programming, 1993.

7. S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini, and P. Giannini. More Dy-
namic Object Reclassification: Fickle II. Transactions on Programming Languages
and Systems, 24(2):153–191, 2002.

8. M. D. Ernst, C. S. Kaplan, and C. Chambers. Predicate Dispatching: A Unified
Theory ofDispatch. InEuropeanConference onObject-OrientedProgramming, 1998.

9. N. Feinberg, S. E. Keene, R. O. Mathews, and P. T. Withington. Dylan Program-
ming. Addison-Wesley, Reading, Massachusetts, 1997.

10. K. Fisher, F. Honsell, and J. C. Mitchell. A Lambda Calculus of Objects and
Method Specialization. Nordic Journal of Computing, 1(1):3–37, 1994.

11. A. Goldberg and D. Robson. Smalltalk-80: The Language. Addison-Wesley, Read-
ing, Massachusetts, 1989.

12. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An
Overview of AspectJ. In European Conference on Object-Oriented Programming,
June 2001.

13. T. Millstein. Practical Predicate Dispatch. In Object-Oriented Programming Sys-
tems, Languages, and Applications, 2004.

14. T. Millstein and C. Chambers. Modular Statically Typed Multimethods. Infor-
mation and Computation, 175(1):76–118, 2002.

15. R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard
ML (Revised). MIT Press, Cambridge, Massachusetts, 1997.

16. B. Rice and L. Salzman. The Slate Programmer’s Reference Manual. Available at
http://slate.tunes.org/progman/, 2004.

17. D. Ungar and R. B. Smith. Self: The Power of Simplicity. In Object-Oriented
Programming Systems, Languages, and Applications, pages 227–242. ACM Press,
1987.

18. D. Ungar and R. B. Smith. A Simple and Unifying Approach to Subjective Objects.
Theory and Practice of Object Systems, 2(3):161–178, 1996.

A.P. Black (Ed.): ECOOP 2005, LNCS 3586, pp. 337 – 361, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Efficient Multimethods in a Single Dispatch Language

Brian Foote, Ralph E. Johnson, and James Noble

Dept. of Computer Science, University of Illinois at Urbana-Champaign,
201 N. Goodwin, Urbana, IL 61801, USA

foote@cs.uiuc.edu, johnson@cs.uiuc.edu
School of Mathematical and Computing Sciences, Victoria University of Wellington,

P.O. Box 600, Wellington, New Zealand
kjx@mcs.vuw.ac.nz

Abstract. Smalltalk-80 is a pure object-oriented language in which messages
are dispatched according to the class of the receiver, or first argument, of a
message. Object-oriented languages that support multimethods dispatch
messages using all their arguments. While Smalltalk does not support
multimethods, Smalltalk's reflective facilities allow programmers to efficiently
add them to the language. This paper explores several ways in which this can be
done, and the relative efficiency of each. Moreover, this paper can be seen as a
lens through which the design issues raised by multimethods, as well as by
using metaobjects to build them, can be more closely examined.

1 Introduction

The designers of object-oriented languages usually consider multimethods and single
dispatch to be competing alternatives. This paper describes a variety of ways to
implement multimethods in single-dispatch languages such as Smalltalk. It is not
surprising that multimethods can be implemented in Smalltalk, because it is a
reflective language that has been extended in many ways. However, it is surprising
how well multimethods can work with single dispatch. This paper develops a simple
extended syntax that makes it easy to mix multimethods and normal methods. The
semantics of multimethods are simple, they have no syntactic or performance cost if
they are not used, they interoperate well with Smalltalk's metaobjects, and they are as
efficient to execute as comparable hand-written code.

Our results show that there is no inherent conflict between multi-methods and
single dispatch, at least for Smalltalk.

Introducing multimethods into a single-dispatch language like Smalltalk raises a
range of issues: incorporating multimethods into Smalltalk syntax and the
programming environment; implementing multimethods using the reflective facilities
without changing the underlying virtual machine; and ensuring that multimethods
provide good performance, without incurring additional overhead if they are not used.

This paper makes the following contributions:

− A core language design for multimethods in Smalltalk, demonstrating that a
multimethod facility inspired by the CLOS Metaobject Protocol [Bobrow
1998] can be added to Smalltalk in a seamless, backwards compatible manner
within the spirit of the language.

338 B. Foote, R.E. Johnson, and J. Noble

− An extensible implementation of the core language design, written in
Smalltalk, that uses only the language’s reflective features and requires no
changes to the Smalltalk virtual machine

− An analysis of the performance of a range of implementations based on our
framework, demonstrating that this approach is practical.

2 Multiple Dispatch

Like most object-oriented languages, Smalltalk provides single dispatch: a method
call (in Smalltalk referred to as a message send) considers the dynamic type of one
argument: the class of the object to which the message is sent. For example, consider
the classical example of a graphical display system, where GraphicScreen and
GraphicPrinter classes are subclasses of the abstract GraphicalDisplay
class. The GraphicalDisplay class can define a number of messages such as
drawLine, drawRectangle, fillRectangle, drawArc, and so on; then
each subclass can implement these messages to display on a screen or a printer
respectively.

This design has objects for the graphical displays but not for the graphical entities
themselves. An obvious refinement of this design is then to introduce a further series
of classes to represent the graphical objects: an abstract GraphicalObject class
with Line, Rectangle, FilledRectangle, and Arc subclasses. This should
allow programmers to simply their programs: code such as aScreen draw:
aRectangle or aPrinter draw: aLine should allow any kind of graphical
display to draw any kind of object. The problem is that this draw method requires
multiple dispatch— the method body to be invoked must now depend upon both
arguments to the message: the graphical display doing the drawing, and the graphical
object which is being drawn.

The GraphicalDisplay classes can each provide an implementation of the
draw method, but these cannot depend on the types of the graphical object arguments:
a complementary design could swap the methods’ receiver and argument objects (so
programmers would write GraphicalObjects drawOn: Graphical
Display) this would allow different messages for each graphical object but not for
different kinds of graphical displays. This problem is actually more common that it
may seem in object-oriented designs. The visitor pattern, for example has a composite
structure that accepts a visitor object embodying an algorithm to carry out over the
composite (e.g. Composite accept: aVisitor): implementations of the
accept method must depend upon the types of both composite and visitor [Gamma
1995].

Overloading in languages like Java or C++ can partially address this problem under
certain circumstances. For example, Java allows methods to be distinguished based on
the class of their arguments, so that a ScreenDisplay object can have different
draw methods for displaying Lines, Rectangles, or Arcs:

abstract class GraphicalDisplay {
 public void draw(Line l) {

 Efficient Multimethods in a Single Dispatch Language 339

 // draw a line on some kind of display };
 public void draw(Rectangle r} {
 // draw a rectangle on some kind of display };
 public void draw(Arc a) {
 // draw an arc on some kind of display };
}

class ScreenDisplay extends GraphicalDisplay {
 public void draw(Line l) {
 // draw a line on a screen };
 public void draw(Rectangle r} {
 // draw a rectangle on a screen };
 public void draw(Arc a) {
 // draw an arc on a screen };
}

The problem here is that overriding is only resolved statically. Java will report an
error in the following code:

Display d = new ScreenDisplay();
GraphicalObject g = new Line();
d.draw(g)

because the screen display class does not implement a
draw(GraphicalObject) method.

The usual solution to this problem, in both Smalltalk and Java, is double dispatch
[Ingalls 1986, Hebel 1990]: rather than implementing messages directly, method
bodies send messages back to their arguments so that the correct final method body
can depend on both classes. In this case, the GraphicalDisplay subclasses would
each implement the draw methods differently, by asking their argument (the graphical
object to be drawn) to draw themselves on a screen or on a printer:

ScreenDisplay>>draw: aGraphicalObject
 aGraphicalObject drawOnScreen: self

PrinterDisplay>>draw: aGraphicalObject
 aGraphicalObject drawOnPrinter: self

The key idea is that these methods encode the class of the receiver (Screen or
Printer) into the name of the message that is sent. The GraphicalObject class
can then implement these messages to actually draw:

Line>>drawOnScreen: aScreen
 “draw this line on aScreen”

Line>>drawOnPrinter: aPrinter
 “draw this line on aPrinter”

Each message send — that is, each dispatch — resolves the type of one argument.
Statically overloaded implementations often generate “mangled” names for statically
overloaded variants that similarly add type annotations to the names the virtual
machine sees under the hood for compiled methods.

A few object-oriented languages, notably CLOS and Dylan [Bobrow 1998a, Keene
1989, Feinberg 1996], and various research extensions to Java [Boyland 1997, Clifton
2000] solve this design problem directly by supporting multimethods. A multimethod

340 B. Foote, R.E. Johnson, and J. Noble

is simply a method that provides multiple dispatch, that is, the method body that is
chosen can depend upon the type of more than one argument In this case code very
similar to the Java code above could provide various different versions of the draw
methods (one for each kind of GraphicalObject) within the Display classes,
but the languages will choose the correct method to execute at runtime, based on the
types of all the arguments in the message. The remainder of this paper describes how
we implemented efficient multimethods as a seamless extension to Smalltalk.

3 Multimethods for Smalltalk

The first issue we faced in designing Smalltalk multimethods is that we wanted
multimethods to fit in with the style or spirit of Smalltallk. Compared with most
multimethod languages (especially CLOS) Smalltalk is lightweight, with a minimalist
language design philosophy. A program is seen as a community of objects that
communicate via message sends, and even “if” statements are technically
implemented as messages to objects like true and false. An important aim of our
design is that it should not change the basis of the language, and that multimethods
should not affect Smalltalk programmers who choose not to write them.

The second issue is simply that Smalltalk, like Common Lisp, is a dynamically
typed language, so that the language syntax does not, by default, include any
specification of, or notation for, method types. As we’ve seen above, in many other
object-oriented languages (such as Java and C++) method definitions must include
type declarations for all their arguments even though the message sends will be
dispatched in terms of just one distinguished argument.

Furthermore, in Smalltalk, programmers interact with programs on a per-method
basis, using Smalltalk browsers. Source descriptions of these method objects are
edited directly by programmers, and are compiled whenever methods are saved. Even
when code is saved to files, these files are structured as “chunks” of code [Krasner
1983] that are written as sends to Smalltalk objects that can in turn, when read,
reconstitute the code. Because of the way Smalltalk's browsers and files are set up,
method bodies need not explicitly specify the class to which a method belongs. The
class is implicitly given the context in which the message is defined.

Finally, Smalltalk provides reflective access to runtime metaobjects that represent
the classes and methods of a running program, and allows a program to modify itself
by manipulating these objects to declare new classes, change existing ones, compile
or recompile methods, and so on. This arrangement is circular, rather than a simple
layering, so that, for example, the browsers can be used to change the implementation
of the metaobjects, even when those metaobjects will then be used to support the
implementation of the browsers.

A language design to provide multimethods for Smalltalk must address all four of
these issues: it must define how multimethods fit into Smalltalk’s language model, it
must provide a syntax programmers can use to define multimethods, browser support
so that programmers can write those methods, and the metaobjects to allow
programmers to inspect and manipulate multimethods. A key advantage of the
Smalltalk architecture is that these three levels are not independent: the metaobjects
can be used to support both the browsers and language syntax.

 Efficient Multimethods in a Single Dispatch Language 341

Design: Symmetric vs. Encapsulated Multimethods

There are two dominant designs for multimethods in object-oriented programming
languages. Languages following CLOS or Dylan [Bobrow 1988, Feinberg 1996]
provide symmetric multimethods, that is, where every argument of the multimethod is
treated in the same way. One consequence of this is that multimethods cannot belong
to particular classes (because object-oriented methods on classes treat the receiver
(self or this) differently from all the other arguments. Encapsulated or
asymmetric multimethods [Boyland 1997, Castagna 1995, Bruce 1995] are an
alternative to symmetric multimethods: as the name implies, these messages belong to
a class and are in some sense encapsulated within one class, generally the class of the
receiver.

We consider that asymmetric multimethods are a better fit for Smalltalk than
symmetric multimethods. Smalltalk’s existing methods obviously rely on a single
dispatch with a distinguished receiver object; its syntax and virtual machine support
are all tied to that programming style. Similarly, Smalltalk being class-based can
naturally attach encapsulated multimethods to a single class.

Syntax and Semantics

A Multimethod will differ from a singly dispatched method in two ways. First,
specializers that describe the types for which the methods are applicable must be
specified for their formal arguments. Second, it must be possible to provide multiple
definitions (generally with different specializers) for a single message name. This is
similar to the way in which Java allows a single method name to have multiple
overloaded definitions with different argument types.

There are two ways this might be done in Smalltalk. The first is to change the
parser and compiler to recognize a new syntax for multimethod specializers. The
second is to allow method objects to be changed or converted programmatically using
runtime messages, perhaps with browser support, such as pull-down specializer lists,
or, with additional arguments to the metaobjects that create the method object itself.
The first approach is based on the text-based, linguistic tradition of programming
language design, while the second is based on a more modern, browser/builder
approach that supplants the classical notion of syntax with the more contemporary
approach of direct manipulation of first-class language objects.

While we used elements of both approaches to build our multimethods, we relied,
in this case, primarily on the more traditional text-based approach of the sort taken by
CLOS [Bobrow 1998a], Dylan [Feinberg 1996], and Cecil [Chambers 1992]. In
CLOS, a type specializer is represented as a two element list:

 (defmethod speak ((who animal))
 (format t "I'm an animal: ~A~%" who))

Dylan, by contrast, uses :: to denote specialization:

define method main (argv0 :: <byte-string>, #rest noise)
 puts("Hello, World.\n");
end;

342 B. Foote, R.E. Johnson, and J. Noble

The angle brackets are part of the type name in Dylan. Dylan, as with other languages
in the Lisp tradition, is permissive about the sorts of characters that may make up
names. Cecil uses an @ sign to indicate that an argument is constrained (which is
how they refer to their brand of specializers).

x@smallInt + y@smallInt
 { ^primAdd(x,y, {&errorCode | … })}

As a completely dynamically typed language, Smalltalk does not require type
declarations for variables or method arguments. However, Smalltalk programmers
have long used a type syntax using angle brackets, either before or after the qualified
argument, even though such declarations have no effect on the execution of a program
using them. The VisualWorks 2.5x Smalltalk compiler can recognize an "extended
language" syntax in which method arguments are followed by angle-bracketed type
specifiers. This trailing angle-bracketed type designation notation was first suggested
for Smalltalk by Borning and Ingalls over twenty years ago [Borning 1982]. A similar
syntax was used in Typed Smalltalk [Johnson 1988a], and is used in the Visual Works
documentation as well as the Smalltalk Standard. These specifiers can contain
Smalltalk literals, symbols, or expressions.

We have adopted this syntax to support multimethods. The necessary adaptation is
quite simple, comparable with Boyland and Castagna’s Parasitic Multimethods for
Java [Boyland 1997]. To declare a multimethod, a programmer simply adds a class
name within angle brackets after any method argument. This method body will then
only be called when the message is sent with an argument that is (a subclass of) the
declared argument type, that is via a multiple dispatch including any argument with a
type specializer. Here is an example of this syntax for the Graphical Display problem:

ScreenDisplay>>draw: aGraphicalObject <Line>
 ”draw a line on a screen”

ScreenDisplay>>draw: aGraphicalObject <Arc>
 ”draw an arc on a screen”

When a draw: message is sent to a ScreenDisplay object, the appropriate draw
method body will now be invoked at runtime, with the decision of which message to
invoke depending on the runtime classes of the object receiving the message, and any
arguments with specializers. If no method matches, the message send will raise an
exception, in the same way that Smalltalk raises a doesNotUnderstand:
exception when an object receives a message it does not define.

These multimethods interoperate well with Smalltalk’s standard methods and with
inheritance, primarily because they are first sent (asymmetrically) to a receiver
(self) object so their semantics are a direct extension of Smalltalk’s standard
method semantics. Multimethods may access instance and class variables based on
their receiver, just as with standard Smalltalk methods. A multimethod defined in a
subclass will be invoked for all arguments that match; otherwise an inherited method
or multimethod in a superclass will be invoked. A multimethod can use a super send
to invoke a standard method defined in a superclass, and vice versa. From this
perspective, a “normal” Smalltalk method is treated exactly the same as a single
multimethod body, where all arguments (other than the receiver) are specialized to
Object. Our base multimethod design does not support one multimethod body

 Efficient Multimethods in a Single Dispatch Language 343

delegating a message to another multimethod body defined in the same class,
however, such common code can be refactored into a separate method and then called
normally We have also experimented with a more flexible “call-next-method” scheme
modeled after CLOS.

Browser Support

Languages that support multimethods have long been regarded as needing good
programming environment support [Rosseau 1993]. Unlike most other programming
languages, Smalltalk-80 has had an excellent integrated programming environment
[Goldberg 1984] (and arguably has had one from before the start [Goldberg 1976]).
Because this environment is itself written in Smalltalk we were able to exploit it to
support Smalltalk multimethods.

Fig. 1. A Smalltalk Browser displaying a multimethod

In fact, due to the design of the VisualWorks browsers, very few changes were
required. For instance, while the Smalltalk Parser is selective about method
selector syntax, the browsers are not. Any Smalltalk Symbol object (and perhaps
other printable objects as well) can be used to index a method in the browsers. We
exploited this fact to allow MultiMethod objects to appear with bracketed type
specializers where their specialized arguments are to appear. Normal methods appear
unchanged.

344 B. Foote, R.E. Johnson, and J. Noble

Metaobjects

Smalltalk is a computationally reflective language, that is to say, it is implemented in
itself. The objects and classes that are used to implement Smallltalk are otherwise
completely normal objects (although a few may be treated specially by the VM) but
because they are used to implement other objects they are known as metaobjects or
metaclasses respectively. Smalltalk programs are made up of metaobjects —
Smalltalk methods are represented by instances of Method or CompiledMethod
metaobjects, and Smalltalk classes by instances of Class metaobjects. The Smalltalk
compiler (itself an instance of the Compiler class) basically translates Smalltalk
language strings into constellations of these metaobjects. To implement multimethods
in Smalltalk, we installed our own modified version of Compiler that understood
the multimethod syntax and produced new or specialized metaobjects to implement
multimethods.

Fig. 2. A GenericMethod with its Multimethods

Our first implementation of multimethods was based on the CLOS MetaObject
Protocol [Kiczales 1991]. It consists of the following metaobjects: Multimethods,
Specializers, GenericMessages, MethodCombinations, and

 Efficient Multimethods in a Single Dispatch Language 345

DiscriminatingMethods. Fig. 2 shows the way these objects collaborate to
represent multimethods.

A GenericMessage (GenericFunction in the figure) contains a
Dictionary mapping specialized message selectors to their respective
multimethod bodies. The GenericMessage’s associated
MethodCombination object orders these multimethod bodies to determine the
correct method to invoke. A GenericMessage also contains a list of the
DiscriminatingMethods that intercept method calls and start the multimethod
dispatch. We describe each of these objects in turn below.

Multimethods
A MultiMethod metaobject represents one multimethod body. That is, it represents
a method that can be dispatched with any or all of its arguments being taken into
account, instead of just the first one. A multimethod must have one or more argument
Specializers that determine the kinds of arguments to which the multimethod
will respond. A multimethod can determine if is applicable to a series of arguments
(via its specializers) and, if so, can run the code in its body when required.

Specializers
Specializers represent the argument to which a particular Multimethod
applies. When a specializer is invoked, it determines if the argument passed to the
multimethod matches that multimethod, or not. We currently use two different kinds
of Specializers: ClassSpecializers, and EqualSpecializers.
ClassSpecializers indicate that a multimethod applies when the corresponding
argument is a member of the indicated class, or one of its subclasses.
EqualSpecializers (which are modeled after CLOS's EQL specializers), match
when an argument is equal to a particular object. Cecil [Chambers 1992], a prototype-
based dynamic language with multimethods, gets EqualSpecializers for free,
since all specializers are instances, not classes.

Generic Messages
A GenericMessage represents the set of all multimethods with the same name.
(The name GenericMessage is derived by analogy with the similar Generic
Function object in CLOS). When a GenericMessage is called, its job is to select,
from among all its MultiMethods, only those that are consistent with the
arguments it was called with (the applicable methods). These must also be sorted in
the correct order, that is, from the most specific multimethod to the least specific
multimethod.

Method Combinations
A MethodCombination object defines the order in which methods are called, and
how different kinds of methods are treated. Again, our MethodCombinations are
modeled after those in CLOS. Their job is to take the set of applicable methods that
was determined by the GenericMessage to be "in-play" given the current
arguments, and execute these in the manner that their qualifiers and the

346 B. Foote, R.E. Johnson, and J. Noble

MethodCombination itself prescribe. When a generic message finds more than
one applicable method, these are sorted from most specific to least specific. This
situation is analogous to a normal message send, where a call finds the most specific
subclass's version of a method.

Multiple methods can apply because some will match more precisely, or
specifically, at one or more argument sites. For example, consider the following two
multimethods on a Stencil class (that draws multiple copies of an image along a path):

Stencil>>drawUsingShape: rectangle<Rectangle>
 OnDisplay: display <GraphicalDisplay>

Stencil>>drawUsingShape: shape<GraphicalObject>
 OnDisplay: display <ScreenDisplay>

Both of these multimethods would match a call where the first (shape) argument
was a Rectangle and the second (display) argument a ScreenDisplay. In this
case, the MethodCombination will sort these in the order shown, because the
specifier on the first multimethods’s first argument is more specific that the specifier
on the first argument of the second multimethod.
MethodCombination objects can be thought of as examples of the Strategy

design pattern [Gamma 1995]. MethodCombination objects represent the rules
for combining and calling a multimethod's bodies. A GenericMessage can change
the way that its methods are dispatched by designating a new MethodCombination
object. Of course, the multimethods themselves must be written carefully in order to
allow changes in the combination scheme to make sense. That is to say, methods are
normally written without having to concern themselves with the possibility of being
combined in exotic, unexpected ways.

Discriminating Methods
Any message send in a Smalltalk program needs to be able to invoke a multimethod.
Whether a multimethod or a “normal” Smalltalk method will be invoked depends
only upon whether any multimethod bodies (i.e. any methods with specializers) have
been defined for that message name. That is (as with normal Smalltalk methods) the
implementation of the method is solely the preserve of the receiver of the message
(or, from another perspective, the classes implementing that method). This design has
the short-term advantage that no performance overhead will be introduced in
Smalltalk programs that do not use multimethods, or for sends of “normal” methods
in programs that also include multimethods; and the longer-term advantage that
classes can turn their methods into multimethods (by adding specialized versions), or
vice versa, without any concern for the clients of those classes, or the callers of those
messages.

In practice, this design means that our multimethod dispatch must intercept the
performs this interception. Smalltalk cannot intercept an incoming message until one
dispatch, on the first argument, has already been done. A DiscriminatingMethod
(again named after the analogous discriminating functions in CLOS) is a
MethodWrapper [Brant 1998] that acts as a decorator around the standard
Smalltalk CompiledMethod object.

 Efficient Multimethods in a Single Dispatch Language 347

Fig. 3 shows how the multimethods and DiscriminatingMethods hook into
standard Smalltalk classes. All standard Smalltalk class metaobjects (including, in this
figure, the Mouse class) contain a MethodDictionary implemented as two
parallel arrays. The first array contains method selectors. For our multimethods, as
well as the standard selectors (#moveThrough in the example in this figure) we
include specialized selectors (#<Mouse>moveThrough:<Land>). The second
array normally contains method bodies: in our implementation the standard selector
(#moveThrough that will actually be sent by program code) maps to a
DiscriminatingMethod that will invoke the multimethod dispatch, while the
specialized selector maps to the object representing the MultiMethod body.
Because this method includes two specializers (<Mouse> and <Land>)it is linked
to two ClassSpecializer objects.

Fig. 3. A Class’s MethodDictionary mapping a DiscriminatingMethod and Multimethods

The relationship between MultiMethods, GenericMessages, and
DiscriminatingMethods is as follows. There is one GenericMessage for
every message name in the system that has at least one specialized method body.
Every method body defined with a specializer is represented by a MultiMethod
object (and its associated Specializers) — all of these are known by their

348 B. Foote, R.E. Johnson, and J. Noble

GenericMessage, and can be chosen by its MethodCombination. Finally,
every class that can understand this multimethod name (i.e. that has at least one
MultiMethod body defined) will have a DiscriminatingMethod stored under
that name that is again linked to its GenericMessage.

Invoking Multimethods
All these metaobjects collaborate to implement the dispatch whenever a program
sends a message to an object that implements that message using multimethods. First,
a DiscriminatingMethod is used to gain control. The
DiscriminatingMethod then forwards the message send and its argument
values to the GenericMessage object for all multimethods with that name. Next,
the GenericMessage iterates across each candidate MultiMethod looking for
all the applicable MultiMethods, that is, all MultiMethods whose
Specializers match the actual arguments of the message send.

The GenericMessage then sorts the applicable methods in order of
applicability, and passes the list to the GenericMessage’s
MethodCombination object. The MethodCombination then selects and
executes the body of the chosen MultiMethod. This result is then returned (via the
GenericMessage) to the DiscriminatingMethod, and thus is returned (as
normal) to the caller of the multimethod.

As with CLOS, these objects are designed to allow the caching of partial results.

4 Examples

In this section, we present some examples to show how multimethods could be used
to support the design of Smallltalk programs.

Eliminating Class Tests: Smalltalk methods often use explicit tests on the classes of
their arguments. For example, the method to add a visual component to a component
part in the VisualWorks interface framework behaves differently if the argument is a
BorderedWrapper. This is implemented using an explicit class test:

ComponentPart>>
 add: aVisualComponent borderedIn: aLayoutObject

^(aVisualComponent isKindOf: BorderedWrapper)
 ifTrue: [aVisualComponent layout: aLayoutObject.
 self addWrapper: aVisualComponent]
 ifFalse: [self addWrapper:
 (self borderedWrapperClass on: aVisualComponent
 in: aLayoutObject)]

With multimethods, this could be refactored to two multimethods, one handling
BorderWrapper arguments, and another the rest:

ComponentPart>>
 add: aVisualComponent <BorderWrapper>
 borderedIn: aLayoutObject

 Efficient Multimethods in a Single Dispatch Language 349

 aVisualComponent layout: aLayoutObject.
 ^self addWrapper: aVisualComponent.

ComponentPart>>
 add: aVisualComponent <Object>
 borderedIn: aLayoutObject

^self addWrapper:
 (self borderedWrapperClass on: aVisualComponent
 in: aLayoutObject)

Visitor: The following example, drawn from [Brant 1998], illustrates the impact of
multimethods on the Visitor pattern [Gamma 1995]. First, consider a typical Smalltalk
implementation of Visitor:
 ParseNode>>acceptVistor: aVisitor

 ^self subclassResponsibility

 VariableNode>>acceptVistor: aVisitor
 ^aVisitor visitWithVariableNode: self

 ConstantNode>>acceptVistor: aVisitor
 ^aVisitor visitWithConstantNode: self

 OptimizingVisitor>>visitWithConstantNode: aNode
 ^aNode value optimized

 OptimizingVisitor>>visitWithVariableNode: aNode
 ^aNode lookupIn: self symbolTable

When MultiMethods are available, however, the double-dispatching methods in
the ParseNodes disappear, since the type information does not need to be hand-
encoded in the selectors of the calls to the Visitor objects. Instead, the Visitor
correctly dispatches sends of visitWithNode to the correct MultiMethod.
Thus, adding a Visitor no longer requires changing the ParseNode classes.

OptimizingVisitor>>visitWithNode: aNode <ConstantNode>
 ^self value optimized

OptimizingVisitor>>
 visitWithNode: aNode <VariableNode>
 ^aNode lookupIn: self symbolTable

5 Implementation

We have experimented with a number of different implementations for multimethods.
The first and simplest scheme is just to execute the Smalltalk code for the metaobjects
directly. While acceptable for simple examples, such a strategy proved unacceptably
slow, and so we therefore experimented with a number of different optimizations,
some of which can execute code using multimethod as quickly as handwritten
Smalltalk code for multiple dispatching. This section describes these
implementations, and then presents our performance results.

350 B. Foote, R.E. Johnson, and J. Noble

Metaobjects: Our initial, unoptimized implementation simply executed the Smalltalk
code in the metaobjects to dispatch multimethods: A method wrapper is used to gain
control (adding about an order of magnitude to the dispatch process), the generic
message iterates across each multimethod body and its specialzers, the resulting list is
sorted, and so on. Even before performance testing, it seemed obvious that this
approach would be too slow to be practical. Fortunately, there is quite a bit that can be
done to speed things up.

Dictionary: Our first optimization uses a Smalltalk Dictionary to map from arrays of
specializers to target methods. It is, in effect, a simple implementation of the
hashtable scheme discussed by Kiczales and des Rivieres in [Kiczales 1991]. Our
scheme relies on the fact that it would be applied in a DiscriminatingMethod,
and left out the first argument: the other argument classes are cached in a table so that
the applicable multimethod body can be found directly.

Case: Our second optimization was to directly test the classes of each argument and
calls the appropriate method. The idea is that the decision tree itself is inlined as in a
case statement. We wrote this version by hand, but code to implement these case tree
dispatchers could be synthesized automatically, should this approach prove practical.

Multidispatch: Our third optimization is a generalization of the double dispatch
scheme described by Ingalls [Ingalls 1986]. Instead of merely redispatching once,
redispatchers are generated so that each argument gets a chance to dispatch. Hence,
triple dispatch is performed for three argument multimethods, quadruple dispatch for
four, octuple dispatch for eight, etc. At each step, identified class/type information is
“mangled” into the selectors, that is, we automatically generate the same code that a
programmer would write to implement multiple dispatch in Smalltalk . Since this
approach takes advantage of the highly optimized dispatching code in the Visual
Works Virtual Machine, we expected its performance to be quite good. The main
problem with multiway dispatch is that a large number of methods may be generated:

|D| = |S1|
 + |S2| × |S1|
 + |S3| × |S2| × |S1| …
 + |Sn| × ... × |S2| × |S1|

or, alternately,

|D| = ∏
= =

n

i

i

j

Sj

1 1

where |Sj| denotes the cardinality of the set of specializers for the indicated argument
of a particular generic message and |D| is the cardinality of the set of dispatching
methods which must be generated.

Our multidispatch code generates all the required multidispatch methods
automatically. They are all placed in a special Smalltalk protocol category:
'multidispatch methods'. These methods are named using the compound selector
syntax inherited from VisualWorks 2.0 that has its roots in the Borning and Ingalls

 Efficient Multimethods in a Single Dispatch Language 351

multiple inheritance design [Borning & Ingalls 1982]. These selectors allow periods
to be included as part of the message selector name. The original selector is placed at
the beginning of each multidispatch selector, with dots replacing the colons.
Argument specifiers are indicated using 'arg1', followed by the specializer for the
argument, if one was recognized by a previous multidispatch method.

Our implementation generates an additional, final dispatch to the initial
multimethod receiver so that the target multimethod body can be executed as written.
In one sense, this final dispatch is a concession to the low-level asymmetry inherent in
our Smalltalk implementation. In effect, this final ricochet closes the multidispatched
circle. This introduces an additional factor of two into the last term in the formula
above. Given this, the number of methods we generate becomes:

|D| = |S1|
 + |S2| × |S1|
 + |S3| × |S2| × |S1| …
 + |Sn| × ... × |S2| × |S1| × 2

Note that the class of the recipient of this final dispatch will be pre-determined by

the time this call is made, hence, virtual machines that employ inline caching
mechanisms will incur minimal overhead for all but the initial call to such methods.

We can reduce the number of methods we have to generate by shuffling the order
in which the arguments are dispatched. Since each Sj introduced is a factor in every
subsequent term of the formula above, dispatching from the lowest cardinality
specializer up to the highest will minimize the number generated methods. Of course,
Smalltalk forces us to start with the first argument, S1, instead of whichever we wish.
Since leftmost factors are repeated more often, reordering multiway dispatch so that
the smaller factors are the ones that recur minimizes the number of methods that must
be generated.

Two additional optimizations are possible. Were the target method’s body merged
with the final set of dispatching methods, the final “× 2” factor in the final term of the
equation above could be elided. Also, only arguments that are actually specialized
need be redispatched. That is to say, if the cardinality of the set of specializers is one
(that is, the argument is not specialized), then it can be bypassed. To put it another
way, only arguments for which more than one specializer is present need be treated as
members of the set of specializers.

While the formula above might suggest to some readers that in the worst case there
is cause for concern that this generalized multiway dispatch scheme might entail the
generation of an unacceptably large number of methods, we believe that the potential
for practical problems with this approach is rather low. Indeed, Kiczales and
Rodriguez [Kiczales 1990] observed that only four percent of the generic functions in
a typical CLOS application specialized more than a single argument. We expect that
multimethods with large numbers of specializers on multiple arguments to be rare
birds indeed.

352 B. Foote, R.E. Johnson, and J. Noble

Fig. 4. Generated Multidispatch Example

Performance

Table 1 compares the performance of the various implementation techniques with the
cost of performing an Ingalls-style double dispatch. This is shown in row 1. The cost
for the simplest standard Smalltalk single-dispatched method call that returns the
called object is shown in row 2. Returning self in Smalltalk is a special case both in
the bytecode and the compiler, however it is only five times faster than a double
dispatch that must do significantly more work. Each row in the table shows the results
of a single implementation (the number in parenthesis in the leftmost column is the
number of arguments the multimethod dispatched upon). We make multiple runs of
each benchmark, timing 1,000,000 (multi)method sends, and report the minimum and
maximum invocation times for each run.

Row 3 shows the performance of the straight-ahead Smalltalk implementation of
multimethods, giving the overhead when a target method dispatching on two method
arguments simply returns itself. That is, we take about 600 microseconds to do
nothing. Row 4, with full method combination support calling an overridden
multimethod is extremely slow. This sort of dismal performance is not unheard of
when reflective facilities are used. For instance [Palsberg 1998] found 300:1
performance decreases for their reflective implementations of variants on the Visitor
pattern. Row 5 gives the performance of a simple extension to this scheme, where the
final multimethod body lookup is cached, giving a fivefold increase in performance
but still being slow relative to a hand coded implementation.

Rows 6 and 7 give the performance of the Dictionary and case-statement lookups
respectively, dispatching on three specialized arguments. Again, these optimizations
provide another order of magnitude but are still twenty times as slow as the basic
multiple dispatch.

Rows 8 and 9 finally show the performance of the generated multidispatch
implementation, row 8 again dispatching on three arguments and row 9 on seven.
Here at last is an implementation that performs at roughly the same speed as the
standard Smalltalk system, because our generated code is effectively the same as the
code an experienced Smalltalk programmer would write to implement multiple
dispatch. This is the implementation we have adopted in our system.

 Efficient Multimethods in a Single Dispatch Language 353

Table 1. Performance Results

Dispatch Type nanosec min nanosec. max Ratio

1. Multidispatch (2 args) 521 524 1.00

2. Tare (^self) (1 arg) 90 120 0.20

3. Metaobjects (^self) (2 args) 597,000 624,000 1168

4. Metaobjects (super) (2 args) 679,000 750,000 1367

5. Metaobjects cached (2 args) 117,000 125,000 231

6. Dictionary (3 args) 13227 13335 25

7. Case (inline) (3 args) 10654 10764 20

8. Multidispatch (3 args) 633 779 1.35

9. Multidispatch (7 args) 1200 1221 2.32

 200MHz Pentium Pro
 1,000,000 calls/multiple runs

There are a variety of trade-offs that must be considered among these approaches.
The "pure" Smalltalk solution is relatively easy to use, but performs so poorly that it
is little more than a toy. It is a testament to the power of reflection that the range of
strategies for improving this performance can be addressed at all from within the
Smalltalk programming environment itself. Still, these are not without their costs. The
multidispatch approaches can litter the method dictionaries with dispatching methods.
These, in turn, beg for improved browsing attention.

The final performance frontier is the virtual machine itself. While possible, this
would require a way of controlling the dispatch process "up-front" [Foote 1989], and
would greatly reduce portability. Given that performance of our multidispatch scheme
is as quick as standard Smalltalk, we consider that the complexity of changing the
virtual machine is not justified by the potential increase in dispatching performance.

6 Discussion

In this section we address a number of issues regarding the provision of multimethods
in Smalltalk.

Access to Variables: although multimethods are dispatched on multiple arguments,
they remain encapsulated within a single class as in standard Smalltalk and can only
access instance variables belonging to self. It is, of course, possible to generate
accessor methods so that multimethods could access instance variables belonging to
all arguments. This is, in essence, the approach take by CLOS. Given that we aimed
to retain as much of Smalltalk’s object model as possible (and Smalltalk’s strong
variable encapsulation is an important part of that model) we elected not to change
this part of the language. As in standard Smalltalk, programmers can always choose to

354 B. Foote, R.E. Johnson, and J. Noble

provide instance variable accessor methods if they are needed by particular
multimethods. Indeed, such accessors, together with a judicious choice of
MethodCombination objects, allow multimethods to be programmed in a
symmetric style.

Class-Based Dispatch: as in standard Smalltalk, our multimethods are dispatched
primarily based upon the classes of arguments. Smalltalk has an implicit notion of
object type (or protocol), based on the messages implemented by a class, so two
classes can implement the same interface even if they are completely unrelated by
inheritance. We considered providing specializers that would somehow select
methods based on an argument’s interface or signature, but this would require an
explicit notion of an object’s type signature, which standard Smalltalk does not
support (although extensions to do so have long been proposed [Borning 1987,
Lalonde 1986]). One advantage of class-based dispatch, given that Smalltalk supports
only single inheritance, is that class-based selectors will never be ambiguous, as is
possible with multiple inheritance or multiple interfaces.

Our implementation does support instance-based EqualSpecializers as well.
We have not as yet made a detailed assessment of either their impact on performance,
or of their overall utility.

Portability and Compatibility: we have taken care to maximize the portability of
our multimethod design across different Smalltalk implementations. Our syntax is
designed so that it is completely backwards compatible with existing Smalltalk syntax
and to impose no overhead on programmers if multimethods are not used. Similarly,
our design requires no changes to Smalltalk virtual machines and adds no
performance penalty if multimethods are unused. The largest portability difficulties
are with individual Smalltalk compilers and browsers, as these differ the most
between different language implementations. A final aspect of portability relates to
the compiled code for optimized implementations. Because the generated
multidispatch code does not depend on any other part of the system, it can be
compatible with Smalltalk systems without the remainder of the multimethod system.

Method Qualifiers — Extending Method Combinations: A great advantage of
building multimethods by extending Smalltalk’s existing metaobjects is that our
implementation can itself be extended by specializing our metaobjects. We have
implemented a range of extended method combination schemes, modeling those of
CLOS and Aspect/J, to illustrate this extensibility.

Our extended method combination scheme allows MultiMethods to be given
Qualifiers. Qualifiers are symbols such as #Before, #After, or
#Around. These qualifiers indicate to MethodCombination objects the role
these methods are to play, and how they should be executed. There are no a priori
limitations on these qualifiers; they can be any symbols that the
MethodCombination objects can recognize. As in CLOS and Aspect/J, we
provide some stock MethodCombination objects that implement before, after,
and around methods that execute before, after, or before-and-after other methods in
response to a single message send [Brant 1998, Kiczales 2001]. We also provide a
MethodCombination that emulates the Beta [Kristensen 1990] convention of

 Efficient Multimethods in a Single Dispatch Language 355

executing methods from innermost to outermost. We also provide a
SimpleMethodCombination object that executes its applicable method list in
the order in which it is passed to the MethodCombination object.

These extended method combination metaobjects interpret the qualifiers during
multimethod dispatch. The main change is that more multimethod bodies can match a
particular method send, because a qualified method can execute in addition to other
methods that also match the arguments of a message send. For example, as in CLOS,
all before (or after) multimethods will execute before (or after) the one unqualified
message chosen by the base multimethod dispatch.

Our current implementation of extended method combination is experimental. In
particular, qualifiers must be assigned programmatically to multimethods as we have
not yet provided syntactic or browser support.

Our design, as well as the designs of Smalltalk and CLOS, for that matter, is
distinguished from more recent work based upon Java derivatives [Boyand 1977,
Kiczales 2001] in that given that each is built out of objects, programmers can extend
these objects themselves to construct any mechanism they want. It is a testimony to
the designers of Smalltalk and CLOS [Gabriel 1991, Bobrow 1993] that principled
architectural extensions, rather than inflexible, immutable preprocessor artifice, can
be employed to achieve this flexibility.

Language design, it has been said, is not about what you put in, but about what you
leave out. A system built of simple, extensible building blocks allows the designer to
evade such painful triage decisions. The real lesson to be gleaned from the metalevel
architectures of Smalltalk and CLOS is that if you provide a solid set of building
blocks, programmers can construct the features they really need themselves, their
way. This might be thought of as an application of the “end-to-end principle” [Saltzer
1981] to programming language design.

Programming Languages Versus Idioms and Patterns: Finally, our work raises the
philosophical question of when programming idioms or design patterns should be
incorporated into programming languages. From a pragmatic perspective, it is
unnecessary to add multimethods into Smalltalk because multiple dispatch can be
programmed quite effectively using idioms such as double dispatch [Ingalls 1986] or
the Visitor pattern [Gamma 1995]. Our most efficient implementation merely matches
the performance of these hand-coded idioms — some of our more basic
implementations perform significantly worse — so efficiency is not a reason for
adopting this extension.

Indeed, our harmonious melding of the CLOS MOP atop Smalltalk’s kernel objects
(the Smalltalk “MOP”, if you will) suggests that neither single dispatch nor multi-
dispatch is more fundamental that the other. Instead, they can be seen as complements
or duals of each other. Single dispatch can be seen as merely a predominant, albeit
prosaic special case of generalize multiway dispatch. Alternately, our results show
that you can curry your way to multiple dispatch in any polymorphic, single dispatch
language, one argument at a time.

In general, we consider that an idiom — such as double dispatch — should be
incorporated into a language when it becomes very widely used, when a hand coded
implementation is hard to write or to modify, when it can be implemented routinely,
and at least as efficiently as handwritten code. The Composite and Proxy patterns, for

356 B. Foote, R.E. Johnson, and J. Noble

example, may be widely used, but their implementations vary greatly, while
implementing the Template Method pattern is so straightforward that it requires no
additional support. On the other hand, the Iterator pattern is also widely used, but its
implementations are amenable to standardization, and so we find Iterators
incorporated into CLU, and now Java 1.5 and C#.

Multimethods are particularly valuable as Mediators. Since, for instance, a binary
multimethod can be seen as belonging to either both or neither of a pair of class it
specializes, it can contain glue that ties them together, while leaving each of its
specializing classes untouched. The promise of clean separation of concerns, however
admirable, is honored, alas, in many systems mainly in the breach [Foote 2000].
Multimethods are ideal in cases where mutual concerns arise among design elements
that had heretofore been cleanly separated. Multimethods can help when concerns
converge.

We believe that multiple dispatch is sufficiently often used; sufficiently routine;
sufficiently arduous to hand code; and that our (and others) implementations are
sufficiently efficient for it to be worthwhile to include into object-oriented
programming languages.

7 Related Work

Multiple dispatch in dynamic languages was first supported in the LISP based object-
oriented systems LOOPS and NewFlavours [Bobrow 1983; 1986]. As an amalgam of
these systems, the Common Lisp Object System incorporated and popularized
multiple dispatch based on generic functions [Bobrow 1988a , Keene 1989]. CLOS
also incorporated a range of method combinations, although more recently these have
also been adopted by aspect-oriented languages, particularly Aspect/J [Kiczales
2001]. Dan Ingalls described the now standard double-dispatch idiom in Smalltalk in
what must be the OOPSLA paper with the all-time highest possible power-to-weight
ratio [Ingalls 1986]. All these systems had the great advantage of dynamic typing, so
were able to avoid many of the issues that arise in statically typed languages.

The first statically typed programming language with object-oriented multiple
dispatch was the functional language Kea [Mugridge 1991]. While a range of
statically typed languages provide overloading, (Ada, C++, Haskell, Java) satisfactory
designs for incorporating dynamically dispatched multimethods into statically typed
languages proved rather more difficult to develop. Craig Chamber’s Cecil language
[Chambers 1992] provided a model where multimethods were encapsulated within
multiple classes to the extent that the multimethods were specialized on those classes.
Further developments of Cecil demonstrated that statically typed multimethods could
be integrated into practical languages and module systems with separate compilation.
Cecil-style multimethods have also been incorporated into Java [Clifton 2000], and
have the advantages of a solid formal foundation [Bruce 1995, Castagna 1995]. Bjorn
Freeman-Benson has also proposed extending Self with Multimethods [Chambers
1992]. Rather than providing multiple dispatch by extending message sends Leavens
and Millstein have proposed extending Java to dispatch on tuples of objects
[Leavens 1998].

 Efficient Multimethods in a Single Dispatch Language 357

Closer to the design in this paper are Boyland and Castangna’s Parasitic
Multimethods. These provide a type-safe, modular extension to Java by dispatching
certain methods (marked with a ‘parasitic’ modifier) according to the types of all their
arguments [Boyland 1997]. As with our system, the parasitic design treats
multimethods differently from normal (“host”) messages, and then the distinguished
receiver argument differently from the other arguments of a message. Multimethods
are contained within their receiver’s class and may access only those variables that are
members of that class. Boyland and Castagna note that much of the complexity of
their system comes from their goal of not changing Java’s existing overloading rules,
and recommend that future languages support only dynamic dispatch — ironically
perhaps, the resulting language would be quite similar in expressiveness to Smalltalk
with Multimethods.

The Visitor pattern is one of the main contexts within which double-dispatch is
generally applied [Gamma 1995]; as with many patterns, Visitor has spawned a mini-
industry of research on efficient implementation [Palsberg 1998, Grothoff 2003] that
sometimes go as far as raising the specter of a Visitor-oriented programming
“paradigm” [Palsberg 2004]. Similarly, incorporating features from Beta into more
mainline (or at least less syntactically eccentric) object-oriented languages has also
been of interest of late, with most work focusing on the Beta type system [Thorup
1997] although “inner-style” method combination has recently been adapted to a
Java-like language design [Goldberg 2004].

Our work also draws on a long history of language experimentation, particular in
Smalltalk. The dot-notation for extended selectors was originally proposed for
multiple inheritance [Borning 1982] but has been used to navigate part hierarchies
[Blake 1987]. More recent work on Array-based programming [Mougin 2003]
employs somewhat similar techniques to extend Smalltalk, although without
providing an extensible meta-model. Scharli et al. [2004] describe a composable
encapsulation scheme for Smalltalk that is implemented using method interception
techniques. This encapsulation model could be extended relatively straightforwardly
to our multimethods, and would have the advantage that multimethods could thereby
access private features of their argument objects.

This work draws upon many techniques developed over many years for meta-level
programming [Smith 1983, Maes 1987a,b], both in Smalltalk and other languages.
Our DiscriminatingMethods are derivations of MethodWrappers [Brant
1998], and the notion of extending method dispatch by meta-level means goes back at
leat to CLOS and LOOPS [Bobrow 1983, Kiczales 1991]. Coda [McAffer 1995]
provides an extended Smalltalk meta-object system that has been used to distribute
applications across large scale multiprocessors. MetaclassTalk provides a more
complete CLOS-style metaobject system for Smalltalk, again implemented with
MethodWrappers, that has been used to implement various aspect-oriented
programming constructs [Rivard 1997].

Finally, Bracha and Ungar [Bracha 2004] have classified the features of reflective
systems into introspection (self-examination of a program’s own structure); self-
modification (self explanatory); executing dynamically generated code (ditto); and
intercession (self-modification of a language’s semantics from within). According to
their taxonomy, Smalltalk scores highly on all categories except intercession. The
dispatching metalevel we present in this paper can be seen either as a strong argument

358 B. Foote, R.E. Johnson, and J. Noble

that Smalltalk does, in fact, provide powerful intercession facilities, or, more humbly,
that straightforward, portable extensions can add these facilities to Smalltalk.

8 Conclusion

Though Smalltalk does not support multimethods, they can be built by programmers
who understand Smalltalk's reflective facilities. There are several ways to go about
this, and they differ dramatically in terms of power and efficiency. Taken together,
they demonstrate the power of building programming languages out of objects, and
opening these objects to programmers, and teach some interesting lessons.

One is that syntax matters. To build multimethods, we needed to be able to modify
the compiler to support argument specializers.

A second lesson, however, is that when programs are objects, there are other
mechanisms besides syntax that an environment can use to change a program. Our
browsers support multimethods because methods have a uniform interface to these tools
that allows our multimethod syntax to be readily displayed. Furthermore, since
multimethods are objects, their attributes are subject to direct manipulation by these tools.

A third lesson is that runtime changes to objects that define how an object is
executed are an extremely powerful lever. Using method wrappers to change the way
methods act on-the-fly provides dramatic evidence of this.

A fourth is that there is a place for synthesized code, or code written by programs
rather than programmers, in reflective systems. Generative programming [Czarnecki
2000] approaches have their place. Our efficient multiway dispatch code made use of
this, allowing our reflective implementation to perform as well as hand-written code,
without any changes to the Smalltalk virtual machine.

Our experience makes a powerful case for building languages out of objects. By
doing so, we allow to the very objects from which programs are made be a vehicle for
the language's own evolution, rather than an obstacle to it, as is too often the case.

To conclude, we have designed and implemented efficient multimethod support for
Smalltalk. Our multimethods provide a very clean solution: programmers can define
them using a simple extended syntax, their semantics are quite straightforward, they
interoperate well with Smalltalk’s metaobjects, they impose no syntactic or runtime
overhead when they are not used, and they are as efficient to execute as comparable
hand-written code using sequences of single dispatches.

References

[Benoit 1986] Ch. Benoit, Yves Caseau, Ch. Pherivong, Knowledge Representation and
Communication Mechanisms in Lore. ECAI 1986, 215-224

[Blake & Cook 1987] D. Blake and S. Cook. On Including Part Hierarchies in Object-Oriented
Languages, with an Implementation in Smalltalk. In ECOOP Proceedings 1988, 41-50.

[Bobrow 1983] Daniel G. Bobrow. The LOOPS Manual. Xerox Parc, 1983
[Bobrow 1986] Bobrow, D.G., Kahn, K., Kiczales, G., Masinter, L., Stefik, M., and Zdybel, F.

CommonLoops: Merging Lisp and Object-Oriented Programming. In OOPSLA
Proceedings.1986.

 Efficient Multimethods in a Single Dispatch Language 359

[Bobrow 1988a] D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel, S. E. Keene, G. Kiczales, and
D. A. Moon. Common Lisp Object System Specification X3J13. SIGPLAN Notices, Volume
23, September 1988

[Bobrow 1988b] Daniel G. Bobrow and Gregor Kiczales. The Common Lisp Object System
Metaobject Kernel -- A Status Report. In Proceedings of the 1988 Conference on Lisp and
Functional Programming, 1988.

[Bobrow 1993] Daniel G. Bobrow, Richard P. Gabriel, Jon L. White, CLOS in Context: The
Shape of the Design Space, in Object-Oriented Programming: The CLOS Perspective,
Andreas Paepcke, editor, MIT Press, 1993, http://www.dreamsongs.com/NewFiles/clos-
book.pdf

[Borning & O’Shea, 1987] Alan Borning and Tim O'Shea. Deltatalk: An Empirically and
Aesthetically Motivated Simplification of the Smalltalk-80 Language. In ECOOP
Proceedings,1987, 3-12.

[Borning & Ingalls 1982] A. H. Borning and D. H. H. Ingalls. A Type Declaration and
Inference System for Smalltalk. In POPL Proceedings, 1982, 133-141.

[Boyland & Castagna 1997] John Boyland and Giuseppe Castagna Parasitic Methods: An
Implementation of Multi Methods for Java. In OOPSLA Proceedings 1997.

[Bracha 2004] Gilad Bracha, David Ungar: Mirrors: design principles for meta-level facilities
of object-oriented programming languages. In OOPSLA Proceedings, 2004. 331-344

[Brant 1998] John Brant, Brian Foote, Don Roberts and Ralph Johnson. Wrappers to the
Rescue. In ECOOP Proceedings, 1998.

[Bruce 1995] Kim Bruce , Luca Cardelli , Giuseppe Castagna , Gary T. Leavens , Benjamin
Pierce, On binary methods, Theory and Practice of Object Systems, v.1 n.3, p.221-242, Fall
1995

[Caseau 1986] Yves Caseau, An Overview of Lore. IEEE Software 3(1): 72-73
[Caseau 1989] Yves Caseau, A Model for a Reflective Object-Oriented Language, SIGPLAN

Notices 24(4), 22-24
[Castagna 1995] Giuseppe Castagna. Covariance and contravariance: Conflict without a cause.

ACM Transactions on Programming Languages and Systems, 17(3):431--447, May 1995
[Chambers 1992] Craig Chambers. Object-Oriented Multimethods in Cecil. In ECOOP

Proceedings, 1992
[Clifton 2000] C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein. MultiJava: Modular

open classes and symmetric multiple dispatch for java. In Proceedings of OOPSLA 2000,
130-145.

[Czarnecki 2000] K. Czarnecki, U. W. Eisenecker, Generative Programming: Methods, Tools,
and Applications, Addison-Wesley, 2000

[Deutsch 1984] L. Peter Deutsch and Allan M. Schiffman. Efficient Implementation of the
Smalltalk-80 System. In Proceedings of the Tenth Annual ACM Symposiumon Principles of
Programming Languages, 1983, 297-302

[Feinberg 1996] Neal Feinberg, Sonya E. Keene, Robert O. Mathews, and P. Tucker
Washington. The Dylan Programming Book. Addison-Wesley Longman, 1996

[Foote & Johnson 1989] Brian Foote and Ralph E. Johnson. Reflective Facilities in Smalltalk-
80. In OOPSLA '89 Proceedings, 1989, 327-335

[Foote & Yoder 1998] Metadata. In Proceedings of the Fifith Conference on Pattern Languages
of Programs (PLoP '98) Monticello, Illinois, August 1998. Technical Report #WUCS-
98025 (PLoP '98/EuroPLoP '98) Dept. of Computer Science, Washington University
September 1998

[Foote 2000] Brian Foote and Joseph W. Yoder, Big Ball of Mud, in Patterns Languages of
Program Design 4 (PLoPD4), Neil Harrison, et al., Addison-Wesley, 2000

360 B. Foote, R.E. Johnson, and J. Noble

[Gabriel 1991] Richard P. Gabriel, Jon L. White, Daniel G. Bobrow, CLOS: Integrating Object-
Oriented and Functional Programming, Communications of the ACM, Volume 34, 1991

[Gamma 1995] Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software, Addision-Wesley, 1995.

[Grothoff 2003] C. Grothoff. Walkabout revisited: The runabout. In ECOOP Proceedings,
2003.

[Goldberg 1976] Adele Goldberg and Alan Kay, editors, with the Learning Research Group.
Smalltalk-72 Instruction Manual. Xerox Palo Alto Research Center

[Goldberg 1983] Adele Goldberg and David Robson. Smalltalk-80: The Language and its
Implementation. Addison-Wesley, Reading, MA, 1983

[Goldberg 1984] Adele Goldberg. Smalltalk-80: The Interactive Programming Environment.
Addison-Wesley, Reading, MA, 1984

[Goldberg 2004] David S. Goldberg, Robert Bruce Findler, Matthew Flatt. Super and inner:
together at last! In OOPSLA Proceedings 2004, 116-129

[Hebel 1990] Kurt J. Hebel and Ralph E. Johnson. Arithmetic and Double Dispatching in
Smalltalk-80. In Journal of Object-Oriented Programming, V2 N6 March/April 1990, 40-44

[Ingalls 1978] Daniel H. H. Ingalls. The Smalltalk-76 Programming System: Design and
Implementation. In 5th ACM Symposium on POPL, 1978, 9-15

[Ingalls 1986] D.H.H. Ingalls. A simple technique for handling multiple polymorphism. In
Proceedings of OOPSLA '86, 1986.

[Johnson 1988b] Ralph E. Johnson, Justin O. Graver, and Laurance W. Zurawski. TS: An
Optimizing Compiler for Smalltalk. In OOPSLA '88 Proceedings, 1988, 18-26

[Kiczales & Rodriguez 1990] Gregor Kiczales and Luis Rodriguez. Efficient Method Dispatch
in PCL. In Proceedings of the ACM Conference on Lisp and Functional Programming,
1990, 99-105.

[Kiczales 1991] Gregor Kiczales, Jim des Rivieres, and Daniel G. Bobrow.The Art of the
Metaobject Protocol. MIT Press, 1991

[Kiczales 2001] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An overview of AspectJ. In ECOOP Proceedngs 2001.

[Keene 1989] Sonya E. Keene. Object-Oriented Programming in Common Lisp: A
Programmer's Introduction to CLOS. Addison-Wesley, 1989

[Krasner 1983] Glenn Krasner, editor. Smalltalk 80: Bits of History, Words of Advice. Addison-
Wesley, Reading, MA 1983

[Kristensen 1990] Bent Bruun Kristensen, Ole Lehrmann Madsen, Birger Moller-Pedersen, and
Kristen Nygaard. Object-Oriented Programming in the Beta Language. 1990

[LaLonde 1986] Wilf R. LaLonde, Dave A. Thomas and John R. Pugh. An Exemplar Based
Smalltalk. OOPSLA '86 Proceedings . Portland, OR, October 4-8 1977 pages 322-330

[Leavens and Millstein] Multiple Dispatch as Dispatch on Tuples. In OOPSLA Proceedings,
1998, 274-287.

[McAffer 1995] Jeff McAffer. Meta-level Programming with CodA. In ECOOP Proceedings
1995, 190-214.

[Maes 1987a] Pattie Maes. Computational Reflection. Artificial Intelligence Laboratory. Vrije
Universiteit Brussel. Technical Report 87-2, 1987

[Maes 1987b] Pattie Maes. Concepts and Experiments in Computational Reflection. In
OOPSLA '87 Proceedings. 1987, 147-155.

[Moon 1986] David Moon, Object-Oriented Programming with Flavors, In OOPSLA '86
Proceedings, 1986 1-8

 Efficient Multimethods in a Single Dispatch Language 361

[Mougin 2003] Philippe Mougin, Stéphane Ducasse: OOPAL: integrating array programming
in object-oriented programming. In OOPSLA Proceedings, 2003, 65-77

[Mugridge 1991] Warwick Mugridge, John Hamer, John Hosking. Multi-Methods in a
StaticallyTyped Programming Language. In ECOOP Proceedings, 1991, 147-155

[Paepcke 1993] Andreas Paepcke (editor), Object-Oriented Programming: The CLOS
Perspective, MIT Press, 1993

[Palsberg 1998] Jens Palsberg, C. Barry Jay, James Noble. Experiments with Generic Visitors.
In the Proceedings of theWorkshop on Generic Programming, Marstrand, Sweden, 1998.

[Palsberg 2004] Jens Palsberg and J Van Drunen. Visitor oriented programming. In the
Workshop for Foundations of Object-Oriented Programming (FOOL), 2004.

[Rivard 1997] Fred Rivard. Evolution du comportement des objets dans les langages a classes
reflexifs. PhD thesis, Ecole des Mines de Nantes, France, June 1997

[Saltzer 1981] Jerome H. Saltzer, David P. Reed, and David D. Clark. End-to-end arguments in
system design, Second International Conference on Distributed Computing Systems (April,
1981) pages 509-512.

[Scharli 2004] Nathanael Schärli, Andrew P. Black, Stéphane Ducasse: Object-oriented
encapsulation for dynamically typed languages. In OOPSLA Proceedings. 2004, 130-149

[Smith 1983] Brian Cantwell Smith. Reflection and Semantics in Lisp. In POPL Proceedings,
1984, 23-35

[Stefik 1986a] Mark Stefik and Daniel G. Bobrow. Object-Oriented Programming: Themes and
Variations. AI Magazine 6(4): 40-62, 1986

[Stroustrup 1986] Bjarne Stroustrup. The C++ Programming Language, Addison-Wesley,
Reading, MA, 1986

[Thorup 1997] Thorup, K. K. Genericity in Java with virtual types. In ECOOP Proceedings
1997, 444-471.

[Ungar 1987] David Ungar and Randall B. Smith. Self: The Power of Simplicity. In OOPSLA
'87 Proceedings. 1987, 227-242.

Interprocedural Analysis for Privileged Code
Placement and Tainted Variable Detection

Marco Pistoia1, Robert J. Flynn2, Larry Koved1, and Vugranam C. Sreedhar1

1 IBM Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA
{pistoia, koved, vugranam}@us.ibm.com
http://www.research.ibm.com/javasec

2 Polytechnic University, 6 Metrotech Center, Brooklyn, NY 11201, USA
flynn@poly.edu

http://www.poly.edu

Abstract. In Java 2 and Microsoft .NET Common Language Runtime
(CLR), trusted code has often been programmed to perform access-
restricted operations not explicitly requested by its untrusted clients.
Since an untrusted client will be on the call stack when access control is
enforced, an access-restricted operation will not succeed unless the client
is authorized. To avoid this, a portion of the trusted code can be made
“privileged.” When access control is enforced, privileged code causes the
stack traversal to stop at the trusted code frame, and the untrusted
code stack frames will not be checked for authorization. For large pro-
grams, manually understanding which portions of code should be made
privileged is a difficult task. Developers must understand which autho-
rizations will implicitly be extended to client code and make sure that
the values of the variables used by the privileged code are not “tainted”
by client code. This paper presents an interprocedural analysis for Java
bytecode to automatically identify which portions of trusted code should
be made privileged, ensure that there are no tainted variables in privi-
leged code, and detect “unnecessary” and “redundant” privileged code.
We implemented the algorithm and present the results of our analyses on
a set of large programs. While the analysis techniques are in the context
of Java code, the basic concepts are also applicable to non-Java systems
with a similar authorization model.

1 Introduction

The Java 2 [28, 29, 17] and Microsoft .NET Common Language Runtime (CLR)
[16] programming models are extensively used in different kinds of Internet ap-
plications. In such applications, it is essential that, when access to a restricted
resource is attempted, all code currently on the call stack is authorized to ac-
cess that resource. In Java 2, when access to a restricted resource is attempted,
the SecurityManager, if active, triggers access-control enforcement by invoking
AccessController.checkPermission(). This method takes a Permission ob-
ject p as a parameter and performs a call-stack walk to verify that each caller in

A.P. Black (Ed.): ECOOP 2005, LNCS 3586, pp. 362–386, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Interprocedural Analysis for Privileged Code Placement 363

the current thread of execution has been granted the authorization represented
by p. In CLR, the call-stack walk is performed by the Demand() method. In both
platforms, a SecurityException is thrown if the declaring class of any one of
the methods on the call stack does not have the appropriate authorization.

Often, however, trusted code has been programmed to perform access-
restricted operations—such as writing to a log file—that its untrusted client
did not explicitly request. Since the untrusted client will be on the call stack
when access control is enforced, the operation will not succeed unless the
client code is authorized as well. To avoid authorizing the client, which would
constitute a violation of the Principle of Least Privilege [32], the portion of
trusted code performing the restricted operation must be made privileged. In
Java 2, this is done by wrapping that portion of trusted code into a call to
AccessController.doPrivileged(). In CLR, the same result can be obtained
by having the trusted code call the Assert() method. When access control
is enforced, privileged code causes the call-stack walk to stop at the stack
frame where doPrivileged() is invoked. As a result, client code is implicitly
granted the right to perform the restricted operation while the current thread is
executing.

Taking preexisting trusted code and understanding which portions of it
should be made privileged is a difficult task. It is even more challenging when the
trusted code is large or complex. Besides identifying the blocks of it that require
authorizations, developers must understand which access rights the privileged
code will implicitly grant to client code, and make sure that the variables used
by the privileged code to access restricted resources are not tainted, meaning
that their values cannot be arbitrarily influenced by the client code [35]. For
example, if the privileged code is responsible for logging to a file, the name of
the log file should not be tainted. Otherwise, an untrusted caller could invoke
that privileged code and modify any file in the file system. As we shall see, a
tainted variable can be considered sanitized if it satisfies certain preconditions.

This paper presents an interprocedural analysis for Java bytecode to solve
the following problems:

1. Identify portions of trusted code that should be made privileged, with three
objectives in mind:
(a) Respect the Principle of Least Privilege by preventing unnecessary au-

thorization requirements from propagating to client code
(b) Ensure that no unnecessary SecurityExceptions are thrown due to the

client’s being insufficiently authorized
(c) Ensure that there are no tainted variables in privileged code, unless they

have been previously sanitized
2. Automatically detect if a tainted variable is malicious (used inside privileged

code to access a restricted resource) or otherwise benign
3. Detect existing “unnecessary” and “redundant” privileged blocks of code

and avoid introducing new ones

Privileged code is unnecessary if there is no path from it to any authorization
check, and it is redundant if all the authorization checks it leads to are dominated

364 M. Pistoia et al.

by other privileged code. Unnecessary or redundant privileged code may lead to
violations of the Principle of Least Privilege, especially as a result of subsequent
code maintenance, and can be expensive from a performance point of view.

The rest of this section further discusses why privileged-code and tainted-
variable analysis is important and summarizes the key contributions of this pa-
per.

1.1 Trusted Code Access Control

When client code makes a call into trusted code, the trusted code often accesses
restricted resources that the client never intended to, nor does it need to, directly
access. For instance, assume that a Java program is authorized to open a network
socket. To do so, it invokes createSocket() on the LibraryCode trusted class in
Figure 1. As its code shows, on opening a socket on behalf of a client program, the
trusted code is programmed to log the socket operation to a file. According to the
Java 2 access-control model, both the trusted code and its client will need to be
granted the FilePermission to modify the log file and the SocketPermission
to create the socket connection, even though the client did not explicitly request
to write to the log file. Granting the client code the access right to modify the
log file would violate the Principle of Least Privilege. One way to circumvent
this problem is to mark the portion of the trusted code responsible for logging
as privileged. This prevents the call-stack inspection for the log operation from
going beyond the createSocket() method, and temporarily exempts the client
from the FilePermission requirement during the execution of createSocket().

From a practical point of view, a Java developer must implement either
the PrivilegedExceptionAction or PrivilegedAction interface, depending
on whether the privileged code could throw a checked Exception or not, re-
spectively. Both these interfaces have a run() method that, once implemented,

import java.io.*;

import java.net.*;

public class LibraryCode {

private static String logFileName = "audit.txt";

public static Socket createSocket(String host, int port)

throws UnknownHostException, IOException {

// Create the Socket

Socket socket = new Socket(host, port);

// Log the Socket operation to a file

FileOutputStream fos = new FileOutputStream(logFileName);

BufferedOutputStream bos = new BufferedOutputStream(fos);

PrintStream ps = new PrintStream(bos, true);

ps.print("Socket " + host + ":" + port);

return socket;

}

}

Fig. 1. Library Code Propagating Authorization Requirements to Its Clients

Interprocedural Analysis for Privileged Code Placement 365

import java.io.*;

import java.net.*;

import java.security.*;

public class LibraryCode2 {

private static final String logFileName = "audit.txt";

public static Socket createSocket(String host, int port) throws

UnknownHostException, IOException, PrivilegedActionException {

// Create the Socket

Socket socket = new Socket(host, port);

// Log the Socket operation to a file using doPrivileged()

File f = new File(logFileName);

PrivWriteOp op = new PrivWriteOp(host, port, f);

FileOutputStream fos = (FileOutputStream)

AccessController.doPrivileged(op);

BufferedOutputStream bos = new BufferedOutputStream(fos);

PrintStream ps = new PrintStream(bos, true);

ps.print("Socket " + host + ":" + port);

return socket;

}

}

class PrivWriteOp implements PrivilegedExceptionAction {

private File f;

PrivWriteOp (File f) {

this.f = f;

}

public Object run() throws IOException {

return new FileOutputStream(f);

}

}

Fig. 2. Library Using Privileged Code

must contain the portion of trusted code performing the restricted operation
not directly requested by the client. Next, the PrivilegedExceptionAction or
PrivilegedAction instance is passed as a parameter to the doPrivileged()
method, which will invoke the instance’s run() method. Class LibraryCode2
in Figure 2 is obtained by modifying class LibraryCode in Figure 1. The main
modification consists of wrapping the call to the FileOutputStream constructor
in a privileged block to prevent client code from requiring a FilePermission.

Frequently, code is not written with security as a concern, or it is written to
run on a version of the Java Runtime Environment (JRE) prior to 1.2.1 When
a Java 2 SecurityManager is finally turned on for a particular application,
SecurityExceptions are thrown due to access control violations. It can be very
difficult to understand which portions of trusted code should be made privileged.
In practice, this problem is solved empirically. The developer tests the trusted
code with sample client code that makes calls into the trusted code. Typically,

1 The Java 2 fine-grained access control model was introduced in version 1.2.

366 M. Pistoia et al.

the client code is granted only a limited number of access rights, while the trusted
code is granted sufficient authorizations, such as AllPermission. The developer
then notes all the SecurityExceptions generated when running the test cases
and distinguishes between two categories of SecurityExceptions:

1. The SecurityExceptions due to the client code’s attempting to access some
protected resources through the trusted code without the adequate autho-
rizations

2. The SecurityExceptions due to the trusted code’s attempting to access
some restricted resources on its own without using privileged code

Eliminating a SecurityException of Category 2 requires inspecting the trusted
source code, identifying which portion of it is responsible for accessing the re-
stricted resource, and making that portion privileged. A SecurityException of
Category 1 can instead be eliminated by granting the client code the necessary
access rights, but this operation must be performed cautiously because grant-
ing authorizations to the client could hide SecurityExceptions of Category 2.
Manually performing this task is difficult, tedious, and error-prone. After modi-
fying the trusted code or the client security policy, the developer must rerun the
test cases. This process must be repeated, possibly many times, until there are
no more authorization failures. Additionally, doPrivileged() requirements in
the trusted code may remain undiscovered due to an insufficient number of test
cases, which makes production code potentially unstable.

1.2 Tainted Variables

Another security concern when inserting doPrivileged() calls is the risk that
the privileged code uses tainted variables to access restricted resources. Consider,
for example, the GetSocket() utility class shown in Figure 3. Both host and
port are tainted variables, since an untrusted client can arbitrarily set them.
Their use in privileged code to open a socket makes them a potential security
risk. Conversely, variable userName, though tainted and used in privileged code,
is benign since its value is not used to access a restricted resource.

Sometimes, it may be necessary to use tainted variables inside privileged
code to access restricted resources. In such cases it is important to perform
sanity checks on those variables to verify that they satisfy certain preconditions
[3]. For example, in the code of Figure 3, the programmer could sanitize host
and port and make them untainted by refusing to execute the privileged code
if, for example, the host value does not end with .edu and the port value is
different from 443.

In general, manually ensuring that no malicious tainted variables are used
inside privileged code is time consuming and error prone. It requires:

1. Identifying all the unsanitized malicious tainted variables (host and port in
Figure 3) and separate them from the benign ones (userName)

2. Determining all the control- and data-flow paths in the execution of the
program that would allow an unsanitized malicious tainted variable to be
used inside some privileged code to access restricted resources

Interprocedural Analysis for Privileged Code Placement 367

import java.net.*;

import java.security.*;

public class GetSocket {

public static Socket getSocket(final String host, final int port,

final String userName) throws Exception {

Socket s;

PrivOp op = new PrivOp(host, port, userName);

try {

s = (Socket) AccessController.doPrivileged(op);

}

catch (PrivilegedActionException e) {

throw e.getException();

}

return s;

}

}

class PrivOp implements PrivilegedExceptionAction {

private String host, userName;

int port;

PrivOp(String host, int port, String userName) {

this.host = host;

this.port = port;

this.userName = userName;

}

public Object run() throws Exception {

System.out.println("Received request from user " + userName);

return new Socket(host, port);

}

}

Fig. 3. Helper getSocket() Method with Tainted Parameters

Having a tool that automatically determines if code candidate to become privi-
leged uses unsanitized, malicious tainted variables to access restricted resources
helps when deciding whether making that code privileged is appropriate. For ex-
ample, the code of Figure 1 has two instructions that could be made privileged:

1. Socket socket = new Socket(host, port);
2. FileOutputStream fos = new FileOutputStream(logFileName);

If Instruction 1 is made privileged, then parameters host and port, which are
tainted, will constitute a security exposure since they are used to access a re-
stricted resource. This is an indication that Instruction 1 should not be made
privileged. Conversely, parameter logFileName is not tainted. This is an indi-
cation that Instruction 2 could be made privileged.

1.3 Contributions

From a privileged-code analysis perspective, the set of code components involved
in the execution of a program is logically partitioned into three disjoint subsets:

368 M. Pistoia et al.

1. The fixed components, which normally include the JRE libraries and are not
suitable, or candidates, for modification

2. The modifiable components, which are those considered for modification and
privileged-code placement, and are typically trusted

3. The client components, which make calls into the modifiable components
and are often not available at analysis time

This paper presents an interprocedural privileged-code placement and
tainted-variable analysis algorithm. The algorithm assumes that both the sets
of fixed and modifiable components are available to the analysis, whereas the
presence of the client components is statically modelled. The interprocedural
analysis described in this paper achieves the following results:

1. For each authorization check triggered by a modifiable component, the anal-
ysis identifies the modifiable component’s code location that, from a control-
flow perspective, is the closest to the authorization check, which minimizes
the risks of violating the Principle of Least Privilege.

2. Code locations candidate for becoming privileged are identified with a pre-
cision that goes to the level of the program counter within a method (and
the source-code line number where available).

3. The analysis provides an explanation as to why a call to doPrivileged() is
recommended or not.

4. The analysis detects which authorizations will be implicitly granted to client
code as a result of calling doPrivileged().

5. The analysis minimizes the risks of introducing unnecessary or redundant
privileged code in a modifiable component.

6. If unnecessary or redundant privileged code is already present in a modifiable
component, the analysis will detect it.

7. The analysis distinguishes between malicious and benign tainted variables.
8. The analysis detects if unsanitized malicious tainted variables are used in

privileged code to access restricted resources.

We implemented this analysis framework in a security-analysis tool called
Mandatory Access Rights Certification of Objects (MARCO). In this paper, we
present our experience in using MARCO on a set of components, some of which
contained more than 20,000 classes. While the analysis techniques described in
this paper are in the context of Java code, the basic concepts are also applicable
to privileged-code placement issues in non-Java systems, including CLR.

1.4 Organization of This Paper

Section 2 introduces the control- and data-flow frameworks on which the
MARCO tool is based. Section 3 describes an access-rights analysis algorithm
for computing authorization requirements of Java code. Section 4 shows how
the access-rights analysis algorithm can be enhanced to compute modifiable-
component code locations that are closest to the authorization checks. The
privileged-code placement algorithm described in Section 4 minimizes the chances

Interprocedural Analysis for Privileged Code Placement 369

of introducing unnecessary or redundant privileged code. Additionally, if unnec-
essary or redundant privileged code is already present, the algorithm will detect
it. Section 5 presents a tainted-variable analysis algorithm for detecting potential
misuses of tainted variables in code that is already privileged, or that is a candi-
date for becoming privileged as a result of executing the privileged-code place-
ment algorithm. Section 6 presents our experience with running the MARCO tool
on complex commercial-quality code. Section 7 describes previous results in the
area of authorization, privileged-code, and tainted-variable analysis, and explains
why the work presented in this paper is innovative with respect to those results.
Finally, Section 8 summarizes the most important results presented in this paper.

2 Foundations of the Analysis Framework

The first analysis step is to construct an augmented, domain-specific invocation
graph called an Access-Rights Invocation Graph (ARIG) [24]. An ARIG is a
directed multi-graph G = (N,E), where N is a set of nodes and E is a set of
edges, with the following characteristics:

– Each node in the graph:
• Represents a context-sensitive method invocation.
• Is uniquely identified by its calling context :

∗ The target method
∗ The receiver and parameters values

• Contains the following state:
∗ The target method
∗ For instance methods, an allocation site for the method’s receiver
∗ All parameters to the method, represented as a vector of sets of

possible allocation sites
∗ A set of possible return values from the target method, represented

as a set of allocation sites
• Is associated with a class loader name, corresponding to the name of the

class loader that would load the method’s declaring class at run time.
– Each labelled2 edge e = (m,n) ∈ E points from a call site in the method

represented by node m to the target method represented by node n.
– An ARIG allows for bidirectional traversal.

2 For simplicity, in this paper, we indicate the edges of an ARIG G = (N, E) as pairs
of nodes of the form (m, n), where m, n ∈ N . However, the edges of G are actually
triplets of the form (m, n, w), where m, n ∈ N and w is a call site in the method
represented by m and pointing to the target method represented by n. In this sense,
G is a multi-graph because there may exist multiple edges between any two nodes
m and n, and those edges are distinguishable from each other based on the call-site
information, which acts as a label. The call-site information contains the program
counter at which w occurs.

370 M. Pistoia et al.

Mandatory Access Rights
Certification of Objects (MARCO)

Mandatory Access Rights
Certification of Objects (MARCO)

Java Bytecode Analysis (JaBA)Java Bytecode Analysis (JaBA)

Access-Rights Invocation Graph (ARIG)Access-Rights Invocation Graph (ARIG)

Access-Rights
Analysis

Access-Rights
Analysis

Privileged-Code
Placement

Privileged-Code
Placement

Tainted-Variable
Analysis

Tainted-Variable
Analysis

Fig. 4. Architecture of the Analysis Framework

An ARIG is used to execute an access-rights analysis. The results of the access-
rights analysis and the ARIG itself are used by the MARCO tool to perform
privileged-code placement and tainted-variable analysis. As Figure 4 shows, an
ARIG is constructed using the Java Bytecode Analysis (JaBA) framework, which
adopts a Control-Flow Analysis (CFA) [25] disambiguating between heap objects
according to their allocation sites, with extra context for Permission objects.
Specifically, JaBA is:

– Path insensitive [19] because it does not evaluate conditional statements and
conservatively assumes that each conditional branch out of a conditional
statement will be executed

– Intraprocedurally flow sensitive [31] because it considers the order of execu-
tion of the instructions within each basic block, accounting for local-variable
kills [22] and casting of object references

– Interprocedurally flow insensitive [31] because it uses the conservative as-
sumption that all instance and static fields are subject to modification at
any time due to multi-threading

– Context sensitive [31] because its interprocedural analysis uniquely distin-
guishes each node by its calling context, with a context-sensitivity policy
similar to Agesen’s Cartesian Product Algorithm (CPA) [1]

– Field sensitive [31] because an object’s fields are represented distinctly

An ARIG is domain-specific in that it is tailored to access-rights analy-
sis, privileged-code placement, and tainted-variable analysis needs. Its domain-
specific characteristics are described in the remainder of this section.

2.1 Modelling Multi-threading

In Java 2, when access to a restricted resource is attempted from within a child
thread, all the code in the child thread and in all its ancestor threads must be
granted the right to access that resource. This behavior can be modelled by

Interprocedural Analysis for Privileged Code Placement 371

identifying all the run() nodes in G whose receiver is a Thread object. For each
of such nodes r, with receiver t, the node c representing the invocation of the
Thread constructor that instantiated t in the parent thread is identified, and
a new edge (c, r) is added to E. At the same time, the edge (s, r), where s
represents the invocation of start() on t, is removed from E.

2.2 Extra Context for Permission Objects

The Permission parameter passed to AccessController.checkPermission()
is frequently instantiated by the SecurityManager. For example, when
the SecurityManager’s checkWrite() method is invoked, it instantiates a
FilePermission and passes it to the SecurityManager’s checkPermission()
method, which finally passes it to AccessController.checkPermission(). One
problem is that different FilePermission objects instantiated through calls to
checkWrite() in different parts of the program will all share the same type and
allocation site. Therefore, JaBA would represent them as if they were the same
object, yielding overly conservative results. The solution we adopted was to add
extra context to Permission objects. Specifically, the context used to represent a
Permission object p is not just the type and the allocation site of p, but also the
node containing the allocation site of p. Therefore, if m,n ∈ N are checkWrite()
nodes in the ARIG such that the parameters for the method calls they represent
are the Strings file1 and file2, respectively, the FilePermission allocated in
m will be distinguished from the one allocated in n because m �= n, even though
both FilePermissions share the same type and allocation site. To avoid build-
ing an unnecessarily large invocation graph, this specialization is only applied
to Permission objects allocated in the SecurityManager.

2.3 Propagation of String Constants

The constructor of a Permission object p takes zero or more String objects
as parameters. As we shall see, the fully qualified Permission class name and
the Strings passed to the constructor of p uniquely identify the authorization
requirement represented by p. For Java 2 authorization-related analyses, keeping
track of string constants is, therefore, essential. For this reason, an ARIG includes
propagation of string constants, unless these are dynamically generated.

2.4 Modelling of Callbacks

When building an invocation graph modelling the execution of a program, the
method entry points can have parameters, which may include the receiver object,
this. JaBA offers two options:

1. If the modifiable components being analyzed are part of a self-contained ap-
plication, the analysis is typically treated as a closed-world analysis—one in
which all the code executed at run time is also available during the analy-
sis. In this case, JaBA uses Class Hierarchy Analysis (CHA) [11] to build the
class hierarchy rooted at the parameter’s declared type. When a callback from

372 M. Pistoia et al.

that parameter object is encountered, JaBA models it by looking for all the
possible implementations of the invoked method in the class hierarchy.

2. If the modifiable components under analysis are part of a library, the analysis
is said to be an open-world or incomplete-program analysis [31] because
the values and object sources of those parameters are part of the client
application, which typically is only available at run time, unless the declared
types of those parameters are final. If a callback from a parameter object of
a non-final type occurs, JaBA, conservatively, does not model it because no
control- and data-flow details on that callback are available at analysis time.
However, JaBA records that a callback has been encountered. Potentially,
each of such callbacks could require AllPermission at run time.

3 Access-Rights Analysis for Privileged Code

In this section, we present a simple data-flow analysis model for propagating
access-rights and privileged-code requirements along an ARIG G = (N,E). To
compute the portions of modifiable-component code that should be made priv-
ileged, it is necessary to statically model the Java 2 authorization subsystem.
Recall that, in Java 2, the run time enforces authorization by ultimately making
a call to checkPermission() with a parameter p of type Permission represent-
ing the resource access being attempted. From what we said in Section 2.3, for
authorization purposes, p can be characterized solely based on p’s permission
ID, which consists of p’s fully-qualified class name and the String instances
used to instantiate p.3 For example, if p was instantiated with the statement

Permission p = new java.io.FilePermission("audit.txt", "write")

then p’s permission ID is java.io.FilePermission "audit.txt", "write".
Let P be the universe of all the permission IDs associated with the code being

analyzed. A function Π : N → 2P can be defined that maps each node n ∈ N
to the set of permission IDs representing the Permission objects necessary to
execute the method represented by n. Permission IDs represent authorization
requirements. Determining privileged-code placement in a set of modifiable com-
ponents involves propagating permission IDs across the ARIG representing the
execution of those components.

3.1 Identification of checkPermission() Nodes

The first step of the algorithm is to iterate over all the nodes of G to identify
those that correspond to checkPermission() method calls. For each of such
nodes a, all the possible Permission allocation sites that have flowed to the

3 In fact, in the JRE reference implementation, authorizations are granted to programs
and principals by just listing the corresponding permission IDs in a flat-file policy
database, called the policy file [29].

Interprocedural Analysis for Privileged Code Placement 373

formal argument are identified,4 and the permission IDs are computed from the
corresponding constructor nodes. This phase requires O(|N |) time.

3.2 Reverse Propagation of Permission IDs

The Java 2 authorization subsystem mandates that, at the point where
checkPermission() is invoked with a Permission parameter p, all the code
on the execution thread’s stack be granted the authorization represented by
p. This can be modelled by identifying the node a corresponding to the
checkPermission() call and propagating the permission ID corresponding to p
backwards to all the predecessors of a, recursively. Thus, each node n ∈ N is
mapped to a (possibly empty) set of permission IDs, obtained as the union of
the permission ID sets propagated from n’s successors as follows:

Π(n) =
⋃

m∈Succ(n)

Π(m)

where Succ(n) = {m ∈ N |(n,m) ∈ E}. When for some n ∈ N , Π(n) changes as
a result of this propagation, Π(m) is unioned with Π(n) for all m ∈ Pred(n),
where Pred(n) = {m ∈ N |(m,n) ∈ E}.

The reverse propagation of permission ID sets just described can be formal-
ized in terms of data flow. Using a standard data-flow notation [22, 2, 25], we
define data-flow sets GEN(n) and KILL(n) for each node n ∈ N as follows:

– GEN(n) contains the permission IDs generated by node n. Such permission
IDs correspond to the authorizations checked at the method represented by
node n. For the Java 2 access-control model, GEN(a) �= ∅ if and only if a is a
checkPermission() node. In particular, for any such node a, GEN(a) con-
tains exactly the permission IDs corresponding to the authorizations checked
at the method represented by a in the ARIG.

– KILL(n) contains the permission IDs killed by node n. Such permission IDs
correspond to authorization requirements whose propagations on the call
stack stop at the predecessors of node n. According to the Java 2 access-
control model, if d ∈ N represents a doPrivileged() method invocation,
KILL(d) is the universe P of all the permission IDs defined in the ARIG.
This is because, in Java 2, a call to doPrivileged() does not extend autho-
rizations to client code selectively, in a fine-grained fashion, but does it in a
coarse-grained fashion.5 For any other node n ∈ N , KILL(n) = ∅.

4 Even though checkPermission() takes only one Permission parameter, that pa-
rameter may correspond to more than one object in the ARIG model, since JaBA
is path insensitive and interprocedurally flow insensitive.

5 Unlike the Java 2 doPrivileged() method, the CLR Assert() method shields client
code from authorization requirements in a fine-grained fashion [7]. Library code can
assert a specific IPermission object, and only the authorization represented by that
object will be implicitly granted to the client code currently on the stack. To model
this behavior correctly, the KILL set of the asserting method’s node would only
have to contain the permission IDs of the asserted IPermission objects.

374 M. Pistoia et al.

It is therefore convenient to introduce a function NodeType : N →
{check, grant, other}. For each n ∈ N , NodeType(n) is defined as follows:

NodeType(n) =

check, if n is a checkPermission() node;
grant, if n is a doPrivileged() node;
other, otherwise.

The check nodes are those representing checkPermission() method calls,
which trigger authorization checks, while the grant nodes are those representing
calls to doPrivileged(), through which the callers on the thread stack are
implicitly granted authorizations. The other nodes do not affect the data flow.
The following pseudo-code formalizes the assignment of the data-flow sets:

1: for each node n {
2: switch(NodeType(n)) {
3: case check :
4: GEN(n) = {p ∈ P |p is checked at n}
5: KILL(n) = ∅
6: case grant :
7: GEN(n) = ∅
8: KILL(n) = P
9: case other :
10: GEN(n) = ∅
11: KILL(n) = ∅
12: }
13: }

The data-flow equations for each node n ∈ N are defined in the usual way as
follows:

OUT (n) = (IN(n) ∪GEN(n))−KILL(n)

IN(n) =
⋃

m∈Succ(n)

OUT (n)

where OUT (n) and IN(n) are the sets of permission IDs propagated from n
and reaching n, respectively. The data-flow analysis just described converges to
a fixed point in O(|E||P |) time since (2P ,⊆) is a finite lattice and the data-flow
functions OUT, IN : N → 2P are monotonic with respect to the lattice’s partial
order, ⊆ [18].

3.3 Permission ID Propagation from doPrivileged() Nodes

According to the Java 2 authorization subsystem, authorization requirements
propagated upwards via a doPriviledged() node must not propagate beyond
the predecessors of the doPrivileged() node. This can be modelled as follows:
When a doPrivileged() node d is encountered during the reverse propagation

Interprocedural Analysis for Privileged Code Placement 375

of permission IDs described in Section 3.2, its permission ID set, Π(d), is prop-
agated to d’s predecessors only after the propagation algorithm for all the other
nodes has terminated. The propagation of Π(d) upwards must not be performed
recursively. If n is a node in Pred(d) and Π(n) changes as a result of the prop-
agation of Π(d) from d, Π(n) is not transmitted to the nodes in Pred(n). One
data-flow equation is sufficient to describe this one-step propagation:

IN(n) = IN(n) ∪
⋃

d∈Succ(n)
NodeType(d)=grant

IN(d)

This equation has an effect only for those nodes that have a grant node as a
successor. The time complexity of this one-step propagation is O(|E|).

3.4 Complexity

The access-rights analysis converges in O(|E||P |) time. When the analysis ter-
minates, for each node n ∈ N , the data-flow set IN(n) will be equal to the
set Π(n) and will represent the authorizations required to execute the method
represented by n with n’s calling context.

4 Privileged-Code Placement

This section describes how the propagation algorithm described in Section 3 can
be augmented to automatically detect which portions of modifiable-component
code should be made privileged while minimizing the risks of violating the Prin-
ciple of Least Privilege, with a precision that goes to the level of the program
counter within a method. For each privileged-code location it recommends, the
algorithm provides an explanation. Additionally, this section shows how to com-
pute the authorizations that privileged code will implicitly grant to client code.
Finally, this section describes how the algorithm detects existing unnecessary
or redundant privileged code, and avoids inserting new privileged code that is
unnecessary or redundant.

4.1 Insertion of doPrivileged() Calls

In Java 2, class loaders are organized as a tree T , called the class-loading del-
egation tree [28]. JaBA models the class-loading system and associates a class
loader name with every node in an ARIG. The privileged-code placement process
is configured by assuming that all the classes in the modifiable components will
be loaded by a designated class loader, called the component loader. A boundary
edge in G is any edge e = (m,n) ∈ E such that m is associated with the compo-
nent loader and n is associated with a different class loader in T . If Π(n) �= ∅,
then the call represented by e is guaranteed to lead to the Java 2 authorization
subsystem. Such a call is a candidate for becoming privileged. For example, e
may be the edge resulting from calling the constructor of FileOutputStream

376 M. Pistoia et al.

SecurityManager .
checkPermission(p)

pp

pp

pp

AccessController .
checkPermission(p)

FileOutputStream .
<init>(logFileName)

pp

pp

SecurityManager .
checkPermission(p)

pp

pp

pp

AccessController .
checkPermission(p)

FileOutputStream .
<init>(logFileName)

pp

ppAccessController .
doPrivileged(pa)

pp

op.run()

p = new java.io.FilePermission(logFileName , "write");

ClientClient

LibraryLibrary

SystemSystem

Edge e

pp pp

SecurityManager .
checkWrite

(logFileName)

SecurityManager .
checkWrite

(logFileName)

Edge f

LibraryCode.
createSocket
(host,port)

LibraryCode2.
createSocket
(host,port)

Client.main() Client.main()

Fig. 5. Changes in the ARIG after Making Library Code Privileged

from method createSocket() in Figure 1. Figure 2 shows how to wrap the
FileOutputStream constructor call into a privileged block, and Figure 5 shows
the corresponding ARIGs. Notice how the ARIG on the right in Figure 5 re-
flects the presence of doPrivileged() by not propagating the FilePermission
requirement beyond the invocation of createSocket(), exempting client code
from the FilePermission requirement, as desired.

The algorithm described in Section 3 can be augmented to identify any
boundary edge e = (m,n) such that Π(n) �= ∅. The information contained in e
and Π(n) is sufficient to determine the exact portion of modifiable-component
code that is a candidate for becoming privileged along with an explanation, and
to identify the authorizations that the privileged code will implicitly grant to
client code:

1. The class name, method signature, and program counter that constitute a
possible doPrivileged() location can be obtained from node m and the
call site in e. Since e is a boundary edge, from a control-flow perspective the
location computed by this algorithm is, in the modifiable-component code,
the closest to the authorization check. This ensures that only the portion of
modifiable-component code effectively leading to an authorization check will
be made privileged, which minimizes the risks of violating the Principle of
Least Privilege.

Interprocedural Analysis for Privileged Code Placement 377

2. The authorizations implicitly granted to clients if a call to doPrivileged()
is inserted are represented by the permission IDs in Π(n).

3. As an explanation, the fully qualified signature of the method being invoked
at node n and causing the authorization requirements in Π(n) can be ob-
tained from node n itself. If a more detailed explanation is desired, all the
paths from n to the checkPermission() nodes in the ARIG subgraph rooted
at n can be reported. Such paths are those through which the authorization
requirements in Π(n) have propagated up to n.

The privileged-code placement algorithm can be customized. Instead of rec-
ommending the privileged-code locations that, in the modifiable components,
are the closest to the authorization checks, the algorithm could, for example,
identify the privileged-code locations closest to those components’ entry points.
With this approach, however, code not requiring authorizations may become
unnecessarily privileged.

4.2 Detecting Unnecessary or Redundant Privileged Code

An unnecessary doPrivileged() call may result from changes made to
modifiable-component code during code development or maintenance. A call
to doPrivileged() that was originally considered necessary no longer triggers
an authorization check after the change. A redundant doPrivileged() call may
result from poor code design or from integrating different components so that
a call to doPrivileged() that was once considered necessary because it led to
an authorization check becomes redundant because other doPrivileged() calls
now dominate the authorization check. As we observed in Section 1, unneces-
sary or redundant privileged code should be made unprivileged for security and
performance reasons. The algorithm described in Section 3 can be augmented to
identify unnecessary or redundant calls to doPrivileged() by simply detecting
any doPrivileged() node d in the graph such that Π(d) = ∅.

If a code instruction does not require authorizations, it is a poor security
practice to make it privileged [35]. The following instruction in the run() method
of Figure 3 has been made privileged even though it does not access a restricted
resource:

System.out.println("Received request from user " + userName);

Such an instruction should be made unprivileged even though, in this case,
Π(d) �= ∅. The privileged-code placement algorithm can easily detect unnec-
essarily privileged instructions. Let d be a doPrivileged() node and r its
PrivilegedAction or PrivilegedExceptionAction run() successor. If Π(r) �=
∅ and there exists n ∈ Succ(r) such that Π(n) = ∅, then the method invocation
represented by n should be made unprivileged.

4.3 Avoiding Unnecessary or Redundant Privileged Code

The permission ID set Π(n) associated with the head node n of a boundary
edge e = (m,n) must be non-empty for the privileged-code placement algorithm

378 M. Pistoia et al.

to recommend a call to doPrivileged(). Therefore, except for those cases in
which the access-rights analysis conservatively reports unrealizable authorization
requirements, none of the doPrivileged() calls recommended by the privileged-
code placement algorithm are unnecessary or redundant. Furthermore, since the
privileged-code placement algorithm precisely identifies the method invocations
that should be made privileged, no code instruction will become unnecessarily
or redundantly privileged as a result of executing the algorithm, except, again,
for the cases of conservativeness.

However, it should be observed that, if the analysis is performed after a call
to doPrivileged() has been inserted, any edge from the PrivilegedAction or
PrivilegedExceptionAction’s run() node into a different class loader’s name
space will also be, by definition, a boundary edge. For example, in Figure 5, after
the FileOutputStream constructor has been wrapped in a privileged block, the
edge f from the op.run() node to the FileOutputStream.<init>() node is
a boundary edge, and the permission ID set associated with the head node is
non-empty. Reporting a privileged-code requirement would make the existing
call to doPrivileged() redundant. To avoid this situation, any boundary edge
originating from a PrivilegedAction or PrivilegedExceptionAction’s run()
node such that the only predecessors of the run() node are doPrivileged()
nodes is automatically excluded a candidate for doPrivileged().

4.4 Complexity

The privileged-code placement algorithm is obtained by augmenting the access-
rights analysis algorithm in a way that does not affect the algorithm’s complexity
and convergence except for a constant factor. Therefore, executing the privileged-
code placement algorithm still requires O(|E||P |) time.

5 Tainted-Variable Analysis

We refer to the data that either originate from an untrusted source or that
can be derived from an untrusted source as being tainted [27]. Tainted data
and the variables that hold or reference it can be used for certain kinds of
overwrite attacks [27], such as overwriting the name of a file or jump address.
Sometimes, however, it may be necessary to use a tainted variable when accessing
restricted resources. In such cases, the data can be sanitized and made untainted
by performing sanity checks on it before using it in restricted operations [3].
Sanity checks are usually domain or component specific. We assume that, for a
specific application, there is an associated library containing the sanity checks
on that application’s tainted variables.

A tainted variable is not necessarily a security problem. It may constitute
a security problem if it is also a privileged variable, meaning that it is used
inside privileged code [35]. Even a privileged tainted variable is not necessarily a
security problem. In fact, we distinguish two types of privileged tainted variables:
if a privileged tainted variable is used to access a restricted resource, we will call

Interprocedural Analysis for Privileged Code Placement 379

it malicious, otherwise we will call it benign. Since authorization checks are not
performed beyond the stack frame invoking doPrivileged(), an untrusted client
application could exploit a malicious variable to have the privileged code access
restricted resources on its behalf.

In Figure 2, variable logFileName is not tainted because its value cannot be
set by a client application. In Figure 3, the host and port parameters are both
tainted because their values can be set by any client application and no sanity
check is performed on them. Additionally, they are both privileged because they
are used inside privileged code, and they are malicious because they are are used
to access a restricted resource. An untrusted client, with no SocketPermission,
can invoke getSocket() on the trusted library and have the library open an
arbitrary socket connection on its behalf. Variable userName, though tainted and
privileged, is benign because it is not used to perform any restricted operation.

This section presents a simple interprocedural tainted-variable analysis al-
gorithm that augments the privileged-code placement algorithm described in
Section 4. The objective of the tainted-variable analysis is both to detect exist-
ing malicious variables and to avoid the introduction of new malicious variables
when making new code privileged.

The first step of the tainted-variable analysis algorithm is to compute the
initial set S of tainted variables, which is the union of the following two sets:

– Set S1, containing the modifiable-component instance and static fields that
can be modified by client code

– Set S2, containing all the parameters to the modifiable components’ public
and protected entry methods, including the receiver objects for non-static
methods

Set S2 can be computed easily. However, it should be observed that if a package in
a modifiable component is not sealed [29], then S2 should contain the parameters
to the package’s default-scope methods as well.

A tainted variable can, directly or indirectly, taint other variables, for example
through assignments. The second step of the tainted-variable analysis algorithm
consists of identifying existing privileged variables in the modifiable components
and detect if they are tainted. Any standard interprocedural program-slicing
analysis algorithm [36] can be used to detect value flows from tainted variables
to privileged variables. Our algorithm uses a program-slicing algorithm that, for
any privileged variable x, constructs a slice of x and then checks if the slice
contains variables in set S. If so, x is potentially tainted as well. It remains to be
seen whether x is benign or malicious. The access-rights analysis algorithm gives
us the answer. Since x is privileged, x must be used in at least one privileged
instruction. For x to be benign, it must be Π(n) = ∅ for any node n representing
a method executing any privileged instruction that contains x. If there exists a
node n representing a method in which a privileged instruction containing x is
executed, such that Π(n) �= ∅, then we conservatively assume that x is malicious,
in which case we look for a sanity check on x. If a sanity check for x exists and
it can be determined that x passes it, then x is considered sanitized. Otherwise,
the tainted-variable analysis reports a potential security risk.

380 M. Pistoia et al.

If x is not an existing privileged variable, but it would become so by mak-
ing new code privileged as a result of executing the privileged-code placement
algorithm, the tainted-variable analysis proceeds exactly as before. The only dif-
ference is that it will report that the code containing x can be made privileged
only if x is benign or sanitizable.

6 Experimental Results

Context- and intraprocedurally flow-sensitive static analysis has a reputation
for requiring significant processing power and memory. We have performed
privileged-code and tainted-variable analysis on parts of rt.jar, large commer-
cial middleware, and the Standard Performance Evaluation Corporation Java
Business Benchmark 2000 (SPECjbb2000) program [34]. The simplest library
that we analyzed is the LibraryCode class in Figure 1. Figure 6 shows the Hy-
perText Markup Language (HTML) output produced by the MARCO tool. For
better usability, the HTML output has links to the source code anchored to the
line numbers where a call to doPrivileged() should be inserted. As expected,
the tool reported two possible privileged-code placements, but detected that both
the parameters to the Socket constructor were tainted. This was an indication
that only the call to the FileOutputStream constructor could be safely made
privileged. The results reported by the MARCO tool on all the other bench-
marks were also correct based on source-code manual inspection and subsequent
testing. In particular, the tool detected when existing privileged code was un-
necessary or redundant, and appropriately distinguished between malicious and
benign tainted variables.

Most recently, we analyzed Eclipse V3.0 [13] to identify which portions of
the plug-in code should be made privileged in order to enable Eclipse to run

Fig. 6. Privileged-Code Placement Report on LibraryCode

Interprocedural Analysis for Privileged Code Placement 381

Table 1. Analysis Results

Eclipse Plug-in Classes Methods Time (sec) Nodes Edges Instr. (bytes) doPriv.

ant 2245 14799 4668 169539 1833305 818342 1908
core.runtime 1265 7233 1379 59771 134191 421094 353
osgi 1069 6091 814 62031 141397 362482 256
tomcat 2804 19885 5793 197709 471957 1066369 2011
ui 2910 16299 11254 191752 1843518 891270 150
ui.forms 972 4497 4430 29199 59605 286739 14

with a Java 2 SecurityManager enabled. The results reported in Table 1 are
from running the MARCO tool on an IBM Personal Computer with an Intel
1.6 GHz Pentium M processor and 1 GB of Random Access Memory (RAM),
and with operating system Microsoft Windows XP SP2. The MARCO tool has
been implemented in Java. We ran it both as a stand-alone application and in-
side Eclipse V3.0 using Sun Microsystems’ JRE V1.4.2 02. JRE functionality
was made part of the analysis scope by including the JRE V1.4.2 02 system
and extension libraries. To reduce the size of the analysis scope, the MARCO
tool was customized to build the analysis scope based on the plug-in dependen-
cies. The number of classes in the analysis scope was still greater than 20,000.
Table 1 shows, for some Eclipse plug-ins, how many classes and methods were
included in the ARIG, the time employed to run the whole analysis (including
the ARIG construction, which on average takes 96% of the total time), the num-
ber of nodes and edges in the ARIG, the instructions count, and the number of
doPrivileged() locations suggested by the tool. On average, 50% of the code
portions candidate to become privileged contained malicious tainted variables—
an indication that doPrivileged() should not be used. The osgi plug-in was
the only one that already contained calls to doPrivileged(). The total number
was 29, and 8 of those were unnecessary or redundant.

Other analyses were performed on large commercial products (over 20,000
classes in the analysis scope), based on the JRE V1.1 access-control model.
The goal was to identify their privileged-code requirements to allow them to
successfully run with the Java 2 access-control model enabled.

7 Related Work

Privileged code has historic roots in the 1970’s. The Digital Equipment Corpo-
ration (DEC) Virtual Address Extension/Virtual Memory System (VAX/VMS)
operating system had a feature similar to the doPrivileged() method in Java
2 and the Assert() method in CLR. The VAX/VMS feature was called privi-
leged images. Privileged images were similar to UNIX setuid programs, except
that privileged images ran in the same process as all the user’s other unprivi-
leged programs. This meant that they were considerably easier to attack than
UNIX setuid programs because they lacked the usual separate process/separate

382 M. Pistoia et al.

address space protections. One example of an attack on privileged images is
demonstrated in a paper by Koegel, Koegel, Li, and Miruke [23].6

More recently, static and dynamic analysis techniques have both been used
for modelling authorization algorithms. Much of the work has focused on per-
formance optimizations or on providing alternatives to the existing approaches
employed by Java 2 [29, 28] and CLR [16]. Pottier, Skalka, and Smith [30] ex-
tend and formalize Wallach’s security passing style [41] via type theory using
a λ-calculus, called λsec. However, their approach does not model all of Java’s
authorization characteristics, including multi-threaded code and analysis of in-
complete programs [31], nor does it compute the authorization object, which
often includes identifying the String parameters to the Permission object’s
constructor. Bartoletti, Degano, and Ferrari [5] are interested in optimizing per-
formance of run-time authorization testing. This is done by eliminating redun-
dant tests and relocating others as is needed. Additionally [6], they investigate
ways in which program transformations can preserve security properties in ex-
isting code, particularly in the context of Java. Specifically, the transformations
they study include redundant authorization tests elimination, dead code elimi-
nation, method inlining, and an eager evaluation strategy for stack inspection.
While their model takes privileged code into account, they assume that privi-
leged code has already been inserted, and do not solve the problem of detecting
which portions of library code should be made privileged. Banerjee and Nau-
mann [4] apply denotational semantics to show the equivalence of eager and
lazy semantics for stack inspection, provide a static analysis of safety, and iden-
tify transformations that can remove unnecessary authorization tests. Significant
limitations to this approach are that the analyses are limited to a single thread,
and incomplete-program analyses are not supported. Jensen, Le Métayer, and
Thorn [20] focus on proving that code is secure with respect to a global security
policy. Their model adopts operational semantics to prove the properties, using a
two-level temporal logic, and shows how to detect redundant authorization tests.
They assume all of the code is available for analysis, and that a call graph can
be constructed for the code. Felten, Wallach, Dean, and Balfanz have studied
a number of security problems related to mobile code [39, 12, 41, 8, 40, 10, 9]. In
particular, they present a formalization of stack introspection, which examines
authorization based on the principals currently active in a thread stack at run
time (security state). An authorization optimization technique, called security
passing style, encodes the security state of an application while the application
is executing [41]. Each method is modified so that it passes a security token as
part of each invocation. The token represents an encoding of the security state
at each stack frame, as well as the result of any authorization test encountered.
By running the application and encoding the security state, the security passing

6 In a private communication with Dr. Paul A. Karger [21], he indicated that privileged
images had been a very significant source of security attacks in the VAX/VMS
operating system, and required many patches and updates over the years. He did
extensive work on resolving those problems at DEC in the 1979-1980 timeframe.

Interprocedural Analysis for Privileged Code Placement 383

style explores subgraphs of the comparable invocation graph, and discovers the
associated security states and authorizations. The purpose of their work is to
optimize the authorization performance, while ours is to discover which portions
of library code should be made privileged. Our approach analyzes all the possible
execution paths, even those that may not be discovered by a limited number of
test cases. Rather than analyzing security policies as embodied by existing code,
Erlingsson and Schneider [14] describe a system that inlines reference monitors
into the code to enforce specific security policies. Their objective is to define a
security policy and then inject authorization points into the code. This approach
can reduce or eliminate redundant authorization tests. Koved, Pistoia, and Ker-
shenbaum [24] describe an algorithm and system for computing Java 2 security
authorization requirements for existing Java code. Their algorithm, which is the
starting point for this paper, covers many of the subtle aspects of Java 2 secu-
rity, including authorization requirements for multi-threaded applications and
analysis of incomplete programs [31], for the computation of an ARIG.

The notion of tainted variables became known with the Perl language. In Perl,
using the -T option allows detecting tainted variables [38]. Shankar, Talwar, Fos-
ter, and Wagner present a tainted-variable analysis for CQual using constraint
graphs [33]. To find format string bugs, CQual uses a type-qualifier system [15]
with two qualifiers: tainted and untainted. The types of values that can be con-
trolled by an untrusted adversary are qualified as being tainted, and the rest of
the variables are qualified as untainted. A constraint graph is constructed for
a CQual program. If there is a path from a tainted node to an untainted node
in the graph, an error is flagged. Newsome and Song [27] propose a dynamic
tainted-variable analysis that catches errors by monitoring tainted variables at
run time. Data originating or arithmetically derived from untrusted sources,
such as the network, are marked as tainted. Tainted variables are tracked at run
time, and when they are used in a dangerous way an attack is detected. Volpano,
Irvine, and Smith [37] relate tainted-variable analysis to enforcing information
flow policies through typing. Ashcraft and Engler [3] also use tainted-variable
analysis to detect software attacks due to tainted variables. Their approach pro-
vides user-defined sanity checks to untaint potentially tainted variables. In Java
2, Enterprise Edition (J2EE), access rights are defined in terms of operations
on components, instead of the data encapsulated and used by the components.
Naumovich and Centonze [26] address the need for specifying access rights on
data. Access right support for data can simplify sanity checks for tainted vari-
ables. For instance, a tainted variable is benign for those clients who have access
rights over the data referenced by the tainted variable.

8 Conclusion

In this paper, we presented an interprocedural analysis for safely adding priv-
ileged code in order to ensure that no unnecessary access rights are granted
to client code, and that tainted variables are not exploited. Our approach for
privileged-code and tainted-variable analysis is built on top of an access-rights

384 M. Pistoia et al.

analysis and uses an Access-Rights Invocation Graph (ARIG). As part of the
analysis, we solve a number of other related problems, including identification
of unnecessary and redundant privileged code and flagging when tainted vari-
ables are benign or malicious. We have implemented the analysis described in
this paper and are currently using it to identify security violations due to privi-
leged code in large libraries and applications. Our analysis technique scales well
enough to produce usable results on large applications and libraries. While the
analysis techniques described in this paper are in the context of Java code, the
basic concepts are applicable to privileged-code placement and tainted-variable
analysis issues in non-Java-based systems as well.

Acknowledgments

The authors would like to thank their colleagues at the IBM T. J. Watson
Research Center: Julian Dolby, Ted Habeck, Paul Karger, Aaron Kershenbaum,
Michael Steiner, Sam Weber, and Xiaolan Zhang for their invaluable technical
contributions to this paper. Thanks also to the ECOOP 2005 reviewers for their
insightful comments and suggestions, which helped to improve this paper.

References

1. Ole Agesen. The Cartesian Product Algorithm: Simple and Precise Type Inference
Of Parametric Polymorphism. In Proceedings of the 9th European Conference on
Object-Oriented Programming, pages 2–26. Springer-Verlag, August 1995.

2. Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley, Reading, MA, USA, January 1986.

3. Ken Ashcraft and Dawson Engler. Using Programmer-Written Compiler Exten-
sions to Catch Security Holes. In Proceedings of the 2002 IEEE Symposium on
Security and Privacy, pages 143–159, Oakland, CA, USA, May 2002. IEEE Com-
puter Society.

4. Anindya Banerjee and David A. Naumann. A Simple Semantics and Static Analysis
for Java Security. Technical Report CS2001-1, Stevens Institute of Technology,
Hoboken, NJ, USA, July 2001.

5. Massimo Bartoletti, Pierpaolo Degano, and Gian Luigi Ferrari. Static Analysis
for Stack Inspection. In Proceedings of International Workshop on Concurrency
and Coordination, Electronic Notes in Theoretical Computer Science, volume 54,
Amsterdam, The Netherlands, 2001. Elsevier.

6. Massimo Bartoletti, Pierpaolo Degano, and Gian Luigi Ferrari. Stack Inspection
and Secure Program Transformations. International Journal of Information Secu-
rity, 2(3):187–217, August 2004.

7. Frédéric Besson, Tomasz Blanc, Cédric Fournet, and Andrew D. Gordon. From
Stack Inspection to Access Control: A Security Analysis for Libraries. In Proceed-
ings of the 17th IEEE Computer Security Foundations Workshop, pages 61–75,
Pacific Grove, CA, USA, June 2004. IEEE Computer Society.

8. Drew Dean. The Security of Static Typing with Dynamic Linking. In Proceedings of
the 4th ACM conference on Computer and Communications Security, pages 18–27,
Zurich, Switzerland, 1997. ACM Press.

Interprocedural Analysis for Privileged Code Placement 385

9. Drew Dean, Edward W. Felten, and Dan S. Wallach. Java Security: From HotJava
to Netscape and beyond. In Proceedings of the 1996 IEEE Symposium on Secu-
rity and Privacy, pages 190–200, Silver Spring, MD, USA, 1996. IEEE Computer
Society Press.

10. Drew Dean, Edward W. Felten, Dan S. Wallach, and Dirk Balfanz. Java Secu-
rity: Web Browsers and Beyond. Technical Report 566-597, Princeton University,
Princeton, NJ, USA, February 1997.

11. Jeffrey Dean, David Grove, and Craig Chambers. Optimization of Object-Oriented
Programs Using Static Class Hierarchy Analysis. In Proceedings of the 9th Euro-
pean Conference on Object-Oriented Programming, pages 77–101, Aarhus, Den-
mark, August 1995. Springer-Verlag.

12. Richard Drews Dean. Formal Aspects of Mobile Code Security. PhD thesis, Prince-
ton University, Princeton, NJ, USA, January 1999.

13. Eclipse Project, http://www.eclipse.org.
14. Úlfar Erlingsson and Fred B. Schneider. IRM Enforcement of Java Stack Inspec-

tion. In Proceedings of the 2000 IEEE Symposium on Security and Privacy, pages
246–255, Oakland, CA, USA, May 2000. IEEE Computer Society.

15. Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. Flow-Sensitive Type Qualifiers.
In Proceedings of the 2002 ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 1–12, Berlin, Germany, June 2002.

16. Adam Freeman and Allen Jones. Programming .NET Security. O’Reilly & Asso-
ciates, Inc., Sebastopol, CA, USA, June 2003.

17. Li Gong, Gary Ellison, and Mary Dageforde. Inside Java 2 Platform Security:
Architecture, API Design, and Implementation. Addison-Wesley, Reading, MA,
USA, second edition, May 2003.

18. George Grätzer. General Lattice Theory. Birkhäuser, Boston, MA, USA, second
edition, January 2003.

19. Sumit Gulwani and George C. Necula. Path-sensitive Analysis for Linear Arith-
metic and Uninterpreted Functions. In 11th Static Analysis Symposium, volume
3148 of LNCS, pages 328–343. Springer-Verlag, August 2004.

20. Thomas P. Jensen, Daniel Le Métayer, and Tommy Thorn. Verification of Control
Flow Based Security Properties. In Proceedings of the 1999 IEEE Symposium on
Security and Privacy, pages 89–103, Oakland, CA, USA, May 1999.

21. Paul A. Karger, IBM Thomas J. Watson Research Center, Yorktown Heights, NY,
USA. Private communication, 17 December 2004.

22. Gary A. Kildall. A Unified Approach to Global Program Optimization. In Pro-
ceedings of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, pages 194–206, Boston, MA, USA, 1973. ACM Press.

23. John F. Koegel, Rhonda M. Koegel, Zhiming Li, and Dattaram T. Miruke. A
Security Analysis of VAX VMS. In ACM ’85: Proceedings of the 1985 ACM Annual
Conference on the Range of Computing: Mid-80’s Perspective, pages 381–386. ACM
Press, 1985.

24. Larry Koved, Marco Pistoia, and Aaron Kershenbaum. Access Rights Analysis for
Java. In Proceedings of the 17th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages 359–372, Seattle, WA,
USA, November 2002. ACM Press.

25. Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, June 1997.

26. Gleb Naumovich and Paolina Centonze. Static Analysis of Role-Based Access
Control in J2EE Applications. SIGSOFT Software Engineering Notes, 29(5):1–10,
September 2004.

386 M. Pistoia et al.

27. James Newsome and Dawn Song. Dynamic Taint Analysis for Automatic Detec-
tion, Analysis, and Signature Generation of Exploits on Commodity Software. In
Proceedings of the 12th Annual Network and Distributed System Security Sympo-
sium, San Diego, CA, USA, February 2005. IEEE Computer Society.

28. Marco Pistoia, Nataraj Nagaratnam, Larry Koved, and Anthony Nadalin. Enter-
prise Java Security. Addison-Wesley, Reading, MA, USA, February 2004.

29. Marco Pistoia, Duane Reller, Deepak Gupta, Milind Nagnur, and Ashok K. Ra-
mani. Java 2 Network Security. Prentice Hall PTR, Upper Saddle River, NJ, USA,
second edition, August 1999.

30. François Pottier, Christian Skalka, and Scott F. Smith. A Systematic Approach
to Static Access Control. In Proceedings of the 10th European Symposium on
Programming Languages and Systems, pages 30–45. Springer-Verlag, 2001.

31. Barbara G. Ryder. Dimensions of Precision in Reference Analysis of Object-
Oriented Languages. In Proceedings of the 12th International Conference on Com-
piler Construction, pages 126–137, Warsaw, Poland, April 2003. Invited Paper.

32. Jerome H. Saltzer and Michael D. Schroeder. The Protection of Information in
Computer Systems. In Proceedings of the IEEE, volume 63, pages 1278–1308,
September 1975.

33. Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and David Wagner. Detecting
Format String Vulnerabilities with Type Qualifiers. In Proceedings of the 10th
USENIX Security Symposium, Washington, DC, USA, August 2001.

34. Standard Performance Evaluation Corporation Java Business Benchmark 2000
(SPECjbb2000), http://www.spec.org.

35. Sun Microsystems, Security Code Guidelines, http://java.sun.com.
36. Frank Tip and T. B. Dinesh. A Slicing-based Approach for Locating Type Errors.

ACM Transactions on Software Engineering and Methodology, 10(1):5–55, 2001.
37. Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. A Sound Type System for

Secure Flow Analysis. Journal of Computer Security, 4(2-3):167–187, January
1996.

38. Larry Wall, Tom Christiansen, and Jon Orwant. Programming Perl. O’Reilly &
Associates, Inc., Sebastopol, CA, USA, third edition, July 2000.

39. Dan S. Wallach. A New Approach to Mobile-Code Security. PhD thesis, Princeton
University, Princeton, NJ, USA, January 1999.

40. Dan S. Wallach, Dirk Balfanz, Drew Dean, and Edward W. Felten. Extensible Se-
curity Architectures for Java. In Proceedings of the 16th ACM Symposium on Op-
erating Systems Principles, pages 116–128, Saint Malo, France, 1997. ACM Press.

41. Dan S. Wallach and Edward W. Felten. Understanding Java Stack Inspection.
In Proceedings of the IEEE Symposium on Security and Privacy, pages 52–63,
Oakland, CA, USA, May 1998.

State Based Ownership, Reentrance, and Encapsulation

Anindya Banerjee1,� and David A. Naumann2,��

1 Kansas State University, Manhattan KS 66506 USA
ab@cis.ksu.edu

2 Stevens Institute of Technology, Hoboken NJ 07030 USA
naumann@cs.stevens.edu

Abstract. A properly encapsulated data representation can be revised for refac-
toring or other purposes without affecting the correctness of client programs and
extensions of a class. But encapsulation is difficult to achieve in object-oriented
programs owing to heap based structures and reentrant callbacks. This paper
shows that it is achieved by a discipline using assertions and auxiliary fields to
manage invariants and transferrable ownership. The main result is representation
independence: a rule for modular proof of equivalence of class implementations.

1 Introduction

You are responsible for a library consisting of many Java classes. While fixing a bug
or refactoring some classes, you revise the implementation of a certain class in a way
that is intended not to change its observable behavior, e.g., an internal data structure is
changed for reasons of performance. You are in no position to check, or even be aware
of, the many applications that use the class via its instances or by subclassing it. In
principle, the class could have a full functional specification. It would then suffice to
prove that the new version meets the specification. In practice, full specifications are
rare. Nor is there a well established logic and method for modular reasoning about the
code of a class in terms of the specifications of the classes it uses, without regard to
their implementations or the users of the class in question [20] (though progress has
been made). One problem is that encapsulation, crucial for modular reasoning about
invariants, is difficult to achieve in programs that involve shared mutable objects and
reentrant callbacks which violate simple layering of abstractions. Yet complicated heap
structure and calling patterns are used, in well designed object-oriented programs, pre-
cisely for orderly composition of abstractions in terms of other abstractions.

There is an alternative to verification with respect to a specification. One can attempt
to prove that the revised version is behaviorally equivalent to the original. Of course
their behavior is not identical, but at the level of abstraction of source code (e.g., modulo
specific memory addresses), it may be possible to show equivalence of behavior. If any
specifications are available they can be taken into account using assert statements.

There is a standard technique for proving equivalence [18, 24]: Define a coupling
relation to connect the states of the two versions and prove that it has the simulation

� Supported in part by NSF grants CCR-0209205, ITR-0326577, and CCR-0296182.
�� Supported in part by NSF grants CCR-0208984, CCF-0429894, and by Microsoft Research.

A.P. Black (Ed.): ECOOP 2005, LNCS 3586, pp. 387–411, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

388 A. Banerjee and D.A. Naumann

property, i.e., it holds initially and is preserved by parallel execution of the two versions
of each method. In most cases, one would want to define a local coupling relation for
a single pair of instances of the class, as methods act primarily on a target object (self)
and the island of its representation objects; an induced coupling for complete states is
then obtained by a general construction. A language with good encapsulation should
enjoy an abstraction or representation independence theorem that says a simulation for
the revised class induces a simulation for any program built using the class. Suitable
couplings are the identity except inside the abstraction boundary and an identity exten-
sion lemma says simulation implies behavioral equivalence of two programs that differ
only by revision of a class. Again, such reasoning can be invalidated by heap shar-
ing, which violates encapsulation of data, and by callbacks, which violate hierarchical
control structure.

There is a close connection between the equivalence problem and verification: ver-
ification of object oriented code involves object invariants that constrain the internal
state of an instance. Encapsulation involves defining the invariant in a way that protects
it from outside interference so it holds globally provided it is preserved by the methods
of the class of interest. Simulations are like invariants over two copies of the state space,
and again modular reasoning requires that the coupling for a class be independent from
outside interference. The main contribution of this paper is a representation indepen-
dence theorem using a state-based discipline for heap encapsulation and control of
callbacks.

Extant theories of data abstraction assume, in one way or another, a hierarchy of
abstractions such that control does not reenter an encapsulation boundary while already
executing inside it. In many programming languages it is impossible to write code that
fails to satisfy the assumption. But it is commonplace in object oriented programs for
a method m acting on some object o to invoke a method on some other object which
in turn leads to invocation of some method on o —possibly m itself— while the initial
invocation of m is in progress. This makes it difficult to reason about when an object’s
invariant holds [20, 25]; we give an example later.

There is an analogous problem for reasoning with simulations. In previous work [2]
we formulated an abstraction theorem that deals with sharing and is sound for programs
with reentrant callbacks, but it is not easy to apply in cases where reentrant callbacks
are possible. The theorem allows the programmer to assume that all methods preserve
the coupling relation when proving simulation, i.e., when reasoning about parallel ex-
ecution of two versions of a method of the class of interest. This assumption is like
verifying a procedure implementation under the assumption that called procedures are
correct. But the assumption that called methods preserve the coupling is of no use if the
call is made in an uncoupled intermediate state. For the examples in [2], we resort to
ad hoc reasoning for examples involving callbacks.

In a recent advance, [6, 21] reentrancy is managed using an explicit auxiliary (or
ghost) field inv to designate states in which an object invariant is to hold. Encapsulation
is achieved using a notion of ownership represented by an auxiliary mutable field own.
This is more flexible than type-based static analyses because the ownership invariant
need only hold in certain flagged states. Heap encapsulation is achieved not by disal-
lowing boundary-crossing pointers but by limiting, in a state-dependent way, their use.

State Based Ownership, Reentrance, and Encapsulation 389

Reasoning hinges on a global program invariant that holds in all states, using inv fields
to track which object invariants are temporarily not in force because control is within
their encapsulation boundary. When inv holds, the object is said to be packed; a field
may only be updated when the object is unpacked.

In this paper we adapt the inv/own discipline [6, 21]1 to proving class equivalence
by simulation. The inv fields make it possible for an induced coupling relation to hold at
some pairs of intermediate states during parallel execution of two alternative implemen-
tations. This means that the relation-preservation hypothesis of the abstraction theorem
can be used at intermediate states even when the local coupling is not in force. So per-
method modular reasoning is fully achieved. In large part the discipline is unchanged,
as one would hope in keeping with the idea that a coupling is just an invariant over two
parallel states. But we have to adapt some features in ways that make sense in terms
of informal considerations of information hiding. The discipline imposes no control on
field reads, only writes, but for representation independence we need to control reads as
well. The discipline also allows ownership transfer quite freely, though it is not trivial
to design code that correctly performs transfers. For representation independence, the
transfer of previously-encapsulated data to clients (an unusual form of controlled “rep
exposure” [16]) is allowed but must occur only in the code of the encapsulating class;
even then, it poses a difficult technical challenge. The significance of our adaptations is
discussed in Section 7.

A key insight is that, although transferring ownership and packing/unpacking in-
volve only ghost fields that cannot affect program execution, it is useful to consider
them to be observable. It is difficult to reason about two versions of a class, in a modu-
lar way, if they differ in the way objects cross the encapsulation boundary or in which
methods assume the invariant is in force. The requisite similarity can be expressed us-
ing assert statements so we can develop a theory based on this insight without the need
to require that the class under revision has any specifications.

Contributions. The main contributions are (a) formulation of a notion of instance-based
coupling analogous to invariants in the inv/own discipline; (b) proof of a representation
independence theorem for a language with inheritance and dynamic dispatch, recursive
methods and callbacks; mutable objects, type casts, and recursive types; and (c) results
on identity extension and use of the theorem to prove program equivalence. Together
these constitute a rule by which the reasoner considers just the methods of the revised
class and concludes that the two versions yield equivalent behavior for any program
context.

The theorem allows ownership transfers that cross encapsulation boundaries: from
client to abstraction [16], between abstractions, and even from abstraction to client [29,
4]. The theorem supports the most important form of modularity: reasoning about one
method implementation (or rather, one corresponding pair) at a time —on the assump-
tion that all methods preserve the coupling (even the one in question, modulo termi-
nation). Our theorem also supports local reasoning in the sense that a single instance

1 Called the “Boogie methodology” in the context of the Spec# project [7] at Microsoft Re-
search, which implements the discipline as part of a comprehensive verification system in-
spired by the ESC projects.

390 A. Banerjee and D.A. Naumann

(or pair of instances) is considered, together with the island comprised of its currently
encapsulated representation objects.

The discipline can be used in any verification system that supports ghost variables
and assertions. So our formalism treats predicates in assertions semantically, avoiding
ties to any particular logic or specification formalism.

Related Work Besides the inv/own Discipline. Representation independence is needed
not only for modular proof of equivalence of class implementations but also for mod-
ular reasoning about improvements (called data refinement). Such reasoning is needed
for correctness preserving refactoring. The refactoring rules of Borba et al. [10] were
validated using the data refinement theory of Cavalcanti and Naumann [13] which does
not model sharing/aliasing. We plan to use the present result to overcome that limita-
tion. Representation independence has also been used to justify treating a method as
pure if none of its side effects are visible outside an encapsulation boundary [8, 26].

Representation independence is proved in [2] for a language with shared mutable
objects on the basis of ownership confinement imposed using restrictions expressed in
terms of ordinary types; but these restrictions disallow ownership transfer. The results
are extended to encompass ownership transfer in [4] but at the cost of substantial tech-
nical complications and the need for reachability analysis at transfer points, which are
designated by explicit annotations. Like the present paper, our previous results are based
on a semantics in which the semantics of primitive commands is given in straightfor-
ward operational terms. It is a denotational semantics in that a command denotes a state
transformer function, defined by induction on program structure. To handle recursion,
method calls are interpreted relative to a method environment that gives the semantics of
all methods. This is constructed as the limit of approximations, each exact up to a cer-
tain maximum calling depth. This model directly matches the recursion rule of Hoare
logic, of which the abstraction theorem is in some sense a generalization.

For simple imperative code and single-instance modules, O’Hearn et al. [29, 23]
have proved strong rules for local reasoning about object invariants and simulations
using separation logic which, being state based, admits a notion of ownership transfer.

Confinement disciplines based on static analysis have been given with the objective
of encapsulation for modular reasoning, though mostly without formal results on mod-
ular reasoning [14, 11]. Work using types makes confinement a program invariant, i.e.,
a property required to hold in every reachable state. This makes it difficult to transfer
ownership, due to temporary sharing at intermediate states. Most disciplines preclude
transfer (e.g., [15, 11]); where it is allowed, it is achieved using nonstandard constructs
such as destructive reads and restrictive linearity constraints (e.g., [12, 30]).

Outline. Sect. 2 sketches the inv/own discipline. It also sketches an example of the
use of simulation to prove equivalence of two versions of a class involving reentrant
callbacks, highlighting the problems and the connection between our solution and the
inv/own discipline. Sect. 3 formalizes the language for which our result is given and
Sect. 4 formalizes the discipline in our semantics. Sect. 5 gives the main definitions—
proper annotation, coupling, simulation—and the abstraction theorem. Sect. 6 connects
simulation with program equivalence. Sect. 7 discusses future work and assesses our
adaptation of the discipline. For lack of space, all proofs are omitted and can be found
in the companion technical report, which also treats generics [5].

State Based Ownership, Reentrance, and Encapsulation 391

2 Background and Overview

2.1 The inv/own Discipline

To illustrate the challenge of reentrant callbacks as well as the state based ownership
discipline, we consider a class Queue that maintains a queue of tasks. Each task has an
associated limit on the number of times it can be run. Method Queue.runAll runs each
task that has not exceeded its limit. For simplicity we refrain from using interfaces; class
Task in Fig. 1 serves as the interface for tasks. Class Qnode in the same Figure is used
by Queue which maintains a singly linked list of nodes that reference tasks. Field count
tracks the number of times the task has been run. For brevity we omit initialization and
constructors throughout the examples.

Fig. 2 gives class Queue. One intended invariant of Queue is that no task has been
run more times than its limit. This is expressed, in a decentralized way, by the invariant
declared in Qnode. Some notation: we write I Qnode(o) for the predicate o.tsk �=null
and o.count≤o.limit.

Another intended invariant of Queue is that runs is the sum of the count fields of the
nodes reached from tsks. This is the declared I Queue of Fig. 2. (The reader may think
of other useful invariants, e.g., that the list is null-terminated.) Note that at intermediate
points in the body of Queue.runAll, I Queue does not hold because runs is only updated
after the loop. In particular, I Queue does not hold at the point where p.run() is invoked.

class Task { void run(){ } }
class Qnode {

Task tsk; Qnode nxt; int count, limit;
invariant tsk �= null ∧ 0≤count≤limit;
... // constructor elided (in subsequent figures these ellipses are elided too)
void run() { tsk.run(); count := count+1; }
void setTsk(Task t, int lim) {

tsk := t; limit := lim; count := 0; pack self as Qnode; } }

Fig. 1. Classes Task and Qnode. The pack statement is discussed later

class Queue {
Qnode tsks; int runs := 0;
invariant runs = (Σ p ∈ tsks.nxt∗ | p.count);
int getRuns() { result := runs; }
void runAll() {

Qnode p := tsks; int i := 0;
while p �= null do {

if p.getCount() < p.getLimit() then p.run(); i := i+1; fi; p := p.getNxt(); }
runs := runs+i; }

void add(Task t, int lim){
Qnode n := new Qnode; n.setTsk(t,lim); n.setNxt(tsks); tsks := n; } }

Fig. 2. Class Queue

392 A. Banerjee and D.A. Naumann

For an example reentrant callback, consider tasks of the following type.

class RTask extends Task { Queue q; void run(){q.runAll(); } . . . }

Consider a state in which o points to an instance of Queue and the first node in the list,
o.tsks, has count=0 and limit=1. Moreover, suppose field q of the first node’s task has
value o. Invocation of o.runAll diverges: before count is incremented to reflect the first
invocation, the task makes a reentrant call on o.runAll —in a state where I Queue does
not hold. In fact runAll again invokes run on the first task and the program fails due to
unterminating recursion.

As another example, suppose RTask.run is instead void run(){q.getRuns();} .
This seems harmless, in that getRuns neither depends on I Queue nor invokes any meth-
ods —it is even useful, returning a lower bound on the actual sum of runs. It typifies
methods like state readers in the observer pattern, that are intended to be invoked as
reentrant callbacks.

The examples illustrate that it is sometimes but not always desirable to allow a
reentrant callback when an object’s invariant is violated temporarily by an “outer” in-
vocation. The ubiquity of method calls makes it impractical to require an object’s in-
variant to be reestablished before making any call —e.g., the point between n.setTsk
and n.setNxt of method add in Fig. 2 — although this is sound and has been proposed
in the literature on object oriented verification [17, 22].

A better solution is to prevent just the undesirable reentrant calls. One could make
the invariant an explicit precondition, e.g., for runAll but not getRuns. This puts re-
sponsibility on the caller, e.g., RTask.run cannot establish the precondition and is thus
prevented from invoking runAll. But an object invariant like I Queue involves encapsu-
lated state not suitable to be visible in a public specification.

The solution of the Boogie methodology [6, 21] is to introduce a public ghost field,
inv, that explicitly represents whether the invariant is in force. In the lingo, o.inv says
object o is packed. Special statements pack and unpack set and unset inv.

A given object is an instance not only of its class but of all its superclasses, each of
which may have invariants. The methodology takes this into account as follows. Instead
of inv being a boolean, as in the simplified explanation above, it ranges over class names
C such that C is a superclass of the object’s allocated type. That is, it is an invariant
(enforced by typing rules) that o.inv≥ type(o) where type(o) is the dynamic type of o.
The discipline requires certain assertions preceding pack and unpack statements as well
as field updates, to ensure that the following is a program invariant (i.e., it holds in all
reachable states).

o.inv≤C ⇒ I C(o) (1)

for all C and all allocated objects o. That is, if o is packed at least to class C then the
invariant I C for C holds. Perhaps the most important stipulated assertion is that I C(o)
is required as precondition for packing o to level C.

Fig. 3 shows how the discipline is used for class Queue. Assertions impose precon-
ditions on runAll and add which require that the target object is packed to Queue. In
runAll, the unpack statement sets inv to the superclass of Queue, putting the task in
a position where it cannot establish the precondition for a reentrant call to runAll, al-
though it can still call getRuns which imposes no precondition on inv. After the update

State Based Ownership, Reentrance, and Encapsulation 393

void runAll() { assert self.inv = Queue && ! self.com;
unpack self from Queue;
Qnode p := self.tsks; int i := 0;
while p �= null do {

if p.getCount() < p.getLimit() then p.run(); i := i+1; fi; p := p.getNxt(); }
self.runs := self.runs + i;
pack self as Queue; }

void add(Task t, int lim){ assert self.inv = Queue && ! self.com;
unpack self from Queue;
Qnode n := new Qnode; setown n to (self,Queue);
n.setNxt(tsks); n.setTsk(t,lim); self.tsks := n;
pack self as Queue; } }

Fig. 3. Methods of class Queue with selected annotations

Table 1. Stipulated preconditions of field update and of the special commands

assert e1.inv > C; /* where C is the class that declares f ; i.e., f ∈ dom(dfieldsC) */
e1. f := e2

assert e.inv = superC ∧ I C(e) ∧ ∀p | p.own = (e,C)⇒ ¬p.com ∧ p.inv = type p;
pack e as C /* sets e.inv := C and p.com := true for all p with p.own = (e,C) */

assert e.inv = C ∧ ¬e.com;
unpack e from C /* sets e.inv := superC and p.com := f alse for all p with p.own = (e,C) */

assert e1.inv = Object ∧ (e2 = null∨ e2.inv > C);
setown e1 to (e2,C) /* sets e1.own := (e2,C) */

to runs, I Queue holds again as required by the precondition (not shown) of pack. The
ghost field com is discussed below.

In order to maintain (1) as a program invariant, it is necessary to control updates
to fields on which invariants depend. The idea is that, to update field f of some object
p, all objects o whose invariant depends on p. f must be unpacked. Put differently,
I (o) should depend only on state encapsulated for o. The discipline uses a form of
ownership for this purpose: I (o) may depend only on objects transitively owned by o.
For example, an instance of Queue owns the Qnodes reached from field tsks.

Ownership is embodied in an auxiliary field own, so that if p.own = (o,C) then o
directly owns p and an admissible invariant I D(o) may depend on p for types D with
type(o)≤D≤C. The objects transitively owned by o are called its island. For modular
reasoning, it is not feasible to require as an explicit precondition for each field update
that all transitive owners are unpacked. A third ghost field, com, is used to enforce a
protocol whereby packing/unpacking is dynamically nested or bracketed (though this
need not be textually apparent).

In addition to (1), two additional conditions are imposed as program invariants,
i.e., to hold in all reachable states of all objects. The first may be read “an object is

394 A. Banerjee and D.A. Naumann

committed to its owner if its owner is packed”. The second says that a committed object
is fully packed. These make it possible for an assignment to p. f to be subject only to
the precondition p.inv > C where C is the class that declares f .

The invariants are formalized in Def. 3 in Sect. 4. The stipulated preconditions
appear in Table 1, which also describes the semantics of the pack and unpack state-
ments in detail.2 The diligent reader may enjoy completing the annotation of Fig. 3
according to the rules of Table 1. Consult [6, 21] for more leisurely introductions to the
discipline.

2.2 Representation Independence

Consider the subclass AQueue of Queue declared in Fig. 4. It maintains an array, actsks,
of tasks which is used in an overriding declaration of runAll intended as an optimization
for the situation where many tasks are inactive (have reached their limit). We’ve dropped
runs and getRuns for brevity. Method add exhibits a typical pattern: unpack to establish
the condition in which a super call can be made (since the superclass unpacks from its
own level); after that call, reestablish the current class invariant. (This imposes proof
obligations on inheritance, see [6].)

The implementation of Fig. 4 does not set actsks[i] to null immediately when the
task’s count reaches its limit; rather, that situation is detected on the subsequent invoca-
tion of runAll. An alternative implementation is given in Fig. 5; it uses a different data
structure and handles the limit being reached as soon as it happens. Both implementa-
tions maintain an array of Qnode, but in the alternative implementation, its array artsk
is accompanied by a boolean array brtsk. Instead of setting entry i null when the node’s
task has reached its limit, brtsk[i] is set false.

We claim that the two versions are equivalent, in the context of arbitrary client pro-
grams (and subclasses, though for lack of space we do not focus on subclasses in the
sequel). We would like to argue as follows. Let f ilt1(o.actsks) be the sequence of non-
null elements of o.actsks with count < limit. Let f ilt2(ts,bs) take an array ts of tasks
and a same-length array bs of booleans and return the subsequence of those tasks n in
ts where bs is true and n.count < n.limit. Consider the following relation that connects
a state for an instance o of the original implementation (Table 4) with an instance o′ for
the alternative: f ilt1(o.actsks) = f ilt2(o′.artsk,o′.brtsk). The idea is that methods of
the new version behave the same as the old version, modulo this change of representa-
tion. That is, for each method of AQueue, parallel execution of the two versions from a
related pair of states results in a related pair of outcomes. (For this to hold we need to
conjoin to the relation the invariants associated with the two versions, e.g., the second
version requires artsk.length=brtsk.length.)

The left side of the picture below is an instance of some subclass of AQueue, sliced
into the fields of Queue, AQueue, and subclasses; dashed lines show the objects en-
capsulated at the two levels relevant to reasoning about AQueue —namely the Qnodes
reached from tsks and the array actsks.

2 We omit the preconditions e �= null and “e not error” that are needed for the rest of the pre-
condition to be meaningful. Different verification systems make different choices in handling
errors in assertions. Our formulation follows [28] and differs superficially from [6, 21].

State Based Ownership, Reentrance, and Encapsulation 395

On the right is an instance for the alternate implementation of AQueue. It is the con-
nection between these two islands that is of interest to the programmer. The “a”. . . “d”
of the figure indicate that both versions reference the same sequence of tasks, although
those tasks are not part of the islands.

In general, a local coupling is a binary relation on islands. It relates the state of an
island for one implementation of the class of interest with an island for the alternative.

A local coupling gives rise to an induced coupling relation on the complete program
state: Two heaps are related by the induced coupling provided that (a) they can be
partitioned into islands and (b) the islands can be put into correspondence so that each
corresponding pair is related by the local coupling. Moreover, the remaining objects
(not in an island) are related by equality. (More precisely, equality modulo a bijection
on locations, to take into account differences in allocation between the two versions.)
The details are not obvious and are formalized later.

The point of the abstraction theorem is to justify that it is sufficient to check that
the induced coupling is preserved by methods of AQueue, assuming the changed data
structure is encapsulated and can neither affect nor be affected by client programs. At
first glance one might expect the proof obligation to be that each method of AQueue
preserves the local coupling, and indeed this will be the focus of reasoning in practice.
But in general a method may act on more than just the island for self, e.g., by invoking

class AQueue extends Queue {
private Qnode[] actsks; private int alen;
void add(Task t, int lim) { assert self.inv= AQueue && ! self.com;

unpack self from AQueue;
super.add(t,lim); actsks[alen] := self.tsks; self.alen := self.alen+1;
pack self as AQueue; }

void runAll() { assert self.inv= AQueue && ! self.com;
unpack self from AQueue;
int i := self.alen - 1;
while i ≥ 0 do {

Qnode qn := self.actsks[i];
if qn �= null then if qn.getCount() < qn.getLimit()

then qn.run(); else self.actsks[i] := null; fi; fi;
i := i - 1; }

pack self as AQueue; } }

Fig. 4. First version of Class AQueue. An invariant: actsks[0..alen-1] contains any n in tsks with
n.count < n.limit, in reverse order. (There may also be nulls and some n with n.count = n.limit).
The elided constructor allocates actsks and we ignore the issue of the array becoming full

396 A. Banerjee and D.A. Naumann

class AQueue extends Queue {
private Qnode[] artsk;
private boolean[] brtsk;
private int len;
void add(Task t, int lim) {

assert self.inv= AQueue && ! self.com;
unpack self from AQueue;
super.add(t,lim); self.artsk[alen] := self.tsks; self.brtsk[len] := true; self.len := len+1;
pack self as AQueue; }

void runAll() {
assert self.inv= AQueue && ! self.com;
unpack self from AQueue;
int i := self.len - 1;
while i ≥ 0 do {

if self.brtsk[i] then Qnode n := self.artsk[i]; int diff := n.limit - n.count;
if diff ≤ 1 then self.brtks[i] := false; fi;
if diff �= 0 then n.run(); fi; fi;

i := i - 1; }
pack self as AQueue; } }

Fig. 5. Alternative implementation of AQueue

methods on client objects or on other instances of AQueue. So the proof obligation is
formalized in terms of the induced coupling.

In fact the proof obligation is not simply that each corresponding pair of method
implementations preserves the coupling, but rather that they preserve the coupling un-
der the assumption that any method they invoke preserves the coupling.3 There is also
a proof obligation for initialization but it is straightforward so we do not discuss it in
connection with the examples.

For example, in the case of method runAll, one must prove that the implementations
given in Fig. 4 and in Fig. 5 preserve the coupling on the assumption that the invoked
methods getCount, getLimit, Qnode.run, etc. preserve the coupling. The assumption is
not so important for getCount or getLimit. For one thing, it is possible to fully describe
their simple behavior. For another, the alternative implementation of runAll does not
even invoke these methods but rather accesses the fields directly.

The assumption about Qnode.run is crucial, however. Because run invokes, in turn,
Task.run, essentially nothing is known about its behavior. For this reason both imple-
mentations of runAll invoke run on the same tasks in the same order; otherwise, it is
hard to imagine how equivalence of the implementations could be verified in a modu-
lar way, i.e., reasoning only about class AQueue. But here we encounter the problem
with simulation based reasoning that is analogous to the problem with invariants and
reentrant callbacks. There is no reason for the coupling to hold at intermediate points of
the methods of AQueue. If a method is invoked at such a point, the assumption that the

3 The reason this is sound is similar to the justification for proof rules for recursive procedures: it
is essentially the induction step for a proof by induction on the maximum depth of the method
call stack.

State Based Ownership, Reentrance, and Encapsulation 397

called method preserves the coupling is of no use —just as the assumption of invariant-
preservation is of no use if a method is invoked in a state where the invariant does not
hold.

The Boogie discipline solves the invariant problem for an object o by replacing the
declared invariant I (o) with an implication —see (1)— that is true in all states. As
with invariants, so too with couplings: It does not make sense to ask a coupling to hold
in every state, because two different implementations with nontrivial differences do not
have lockstep correspondence of states. (For example, imagine that in the alternative
version, the arrays are compressed every 100th invocation of runAll.) Our generalization
of the Boogie idea is that the local coupling relation for a particular (pair of) island(s) is
conditioned on an inv field so that the local coupling may hold in some pairs of states at
intermediate points —in particular, at method calls that can lead to reentrant callbacks.

Consider corresponding instances o,o′ of the two versions of AQueue. The local
coupling serves to describe the corresponding pair of islands when o and o′ are packed.
So the induced coupling relation on program states requires corresponding pairs of
islands to satisfy the local coupling just when they are packed. Because inv is part of the
behavior observable at the level of reasoning, we can assume both versions follow the
same pattern of packing (though not necessarily of control structure) and thus include
o.inv = o′.inv as a conjunct of the induced coupling.

Consider the two implementations of runAll. To a first approximation, what matters
is that each updates some internal state and then both reach a point where run is invoked.
At that point, the local coupling does not hold —but the induced coupling relation can
and does hold, because the island is unpacked. This parallels the way I C(o) can be false
while o.inv≤C ⇒ I C(o) remains true, recall (1). So we can use the assumption about
called methods to conclude that the coupling holds after the corresponding calls to run.

The hardest part of the proof for runAll is at the point where the two implementa-
tions pack self to AQueue. Just as both implementations invoke run (and on the same
queue nodes), both need to pack in order to preserve the coupling. And at this point
we have to argue that the local coupling is reestablished. To do so, we need to know
the state of the internal structures that have been modified. We would like to argue that
the only modifications are only those explicit in the code of runAll, but what about the
effect of run? Owing to the preconditions on add and runAll, the only possible reen-
trant callbacks are to getRuns and this does no updates. (In other examples, modifies
specifications would be needed at this point for modular reasoning.)

This concludes the sketch of how our abstraction theorem handles reentrant call-
backs and encapsulation using the inv/own discipline. Several features of the discipline
need to be adapted, in ways which also make sense in terms of informal considerations
of information hiding. The additional restrictions are formalized in Section 5 and their
significance discussed in Section 7. As a preview we make the following remarks, using
“Abs” as the generic name for a class for which two versions are considered.

The discipline does not constrain field access, as reading cannot falsify an invari-
ant predicate. Of course for reasons of information hiding one expects that visibility and
alias confinement are used to prevent most or all reads of encapsulated objects. Informa-
tion hiding is exactly what is formalized by representation independence and indeed the
abstraction theorem fails if a client can read fields of encapsulated objects. So every field

398 A. Banerjee and D.A. Naumann

access e. f is subject to a precondition: If e is transitively owned by some instance o of
the class, Abs, under revision, then either self is o or else self is transitively owned by o.

Another problematic feature is that “pack e asC” can occur in any class, so long as its
preconditions are established. This means that, unlike traditional theories, an invariant is
not simplyestablishedat initialization. Inour theory the localcouplingmustbeestablished
preceding each “pack e as Abs”. We aim for modular reasoning where only Abs needs
to be considered, so we insist that pack e as C with C = Abs occurs only in code of Abs.

Although the discipline supports hierarchical ownership, our technical treatment
benefits from heap partitioning ideas from separation logic (we highlight the connec-
tions where possible, e.g., in Proposition 1). For this reason and a more technical one, it
is convenient to prevent an instance of Abs from transitively owning another instance of
Abs (lest their islands be nested). This can be achieved by a simple syntactic restriction.
It does not preclude that, say, class AQueue can hold tasks that own AQueue objects,
because an instance of AQueue owns its representation objects (the Qnodes), not the
tasks they contain. Nor does it preclude hierarchical ownership, e.g., Abs could own a
hashtable that in turn owns some arrays.

Finally, consider ownership transfer across the encapsulation boundary. The hardest
case is where a hitherto-encapsulated object is released to a client, e.g., when a mem-
ory manager allocates nodes from a free list [29, 4]. This can be seen as a deliberate
exposure of representation and thus is observable behavior that must be retained in a
revised version of the abstraction. Yet encapsulated data of the two versions can be in
general quite different. To support modular reasoning about the two versions, it appears
essential to restrict outward transfer of objects encapsulated for Abs to occur only in
code of Abs, where the reasoner can show that the coupling is preserved.

3 An Illustrative Language

Following [6, 21], we formalize the inv/own discipline in terms of a language in which
fields have public visibility, to illuminate the conditions necessary for sound reason-
ing about invariants and simulations. In practice, private and protected visibility and
perhaps lightweight alias control would serve to automatically check most of the con-
ditions. This section formalizes the language, adapting notations and typing rules from
Featherweight Java [19] and imperative features and the special commands from our
previous papers [2, 28].

A complete program is given as a class table, CT , that maps class name C to a
declaration CT (C) of the form class C extends D { T̄ f̄ ; M̄ }. The categories T,M are
given by the grammar in Table 2. Barred identifiers like T̄ indicate finite lists, e.g., T̄ f̄
stands for a list f̄ of field names with corresponding types T̄ .

Well formed class tables are characterized using typing rules which are expressed
using some auxiliary functions that in turn depend on the class table, allowing classes
to make mutually recursive references to other classes, without restriction. In particular,
this allows recursive methods (so we omit loops). For a class C, fields(C) is defined as
the inherited and declared fields of C; dfields(C) is the fields declared in C; super(C)
is the direct superclass of C. For a method declaration, T m(T̄1 x̄) {S} in C, the method
type mtype(m,C) is T̄1 → T and parameter names, pars(m,C), is x̄. For m inherited

State Based Ownership, Reentrance, and Encapsulation 399

Table 2. Grammar

C ∈ ClassName m ∈MethName f ∈ FieldName x,self, result ∈ VarName
T ::= bool | void |C data type
M ::= T m(T̄ x̄) {S} method declaration
S ::= x:= e | e. f := e assign to local var. or param., update field
| x:=new C | x:= e.m(ē) object creation, method call
| T x:= e in S | S; S | if e then S else S fi local variable, sequence, conditional
| pack e as C | unpack e from C set inv to C, set inv to superC
| setown e to (e′,C) set e.own to (e′,C)
| assert P assert (semantic predicate P)

e ::= x | null | true | false variable, constant
| e. f | e = e | e is C | (C) e field access, ptr. equality, type test, cast

Table 3. Typing rules for selected expressions and commands

Γ � e : C (f : T) ∈ fields(C)
Γ � e. f : T

Γ � e1 : D1 Γ � e2 : D2 D2 ≤C

Γ � setown e1 to (e2,C)

Γ � e : D D≤C

Γ � pack e as C

Γ � e : D D≤C

Γ � unpack e from C

Γ � e : D mtype(m,D) = T̄→U x �= self Γ � ē : Ū Ū ≤ T̄ U ≤ Γ x

Γ � x:= e.m(ē)

in C, mtype(m,C) = mtype(m,D) and pars(m,C) = pars(m,D) where D is the direct
superclass of C.

For use in the semantics, xfields(C) extends fields(C) by assigning “types” to the
auxiliary fields: com : bool, own : owntyp, and inv : (invtypC). (These are not included
in FieldName.) Neither invtypC nor owntyp are types in the programming language but
there are corresponding semantic domains and the slight notational abuse is convenient.

A typing context Γ is a finite function from variable names to types, such that self ∈
dom Γ . Selected typing rules for expressions and commands are given in Table 3. A
judgement of the form Γ � e : T says that expression e has type T in the context of a
method of class Γ self, with parameters and local variables declared by Γ . A judgement
Γ � S says that S is a command in the same context. A class table CT is well formed
if each method declaration M ∈CT (C) is well formed in C; this is written C �M and
defined by the following rule:

x̄ : T̄ ,self : C, result : T � S
if mtype(m,superC) is defined then mtype(m,superC) = T̄→T and pars(m,superC) = x̄

C � T m(T̄ x̄){S}

To formalize assertions, we prefer to avoid both the commitment to a particular
formula language and the complication of an environment for declaring predicate names
to be interpreted in the semantics. So we indulge in a mild and commonplace abuse of
notation: the syntax of assert uses a semantic predicate. We say Γ � assert P is well

400 A. Banerjee and D.A. Naumann

Table 4. Semantic categories θ and domains [[θ]]. (Readers familiar with notation for dependent
function spaces might prefer to write [[pre-heap]] = (o : Loc � [[state(type o)]]) and similarly for
[[state C]] and [[Γ]].)

θ ::= T | Γ | θ⊥
| owntyp | invtypC | stateC own and inv val., object state
| pre-heap | heap | heap⊗Γ | heap⊗T heap fragment, closed heap, state, result
| (Γ � cmd) | (Γ � T) | (C, x̄, T̄→T1) |menv command, expr., method, method envir.

[[C]] = {nil}∪{o ∈ Loc | typeo≤C} [[bool]] = {true, false} [[void]] = {it}
[[invtypC]] = {B |C ≤ B}
[[owntyp]] = {(o,C) | o = nil∨ typeo≤C}
[[stateC]] = {s | doms = dom(xfieldsC) ∧ ∀(f : T) ∈ xfieldsC | s f ∈ [[T]]}
[[pre-heap]] = {h | dom h⊆fin Loc ∧ ∀o ∈ dom h | h o ∈ [[state(type o)]]}
[[heap]] = {h | h ∈ [[pre-heap]] ∧ ∀s ∈ rng h | rng s∩Loc⊆ dom h}
[[Γ]] = {s | doms = domΓ ∧ sself �= nil ∧ ∀x ∈ doms | sx ∈ [[Γ x]]}
[[heap⊗Γ]] = {(h,s) | h ∈ [[heap]] ∧ s ∈ [[Γ]] ∧ rng s∩Loc⊆ dom h}
[[heap⊗T]] = {(h,v) | h ∈ [[heap]] ∧ v ∈ [[T]] ∧ (v ∈ Loc ⇒ v ∈ dom h)}
[[Γ � cmd]] = [[heap⊗Γ]]→ [[(heap⊗Γ)⊥]]
[[Γ � T]] = {v | v ∈ ([[heap⊗Γ]]→ [[T]]⊥) ∧ ∀h,s | v(h,s) ∈ Loc ⇒ v(h,s) ∈ domh}
[[(C, x̄, T̄→T1)]] = [[heap⊗ (x̄ : T̄ ,self : C)]]→ [[(heap⊗T1)⊥]]
[[menv]] = {µ | ∀C,m | µCm is defined iff mtype(m,C) is defined,

and µCm ∈ [[C,pars(m,C),mtype(m,C)]] if µCm defined }

formed provided that P is a set of program states for context Γ . This treatment of
assertions is also convenient for taking advantage of a theorem prover’s native logic.

Semantics. Some semantic domains correspond directly to the syntax. For example,
each data type T denotes a set [[T]] of values. The meaning of context Γ is a set [[Γ]] of
stores; a store s ∈ [[Γ]] is a type-respecting assignment of locations and primitive values
to the local variables and parameters given by a typing context Γ . The semantics, and
later the coupling relation, is structured in terms of category names θ given in Table 4
which also defines the semantic domains.

A program state for context Γ is a pair (h,s) where s is in [[Γ]] and h is a heap, i.e., a
finite partial function from locations to object states. An object state is a type-respecting
mapping of field names to values. A command typable in Γ denotes a function mapping
each program state (h,s) either to a final state (h0,s0) or to the distinguished value ⊥
which represents runtime errors, divergence, and assertion failure. An object state is
a mapping from (extended) field names to values. A pre-heap is like a heap except for
possibly having dangling references. If h,h′ are pre-heaps with disjoint domains then we
write h∗h′ for their union; otherwise h∗h′ is undefined. Function application associates
to the left, so ho f is the value of field f of the object ho at location o. We also write
ho. f . Application binds more tightly than binary operator symbols and “,”.

We assume that a countable set Loc is given, along with a distinguished value nil
not in Loc. We assume given a function type from Loc to non-primitive types distinct
from Object, such that for each C there are infinitely many locations o with type o = C.
This is used in a way that is equivalent to tagging object states with their type.

State Based Ownership, Reentrance, and Encapsulation 401

Table 5. Semantics of selected expressions and commands. To streamline the treatment of ⊥,
the metalanguage expression “let α = β in . . .” denotes ⊥ if β is ⊥. We use function extension
notation [h | o �→st] for h extended or overridden at o with value st. For brevity the nested function
extension for field update is written [h | o. f �→v]

[[Γ � e. f : T]](h,s) = let o = [[Γ � e : C]](h,s) in if o = nil then⊥ else ho. f

[[Γ � x:= e.m(ē)]]µ(h,s) = let o = [[Γ � e : T]](h,s) in if o = nil then⊥ else

let v̄ = [[Γ � ē : Ū]](h,s) in let x̄ = pars(m,T) in

let s1 = [x̄ �→ v̄,self �→ o] in
let (h1,v1) = µ(typeo)m(h,s1) in (h1, [s | x �→v1])

[[Γ � assert P]]µ(h,s) = if (h,s) ∈P then (h,s) else⊥
[[Γ � pack e as C]]µ(h,s) =
let q=[[Γ � e : D]](h,s) in if q=nil then⊥ else

let h1 =λ p ∈ dom h | if h p.own=(q,C) then [h p | com �→ true] else h p in ([h1 | q.inv �→C], s)
[[Γ � unpack e from C]]µ(h,s) =

let q = [[Γ � e : N]](h,s) in if q = nil then⊥ else

let h1 = λ p ∈ dom h | if h p.own = (q,C) then [h p | com �→ false] else h p in

([h1 | q.inv �→superC], s)
[[Γ � setown e1 to (e2,C)]]µ(h,s) =

let q = [[Γ � e1 : N1]](h,s) in if q = nil then⊥ else

let p = [[Γ � e2 : N2]](h,s) in ([h | q.own �→(p,C)], s)

The meaning of a derivable command typing Γ � S will be defined to be a function
sending each method environment µ to an element of [[Γ � cmd]]. (The keyword “cmd”
just provides notation for command meanings.) That is, [[Γ � S]]µ is a state transformer
[[heap⊗Γ]]→ [[(heap⊗Γ)⊥]]. The method environment is used only to interpret the
method call command. Meanings for expressions and commands are defined, in Table 5,
by recursion on typing derivation. The semantics is defined for an arbitrary location-
valued function fresh such that type(fresh(C,h)) = C and fresh(C,h) �∈ domh.

The meaning of a well typed method declaration M, of the form M = T m(T̄ x̄){S},
is the total function in [[menv]]→ [[(C, x̄, T̄→T)]] defined as follows: Given a method
environment µ , a heap h and a store s ∈ [[x̄ : T̄ , result : C]], first execute S to obtain
the updated heap h0 and the updated store s0; then return (h0,s0(result)). A method
environment µ maps each C,m to a meaning obtained in this way or by inheritance. For
well formed class table CT , the semantics [[CT]] is defined as the least upper bound of
an ascending chain of method environments—the approximation chain—with method
declarations interpreted as above and a suitable interpretation for inherited methods.
Details omitted.

A predicate for state type Γ is just a subset P ⊆ [[heap⊗Γ]]. For emphasis we can
write (h,s) |= P for (h,s) ∈P . Note that ⊥ /∈P . We give no formal syntax to denote
predicates but rather use informal metalanguage for which the correspondence should
be clear. For example, “self. f �= null” denotes the set of (h,s) with h(sself). f �= nil. and
“∀o |P(o)” denotes the set of (h,s) such that (h,s) |= P(o) for all o ∈ dom h. Note
that quantification over objects (e.g., in Table 1 and Def. 3) is interpreted to mean quan-

402 A. Banerjee and D.A. Naumann

tification over allocated locations; the range of quantification can include unreachable
objects but this causes no problems.

By contrast with [6, 21], we have taken care to separate the annotations required
by the inv/own discipline from the semantics of commands. The invariants encoded in
the semantic domains (e.g., the value in a field has its declared type and there are no
dangling pointers) depend in no way on assertions, only on typing. A similar semantic
model has been machine checked in PVS [27].

4 The inv/own Discipline

The discipline reviewed in Sect. 2.1 is designed to make (1) a program invariant for ev-
ery object. This is achieved using additional program invariants that govern ownership.
We formalize this as a global predicate, disciplined, defined in three steps.

Definition 1 (transitive C- and C↑-ownership). For any heap h, the relation o �h
C p

on dom h, read “o owns p at C in h”, holds iff either (o,C) = h p.own or there are q and
D such that (o,C) = hq.own and q �h

D p. The relation o �h
C↑ p holds iff there is some

D with C ≤ D and o�h
D p.

Definition 2 (admissible invariant). A predicate P ⊆ [[heap⊗ (self : C)]] is admissi-
ble as an invariant for C provided that it is not falsifiable by creation of new objects and
for every (h,s) and o, f such that P depends on o. f in (h,s), field f is neither inv nor
com, and one of the following conditions holds: o = s(self) and f is in dom(xfieldsC)
or s(self)�h

C↑ o.

For dependence on fields of self, the typing condition, f ∈ dom(xfieldsC), prevents
an invariant for C from depending on fields declared in a subclass of C (which could be
expressed in a formula using a cast). An invariant can depend on any fields of objects
owned at C or above. We refrain from introducing syntax for declaring invariants. In the
subsequent definitions, an admissible invariant I C is assumed given for every class C.
We assume I Ob ject = true.

Definition 3 (disciplined, J). A heap h is disciplined if h |= J where J is defined
to be the conjunction of the following: ∀o,C | o.inv≤C ⇒ I C(o)

∀o,C, p | o.inv≤C∧ p.own = (o,C)⇒ p.com
∀o | o.com ⇒ o.inv = type(o)

A state (h,s) is disciplined if h is. Method environment µ is disciplined provided that
every method maintains J (i.e., for any C,m,h,s, if h∈J and µ C m(h,s) = (h0,v)—
and thus µ C m(h,s) �=⊥— then h0 ∈J).

Lemma 1 (transitive ownership). Suppose h is disciplined and o�h
C p. Then (a) typeo

≤C and (b) ho.inv≤C implies h p.com = true.

Corollary 1. If h is disciplined, o�h
C p, and h p.inv > type p then ho.inv > C.

Partitioning the Heap. We partition the objects in the heap in order to formalize the
encapsulation boundary depicted in Sect. 2.2. Given an object o∈ domh and class name

State Based Ownership, Reentrance, and Encapsulation 403

A with typeo≤ A we can partition h into pre-heaps Ah (the A-object), Rh (the represen-
tation of o for class A), Sh (objects owned by o at a superclass), and Fh (free from o)
determined by the following conditions: Ah is the singleton [o �→ ho], Rh is h restricted
to the set of p with o �h

A p, Sh is h restricted to the set of p with o �h
C p for some

C > A, and Fh is the rest of h. Note that if o�h
B p for some proper subclass B < A then

p ∈ domFh. A pre-heap of the form Ah ∗Rh ∗ Sh is called an island. In these terms,
dependency of admissible invariants is described in the following Proposition. As an
illustration, here is the island for the left side of the situation depicted in Sect. 2.2:

Proposition 1 (island). Suppose I C is an admissible invariant for C and o ∈ domh
with typeo ≤C. If h = Fh ∗Ah ∗Rh ∗ Sh is the partition defined above then Fh0 ∗Ah ∗
Rh∗Sh |= I C(o) iff h |= I C(o), for all Fh0 such that Fh0 ∗Ah∗Rh∗Sh is a heap.

The Discipline. To impose the stipulated preconditions of Table 1 we consider pro-
grams with the requisite syntactic structure (similar to formal proof outlines).

Definition 4 (properly annotated). The annotated commands are the subset of the
category of commands where each pack, unpack, setown, and field update is immedi-
ately preceded by an assert. A properly annotated command is an annotated command
such that each of these assertions is (or implies) the precondition stipulated in Table 1. A
properly annotated class table is one such that each method body is properly annotated.

For any class table and family of invariants there exists a proper annotation: just add
assert commands with the stipulated preconditions. For practical interest, of course,
one wants assertions that can collectively be proved correct. The abstraction theorem
depends on proper annotation but does not depend on the invariants themselves; one
may take I C = true for all C. What matters is ownership structure and the use of inv.
We use the following [6, 21, 28].

Proposition 2. If method environment µ is disciplined then any properly annotated
command S maintains J in the sense that for all (h,s), if h |= J and (h0,s0) =
[[Γ � S]]µ(h,s) then h0 |= J . If CT is a properly annotated class table then the method
environment [[CT]] is disciplined.

5 The Abstraction Theorem

5.1 Comparing Class Tables

We compare two implementations of a designated class Abs, in the context of a fixed
but arbitrary collection of other classes, such that both implementations give rise to a

404 A. Banerjee and D.A. Naumann

well formed class table. The two versions can have completely different declarations, so
long as methods of the same signatures are present — declared or inherited — in both.
To simplify the additional precondition needed for reading fields, we consider programs
desugared into a form like that used in Separation Logic.

Definition 5 (properly annotated for Abs). The annotated commands for Abs are
those of Def. 4 with the additional restriction that no expression of the form e. f occurs
except in commands of the form assert P;x:= e. f (in particular, no field access ap-
pears in this e). The properly annotated commands for Abs are those that are properly
annotated according to Def. 4 and moreover

– fields of Abs have private visibility (i.e., if f ∈ dfieldsAbs then accesses and updates
of f only occur in code of class Abs)

– If Γ self �= Abs then field access Γ � x:= e. f is subject to stipulated precondition
(∀o | o�Abs e ⇒ o�Abs self)

– if Γ self �= Abs then Γ � pack e as Abs is not allowed
– if Γ self �= Abs then Γ � setown e1 to (e2,C) is subject to an additional precondition:

(∃o | o�Abs e1)⇒ C = Abs∨ (∃o | o�Abs e2)

The effect of the last precondition is that if e1 is initially owned at Abs then after a
transfer (that occurs in code outside class Abs) it is still owned at Abs.

In order to work with heap partitions, along the lines of Prop. 1, it is convenient
to have notation to extract the one object in a singleton heap. We define pickdom by
pickdom(h) = o where domh = {o}; it is undefined if domh is not a singleton.

Prop. 1 considers a single object together with its owned representation; now we
consider all objects of a given class.

Definition 6 (A-decomposition). For any class A and heap h, the A-decomposition of
h is the set Fh,Ah1,Rh1,Sh1 . . . ,Ahk,Rhk,Shk (for some k≥ 0) of pre-heaps, all subsets
of h, determined by the following conditions:

– each domAhi contains exactly one object o and typeo≤ A
– every o ∈ domh with typeo≤ A occurs in domAhi for some i;
– dom Rhi = {p | o�h

A p} where pickdomAhi = o;
– dom Shi = {p | o�h

(super A)↑ p} with pickdomAhi = o;
– domFh = domh− (∪i | dom(Ahi ∗Rhi ∗Shi))

We say that no A-object owns an A-object in h provided for every o, p in domh if
typeo ≤ A and o �h

(typeo)↑ p then type p � A. Def. 8 in the sequel imposes a syntactic
restriction to maintain this property as an invariant, where A is the class for which two
representations are compared. A consequence is that there is a unique decomposition of
the heap into separate islands of the form Ah∗Rh∗Sh. We use the term “partition” even
though some blocks can be empty.

Lemma 2 (A-partition). Suppose no A-object owns an A-object in h. Then the A-
decomposition is a partition of h, that is, h = Fh∗Ah1 ∗Rh1 ∗Sh1 ∗ . . .∗Ahk ∗Rhk ∗Shk.

To maintain the invariant that no Abs-object owns an Abs-object, we formulate a
mild syntactic restriction expressed using a static approximation of ownership.

State Based Ownership, Reentrance, and Encapsulation 405

Definition 7 (may own, �∃). Given well formed CT , define �∃ to be the least transi-
tively closed relation such that

– D2 �∃ D1 for every occurrence of setown e1 to (e2,D) in a method of CT , with
static types e1 : D1 and e2 : D2

– if C �∃ D, C′ ≤C and D′ ≤ D then C′ �∃ D′

If Abs ��∃ Abs then it is a program invariant that no Abs-object owns an Abs-object
(recall the definition preceding Lemma 2). This is a direct consequence of the following.

Lemma 3. It is a program invariant that if o�h
C p then typeo�∃ type p.

Definition 8 (comparable class tables). Well formed class tables CT and CT ′ are com-
parable with respect to class name Abs (�= Object) provided the following hold.

– CT (C) = CT ′(C) for all C �= Abs.
– CT (Abs) and CT ′(Abs) declare the same methods with the same signatures and the

same direct superclass.
– For every method m declared in CT (Abs), m is declared in CT ′(Abs) and has the

same signature; mutatis mutandis for m declared in CT ′.
– CT and CT ′ are properly annotated for Abs.
– Abs ��∃ Abs in both CT and CT ′

The last condition ensures that the Abs-decomposition of any disciplined heap is
a partition, by Lemmas 2 and 3. We write �,�′ for the typing relation determined by
CT,CT ′ respectively; similarly we write [[−]], [[−]]′ for the respective semantics.

5.2 Coupling Relations

The definitions are organized as follows. A local coupling is a suitable relation on is-
lands. This induces a family of coupling relations, R β θ for each category name θ and
typed bijection β . Each relation R β θ is from [[θ]] to [[θ]]′. Here β is a bijection on
locations, used to connect a heap in [[heap]] to one in [[heap]]′. The idea is that β relates
all objects except those in the Rhi or Rh′i blocks that have never been exposed. Finally,
a simulation is a coupling that is preserved by all methods of Abs and holds initially.

Definition 9. A typed bijection is a bijective relation, β , from Loc to Loc, such that
β oo′ implies typeo = typeo′ for all o,o′. A total bijection on h,h′ is a typed bijection
with domh = domβ and domh′ = rngβ . Finally, β fully partitions h,h′ for Abs if, for
all o ∈ domh (resp. o ∈ domh′) with typeo≤ Abs, o is in domβ (resp. rngβ).

Lemma 4 (typed bijection and Abs-partition). Suppose β is a typed bijection with
β ⊆ domh×domh′ and β fully partitions h,h′ for Abs. If h,h′ are disciplined and par-
tition as h = Fh∗ . . .Ah j ∗Rh j ∗Sh j and h′ = Fh′ ∗ . . .Ah′k ∗Rh′k ∗Sh′k then j = k.

Definition 10 (equivalence for Abs modulo bijection). For any β we define a relation
∼β for data values, object states, heaps, and stores, in Table 6.

406 A. Banerjee and D.A. Naumann

Table 6. Value equivalence for the designated class Abs. The relation for heap is the same as for
pre-heap. For object states, ∼ is independent from the declared fields of CT (Abs) and CT ′(Abs)

o∼β o′ in [[C]] ⇔ β oo′ ∨o = nil = o′

v∼β v′ in [[T]] ⇔ v = v′ for primitive types T
s∼β s′ in [[stateC]] ⇔ ∀(f : T) ∈ xfieldsC | s f ∼β s′ f ∨ (f : T) ∈ dfieldsAbs
s∼β s′ in [[Γ]] ⇔ ∀x ∈ domΓ | sx∼β s′ x
h∼β h′ in [[pre-heap]] ⇔ ∀o ∈ domh,o′ ∈ domh′ | β oo′ ⇒ ho∼β h′o′

(h,s)∼β (h′,s′) in [[heap⊗Γ]] ⇔ h∼β h′ ∧ s∼β s′

v∼β v′ in [[θ⊥]] ⇔ v =⊥= v′ ∨ (v �=⊥ �= v′ ∧ v∼β v′ in [[θ]])
(o,C)∼β (o′,C′) in [[owntyp]] ⇔ (o = nil = o′)∨ (β oo′ ∧C = C′)
B∼β B′ in [[invtypC]] ⇔ B = B′

Equivalence hides the private fields of Abs. In the identity extension lemma, it is
used in conjunction with the following which hides objects owned at Abs.

Definition 11 (encap). Suppose no A-object owns an A-object in h. Define encapAh
to be the pre-heap Fh ∗Ah1 ∗ Sh1 ∗ . . . ∗Ahk ∗ Shk where the A-partition of h is as in
Lemma 2.

The most important definition is of local coupling, which is analogous to an object
invariant but is a relation on pairs of pre-heaps. In Def. 2, we take an invariant I C to be
a predicate (set of states) and the program invariant J is based on the conjunction of
these predicates for all objects and types —subject to inv, see Def. 3). By contrast, we
define a local coupling L in terms of pre-heaps. And we are concerned with a single
class, Abs, rather than all C. We impose the same dependency condition as in Def. 2,
but in terms of pre-heaps of the form h = Ah∗Rh∗Sh. (Recall Proposition 1.)

Definition 12 (local coupling, L). Given comparable class tables, a local coupling is
a function, L , that assigns to each typed bijection β a binary relation L β on pre-heaps
that satisfies the following. First, L β does not depend on inv or com. Second, β ⊆ β0

implies L β ⊆ L β0. Third, for any β ,h,h′, if L β hh′ then there are locations o,o′

with β oo′ and typeo≤ Abs such that the Abs partitions of h,h′ are h = Ah∗Rh∗Sh and
h′ = Ah′ ∗Rh′ ∗Sh′ with

– pickdom Ah = o and pickdom Ah′ = o′

– o�h
Abs p for all p ∈ dom(Rh) and o′ �h′

Abs p′ for all p′ ∈ dom(Rh′)
– o�h

(super Abs)↑ p for all p ∈ dom(Sh) and o′ �h′
(super Abs)↑ p′ for all p′ ∈ dom(Sh′)

– If L β depends on f then f is in xfieldsAbs

The first three conditions ensure that L relates a single island, for an object of
some subtype of Abs, to a single island for an object of the same type. Although L is
unconstrained for the private fields of CT (Abs) and CT ′(Abs), it may also depend on
fields inherited from a superclass of Abs (but not on subclass fields). The induced cou-
pling relation, defined below, imposes the additional constraint that fields of proper sub-
and super-classes of Abs are linked by equivalence modulo β . Although superficially
different, the notion of local coupling is closely related to admissible invariant.

State Based Ownership, Reentrance, and Encapsulation 407

Table 7. The induced coupling relation for Def. 13

R β θ α α ′ ⇔ α ∼β α ′ if θ is bool, C, Γ , or stateC
R β (heap⊗Γ) (h,s) (h′,s′) ⇔ R β heaphh′∧R β Γ s s′∧disciplined(h,s)∧disciplined(h′,s′)
R β (heap⊗T) (h,v) (h′,v′) ⇔ R β heap h h′ ∧R β T v v′

R β (θ⊥) α α ′ ⇔ (α =⊥= α ′)∨ (α �=⊥ �= α ′ ∧R β θ α α ′)
R β (Γ � T) v v′ ⇔ ∀h,s,h′,s′ |R β (heap⊗Γ) (h,s) (h′,s′)

⇒R β T⊥ (v(h,s)) (v′(h′,s′))
R β (C, x̄, T̄→T1) v v′ ⇔ ∀h,s,h′,s′ |R β (heap⊗Γ) (h,s) (h′,s′)

⇒∃β0 ⊇ β |R β0 (heap⊗T1)⊥ (v(h,s)) (v′(h′,s′))
where Γ = [x̄ : T̄ ,self : C]

R menv µ µ ′ ⇔ ∀C,m,β |R β (C, x̄, T̄→T) (µCm) (µ ′Cm)
where mtype(m,C) = T̄→T and pars(m,C) = x̄

In applications, L β hh′ would be defined as something like this: h and h′ partition
as islands Ah∗Rh∗Sh and Ah′ ∗Rh′ ∗Sh′ such that Ah∗Rh∗Sh |= I Abs and Ah′ ∗Rh′ ∗
Sh′ |= I ′Abs and some condition links the data structures [18]. The bijection β would
not be explicit but would be induced as a property of the formula language.

A local coupling L induces a relation on arbitrary heaps by requiring that they
partition such that islands can be put in correspondence so that pairs are related by L .

Definition 13 (coupling relation, R). Given local coupling L , we define for each θ
and β a relation R β θ ⊆ [[θ]]× [[θ]]′ as follows.

For heaps h,h′, we define R β heap h h′ iff h,h′ are disciplined, β ⊆ domh×domh′,
and β fully partitions h,h′ for Abs; moreover, if the Abs-partitions are h = Fh ∗Ah1 ∗
Rh1 ∗Sh1 . . .Ahk ∗Rhk ∗Shk and h′ = Fh′ ∗Ah′1 ∗Rh′1 ∗Sh′1 . . .Ah′k ∗Rh′k ∗Sh′k then (recall
Lemma 4) (a) β restricts to a total bijection between dom(Fh) and dom(Fh′); (b) Fh∼β
Fh′; and (c) for all i, j, if β (pickdom Ahi)(pickdom Ah′j) then

– β restricts to a total bijection between dom(Shi) and dom(Sh′j)
– (Ahi ∗Shi)∼β (Ah′j ∗Sh′j)
– h(pickdom Ahi).inv≤ Abs ⇒L β (Ahi ∗Rhi ∗Shi) (Ah′j ∗Rh′j ∗Sh′j)

For other categories θ we define R β θ in Table 7.

The third item under (c) is the key connection with the inv/own discipline.
Under the antecedent in the definition, (Ahi ∗ Shi) ∼β (Ah′j ∗ Sh′j) is equivalent to

the conjunction of Ahi ∼β Ah′j and Shi ∼β Sh′j. And Ahi ∼β Ah′j means that the two
objects o,o′ agree on superclass and subclass fields (but not the declared fields of Abs);
in particular, typeo = typeo′ ≤ Abs and Ahi o.inv = Ah′j o′.inv.

The gist of the abstraction theorem is that if methods of Abs are related by R then all
methods are. In terms of the preceding definitions, we can express quite succinctly the
conclusion that all methods are related: R menv [[CT]] [[CT ′]]′ . We want the antecedent
of the theorem to be that the meaning [[M]] is related to [[M′]]′, for any m with declaration
M in CT (Abs) and M′ in CT ′(Abs). Moreover, [[M]] depends on a method environment.
Thus the antecedent of the theorem is that [[M]]µ is related to [[M′]]′µ ′ for all related
µ ,µ ′. (It suffices for µ ,µ ′ to be in the approximation chains defining [[CT]] and [[CT ′]]′).

408 A. Banerjee and D.A. Naumann

5.3 Simulation and the Abstraction Theorem

Definition 14 (simulation). A simulation is a coupling R such that the following hold.

– (L is initialized) For any C≤ Abs, and any o,o′ with β oo′ and typeo = C we have
L β hh′ where h = [o �→ [dom(xfieldsC) �→ defaultsC]] and
h′ = [o′ �→ [dom(xfields′C) �→ defaults′C]].

– (methods of Abs preserve R) For any disciplined µ ,µ ′ such that R menv µ µ ′
we have the following for every m declared in Abs. Let Ū→U = mtype(m,Abs)
and x̄ = pars(m,Abs). For every β , we have R β θ ([[M]]µ) ([[M′]]′µ ′) where θ =
(Abs, x̄,Ū→U). where M (resp. M′) are as above. (We omit the similar condition
for inherited methods.)

Lemma 5 (preservation by expressions). For all expressions Γ � e : T that contain no
field access subexpressions, and all β , we have R β (Γ �T) ([[Γ �e : T]]) ([[Γ �e : T]]′).

Lemma 6 (preservation by commands). Let µ ,µ ′ be disciplined method environ-
ments with R menv µ µ ′ . If Γ � S is a properly annotated command for Abs, with
Γ self �= Abs, then for all β we have the following. If R β (heap⊗Γ) (h,s) (h′,s′)
and ¬(∃o | o �h

Abs s(self)) and ¬(∃o′ | o′ �h′
Abs s′(self)) then there is β0 ⊇ β such that

R β0 (heap⊗Γ)⊥ (v(h,s)) (v′(h′,s′)).

Our main result says that if methods of Abs preserve the coupling then all methods
do.

Theorem 1 (abstraction).
If R is a simulation for comparable class tables CT,CT ′ then R menv [[CT]] [[CT ′]]′ .

6 Using the Theorem

A complete program is a command S in the context of a class table. To show equiva-
lence between CT,S and CT ′,S, one proves simulation for Abs and then appeals to the
abstraction theorem to conclude that [[S]] is related to [[S]]′. Finally, one appeals to an
identity extension lemma that says the relation is the identity for programs where the
encapsulated representation is not visible. We choose simple formulations that can also
serve to justify more specification-oriented formulations. We say that a state (h,s) is
Abs-free if typeo � Abs for all o ∈ domh.

Lemma 7 (identity extension). If R β (heap⊗Γ) (h,s) (h′,s′)
then encapAbs(h,s)∼β encapAbs(h′,s′).

Lemma 8 (inverse identity extension). Suppose (h,s) and (h′,s′) are Abs-free. If
(h,s)∼β (h′,s′) and β is total on h,h′ then R β (heap⊗Γ) (h,s) (h′,s′).

State Based Ownership, Reentrance, and Encapsulation 409

Definition 15 (program equivalence). Suppose programs CT,(Γ � S) and CT ′,(Γ �′
S′) are such that CT,CT ′ are comparable and properly annotated, and moreover S,S′ are
properly annotated. The programs are equivalent iff for all disciplined, Abs-free (h,s)
and (h′,s′) in [[heap⊗Γ]] and all β with β total on h,h′ and (h,s) ∼β (h′,s′), there
is some β0 ⊇ β with encapAbs([[Γ � S]]µ(h,s)) ∼β0

encapAbs([[Γ �′ S′]]′µ ′(h′,s′))
where µ = [[CT]] and µ ′ = [[CT ′]]′.

Proposition 3 (simulation and equivalence). Suppose programs CT,(Γ � S) and
CT ′,(Γ �′ S) are properly annotated and R is a simulation from CT to CT ′. If Γ self �=
Abs then the programs are equivalent.

7 Discussion

Adaptations of the inv/own Discipline. As compared with previous work on the disci-
pline, we have imposed some additional restrictions to achieve sufficient information
hiding to justify a modular rule for equivalence of class implementations. We argue
that the restrictions are not onerous for practical application, though further practical
experience is needed with the discipline and with our rule.

The first restriction is on field reads. Code in a client class cannot be allowed to
read a field of an encapsulated representation object, although the discipline allows the
existence of the reference; otherwise the client code could be representation dependent.
On the other hand, a class such as Hashtable might be used both by clients and in the
internal representation of the class Abs under revision; certainly the code of Hashtable
needs to read its own fields. A distinction can be made on the basis of whether the
current target object, i.e., self, is owned by an instance o of Abs. If it is, then we do
not need the method invocation to preserve the coupling and we can allow reading of
objects owned by o. If the target object is not owned by an instance of Abs then it should
have no need to access objects owned by Abs. This distinction appears in the statement
of Lemma 6 and it is used to stipulate a precondition for field access (see Def. 5).4

Because the coupling relation imposes the user-defined local coupling only when
an Abs-object is packed, it appears necessary to restrict pack e as Abs to occur only in
code of Abs in order for simulation to be checked only for that code. In the majority of
known examples, packing to a class C is only done in code of C, and this is required in
Leino and Müller’s extension of the discipline to handle static fields.

Similar considerations apply to setown o to (p,C): care must be taken to prevent
arbitrary code from moving objects across the encapsulation boundary for Abs in ways
that do not admit modular reasoning. One would expect that code outside Abs cannot
move objects across the Abs-boundary at all, but it turns out that the only problematic
case is transfer out from an Abs island. In the unusual case that setown o to (p,C) oc-
curs in code outside Abs but o is initially inside the island for some Abs-object, then

4 This is unattractive in that the other stipulated preconditions mention only direct ownership
whereas this one uses transitive ownership. But in practical examples, code outside Abs rarely
has references to encapsulated objects. We believe such references can be adequately restricted
using visibility control and/or lightweight confinement analyses, e.g., [31, 2].

410 A. Banerjee and D.A. Naumann

o must end up in the island for some Abs-object. Our stipulated precondition says just
this. In practice it seems that the obligation can be discharged by simple syntactic con-
siderations of visibility and/or lightweight alias control.

The last restriction is that an Abs object cannot own other Abs objects. This does not
preclude containers holding containers, because a container does not own its content
(e.g., AQueue owns the Qnodes but not the tasks). It does preclude certain recursive
situations. For example, we could allow Qnode instances to own their successors but
then we could not instantiate the theory with Abs:=Qnode. This does not seem too
important since it is Queue that is appropriate to view as an abstraction coupled by
a simulation. The restriction is not needed for soundness of simulation. But absent the
restriction, nested islands would require a healthiness condition on couplings (similar to
the healthiness condition used by Cavalcanti and Naumann [13–Def. 5]); e.g., coupling
for an instance of Qnode would need to recursively impose the same predicate on the
nxt node. We disallow nested islands in the present work for simplicity and to highlight
connections with separation logic.

Future Work. The discipline may seem somewhat onerous in that it uses verification
conditions rather than lighter weight static analysis for control of the use of aliases. (We
have to say “use of”, because whereas confinement disallows certain aliases, the invari-
ant discipline merely prevents faulty exploitation of aliases.) The Spec# project [7] is
exploring the inference of annotations. For many situations, simple confinement rules
and other checks are sufficient to discharge the proof obligations and this needs to be
investigated for the additional obligations we have introduced. The advantage of a ver-
ification discipline over types is that, while simple cases can be checked automatically,
complicated cases can be checked with additional annotations rather than simply re-
jected.

The generalization to a small group of related classes is important, as revisions often
involve several related classes. One sort of example would be a revision of our Queue
example that involves revising Qnode as well. If nodes are used only by Queue then this
is subsumed by our theory, as we can consider a renamed version of Qnode that coexists
with it. The more interesting situations arise in refactoring and in design patterns with
tightly related configurations of multiple objects. The friend and peer dependencies
of [21, 9, 28], and the flexible ownership system of Aldrich and Chambers [1] could be
the basis for a generalization of our results.

References

1. J. Aldrich and C. Chambers. Ownership domains: Separating aliasing policy from mecha-
nism. In ECOOP, 2004.

2. A. Banerjee and D. A. Naumann. Ownership confinement ensures representation indepen-
dence for object-oriented programs. Journal of the ACM, 2002. Accepted, revision pending.
Extended version of [3].

3. A. Banerjee and D. A. Naumann. Representation independence, confinement and access
control. In POPL, 2002.

4. A. Banerjee and D. A. Naumann. Ownership transfer and abstraction. Technical Report TR
2004-1, Computing and Information Sciences, Kansas State University, 2003.

State Based Ownership, Reentrance, and Encapsulation 411

5. A. Banerjee and D. A. Naumann. State based encapsulation and generics. Technical Report
CS Report 2004-11, Stevens Institute of Technology, 2004.

6. M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino, and W. Schulte. Verification of
object-oriented programs with invariants. Journal of Object Technology, 3, 2004.

7. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: An overview.
In CASSIS post-proceedings, 2004.

8. M. Barnett, D. A. Naumann, W. Schulte, and Qi Sun. 99.44% pure: useful abstractions in
specifications. In ECOOP workshop on Formal Techniques for Java-like Programs, 2004.

9. M. Barnett and D. A. Naumann. Friends need a bit more: Maintaining invariants over shared
state. In Mathematics of Program Construction, 2004.

10. P. H. M. Borba, A. C. A. Sampaio, and M. L. Cornélio. A refinement algebra for object-
oriented programming. In ECOOP, 2003.

11. C. Boyapati, B. Liskov, and L. Shrira. Ownership types for object encapsulation. In POPL,
2003.

12. J. Boyland, J. Noble, and W. Retert. Capabilities for sharing: A generalisation of uniqueness
and read-only. In ECOOP, 2001.

13. A. L. C. Cavalcanti and D. A. Naumann. Forward simulation for data refinement of classes.
In Formal Methods Europe, 2002.

14. D. Clarke and S. Drossopoulou. Ownership, encapsulation and the disjointness of type and
effect. In OOPSLA, 2002.

15. D. G. Clarke, J. Potter, and J. Noble. Ownership types for flexible alias protection. In
OOPSLA, 1998.

16. D. L. Detlefs, K. R. M. Leino, and G. Nelson. Wrestling with rep exposure. Research 156,
DEC Systems Research Center, 1998.

17. J. V. Guttag and J. J. Horning, editors. Larch: Languages and Tools for Formal Specification.
Texts and Monographs in Computer Science. Springer-Verlag, 1993.

18. C. A. R. Hoare. Proofs of correctness of data representations. Acta Inf., 1, 1972.
19. A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus for Java

and GJ. ACM Trans. Prog. Lang. Syst., 23, 2001.
20. B. Jacobs and E. Poll. Java program verification at Nijmegen: Developments and perspective.

In International Symposium on Software Security, 2003.
21. K. R. M. Leino and P. Müller. Object invariants in dynamic contexts. In ECOOP, 2004.
22. B. Meyer. Object-oriented Software Construction. Second edition, 1997.
23. I. Mijajlovic, N. Torp-Smith, and P. O’Hearn. Refinement and separation contexts. In Foun-

dations of Software Technology and Theoretical Computer Science (FST&TCS), 2004.
24. J. C. Mitchell. Representation independence and data abstraction. In POPL, 1986.
25. P. Müller, A. Poetzsch-Heffter, and G. Leavens. Modular invariants for object structures.

Technical Report 424, ETH Zürich, Oct. 2003.
26. D. A. Naumann. Observational purity and encapsulation. In FASE, 2005.
27. D. A. Naumann. Verifying a secure information flow analyzer. To appear in TPHOLS, 2005.
28. D. A. Naumann and M. Barnett. Towards imperative modules: Reasoning about invariants

and sharing of mutable state (extended abstract). In LICS, 2004.
29. P. O’Hearn, H. Yang, and J. Reynolds. Separation and information hiding. In POPL, 2004.
30. F. Smith, D. Walker, and G. Morrisett. Alias types. In ESOP, 2000.
31. J. Vitek and B. Bokowski. Confined types in Java. Software Practice and Experience, 31,

2001.

Consistency Checking of Statechart Diagrams
of a Class Hierarchy

Vitus S.W. Lam and Julian Padget

Department of Computer Science, University of Bath
{lsw, jap}@cs.bath.ac.uk

Abstract. One of the limitations of UML is it lacks a systematic way for
verifying consistency within and between models. This paper explores the
intra-model consistency problem in the context of statechart diagrams.
We propose an algebraic approach for determining whether the statechart
diagrams of a superclass and its subclass are consistent with respect to
their behaviour. The statechart diagrams are first translated into the π-
calculus and then verified automatically using the Mobility Workbench.

1 Introduction

The Principle of Substitutability [1] stipulates that an instance of the super-
type can always be replaced with an instance of the subtype. In the context
of the object-oriented technology, the corresponding notion for subtype relation
between a supertype and its subtype is inheritance.

In the Unified Modeling Language (UML) [2], a generalization relationship
specifies that a subclass inherits from a superclass. The behaviour of the ob-
jects (instances) of the subclass and superclass is normally represented using
statechart diagrams, but because the statechart diagrams are drawn separately,
a rigorous approach for verifying consistency between the statechart diagrams
and substitutability of an object of the superclass by an object of the subclass
is needed. In this paper, we use weak open bisimulation of the π-calculus [3, 4]
for detecting inconsistency between statechart diagrams of a superclass and its
subclass. The consistency checking of statechart diagrams is carried out auto-
matically using the Mobility Workbench (MWB) [5, 6].

The rest of the paper is organized as follows. Section 2 describes prior work in
the area. Section 3 provides an overview of the main features of UML statechart
diagrams and the π-calculus. The encoding of a subset of statechart diagrams
in the π-calculus is presented in Section 4. Section 5 discusses the concepts of
substitutability and behavioural consistency. Section 6 examines the consistency
checking of statechart diagrams of classes linked with a generalization relation-
ship using the MWB. Conclusions are given in Section 7.

2 Related Work

The consistency checking of the statechart diagrams of classes which are linked
with a generalization relationship has not been fully exploited in previous stud-
ies [7, 8, 9, 10].

A.P. Black (Ed.): ECOOP 2005, LNCS 3586, pp. 412–427, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Consistency Checking of Statechart Diagrams of a Class Hierarchy 413

In [7], Sourrouille translates statechart diagrams into an object-oriented lan-
guage and explores the concepts of behaviour inheritance and substitutability.
In contrast, we translate statechart diagrams into the π-calculus and determines
the substitutability of statechart diagrams using the weak open bisimulation of
the π-calculus. Furthermore, our approach is based on a formal method instead
of a programming language. Sourrouille [7] uses a simplified form of transitions,
whereas our approach supports parameterized events, guard conditions and ac-
tions directly.

In [8], two types of substitutability are defined. Linear substitutability states
that every trace in a superclass is a trace of its subclasses. Branching sub-
stitutability stipulates that any behaviour in a superclass is simulated by its
subclasses. Branching substitutability is finer than linear substitutability. Any
superclass C1 which is branching substitutable by a subclass C2 is linear substi-
tutable by the subclass C2.

Unlike [8] which defines substitutability in terms of trace containment and
simulation, we define substitutability using the weak open bisimulation of the
π-calculus. Our approach has some advantages over [8] as (i) it supports parame-
terized events, guard conditions and hierarchical statechart diagrams; and (ii) it
automates the checking of substitutability through the use of the MWB.

Stumptner and Schrefl [9] verify consistency between the associated state-
chart diagrams of a superclass and its subclass using the concepts of observation
consistency and invocation consistency as well as a set of rules. When compared
with [9], our approach supports parameterized events, guard conditions and ac-
tions, and again the consistency checking is performed automatically.

In [10], consistency between the associated statechart diagrams of a superclass
and its subclass is verified using Communicating Sequential Processes (CSP).
The transformation from statechart diagrams into CSP is based on meta-model
rules. In contrast to our approach, the transformation is not based on UML
semantics and does not support parameterized events, guard conditions, actions
and concurrent composite states. The approach of [10] provides only a way to
verify consistency between statechart diagrams, whereas our approach covers
consistency checking, equivalence checking [11] and model checking [12, 13] of
statechart diagrams.

Other related studies on consistency checking include [14, 15, 16, 17]. Engels
et al. [14] propose an approach for checking consistency between (i) capsule stat-
echarts and (ii) capsule statechart and protocol statechart. Likewise, Engels et
al. in [15] determine the consistency between an old capsule statechart and a
new capsule statechart of UML-RT models by verifying that the old capsule
statechart is a refinement of the new capsule statechart. In [16], the preservation
of evolution consistency of the UML-RT models is checked using a rule-based
transformation approach. The work of [17] describes a formal semantics which
addresses the concurrent execution of multiple operations on an object. Practi-
cal applications of the formal semantics include checking properties of models,
showing intra-model consistency and refactoring of models. Our approach, un-
like [14, 15, 16, 17] which focus on UML-RT models and various types of UML

414 V.S.W. Lam and J. Padget

diagrams, emphasizes UML statechart diagrams and consistency between UML
statechart diagrams of a class hierarchy.

3 Basic Concepts

In this section, we introduce the notions and notations used throughout the
paper.

3.1 Statechart Diagrams

A statechart diagram of UML depicts how an object of a class responds to various
events throughout its lifetime. The two basic entities of a statechart diagram are
state and transition.

Figure 1 shows the statechart diagram of a class C2 which consists of an initial
pseudostate and four basic states S1, S2, S3 and S4. The initial pseudostate is
represented as a small filled circle with an outgoing transition to the default
state S1. Upon receipt of an event E2, the transition which connects states S1

and S2 is fired, state S1 is exited and state S2 is entered. Unlike event E2,
event E1(p1, p2) is a parameterized event with parameters p1 and p2. Besides an
event, a transition is optionally labelled with a guard-condition and an action.
The transition which connects states S3 and S4 is fired when the event E4 occurs
and the guard-condition cond1 holds. The action is executed and an event E5 is
sent to an object o.

1
E1(p1,p2)

E4[cond1]/
send o.E5

2

3 4

E2 E3

E6

Fig. 1. Statechart diagram of class C2

In Figure 2, state S2 of class C1 is a non-concurrent composite state in which
only one of its substate V1 or V2 is active at any point of execution.

The class diagram of classes C1 and C2 is shown in Figure 3. The class
C1 inherits from the class C2 and extends the class C2 by four new methods
E7, E8, E9 and E10.

3.2 The π-Calculus

The π-calculus is a process algebra for specifying concurrent systems in which the
processes communicate over channels. As many variants of the π-calculus have

Consistency Checking of Statechart Diagrams of a Class Hierarchy 415

E1(p1,p2)

E2

E10

S1 S3 S4 S5

E3

V1 V2
S2

E9

E7

E8

E4[cond1]/
send o.E5

E6

Fig. 2. Statechart diagram of class C1

C2

E1(p1,p2)
E2
E3
E4
E6

C1

E7
E8
E9
E10

Fig. 3. Class hierarchy

been proposed, we briefly review the syntax and semantics of the π-calculus in
this subsection. The reader is referred to [18, 19] for details.

We let A be a set of processes ranged over by P,Q,R, N be a set of channels
(names) ranged over by x, y and � be a set of process identifiers. The syntax
and semantics of π-calculus process expressions are defined as follows:

x(�y).P : is an input prefix which receives channels along channel x and continues
as process P with y1, y2, . . . , yn replaced by the received channels. The input
prefix x().P is abbreviated as x.P .

x〈�y〉.P : is an output prefix which sends channels y1, y2, . . . , yn along channel x
and continues as process P . The output prefix x〈〉.P is abbreviated as x.P .

P |Q : represents concurrent processes P and Q are executing in parallel.
P + Q : represents a non-deterministic choice which either process P or Q pro-

ceeds. Σn
i=1Pi abbreviates P1 + . . . + Pn.

416 V.S.W. Lam and J. Padget

(ν�x)P : is a restriction which creates new channels x1, x2, . . . , xn used for com-
munication in process P .

[x = y]P : is a matching construct which proceeds as process P if channels x
and y are identical; otherwise, behaves like a null process.

τ.P : is an unobservable prefix which performs an internal action τ and continues
as process P.

A(x1, x2, . . . , xn) def= P : denotes a process identifier A which takes n parameters
and behaves like process P. Process P may contain occurrences of A.

The input prefix x(�y).P and restriction operator (ν�x)P bind �y and �x in P ,
respectively. Unlike the input prefix, the channels �y in output prefix x〈�y〉.P are
free. The bound names and free names of P are defined as bn(P) and fn(P). The
expression fn(P) ∪ fn(Q) is abbreviated as fn(P,Q).

In the π-calculus, the notion of open bisimulation is used for determining
whether two π-calculus processes are equivalent. We have adopted open bisim-
ulation in this paper rather than early and late bisimulations as open bisimula-
tion is a congruence. It preserves all π-calculus operators. In addition, the name
instantiation of open bisimulation has adopted a call-by-need approach which
greatly reduces the number of substitutions and provides an efficient path for
tool development.

Depending on the treatment of the internal actions, open bisimulation is
classified into strong open bisimulation and weak open bisimulation. Weak open
bisimulation is coarser as it does not differentiate between two π-calculus pro-
cesses which differ from each other in sequences of internal actions.

4 Translation of Statechart Diagrams into the π-Calculus

This section first recalls a subset of translation rules and definitions proposed
in [20]. The mapping of statechart diagrams to the π-calculus is limited to
notational elements which are relevant to this paper. These include events,
states, guard-conditions, actions, parameterized events, non-concurrent compos-
ite states and concurrent composite states. Then an application of the translation
rules is illustrated using Figures 1 and 2. The formalized execution semantics
in this section extends the rule-based mapping of our previous work [20] by
providing a way for transforming a parameterized event representing a method
invocation into a π-calculus expression.

4.1 Translation Rules

We define SC as a set of statechart diagrams ranged over by F,G,H, ST as a
set of states ranged over by S,T,V,W , E as a set of events ranged over by E, Ep

as a set of parameterized events ranged over by E(p1, . . . , pn) and T R as a set
of transitions ranged over by t. In addition, an infinite set of natural numbers N
is assumed.

Consistency Checking of Statechart Diagrams of a Class Hierarchy 417

The translation of statechart diagrams into the π-calculus is based on the
official UML semantics given in [21, 22] and a set of rules which are formalized
as follows:

Rule 1. The function φevent : E → N maps each event in a statechart diagram
to a channel in the π-calculus.

Rule 2. The function φstate : ST → � returns a unique process identifier for
each state. Each process identifier S1(event,�e, . . .) ∈ � is defined as

event(x).([x = e1] . . . + . . . + [x = en] . . .)

where �e stands for e1, . . . , en and ∀a ∈ {�e}.φ−1
event(a) ∈ E .

Rule 1 specifies that an event is modelled as a channel in the π-calculus. The
inverse of φevent denoted by φ−1

event is a function from N to E . Rule 2 stipulates
that a state is encoded in the π-calculus as a process. The process is regarded
as an event processor of the statechart diagram which handles each dispatched
event according to the UML semantics. It determines what the event is by using
a number of matching constructs.

We define Ain = {x(�y)|x, �y ∈ N} to be a set of input actions and Aout =
{x〈�y〉|x, �y ∈ N} to be a set of output actions.

Definition 1. The function arity: (Ain ∪ Aout) → N returns the number of
channels which an input or output action takes as parameters.

Rule 3. A mapping between guard-conditions and output actions is defined as
φguard : GCond → {α|α ∈ Aout ∧ arity(α) = 1} where GCond is a set of
guard-conditions. The Boolean value of a guard-condition is tested by

g〈x〉.x(y).([y = true] · · ·+ [y = false] · · ·)

where g, x, y, true, false ∈ N and φ−1
guard(g〈x〉) ∈ GCond.

Rule 4. Each action representing the invocation of an operation or the send-
ing of a signal to an object is related to an output action in the π-calculus by
φaction :Act → Aout where Act is a set of actions.

Rules 3 and 4 say that the guard-condition and action of a transition are
both represented as an output action. Rule 3 defines how a guard-condition and
its evaluation are formalized. The encoding uses two matching constructs to
distinguish between the two truth values.

Rule 5. The function φpevent : Ep → N maps a parameterized event to a
channel.

418 V.S.W. Lam and J. Padget

Rule 6. The receipt of a parameterized event E1(p1, . . . , pn) ∈ Ep is encoded as:

event(x).([x = e1]x(p1, . . . , pn). · · ·+ · · ·+ [x = en] · · ·)

Rule 5 states that a parameterized event is translated into a channel. The pa-
rameters p1, . . . , pn of the parameterized event E1 are received along the event
channel e1 as defined by Rule 6.

Definition 2. The function substates: ST → 2ST returns the direct substates
that are directly contained in a composite state.

Rule 7. A non-concurrent composite state S1 and its active substate V1 are
denoted as φstate(S1)|φstate(V1) where V1 ∈ substates(S1) and φstate(S1) and
φstate(V1) are defined by:

S1(step, eventS , �e, eventV , pos, neg) def=
eventS(x).(νack)
eventV 〈x ack〉.ack(y).([y = pos]step. · · ·+ [y = neg]step. · · ·)

V1(eventV , �e, pos, neg) def=
eventV (x ack).
([x = e1]ack〈value1〉. · · ·+ · · ·+
[x = en]ack〈valuen〉. · · ·)

where valuei ∈ {pos, neg} for i = 1, . . . , n.

Rule 8. A concurrent composite state S1 and its active substates V1, . . . , Vn

which are located in n different orthogonal regions are represented in the π-
calculus as φstate(S1)| φstate(V1)| . . . | φstate(Vn) where

∧n
i=1 Vi∈ substates(S1)

and φstate(S1), φstate(V1), . . . , φstate(Vn) are defined by:

S1(step, eventS , �e, eventV1
, . . . , eventVn

, pos, neg, . . .) def=

eventS(x).(ν
−→
ack)eventV1

〈x ack1〉. · · · .

eventVn
〈x ackn〉.ack1(y1). · · · .ackn(yn). · · ·

Vi(eventVi
, �e, pos, neg, . . .) def=

eventVi
(x ack).

([x = e1]acki〈value1〉. · · ·+ · · ·+
[x = en]acki〈valuen〉. · · ·)

where 1 ≤ i ≤ n and valuei ∈ {pos, neg} for i = 1, . . . , n.

Rules 7 and 8 specify that a composite state and its active direct substates [21]
are denoted as processes which are running in parallel. A non-concurrent com-
posite state is regarded as a special case of a concurrent composite state in which

Consistency Checking of Statechart Diagrams of a Class Hierarchy 419

there is only one orthogonal region. The composite state broadcasts any received
events to its substates. As the substates process the received event before the
composite state, the lowest-first firing priority of UML semantics is preserved in
our translation. The end of a run-to-completion step [21, 22] is encoded as an
output action step (Rule 7).

4.2 Application of the Translation Rules

An illustration of how various notational elements including a basic state, an
event, a parameterized event, a guard-condition, an action, a non-concurrent
composite state, a substate and an interlevel transition are represented in the π-
calculus is shown here. To improve the readability of the π-calculus specifications,
some abbreviations are defined as follows:

ẽC2
= e1, e2, e3, e4, e5, e6

ẽC1
= e1, e2, e3, e4, e5, e6, e7, e8, e9, e10

ãck = pos, neg

According to Rules 1, 2, 5 and 6, the basic state S1, the event E2 and the
parameterized event E1(p1, p2) of class C2 in Figure 1 are modelled in the π-
calculus as:

SC2

1 (step, eventS , ẽC2
, cond1, ins0)

def=
eventS(x).
([x = e1]x(p1, p2).step.

SC2

3 (step, eventS , ẽC2
, cond1, ins0) +

[x = e2]step.SC2

2 (step, eventS , ẽC2
, cond1, ins0) +

Σi∈{3,...,6}[x = ei]step.SC2

1 (step, eventS , ẽC2
, cond1, ins0))

The process SC2

1 receives an event along eventS and determines what the
received event is. If the event E1, modelled as channel e1, is received, it inputs
two parameters p1 and p2 along e1, sends a signal on channel step and continues
as process SC2

3 . Upon receipt of the event E2, it sends a signal on channel step
and evolves to the process SC2

2 . Otherwise, it outputs a signal on channel step
and continues as itself.

Based on Rules 1–4, the basic state S3 and the transition labelled with an event
E4, a guard-condition cond1 and an action send o.E5 (Figure 1) are represented as:

SC2

3 (step, eventS , ẽC2
, cond1, ins0)

def=
eventS(x).
([x = e4](νtrue false)cond1〈true false〉.
(true.ins0〈e5〉.step.

SC2

4 (step, eventS , ẽC2
, cond1, ins0) +

false.step.SC2

3 (step, eventS , ẽC2
, cond1, ins0)) +

Σi∈{1,2,3,5,6}[x = ei]step.SC2

3 (step, eventS , ẽC2
, cond1, ins0))

420 V.S.W. Lam and J. Padget

The process SC2

3 waits on channel eventS for the event E4, creates a pair
of channels true and false and outputs them on channel cond1. On receiving
a signal along true, it sends the event E5 on channel ins0, outputs a signal on
channel step and proceeds as process SC2

4 . Upon receipt of a signal along false,
it outputs a signal on channel step and proceeds as itself.

Applying Rules 1, 2, 5, 6 and 7, the basic state S1, the non-concurrent com-
posite state S2, the substate V1 and the interlevel transition between S1 and V1

in Figure 2 are translated into a π-calculus specification defined below:

SC1

1 (step, eventS , ẽC1
, cond1, ins0, ãck) def=

eventS(x).

([x = e1]x(p1, p2).step.SC1

3 (step, eventS , ẽC1
, cond1, ins0, ãck) +

[x = e2]step.(νeventsub)(SC1

2 (step, eventS , ẽC1
, cond1, ins0, eventsub, ãck)|

V C1

1 (eventsub, ẽC1
, cond1, ins0, ãck)) +

Σi∈{3,...,10}[x = ei]step.SC1

1 (step, eventS , ẽC1
, cond1, ins0, ãck))

On receiving the event E2, the process SC1

1 outputs a signal along step and con-
tinues as two concurrent processes SC1

2 and V C1

1 representing the non-concurrent
composite state and the active substate.

Using a similar approach, other parts of Figures 1 and 2 are translated into
their equivalent π-calculus representations. For reasons of space, we omit the
details here.

5 Substitutability and Behavioural Consistency

This section first introduces the notions of extension, substitutability of objects,
substitutability of statechart diagrams and behavioural consistency of statechart
diagrams. Then we discuss how the behavioural consistency of statechart dia-
grams of a class hierarchy is checked using weak open bisimulation.

We define C as a set of classes ranged over by C and describe now a formal
definition of class.

Definition 3 (Class). Given a class C ∈ C, the class C is a 2-tuple C =
(ΩC

A , ΩC
M) where (i) ΩC

A is a set of attributes and (ii) ΩC
M is a set of methods.

We let ΩC
A be a set of attributes and ΩC

M be a set of methods of a subclass
C ∈ C. The sets of new attributes and new methods defined in the subclass C
are denoted as ∆C

A and ∆C
M where ∆C

A ⊆ ΩC
A and ∆C

M ⊆ ΩC
M .

Definition 4. The function δ : C → SC maps each class to an associated state-
chart diagram.

Definition 5. The function States: SC → 2ST defined by States(F) = {S | S
is a state of the statechart diagram F} returns the set of states of a statechart
diagram F ∈ SC.

Consistency Checking of Statechart Diagrams of a Class Hierarchy 421

Definition 6. The function γ : ST → 2ΩC
A where Si ∈ ST for i = 1, . . . , n such

that States−1(
⋃n

i=1{Si}) = F and δ−1(F) = C returns a set of attributes which
are grouped together as a state of the statechart diagram F of a class C.

Definition 7 (Extension). Given C1, C2 ∈ C and C1 is a subclass of C2, the
class C1 extends the class C2, written C1 �E C2, iff (i) ΩC2

A ⊆ ΩC1

A ; (ii) ΩC2

M ⊆
ΩC1

M ; (iii) ∆C1

A ∩ΩC2

A = ∅; and (iv) ∆C1

M ∩ΩC2

M = ∅.

Corollary 1. The relation �E is transitive.
Proof. Let C1, C2, C3 ∈ C. Suppose C1 �E C2 and C2 �E C3. Since C1 �E C2

and C2 �E C3, it follows that ΩC2

M ⊆ ΩC1

M and ΩC3

M ⊆ ΩC2

M . Since ⊆ is transitive,
we get ΩC3

M ⊆ ΩC1

M . Since ΩC3

M ⊆ ΩC2

M and ∆C1

M ∩ ΩC2

M = ∅,∆C1

M ∩ ΩC3

M = ∅. A
similar argument holds for attributes. Thus, �E is transitive.

Definition 8 (Generalization). Given C1, C2 ∈ C and C1 is a subclass of
C2, the class C1 generalizes the class C2, written C1 �G C2, iff (i) ΩC2

A ⊆ ΩC1

A ;
(ii) ΩC2

M ⊆ ΩC1

M ; (iii) (∆C1

A ∩ΩC2

A = ∅)∨(∆C1

A ∩ΩC2

A �= ∅); and (iv) (∆C1

M ∩ΩC2

M =
∅) ∨ (∆C1

M ∩ΩC2

M �= ∅).

Proposition 1. Let C1, C2 ∈ C. If C1 �E C2 then C1 �G C2.
Proof. Let C1 and C2 be arbitrary classes. Suppose C1 �E C2. Since C1 �E C2,
it follows that ΩC2

A ⊆ ΩC1

A , ΩC2

M ⊆ ΩC1

M ,∆C1

A ∩ ΩC2

A = ∅ and ∆C1

M ∩ ΩC2

M = ∅.
Consider the clause ∆C1

A ∩ ΩC2

A = ∅. Then clearly C1 and C2 also satisfy the
clause (∆C1

A ∩ ΩC2

A = ∅) ∨ (∆C1

A ∩ ΩC2

A �= ∅). A similar argument holds true
for the clause ∆C1

M ∩ ΩC2

M = ∅. Since C1 �G C2 satisfies the other two clauses
ΩC2

A ⊆ ΩC1

A and ΩC2

M ⊆ ΩC1

M according to the definition of �G, we can conclude
that if C1 �E C2 then C1 �G C2.

Relationships that may exist between classes include extension (Definition 7)
and generalization (Definition 8). Unlike an extension [23] which only adds more
attributes and methods to a superclass, a generalization allows attribute and
method overriding. An extension is finer than a generalization as specified in
Proposition 1.

Definition 9 (Substitutability of Objects). Given C1, C2 ∈ C, any object o1

of the class C1 is substitutable for an object o2 of the class C2, written o1 obj o2,
iff C1 �E C2 or C1 �G C2 holds.

Definition 10 (Substitutability of Statechart Diagrams). Given C1, C2 ∈
C, C1 �E C2, δ(C1) = F1 and δ(C2) = F2, the statechart diagram F1 which is
associated with the class C1 is substitutable for the statechart diagram F2 which
is associated with the class C2, written F1 sc F2, if the extra attributes and
methods declared in the class C1 are specified as invisible.

422 V.S.W. Lam and J. Padget

Substitutability [7, 8, 10, 23] of objects (Definition 9) is an important con-
cept in object-oriented technology which ensures that an object of a subclass
is compatible with an object of a superclass. Similarly, we introduce the con-
cept substitutability of statechart diagrams (Definition 10) for specifying the
compatibility between the statechart diagrams of a subclass and its superclass
due to an extension. Hiding the extended attributes and methods in a subclass
guarantees the substitutability of statechart diagrams. Both extension and gen-
eralization imply the substitutability of objects, whereas extension implies the
substitutability of statechart diagrams.

Definition 11. (Behavioural Consistency of Statechart Diagrams) Given
C1, C2 ∈ C, C1 �E C2, δ(C1) = F1 and δ(C2) = F2, the statechart diagram F1 is
behaviourally consistent with the statechart diagrams F2, written as F1 �sc F2, iff
F1 sc F2.

The behaviour of F1 and F2 is consistent as extended attributes and methods
of F1 are hidden according to the definition of the substitutability of statechart
diagrams.

Corollary 2. The relation sc is transitive.
Proof. Let δ(C1) = F1, δ(C2) = F2 and δ(C3) = F3. Suppose F1 sc F2 and
F2 sc F3. Since F1 sc F2 and F2 sc F3, it follows that C1 �E C2 and
C2 �E C3. Since �E is transitive, we get C1 �E C3 and we can conclude that
F1 sc F3. Thus, sc is transitive.

Corollary 3. The relation �sc is transitive.
Proof. By Definition 11 and Corollary 2.

The substitutability and behavioural consistency of statechart diagrams are
transitive and any three statechart diagrams related by extensions are compati-
ble.

Proposition 2. Consider two objects o1 and o2 of classes C1 and C2 and the
respective statechart diagrams F1 and F2 of the two classes. If F1 sc F2 then
o1 obj o2.

Proof. Suppose F1 sc F2. Since F1 sc F2, it follows that C1 �E C2. Therefore,
o1 obj o2. Thus, if F1 sc F2 then o1 obj o2.

Proposition 3. Consider two objects o1 and o2 of classes C1 and C2 and the
respective statechart diagrams F1 and F2 of two classes. If F1 �sc F2 then o1 obj

o2.

Proof. Follows directly from Definition 11 and Proposition 2.

Proposition 2 says that an object o1 is substitutable for an object o2 when-
ever the associated statechart diagram F1 of the object o1 is substitutable for
the associated statechart diagram F2 of the object o2. Similarly, the behavioural

Consistency Checking of Statechart Diagrams of a Class Hierarchy 423

consistency of statechart diagrams implies the substitutability of their corre-
sponding objects as stated in Proposition 3.

Next, we define the name substitution function [3, 4, 19] and a number of
redexes [5, 19]. Then we recall the notion of weak open bisimulation [6, 19, 24, 25]
in the π-calculus.

Definition 12. The name substitution function σ : N → N , written {�x/�y},
replaces each yi ∈ N by xi ∈ N for 1, . . . , n.

The syntax and semantics of redexes used in the definition of weak open
bisimulation are given below:

P
α−→ P ′ : the execution of action α and process P becomes P ′.

P =⇒ P ′ : process P becomes P ′ after zero or more internal actions.
P

α=⇒ P ′ : is equivalent to P =⇒ α−→=⇒ P ′.

P
α̂=⇒ P ′ :

P
α=⇒ P ′ if α �= τ

P =⇒ P ′ if α = τ

Definition 13 (Weak Open Bisimulation [19]). A symmetric binary re-
lation R on processes is a weak open bisimulation if (P,Q) ∈ R implies ∀σ
whenever Pσ

α−→ P ′ where bn(α) ∩ fn(Pσ,Qσ) = ∅ then, ∃Q′ : Qσ
α̂=⇒ Q′

∧(P ′, Q′) ∈ R. P is weakly open bisimilar to Q, written P
.≈o Q, if they are

related by a weak open bisimulation.

Definition 14. The translation of statechart diagrams into the π-calculus is
defined by the function φ : SC → 2� which represents a group of translation
functions as specified by Rules 1–8.

Proposition 4. Let δ(C1) = F1, δ(C2) = F2,MC be a set of matching con-
structs and Z+ be a set of positive integers. If C1 �E C2 and φ(F2)

.≈o (νφ(m1)
φ(m2) . . . φ(mn)) φ(F1) then F1 �sc F2 where

⋃n
i=1{mi} = ∆C1

M and the ex-
ecution of the π-calculus expression eventS(x).[x = φ(mi)]step becomes φ(Si)
for i = 1, . . . , n such that (i) eventS(x) ∈ Ain, (ii) [x = φ(mi)] ∈ MC,
(iii) step ∈ Aout, (iv) Si ∈ ST , (v) γ(Si) = {aj |aj ∈ ∆C1

A ∧ j ∈ Z+} and
(vi)

⋃n
i=1{Si} ⊆ States(δ(C1)).

Proof. By Definitions 10 and 11.

Proposition 4 stipulates that to determine the behavioural consistency of
statechart diagrams, we translate the statechart diagrams into π-calculus speci-
fications and hide the extended methods explicitly and extended attributes im-
plicitly using a restriction. Then we test whether the two π-calculus specifications
are weakly open bisimilar.

424 V.S.W. Lam and J. Padget

6 Consistency Checking Using the MWB

The MWB is an automated software tool for the π-calculus. It provides an
environment for analyzing concurrent systems which have dynamically evolv-
ing communication topologies. Equivalence-checking commands for determining
whether two processes specified in the π-calculus are related by various weak
open bisimulations are supported.

The syntactical differences between the MWB and the π-calculus are minor.
The restriction operator ν and output action x are represented in the MWB as
^ and ’x, respectively. In the MWB, a process is defined in the same way as in
the π-calculus except that it is preceded by the keyword agent.

To check whether the statechart diagram of class C1 is behaviourally con-
sistent with the statechart diagram of class C2 (Figures 1 and 2), the channels
e7, e8, e9 and e10 representing extended methods declared in class C1 are hidden
using a restriction as follows:

(νe7 e8 e9 e10 ãck)

SC1

1 (step, eventS , ẽC1
, cond1, ins0, ãck)

We then proceed to verify whether SC2

1 (step, eventS , ẽC2
, cond1, ins0) as dis-

cussed in Section 4 is weakly open bisimilar to (νe7 e8 e9 e10 ãck)SC1

1 (step,eventS,

ẽC1
, cond1, ins0, ãck) i.e. whether the equivalence

SC2

1 (step, eventS , ẽC2
, cond1, ins0)

.≈o

(νe7 e8 e9 e10 ãck)

SC1

1 (step, eventS , ẽC1
, cond1, ins0, ãck)

holds using the MWB.
As shown in Figure 4, the MWB command input imports the π-calculus

specifications of the statechart diagrams of classes C1 and C2 from the file stat-
echarts of C1 C2.pi under the directory inheritance. The processes

S 1 C2(step, event S, e 1, e 2, e 3, e 4, e 5, e 6,

cond 1, ins o)

and

(^e 7)(^e 8)(^e 9)(^e 10)(^pos)(^neg)
S 1 C1(step, event S, e 1, e 2, e 3, e 4, e 5, e 6,

e 7, e 8, e 9, e 10, cond 1, ins o, pos, neg)

representing

SC2

1 (step, eventS , ẽC2
, cond1, ins0)

Consistency Checking of Statechart Diagrams of a Class Hierarchy 425

and

(νe7 e8 e9 e10 ãck)

SC1

1 (step, eventS , ẽC1
, cond1, ins0, ãck)

are then checked whether they are weakly open bisimilar given that channels
step, eventS , e1, e2, e3, e4, e5, e6, cond1 and inso are distinct using the MWB com-
mand weqd.

The two processes (agents) are related by a weak open bisimulation and the
size of the weak open bisimulation is 19. The time taken for the consistency check
was 0.078 seconds. The real time elapsed was measured using the MWB time
command. The test was performed using MWB 3.122 running under Windows
XP Professional operating system on a 2.4 GHz Pentium PC with 512MB of
RAM.

The Mobility Workbench

(MWB’97, polyadic version 3.122, built Mon Apr 21 23:02:07 2003)

MWB>input "inheritance\statecharts_of_C1_C2.pi"

MWB>weqd \

(step,event_S,e_1,e_2,e_3,e_4,e_5,e_6,cond_1,ins_o) \

S_1_C2(step,event_S,e_1,e_2,e_3,e_4,e_5,e_6,cond_1, \

ins_o) \

((^e_7)(^e_8)(^e_9)(^e_10)(^pos)(^neg) \

S_1_C1(step,event_S,e_1,e_2,e_3,e_4,e_5,e_6,e_7,e_8, \

e_9,e_10,cond_1,ins_o,pos,neg))

The two agents are related.

Relation size = 19.

Fig. 4. Consistency checking of statechart diagrams

7 Conclusions

Ensuring the consistency of models is a non-trivial challenge for the software en-
gineering field. This paper has examined the concepts substitutability of objects,
substitutability of statechart diagrams and behavioural consistency of statechart
diagrams. We have presented a new algebraic methodology for verifying whether
the statechart diagrams of classes linked with a generalization relationship are
consistent. The statechart diagrams are encoded in the π-calculus and the con-
sistency of the statechart diagrams is verified using the MWB. We have plans
to extend the methodology for checking the preservation of consistency between
different types of UML models.

426 V.S.W. Lam and J. Padget

References

1. P. Wegner and S.B. Zdonik. Inheritance as an incremental modification mechanism
or what like is and isn’t like. In ECOOP ’88, LNCS 322, pages 55–77, 1988.

2. OMG. OMG Unified Modeling Language specification version 1.5, March 2003.
http://www.omg.org; accessed January 20, 2005.

3. R. Milner, J. Parrow, and D. Walker. A calculus of mobile process (Parts I and
II). Information and Computation, 100:1–77, 1992.

4. R. Milner. The polyadic π-calculus: A tutorial. In Logic and Algebra of Spec-
ification, Proceedings of International NATO Summer School, volume 94, pages
203–246. Springer-Verlag, 1993.

5. B. Victor and F. Moller. The mobility workbench: A tool for the π-calculus. In
CAV ’94, LNCS 818, pages 428–440, 1994.

6. B. Victor. A Verification Tool for the Polyadic π-Calculus. Department of Com-
puter Systems, Uppsala University, 1994. Licentiate thesis.

7. J.L. Sourrouille. UML behaviour: Inheritance and implementation in current
object-oriented languages. In UML ’99, LNCS 1723, pages 457–472, 1999.

8. D. Harel and O. Kupferman. On the behavioral inheritance of state-based objects.
In TOOLS 34, pages 83–94. IEEE Computer Society, 2000.

9. M. Stumptner and M. Schrefl. Behaviour consistent inheritance in UML. In
ER2000, LNCS 1920, pages 527–542, 2000.

10. G. Engels, R. Heckel, and J.M. Küster. Rule-based specification of behavioural
consistency based on the UML meta-model. In UML 2001, LNCS 2185, pages
272–286, 2001.

11. V.S.W. Lam and J. Padget. Analyzing equivalences of UML statechart diagrams
by structural congruence and open bisimulations. In Proceedings of 2003 IEEE
Symposium on Human Centric Computing Languages and Environments, pages
137–144. IEEE Computer Society, 2003.

12. V.S.W. Lam and J. Padget. Symbolic model checking of UML statechart dia-
grams with an integrated approach. In Proceedings of Eleventh IEEE International
Conference and Workshop on the Engineering of Computer-Based Systems, pages
337–346. IEEE Computer Society, 2004.

13. V.S.W. Lam and J. Padget. Formal specification and verification of the SET/A
protocol with an integrated approach. In Proceedings of 2004 IEEE International
Conference on E-Commerce Technology, pages 229–235. IEEE Computer Society,
2004.

14. G. Engels, J.M. Küster, R. Heckel, and L. Groenewegen. A methodology for
specifying and analyzing consistency of object-oriented behavioral models. In
ESEC/SIGSOFT FSE, pages 186–195. ACM Press, 2001.

15. G. Engels, J.M. Küster, R. Heckel, and L. Groenewegen. Towards consistency-
preserving model evolution. In Proceedings of the International Workshop on Prin-
ciples of Software Evolution, pages 129–132. ACM Press, 2002.

16. G. Engels, R. Heckel, J.M. Küster, and L. Groenewegen. Consistency-preserving
model evolution through transformations. In UML 2002, LNCS 2460, pages 212–
226, 2002.

17. J. Davies and C. Crichton. Concurrency and refinement in the Unified Modeling
Language. Formal Aspects of Computing, 15(2–3):118–145, 2003.

18. R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge Uni-
versity Press, 1999.

Consistency Checking of Statechart Diagrams of a Class Hierarchy 427

19. J. Parrow. An introduction to the π-calculus. In A. Bergstra, J.A. Ponse and S.A.
Smolka, editors, Handbook of Process Algebra, chapter 8, pages 479–543. Elsevier
Science, 2001.

20. V.S.W. Lam and J. Padget. On execution semantics of UML statechart diagrams
using the π-calculus. In Proceedings of the International Conference on Software
Engineering Research and Practice, pages 877–882. CSREA Press, 2003.

21. OMG. OMG Unified Modeling Language specification version 1.5, March 2003.
http://www.omg.org; accessed January 20, 2005.

22. OMG. UML 2.0 superstructure specification, August 2003. http://www.omg.org;
accessed January 20, 2005.

23. J. Ebert and G. Engels. Structural and behavioural views on OMT-classes. In
Object-Oriented Methodologies and Systems, LNCS 858, pages 142–157, 1994.

24. D. Sangiorgi. A theory of bisimulation for the π-calculus. In CONCUR ’93, LNCS
715, pages 127–142, 1993.

25. P. Quaglia. The π-calculus: Notes on labelled semantics. Bulletin of the EATCS,
68, June 1999.

1 Introduction

The popularity of scripting languages stems from the flexible programming fea-
tures they support. These include the runtime modification of objects through
addition of fields or updating of methods. These features make static typing dif-
ficult and so usually dynamic typing is used. Consequently, errors such as access
to non-existent members are not detected until runtime, or, as in JavaScript,
not detected at all which can result in a web browser reporting an error when
viewing a web page containing JavaScript code.

We introduce JS0, a formalism of JavaScript[16]. JS0 supports the standard
JavaScript flexible features, e.g. functions creating objects, and dynamic addi-
tion/reassignment of fields and methods. We also introduce JST

0 , an explicitly
typed version of JS0. Types in JST

0 comprise object types, function types, and

� Work partly supported by EU within the FET - Global Computing initiative, project
DART IST-2001-33477,MURST Cofin’02 project McTati, and MIUR Prin’04 project
EOS

Towards Type Inference for JavaScript�

Christopher Anderson1, Paola Giannini2, and Sophia Drossopoulou1

1 Department of Computing, Imperial College London,
180 Queen’s Gate, London SW7 2BZ, U.K

2 Dipartimento di Informatica,
Università del Piemonte Orientale,
Via Bellini 25/G, Alessandria, Italy

Abstract. Object-oriented scripting languages like JavaScript and
Python are popular partly because of their dynamic features. These in-
clude the runtime modification of objects and classes through addition
of fields or updating of methods. These features make static typing dif-
ficult and so usually dynamic typing is used. Consequently, errors such
as access to non-existent members are not detected until runtime.
We first develop a formalism for an object based language, JS0, with

features from JavaScript, including dynamic addition of fields and up-
dating of methods. We give an operational semantics and static type
system for JS0 using structural types. Our types allow objects to evolve
in a controlled manner by classifying members as definite or potential.
We define a type inference algorithm for JS0 that is sound with

respect to the type system. If the type inference algorithm succeeds,
then the program is typeable. Therefore, programmers can benefit from
the safety offered by the type system, without the need to write explicitly
types in their programs.

A.P. Black (Ed.): ECOOP 2005, LNCS 3586, pp. 428–452, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

refer to itself. Our type system permits objects to evolve in a controlled manner
by allowing members to be added to an object after it has been created. This is
achieved by annotating with ψ, each member of an object type as either potential
‘◦’ or definite ‘•’.

Function types have the form, t = µ α.(O × t1 � t2), where O is the type of
the receiver, t1 is the type of the formal parameter and t2 is the return type. As
for object types, the bound variable α allows references to t within O, t1, and
t2. Thus, µ α.(× � α) is a function that returns a value of the same type as
the function itself.

A function can be used as a global function if its type does not make any
requirements of its receiver. The type system is rich enough to allow typing of
many JavaScript programs, and at the same time prevents runtime errors such
as access to non-existing members of objects.

We develop a sound type inference algorithm to automatically translate JS0

code to JST
0 code. The algorithm uses type variables which represent the type of

expressions. Constraints are generated between the type variables. If there is a
solution to the constraints this can be used to translate code from JS0 to JST

0 .
We define a translation between constraints and types that provides the types
for the typed version of the code.

In [6] we introduced the language JS0 and its type system. In this paper we
have simplified the presentation of JST

0 and its type system and defined a sound
type inference algorithm.

This paper is organized as follows. In Section 2 we define the syntax of JS0

and its operational semantics, and in Section 3 we give JST
0 . Properties of the

type system for JST
0 are outlined in Section 4. In Section 5 we show type inference

for JS0, and in Section 6 we show how to turn constraints into types. In Section 7
we compare our work with others. In Section 8 we draw conclusions and outline
our future directions. The proofs and a prototype implementation can be found
at http://www.binarylord.com/work/js0/.

2 JS0

We have developed JS0 a subset of JavaScript. Figure 1 gives an example JS0

program that describes an implementation of the JavaScript Date object1. We
define functions Date and addFn. The code preceded by the comment //Main is
the entry point into the program. Although the syntax of JS0 requires all code
to be within a function body to aid presentation we allow a main body of code
and the declaration of local variables x and y. The example demonstrates the
core JavaScript features we have included:

1 For more information on the Date object see [15]. We give a simplified version and
allow the adding of one date to another, with add.

Int (the type of integers). Object types list the methods and fields present in the
object, µ α.[m

1
: (t

1
, ψ

1
) · · ·m

n
: (t

n
, ψ

n
)]. We use the µ-binder to allow a type to

Towards Type Inference for JavaScript 429

3. acquiring methods through assignment of a function to a member (line 3).

1 function Date(x) {

2 this.mSec = x;

3 this.add = addFn;

4 this

5 }

6 function addFn(x) {

7 this.mSec = this.mSec + x.mSec; this

8 }

9 //Main

10 x = new Date(1000);

11 y = new Date(100);

12 x.add(y);

We chose these features because, (1) represents the way objects are created
in JavaScript, (2) and (3) represent the way objects acquire fields and methods
thus giving flexibility to the programmer. JS0 does not include the following
JavaScript features: member names as strings, functions as expressions, dynamic
removal of members, automatic conversions, and delegation. We omitted the first
three as we believe they are not essential in supporting flexible object-oriented
programming. The last two while useful can complicate static typing and type
inference. We can write the introductory examples from [15] in JS0 assuming
libraries of functions, and predefined types e.g. floats, strings, etc.

The syntax of JS0 is given in Figure 2. Note that, in the syntax of JS0 we
omitted conditional expressions, which were present in [6]. Their presence does
not produce conceptual difficulties regarding the type system and type inference.
A program is a sequence of function declarations. In JS0 functions may have only
one formal parameter. The extension to functions with multiple parameters is
trivial, whereas going to a variable number of parameters, as in JavaScript, is
an interesting possible future extension.

For a program P, we use P(f) as a shorthand for looking up the definition of
function f in P.

2.1 Operational Semantics

We give a structural operational semantics for JS0 that rewrites tuples of ex-
pressions, heaps and stacks into tuples of values, heaps and stacks in the context
of a program. The signature of the rewriting relation �� is:

�� : Program � Exp × Heap × Stack � (Val ∪Dev)× Heap× Stack

1. creating objects using functions (line 10 and 11),
2. implicit creation of members in objects through assignment (lines 2 and 3),

and

Fig. 1. Untyped JS0 Date Example

430 C. Anderson, P. Giannini, and S. Drossopoulou

P ∈ Program ::= F∗

F ∈ FuncDecl ::= function f (x) { e }
e ∈ Exp ::= var locals

f function identifier
new f(e) object creation
e; e sequence
e.m(e) member call
e.m member select
f(e) global call
lhs = e assignment
null null
n integer

var ∈ EnvVars ::= this | x

lhs ∈ LeftHandSide ::= x | e.m

Identifiers

f ∈ FuncID ::= f | f′ | . . .
m ∈ MemberID ::= m | m′ | . . .

where:

H ∈ Heap = Addr→fin Obj
χ ∈ Stack = {this, x} � Val such that χ(this) ∈ Addr
v ∈ Val = {null} ∪ FuncID ∪ Addr ∪ Int
dv ∈ Dev = {nullPntrExc, stuckErr}
o ∈ Obj = MemberID→fin Val

The heap maps addresses to objects, where addresses, Addr, are ι0, ..ιn... We
use →fin to indicate a finite mapping. As usual, the notation f[x �→ y] denotes
updating function f to map x to y. Thus, the meaning of heap update H[ι �→ v]
and stack update χ[x �→ v] is clear. The stack maps this to an address and x to
a value, where values, Val, are function identifiers (denoting functions), addresses
(denoting objects), null , or integers. Finally objects are finite mappings from
member identifiers to values. With <<m1 : v1...mn : vn>> we denote the object
mapping mi to vi for i ∈ 1 · · ·n.

A full description of the rules is given in [6]. In JavaScript access to non-
existent members result in an undefined value not a runtime error2. This may
cause errors later on in the code. We consider accesses to non-existent members
a runtime error and our type system prevents them. Below we give two of the

2 For some interesting insights into issues surrounding JavaScript’s treatment of un-
defined members see [24].

Fig. 2. Syntax of JS0

Towards Type Inference for JavaScript 431

more interesting rules, (memAdd) for adding/updating members and (memCall)
for calling methods:

e1, H, χ �� ι, H1, χ1

e2, H1, χ1 �� v, H2, χ
′

H′ = H2[ι �→ H2(ι)[m �→ v]]
(memAdd)

e1.m = e2, H, χ �� v, H′, χ′

e1, H, χ �� ι, H1, χ1

e2, H1, χ1 �� v′, H2, χ
′

H2(ι)(m) = f
P(f) = function f(x) {e′}
χ2 = {this �→ ι, x �→ v′}
e′, H2, χ2 �� v, H′, χ′′

(memCall)
e1.m(e2), H, χ �� v, H′, χ′

In rule (memAdd) we express how objects obtain new members. We first
evaluate the receiver, then the right hand side. Using heap update we add/update
member m in the receiver. Returning to the example in Figure 1, executing
this.mSec = x from Date with χ0(this) = ι0, χ0(x) = 1000, H0(ι0) = <<>>, will
produce H1 with H1(ι0) = <<mSec : 1000>>

In rule (memCall) we first evaluate the receiver and then the actual parameter
of the method. We obtain the function definition (corresponding to the method)
by looking up the value of member m in the receiver (obtained by evaluation of
e) in P3. We execute the body with a stack in which this refers to the receiver
of the call and x to the value of the actual parameter.

For example, executing the code in Figure 1 in the presence of an empty heap,
H0 and χ0, mapping x and y to null will result in stack χ1(x) = ι0, χ1(y) =
ι1 and updated heap H1, H1(ι0) = <<mSec : 1100, add : addFn>>, H1(ι1) =
<<mSec : 100, add : addFn>>. For demonstration purposes the stack contains an
extra variable y although the definition of stack allows only this and x.

Note that member add of both ι0 and ι1 has value addFn. This indicates that
it is an alias of function addFn, which is invoked when x.add(y) is executed.

3 A Type System for JS0

In this section we introduce JST
0 a typed version of JS0. Figure 3 shows the parts

of JST
0 that differ from JS0 along with the definitions of types. Observe that

functions are now annotated with a function type G.
Types t1, ..., tn, comprise object types, function types, or Int (the type

of integers). Object types list the methods and fields present in the object.
We use the µ-binder to allow a type to refer to itself. So µ α.M where
M = [m1 : (t1, ψ1) · · ·mn : (tn, ψn)], is the type of an object with members m1, ...,
mn of type t1, ..., tn, respectively. Figure 4 gives a JST

0 version of the Date ex-
ample from Figure 1. We use t1 for type [mSec : (Int, ◦), add : ((t2 × t2 � t2), ◦)]
and t2 for type µ α.[mSec : (Int, •), add : ((α × α � α), •)]. To aid the presen-
tation we allow local variable type declarations on lines 10 and 11. These are
not part of the syntax of JST

0 , where type declarations are only allowed for the

3 For clearness of presentation we omit P from the reduction rules.

432 C. Anderson, P. Giannini, and S. Drossopoulou

Syntax

P ∈ Program ::= F∗

F ∈ FuncDecl ::= function f(x) : G { e}

Types

t ∈ Type ::= O | G | Int
tp ∈ PreType ::= α | t
O ∈ ObjType ::= µ α.M | M
G ∈ FuncType ::= µ α.R | R
M ∈ ObjMembers ::= [(m : tm)∗]
tm ∈ MemberType ::= (tp, ψ)
R ∈ FuncRow ::= (O × tp � tp)

ψ ∈ Annotation ::= ◦ | •
α ∈ ObjVar ::= α | α′ | α′′ . . .

parameter of a method and this and are implicitly given in the function type
for a function.

1 function Date(x):(t1 × Int � t2) {

2 this.mSec = x;

3 this.add = addFn;

4 this

5 }

6 function addFn(x):(t2 × t2 � t2) {

7 this.mSec = this.mSec + x.mSec; this;

8 }

9 //Main

10 t2 x = new Date(1000);

11 t2 y = new Date(100);

12 x.add(y);

Our type system permits objects to evolve in a controlled manner by allowing
members to be added to an object after it has been created. This is achieved
by annotating each member of an object type as either potential ‘◦’ or definite
‘•’ e.g. mSec : (Int, ◦) in t1 and mSec : (Int, •) in t2. When a potential member

Fig. 3. Syntax of JST0

Fig. 4. Typed JS0 Date Example.

Towards Type Inference for JavaScript 433

is assigned to, it becomes definite, replacing ◦ with •. To keep the type system
manageable we only track assignments to variables (formal parameters and this)
within the scope of a function. In a well-typed program potential members may
not be accessed until they have been assigned to.

Function types, (O × t1 � t2) or µ α.(O × t1 � t2), list the type of the
receiver, O, which is an object type, the type of the parameter, t1, and the type
of the return value of the function, t2. As for object types the µ-binder allows a
function type to refer to itself, thus µ α.(× � α) is a function that returns a
function with its type.

If the type of m is an object type, or Int, the member represents a field. If the
type of m is a function type, then m represents a method. In case the type of the
m is α then if α is bound in an objects type the member is a field, whereas if it
is bound in a function type it is a method. An object type is well-formed if it is
closed and contains unique member definitions that are themselves well-formed.
A function type G = µ α.R (or G = R) is well-formed, � G , if the receiver,
parameter and return types of G[α/R] (or R) are well-formed.

For a well-formed object type O, define O(m), which selects the annotated
type of the member m in O (if it is defined) by first defining selection from
O = [m1 : (t1, ψ1) · · ·mn : (tn, ψn)] as

O(m) =
{

(ti, ψi) if m = mi for some i, 1 ≤ i ≤ n
Udf otherwise

and then if O = µ α.M,
O(m) = M[α/O](m)

That is, the type is closed by substituting occurrences of α with the enclosing
type. Therefore, if O is well-formed, then also O(m) is well-formed.

With O[m �→ (t, ψ)] we denote the updating of the member m to type t with
annotation ψ in O. Note that, if O and t are well-formed, then O[m �→ (t, ψ)] is
well-formed.

Congruence and Subtyping Congruence between types is defined in Figure
5. With t1[α/t2], we denote the substitution of the free occurrences of α in
t1 with t2. Object types are congruent up to α-conversion, permutation of their
members, and unfolding of the bound variable, and function types are congruent
up to α-conversion, and unfolding of the bound variable.

The subtyping judgement t ≤ t′, defined in Figure 6, means that an object
or function of type t can be used whenever one of type t′ is required. For object
types we have subtyping in width. If O ≤ O′, then all definite members of O′

must be present and congruent with those in O, and all potential members of
O′ must be present as potential or definite members of O with congruent types.
This condition is needed to insure that the addition of a new member to an
object does not break compatibility.

Returning to the example in Figure 4 we see that t2 is a subtype of t1 because
all members of t1 are also members of t2, and have congruent types; furthermore,
all members of t2 are definite.

434 C. Anderson, P. Giannini, and S. Drossopoulou

Reflexivity Unfolding Transitivity

t ≡ t µ α.M ≡ M[α/µ α.M]
µ α.R ≡ R[α/µ α.R]

t1 ≡ t2 t2 ≡ t3

t1 ≡ t3

Alpha− conversion

α′ �∈ FV(M)

µ α.M ≡ µ α′.M[α/α′]

α′ �∈ FV(R)

µ α.R ≡ µ α′.R[α/α′]

Reordering Functions Members

∀ m : M(m) ≡ M′(m)

M ≡ M′

M ≡ M′ t1 ≡ t′1 t2 ≡ t′2

(M × t1 � t2) ≡ (M′ × t′1 � t′2)

t ≡ t′

(t, ψ) ≡ (t′, ψ)

For function types subtyping coincides with congruence. In future versions of
this work we may relax this restriction and allow contravariance of the receiver
and parameter type and covariance of the return type. However, since type
inference was our main aim, we started with the reduced system. Given types t
and t′ it is decidable whether t ≤ t′ or not.

ψ′ = • =⇒ ψ = •
ψ ≤ ψ′

t ≡ t′

ψ ≤ ψ′

(t, ψ) ≤ (t′, ψ′)

t ≡ t′

t ≤ t′

∀ m : O′(m) = (t′, ψ′) =⇒ (O(m) = (t, ψ) ∧ (t, ψ) ≤ (t′, ψ′))

O ≤ O′

3.1 Typing Expressions

Typing expression e in the context of program P, and environment Γ has form:

P, Γ � e : t ‖ Γ′

The environment, Γ = {this : O, x : t}, maps the receiver, this, to a well-
formed object type, and the formal parameter, x, to a well-formed type. The

Fig. 5. Congruence for types

Fig. 6. Subtyping

Towards Type Inference for JavaScript 435

environment on the right hand side of the judgement, Γ′, reflects the changes
to the type of the receiver or parameter while typing the expression. The only
possible difference between Γ and Γ′ is that some members that are annotated
with ◦ in Γ are annotated with • in Γ′. With Γ[var �→ t] we denote the updating
of var to type t in Γ.

Consider the typing rules of Figure 7. Rules (var), (func), (const), and (seq)
are straightforward. Note that null may have any object type.

In rule (memAcc) the expression e must be of an object type in which the
member m is definite, i.e. with annotation •.

We use the notation G(this), G(x), and G(ret), to denote the types of the
receiver, parameter and return value of G. As for member selection, we define
for G = (O× t1 � t2) : G(this) = O G(x) = t1 G(ret) = t2 and for
G = µ α.R, we define G(z) = (R[α/G])(z) where z ∈ {x, this, ret}.

Rule (methCall) checks that the type of the receiver is an object type in
which the member m has a definite function type. Moreover, the type of the
receiver and actual parameter must be subtypes of the declared type of the
receiver and formal parameter.

In (call) we consider global calls and constructors, and require that the type
of the receiver defined in the function has no definite members. This is consistent
with the operational semantics, as in the case of global call and object creation
we start with an empty receiver object.

In rule (assignAdd) in Γ′′ we ensure that member m (of this or the for-
mal parameter) is definite. From this point onwards, member m of var may be
accessed. For example, consider the expression x.m2 = x in the environment Γ,
where Γ(x) has type t = µ α.[m1 : (Int, •), m2 : (α, ◦)]. The expression is well-
typed in Γ and we have P, Γ � x.m2 = x : t ‖ Γ′ where Γ′ maps this to Γ(this)
and x to [m1 : (Int, •), m2 : (t, •)]. This reflects the updating of member m2. Any
aliases to this or the formal parameter will not see the update of a member.
This would require dataflow analysis techniques and is beyond the scope of this
work. The fact that the type system requires a member to be known (either
as potential or definite) for an assignment to succeed is not a limitation. The
process of type inference will find all members for a type with their appropriate
type and annotation.

Rule (assignUpd) is used when the assignment is to a definite member m. In
this case we just check that the type of the expression on the right hand side is
a subtype of the type of the member m.

A program P is well-formed if all the function declarations in P are well-typed.
Figure 7 gives the definition.

4 Formal Properties of the Type System

In this section we give the relevant definitions and the statement that asserts
that our type system is sound w.r.t. to the operational semantics given in Section

436 C. Anderson, P. Giannini, and S. Drossopoulou

Typing Expressions

(var)
P, Γ � this : Γ(this) ‖ Γ
P, Γ � x : Γ(x) ‖ Γ

P(f) = function f(x) : G...
(func)

P, Γ � f : G ‖ Γ

(const)
P, Γ � null : O ‖ Γ
P, Γ � n : Int ‖ Γ

P, Γ � e1 : t ‖ Γ′

P, Γ′ � e2 : t′ ‖ Γ′′
(seq)

P, Γ � e1 ; e2 : t′ ‖ Γ′′

P, Γ � e : O ‖ Γ′

O(m) = (t′, •)
(memAcc)

P, Γ � e.m : t′ ‖ Γ′

P, Γ � e : t ‖ Γ′

t ≤ Γ′(x)
(varAss)

P, Γ � x = e : t ‖ Γ′

P, Γ � e1 : O ‖ Γ′

O(m) = (G, •)
P, Γ′ � e2 : t′ ‖ Γ′′

t′ ≤ G(x)
O ≤ G(this)

(methCall)
P, Γ � e1.m(e2) : G(ret) ‖ Γ′′

P, Γ � e : t ‖ Γ′

P(f) = function f(x) : G...
t ≤ G(x)
{t′ | (G(this))(m) = (t′, •)} = ∅

(call)
P, Γ � new f(e) : G(ret) ‖ Γ′

P, Γ � f(e) : G(ret) ‖ Γ′

P, Γ � e2 : t ‖ Γ′

Γ′(var) = O
O(m) = (t′′, ψ)
t ≤ t′′

Γ′′ = Γ′[var 	→ O[m 	→ (t′′, •)]]
(assignAdd)

P, Γ � var.m = e2 : t ‖ Γ′′

P, Γ � e1 : O ‖ Γ′

P, Γ′ � e2 : t ‖ Γ′′

O(m) = (t′′, •)
t ≤ t′′

(assignUpd)
P, Γ � e1.m = e2 : t ‖ Γ′′

Well− formed Programs

∀ f : P(f) = function f(x) : G {e} ∧ � G �
=⇒ P, { this : G(this), x : G(x) } � e : t ‖ Γ′′ ∧ t ≤G(ret)

� P�

2.1. We assume that types are well-formed. We first define the notion of a value
being compatible with a given type. The definition is given co-inductively by

Fig. 7. Type Rules for Expressions in JST0

Towards Type Inference for JavaScript 437

first defining the properties that any agreement relation between values and
well-formed types should have.

Definition 1. Given a heap, H, and a program, P, we say that A ⊆ (Val×Type)
is an agreement relation if the following conditions are satisfied:

– if (null, t) ∈ A, then t = O for some well-formed O,
– if (n, t) ∈ A, then t = Int,
– if (f, t) ∈ A, then P(f) = function f(x) : G and G ≡ t,
– if (ι, t) ∈ A, then

t = O for some well-formed O, H(ι) = <<m1 : v1 . . . mp : vp>>, and
• O(m) = (t′, •) =⇒ m = mi for some i, i ∈ 1...p, and (vi, t

′) ∈ A
• O(m) = (t′, ◦) and m = mi for some i, i ∈ 1...p, =⇒ (vi, t

′) ∈ A

If A and A′ are agreement relations, then A ∪ A′ is also an agreement relation.
Therefore, the union of all agreement relations defines a relation between values
and types, which determines when a value has a given type.

Definition 2. Value v is compatible with type t in H

P, H � v � t

if (v, t) ∈ A for some agreement relation A on H and P.

Note that an address may be compatible with more than one type. In par-
ticular, a value compatible with a type is compatible with all its supertypes.

Lemma 1. If t ≤ t′ and P, H � v � t then P, H � v � t′.

In the following we define when a stack χ and a heap H are compatible with
an environment Γ.

Definition 3. P, Γ � H, χ holds if P, H � χ(this) � Γ(this) and P, H �
χ(x) � Γ(x).

We can now state the Soundness Theorem. The theorem asserts that if an
expression is well-typed,

P, Γ � e : t ‖ Γ′

then the evaluation of the expression starting in a heap and stack that are
compatible with Γ will not get stuck. That is, the result of the evaluation is
either a value compatible with type t, or it is a nullPntrExc exception. In
particular, it is not a stuckErr error. Moreover, the stack and heap produced
are compatible with the final environment Γ′.

Theorem 1. [Type Soundness] For a well-formed program P, environment Γ,
and expression e, such that:

P, Γ � e : t ‖ Γ′

If P, Γ � H, χ and e, H, χ �� w, H′, χ′, then either

– w = nullPntrExc, or
– w = v, P, H′ � v � t, and P, Γ′ � H′, χ′ .

438 C. Anderson, P. Giannini, and S. Drossopoulou

5 Type Inference

We show how type inference for JS0 can be expressed as a finite system of
constraints between type variables. Type variables are used to represent the type
of an expression. From a JS0 program, we can generate a set of type variables
with constraints between them. Constraints represent the relationships we expect
between types in the program. For example, that the actual parameter to a
function call should be a subtype of the formal parameter.

If the constraints have a solution we say that they are satisfiable. A solution
can be used to translate a JS0 program into an equivalent JST

0 program. This
involves annotating the JS0 program with type declarations. We show that the
annotated program is well-typed.

5.1 Type Variables

As in [20,3,21,18], we use type variables to express the - yet unknown - types of
expressions. Thus, [[new Date(1000)]] expresses the type of new Date(1000).

Because the types of this and x differ for different occurrences in the same
method body, we use labels to distinguish them, for example, [[this 1]], [[x 2]],
[[this 3]], etc.. Labeled type variables4 [[this f]] and [[x f]] represent the type of
this and x at the beginning of the function f, and [[ret f]] represents the return
type of the function.

We generate a new label for each method call; this label is used to generate
three type variables. These variables denote the type of the receiver, parameter
and return type of the method. For example, for x.add(y) we could use label 5
which would generate [[call this 5]], [[call x 5]], and [[call ret 5]]. Note that
these type variables depend on the label but not on the name of the method.5

Figure 8 gives the syntax of labeled expressions.
Figure 9 defines type variables. Type variables can be used to describe func-

tion types, e.g. (τ × τ ′
� τ ′′), or object types, e.g. [m:(τ ,ψ)] with the obvious

meaning.

5.2 Constraints and Solutions

A solution, S, is a mapping from type variables to types. For the Date exam-
ple, let t2 be µ α.[mSec : (Int, •), add : ((α × α � α), •)], S0 represents part of a
solution, as follows:

S0([[this Date]]) = [mSec : (Int, ◦), add : ((t2 × t2 � t2), ◦)]
S0([[this 1]]) = [mSec : (Int, •), add : ((t2 × t2 � t2), ◦)]

S0([[ret Date]]) = t2 S0([[x Date]]) = Int
S0([[this Date.mSec]]) = Int S0([[this 5]]) = [mSec : (Int, •)]

4 In [3] Agesen et al. use a similar labeling, [[]]τ , to indicate who the sender, τ , of a
method call is.

5 It is possible to optimize the creation of new variables at the call site, for example by
sharing some of them. Refer to Section 7 where we discuss [25] which shows possible
optimizations.

Towards Type Inference for JavaScript 439

∈ LabExp ::= | f | new f() | ; | .m() |
.m | f() | = | null | n | e

∈ LabEnvVars ::= this l | x l

∈ LeftSide ::= x l | .m
e ∈ InferExp ::= ret f | call this l | call x l | call ret l

l ∈ Lab ::= 1 | 2 | ... | f | f′ | ...

Constraints between type variables express the relationship between the types
of expressions, i.e. which members a type must have, how the members of two
types may differ and whether a type has any definite members. The syntax of
constraints is given in Figure 9. There are three kinds of constraint: τ ≤ ρ,
τ � τ , and τ◦. We use c to range over constraints and C for a set of constraints.

Figure 10, rule (solSat), defines that S satisfies a set of constraints, S � C ,
if it satisfies each constraint. We now discuss each kind of constraint and how
it is satisfied by a solution.

– τ ≤ ρ - requires a type variable to be a subtype of ρ: Thus, τ ≤ Int
requires τ to be Int, c.f. rule (solInt); while τ ≤ τ ′ requires τ to be a
subtype of τ ′, c.f. (solSub); while τ ≤ (τ1 × τ2 � τ3) requires τ to be
the function type composed from τ1, τ2 and τ3, c.f. (solSubFunc); finally,
τ ≤ [m : (τ ′, ψ)] requires τ to have a member m of type τ ′ with annotation
at least ψ, c.f. (solMemChange).
Thus, S0 � [[this 1]] ≤ [[this Date]], and S0 � [[this 1]] ≤ [[this 5]],
S0 � [[this Date]] ≤ [mSec : ([[this Date.mSec]], ◦)], but
S0 �� [[this Date]] ≤ [mSec : ([[this Date.mSec]], •)].

– τ �m τ ′ - requires τ and τ ′ to have the same members with the same types,
but member m can be potential in τ ′ but must be definite in τ , c.f. rule
(solMemChange).
For example, S0 � [[this 1]] �mSec [[this Date]], while
S0 �� [[this Date]] �mSec [[this 1]]. Also S0 �� [[this 1]] �mSec [[this 5]]. Note,
however, that S0 � [[this 1]] ≤ [[this 5]] – this should clarify the difference
between the two kinds of constraint.

– τ◦ - requires τ to have no definite members, c.f. rule (solNoDefs). This is
needed for constructors and global functions whose receiver must have no
definite members. For example, S0 � [[this Date]]◦.

5.3 Constraint Generation

Constraint generation for a JS0 program produces a set of constraints be-
tween type variables, and a labeled version of the original expression, . A

Fig. 8. Syntax of Labeled Expressions

440 C. Anderson, P. Giannini, and S. Drossopoulou

Type Variables

τ ::= [[]]

Constraints

ρ ∈ ConstRhs ::= τ | σ | [m : (τ, ψ)]
σ ∈ FuncInt ::= (τ × τ) � τ | Int

c ∈ Const ::= τ ≤ ρ | τ �m τ | τ◦

C ∈ P(Const)

pre-environment, γ = {this : l, x : l′, lab : L}, keeps track of the current
labeling of this and x along with the set of labels used so far, stored in the set
L. Constraint generation for an expression e in the context of a pre-environment,
γ, has the form:

γ � e : || γ′ || C

C = {c1...cn}
S � ci ∀ i ∈ 1...n

(solSat)
S � C

S(τ) ≤ S(τ ′)
(solSub)

S � τ ≤ τ ′

S(τ) ≤ (S(τ1) × S(τ2) � S(τ3))
(solSubFunc)

S � τ ≤ (τ1 × τ2 � τ3)

S(τ) = Int
(solInt)

S � τ ≤ Int

S(τ)(m) ≤ (S(τ ′), ψ)
(solMember)

S � τ ≤ [m : (τ ′, ψ)]

∀ m′ �= m : S(τ)(m′) ≡ S(τ ′)(m′)
S(τ)(m) ≤ S(τ ′)(m)

(solMemChange)
S � τ �m τ ′

{m | S(τ)(m) = (t, •)} = ∅
(solNoDefs)

S � τ◦

Fig. 9. Syntax of Type Variables and Constraints

Fig. 10. Solution Satisfaction

Towards Type Inference for JavaScript 441

where γ′ reflects the changes to the labeling of this, x and lab while generating
constraints. The constraints generated for an expression consist of the union of
the constraints for each subexpression augmented by local constraints.

In (var) we generate a labeled expression for this and x by looking in the
pre-environment for the current label. No constraints are generated.

In (funcId) we require f to have a function type derived from the type of the
receiver, parameter and return value of the function. The type variables come
from the initial labeled this and x and the labeled return variable ret f. For
example, function identifier addFn produces constraint:

[[addFn]] ≤ ([[this addFn]]× [[x addFn]] � [[ret addFn]])

In (assignAdd) we use var for this or x, and we model the change of member
m of var to definite. var l and var l′ represent the type of var before and after the
update, where l′ is fresh. Constraint [[var l]] ≤ [m : ([[var l.m]], ◦)] requires var
to have member m with annotation at least ◦ before the update, while [[var l′]] ≤
[m : ([[var l′.m]], •)] requires var to have member m with annotation definite after
the update6. The constraint [[var l′]] �m [[var l]] requires that only member m is
affected by the assignment. The remaining constraints require that the type of
member m, [[var l′.m]], and the overall expression have the type of the right hand
side of the assignment. For example, this.add = addFn in a pre-environment
γ2 = {this : 1, lab : L, ...} where 2 �∈ L, generates the constraints: [[this 1]] ≤
[add : ([[this 1.add]], ◦)], [[this 2]] ≤ [add : ([[this 2.add]], •)], [[this 2]] �add

[[this 1]], [[addFn]] ≤ [[this 2.add]], [[addFn]] ≤ [[this 2.add = addFn]] and the
post-environment γ2[this �→ 2, lab �→ L ∪ {2}].

In (new) a function is used to create an object. The constraint [[this f]]◦

requires the initial this for f to have no definite members. The constraint
[[e]] ≤ [[x f]] requires the actual parameter to have a subtype of the for-
mal parameter, where x f is the type of the formal parameter at the be-
ginning of the function body. The constraint [[ret f]] ≤ [[new f(e)]] requires
the return type of the function to be a subtype of the overall type of
the new expression . For example, new Date(1000) generates constraints:
[[this Date]]◦, [[1000]] ≤ [[x Date]], [[ret Date]] ≤ [[newDate(1000)]] The rule
for global function (funcCall) is similar in structure to that for (new).

For member access, (memAcc), and for assignment where the receiver is not
this or x, (assignUpd), the receiver must have the definite member. For
example, x.mSec, in a γ1 = {x : 2,}, generates constraint: [[x 2]] ≤
[mSec : ([[x 2.mSec]], •)]

For method call, (methCall), we consider the label character-
izing the occurrence of the call. For a call with label l we re-
quire the receiver to have a definite member, m, with function type
[[call this l]]× [[call x l]] � [[call ret l]], as expressed through the con-

6 Using [[var l]] ≤ [m : ([[e]],)] instead of [[var l]] ≤ [m : ([[var l.m]],))] would have
been too restrictive. Namely, a solution would require the type of m to be the same
as the type of [[e]] rather than a supertype.

442 C. Anderson, P. Giannini, and S. Drossopoulou

straint [[e1]] ≤ [m : ([[call this l]]× [[call x l]] � [[call ret l]], •)]7. This
will ensure that a solution to the constraints will give a type to the mem-
ber, that is the least upper bound of all the receivers, parameters and re-
turn types at the call sites. For example, x.add(y) in a pre-environment
γ3 = {x : Main, y : Main, lab : L,} where 5 �∈ L, generates constraints:

[[x Main]] ≤ [add : ([[x Main.add]], •)], [[x Main.add]] ≤ ([[call this 5]] ×
[[call x 5]] � [[call ret 5]]), [[x Main]] ≤ [[call this 5]], [[y Main]] ≤
[[call x 5]], [[call ret 5]] ≤ [[x Main.add(y Main)]] and the post-environment
γ3[lab �→ L ∪ {5}].

For programs, (Prog), we collect the constraints generated for each function
with a pre-environment mapping this and x to their respective initial versions
and lab to the given set of labels.

5.4 Soundness of the Constraints

We now show that the constraints are sound with respect to the type system.
Given a solution, S, and pre-environment, γ, we can generate an environment,
Γ, as follows: Γgen(γ, S) = {this �→ S(this γ(this)), x �→ S(x γ(x))}.

Theorem 2 guarantees soundness of the constraints at expression level: Given
an expression and its constraints, if there is a solution then the type given by
the type system is a subtype of that given in the solution. The environments
used for type checking are those produced by Γgen with pre-environments γ and
γ′.

Theorem 2. If γ � e : || γ′ || C and S � C and Γ = Γgen(γ, S) and Γ′ =
Γgen(γ′, S) then P, Γ � e : t ‖ Γ′ and t ≤ S([[]]).

Theorem 3 states soundness of the constraints at the program level. Given
a program and its constraints, if there is a solution we can use it to generate a
well-typed version of the program. Given a JS0 program and a solution, function
T (, S) generates the corresponding typed JST

0 program, by using the solution
to find the type of the formal parameter, receiver and return type of all the
functions and removing the labeling.

Theorem 3. If � P : C and S � C then � T (P, S)

6 From Constraints to Solutions

We now discuss how constraints can be closed to make explicit a solution and
how to check that constraints are well-formed. We show how a well-formed set
of constraints can be used to generate a solution.

7 Constraint [[e1]] ≤ [m :([[e1]] × [[e2]] � [[e1.m(e2)]], •)] would have been too restrictive.
Namely, it would require all the receivers of the method to have the same type.

Towards Type Inference for JavaScript 443

Constraint Generation for Expressions

(var)
γ � null : null || γ || ∅
γ � n : n || γ || {[[n]] ≤ Int}
γ � this : this γ(this) || γ || ∅
γ � x : x γ(x) || γ || ∅

C = {[[f]] ≤ ([[this f]] × [[x f]]) � [[ret f]]}
(funcId)

γ � f : f || γ || C

γ � e : || γ′′ || C′

γ′′(var) = l

l′ /∈ γ′′(lab)
γ′ = γ′′[var 	→ l′, lab 	→ (γ′′(lab) ∪ {l′})]
C = {[[var l]] ≤ [m : ([[var l.m]], ◦)],

[[var l′]] ≤ [m : ([[var l′.m]], •)],
[[var l′]] �m [[var l]], [[]] ≤ [[var l′.m]], [[]] ≤ [[var l′.m =]]}

(assignAdd)
γ � var.m = e : var l′.m = || γ′ || C ∪ C′

γ � e : || γ′ || C′

C = {[[this f]]◦, [[]] ≤ [[x f]],
[[ret f]] ≤ [[new f()]]}

(new)
γ � new f(e) : new f() || γ′ || C ∪ C′

γ � e : || γ′ || C′

C = {[[this f]]◦, [[]] ≤ [[x f]],
[[ret f]] ≤ [[f()]]}

(funcCall)
γ � f(e) : f() || γ′ || C ∪ C′

γ � e : || γ′ || C′
(memAcc)

γ � e.m : .m || γ′ || C ∪ {[[]] ≤ [m : ([[.m]], •)]}

γ � e1 : 1 || γ′ || C′

γ′ � e2 : 2 || γ′′ || C′′

C = {[[1]] ≤ [m : ([[1.m]], •)], [[2]] ≤ [[1.m]], [[2]] ≤ [[1.m = 2]]}
(assignUpd)

γ � e1.m = e2 : 1.m = 2 || γ′′ || C ∪ C′ ∪ C′′

γ � e1 : 1 || γ′ || C′

γ′ � e2 : 2 || γ′′ || C′′

l /∈ γ′′(lab)
C = {[[1]] ≤ [m : ([[1.m]], •)], [[1.m]] ≤ (([[call this l]] × [[call x l]]) � [[call ret l]]),

[[1]] ≤ [[call this l]], [[2]] ≤ [[call x l]], [[call ret l]] ≤ [[1.m(2)]]}
(methCall)

γ � e1.m(e2) : 1.m(2) || γ′′[lab 	→ (γ′′(lab) ∪ {l}] || C ∪ C′ ∪ C′′

γ � e1 : 1 || γ′ || C′

γ′ � e2 : 2 || γ′′ || C′′

C = {[[2]] ≤ [[1; 2]]}
(seq)

γ � e1; e2 : 1; 2 || γ′′ || C ∪ C′ ∪ C′′

γ � e : || γ′ || C′

γ′(x) = l

C = {[[]] ≤ [[x l]], [[]] ≤ [[x l =]]}
(varAss)

γ � x = e : x l = || γ′ || C ∪ C′

Constraint Generation for Programs

P = function f1(x) { e1 } · · · function fn(x) { en }
{this 	→ fi, x 	→ fi, lab 	→ γ′

i−1(lab)} � ei : i || γ′
i || Ci 1 ≤ i ≤ n ∧ γ0 = ∅

C = ∪
i ∈ 1..n

Ci ∪ {[[i]] ≤ [[ret fi]]}
(Prog)

� P : C

Fig. 11. Constraint Generation

444 C. Anderson, P. Giannini, and S. Drossopoulou

6.1 Constraint Closure

To simplify the extraction of a solution from a set of constraints we apply con-
straint closure, which makes the solutions (or lack of) explicit. The closing rela-
tion, C −→ C′, is defined in Figure 128.

In (closeT rans) we add a constraint implied by the transitivity of subtyping.
In (closeT ransMem) the type variable τ is required to have the same mem-

bers as τ ′ with the same types definite annotation for m (because of τ �m τ ′);
the type variable τ ′ is required to have member m with type τ ′′ and annotation
ψ (because of τ ′ ≤ [m : (τ ′′, ψ)]). Therefore, τ is also required to have the
member m with type τ ′′ and annotation ψ, as expressed by τ ≤ [m : (τ ′′, ψ)].

In (closeBalance) the type variable τ is required to be a subtype of τ ′, and τ
is required to be a subtype of a σ, i.e. either of Int, or of a function type. Because
the subtype relationship for Int and function types is the identity, it follows that
τ and σ will have to be “the same”, and therefore, it follows that τ ′ will have to
be a subtype of σ.

In (closeBalanceMem) the type variable τ is required to have member m
with type τ ′′ and annotation ψ. Because τ ′ is required to have the same members
as τ with the same types it follows that τ ′ will also have the member m with
type τ ′′. The annotation, ψ, depends on whether m = m′. If m = m′ then ψ can
be less defined i.e. ◦ otherwise the annotations for m in τ and τ ′ must be the
same.

In (closeCong) the same type variable, τ , is required to contain a member
m with type τ ′ and also with type τ ′′. It follows that τ ′ should be “equivalent”
with τ ′′. Similarly, in (closeCongFunc) because τ is required to be a subtype of
two function types, it follows that the two function types should be “equivalent”,
which, because of the subtype rules for function types, implies that the receiver,
argument and return types should be “equivalent”.

Thus, for [[this 2]] �add [[this 1]] and [[this 1]] ≤ [mSec : ([[this 1.mSec]], •)]
application of (closeT ransMem) generates [[this 2]]≤ [mSec : ([[this 1.mSec]],•)],
which ensures that [[this 2]] will have member mSec. Also, closing
[[this 2]] �add [[this 1]] and [[this 2]] ≤ [add : ([[this 2.add]], •)] with
(closeBalanceMem) generates [[this 1]] ≤ [add : ([[this 2.add]], ◦)]. Lastly,
[[this 2]] ≤ [add : ([[this 1.add]], ◦)] and [[this 2]] ≤ [add : ([[this 2.add]], •)],
closed with rule (closeCong) generate [[this 1.add]] ≤ [[this 2.add]], and
[[this 2.add]] ≤ [[this 1.add]].

Definition 4. C is closed, � C cl, if for any C′: C −→ C′ implies that
C = C′.

Lemma 2 states that a set of constraints and its closure have the same set of
solutions.

Lemma 2. If S � C and C −→ C′ then S � C′.

8 We assume the closure of a set of constraints includes the reflexive closure.

Towards Type Inference for JavaScript 445

c1, ..., cn −→ c′1, ...c
′
m

c1, ..., cn ∈ C
(closeMany1)

C −→ C ∪ {c′1, ...c
′
m}

(closeMany2)
C −→ C

(closeT rans)
τ ≤ τ ′, τ ′ ≤ ρ −→ τ ≤ ρ

(closeT ransMem)
τ � τ ′, τ ′ ≤ [m : (τ ′′, ψ)] −→ τ ≤ [m : (τ ′′, ψ)]

(closeBalance)
τ ≤ τ ′, τ ≤ σ −→ τ ′ ≤ σ

ψ′ = ◦ (if m = m′) ψ′ = ψ (otherwise)
(closeBalanceMem)

τ �m′ τ ′, τ ≤ [m : (τ ′′, ψ)] −→ τ ′ ≤ [m : (τ ′′, ψ′)]

(closeCong)
τ ≤ [m : (τ ′,)], τ ≤ [m : (τ ′′,)] −→ τ ′ ≤ τ ′′, τ ′′ ≤ τ ′

(closeCongFunc)
τ ≤ (τ1 × τ2 � τ3), τ ≤ (τ ′

1 × τ ′
2 � τ ′

3) −→
τ ′
1 ≤ τ1, τ1 ≤ τ ′

1, τ ′
2 ≤ τ2, τ2 ≤ τ ′

2, τ3 ≤ τ ′
3, τ ′

3 ≤ τ3

The well-formedness of constraints, � C (shown in Figure 13), ensures that
a set of constraints can be used to create a solution. For a set of constraints,
C, to be well-formed they must be closed and all the constraints in C must be
well-formed. We define function A(C, τ, m) which determines the annotations
that any solution satisfying C should give to m in τ . This is done by looking for
constraints detailing members: τ ≤ [m : (,)]. A member is annotated with ◦
if there are no constraints indicating it should be definite:

A(C, τ, m) =

• if τ ≤ [m : (, •)] ∈ C
◦ if τ ≤ [m : (, ◦)] ∈ C and τ ≤ [m : (, •)] �∈ C
Udf otherwise

Intuitively, rule (wlfNoDefs) corresponds to the solution satisfaction rule
(solNoDefs) in Figure 10. Where S (τ)(m) is represented by looking for con-

Fig. 12. Constraint Closure

6.2 Well-Formed Constraints

446 C. Anderson, P. Giannini, and S. Drossopoulou

straints detailing members, τ ≤ [m : (,)], with A(C, τ, m) being used to find
the appropriate annotation.

Rules (wlfMix1), (wlfMix2) and (wlfMix3) ensure that the constraints
cannot mix object types with function types or integers.

� C �cl

C = {c1...cn}
C � ci ∀ i ∈ 1...n

(wlfAll)
� C�

τ ≤ [m : (, •)] �∈ C
(wlfNoDefs)

C � τ◦

τ ≤ (× �) �∈ C ∧ τ ≤ Int �∈ C
(wlfMix1)

C � τ ≤ [m : (τ ′, ψ)]

τ ≤ [m : (,)] �∈ C ∧ τ ≤ Int �∈ C
(wlfMix2)

C � τ ≤ (τ1 × τ2 � τ3)

τ ≤ (× �) �∈ C ∧ τ ≤ [m : (,)] �∈ C
(wlfMix3)

C � τ ≤ Int

6.3 From Constraints to Solutions

We now show how well-formed constraints, � C , can be translated into
a solution. We first define a type variable function, V, from type variables to
variables in the type system, α1...αn ∈ ObjVar. We say that V is well-formed
for C, i.e. C � V, iff τ ≤ τ ′, τ ′ ≤ τ ∈ C and V(τ) = α implies V(τ ′) = α.

The translation relation, C, V, τ � tp, V′, in Figure 14 translates a type vari-
able, τ , into a type. If a type variable has no constraints indicating whether it
should be an object, function or integer type, we default to making it an object
type with no members. The extension of V, which is denoted by V� τ , is defined
as follows (where α is a fresh variable):

(V � τ)(τ ′) =

α if τ ′ �∈ dom(V) and

(τ ′ = τ or (τ ′ ≤ τ ∈ C and τ ≤ τ ′ ∈ C))
V(τ ′) if τ ′ ∈ dom(V)
Udf otherwise

Fig. 13. Well-formed Constraints

Towards Type Inference for JavaScript 447

V � τ extends V with new type variables thus, keeping track of type variables
that have already been translated. Because each step of the translation either
extends V or finishes when V(τ) = α (or tp = Int or tp = µ α.[]) termination is
guaranteed.

V(τ) = α

C, V, τ � α, V

τ ≤ Int ∈ C

C, V, τ � Int, V

τ ≤ [m :] �∈ C
τ ≤ (× �) �∈ C
τ ≤ Int �∈ C
V′ = V � τ
V′(τ) = α

C, V, τ � µ α.[], V′

n ≥ 1
V(τ) = Udf
V0 = V � τ
V0(τ) = α
{m1...mn} = {m | τ ≤ [m : (,)] ∈ C }
τ ≤ [mi : (τi,)] ∈ C (for i ∈ 1...n)
C, Vi−1, τi � tpi, Vi

ψi = A(C, τ, mi)

C, V, τ � µ α.[m1 : (tp1, ψ1)...mn : (tpn, ψn)], Vn

V(τ) = Udf
V0 = V � τ
V0(τ) = α
τ ≤ (τ1 × τ2 � τ3) ∈ C
C, Vi−1, τi � tpi, Vi (for i ∈ 1...3)

C, V, τ � µ α.(tp1 × tp2 � tp3), V3

6.4 Main Result

Lemma 3 states that if two type variables are “equivalent”, τ ≤ τ ′, τ ′ ≤ τ ∈ C,
by a set of well-formed constraints, they will translate to congruent types or the
same variable.

Lemma 3. If � C and C � V and C, V, τ � tp, V′ and C, V, τ ′
� tp′, V′′

and τ ≤ τ ′, τ ′ ≤ τ ∈ C then C � V′ and C � V′′ and (tp ≡ tp′ or
∃α : tp = α = tp′).

Given a well-formed set of constraints and well-formed type variable func-
tion we define a generated solution, SC,V, such that SC,V(τ) = t if and only if
C, V, τ � t, V′. Theorem 4 states that a generated solution from a well-formed
set of constraints is well-formed.

Theorem 4. If � C then SC,∅ � C.

Fig. 14. Generating the Solution

448 C. Anderson, P. Giannini, and S. Drossopoulou

7 Related Work

Recursive Types and Subtyping Our choice of a recursive types was moti-
vated by the need to allow typing of a large number of JavaScript programs, but
at the same time make possible the development of a type inference algorithm.
Hence, we have not considered more expressive type systems such as [19].

Type systems for object based languages have been developed mainly in
a functional setting, see [1] and [14]. In [22] a type system is defined for the
Abadi Cardelli object calculus with concatenation that uses recursive types. The
definition of the object types is like ours (without function types) with width
subtyping.

Subtyping for recursive function types (that are a subset of our types) has
been considered in [4] where subtyping is contravariant on the input types and
covariant on the return type. In our paper we have adopted congruence for
subtyping between function types, because our aim is not to study the interaction
between subtyping and recursive type (as in [4]) but to have a type system
allowing type inference.

An imperative, type safe object oriented language, TOIL, was introduced in
[8]. Even though the language is class based, its type system does not identify
types with classes. This makes the definition of types similar to ours. TOIL,
however, does not have extensible objects, so there is no need for identifying
potential members.

Dynamic Addition of Members Extensible objects are considered in a func-
tional setting in [13]. An imperative calculus for extensible objects was proposed
by Bono and Fisher, in [7]. In their type system there are two types for objects:
the proto-types that can be extended and the object-types that cannot. The type
system tracks potential members. The main difference between our type system
and their’s is that we use recursive types (instead of row types plus universal
and existential quantification). This makes it possible to have a decidable type
inference algorithm. Note that, Bono and Fisher’s aim was to encode classes in
their object calculus, not to obtain a type inference algorithm.

In [24] Thiemann gives a type system for a considerable subset of JavaScript.
Types are based on discriminative sums with two levels. The outer level deter-
mines what kind of base type e.g. number, string, object etc. The inner level
determines the features of the type such as the value e.g. the singleton type
Number(100). Row types are used to detail the members of an object type.
The type system models the automatic conversions that occur in JavaScript
through a matching relation. As all conversions are tracked it is possible to flag
those which could result in dangerous or unexpected behaviour. Access to a non-
existent member does not result in a type error. There are no recursive types
and no type inference algorithm is given but there is an implementation.

In the context of type assembly language Morrisett et al. in [17] uses an
initialisation flag on the members of type to indicate if they have been assigned
to. One could think of the potential and definite annotations of our types as
representing the state of initialisation of a member.

Towards Type Inference for JavaScript 449

Alias types are used in [5] and [9] to track the evolution of objects. In par-
ticular, in [9] potential members are used for the same purpose as the current
paper. Alias types are, however, very different from the types used in this paper.
They are singleton types identified with the address of objects.

Type Inference In [18,21] Palsberg et al. develop a type inference algorithm
for a class based language based on flow analysis. The set of types is the class
names defined in the program. Each expression, e, is given a type variable, [[e]],
that expresses the - yet unknown - type. They employed a novel approach to
model late binding through conditional constraints. A conditional constraint has
the form t ∈ [[e]] =⇒ C saying that constraints C are only applicable when t
is a possible type for [[e]]. In [3] this work is applied to the object based language
SELF[12]. Each occurrence of an object is given a unique token ω. Thus, object
structure is derived from the program. Our work differs in that we must infer
the structure of objects. With StarKiller[23] Salib uses the Cartesian Product
Algorithm[2] to infer types for Python programs in order to improve compiled
code. Object types maintain a reference to their definition when a member is
added or updated new object types are generated and propagated through the
system.

In [20] Palsberg considers type inference for the first order type system (with
recursive types and subtyping) for the Abadi Cardelli object calculus[1]. The
system of constraints is a subset of those used in this paper, with two kinds
τ ≤ τ ′ and τ ≤ [m : (τ, ψ)]. Furthermore, the Abadi Cardelli calculus does
not allow member addition like JS0. The type system uses a subsumption rule
which is encoded in the system by having two type variables for each program
point, one before subtyping and one after. For variables there is x and [[x]] and
member access, [[e.m]] and < e.m >. Instead of a subsumption rule, our type
system uses the subtype relation where necessary e.g. the actual parameter being
a subtype of the formal parameter. Hence, the subtype relation is always used
explicitly between the types of expressions in the program. Therefore, we don’t
need to use two type variables to model the application of subsumption. After
the constraints are generated a graph is generated and closed. A well-formedness
criteria is given to graphs which are then converted to an automata which is used
to annotate the program. Our work differs in that we specify closure and well-
formedness in terms of constraints rather than convert to a graph.

In [10] Eifrig et al. consider type inference for the class-based language I-
LOOP. The types are recursively constrained in that a type is supplemented
with a set of constraints, τ\C. They take a different approach to us by defining
type rules that generate constraints and then modifying the rules to make a
deterministic and complete inference system. Fields and methods of a type are
detailed with constraints of the form τ ≤ Inst m : τ ′, which states that τ has
a field m of type τ ′.

In [25], Wang et al. give a type inference system for Java that can stati-
cally verify the correctness of downcast. The types used are based on those used
in [10] as described above. There are types that describe the structure of ob-

450 C. Anderson, P. Giannini, and S. Drossopoulou

jects, obj (δ, [li : τi]) where δ and li are abstract labels for the class name and
fields/methods respectively. The structure of the object types is derived from
the class structure. Unlike our treatment of method call sites, where we always
allocate new type variables, they delegates this to closure. By parameterizing
closure with a mapping it is possible to share type variables between different
invocations of a method.

8 Conclusions and Further Work

In this paper a flexible type system for an idealized version of JavaScript is
presented, its soundness is outlined, and a type inference algorithm for this type
system is defined. The type inference algorithm is sound with respect to the type
system. We show how well-formed constraints can be used to generate a solution
and annotate an untyped JS0 program. The main challenges for both the type
system and the inference are the imperative nature of the language combined
with the possibility of extending objects.

For future work we want to study the completeness of the type inference
algorithm, its complexity, and extend the type system to allow more typeable
expressions, e.g., allowing a more flexible subtyping for functions. To show com-
pleteness we need principality of the type produced, this is quite difficult to
achieve for recursive type systems. We would also like to develop a mixed mode
system where some of the type annotations are already given by the user. For
example, we could provide a typing of the Document Object Model[11] and check
code in web pages against it.

Acknowledgements

We would like to thank Mario Coppo, Mariangiola Dezani, Matthew Smith and
Alex Buckley for their help and insight and our colleagues at Imperial College
Department of Computing and Dipartimento di Informatica of Torino University.
We would also like to thank the anonymous ECOOP reviewers.

References

1. Mart́ın Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag, New York,
NY, 1996.

2. Ole Agesen. The Cartesian Product Algorithm: Simple and Precise Type Inference
of Parametric Polymorphism. In ECOOP, 2-26, 1995.

3. Ole Agesen, Jens Palsberg, and Michael I. Schwartzbach. Type inference of SELF:
Analysis of objects with dynamic and multiple inheritance. Softw., Pract. Exper.,
25(9):975–995, 1995.

4. Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. ACM Trans-
actions on Programming Languages and Systems, 15(4):575–631, 1993.

5. C. Anderson, F. Barbanera, M. Dezani-Ciancaglini, and S. Drossopoulou. Can ad-
dresses be types? (a case study: objects with delegation). In WOOD ’03, volume 82
of ENTCS. Elsevier, 2003.

Towards Type Inference for JavaScript 451

6. Christopher Anderson and Paola Giannini. Type checking for javascript. In WOOD
’04, volume WOOD of ENTCS. Elsevier, 2004. http://www.binarylord.com/

work/js0wood.pdf.
7. V. Bono and K. Fisher. An Imperative, First-Order Calculus with Object Ex-

tension. In Proc. of ECOOP’98, volume 1445 of LNCS, pages 462–497, 1998. A
preliminary version already appeared in Proc. of 5th Annual FOOL Workshop.

8. Kim Bruce, A. Schuett, and R. van Gent. Polytoil: A type safe polymorphic object-
oriented language. In Proceedings of the European Conference on Object-Oriented
Programming (ECOOP), 1995.

9. F. Damiani and P. Giannini. Alias types for environment aware computations. In
WOOD ’03, volume 82 of ENTCS. Elsevier, 2003.

10. Jonathan Eifrig, Scott F. Smith, and Valery Trifonov. Sound polymorphic type
inference for objects. In Proc. Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA)’95, pages 169–184, New York, NY, 1995. ACM Press.

11. Arnaud Le Hors et al. Document Object Model (DOM) Level 3
Core Specification. Technical report, 1998. http://www.w3.org/TR/2003/

CR-DOM-Level-3-Core-20031107.
12. Ole Agesen et al. The SELF 4.0 Programmer’s Reference Manual. http:

//research.sun.com/self/, 1995.
13. K. Fisher. Type Systems for Object-Oriented Programming Languages. PhD the-

sis, Stanford University, 1996. Available as Stanford Computer Science Technical
Report number STAN-CS-TR-98-1602.

14. K. Fisher, F. Honsell, and J. C. Mitchell. A Lambda Calculus of Objects and
Method Specialization. Nordic Journal of Computing, 1(1):3–37, 1994. A prelimi-
nary version appeared in Proc. of IEEE Symp. LICS’93.

15. David Flanagan. JavaScript - The Definitive Guide. O’Reilly, 1998.
16. ECMAScript Language Specification. ECMA International. ECMA-262, 3rd

edition, december 1999. http://www.ecma-international.org/publications/

files/ECMA-ST/Ecma-262.pdf.
17. Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From system f to typed

assembly language. ACM Trans. Program. Lang. Syst., 21(3):527–568, 1999.
18. Nicholas Oxhoj, Jens Palsberg, and Michael I. Schwartzbach. Making type infer-

ence practical. In ECOOP, pages 329–349, 1992.
19. W. Hill W. Olthoff P. Canning, W. Cook and J. C. Mitchell. F-bounded polymor-

phism for object-oriented programming. In Proc. Conf. on Functional Program-
ming Languages and Computer Architecture, pages 273–280. ACM Press, 1989.

20. Jens Palsberg. Efficient inference of object types. Inf. Comput., 123(2):198–209,
1995.

21. Jens Palsberg and Michael I. Schwartzbach. Object-oriented type inference. In Nor-
man Meyrowitz, editor, Proceedings of the Conference on Object-Oriented Program-
ming Systems, Languages, and Applications (OOPSLA), volume 26, New York,
NY, 1991. ACM Press.

22. Jens Palsberg and Tian Zhao. Type inference for record concatenation and sub-
typing. Inf. Comput., 189(1):54–86, 2004.

23. Mike Salib. Static Type Inference (for Python) with Starkiller. http://www.

python.org/pycon/dc2004/papers/1/paper.pdf, 2004.
24. Peter Thiemann. Towards a type system for analyzing javascript programs. In

ESOP, pages 408–422, 2005.
25. Tiejun Wang and Scott F. Smith. Precise constraint-based type inference for java.

In ECOOP ’01: Proceedings of the 15th European Conference on Object-Oriented
Programming, pages 99–117. Springer-Verlag, 2001.

452 C. Anderson, P. Giannini, and S. Drossopoulou

Chai : Traits for Java-Like Languages

Charles Smith and Sophia Drossopoulou

Department of Computing, Imperial College London

Abstract. Traits support the factoring out of common behaviour, and
its integration into classes in a manner that coexists smoothly with
inheritance-based structuring mechanisms.

We designed the language Chai , which incorporates statically typed
traits into a simple Java-inspired base language, and we discuss three
versions of the language: Chai1, where traits are only a mechanism for the
creation of classes; Chai2 where traits are a mechanism for the creation of
classes, and can also introduce types, and Chai3 where traits play a role
at runtime, and can can be applied to objects, and change the objects’
behaviour. We give formal models for these languages, outline the proof
of soundness, and our prototype implementation.

1 Introduction

Traits were designed to facilitate code reuse and to assist in structuring large
programs. They are conceptually similar to classes, except that they contain no
state, only behaviour, and can be combined using a set of simple composition
and modification operators. Elements of behaviour that need to be reused in
several different parts of a program can be encapsulated in a trait which may be
referenced where necessary, avoiding the need to duplicate code.

Traits first appeared in the object-based language Self[22] where they took the
form of parent objects to which an object can delegate some of its behaviour.
Subsequent work on Traits was based on the class-based language Smalltalk,
for which an extension supporting Traits was created[18, 19]. Use of traits can
significantly reduce the overall size of libraries[3].

Mixins[5, 4, 11], Multiple Inheritance[21, 14], Family Polymorphism [9], Dele-
gation Layers, and Aspect Oriented Programming share with Traits the aim of
code reuse. Traits, like Mixins, and unlike classes in Multiple Inheritance, have
no superclasses, and thus are not tied to a particular location in an inheritance
hierarchy. Traits and Mixins usually represent composition of incomplete imple-
mentations, and thus support decomposition at a finer grain than classes. When
a trait is used by a class have the semantics of the class is the same as if the trait
methods were part of the class itself — this is called the flattening property.

Smalltalk is the first class based language on which traits have been ap-
plied. While Smalltalk is dynamically typed, our remit was to apply traits to a
statically typed, class based language. In this paper we discuss the design and
implementation of Chai , an extension of a small Java-like language with traits.

A.P. Black (Ed.): ECOOP 2005, LNCS 3586, pp. 453–478, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

454 C. Smith and S. Drossopoulou

We identified three different rôles for traits in Chai , and so, we designed three
languages:

Chai1 A language like Java, where traits are purely a mechanism to create
classes, and where the application of a trait can only be type-checked af-
ter the resulting class has been “flattened”.

Chai2 Here we extend the remit of traits so that they may be used as types.
This permits checking of traits before their application.

Chai3 Finally, we allow traits to be substituted for one another dynamically,
supporting runtime changes in object behaviour.

In section 2 of this paper we introduce Chai through examples. In sections 3,
4 and 5 we present formal models for Chai1, Chai2 and Chai3. In section 6 we
discuss a prototype implementation of these languages, and section 7 contains
conclusions and future work.

The prototype implementation and the MSc thesis are available at
http://chai-t.sourceforge.net/. An appendix with complete definitions
and handwritten proofs is available at http://www.doc.ic.ac.uk/
∼scd/ChaiApp.

2 An Example

Figure 1 gives an example of Chai1.1 We define four simple traits: TScreenShape,
TPrintedShape, TEmptyCircle and TFilledCircle, which describe correspond-
ing components in a simple graphics program: we can form on screen, or print,
empty circles or filled circles in any combination in which we are interested,
simply by creating a subclass of Circle that uses the traits providing the be-
haviour we want. In the example, we show only two of the four combinations,
i.e., classes ScreenEmptyCircle and PrintedFilledCircle.

A trait T may declare requirements, i.e., a list of method signatures,
for methods that must be provided by classes or traits using T. Here, trait
TEmptyCircle requires a method drawPoint with return type void, and two int
parameters, and method getradius with no parameters, and int return type.
Class SreenEmptyCircle uses TScreenEmptyCircle; there, the first method is
provided by trait TScreenShape and the second by class Circle.

Forming the four combinations using single inheritance would mean consid-
erable code duplication, although it could be implemented using multiple in-
heritance or mixins. See [20] for examples of situations where Traits give more
elegant solutions than mixins, and also for examples where mixins give more

1 For the sake of simplicity, Chai only allows methods with a single parameter called
x, and does not permit sequences of expressions. These restrictions have minimal
implications for the presentation of the features we are interested in, and are not
adhered to by the examples in this section, nor by the prototype implementation.

Chai : Traits for Java-Like Languages 455

class Circle {

int radius;

int getRadius() { ... }

}

trait TEmptyCircle {

requires {

void drawPoint(int x,int y);

int getRadius();

}

void draw() { ... }

}

trait TFilledCircle {

requires {

void drawPoint(int x,int y);

int getRadius();

}

void draw() { ... }

}

trait TScreenShape {

void drawPoint(int x,int y) {

...

}

}

trait TPrintedShape {

void drawPoint(int x,int y) {

...

}

}

class ScreenEmptyCircle

extends Circle

uses TEmptyCircle,TScreenShape { }

class PrintedFilledCircle

extends Circle

uses TFilledCircle,TPrintedShape

{ }

Fig. 1. Chai1 Example

class ScreenShapeStack {

void push(TScreenShape shape) { ... }

TScreenShape pop() { ... }

...

}

ScreenShapeStack stack = new ScreenShapeStack();

stack.push(new ScreenEmptyCircle());

stack.push(new ScreenFilledCircle());

TScreenShape shape = stack.pop();

Fig. 2. Chai2 Example

elegant solutions than traits. Because the trait composition operators are so
flexible, Chai1 allows much finer code reuse than Java.

Figure 2 gives an example of the additional features of Chai2, where we allow
traits to be used as types. Any object of a class using the trait TScreenShape
can be referenced through a variable of type TScreenShape. Allowing traits to
define types supports more polymorphism, and it allows us to type check traits
independently of the classes that use them.

456 C. Smith and S. Drossopoulou

class CircleShape extends Circle uses TEmptyCircle,TScreenShape {}

CircleShape circle = new CircleShape(); circle.draw();

// draws an empty circle on screen

circle<TEmptyCircle -> TFilledCircle>; circle.draw();

// draws a filled circle on screen

circle<TScreenShape -> TPrintedShape>; circle.draw();

// prints a filled circle

Fig. 3. Chai3 Example

In the final example, in figure 3, we show how dynamic substitution of traits
can change the behaviour of an object at runtime. The object circle starts
out as an empty circle on screen, but by substitution of TFilledCircle for
TEmptyCircle we can change it to a filled circle, and subsequently by substi-
tuting TPrintedShape for TScreenShape we can change it to become a printed
filled circle.

3 The Language Chai1

3.1 Syntax

For Chai1 we adapted Traits from Smalltalk[18] to the Java setting. As in [18],
traits can be used to add behaviour to classes or to other traits. Traits may
contain method definitions, but no fields — as we said earlier, traits are pure
behaviour [18]. A trait cannot itself take part in execution (i.e. it cannot be
instantiated) — it (or a trait using it) can be used by some class, which can
then be instantiated.

Traits are not required to be complete - that is, they may require func-
tionality beyond their own to be provided by classes or traits using them. The
requirements are declared explicitly in the form of a set of required methods.

A Chai1 program consists of trait and class declarations. A trait declaration
consists of a name for the trait, an optional list of used traits (whose behaviour it
incorporates), and a trait body. The trait body contains method definitions, and
“trait glue”, i.e., declaration of required methods, exclude declarations (which
exclude methods that would otherwise be incorporated from used traits) and
alias declarations (which give new labels to methods incorporated from a used
trait).

In contrast to the language in [18] which is untyped and where require-
ments are inferred automatically, in Chai1 provided and required methods
must be declared using a full type signature.2 In common with [18], we dis-
tinguish required methods into those that must be provided by a class using

2 In a related work [17], a typed language with automatic inference of required
methods is described.

Chai : Traits for Java-Like Languages 457

program ::== (trait | class)*
trait ::== trait tr [uses tr+] { (trait-glue | meth)* }
field ::== type f ;
meth ::== meth-sig { exp }
type ::== cl
exp ::== exp.f := exp | exp.m(exp) | super.m(exp) |

new cl | var | this | null | x
trait-glue ::== requires { (meth-sig ; | super-sig ;)* } |

exclude { (t.m ;)* } |
alias { (t.m as m ;)* }

meth-sig ::== type m(type x)
super-sig ::== type super.m(type x)
class ::== class cl extends cl [uses tr+] { (field | meth)* }
cl,tr,m,f ::== identifiers

Fig. 4. Chai1 Syntax

the trait, and those that must be provided by the superclass of the using class.
This was necessary because Java allows explicit access to superclass methods
(through the super.m(...) construct), and so if a trait tr is used by a class
cl, then superclass method calls inside methods of tr will resolve to methods
from the superclass of cl.

A class declaration consists of a name for the class, its superclass, an optional
list of used traits (whose behaviour it incorporates), and a class body. The class
body contains method definitions and fields.

For simplicity, our model does not support method overloading or field hiding,
however we believe it can be easily extended to do so — the implementation of
Chai1 supports it.

Note, that in Chai1 classes form types, but traits do not.

3.2 Basic Lookup Functions

We consider that a program P implicitly defines the following eight (partial)
lookup functions:

– Psup(cl) returns the direct superclass of cl in P.
– Pfld(cl,f) returns the type of field f as defined in class cl.
– Pmth(cl,m) and Pmth(tr,m) return the (possibly empty) set of methods with

identifier m defined in class cl or trait tr.
– Puse(cl), or Puse(tr) return the set of traits directly used in class cl, or trait

tr.
– Pexcl(tr) returns the set of trait and method identifier pairs excluded from

trait tr.
– Palias(tr,m) returns the set of trait and method identifier pairs which are

aliases of method m in trait tr.

458 C. Smith and S. Drossopoulou

– Preq(tr) returns the set of method signatures mentioned as required in the
declaration of tr.

– Preq sup(tr) returns the set of method signatures mentioned as required for
the superclass (through t super.m(t′x)) in the declaration of tr.

Note that the above functions correspond to direct lookups in the program
text, and do not take class inheritance nor traits use into account. In the next
section we will define the functions F , Fs, M, MSig , and Morig, which lookup
fields, and methods, and which do take class inheritance and traits use into
account.

3.3 Method or Field Acquisition Through Traits Use and
Inheritance

The function F (P, cl, f) looks up the field f in cl or its superclasses, and returns
t where t is the type of f in cl. The function F s(P, cl) returns the set of fields
defined in cl, or inherited from cl’s superclasses. The two functions operate
only on classes (traits have no fields).

F (P, Object, f) = ⊥

F (P, cl, f) =
{
Pfld(cl, f) if Pfld(cl, f) �= ⊥
Pfld(Psup(cl), f) otherwise

F s(P, cl) = { f | F (P, cl, f) �= ⊥ }
A class cl that uses a trait tr acquires the methods from tr in such a way

that externally there is no way to tell that the methods were not declared by cl
itself. This forms the basis of the flattening property of traits - a trait formed by
using existing traits can be viewed as either a composite entity comprising the
used traits and the definitions in the new trait, or as a flattened entity containing
all the definitions of its constituents.

We now defineM(P, cl, m) andM(P, tr, m), which recursively search the used
traits and superclasses. Intuitively, these functions embody give precedence to
“local” declarations: methods defined in a trait body have highest precedence,
and methods that have been aliased have higher precedence than methods ac-
quired from used traits. Methods defined in a class body have highest precedence,
and methods acquired from used traits have higher precedence than those ac-
quired from superclasses.

M : program× (classId ∪ traitId)× methodId→ ℘(methodBody)

If tr is a trait :

M(P, tr, m) =

Pmth(P) if Pmth(P) �= ∅
MsAlias if Pmth(P) = ∅ �= MsAlias
MsUsed if Pmth(P) = ∅ = MsAlias.

where
MsAlias =

⋃
tr′.m′∈Palias(tr,m)M(P, tr′, m′)

MsUsed =
⋃

tr′′∈Puse(tr) , tr′′.m/∈Pexcl(tr.m)M(P, tr′′, m)

Chai : Traits for Java-Like Languages 459

If cl is a class :

M(P, Object, m) = ∅

M(P, cl, m) =

Pmth(cl, m) if Pmth(cl, m) �= ∅
MsUsed if Pmth(cl, m) = ∅ �= MsUsed
M(P, Psup(cl), m) if Pmth(cl, m) = ∅ = MsUsed ,

where

MsUsed =
⋃

tr∈Puse(cl)M(P, tr, m)

Because there are several ways a trait might acquire a method (from any of
the traits it uses), the method lookup functions return sets of methods. If the
precedence rules do not resolve the method lookup to a single method, i.e., if in
a class cl, |M(P, cl, m)| > 1 for some m, then a conflict occurs, 3.

A class is complete if it has no conflicts, and if any call to super in any
inherited method body resolves without conflict:4

∀m : e contains super.m(...) =⇒ |M(P, Psup(cl), m′)| = 1
super resolves without conflict in e and cl

∀m : |M(P, cl, m)| ≤ 1
∀m, cl′ P �

1
cl ≤ cl′, ...{e} ∈ M(P, cl′, m) =⇒

super resolves without conflict in e and cl’
P �

1
cl cmpl

For class cl, and trait tr, we define the functions MSig
1
(P, cl, m),

MSig
1
(P, tr, m), and MSigsup

1
(P, cl, m) which return the set of signatures

for method m as found in cl, tr or the superclass of cl.

MSig
1
(P, cl, m) = { t m(t′ x) | t m(t′ x){...} ∈ M(P, cl, m) }

MSig
1
(P, tr, m) = { t m(t′ x) | t m(t′ x){...} ∈ M(P, tr, m) }

MSigsup
1

(P, cl, m) = MSig
1
(P, Psup(cl), m)

Note, that the look up functions M(P, cl, m) and MSig
1
(P, cl, m) abstract

from the use of traits. Therefore, as we will see later, we were able to write
the operational semantics and type system of Chai1 and Chai2 without explicit
mention of traits.

We define the function Morig which determines the “origin” of a method,
i.e., the most specific superclass of a class cl which contains a body for m. We
will use Morig to model the behaviour of super.m().5

3 Conflicts can be avoided by overriding the conflicting method in the class where the
conflict occurs, or by excluding one of the conflicting methods - in our system without
overloading this works only if all conflicting methods have the same signature.

4 A simpler, but more restrictive, requirement would be to require no conflicts in any
of cl’s superclasses.

5 This formalization of super has been suggested to us by Andrew Black and Chuan-
Kai Lin, and slightly adapted by Rok Strnisa.

460 C. Smith and S. Drossopoulou

� : program → exp × stack × heap → (val ∪ dev) × heap
stack = addr × val × classId

heap = addr → object
val = { null } ∪ addr
object = { [[cl || f1 : v1, . . . , fr : vr]] | cl∈classId, f1,...,fr∈fldId, v1,...,vr∈val }
addr = { ιn | n is a natural number }
dev = { nllPntrExc, stuckExc }

Fig. 5. Chai1 Runtime

Morig(P, cl, m) =

cl if Pmth(cl, m) �= ∅ or ∃tr with

tr ∈ Puse(cl) and M(P, tr, m) �= ∅,
⊥ if cl = Object,

Morig(P, cl′, m) otherwise, for cl′ = Psup(cl).

3.4 Operational Semantics

We give a large step semantics for Chai1, where programs map expressions,
stacks and heaps, onto results and new heaps. A stack, σ∈ stack, is a triple
consisting of the address of the current receiver, the value of the actual parameter
and the class containing the method body currently being executed. The notation
σ(this), σ(x), and σ(this class) selects the first, second and third component
of σ. A heap, χ∈heap, maps addresses to objects. Objects contain the class of
the object (cl), and values (vi) for the object’s fields (fi).

The operational semantics of Chai1 does not mention traits explicitly, and
operates entirely in terms of classes; thus it is very similar to that of a small
Java-like language (e.g., ClassicJava[11] or F ickle[7]), and is rather standard.
It is given in figure 6. The receiver and the parameter are looked up in the
heap (var). If null is dereferenced, a nullPnterExc exception is thrown (null-
exception). Field access is evaluated by looking up the particular field in the
object (field). Field assignment overrides the corresponding field with the value
of the right hand side (field-assign). Object creation creates a new object of
the appropriate class, and initializes all its fields with null (new). Method call
evaluates the method body found in the dynamic class of the receiver; evaluation
takes place in a stack consisting of the receiver and actual parameter of the call,
and the identifier of the class containing the method body (method-call). For
the call to super the evaluation is similar, but the method is looked up in the
static superclass of the class given by σ(this class), i.e., the superclass of the
class containing the method currently being executed (super-call). We require
the method lookup functions to return a singleton set, i.e., there should be no
conflicting method definitions.

For brevity, we omitted the rules throwing stuckErr when conflicting meth-
ods are called, or non-existent fields or methods are accessed or called, as well
as the rules propagating exceptions stuckExc or nullPntrExc.

Chai : Traits for Java-Like Languages 461

null null-exception

null, σ, χ � P null, χ

e, σ, χ � P null, χ′

e.f := e′, σ, χ � P nllPntrExc, χ′

e.f, σ, χ � P nllPnterExc, χ′

e.m(e′), σ, χ � P nllPntrExc, χ′

field var

e, σ, χ � P ι, χ′

e.f, σ, χ � P χ′(ι)(f), χ′
x, σ, χ � P σ(x), χ
this, σ, χ � P σ(this), χ

field-assign new

e, σ, χ � P ι, χ′′

e′, σ, χ′′ � P v, χ′′′

χ′ = χ′′′[ι 	→ χ′′′(ι)[f 	→ v]]
e.f := e′, σ, χ � P v, χ′

F s(P, cl) = f1, . . . fr
∀k ∈ 1, . . . r : vk = null

ι is new in χ

new cl, σ, χ � P ι, χ[ι �→ [[cl || f1 : v1, . . . fr : vr]]]

method-call super-call

er, σ, χ � P ι, χ0

ea, σ, χ0 � P v1, χ1

χ1(ι) = [[cl || . . .]]
M(P, cl, m) = { t m(t′ x) { e } }
Morig(P, cl, m) = cl′

σ′ = (ι, v1, cl′)
e, σ′, χ1 � P v, χ′

er.m(ea), σ, χ � P v, χ′

ea, σ, χ � P v1, χ1

σ(this class) = cl

Psup(cl) = cl′′

M(P, cl′′, m) = { t m(t′ x) { e } }
Morig(P, cl′′, m) = cl′

σ′ = (σ(this), v1, cl′)
e, σ′, χ1 � P v, χ′

super.m(ea), σ, χ � P v, χ′

Fig. 6. Chai1 Operational Semantics

P = ... class cl extends cl′ . . .
P �1 cl ≤ cl

P �1 cl ≤ cl′

P �cl �class

P �1 cl �type

P �1 cl ≤ cl′

P �1 cl′ ≤ cl′′

P �1 cl ≤ cl′′

P = ... trait tr ...

P �tr �trait

Fig. 7. Subclasses and Subtypes in Chai1

3.5 Type System

In figure 7 we define the judgements P �cl ≤ cl′ indicating subtypes, and
P �cl class and P �tr trait indicating that cl is a class or tr is a trait. We
also define the judgement P �t type indicating that t is a type.

462 C. Smith and S. Drossopoulou

subsumption var-this

P, Γ �1 e : t

P �1 t ≤ t′

P, Γ �1 e : t′
P, Γ �1 x : Γ(x)
P, Γ �1 this : Γ(this)

new null

P �1 cl �cmpl

P, Γ �1 new cl : cl

P �1 t �type

P, Γ �1 null : t

field field-assign

P, Γ �1 e : cl

F (P, cl, f) = t

P, Γ �1 e.f : t

P, Γ �1 e : cl

P, Γ �1 e′ : t

F (P, cl, f) = t

P, Γ �1 e.f := e′ : t

method-call super-call

P, Γ �1 er : tr
P, Γ �1 ea : ta
MSig

1
(P, tr, m) = { t m(ta x) }

P, Γ �1 er.m(ea) : t

Γ(this) = tr
P, Γ �1 ea : ta
MSigsup

1
(P, tr, m) = { t m(ta x) }

P, Γ �1 super.m(ea) : t

Fig. 8. Chai1 Type Rules

For type checking we use a typing environment Γ which maps the receiver,
this, and the method parameter, x, to a class name. The typing judgement
P, Γ �

1
e : t means that in the context of program P and environment Γ, in the

type system of Chai1, the expression e has type t. Although in Chai1 only classes
can be types, the type rules in figure 8 mention types t rather than classes cl;
this generality allows us to reuse these type rules for Chai2.

The type rules, given in figure 8, do not explicitly mention traits, be-
cause traits have already been taken into account through MSig

1
(, ,) and

MSigsup
1

(, ,). They are standard in all other respects: An expression of a cer-
tain type also has any of its supertypes (subsumption). The type of the formal
parameter and receiver are looked up in the type environment (var-this). The
creation of a new object has the type of that class, provided that the class is
complete (new), while null has any type (null). The type of a method call is
the return type of the function found by looking in the class of the first expres-
sion through MSig

1
(P, cl, m), provided that the second expression has the type

of the formal parameter type (method-call). Similarly for (super-call), where
the method is looked-up in the superclass through MSigsup

1
(P, cl, m).

Chai : Traits for Java-Like Languages 463

Psup(cl) = cl′

∀f : Pfld(cl, f)=t =⇒ F (P, cl′, f)=⊥, P �1 t �type

∀m : t0 m(t1 x){e} ∈ M(P, cl, m) =⇒
P �1 t0 �type

P �1 t1 �type

P, t1 x, cl this �
1
e : t0

M(P, cl′, m) = ∅ ∨ M(P, cl′, m) = { t0 m(t1 x) {. . .} }
P �1 cl

for all classes cl defined in P: P �1 cl

�
1
P

Fig. 9. Well formed classes and programs in Chai1

Note, that required methods do not play any rôle in Chai1 type-checking
(they do play a rôle in Chai2 and Chai3 type checking).

In figure 9 we define the notion of a well-formed Chai1 class, i.e., P �
1
cl .

A class cl is well-formed if:

1. Any field defined in that class has a valid type, and is not defined in its
superclass cl′;

2. Any method defined in the class, or acquired though usage of a trait or
inheritance from a superclass, has return and parameter type which are valid
types, and, in a typing environment which maps x to the argument type t1

and this to cl (such an environment is written as t1 x, cl this), the method
body has the declared return type t0. Additionally, if this method is present
in the superclass, or any used traits, then it must be defined there with the
same return type and parameter type.

The requirement 2. from above is very strong: It checks all inherited and acquired
methods in a class - rather than just the methods defined in the class itself. Thus,
a method defined in a trait will be type checked in all classes using that trait;
this is unavoidable, because in Chai1 method bodies cannot be checked in the
traits.

A program is well-formed, �
1
P, if all its classes are well-formed. Note that the

traits are not checked. Note also, that we do not require the inheritance hierarchy
to be acyclic; although this is convenient, it is not necessary for soundness; in a
program with cyclic inheritance, meaning can be given to lookup functions (M,
Morig) through least fixed points.

3.6 Type Soundness

The judgement P, σ �v � t in figure 10 means that the value v agrees with
the type t. In particular, if v is an address, it requires that the object at v
belongs to a class cl which is a subtype of t, and for all fields defined in cl,

464 C. Smith and S. Drossopoulou

the object contains values which agree with the types of the fields as declared in
cl.6 The judgement P, Γ �

1
σ, χ means that the objects in the heap χ agree with

their classes, and belong to complete classes (i.e., no conflicts), that the receiver
object and argument value agree with their type as given in Γ, and that the class
containing the method currently being executed (σ(this class)) is the same as
the type of the receiver in the type environment (Γ(this)).

P �1 t �type

P, χ �1 null � t

χ(ι) = [[cl || . . .]]
P �1 cl ≤ t

F (P, cl, f) = t′ =⇒ P, χ �1 χ(ι)(f) � t′

P, χ �1 ι � t

∀ι : χ(ι) = [[cl || . . .]] =⇒ P, χ �1 ι � cl, and P �1 cl �cmpl

P, σ �1 σ(this) � Γ(this)
P, σ �1 σ(x) � Γ(x)
σ(this class) = Γ(this)
P, Γ �1 σ, χ

Fig. 10. Agreement in Chai1

The following lemma is crucial in the proof of soundness, and guarantees
that 1-2) the existence and types of fields and methods is preserved to sub-
classes, 3) that there are no more than one method signature per method
in a superclass of a complete class (although there can be several method
bodies, and 4) that if a method has a certain signature in a superclass cl’,
then method lookup in the subclass cl will return a method body which type
checks with this signature in the class cl′′ which contains this method body
(or inherits it from a trait).

Lemma 1. If �
1
P and P �

1
cl ≤ cl′ then:

1. F (P, cl′, f) = t =⇒ F (P, cl, f) = t.
2. MSig

1
(P, cl′, m) ⊆MSig

1
(P, cl, m).

3. P �
1
cl cmpl =⇒ | MSig

1
(P, cl′, m) | ≤ 1.

4. t m(t′ x) ∈MSig
1
(P, cl′, m) =⇒ ∃cl′′, e :

– Morig(P, cl, m) = cl′′, t m(t′ x){e} ∈ M(P, cl, m),
– P �

1
cl ≤ cl′′ P, t′ x, cl′′ this �

1
e : t.

We can now prove soundness of the type system:

Theorem 2 (Type Soundness of Chai1). For program P, typing environment
Γ, expression e, so that super resolves without conflict in e and Γ(this class),
stack σ, heap χ, and type t:

6 Although the definition of P, χ �1 ι � t is recursive, there exists an equivalent non-
recursive definition for it.

Chai : Traits for Java-Like Languages 465

If
�

1
P and P, Γ �

1
e : t and P, Γ �

1
σ, χ and e, σ, χ � P r, χ′

then:
P, Γ �

1
σ, χ′ and P, χ′ �

1
r � t or r=nllPntrExc.

In other words, execution of well typed expressions preserves well formedness of
the heap and stack, does not get stuck (since r is either a value or a null pointer
exception), and if it returns a value, then this value is of the same type as the
original expression.

4 The Language Chai2

In Chai2 we extended the remit of traits, so that they may be used as types.
This has three important repercussions:

First, we can treat in a uniform way objects whose class uses a given trait,
e.g., we can write a stack for screenshapes, as in figure 2. Thus, traits support
polymorphism, play the role of interfaces, and introduce multiple supertypes.

Second, we can typecheck traits in isolation, and therefore, we will be able
to type check a method defined in a trait only once, rather than having to check
it again in all the classes using that trait.

Third, we can take required methods into account, and can type check calls
to required methods which do not have a method body in the receiver’s class
or trait. This is safe, because we allow object creation only for complete classes,
and Chai2 complete classes are those that provide method bodies for all required
methods.

4.1 Chai2 Syntax and Operational Semantics

The only difference between the syntax of Chai2 and that of Chai1 is that Chai2

allows traits to be types, i.e:

type ::= cl | tr

The operational semantics of Chai2 is identical to that of Chai1.

4.2 Required Methods

We fist define indirect use of traits, where Use∗(P, tr) collects the transitive
closure of the traits used in tr, and Use∗(P, cl) collects all traits indirectly used
by traits used in cl, or in cl’s superclasses.

Use∗(P, tr) =
⋃

tr′∈Puse(tr) Use∗(P, tr′) ∪ { tr }
Use∗(P, cl) =

⋃
P

1
cl≤cl′, tr∈Puse(cl′) Use∗(P, tr)

A trait tr may define a list of required methods. A second trait tr′ which
uses tr inherits tr’s required methods and may add new requirements of its own,
through explicit requirements or through exclusion. A class using tr inherits the
requirements of tr.

466 C. Smith and S. Drossopoulou

MReq(P, tr, m) =
⋃

tr′∈Use∗(P,tr) P
req(tr′) ∪⋃

tr′∈Use∗(P,tr){ t m(t′ x) | ∃tr′′ : (tr′′, m)∈Pexcl(tr′),
t m(t′ x)∈MSig

1
(P, tr′′, m) ∪MReq(P, tr′′, m))}

MReq(P, cl, m) =
⋃

tr∈Use∗(P,cl)MReq(P, tr, m)
MReqsup(P, tr, m) =

⋃
tr′∈Use∗(P,tr) P

req sup(tr′)
MReqsup(P, cl, m) =

⋃
tr∈Use∗(P,cl)MReqsup(P, tr, m)

Note, that it is possible for a signature to be required in a trait tr, and for
the trait to have a method body for this signature. Similarly for classes.

A class which is complete in the sense of Chai1, and where all required
methods have a body is complete for Chai2:

∀m : t m(t′ x) ∈MReq(P, cl, m) =⇒ ∃e : t m(t′ x){e} ∈ M(P, cl, m)
∀m : |M(P, cl, m)| ≤ 1
∀m, cl′ P �

1
cl ≤ cl′, ...{e} ∈ M(P, cl′, m) =⇒

super resolves without conflict in e andcl′

P �
2
cl cmpl

Thus, a complete subclass of t will provide a method body for any method
required by t. The function MSig

2
(P, t, m) returns the signatures of the method

that will be provided for m by a complete subclass of t, while the function
MSigsup

2
(P, t, m) returns the signatures of all methods that will be provided in

the superclass of a complete subclass of t:

MSig
2
(P, tr, m) = MSig

1
(P, tr, m) ∪MReq(P, tr, m)

MSig
2
(P, cl, m) = MSig

1
(P, cl, m) ∪ MReq(P, cl, m)

MSigsup
2

(P, tr, m) = MSigsup
1

(P, cl, m) ∪ MReqsup(P, tr, m)
MSigsup

2
(P, cl, m) = MSigsup

1
(P, cl, m) ∪ MReqsup(P, cl, m)

Notice, that t ∈ Puse(t′) implies that MSig
2
(P, t, m) ⊆MSig

2
(P, t′, m) for all m,

and class or trait t, and t′.

4.3 Type System

As we define in figure 11, a class or trait is a subtype of any trait that it uses -
possibly indirectly. Thus, a class cl or trait tr that uses a trait tr′ is a subtype of
tr′, even if tr requires more methods than tr′. This may seem surprising, but it
is safe for the following reason: even though traits are types, the runtime entities
(i.e. the objects) will belong to complete classes, which, by definition, provide
a method body for any required method. The ensuing subtype relationship is
transitive.

Note that P �
2
t′ ≤ t implies that MSig

2
(P, t, m) ⊆ MSig

2
(P, t′, m) - we

could have defined subtypes in a structural, rather than a nominal way using
the above property.

In Chai2 traits can be types, therefore in Chai2 typing environments may
map this, and x to a trait or a class. The typing rules are the same as those
for Chai1, with three exceptions. First, the subsumption rule uses the new

Chai : Traits for Java-Like Languages 467

P � tr �class

P �2 cl �type

P � tr �trait

P �2 tr �type

P �1 cl ≤ cl′

P �2 cl ≤ cl′
tr ∈ Use∗(P, cl)
P �2 cl ≤ tr

tr ∈ Use∗(P, tr′)
P �2 tr′ ≤ tr

Fig. 11. Types and Subtypes in Chai2

subtype relation P �
2
t′ ≤ t. Second, the rules method-call and super-call take

the required method into account, i.e., use MSig
2
(P, t, m) and MSigsup

2
(P, t, m).

Third, the rule new requires the class to be complete according to P �
2
clcmpl.

A trait tr is well formed, i.e., P �
2
tr in figure 12, if the methods directly

defined in that trait are well-typed, and have the same signature as any method
with the same identifier acquired from a used trait.

A class cl is well formed, i.e., P �
2
cl, if the fields in that class have well-

formed types; and if the methods directly defined in that class are well-typed, and
have the same signature as any method acquired from a used trait, or inherited
from a superclass. A program is well formed, if all its classes and traits are well
formed.

Notice that, to establish P �
2
t we only check the methods directly defined in

class or trait t; (we use Pmth(cl, m) - as opposed to M(P, cl, m) in Chai1). Also,
P �

1
t does not imply P �

2
t, and nor does P �

2
t imply P �

1
t.

4.4 Type Soundness

In Chai2 we retain the definition of agreement between objects and classes from
figure 10, but use the subtype relation P �

2
t ≤ t′, and the definition of complete

classes P �
2
cl cmpl from this section.

Thus, we were able to give “uniform” definitions of Chai1 and Chai2, and
distill their similarities and differences.

The following lemma is the counterpart to lemma 1; the difference is that
here we talk of types (and thus also of traits) rather than just of classes, we use
the Chai2 subtype relationship with also incorporates traits usage, and in the
Chai2 signature lookup function we also take the requirements into account.

Lemma 3. If �
1
P and classes cl, cl′ and types t and t′, with P �

2
cl ≤ cl′,

P �
2
t ≤ t′, and P �

2
cl ≤ t′, then:

1. MSig
2
(P, t′, m) ⊆MSig

2
(P, t, m).

2. P �
2
cl cmpl, =⇒ | MSig

2
(P, t′, m) | ≤ 1.

3. P, ta x, t′ this �2
e : t′′ =⇒ P, ta x, t this �

2
e : t′′.

4. P �
2
cl cmpl, t′′ m(t′′′ x) ∈MSig

2
(P, t′, m) =⇒ ∃cl′′, e :

– Morig(P, cl, m) = cl′′, t′′ m(t′′′ x){e} ∈ M(P, cl′′, m),
– P �

1
cl ≤ cl′′ P, t′′′ x, cl′′ this �

2
e′′ : t′′.

468 C. Smith and S. Drossopoulou

∀m : t0 m(t1 x){e} ∈ Pmth(P) =⇒
P �2 t0 �type

P �2 t1 �type

P, t1 x, tr this �2 e : t0
∀tr′ : tr′ ∈ Puse(tr) =⇒

MSig
2
(P, tr′, m) = ∅ ∨ MSig

2
(P, tr′, m){t0 m(t1 x)}

P �2 tr

cl′ = Psup(cl)
∀f : Pfld(cl, f) = t =⇒ P �2 t �type , F (P, cl′, f) = ⊥
∀m : t0 m(t1 x){e} ∈ Pmth(cl, m) =⇒

P �2 t0 �type

P �2 t1 �type

P, t1 x, cl this �2 e : t0
MSig

2
(P, cl′, m) = ∅ ∨ MSig

2
(P, cl′, m) = {t0 m(t1 x)}

∀tr ∈ Puse(cl) : MSig
2
(P, tr, m) = ∅ ∨ MSig

2
(P, tr, m) = {t0 m(t1 x)}

P �2 cl

for all classes cl defined in P : P �2 cl

for all traits tr defined in P : P �2 tr

�
2
P

Fig. 12. Well-formed traits, classes and programs in Chai2

With the above lemma we can prove soundness for the type system of Chai2:

Theorem 4 (Type Soundness of Chai2). For any program P, environment Γ,
expression e with super resolves without conflict in e and Γ(this class), stack
σ, type t, where �

2
P, and P, Γ �

2
e : t and P, Γ �

2
σ, χ and e, σ, χ � P r, χ′:

P, Γ �
2
σ, χ′ and P, χ �

2
r � t or r=nllPntrExc.

5 The Language Chai3

Chai3 introduces dynamic trait substitution. Since traits specify pure behaviour,
it should be possible to substitute one trait for another at runtime in order
to change the behaviour of an object. Outwardly, the interface of the object
would remain the same, providing the same fields and methods, but internally
the implementation of various methods could be altered.

Although the idea of objects changing behaviour at runtime (dynamic object
re-classification) has been presented in several different forms[7, 22], the only
time this concept has been explored in the existing literature on traits7 is relation

7 The authors of [18] mention using traits to dynamically change object behaviour as
an element of future work.

Chai : Traits for Java-Like Languages 469

to the object-based language SELF[1, 22], where dynamic changes in behaviour
can be obtained by changing which object acts as the parent of the current
object. We present a mechanism supporting dynamic traits inspired by the ideas
from SELF, but in a class-based language.

5.1 Example

Consider a graphical windowing system: A window in this system may be an
OpenedWindow or an IconifiedWindow. In each state the window will behave
differently, and a window may change between these two states at any time.

To implement this in traditional Object Oriented programming, we would
need to use wrappers, or some form of the state pattern.

Using dynamic substitution of traits, we can offer a more elegant, and direct
solution: we define a class Window, and two traits TOpened and TIconified,
where TOpened and TIconified provide and require the same sets of method
signatures, but provide different implementations of the methods and so dif-
ferent behaviour. We define the class Window as class Window uses TOpened
... (the window begins in the opened state). Then, for a Window object w
(Window w = new Window();) we can change to the iconified state using the
statement w<TOpened �→TIconified>. This will result in the substitution of
the trait TIconified for the trait TOpened inside the object w.

Since the class Window was declared as using the trait TOpened, the label
TOpened becomes a “placeholder” for that trait used by Window, and a trait
“compatible” with TOpened can be substituted for TOpened at any time. We use
the label TOpened in all further substitutions for that trait “placeholder” of w.
For example, to switch back to the original behaviour of w, we write w<TOpened
�→TOpened> (and not, as might be imagined, w<TIconified �→TOpened>).

5.2 Chai3 Syntax and Operational Semantics

We extended the syntax of expressions to allow trait substitution.

exp ::= exp< tr �→ tr > | ...

Resolving Method Calls. Consider the program given in figure 13. If we
create an object of class C, e.g C x = new C, then obviously executing x.m1()
will return the value 3, and executing x.m2() will also return the value 3.

If we execute x < TrtB �→ TrtB2 > followed by x.m1(), then the version of
m1 provided by TrtA will be used, since the method m1 was originally provided
to class C by trait TrtA, and no trait has replaced TrtA in c.

If we execute x < TrtB �→ TrtB2 > followed by x.m2(), then the situation is
more complex. Obviously, the method m2 defined in TrtB2 will be executed (since
TrtB originally provided m2, and TrtB has been replaced by TrtB2). However,
there are three possibilities for the binding of m1 from within the body of m2:

1. The version of m1 from TrtA will be used; because invoking a method from
within a trait should have the same semantics as invoking it from within
the class using the trait. Thus, we resolve methods based on the flattened
version of the class using the traits.

470 C. Smith and S. Drossopoulou

trait TrtA { int m1() { 3 } }

trait TrtB {

requires { int m1(); }

int m2() { this.m1() }

}

trait TrtB2 {

int m2() { this.m1() }

int m1() { 5 }

}

class C uses TrtA,TrtB { }

Fig. 13. Resolving Method Calls in Chai3

2. The version of m1 from TrtB2 will be used; because the methods in TrtB2
are interrelated, it is likely that the implementor of TrtB2 intended the call
to m1 to resolve to the method in TrtB2. Thus, we resolve methods based on
the trait in which the call was found.

3. The situation is illegal; i.e., trait TrtB2 cannot be substituted for trait TrtB
because it creates this “ambiguity” regarding the definition of method m1.

In this paper, we chose option 1 from above, because of its close relationship
to the flattening property which is a crucial element of Traits philosophy.

Object Representation. Substitution of traits at runtime is on a per-object
basis (rather than a per-class basis). This means that while the list of traits used
by any class remains constant, for every object of that class, each used trait
may be associated with some (possibly different) trait. Therefore, we extend the
representation objects from figure 5 with a list of trait substitutions that have
been made to the object.

object = { [[cl || f1 : v1, ...fr : vr || tr1 : tr′1, ...trn : tr′n]] |
cl, f1, ...fr, tr1, ...trn, tr′1, ...tr

′
n identifiers; v1, ...vr ∈ val }

To access and update these trait substitutions for an object o =
[[cl || ... || tr1 : tr′1, ...trn : tr′n]], we define trait lookup o(tr) which finds
the current substitution for a given trait name, and object mutation o[tr �→ tr′]
which replaces the trait named tr by tr′.

o(tr) =
{
tr′k if tr = trk for some k ∈ 1, ...n
⊥ otherwise.

o[tr 	→ tr′] =
{

[[cl || ... || tr1 : tr′1...trk : tr′...trn : tr′n]] for tr = trk, k ∈ 1, ..., n
⊥ otherwise.

Runtime Method Lookup and Operational Semantics. Trait substitu-
tions must be taken into account for method call. The function M3 finds the
appropriate method body, taking both the class of the object, and the object
itself into account – the latter is needed, in order to find the traits that have

Chai : Traits for Java-Like Languages 471

replaced the original ones. M3 first determines which class or trait name is “re-
sponsible” for the corresponding method through M3

resp(P, cl, m), which first
searches the current class, then the used traits, and then continues with the su-
perclass. If M3

resp(P, cl, m) is a class cl′ then the method body is found directly
in cl′. If M3

resp(P, cl, m) is a trait tr then the method body is found in trait
tr′, which replaces tr in the current object (i.e., o(tr) = tr′).

M3
resp(P, tr, m) =

{ { tr } if Pmth(tr, m) �= ∅⋃
tr′∈Puse(tr) M3

resp(P, tr′, m) otherwise.

M3
resp(P, cl, m) =

{ cl } if Pmth(cl, m) �= ∅
Trts where Trts =

⋃
tr∈Puse(cl) M3

resp(P, tr, m)
if Trts �= ∅ = Pmth(cl, m)

M3
resp(P, Psup(cl), m) otherwise.

M3(P, cl, o, m) =

Pmth(cl′, m) if M3

resp(P, cl, m) = {cl′}
Pmth(tr′, m) if M3

resp(P, cl, m) = {tr}, and o(tr) = tr′

⊥ otherwise.

A class cl is complete in Chai3 if it provides a method body for any required
method, if there are no conflicts for any superclass (this simplifies the treatment
of super), and if M3

resp(P, cl, m) is empty or a singleton.

∀m : t m(t′ x) ∈MReq(P, cl, m) =⇒ ∃e : t m(t′ x){e} ∈ M(P, cl, m)
∀m, cl′ P �

1
cl ≤ cl′, |M(P, cl′, m)| ≤ 1

∀m : |M3
resp(P, cl, m) | ≤ 1

P �
3
cl cmpl

The operational semantics of Chai3 differs from that of Chai1 and Chai2 in
the handling of mutation, object creation, and method call, therefore, we extend
the semantics from figure 6. A mutate expression substitutes one trait by another
(mutate). Object creation initializes the fields and the list of trait substitutions
for new objects through the identity substitution, i.e. associates all traits with
themselves (new).

mutate

e, σ, χ � P ι, χ′′

χ′ = χ′′[ι �→ χ′′(ι)[tr �→ tr′]]
e < tr �→ tr′ >, σ, χ � P ι, χ′

new
F s(P, cl) = { f1, . . . , fr }
{ tr1, . . . trn } = Use∗(P, cl)
ι is new in χ
o = [[cl || f1 :null...fn :null ||

tr1 :tr1...trn :trn]]
new cl, σ, χ � P ι, χ[ι �→ o]

In method call we use the new method lookup function M3(P, c, o, m)
(method-call). Thus, if a trait is used in class cl through two different paths
(e.g., used by cl, and also by cl′, where cl′ is cl’s superclass), then mutation
of the trait will affect the behaviour of its methods regardless of the path used
to access the object (e.g., as a value of type cl, or cl′) - this is consistent with

472 C. Smith and S. Drossopoulou

the flattening property. On the other hand, if a trait tr which uses trait tr′ is
replaced by tr′′, then only the methods directly provided by tr will be looked
up in trait tr′′; the ones that were inherited by tr′ will remain unaffected. This
is, in some sense, inconsistent with the flattening property, and in further work
we would like to investigate alternatives.

method-call
er, σ, χ � P ι, χ0

ea, σ, χ0 � P v1, χ1

χ1(ι) = [[cl || . . .]]
M3(P, cl, χ1(ι), m) =

{ t m(t′ x) { e } }
Morig(P, cl, m) = cl′

σ′ = (ι, v1, cl′)
e, σ′, χ1 � P v, χ′

er.m(ea), σ, χ � P v, χ′

super-call
ea, σ, χ � P v1, χ1

σ(this class) = cl
Psup(cl) = cl′′

M3(P, cl′′, χ1(ι), m) =
{ t m(t′ x) { e } }

Morig(P, cl′′, m) = cl′

σ′ = (σ(this), v1, cl′)
e, σ′, χ1 � P v, χ′

super.m(ea), σ, χ � P v, χ′

5.3 Type System

The judgment P � tr′ � tr says that trait tr′ may replace another trait tr. It
requires that tr′ provides all the methods that tr does (with the same signatures,
but possibly different bodies), and that any methods provided or required by tr′

are also provided or required in tr.

P �tr trait P �tr′ trait
∀m : t0 m(t1 x){. . . } ∈ Pmth(tr, m) =⇒ t0 m(t1 x){. . . } ∈ Pmth(tr′, m)
∀m : MSig

2
(P, tr′, m) ⊆MSig

2
(P, tr, m)

P � tr′ � tr

We require MSig
2
(P, tr′, m) ⊆ MSig

2
(P, tr, m)8 because P � tr′ � tr and

P, t′ x, tr′ this �
3
e : t should imply P, t′ x, tr this �

3
e : t – namely,

if an object contains a trait placeholder tr, which is replaced by tr′,
then it may execute method body e which was defined in tr′. To satisfy
P, t′ x, tr this �

3
e : t for the case where e=this, we need P �

3
tr ≤ tr′,

which requires MSig
2
(P, tr′, m) ⊆MSig

2
(P, tr, m).

In our example, � TrtB2 � TrtB, and �� TrtB � TrtB2 – because TrtB2
has a method body for m1, and TrtB has not.

Because trait substitutability implies subtypes, in Chai3 we extend the sub-
type relationship from figure 7 as follows:

8 Andrew Black suggested to us that we could weaken our original requirement of
MSig

2
(P, tr′, m) = MSig

2
(P, tr, m).

Chai : Traits for Java-Like Languages 473

P �
2
t′ ≤ t

P �
3
t′ ≤ t

P � tr′ � tr
P �

3
tr ≤ tr′

P �
3
t′ ≤ t′′ and P �

3
t′′ ≤ t

P �
3
t′ ≤ t

The type system of Chai3 is identical to that of Chai2, except for the new
definition of subtypes (P �

3
t′ ≤ t) and complete classes (P �

3
cl cmpl), and the

addition of the rule for mutation expressions. It requires that the type of e should
be any class or trait t, that t should be using a trait tr, and that tr′ may replace
trin t. Then, the substitution of tr through tr′ in e has type t:

mutate
P, Γ �

3
e : t

tr ∈ Use∗(P, t)
P � tr′ � tr
P, Γ �

3
e < tr �→ tr′ > : t

5.4 Type Soundness

Agreement for Chai3 is defined in the following. In addition to the properties for
agreement in Chai2, for Chai3 we use the new subtype relation (P �

3
cl ≤ t),

and require that all traits used by class cl should appear in the representation
of the objects, and that all traits have been replaced by substitutable traits:

χ(ι) = [[cl || . . . || tr1 : tr′1, ..., trn : tr′n]]
{ tr1...trn } = Use∗(P, cl)
∀i∈1, ...,n : P � tr′i � tri
P �

3
cl ≤ t

F (P, cl, f) = t′ =⇒ P, χ �
3
χ(ι)(f) � t′

P, χ �
3
ι � t

The counterparts to the properties from lemmas 1 and 3 hold for Chai3.

Lemma 5. For program P with �
3
P, classes cl, cl′, types t, t′, t′′, with

P �
3
cl ≤ cl′, and P �

3
t ≤ t′ :

1. F (P, cl′, f) = t =⇒ F (P, cl, f) = t.
2. MSig

2
(P, t′, m) ⊆MSig

2
(P, t, m).

3. P, ta x, t′ this �3
e : t′′ =⇒ P, ta x, t this �

3
e : t′′.

4. P, σ �
3
ι � cl, and P �

3
cl cmpl, and Morig(P, cl′, m) = { cl′′ },

and t0 m(t1 x){e} ∈ M3(P, cl, χ(ι), m), =⇒
– P �

3
cl′ ≤ cl′′

– P, t1 x, cl′′ this �3
e′′ : t0.

5. t0 m(t1 x) ∈MSig
2
(P, t, m), and P, σ �

3
ι � cl, and P �

3
cl′ ≤ t,

and P �
3
cl cmpl =⇒ M3(P, cl′, χ(ι), m) = { t0 m(t1 x){ ... } }.

474 C. Smith and S. Drossopoulou

We can now prove soundness for the type system of Chai3:

Theorem 6 (Type Soundness of Chai3). For any program P, environment
Γ, expression e, stack σ, heap χ, type t, where �

3
P, and P, Γ �

3
e : t and

P, Γ �
3
σ, χ and e, σ, χ � P r, χ′:

P, χ′ �r � t or r = nullPointerExc and P, Γ �
3
σ, χ′.

6 Implementation

This section describes the translation of a program in Chai (the source lan-
guage) to one in Java (the target language). This is implemented by a mapping
from traits and classes in Chai to entities in Java9 There are several possible
mappings we could have chosen for this purpose; we could map a class (and all
the behaviour it includes from traits) in Chai to a single class in Java. Instead,
we choose a slightly more complex mapping, which represents traits in Java by
classes which are instantiated to give proxy objects to which behaviour can be
delegated by a class which uses those traits. This allows us to implement the
dynamic trait substitution of Chai3.

Every trait tr is represented by an object of type tr impl, and contains a
field called user proxy of type tr user. The user proxy field always stores a
reference to an object of the trait or class that uses this trait. Also, for any class
or trait, there are fields tr′ proxy for all traits tr′ used by the class or trait.
Each of these is a reference to an object of the relevant type tr′ interface

Take, for example, a class D which uses a trait T3, and T3 uses traits T1
and T2. Because T3 ∈ Puse(D), the D object contains a reference to a T3 impl
object. Similarly because T1 ∈ Puse(T3) and T2 ∈ Puse(T3), the T3 object contains
references to T1 impl and T2 impl objects.

In order for this arrangement to be type correct, all classes tr impl must
implement tr interface, and also tr′ user for all tr′ such that tr′ ∈ Puse(tr).
Additionally, classes that use traits must implement the appropriate tr user
interfaces (in the example, T3 ∈ Puse(D) and so D must implement T3 user).

The reason that the type of the fields tr proxy is tr interface (and not
tr impl) is to allow different values stored in the field to refer to different trait
implementation objects (provided that they implement tr interface), and sup-
port trait substitutions (under the restrictions described by Chai3).

In more detail, every trait tr in Chai is mapped to three entities in Java:

1. A trait interface containing all the provided methods of tr.
2. A trait-user interface containing all the required method signatures (i.e.

those expected to be provided by the user of the trait tr), as well as all the
provided method signatures of tr (see below).

3. A trait implementation class which contains the definitions for the provided
methods of the trait, proxy fields for the user of the trait and all used traits,

9 Similarly, Java-mixins were implemented through a mapping from Jam into Java[2].

Chai : Traits for Java-Like Languages 475

as well as delegation method stubs for acquired methods, which forward
method calls to the used trait proxy objects.

A class in Chai is mapped to a class in Java, with the addition of proxy fields
for used traits, implements declarations for the trait-user interfaces of traits used
by the class, and method stubs for acquired methods and superclass methods
required by a used trait.

To preserve the intended semantics of the flattening property (see section
3.3), it is necessary that the use of the expression this within a trait proxy is
translated to refer the object belonging to the class which uses the trait (note that
there may be several levels of intervening trait proxies between the trait proxy
and this object). The reason that this is necessary, is that declarations of methods
“most local” to the eventual user of a trait have precedence, therefore to preserve
the flattening property, we must start the search for a method implementation
from this user object itself and work upward into traits represented by proxy
objects.

Prototype. The prototype implementation of the compiler is written in Java.
At present it supports all of the features of Chai1, and would easily accommodate
extensions to support Chai2 and Chai3. The compiler, including full source code,
is available from http://chai-t.sourceforge.net/.

7 Conclusions, Related and Further Work

We have developed three extensions to a minimal Java-like language incorpo-
rating traits, have proven soundness of the type systems, and have outlined our
prototype implementation.

The main issues we had to address during the design of Chai were:

– The precise semantics of using a trait as part of a class in Java;
– How to perform type-checking on traits, and in particular how to avoid

having to type-check the same method body in each class that uses a trait;
– The reflection of calls to super in the requirements part of traits
– In how far classes have to be complete, i.e., provide method bodies for all

the methods required by the traits they are using;
– Subtype relationships between classes and traits, as required in Chai2; in-

terestingly, a trait may require more methods than a supertype trait;
– Dynamic substitution of traits, and the semantics of method lookup in Chai3;
– The trait substitutability relationship in Chai3; interestingly, substitutability

in Chai3 does not imply subtype in Chai2.

Recently, and especially after the application of traits to Smalltalk [18, 19],
the interest in traits has boomed. In [10] a imperative calculus for traits in
the language Moby is developed. The acquisition of methods trough the use

476 C. Smith and S. Drossopoulou

of traits is modeled through “class evaluation” which returns flattened classes.
As in our work, alias and exclusion of methods in [10] is accompanied by method
signatures; unlike our work, traits in [10] may require the presence of fields.

In FTJ [13] traits are added to Featherweight Java[12]; the system is func-
tional, and traits are treated as a class creation mechanism, similar to Chai1.
The full calculus of FTJ and a proof of soundness of the type system is presented.

Traits are part of the language Scala [15], where they play similar rôle to that
of Chai1 and Chai2. Scala incorporates many advanced features e.g., generics,
and dependent types; it is unknown whether its type system is decidable [16].

The Software Composition group at the University of Berne [8] contains a
large center for the research around the design, semantics, and application of
traits. Tools for Traits for Squeak are being developed, and Microsoft research
is sponsoring the design and implementation of traits for C#.

In further work, we would like to refine our model to support overloading.
We also want to revisit and reconsider the design decisions in Chai2 and Chai3;
so far they were taken just with the aim to obtain type soundness, but we
should explore their implications for the style of programming. We also want to
explore the design space for traits, its relation with generic features [6], possibly
also incorporate polymorphic features into traits. We also would like to consider
generalization of the languages, e.g., allow classes to have trait glue, or allow
trait glue to require fields.

Acknowledgments. We are deeply grateful to Andrew Black, Tim Sheard, and
their research group, for insightful suggestions, pertinent questions, and detailed
comments on an earlier version of this work. Their feedback has greatly improved
the suggested language features in Chai1, Chai2 and Chai3, the explanations,
and presentation – we have not yet had the time to incorporate all of it. Chuan-
Kai Lin and Andrew Black suggested the correct fomalization of super.

The anonymous ECOOP referees, Alex Buckley, Christopher Anderson, Nick
Cameron, and Rok Strnisa gave us valuable feedback. Nobuko Yoshida suggested
the distillation of the essential properties used in the proof of soundness for
Chai1, Chai2 and Chai3, as in lemmas 1, 3 and 5.

References

1. Ole Agesen, Lars Bak, Craig Chambers, Bay-Wei Chang, Urs Hölzle, John Maloney,
Randall B. Smith, and David Ungar. The Self 4.0 Programmer’s Reference Manual.
Sun Microsystems, Inc., 1995.

2. Davide Ancona, Giovanni Lagorio, and Elena Zucca. Jam - A Smooth Extension
of Java with Mixins. In Proceedings of the 14th European Conference on Object-
Oriented Programming, pages 154–178. Springer-Verlag, 2000.

3. Andrew Black, Nathanael Schärli, and Stéphane Ducasse. Applying Traits to the
Smalltalk Collection Hierarchy. pages 47–64. ACM Conference on Object Oriented
Systems, Languages and Applications (OOPSLA), October 2003.

Chai : Traits for Java-Like Languages 477

4. Gilad Bracha. The programming language jigsaw: mixins, modularity and multiple
inheritance. PhD thesis, University of Utah, 1992.

5. Gilad Bracha and William Cook. Mixin-Based Inheritance. In Norman Meyrowitz,
editor, Proceedings of the Conference on Object-Oriented Programming: Systems,
Languages, and Applications / Proceedings of the European Conference on Object-
Oriented Programming, pages 303–311, Ottawa, Canada, 1990. ACM Press.

6. Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. Making the
Future Safe for the Past: Adding Genericity to the Java Programming Language.
In Craig Chambers, editor, ACM Symposium on Object Oriented Programming:
Systems, Languages, and Applications (OOPSLA), pages 183–200, Vancouver, BC,
1998.

7. S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini, and P. Giannini. Fickle: Dy-
namic object re-classification. In ECOOP’01, LNCS 2072, pages 130–149. Springer,
2001.

8. Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, and Roel Wuyts. Traits
- Composable Units of Behaviour. University of Berne, Software Composition
Group, http://www.iam.unibe.ch/ scg/Research/Traits/index.html.

9. Erik Ernst. Family Polymorphism. In ECOOP ’01: Proceedings of the 15th Euro-
pean Conference on Object-Oriented Programming, pages 303–326. Springer-Verlag,
2001.

10. Kathleen Fisher and John Reppy. Statically Typed Traits. Technical Report TR-
2003-13, Department of Computer Science, University of Chicago, December 2003.
presented at FOOL, January 2004.

11. Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. Classes and Mix-
ins. In Conference Record of POPL 98: The 25TH ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, San Diego, California, pages
171–183, New York, NY, 1998.

12. Atshushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight Java: A
minimal core calculus for Java and GJ. In Loren Meissner, editor, Proceedings of
the 1999 ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages & Applications (OOPSLA‘99), volume 34(10), pages 132–146, N. Y.,
1999.

13. L. Liquori and A.Spiwack. Featherweight-Trait Java, A Trait-based Extension for
FJ. 2004, http://www-sop.inria.fr/mirho/Luigi.Liquori/PAPERS/ftj.ps.gz.

14. Bertrand Meyer. Eiffel: the Language. Prentice-Hall, 1988.
15. Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Stéphane Mich-

eloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, and Matthias Zenge. The
Scala Language Specification Version 1.0. Technical report, Programming Methods
Laboratory, EPFL, Switzerland, 2004.

16. Martin Odersky, Vincent Cremet, Christine Röckl, and Matthias Zenger. A Nom-
inal Theory of Objects with Dependent Types. In Proc. ECOOP’03, Springer
LNCS, 2003.

17. Philip J. Quitslund and Andrew P. Black. Java with Traits — Improving Oppor-
tunities for Reuse. In The MASPEGHI Workshop at ECOOP 2004.

18. Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew Black. Traits:
Composable Units of Behavior. European Conference on Object-Oriented Pro-
gramming (ECOOP), Springer LNCS 2743, July 2003.

478 C. Smith and S. Drossopoulou

19. Nathanael Schärli, Oscar Nierstrasz, Stéphane Ducasse, Roel Wuyts, and Andrew
Black. Traits: The Formal Model. Technical Report IAM-02-006, Institut für
Informatik, Universität Bern, Switzerland, November 2002.

20. Charles Smith. Typed Traits, September. MSc thesis - Department of Computing,
Imperial College London, September 2004, http://chai-t.sourceforge.net/.

21. B. Stroustrup. Multiple inheritance for C++. In Proceedings of the Spring 1987
European Unix Users Group Conference, Helsinki, 1987.

22. David Ungar and Randall B. Smith. Self: The power of simplicity. In Conference
proceedings on Object-oriented programming systems, languages and applications,
pages 227–242. ACM Press, 1987.

A Type System for Reachability and Acyclicity

Yi Lu and John Potter

Programming Languages and Compilers Group,
School of Computer Science and Engineering,

The University of New South Wales,
Sydney 2052, Australia

{ylu, potter}@cse.unsw.edu.au

Abstract. The desire for compile-time knowledge about the structure
of heap contexts is currently increasing in many areas. However, ap-
proaches using whole program analysis are too weak in terms of both
efficiency and accuracy. This paper presents a novel type system that
enforces programmer-defined constraints on reachability via references
or pointers, and restricts reference cycles to be within definable parts of
the heap. Such constraints can be useful for program understanding and
reasoning about effects and invariants, for information flow security, and
for run-time optimizations and memory management.

1 Introduction

Pointers and references allow run-time sharing of data structures. In most soft-
ware, references are unavoidable for pragmatic efficiency reasons, even though
they complicate program reasoning and their usage is error-prone. When data
structures are mutable, problems are inevitable. Reference cycles, either direct
or indirect, can cause serious programming errors; a sequence of method calls
following a reference cycle, may unexpectedly break invariants of local states
or cause non-termination. Reference cycles also complicate the task of memory
management and cloning; for instance, safety of explicit memory deallocation
may be difficult in the presence of arbitrary cycles and automatic garbage col-
lection cannot rely on reference counting alone in the presence of cycles.

Object-oriented programming languages use reference semantics for objects
which, together with subtyping and a generic coding style, increase the likelihood
of unintended object reference cycles. Common object-oriented design patterns,
like the decorator, often require an absence of such cycles. Wrapping an object
with self-cycles yields a design problem: should the self-cycles be re-routed via
the wrapper or not? When is it safe to wrap an object?

The potential for cycles limits our ability to use class invariants in reasoning
about the state of an object before and after method calls. If a method indirectly
calls back on an object, via an indirect reference cycle, say, then the call-back
may be entering the object in an invalid state, so the call-back code may be
working outside of its assumed precondition, and furthermore the original call
on the object may not be aware of the indirect effect of the call-back, so its desired

A.P. Black (Ed.): ECOOP 2005, LNCS 3586, pp. 479–503, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

480 Y. Lu and J. Potter

postcondition may not be met. With reference cycles we cannot presume that an
invariant will hold for all calls on an object. This problem manifests itself in a
language like Eiffel which allows run-time assertion checking for class invariants –
when should the invariant hold? The problem has been highlighted in recent work
on verification of object-oriented programs [3, 21] which suggests enriching the
program state to track when object invariants hold; they incorporate a notion
of dynamic ownership.

Reference problems are difficult to reason about because in most cases call-
backs and infinite loops may be caused by indirect references which a program-
mer may be unaware of. Shape analysis attempts to characterize the shape of
data structures via whole program analysis [26]. However, these approaches suf-
fer from exponential complexity and cannot be accurate especially in the present
of cyclic reference structures. They are also hard to scale to large or incomplete
programs because of lack of modularity in the analysis techniques.

In this paper, we employ a type system, called Acyclic Region Type Sys-
tem, that allows programmers to specify desired reachability relations between
objects via regions. We use the name ARTS to refer to our type system, the
overall model, and underlying language. Regions partition the heap into distinct
logical blocks of memory, and every object lives in a fixed region determined from
its type. Object reference cycles are only allowed within the same region, that
is, regions are partially ordered by the object reachability relation. In this way,
programmers are able to express where cycles are allowed, by creating objects in
the same region; they can also forbid unwanted cycles by using different regions.
ARTS allows modular reasoning on a unbounded number of regions and separate
compilation is possible. We also present a dynamic semantics that allows us to
formalize the key structural invariant: object references respect region reachabil-
ity, so that object cycles occur only within regions. Besides program reasoning,
our type system has potential application in many areas: information flow se-
curity, memory management, data copying or cloning, deadlock avoidance, and
shape analysis where cycles remain an obstacle.

This paper is organized as follows: an informal overview of ARTS is given
in the next section with some program examples. The core language of ARTS
is formalized in Section 3, where along we present static semantics. Dynamic
semantics and some important properties of the type system are given in Section
4. Discussion and related work are given in Section 5 and Section 6. Section 7
briefly concludes the paper along with some thoughts on future directions.

2 Overview of the Acyclic Region Type System

ARTS uses region-based types to capture the potential of an object to reach other
objects, directly or indirectly. In typed languages, the occurrence of a cycle in
the run-time object graph implies there must be a cycle in the type dependency
graph; in other words, if there is no cycle in the type dependency graph, then
there will be none in the run-time object graph. If there are type-level cycles, the
type system is powerless to prevent cyclic references, even if they are undesirable.

A Type System for Reachability and Acyclicity 481

With our acyclic region type system, we can enforce one-way reachability for
objects, that is, one object may reach another via a path that is not part of a cy-
cle in the object graph. Acyclic reachability for regions is the key concept in our
model: it is a strict partial order which we denote by �. Underlying the design
of ARTS is the acyclic graph induced by the partition of a directed graph into
its strongly connected components (sccs). All cycles within the original graph
must occur within these components. We have designed our type system so
that regions and acyclic reachability provide a static abstraction of the strongly
connected components of the dynamic object graph and object reachability be-
tween them. The key idea is to formulate static constraints on the object graph
by specifying regions within which all reference cycles are trapped. Regions are
disjoint sets of objects and every object lives in the same region for its lifetime.
We impose constraints on region reachability, and guarantee that inter-object
references respect these inter-regional reachability constraints.

To use such a model, programmers must be able to decide when they want to
ban the possibility of cycles or aliases emanating from particular object fields.
This will be clearer if we look at an example illustrating a simple use of ARTS.

class A<p>

r from p;

B<r> f;

...

// assert a property about this object’s fields

f.m();

// assert the same property

This code shows the simplest case of ARTS. Class A is parameterized with
a region parameter p, which represents the region the current object lives in. A
region r is defined within the class with the constraint r from p, which means
p one-way reaches r, or p � r. This implies there may be a reference sequence
starting in p that ends in r but not vice versa. The type of the field f is B<r>
which means f references an object living in the region r. In this case, the object
referenced by f can never hold a reference to the current object because of the
order we force on their types. So any method call made on f cannot reenter the
current object. Such knowledge allows us to assert properties that are necessarily
invariant during the call, such as the reference stored in the field f.

ARTS can significantly improve program understanding. Programmers are
able to express reference reachability between objects via types, and know that
two references cannot be direct aliases if their objects live in different regions.
The next example will show how to express complex data structures, such as
linked lists with iterators, in ARTS.

2.1 A Linked List Example

Linked lists provide a common example for demonstrating expressiveness of lan-
guage features dealing with references. Our list example will show how regions

482 Y. Lu and J. Potter

work and how acyclic properties are expressed in a program. In particular, this
example shows how the list data structure is handled so that a list object can
never reach itself via its data objects. In other words, the data objects contained
by a list must not reach and thereby alter the list, which could cause iterators
on the list to fail, for example. The data objects themselves may well be shared
by other parts of the program.

class List<list, data from list>

link from list to data;

Link<link, data> head;

Link<link, data> tail;

void addElement(Data<data> d)

head = new Link<link, data>(head, d);

if (tail == null) tail = head;

tail.next = head;

Iterator<list, data> getIterator()

return new Iterator<list, data>(head);

class Link<link, data from link>

Link<link, data> next;

Data<data> d;

Link(Link<link, data> next, Data<data> d)

this.next = next;

this.d = d;

class Iterator<list, data from list>

Link<List<list, data>.link, data> current;

Iterator(Link<List<list, data>.link, data> current)

this.current = current;

void next()

current = current.next;

Data<data> element()

return current.data;

A list object is implemented by a cycle of link objects. Iterator objects are
created inside the list’s region, and are used to access the data stored in link
objects. They can name the link region through a qualification over the type of
the list. This removes the naming restriction in instance-based parametric type
systems such as ownership types (see Section 6).

The relations between the regions in the example are shown in Figure 1. All
link objects live in the same region defined in the List class, and all list, link
and iterator objects have access to the data objects in another region given by
a parameter of their classes. The type system enforces a lack of cycles between
regions. Data objects can never reference the list or iterator objects; these are
shown in the graph as ‘bad references’. As expected, cyclic references are allowed
within a region. In the example, link objects form a cycle within their region.

A Type System for Reachability and Acyclicity 483

Fig. 1. List Example

3 The Language and Static Semantics of ARTS

In this section we formalize our model, providing an abstract syntax which
amounts to a simple Java-like language, and a type system that captures the
desired properties. Both the language and the type system are described in
some detail, and we illustrate particular language features with small examples.

The key technical contribution of the paper is the way in which new region
definitions define a refinement of the acyclic reachability ordering on existing
regions. How does this work? Consider instead how subclass definition extends
the acyclic inheritance relation on existing classes: the key ensuring that inher-
itance is acyclic is to ensure that there is an order of definition of classes in
which subclasses are defined after superclasses. For region definitions in ARTS,
we also rely on a definition order to ensure acyclicity. But extra care is needed.
New regions not only extend the reachability, but also refine it by placing new
regions between existing ones. The real trick to make the system work, is that,
in the case of region refinement, the reachability between the existing regions
must already be derivable before the new region is introduced.

3.1 An Abstract Syntax for ARTS

To simplify the abstract syntax presented in Table 1, we use a few abbreviations.
The overbar is used for a sequence of constructs; for example, σ is used for a
possibly empty sequence σ1 ... σn, as are p, q, fd, mth and e. Similarly, t x
stands for a possibly empty sequence of pairs t1 x1 ... tn xn. In the class produc-
tion, [t]opt is an optional part of the class. In the type system the equivalence
symbol ≡ denotes syntactic equivalence; it is used in defining syntactic lookup
and substitution functions in Table 3. Just as in Java, this is a distinguished

484 Y. Lu and J. Potter

Table 1. Abstract Syntax

c ∈ ClassName; r ∈ RegionName; x ∈ VarName; f ∈ FieldName; m ∈ MethodName

cls ∈ Class ::= c p [t]opt q fd mth
p, q ∈ RegionConstraint ::= σ � σ � σ

t ∈ Type ::= c〈σ〉
σ ∈ Region ::= base | t.r | r

fd ∈ Field ::= t f
mth ∈ Method ::= t m(t x) e

e ∈ Expression ::= x | new t | null | e.f | e.f = e | e.m(e) | e; e | if e e e

variable name used to reference the target object for the current call, that is, the
current object. In the concrete syntax we use in our examples, we use keywords
such as class and extends for ease of reading.

Classes and Constrained Formal Parameters. Our syntax is close to Java
except that classes are parameterized with region parameters and region names
are defined as members within classes.

The relational symbol �, in region constraints, denotes the acyclic reacha-
bility relation between regions. In the concrete syntax, the region constraints
q ≡ σ � r � σ′ that defines new region r is written as:

r from σ1, ..., σm to σ′
1, ..., σ

′
n where |σ| = m and |σ′| = n

The same applies to the constraints for the formal parameters p ≡ σ � r � σ′. The
formal region parameters of a class are assumed to satisfy the reachability con-
straints specified in the from and to clauses of each parameter. They are used
within a class to identify regions for objects used by the class. The first formal
parameter denotes the region where the current object (this) lives. Our syntax
for region names r does not distinguish between names of region parameters and
locally defined regions. The reason for using two key words from and to in the
concrete syntax instead of one is to make the constraints clear – the parameter
or new region to be introduced occurs first.

Types. Classes are type schemas. A type is formed by binding the region pa-
rameters to actual regions in the environment where the type is formed. A type
consists of a class name and the region arguments required by its class definition.
The first region argument is the region where the object of this type resides. Un-
surprisingly, for a type to be valid, the actual region arguments must satisfy the
class constraints defined on the formal parameters.

Regions and Region Definitions. In ARTS, every object belongs to a fixed re-
gion for its entire lifetime. Region expressions are formed from the special global
region base, from type-qualified regions, and region parameters. To ensure the
acyclic property for the region reachability relation, the order of introduction
of new regions in definitions is important. A region definition q introduces a
fresh name for its region, together with constraints that specify its reachability

A Type System for Reachability and Acyclicity 485

Table 2. Static Semantics Given Class Definitions Π

Well-Formed Program and Well-Ordered Class Definitions �P e; �c Γ ; Γ �c cls

[PROGRAM]

�c Π
Π �e e : t
�P Π e

[CLS−DEF0]

�c ∅

[CLS−DEFS]

�c Γ
Γ �c cls
�c Γ, cls

[CLS−DEF]

c �∈ Γ r ≡ R(p) E ≡ Π, p, this : c〈r〉
Π �r p Γ, p �r q E �f fd E �m mth

[t ≡ c′〈r1, ...〉 E �t t c′ ∈ Γ]opt

Γ �c c p [t]opt q fd mth

Well-Ordered Region Definitions E �r p; E �r p
[REG−DEF0]

E �r ∅

[REG−DEFS]

E �r p E, p �r p
E �r p, p

[REG−DEF]

r �∈ R(E) E �σ σ, σ′ E �� σ � σ′

E �r σ � r � σ′

Well-Defined Field and Method E �f fd; E �m mth

[FIELD]

to ≡ co〈r, ...〉 t ≡ c〈σ, ...〉
E �e this : to E �t t E �� r � σ

E �f t f

[METHOD]

E �t t, t
E, x : t �e e : t

E �m t m(t x) e

Well-Formed Region and Type E �σ σ; E �t t

[REG−BASE]

E �σ base

[REG−NAME]

r ∈ R(E)
E �σ r

[REG−QUAL]

E �t t t.r ∈ R(t)
E �σ t.r

[TYPE]

t ≡ c〈σ〉 C(t) ≡ c p ...
c ∈ E E �σ σ E �� p

E �t t

Subtype �<: t <: t′

[SUBTYPE−REFL]

�<: t <: t

[SUBTYPE−EXTEND]

C(t) ≡ ... t′ ...

�<: t <: t′

[SUBTYPE−TRANS]

�<: t <: t′ �<: t′ <: t′′

�<: t <: t′′

Region Reachability E �� σ � σ′; E �� σ � σ′ � σ′′; E �� σ � σ′

[REACH−ENV]

σ � σ′ ∈ E

E �� σ � σ′

[REACH−DEF−TO]

t.r � σ ∈ Q(t)
E �� t.r � σ

[REACH−DEF−FROM]

σ � t.r ∈ Q(t)
E �� σ � t.r

[REACH−TRANS]

E �� σ � σ′ � σ′′

E �� σ � σ′′

[REACH−COMB]

E �� σ � σ′ E �� σ′ � σ′′

E �� σ � σ′ � σ′′

[REACH−REFL]

E �� σ � σ

[REACH−EXT]

E �� σ � σ′

E �� σ � σ′

Well-Formed Expression E �e e : t

[EXPR−VAR]

E �e x : E(x)

[EXPR−NEW]

E �t t
E �e new t : t

[EXPR−NULL]

E �t t
E �e null : t

[EXPR−FIELD]

(t f) ∈ F(to)
E �e e : to

E �e e.f : t

[EXPR−ASSIGN]

(t f) ∈ F(to)
E �e e : to E �e e′ : t

E �e e.f = e′ : t

[EXPR−CALL]

M(to, m) ≡ (t, , t,)
E �e e : to E �e e : t

E �e e.m(e) : t
[EXPR−SEQ]

E �e e : t
E �e e′ : t′

E �e e; e′ : t′

[EXPR−IF]

E �e e : t
E �e e′ : t′ E �e e′′ : t′

E �e if e e′ e′′ : t′

[EXPR−SUBSUM]

E �e e : t
�<: t <: t′

E �e e : t′

486 Y. Lu and J. Potter

Table 3. Auxiliary Lookup Functions for Static Semantics

[LOOKUP−CLASS]

t ≡ c〈σ〉 r ≡ R(p) r′ ≡ R(q) Π(c) ≡ cls ≡ c p ...q ...

C(t) ≡ cls[σ/r, t.r′/r′]

[LOOKUP−DEF]

C(t) ≡ ... q ...

Q(t) ≡ q

[LOOKUP−FIELD]

C(to) ≡ ... [t′]opt ... t f

F(to) ≡ [F(t′)]opt, t f

[LOOKUP−METHOD]

C(to) ≡ ... t m(t x) e ...

M(to, m) ≡ (t, x, t, e)

[LOOKUP−METHOD′]
C(to) ≡ ... t ... mth ...

m /∈ mth

M(to, m) ≡ M(t, m)
[LOOKUP−REGION−ENV]

R(∅) ≡ ∅ R(E, cls) ≡ R(E) R(E, p) ≡ R(E),R(p) R(E, x : t) ≡ R(E)
[LOOKUP−REGION−DEF]

R(σ � σ′′ � σ′) ≡ σ′′ R(q, q) ≡ R(q),R(q) R(t) ≡ R(Q(t))

properties in terms of previously defined regions. Furthermore these constraints
must not impose any further requirement on the reachability relation for the
previously defined regions. In this way we are able to inhibit cycles in the re-
gion reachability relation. This is checked and enforced by the type system as
formalized in Section 3.2.

Compared with constraints on formal parameters, which just impose require-
ments on the actual region arguments for a class, region definitions actually deter-
mine the region structure for the system. Every class defines a type schema, with
its own locally defined regions. We allow types (not just class names) to qualify
region names – every such qualified region t.r uniquely determines a particular
region in the system. To guarantee this uniqueness, we do not allow regions to be
inherited by subclasses; otherwise the same region could be identified through a
subtype which inherits it. In fact it is straightforward to allow region inheritance,
but adds no extra expressivity, and slightly complicates the type system.

Interestingly, regions and types are recursively defined: regions are defined
within classes and named via type qualification; types are formed by binding class
parameters with actual regions. Because of this recursive structure there are an
unbounded number of regions in the system, all globally accessible via region
path expressions. Fortunately the programmer does not have to deal with global
region names, because the region parameters of a class localize the expression
of the regions relevant for a class, so normally region expressions do not need to
be nested through more than one level of type qualification.

The primary goal of ARTS is to allow programmers to define a static preorder
on the run-time object structure which induces a partial order on the scc’s of
the objects, thereby restricting where cycles can occur. By making class-defined
region names publicly accessible we keep flexibility in that every ground region
has a unique global name. Ground regions are those with no free region param-
eter: either base, or a region t.r qualified by a ground type t; a ground type
is one with no free region parameter. Objects of the same types (not just the
same class) share the same region; objects of different type may occupy the
same region, but their types must share the same first region argument because
it determines the region an object lives in).

A Type System for Reachability and Acyclicity 487

The special region base is pre-defined and is the only unqualified ground
region in the system. An important note here is that regions do not have to be
reachable from base or vice-versa; also any root object (objects created in the
main method) does not have to be placed in base. base is just the base region
used to name any other ground region. The ability to name a region is different
from the ability to access a region, which is determined by the to and from
clauses of the region definitions. In fact, we could allow the expression defining
the main method of a program to define its own regions, making the use of global
regions superfluous.

All region constraints are statically verified by the type system to ensure
global acyclicity. Any strongly connected component in the object heap during
the execution of an ARTS program must occur entirely within a region. Regions
need not exist at run-time because the expression language only uses types for
object allocation, and regions can be erased from that with no change in be-
haviour. Regions are only used in type checking to help organize and reason
about cyclic references and object reachability.

Fields and Methods. In ARTS, the structural invariant is maintained by im-
posing a stronger restriction on object fields than on other reference-valued en-
tities, namely method arguments and results. Object fields are singled out for
special attention because they can form unwanted hard-to-detect cycles in object
graphs. The structural invariant states that if an object contains a reference to
another object then both objects must be in the same region or the region of
the former object must be able to reach the region of the latter object with no
return reference possible.

However, we do allow method arguments to access objects which are not
accessible to the current object, that is, the regions of method parameters and
results do not have to be reachable from the region of the this object. This im-
plies that we still allow inter-region callbacks, but that they occur within method
scope, and the method’s type signature indicates whether any such call-back is
allowed or not. These dynamic references can be considered safe because they
emanate from the calling stack rather than the heap, which is not referenceable
from the heap and deallocated at the exit of the method.

It is worth acknowledging at this stage that our choice of restrictions for field
and method access is somewhat arbitrary. It is easy to modify the type rules
to enforce different invariants; for example, if we wish to block the possibility
of cycles with dynamic references as well, then we could impose the restriction
that all method arguments and results are accessible from the region of this
just like we do to fields. The key point of the type system is that we have the
ability to invent such type rules, because we have a mechanism for specifying
and statically checking acyclic reachability of regions.

3.2 Static Semantics

We present an overview of the static semantics of ARTS, along with detailed
description of some important typing rules. The complete type system can be

488 Y. Lu and J. Potter

found in Table 2. In addition to the type system, we define auxiliary functions
to lookup and bind classes, types, regions, region definitions, fields and methods
in Table 3. We intentionally move all occurrences of substitution into the aux-
iliary functions to simplify the typing rules, for example, the class lookup for a
given type substitutes the actual region arguments into the class definition, and
qualifies all of the local region definitions with the type.

We also assume that, for a program to be valid, no identifier can be declared
more than once within the same scope. That is, no class name can be declared
more than once; no field and method name can be declared more than once
within the same class; region names, including formal parameters, cannot be
declared more than once within the same class. In fact, we explicitly check this
in the case of class names and region names, because we need to check that
region definition is well-ordered in the rules.

We use some syntactic shortcuts. By default E �σ σ represents a possibly
empty sequence of judgements E �σ σ1 ... E �σ σn. The same abbreviation is
used for judgements involving fd, mth and t. Similarly, E �e e : t stands for
E �e e1 : t1 ... E �e en : tn, and [σ/r] abbreviates a sequence of substitutions
[σ1/r1] ... [σn/rn].

A program P is a pair consisting a fixed sequence of class definitions Π and
an expression e. Γ denotes any sequence of class definitions. An environment E
may extend a sequence of class definitions with constraints on region names, or
the types of variables. The order of the elements in the environment is significant.

P ::= Π e Π ::= Γ Γ ::= ∅ | Γ, cls E ::= Γ | E, x : t | E, σ � r � σ

Because the number of recursively defined regions and types is infinite, to
achieve a strict partial order among all possible regions, we identify two require-
ments that must be satisfied by the type system. Firstly any reachability defined
between two regions needs to be one-way only. Secondly, any extension to the
reachability relation should not introduce any more reachability between exist-
ing regions, but rather introduce new regions together with their reachability
relative to existing ones.

Our type system satisfies these two requirements. To ensure one-way reach-
ability, the reachability relation between any two regions can be defined once
only. This can be achieved by ordering the region definitions so that the later
definitions are expressed in terms of earlier ones, as checked by the Γ, p �r q
judgement in the [CLS-DEF] rule.

To satisfy the second requirement, the type system guarantees that if a new
region lies between existing regions, then those regions were already related.
For example, if σ � σ′ is already defined, then a new region r can be defined
via σ � r � σ′, but not σ′ � r � σ because this would introduce cycles into the
region structure. Similarly, if there is no existing reachability between σ and σ′

can be derived, then σ � r � σ′ is invalid too because it implies σ � σ′ which is
unspecified originally. This constraint is enforced by the [REG-DEF] rule which
guarantees that the new region variable and the relations on it do not violate
the consistency of the region ordering.

A Type System for Reachability and Acyclicity 489

Class definition ordering is established by [CLS-DEFS]. Class well-formedness
is checked in [CLS-DEF]. Each class defines its own environment E formed from all
given class definition, its formal parameter constraints and the type of the current
object. Note that we do not put region definitions into E, because we want local
regions to be qualified when used in region expressions and types. We recall that
the constraints on formal region parameters, p, are requirements of the class.
The well-formedness of the parameter constraints is checked by the judgement
Π �r p; this assumes a whole program context, so that the constraints need not
rely just on previously defined regions. Actually we could omit this judgement
altogether and rely on checking that the actual region arguments satisfy the
constraints whenever the class is used to form a type; including the check on
parameter constraints implies that we will reject unusable classes even if they
are not used. A region definition q is checked in a context restricted to previously
defined classes in Γ , the formal parameter constraints p of the current class, and,
by the unwinding of [REG-DEFS] earlier local definitions q, thus guaranteeing the
partial ordering of regions, as indicated above. If the class is extended from a
supertype then the supertype needs to be valid in the class environment E, both
subtype and supertype must live in the same region (their first parameter r1) to
ensure that the region of the current object is not lost through subtyping, and
the superclass must be pre-defined in Γ . Finally for a well-formed class, all fields
and methods must be well-formed in E.

For a type to be valid by [TYPE], we require the class to be defined in the
environment. Its actual region arguments must satisfy the defined constraints by
substituting the actual regions into the class definition. If two formal parameters
are unconstrained, then they may be bound to any valid region; they may even
both be bound to the same region.

Once a well-formed environment is established, it is used to infer region reacha-
bility forall valid regions.Regionreachability isdefinedtobetransitive; irreflexivity
and antisymmetry are consequences of our system. The first three [REACH] rules
check the region relations as directly defined by programmers, all other relations
are inferred through transitivity rule [REACH-TRANS]. The [REACH-ENV] rule checks
defined relations between formal region parameters while the pair of rules [REACH-

DEF-FROM/TO] check the defined reachability relations in region definitions.
Another key rule of the type system is the [FIELD] rule where global reachability

properties are preserved by placing local restrictions on field references. Fields are
static (that is, heap-based) references, so that the field rule needs to ensure that
this can reference other objects if and only if its region is same to or can reach
the regions of the other objects. This is an important invariant of our programs.

In the current setting of our type system, we allow method arguments and
result types to freely reference objects in any region. The [METHOD] rule merely
checks if the types of arguments and the method body are correct. Dynamic
references are considered safe in the sense that they will not form cycles in the
object graph as they are local to a method stack. As discussed earlier, stronger
constraints could easily be written into this rule to prohibit inter-region dynamic
cycles.

490 Y. Lu and J. Potter

3.3 Examples

We give some toy examples to illustrate the use of regions, then show how regions
can be used as security levels to capture the ordering of information flow.

Toy Examples

class A<p1, p2 from p1, p3>

a1 from p1 to p2; // OK

a2 from p2 to p1; // BAD require p2 to p1

a3 from p1 to p3; // BAD require p1 to p3

a4 from base; // OK

class B<p from base>

b1 from p; b2 from b1; b3 to p;

A<p, b2, p> f1; // OK by transitivity

A<b1, b2, p> f2; // OK

A<p, b3, b2> f3; // BAD require b3 from p

A<p, base, b1> f4; // BAD require base from p

A<p, B<b3>.b2, p> f5; // BAD require B<b3>.b2 from p

class C<

p1 from base, // OK

p2 from B<p1>.b1, // OK p1 already introduced

p3 from B<p3>.b1, // BAD p3 undefined yet

p4 to B<base>.b3, // BAD require base from base

p5 from p1 to B<p2>.b2 // OK by transitivity

>

Class A shows how regions are defined. The key point in region definitions is
that any newly introduced region cannot change the relation of any previous de-
fined region. Class B shows that a valid type needs to satisfy its class constraints.
Class C shows various class constraints on formal region parameters, some with
qualified regions.

class M<p>

m to N<p>.n; // BAD require ordering of classes

class M’<p>

m to p; // OK

class M"<p1, p2 to N<p1>.n> // OK do not require ordering of classes

m to p2;

class N<p>

n to M<p>.m;

The examples above show the importance of class ordering. Class ordering
is not only important for correct inheritance, but also important in keeping the

A Type System for Reachability and Acyclicity 491

ordering of region definitions. In classes M and N, there is a cycle between M<p>.m
and N<p>.n whenever their class parameters are bound to the same region. To
solve this problem, we forbid regions in earlier classes to be defined to relate to
regions defined in later classes to enforce the order of region definitions, that is,
regions definitions in earlier classes are considered to be earlier than those in
later classes. Since class M is defined earlier than class N, class M is not valid and
must be rewritten to class M’ while later class N is always valid. Alternatively,
class M can be rewritten to class M" where the region m can be defined to reach
N<p1>.n through the formal parameter p2 since class ordering does not apply to
the constraints on formal region parameters.

class SubjectFactory<factory, subject>

Subject<factory> s1; // OK

Subject<subject> s2; // BAD

Subject<subject> makeSubject() // OK

return new Subject<subject>(); // OK

As we discussed earlier our current version of ARTS allows dynamic refer-
ences (method arguments and results) to be treated differently to static/field
references. There is no restriction on what regions can be used for dynamic
references. Unrestricted dynamic references add flexibility which can be seen
in the factory example. The SubjectFactory class models a factory in region
factory for creating Subject objects in region subject. Because there is no
known reachability between factory and subject, the type system prevents
the SubjectFactory class from holding field references to objects in subject.
However, since dynamic references are not bound by this restriction, new objects
can be created in subject and returned through the makeSubject method for
clients to use.

Type Enforced Security Levels. Besides using regions to prevent reference
cycles and to reason about aliasing, acyclic regions can also be used as security
levels to control access and secure information flow in a multi-level security
system (see Section 6). Programmers can express desired access control and
information flow policies in the region structure of a program. Because these
security policies are now expressed in types, they can be enforced statically by
the type system.

class Machine<floor>

display from floor;

Display<display> disp;

Machine()

disp = new Display<display>();

adjust() // modify the display

...

class Operator<skill, floor from skill>

Machine<floor> mach;

Display<Machine<floor>.display> disp;

set(Machine<floor> mach)

492 Y. Lu and J. Potter

this.mach = mach;

this.disp = mach.disp;

operate() // do a job, such as adjust the machine

...

class Factory<factory>

skill1 from factory;

skill2 from factory to skill1;

floor1 from skill1;

floor2 from skill2;

Machine<floor1> mach1;

Machine<floor2> mach2;

Operator<skill1, floor1> op1;

Operator<skill2, floor2> op2;

Operator<skill2, floor1> op3;

Operator<skill1, floor2> op4; // BAD, not a valid type

op1.set(mach1); // OK

op1.set(mach2); // BAD, op1 is on wrong floor

A factory has a number of operators and machines. Different machines require
different level of skills to operate. In this example, two machines are placed in
different floor regions and four operators occupy two skill level regions. The
region structure of Operator requires an operator to have enough skill to work
on a machine. The relations between different skills and floors are defined in
the Factory class - operators with skill2 can work on the machines on any
floor while operators with skill1 can only operate the machines on floor1.
Moreover, operators with skill1 can never obtain a reference to machines on
floor2, which implies information stored in region floor2 can never flow to
objects in region floor1.

4 Some Properties and a Dynamic Semantics

In this section, first we formalize some static properties about regions for a
well-formed program: namely that the region reachability relation is acyclic.
Then, after briefly introducing a formal big-step semantics, we characterize the
invariants for object references on good heaps for well-formed programs: inter-
object references either occur within regions or respect the region reachability
relation. Finally we state a standard subject reduction theorem, that, amongst
other things, states that heap goodness is preserved through reductions.

First we capture the idea of one region being defined earlier than another.
A class definition sequence Γ , that is well-formed, �c Γ , determines a sequence
of region definitions. A qualified region t.r that is well-formed, Γ �σ t.r, is
associated with a unique index in the definition sequence, namely that which
defines the region name of the qualified region. We call this the rank of the
region. We also define the rank of base to be 0. A region σ with a smaller
rank than another σ′ is defined earlier; we will also write this as σ ≺ σ′. If a
region appears as a bound in a definition for another, then the regions must have
different ranks; essentially this is because of the [REG-DEF] rule.

A Type System for Reachability and Acyclicity 493

Table 4. Dynamic Features

ι, ιt ∈ TypedLocation
e ∈ Expression ::= ... | ι
v ∈ Value ::= ι | null

obj ∈ Object = FieldName −→ Value
H ∈ Heap = TypedLocation −→ Object

We are now in a position to state a fundamental property of reachability
proofs: any reachability between two regions can be defined through a sequence
of region definitions, where the successive ranks are strictly decreasing until a
minimum rank is reached, after which the ranks are strictly increasing.

Lemma 1 (Reachability via Earlier Regions). Given �c Γ and Γ �σ σ, σ′:
If Γ �� σ � σ′ then ∃σ1...σn for n > 1 such that:

1. σ ≡ σ1 � ... � σn ≡ σ′, and
2. σ1 � σ2 � ... � σm ≺ ... ≺ σn for some m ∈ 1..n where

(σi � σi+1) ∈ Q(ti) for 1 ≤ i < m (where σi ≡ ti.r), and
(σi � σi+1) ∈ Q(ti+1) for m ≤ i < n.

Proof Outline. Any proof of reachability must construct a sequence of one or
more applications of a definition via [REACH-DEF-FROM/TO]. So the first part of
the lemma follows, with successive pairs belonging to some definition. Suppose
the second part does not hold. Then we can find (σi−1 � σi � σi+1) ∈ Q(ti) with
(σi−1 ≺ σi � σi+1). But by the requirement of [REG-DEF] that any reachability
of constraints can be derivable from earlier definitions, we see that we can omit
σi from our proof. The result follows by an induction on the maximum region
definition rank in Γ .

Theorem 1 (Acyclicity of Regions). Given �c Γ and Γ �σ σ, σ′:
if Γ �� σ � σ′ then Γ �� σ′ � σ.

Proof Outline. Suppose, by contradiction that Γ �� σ � σ′ and Γ �� σ′ � σ.
Without loss of generality, assume that σ ≺ σ′. By transitivity of �, we find that
Γ �� σ � σ. From Lemma 1 we can see that we can find two (possibly same)
earlier regions σ1 and σ2, such that σ � σ1...σ2 � σ and σ1, σ2 ≺ σ. But again, we
must have (σ2 � σ � σ1) ∈ Q(t), so it follows that σ2 � σ1. The result follows by
an induction on the minimum rank of the two regions under consideration.

Let us now consider the dynamic semantics. Table 4 formulates some dynamic
features of ARTS and the dynamic semantics is given in Table 5. Table 6 shows
the rules for well-formedness of heap and expression in the dynamic model.

We incorporate full type information (with regions) with the locations of the
heap, rather than in the objects. These help to simplify the semantics and the
proof of dynamic properties. Note that none of the reduction behavior depends
on this type information; the new t reduction only uses the field names of the
class; method dispatch only depends on the class and not on the region bindings

494 Y. Lu and J. Potter

Table 5. Dynamic Semantics

[RED−NEW]

ιt /∈ dom(H) F(P, t) = f

H ′ ≡ H, ιt 	→ f 	→ null

H, new t ⇓ ιt, H
′

[RED−FIELD]

H, e ⇓ ι, H ′

H, e.f ⇓ H(ι)(f), H ′

[RED−ASSIGN]

H, e ⇓ ι, H ′

H ′, e′ ⇓ v, H ′′

H ′′′ ≡ H ′′[ι 	→ H ′′(ι)[f 	→ v]]
H, e.f = e′ ⇓ v, H ′′′

[RED−CALL]

H, e ⇓ ιt, H
′ H ′, e ⇓ v, H ′′

M(P, t, m) = (, x, , e′)
H ′′, e′[ιt/this, v/x] ⇓ v, H ′′′

H, e.m(e) ⇓ v, H ′′′

[RED−SEQ]

H, e ⇓ , H ′

H ′, e′ ⇓ v, H ′′

H, e; e′ ⇓ v, H ′′

[RED−IF−LOCATION]

H, e ⇓ ι, H ′

H ′, e′ ⇓ v, H ′′

H, if e e′ e′′ ⇓ v, H ′′

[RED−IF−NULL]

H, e ⇓ null, H ′

H ′, e′′ ⇓ v, H ′′

H, if e e′ e′′ ⇓ v, H ′′

Table 6. Auxiliary Rules for Dynamic Semantics

[HEAP−WELLFORMED]

∀ιt ∈ dom(H)·
Γ �t t H(ιt) = f 	→ v

F(t) = t f Γ �e v : t

Γ �H H

[EXPR−LOCATION]

Γ �t t

Γ �e ιt : t

of the target object. Again, for simplicity, we do not use local variables in our
model, so we use substitution of method arguments into method bodies, thus
avoiding the extra machinery of a stack frame. Note that the if test branches
on null test value.

Now a well-formed heap ensures that any field of an object in the heap stores
the value whose actual type respects the declared type of the field in the type of
the object. This leads directly to the following property for good heaps, whose
proof follows directly from the static properties of regions. This states that object
references respect region reachability. Consequently, reference cycles must occur
within regions.

Lemma 2 (Direct Referenceability). Given �c Γ and Γ �H H:
if ιc〈σ...〉 �→ [... �→ ι′c′〈σ′...〉 ...] ∈ H, then Γ �� σ � σ′.

Proof. By the [HEAP-WELLFORMED] rule, c〈σ...〉 must be well-formed and c′〈σ′...〉
is the type of one of class c’s fields. By the [FIELD] rule, Γ �� σ � σ′.

Theorem 2 (Reachability and Cycles). Given �c Γ and Γ �H H:
if ιc〈σ...〉 can reach ι′c′〈σ′...〉 through a path of direct references in the heap H,
then Γ �� σ � σ′. Furthermore, if there is a path in H in the reverse direction,
then σ = σ′.

A Type System for Reachability and Acyclicity 495

Proof. By Lemma 2 for each direct reference in the path, and the transitivity
of �, the first part follows. When there is a reverse path, the second part follows
by the acyclicity of �, as in Theorem 1.

Finally we present a standard subject reduction result, together with a state-
ment that goodness of a heap is invariant through expression reductions. This
implies that the heap invariants are maintained through program execution.

Theorem 3 (Preservation). Given �c Γ , and Γ �H H:

if
{

Γ �e e : t
H, e ⇓ v,H ′ then

{
Γ �e v : t
Γ �H H ′.

Proof Outline. The proof for type preservation is completely standard by struc-
tural induction on the form of expressions over reduction rules. We do not show
a subtype of t for v, because it is covered by subsumption.

5 Discussion

5.1 Expressiveness and Limitation

ARTS provides a powerful framework for allowing a succinct description of many
classes of reachability relations. It employs an intuitive notion of region to cap-
ture the concept of strongly connected components in graph theory, which ap-
pears to be natural and flexible enough to express various data structures in pro-
grams. The type checking is simple yet efficient and powerful; it locally checks
programmer-defined reachability relations to guarantee global acyclicity so that
separate compilation can be allowed. ARTS allows the programmer to name
any possible region even though the number of regions may be unbounded. The
ability to multiply instantiate region definitions through type qualification gives
programmers enough choice to identify as many distinct regions as they need.

ARTS can significantly improve program understanding. Programmers are
able to specify via types whether cycles are allowed or disallowed. ARTS can also
be used to reason about aliasing because regions are disjoint and objects live in
a single region for their lifetime. Moreover, ARTS can express some information
flow policy (see Section 6) and even encapsulate objects (see later this Section).
ARTS has direct application in multi-threaded programs. Multi-threading will
not affect the structure of the object graph, but knowledge of the region structure
allows, for example, ordered locking strategies to be imposed [4]. However, in this
paper we only consider the fundamental issues in reachability and acyclicity in
the object graph, and do not cover the issues with multi-threading.

Of course, as with any type system, there is a price to pay for the im-
proved safety offered by strong type checking. First, there is the extra syntactic
weight associated with more expressiveness; the syntax burden is not too taxing,
amounting to the cost of parameterized types. For our purposes, it is essential
to distinguish between type (schema) definition and the use of a type (instance).
Without this distinction, our proposal would provide little more than the name-
based access restrictions offered by module or package-based approaches. Second

496 Y. Lu and J. Potter

and more importantly, what are the expressive limitations of our approach? In
some sense, none, because the type system proposed in this paper allows pro-
grammers to code with no structural constraint whatsoever, that is, all objects
live in the same region. In Section 5.2 we will discuss the ability to integrate
with region-free code.

Realistically though, in order to benefit from the ability of our type system to
inhibit cycles and/or sharing, it is necessary to make inhibiting design decisions.
Our type system will insist that programmers decide which object fields may
form part of a cycle, and which may not. It is relatively simple then to record
types which will cause the design decision to be enforced. Again as with any type
system, there is a trade-off between extra safety offered by strong type checking,
and the loss of flexibility in the programming model, or at least annoyance at
being made to impose restrictions early on in a design. In practice our system
will not be too annoying, because when programmers do not care about cycles,
they can effectively allow them to occur anywhere, and the appropriate types
are the least complex to express, corresponding exactly to the marked up legacy
code.

ARTS can express recursive data structures. However, such a structure needs
to have fields with the same type as the self type. Because they have the same
type, all the structural objects forming the recursive data structure must all live
in the same region. As a result, all the data objects will also live in the same
region as each other. ARTS allows the programmer to name any possible region
even though the number of regions is unbounded. This flexibility complicates the
task of type checking on the reachability relations. In the worst case, to check the
relation between two regions, the type checker may have to look into all classes
in the recursive type qualification steps for both regions and for each class the
type checker may have to look into all region definitions of the class. However, in
practice both the number of recursive steps to make sensible use of a region and
the number of region definitions in a class are very small, so that the runtime
for type checking should not be significant. Moreover, any reachability relation
is decidable because each region can only have a finite number of recursive steps
and each class can only have a finite number of region definitions.

5.2 Extensions to the Core Language

Object Encapsulation with Owned Regions. Our type system can provide
region existential polymorphism at almost no cost. Existential regions can pro-
vide the same level of object encapsulation as ownership types do (see Section 6).
In our extended language, regions can be hidden by using an owned declaration;
owned regions cannot be named via a type qualification and hence local to the
scope of the class. To enable type checking on owned regions, we simply need to
add an optional key word owned in front of the region name in the syntax when
a region is introduced, and disable type qualification over owned regions in the
region rules.

It is important that owned regions are instance level and are encapsulated
by their defining objects because no one can name them from outside. This is

A Type System for Reachability and Acyclicity 497

similar to the internal context this in ownership types. An owned region can
only be named within the defining object or propagated to its encapsulation
via region parameters. Unowned regions remain static to types, but may not be
named globally if their types are parameterized by an owned region. This results
in ownership-like structures on some parts of the DAG structure of our object
model. Programmers may have better understanding and fine-grained control
over the reference structure.

For example, owned regions can be used to express ownership-like linked
lists without suffering the long-recognized problem of expressing iterators in
ownership types. In the next example, every list object now has its own imple-
mentation encapsulated by the owned region link. Because owned regions are
instance-based, they are not shared by different list objects of the same type
(like unowned regions are). The link objects are owned by the list because no
object from outside of the list can name the owned region link. An iterator can
access the internal data of the list, because it is created inside the list, but can
still be used from outside because it lives in the same region as the list object.
We use subtyping to hide the name of the link region in the type of the iterator,
so the client can give a type for the iterator without knowing the right name for
the link region.

class List<list, data from list>

owned link from list to data;

Link<link, data> head;

Link<link, data> tail;

Iterator<list, data> getIterator()

return new ListIterator<list, data, link>(head);

...

class Iterator<list, data from list>

...

class ListIterator<list, data from list, link from list to data>

extends Iterator<list, data>

Link<link, data> current;

Iterator(Link<link, data> current)

this.current = current;

...

Default Regions and Interoperability with Legacy Code. The burden
of region annotations and the interoperability with legacy code may affect the
ease of use for the language. In practice, regions are only used when needed.
We expect programmers to use regions in some critical sections, for example, to
protect crucial class invariants from unexpected method reentrant calls. In many
cases regions can be circumvented when they are not needed and programmers
need not even be aware of regions. We design a few region defaults to help
reduce the number of region annotations and integrate non-region code such as
legacy library classes. The compiler may automatically annotate regions with
the default policy.

For classes that do not have formal region parameters, the key word here is
used to refer the region the current object lives in. This is similar to this, self

498 Y. Lu and J. Potter

or me used in many object-oriented languages to refer the current object. For
bindings of regions in types, if a type is declared without any region, i.e. only a
class name, then a default region is bound to all formal parameters of the class.
In the main routine, base can be used as the default region for types while in
classes the first formal parameter of the class (or here if there is none) is the
default region. For legacy code all formal region parameters and type declara-
tions are defaulted.

Flexible Class Constraints. Our language can be easily extended with more
possible relations other than acyclic reachability. Of course, these possible rela-
tions can only be used to constrain formal region parameters of a class, i.e., not
to the region definitions. They are just class constraints for valid region param-
eter bindings, they should not be confused with the reachability relation defined
between actual regions. The simplest is to allow reachability from one region
parameter to another to be declared without forbidding backwards reachability,
denoted as � in the type system which is a reflexive closure of the acyclic reach-
ability �. When declared, it means that we can allow references in the direction
of the declared reachability, but we can allow both parameters to be bound to
the same actual region. This is a somewhat trivial but useful extension for more
flexible programming.

6 Related Work

To our knowledge, this is the first attempt to reason about cycles and sharing in
programs based on a type system imposing reachability constraints on the ob-
ject graph. Our type system does have some similarities with other type systems,
such as parametric polymorphism and existential polymorphism on regions. Our
type qualified regions and region parameterized types provide a novel way to
support global naming and static reasoning on an unbounded number of regions.

Ownership Type Systems. Many type systems focus on alias management
and attempt to restrict references into a limited scope. Early work like Islands
[16] and Balloons [2] enforced full encapsulation on objects which prevented ref-
erencing across the encapsulation. They are generally too restrictive. Universes
[19] improved the expressiveness of full encapsulation by introducing read-only
references to cross the boundary of encapsulation. Ownership types [7, 6, 5] im-
proved the previous work on object level encapsulation by allowing unrestricted
outgoing references from an encapsulation while still preventing incoming refer-
encing into an encapsulation.

Ownership types use parameterized type systems to pass the names of objects
via class parameters. In order to declare a type for a reference, one must be able
to name the ‘owner’ that encapsulates this object. Encapsulation is protected
from incoming referencing because the owners of objects inside an encapsulation
cannot be named from the outside. However, objects inside an encapsulation
are able to name the objects living outside through the owner names passed

A Type System for Reachability and Acyclicity 499

in as class parameters. Our type system is close to ownership types that are
parameterized classes in a similar way, and the first parameter identifies the
owner/region of the this object. However, the invariant of our system is about
acyclicity rather than encapsulation. The major difference between these two
properties is that encapsulation is instance-based and enforced through owner-
ship, which is a local property of an object whereas acyclicity is global.

A variant of ownership types has recently been proposed [1] to allow pro-
grammers to specify aliasing policy between ownership domains (which partition
an owner’s context) rather than ownership types’ owner-as-dominator property.
Their domains and link polices are defined within classes in a similar fashion to
our regions and region constraints. Their aliasing policies define referenceability,
the ability to directly reference an object, between domains. They are concerned
with neither reachability – the link policies are not transitive, nor acyclicity –
it is possible to link domains cyclically. In fact, our regions can also be used to
reason about aliasing in a similar way but with a different policy – we can enforce
a deep reachability policy instead of a shallow direct referenceability policy.

SCJ [4] introduced a concept of lock level to help order locks statically, ex-
tending the idea of using ownership types to identify those objects which are not
shared by threads (so require no locks). In their language, lock levels are par-
tially ordered and all locks are partitioned into lock levels and therefore ordered
according to their lock levels. Similar to ownership domains and our regions,
their lock levels and ordering are defined within classes. However their lock lev-
els are static to classes which means the number of all lock levels is limited by
the number of classes. Moreover, their published type system does not appear
to check the partial ordering of lock levels.

In contrast, our system supports region parametric polymorphism for code
reuse and region existential polymorphism for object level encapsulation. We
also provide a novel type-based naming mechanism to allow an unbounded num-
ber of regions to be named throughout the system. Type qualified regions allow
completely static reasoning on any possible region and their constraints, exclud-
ing owned regions which only can be reasoned about locally. This gives a richer
model for our region structure, and means that a programmer is able to be more
discriminating in choosing an appropriate region structure. We have proved that
our type system guarantees acyclicity amongst an unbounded number of regions.

Pointer and Shape Analysis. Pointer analysis attempts to acquire knowledge
about run-time pointers via whole program analysis and uses this information
to help program understanding and optimization [15]. Shape analysis is built
on the top of pointer analysis to identify the shapes of data structures [10, 26].
Hackett and Rugina have recently proposed a shape analysis algorithm that
breaks down global analysis about entire heap into local analysis about smaller
memory abstractions which they also call regions [12]. Similar to our regions,
theirs are disjoint sets of memory locations, which allow the subsequent shape
analysis to safely conclude that an update in one region will not change the
values of locations in other regions. Different from ours, their memory regions

500 Y. Lu and J. Potter

are not acyclic and they simply identify direct points-to relations between regions
rather than transitive reachability relations.

Compared to type systems, pointer and shape analysis require little or no lan-
guage annotation. Proponents of this approach often consider type systems are
too restrictive and may rule out some good programs unnecessarily. However, ex-
act pointer and shape analysis not only require exponential time for verification,
but are undecidable, so in practice, may be of relatively low precision. They are
also hard to scale to large or incomplete programs. Moreover, most work in this
area has been done for C-like languages, and less for object-oriented languages.

In order to improve accuracy of program analysis, ‘define for analyzability’
approaches, such as ADDS and ASAP [14, 17], ask the programmer to explicitly
describe some properties of data structures. They use the concept of dimension
which is related to the depth in a linked list or a tree. ARTS’s region concept is
different, but the knowledge of regions may also be useful to allow more accurate
program analysis and better performance, especially for cyclic data structures.

Type-Based Information Flow Security. ARTS is primarily designed to
reason about reference reachability and confine reference cycles. But it turns
out to have direct application in the area of information flow security. This is
because the partially ordered acyclic regions are conceptually same to the classic
lattice model of information flow control by Denning and Denning [8, 9].

Type systems have already been used to secure information flow within pro-
grams in a multi-level security system based on the lattice model. The general
idea is that every type is associated with a particular security class [9, 24, 25].
Security classes, sometimes also called security groups, roles, users or principals,
form a lattice which is a presumed finite set partially ordered by the level of
security (high or low). Information flow operations, such as assignments, must
respect the order of the security classes attached to types.

Some type systems, instead of associating types with a single security class,
they allow multiple security classes to form a security property or label for each
type [13, 20]. These access control list like security labels allow more complex
security control and dynamic manipulation. The labels are pre-ordered rather
than partially ordered. The correctness of information flow still relies on the
order of predefined security classes.

ARTS is similar to these type systems in the way types are formed with re-
gions corresponding security classes. However, the soundness of these systems
depends on the predefined finite security classes which are assumed to be par-
tially ordered, i.e., they do not actually check the correctness of security classes
and their ordering. The type checking only ensures that programs respect the
security policies embedded in the types. Besides the similar treatment of types,
ARTS allows the programmer to specify desired security classes and the security
level between them. These programmer-defined security classes are infinite and
guaranteed to be partially ordered via type checking. This is generally a harder
task for modular type checkers because global acyclic invariant is ensured by
checking local reachability relations. We prove our type system is sound.

A Type System for Reachability and Acyclicity 501

Most work on information flow security has been done in procedural lan-
guages, which mainly deal with primitive data types. They allow data in a low
security class to be assigned to a variable in a high security class, but not vice
versa. In the simple object-oriented language we present in this paper, we only
have object types, and security classes are bound to class parameters. Because
objects have fields, the security class has be to invariant for assignments. Oth-
erwise, we could employ some simple covariant mechanisms such as declared
covariant on class parameters like JFlow does [20] or more powerful mechanisms
such as variant parametric types [18].

Region-Based Memory Management. Our notion of region is similar to that
used in region-based memory management [22, 23, 11] because they both refer to
a partition of data objects. Region-based memory management focuses on the
safety and efficiency of explicit memory allocation and deallocation on the basis
of regions. The ordering relation on regions is based on lifetimes, that is, on which
regions may outlive others. Instead our regions represent a static abstraction of
strongly connected components in object graphs and focus on reference cycles.
Although the region structures are different, it would be interesting to see if
objects that live in our regions with cyclic references share the same lifetime.
Moreover the outlive relationship between regions of memory needs to be acyclic
as well, where our concept of regions may just fit in.

7 Conclusion and Future Work

The major result of this paper is a class-based region-parametric type system
that allows programmers to specify regions which trap all object reference cycles,
and to otherwise control the acyclic reachability for all objects. This provides a
novel contribution to ongoing work investigating the use of type systems, and
other formalisms, for taming arbitrary object reference structures. There are
fruitful avenues opened up for ongoing research. For us the most promising di-
rection is to investigate incorporating more kinds of constraints, such as possible
sharing, non-sharing, and ownership-like containment properties. It is still un-
clear to us whether attempting to combine a number of such kinds of constraints
will be intractable, both in terms of the syntactic load, and the semantic com-
plexity brought about by the interactions between various kinds of constraints.
We remain hopeful that by pursuing these ideas from a graph theoretic view-
point, more fruitful and expressive approaches will surface.

References

1. J. Aldrich and C. Chambers. Ownership domains: Separating aliasing policy from
mechanism. In European Conference for Object-Oriented Programming (ECOOP),
July 2004.

2. P. S. Almeida. Balloon types: Controlling sharing of state in data types. Lecture
Notes in Computer Science, 1241:32–59, 1997.

502 Y. Lu and J. Potter

3. M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino, and W. Schulte. Verifica-
tion of object-oriented programs with invariants. In S. Eisenbach, G. T. Leavens,
P. Müller, A. Poetzsch-Heffter, and E. Poll, editors, Formal Techniques for Java-
like Programs (FTfJP), July 2003. Published as Technical Report 408 from ETH
Zurich.

4. C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe programming:
Preventing data races and deadlocks. In Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), November 2002.

5. D. Clarke. Object Ownership and Containment. PhD thesis, School of Computer
Science and Engineering, The University of New South Wales, Sydney, Australia,
2001.

6. D. G. Clarke, J. Noble, and J. M. Potter. Simple ownership types for object con-
tainment. In European Conference for Object-Oriented Programming (ECOOP),
2001.

7. D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible alias pro-
tection. In Proceedings of the 13th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages 48–64. ACM Press, 1998.

8. D. E. Denning. A lattice model of secure information flow. Commun. ACM,
19(5):236–243, 1976.

9. D. E. Denning and P. J. Denning. Certification of programs for secure information
flow. Commun. ACM, 20(7):504–513, 1977.

10. R. Ghiya and L. J. Hendren. Is it a tree, a dag, or a cyclic graph? a shape
analysis for heap-directed pointers in c. In Proceedings of the 23rd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 1–15. ACM
Press, 1996.

11. D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney. Region-
based memory management in cyclone. In Proceedings of the ACM SIGPLAN 2002
Conference on Programming language design and implementation, pages 282–293.
ACM Press, 2002.

12. B. Hackett and R. Rugina. Region-based shape analysis with tracked locations. In
POPL, pages 310–323, 2005.

13. N. Heintze and J. G. Riecke. The SLam calculus: programming with secrecy and in-
tegrity. In ACM, editor, Conference record of POPL ’98: the 25th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, San Diego, Cal-
ifornia, 19–21 January 1998, pages 365–377, New York, NY, USA, 1998. ACM
Press.

14. L. J. Hendren, J. Hummel, and A. Nicolau. Abstractions for recursive pointer data
structures: Improving the analysis and transformation of imperative programs. In
Proceedings of the Conference on Programming Language Design and Implemen-
tation (PLDI), volume 27, pages 249–260, New York, NY, 1992. ACM Press.

15. M. Hind. Pointer analysis: haven’t we solved this problem yet? In Proceedings of
the 2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis for software
tools and engineering, pages 54–61. ACM Press, 2001.

16. J. Hogg. Islands: aliasing protection in object-oriented languages. In Conference
proceedings on Object-oriented programming systems, languages, and applications,
pages 271–285. ACM Press, 1991.

17. J. Hummel, L. J. Hendren, and A. Nicolau. A language for conveying the aliasing
properties of dynamic, pointer-based data structures. In 8th International Parallel
Processing Symposium, pages 208–216, Cancun, Mexico, 1994.

A Type System for Reachability and Acyclicity 503

18. A. Igarashi and M. Viroli. On variance-based subtyping for parametric types. In
Proceedings of the 16th European Conference on Object-Oriented Programming,
pages 441–469. Springer-Verlag, 2002.

19. P. Müller and A. Poetzsch-Heffter. Universes: A type system for controlling repre-
sentation exposure. Programming Languages and Fundamentals of Programming,
1999.

20. A. C. Myers. JFlow: Practical mostly-static information flow control. In Symposium
on Principles of Programming Languages, pages 228–241, 1999.

21. K. Rustan, M. Leino, and P. Müller. Object invariants in dynamic contexts. In
European Conference for Object-Oriented Programming (ECOOP), 2004.

22. M. Tofte and J.-P. Talpin. Implementation of the typed call-by-value lambda-
calculus using a stack of regions. In Symposium on Principles of Programming
Languages, pages 188–201, 1994.

23. M. Tofte and J.-P. Talpin. Region-based memory management. Information and
Computation, 1997.

24. D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis.
Journal of Computer Security, 4(3):167–187, 1996.

25. D. M. Volpano and G. Smith. A type-based approach to program security. In
TAPSOFT, pages 607–621, 1997.

26. R. Wilhelm, S. Sagiv, and T. W. Reps. Shape analysis. In Computational Com-
plexity, pages 1–17, 2000.

Eclat: Automatic Generation and Classification
of Test Inputs

Carlos Pacheco and Michael D. Ernst

MIT Computer Science and Artificial Intelligence Lab,
The Stata Center, 32 Vassar Street,

Cambridge, MA 02139 USA
{cpacheco, mernst}@csail.mit.edu

Abstract. This paper describes a technique that selects, from a large set of test
inputs, a small subset likely to reveal faults in the software under test. The tech-
nique takes a program or software component, plus a set of correct executions—
say, from observations of the software running properly, or from an existing test
suite that a user wishes to enhance. The technique first infers an operational model
of the software’s operation. Then, inputs whose operational pattern of execution
differs from the model in specific ways are suggestive of faults. These inputs are
further reduced by selecting only one input per operational pattern. The result is
a small portion of the original inputs, deemed by the technique as most likely to
reveal faults. Thus, the technique can also be seen as an error-detection technique.

The paper describes two additional techniques that complement test input se-
lection. One is a technique for automatically producing an oracle (a set of asser-
tions) for a test input from the operational model, thus transforming the test input
into a test case. The other is a classification-guided test input generation tech-
nique that also makes use of operational models and patterns. When generating
inputs, it filters out code sequences that are unlikely to contribute to legal inputs,
improving the efficiency of its search for fault-revealing inputs.

We have implemented these techniques in the Eclat tool, which generates unit
tests for Java classes. Eclat’s input is a set of classes to test and an example
program execution—say, a passing test suite. Eclat’s output is a set of JUnit test
cases, each containing a potentially fault-revealing input and a set of assertions at
least one of which fails. In our experiments, Eclat successfully generated inputs
that exposed fault-revealing behavior; we have used Eclat to reveal real errors in
programs. The inputs it selects as fault-revealing are an order of magnitude as
likely to reveal a fault as all generated inputs.

1 Introduction

Much of the skill in testing a software artifact lies in carefully constructing a small set
of test cases that reveals as many errors as possible. A test case has two components:
an input to the program or module, and an oracle, a procedure that determines whether
the program behaves as expected on the input. Many techniques can automatically gen-
erate candidate inputs for a program [10, 18, 17, 23, 8, 4, 19, 9, 12], but constructing an
oracle for each input remains a largely manual task (unless a formal specification of

A.P. Black (Ed.): ECOOP 2005, LNCS 3586, pp. 504–527, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Eclat: Automatic Generation and Classification of Test Inputs 505

the software exists, which is rare). Thus, a test engineer wishing to use automated input
generation techniques is often faced with the task of inspecting each resulting candidate
input, determining whether it is a useful addition to the test suite, and writing an oracle
for the input or somehow verifying that the output is correct. Doing so for even a few
dozen inputs—much less the thousands of inputs automated techniques can generate—
can be very costly in manual effort.

This paper presents three techniques that help the tester with the difficult task of
creating new test cases. The first technique is an input selection technique: it selects,
from a large set of test inputs, a small subset likely to reveal faults in the software under
test—inputs for which writing full-fledged test cases is worth the effort. The goal of the
technique is to focus the tester’s effort on inputs most likely to reveal faults. Thus, the
technique can also be viewed as an error-detection technique, and we have used it to
find real errors in practice.

The input selection technique works by comparing the program’s behavior on a
given input against an operational model of correct operation. The model is derived
from an example program execution, which can be an initial test suite or a set of pro-
gram runs. If the program violates the model when run on the input, the technique clas-
sifies the input as (1) likely to constitute an illegal input that the program is not required
to handle, (2) likely to produce normal operation of the program (despite violating the
model), or (3) likely to reveal a fault. A second component of the technique (called the
reducer) discards redundant inputs—inputs that lead to similar program behavior.

The other two techniques complement the input selection technique, by converting
its output (test inputs) into a test suite (consisting of full-fledged test cases), and by
providing a source of candidate test inputs for it to operate on.

Converting a test input into a test case requires the addition of an oracle, which
determines whether the test succeeds or fails. We use an oracle that checks the properties
in the operational model. Since the model was derived from correct executions, those
properties are suggestive of correct behavior. By construction, the selected inputs will
fail on these oracles. Together, the input selection and oracle generation techniques
produce a set of failing test cases. This is a great starting point for the tester, whose job
is to inspect each input, determine if its execution is in fact faulty, and determine if the
oracle captures the proper behavior of the input. The tester can accept, reject, or modify
each test input and test oracle.

The third technique is a generation-guided test input generation technique that
makes use of operational-model-based classification to construct legal inputs. The input
selection technique requires a set of candidate inputs; this technique provides it, while
avoiding the generation of many illegal inputs.

We have implemented these techniques in the Eclat tool, which generates unit tests
for Java classes. Eclat’s input is a set of classes to test and an example program execu-
tion (say, a passing test suite). Eclat’s output is a set of JUnit test cases, each containing
a potentially fault-revealing input and a set of assertions at least one of which fails. Our
experiments show that Eclat reveals real errors in programs, and the inputs it selects are
an order of magnitude as likely to reveal a fault as all generated inputs. Eclat is publicly
available at http://pag.csail.mit.edu/eclat/.

506 C. Pacheco and M.D. Ernst

The rest of the paper is structured as follows. Section 2 introduces the techniques
with an example use of Eclat, a tool that implements them. Section 3 describes the tech-
niques in detail. Section 4 describes the Eclat tool. Section 5 details our experimental
evaluation of the technique. Section 6 discusses related and future work, and Section 7
concludes.

2 Example: BoundedStack

We illustrate the test generation and selection technique by describing the operation
of the Eclat tool, when applied to a bounded stack implementation used previously in
the literature [22, 30, 9]. The bounded stack implementation (Figure 1) and testing code
were written in Java by two students, an “author” and a “tester.” The tester wrote a set
of axioms on which the author based the implementation. The tester also wrote two
small test suites by hand (one containing 8 tests, the other 12) using different method-
ologies [22]. The smaller test suite reveals no errors, and the larger suite reveals one
error (the method pop incorrectly handles popping an empty stack).

Eclat takes two inputs: the class under test, and a set of correct uses, in the form of
an executable program that exercises the class. In this example, the set of correct uses
is the 8-test passing test suite.

public class BoundedStack {
private int[] elems;
private int numElems;
private int max;

public BoundedStack() { ... }
public int getNumberOfElements() { ... }
public int[] getArray() { ... }
public int maxSize() { ... }
public boolean isFull() { ... }
public boolean isEmpty() { ... }
public boolean isMember(int k) { ... }
public void push(int k) { ... }
public int top() { ... }

public void pop() {
numElems --;

}

public boolean equals(BoundedStack s) {
if (s.maxSize() != max)
return false;

if (s.getNumberOfElements() != numElems)
return false;

int[] sElems = s.getArray();
for (int j=0; j<numElems; j++) {
if (elems[j] != sElems[j])

return false;
}
return true;

}
}

Fig. 1. Class BoundedStack [22] (abbreviated). Methods pop and equals contain errors

Eclat: Automatic Generation and Classification of Test Inputs 507

Eclat Report
Input 1 BoundedStack var8 = new BoundedStack();

var8.push(2);
int var9 = var8.getNumberOfElements();
var8.push(var9);

The last method invocation violated this property:

On exit: size(var8.elems[]) − 1 �= var8.elems[var8.max− 1]

During execution of the last method invocation, a postcondition was violated. Since no preconditions were
violated, this suggests a fault.

Input 2 BoundedStack var8 = new BoundedStack();
var8.equals((BoundedStack)null);

The last method invocation signaled a
java.lang.NullPointerException.

There were no violations, but a throwable was signaled. Since the throwable is considered severe, this suggests
a fault.

Input 3 BoundedStack var8 = new BoundedStack();
var8.pop();

The last method invocation violated this property:

On exit: numElems ≥ 0

During execution of the last method invocation, a postcondition was violated. Since no preconditions were
violated, this suggests a fault.

Fig. 2. Eclat’s XML output for BoundedStack (formatted for presentation). Inputs 2 and 3 ex-
pose errors in the code under test. Input 1 is a false report: it merely indicates a deficiency in the
original test suite

Eclat’s output is a set of 3 new inputs—uses of the stack—that are classified as
fault-revealing by the tool because their behavior differs from the provided test suite.
Eclat can produce output in text, XML, or a JUnit test suite. Figure 2 shows the output
in XML form. Each input is accompanied by an explanation of why the input suggests
a fault, including any violated properties. Each violated property was true during exe-
cution of the original test suite, but was violated by the new input.

Input 1 violates one property during the call of var8.push(var9). The violated
property says that the last element of array elems is never equal to its index. This input
reveals no fault; Eclat has made a mistake. The input, however, does point out a stack
state not covered by the original test suite, so it may be a good addition to the test suite.

Execution of Input 2 violates no properties, but the equals method throws an ex-
ception. Eclat classifies the input as fault-revealing. The equals method (Figure 1)
incorrectly handles a null argument. This fault went undetected in all previous analy-
ses of the class [22, 30, 9].

508 C. Pacheco and M.D. Ernst

public void test_3_pop() throws Exception {

ubs.BoundedStack var8 = new ubs.BoundedStack();

// Check preconditions.
checkPreconditions_pop(var8);
checkObjectInvariants(var8);

var8.pop();

// Check postconditions.
checkPostconditions_pop(var8);
checkObjectInvariants(var8);

}

public static void checkPreconditions_pop(Object thiz) {

// Check: elems[max-1] >= 0
junit.framework.Assert.assertTrue(

eclat.Helper.intArray(this, "elems")[eclat.Helper.intField(this, "max")-1] >= 0);
}

public static void checkPostconditions_pop(Object thiz) {

// Check: elems[max-1] >= 0
junit.framework.Assert.assertTrue(

eclat.Helper.intArray(this, "elems")[eclat.Helper.intField(this, "max")-1] >= 0);
}

public static void checkObjectInvariants(Object thiz) {

// Check: max == elems.length
junit.framework.Assert.assertTrue(

eclat.Helper.intField(thiz, "max")
== eclat.Helper.intArray(thiz, "elems").length);

// Check: elems != null
junit.framework.Assert.assertTrue(

eclat.Helper.intArray(thiz, "elems") != null);

// Check: max == 2
junit.framework.Assert.assertTrue(

eclat.Helper.intField(thiz, "max") == 2);

// Check: numElems >= 0
junit.framework.Assert.assertTrue(

eclat.Helper.intField(thiz, "numElems") >= 0);
}

Fig. 3. JUnit test created by Eclat corresponding to Input 3 of Figure 2. When this JUnit test is
executed, the last assertion in checkObjectInvariants fails during the second call (at the end
of test 3 pop). This test detects an error in BoundedStack’s handling of pop when applied to
an empty stack. Fields like this.elems are accessed via reflection, through method calls like
eclat.Helper.intArray(this, "elems"). This allows the JUnit test suite to access non-
public members of the tested class

Input 3 is classified as fault-revealing because its execution violates the property
numElems ≥ 0. The variable numElems becomes negative after a call of pop on an
empty stack. Eclat has revealed another true error: the pop method always decrements
the top-of-stack pointer, even on an empty stack. This is a subtle error, because it silently

Eclat: Automatic Generation and Classification of Test Inputs 509

corrupts the stack’s state, and a fault only arises on a subsequent access to the stack. In
particular, Input 3 itself has no user-observable fault; Eclat detects the corrupted stack
state before it leads to an observable fault. A more complicated input—for example, an
input that attempts to push an element when the stack pointer is negative and leads to
an out-of-bounds exception—would probably be harder to understand and less useful
for debugging.

Figure 3 shows a portion of Eclat’s JUnit output. The figure shows the JUnit test
created for Input 3, and its associated helper methods. Each test in the JUnit test suite
will fail upon execution, indicating the violated property.

In summary, Eclat creates 3 inputs that quickly lead a user to discover two errors,
and provides a JUnit test suite that exhibits the faulty behavior. Behind the curtains,
Eclat generates and analyzes 806 distinct inputs. Some are discarded because they vi-
olate no properties and throw no exceptions (and thus suggest no faults). Some are
discarded because they violate properties but are determined to constitute illegal uses
of the class instead of faults. Some are discarded because they violate properties but
are considered a new but non-faulty use of the class. Finally, some inputs are discarded
because they behave similarly to already-chosen inputs: 5 of the inputs expose the pop-
on-empty-stack fault (for example, one input pushes two items and then pops three
times) but only one is selected.

3 Selection and Generation via Classification

This section describes the technique for selecting test inputs likely to reveal faults (Sec-
tions 3.1–3.3), the use of an operational model to create test cases from test inputs
(Section 3.4), and the technique for generating candidate inputs (Section 3.5). We de-
scribe the techniques in the context of unit testing in an object-oriented programming
language. The techniques can also be applied to non-object-oriented programs and to
components larger than methods and constructors (see Section 3.6).

Figure 4 shows the input selection technique. The technique requires three things:
(1) the program under test, (2) a set of correct executions of the program (for instance,
an existing passing test suite for the program that a user wishes to enhance), and (3) a
source of candidate inputs (each candidate may be an illegal input, or cause the program
to behave normally, or reveal a fault).

The selection technique has three steps.

– Model generation. Observe the program’s behavior on the provided correct execu-
tions, and create an operational model of correct behavior (Section 3.1).

– Classification. Classify each candidate as (1) illegal, (2) normal operation, or (3)
fault-revealing. Do this by executing each candidate and comparing the program’s
behavior against the operational model (Section 3.2).

– Reduction. Partition the fault-revealing candidates based on their violation pat-
tern: the set of violated properties. Report one candidate from each partition (Sec-
tion 3.3).

510 C. Pacheco and M.D. Ernst

generator
model

classifier reducer

execution
correct

inputs
candidate

illegal
inputs

inputs

normal
inputs

fault−rev. fault−rev.
inputs

reduced

model

Fig. 4. The input selection technique. Implicit in the diagram is the program under test. Rectan-
gles with rounded corners represent steps in the technique, and rectangles with square corners
represent artifacts

3.1 Model Generation

The first step is to generate an operational model of the program. An operational model
consists of properties that hold at the boundary of the program’s components (e.g., on a

Object invariants (hold on entry and exit of all public methods)
max = elems.length
elems �= null

max = 2
numElems ≥ 0

Properties that hold on entry to pop
elems[max− 1] ≥ 0

Properties that hold on exit from pop
elems[max− 1] ≥ 0

Properties that hold on entry to push
numElems ∈ {0, 1}

Properties that hold on exit from push
numElems ∈ {1, 2}
size(elems[]) − 1 �= elems[max− 1]

Fig. 5. Part of an operational model for BoundedStack with respect to an 8-element test suite,
generated by the Daikon [11] tool. An operational model reflects particulars of the test suite used
to derive it; for example, the last property states that the last element in array elems is never
equal to its index

Eclat: Automatic Generation and Classification of Test Inputs 511

public method’s entry and exit). Our techniques impose no constraints on the program
behavior captured by a model, but they require that every property can be evaluated at
runtime.

The Eclat implementation uses operational abstractions generated by the Daikon
invariant detector [11]. There are other techniques for generating models of program
behavior based on an example use of the program [14, 26, 1, 16]. The models that these
techniques generate vary in the kinds of properties they express, from legal sequences
of method calls [26] to algebraic specifications of method behavior [16].

Figure 5 shows a simple operational model for BoundedStack. In this model, prop-
erties are observations about the state of the stack at various program points.

3.2 The Classifier

The classifier takes a candidate input and labels it illegal, normal operation, or fault-
revealing. The classifier takes three arguments: a candidate input, the program under
test, and an operational model. The classifier runs the program on the candidate input
and records which model properties are violated during execution.

A violation means that the candidate input’s behavior deviated from previous be-
havior of the program. Since the previously-seen behavior may be incomplete, such a
violation does not necessarily imply faulty behavior. Depending on its violation pattern
(the set of violated properties), the classifier labels a candidate input as illegal, normal
operation, or fault-revealing. Figure 6 shows the decision table.

Executing an input can result in two kinds of violations: entry or exit violations.
Entry violations suggest illegal program inputs, and exit violations suggest improper
program behavior. The four possible categories of entry/exit violations are:

– No entry or exit violations. This category means that according to the operational
model, the program received legal inputs and behaved properly. The technique la-
bels the input normal operation.

– No entry violations, some exit violations. According to the model, a legal pro-
gram input led to improper program behavior. The technique labels the input fault-
revealing.

– Some entry violations, no exit violations. The program behaved properly on an
illegal input. Since the program behaved properly, the technique labels the input
normal operation. The program’s satisfaction of the exit properties means that it is
normal behavior; violation of the entry properties man that it is new behavior not
seen in the example correct execution from which the model was generated.

– Some entry and some exit violations. The program behaved improperly on an
illegal input. The technique labels the input illegal.

3.3 The Reducer

Section 3.2 described how an input’s violation pattern leads to its classification. Vio-
lation patterns also induce a partition on all inputs, with two inputs belonging to the
same partition if they violate the same properties. Inputs exhibiting the same pattern of
violations are likely to be manifestations of the same faulty program behavior. Consider

512 C. Pacheco and M.D. Ernst

Entry Exit
violations? violations? Classification

no no normal operation
no yes fault-revealing
yes no (new) normal operation
yes yes illegal

Fig. 6. Decision table for classifying a candidate input, based on the model violations that result
from its execution

BoundedStack var0 = new BoundedStack();
var0.pop();
BoundedStack var0 = new BoundedStack();
var0.push(3);
var0.pop();
int var1 = var0.top();
var0.pop();

Fig. 7. Two Eclat-generated inputs that reveal the same error in the pop method. Both inputs
violate the single property numElems ≥ 0 on exit from the last pop

Figure 7, which contains two fault-revealing inputs. Both inputs violate the same set of
properties—namely, the single property numElems ≥ 0—and they uncover the same
error in method pop. Presenting only one input will save the user the time to inspect a
redundant input.

3.4 Oracle Generation: From Test Input to Test Case

A test engineer’s goal is to find errors and to write tests that may find errors in the
future. A test consists of an input and an oracle, so providing test inputs, even ones that
are likely to be fault-revealing, leaves the test engineer responsible for determining both
how the program ought to behave on the input, and how to verify that behavior. This
section describes a technique that automatically converts a test input into a test case by
proposing an oracle. The human remains the final arbiter of the test suite and should
check and/or modify each test case, but the effort can be greatly eased by providing
complete test cases rather than partial ones.

The oracle generation technique uses the model described in Section 3.1. Since the
properties can be evaluated at run time, they can be converted into assertions and used
as test oracles. These oracles check for deviation from previously-observed behavior.
In addition to checking behavior, the properties serve as a human-readable explanation
of what is being checked, which is important in a test case. Figure 3 shows an example
of a test case output by our implementation.

3.5 Classifier-Guided Input Generation

We have presented a technique that selects from a set of candidate inputs a subset likely
to reveal faults, and a technique that converts an input into a test case. This section

Eclat: Automatic Generation and Classification of Test Inputs 513

describes a similar methodology to avoid generating illegal inputs in a bottom-up input
generation strategy. First we present an unguided strategy for generating inputs, and
then we present an enhancement to the strategy that makes use of the classifier from
Section 3.2.

We describe input generation in the context of inputs like those in Figure 7, where
an input is a sequence of method calls. The last method call is the tested call, with all
previous method calls setting up state for the tested call. For example, the second input
in Figure 7 has five method calls; the first four are setup, and the fourth one tests the
method pop via the method call var0.pop().

Unguided Bottom-up Generation. The unguided bottom-up generation strategy
maintains a growing pool of values used to construct new inputs. Every value in the
pool is accompanied by a code snippet (usually a sequence of method calls) that can be
run to construct the value. Each code snippet can be viewed as a test input.

New values are created by combining existing values through method calls. For ex-
ample, given stack value s and integer value i, the method call s.isMember(i) creates
a new boolean value. Methods that return void are treated as producing a new value
for the receiver. For example, method call s.push(i) creates a new stack value.

Bottom-up input generation proceeds in rounds. The pool is initialized with a set of
initial values (for example, in Java, a few primitive values and null). In each round,
new values are created by calling methods and constructors with values from the pool.
Each new value is added to the pool and its code is emitted as a test input. The process
is repeated any number of times.

Combining Generation and Classification. The unguided generation strategy is
likely to produce both interesting inputs and a large number of illegal inputs, since
there are no constraints on the arguments passed to method calls. The guided genera-
tion technique takes advantage of the classifier to guide the generation process.

As before, input generation proceeds in rounds. For each round:

1. Construct a new set of candidate values (and corresponding inputs) from the exist-
ing pool.

2. Classify the new candidate inputs with the classifier.
3. Discard inputs labeled illegal, add the values represented by the candidates labeled

normal operation to the pool, and emit inputs labeled fault-revealing (but do not
add them to the pool).

Figure 8 illustrates the process (it also adds the oracle generation technique dis-
cussed in Section 3.4, to give a complete view of the multiple techniques in a single
framework). In the classifier-guided technique, a set of candidate inputs is no longer
a required input—it has been replaced by an input generator that uses the classifier to
avoid creating illegal inputs.

This enhancement removes illegal and fault-revealing inputs from the pool as soon
as they are discovered, preventing these inputs from being used as building blocks to
new method calls (any input that makes such a call would also be classified illegal, and
is therefore useless to construct).

514 C. Pacheco and M.D. Ernst

generator
model

classifier

input
generator

reducer

inputs
candidate

inputs
fault−rev.

test
cases

illegal
inputs

normal
inputs

fault−rev.
inputs

reduced

execution
correct

generator
oracle

model

Fig. 8. The input selection technique of Figure 4, augmented with an input generator that uses
the classifier to avoid creating illegal inputs, and with an oracle generator that produces test cases
from test inputs. This diagram shows all the paper’s techniques in a single integrated framework

3.6 Discussion

Applicability. We have presented our test selection technique in the context of an
object-oriented programming language. The technique is also applicable in other pro-
gramming contexts, as long as an operational model can be obtained, the model can be
evaluated in the context of new program executions, and the model can be partitioned
into entry and exit properties (preconditions and postconditions).

The technique reveals faults that are violations of the model properties. Eclat uses
the Daikon invariant detector to infer a model. Daikon infers many kinds of properties
about data structures, including heap-based ones, but does not infer, for instance, tem-
poral properties of a program. Thus, one would not expect Eclat to be particularly good
at finding faults that have to do with temporal properties.

Integration with manually-written specifications. Our research addresses a testing
situation in which the tester has no access to a formal specification, but has a set of
correct program executions from which an operational model can be derived. Increas-
ingly, programmers write partial specifications to capture important properties of their
software; safety-critical systems, for instance, sometimes contain at least a partial spec-
ification of the critical parts of the system. These specifications can be used to generate
and classify test inputs. Partial specifications can erroneously classify inputs; for exam-
ple, an illegal input may be labeled legal because the partially-specified precondition
is not strong enough. Our classification technique permits use of manually-written or

Eclat: Automatic Generation and Classification of Test Inputs 515

Number of rounds 4
Goal number of new invocations per method per round 100
Failed tries after which generation attempts stop for a given method 100
Time limit (generation stops after limit is exceeded) no limit

Fig. 9. Eclat’s default parameters for generating test inputs

mechanically-derived properties, or both. The operational model can be complemented
with manually-written specifications that capture important properties not mechanically
derived. Conversely, partial specifications can be complemented with inferred proper-
ties to improve the input generation and classification process.

4 Implementation: Eclat

We have implemented our input generation, input selection, and oracle generation tech-
niques in Eclat, a tool that automatically creates unit tests for Java classes. Eclat can pro-
duce output in text, XML, or a JUnit test suite. Eclat can be used through a command-
line interface or as an Eclipse plugin. Eclat is publicly available at http://

pag.csail.mit.edu/eclat/.
Eclat takes as input a set of classes to test and a program or test suite P that uses the

classes. Eclat performs the following steps.

Deriving an operational model. Eclat uses the Daikon dynamic invariant detector [11]
to derive a model of the classes’ behavior on P ; an example of Daikon’s output appeared
in Figure 5.

Compiling for runtime property checking. We have implemented a run-time-check in-
strumenter (distributed as part of Daikon athttp://pag.csail.mit.edu/daikon/).
The instrumenter takes the source files of the tested classes and the operational model
derived by Daikon. It transforms the sources to check model properties during execu-
tion. Instrumentation is transparent: a violation does not alter the behavior of the class.
Violated properties are recorded in a log.

Generating candidate inputs. Eclat generates candidate inputs using the classifier-
guided, bottom-up generation strategy outlined in Section 3.5. Each round, new inputs
are created by calling methods of the tested classes, selecting parameters at random
from the pool. For each round, Eclat attempts to create a fixed number of new inputs
for a given method using existing values from the pool. After a fixed number of failed
attempts, it moves on to the next method. Figure 9 gives Eclat’s default parameters.
Section 5.6 evaluates Eclat’s behavior when varying these parameters.

5 Evaluation

We have run a series of experiments to quantify the effectiveness of our test input gen-
eration and selection techniques. Section 5.1 introduces the programs and experimen-
tal methodology. Section 5.2 evaluates how well Eclat’s selected inputs reveal faults.

516 C. Pacheco and M.D. Ernst

suites per independent classes per public NCNB
Program versions version components component methods LOC
BoundedStack 1 2 1 1 11 88
DSAA 1 1 9 1.5 110 640
JMLSamples 1 1 25 1.9 221 1392
utilMDE 1 2 1 1 69 1832
RatPoly 97 1 1 4 17 512
Directions 80 2 1 6 42 342

Fig. 10. Subject programs. For programs with multiple versions, numbers are average per version.
NCNB LOC means non-comment, non-blank lines of code. These numbers do not include testing
code

Section 5.3 measures Eclat’s effectiveness when supplied small initial test suites. Sec-
tions 5.4–5.6 evaluate the classifier, the reducer, and the classifier-guided input genera-
tor individually.

5.1 Subject Programs and Methodology

Figure 10 lists our subject programs. The programs encompass 64 distinct interfaces,
and a total of 631 implementations of those interfaces in 75,000 non-comment non-
blank lines of code. All subject programs implement modestly-sized libraries designed
to support larger programs; thus, unit testing is appropriate for them. All errors are real
errors inadvertently introduced by the author(s) of the program.

– BoundedStack is the stack implementation discussed in Section 2. We report sep-
arately the results of running Eclat with the 8-test suite, and with the 12-test suite
(with the one fault-revealing test removed).

– DSAA is a collection of data structures from an introductory textbook [25]. The
author of the classes wrote a small set of example uses of the class: they are not
exhaustive tests.

– JMLSamples is a collection of 25 classes that illustrate the use of the JML specifi-
cation language. It is part of the JML distribution (www.jmlspecs.org). The test
suites and specifications were written by the authors of the classes.

– utilMDE is a utility package that augments the java.util package. We report two
results: one running Eclat with the test suite written by the authors of utilMDE, and
the other via the unit tests of an unrelated program (Daikon [11]) that uses part of
the utilMDE package.

– RatPoly is a set of student solutions to an assignment in MIT class 6.170, Labora-
tory in Software Engineering. The RatPoly library implements the core of a graph-
ing calculator for polynomials over rational numbers. The course staff provided a
test suite to the students as part of the assignment.

– Directions is a different set of student solutions in MIT class 6.170, written by the
same students who wrote the RatPoly solutions. The Directions library is used by
a MapQuest-like program that outputs directions for traveling from one location
to another along Boston-area streets. For this assignment, students wrote their own

Eclat: Automatic Generation and Classification of Test Inputs 517

test suites. We report separately the results of running Eclat with the student-written
suite, and with the suite used by the staff to grade the assignment, which was not
provided to the students.

Eclat assumes a correct set of executions. Before running Eclat on BoundedStack
and its 12-test suite, which contains one failing test, we removed the failing test.

For RatPoly, we discarded submissions that did not pass the staff test suite, which
was provided as part of the assignment. For both RatPoly and Directions, we also dis-
carded submissions for which Eclat generated more than 10 times the average number
of fault-revealing inputs. These were solutions so faulty that finding fault-revealing in-
puts was not challenging, making input selection techniques unnecessary. The numbers
in Figure 10 count only versions we kept.

Measurements. We organized our subject programs into nine experiments, each cor-
responding to using Eclat with a particular subject program and test suite. For a given
experiment, we ran Eclat separately on each independent component (for example, we
ran Eclat separately on DSAA’s nine components: a binary tree, a disjoint set, a treap,
an array-backed stack, a list-backed stack, a queue, a red-black tree, a linked list, and
a binary heap). Thus, each experiment consisted of potentially many runs of Eclat: one
per 〈 component, version 〉 pair. For each experiment, we report results that are the
average over all runs.

When computing average results for all experiments, we give the same weight to
each experiment, regardless of the number of versions or runs of Eclat that the program
represents. We do this to avoid over-representing experiments with multiple versions or
components.

We wrote formal specifications for all the subject programs (except for JMLSamples,
which already had formal specifications written by its authors). We use the specifica-
tions to evaluate the classification technique, with the specification representing an ideal
classifier. Of course, in the presence of a formal specification our classification tech-
nique is not necessary: the specification indicates whether an input is illegal, normal, or
fault-revealing. Our techniques are intended for use when formal specifications are not
available, as was the case for most of the programs.

Comparison with other tools. JCrasher [9], Jtest [19], and Jov [30] have the same goals
as Eclat: to generate random candidate inputs and select potentially fault-revealing ones.
We report results from running JCrasher. We tried the other tools, but Jov and Jtest were
unusable in many instances (Jov sometimes exited abnormally, and Jtest sometimes
failed to terminate).

5.2 Evaluating Eclat’s Output

Figure 11 shows how many inputs per run Eclat generated, how many it selected, and
how many of those revealed faults. The figure also shows JCrasher’s results on the sub-
ject programs. The results for JCrasher are the same for experiments that use the same
programs with different test suites because JCrasher does not make use of the test suite.
We also executed all the inputs against the formal specifications (using jmlc [6]). We

518 C. Pacheco and M.D. Ernst

Generated inputs Selected inputs JCrasher inputs
inputs reveal preci- inputs reveal preci- inputs reveal preci-

Program generated faults sion selected faults sion selected faults sion
BoundedStack (8-test suite) 806 13 1.6% 3 2 67% 0 0 —
BoundedStack (12-test suite) 1411 22 1.6% 1 1 100% 0 0 —
DSAA 806 0 0% 1.3 0 0% 0.89 0 0%
JMLSamples 396 0.50 0.13% 0.72 0.061 8.4% 0.12 0 0%
utilMDE (test suite) 1787 92 5.1% 18 4 22% 1 0 0%
utilMDE (sample usage) 1774 63 3.6% 18 2 11% 1 0 0%
RatPoly 2862 29 1.0% 1.5 0.65 42% 4 0.13 3.3%
Directions (student suite) 1099 40 3.6% 1.3 0.081 6.4% 1.6 0.025 1.6%
Directions (staff suite) 1099 41 3.8% 0.45 0.079 18% 1.6 0.025 1.6%
average 1338 33 2.3% 5.0 1.1 30% 1.13 0.02 0.92%

Fig. 11. Summary of Eclat’s results. The first three numeric columns represent inputs internally
generated by Eclat. The next three columns represent inputs reported to the user (after selection
and reduction). The last three columns represent inputs selected as fault-revealing by JCrasher.
Precision is the percentage of inputs that are fault-revealing. We calculated the average precision
by taking the average of the individual experiments; this gives each experiment equal weight, but
is slightly different from dividing the average number of fault-revealing inputs by the average
number of selected inputs

true
label inputs generated inputs selected
normal 74% 31%
illegal 24% 38%
fault 2.3% 30%

Fig. 12. True labels of generated and selected inputs. The entries in each column sum to 100%
(modulo rounding imprecision). These results represent a total of 440,000 inputs

considered an input fault-revealing if it satisfied all preconditions of the tested method,
and the method invocation caused a postcondition violation.

On average, Eclat selected 5.0 inputs per run, and 30% of those revealed a fault. By
comparison, JCrasher selected 1.13 inputs per run, and 0.92% of those revealed a fault.

The inputs that Eclat selects are an order of magnitude as likely to reveal faults as the
original candidate inputs (30% vs. 2.3%). Figure 12 shows another view of the results:
it gives the true label of the generated and selected inputs, i.e., the label assigned by the
formal specification. Selection is effective at improving a set of inputs by increasing the
ratio of fault-revealing to non-fault-revealing ones.

5.3 Effectiveness on Small Initial Test Suites

Classification depends on a set of correct program executions to derive an approximate
model of correct program behavior. This section measures the effect of the initial test
suite on Eclat’s fault-finding effectiveness. To evaluate the technique’s performance on

Eclat: Automatic Generation and Classification of Test Inputs 519

smaller suites, we artificially reduced the set of correct executions used by Eclat to
construct an operational model. We compared our previous results with running Eclat
using only the first 10% of the original execution trace (which was itself sometimes
quite small). The table below shows the results.

inputs reveal inputs reveal
generated faults selected faults

original trace 1338 33 5.0 1.1
10% of trace 1219 29 5.6 1.2

When given a smaller trace, Eclat selected more inputs (5.6 for the small trace, 5.0
for the original trace). Of those, almost the same percentage were fault-revealing.

Generating inputs based on the full-sized trace yields only slightly better results—
fewer inputs to inspect, and almost the same number of fault-revealing ones among
them. The technique is still effective with an impoverished trace, which makes it useful
in the presence of a small test suite that does not cover all aspects of the program’s
behavior.

The table below shows the percentage of methods covered per test suite, and average
number of calls made to each covered method. The number of calls per method covered
does not give the whole story, since the distribution is highly non-uniform: in each case
(even when test suites exist), a few methods are called many times and most methods
are called very few times.

methods calls per
Program covered method covered
BoundedStack (8-test suite) 82% 8
BoundedStack (12-test suite) 100% 18
DSAA 90% 679
JMLSamples 84% 102
utilMDE (test suite) 46% 13747
utilMDE (sample usage) 1.5% 4
RatPoly 83% 501
Directions (student suite) 85% 330
Directions (staff suite) 85% 3015

For the programs with multiple test suites (BoundedStack, DSAA, and utilMDE),
the difference in coverage and number of calls per method is large, but the difference in
Eclat’s results is smaller.

5.4 Evaluating the Classifier

Every input has two labels, one assigned by Eclat and the true label assigned by the
formal specification. Figure 13 shows the proportion of inputs falling into each 〈Eclat
label, true label〉 category

The last row in Figure 13 shows the precision [21, 24] of Eclat’s classifier. Precision
is the ratio of correct labelings to the total number of labelings:

precision =
inputs correctly labeled as L

inputs labeled as L

520 C. Pacheco and M.D. Ernst

true Eclat label
label normal illegal fault recall
normal 0.67 0.045 0.030 90%
illegal 0.057 0.17 0.012 24%
fault 0.013 0.0035 0.0058 59%
precision 90% 78% 12%

Fig. 13. Each entry shows the average proportion of generated inputs with the given Eclat label
and true label. The sum of the nine middle entries is 1. The sum of each row in the nine middle
entries yields the percentages in the middle column of Figure 12

The last column in Figure 13 shows the recall [21, 24] of the classifier. Recall is the
ratio of correct labelings to the total number of inputs that belong to the label:

recall =
inputs correctly labeled as L

inputs that are actually L

In summary, the classifier:

– correctly labels the vast majority of inputs as non-fault-revealing (90% precision,
90% recall for normal inputs),

– recognizes most fault-revealing inputs (59% precision for fault-revealing inputs),
but

– labels fault-revealing many inputs that are not (12% precision for fault-revealing
inputs).

The degree to which the technique overclassifies normal inputs as illegal depends
on the accuracy with which the operational model captures the legality of the program’s
inputs. An operational model that is out of sync with the true input space of the program
can indicate a poor test suite. A good example of this is BoundedStack. This interface
permits arbitrary sequences of method calls with arbitrary parameters, so it is impossi-
ble to produce an illegal input, but the technique classifies many inputs as such, due to
the test suite’s poor coverage. When a test engineer inspects an input that is incorrectly
classified as fault-revealing, the engineer is likely to find weaknesses in the test suite,
permitting the engineer to improve it.

Identifying new behavior. Our technique classifies inputs into one of three labels: ille-
gal, normal operation and fault-revealing. As shown in Figure 6, there are two kinds of
normal inputs: those that violate no model properties, and those that violate some pre-
conditions but no postconditions. The latter, called new inputs, are inputs that diverge
from the original test suite, but the properties they violate are not considered indica-
tive of faults; instead they are considered indicative of an overconstrained model. We
experimented with outputting the new inputs for user inspection along with the fault-
revealing ones, but we found that new behaviors were no more effective in revealing
faults than normal behaviors that violate no properties. However, distinguishing new
behaviors from old ones might help the programmer improve a test suite’s coverage by
suggesting normal program operation not already covered by the suite.

Eclat: Automatic Generation and Classification of Test Inputs 521

5.5 Evaluating the Reducer

The reducer takes the inputs labeled fault-revealing, and retains a representative subset.
The table below summarizes its behavior. The first numeric column shows the aver-
age distribution of all inputs that the classifier labeled fault-revealing (the input to the
reducer). The next column shows the distribution of inputs selected (the output of the
reducer). Each column sums to 100%, modulo rounding imprecision.

inputs
labeled inputs

true as fault selected
label by classifier (reduced)

normal 63% 31%
illegal 25% 38%
fault 12% 30%

The reduction step increases the percentage of fault-revealing inputs from 12% to
30%. For these programs (and, we suspect, for programs in general), fault-revealing
program behavior is more difficult to produce than illegal or normal behavior, and thus
more difficult to produce repeatedly by different inputs. This makes fault-revealing in-
puts less reducible than other inputs, because there are fewer inputs per partition, re-
sulting in an increased proportion of selected fault-revealing inputs.

5.6 Evaluating the Input Generator

Classifier-guided Input Generation. Section 3.5 describes the use of the classifier in a
bottom-up input generation strategy in which only inputs classified as normal operation
are added to the growing pool of inputs. The first line in Figure 14 shows the results
of this strategy (Eclat’s default) for the formally-specified programs (this line repeats
the averages from Figure 11). The second line shows the result of running Eclat using
unguided generation: all inputs from previous rounds are added to the pool regardless
of their classification.

Unguided generation leads to a larger number of inputs generated. The reason is
that the pool has a larger number of building blocks to create new inputs from. Despite
the larger number of inputs generated, fewer of those inputs are fault revealing. This
is reflected in the results: with the unguided generation strategy, Eclat reports a larger
number of inputs and yet fewer inputs are fault-revealing.

We can gain insight into this difference by looking back at Figure 12, which shows
that the input selection technique selects not only more fault-revealing inputs, but also
more illegal inputs. Eclat is most effective at correctly classifying normal inputs, but
less so for illegal ones. When we remove the classifier from the generation process, the
number of illegal inputs among candidate inputs increases, and Eclat selects more of
them as fault-revealing, which decreases the tool’s precision. Constraining the building
blocks used by the generator to inputs classified as normal operation reduces these false
positives.

Generation Parameters. This section evaluates Eclat’s output under varying parame-
ters. We varied two parameters:

522 C. Pacheco and M.D. Ernst

inputs reveal inputs reveal
generated faults selected faults

classifier-guided generation 1338 33 5.0 1.1
unguided bottom-up generation 3217 17 5.3 0.80

Fig. 14. Comparison of unguided and enhanced bottom-up generation. The first line summarizes
the results for classifier-guided generation (averages reproduced from Figure 11). The second line
uses unguided input generation

 0

 2000

 4000

 6000

 8000

 10000

 12000

 180 87 46 14

In
pu

ts
 g

en
er

at
ed

time (seconds)

random
exhaustive

 120

 100

 80

 60

 40

 20

 180 87 46 14

In
pu

ts
 g

en
er

at
ed

 th
at

 r
ev

ea
l f

au
lts

time (seconds)

 6

 5

 4

 3

 2

 1

 0
 180 87 46 14

In
pu

ts
 s

el
ec

te
d

time (seconds)

 6

 5

 4

 3

 2

 1

 0
 180 87 46 14

In
pu

ts
 s

el
ec

te
d

th
at

 r
ev

ea
l f

au
lts

time (seconds)

Fig. 15. Number of inputs generated and selected by Eclat, when varying the number of rounds
and the generation strategy. The white bars are the results of running Eclat using random gener-
ation. The four data points are for the end-to-end time Eclat takes doing 2, 4, 6, and 8 rounds of
random generation. The black bars are the results of running Eclat using exhaustive generation.
The times shown are averages over all experiments

– The number of rounds of bottom-up generation. Eclat’s default is 4 rounds; we also
ran the experiments using 2, 6, and 8 rounds of generation.

– The number of new inputs generated per round. Eclat’s default is to randomly gen-
erate 100 new inputs per method per round. To compare this approach against a
more systematic approach, we added exhaustive generation to Eclat: for each round,
it exhaustively generates all new inputs that are possible to generate given the cur-
rent pool of values. To compare this approach against random generation, we mea-

Eclat: Automatic Generation and Classification of Test Inputs 523

sured how random and exhaustive generation performed given the same amount of
time. We measured the time that Eclat spent generating, classifying and reducing
inputs using random generation for a given number of rounds, and we ran Eclat
again, using exhaustive generation and setting a time limit equal to the time spent
by random generation.

Figure 15 shows the results for the eight possible combinations of parameter vari-
ations described above. Given the same amount of time, random generation generates
fewer candidate inputs (upper-left plot). At every attempt to generate a new input for
a method, Eclat’s random generation algorithm randomly chooses a set of parameters,
and then checks to see if the input has already been generated. This adds two costs to
random generation: the cost of comparing a newly-generated random input for mem-
bership in the set of existing inputs, and the wasted cost of generating an input that
is already in the pool. Exhaustive generation, on the other hand, never re-generates an
already-existing input.

Despite creating fewer candidate inputs, random generation produces better-quality
candidates—candidates that are fault-revealing (upper-right plot). Exhaustive genera-
tion creates many inputs that exercise the class in ways that are indistinguishable for
the purpose of fault detection. Random generation produces a more diverse collection
of inputs and more fault-revealing inputs than exhaustive generation (bottom plots). In
future work, we plan to investigate exhaustive generation combined with techniques for
avoiding generation of duplicate inputs [28, 29].

6 Related Work

The most closely related work to ours is the Jov [30] and JCrasher [9] tools, which
share the goal of selecting, from a randomly-generated set of candidate inputs, a set
most likely to be useful. This reduces the number of test inputs a human must examine.

Our research was inspired by Jov [30]. Jov builds on earlier work [15] that identified
a test as a potentially valuable addition to a test suite if the test violates an operational
abstraction built from the suite: the test represents some combination of values that
differs from all tests currently in the suite. (The DIDUCE tool [14] takes a similar
approach, though with the goal of identifying bugs at run time rather than improving
test suites: a property that has held for part of a run, but is later violated, is suggestive
of an error.) The Jov tool uses the operational abstraction not just to select tests, but
also to guide test generation, by iterated use of the Jtest tool [19]. Jov also differs from
the previous, automated work on test selection [15] by placing it in a loop with human
interaction and iterating as many times as desired:

1. Create an operational model (invariants) from a test suite.
2. Generate test inputs that violate the invariants.
3. A human selects some of the generated tests and adds them to the test suite.

524 C. Pacheco and M.D. Ernst

Often, overconstrained preconditions rendered Jtest incapable of producing any out-
puts, so Xie and Notkin report on the effectiveness of Jov after eliminating all precon-
ditions from the operational model generated in step 1. Essentially, this permitted Jtest
to generate any input that violates the postconditions (including many illegal ones), not
just inputs similar to the ones in the original test suite. However, the user gets no help
in recognizing such illegal inputs. In fact, the majority of errors that Jov finds [30] are
illegal inputs and precondition violations, not true errors [27].

Our work extends that of Xie and Notkin in several ways. Our technique explicitly
addresses the imperfect nature of a derived operational model. Our technique explicitly
distinguishes between illegal and fault-revealing inputs. Our technique is more auto-
mated: it requires only one round of examination by a human, rather than multiple
rounds. Our technique uses operational abstractions in a different way to direct test
input generation. Our implementation is more robust and faster; Eclat takes less than
two minutes for a class that took Jov over 10 minutes to process, primarily because the
Jtest tool is so slow. We have performed a more extensive experimental evaluation (631
classes rather than 12). Even though we count only actual errors, not illegal inputs, our
approach outperforms the previous one.

JCrasher [9], like Eclat, generates a large number of random inputs and selects a
small number of potentially fault-revealing ones. An input is considered potentially
fault-revealing if it throws an undeclared runtime exception. Inputs are grouped (re-
duced) based on the contents of the call-stack when the exception is thrown. JCrasher
and Eclat have similar underlying generation techniques but different models of cor-
rect program behavior, which leads to different classification and reduction techniques.
JCrasher’s model takes into account only exceptional behavior, and Eclat augments the
model with operational behavior, which accounts for its greater effectiveness in uncov-
ering faults.

6.1 Future Work

Future work on this research centers around two themes.

– Input generation. While it may not help in establishing the reliability of a program,
random testing seems to be remarkably effective in exposing errors and may be as
effective as more formally founded techniques [10, 13]. However, it is primarily
useful when all inputs are legal, or when a specification of valid inputs is available.
Therefore, techniques that make it more effective are valuable contributions. Our
technique could be combined with any technique for generating tests [8, 4], in order
to filter the tests before being presented to a user. Our technique is attractive because
it does not require a human-written formal specification; when one is present, much
more powerful testing methodologies are possible [2, 7].

– Input classification. Eclat’s reduction step clusters test inputs in order to reduce
their number, and JCrasher has a similar step. Several researchers have used ma-
chine learning to classify program executions as either correct or faulty [20, 5, 3].
It would be interesting to apply such techniques in order to further improve Eclat.

Eclat: Automatic Generation and Classification of Test Inputs 525

7 Conclusion

We have presented an input selection technique that incorporates a classifier and a re-
ducer, both of which make use of a model of correct program operation. We have com-
bined our input selection technique with two other techniques. One technique uses the
classifier to guide input generation towards legal inputs, which improves the efficiency
of the input search space by pruning illegal sequences of methods calls as early as they
are encountered. The other additional technique uses the operational model to produce
oracles for the selected test inputs, which converts the test inputs into full-fledged test
cases. Together, these techniques result in an effective test generation and selection
methodology.

We have implemented the methodology in Eclat, a tool for Java unit testing, and
demonstrated its effectiveness in producing fault-revealing test inputs. The input gen-
eration technique creates legal, fault-revealing candidate inputs for the methods in our
subject programs, and the input selection technique selects inputs that are an order of
magnitude as likely to reveal faults as the candidate inputs. The methodology reveals
real, previously unknown errors in the subject programs. When the test inputs fail to
reveal faults, the user is not heavily inconvenienced, because only a few inputs are
selected.

References

[1] G. Ammons, R. Bodı́k, and J. R. Larus. Mining specifications. In Proceedings of the 29th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 4–16, Portland, Oregon, Jan. 16–18, 2002.

[2] M. J. Balcer, W. M. Hasling, and T. J. Ostrand. Automatic generation of test scripts from
formal test specifications. In Proceedings of the ACM SIGSOFT ’89 Third Symposium on
Testing, Analysis, and Verification (TAV3), pages 210–218, Dec. 1989.

[3] J. F. Bowring, J. M. Rehg, and M. J. Harrold. Active learning for automatic classification
of software behavior. In ISSTA 2004, Proceedings of the 2004 International Symposium on
Software Testing and Analysis, pages 195–205, Boston, MA, USA, July 12–14, 2004.

[4] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated testing based on Java predi-
cates. In ISSTA 2002, Proceedings of the 2002 International Symposium on Software Testing
and Analysis, pages 123–133, Rome, Italy, July 22–24, 2002.

[5] Y. Brun and M. D. Ernst. Finding latent code errors via machine learning over program
executions. In ICSE’04, Proceedings of the 26th International Conference on Software
Engineering, pages 480–490, Edinburgh, Scotland, May 26–28, 2004.

[6] L. Burdy, Y. Cheon, D. Cok, M. D. Ernst, J. Kiniry, G. T. Leavens, K. R. M. Leino, and
E. Poll. An overview of JML tools and applications. In Eighth International Workshop on
Formal Methods for Industrial Critical Systems (FMICS 03), Trondheim, Norway, June 5–
7, 2003.

[7] J. Chang and D. J. Richardson. Structural specification-based testing: Automated support
and experimental evaluation. In Proceedings of the 7th European Software Engineering
Conference and the 7th ACM SIGSOFT Symposium on the Foundations of Software Engi-
neering, pages 285–302, Toulouse, France, Sept. 6–9, 1999.

526 C. Pacheco and M.D. Ernst

[8] K. Claessen and J. Hughes. QuickCheck: A lightweight tool for random testing of Haskell
programs. In ICFP ’00, Proceedings of the fifth ACM SIGPLAN International Conference
on Functional Programming, pages 268–279, Montreal, Canada, Sept. 18–20, 2000.

[9] C. Csallner and Y. Smaragdakis. JCrasher: an automatic robustness tester for Java. Software:
Practice and Experience, 34(11):1025–1117, Sept. 2004.

[10] J. W. Duran and S. C. Ntafos. An evaluation of random testing. IEEE Transactions on
Software Engineering, 10(4):438–444, July 1984.

[11] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically discovering likely
program invariants to support program evolution. IEEE Transactions on Software Engi-
neering, 27(2):1–25, Feb. 2001. A previous version appeared in ICSE ’99, Proceedings of
the 21st International Conference on Software Engineering, pages 213–224, Los Angeles,
CA, USA, May 19–21, 1999.

[12] Foundations of Software Engineering group, Microsoft Research. Documentation for AsmL
2, 2003. http://research.microsoft.com/fse/asml.

[13] D. Hamlet and R. Taylor. Partition testing does not inspire confidence. IEEE Transactions
on Software Engineering, 16(12):1402–1411, Dec. 1990.

[14] S. Hangal and M. S. Lam. Tracking down software bugs using automatic anomaly detection.
In ICSE’02, Proceedings of the 24th International Conference on Software Engineering,
pages 291–301, Orlando, Florida, May 22–24, 2002.

[15] M. Harder, J. Mellen, and M. D. Ernst. Improving test suites via operational abstraction.
In ICSE’03, Proceedings of the 25th International Conference on Software Engineering,
pages 60–71, Portland, Oregon, May 6–8, 2003.

[16] J. Henkel and A. Diwan. Discovering algebraic specifications from Java classes. In ECOOP
2003 — Object-Oriented Programming, 17th European Conference, pages 431–456, Darm-
stadt, Germany, July 23–25, 2003.

[17] B. Korel. Automated test data generation for programs with procedures. In Proceedings of
the 1996 ACM SIGSOFT international symposium on Software testing and analysis, pages
209–215. ACM Press, 1996.

[18] T. J. Ostrand and M. J. Balcer. The category-partition method for specifying and generating
functional tests. Communications of the ACM, 31(6):676–686, June 1988.

[19] Parasoft Corporation. Jtest version 4.5. http://www.parasoft.com/.
[20] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J. Sun, and B. Wang. Automated

support for classifying software failure reports. In ICSE’03, Proceedings of the 25th Inter-
national Conference on Software Engineering, pages 465–475, Portland, Oregon, May 6–8,
2003.

[21] G. Salton. Automatic Information Organization and Retrieval. McGraw-Hill, 1968.
[22] D. Stotts, M. Lindsey, and A. Antley. An informal formal method for systematic JUnit test

case generation. In Proceedings of 2nd XP Universe and 1st Agile Universe Conference
(XP/Agile Universe), pages 131–143, Chicago, IL, USA, Aug. 4–7, 2002.

[23] N. Tracey, J. Clark, K. Mander, and J. McDermid. An automated framework for structural
test-data generation. In Proceedings of the 13th Annual International Conference on Au-
tomated Software Engineering (ASE’98), pages 285–288, Honolulu, Hawaii, Oct. 14–16,
1998.

[24] C. J. van Rijsbergen. Information Retrieval. Butterworths, London, second edition, 1979.
[25] M. A. Weiss. Data Structures and Algorithm Analysis in Java. Addison Wesley Longman,

1999.
[26] J. Whaley, M. Martin, and M. Lam. Automatic extraction of object-oriented component

interfaces. In ISSTA 2002, Proceedings of the 2002 International Symposium on Software
Testing and Analysis, pages 218–228, Rome, Italy, July 22–24, 2002.

Eclat: Automatic Generation and Classification of Test Inputs 527

[27] T. Xie. Personal communication, Aug. 2003.
[28] T. Xie, D. Marinov, and D. Notkin. Rostra: A framework for detecting redundant object-

oriented unit tests. In ASE 2004: Proceedings of the 20th Annual International Conference
on Automated Software Engineering, pages 196–205, Linz, Australia, Nov. 9–11, 2004.

[29] T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra: A framework for generating
object-oriented unit tests using symbolic execution. In Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS), pages 365–381, Edinburgh, UK, Apr. 4–8,
2005.

[30] T. Xie and D. Notkin. Tool-assisted unit test selection based on operational violations. In
ASE 2003: Proceedings of the 18th Annual International Conference on Automated Soft-
ware Engineering, pages 40–48, Montreal, Canada, Oct. 8–10, 2003.

Lightweight Defect Localization for Java

Valentin Dallmeier, Christian Lindig, and Andreas Zeller

Saarland University, Saarbrücken, Germany
{dallmeier, lindig, zeller}@cs.uni-sb.de

Abstract. A common method to localize defects is to compare the coverage of
passing and failing program runs: A method executed only in failing runs, for in-
stance, is likely to point to the defect. However, some failures, occur only after a
specific sequence of method calls, such as multiple deallocations of the same re-
source. Such sequences can be collected from arbitrary Java programs at low cost;
comparing object-specific sequences predicts defects better than simply compar-
ing coverage. In a controlled experiment, our technique pinpointed the defective
class in 39% of all test runs.

1 Introduction

Of all debugging activities, locating the defect that causes the failure is by far the most
time-consuming. To assist the programmer in this task, various automatic methods rank
the program statements by the likelihood that they contain the defect. One of the most
lightweight methods to obtain such a likelihood is to compare the coverage of passing
and failing program runs: A method executed only in failing runs, but never in passing
runs, is correlated with failure and thus likely to point to the defect.

Some failures, though, come to be only through a sequence of method calls, tied to
a specific object. As an example, consider streams in Java: If a stream is not explicitly
closed after usage, its destructor will eventually do so. However, if too many files are
left open before the garbage collector destroys the unused streams, file handles will run
out, and a failure occurs. This problem is indicated by a sequence of method calls: if
the last access (say, read()) is followed by finalize() (but not close()), we
have a defect.

In this paper, we explore comparing call sequences between program runs for defect
localizaton. Specifically, we explore three questions:

1. Are sequences of method calls better defect indicators than single calls? In any
Java stream, calls to read() and finalize() are common; but the sequence of
these two indicates a missing close() and hence a defect.

2. Do method calls indicate defects more precisely when collected per object,
rather than globally? The sequence of read() and finalize() is only defect-
revealing when the calls pertain to the same object.

3. Do missing (or extra) method calls indicate defects in the callee—or in the
caller? For any Java stream, a missing close() indicates a defect in the caller.

Generalizing to arbitrary method calls and arbitrary defects, we have set up a tool that
instruments a given Java program such that sequences of method calls are collected

A.P. Black (Ed.): ECOOP 2005, LNCS 3586, pp. 528–550, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Lightweight Defect Localization for Java 529

on a per-object basis. Using this tool, we have conducted two experiments that answer
the above questions. In short, it turns out that (1) sequences predict defects better than
simply comparing coverage, (2) per-object sequences are better predictors than global
sequences, and (3) the caller is more likely to be defective than the callee. Furthermore,
the approach is lightweight in the sense that the performance is comparable to coverage-
based approaches. All these constitute the contribution of this paper.

2 How Call Sequences Indicate Defects

Let us start with a phenomenological walkthrough and take a look at the AspectJ
compiler—more precisely, at its bug #30168. This bug manifests itself as follows: Com-
piling the AspectJ program in Fig. 1 produces illegal bytecode that causes the virtual
machine to crash (run r✘):

$ ajc Test3.aj
$ java test.Test3
test.Test3@b8df17.x

Unexpected Signal : 11 occurred at PC=0xFA415A00
Function name=(N/A)
Library=(N/A)
...
Please report this error at http://java.sun.com/...
$

As the bug not only affects execution of the Java program per se, but crashes the virtual
machine completely, there is no hint to the origin of the problem like for example a
stack trace. As the AspectJ compiler has 2,929 classes, finding the location of the de-
fect is a nontrivial task. To ease the task, though, we can focus on differences in the
program execution, in particular the difference between a passing run (producing valid
Java bytecode) and the failing run in question. Since the outcome of passing and fail-
ing runs is different, chances are that earlier differences in the program runs are related
to the defect. For the AspectJ example in Figure 1, we can easily identify a passing
run—commenting out Line 32, for instance, makes AspectJ work just fine (run r✔).

Since capturing and comparing entire runs is costly, researchers have turned to ab-
stractions that summarize essential properties of a program run. One such abstraction is
coverage—that is, the pieces of code that were executed in a run. Indeed, comparing the
coverage of r✔ and r✘ reveals a number of differences. The method getThisJoin-
PointVar() of the class BcelShadow, for instance, is only called in r✘, but not
in r✔, which makes BcelShadow.getThisJoinPointVar() a potential candi-
date for causing the failure.

Unfortunately, this hypothesis is wrong. In our AspectJ problem, the developers
have eventually chosen to fix the bug in another class; therefore, BcelShadow is not
the location of the defect. In fact, none of the methods that are called only within r✘

contain the defect.
However, it may well be that the failure is caused not by a single method call, but

rather by a sequence of method calls that occurs only in the failing run r✘. Such se-

530 V. Dallmeier, C. Lindig, and A. Zeller

1 package test;
2 import org.aspectj.lang.*;
3 import org.aspectj.lang.reflect.*;
4
5 public class Test3 {
6 public static void main(String[] args) throws Exception {
7 Test3 a = new Test3();
8 a.foo(-3);
9 }
10 public void foo(int i) {
11 this.x=i;
12 }
13 int x;
14 }
15
16 aspect Log {
17 pointcut assign(Object newval, Object targ):
18 set(* test..*) && args(newval) && target(targ);
19
20 before(Object newval, Object targ): assign(newval,targ) {
21 Signature sign = thisJoinPoint.getSignature();
22 System.out.println(targ.toString() + "." + sign.getName() +
23 ":=" + newval);
24 }
25
26 pointcut tracedCall():
27 call(* test..*(..)) && !within(Log);
28
29 after() returning (Object o): tracedCall() {
30 // Works if you comment out either of these two lines
31 thisJoinPoint.getSignature();
32 System.out.println(thisJoinPoint);
33 }
34 }

Fig. 1. This AspectJ program causes the Java virtual machine to crash

quences can be collected for specific objects. This sequence, for instance, summarizes
method calls initiated by an instance of ThisJoinPointVisitor in r✘:

〈ThisJoinPointVisitor.isRef(),
ThisJoinPointVisitor.canTreatAsStatic(),
MethodDeclaration.traverse(),
ThisJoinPointVisitor.isRef(),
ThisJoinPointVisitor.isRef()

〉

This sequence of calls does not occur in r✔—in other words, only in r✘ did an ob-
ject of the ThisJoinPointVisitor class call these five methods in succession.
This difference in the ThisJoinPointVisitor behavior is correlated with fail-
ure and thus makes ThisJoinPointVisitor a class that is more likely to contain
the defect. And indeed, it turns out that AspectJ bug #30168 was eventually fixed in
ThisJoinPointVisitor. Thus, while a difference in coverage may not point to a
defect, a difference in call sequences may well.

Comparing two runs usually yields more than one differing sequence. In our case
(r✔ vs. r✘), we obtain a total of 556 differing sequences of length 5. We can determine
the originating class for each of these sequences, assign a weight to each sequence, and
rank the classes such that those with the most important sequences are at the top. In this
ranking, the ThisJoinPointVisitor class is at position 6 out of 542 executed

Lightweight Defect Localization for Java 531

classes—meaning that the programmer, starting at the top, has to examine only 1.1% of
the executed classes or 3.2% of the executed code (0.2% of all classes or 0.8% of the
entire code) in order to find the defect. (In comparison, if we had compared only the
method coverage of r✔ and r✘, we would have discovered no difference and hence no
indication that the defect is located in ThisJoinPointVisitor.)

While such anecdotal evidence is nice, we had to evaluate our approach more thor-
oughly. In the remainder of this paper, we first describe in detail how we collect se-
quences of method calls (Section 3), and how we compare them to detect likely defects
(Section 4). In Section 5, we describe our experiments with the NanoXML parser and
AspectJ; the results support our initial claims. Section 7 discusses related work and
Section 8 closes with conclusion and consequences.

3 Summarizing Call Sequences

Over its lifetime, an object may receive and initiate millions of method calls. How do we
capture and summarize these to characterize normal behavior? These are the highlights
of our approach:

– Recording a trace of all calls per object quickly becomes unmanageable and is a
problem in itself (Reiss and Renieris, 2001). Rather than recording the full trace,
we abstract from it by sliding a window over the trace and remembering only the
observed substrings of calls in a call-sequence set.

– Collecting a sequence set per object is still problematic, as an application may
instantiate huge numbers of objects. We therefore aggregate sequence sets into one
set per class, which thus characterizes the behavior of the class.

– An object receives and initiates method calls. The trace of incoming (received) calls
tells us how an object is used by its clients. The trace of outgoing (initiated) calls
tells us how an object is implemented. We consider both types of traces for fault
localization.

– We keep the overhead for collecting and analyzing traces as low as possible. Over-
all, the overhead is comparable to measuring coverage—and thus affordable even
in the field.

The following sections describe these techniques in detail.

3.1 From Traces to Call Sequences

A trace is an observation of events over the lifetime of an objects, class, or program.
In order to capture an object’s behavior, we can record the calls it initiates or receives.
For realistic runs, these traces are very large. Our approach therefore uses a more ab-
stract representation of an object’s behaviour. Instead of investigating whole traces,
we remember only characteristic sequences of calls. This abstraction of a trace works
equally well for a trace of initiated or received calls, or any other trace, which is why
we talk about traces in general.

When we slide a window over a trace, the contents of the window characterize the
trace—as demonstrated in Fig. 2. The observed window contents form a set of short
sequences. The wider the window, the more precise the characteristic set will be.

532 V. Dallmeier, C. Lindig, and A. Zeller

mark read read skip read read skip read

mark read

read read

read skip

skip read

read read

read skip

skip read

mark read

read read

read skip

skip read

Trace

Sequences Sequence Set

anInputStreamObj

InputStream

Fig. 2. The call trace of an object is abstracted to a call-sequence set using a sliding window

Formally, a trace S is a string of calls: 〈m1, . . . , mn〉. When the window is k calls
wide, the set P (S, k) of observed windows are the k-long substrings of S: P (S, k) =
{w | w is a substring of S ∧ |w| = k}. For example, consider a window of size k = 2
slid over S and the resulting set of sequences P (S, 2):

S = 〈abcabcdc〉 P (S, 2) = {〈ab〉, 〈bc〉, 〈ca〉, 〈cd〉, 〈dc〉}

Obviously different traces may lead to the same set: for T = 〈abcdcdca〉, we have
P (T, 2) = P (S, 2). Hence, going from a trace to its sequence set entails a loss of in-
formation. The equivalence of traces is controlled by the window size k, which models
the context sensitivity of our approach: in the above example a window size k ≥ 3
leads to different sets P (S, k) and P (T, k). In the remainder of the paper, we use
P (T) to denote the sequence set computed from T , not mentioning the fixed k
explicitly.

Note that two calls that are next to each other in a sequence may have been far apart
in time: between the two points in time when the object received or initiated the calls,
other objects may have been active.

If a trace has less entries than the window size, the missing entries are filled up with
dummy invocations that can be distinguished from regular entries. Thus, every sequence
set for a trace contains at least one entry.

The size of a sequence set may grow exponentially in theory: With n distinct meth-
ods, nk different sequences of length k exist. In practice, sequence sets are small be-
cause method calls are induced by code, which is static. Hence, loops in the code lead
to reoccuring sequences that make sequence sets a useful and compact abstraction—
one could also consider them an invariant of program behavior.

Much of the versatility of sequence sets is due to their set nature: this makes it
easy to aggregate and compare sequence set, unlike tree- or graph-based representations
(Reiss and Renieris, 2001; Ammons et al., 2002).

Lightweight Defect Localization for Java 533

3.2 From Objects to Classes

Collecting one sequence set per object raises an important issue: In a program with
millions of objects, we will quickly run out of memory . As an alternative, one could
think about tracing calls at the class level to derive one sequence set per class. In an
implementation of such a trace, an object adds an entry to the trace of its class every
time it receives (or initiates) a call. Sliding a window over this trace results in a sequence
set that characterizes the class’s behavior.

As an example of sequence sets aggregated at class level, consider the traces X and
Y of two objects. Both objects are live at the same time and because we are collecting
one trace S per class, their calls interleave in this trace:

X = 〈 a b c d dc〉
Y = 〈a a b c ab 〉
S = 〈aaabbccdabdc〉

P (S, 2) = {〈aa〉, 〈ab〉, 〈bb〉, 〈bc〉, 〈cc〉, 〈cd〉, 〈da〉, 〈bd〉, 〈dc〉}

The resulting sequence set P (S, 2) characterizes the behavior of the class—somewhat.
The set contains sequences like 〈da〉 or 〈bb〉 that we never observed at the object level.
How objects interleave has a strong impact on the class trace S, and consequently on its
sequence set. This becomes even more obvious when a class instantiates many objects
and when their interleaving becomes non-deterministic, as in the presence of threads.

We therefore use a better alternative: We trace objects individually, but rather than
aggregating their traces, we aggregate their sequence sets. Previously, we collected all
calls into one trace and computed its sequence set. Now, we have individual traces, but
combine their sequence sets into one set per class. The result P (X, 2)∪P (Y, 2) is more
faithful to the traces we actually observed—〈bb〉 and 〈da〉 are no longer elements of the
sequence set:

P (X, 2) = {〈ab〉, 〈bc〉, 〈cd〉, 〈dd〉, 〈dc〉}
P (Y, 2) = {〈ab〉, 〈bc〉, 〈ca〉, 〈aa〉}

P (X, 2) ∪ P (Y, 2) = {〈aa〉, 〈ab〉, 〈bc〉, 〈cd〉, 〈dd〉, 〈dc〉, 〈ca〉}

The sequence set of a class is the union of the sequence sets of its objects. It charac-
terizes the behavior of the class and is our measure when comparing classes in passing
and failing runs: we simply compare their sequence sets.

3.3 Incoming vs. Outgoing Calls

Any object receives incoming and initiates outgoing method calls. Their traces tell us
how the object is used by its clients and how it is implemented, respectively. Both kinds
of traces can be used to detect control flow differences between a passing and a failing
run. However, they differ in their ability to relate those differences to defects.

As an example, consider object aQueue in Fig. 3. The queue receives calls like
enqueue() to add an element, and dequeue() to remove it. These are incoming
calls to object aQueue.

534 V. Dallmeier, C. Lindig, and A. Zeller

aProducer aQueue aLinkedList

enqueue
add

aConsumer

isEmpty
size

dequeue

firstElement

removeFirst
isEmpty

size

enqueue

enqueue
add

add

incoming
calls

outgoing
calls

aLogger

add

Fig. 3. Traces of incoming calls (left) and outgoing calls (right) for object aQueue

To implement these methods, the queue object uses another object aLinkedList.
It calls add() to add an element at the end of the linked list, firstElement() to
obtain the first element, and removeFirst() to remove it from the list. These calls
are outgoing calls of object aQueue.

Incoming Calls. Inspired by the work of Ammons et al. (2002), we first examined
incoming calls. The technique of Ammons et al. observes clients that call into a part
of the X11 API and learns automatically a finite-state automaton that describes how the
API is used correctly by a client: for example, a client must call open() before it may
call write(). Such an automaton is an invariant of the API; it can be used to detect
non-conforming clients.

By tracing incoming calls, we can also learn this invariant and represent it as a
sequence set: each object traces the calls it receives. Since we know the class Queue of
the receiving object, we have to remember in a sequence only the names of the invoked
methods (and their signatures, to resolve overloading). In our example, the trace of
incoming calls for the aQueue object is

〈enqueue(),isEmpty(), . . . ,enqueue(),enqueue()〉 .

As discussed in Section 3.2, sequence sets of individual objects are aggregated into one
sequence set per class. After training with several passing runs, we can detect when a
class receives calls that do not match a learned sequence set.

Learning class invariants from incoming calls is appealing for at least two reasons:
First, the number of methods an object can receive is restricted by its class. We thus can

Lightweight Defect Localization for Java 535

expect small traces and may even fine-tune the window size in relation to its number of
methods. Second, class invariants could be learned across several applications that use
the class, not just one.

Outgoing Calls. In our setting, incoming calls show a major weakness: When we
detect a non-conforming usage of a class, it is difficult to identify the responsible
client. For example, let us assume we observe a new sequence of incoming calls like
〈dequeue(),dequeue(),dequeue()〉. This sequence could indicate a problem
because a consumer should check for an empty queue using isEmpty() before at-
tempting a dequeue(). The sequence could also be harmless, for instance, when
the dequeue() calls stem from different objects. In any case, it is not the queue
object which is responsible for the new sequence, but the objects that initiated the
dequeue() calls. Consequently, we turned from incoming to outgoing calls, which
summarize the method calls initiated by an object. For aQueue, these are:

〈LinkedList.add(),LinkedList.size(),Logger.add(), . . . 〉

Because an object may call objects from several classes, method names are no
longer unique—witness the different calls to add. We therefore remember the class
and method name in a trace. Again, we build one trace per object and aggregate the
traces of individual queue objects into one sequence per class, which represents its be-
havior.

When we detect a sequence of outgoing calls that is not in a learned sequence set,
we know where to look for the reason: the Queue class. Unlike a trace of incoming
calls, the trace of outgoing calls can guide the programmer to the defect.

3.4 Collecting Traces

We trace a Java program using a combination of off-line and on-line methods. Before
the program is executed, we instrument its bytecode for tracing. While it is running, the
program collects traces, computes the corresponding sequence sets, and emits them in
XML format before it quits; analyzing sequence sets takes place offline.

For program instrumentation, we use the Bytecode Engineering Library (BCEL,
Dahm (1999)). This requires just the program’s class files and works with any Java
virtual machine. We thus can instrument any Java application, regardless of whether its
source code is available. While this is not a typical scenario for debugging, it allows us
to instrument the SPEC JVM 98 benchmark, or indeed any third-party code.

Instrumentation of a class rewrites all call sites and the start of every non-static
method. The code injected at call sites is needed to determine the caller of a method
invocation: because of dynamic binding, a caller cannot statically know the exact class
of the method called, and a method (without inspecting the stack) does not know the
calling class.

A call is rewritten such that, before a call occurs, the caller’s class and instance
identifers are written to a thread-local variable from where they are read by code added
to the prolog of the called method (the callee). The callee finally enters the actual call
to the trace of the caller (when tracing outgoing calls) or callee (when tracing incoming
calls).

536 V. Dallmeier, C. Lindig, and A. Zeller

class Caller extends Object {
public void call() {
Callee c;
...
Tracer.storeCaller(this.id);
c.method();
...

}
}

class Callee extends Object {
public void method() {
Tracer.addCall(〈id for Callee.method> 〉);
...

}
}

Fig. 4. Instrumentation of caller and callee to capture outgoing calls

Each object has its own trace of incoming or outgoing calls, but the trace is not
stored within the object. Instead, trace data associated with an object is stored in global
hash tables. Since Java’s Object.hashCode() method is unreliable for object iden-
tification, each object creates a unique integer for identification in its constructor. Keep-
ing trace data outside of objects has the advantage that they can be accessed by foreign
objects, which is essential for outgoing calls.

For an incoming call, the callee simply adds its name and signature to its own trace.
But for an outgoing call, the callee must add its name, signature, and class to the trace
of the caller. To do so, it needs to access the caller’s trace using the caller’s id.

Fig. 4 presents a small example illustrating instrumentation for tracing outgoing
calls. (For the sake of readability, we provide Java code instead of byte code.) State-
ments added during the instrumentation are shown in bold face. Prior to the invocation
of Callee.method() in method Caller.call(), the id of the caller is stored in
the Tracer. At the very start of Callee.method(), Tracer.addCall() adds
the method id of Callee.message() to the trace of the calling object—the one
which was previously stored in the Tracer. Hence, addCall() only receives the
message id—an integer key associated with a method, its class, and signature.

The combined trace of all method calls for all objects quickly reaches Gigabytes in
size and cannot be kept in main memory, but writing it to a file would induce a huge
runtime overhead. We therefore do not keep the original trace but compute the sequence
set for each class online—while tracing. Sequence sets are small (see next Section 3.5
for a discussion of the overhead), kept in memory, and emitted when the program quits.

To compute the sequence set of a class online, each object maintains a window for
the last k (incoming or outgoing) calls, which is advanced by code in the prolog of the
called method. In addition, a sequence set is associated with every traced class. When-
ever a method finds a new sequence—a new window of calls—it adds the sequence to
the set of the class. Finally, each class emits its sequence set in XML format.

After the program has quit, we use offline tools to read the sequence sets and analyze
them. For our experimental setup, we read them into a relational database.

Computing and emitting sequence sets rather than the original trace has a few disad-
vantages. To compute sequence sets online, the window size must be fixed for a program
run, where sequence sets for many window sizes could be computed offline from a raw
trace. While a trace is ordered, a sequence set is not. We therefore lose some of the
trace’s inherent notion of time.

Lightweight Defect Localization for Java 537

3.5 Overhead

To validate our claim that capturing call-sequence sets is a lightweight method, we
instrumented and traced the programs from the SPEC JVM 98 benchmark suite (SPEC,
1998). We compared the overhead with JCoverage (Morgan, 2004), a tool for coverage
analysis that, like ours, works on Java bytecode, and whose results can point to defects.

The SPEC JVM 98 benchmark suite is a collection of Java programs, deployed as
543 class files, with a total size of 1.48 megabytes. Instrumenting them for tracing
incoming calls with a window size of 5 on a 3 GHz x86/Linux machine with 1 GB
of main memory took 14.2 seconds wall-clock time. This amounts to about 100 kB
or 38 class files per second. The instrumented class files increased in size by 26%.
Instrumentation thus takes an affordable overhead, even in an interactive setting.

Running an instrumented program takes longer and requires more memory than the
original program. Table 1 summarizes the overhead factors of the instrumented program
relative to the memory consumption and run time of the original program.

The two ray tracers raytrace and mtrt demonstrate some challenges: tracing
them required 380 MB of main memory because they instantiate ten thousands of ob-
jects of class Point, each of which was traced. This exhausted the main memory,
which led to paging and to long run times.

The overheads for memory consumption and runtime varied by two orders of mag-
nitude. At first sight, this may seem prohibitive—even when the overhead was compa-
rable or lower than for JCoverage. We attribute the high overhead in part to the nature
of the SPEC JVM 98, which is intended to evaluate Java virtual machines—most pro-
grams in the suite are CPU bound and tracing affects them more than, say, I/O-intensive
programs.

Table 1. Overhead measured for heap size and time while tracing incoming calls (with window
size 5) for the SPEC JVM 98 benchmark. The overhead of our approach (and JCoverage in com-
parison) is expressed as a factor relative to the original program. The rightmost columns show the
number of sequences and the size of their gzip-compressed XML representation

Memory Time Sequences

original JCoverage our approach original JCoverage our approach XML
Program MB factor factor seconds factor factor count KB

check 1.4 1.2 1.1 0.14 10.0 1.5 113 3
compress 30.4 1.2 2.2 5.93 1.7 59.8 85 3
jess 12.1 2.1 17.6 2.17 257.1 98.2 1704 37
raytrace 14.2 1.5 22.7 1.93 380.8 541.6 1489 34
db 20.4 1.4 1.2 11.31 1.5 1.2 127 3
javac 29.8 1.5 1.2 5.46 45.7 31.4 15326 334
mpegaudio 12.8 1.6 1.2 5.96 1.2 27.9 587 13
mtrt 18.4 1.4 18.2 2.06 367.9 574.8 1579 36
jack 13.6 1.7 1.7 2.32 40.5 6.3 1261 28

average 1.5 7.5 122.9 149.2 2477 55

AspectJ 41.8 1.4 1.4 2.37 3.3 3.0 13920 301

538 V. Dallmeier, C. Lindig, and A. Zeller

The database db and the mpegaudio decoder benchmarks, for instance, show a
small overhead. When we traced the AspectJ compiler for the example in Section 1
(with window size 5), we also observed a modest overhead and consider these more
typical for our approach.

4 Relating Call Anomalies to Failures

As described in Section 3.2, a program run yields one sequence set per class. These
sequence sets now must be compared across multiple runs—or, more precisely, across
passing and failing runs. Our basic claim is that a defective class shows a substantially
different sequence set in a passing run than in a failing run. We therefore rank classes
such that classes whose sequence sets differ the most between passing and failing runs
get the highest priority.

For ranking classes we consider one failing run r✘ and n passing runs r1
✔
, . . . , rn

✔
,

where n ≥ 1. We take into account only one failing run because any additional failing
run could be caused by a different defect—something we don’t know. We do know,
however, that all passing runs are equivalent in the sense that they don’t reveal the defect.

Each passing and failing run of a class C is a set of call sequences: r✘ is the set of
call sequences observed in the failing run, and so on. Since we consider only one class
at a time, we don’t mention C explicitly and write r✘ instead of r✘(C). As an example,
we consider five sequences in three passing runs and one failing run:

r✘ = {v, w, y, z} r2
✔

= {x, y, z}
r1

✔
= {v, y, z} r3

✔
= {v, w, z}

To characterize an individual sequence s in absolute terms, we define the number of
passing runs #✔ that contain s, and dual to it, the number of failing runs #✘:

#✔(s) =
∣∣ n⋃
i=1

{ri
✔
| s ∈ ri

✔
}
∣∣

#✘(s) =|{r✘ | s ∈ r✘}|

In relative terms, a call sequence s is characterized by the fraction #✔(s)/n of pass-
ing runs where it was observed, and the fraction #✘(s)/1 of failing runs. These two
constitute the weight w(s) of a sequence:

w(s) =
∣∣#✘(s)

1
− #✔(s)

n

∣∣
The weight of a sequence denotes its responsibility for a fault, expressed as a number in
the range 0 to 1. It depends on which sets the sequence is contained in. Figure 5 shows
weights for three passing runs and one failing run.

For our example we obtain the counts and weights shown on the right side in Fig. 5.
Sequence z is common to all runs and thus has a weight of 0. Sequence w, on the other
hand, was observed in the failing run, but only in one out of three passing runs. This
earns it a high weight of 2/3. No sequence was observed only in the failing run. The

Lightweight Defect Localization for Java 539

1

2/3 1/3 2/3

1/3 1/31

passing run passing run

failing run

weights

passing run

0

2/32/3

1/3

1/31/3

v w x y z
#✘(s) 1 1 0 1 1
#✔(s) 2 1 1 2 3
w(s) 1/3 2/3 1/3 1/3 0

Fig. 5. The weight of a sequence depends on the number of passing and failing runs where it was
found. The right side shows the weights for the example of five sequences found in three passing
and one failing run

weight of a sequence is high when it is observed in the failing run but in none or few
of the passing runs: we then found a “new” sequence in the failing run. Likewise, the
weight is high when we find a sequence in many passing runs, but not in the failing run:
the sequence is then “missing” in the failing run. A high weight thus is a witness for a
different behavior of a class in passing and failing runs. Missing and new sequences are
treated dually because a defect could be caused by an extra call, as well as a missing
call.

Conversely, the weight of a sequence is low, when it was found in many passing runs
as well as in the failing run: we then observed a “common” sequence. It is a witness for
similar behavior in passing and failing runs.

Note that the weight of a sequence depends heavily on the number of passing runs.
To gain importance, a sequence must be present in many of them. Passing runs thus
should be related and show common sequences, but selecting a few unrelated runs does
not hurt.

Classes with a similar behavior in passing and failing runs contain mostly light
sequences, where the prime suspects are those with many heavy sequences. To identify
them, we define the average sequence weight for a class:

W (C) =
1
|r|

∑
s∈r

w(s) where r = r✘ ∪ r1
✔
∪ · · · ∪ rn

✔

In our example, the average sequence weight is 1/3. Because the average sequence
weight is independent from the number of sequences observed for a class, we can com-
pare it across classes. The average sequence weight is thus a measure for the importance
of a class. When we rank classes by it, classes ranked to the top have a high average
weight and are likely to contain a defect. To validate this claim, we conducted two
experiments.

540 V. Dallmeier, C. Lindig, and A. Zeller

5 A Case Study

As described in Section 4, we rank classes based on their average sequence weight
and claim that a large weight indicates a defect. To evaluate our rankings, we studied
them in an experiment, with the NanoXML parser as our main subject. Our experiments
evaluate class rankings along three main axes: incoming versus outgoing calls, various
window sizes, and class-based versus object-based traces.

5.1 Object of Study

NanoXML is a non-validating XML parser implemented in Java, for which Do et al.
(2004) provide an extensive test suite. NanoXML comes in five development versions1,
each comprising between 16 and 23 classes, and a total number of 33 known faults
(Table 2). These faults were discovered during the development process, or seeded by
Do and others. Each fault can be activated individually, such that there are 33 variants
of NanoXML with a single fault.

Table 2. Characteristics of NanoXML, the subject of our controlled experiment

Tests

Version Classes LOC Faults All Failing Drivers

1 16 4334 7 214 160 79
2 19 5806 7 214 57 74
3 21 7185 10 216 63 76
5 23 7646 9 216 174 76

total 24971 33 474

Faults and test cases are related by a fault matrix: for any given fault and test case,
the matrix tells whether the test case uncovers the fault. Related test cases share the
same driver, which provides general infrastructure for a test.

5.2 Experimental Setup

Our experiment simulates the following situation: for a fixed program, a programmer
has one or more passing test cases, and one failing test case. Based on traces of the
passing and failing runs, our techniques ranks the classes of the program. The ranking
aims to place the faulty class as high as possible.

In our experiment, we know the class that contains the defect (our techniques, of
course, do not); therefore, we can assess the ranking. We express the quality of a ranking
as the search length—the number of classes above the faulty class in the ranking. The
best possible ranking places the faulty class at the top (with a search length of zero).

1 We could not use Version 4 because it lacks known faults for experiments.

Lightweight Defect Localization for Java 541

To rank classes, we needed at least one passing run for every failing run. However,
we wanted to avoid comparing totally unrelated program runs. For each ranking we
therefore selected a set of program runs from the suite of programs that met the follow-
ing conditions:

– We analyze a version of NanoXML with one known defect, which is located in a
single class.

– As failing run, we used a test case that uncovered the known defect.
– As passing runs, we selected all test cases that did not uncover the known defect.
– All test cases for passing and failing runs must use the same test driver. This limits

the number of passing runs to those that are semantically related to the failing run.

Altogether, we had 386 such sets (Table 2). The test suite contains 88 more failing runs
for which we could not find any passing run. This can happen, for example, when a
fault always causes a program to crash such that no passing run can be established.

For each of the failing runs with one or more related passing runs, we traced their
classes, computed their sequence sets, and ranked the classes according to their average
sequence weight. The rankings were repeated in several configurations:

– Rankings based on class and object traces (recall Section 3.2)
– Rankings based on incoming and outgoing calls (recall Section 3.3).
– Rankings based on 10 window sizes: 1 to 10.

We compared the results of all configurations to find the one that minimizes the search
length, and thus provides the best recommendations for defect localization.

5.3 Threats to Validity

Our experiments are not exhaustive—many more variations of the experiment are possi-
ble. These variations include other ways to rate sequences, or to trace with class-specific
window sizes rather than a universal size. Likewise, we did not evaluate programs with
multiple known defects or defects whose fix affects several classes.

The search lengths reported in our results are abstract numbers that don’t make po-
tential mistakes obvious. We validated our methods when possible by exploiting known
invariants, for example:

– To validate the bytecode instrumentation, we generated Java programs with stati-
cally known call graphs and, hence, known sequence sets. We verified that these
were indeed produced by our instrumentation.

– When tracing with a window size of one, the resulting sequences for a class are
identical for object- and class-based traces: any method called (or initiated) on the
object level is recorded in a class-level trace, and vice versa. Hence, the rankings
are the same; object- and class-based traces show no difference in search length.

5.4 Discussion of Results

Table 3 summarizes the average search lengths of our rankings for NanoXML, based
on different configurations: incoming versus outgoing calls, various window sizes, and

542 V. Dallmeier, C. Lindig, and A. Zeller

Table 3. Evaluation of class rankings. A number indicates the average number of classes in atop
the faulty class in a ranking. The two rightmost columns indicate these numbers for a random
ranking when (1) considering only executed classes, (2) all classes

Incoming Calls

Window Size Random Guess

Trace 1 2 3 4 5 6 7 8 9 10 Executed All

Object 3.66 3.74 4.08 4.07 4.10 4.02 3.91 3.67 3.55 3.49 4.78 9.22
Class 3.66 3.71 3.97 4.05 3.97 4.04 3.97 3.90 3.86 3.85 4.78 9.22

Outgoing Calls

Window Size Random Guess

Trace 1 2 3 4 5 6 7 8 9 10 Executed All

Object 2.53 2.31 2.19 2.17 2.04 2.00 1.98 2.12 2.15 2.14 4.78 9.22
Class 2.53 2.35 2.22 2.14 2.03 2.04 2.03 2.02 2.22 2.25 4.78 9.22

rankings based on object- and class-based traces. The search length is the number of
classes atop of the faulty class in a ranking.

For a ranking to be useful, it must be at least better than a random ranking. Each
search length in Table 3 is an average over 386 program runs (or rankings). On average,
each run utilizes 19.45 classes from which 10.56 are actually executed (excluding the
test driver). Random placing of the faulty class would result in an average search length
of (19.45 − 1)/2 = 9.22 classes, and 4.78, respectively.

All rankings in our experiment are noticeably better than random rankings. They are
better even if a programmer had had the additional knowledge of which classes were
never executed.

Comparing sequences of passing and failing runs is effective in locating defects.

Sequences vs. Coverage. Previous work by Jones et al. (2002) has used coverage anal-
ysis to rank source code statements: statements more often executed in failing runs than
in passing runs rank higher. Since we are ranking classes, the two approaches are not
directly comparable.

Ranking classes based on incoming calls with a window size of one is identical
to method coverage: the sequence set of a class holds exactly those methods of the
class that were called, hence executed. The corresponding search length of 3.66 is the
smallest in the table for incoming calls. This suggests that incoming calls perform worse
than coverage analysis for defect localization.

The picture is reversed for outgoing calls. Here the search length for a window size
of one is the highest in the table. Sequences of calls thus perform better than individual
calls.

Incoming calls provide no help for finding defects. Comparing sequences of length 2
or greater always performs better than sequences of length 1 for outging calls.

Lightweight Defect Localization for Java 543

Classes vs. Objects. Tracing on the object level (rather on the simpler class level)
offered no advantage for incoming calls, and only a slight advantage for outgoing calls.
We attribute this to the few objects NanoXML instantiates per class and the absence
of threads. Both would lead to increased non-deterministic interleaving of calls on the
class level, which in turn would lead to artificial differences between runs.

Object-based traces are at least slightly better defect locators than class-based traces.
For multi-threaded programs, object-based traces should yield a greater advantage.

Window Size. Incoming calls sequences show no strict relation between window size
and search length. There is a trend of an increasing search length when going from a
window size of one to 5, and a trend of decreasing search length when moving from 5
to 10.

Outgoing calls show a clear and opposite trend: search lengths are the shortest for
window sizes around 7 and increase towards smaller and wider windows. Moving from
a window size of one to a window size of 7 reduces the search length by 0.5 classes.
This supports our claim that longer outgoing call sequences capture essential control
flow of a program. Moving towards wider windows probably does not pay off because
increasingly fewer long-living objects actually can fill such windows.

Medium-sized windows, collecting 3 to 8 calls, provide the best predictive power.

Outgoing vs. Incoming Calls. Outgoing calls predict faults better than incoming calls.
The search length for rankings based on outgoing calls are smaller than those based on
incoming calls. Even the worst result for outgoing calls (2.53 for window size of 1) beats
the best result for incoming calls (3.66 for window size of 1). This strongly supports
our claim (3): the caller is more likely to be defective than the callee.

The inferiority of incoming calls is not entirely surprising: traces for incoming calls
show how an object (or a class) is used. A deviation in the failing run from the passing
runs indicates that a class is used differently. But the class is not responsible for its
usage—its clients are. Therefore, different usage does not correlate with faults.

This is different for outgoing calls, which show how an object (or a class) is imple-
mented. For any deviation here the class at hand is responsible and thus more likely to
contain a fault.

Outgoing calls locate defects much better than incoming calls.

Benefits to the Programmer. Tracing outgoing calls with a window size of 6, the
average search length for a ranking was 2.00. On the average, a programmer must thus
inspect two classes before finding the faulty class—that is, 18.9% of 10.56 executed
classes, or 8.7% of all 23 classes.

Fig. 6 shows a cumulative plot of the search length distribution. Using a window of
size 7, the defective class is immediately identified in 39% of all test runs (zero search
length). In 47% of all test runs, the programmer needs to examine at most one false
positive (search length = 1) before identifying the defect.

Because NanoXML is relatively small, each class comprises a sizeable amount of
the total application. As could be seen in the example of AspectJ, large applications

544 V. Dallmeier, C. Lindig, and A. Zeller

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9

fr
ac

tio
n

of
 te

st
 r

un
s

search length for outgoing calls

search length distribution

window size 1
window size 2
window size 7

Fig. 6. Distribution of search length for outgoing calls in NanoXML. Using a window size of 7,
the defective class is pinpointed (search length 0) in 39% of all test runs

may exhibit vastly better ratios. We also expect larger applications to show a greater
separation of concerns, such that the number of classes which contribute to a failure
does not grow with the total number of classes. We therefore believe that the results of
our controlled experiment are on the conservative side.

In NanoXML, the defective class is immediately identified in 39% of all test runs. On
average, a programmer using our technique must inspect 19% of the executed classes
(9% of all classes) before finding the defect.

6 Does it Scale?

We have complemented the evaluation of our method with a study of the AspectJ com-
piler (Kiczales et al., 2001). It differs from NanoXML mainly in its size: AspectJ 1.1.1
consists of 979 classes, representing 112,376 lines of code. Unlike NanoXML, AspectJ
does not come pre-packed with a set of defects, and therefore it was not possible to use
AspectJ in a systematic evaluation. However, the AspectJ developers have collected bug
reports and provide a source code repository that documents how bugs were fixed. From
these repositories, we reconstructed passing and failing test cases for our evaluation.

In order to obtain results comparable with our evaluation using NanoXML, we re-
stricted ourself to bugs whose fixes involved only one Java class. Altogether, there are
6 such bugs in the AspectJ bug database, which are shown in Table 4.

For each bug in Table 4, we constructed one passing and one failing run. We traced
them for outgoing calls and ranked their classes accordingly.

Lightweight Defect Localization for Java 545

Table 4. Bugs in AspectJ used for the evaluation. A Bug ID refers to the bug description in the
AspectJ bug database at http://bugs.eclipse.org/

Size (LOC)

Bug ID Version Defective Class Class Fix

29665 1.1b4 org.aspectj.weaver.bcel.BcelShadow 1901 20
29691 1.1b4 org.aspectj.weaver.patterns.ReferencePointcut 294 4
29693 1.1b4 org.aspectj.weaver.bcel.BcelShadow 1901 8
30168 1.1b4 org.aspectj.ajdt.internal.compiler.ast.ThisJoinPointVisitor 225 20
43194 1.1.1 org.aspectj.weaver.patterns.ReferencePointcut 299 4
53981 1.1.1 org.aspectj.ajdt.internal.compiler.ast.Proceed 133 19

Table 5. Evaluation of class rankings for AspectJ. A number indicates the average search length:
the number of classes atop of the faulty class in a ranking. The two rightmost columns indicate
these numbers for a random ranking when (1) considering only executed classes, (2) all classes

Window Size Random Guess

1 2 3 4 5 6 7 8 9 10 Executed All

Object 32.4 31.8 30.8 10.2 8.6 23.4 22.6 23.8 24.4 24.0 209 272
Class 32.4 32.2 34.8 12.8 12.4 25.2 24.8 25.2 25.2 25.6 209 272

Our results for window sizes up to 10 are shown in Table 5. The results confirm our
previous findings for outgoing calls from the evaluation with NanoXML as subject:

– Rankings based on outgoing calls perform better than random rankings.
– Object-based rankings perform slightly better than class-based rankings.
– Medium-sized windows of 4–7 calls performs best; shorter or wider windows lead

to an increased search length. Defect localization benefits from the additional con-
text provided compared to a window size of one.

The difference in search length between a random ranking and a ranking produced by
our method is much greater for AspectJ than for NanoXML. Therefore, the benefit for
the programmer is even greater: Using a window size of 5, our method on average
requires the programmer to examine only 9 of 979 classes (i.e. 0.92% of all classes)
until spotting the defect. Again, these results do not necessarily generalize to AspectJ,
or to other applications, but they indicate the potential of the approach; they also show
that the approach indeed can scale to larger applications.

In our evaluation of AspectJ, we did not consider incoming calls, since they did not
prove useful for the NanoXML subject. Also, Table 5 does not take into account the
ranking for bug #29665. While bug #29665 is a real bug, the call sequence sets of the
defective class were identical in passing and failing runs for all window sizes. A closer
inspection of the fix for this bug revealed that the defective method incorrectly returns
the same value for the passing and failing run, which is why the defect does not induce
a different call sequence. Thus, our method is blind to this defect and cannot localize it.

546 V. Dallmeier, C. Lindig, and A. Zeller

Defect localization using call-sequence sets scales well to the AspectJ compiler (with
excellent results) and is likely to scale to other real-world applications.

7 Related Work

We are by no means the first researchers who compare multiple runs, or analyze function
call sequences. The related work can be grouped into the following categories:

Comparing Multiple Runs. The hypothesis that a fault correlates with differences in
program traces, relative to the trace of a correct program, was first stated by Reps et al.
(1997) and later confirmed by Harrold et al. (1998). The work of Jones et al. (2002) ex-
plicitly compares coverage and thus is the work closest to ours. Jones et al. try to locate
an error in a program based on the statement coverage produced by several passing and
one failing run. A statement is considered more likely to be erroneous the more often
it is executed in a failing run rather than in a passing run. In their evaluation, Jones
et al. find that in programs with one fault the one faulty statement within a program is
almost certainly marked as “likely faulty”, but so is also 5% to 15% of correct code.
For programs with multiple faults, this degrades to 5% to 20% with higher variation.
Like ours, this approach is lightweight, fully automatic and broadly applicable—but as
demonstrated in the evaluation, sequences have a significantly better predictive power.

Intrusion Detection. Our idea of investigating sequences rather than simply coverage
was inspired by Forrest et al. (1997) and Hofmeyr et al. (1998)’s work on intrusion de-
tection. They traced the system calls of server applications like sendmail, ftpd, or
lpd and used the sliding-window approach to abstract them as sequence sets (n-tuples
of system calls, where n = 6, . . . , 10). In a training phase, they learned the set from
normal behavior of the server application; after that, an unrecognized sequence indi-
cated a possible intrusion. As a variation, they also learned sequence that did not match
the normal behavior and flagged an intrusion if that sequence was later matched by an
application. Intrusion detection is considerably more difficult than defect localization
because it has to predict anomalous behavior, where we know that a program run is
anomalous after it failed a test. We found the simplicity of the idea, implementation,
and the modest run-time cost appealing. In contrast to their work, though, our approach
specifically exploits object orientation and is the first to analyze sequences for defect
localization.

Learning Automata. Sekar et al. (2001) note a serious issue in Forrest et al. (1997)’s
approach: to keep traces tractable, the window size n must be small. But small win-
dows fail to capture relations between calls in a sequence that are n or more calls apart.
To overcome this, the authors propose to learn finite-state automata from system call
sequences instead and provide an algorithm. The interesting part is that Sekar et al.
learn automata from traces where they annotate each call with the caller; thus calls
by two different callers now become distinguishable. Using these more context-rich
traces, their automata produced about 10 times fewer false positives than the n-gram
approach. Learning automata from object-specific sequences is an interesting idea for
future work.

Lightweight Defect Localization for Java 547

Learning APIs. While we are trying to locate defects relative to a failing run, Ammons
et al. (2002) try to locate defects relative to API invariants learned from correct runs:
they observe how an API is used by its clients and learn a finite-state automaton that de-
scribes the client’s behavior. If in the future a client violates this behavior, it is flagged
with an error. A client is only required during the learning phase and the learned invari-
ants can later be used to validate clients that did not even exist during the learning phase.
However, as Ammons et al. point out, learning API invariants requires a lot of effort—
in particular because context-sensitive information such as resource handles have to be
identified and matched manually. With object-specific sequences, as in our approach,
such a context comes naturally and should yield better automata with less effort.

Data Anomalies. Rather than focusing on diverging control flow, one may also focus
on differing data. Dynamic invariants, pioneered by Ernst et al. (2001), is a predicate
for a variable’s value that has held for all program runs during a training phase. If the
predicate is later violated by a value in another program run this may signal an error.
Learning dynamic invariants takes a huge machine-learning apparatus and is far from
lightweight both in time and space. While Pytlik et al. (2003) have not been able to de-
tect failure-related anomalies using dynamic invariants, a related lightweight technique
by Hangal and Lam (2002) found defects in four Java applications. In general, tech-
niques that detect anomalies in data can complement techniques that detect anomalies
in control flow and vice versa.

Statistical Sampling. In order to make defect localization affordable for production
code in the field, Liblit et al. (2003) suggest statistical sampling: Rather than collecting
all data of all runs, they focus on exceptional behavior—as indicated by exceptions be-
ing raised or unusual values being returned—but only for a sampled set. If such events
frequently occur together with failures (i.e. for a large set of users and runs), one eventu-
ally obtains a set of anomalies that statistically correlate with the failure. Our approach
requires just two instrumented runs to localize defects, but can be easily extended to
collect samples in the field.

Isolating Failure Causes. To localize defects, one of the most effective approaches
is isolating cause transitions, as described by Cleve and Zeller (2005). Again, the ba-
sic idea is to compare passing and failing runs, but in addition, the delta debugging
technique generates and tests additional runs to isolate failure-causing variables in the
program state (Zeller, 2002). A cause transition occurs at a statement where one vari-
able ceases to be a cause, and another one begins; these are places where cause-effect
chains to the failure originate (and thus likely defects). Due to the systematic genera-
tion of additional runs, this technique is precise, but also demanding—in particular, one
needs an automated test and a means to extract and compare program states. In contrast,
collecting call sequences is far easier to apply and deploy.

8 Conclusion and Consequences

Sequences of method calls locate defective classes with a high probability. Our evalu-
ation also revealed that per-object sequences are better predictors of defects than per-

548 V. Dallmeier, C. Lindig, and A. Zeller

class or global sequences, and that the caller is significantly more likely to be defective
than the callee. In contrast to previous approaches detecting anomalies in API usage,
our technique exploits object orientation, as it collects method call sequences per ob-
ject; therefore, the approach is fully generic and need not be adapted to a specific API.
These are the results of this paper.

On the practical side, the approach is easily applicable to arbitrary Java programs,
as it is based on byte code instrumentation, and as the overhead of collecting sequences
is comparable to measuring coverage. No additional infrastructure such as automated
tests or debugging information is required; the approach can thus be used for software
in the field as well as third-party software.

Besides general issues such as performance or ease of use, our future work will
concentrate on the following topics:

Further Evaluation. The number of Java programs that can be used for controlled
experiments (i.e. with known defects, automated tests that reveal these defects, and
changes that fix the defects) is still too limited. As more such programs become avail-
able (Do et al., 2004), we want to gather further experience.

Fine-Grained Anomalies. Right now, we are identifying classes as being defect-prone.
Since our approach is based on comparing methods, though, we could relate differing
sequences to sets of methods and thus further increase precision. Another interesting
option is to identify anomalies in sequences of basic blocks rather than method calls,
thus focusing on individual statements.

Sampled Calls. Rather than collecting every single method call, our approach could
easily be adapted to sample only a subset of calls—for instance, only the method calls
of a specific class, or only every 100th sequence (Liblit et al., 2003). This would allow
to use the technique in production code and thus collect failure-related sequences in the
field.

Exploiting Object Orientation. Our approach is among the first that explicitly ex-
ploits object orientation for collecting sequences. Being object-aware might also be
beneficial to related fields such as intrusion detection or mining specifications.

Integration with Experimental Techniques. Anomalies in method calls translate into
specific objects and specific moments in time that are more interesting than others.
These objects and moments in time could be good initial candidates for identifying
failure-inducing program state (Zeller, 2002).

An Eclipse Plugin. Last but not least, we are currently turning our prototype into an
Eclipse plugin called AMPLE (for “Analyzing Method Patterns to Locate Errors”). As
soon as a JUnit test fails, AMPLE displays a list showing the most likely defective
classes at the top—as in the AspectJ example (Fig. 7). We plan to make AMPLE publicly
available in the second half of this year. For future and related work regarding defect
localization, see

http://www.st.cs.uni-sb.de/dd/

Lightweight Defect Localization for Java 549

Fig. 7. For the AspectJ bug of Section 2, Eclipse ranks likely defective classes (bottom left)

Acknowledgments. Gregg Rothermel made the NanoXML test suite accessible. Tom
Zimmermann provided precious insights into the AspectJ history. Holger Cleve, Stephan
Neuhaus, and the anonymous reviewers provided valuable comments on earlier revi-
sions of this paper.

Bibliography

Glenn Ammons, Rastislav Bodı́k, and Jim Larus. Mining specifications. In Conference Record
of POPL’02: The 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 4–16, Portland, Oregon, January 16–18, 2002.

Holger Cleve and Andreas Zeller. Locating causes of program failures. In Proc. 27th Interna-
tional Conference of Software Engineering (ICSE 2005), St. Louis, USA, 2005. to appear.

Markus Dahm. Byte code engineering with the JavaClass API. Technical Report B-17-98, Freie
Universität Berlin, Institut für Informatik, Berlin, Germany, July 07 1999. URL http://
www.inf.fu-berlin.de/∼dahm/JavaClass/ftp/report.ps.gz.

Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. Infrastructure support for controlled
experimentation with software testing and regression testing techniques. In International Sym-
posium on Empirical Software Engineering, pages 60–70, Redondo Beach, California, August
2004.

550 V. Dallmeier, C. Lindig, and A. Zeller

Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dynamically discov-
ering likely program invariants to support program evolution. IEEE Transactions on Software
Engineering, 27(2):1–25, February 2001. A previous version appeared in ICSE ’99, Pro-
ceedings of the 21st International Conference on Software Engineering, pages 213–224, Los
Angeles, CA, USA, May 19–21, 1999.

Stephanie Forrest, Steven A. Hofmeyr, and Anil Somayaji. Computer immunology. Communi-
cations of the ACM, 40(10):88–96, October 1997. ISSN 0001-0782.

Sudheendra Hangal and Monica S. Lam. Tracking down software bugs using automatic anomaly
detection. In Proceedings of the 24th International Conference on Software Engineering
(ICSE-02), pages 291–301, New York, May 19–25 2002. ACM Press.

Mary Jean Harrold, Gregg Rothermel, Rui Wu, and Liu Yi. An empirical investigation of program
spectra. In ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering (PASTE’98), ACM SIGPLAN Notices, pages 83–90, Montreal, Canada, July 1998.
Published as ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering (PASTE’98), ACM SIGPLAN Notices, volume 33, number 7.

Steven A. Hofmeyr, Stephanie Forrest, and Somayaji Somayaji. Intrusion detection using se-
quences of system calls. Journal of Computer Security, 6(3):151–180, 1998.

James A. Jones, Mary Jean Harrold, and John Stasko. Visualization of test information to assist
fault localization. In Proc. International Conference on Software Engineering (ICSE), pages
467–477, Orlando, Florida, May 2002.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G. Gris-
wold. An overview of AspectJ. In Jorgen Lindskov Knudsen, editor, Proceedings of the 15th
European Conference on Object-Oriented Programming (ECOOP), volume 2072 of Lecture
Notes in Computer Science, pages 327–353, 2001.

Ben Liblit, Alex Aiken, Alice X. Zheng, and Michael I. Jordan. Bug isolation via remote program
sampling. In Proc. of the SIGPLAN 2003 Conference on Programming Language Design and
Implementation (PLDI), San Diego, California, June 2003.

Peter Morgan. JCoverage 1.0.5 GPL, 2004. URL http://www.jcoverage.com/.
Brock Pytlik, Manos Renieris, Shriram Krishnamurthi, and Steven Reiss. Automated fault lo-

calization using potential invariants. In Michiel Ronsse, editor, Proc. Fifth Int. Workshop on
Automated and Algorithmic Debugging (AADEBUG), Ghent, Belgium, September 2003. URL
http://xxx.lanl.gov/html/cs.SE/0309027.

Steven P. Reiss and Manos Renieris. Encoding program executions. In Proceedings of the 23rd
International Conference on Software Engeneering (ICSE-01), pages 221–232, Los Alamitos,
California, May12–19 2001. IEEE Computer Society.

Thomas Reps, Thomas Ball, Manuvir Das, and Jim Larus. The use of program profiling for soft-
ware maintenance with applications to the year 2000 problem. In M. Jazayeri and H. Schauer,
editors, Proceedings of the Sixth European Software Engineering Conference (ESEC/FSE
97), pages 432–449. Lecture Notes in Computer Science Nr. 1013, Springer–Verlag, Septem-
ber 1997.

R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A fast automaton-based method for detecting
anomalous program behaviors. In Francis M. Titsworth, editor, Proceedings of the 2001 IEEE
Symposium on Security and Privacy (S&P-01), pages 144–155, Los Alamitos, CA, May 14–16
2001. IEEE Computer Society.

SPEC. SPEC JVM 98 benchmark suite. Standard Performance Evaluation Corporation, 1998.
Andreas Zeller. Isolating cause-effect chains from computer programs. In William G. Griswold,

editor, Proceedings of the Tenth ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE-02), volume 27, 6 of Software Engineering Notes, pages 1–10, New York,
November 18–22 2002. ACM Press.

Extending JML for Modular Specification and
Verification of Multi-threaded Programs

Edwin Rodŕıguez1, Matthew Dwyer2, Cormac Flanagan3, John Hatcliff1,
Gary T. Leavens4, and Robby1

1 Department of Computing and Information Sciences, Kansas State University
{edwin, hatcliff, robby}@cis.ksu.edu

2 Department of Computer Science and Engineering, University of Nebraska-Lincoln
dwyer@cse.unl.edu

3 Computer Science Department, University of California at Santa Cruz
cormac@cs.ucsc.edu

4 Department of Computer Science, Iowa State University
leavens@cs.iastate.edu

Abstract. The Java Modeling Language (JML) is a formal specifi-
cation language for Java that allows developers to specify rich soft-
ware contracts for interfaces and classes, using pre- and postconditions
and invariants. Although JML has been widely studied and has ro-
bust tool support based on a variety of automated verification technolo-
gies, it shares a problem with many similar object-oriented specification
languages—it currently only deals with sequential programs. In this pa-
per, we extend JML to allow for effective specification of multi-threaded
Java programs. The new constructs rely on the non-interference notion
of method atomicity, and allow developers to specify locking and other
non-interference properties of methods. Atomicity enables effective spec-
ification of method pre- and postconditions and supports Hoare-style
modular reasoning about methods. Thus the new constructs mesh well
with JML’s existing features. We validate the specification language de-
sign by specifying the behavior of a number of complex Java classes de-
signed for use in multi-threaded programs. We also demonstrate that it
is amenable to automated verification using model checking technology.

1 Introduction

The use of rich source-level specification languages for expressing correctness
properties of object-oriented programs is growing in practice. Specification lan-
guages such as the Java Modeling Language (JML) [1, 2, 3, 4] and Spec# [5]
provide a wide range of light-weight annotations (e.g., specifying non-nullness
of variables of reference type) as well as constructs for writing specifications of
full functional behaviors of class implementations that can be checked by a va-
riety of verification technologies including static analysis, run-time monitoring,
model checking, and theorem-proving. JML is a behavioral interface specifica-
tion language that allows developers to specify both the syntactic and behavioral

A.P. Black (Ed.): ECOOP 2005, LNCS 3586, pp. 551–576, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

552 E. Rodŕıguez et al.

interface of a portion of Java code. It supports the design by contract paradigm
[6] by including notation for pre- and postconditions and invariants. JML uses
Java’s expression syntax and adds features for: universal (\forall) and existen-
tial (\exists) quantification over object instances as well as basic types, such as
integers, and constructs for expressing properties of heap allocated data (such as
\reach which returns the set of objects reachable from a particular reference).

JML has proved to be an effective vehicle for bringing together a number of
research teams [1] seeking to (a) extend the logical foundations of specification
formalisms needed for addressing semantically complex language features such
as dynamic dispatch, exceptions, dynamic object creation, and (b) build tool
support for automated and computer-assisted reasoning about real-world Java
applications. However, despite the success of JML in specifying programs written
in sequential Java and its Java Card dialect, JML’s support for concurrency “is
still in its infancy” [4].

Although many interesting programs are sequential, the flexibility that ac-
companies concurrent programming in terms of further modularizing the de-
sign (thread modularity), means that most moderately complex systems are
programmed with some sort of concurrency modality (multi-threading, multi-
processing, etc.). Moreover, multi-threading capabilities are becoming more ac-
cessible to programmers since languages like Java and C# provide direct lan-
guage support for threads, while other languages provide sophisticated support
via libraries (e.g., POSIX threads).

Most existing specification and checking tools for multi-threaded programs
focus on properties such as absence of race conditions, establishing mutual exclu-
sion, and simple event ordering and temporal properties (e.g., capturing proper
ordering of calls to APIs). However, they typically ignore strong functional prop-
erties and complex data structure invariants. These inadequacies stem from the
challenges of dealing with thread interference in the manipulation of shared
(heap) data. One cannot simply apply Hoare-style logics using method pre- and
postconditions to reason modularly, because method execution is often non-
serial—the actions of other threads may interfere with the thread executing the
method and thus render invalid assumptions captured in method preconditions
and guarantees captured in postconditions.

Due to the pervasiveness of multi-threading and the increasing use of multi-
threaded object-oriented code in embedded and mission- and safety-critical ap-
plications, it is necessary to extend sequential specification languages like JML
to support specification and reasoning about multi-threaded programs. Further-
more, these extensions should allow both light-weight annotations and more
complete, functional specifications, and should work with multiple different rea-
soning tools. This paper advances toward these goals by making the following
contributions:

– We identify situations in which the current JML fails to enable effective
specification and modular reasoning for multi-threaded programs.

– We identify specification forms that we and other researchers have found
useful for multi-threaded programs. This includes (a) various light-weight

Extending JML for Modular Specification and Verification 553

annotations that can be leveraged by automated checking technologies and
(b) the use of atomicity specifications to achieve modular reasoning about
methods.

– We show how to integrate these forms into JML in a way that enables both
reasoning about data values and concurrency concerns.

– We validate the design of this enhanced version of JML by using it to specify
properties of a number of Java libraries designed for concurrency, including
most of the concurrent data structure classes from java.util.concurrent,
which includes some very intricate concurrent Java code (the full collection
of these specified examples are posted on our project web-site [7]).

– We establish that these specification formalisms are amenable to effective
automated verification, by providing experimental results of checking these
using a verification framework built on top of our Bogor software model
checker (extended from our previous work on model checking JML [8] and
atomicity specifications [9]).

Our approach does not explicitly deal with Java’s relaxed memory model [10],
and instead assumes a sequential consistent memory model. This assumption is
sound for programs that are free of race conditions, and race-freedom can be
verified via separate analyses [11].

Although we have used JML for this work, we believe the ideas could also be
adapted to other specification languages such as Spec# and Eiffel. However, we
leave detailed investigation of such adaptation for future work.

In the next section, we describe the problems addressed in this work, in par-
ticular, the limitations of JML for concurrent programs. Section 3 gives back-
ground on the concept of atomicity, on which our approach is based. Section 4
introduces the new set of annotations, giving examples and an assessment of
the issues addressed by each annotation. Section 5 reports on an evaluation of
using JML extensions to specify Java classes and of checking such specifications
using a customized model checker. Section 6 surveys related work, and Sec. 7
concludes.

2 The Problem

In this section we discuss the semantical and expressiveness problems that need
to be solved to allow effective specification and reasoning about both data values
and proper thread behavior in a multi-threaded program.

2.1 Interference

Interference causes problems that affect modular reasoning about data values in
multi-threaded programs. These semantical problems are best illustrated by an
example.

Consider the method in Fig. 1. This is a method from a concurrent linked
queue class, and is adapted from Lea’s book [12]. This method extracts an ele-
ment from the queue. The figure shows an invariant for the class at the beginning

554 E. Rodŕıguez et al.

public class LinkedQueue {
protected /*@ spec_public non_null @*/ LinkedNode head;
protected /*@ spec_public non_null @*/ LinkedNode last;
//@ public invariant head.value == null;

/*@ public normal_behavior
@ requires head == last;
@ assignable \nothing;
@ ensures \result == null;
@ also public normal_behavior
@ requires head != last;
@ assignable head, head.next.value;
@ ensures head == \old(head.next) && \result == \old(head.next.value);
@*/

public synchronized Object extract() {
synchronized (head) {

Object x = null;
LinkedNode first = head.next;
if (first != null) {

x = first.value;
first.value = null;
head = first;

}
return x;

}
}

Fig. 1. JML Specification for the method extract()

of the class declaration. Invariants must be satisfied by the instances of the class
at every method’s pre- and post-state. The figure also shows a behavioral speci-
fication of the method written in JML, without using any of the extensions pro-
posed in this paper. JML’s annotations are written as special Java comments that
begin with an at-sign (@). The specification of the extract() method appears
just before its header. This specification is comprised of two normal_behavior
specification cases, each of which has a requires clause, which gives its pre-
condition, an assignable clause, which gives a frame axiom, and an ensures
clause, which gives its postcondition. The first case applies when the list is empty
at the beginning of the method’s execution (head == last), and the other when
the list is non-empty (head != last). In the first case the method must return
null, without assigning to any locations. Otherwise, the method updates head
to the next node in the queue (head.next), and must return the object that was
contained in that node (since head is a sentinal, as described by the invariant).
To satisfy the invariant the method must also make the value of the new head
null. The method may assign to both head and head.next.value to achieve
this behavior.

The meaning of a JML method specification with two or more specification
cases, combined with “also”, is that the caller has to satisfy the disjunction of
the preconditions in the given specification cases, and the implementation has to
satisfy the postconditions of all specification cases for which the preconditions
held [4, 13]. Thus, in Fig. 1 the caller has no obligations, since the disjunction of
the preconditions of the two specification cases is the tautology “head == last
|| head != last”.

Extending JML for Modular Specification and Verification 555

Internal Interference. Although the specification given in Fig. 1 seems sen-
sible, it is wrong for a multi-threaded environment, because it does not account
for interference. An example of interference is depicted in Fig. 2. The queue is
empty in the method’s pre-state. Since this method is synchronized, the first
instruction it executes is to acquire the lock on this. Then, in this trace, another
thread is immediately scheduled that executes a call to method insert(Object),
which is synchronized on a lock other than this (to allow a fine grained degree
of concurrency), and executes it to completion. When the extract() call in the
first thread resumes the queue is no longer empty and the method will find a
non-null element to extract. Since the list was empty in the pre-state, the first
specification case should apply, but the interference causes a non-null value to
be returned which violates the postcondition of that case.

lock(head)
Post: head != last

Post: \result == null does not hold

extract() completes

insert() executes completely

Call to insert(Object)lock(this)
context switch

Call extract() with Pre: head == last

Thread 1 Thread 2

Fig. 2. Execution of extract() call interleaved with a call to insert(Object)

We call the problem illustrated by Fig. 2 internal interference. This problem
arises when another thread affects the current thread’s execution of a method,
by changing data that the method can observe. Standard Hoare logic does not
allow for such interference, and thus when reasoning about the correctness of the
implementation of a method in Hoare logic, one assumes that properties, such
as the method’s precondition, do not change except by actions of the method
itself.

Runtime and static analysis tools for sequential programs exploit this seman-
tics when they work with just two states: the pre-state (at the beginning of the
method’s execution) and the post-state (at the end). In a multi-threaded setting,
however, such analyses must consider all possible interleavings to safely account
for possible interference. This is considerably more expensive than restricting
reasoning to pre- and post-states; furthermore, it is non-modular.

External Interference. External interference happens when another thread
makes observable state changes between a method call and the method’s entry,
or between the method’s exit and the caller’s resumption. Just as internal inter-
ference can invalidate standard Hoare-style reasoning about the correctness of a
method implementation, external interference can disrupt reasoning about the
correctness of client code that calls that method.

556 E. Rodŕıguez et al.

Resume in caller

Call to extract() context switch

extract() executes completely

Post : \result == false

isEmpty() executes sequentially
Pre : queue has one element

Thread 1 Thread 2

Fig. 3. Execution of extract() call interleaved immediately after call to isEmpty()

Figure 3 illustrates the problem. Suppose the queue has exactly one ele-
ment. The isEmpty() method executes without interleaving and returns false.
However, between the return of isEmpty() and the resumption of the caller,
another thread interleaves a call to extract(), which removes the lone element.
The result is that upon resumption of the caller’s thread, the postcondition no
longer describes the queue correctly, as the queue is now empty. Similar interfer-
ence can happen with respect to the precondition established by the caller and
observed upon method entry. As can be seen from this example, external inter-
ference breaks the modularity of reasoning, thereby rendering existing sequential
analysis techniques inapplicable.

More generally, these types of interference mean that specifications cannot
serve as behavioral abstractions in the presence of concurrency. That is, one
cannot use method specifications to reason about the correctness of an imple-
mentation without knowing some details of its calling context, or reason about
calls to the method without knowing some details of its implementation. To fix
these problems, while still allowing modular reasoning, the specification language
must be enriched.

2.2 Expressing Thread-Safe Behavior

There are a variety of ways that one might incorporate features into a behavioral
specification language to support specification in the presence of concurrency.
Our approach has been motivated primarily by the results of a survey of exist-
ing Java implementations to understand the mechanisms used by developers to
assure proper concurrent execution, and of existing specification features in the
JML language. We wanted to minimally extend JML, and yet enable modular
behavioral specification of a wide range of existing multi-threaded Java imple-
mentations.

Our fundamental observation is that while programmers may use a vari-
ety of mechanisms to achieve thread safety, the core notion of safety is one of
non-interference. Interference can be avoided through the use of synchroniza-
tion, which prevents unwanted interleaving, or by controlling access to data,

Extending JML for Modular Specification and Verification 557

which prevents unwanted access to otherwise shared objects.1 When we speak
of thread safety, we mean either synchronization or controlled access to data, or
some combination of both. We have identified several fundamental notions that
must be included in JML or similar languages to support thread-safe behavioral
specification.

Locking Specifications. Programmers use a variety of locking disciplines and
the language must be rich enough to capture that variety. It is necessary to allow
specification of:

– what locks a method will acquire and release during its execution,
– what locks protect particular parts of an object’s state,
– that some objects are used as locks, and when such lock objects are locked,
– the set of locks held by the current thread, and
– that an object is protected by some lock held by the current thread.

We have also found it necessary to specify the conditions under which a method
may block [14].

Data Confinement Specifications. Excessive locking can reduce parallelism
and hence performance. For this reason, many implementations avoid locking and
instead rely on properties of a program’s data layout to ensure thread safety. It
is necessary to allow specification of:

– what aliasing and ownership patterns exist among objects [15, 16, 17],
– that an object is local to a thread, and
– the effect of a method’s execution on existing locations (i.e., a frame axiom

[18]).

Serializability Specifications. Locking and data confinement specifications
are useful in specifying the conditions under which multi-threaded executions
are equivalent to sequential executions. It is necessary to allow specification of
this high-level serializability property of methods. We have found two differ-
ent strengths of such specification to be useful in practice: atomicity and in-
dependence. These concepts and the extensions to JML that support them are
described in the next sections.

3 Background on Atomicity and Independence

Our approach to addressing the interference problems above is based on the con-
cepts of atomicity [19, 20] and independence [21]. A region of code statements
(e.g., a method body) is said to be atomic if the statements in the region are se-
rializable—that is, if for any execution trace containing the region’s statements

1 We do not treat extra-program forms of concurrency control, such as scheduling.

558 E. Rodŕıguez et al.

(possibly interleaved with statements executed by other threads) there is an
equivalent execution trace where the region’s statements are executed sequen-
tially (i.e., executed without any interleavings from other threads). If a code
region is atomic, then it is sound to reason about its actions as if they occur
in a single atomic step—in essence, allowing one to use traditional sequential
reasoning techniques on the code region. From another point of view, instead
of having to consider a number of intermediate states produced by thread in-
terleavings, for an atomic region it is sound to consider only two states: the
pre-state before the conceptual single atomic step begins, and the post-state af-
ter the conceptual single atomic step completes. That is, any interference from
the other threads is benign, however, the single atomic step may interfere with
other threads’ computations.

There are many ways to establish the atomicity of a code region. In the
next two subsections we describe two popular approaches; these approaches will
motivate the JML notations that we develop in the following sections.

3.1 Lipton’s Reduction Theory

Lipton introduced the theory of left/right movers to aid in proving properties
about concurrent programs [19]. In Lipton’s model, a code region is thought of
as a sequence of primitive statements (e.g., Java bytecodes), which he called
transitions. Proofs about the transitions in a program can be made simpler if
one is allowed to assume that a particular sequence of transitions is indivisible.
To conclude that a program, P , which contains a sequence of transitions, S, is
equivalent to the reduced program, P/S, in which S is modeled as one indivisible
transition, Lipton proposed the notion of a commuting transition. A commuting
transition is a transition that is either a right mover or a left mover. Intuitively,
a transition, α, is a right (left) mover if, whenever α is followed (preceded) by
another transition, β, of a different thread, then α and β can be swapped without
changing the resulting state. Concretely, a lock acquire, such as the beginning
of a Java synchronized block, is a right mover, and the lock release at the end
of such a block is a left mover. Any read or write to a variable or field that is
properly protected by a lock is both a left and right mover, which is termed a
both mover .

To illustrate the application of these ideas, we repeat the example given in
[20]. Consider a method m that acquires a lock, reads a variable x protected by
that lock, updates x, and then releases the lock. Suppose that the transitions of
this method are interleaved with transitions E1, E2, and E3 of other threads,
as shown at the top of Fig. 4. Because the actions of the method m are movers
(acq and rel are right and left movers, respectively, and the lock-protected
assignment to x is a both mover), Fig. 4 implies that there exists an equivalent
execution (shown at the bottom of the figure), where the operations of m are
not interleaved with operations of other threads. Thus, it is safe to reason about
the method as executing in a single atomic step.

One can define an atomic region as one that satisfies the pattern of statements
R∗N?L∗, where R∗ denotes 0 or more right mover statements, L∗ denotes 0 or more

Extending JML for Modular Specification and Verification 559

s s s s s s s s1 2 3 4 5 6 7 8

s s s s1 2 3 4 5 6 7 8s’ s’s’ s’

acq

acq rel

relt = x

t = x x = t+1

E

E

E Ex = t+1

E E

1

1

2 3

2 3

Fig. 4. Left/Right movers and atomic blocks

left mover statements, and N? denotes 0 or 1 statements that are neither left nor
right movers. That is, an atomic region can contain at most one non-commuting
(i.e., possibly interfering) statement. The block shown in Fig. 4 matches this
pattern in the following way: the statement acq is right mover (R), the statement
t = x is both right and left mover so it can stand for right (R), the statement
x = t+1 is both right and left mover so it can stand for left (L), and the statement
rel is left mover. Thus we get RRLL, which fits the pattern.

In other words, an atomic region can have a single externally-observable effect
in its body while it is executed. However, note that an atomic method can have
multiple accesses to heap objects as long as they are either thread local or lock-
protected accesses [22]. This is because accesses to objects local to a thread and
to objects protected by locks cannot be observed by other threads until these
objects become shared or until the locks are released, respectively. Similarly,
lock-acquires and lock-releases on an object that is already locked by a thread
cannot be observed by other threads until that lock is released.

Lipton also stated two technical conditions necessary to prove that the set
of final states of a program P equals the set of final states of the reduced pro-
gram P/S. The first of these, R1, [19–p. 719] states that “if S is ever entered
then it should be possible to eventually exit S.” This is a fairly strong liveness
requirement that can be violated if, for example, S contributes to a deadlock
or livelock, or fails to complete because it performs a Java wait and is never
notified. Restriction R2 is that “the effect of statements in S when together
and separated must be the same.” This is essentially stating an interference-free
property from the other threads for S: any interleavings between the statements
of S do not affect the final store it produces.

3.2 Independent Statements

Statements that are both movers are also referred to as independent statements
since they can commute both to the left and the right of other program state-
ments. We say that a code region is independent if each statement within the
region is independent. Thus, an independent code region satisfies the pattern of
statements I∗, where I∗ denotes 0 or more both mover statements. An indepen-
dent region is totally non-interfering, and thus is trivially atomic.

Our specification methodology for reasoning about method calls within con-
texts will rely on the fact that independent regions have pleasing composability
properties. Sequentially composing two independent regions yields an indepen-

560 E. Rodŕıguez et al.

dent region, but composing two atomic regions may not yield an atomic region
if each region contains a non-mover. Moreover, the sequential composition of
an independent region and an atomic region is an atomic region (since both
movers can serve as either left or right movers). Intuitively, calling a method
M2 from inside of a method M1 represents the sequential composition of three
code regions (the part of M1 before the call, the body of M2, the rest of M1).
Thus, if one takes an atomic method, M1, and inserts into its body a call to an
independent method, M2, then M1 remains atomic. However, if the inserted call
is to an atomic method, M3, then M1 does not necessarily remain atomic.

Finally, we note that for a region to be independent, one does not have to
establish Lipton’s R1 liveness condition to ensure the existence of an equivalent
serialized trace (it is the asymmetric nature of the left and right movers in the
criterion for atomic regions that necessitates the liveness condition, R1).

4 Introducing Concurrency into JML

Our approach for introducing concurrency into JML is to separate the concern
of property specification for methods into two parts: (1) atomicity and inde-
pendence properties, and (2) specification of sequential (or functional) behavior.
This is an old idea, but quite useful. What we claim is new is the language de-
sign, which provides necessary and sufficient constructs to specify a wide range
of multi-threaded programs.

In what follows we describe just the new JML constructs relating to spec-
ification of atomicity and independence and to expressing locking and other
properties specific to multi-threaded programs. We illustrate the new constructs
using examples from Doug Lea’s and Java 1.5’s concurrent libraries.

4.1 Locking Notations

Locking is an important aspect of concurrent behaviors, since it is the usual
mechanism used to achieve atomicity. So we need several notations that allow
for the specification of locking behaviors. These notations also allow modular
checking of atomicity specifications (described in Sec. 4.3).

JML already has several notations that can be used to specify information
about locking. The monitors_for clause allows specifying the locks that protect
the access to a given field. The syntax of this clause is:

〈monitors-for-clause〉 ::= monitors_for 〈ident〉 <- 〈store-ref-list〉 ;

The meaning is that all of the (non-null) locks named in the 〈store-ref-list〉 must
be held by a thread in order to access the field ident. (In JML, a 〈store-ref-list〉 is
a comma-separated list of access expressions, which includes identifiers, field and
array accesses, and various patterns [4].) An example in Sec. 4.4 demonstrates
the use of the monitors_for clause.

Finally, the \lockset() expression returns an object, of type JMLObjectSet,
that represents the set of all locks held by the current thread.

Extending JML for Modular Specification and Verification 561

The first new construct we add to JML is the locks clause. This clause can
appear in the body of a specification case after the heading part (in which the
requires clause appears). Its syntax specifies a list of locks:

〈locks-clause〉 ::= locks 〈store-ref-list〉;
Figure 5 shows the use of the locks clause in the method extract(). The locks
clause accomplishes two different purposes. First, it is an explicit statement of the
locks that the current method acquires (and releases) during its execution. The
meaning is that, on any given execution (where the precondition is satisfied), the
method will lock all the locks in the given list. Second, the locks clause states
an implicit condition for independence. In general, a locks clause of the form:

locks l1, . . . , ln;

desugars to an ensures clause of the form:

ensures \old(\lockset().has(l1) && . . . && \lockset().has(ln))
==> \independent;

Therefore, if another method calls the method with the locks clause in a context
where all the locks in the list are held, then the callee must be guaranteed to be
independent (see Sec. 4.4). In this sense, the locks clause gives a lower bound
on the set of locks that must be held by callers to ensure independent execution
when the method is called. This can help verify a caller’s atomicity specification.
Conversely, the locks clause limits the locks that an implementation of the
method may try to acquire (when the precondition of the specification case it
appears in holds); thus for the implementation the locks clause gives an upper
bound on the set of locks that the method may try to acquire.

For an instance (static) method, the locks clause has a default value of
this (the class object) if the method is specified as synchronized, otherwise it
defaults to \nothing. The default for synchronized methods is useful because
many concurrent methods in Java synchronize on this.

Finally, we add a predicate, \lock_protected, with the following syntax.
〈lock-protected-expression〉 ::= \lock_protected(〈store-ref〉)

An expression such as \lock_protected(o) states that the object referenced by
o is access-protected by some nonempty set of locks, and all of those locks are
held by the current thread. Notice that this is a very strong property: the access
is restricted with respect to the object, not the reference variable, therefore if the
object is aliased, this property states that access to all the aliases is restricted
by the lock-set of this object. The identities of these locks are not specified. This
notation allows one to specify locking behavior, while hiding the details of locks
involved. Verification of \lock_protected(x.f) would use the \monitors_for
clause for f in x’s class.

4.2 Heap Restriction Notations

In addition to locking, thread safety can also be achieved by restrictions on
references. JML’s heap restriction notations are aimed at specifying how local

562 E. Rodŕıguez et al.

public class BetterLinkedQueue {
protected /*@ spec_public non_null rep @*/ LinkedNode head;
protected /*@ spec_public non_null rep @*/ LinkedNode last;
//@ public invariant head.value == null;

/*@ public normal_behavior
@ requires head == last;
@ locks this, head;
@ assignable \nothing;
@ ensures \result == null;
@ also public normal_behavior
@ requires head != last;
@ locks this, head;
@ assignable head, head.next.value;
@ ensures head == \old(head.next) && \result == \old(head.next.value);
@*/

public /*@ atomic @*/ synchronized /*@ readonly @*/ Object extract() {
synchronized (head) {

/*@ readonly @*/ Object x = null;
/*@ rep @*/ LinkedNode first = head.next;
if (first != null) {

x = first.value;
first.value = null;
head = first;

}
return x;

}
}

Fig. 5. Extended JML specification for extract()

variables may refer to objects in the heap, and how these objects may refer
to each other. They allow dealing with issues like representation exposure [16]
and other kinds of unwanted aliasing that would otherwise prevent modularly
checking atomicity specifications. For example, consider the method extract()
in Fig. 1. This method accesses the field head by first acquiring the lock on the
object, so as to ensure atomicity. However, if there is representation exposure,
in particular if there is another reference to the object pointed to by head, then
that alias might be held by another thread. Thus one would have to examine
other code in the program to rule out access by some other thread to the state
of the object head refers to, in particular to the field head.next. In other words,
representation exposure of this sort would necessitate a non-local analysis of the
program to rule out such possible interference.

To prevent these problems we take advantage of the Universe type system
[17], an ownership type system that already exists in an experimental form in
JML [23]. This type system adds the modifiers rep and readonly to declara-
tions.

The rep modifier can be used on field declarations. It states that the object
referenced by the specified field is part of the representation of the given class.
There can be no references from outside an object of the class to such repre-
sentation objects. From outside the class, one can only refer to the enclosing
object, which is the owner of the representation objects. For example, in Fig. 5
the fields head and last are rep fields, therefore there can be no external aliases
to the objects to which these fields refer, and hence no representation exposure.
This enables the modular verification of the atomicity specification.

Extending JML for Modular Specification and Verification 563

/*@ normal_behavior
@ requires c != null && \thread_local(c);
@ assignable elementCount, elementData;
@ ensures elementCount == c.size() && \fresh(elementData);
@also
@ exceptional_behavior
@ requires c == null;
@ assignable \nothing;
@ signals (Exception e) e instanceof NullPointerException;
@*/

public /*@ atomic @*/ Vector(Collection c) {
elementCount = c.size();
elementData = new Object[(int)Math.min((elementCount*110L)/100,Integer.MAX_VALUE)];
c.toArray(elementData);

}

Fig. 6. Extended JML specification for a constructor in java.util.Vector

The readonly modifier is a type modifier. It marks a reference as read-only,
meaning that the object cannot be modified through that reference. Read-only
references are not necessarily owned by an object containing the readonly field,
and it is often the case that such references are aliased externally. The idea is
that only the identity of a readonly object matters to the abstract state of the
enclosing object. (JML will eventually enforce various restrictions on access to
read-only objects in assertions.)

The notations just discussed deal with ownership between objects. Equally
important in concurrent programs is the ownership of object by threads. An
object o is owned by a thread t if only thread t can reach o by a reference chain.
This condition guarantees that there cannot be a race condition on o, because o
is not shared. We introduce the notation \thread_local(o) with the meaning
that o is owned by the current thread. The general syntax is as follows.

〈thread-local-expression〉 ::= \thread_local (〈store-ref〉)

This notation is useful for modular verification of atomicity, because accesses to
thread local objects are independent (non-interfering).

For example, consider the constructor from Java’s Vector class shown in
Fig. 6. In general, constructors are independent because the constructed object
is not reachable from any other thread. However, if the constructor takes object
arguments to initialize the internal state of the constructed object, then its exe-
cution might not be atomic. The problem is that such an argument object might
be concurrently modified by other threads. So, in this example the constructor’s
precondition requires that that the argument, c, be thread local.

4.3 Atomicity Modifier

We introduce atomicity specification into JML with a new method modifier,
atomic. This specifies that, when a method is invoked in a state that meets
its precondition, its implementation must ensure that the resulting execution is
serializable. This modifier is inherited by overriding methods. Fig. 5 shows how
we use this new modifier to specify extract() from Fig. 1.

564 E. Rodŕıguez et al.

public class ArrayBlockingQueue<E> {
private /*@ spec_public non_null rep @*/ final E[] items;
//@ monitors_for items <- lock;
private /*@ spec_public rep @*/ final ReentrantLock lock;

/*@ normal_behavior
@ requires lock.isLocked() && 0 < i && i < items.length;
@ ensures \result == \old((i + 1) % items.length) && \independent;
@*/

final /*@ atomic @*/ int inc(int i) {
return (++i == items.length)? 0 : i;

}

Fig. 7. Extended JML specification for inc()

Checking that a method declared to be atomic is actually atomic can be done
in a variety of ways. For example, one could prove that the code is reducible
by Lipton’s theory [20, 24] or by using the notion of independent transitions.
Another technique is used in the Atomizer [25], which dynamically checks that
lock acquisitions and releases are properly nested and that all accesses to shared
data is lock protected. The monitors_for clause would be used to determine
what locks protect what pieces of data.

By imposing an additional obligation to guarantee serializable executions on
a method’s implementation, the atomic modifier simplifies the implementation’s
proof of functional correctness. The functional correctness proof can assume that
the execution is serializable, thus avoiding internal interference. For example, in
the method extract() specified in Fig. 5, the postcondition of each specification
case must hold only for traces in which the method is executed sequentially.
However, when combined with the additional proof of atomicity, one still gets a
strong correctness guarantee about the complete behavior of the implementation.
This division of proof obligations for implementations allows proofs of functional
correctness to be separated from synchronization details.

From the caller’s point of view, there is no potential for internal interference
by atomic methods, and thus the caller only has to worry about external in-
terference. To avoid external interference, the caller must ensure that objects
needed to preserve the truth of any precondition or postcondition are thread
safe (e.g., locked or local to the caller’s thread [22]). This additional requirement
helps shake out synchronization bugs without heavyweight temporal logic—this
is something that has not been explored in other static/dynamic analyses for
atomicity.

It is also possible for an atomic method to transfer some of its obligation to
ensure atomic execution to the caller, by stating a precondition involving locks
or thread ownership. For example, an atomic method can require some locks to
be held before being called, using a precondition such as \lockset.has(lock),
which says that the current thread holds the lock named lock. Such a precon-
dition may have the added benefit of preventing external interference. Indeed,
having the ultimate clients obtain locks may be sensible from an overall design
standpoint (via an end-to-end argument [26]). Figure 7 show an example of this
case, in which the method inc() transfers the responsibility of holding the lock

Extending JML for Modular Specification and Verification 565

on lock to the caller. (This ability to transfer some obligation to the caller shows
how atomic is different than Java’s synchronized modifier.)

Finally, in many concurrent classes, all methods should be atomic. To allow
a designer to state this, the atomic keyword can be used in a class or interface
declaration. Such a modifier simply states that all the methods declared in the
type’s declaration are atomic. This type modifier is inherited by subtypes.

4.4 Independent Predicate

A method execution is independent if all of its transitions are independent. For
example, accesses to objects local to the thread and accesses to objects that
are protected by locks are all independent transitions, since the other threads
cannot observe such accesses. To specify this property of a method execution,
we introduce a new specification predicate, \independent. This predicate can
only be used in postconditions.

An example that shows how independence can be used to avoid external
interference is java.util.concurrent.ArrayBlockingQueue’s method inc().
This method is specified in Fig. 7. The precondition states that the method
must be called from a context in which lock is locked. Since items is protected
by lock, due to the monitors_for declaration, and since i is a parameter of
the method, no other thread can access the data used by inc() and cause any
interference. Thus, when the precondition is met, this method’s executions are
independent. Furthermore, since the caller must hold the lock, and since the
result is not accessible to other threads, calls cannot suffer external interference.

4.5 Blocking Behavior and Commit Atomicity

In this section we describe notations for handling methods that wait for some
condition to become true before they proceed to take some (atomic) action. Such
methods have what we call a blocking behavior.

Consider the method take(), from ArrayBlockingQueue in Java 1.5, as
shown in Fig. 8. This method takes an element from the queue, but if the list is
empty, it waits until there is an element to remove.

To specify the blocking behavior of methods, we use JML’s when clause
(adapted from Lerner’s work [14]):

〈when-clause〉 ::= when 〈predicate〉 ;

Its meaning is that, if a method is called in a state in which the method’s
when predicate does not hold, the method blocks until this predicate is satisfied
(presumably by an action of a concurrent thread). This specification does not
constrain what protocol is used to wait for the condition to become true; for
example, a busy wait loop might be used. A blocking method specification can
be formalized as a partial action that does not execute until the when predicate
holds, and then atomically transitions from the pre-state to the post-state (as
specified by the pre- and postcondition, etc). The when clause by default has a
value of true (for JML’s heavyweight specification cases).

566 E. Rodŕıguez et al.

/*@ public normal_behavior
@ locks this.lock;
@ when count != 0;
@ assignable items[takeIndex], takeIndex, count;
@ ensures \result == \old(items[takeIndex]) && takeIndex == \old(takeIndex + 1)
@ && count == \old(count - 1);
@*/

public /*@ atomic @*/ E take() throws InterruptedException {
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {

try {
while (count == 0)

notEmpty.await();
} catch (InterruptedException ie) {

notEmpty.signal(); // propagate to non-interrupted thread
throw ie;

}
/*@ commit: @*/ E x = extract();
return x;

} finally {
lock.unlock();

}
}

Fig. 8. Extended JML specification for take()

To check when clauses, we use a special statement label, commit. If this label is
not present in a method, it is implicitly assumed at the method body’s end. This
label gives a commit point for the method; when execution reaches the commit
point, the method is no longer blocked and the rest of the method’s execution
must be atomic. Also, the predicate given in the when clause must hold at the
commit point, but not necessarily during the rest of the method’s execution.
This idea is related to the concepts of commitment in database transactions and
the notion of “commit atomicity” introduced by Flanagan [27].

Figure 8 illustrates the use of the when clause and the commit label. Method
take() removes an element from the queue, and blocks if the queue is empty.
The when clause in Fig. 8 says that the method may proceed only when count
is not zero. The commit point of this method is where the commit label appears,
right after the loop that blocks until the queue is non-empty.

4.6 Notations for Lock Types

Another important set of notations has to do with identifying what classes and
interfaces have instances that are intended to be locks. Such lock objects are
an addition to the implicit reentrant lock in each object that can be acquired
using Java’s synchronized statement. Java 1.5 adds several such types of lock
objects, which support new concurrency patterns. An example is the new class
ReentrantLock, whose instances are specialized locks that are manipulated by
method calls. Such locks can make synchronization more flexible and allow for
more efficient code. In JDK 1.5, users can also define their own locks by imple-
menting the interface java.util.concurrent.locks.Lock.

To deal with these new kinds of locks, JML will consider a type to be lock
type if it is a subtype of the Lock interface. An expression whose static type is

Extending JML for Modular Specification and Verification 567

a lock type is considered to denote a lock object. There is a potential semantic
ambiguity that arises because lock objects also contain Java’s implicit synchro-
nization locks. To resolve this ambiguity we assume that when lock objects are
mentioned in a context where a lock is expected, the specifier always means the
lock object itself, not the implicit synchronization lock it contains. For example,
in a monitors_for clause a lock object expression refers to the lock object itself.

To know when a lock object is locked, we introduce a new type-level decla-
ration, the locked_if clause. Its syntax is as follows:
〈locked-if-clause〉 ::= locked_if 〈predicate〉 ;

Each type that is a subtype of java.util.concurrent.locks.Lock must de-
clare or inherit exactly one locked_if clause. This clause states a predicate that
holds if and only if the given instance of the lock type is in the locked state.

So, for example, for the class ReentrantLock we have:

package java.util.concurrent;
import java.util.concurrent.locks.Lock;
public class ReentrantLock implements Lock, java.io.Serializable {

//@ locked_if isLocked();
/* ... */

}

In ReentrantLock, isLocked is a (pure) method that returns true if the
target instance is locked, and false otherwise. The locked_if clause is used in
the lockset() operator’s semantics. For example, if rl has type ReentrantLock,
then \lockset().has(rl) returns true if and only if rl.isLocked() holds.

4.7 Revisiting External Interference

In Sec. 4.3 we described how the atomic modifier solves the internal interference
problem by providing an abstraction in which other threads did not interleave
during the execution of the method. Now we look at how the rest of the an-
notations help in solving the problem of external interference. As suggested in
Sec. 4.3, the key to preventing this problem is disallowing access from other
threads to the objects mentioned in the pre- and postconditions.

External interference is a problem of interference between two methods: one
method (the caller) calling another method (the callee) and other threads break-
ing the contract between the two of them. To support contract specifications that
account for external interference we consider two cases: an atomic method calling
another atomic method, and a non-atomic method calling an atomic method.
Note that atomic methods can only call atomic methods, and the case where a
non-atomic method calls another non-atomic method, aside from being uncom-
mon, would not be handled by our notations.

In the first case, if an atomic method calls another atomic method, then the
interference between the caller and the callee would be internal interference in
the caller, which is already handled by the atomicity abstraction.

In the second case, when a non-atomic method calls an atomic method, the
caller needs to ensure that the objects needed to preserve the truth of the pre-

568 E. Rodŕıguez et al.

and postcondition are thread safe. We define thread safety by introducing a new
operator, \thread_safe, defined such that

\thread_safe(SR) ≡ \thread_local(SR) || \lock_protected(SR).

That is, SR is thread-safe if it is owned by the current thread or is lock protected.
To avoid external interference, a contract must require that all objects needed
to preserve the truth of the pre- and postcondition are thread-safe. While this
is a strong condition, in our experience it is satisfied by all well-written multi-
threaded code.

As an example of thread safety let us take another look at Fig. 6. In that
example, the specification requires the collection c to be thread local, however
this condition is actually stronger than what is actually needed. The actual
requirement is that the collection be free of interference. Therefore, we can relax
the precondition in the Vector constructor to \thread_safe(c), accounting
for the instances in which the constructor is called with an argument that is
externally protected by a lock.

5 Evaluation

In this section we describe our experiences in applying our JML extensions. We
evaluate their adequacy and efficacy by applying them in a collection of speci-
fication case studies. In these studies, we attempt to write complete behavioral
specifications for a collection of Java classes drawn from the literature that were
designed explicitly for use in multi-threaded programs. These classes use sig-
nificantly more complex concurrency policies than do typical classes, e.g., Java
container classes. Thus, if we can support the specification of rich functional
properties for these classes, then our extensions will be broadly applicable. We
also evaluate the checkability of our JML extensions in a set of verification case
studies. In these studies, we sampled the classes and specifications from our
specification studies and checked them using an extension of the Bogor model
checking framework [28] described below.

The next two sections present the details of these of case studies, give a sum-
mary of the results obtained, and an account of our conclusions. The complete
set of artifacts used in our studies are available from the web [7].

5.1 Specification Case Studies

To assess the adequacy and behavior coverage of the extensions to JML, we
identified a set of of concurrent Java classes and wrote specifications for their
methods using the extended JML. The classes come from multiple sources and
most are implementations of concurrent data structures:

– A bounded buffer, BoundedBuffer (from Hartley [29]).
– Dining philosophers, DiningPhilosophers (from Hartley [29]).
– A linked queue, LinkedQueue (from Lea [12]).

Extending JML for Modular Specification and Verification 569

Table 1. Summary of statistics from specification case studies with the extended JML.
The classes marked with a * belong to Java 1.5’s package java.util.concurrent

Class Name Number of Frequency of annotations
methods atomic \independent locks \thread safe when

BoundedBuffer 3 3 0 2 0 2
DiningPhilosphers 7 7 4 2 0 1
LinkedQueue 7 7 0 7 0 1
RWVSN 8 8 2 4 0 2
java.util.Vector 45 45 4 34 9 0
ArrayBlockingQueue* 19 19 7 15 3 2
CopyOnWriteArrayList* 27 27 6 13 12 0
CopyOnWriteArraySet* 13 13 2 6 5 0
DelayQueue* 17 17 3 14 4 2
LinkedBlockingQueue* 17 17 4 12 1 2
PriorityBlockingQueue* 21 21 4 10 1 1
ConcurrentLinkedQueue* 11 11 2 0 2 4

Total: 195 195 38 119 37 17

– Code for readers-writers, RWVSN (from Lea [12]).
– The class java.util.Vector.
– Eight concurrent classes from java.util.concurrent in Java 1.5.

The 8 classes from java.util.concurrent are particularly important, as they
have fairly complex and varied concurrency patterns and represent the new Java
concurrency paradigm.

Table 1 presents statistics on the specifications we developed. The data shown
is only for the 195 public methods in the studied classes; including private meth-
ods brings the total to over 220. We note that for all methods we were able to
write complete behavioral specifications. So, for this challenging set of concurrent
classes, our extensions appear sufficient for capturing their behavior.

Table 1 also reports the frequency with which we used different groups of
extended JML primitives; these groups were described in the sub-sections of
Sec. 4. Each entry shows the number of methods in the class whose specification
used an annotation in the given group.

We observe that all of the methods studied had specifications that used the
keyword atomic, that is, the methods exhibit the atomicity property. These
results add to existing evidence [25] in support of the conclusion that most Java
methods are intended to execute atomically. This validates our approach to using
atomicity as the central abstraction for extending JML to support concurrency.

The use of \independent is not particularly common in this collection of
classes. We believe that this is due to the fact that methods in these classes gen-
erally have complex concurrency policies. More typical classes with get and set
methods for instance fields would probably yield large numbers of independent
methods, but a broader study of Java classes is needed to confirm this intuition.

The study confirms the popularity of synchronization in enforcing correct
thread-safe class behavior as more than 60% of the methods used the locking
extensions. Use of data confinement is much less common in this study with less
than 20% of the methods using \thread safe annotations.

570 E. Rodŕıguez et al.

Table 2. Summary of statistics from verification case studies with the extended JML.
Classes marked with a * belong to Java 1.5’s package java.util.concurrent

Class Name Number of Checkable Checkable
Methods Atomicity Functionality Coverage Ratio

BoundedBuffer 3 1 3 .67
DiningPhilosphers 7 6 7 .93
LinkedQueue 7 1 7 .57
RWVSN 8 4 8 .75
CopyOnWriteArrayList* 10 5 10 .75
LinkedBlockingQueue* 7 3 7 .71

Total: 42 20 42 .74

We believe that the sparse use of when clause in this study is due to the fact
that most of our classes are container data structures. In most cases, concurrent
data structures have two blocking methods: one that inserts elements but blocks
if the structure is full and another one that removes elements but blocks if the
structure is empty. More varied interfaces for accessing and modifying stored
data will increase the need for this annotation.

The most important result of these studies is the fact that the proposed JML
extensions appear to be both necessary (all annotations are used in the study)
and sufficient (all methods in the study could be specified) for supporting thread-
safe functional specification.

5.2 Verification Case Studies

In previous work [28], we showed how an extensible model checking framework,
called Bogor, could be extended to check complex JML specifications [8], and
how that framework could be independently extended to check atomicity spec-
ifications [9]. We have integrated these two separate extensions to execute si-
multaneously during state-space analysis to check extended JML concurrency
specifications. The main technical novelty of this integration is that postcon-
dition and frame condition checking is enforced only if the current execution
of the method was serial, that is, if the method body was executed without
any interleaving from other threads. So this strategy both checks the functional
specifications and independently assures that all concurrent runs of the method
conform to the atomicity specifications. If either the atomicity specification or
the functional specification are not satisfied, then Bogor reports a specification
violation.

The result of applying this specification checking tool to a subset of the
classes listed in Table 1 are summarized in Table 2. The first column in this table
displays the class name for the particular case study. The second column shows
the total number of methods involved in the case study. For some classes, only
a fraction of the total methods in the class were checked. We selected methods
with diverse functionality instead of checking large numbers of similar methods.

The rest of the columns in the table present data on the degree to which the
tool was capable of reasoning about specified methods. We divided the specifica-

Extending JML for Modular Specification and Verification 571

tion into two parts: the atomicity specification and the functional specification.
The third column in the table shows the number of methods in the class for
which the atomicity specification could be checked, and the next column shows
the number of those for which the functional specification could be checked.
Finally, the last column gives a ratio of specifications checked versus total spec-
ifications written for all methods in a class.

Table 2 shows that the tool could verify all of the functional specifications
for each method in the study. We note that these are strong specifications that
involve quantification over heap elements, checking frame conditions, freshness,
reachability, and calculating the values of memory locations in the pre-state.

Checking of atomicity is not nearly as complete. The tool could verify atom-
icity for only 20 out of the 42 methods. The study included 22 methods that
exhibit a kind of atomicity which Bogor cannot verify. Bogor’s atomicity check-
ing mechanism is based on Lipton’s reduction [19] and transition independence
[9], whereas the 22 uncovered methods in these case studies exhibit a different
type of atomicity. 11 of those 22 methods exhibit commit atomicity as defined by
Flanagan in [27]. In that work, Flanagan described a model checking algorithm
that allows checking commit atomicity specifications. This technique could be
integrated into Bogor, and would yield a coverage ratio of .87.

The other 11 uncheckable methods implement complex concurrency patterns
that our tool could not detect, even if enhanced to detect commit atomicity.
The model checker could be further extended, of course, to include these syn-
chronization patterns and thereby increase checking coverage. But since checking
atomicity is undecidable in general, there will always be some patterns that the
tool could not detect. Fortunately, the complex patterns and challenging concur-
rency classes that we selected for our study are not common in real application
code. Indeed, Flanagan and Freund found that more than 90% of the methods
they analyzed [25] exhibited relatively simple forms of atomicity. Thus we ex-
pect that many real programs specified with extended JML will be amenable
to analysis via model checking. However, a significantly broader evaluation of
the use of JML and its support for analysis will be needed to confirm this
conjecture.

6 Related Work

Perhaps the closest related work to ours is the work on extending Spec# to deal
with multi-threaded programs [30]. The specification language part of Spec# [5],
is similar in many ways to JML, although it is integrated into the programming
language (as in Eiffel [6]). Like JML, Spec# also has an extensive tool set, in-
cluding runtime assertion checking and a verification engine. Although Spec# is
very similar to C#, it is a new programming language that extends and modi-
fies C# in several ways. The most interesting of these changes to C# come in
the ways that Spec# deals with alias control and concurrency control. In both
of these areas, Spec# uses new statements (pack and unpack for alias control,
and acquire and release statements for concurrency control). The treatment

572 E. Rodŕıguez et al.

of alias control is more dynamic than that found in the Universe type system
which JML uses, which may make it more difficult to analyze statically. For con-
currency control, Spec# deals with external interference in a drastic fashion, by
having acquire gain exclusive access to an object, so that it is thread local. The
Spec# discipline solves the internal and external interference problems, and has
a proof of soundness. However, the approach only applies to programs that can
be written following that discipline. The authors list as future work “extending
the approach to deal with other design patterns” [30–Sec. 9]. In contrast, our
work attempts to deal with existing concurrent Java programs, without requiring
that they follow a particular programming discipline.

Ábrahám et al. [31] provide a proof system for multi-threaded Java pro-
grams. Their analysis is sound and tool supported. However, as they rely on
whole-program Owicki-Gries style annotations they do not achieve modularity
in the sense we aim for (i.e., at the level of individual compilation units). Fur-
thermore, their proof system only deals with monitor synchronization, whereas
our approach is applicable to all Java, and accepts a very wide range of synchro-
nization patterns by abstracting away from synchronization conditions. Thus
our approach promises to be more useful for existing Java code.

Robby et al. [8] identified the problem of internal interference described in
Sec. 2. They solved it by refactoring the functional code of a method, into another
method, separating it from the synchronization code. In this way they are able to
check JML specifications upon the refactored method that is always called within
an atomic context. However, this technique is both limited in its applicability
and inconvenient for users.

Freund and Qadeer implement a modular analysis for atomic specifications
on multi-threaded software [32]. The idea of using a label to mark the commit
points of a method, similar to the commit label introduced in Sec. 4.5, comes
from their work. They achieve modularity by annotating shared variables with
an access predicate, and by using the concepts of reduction to link a procedure
to its specification. They translate a multi-threaded program into a sequential
program in which atomic procedures are executed sequentially. However, JML
is more expressive than the specification language they used.

Hatcliff et al. [9] developed a technique to verify atomicity annotations using
model checking. Wang and Stoller [33] provide two atomicity detection algo-
rithms based on runtime analysis: one based on Lipton’s reduction [19] and an-
other based on a sophisticated pattern matching mechanism. However, this sys-
tem only provides verification of atomicity specifications. The verification tool
described in Sec. 5 can be viewed as a natural extension to these techniques,
which also checks functional specifications.

7 Conclusions and Future Work

We have extended JML by adding notations that allow the verification of multi-
threaded Java programs. The overall approach is to use the concept of atomicity,
from Lipton’s reduction theory for parallel programs. We have shown how the

Extending JML for Modular Specification and Verification 573

added annotations support the concept of atomicity and allow the specification
of locking behavior. In addition, we have shown how the concept of atomicity
can be used to avoid the problems of internal and external interference, and
thus to support modular reasoning. We have described our success in writing
extended JML specifications of existing Java classes and have reported results
on the implementation of a tool that leverages these language extensions to verify
behavioral specifications of multi-threaded programs.

We are planning on extending and continuing this work along several lines.
On the JML language side, we are planning to work on a formalization of all the
new language constructs presented in this paper, and introduce a formal modular
analysis for behavioral specifications of multi-threaded programs. Some details,
such as how to extend JML’s concept of pure methods to allow for locking
[3] also need to be worked out. Also, we are studying other ways to improve
concurrency support in JML. For example, one way in which JML could be
further improved is the addition of temporal logic specification operators based
on specification patterns [34] as in BSL (Bandera Specification Language) [35].
There are synchronization pattern implementations, such as those presented in
[36], for which it is not clear whether the extensions presented in this work
are sufficient, and that might require JML to be extended with temporal logic
annotations to be properly specified.

On the tool support side, the same basic division of labor described in Sec. 5
for model checking, could be used to adapt JML’s runtime assertion checking tool
[37] to our JML extensions. This tool instruments Java programs with additional
instructions that check method pre- and postconditions, invariants, etc. The idea
would be to add checks from the Atomizer tool [25], which checks that program
traces conform to Lipton’s atomicity pattern. By separately checking for atomic
executions, the runtime assertion checker could carry on as before, assuming
that atomic methods were executed sequentially.

We plan to integrate this work into the JMLEclipse framework [38] which is
an Eclipse-based front-end for JML verification engines (in particular, it will be
the front-end for our JML model checking tool). Another possible path for future
work is to extend other JML tools, such as ESC/Java2 or other verification tools
(e.g., [39]) to incorporate the new features.

Acknowledgments

This work was supported in part by: the U.S. Army Research Office (under grant
DAAD190110564), by DARPA/IXO’s PCES program (AFRL Contract F33615-
00-C-3044), by NSF (CCF-0306607, CCF-0341179, CCF-0428078, CCF-0429149,
CCF-0429567, CCF-044167), and Lockheed Martin. Thanks to Curtis Clifton,
David Cok, Suresh Jagannathan, Joe Kiniry, Rustan Leino, Todd Wallentine
and the ECOOP program committee for comments on earlier drafts.

574 E. Rodŕıguez et al.

References

1. Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G.T., Leino, K.R.M.,
Poll, E.: An overview of JML tools and applications. International Journal on
Software Tools for Technology Transfer (STTT) (2004) To appear.

2. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: A behavioral
interface specification language for Java. Technical Report 98-06y, Iowa State
University, Department of Computer Science (2004) See www.jmlspecs.org.

3. Leavens, G.T., Cheon, Y., Clifton, C., Ruby, C., Cok, D.R.: How the design of JML
accommodates both runtime assertion checking and formal verification. Science of
Computer Programming 55 (2005) 185–208

4. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D.R., Kiniry, J.:
Jml reference manual. Department of Computer Science, Iowa State University.
Available from http://www.jmlspecs.org (2005)

5. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: An
overview. In: Proceedings of the International Workshop on Construction and
Analysis of Safe, Secure and Interoperable Smart Devices. (2004) To appear.

6. Meyer, B.: Object-oriented Software Construction. Second edn. Prentice Hall, New
York, NY (1997)

7. SAnToS: SpEx Website. |http://spex.projects.cis.ksu.edu— (2003)
8. Robby, Rodŕıguez, E., Dwyer, M., Hatcliff, J.: Checking strong specifications using

an extensible software model checking framework. In: Proceedings of the 10th In-
ternational Conference on Tools and Algorithms for the Construction and Analysis
of Systems. Volume 2988 of Lecture Notes in Computer Science., Springer (2004)
404–420

9. Hatcliff, J., Robby, Dwyer, M.: Verifying atomicity specifications for concurrent
object oriented software using model checking. In: Proceedings of the 5th Interna-
tional Conference on Verification, Model Checking, and Abstract Interpretation.
Volume 2937 of Lecture Notes in Computer Science., Springer (2004) 175–190

10. Pugh, W.: Fixing the java memory model. In: Proceedings of the ACM 1999
Conference on Java Grande, New York, NY, USA, ACM Press (1999) 89–98

11. Flanagan, C., Freund, S.N.: Type-based race detection for java. In: Proceedings
of the ACM SIGPLAN 2000 Conference on Programming Language Design and
Implementation, New York, NY, USA, ACM Press (2000) 219–232

12. Lea, D.: Concurrent Programming in Java: Second Edition. Addison-Wesley (2000)
13. Raghavan, A.D., Leavens, G.T.: Desugaring JML method specifications. Technical

Report 00-03d, Iowa State University, Department of Computer Science (2003)
14. Lerner, R.A.: Specifying Objects of Concurrent Systems. PhD thesis, School of

Computer Science, Carnegie Mellon University (1991) TR CMU–CS–91–131.
15. Boyland, J., Noble, J., Retert, W.: Capabilities for sharing. In: Proceedings of

the 15th European Conference on Object Oriented Programming. Volume 2072 of
Lecture Notes in Computer Science., Springer-Verlag (2001) 1–27

16. Noble, J., Vitek, J., Potter, J.: Flexible alias protection. In: Proceedings of the 12th
European Conference on Object Oriented Programming. Volume 1445 of Lecture
Notes in Computer Science., Springer-Verlag (1998) 158–185

17. Müller, P., Poetzsch-Heffter, A.: Universes: A type system for alias and depen-
dency control. Technical Report 279, Fernuniversität Hagen (2001) Available from
www.informatik.fernuni-hagen.de/pi5/publications.html.

18. Borgida, A., Mylopoulos, J., Reiter, R.: On the frame problem in procedure spec-
ifications. IEEE Transactions on Software Engineering 21 (1995) 785–798

Extending JML for Modular Specification and Verification 575

19. Lipton, R.J.: Reduction: a method of proving properties of parallel programs.
Communications of the ACM 18 (1975) 717–721

20. Flanagan, C., Qadeer, S.: Types for atomicity. In: Proceedings of the 2003 ACM
SIGPLAN International Workshop on Types in Languages Design and Implemen-
tation, ACM Press (2003) 1–12

21. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (2000)
22. Dwyer, M.B., Hatcliff, J., Robby, R.Prasad, V.: Exploiting object escape and lock-

ing information in partial order reduction for concurrent object-oriented programs.
Formal Methods in System Design 25 (2004) 199–240

23. Dietl, W., Müller, P.: Universes: Lightweight ownership for jml. Journal of Object
Technology (2005) To appear.

24. Flanagan, C., Qadeer, S.: A type and effect system for atomicity. In: Proceedings
of the ACM SIGPLAN 2003 Conference on Programming Language Design and
Implementation, ACM Press (2003) 338–349

25. Flanagan, C., Freund, S.N.: Atomizer: a dynamic atomicity checker for multi-
threaded programs. In: Proceedings of the 31st ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages, ACM Press (2004) 256–267

26. Saltzer, J.H., Reed, D.P., Clark, D.D.: End-to-end arguments in system design.
ACM Transactions on Computer Systems 2 (1984) 277–288

27. Flanagan, C.: Verifying commit-atomicity using model-checking. In: Proceedings
of the 11th International SPIN Workshop on Model Checking of Software. Volume
2989 of Lecture Notes in Computer Science., Springer (2004) 252–266

28. Robby, Dwyer, M.B., Hatcliff, J.: Bogor: An extensible and highly-modular model
checking framework. In: Proceedings of the 9th European Software Engineering
Conference held jointly with the 11th ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering. Volume 28 number 5 of SIGSOFT Softw. Eng.
Notes., ACM Press (2003) 267–276

29. Hartley, S.: Concurrent Programming - The Java Programming Language. Oxford
University Press (1998)

30. Jacobs, B., Leino, K.R.M., Schulte, W.: Verification of multithreaded object-
oriented programs with invariants. In: Proceedings of The ACM SIGSOFT Work-
shop on Specification and Verification of Component Based Systems, ACM Press
(2004) To appear.

31. Ábrahám, E., de Boer, F.S., de Roever, W.P., Steffen, M.: A tool-supported proof
system for multithreaded java. In: Proceedings of the International Symposia on
Formal Methods for Components and Objects. Volume 2852 of Lecture Notes in
Computer Science., Springer (2002) 1–32

32. Freund, S.N., Qadeer, S.: Checking concise specifications for multithreaded soft-
ware. Journal of Object Technology 3 (2004) 81–101

33. Wang, L., Stoller, S.D.: Run-time analysis for atomicity. In: Proceedings of the
Third Workshop on Runtime Verification (RV). Volume 89(2) of Electronic Notes
in Theoretical Computer Science., Elsevier (2003)

34. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for
finite-state verification. In: Proceedings of the Second Workshop on Formal Meth-
ods in Software Practice. (1998) 7–15

35. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Robby: Expressing checkable properties
of dynamic systems: The Bandera Specification Language. International Journal
on Software Tools for Technology Transfer 4 (2002) 34–56

576 E. Rodŕıguez et al.

36. Deng, X., Dwyer, M.B., Hatcliff, J., Mizuno, M.: Invariant-based specification,
synthesis, and verification of synchronization in concurrent programs. In: Proceed-
ings of the 24th International Conference on Software Engineering (ICSE 2002),
New York, NY, USA, ACM Press (2002) 442–452

37. Cheon, Y., Leavens, G.T.: A runtime assertion checker for the Java Modeling
Language (JML). In: Proceedings of The International Conference on Software
Engineering Research and Practice, CSREA Press (June 2002) 322–328

38. SAnToS: JMLEclipse Website. |http://jmleclipse.projects.cis.ksu.edu— (2004)
39. Burdy, L., Requet, A., Lanet, J.L.: Java applet correctness: A developer-oriented

approach. In: Proceedings of the 12th International Symposium of Formal Meth-
ods Europe. Volume 2805 of Lecture Notes in Computer Science., Springer-Verlag
(2003) 422–439

Derivation and Evaluation of Concurrent Collectors

Martin T. Vechev1, David F. Bacon2, Perry Cheng2, and David Grove2

1 Computer Laboratory, Cambridge University,
Cambridge CB3 0FD, U.K

2 IBM T.J. Watson Research Center,
P.O. Box 704, Yorktown Heights, NY 10598, U.S.A

Abstract. There are many algorithms for concurrent garbage collection, but they
are complex to describe, verify, and implement. This has resulted in a poor under-
standing of the relationships between the algorithms, and has precluded system-
atic study and comparative evaluation. We present a single high-level, abstract
concurrent garbage collection algorithm, and show how existing snapshot and
incremental update collectors, can be derived from the abstract algorithm by re-
ducing precision. We also derive a new hybrid algorithm that reduces floating
garbage while terminating quickly. We have implemented a concurrent collector
framework and the resulting algorithms in IBM’s J9 Java virtual machine prod-
uct and compared their performance in terms of space, time, and incrementality.
The results show that incremental update algorithms sometimes reduce memory
requirements (on 3 of 5 benchmarks) but they also sometimes take longer due to
recomputation in the termination phase (on 4 of 5 benchmarks). Our new hybrid
algorithm has memory requirements similar to the incremental update collectors
while avoiding recomputation in the termination phase.

1 Introduction

The wide acceptance of the Java programming language has brought garbage collected
languages into the mainstream. However, the use of traditional synchronous (“stop the
world”) garbage collection is limiting the domains into which Java and similar lan-
guages can expand. The need for concurrent garbage collection is primarily being driven
by two trends: the first is increased heap sizes, which make the pauses longer and less
tolerable; the second is the increase in the use of, and complexity of, real-time systems,
for which even short pauses are often unacceptable. Therefore there is need for rapid
improvement in various kinds of incremental and concurrent collector technology.

Unfortunately, concurrent garbage collectors are one of the more difficult concur-
rent programs to construct correctly. The study of concurrent collectors began with
Steele [27], Dijkstra [14], and Lamport [20].

Concurrent collectors were considered paradigmatic examples of the difficulty of
constructing correct concurrent algorithms. Steele’s algorithm contained an error which
he subsequently corrected [28], and Dijkstra’s algorithm contained an error discovered
and corrected by Stenning and Woodger [14]. Furthermore, some correct algorithms [9]
had informal proofs that were found to contain errors [25].

A.P. Black (Ed.): ECOOP 2005, LNCS 3586, pp. 577–601, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

578 M.T. Vechev et al.

These problems also manifest themselves in practice because concurrent bugs gen-
erally have a non-deterministic effect on the system and are non-repeatable, so that
connecting the cause of the error to the observed effect is particularly difficult.

Many incremental and concurrent algorithms have been introduced in the last 30
years [1, 3, 4, 6, 7, 10, 11, 12, 13, 16, 17, 18, 19, 21, 23, 24], but there has been very little
comparative evaluation of the properties of the different algorithms due to the com-
plexity of implementing even one algorithm correctly. As noted in [2], because of these
constraints, current state-of-the-art concurrent systems are generally not quantitatively
compared against each other and the exact relationships among the different concurrent
schemes are largely unknown.

For example, early collectors were all examples of incremental update collectors
which “chase down” modifications to the object graph that are made by the program
during collection. Yuasa [29] introduced snapshot collectors, which do not attempt to
collect garbage allocated after collection begins, but do not require any rescanning of
the object graph. Thus, snapshot collectors trade off reliable termination for a potential
increase in floating garbage. However, costs and benefits relative to incremental update
techniques have not been systematically studied.

This paper presents a high-level algorithm for concurrent collection that subsumes
and generalizes several previous concurrent collector techniques. This algorithm is sig-
nificantly more precise than previous algorithms (at the expense of constant-factor in-
creases in both time and space), and more importantly yields a number of insights into
the operation of concurrent collection. For instance, the operation of concurrent write
barriers can be viewed as a form of degenerate reference counting; in our algorithm, we
do true reference counting and are thereby able to find live data more precisely.

Existing algorithms can then be viewed as instantiations of the generalized algo-
rithm that sacrifice precision for compactness of object representation and speed of the
collector operations (especially the write barriers).

Additionally, we argue that all of the existing concurrent algorithms fundamentally
share a deeper structure. And there is a whole continuum of existing algorithms, which
we have not yet explored, but could be uncovered if we start from such a structure.
Moreover, by having a common abstract algorithm, much of the construction of the
practical collector will be simplified.

The contributions of this paper are:

– A generalized, extendable, abstract concurrent collection algorithm, which is more
precise than previous algorithms;

– A demonstration of how the abstract algorithm can be instantiated to yield existing
snapshot and incremental update algorithms;

– A new snapshot algorithm (derived from the abstract algorithm) that allocates ob-
jects unmarked (“white”) and reduces floating garbage without re-scanning of the
heap required by incremental update algorithms;

– An implementation of four concurrent collectors in a production-quality virtual
machine (IBM’s J9 JVM product): Snapshot (after Yuasa), two incremental- update
(after both Dijkstra and Steele), and our hybrid snapshot algorithm; and

– A quantitative experimental evaluation comparing the performance of the different
algorithms.

Derivation and Evaluation of Concurrent Collectors 579

2 An Abstract Collector

This section presents the abstract collector algorithm. The algorithm is designed for
maximum precision and flexibility, and keeps much more information per object than
would be practical in a realistic implementation. However, the space overhead is only
a constant factor, and thus, does not affect the asymptotic complexity of the algorithm,
while the additional information allows a potential reduction in complexity.

Similarly, a number of operations employed by the abstract algorithm also have con-
stant time overheads that would be undesirable in a realistic collector. In particular, there
is no special treatment of stack variables: they are assumed to be part of the heap and
therefore every stack operation may incur a constant-time overhead for the collector to
execute an associated barrier operation. There are a number of collectors for functional
languages (such as ML and Haskell) that treat the stack in exactly this way.

Our generalized concurrent collection algorithm makes use of the framework of Ba-
con et al. [5]: they showed that for synchronous (“stop the world”) garbage collection,
tracing and reference counting can be considered as dual approaches to computing the
reference count of an object. Tracing computes a least fixpoint, and reference counting
computes a greatest fixpoint. The difference between the greatest and least fixpoints is
the cyclic garbage. In most practical tracing collectors, the reference count is collapsed
into a single bit.

Furthermore, they showed that all collectors could be considered as a combination
of tracing and reference counting, and that any incrementality is due to the use of a
reference counting approach with its write barriers.

This insight is now extended to concurrent tracing collectors: we show that they are
also a tracing/reference counting hybrid. The collector traces the original object graph
as it existed at the time when collection started, but does reference counting for pointers
to live objects that could be lost due to concurrent mutation.

The abstract algorithm makes use of the variables depicted in Table 1. In the discus-
sion that follows, we elaborate more on the semantics of each shared variable.

Table 1. Shared variables, |N| is object size, |P| is maximum number of pointers in the heap and
|H| is the number of objects in the heap

Shared Variable Description Computed By Value Domain

Global Variables

Phase Current Collector phase Collector [Idle, Tracing, Sweeping]
Hue Scanned Part of the Heap Collector [0, |H|]

Per-Object Variables

Marked Mark flag Collector Boolean
SRC Scanned reference count Mutator [0, |P|]

Shade Scanning progress within object Collector [0, |N|]
Recorded Recorded in buffer by barrier Mutator Boolean

DontSweep Allocated after Hue Mutator Boolean

580 M.T. Vechev et al.

2.1 Restrictions and Assumptions

The algorithms we discuss are non-moving and concurrent, but not parallel. That is, the
collector is single-threaded. The ideas derived from this discussion, however, are easily
extendable to algorithms using multiple spaces, such as generational ones.

Furthermore, the algorithm performs synchronization with atomic sections rather
than isolated atomic (compare-and-swap) operations. Atomic sections are relatively ex-
pensive on a multiprocessor, so that although the algorithm can be executed on a mul-
tiprocessor it is better suited to a uniprocessor system based on safe points, in which
low-level atomicity is a by-product of the implementation style of the run-time system.

Additionally, we assume that the concurrency between the mutators and the col-
lector is bounded by a single cycle. This is a common underlying assumption in most
practical algorithms. Essentially, this means that all mutator operations started in collec-
tor cycle N finish in that cycle. They do not carry over to cycle N + 1, for example. No
pipelining between the collector phases is assumed: sweeping is followed by marking.

For the sake of presentation, we also make a number of simplifying assumptions
about the heap. We assume that all heap objects are the same size S and consist only of
collector meta-data and object data fields which are all pointers. The fields of an object
X are denoted X[1] through X[S].

2.2 Tracing

The abstract algorithm is shown in Fig 1 and 2. We begin by describing the outer col-
lection loop and the tracing phase of collection cycle.

The Collect() procedure is invoked to perform a (concurrent) garbage collec-
tion. When it starts, the Phase of the collector is Idle, and the first thing it does is to
atomically mark the root object and set the collector phase to Tracing. Atomicity is
required because mutators can perform operations dependent on the collection phase.

Because all variables live in the heap, there is only a single root that must be marked
atomically. In a realistic collector that avoided write barriers on stack writes, this single
operation would be replaced by atomic marking of all of the roots – which could be on
stacks or on global variables.

The core of the algorithm is the invocation of Trace(), which is performed re-
peatedly until the concurrently executing mutators have not modified the object graph
in a way that could result in unmarked live objects.

Tracing in our algorithm is very similar to the tracing in a synchronous collector: it
repeatedly gets an object from the mark stack and scans it.

Shades of Grey. In the Scan() procedure the first major difference appears. Like
a standard tracing collector, we iterate over the fields of the object and mark them.
However, as each field is read, the Shade of the object is incremented.

The use of shades is one of the generalizations of our algorithm. Most concurrent
collectors use the well-known tri-color abstraction: an object is white if it has not been
seen by the collector, grey if it has been seen, but all of its fields have not been seen,
and black if both it and its fields have been seen.

The color of an object represents the progress of the tracing wavefront as it sweeps
over the graph. However, the tri-color abstraction loses information because it does not

Derivation and Evaluation of Concurrent Collectors 581

Collect()
atomic

Mark(root);
Phase = Tracing;

do
Trace();

while (ProcessBarriers());

atomic
ProcessBarriers());
Trace();
Phase = Sweeping;

Sweep();
Phase = Idle;

Trace()
while(! markStack.empty())

Obj = markStack.pop();
Scan(Obj);

Scan(Obj)
for (field = 1; field <= Obj.Size; field++)

atomic
Ptr = Obj[field];
Obj.Shade = field;

Mark(Ptr);

Mark(Obj)
if (! Obj.Marked)

markStack.push(Obj);
Obj.Marked = true;

ProcessBarriers()
retrace = false;
atomic

while (true)
if (barrierBuffer.empty()) return retrace;
Obj = barrierBuffer.remove();
Obj.Recorded = false;
if ((INSTALLATION_COLLECTOR && Obj.SRC == 0) ||

(DELETION_COLLECTOR && Obj.SRC == 0 && isLeaf(Obj)))
continue;

if (! Obj.Marked)
Mark(Obj);
retrace = true;

Fig. 1. Abstract Collector Code

582 M.T. Vechev et al.

Sweep()
for (i = 1; i <= Heap.Size; i++)

Hue = i;
Obj = Heap[i];
if (! Obj.Marked && ! Obj.DontSweep)

FREE(Obj)
Reset(Obj)

Hue = 0;

Reset(Obj)
Obj.Shade = Obj.SRC = 0;
Obj.Marked = Obj.Recorded = Obj.DontSweep = false;

atomic WriteBarrier(Obj, field, New, isAllocated)
if (Phase == Tracing)

Old = Obj[field];

if (field < Obj.Shade) // Already scanned by collector
if (! New.Marked)

if (DELETION_COLLECTOR)
if (isAllocated)

Remember(New);
else

if (! New.Recorded)
Remember(New);

New.SRC++;
if (! Old.Marked)

Old.SRC--;
else if (DELETION_COLLECTOR && ! Old.Marked

&& ! Old.Recorded &&
(!isLeaf(Obj) || (isLeaf(Obj) && Old.SRC > 0)))

Remember(Old);
Obj[field] = New;

atomic AllocateBarrier(Obj, field, New)
Reset(New);
if (Phase == Sweeping)

if (Heap.free >= Heap.Hue)
New.DontSweep = true;

else
WriteBarrier(Obj, field, New, true);

Remember(Obj)
BarrierBuffer.append(Obj);
Obj.Recorded = true;

Fig. 2. Abstract Mutator Code

Derivation and Evaluation of Concurrent Collectors 583

track the progress of sweeping within the object. Fundamentally, the synchronization
between the collector and the mutator depends on whether an object being mutated
has been seen yet by the collector. Therefore, by losing information about the marking
progress, the precision of the algorithm is compromised.

The Shade of an object is simply a generalization of the tri-color abstraction: objects
are still white, grey, or black, but there are many shades of grey. The shade represents
the exact progress of marking within the object. When Shade is 0, the object is white.
When it is the same as the number of fields in the object, the object is black. We will
describe how the shade information is used when we present the write barrier executed
by the mutator.

Once the Scan() procedure has updated the shade, it marks the target object. The
Mark() procedure pushes the object onto the mark stack if it was not already marked.

2.3 Mutator Interaction

We now turn to the interaction between the mutator and collector by considering the
actions of the mutator when it changes the object graph. The connectivity graph can be
modified by both pointer modification and object allocation.

Write Barrier. The write barrier is depicted by the procedure WriteBarrier() in
Fig 2. In our presentation of the algorithm, the entire write barrier is atomic. Finer-
grained concurrency is possible, but is not discussed in this paper.

The write barrier takes a pointer to the object being modified, the field in the object
that is being modified, the new pointer that is being stored into the object, and a flag
indicating whether the new pointer refers to an object that was just allocated.

If the collector is not in its tracing phase, it simply performs the write: because it is
the tracing phase that determines reachability of objects, only object graph mutations
during tracing can affect reachability (object graph additions – via allocation – require
some additional synchronization, which is described below).

An object can be protected either (1) when a pointer to it is stored or (2) when a
pointer to it is overwritten. We call saving the pointer at 1 an installation barrier and
saving the pointer at 2 a deletion barrier. The Dijkstra-style barrier is an instance of an
installation barrier; the Yuasa-style barrier is an instance of a deletion barrier.

Earlier, we described our collector as a combination of tracing and reference count-
ing. The reference counting is done in the write barrier. In particular, we keep a count of
the number of references to an unmarked object from scanned portions of the heap. This
is called the Scanned Reference Count or SRC. The SRC is one of the most important
aspects of our abstract algorithm and allows for a number of interesting insights.

The SRC allows us to defer reachability decisions from the time of a write bar-
rier to the time when collector tracing is finished. For example, if a pointer to an ob-
ject is installed into the scanned portion of the heap, and subsequently removed from
the scanned portion of the heap, then it can not possibly affect the liveness of the
object.

Object Allocation. Besides pointer assignments, the mutator can also add objects to
the connectivity graph. Similarly to pointer assignments, the allocation interacts with

584 M.T. Vechev et al.

the tracing phase. In addition, allocation also interacts with the sweeping phase of the
collector. This is performed in the procedure AllocateBarrier() in Fig 2.

In terms of reachability, if the collector is in its tracing phase, object allocation
can be seen as just another pointer modification event. The main difference between
allocation and pointer writes is that upon allocation we know that the new pointer is
unique. We also know that the new object does not contain any outgoing pointers.

During the sweeping phase, the collector iterates over the heap, reclaims all unreach-
able objects and resets the state of the live objects. We assume that we can designate
which parts of the heap the collector has passed indicated by the variable Heap.Hue.
The variable is similar to Shade, except Shade is applied per object while Hue is ap-
plied per heap. That is, we have one Hue variable. Similarly to Shade, the variable is
monotonic within the same collector cycle.

If the mutator allocates during the collector’s sweeping phase, we require a mecha-
nism to protect the object from being collected erroneously. The field DontSweep indi-
cates if the object has been allocated in a part of the heap that the collector has yet to
reach in its sweeping action.

2.4 Lost Object Problem

In a concurrent interleaving between the application and the collector, the program can
accidentally hide pointers during collector heap marking. A mutator can store a pointer
into a portion of the heap the collector has already scanned, and subsequently destroy
all paths from an unscanned reachable portion of the heap to that object. The problem
can be broken down into hiding directly and transitively reachable objects. For illustra-
tion purposes an object with a black color is one that the collector has marked reachable
and has scanned all of its children. A white-colored object is one that the collector has
not yet reached.

The sequence for directly hidden objects is depicted in Fig. 3. Each state of the graph
is shown in time steps. In the initial state, three are objects: scanned object Y, unscanned
but reachable object X and object Z which is not yet marked, but is reachable only from
X via pointer a. In step D1, a mutator copies pointer a and stores it into the scanned
object Y resulting in pointer b. In step D2, the mutator removes the only pointer to Z
from an unscanned but reachable object X. The mutator is then immediately preempted
by the collector and in step D3, the collector processes object X, turns it black (scanned)
and assumes that its marking phase is completed. Next, in step D4, the collector starts
its sweeping phase and erroneously frees object Z, although Z is reachable from Y via
pointer b. In this case we say that object Z is directly hidden from the collector.

Y X

Z
a

ROOTS

Y X
a

ROOTS

b
Z

Y X

ROOTS

b
Z

Y X

ROOTS

b
Z

MUT GC
Y X

ROOTS

b

GCMUT

D4: Collector incorrectly
 frees object Z

D1: Mutator stores
 pointer b into
 scanned object Y

D2: Mutator removes
 pointer a from
 unscanned object X

D3: Collector scans
 object X

Fig. 3. Erroneous collection of live object Z via deletion of direct pointer a from object X

Derivation and Evaluation of Concurrent Collectors 585

Y
P Q

R
c

ROOTS

P Q
c

ROOTS

e
R

P Q

ROOTS

R

P Q

ROOTS

e
R

S
d

S
d

S
d

S
de

MUT MUT GC
P Q

ROOTS

e

GC

T4: Collector incorrectly
 frees object S

T1: Mutator stores
 pointer e into
 scanned object P

T2: Mutator removes
 pointer c from
 unscanned object Q

T3: Collector scans
 object Q

Fig. 4. Erroneous collection of live object S via deletion of pointer c from object Q which transi-
tively reaches S through R

Alternatively, an object can be hidden transitively. This case is illustrated in Fig. 4.
In the initial state, object P is scanned and Q, R, and S are reachable but not yet seen.
Starting from this state, in step T1, the mutator introduces pointer e from a scanned and
visited object P to object S. In step T2, the mutator destroys the unscanned pointer c
from Q to R, essentially, destroying the only path starting from Q to object S. Next, in
step T3, the collector preempts the mutator and scans object Q as shown and assumes
to have finished the tracing phase. In step T4, the collector incorrectly frees object S. In
this case we say that object S was transitively hidden from the collector.

The lost object problem consists of two main events in time: storing a pointer to
the particular object to be lost and in a subsequent step destroying all other paths to
that object. The two well-known solutions to this problem operate at either of these
two steps. They either operate at state D1/T1 or at state D2/T2. Dijsktra’s and Steele’s
solutions operate at states D1/T1 and aim to prevent the un-acknowledged introduction
of pointers from scanned portions of the heap to reachable but unmarked objects. They
essentially speculate that a pointer destruction will occur sometime in the future, and
this will lead to hiding of the object. Alternatively, solutions can operate at steps D2/T2.
When a pointer is destroyed as in steps D2 and T2, we reason that a pointer to the
object must have been introduced earlier and make the target of the overwritten object
reachable. This is the solution chosen by Yuasa. For example, Yuasa would make Z
live when pointer a is removed in step D2 or pointer c is removed in step T2. In the
transitive case, even though object R might have become unreachable when the pointer
is destroyed in step T2, Yuasa’s solution requires that object R is kept live as a potential
only path left to the hidden object S.

2.5 Design Alternatives

The abstract algorithm maintains rich object and heap-level information. This section
attempts to provide an intuitive understanding of the abstract algorithm.

The essence of the abstract algorithm is that it allows for deferring reachability deci-
sions from the mutator to the collector. That is, in the write barrier the mutator detects a
potential problem and nominates a candidate pointer for the collector. Subsequently, be-
fore the termination of its tracing phase, the collector examines the nominated pointers
and optionally discards unnecessary candidates. The specific choices of which point-

586 M.T. Vechev et al.

ers are selected by the mutator and which pointers are processed by the collector are
discussed in the following sections.

Mutator Selection. When a mutator hits the write barrier, it can protect an object using
either the installation choice or the deletion choice. Intuitively, to protect an object,
the mutator speculates about reachability, since it has no knowledge of how the graph
changes before the collector has finished tracing. In the abstract algorithm, the mutator
detects a potential problem, but does not make explicit decisions whether the object is
reachable at the end of tracing.

If the installation choice is utilized, the object is nominated by the mutator as soon
as the SRC becomes > 0, thereby, protecting the object directly rather than transitively.
The installation choice speculates that right after the SRC becomes > 0, the only path
to the object from an unscanned, but reachable object will be destroyed. Immediately
after nominating the pointer, the SRC could be decremented back to zero effectively
undoing the previous operation.

For the deletion approach, if a pointer in an unscanned object is overwritten, an-
other object can become hidden either transitively or directly. If the SRC(X) is > 0 and
a pointer to object X is overwritten from an unscanned portion of the heap, we need to
protect object X directly. Therefore, the mutator must nominate this pointer. Alterna-
tively, if the SRC(X) is 0, we might need to protect some transitively reachable object
from X. The key is to recognize that if X does not contain any outgoing pointers, then
no object can be hidden transitively. In such cases, we do not need to nominate X.

Determining whether object X is a leaf can be done by using the type of the object.
Examples of acyclic types are scalar arrays as well as newly allocated objects before
pointers are stored into them. Objects of acyclic types are leaves for their entire lifetime
while newly allocated objects can be leaves only temporarily.

Moreover, even if object X is not a leaf, a write barrier could possibly perform nested
checks and determine that at, for example, two-levels deep all objects pointed from X
are leaves and their SRC is 0. In this case, we can again refrain from nominating the
overwritten X pointer.

In some way, it would be logical to make a conclusion that the deletion choice should
be more precise, since it always reasons about an event which has already occurred:
the SRC of some object has become > 0. The installation choice speculates about the
future, that may be at some point an unscanned pointer will be destroyed. Although a
deletion collectors reasons about past event and should have more information, it has
no practical way of determining those transitive objects whose SRC > 0. In contrast,
the installation choice always has an immediate access to the critical object.

Besides pointer events, the mutator can modify the connectivity graph via object al-
location. Allocation can be seen as an instance of a write barrier with special knowledge
that the target pointer is unique. For installation choice collectors, allocation events
are treated exactly as all pointer events. For deletion choice collectors, if the result-
ing pointer from an allocation request is stored into a scanned portion of the heap, it
is possible that the object will be lost. We can then think of allocation as a normal
pointer store, except that immediately after the pointer store into a scanned region of
the heap, an unscanned virtual pointer to the object is overwritten. Since the virtual
event cannot be captured by the barrier, we simulate it in the barrier. The flag isAl-

Derivation and Evaluation of Concurrent Collectors 587

located is passed specifically for this reason from the AllocateBarrier() to the
WriteBarrier() procedure.

Characterizing graphs that allow different barrier choices per object is an interesting
though primarily theoretical question. It is generally not possible to make that decision
arbitrary without some local knowledge of the graph.

Finally, if all barriers occur on leaf objects, the deletion choice will always require
us to nominate fewer pointers. Of course, in both barrier choices precisely the same
number of objects will be marked live. This can be logically explained by the fact
that in both cases, the immediate object is available during the pointer store therefore
we can reason locally about reachability. In that case, for leaf objects, the decision of
which barrier to use can be made per-object rather than per-collector-cycle. We do not
deal with this topic further.

Collector Choice. Once the collector has finished the initial tracing of the heap, there
could be a number of unmarked candidates nominated by the mutator. It is possible that
in between the time when the mutator has nominated a candidate and the collector sees
it, the candidate is no longer necessary.

Similarly to the mutator’s pointer selection mechanism, the collector also uses a
mechanism to filter out unnecessary candidates. This selection mechanism for the col-
lector is the same as that for the mutator. This can be seen in the write barrier processing
phase, the procedure ProcessBarriers() in Fig. 1.

Although the collector uses the same mechanism as the mutator, it is possible that
candidates nominated by the mutator are ignored by the collector. For example, if the
installation choice is used and if the object’s SRC is > 0, when the collector sees such
pointers, the corresponding object must be retraced. If the object’s SRC is 0 however,
then the object was recorded by the mutator, but before tracing finished, its SRC dropped
to 0. Such objects are skipped by the collector in this phase. They have either become
garbage or are live but hidden. In the latter case, the object is reachable transitively from
a chain of reachable objects starting at an object whose SRC is > 0. We therefore only
need to re-trace objects whose SRC is > 0. Similar reasoning although with a different
selection criteria is applied to the deletion choice.

Maintaining an accurate SRC has several advantages. First, the SRC prevents us
from inducing floating garbage. That is because at the time a pointer store occurs, the
mutator nominates objects that could be potentially hidden from the collector. It need
not make an explicit decision whether they will actually be reachable once the tracing is
complete. The reachability is left to the collector when the barrier tracing phase occurs.
It is because of the SRC that the mutator does not need to make such explicit decisions
about reachability. Secondly, the collector must start re-scanning only from specific
objects. For example, for the installation choice it does not need to consider objects
whose SRC is 0.

3 Transformations: Trading Precision for Efficiency

The abstract algorithm of the previous section provides a much higher degree of preci-
sion than previously published and implemented algorithms, but it is also impractical.

588 M.T. Vechev et al.

In this section we describe how practical collectors can be derived via orthogonal trans-
formations of the abstract collector. Since the transformations are orthogonal, and since
the reduction in precision can be modulated, this framework allows the derivation of a
much broader set of algorithms than have previously been described, as we will show
in the following section.

The transformations presented are (1) reduction in write barrier overhead by treating
multiple pointers as roots; (2) reduction in root processing by eliminating re-scanning
of the root set; (3) reduction in object space overhead and barrier time overhead by
reducing the size of the scanned reference count (SRC); (4) reducing object space over-
head by reducing the precision of the per-object shade; (5) conflation of shade and SRC
to further reduce object space overhead and speed up the write barrier.

These transformations are not strictly semantics-preserving, since the set of col-
lected objects is changed. However, they are invariant-preserving in that live data is
never collected (the collector safety property).

3.1 Root Sets: Eliminating Write Barriers

In the abstract algorithm, all memory is reached from a single root. Thus stacks and
global variables are treated as objects like any other. Such an approach is actually used
in some implementations of functional programming languages [12]. However, in sys-
tems with a significant level of optimization, the cost of such an approach is prohibitive
because the mutation rate of the stack is generally extremely high and every stack mu-
tation must include a write barrier.

Therefore, we can transform an abstract algorithm with a uniform treatment of mem-
ory into an algorithm which partitions memory into two regions: the roots and the heap.
The roots generally include the stack and may also contain the static variables and other
distinguished pointer data.

In common parlance the static variables are generally considered to be roots, but if
they are barriered then they are in effect treated as fields of the “global variable object”,
and only the pointer to that “object” is a true root. From the point of view of the root
transformation, the only issue is that the memory is partitioned into two sets, the roots
and the heap, such that there are no pointers from the heap into the roots.

In the abstract collector, there is a single root pointer. Therefore, examining the root
is an inherently atomic operation. With the addition of multiple roots, they must either
be processed atomically or a further transformation must be applied to incrementalize
root processing [15]. In this work we restrict ourselves to algorithms with atomic root
processing.

In particular, at the beginning of every collection, we stop the mutators and mark
all heap objects directly reachable from roots, placing them on the work queue (mark
stack). Subsequently, when the roots are mutated, no write barrier is executed.

Since the roots are processed atomically at the beginning of collection, they are in
effect a scanned object. However, since we no longer perform a barrier on mutation, the
SRC field of objects referenced by mutated roots is no longer guaranteed to be correct
and they will not have been placed in the barrier buffer. Therefore, the algorithm must
be adjusted to correct or accommodate this imprecision.

Derivation and Evaluation of Concurrent Collectors 589

The imprecision can be corrected by atomically re-scanning the roots before barrier
processing. Consider a sequence of stores into a particular root pointer. These stores
must be treated like stores into a scanned portion of the heap, so that the SRC of the in-
stalled and overwritten pointers must be incremented and decremented, respectively. If
we rescan the roots, then any pointers which were scanned previously will have already
been marked, and the SRC will be unaffected.

When a pointer to an unscanned object is stored into a root for the first time, the
pointer that is being overwritten must point to a marked object, since all direct referents
of roots are marked atomically at the start of collection. Thus the SRC of the overwritten
pointer would not have changed if the write had been barriered. However, the SRC of
the newly installed pointer would have been incremented, but if the roots are rescanned
this pointer will be discovered and since it points to an unmarked object it is known to
be a new pointer, and the SRC is incremented. Thus in the case of a single store to a
root, the SRC is correct.

Inductively, if there are multiple stores to a root, then each subsequent store will
cause the SRC of the overwritten pointer to be decremented and the SRC of the installed
pointer to be incremented. The decrement will cancel the increment that was performed
on the same pointer when it was previously installed. Therefore, a sequence of stores
to a particular root pointer will result in the SRC of all objects except the last one to
remain unchanged. 1

Since that object is found by rescanning, rescanning will compute an accurate SRC,
and the transformation that separates the memory into roots and heap leaves the preci-
sion of the algorithm unchanged.

3.2 Root Rescan Elimination

As we have just shown, the special treatment of roots does not affect the precision of
the collector if root re-scanning is used to correct the SRC. However, re-scanning is
undesirable because it increases the running time of the algorithm.

If root re-scanning is eliminated, then the SRC values may be under-approximations
(because the increment of the final pointer stored in a root will have been missed). Since
increments may keep objects live that would otherwise have been collected, this means
that any reclamation of an object based on its SRC being 0 is unsafe. Therefore, the
algorithm must be conservative in such cases and precision will be sacrificed.

Furthermore, when an installation barrier is used the installation of pointers into
the scanned portion of the heap is what causes them to be remembered in the barrier
buffer for further tracing during barrier processing. This means that regardless of the
imprecision of the SRC, objects that would have had a non-zero SRC must be seen
during barrier processing. In effect, this means re-scanning can not be eliminated for
algorithms that use the installation barrier.

For algorithms that use the deletion barrier, the only pointers to new objects that
are remembered in the write barrier are the newly allocated objects. Therefore, as long

1 This is the same reasoning that was applied by Barth to eliminate redundant reference count
updates at compile time [8], and by Levanoni and Petrank to remove redundant reference count
updates between epochs in a concurrent reference counting collector [22].

590 M.T. Vechev et al.

as those objects are placed in the barrier buffer by the allocator, and the SRC-based
computation in the barrier processing is eliminated, then the root re-scanning can be
safely eliminated.

Since no collector decisions are based on the value of the SRC, it is redundant and
can be eliminated. The result is an algorithm with more floating garbage (in particu-
lar, all newly allocated objects are considered live), of which Yuasa’s algorithm is an
example.

3.3 Shade Compression

The shade of an object represents the progress of the collector as it processes the indi-
vidual pointers in the object. The precision of the shade can always safely be reduced
as long as the processing of the pointers in the object in the write barrier treats the
imprecise shade conservatively.

In particular, since many objects have a small number of pointers N , it is efficient
to treat the shade which originally had the range [0, N] as the set {0, [1 . . . N − 1], N}.
These three values represent an object for which collector processing has not yet begun,
is in progress, or has been completed. This is the standard tri-color abstraction intro-
duced by Dijkstra, where the three values are called white, grey, and black, respectively.

When N is small, the chance is low that the mutator will store a pointer into the ob-
ject currently being processed by the collector, so the reduction in precision is likely to
be low. However, with large objects (such as pointer arrays) the reduction in precision
can be more noticeable. Some collectors therefore treat sections of the array indepen-
dently, in effect mapping equal-sized subsections of the array into different shades.

3.4 Scanned Reference Count Compression

The scanned reference count (SRC) can range from 0 to the number of pointers in the
system. However, the number of references to an object is usually small, and the SRC
will be even lower (since it only counts references from the scanned portion of the heap
to unmarked objects). Therefore, the SRC can be compressed and the loss of precision
is likely to be low.

However, the compression must be conservative to ensure that live objects are not
collected. This is accomplished by making the SRC into a “sticky” count [26]: once it
reaches its maximum value, it is never decremented. As a result, the SRC is an over-
approximation, which is always safe since it will only cause additional objects to be
treated as live.

An important special case for collectors that use an installation barrier is a one-bit
SRC, since in this case the SRC becomes equivalent to the Recorded flag, allowing
those two fields to be collapsed.

3.5 Conflation of Shade and Scanned Reference Count

In a collector using an installation barrier with a one-bit sticky SRC and tri-color shade,
an object with a stuck SRC must be scanned by the collector. Similarly, a grey object
must be scanned by the collector. Thus the meaning of these two states can be collapsed

Derivation and Evaluation of Concurrent Collectors 591

and the grey color can be used to indicate a non-zero (stuck) SRC, which also represents
the Recorded flag.

This is in fact the representation used by most collectors that have been imple-
mented. In effect, they have collapsed numerous independent invariants into a small
number of states. This helps to understand why such algorithms are bug-prone: collaps-
ing the states corresponding to algorithmic invariants relies on subtle transformations
and simultaneously reduces redundancy in the representation.

4 Using Transformations to Derive Practical Collectors

In this section, we derive various practical algorithms by applying the previously dis-
cussed transformations to the abstract collector algorithm. Some of the schemes are
well-known concurrent algorithms such as Dijkstra and Yuasa, while others are new
derivations.

4.1 Derivation of a Dijkstra Algorithm

The Dijkstra algorithm is an instance of an abstract installation collector and to derive
it we apply the following transformations:

1. Root Sets transformation
2. Shade compression to tri-color
3. SRC compression to a single sticky bit
4. Conflation of Shade and SRC

Although at the end of the transformation steps, we arrive at a practical Dijkstra al-
gorithm, the intermediate steps also represent valid algorithms with different precision.

The compressions of SRC and Shade can lead to floating garbage. However, unlike
Shade and SRC compressions, the Conflation transformation does not lead to increased
floating garbage. On the other side, it reduces, both, space consumption in the header
of the object, and, complexity of the write barrier.

The Root Sets transformation also preserves the treatment of allocated objects. When
a new object is allocated and stored into the roots, the mutator will not nominate the
pointer because the store will occur into a scanned partition (roots) and the write barrier
is not active on the roots. If the pointer to the allocated object gets stored in the heap,
then it will be processed in the mutator write barrier, similarly to all other objects exist-
ing at collection startup. If the allocated object dies before the roots are rescanned, the
collector will not mark that object as live.

A Steele-like collector is similar to a Dijkstra collector except that its transformation
covers a wider range of rescanning. A Steele algorithm is not limited to rescanning only
the roots, but can also rescan heap partitions. However, the barrier processing phase and
the selection criteria are exactly the same as in the Dijkstra collector.

4.2 Derivation of a Yuasa Algorithm

Our second derived collector is a Yuasa snapshot algorithm. The Yuasa algorithm is an
instance of a deletion collector. The algorithm can be derived by applying the following
transformations to the abstract collector:

592 M.T. Vechev et al.

MarkRoots()
while (! roots.end())
Obj = roots.get();
Mark(Obj);

MarkRootsDirect()
while (! roots.end())
Obj = roots.get();
if (Obj.isAllocatedInThisCycle)

Obj.Color = black;

Collect()
atomic

MarkRoots();
Phase = Tracing;

do
Trace();

while (ProcessBarriers());

atomic
MarkRootsDirect();
ProcessBarriers());
Trace();
Phase = Sweeping;

Sweep();

Phase = Idle;

atomic WriteBarrier(Obj, field, New)
if (Phase == Tracing)

Old = Obj[field];

if (New.Color == white && New.isAllocatedInThisCycle)
New.Color = black;

if (Obj.Color != black && Old.Color == white
&& !Old.Recorded)
Remember(Old);

Obj[field] = New;

Fig. 5. Pseudo Code For The Hybrid Collector

Derivation and Evaluation of Concurrent Collectors 593

During barrier processing, deletion collectors can skip objects whose SRC is 0 and
are leafs. However, since Root Rescan elimination prevents the roots rescanning pro-
cess, an accurate SRC cannot be computed, and subsequently the collector selection
criteria cannot be applied. Therefore, in order to preserve the safety property of the ab-
stract collector, the collector must mark all overwritten pointers and rescan from them.
The SRC is removed since it cannot serve its primary purpose: a guide for the collector
selection criteria.

The Yuasa collector is the most conservative approach to floating garbage. It does
not allow any destruction in the connectivity graph once the collector has started and it
effectively allocates only reachable object (black).

One fundamental difference between Yuasa and Dijkstra algorithms is that in the
presence of a Root Sets transformation, installation collectors must never use the Root
Rescan elimination, while deletion collectors have no requirement to apply it. The res-
canning in deletion collectors is done mostly to eliminate floating garbage, albeit, at the
expense of triggering work to rescan the roots.

Also, although at the end of our derivation, we arrived at a Yuasa algorithm, the
result of every intermediate step is a valid deletion collector.

4.3 Derivation of a Hybrid Algorithm

The third derived practical algorithm is the Hybrid collector. The Hybrid algorithm is
an instance of an abstract deletion collector. The Hybrid algorithm can be derived by
applying the following transformations:

1. Root Sets transformation
2. Shade compression to tri-color
3. SRC compression to a single sticky bit
4. Conflation of Shade and SRC
5. Root Rescan elimination for existing objects
6. Over approximate Shade

The first two transformation steps are the same as for the Yuasa algorithm. However,
in the Hybrid algorithm, we utilize the rescanning of roots only for newly allocated
objects. The roots rescan transformation is parameterized to be active only for existing
objects. The idea is to obtain a deletion Yuasa algorithm for the existing heap graph
while maintaining a less restricted policy for newly allocated objects, similarly to the
Dijkstra collector. By eliminating rescanning for existing objects, we can remove the
SRC for those objects. Whenever the collector encounters an existing object during its
barrier processing phase it will always mark the object, without applying any selection
criteria.

After step 5 we still have a working deletion algorithm, but we would like to ob-
tain more of the properties of Yuasa, namely, bounded re-tracing of newly allocated
objects triggered by roots rescanning. To do that, we perform an additional transforma-
tion where if a newly allocated pointer is stored into the heap, the object is marked as

1. Root Sets transformation

2. Shade compression to tri-color

3. Root Rescan Elimination

594 M.T. Vechev et al.

of the destination object as indicated in step 6. With this, the collector now only needs
to trace from existing objects and not from newly allocated objects. Newly allocated
objects are essentially allocated white and colored black either during roots rescanning
or during a pointer store in the heap.

The Hybrid collector is particularly suited for hard real-time applications, where it
is desirable to achieve a bound on the roots rescanning work while reducing the floating
garbage.

The skeleton code for the algorithm is illustrated in Fig. 5. MarkRootsDirect
is the procedure that performs the one-level deep rescanning procedure for the roots
partition while the isAllocatedInThisCycle bit is used to differentiate between newly
allocated and existing objects.

5 Experimental Evaluation

We have implemented a concurrent collector framework in IBM’s J9 virtual machine.
The collector supports both standard work-based collection (for every a units of alloca-
tion the collector performs ka units of collection work) as well as time-based collection
(the collector runs for c out of q time units). This collector has been built as a second-
generation Metronome real-time collector [4].

jess db javac mtrt jack geomean
0.0

0.5

1.0

1.5

Sp
ac

e
N

or
m

al
iz

ed
 t

o
H

yb
ri

d

Maximum Space Usage

Yuasa
Dijkstra
Steele
Hybrid

Fig. 6. Summary of the maximal space usage of the four collector algorithms. Data is normalized
to the Hybrid algorithm. Shorter bars represent lower space usage

reachable for this collection cycle. This simply means that if a newly allocated pointer
is stored into the heap, we always increase the SRC, ignoring what the color of the des-
tination object is. This is clearly a trivial over-approximation transformation on Shade

Derivation and Evaluation of Concurrent Collectors 595

jess db javac mtrt jack geomean
0.0

0.5

1.0

1.5

T
im

e
N

or
m

al
iz

ed
 t

o
H

yb
ri

d

Execution Time

Yuasa
Dijkstra
Steele
Hybrid

Fig. 7. Summary of overall execution time of the four collector algorithms. Data is normalized to
the Hybrid algorithm. Shorter bars represent faster execution time

better basis for comparison with other work. Isolated experiments have shown that the
trends we report for work-based collection generally hold for time-based collection as
well.

Our collector is implemented in a J2ME-based system that places a premium on
space in the virtual machine. Therefore, we use the microJIT rather than the much
more resource-intensive optimizing compiler. The microJIT is a high-quality single-
pass compiler, producing code roughly a factor of 2 slower than the optimizing JIT.

The system runs on Linux/x86, Windows/x86, and Linux/ARM. The measurements
presented here were performed on a Windows/x86 machine with a Pentium 4 3GHz
CPU and 500MB of RAM.

The measurements presented all use a collector to mutator work ratio of 1.5, that is,
for every 6K allocated by the mutator, the collector processes 9K. Collection is triggered
when heap usage reaches 10MB.

We have measured the SPECjvm98 benchmarks, which exhibit a fairly wide range
of allocation behavior (with the exception of compress, which performs very little allo-
cation).

However, in this paper we will concentrate on work-based collection because its use
is more common in more widely used soft real-time systems, and is likely to provide a

Figure 7 summarizes the performance of the four collector algorithms. The left
graph shows the maximum heap size, the right graph total execution time. Both graphs
are normalized to the Hybrid algorithm, and shorter bars represent better performance
(less heap usage or shorter execution times). A geometric mean is also shown. These
graphs summarize more detailed performance data which can be found in the Appendix.

596 M.T. Vechev et al.

5.1 Space Consumption

As expected, the incremental update collectors (Dijkstra and Steele) often require less
memory than the snapshot collector (Yuasa). This is because the incremental update
collectors allocate white (unmarked) and only consider live those objects which are
added to the graph. However, there is no appreciable difference on 2 of the five bench-
marks (jess and jack), which confirms that the space savings from incremental update
collectors are quite program-dependent.

The use of Steele’s write barrier instead of Dijkstra’s theoretically produces less
floating garbage at the expense of more re-scanning, since it marks the source rather
than the target object of a pointer update. This means that if there are multiple updates
to the same object, only the most recently installed pointer will be re-scanned.

However, the Steele barrier only leads to significant improvement in one of the
benchmarks (db). This is because db spends much of its time performing sort oper-
ations. These operations permute the pointers in an array, and each update triggers a
write barrier. With a Steele barrier, the array is tagged for re-scanning. But with a Di-
jkstra barrier, each object pointed to by the array is tagged for re-scanning. As a result,
there is a great deal more floating garbage because the contents of the array are being
changed over time.

Finally, the hybrid collector which we introduced, a snapshot collector that allocates
white (unmarked), significantly reduces the space overhead of snapshot collection: the
spaceoverheadoverthebestcollectorisatworst13%(forjavac),whichisquitereasonable.

5.2 Execution Time

While the incremental update collectors are generally assumed to have an advantage
in space, their potential time cost is not well understood. Incremental update collec-
tors may have to repeatedly re-scan portions of the heap that changed during tracing.
Termination could be difficult if the heap is being mutated very quickly.

Our measurements show that incremental update collectors do indeed suffer time
penalties for their tighter space bounds. The Dijkstra barrier causes significant slow-
down in db, javac, mtrt, and jack. The Steele barrier is less prone to slowdown – only
suffering on javac – but it does suffer the worst slowdown, about 12%. These measure-
ments are total application run-time, so the slow-down of the collector is very large –
this represents about a factor of 2 slowdown in collection time.

Once again, our hybrid collector performs very well – it usually takes time very
close to the fastest algorithm. Thus the hybrid collector appears to be a very good com-
promise between snapshot and incremental update collectors.

Because its only rescanning is of the stack, it suffers no reduction in incrementality
from a standard Yuasa-style collector, which must already scan the stack atomically.
Its advantage over a standard snapshot collector is that it significantly reduces floating
garbage by giving newly allocated objects time to die. But because it never rescans the
heap, it avoids the termination problems of incremental update collectors and is still
suitable for real-time applications.

As shown by the more detailed graphs in the appendix, the primary reason why the
Yuasa and Hybrid algorithms are quicker is that the Dijkstra and Steele collectors both
scan significantly more data during barrier buffer processing.

Derivation and Evaluation of Concurrent Collectors 597

The benchmark with the most unusual behavior is jack, for which the Yuasa snap-
shot collector uses the least memory, while the Steele algorithm uses the least time. We
are still in the process of investigating this behavior.

6 Conclusions

We have presented an abstract concurrent garbage collection algorithm and showed
how incremental update collectors in the style of Dijkstra, and snapshot collectors in
the style of Yuasa, can be derived from this abstract algorithm by reducing precision
through various transformations.

We have also used the insights from this formulation to derive a new type of Hy-
brid snapshot collector which allocates its objects unmarked, and therefore induces less
floating garbage.

Wehave implementedall fourcollectors inaproductionvirtualmachineandcompared
their time and space requirements. Incremental update collectors do indeed suffer less
floating garbage, while the pure snapshot collector sometimes uses significantly more
memory. The Hybrid collector greatly reduces the space cost of snapshot collection.

Incremental update collectors can significantly slow down garbage collection, lead-
ing to noticeable slow-downs in application execution speed. Our new Hybrid snapshot
collector is generally about as fast as the fastest algorithm. For most applications, this
collector will represent a good compromise between time and space efficiency, and has
the notable advantage of snapshot collectors in terms of predictable termination.

We hope this work will spur further systematic study of algorithms for concurrent
collection and further quantitative evaluation of those algorithms.

References

[1] APPEL, A. W., ELLIS, J. R., AND LI, K. Real-time concurrent collection on stock mul-
tiprocessors. In Proceedings of the SIGPLAN’88 Conference on Programming Language
Design and Implementation (Atlanta, Georgia, June 1988). SIGPLAN Notices, 23, 7 (July),
11–20.

[2] AZATCHI, H., LEVANONI, Y., PAZ, H., AND PETRANK, E. An on-the-fly mark and sweep
garbage collector based on sliding views. In Proceedings of the 18th ACM SIGPLAN con-
ference on Object-oriented programing, systems, languages, and applications (Oct 2003),
ACM Press, pp. 269–281.

[3] BACON, D. F., ATTANASIO, C. R., LEE, H. B., RAJAN, V. T., AND SMITH, S. Java
without the coffee breaks: A nonintrusive multiprocessor garbage collector. In Proc. of the
SIGPLAN Conference on Programming Language Design and Implementation (Snowbird,
Utah, June 2001). SIGPLAN Notices, 36, 5 (May), 92–103.

[4] BACON, D. F., CHENG, P., AND RAJAN, V. T. A real-time garbage collector with low
overhead and consistent utilization. In Proceedings of the 30th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (New Orleans, Louisiana,
Jan. 2003). SIGPLAN Notices, 38, 1, 285–298.

[5] BACON, D. F., CHENG, P., AND RAJAN, V. T. A unified theory of garbage collection. In
Proceedings of the ACM Conference on Object-Oriented Systems, Languages, and Appli-
cations (Vancouver, British Columbia, Oct. 2004), pp. 50–68.

598 M.T. Vechev et al.

[6] BAKER, H. G. List processing in real-time on a serial computer. Commun. ACM 21, 4
(Apr. 1978), 280–294.

[7] BAKER, H. G. The Treadmill, real-time garbage collection without motion sickness. SIG-
PLAN Notices 27, 3 (Mar. 1992), 66–70.

[8] BARTH, J. M. Shifting garbage collection overhead to compile time. Commun. ACM 20,
7 (July 1977), 513–518.

[9] BEN-ARI, M. Algorithms for on-the-fly garbage collection. ACM Trans. Program. Lang.
Syst. 6, 3 (1984), 333–344.

[10] BOEHM, H.-J., DEMERS, A. J., AND SHENKER, S. Mostly parallel garbage collection. In
PLDI ’91: Proceedings of the ACM SIGPLAN 1991 conference on Programming language
design and implementation (1991), ACM Press, pp. 157–164.

[11] BROOKS, R. A. Trading data space for reduced time and code space in real-time garbage
collection on stock hardware. In Conference Record of the 1984 ACM Symposium on Lisp
and Functional Programming (Austin, Texas, Aug. 1984), G. L. Steele, Ed., pp. 256–262.

[12] CHEADLE, A. M., FIELD, A. J., MARLOW, S., PEYTON JONES, S. L., AND WHILE,
R. L. Non-stop Haskell. In Proc. of the Fifth International Conference on Functional
Programming (Montreal, Quebec, Sept. 2000). SIGPLAN Notices, 35, 9, 257–267.

[13] CHENG, P., AND BLELLOCH, G. E. A parallel, real-time garbage collector. In Proceedings
of the ACM SIGPLAN 2001 conference on Programming language design and implemen-
tation (Jun 2001), ACM Press, pp. 125–136.

[14] DIJKSTRA, E. W., LAMPORT, L., MARTIN, A. J., SCHOLTEN, C. S., AND STEFFENS,
E. F. M. On-the-fly garbage collection: an exercise in cooperation. Commun. ACM 21, 11
(1978), 966–975.

[15] DOMANI, T., KOLODNER, E. K., LEWIS, E., SALANT, E. E., BARABASH, K., LAHAN,
I., LEVANONI, Y., PETRANK, E., AND YANORER, I. Implementing an on-the-fly garbage
collector for java. In Proceedings of the second international symposium on Memory man-
agement (Oct 2000), ACM Press, pp. 155–166.

[16] DOMANI, T., KOLODNER, E. K., AND PETRANK, E. A generational on-the-fly garbage
collector for Java. In Proc. of the SIGPLAN Conference on Programming Language Design
and Implementation (June 2000). SIGPLAN Notices, 35, 6, 274–284.

[17] HENRIKSSON, R. Scheduling Garbage Collection in Embedded Systems. PhD thesis, Lund
Institute of Technology, July 1998.

[18] HUDSON, R. L., AND MOSS, E. B. Incremental garbage collection for mature objects.
In Proc. of the International Workshop on Memory Management (St. Malo, France, Sept.
1992), Y. Bekkers and J. Cohen, Eds., vol. 637 of Lecture Notes in Computer Science.

[19] JOHNSTONE, M. S. Non-Compacting Memory Allocation and Real-Time Garbage Collec-
tion. PhD thesis, University of Texas at Austin, Dec. 1997.

[20] LAMPORT, L. Garbage collection with multiple processes: an exercise in parallelism. In
Proc. of the 1976 International Conference on Parallel Processing (1976), pp. 50–54.

[21] LAROSE, M., AND FEELEY, M. A compacting incremental collector and its performance
in a production quality compiler. In ISMM [?], 1–9.

[22] LEVANONI, Y., AND PETRANK, E. An on-the-fly reference counting garbage collector for
java. In Proceedings of the 16th ACM SIGPLAN conference on Object oriented program-
ming, systems, languages, and applications (Oct 2001), ACM Press, pp. 367–380.

[23] NETTLES, S., AND O’TOOLE, J. Real-time garbage collection. In Proc. of the SIG-
PLAN Conference on Programming Language Design and Implementation (June 1993).
SIGPLAN Notices, 28, 6, 217–226.

[24] NORTH, S. C., AND REPPY, J. H. Concurrent garbage collection on stock hardware. In
Functional Programming Languages and Computer Architecture (Portland, Oregon, Sept.
1987), G. Kahn, Ed., vol. 274 of Lecture Notes in Computer Science, pp. 113–133.

Derivation and Evaluation of Concurrent Collectors 599

[25] PIXLEY, C. An incremental garbage collection algorithm for multi-mutator systems. Dis-
tributed Computing 3, 1 6, 3 (Dec. 1988), 41–49.

[26] ROTH, D. J., AND WISE, D. S. One-bit counts between unique and sticky. In ISMM [?],
pp. 49–56.

[27] STEELE, G. L. Multiprocessing compactifying garbage collection. Commun. ACM 18, 9
(Sept. 1975), 495–508.

[28] STEELE, G. L. Corrigendum: Multiprocessing compactifying garbage collection. Com-
mun. ACM 19, 6 (June 1976), 354.

[29] YUASA, T. Real-time garbage collection on general-purpose machines. Journal of Systems
and Software 11, 3 (Mar. 1990), 181–198.

Appendix: Detailed Performance Data

This section includes graphs that illustrate for each benchmark, the behavior of the four
collectors with respect to space utilization and barrier-induced work.

Figure 8 shows space usage over time by javac. Each data point represents the
amount of data in use when the tracing and barrier processing terminated, but before
sweeping. This represents the point of maximum memory use. The Yuasa-style collec-
tor consistently uses more memory than the others, but it also terminates the quickest
(at termination, memory consumption is 0).

The reason why the Yuasa and Hybrid algorithms are quicker can easily be seen
in Figure 9: the Dijkstra and Steele collectors both scan significantly more data during
barrier buffer processing. Note that barrier-induced scanning is still significant even for
the pure snapshot (Yuasa) collector. This is because pointers to some objects that are
part of the snapshot may have been overwritten and not discovered during marking.
Therefore, the snapshot it “completed” during barrier buffer processing. However, the
total work will be based on the live data in the object graph at the time collection began,
whereas in the incremental update algorithms it varies.

The rescanning overhead that we observed above for the db benchmark with Dijk-
stra’s barrier can be seen clearly in Figure 11: rescanning typically causes about 20%
of the heap to be re-visited, while rescanning for the other three collectors is negligible.

Details for the remaining benchmarks are found in Figures 12 through 17.

 0

 5e+006

 1e+007

 1.5e+007

 2e+007

 2.5e+007

 0 2000 4000 6000 8000 10000 12000 14000 16000

U
se

d
M

em
or

y

Time

Yuasa
Dijkstra
Steele
Hybrid

Fig. 8. Space vs. Time: javac

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 2000 4000 6000 8000 10000 12000 14000 16000

R
es

ca
n

W
or

k

Time

Yuasa
Dijkstra
Steele
Hybrid

Fig. 9. Collector Rescanning Work: javac

600 M.T. Vechev et al.

 0

 5e+006

 1e+007

 1.5e+007

 2e+007

 2.5e+007

 3e+007

 0 5000 10000 15000 20000 25000

U
se

d
M

em
or

y

Time

Yuasa
Dijkstra
Steele
Hybrid

Fig. 10. Space vs. Time: db

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 5000 10000 15000 20000 25000

R
es

ca
n

W
or

k

Time

Yuasa
Dijkstra
Steele
Hybrid

Fig. 11. Collector Rescanning Work: db

 0

 2e+006

 4e+006

 6e+006

 8e+006

 1e+007

 1.2e+007

 0 1000 2000 3000 4000 5000 6000 7000 8000

U
se

d
M

em
or

y

Time

Yuasa
Dijkstra
Steele
Hybrid

Fig. 12. Space vs. Time: jess

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 1000 2000 3000 4000 5000 6000 7000 8000

R
es

ca
n

W
or

k

Time

Yuasa
Dijkstra
Steele
Hybrid

Fig. 13. Collector Rescanning Work: jess

 0

 5e+006

 1e+007

 1.5e+007

 2e+007

 2.5e+007

 3e+007

 3.5e+007

 0 2000 4000 6000 8000 10000 12000 14000

U
se

d
M

em
or

y

Time

Yuasa
Dijkstra
Steele
Hybrid

Fig. 14. Space vs. Time: mtrt

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 2000 4000 6000 8000 10000 12000 14000

R
es

ca
n

W
or

k

Time

Yuasa
Dijkstra
Steele
Hybrid

Fig. 15. Collector Rescanning Work: mtrt

Derivation and Evaluation of Concurrent Collectors 601

 0

 1e+006

 2e+006

 3e+006

 4e+006

 5e+006

 6e+006

 7e+006

 8e+006

 9e+006

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

U
se

d
M

em
or

y

Time

Yuasa
Dijkstra
Steele
Hybrid

Fig. 16. Space vs. Time: jack

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

R
es

ca
n

W
or

k

Time

Yuasa
Dijkstra
Steele
Hybrid

Fig. 17. Collector Rescanning Work: jack

Static Deadlock Detection for Java Libraries

Amy Williams, William Thies, and Michael D. Ernst

Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology,

Cambridge, MA 02139 USA
{amy, thies, mernst}@csail.mit.edu

Abstract. Library writers wish to provide a guarantee not only that
each procedure in the library performs correctly in isolation, but also that
the procedures perform correctly when run in conjunction. To this end,
we propose a method for static detection of deadlock in Java libraries.
Our goal is to determine whether client code exists that may deadlock
a library, and, if so, to enable the library writer to discover the calling
patterns that can lead to deadlock.

Our flow-sensitive, context-sensitive analysis determines possible
deadlock configurations using a lock-order graph. This graph represents
the order in which locks are acquired by the library. Cycles in the graph
indicate deadlock possibilities, and our tool reports all such possibilities.
We implemented our analysis and evaluated it on 18 libraries comprising
1245 kLOC. We verified 13 libraries to be free from deadlock, and found
14 distinct deadlocks in 3 libraries.

1 Introduction

Deadlock is a condition under which the progress of a program is halted as each
thread in a set attempts to acquire a lock already held by another thread in the
set. Because deadlock prevents an entire program from working, it is a serious
problem.

Finding and fixing deadlock is difficult. Testing does not always expose dead-
lock because it is infeasible to test all possible interleavings of a program’s
threads. In addition, once deadlock is exhibited by a program, reproducing the
deadlock scenario can be troublesome, thus making the source of the deadlock
difficult to determine. One must know how the threads were interleaved to know
which set of locks are in contention.

We propose a method for static deadlock detection in Java libraries. Our
method determines whether it is possible to deadlock the library by calling some
set of its public methods. If deadlock is possible, it provides the names of the
methods and variables involved.

To our knowledge, the problem of detecting deadlock in libraries has not been
investigated previously. This problem is important because library writers may
wish to guarantee their library is deadlock-free for any calling pattern. For ex-
ample, the specification for java.lang.StringBuffer in Sun’s Java Development
Kit (JDK) states:

A.P. Black (Ed.): ECOOP 2005, LNCS 3586, pp. 602–629, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Static Deadlock Detection for Java Libraries 603

class BeanContextSupport {
protected HashMap children;

public boolean remove(Object targetChild) {
synchronized(BeanContext.

globalHierarchyLock) {
...
synchronized(targetChild) {

...
synchronized (children) {

children.remove(targetChild);
}
...

}
}
return true;

}

public void
propertyChange(PropertyChangeEvent pce) {

...
Object source = pce.getSource();
synchronized(children) {

if ("beanContext".equals(propertyName)
&& containsKey(source)
&& ((BCSChild)children.get(source)).

isRemovePending()) {
BeanContext bc = getBeanContextPeer();
if (bc.equals(pce.getOldValue())

&& !bc.equals(pce.getNewValue())) {
remove(source);

} else {
...

}}}}}

Fig. 1. Simplified code excerpt from the
BeanContextSupport class in the java.

beans.beancontext package of Sun’s JDK

Object source
= new Object();

BeanContextSupport support
= new BeanContextSupport();

BeanContext oldValue
= support.getBeanContextPeer();

Object newValue
= new Object();

PropertyChangeEvent event
= new PropertyChangeEvent(source,

"beanContext",
oldValue,
newValue);

support.add(source);
support.vetoableChange(event);

thread 1: support.propertyChange(event);
thread 2: support.remove(source);

Fig. 2. Client code that can cause
deadlock in methods from Figure 1.
In thread 1, children is locked, then
BeanContext.globalHierarchyLock

is locked (via a call to remove) while
in thread 2, the ordering is reversed.
Deadlock occurs under some thread
interleavings. The initialization code
shown above is designed to elicit the
relevant path of control flow within
the library

The [StringBuffer] methods are synchronized where necessary so that
all the operations on any particular instance behave as if they occur in
some serial order that is consistent with the order of the method calls
made by each of the individual threads involved.

If the operations are to behave as if they occurred in some serial order, deadlock
between StringBuffer methods should not be possible. No serial ordering over
the StringBuffer methods could lead to deadlock because locks acquired by
Java’s synchronized construct (which StringBuffer uses) cannot be held between
method calls. Nonetheless, our tool reports a calling pattern that causes deadlock
in StringBuffer.

Libraries are often vulnerable to deadlock. We have induced 14 distinct in-
stances of deadlock in 3 libraries (for detailed results, see Section 6). Simplified
code for one of the deadlocks found in Sun’s JDK is shown in Figure 1. In the
BeanContextSupport class of the java.beans.beancontext package, the remove()

and propertyChange() methods obtain locks in a different order. The client code

604 A. Williams, W. Thies, and M.D. Ernst

shown in Figure 2 can induce deadlock using these methods. Several other meth-
ods in the same package use the same locking order as remove() and thus exhibit
the same deadlock vulnerability.

This deadlock has a simple solution: the propertyChange() method can syn-
chronize on BeanContext.globalHierarchyLock before children, or it could lock
only globalHierarchyLock. Section 6.1 describes solutions for other deadlocks.

An overview of our analysis is given in Section 3. We have implemented our
technique and analyzed 18 libraries consisting of 1245k lines of code, obtained
from SourceForge, Savannah, and other open source resources. Using our tool,
we verified 13 of these libraries to be free of deadlock, and confirmed 14 distinct
instances of deadlock in 3 libraries.

Detecting deadlock across all possible calls to a library is different than de-
tecting deadlock in a whole program. Concrete aliasing relationships exist and
can be determined for a whole program, whereas the analysis of a library must
consider all possible calls into the library, which includes a large number of alias-
ing possibilities. In a program, the number of threads can often be determined,
but a client may call into a library from any number of threads, so our anal-
ysis must model an unbounded number of threads. These differences combine
to yield a much larger number of reports than would be present in a program,
which makes it important to suppress false reports.

The remainder of this paper is organized as follows. Section 2 explains the
semantics of locks in the Java programming language. Section 3 discusses our
analysis at a high level, and Section 4 provides a more detailed description of
the analysis. Section 5 describes techniques for reducing the number of spuri-
ous reports. Section 6 gives our experimental results. Related work is given in
Section 7, and Section 8 concludes.

2 Locks in Java

In Java, each object conceptually has an associated lock; for brevity, we will
sometimes speak of an object as being a lock. The Java “synchronized (expr) {
statements }” statement evaluates the expression to an object reference, acquires
the lock, evaluates the statements in the block, and releases the lock when the
block is exited, whether normally or because of an exception. This design causes
locks to be acquired in some order and then released in reverse (that is, in
LIFO order), a fact that our analysis takes advantage of. A Java method can
be declared synchronized, which is syntactic sugar for wrapping the body in
synchronized (this) { ... } for instance methods, or synchronized (C.class)

{ ... }, where C is the class containing the method, for static methods.
A lock that is held by one thread cannot be acquired by another thread until

the first one releases it. A thread blocks if it attempts to acquire a lock that is
held by another thread, and does not continue processing until it successfully
acquires the lock.

Static Deadlock Detection for Java Libraries 605

A lock is held per-thread; if a given thread attempts to re-acquire a lock,
then the acquisition always succeeds without blocking.1 The lock is released
when exiting the synchronized statement that acquired it.

The wait(), notify(), and notifyAll() methods operate on receivers whose
locks are held. An exception is thrown if the receiver’s lock is not held. The
wait() method releases the lock on the receiver object and places the calling
thread in that object’s wait set. While a thread is in an object’s wait set, it
is not scheduled for processing. Threads are reenabled for processing via the
notify() and notifyAll() methods, which, respectively, remove one or all the
threads from the receiver object’s wait set. Once a thread is removed from an
object’s wait set, the wait() method attempts to reacquire the lock for the object
it was invoked on. The wait() method returns only after the lock is reacquired.
Thus, a thread may block inside wait() as it attempts to reacquire the lock for
the receiver object.

Java 1.5 introduces new synchronization mechanisms in the java.util.con-

current package that allow a programmer to acquire and release locks without
using the synchronized keyword. These mechanisms make it possible to acquire
and release locks in any order (in particular, acquires and releases need not be
in LIFO order). Our tool does not handle these new capabilities in the Java
language. However, most synchronization can be expressed using the primitives
from Java 1.4, and we therefore expect that our technique will be applicable
under current and future releases of Java.

3 Analysis Synopsis

We consider a deadlock to be the condition in which a set of threads cannot
make progress because each is attempting to acquire a lock that is held by an-
other member of the set. Our deadlock detector uses an interprocedural analysis
to track possible sequences of lock acquisitions within a Java library. It repre-
sents possible locking patterns using a graph structure—the lock-order graph,
described below. Cycles in this graph indicate possibilities of deadlock.

For each cycle, our tool reports the variable names of the locks involved in the
deadlock as well as the methods that acquire those locks (see Section 4.4). Our
tool is conservative and reports all deadlock possibilities. However, the conser-
vative approximations cause the tool to consider infeasible paths and impossible
alias relationships, resulting in false positives (spurious reports).

3.1 Lock-Order Graph

The analysis builds a single lock-order graph that captures locking information
for an entire library. This graph represents the order in which locks are acquired

1 For our purposes, it is sufficient to consider multiple synchronized statements over
the same object in one thread as a no-op. A Java virtual machine tracks the number
of lock/unlock actions (entrance and exit of a synchronized block) for each object.
A counter is updated for each synchronized statement, but if the current thread
already holds the target lock, no change is made to the thread’s lock set.

606 A. Williams, W. Thies, and M.D. Ernst

(BeanContextSupport.propertyChange() locks BeanContextSupport.children,
BeanContextSupport.remove() locks BeanContext.globalHierarchyLock)

(BeanContextSupport.remove() locks BeanContext.globalHierarchyLock,
BeanContextSupport.remove() locks BeanContextSupport.children)

Object HashMap

Fig. 3. Relevant portion of the lock-order graph for the code in Figure 1. The nodes
represent the set of all Objects and HashMaps, respectively. Each edge is annotated by
the sequence of methods (and corresponding variable names) that acquire first a lock
from the source set, then a lock from the destination set

via calls to the library’s public methods. Combining information about the lock-
ing behavior of each public method into one graph allows us to represent any
calling pattern of these methods across any number of threads.

Each node of the lock-order graph represents a set of objects that may be
aliased. (Types are an approximation to may-alias information; Section 5.1 gives
a finer but still lightweight approximation applicable to fields.) An edge in the
graph indicates nested locking of objects along some code path. That is, it in-
dicates the possibility of locking first an object from the source node, then an
object from the destination node.

A cycle consisting of nodes N1 and N2 means that along some code path, an
object o1 ∈ N1 may be locked before some object o2 ∈ N2, and along another
(or the same) path, o2 may be locked before o1. In general, a cycle exposes code
paths leading to cyclic lock orders, and, when the corresponding paths are run
in separate threads, deadlock may occur. Figure 3 shows the lock-order graph
for the code in Figure 1.

To build the graph, the analysis iterates over the methods in the library,
building a lock-order graph for each of them. All possible locking configurations
of a method are modeled, including locks acquired transitively via calls to other
methods. At a call site, the callee’s graph is inserted into the caller. After each
method’s lock-order graph has reached a fixed point, the public methods’ lock-
order graphs are merged into a single graph for the library. Cycles are then
detected, and reports are generated.

3.2 Deadlocks Detected by Our Technique

Our goal is to detect cases in which a sequence of client calls can cause deadlock
in a library, or to verify that no such sequence exists. Our tool reports deadlock
possibilities in which all deadlocked threads are blocked within a single library,
attempting to acquire locks via Java synchronized statements or wait() calls.
Under certain assumptions about the client and the library, our tool reports all
such possibilities.

Our analysis focuses on deadlocks due to lock acquisitions via Java synchro-

nized statements and wait() calls: progress of a program is halted as each thread

Static Deadlock Detection for Java Libraries 607

in a set attempts to acquire a lock already held by another thread in the set.
We are not concerned with other ways in which a program may fail to make
progress. A thread might hang forever while waiting for input, enter an infinite
loop, suffer livelock, or fail to call notify() or to release a user- or library-defined
lock (that is, using a locking mechanism not built into Java). These problems
in one thread can prevent another thread or the whole program from making
progress: consider a call to Thread.join() (which waits for a given thread to
terminate) on a thread that does not terminate. Detecting all of these problems
is outside the scope of this paper.

Assumptions About Client Code. We make three assumptions about client
code. If a client deviates from these assumptions, our tool is still useful for
detecting deadlock, but it cannot detect deadlocks introduced by the deviant
behavior. First, we assume that the client does not include a class that extends
a library class or belongs to a library package. If such a class exists, it needs to be
inspected by our analysis and treated as part of the library. Second, we assume
that that the client does not invoke library methods within callbacks from the
library; that is, all client methods M are either unreachable from the library,
or the library is unreachable from M . For example, if a client class overrides
Object.hashCode() such that it calls a synchronized method in the library, then
any library method calling hashCode() should model that synchronization. The
class therefore needs to be analyzed as though it is part of the library. Third, we
assume that the client code is well-behaved: either it does not lock any objects
locked by the library, or it does so in disciplined ways (as explained below).

Without the assumption of well-behavedness, it is difficult or impossible to
guarantee deadlock freedom for a library without examining client code. An
adversarial client can induce deadlock if it has access to two objects locked by a
library. For example, suppose that a library has a synchronized method:

class A {

synchronized void foo() { ... }

}

Then a client could cause deadlock in the following way:

A a1 = new A(), a2 = new A();

thread 1: synchronized(a1) { a2.foo(); }

thread 2: synchronized(a2) { a1.foo(); }

A client that locks a different set of objects than those locked by the library
is always well-behaved. This is the case for arbitrary clients if the locks used
by the library do not escape it; that is, if they are inaccessible to the client.
Section 5.1 describes a method for detecting some inaccessible locks.

Even if the client and the library share a set of locks, the client can be
well-behaved if it acquires those locks in a restricted pattern. These restrictions
could be part of the library’s specification—and such documentation could even
be automatically generated for the library by a tool like ours. As above, one

608 A. Williams, W. Thies, and M.D. Ernst

sufficient restriction is that clients do not lock objects that the library may
lock; this requires the library to specify the set of objects that it will lock. A
more liberal but sufficient restriction is that the client acquires locks in an order
compatible with the library. In this scenario, the library specifies the order of lock
acquisitions (say, as a lock-order graph), and clients are forbidden from acquiring
locks in an order that introduces cycles into the graph. We believe that these
restrictions are quite reasonable, and that information about the locks acquired
by a library are a desirable part of its specification.

Assumptions About Library Code. In practice, libraries do not exist in
isolation. Rather, each library uses additional libraries (e.g., the JDK) to help
it accomplish its task. One approach to analyzing such cascaded libraries is to
consider all of the libraries together, as if they were a single library. However,
this hampers modularity, as the guarantees offered for one library depend on
the implementation of other libraries. It also hampers scalability, as the effective
library size can grow unwieldy for the analysis. For these reasons, our analysis
considers each library independently. Consider that the “main” library under
consideration relies on several “auxiliary” libraries. Under certain assumptions
about the main library, our analysis detects all deadlock possibilities in which
all threads are blocked within the main library. It does not report cases in which
some threads are blocked in the main library and other threads are blocked in
auxiliary libraries.

We make the following assumptions about library code. First, as the library
under consideration (the main library) may be a client of some auxiliary libraries,
it must satisfy the client assumptions (described previously) to guarantee dead-
lock freedom for its own users. Second, the main library cannot perform any
synchronization in methods that are reachable via callbacks from auxiliary li-
braries (e.g., in Object.hashCode()). Callbacks through the auxiliary libraries
are inaccessible to the analysis. Third, the library cannot use reflection. Reflec-
tion can introduce opaque calling sequences that impact the lock ordering. As
with the client code, our analysis operates as usual even if these assumptions
are broken, but it can no longer guarantee that all deadlock possibilities are
reported.

4 Algorithm Details

The deadlock detector employs an interprocedural dataflow analysis for con-
structing lock-order graphs. The analysis is flow-sensitive and context-sensitive.
At each program point, the analysis computes a symbolic state modeling the
library’s execution state. The symbolic state at the end of a method serves as a
method summary. The analysis is run repeatedly over all methods until a fixed
point is reached; termination of the analysis is guaranteed.

The type domains for the analysis are given in Figure 4. For simplicity, we
present the algorithm for a language that models the subset of Java relevant to
our analysis. The language omits field assignments; they are not relevant because

Static Deadlock Detection for Java Libraries 609

T ∈ Type
v ∈ LocalVar

method ∈ MethodDecl = Tr m(T1 v1, T2 v2, . . . , Tn vn) { stmt }
where v1 = this if m is instance method

library ∈ Library = set-of MethodDecls
stmt ∈ Statement = T v | branch stmt1 stmt2

| v := new T | synchronized (v) { stmt }
| v1 := v2 | v := m(v1, . . . , vn)
| v1 := v2.f | wait(v)
| stmt1; stmt2

pp ∈ ProgramPoint⊥
o = 〈pp, T〉 ∈ HeapObject = ProgramPoint × Type

g ∈ Graph = directed-graph-of HeapObjects
roots ∈ Roots = set-of HeapObjects
env ∈ Environment = LocalVar → HeapObject

s = 〈g, roots, locks, ∈ State = Graph × Roots × list-of HeapObjects ×
env, wait〉 Environment × set-of HeapObjects

Fig. 4. Type domains for the lock-order dataflow analysis. Parameters are con-
sidered to be created at unique points before the beginning of a method. The
“branch stmt1 stmt2” statement is a non-deterministic branch to either stmt1 or stmt2

our analysis does not track the flow of values through fields. Synchronized meth-
ods are modeled in this language using their desugaring (see Section 2) and loops
are supported via recursion. Our implementation handles the full Java language.

Our analysis operates on symbolic heap objects. Each symbolic heap object
represents the set of objects created at a given program point [6]; it also contains
their type. For convenience, we say that a symbolic heap object o is locked when
a particular concrete object drawn from o is locked.

The state is a 5-tuple consisting of:

– The current lock-order graph. Each node in the graph is a symbolic heap
object. The graph represents possible locking behavior for concrete heap
objects drawn from the sets modeled by the symbolic heap objects. A path
of nodes o1 . . . ok in the graph corresponds to a potential program path in
which o1 is locked, then o2 is locked (before o1 is released), and so on.

– The roots of the graph. The roots represent objects that are locked at some
point during execution of a given method when no other lock is held.

– The list of locks that are currently held, in the order in which they were
obtained.

– An environment mapping local variables to symbolic heap objects. The
environment is an important component of the interprocedural analysis, as it
allows information to propagate between callers and callees. It also improves
precision by tracking the flow of values between local variables.

– A set of objects that have had wait called on them without an enclosing
synchronized statement in the current method.

610 A. Williams, W. Thies, and M.D. Ernst

4.1 Dataflow Rules

The dataflow rules for the analysis are presented in Figure 5. Helper functions
appear in Figure 6, and mathematical operators (including the join operator)
are defined in Figure 7. Throughout the following explanation, we define the
current lock as the most recently locked object whose lock remains held; it is the
last object in the list of currently held locks, or tail(s.locks).

The symbolic state is updated in the visit stmt procedure (in Figure 5)
which visits each statement in a method. A variable declaration or initialization
introduces a fresh heap object. An assignment between locals copies an object
within the local environment. A field reference introduces a fresh object (the
analysis does not model the flow of values through fields). A branch models
divergent paths and is handled by the join operator below. Calls to wait() are
described in Section 4.2.

The rule for synchronized statements handles lock acquires; there are two
cases. First, if the target object o is not currently locked (i.e., if o /∈ s.locks),
then an edge is added to the lock-order graph from the current lock to o, and o is
appended to s.locks. If no objects were locked before the synchronized statement,
o becomes a root in the graph (roots are important at a call site, as discussed
below). Next, the analysis descends into the body of the synchronized block.
Upon completion, the analysis continues to the next statement, preserving the
lock-order graph from the synchronized block but restoring the list of locked
objects valid before the synchronized statement. This is correct, since Java’s
syntax guarantees that any objects locked within the synchronized block are
also released within the block.

In the second case for synchronized statements, the target is currently locked.
Though the body is analyzed as before, the synchronization is a no-op and does
not warrant an edge in the lock-order graph. To exploit this fact, the analysis
needs to determine whether nested synchronized statements are locking the same
concrete object. Though symbolic heap objects represent sets of concrete objects,
they nonetheless can be used for this determination: if nested synchronized state-
ments lock variables that are mapped to the same heap object (during analysis),
then they always lock the same concrete object (during execution). This is true
within a method because each heap object is associated with a single program
point; as this simplified language contains no loops, any execution will visit that
point at most once and hence create at most one concrete instance of the heap
object. This notion also extends across methods, as both heap objects and con-
crete objects are directly mapped from caller arguments into callee parameters
as described below. Thus, repeated synchronization on a given heap object is
safely ignored, significantly improving the precision of the analysis.

Method calls are handled by integrating the graph for the callee into the caller
as follows. In the case of overridden methods, each candidate implementation’s
graph is integrated. The analysis uses the most recent lock-order graph that has
been calculated for the callee. Recursive sequences are iterated until reaching a
fixed point. The calling context is first incorporated into a copy of the callee’s
graph either by removing the formal parameters (if the corresponding argument

Static Deadlock Detection for Java Libraries 611

visit stmt(stmt , s) returns State s′

s′ ← s
switch(stmt)

case T v | v := new T
s′.env ← s.env[v := 〈 program point(stmt), T 〉]

case v1 := v2

s′.env ← s.env[v1 := s.env[v2]]
case v1 := v2.f

s′.env ← s.env[v1 := 〈 program point(stmt), declared type(v2.f) 〉]
case stmt1; stmt2

s1 ← visit stmt(stmt1, s)
s′ ← visit stmt(stmt2, s1)

case branch stmt1 stmt2
s′ ← visit stmt(stmt1, s) � visit stmt(stmt2, s)

case synchronized (v) { stmt }
o ← s.env[v]
if o ∈ s.locks then

// already locked o, so synchronized statement is a no-op
s1 ← s

else
// add o to g under current lock, or as root if no locks held
if s.locks is empty // below, • denotes list concatenation

then s1 ← 〈s.g ∪ o, s.roots ∪ o, s.locks • o, s.env, s.wait〉
else s1 ← 〈s.g ∪ o ∪ edge(tail(s.locks) → o), s.roots, s.locks • o,

s.env, s.wait〉
s2 ← visit stmt(stmt , s1)
s′ ← 〈s2.g, s2.roots, s.locks, s2.env, s2.wait〉

case v := m(v1, . . . , vn)
s′.env ← s.env[v := 〈 program point(stmt), return type(m) 〉]
∀ versions of m in subclasses of env[v1].T:

sm ← visit method(method decl(m))
s′m ← rename from callee to caller context(sm, s, n)
// connect the two graphs, including roots
s′.g ← s′.g ∪ s′m.g
if s.locks is empty then // connect current lock to roots of s′m

s′.roots ← s′.roots ∪ s′m.roots
s′.wait ← s′.wait ∪ s′m.wait

else
∀ root ∈ s′m.roots:

s′.g ← s′.g ∪ edge(tail(s.locks) → root)
∀ o ∈ s′m.wait: if tail(s.locks) 	= o then

s′.g ← s.g ∪ o ∪ edge(tail(s.locks) → o)
case wait(v)

o ← s.env[v]
if s.locks is empty then

s′.wait ← s.wait ∪ o
else if tail(s.locks) 	= o then

// wait releases then reacquires o: new lock ordering
s′.g ← s.g ∪ o ∪ edge(tail(s.locks) → o)

Fig. 5. Dataflow rules for the lock-order data-flow analysis

612 A. Williams, W. Thies, and M.D. Ernst

program point(stmt) returns the program point for statement stmt

visit method(Tr m(T1 v1, . . . , Tn vn) { stmt }) returns State s′

s′ ← empty State
∀ parameters Ti vi (including this):

s′ ← visit stmt(Ti vi, s
′) // process formals via “T v” rule

s′ ← visit stmt(stmt , s′)

rename from callee to caller context(sm, s, n) returns State s′m
s′m ← sm

∀j ∈ [1, n] : formalj ← sm.env[vj] // formal parameter
∀j ∈ [1, n] : actual j ← s.env[vj] // actual argument
∀o ∈ sm.g : // for all objects o locked by the callee

if ∃ j s.t. o = formalj
// o is formal parameter j of callee method
then if actualj ∈ s.locks

// caller locked o, remove o from callee graph
then s′m.g, s′m.roots ← splice out node(sm.g, sm.roots, o)
// caller did not lock o, rename o to actual arg
else s′m.g, s′m.roots ← replace node(sm.g, sm.roots, o, actualj)

// o is not from caller, rename o to bottom program point pp⊥
else s′m.g, s′m.roots ← replace node(sm.g, sm.roots, o, 〈pp⊥, o.T〉)

s′m.wait ← ∅
∀o ∈ sm.wait // for all objects in wait set

if ∃ j s.t. o = formalj
then s′m.wait ← s′m.wait ∪ actualj
else s′m.wait ← s′m.wait ∪ 〈pp⊥, o.T〉

splice out node(g, roots, o) returns Graph g′, Roots roots ′

g′ ← g \ o
∀ edges(src → o) ∈ g s.t. o 	= src :

∀ edges(o → dst) ∈ g s.t. o 	= dst :
g′ ← g′ ∪ edge(src → dst)

roots ′ ← roots \ o
if o ∈ roots then

∀ edges(o → dst) ∈ g s.t. o 	= dst :
roots ′ ← roots ′ ∪ dst

replace node(g, roots, oold , onew) returns Graph g′, Roots roots ′

g′ ← (g \ oold) ∪ onew

∀ edges(src → oold) ∈ g : g′ ← g′ ∪ edge(src → onew)
∀ edges(oold → dst) ∈ g : g′ ← g′ ∪ edge(onew → dst)
if oold ∈ roots

then roots ′ ← (roots \ oold) ∪ onew

else roots ′ ← roots

Fig. 6. Helper functions for the lock-order dataflow analysis

actual j is locked at the call site, in which case the lock acquire is a no-op from
the caller’s perspective) or by replacing them with the caller’s actual arguments
(if actual j is not locked at the call site). The non-formal parameter nodes are

Static Deadlock Detection for Java Libraries 613

g1 ∪ g2 returns Graph g′

// nodes are HeapObjects: equivalent values are collapsed
nodes(g′) = nodes(g1) ∪ nodes(g2)
// edges are pairs of HeapObjects: equivalent pairs are collapsed
edges(g′) = edges(g1) ∪ edges(g2)

g \ o returns Graph g′

nodes(g′) = nodes(g) \ o
edges(g′) = edges(src → dst) ∈ g s.t. o 	= src ∧ o 	= dst

s1 � s2 returns State s′

s′.g ← s1.g ∪ s2.g
s′.roots ← s1.roots ∪ s2.roots
s′.locks ← s1.locks // s1.locks = s2.locks
∀v ∈ {v′ | v′ ∈ s1.env ∨ v′ ∈ s2.env} :

if s1.env[v] = s2.env[v]
then s′.env ← s′.env[v := s1.env(v)]
else s′.env ← s′.env[v := 〈program point(join point(v)), T1 � T2 〉]

s′.wait ← s1.wait ∪ s2.wait
T1 � T2 returns lowest common superclass of T1 and T2

Fig. 7. Union and difference operators for graphs, and join operator for symbolic state

then replaced with nodes of the same type and with a special program point of
pp⊥, indicating that they originated at an unknown program point (bottom).
The callee’s wait set is adjusted in a similar fashion. At this point, an edge is
added from the current lock in the caller to each of the roots of the modified
callee graph. Finally, the two graphs are merged, collapsing identical nodes and
edges.

The join operator (�) in Figure 7 is used to combine states along confluent
paths of the program (e.g., if statements). We are interested in locking patterns
along any possible path, which, for the graphs, roots, and wait sets, is simply the
union of the two incoming states’ values. The list of current locks does not need to
be reconciled between two paths, as the hierarchy of synchronized blocks in Java
guarantees that both incoming states will be the same. The new environment
remains the same for mappings common to both paths. If the mappings differ for
a given variable then a fresh heap object must be introduced for that variable.
The fresh object is assigned a program point corresponding to the join point
for the variable (each variable is considered to join at a separate location). The
strongest type constraint for the fresh object is the join of the variables’ types
along each path—their lowest common superclass.

The algorithm for constructing the entire library’s lock-order graph is given
in Figure 8. The top level procedure first computes a fixed point state value
for each method in the library. Termination is guaranteed since there can be at
most |PP| · |Type| heap objects in a method and the analysis only adds objects
to the graph at a given stage. After computing the fixed points, the procedure
performs a post-processing step to account for subclassing. Because the analysis

614 A. Williams, W. Thies, and M.D. Ernst

top level(library) returns Graph g
s1, . . . , sn ← dataflow fixed points over public methods in library
g ← post process(s1, . . . , sn)

post process(s1, . . . , sn) returns Graph g
g ← empty Graph
∀i ∈ [1, n] :

∀ edges (o1 → o2) ∈ si.g:
// Add edges between all possible subclasses of locked objects.
// All heap objects now have bottom program point pp⊥.
∀ subclasses T1 of o1.T , ∀ subclasses T2 of o2.T :

oT1
← 〈pp⊥, T1〉

oT2
← 〈pp⊥, T2〉

g ← g ∪ oT1
∪ oT2

∪ edge(oT1
→ oT2

)

Fig. 8. Top-level routine for constructing a lock-order graph for a library of methods

for each method was based on the declared type of locks, extra edges must be
added for all possible concrete types that a given heap object could assume.
While it is also possible to modify the dataflow analysis to deal with subclassing
at each step, it is simpler and more efficient to use post-processing.

4.2 Calls to wait()

A call to wait() on object o causes the lock on o to be released and subsequently
reacquired, which is modeled by adding an edge in the lock-order graph from
the most recently acquired lock to o. However, this edge can be omitted if o is
also the most recently acquired lock, as releasing and reacquiring this lock has
no effect on the lock ordering. In contrast to synchronized statements, wait()

can influence the lock-order graph even though its receiver is locked at the time
of the call. For example, before the wait() call in Figure 9, a is locked before
b. However, during the call to wait(), a’s lock is released and later acquired
while b’s lock remains held, so a is also locked after b. Deadlock is therefore
possible.

It is illegal to call wait() on an object whose lock is not held; if this happens
during program execution, Java throws a runtime exception. Even so, it is pos-
sible for a method to call wait() outside any synchronized statement, since the
receiver could be locked in the caller. When a method calls wait() outside any
synchronized statement, our analysis needs to consider the calling context to
determine the effects of the wait() call on the lock-order graph. For this reason,
when no locks are held and wait() is called, the receiver object is stored in the
wait set and later accounted for in a caller method.

None of the libraries we analyzed reported any potential deadlocks due to
wait(). This suggests that programmers most often call wait() on the most
recently acquired lock.

Static Deadlock Detection for Java Libraries 615

void m1(Object a, Object b) {
synchronized(a) {

synchronized (b) {
a.wait();
...

}}}

void m2(Object a, Object b) {
synchronized(a) {

a.notify();
synchronized (b) {

...
}}}

Object a = new Object();
Object b = new Object();

thread 1: m1(a, b);
thread 2: m2(a, b);

Fig. 9. Method m1() imposes both lock orderings a→b and b→a, due to the call to
a.wait(). Method m2(), which imposes the lock ordering a→b, can cause deadlock
when run in parallel with m1(), as illustrated in the third column

4.3 Dataflow Example

An example of the dataflow analysis appears in Figure 10. The example contains
a class A with two methods, foo() and bar(). The symbolic state sfoo represents
the method summary for foo(). Program points are represented as a variable
name and a line number corresponding to the variable’s assignment. For example,
〈ppb1:5, B〉 is a symbolic heap object, of type B, for parameter b1 on line 5 of
foo(); 〈pplock:11, B〉 is a symbolic heap object, also of type B, for the field lock

as referenced on line 11 of foo() (though lock is declared on line 2, each field
reference creates a fresh heap object). The lock-order graph for foo() illustrates
that parameters b1 and c1 can each be locked in sequence, with lock locked
separately. Note that the graph contains two separate nodes for b1 and lock—
both of type B—in case one of them can be pruned when integrating into the
graph of a caller.

The symbolic state in bar() immediately before the call to foo() is repre-
sented by sbar1 . Since bar() is a synchronized method, a heap object for this

appears as a root of the graph. The graph illustrates that parameters b2 and c2

can be locked while the lock for this is held. The list of locks held at the point
of the call is given by sbar1 .locks; it contains this and c2.

The most interesting aspect of the example is the method call from bar()

to foo(). This causes the graph of sfoo to be adjusted for the calling context
and then integrated into the graph of sbar1 with edges added from the node for
the current lock, c2. The calling context begins with the actual parameter b2.
Since b2 is not locked in sbar1 at the point of the call, the formal parameter b1

is replaced by b2 throughout the graph of sfoo . However, the actual parameter
c2 is locked in sbar1 , so the corresponding formal parameter c1 is removed from
the graph of sfoo . The last node in foo() corresponds to lock, which is a field
reference rather than a formal parameter; thus, its program point is replaced with
pp⊥ before integrating into bar(). The result, sbar2 , has one new node (pp⊥) and
two new edges (from c2 to both b2 and pp⊥). The other state components in
sbar2 are unchanged from sbar1 .

The last component of Figure 10 gives the overall lock-order graph, treating
foo() and bar() as a library of methods. As there is no subclassing in this
example, the final lock-order graph can be obtained simply by taking the union
of graphs from sfoo and sbar2 , setting all program points to pp⊥. The cycle in
the lock-order graph corresponds to a real deadlock possibility in which foo()

and bar() are called concurrently with the same arguments.

616 A. Williams, W. Thies, and M.D. Ernst

class A {

 B lock;

 public

 void foo(B b1, C c1) {

 synchronized (b1) {

 synchronized (c1) {

 ...

 }

 }

 synchronized (lock) {

 ...

 }

 }

 public

 synchronized void bar(B b2,

 C c2) {

 synchronized (b2) {

 ...

 }

 synchronized (c2) {

 foo(b2, c2);

 }

 }

}

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

sfoo

sbar1

sbar2

g = ppb1:5, B< <
ppc1:5, C< <pplock:11, B< <

roots = {〈ppb1:5, B〉,
〈pplock:11, B〉}

locks = {}
env = {this �→ 〈ppthis:5, A〉, b1 �→ 〈ppb1:5, B〉,

c1 �→ 〈ppc1:5, C〉}

g = ppthis:16, A< <
ppb2:16, B< < ppc2:16, C< <

roots = {〈ppthis:16, A〉}
locks = {〈ppthis:16, A〉,

〈ppc2:16, C〉}
env = {this �→ 〈ppthis:16, A〉, b2 �→ 〈ppb2:16, B〉,

c2 �→ 〈ppc2:16, C〉}

pp , B< < pp , C< <

pp , A< <

Overall lock-order graph
for foo and bar.

g = ppthis:16, A< <
ppb2:16, B< << ppc2:16, C <

pp , B< <

roots = sbar1 .roots

locks = sbar1 .locks

env = sbar1 .env

Fig. 10. Example operation of the dataflow analysis. The symbolic state is shown for
the method summary of foo, as well as for two points in bar (before and after a call
to foo). The wait sets (not shown) are empty in each case. The top-level lock-order
graph for this library of methods is shown at bottom left

4.4 Reporting Possible Deadlock

To report deadlock possibilities, the analysis finds each cycle in the lock-order
graph, using a modified depth-first search algorithm. Once a cycle is found, a
report is constructed using its edge annotations. Each edge in the lock-order
graph has a pair of annotations, one for the source lock and one for the des-
tination lock. Each annotation consists of the variable name of the lock and
the method that acquires it. As graphs are combined, edges may come to have
multiple annotations.

A report is given for each distinct set of lock variables. These reports include
each of the sets of methods that acquire that set of locks. In this way, methods
with the same or similar locking behavior are presented to the user together. In
our experience with the tool, most of the grouped method sets constitute the
same locking pattern, so this style can save significant user effort.

Static Deadlock Detection for Java Libraries 617

C

EB

DA

Fig. 11. The path {C, A, B, C, D, E} is a non-simple cycle: it visits node C twice

public void println(String s)
{

synchronized (this) {
print(s);
newLine();

}
}

public void print(String s) {
if (s == null) {

s = "null";
}
write(s);

}

private void write(String s) {
try {

synchronized (this) {
...

}
}
...

}

Fig. 12. Code excerpt from Sun’s java.io.PrintStream class. Due to the repeated
synchronization on this, an intraprocedural analysis reports a spurious deadlock pos-
sibility while an interprocedural analysis does not

The analysis reports every simple cycle (also known as an elementary circuit)
in a given graph. A cycle is simple if it does not visit any node more than
once. Given a node that is involved in more than one simple cycle, one can
construct a non-simple cycle by traversing each cycle in sequence (see Figure 11).
It is possible to construct cases where a non-simple cycle causes deadlock even
though the component cycles do not [26]. However, as we have never observed
such a case in practice, the analysis reports only the simple cycles as a way of
compressing the results. For completeness, the user should consider these cycles
in combination.

4.5 Intraprocedural Weaknesses

Our analysis is interprocedural, because our experience is that an intraprocedural
analysis produces too many false reports. For example, Figure 12 illustrates part
of Sun’s java.io.PrintStream class, in which both println() and write() attempt
to lock this. An intraprocedural analysis cannot prove that the same object is
locked in both methods. Thus, it reports a deadlock possibility corresponding to
the case when two concurrent calls to println() result in different locking orders
on a pair of PrintStream objects. However, because the objects locked are always
equivalent, the second synchronization does not affect the set of locks held. This
spurious report is omitted by our interprocedural analysis.

5 Reducing False Positives

Like many static analyses, our tool reports false positives. A false positive is a re-
port that cannot possibly lead to deadlock, because (for example) it requires an

618 A. Williams, W. Thies, and M.D. Ernst

infeasible aliasing relationship or an infeasible set of paths through the program.
False positives reduce the usability of the tool because verifying that the re-
port is spurious can be tedious. We have implemented sound optimizations that
reduce the number of false reports without eliminating any true reports. This
section describes some of the optimizations; two additional implemented opti-
mizations handle synchronization over an object and one of its internal fields,
and synchronization over method call return values [26].

5.1 Unaliased Fields

An unaliased field is one that always points to an object that is not pointed to by
another variable in the program. As an optimization, our analysis detects these
fields, and assigns a unique type to each of them. This can decrease the number of
deadlock reports by disambiguating unaliased field references from other nodes
in the lock-order graph. (It is necessary to create a node for these fields, rather
than discarding information about synchronization over them. Although they
have no aliases, they may still be involved in deadlock.)

The following analysis is used to discover unaliased fields. Initially, all non-
public fields are assumed to be unaliased. As the analysis visits each statement
in the library, that assumption is nullified for a field f if any of the following
patterns apply:

1. f is assigned a non-null, non-newly-allocated expression.
2. f appears on the right-hand side of an assignment expression.
3. f appears outside any of the following expressions: a synchronized statement

target, a comparison expression (e.g., foo == bar), an array access or array
length expression, or as an argument to a method that does not allow it to
escape.

A simple iterative escape analysis determines which arguments escape a
method. Calls from the library to its methods as well as calls to the JDK are
checked; arguments are assumed to escape methods where no source is available.

The analysis presented in Section 4.1 introduces a new symbolic heap object
for every reference to a field. This is necessary because the analysis does not
model the possible values of fields. Unaliased fields are restricted in the possible
values they may hold. In particular, they are always assigned new objects, and,
if they are reassigned, their old objects cannot be accessed. Because of this
property, nested synchronization over the same field of a given object can be
treated as a no-op (thereby eliminating spurious reports), since only one of the
values locked is accessible. That is, one of the two synchronized statements is
on a lock that no longer exists and should therefore be ignored. The analysis
uses the same heap object for all references to the same unaliased field within
a given object, thereby regarding nested synchronizations as no-ops as desired.
This heap object propagates across call sites rather than being mapped to pp⊥.

In addition to detecting unaliased fields, our analysis stores the set of possible
runtime types of these fields. This information is readily available for unaliased
fields, as they are only assigned fresh objects (created with the new keyword).

Static Deadlock Detection for Java Libraries 619

With this information, the analysis can determine a more precise set of possible
callee methods when an unaliased field is used as a receiver.

Detecting and utilizing unaliased fields can be very beneficial. For example,
this optimization reduces the number of reports from over 909 to only 1 for the
jcurzez library, and from 66 to 0 for the httpunit library.

5.2 Callee/Caller Type Resolution

Accurate knowledge about dynamic types prevents locks on one object from
being conservatively assumed to apply to other objects. In general, the dynamic
types of arguments are a subclass of the declared parameter types; likewise, the
dynamic type of the receiver is a subclass of its declared type in the caller.
Callee/caller type resolution collects extra type information by leveraging the
fact that the declared types of objects in callees and callers sometimes differ.

To understand the benefits of type resolution, consider the following:
Object o;

o.hashCode();

When analyzing a particular implementation of hashCode(), say, in class Date,
the receiver is known to be of type Date, not Object as it was declared in the
above code. The callee/caller type resolution optimization takes advantage of
this information when integrating the lock-order graph for a callee such as
Date.hashCode() into that of the caller. Instead of using the callee or caller type
exclusively, the more specific type is used. This results in more precise type in-
formation in the overall lock-order graph, thereby decreasing the size of the alias
sets. Type resolution can have a large impact on spurious reports: reports for
the croftsoft library decrease from 1837 to 2, and reports for the jasperreports
library decrease from 28 to 0.

5.3 Final and Effectively-Final Fields

For final fields, all references are to the same object. Our analysis takes ad-
vantage of this fact by using the same heap object for each of the references to
the same final field within a given object. The analysis also detects fields that
are effectively-final: non-public fields that are not assigned a value (except null)
outside their constructor. Exploiting final fields reduces the number of reports
from 46 to 32 for the Classpath library.

6 Results

We implemented our deadlock detector in the Kopi Java compiler [9], which
inputs Java source code. Our benchmarks consist of 18 libraries, most of which
we obtained from SourceForge and Savannah2. The results appear in Figure 13.

2 ProActive [16], Jess [12], SDSU [20], and Sun’s JDK [23] are not from SourceForge
or Savannah, but are freely available online.

620 A. Williams, W. Thies, and M.D. Ernst

Code size Graph size
Library sync Classes kLOC Nodes Edges Reports Deadlocks
JDK 1.4 1458 1180 419 65 278 70 ∗ ≥7
Classpath 0.15 754 1074 295 15 22 32 ∗ ≥5
ProActive 1.0.3 199 407 63 3 3 3 ∗ ≥2
Jess 6.1p6 111 125 27 12 30 23 ∗ ≥0
sdsu (1 Oct 2002) 69 139 26 2 2 3 ∗ ≥0
jcurzez (12 Dec 2001) 24 27 4 1 1 1 0
httpunit 1.5.4 17 117 23 0 0 0 0
jasperreports 0.5.2 11 271 67 0 0 0 0
croftsoft (09 Nov 2003) 11 108 14 1 1 2 0
dom4j 1.4 6 155 41 1 1 1 0
cewolf 0.9.8 6 98 7 0 0 0 0
jfreechart 0.9.17 5 396 125 0 0 0 0
htmlparser 1.4 5 111 22 1 1 0 0
jpcap 0.01.15 4 58 8 0 0 0 0
treemap 2.5.1 4 47 7 0 0 0 0
PDFBox 0.6.5 2 127 28 0 0 0 0
UJAC 0.9.9 1 255 63 0 0 0 0
JOscarLib 0.3beta1 1 77 6 0 0 0 0

∗ Unsound filtering heuristics used (see Section 6.3)

Fig. 13. Number of deadlock reports for each library. The table indicates the size of
each library in terms of number of synchronized statements (given in the column
labeled sync), number of classes (source files), and number of lines of code (in thou-
sands). The size of the lock-order graph is measured after pruning nodes and edges
that are not part of a strongly connected component. “Deadlocks” shows the numbers
of confirmed deadlock cases in each library. The JDK and Classpath results are for
packages in java.*. We were unable to compile 6 source files in JDK due to bugs in our
research compiler

The analysis ran in less than 3 minutes per library on a 3.60GHz Pentium 4
machine. For the larger libraries, it is prohibitively expensive to compute all
possible deadlock reports, so we implemented a set of unsound heuristics to
filter them (see Section 6.3).

6.1 Deadlocks Found

We invoked 14 deadlocks in 3 libraries; 12 of these deadlocks were previously
unknown to us. We verified each instance by writing client code that causes
deadlock in the library. There are at least 7 deadlocks in the JDK, 5 in GNU
Classpath, and 2 in ProActive.

As described in Section 4.4, our analysis groups reports based on the lock vari-
ables involved. Some of the deadlocks described below can be induced through
calls to any of a number of different methods with the same locking pattern; we

Static Deadlock Detection for Java Libraries 621

Deadlocks Due to Cyclic Data Structures. Of the 14 deadlocks we found, 7
are the result of cycles in the underlying data structures. As an example, consider
java.util.Hashtable. This class can be deadlocked by creating two Hashtable

objects and adding each as an element of the other, i.e., by forming a cyclic re-
lationship between the instances. In this circumstance, calling the synchronized
equals() method on both objects in different threads can yield deadlock. The
equals() method locks its receiver and calls equals() on its members, thus lock-
ing any of its internal Hashtable objects. When run in two threads, each of the
calls to equals() has a different lock ordering, so deadlock can result.

Although this example may seem degenerate, the JDK Hashtable implemen-
tation attempts to support this cyclic structure: the hashCode() method prevents
a potential infinite loop in such cases by preventing recursive calls from execut-
ing the hash value computation. A comment within hashCode() says, “This code
detects the recursion caused by computing the hash code of a self-referential
hash table and prevents the stack overflow that would otherwise result.”

In addition to Hashtable, all synchronized Collections and combinations of
such Collections (e.g., a Vector in a cyclic relationship with a Hashtable) can be
deadlocked in a similar fashion. This includes Collections produced via calls to
Collections.synchronizedCollection(), Collections.synchronizedList(), Col-

lections.synchronizedSortedMap(), etc. For the purposes of reporting, all these
cases are counted as a single deadlock in both the JDK and Classpath.

Deadlock resulting from cyclic data structures is quite difficult to correct.
Locks must be acquired in a consistent order, or they must be acquired simul-
taneously. To do either of these things requires knowing which objects will be
locked by calling a given method. Determining this information without first
locking the container object is problematic since its internals may change during
inspection. It appears that the only solution is to use a global lock for synchro-
nizing instances of all Collection classes. This solution is undesirable, however,
because it prevents multi-threaded uses of different Collection objects. Library
writers may instead choose to leave these deadlock cases in place, but document
their existence and describe how to appropriately use the class.

Not only do these cyclic data structures lead to deadlock, but they may also
result in a stack overflow due to infinite recursion. A number of the classes having
this kind of deadlock also have methods that produce unbounded recursion for
the case of cyclic data structures. It seems that these deadlock cases reveal
intended structural invariants (i.e., that a parent object is not reachable through
its children) about the classes they involve.

The remaining 5 cyclic deadlocks are similar to that described above. Dead-
lock can be induced in java.awt.EventQueue from both JDK and Classpath, in
java.awt.Menu from JDK, in java.util.logging.Logger from Classpath, and in
AbstractDataObject from Proactive. Each class has a method that allows a cyclic
relationship to be formed, and another method (or set of methods) that locks
the containing object and the internal one.

only describe a single case, and report the number of deadlocks in this conser-
vative fashion.

622 A. Williams, W. Thies, and M.D. Ernst

Other Deadlock Cases. In addition to the cyclic case described above, ProAc-
tive exhibits a subtle deadlock in the ProxyForGroup class. Through a sequence of
calls, the asynchronousCallOnGroup() method of ProxyForGroup can be made to
lock both this and any other ProxyForGroup. Instantiating two or more ProxyFor-

Group objects and forcing each to lock the other induces deadlock. The state
necessary to produce this scenario is relatively complex. The offending method
contains, within four nested levels of control flow, a method call that returns an
Object; under certain circumstances, the object returned is a ProxyForGroup, as
needed to produce deadlock. We would not expect a library writer to notice this
deadlock possibility without using a tool like ours.

We invoked 4 additional deadlocks in the JDK. One deadlock is in Bean-

ContextSupport as described in Section 1. A second deadlock is in StringBuffer.

append(StringBuffer), as illustrated in Figure 14. This deadlock occurs because
append() is a synchronized method (i.e., it locks this), and it locks its argument.
Thus, using the client code in Figure 14, if a is locked in thread 1, and b is locked
in thread 2 before it is in thread 1, deadlock results. Note that this is an example
of a case where only a single method is used to cause deadlock.

class StringBuffer {
synchronized StringBuffer

append(StringBuffer sb) {
...
// length() is synchronized
int len = sb.length();
...

}
}

(StringBuffer.append(StringBuffer)
locks StringBuffer.this,
StringBuffer.length()
locks Parameter[sb])

StringBuffer

StringBuffer a =
new StringBuffer();

StringBuffer b =
new StringBuffer();

thread 1: a.append(b);
thread 2: b.append(a);

Fig. 14. Library code, lock-order graph, and client code that deadlocks JDK’s
StringBuffer class. This deadlock is also present in Classpath

Another deadlock from the JDK occurs in java.io.PrintWriter and java.io.

CharArrayWriter. Simplified code for this deadlock is shown in Figure 15. The
PrintWriter and CharArrayWriter classes both contain a lock field for synchro-
nizing I/O operations. In PrintWriter, the lock is set to the output stream out,
while in CharArrayWriter, the lock is set to this.

The last deadlock in the JDK is located in java.awt.dnd.DropTarget. This
class can be deadlocked by calling setComponent() with an argument (of type
Component) having a valid DropTarget set. When this call is made, the receiver is
locked followed by the argument’s DropTarget. Thus, the code in Figure 16 can
lead to deadlock.

GNU Classpath exhibits 2 deadlocks besides those described so far. The first
is in StringBuffer, and is analogous to the JDK bug described above. The second
is in java.util.SimpleTimeZone. The SimpleTimeZone.equals(Object) method is
synchronized and locks its argument; it is therefore susceptible to the same style
of deadlock as that of StringBuffer.append().

Static Deadlock Detection for Java Libraries 623

DropTarget a = new DropTarget(), b = new DropTarget();
Component aComp = new Button(), bComp = new Button();

aComp.setDropTarget(a);
bComp.setDropTarget(b);

thread 1: a.setComponent(bComp);
thread 2: b.setComponent(aComp);

Fig. 16. Client code that induces deadlock in the JDK’s DropTarget class

It is interesting to note that JDK and Classpath implementations of Simple-

TimeZone and Logger differ in their locking behavior: it is not possible to invoke
deadlock in these classes using the JDK. Similarly, the Classpath implementa-
tions of PrintWriter and CharArrayWriter do not deadlock; other relevant por-
tions of Classpath are not fully implemented.

Fixing Deadlocks. There are a number of viable solutions to the deadlocks
presented above. The methods performing synchronization could be written to
acquire the needed locks in a set order. Java could be extended with a syn-
chronization primitive to atomically acquire multiple locks. A utility routine
could be written to accomplish the same effect as this primitive, taking as ar-
guments a list of locks to acquire and a thunk to execute, then acquiring the
locks in a fixed order. These solutions require knowledge of the set of locks to
be acquired. Sometimes this is immediately apparent from the code; otherwise,
a method that determines the locks required for an operation could be added
to an interface. In all these cases, the implementation could order the locks us-
ing System.identityHashCode(), breaking ties arbitrarily but consistently. Note
however, that these solutions assume that the needed locks will not change while
they are being determined. If they might change, it may be necessary to use a
global lock for the classes involved in the deadlock.

class PrintWriter {
PrintWriter(OutputStream o) {

lock = o;
out = o;

}

void write(char buf[],
int off, int len) {

synchronized (lock) {
out.write(buf, off, len);

}
}

}

class CharArrayWriter {
CharArrayWriter() {

lock = this;
}

void writeTo(Writer out) {
synchronized (lock) {

out.write(buf, 0,
count);

}
}

}

// c.lock = c
c = new CharArrayWriter();
// p1.lock = c
p1 = new PrintWriter(c);
// p2.lock = p1
p2 = new PrintWriter(p1);

thread 1: p2.write("x",0,1);
thread 2: c.writeTo(p2);

Fig. 15. Simplified library code from PrintWriter and CharArrayWriter from Sun’s
JDK, and, on the right, client code that causes deadlock in the methods. In thread
1, p1 is locked first, then c; in thread 2, c is locked, then p1. Because the locks are
acquired in different orders, deadlock occurs under some thread interleavings

624 A. Williams, W. Thies, and M.D. Ernst

6.2 Verifying Deadlock Freedom

Using our tool, we verified 13 libraries to be free from the class of deadlocks
described in Section 3.2. Note that these libraries may perform callbacks to
client code, some extend the JDK, and most perform reflection; our technique
does not model synchronization resulting from these behaviors. For 10 of these
libraries, the verification is fully automatic, with 0 reports from our tool. Across
the other 3 libraries, our tool reports a total of 4 deadlocks, which we manually
verified to be false positives.

The false report in jcurzez is for a scenario in which an internal field f of
the same type as its containing class is set to a parameter of the constructor.
To eliminate this report, the analysis would have to combine several facts and
additional optimizations. Croftsoft gives two spurious reports because an object
involved in the synchronization cannot have the runtime type that our tool con-
servatively assumes to be possible. The final report is for dom4j, and is spurious
because of infeasible control flow.

6.3 Unsound Filtering Heuristics

For the larger libraries, the number of reports given by our algorithm is too high
(more than 100,000 for the JDK) for each to be considered by hand. In addition,
it is computationally demanding to report every deadlock possibility. In order to
make the tool more usable for large libraries (both in terms of number of reports
and time needed to gather them) our tool uses unsound filtering heuristics. These
heuristics aim to identify reports that have the greatest likelihood of representing
a true deadlock. However, as unsound heuristics, they also have the potential to
eliminate true deadlock cases from consideration.

Our tool applies two filtering heuristics on certain of the libraries in Figure 13.
One heuristic is to restrict attention to cycles in the lock-order graph that are
shorter than a given length. For the filtered libraries, only cycles with two or
fewer nodes were reported. Shorter cycles contain fewer locks, and are easier to
examine manually. In addition, shorter cycles might be more likely to correspond
to actual deadlocks, as each edge in a cycle represents a pair of lock acquisitions
that has some chance of being infeasible (due to infeasible control flow or aliasing
relationships).

The second filtering heuristic is to assume that the runtime type of each object
is the same as its declared type. This reduces the number of reports in two ways.
First, the analysis ceases to account for dynamic dispatch, as it assumes that
there is exactly one target of each method call. This causes the lock-order graph
for a given method to be integrated at fewer call-sites, thereby decreasing the
number of edges in the overall graph. Second, this heuristic causes the top level
routine (Figure 8) to forgo expansion of each edge into edges between all possible
subclasses. This heuristic has some intuitive merit because it restricts attention
to code that operates on a specific type, rather than a more general type. For
example, it considers the effects of all synchronized methods of a given class,
but it eliminates the assumption that all objects could be aliased with a field of
type Object that may be locked elsewhere.

Static Deadlock Detection for Java Libraries 625

7 Related Work

The long-standing goal of ensuring that concurrent programs are free of deadlock
remains an active research focus. Mukesh reviews the various approaches [22].

Several researchers have developed static deadlock detection tools for Java
using lock-order graphs [17, 1, 24]. To the best of our knowledge, the Jlint static
checker [17] is the first to use a lock-order graph. The original implementation of
Jlint considers only synchronized methods; it does not model synchronized state-
ments. Artho and Biere [1] augment Jlint with limited support for synchronized

statements. However, their analysis does not report all deadlock possibilities. It
only considers cases they reason are most fruitful for finding bugs: 1) all fields and
local variables are assumed to be unaliased, meaning that two threads must lock
exactly the same variable to elicit a deadlock report, 2) nested synchronized

blocks are tracked only within a single class, not across methods in different
classes, and 3) inheritance is not fully considered.

von Praun detects deadlock possibilities in Java programs using a lock-order
graph and context-sensitive lock sets [24–pp.105–110]. Our analysis was devel-
oped independently [25]. While von Praun’s alias analysis is more sophisticated
than ours, it is unclear how to adapt it to model all possible calls to a library.
Also, in an effort to reduce false positives, the analysis suppresses reports in
which all locks belong to the same alias set; as a consequence, it does not find
12 of the 14 deadlocks exposed by our tool. While von Praun’s analysis could be
trivially modified to report such cases, it would then report, in addition, all of
the benign cases that repeatedly lock a single object (as in Figure 12). Suppress-
ing these reports is the motivation for the flow-sensitive and interprocedural
aspects of our analysis: our analysis can recognize that two object references
are identical, thereby qualifying repeated synchronizations on a given object as
benign. von Praun’s analysis does not offer this benefit, in part because it is
flow-insensitive and unification-based. Also, it does not consider that wait() can
introduce a cyclic locking pattern (as in Figure 9). Our tool reports all deadlock
possibilities.

RacerX [10] is a flow-sensitive, context-sensitive tool for detecting deadlocks
and race conditions in C systems code. Because our tool analyzes Java instead
of C, it operates under a different set of constraints. We fully account for objects
and inheritance, reporting all deadlock possibilities; RacerX operates on a pro-
cedural language, and might fail to report every deadlock case due to function
pointers and high-overhead functions. Our tool analyzes unmodified Java code,
while RacerX requires annotations to indicate the locking behavior of system-
specific C functions. Our tool exploits the hierarchical synchronization primitives
in Java; in C, precision is sacrificed due to the decoupling of lock and unlock
operations (sometimes on different paths of the same function, as noted by the
authors).

Several groups have taken a model-checking approach to finding deadlock in
Java programs. Demartini, Iosif, and Sisto [8] translate Java into the Promela
language, for which the SPIN model checker verifies deadlock freedom. Their

626 A. Williams, W. Thies, and M.D. Ernst

verification reports all deadlock possibilities so long as the program does not
exceed the maximum number of modeled objects or threads.

Java Pathfinder also performs model checking by translating Java to Promela,
including support for exceptions and polymorphism [13]. It has also been used
to analyze execution traces; a deadlock vulnerability is reported if two threads
obtain locks in a different order at runtime [14]. This approach can detect “gate
locks”: a shared lock that guards each thread’s entry into a hazardous out-of-
order locking sequence, thereby preventing deadlock. The technique has evolved
into a general online monitoring environment called Java PathExplorer [15].

Breuer and Valls describe static detection of deadlock in the Linux kernel [3].
They target deadlocks caused by threads that call sleep while still holding a
spinlock. Chaki et al. [4] use counterexample-guided abstraction refinement and
the MAGIC verification tool [5] to detect deadlock in message-passing C pro-
grams. The technique is compositional and efficient (compared to traditional
model checking) because the abstraction for each thread can be refined inde-
pendently until the overall system exhibits a bug or is proven free of deadlock.
However, the number of threads and locks (and their interaction) must be known
statically.

The Ada programming language allows rendezvous communication between
a call statement in one task and an accept statement in another. Most anal-
yses for Ada aim to verify that rendezvous communication succeeds, rather
than considering the order of synchronization on shared resources (locks). For
example, Masticola and Ryder [19] give a polynomial-time algorithm for re-
porting all possible rendezvous deadlocks for a subset of Ada (they also report
false positives). Corbett [7] evaluates three methods for finding deadlock in Ada
programs. Many analyses rely on the common case where Ada tasks are fixed
and initiated together, in contrast to Java threads which are always created
dynamically.

Boyapati, Lee, and Rinard [2] augment Java with ownership types to ensure
deadlock freedom at compile time. While this is an elegant solution, it requires
translating existing programs to use new type annotations, and some computa-
tions might be hard to express. Flanagan and Qadeer describe a type and effect
system for atomicity [11]. In this system, a method is atomic if it appears to
execute serially, without interleaving of other threads. They identify an atom-
icity violation in StringBuffer.append, providing part of the impetus for our
work.

Zeng and Martin augment a Java Virtual Machine with a deadlock avoid-
ance mechanism [28]. This technique constructs a lock-order graph dynamically,
tracking the actual objects that are locked during execution. As cycles form in
the graph, “ghost locks” are introduced to prevent multiple threads from enter-
ing the cyclic regions. While this avoids deadlock later in the execution, deadlock
could still occur while the graph is being built.

Zeng describes a system that uses exceptions to indicate various kinds of
deadlock in a Java Virtual Machine [27]. Such a mechanism allows a client to in-

Static Deadlock Detection for Java Libraries 627

system mechanism that detects general deadlocks via speculative execution of
blocked processes. There is also a large body of work on dynamically detecting
deadlock in the context of databases and distributed systems [21, 22].

8 Conclusions

Library writers wish to ensure their libraries are free of deadlock. Because this
assurance is difficult to obtain by testing or by hand, a tool for identifying possi-
ble deadlock (or verifying freedom from deadlock) is desirable. Model checking is
a possible approach to the problem, but the well-known state explosion problem
makes it impractical for most libraries.

We have presented a flow-sensitive, context-sensitive analysis for static de-
tection of deadlock in Java libraries. Out of 18 libraries, we verified 13 to be
free of deadlock, and found 14 reproducible deadlocks in 3 libraries. The anal-
ysis uses lock-order graphs to represent locking configurations extracted from
libraries. Nodes in these graphs represent alias sets, edges represent possible
lock orderings, and cycles indicate possible deadlocks.

Our analysis is quite effective at verifying deadlock freedom and finding dead-
lock, but it still produces a sizable number of false reports. Rather than asking
the user to investigate these reports, the reports could be dispatched to a model
checker which could automatically check for deadlock. In this framework, our
tool would serve to limit the search space of the model checker, possibly allow-
ing sound verification of large libraries.

Just as static verification of all possible program executions offers stronger
guarantees than dynamic analysis of one or a few executions, verification that a
library cannot deadlock is preferable to checking that a particular client program
does not deadlock while using the library. To our knowledge, our tool is the
first to address the problem of deadlock detection in libraries. However, the
technique is also applicable to whole programs, and may prove to be effective in
that context.

Acknowledgments

We thank Viktor Kuncak, Manu Sridharan, Huu Hai Nguyen, Wilson Hsieh, and
Stephen McCamant for their feedback and suggestions on this work, and Mar-
tin Lackner for support with Kopi. The second author thanks Saman Amaras-
inghe for supporting his participation in this project. We also thank the anony-
mous reviewers for their comments. This work is supported in part by NSF
grant CCR-0133580, the MIT-Oxygen Project, and an NSF Graduate Research
Fellowship.

telligently respond to deadlock in a library component. Pulse [18] is an operating

628 A. Williams, W. Thies, and M.D. Ernst

References

1. Artho, C., Biere, A.: Applying static analysis to large-scale, multi-threaded Java
programs. In: ASWEC. (2001) 68–75

2. Boyapati, C., Lee, R., Rinard, M.: Ownership types for safe programming: pre-
venting data races and deadlocks. In: OOPSLA. (2002) 211–230

3. Breuer, P.T., Garcia-Valls, M.: Static deadlock detection in the Linux kernel. In:
Ada-Europe. (2004) 52–64

4. Chaki, S., Clarke, E., Ouaknine, J., Sharygina, N.: Automated, compositional and
iterative deadlock detection. In: MEMOCODE. (2004)

5. Chaki, S., Clarke, E.M., Groce, A., Jha, S., Veith, H.: Modular verification of
software components in C. IEEE TSE 30 (2004) 388–402

6. Chase, D.R., Wegman, M., Zadeck, F.K.: Analysis of pointers and structures. In:
PLDI. (1990)

7. Corbett, J.C.: Evaluating deadlock detection methods for concurrent software.
IEEE TSE 22 (1996) 161–180

8. Demartini, C., Iosif, R., Sisto, R.: A deadlock detection tool for concurrent Java
programs. Software: Practice and Experience 29 (1999) 577–603

9. DMS Decision Management Systems GmbH: The Kopi Project (2004) http://

www.dms.at/kopi/.
10. Engler, D., Ashcraft, K.: RacerX: Effective, static detection of race conditions and

deadlocks. In: SOSP. (2003) 237–252
11. Flanagan, C., Qadeer, S.: A type and effect system for atomicity. In: POPL. (2003)

338–349
12. Friedman-Hill, E.: Jess, the Java expert system shell (2004) http://herzberg.ca.

sandia.gov/jess/.
13. Havelund, K., Pressburger, T.: Model checking Java programs using Java

PathFinder. STTT 2 (2000) 366–381
14. Havelund, K.: Using runtime analysis to guide model checking of Java programs.

In: SPIN. (2000) 245–264
15. Havelund, K., Roşu, G.: Monitoring Java programs with Java PathExplorer. In:

RV. (2001)
16. INRIA: Proactive (2004) http://www-sop.inria.fr/oasis/ProActive/.
17. Knizhnik, K., Artho, C.: Jlint (2005) http://jlint.sourceforge.net/.
18. Li, T., Ellis, C.S., Lebeck, A.R., Sorin, D.J.: Pulse: A dynamic deadlock detection

mechanism using speculative execution. In: USENIX Technical Conference. (2005)
31–44

19. Masticola, S.P., Ryder, B.G.: A model of Ada programs for static deadlock detec-
tion in polynomial time. Workshop on Parallel and Distributed Debugging (1991)

20. San Diego State University: SDSU Java library (2004) http://www.eli.sdsu.edu/
java-SDSU/.

21. Shih, C.S., Stankovic, J.A.: Survey of deadlock detection in distributed concurrent
programming environments and its application to real-time systems. Technical
report, UMass UM-CS-1990-069 (1990)

22. Singhal, M.: Deadlock detection in distributed systems. IEEE Computer 22 (1989)
37–48

23. Sun Microsystems, Inc.: Java Development Kit (2004) http://java.sun.com/.
24. von Praun, C.: Detecting Synchronization Defects in Multi-Threaded Object-

Oriented Programs. PhD thesis, Swiss Federal Institute of Technology, Zurich
(2004)

Static Deadlock Detection for Java Libraries 629

25. Williams, A., Thies, W., Ernst, M.D.: Static deadlock detection in Java libraries.
Research Abstract #102, MIT Computer Science and Artificial Intelligence Labo-
ratory (February, 2004)

26. Williams, A.L.: Static detection of deadlock for Java libraries. Master’s thesis,
MIT Dept. of EECS (2005)

27. Zeng, F.: Deadlock resolution via exceptions for dependable Java applications. In:
DSN. (2003) 731–740

28. Zeng, F., Martin, R.P.: Ghost locks: Deadlock prevention for Java. In: MASPLAS.
(2004)

Author Index

Aldrich, Jonathan 144, 312
Anderson, Christopher 428

Bacon, David F. 577
Banerjee, Anindya 387
Batory, Don 169
Bierman, Gavin 262, 287
Bockisch, Christoph 214

Cheng, Perry 577
Chiba, Shigeru 49, 121
Coady, Yvonne 241
Cook, William 169
Čubranić, Davor 33
Czajkowski, Grzegorz 97

Dallmeier, Valentin 528
Daynès, Laurent 97
Dolby, Julian 71
Drossopoulou, Sophia 428, 453
Dwyer, Matthew 551

Ernst, Michael D. 504, 602

Flanagan, Cormac 551
Flynn, Robert J. 362
Foote, Brian 337
Fuhrer, Robert 71

Giannini, Paola 428
Gibbs, Celina 241
Grove, David 577

Hatcliff, John 551

Ishikawa, Rei 121

Johnson, Ralph E. 337

Keller, Markus 71
Kersten, Mik 33
Kiczales, Gregor 195
Kieżun, Adam 71
Koved, Larry 362

Lam, Vitus S.W. 412
Leavens, Gary T. 551
Lindig, Christian 528
Liu, Chunjian Robin 241
Lopez-Herrejon, Roberto E. 169
Lu, Yi 479

Meijer, Erik 287
Meyer, Bertrand 1
Mezini, Mira 195, 214
Murphy, Gail C. 33

Naumann, David A. 387
Noble, James 337

Ostermann, Klaus 214

Pacheco, Carlos 504
Padget, Julian 412
Pistoia, Marco 362
Potter, John 479

Robby, FNU 551
Robillard, Martin P. 33
Rodŕıguez, Edwin 551

Salzman, Lee 312
Sato, Yoshiki 49
Schulte, Wolfram 287
Smith, Charles 453
Sreedhar, Vugranam C. 362

Thies, William 602
Tip, Frank 71

Vechev, Martin T. 577

Williams, Amy 602
Wren, Alisdair 262

Zeller, Andreas 528

	Frontmatter
	Invited Talks
	Attached Types and Their Application to Three Open Problems of Object-Oriented Programming
	The Emergent Structure of Development Tasks

	Java
	Loosely-Separated ``Sister'' Namespaces in Java
	Efficiently Refactoring Java Applications to Use Generic Libraries
	Sharing the Runtime Representation of Classes Across Class Loaders

	Aspects and Modularity
	Aspect-Oriented Programming Beyond Dependency Injection
	Open Modules: Modular Reasoning About Advice
	Evaluating Support for Features in Advanced Modularization Technologies
	Separation of Concerns with Procedures, Annotations, Advice and Pointcuts
	Expressive Pointcuts for Increased Modularity
	Sustainable System Infrastructure and Big Bang Evolution: Can Aspects Keep Pace?

	Language Design
	First-Class Relationships in an Object-Oriented Language
	The Essence of Data Access in Cω
	Prototypes with Multiple Dispatch: An Expressive and Dynamic Object Model
	Efficient Multimethods in a Single Dispatch Language

	Program Analysis
	Interprocedural Analysis for Privileged Code Placement and Tainted Variable Detection
	State Based Ownership, Reentrance, and Encapsulation
	Consistency Checking of Statechart Diagrams of a Class Hierarchy

	Types
	Towards Type Inference for JavaScript
	{\itshape Chai}: Traits for Java-Like Languages
	A Type System for Reachability and Acyclicity

	Testing
	Eclat: Automatic Generation and Classification of Test Inputs
	Lightweight Defect Localization for Java

	Concurrency
	Extending JML for Modular Specification and Verification of Multi-threaded Programs
	Derivation and Evaluation of Concurrent Collectors
	Static Deadlock Detection for Java Libraries

	Backmatter

