
9. Reliability and Load Balancing in
Distributed Hash Tables

Simon Rieche, Heiko Niedermayer, Stefan Götz, Klaus Wehrle
(University of Tübingen)

After introducing some selected Distributed Hash Table (DHT) systems, this
chapter introduces algorithms for DHT-based systems which balance the stor-
age data load (Section 9.1) or care for the reliability of the data (Section 9.2).

9.1 Storage Load Balancing of Data in Distributed
Hash Tables

DHTs are used increasingly in widely distributed applications [52, 573]. Their
efficient, scalable, and self-organizing algorithms for data retrieval and man-
agement offer crucial advantages compared with unstructured approaches.
However, the underlying assumption is a roughly equal data distribution
among the cooperating peers of a DHT. If there is a significant difference
in the load of nodes in terms of data managed by each peer, i.e., data is
concentrated on just a few peers, then the system may become less robust.

Alongside their crucial advantages, DHTs still show one major weakness
in the distribution of data among the set of cooperating peers. All systems
usually rely on the basic assumption that data is nearly equally distributed
among the peer nodes. In most DHT approaches this assumption is based on
the use of hash functions for mapping data into the DHT’s address space.
Generally, one assumes that hash functions provide an even distribution of
keys and their respective data across the DHT address space. If there is a sig-
nificant difference in the load of nodes in terms of data managed by each peer,
the cost for distributed self-organization of such systems may increase dra-
matically. Therefore, appropriate mechanisms for load-balancing are required
in order to keep the complexity of DHT search algorithms in the intended
range of O(logN) or less, where N is the number of nodes in the DHT.

But, as proved in many papers [99, 501, 513], the simple assumption of
getting an equally distributed value space simply by using hash functions does
not hold. Therefore, several approaches for balancing the data load between
DHT peers have been developed.

The following figure [513] shows simulations by simply hashing data into
the target address space of a Chord ring. The distribution of documents
among the nodes was analyzed. For each scenario, a simulated DHT with
4,096 nodes was subjected to multiple simulation runs. The total number of

R. Steinmetz and K. Wehrle (Eds.): P2P Systems and Applications, LNCS 3485, pp. 119-135, 2005.
 Springer-Verlag Berlin Heidelberg 2005

120 9. Reliability and Load Balancing in DHTs

 D

 Optimal distribution of
 documents across nodes

(a) Frequency distribution of DHT
nodes storing a certain number of
documents

 0

 50

 100

 150

 200

 0 200k 400k 600k 800k 1000k

N
um

be
r

of
 n

od
es

 w
/o

 lo
ad

Number of documents in the DHT

(b) Number of nodes not storing
any document

 0

 500

 1000

 1500

 2000

 2500

 0 200k 400k 600k 800k 1000k

D
oc

um
en

ts
 p

er
 n

od
e

Number of documents in the DHT

(c) Minimum, average, and max-
imum number of documents per
node

Fig. 9.1: Distribution of data among a Chord DHT without load-balancing mech-
anisms.

documents to be stored ranged from 100,000 to 1,000,000 and for this purpose
the Chord ring’s address space had a size of m = 22 bits. Consequently,
222 = 4,194,304 documents and/or nodes could be stored and managed in
the ring. The keys for the data and nodes were generated randomly. The
load of a node was defined by the number of documents it stored.

The graphs in Fig. 9.1 clearly show that the assumption of an equal dis-
tribution of data among peers by simply using a hash function does not hold.
For example, Fig. 9.1(a) shows how many nodes (y-axis) store a certain num-
ber of documents (x-axis). It is obvious that there is an unequal distribution
of documents among the nodes. For an easier comparison, the grey line indi-
cates the optimal number in the case of equal distribution – approximately
122 documents per node in this example. Additionally, Fig. 9.1(b) plots the
number of nodes without a document.

9.1 Storage Load Balancing of Data in Distributed Hash Tables 121

Fig. 9.1(c) shows the distribution of documents in a Chord DHT without
load-balancing. Between 100,000 and 1,000,000 documents were distributed
across 4,096 nodes. The upper value indicates the maximum number of doc-
uments per node,and the lower value (always zero) the minimum number.
The optimal number of documents per node is indicated by the marker in
the middle. Even with a large total number of documents in the whole DHT,
there are some nodes not managing any document and, consequently, are
without any load. Some nodes manage a data load of up to ten times the
average.

9.1.1 Definitions

Before discussing approaches for load-balancing in DHT systems, a clear def-
inition of the term load has to be given [501]. Also, it must be made clear
under what conditions a node may be referred to as overloaded, and a system
as optimally balanced.

The data load of a peer node is usually determined by the amount of
stored data per node. In the following, the load of a node is the sum of all
data stored in this node. The total data load of a Peer-to-Peer (P2P) system
is defined as the sum of the loads of all nodes participating in the system.
The load of a system with N nodes is optimally balanced, if the data load of
each node in the system is around 1/N of the total load. A node is referred
to as overloaded or heavy if it has a significantly higher load compared with
one in an optimal distribution. A node is light if it stores significantly less
data than the optimum.

9.1.2 A Statistical Analysis

Before discussing algorithms for load-balancing, this section takes a look at
the underlying statistics [450]. At the end of this section, theoretical evidence
is provided for the empirical behavior. In the following, N is the number of
nodes in the DHT, and m the number of data items.

Distribution of Data Items Among Peers with Equal-Sized Intervals
A simple model for load distribution is to consider all nodes to be responsible
for intervals of equal size. Thus, when distributing a data item, each node is
hit with a probability of 1

N . Focusing on one node, the distribution of the data
items is a series of independent Bernoulli trials with a success probability of
1
N . The number of data items on this node (successful Bernoulli trials) is
therefore following the binomial distribution.

122 9. Reliability and Load Balancing in DHTs

The binomial distribution pb and its standard deviation σb are defined as
follows:

pb(load == i) =
(

m

i

)(
1
N

)i(
1 − 1

N

)(m−i)

(9.1)

σb =

√
m

N

(
1 − 1

N

)
(9.2)

As an example, more than 300,000 collected file names from music and
video servers were hashed, and the ID space was divided into intervals ac-
cording to the first bits of an ID, e.g., 8 bits for 256 intervals. The load of each
of these intervals is distributed closely around the average with the empirical
standard deviation (σExperiment = 34.5) being close to the theoretical one
(σBinomial = 34.2).

However, the assumptions of this model are not realistic for DHTs because
interval sizes for nodes are not equal. The next section will deduce the interval
size distribution.

Distribution of Peers in Chord
This section looks at the distribution of nodes on the Chord ring, or any
other system randomly assigning node IDs. For the sake of simplicity, we use
a continuous model, i.e., we consider the ID space to be real-valued in the
interval [0, 1). The number of nodes in a Peer-to-Peer network (at most, say a
billion, i.e., roughly 230 nodes) is small compared to the 2160 IDs in Chord’s
ID space.

– n-1 experiments with U(0,1).
– Determine the distribution of the IDs of the peers in the experiments.

The rationale for using this continuous model is that it is easier than a
discrete one and the ID space is large compared with the number of nodes in
it.

The continuous uniform distribution is defined as:

U(x) =

{ 0 x < 0
x 0 ≤ x < 1
1 x ≥ 1

Let L be the distribution of the interval size. It is given as the minimum
of N − 1 experiments1:

1 For our statistical analysis it does not matter if the node responsible for the data
is at the beginning or the end of the interval.

9.1 Storage Load Balancing of Data in Distributed Hash Tables 123

0 e+00 2 e-04 4 e-04 6 e-04 8 e-04 1 e-03

0
10

00
20

00
30

00
40

00

x

l(x
)

Fig. 9.2: Probability Density Function for Continuous Model with 4,096 nodes.

L(x) = 1 −
N−1∏
i=1

(1 − U(x)) = 1 − (1 − U(x))N−1

=

{ 0 x < 0
1 − (1 − x)N−1 0 ≤ x < 1

1 x ≥ 1

And the probability density function (pdf) shown in Fig. 9.2:

l(x) =
dL

dx
=

{
(N − 1) (1 − x)N−2 0 ≤ x < 1

0 else

It is interesting that the form of the probability density function and
the load distribution are quite similar. This is even better illustrated when
this calculation is done for a discrete ID space. To use this formula as an

0 200 400 600 800 1000

0
5

10
15

20
25

30

Documents per node

N
um

be
r

of
 n

od
es

Fig. 9.3: Load Distribution (mean load = 128; 4,096 nodes) approximated with a
scaled probability function from the Discrete Model.

124 9. Reliability and Load Balancing in DHTs

approximation for the load, we use the number of data items as the ID space.
Consequently, we get an approximation for the probability of a certain load
(e.g., probability that a node has load = 10 items). If we multiply these
probabilities with the number of nodes, we get the frequency distribution
shown in Fig. 9.3.

9.1.3 Algorithms for Load Balancing in DHTs

To solve the problem of load-balancing, several techniques have been de-
veloped to ensure an equal data distribution across DHT nodes [512]. This
chapter presents Virtual Servers [501], Power of Two Choices [99], Heat Dis-
persion Algorithm [513], and a Simple Address-Space and Item Balancing
[338].

For clarity,the algorithms are mainly explained with Chord, but they are
suitable for most of the different DHT systems.

The Concept of Virtual Servers
The virtual server approach [501] is based on the idea of managing multiple
partitions of a DHT’s address space in one node. Thus, one physical node may
act as several independent logical nodes. Each virtual server will be considered
by the underlying DHT as an independent node. Within a Chord system,
one virtual server is responsible for an interval of the address space, whereas
the corresponding physical node may be responsible for several different and
independent intervals.

The basic advantage of this approach is the simplicity of displacement
of virtual servers among arbitrary nodes. This operation is similar to the
standard join or leave procedure of a DHT and content will be distributed as
ranges of hash values across a the nodes. Every participating node manages
virtual servers and has knowledge of all their neighbors from the fingers in
the finger-table. For example with Chord, this relates to all fingers within the
routing table. Now each node can transfer virtual servers to other nodes.

Transfer. The idea of the algorithm is to move a virtual server from a heavy
to a light node. This transfer can be organized using three different schemes,
known as: One-to-One, One-to-Many, and Many-to-Many.

In all of these schemes, the best virtual server which gets transferred
is the one which satisfies the following three constraints. First, the transfer
of a virtual server doesn’t make the node which receives the virtual server
heavy. Second, the virtual server is the lightest virtual server that makes the
releasing node light. And third, if there is no virtual server whose transfer
can make a node light, then the heaviest virtual server from this node gets
transferred.

9.1 Storage Load Balancing of Data in Distributed Hash Tables 125

The third constraint results in the transfer of the largest virtual server
that will not make the receiving node heavy, therefore, the chance of finding
another light node in the next round which can receive a virtual server of
this heavy node is increased.
One-to-One Scheme. This scheme is the simplest one. Two nodes are picked
at random and a virtual server is transferred from a heavy node to a light
one. Each light node periodically selects a node and indicates a transfer if
that node is heavy, and if the above tree rules hold.
One-to-Many Scheme. This scheme allows a heavy node to consider more
than one light node at a time. Each heavy node transfers a virtual server
to one node of a known set of light nodes. For each light node of this set,
the best virtual server is computed as described above and only the lightest
virtual server of these will be transferred.
Many-to-Many Scheme. This scheme matches many heavy nodes to many
light nodes. In order to get many heavy nodes and many light nodes to
interact, a global pool of virtual servers is created – an intermediate step in
moving a virtual server from a heavy node to a light node. The pool is only
a local data structure used to compute the final allocation.

In three phases (unload, insert, and dislodge) the virtual servers to be
transferred are computed. In the first one (unload) each heavy node puts
the information about its virtual servers into a global pool until this node
becomes light.

The virtual servers in the pool must then be transferred to nodes in the
next step (insert). This phase is executed in rounds, in which the heaviest
virtual server from the pool is selected and transferred to a light node, de-
termined using the rules above. This phase continues until the pool becomes
empty, or until no more virtual servers can be transferred.

In the final phase (dislodge), the largest virtual server from the pool is
exchanged with another virtual server of a light node which is lighter and
does not make the node heavy. If such a node is found, the insert step begins
again, otherwise the algorithm terminates and the rest of the virtual servers
in the pool stay at their current nodes.

Power of Two Choices
The algorithm Power of Two Choices [99] relies on the concept of multiple
hash functions. These functions are used to map data into the address space
of a DHT. For the processes of inserting and retrieving, the results of all hash
functions are calculated. In the case of inserting a new document, all respec-
tive hash values are computed and the corresponding nodes are retrieved.
Finally, the document is stored on the retrieved node with the lowest load in
terms of stored data.

In formal terms, every node knows the universal hash function
h1, h2, · · · , hd which maps data onto the ring and so a node can compute

126 9. Reliability and Load Balancing in DHTs

h1(x), h2(x), · · · , hd(x) to insert the data x. For each of these computed re-
sults, the node responsible for this ID in the DHT is located. The data is now
placed on the peer with the lowest load.

There are two ways to implement the search. A simple implementation
requires that all hash functions be recalculated. After all lookups are made
to find the peers associated with each of these values, one node must have
successfully stored the data. These searches can be made in parallel and thus
enable searching in little more time than their classic counterparts since this
approach uses a factor of d more network traffic to perform each search.

The second way of searching is to use redirection pointers. Insertion pro-
ceeds exactly as before, but in addition to storing the item at the least
loaded peer, all other peers store a redirection pointer to this node. To re-
trieve document x, it is not necessary to calculate all possible hash func-
tions h1, h2, . . . , hd, because each possible node h1(x), h2(x), . . . , hd(x) stores
a pointer to document x. Thus, each of these nodes can forward the request
directly to the node which is actually storing the requested document. Hence,
a request for a certain key has to be made only to one of the d possible nodes.
If this node does not store the data, the request is forwarded directly to the
right node via the pointer. Nevertheless, the owner of a key has to insert
the document periodically to prevent its removal after a timeout (soft state).
Lookups now take at most only one more step.

Load Balancing Similar to Heat Dispersion
Rieche et. al [513] introduce another load-balancing algorithm for DHTs.
Content is moved among peers similar to the process of heat dispersion [521].
Usually, a material warmer than its environment emits heat to its surround-
ings until a balanced distribution is reached in the entire system. To deploy
a similar algorithm for balancing load among peers in a DHT, [513] pro-
poses a very simple approach which needs only three rules. But nodes in a
DHT can not simply move documents arbitrarily to other nodes, e.g., their
neighbors, because this would result in an inconsistent and inefficient search.
This reduces the performance and advantages of a DHT. Therefore, the al-
gorithm moves only complete intervals, or contiguous parts of them, between
the nodes in the DHT.

It seems appropriate to summarize the algorithm based on the DHT sys-
tem Chord [575]. Although the Chord system has been modified, the efficient
Chord routing algorithms remain unchanged. First of all, any fixed positive
number f is chosen. f indicates the minimum number of nodes assigned to
a specific DHT interval. If more than f nodes are assigned to a specific in-
terval, one or more of them may be moved to a different interval. In case of
more than 2f nodes, the respective interval can be split almost evenly. Now,
a node has to manage approximately half of the documents. Each node peri-
odically checks the data loads in its neighborhood – mainly its successors and

9.1 Storage Load Balancing of Data in Distributed Hash Tables 127

predecessors – as well as destinations referenced in its DHT routing table.
This number f helps to balance the load, but also to make Chord more fault
tolerant.

The first node takes a random position in the Chord ring and a new node
is assigned to any other existing node in the system. This receiving node
announces each joining node to all other nodes responsible for the same in-
terval. Following this, a portion of the documents located within this interval
are copied to the new node. Then, the original methods to insert a node
in Chord are performed. Now the nodes, located within the same interval,
can balance the load with nodes of other intervals according to one of three
various methods.

…
…

…
…

…
…

…
…

4
5
6

1
2
3

1
2
3

4
5
6

Splitting of an interval

Heavy Node Light Node Any Node

Fig. 9.4: Splitting of an Interval: Nodes 1 to 6 are assigned to the same interval
and are overloaded in terms of data load. Since only three nodes are
necessary to maintain an interval, this interval can be split.

2f Nodes with Excessive Load. If 2f different nodes are assigned to the same
interval, and each node stores significantly more documents than average,
then this interval gets divided. The point of separation is the center of the
interval. It can be easily computed as the half of the interval borders or the
half of the hash values representing the stored documents. This implies that
no load in terms of data has to be moved anywhere, and the respective nodes
lose approximately half of their data load at once. Finally, the predecessors
and successors will be adapted accordingly. Figure 9.4 shows an example of
such an interval division.

More than f Nodes in an Interval. Intervals with more than f but less than
2f nodes can release some nodes to other intervals. If nodes within a partic-
ular interval are overloaded, they wait for additional nodes to join them. If

128 9. Reliability and Load Balancing in DHTs

…

…

…

…

…

…

…

…

1

2

3

1

2

3

4

…

…

…

…

4

Shifting of nodes

Heavy Node Light Node

Fig. 9.5: Moving nodes: Nodes 1 to 4 are assigned to an interval. Since only three
nodes are necessary to maintain an interval, node 4 can be transferred
into another overloaded interval.

some nodes are very light, they periodically send this information to other
nodes placed in different intervals. These desired destinations (intervals) can
be found using routing entries of appropriate finger tables. Even if an interval
with a heavy load exists, nodes can be moved to this interval. Based on the
new situation, accumulated nodes within the new interval can try to split it
by the rules described above.

Figure 9.5 shows an example of such a shifting of nodes to regions of higher
load. Nodes 1 to 4 are very light in terms of data load and are responsible for
the same interval. Since only three nodes are required, node 4 can be moved
to an overloaded interval that should be divided.

No more than f Nodes within an Interval. As an additional alternative, in-
terval borders may be shifted. Nodes can compare their load with the load of
their immediate predecessors and successors. If its own interval shows more
load than its neighbor’s, part of the load can be released and thus interval
borders will be shifted. Figure 9.6 shows an example of such a shifting of
interval borders.

A Simple Address Space and Item Balancing
Karger and Ruhl introduce two protocols for load-balancing [338], especially
for Chord [575]. The first balances the distribution of the key address space
to nodes, the second directly balances the distribution of data among the
nodes.

Address-Space Balancing. Each node has a fixed set of O(log N) possible
positions in the Chord ring. These places are called virtual nodes (in com-

9.1 Storage Load Balancing of Data in Distributed Hash Tables 129

…
…

…
…

…
…

…
…

Shifting of interval borders

Heavy Node Light Node

Fig. 9.6: Intervals adjusted between neighbors: The nodes within the right interval
act together and are light, but the nodes located within the interval before
are overloaded. Interval borders can be changed there.

parison to virtual servers in section 9.1.3) and are computed with different
hash functions applied to their own ID. Each node chooses only one virtual
node to become active. The address of a node is denoted as (2b + 1)2−a by
〈a, b〉, where a and b are non-negative integers and b < 2a−1. This is an un-
ambiguous notation for all addresses with finite binary representation. These
addresses are ordered according to the length of their binary representation,
so 〈a, b〉 < 〈a′, b′〉 if a < a′ or (a = a′ and b < b′).

Each node now chooses its ideal state. Given any set of active virtual
nodes, each (possibly inactive) one spans a certain range of addresses between
itself and the succeeding active virtual node. Each real node has activated
the virtual node that spans the minimal possible (under the ordering just
defined) address space. Thus, each node occasionally determines which of its
virtual nodes spans the smallest address space and activates that particular
virtual node.

Item Balancing. This also shifts interval borders. Nodes can compare their
load with the loads of other nodes. If its own interval shows more load than
its neighbor’s, part of the load can be released and thus interval borders
between two intervals will be shifted.

9.1.4 Comparison of Load-Balancing Approaches

To analyze load-balancing in a DHT, a complete Chord ring simulator was de-
veloped in [513] to investigate and to compare the load-balancing algorithms
Virtual Servers [501], Power of Two Choices [99], and Heat Dispersion Al-

130 9. Reliability and Load Balancing in DHTs

gorithm [513]. The focus was on the distribution of documents among the
nodes.

Simulation Scenarios
In each scenario, a Chord DHT with 4,096 nodes was simulated and multiple
simulations were run per scenario to confirm the results. The simulation in
[513] shows that the results are comparable with the simulations presented
in [99]. The total number of documents to be stored ranged from 100,000 to
1,000,000. The keys for the data and nodes were generated randomly. For
this purpose, the Chord ring’s address space had a size of m = 22 bits.
Consequently, 222 = 4,194,304 documents and/or nodes could be stored and
managed in the ring. In the simulation, the load of a node is defined as the
number of documents it stores.

Simulation Results
Fig. 9.7(a) shows the distribution of documents in Chord without load-
balancing. Between 105 and 106 documents were distributed across 4,096
nodes. The upper value indicates the maximum number of documents per
node, the lower value the minimum number. The optimal number of docu-
ments per node is indicated by the marker in the middle.

Even for a large number of documents in the DHT, there are some nodes
not managing any documents and, consequently, without any load. Some
nodes have a load of up to ten times above the optimum. Fig. 9.7(b) shows
that Power of Two Choices works much more efficiently than the original
Chord without load-balancing. However, there are still obvious differences in
the loads of the nodes. Some are still without any document.

Applying the concept of Virtual Servers with the One-to-One scheme
(cf. Fig. 9.7(c)) results in a more efficient load-balancing. Nevertheless, this
is coupled with a much higher workload for each node because it has to
manage many virtual servers. Additionally, the data of all virtual servers of
one physical node has to be stored in the memory of the managing node.

Fig. 9.7(d) shows that the best results for load-balancing are achieved by
using the heat dispersion algorithm. Each node manages a certain amount of
data and load fluctuations are relatively small. Documents are only moved
from neighbor to neighbor. Using virtual severs, however, results in copying
the data of a whole virtual server. As a result, the copied load is always
balanced. In addition, more node management is necessary.

9.2 Reliability of Data in Distributed Hash Tables 131

 0

 500

 1000

 1500

 2000

 2500

 0 200k 400k 600k 800k 1000k

D
oc

um
en

ts
 p

er
 n

od
e

Number of documents

(a) Chord without load-balancing

 0

 200

 400

 600

 800

 1000

 0 200k 400k 600k 800k 1000k

D
oc

um
en

ts
 p

er
 n

od
e

Number of documents

(b) Chord with Power of Two
Choices

 0

 200

 400

 600

 800

 1000

 0 200k 400k 600k 800k 1000k

D
oc

um
en

ts
 p

er
 n

od
e

Number of documents

(c) Chord with virtual server

 0

 200

 400

 600

 800

 1000

 0 200k 400k 600k 800k 1000k

D
oc

um
en

ts
 p

er
 n

od
e

Number of documents

(d) Chord with heat dispersion algo-
rithm

Fig. 9.7: Simulation results comparing different approaches for load balancing in
Chord.

9.2 Reliability of Data in Distributed Hash Tables

Through much research in the design and stabilization of DHT lookup ser-
vices, these systems aim to provide a stable global addressing structure on
top of a dynamic network of unreliable, constantly failing and arriving nodes.
This will allow building fully decentralized services and distributed applica-
tions based on DHTs. This section shows algorithms for ensuring that data
stored at failing nodes is available after stabilization routines of the Peer-to-
Peer-based network have been applied.

There are two ways to store data in the DHT in a fault-tolerant manner.
One is to replicate the data to other nodes, another is to split the data and
make them more available through redundancy.

132 9. Reliability and Load Balancing in DHTs

9.2.1 Redundancy

The idea to increase availability through redundancy is realized by splitting
each data item into N fragments. Then K redundant fragments are computed
by means of an erasure code. Thus, any N of the N +K fragments will allow
reconstruction of the original data. For each fragment, its place in the ring is
computed. The data is split to K +N different keys. Each fragment is stored
using the standard Chord assignment rule. A read corresponds to K + N
recursive-style lookups and is successful if at least N parts are available.
But, every time a node crashes, a piece of the data is destroyed, and after
some time, the data may no longer be computable. Therefore, the idea of
redundancy also needs replication of the data.

9.2.2 Replication

Another more fault-tolerant way to store the data is to replicate it to other
nodes. This section describes two ways to replicate data in Chord.

Successor-List
The authors of Chord show in [575] a possibility to make the data more
reliable in their DHT. The idea to make the data in Chord more fault-tolerant
is to use a so-called successor-list. This list is also used to stabilize the network
after nodes leave. The successor-list of any node consists of the f nearest
successors clockwise on the Chord ring.

…

…

…

…

Address-
Space

Node

…

…

1 2 f

Fig. 9.8: Successor-list of a node with f nearest nodes clockwise on the Chord ring.

Because every node stores a successor-list of f nodes, the whole system
has n ∗ f additional links in a network with n nodes. This implies that a lot
of extra traffic is used just to keep the links consistent in case of node failures
or arrivals.

Figure 9.8 shows an example for a node and its successor-list. A node
stores pointers to the f nearest nodes clockwise on the Chord ring.

9.2 Reliability of Data in Distributed Hash Tables 133

The reliability of data in Chord is an application task. Therefore, the
successor-list mechanism helps a higher layer software to replicate inserted
data to the next f nodes. Any application using Chord has to ensure that
replicas of the data are stored at the f nodes succeeding the original node.
Figure 9.9 shows replication of data by the application using the successive
nodes in the ring.

Node Data

…

…

…

…

…

…

…

…

Copy of data to successors

Address-
Space

Fig. 9.9: Replication of inserted data in Chord by the application.

The application has to periodically check the number of replications of
the inserted data and the stabilization routine has to repair the network
successfully. Also, every node now has f intervals to store, hence the load of
each node increases dramatically.

Multiple Nodes in One Interval
The approach [514] uses multiple nodes per interval.

Each interval of the DHT may be maintained by several nodes at the
same time. In order to ensure correctness of this technique, each node stores
additional pointers to nodes maintaining the same interval. In Chord, these
additional pointers could be implemented as additional finger entries in an-
other routing table. In CAN, they would be deployed as new neighbors. Let
f be the minimum number of nodes assigned to a specific DHT region (or
interval).

If a new node joins an existing interval, it announces itself to all other
nodes responsible for the same interval. Additionally, all data associated with
this interval is copied to the new node.

The first node takes a random position in the Chord ring and a new node
is assigned to any existing node in the system. This receiving node announces

134 9. Reliability and Load Balancing in DHTs

each joining node to all other nodes responsible for the same interval. Follow-
ing this, parts of documents located within this interval are copied to this new
node. Then, the original methods to insert a node in Chord are performed.
To keep the complexity of the routing tables low, each node stores only one
reference to the list of nodes for each finger within its own routing table to
other intervals.

Figure 9.10 shows an example of the distribution of intervals on different
nodes, where each interval has the minimum of two different nodes assigned
to it.

…

…

…

…

9

10

1

2

3

4

5

6

7

8

Node

Address-
Space

Fig. 9.10: Intervals with minimum of two nodes assigned to them.

According to [575], each node may maintain several virtual servers, but
most of them store only one. This allows nodes with higher performance to
store several virtual servers. Chord can take advantage of the high compu-
tational power of certain nodes. Such a node declares itself responsible for
two or more intervals. Thus, it manages several virtual servers, and each vir-
tual server is responsible for separate disjoint intervals. However, all intervals
stored at the virtual servers in the same physical node shall not be identical
in order to guarantee fault tolerance.

If new data has to be inserted into an interval, it will be distributed by
one node to all other nodes responsible for the same interval. But, no copies
of the data are replicated clockwise to the next n nodes along the ring, as
in the original Chord DHT. Figure 9.11 shows the distribution of replicas of
the inserted data to the neighbors responsible for the same interval.

If any node leaves the system and any other node takes notice of this, the
standard stabilization routine of Chord is performed. The predecessors and
successors are informed, and afterwards, inconsistent finger table entries are
identified and updated using the periodic maintenance routine.

Thus DHT systems become more reliable and far more efficient due to
the structured management of nodes. Generally, random losses of nodes are
not critical because at least f nodes manage one interval cooperatively. The
modified DHT system can cope with a loss of (f -1) nodes assigned to the
same interval. In case of less than f nodes within one interval, the algorithm
immediately merges adjacent intervals.

9.3 Summary 135

…

…

…

…

Copy of data to neighbors
of the same interval

…

…

…

…

Node Data

Fig. 9.11: Copy of data to the neighbors responsible for the same interval.

9.3 Summary

This chapter introduces algorithms for DHT-based systems which balance
the storage data load or care for the reliability of the data.

All systems usually rely on the basic assumption that data is nearly
equally distributed among the peer nodes. But, as shown, the simple as-
sumption of getting an equally distributed value space simply by using hash
functions does not hold. To achieve a continuous balance of data and, more-
over, to ensure the scalability and efficiency in structured Peer-to-Peer sys-
tems, load-balancing mechanisms have to be applied. Therefore, this chapter
introduces some algorithms for balancing storage load in DHTs. Although
the algorithms are explained based on Chord, most of them can be easily
adapted to other DHTs, such as CAN.

The second part of the chapter shows two ways to store data in the DHT
in a fault-tolerant manner. One is to replicate the data to other nodes, and
another is to split the data, thus making them more available through redun-
dancy.

	9.1 Storage Load Balancing of Data in Distributed Hash Tables
	9.2 Reliability of Data in Distributed Hash Tables
	9.3 Summary

