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6.1 Introduction

In this chapter we will introduce two famous network models that arose
much interest in recent years: The small-world model of Duncan Watts and
Steven Strogatz [615] and scale-free or power-law networks, first presented
by the Faloutsos brethren [201] and filled with life by a model of Albert-
László Barabási and Réka Alberts [60]. These models describe some structural
aspects of most real-world networks. The most prevalent network structure
of small-world networks is a local mesh-like part combined with some random
edges that make the network small.

The preceding chapters sketched the field of Peer-to-Peer concepts and
applications. The field and its history are deeply intertwined with the area
of distributed computing and sometimes overlaps with concepts from client-
server systems and ad hoc networks. To set a clear foundation we base this
chapter on the following, quite general definition of Peer-to-Peer systems:

Definition 6.1.1. Peer-to-Peer Systems
A Peer-to-Peer system consists of computing elements that are:

(1) connected by a network,
(2) addressable in a unique way, and
(3) share a common communication protocol.

All computing elements, synonymously called nodes or peers, have comparable
roles and share responsibility and costs for resources.

The functions of Peer-to-Peer systems are manifold. They may be coarsely
subsumed under communication of information, sharing services, and
sharing resources. To implement these functions, the system has to pro-
vide some infrastructure. What are the requirements to make a Peer-to-Peer
infrastructure useful? Here, we will concentrate on the following four condi-
tions:

Condition 1 Decentrality
One inherent claim of the Peer-to-Peer idea is that there is no
central point in which all information about the system, data
and users is stored. If there is no central organizing element
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in a system, each node needs some built-in rules with which it
can, e.g., join the system, route information to others, or make
queries.

Condition 2 Structure
To share data and other resources efficiently it is helpful if
the system is structured in a way that improves searching and
facilitates routing.

Condition 3 Reliability despite Dynamic Changes
Nearly all Peer-to-Peer systems are under constant changes:
nodes join the system, others leave it, and some are just tem-
porarily unavailable. This necessitates elaborate mechanisms
to stabilize important system properties like the diameter and
connectivity of the system.

Condition 4 Scalability
One effect of decentralization is that the number of nodes may
be arbitrarily large. Nonetheless, the system should be able to
service the needs of all nodes in an efficient and fast way.

These four conditions are especially interesting and resemble features of
social networks: A social network is inherently self-organized but nonethe-
less structured. Despite the fact that people are born and die, many global
structural properties of social networks are stable. Further, there seems to
be no limit to the number of humans that can take part in our global social
network - only with respect to the network’s structure, of course.
Other ‘real’ networks that have evolved over time show similar properties, like
the Internet, metabolic networks, or the WWW [201, 60, 324]. What makes
evolving, decentralized networks structured and stable despite their dynam-
ics? Recent research has revealed that there are two important properties of
evolving networks that help to satisfy the above conditions: The first property
is termed the small-world effect, the second property is a scale-free degree dis-
tribution. Networks with a small-world effect are called small-worlds and
networks with a scale-free degree distribution are called Scale-Free Net-
works. Peer-to-peer systems that create overlay networks with these fea-
tures are likely to satisfy the conditions without further concern. This chap-
ter presents both properties, presents families of networks that display these
features and the corresponding decentralized models to create them. To do
so, we first define some notions in graph theory in Sec. 6.2. In Sec. 6.3 we will
briefly describe how the analysis of social networks was challenged by a series
of elegant experiments in the 1960’s. Sec. 6.4 presents the most common mod-
els that answer the questions raised by those experiments. Specifically, these
are models that create families of Small Worlds and Scale-Free networks. In
Sec. 6.5 we describe approaches that build small-worlds or Scale-Free overlay
networks in Peer-to-Peer systems. In this section we will present the most
important properties of each of the network families which influence the per-



6.2 Definitions 59

formance of Peer-to-Peer systems. In Sec. 6.6 we will summarize the results
and discuss possible improvements.

6.2 Definitions

Let V = {1, 2, 3, . . . , n} be the set of all n nodes, or peers, in the system. Each
node is identified and addressable by its number. The underlying network
makes it possible to route a message from each node to any other node.
Because of the decentralized nature of a Peer-to-Peer system, not every node
v is required to store routing information to each and every other node.
The set of nodes over which node v will route outgoing messages is denoted
by N(v) and called the neighbors of v. Every Peer-to-Peer network can be
associated with a graph G = (V, E). E is the set of edges e = (i, j) where
j is a neighbor of i, i.e., there is at least one entry in the routing table of i
that uses j as the next node. For edge e = (i, j), i is the source node and j is
the target node. The number of edges is denoted by m. G is sometimes called
the overlay network of a Peer-to-Peer system. The edges might be weighted,
e.g., with the number of entries that use j as the next node or the cost for
the traverse of this edge. All edges are directed.

The set of edges can also be represented in the adjacency matrix A(G)
with dimension n× n. aij is 1 if and only if the edge e = (i, j) ∈ E. If edges
are weighted with a weight function ω : E → R then aij is commonly given
by ω(e = (i, j)) if e = (i, j) and zero otherwise. The set of eigenvectors and
eigenvalues of a matrix is defined as the set of all vectors x and real numbers
λ such that:

Ax = λx (6.1)

The outdegree ko(v) of a node v is defined as the number of neighbors it
has: ko(v) = |N(v)|. The indegree ki(v) is defined as the number of neigh-
bor sets in which v is an element: ki(v) =

∑
w∈V [v ∈ N(w)]. The Boolean

expression in brackets is given in Iverson-notation (see [257]) and evaluates
to 1 if the expression is true and to zero otherwise. The degree k(v) of a
node v is defined as the sum of indegree and outdegree. A path P (i, j) from
node i to node j is defined as a subset P ⊆ E of edges {e1, e2, . . . , ek} where
e1 = (i, v1), ek = (vk−1, j) and ∀ 1 < l < k: el = (vl−1, l). The path length of
a path P is defined as the number of edges in it. If the edge set is weighted
with a weight function ω : E → R, then the path length L(P (i, j) of a path
P (i, j) of two nodes i and j is defined as:

L(P (i, j)) =
∑

e∈Ps(i,j)

ω(e) (6.2)

In the following, we will use the first definition to reduce complexity. All
further definitions can be easily transformed for weighted graphs.
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Any path with minimal length between two nodes is a shortest path be-
tween these nodes. The distance d(i, j) between two nodes is the length of
any shortest path between them. The diameter D(G) of a graph G is defined
as the maximal distance between any two nodes in the graph:

D(G) = max
(i,j)∈V ×V

d(i, j) (6.3)

The average path length D�(G) of a graph G is defined as the sum of the
distances over all pairs of nodes divided by the number of all pairs of nodes:

D�(G) =

∑
(i,j)∈V ×V d(i, j)

n · (n − 1)
(6.4)

A graph is connected if there is at least one path between every two nodes.
A graph is k-connected if the removal of any set with k − 1 nodes leaves
the graph connected. Let VC ⊆ V be a subset of nodes. The induced graph
G(VC) = (VC , EC) is defined as the graph with the following edge set EC :
EC = {e = (i, j)|i, j ∈ VC}. An induced graph is a (simple) component if it
is connected.

The set of edges in a graph is formally a relation R ⊆ V ×V on the set of
possible edges. A network family is an (infinite) set of graphs with the same
relation. Normally, this relation is given as an algorithm that decides which
edges are added to the graph and which are not.

6.3 The Riddle – Analysis of Real Networks

In the 1960’s Stanley Milgram conducted a series of interesting experiments
[413, 596] that posed new questions about how humans are organized into
social networks: He prepared letters to a friend of his and sent them to people
chosen randomly in Kansas and Nebraska (cf. Fig. 6.1). They were asked to
deliver the letter but they got no more information than the name of the
recipient, his profession (stock broker) and the town he lived in (Boston).
Furthermore, they were asked to deliver the letter in a special way: Instead
of using the address, the letter should be given to someone they knew on
a first-name basis and which they thought to be ‘closer’ to the recipient in
any way. Eventually, some of the letters reached the broker and, surprisingly,
these letters did not need many steps to find him. On average, it were not
more than six steps 1. This result was very surprising because social networks
are dominated by relationships to people that live and work near to us. This
was especially true in a time when there was no Internet, and where cars and
airplanes were too expensive to be an everyday means of transportation for
1 Most interestingly, the concept of six degrees of separation was already men-

tioned in a short story entitled ‘Chains’ by the Hungarian writer Karinthy in
1929 [339]
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Fig. 6.1: Letter sent in the Milgram Experiment

most people. In terms of graph theory the result signifies that the diameter
of social networks is quite small despite their dense local structure. What
kind of network model can reproduce this special combination of properties?
This is the riddle that was not to be solved until the 1990s. In the following
sections we will describe the most important approaches with which social
and other evolving networks are modeled today. We will show that some of
the features of these networks are interesting for Peer-to-Peer applications
and present ideas about how their favored properties can be transferred to
Peer-to-Peer overlay networks.

6.4 Families and Models for Random Graphs,
Small-Worlds and Scale-Free Networks

Historically, random graphs form the first family of networks that were in-
tensely studied. Since many Peer-to-Peer applications choose neighbors more
or less randomly, like Gnutella, this model is also valuable for the analysis of
Peer-to-Peer systems.

6.4.1 Random Graphs

The analysis of social relationships as graphs can be traced back to the 1950s
[614]. At the same time, the first graph models, concerning random graphs,
were introduced. They were so successful that they were used as simulation
models for very different networks over the following 30 years. Random graphs
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were introduced independently by Gilbert [245] and Erdős and Renyi [464].
We will first present the model of Erdős and Renyi, following [84].

Erdős and Renyi’s Notation

Gn,m denotes the space of all
(
N
m

)
graphs with n nodes and m edges where

N =
(
n
2

)
is the number of possible edges between n nodes. This set can be

transformed into a probability space by taking the elements of Gn,m with
the same probability. An instance of Gn,m, drawn uniformly at random, is
denoted by Gn,m. Since the whole model is based on stochastic processes, we
can only give probabilistic statements about expected properties, i.e., we
say that Gn,m shows property P with a high probability if:

Pr(Gn,m has P ) → 1 for n. → ∞ (6.5)

It is important to note here that this is only interesting if m is a function
of n. If it is constant for all n, the graph will be disconnected for large n
and most interesting properties like the average degree or the connectivity of
the graph will vanish with n → ∞. This leads to a question regarding the
first important property of random graphs: When will a random graph be
connected with high probability? The following theorem gives the important
relationship between m and the connectedness of the resulting graph ([464]):

Theorem 6.4.1. Connectedness of random graphs
Let mω = n

2 (log n + γ) where γ = γ(n) is a function of n. If γ → −∞,
then a typical Gn,mγ is disconnected, whereas if γ → ∞, a typical Gn,mγ is
connected.

This theorem can often be found in the following form: If we ensure that
the average degree of nodes is Ω(log n), then the random graph will be con-
nected with high probability. In the analysis of most network models it is
shown that the average degree grows with O(log n) which also fulfills the
above given theorem, if we set γ to log n.

Gilberts Model

A totally different approach was given by Gilbert in [245]. A graph Gn,p is
defined as a graph in which the probability that an edge e = (v, w) exists
is p. This definition simultaneously gives a construction algorithm: For each
possible edge, a random number between 0 and 1 is drawn. Whenever this
number is smaller than p, the edge is added to the graph. Again, p can be a
function of n, though in this case, families with constant p are also interesting
to study.
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Connection Between Both Random Graph Models

For M ∼ pN the two models Gn,M and Gn,p are almost interchangeable [84].

Basic Results for Classical Random Graphs

Here, we will just review some of the important results for Random Graphs
that are interesting in comparison with small-worlds and Scale-Free Networks,
cited from [80]. We use the Gilbert notation.

For the first theorem cited, the random graph is built up sequentially,
by adding random edges one at a time. Analyzing the connectivity of the
evolving graph, we can make an interesting observation: After having added
approximately n/2 edges, we get a giant connected component with a size of
Θ(n) as stated in the following theorem.

Theorem 6.4.2. Giant Connected Component
Let c > 0 be a constant and p = c/n. If c < 1 every component of Gn,p has
order O(log n) with high probability. If c > 1 then there will be one component
with high probability that has a size of (f(c) + O(1)) · n, where f(c) > 0. All
other components have size O(log n) [84].

This theorem is easy to remember and nonetheless surprising: The giant
connected component emerges with high probability when the average degree
is about one.

The next property concerns the degree distribution: If one node is drawn
randomly from V , how high is the probability P (k) that it has degree k? In
random graphs the degree distribution is described as a Poisson-distribution
P (k) = cke−c

k! as stated in the following theorem:

Theorem 6.4.3. Degree distribution
Let Xk be the number of nodes with degree k in Gn,p. Let c be a constant with
c > 0 and p = c/n. Then, for k = 0, 1, 2 . . .

Pr
(

(1 − ε)
cke−c

k!
≤ Xk

n
≤ (1 + ε)

cke−c

k!

)

(6.6)

as n → ∞ [84].

This can easily be seen by the following argument: First, we can construct
Gn,p in a Bernoulli experiment with

(
n
2

)
variables Xij , i �= j, i, j ∈ V that are

1 with probability p. The degree of node i is the sum of all variables Xij and
for reasonably small p and n → ∞, the degree can be described by a Poisson
distribution.

The next question to be answered is the diameter of Gn,p. It is given by
the following theorem:
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Theorem 6.4.4. Diameter of Gn,p

If pn/ logn → ∞ and log n/ log(pn) → ∞ then the diameter of Gn,p is
asymptotic to log n/ log(pn) with high probability.

The last property presented here is the expected clustering coefficient
for random graphs. The clustering coefficient measures how many edges are
between neighbors of node i divided by the maximum possible number of
edges between them. Thus, it measures how ‘clique-like’ the neighborhood of
node i is where a clique denotes a subgraph in which all nodes are connected
to all other nodes. Let E(N(i)) denote the number of edges between neighbors
of node i. Then, the clustering coefficient C(i) is defined as:

C(i) =
E(N(i))

d(i)(d(i) − 1)
(6.7)

The clustering coefficient can also be interpreted as the probability that
two randomly drawn neighbors of i are themselves neighbors. Seen under this
perspective the following theorem is easily proven:

Theorem 6.4.5. Clustering Coefficient of random graphs
The clustering coefficient of a random graph is asymptotically equal to p with
high probability.

Random graphs were very famous for a long time for two reasons: Many
of their properties are exactly solvable in a rigorous analysis. They can be ex-
actly defined and varied in many different ways. Second, they provide a much
richer field of application than the other network model that was popular at
the time, i.e., regular graphs in which every node has the same degree, such
as a lattice. No one doubted that social networks cannot be exactly random,
but as long as some of their properties were well described by it, it seemed
that random graphs were an easy and useful way to model all kind of different
networks.

6.4.2 Small-Worlds – The Riddle’s First Solution

Despite the excitement that followed the Milgram experiment there was no
convincing network model generating a network that is locally highly clus-
tered and at the same time has a small diameter until 1998. Then, Watts
and Strogatz [615] analyzed three different kinds of real networks: A film col-
laboration network in which two actors are connected by an undirected edge
whenever they have acted together in at least one film, the neural network
of the worm C. elegans, and the power grid of the United States. For each of
these networks they measured the average path length in the graph and com-
pared it with a random graph with the same number of nodes and edges. The
average path length was in each case slightly higher but clearly within the
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same order of magnitude. On the other hand one could see that the real net-
works were much more densely connected on a local level than the random
ones. To measure this density, the authors introduced a new measure, the
clustering coefficient which we have already defined in Equation 6.7. Watts
and Strogatz compared the average clustering coefficient of these real net-
works with the corresponding random networks: The clustering coefficients
were at least ten times higher in real networks and for the film collaboration
network the factor is more than 1000. With this analysis the surprising result
of Milgram’s work could be made more intelligible: Real networks have nearly
the same diameter as Random Graphs and at the same time show a high,
local clustering.

D�(real) D�(random) C(real) C(random)

Film collaboration 3.65 2.99 0.79 0.00027

Power grid 18.7 12.4 0.08 0.005

C. elegans 2.65 2.25 0.28 0.05

Table 6.1: Average path length D� and average clustering coefficient C for three
real networks, compared with random graphs that have the same num-
ber of nodes and the same average degree. The first network represents
actors that are connected by an edge if they have contributed to at
least one film together, the second is defined as the set of all genera-
tors, transformers and substations that are connected by high voltage
transmission lines. The neural network of C. elegans displays all neu-
rons and considers them as connected if they share a synapse or gap
junction. All three networks show the small-world phenomenon, with
an average path length comparable to that of the corresponding ran-
dom graph and a clustering coefficient that is considerably larger than
in the random graphs ([615]).

With this, small-worlds are defined as networks with a dense, local struc-
ture, evaluated by the clustering coefficient, and a small diameter that is
comparable to that of a random graph with the same number of nodes and
edges. Watts and Strogatz introduced a very simple network model that is
able to reproduce this behavior. It starts with a chordal ring: Nodes are num-
bered from 1 to n and placed on a circle. Then, every node is connected with
its k clockwise next neighbors (Fig. 6.2)

This ring is traversed and for every encountered edge a random number
between zero and one is drawn. If it is smaller than a given constant 0 ≤
p ≤ 1 the edge will be rewired. The rewiring is done by drawing uniformly
at random a new target node from the set of all nodes V , deleting the old
edge and inserting the new edge between the old source and the new target
node. It is important to preclude duplicate edges in this process. If p is small,
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p=0 p=1

Regular Small World Random

increasing randomness

Fig. 6.2: The small-world model introduced by Watts and Strogatz [615] starts
with a chordal ring in which n nodes are placed on a circle and connected
with their k clockwise next neighbors (here, k = 2). With probability p
every edge can be rewired once. The rewiring is done by choosing uni-
formly at random a new target node, such that the old edge is removed
and the new one connects the old source node with the new target node.
The figure shows that as p grows the model can be tuned between total
regularity and total randomness. With sufficiently small p it is possible to
maintain the local structure and yet provide an overall small diameter.
This state thus displays the properties of small-worlds as they can be
found in reality.

almost no edges will be rewired and the local structure is nearly completely
preserved. If p is near to 1 the graph produced is claimed to be a random
graph with a small average path length. Interesting are the states in between
these two extremes. Fig. 6.3 shows the dependency of the clustering coefficient
and average path length on p for a graph with 5000 nodes. Clearly, even a
quite small p of about 0.005 is sufficient to reduce the diameter so much that
it resembles the diameter in the corresponding random graph without losing
the local structure that is measured with the clustering coefficient.

Viewed from another perspective, the findings of Watts and Strogatz indi-
cate that a small number of random edges decreases the average path length
significantly since they can be viewed as ‘short-cuts’ spanning the regular
graph. With this model a part of the riddle regarding real networks was
solved.

In Sect. 6.5 we will present some more properties of small-worlds that
are especially interesting for Peer-to-Peer applications. In Subsect. 6.5.1 we
will present a more generalized model of Small World Networks in multi-
dimensional spaces, introduced by Kleinberg in [353, 354]. But despite the
immediate success of the small-world model of Watts and Strogatz the riddle
was only partly solved, as would soon become clear.
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Fig. 6.3: The diagram shows the dependency of the clustering coefficient C and
the average path length L on the rewiring probability p. For each prob-
ability ten different small-worlds with 5000 nodes have been simulated.
The clustering coefficient of the small-world after the rewiring phase was
divided by the clustering coefficient of the chordal ring before rewiring.
Analogously, the average path length is given in relation to the aver-
age path length before the rewiring. It can be clearly seen that a small
rewiring probability of approximately 0.005 is sufficient to reduce the av-
erage path length to 1/10 without decreasing the clustering coefficient by
more than 1.5%.

6.4.3 Scale-Free Networks: How the Rich Get Richer

Although the small-world model explains how two seemingly contradictory
properties can be merged into one model, it is clear that it cannot explain how
these properties emerge in real, evolving networks. Practically no real network
can be represented by a ring topology where some edges exist between two
randomly chosen nodes. This is a drawback of the model.

But there is another, more significant property missing in the model: In
the small-world model nearly every node has the same degree and it is very
improbable that a node with a very high degree will emerge. In real ran-
dom graphs the probability of drawing a node with degree k is proportional
to ck/k!. How probable is it to find nodes with a very high degree in real
networks?

In 1999, three brothers, Michael, Petros and Christos Faloutsos, made a
very extensive analysis of the Internet backbone [201]. They were interested
in the following questions: “What does the Internet look like? Are there any
topological properties that don’t change in time? How will it look like a year
from now? How can I generate Internet-like graphs for my simulations?”.
They examined the inter-domain topology of the Internet from the end of
1997 to the end of 1998. In this phase the Internet grew about 45% in size
(number of routers). They found four properties of these networks that follow
a power law:

E 1) First, a list of all existing outdegrees was made and sorted. The ’rank’
ri of a node i is defined as its place in the list according to its outdegree
ko(i). The outdegree ko(i) of a node i is proportional to its rank, to the
power of a constant R:
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ko(i) ∝ rRi (6.8)

E 2) The number of nodes fk with the same outdegree ko is proportional to
the outdegree to the power of a constant O:

fko ∝ kO
o (6.9)

E 3) The eigenvalues, λj , of a graph are proportional to the order, j, to the
power of a constant, E :

λj ∝ jE (6.10)

E 4) The total number P (d) of pairs of nodes (i, j) within a distance d(i, j) ≤
d is proportional to the degree d to the power of a constant H:

P (d) ∝ dH (6.11)

This last property is more approximative than the other properties but
is nonetheless useful as the authors show in their paper [201].

After the authors had found this self-organizing structure, they asked in
their discussion “Why would such an unruly entity like the Internet follow
any statistical regularities?”. The answer to this question was given by an
elegant model of Barabási and Albert in the same year[60]. They examined
a part of the World Wide Web (WWW) [60] (see also [20]) and displayed
the result as a graph. In this graph, all visited pages were represented as
nodes, and two pages were connected by a directed edge (i, j) if page i had
a link pointing to page j. In this graph the number of nodes with a given
degree was calculated. By dividing it by the number of nodes in the graph,
the probability P (k) of drawing uniformly at random a node with degree k
is computed. The authors observed that the probability P (k) is proportional
to k to the power of a constant γ (similar to E3 above):

P (k) ∝ k−γ (6.12)

Networks with this property are called Scale-Free Networks, or sometimes
Power-Law Networks. Barabási and Albert also examined the film collabora-
tion network and power-grid of the USA and found the same property there.
To model this property they introduced the following new model that dif-
fers in two important aspects from the small-world model and random graph
model:

The Barabási-Albert-Model

1. The network grows in time.
2. A new node joining the network will have preferences to whom it wants

to be connected. This preferential attachment is modeled in the following
way: Each new node i wants to connect to m0 other nodes that are
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already in the network. The probability Πt(j) that some old node j gets
one of the m edges is proportional to its current degree kt(j) at time t:

Π(j) =
kt(j)∑

v∈V kt(v)
(6.13)

=
kt(j)
2 · mt

(6.14)

with mt being the number of edges in the graph at time t.

Thus, the network model works as follows:

1. Begin with a small network of at least m0 nodes and some edges.
2. In each simulation step add one node. For each of its m0 edges draw one

of the nodes j that are already in the graph, each with probability Π(j).

It should be clear that this algorithm is not a model in the mathematical
sense [80] but rather defines a family of possible implementations. Later,
Albert and Barabási could show in [22, 19] that the only requirement for the
emergence of a scale-free behavior is that the probability of gaining a new
edge is proportional to the degree of a node in each timestep. Thus, it is
sufficient that any network model show this preferential attachment in order
to generate scale-free networks. This property can be easily remembered as
a behavior in which ‘the rich get richer’.
To date, many different variants of network models that generate scale-free
networks have been published: A mathematical model more precisely defined
than the Barabási-Albert-model is the linearized chord diagram, introduced
in [79]. Here, two groups provide each node with an initial attractiveness that
increases the probability of being chosen by a constant value [180, 175]. A
quite complicated but powerful model with many parameters was given in
[132].

A model that is simple to adapt to Peer-to-Peer systems was first intro-
duced by Kumar et al. [369] for web graphs, and independently by Vazquez
et al. [605] and Pastor-Satorras et al. [477] for modeling protein interaction
networks: In each timestep of this model, one of the existing nodes is cloned
with all the links to other nodes and the clones are connected to each other.
Then, both clones lose some edges at random with a very small probabil-
ity and gain as many new edges to new, randomly drawn target nodes. It
can be easily shown that the probability of node j getting a new node in
timestep t is proportional to its degree at that time: The more edges it has,
the more probable it is that one of its neighbors is chosen to be cloned. If
one of the neighbors is cloned, the edge to j is copied and thus the degree of
j is increased by 1. Thus, this model shows preferential attachment and the
resulting networks are scale-free with respect to the degree distribution.

In the following we want to discuss some of the properties of Small Worlds
and Scale-Free Networks that are interesting for Peer-to-Peer systems.
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6.5 Applications to Peer-to-Peer Systems

6.5.1 Navigating in Small-Worlds

Jon Kleinberg was also intrigued by the experiments conducted by Milgram
and the simple small-world model given by Watts and Strogatz. This latter
model explained why there exist short paths in a social network where only
a small fraction of edges are actually random. But Kleinberg saw that there
was more to it: he asked himself why people can find these short paths:
“Why should arbitrary pairs of strangers be able to find short chains of
acquaintances that link them together?” [354]
This question is totally different from the question of why short paths exist
in a network. It is easy to invent a network with low average path length but
where it is impossibility to find those short paths: The difficulty arises if every
node just has local information. This is certainly the case in social networks:
here, every person just knows a very small number of people on a first-name
basis. Of these, one may also know some more data, like the profession,
address, hobbies, and so on. When challenged with the task of sending a
letter to a stranger via acquaintances, people choose the one friend that they
think to be ‘next’ to the recipient. Milgram’s results showed experimentally
that the first steps of the letter were the largest (geographically) while later
they became shorter as they were closing in on the target area [413].

The aim of Kleinberg was thus to find a family of simple networks with
small average path length in which decentralized algorithms are able to find
short paths. We will first begin with the underlying network model. It is
applicable to multi-dimensional spaces, but here it will be represented in a
twodimensional space for simplicity.

The Kleinberg Small-World Model

The model starts with a set of grid points in an n × n square. Each node
i is identified by the two coordinates xi, yi that define its position P (i) in
the grid. The distance d′(i, j) is here defined as the number of ‘lattice steps’
separating them:

d′(i, j) = |xi − xj | + |yi − yj| (6.15)

The set of (directed) edges is constructed in two parts:

1. First, every node i is connected with all nodes j that are within distance
d′(i, j) ≤ q for some given integer q.

2. Second, for each node i q additional edges are built. The probability that
the ith directed edge has endpoint j is proportional to d′(i, j)−r, with
r a given real constant. To generate a proper probability distribution,
the normalizing constant is given by

∑
v∈V d′(i, v)−r. This probability

distribution is called the inverse rth-power distribution.
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If p and q are given as fixed constants, this network family is described only
by parameter r.

Now, a message is to be sent within this network. The transmission model
is as follows: We start with two arbitrary nodes in the network, source node
s and target node t. The goal is to transmit the message from s to t with
as few steps as possible. An algorithm is defined as decentralized if at any
time-step the current message holder u has knowledge of only:

DA 1) the set of local contacts among all nodes (i.e. the underlying grid
structure),

DA 2) the position, P (t), of target node t on the grid, and
DA 3) the locations and long-range contacts of all nodes that have come in

contact with the message.

Here, we just want to state the results of this approach. The proofs can be
found in [354]. The first result is that there is only one possible parameter for
r in a twodimensional grid where a decentralized algorithm is able to perform
the transmission task in expected O(log n) steps. This efficiency is measured
as the expected delivery time, i.e., the number of steps before the message
reaches its target:

Theorem 6.5.1. Navigability in Kleinberg Small-Worlds
There is a decentralized algorithm A and a constant α, independent of n,
so that when r = 2 and p = q = 1, the expected delivery time is at most
α · (log n)2.

The next theorem shows that r = 2 is the only parameter for which the
expected delivery time is polynomial in O(log n):

Theorem 6.5.2. (a) Let 0 ≤ r < 2. There is a constant αr, depending
on p, q, r, but independent of n so that the expected delivery time of any
decentralized algorithm is at least αrn

(2−r)/3.
(b) Let r > 2. There is a constant αr, depending on p, q, r, but independent
of n, so that the expected delivery time of any decentralized algorithm is at
least αrn

(r−2)/(r−1).

These results can be generalized for multi-dimensional spaces. For any
k-dimensional space, a decentralized algorithm can construct paths of length
polynomial in O(log n) if and only if r = k.

What does this decentralized algorithm look like? In each step, the current
message-holder u chooses a contact that is as close to the target as possible, in
terms of lattice distance. And that is all. Note, that this very simple algorithm
does not make use of DA 3). Accordingly, we do not need any memorization
of the route a message has taken to get to node i.

Summarizing, Kleinberg-small-worlds provide a way of building an overlay
network for Peer-to-Peer applications, in which a very simple, greedy and
local routing protocol is applicable. On the other hand, it requires some
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information that is not naturally given in a Peer-to-Peer system, namely a
distinct mapping for nodes and files to a k-dimensional position. In principle,
this can be provided by a distributed hash table (DHT) approach but this is
not always possible. For more information on DHTs see Chapter 7.

Second, we need a metric that allows us to measure the distance between
two positions in the system. Third, and somewhat counter-intuitive to the
decentralized approach, we need some global information, especially a list of
all neighbors within a given distance and a list of all other nodes in the system
and their distance to a given node, to choose the q longe range contacts. The
next subsections give some approaches that try to achieve this. Protocols
discussed in these subsections are explained in more detail in Chapter 8.

6.5.2 Small-World Overlay Networks in Peer-to-Peer Systems

Some papers indicate that Peer-to-Peer systems sometimes voluntarily evolve
into a small-world [16, 302, 639]. For Freenet it could be shown that a low
to medium load, in terms of the number of files in the system, leads to a
small-world network. This is achieved by the following routing table update:
Every file is correlated with a key, e.g., by a hash function. The file is origi-
nally stored at some node with a similar key. Each request is at every time
forwarded to the one node in the routing table that has the closest key to the
requested key. The request has a time to live (TTL), i.e., there is a counter
in the request that is incremented with every forwarding, and the request is
removed when the counter reaches TTL. If a node has no more neighbors to
route a request to, it will send a backtracking ‘request failed’ message. If the
request is successful, the file will be sent over the routing nodes back to the
requesting node. Every routing node will thereby save the file and add the
sending node’s key to its routing table. If either the file space or the rout-
ing table space is full, the least recently used (LRU) entry is replaced by the
new entry. With this simple LRU-replacement algorithm, the system copies
frequently requested files and most files in the file space are requested many
times before they are replaced. But with a high load, i.e., a high number of
different files and requests, the set of files at each node is rapidly changing and
the number of successful requests for any of the stored files decreases. This
unexpected behavior motivated Zhang, Goel, and Govindan to use a small-
world overlay network to improve Freenet’s performance [639]. The authors
try to build a network in which most files on one node were ‘close neighbors’,
and only some of the stored files are ‘distant’ files. The notion of distance
d(i, x) used here is given by the hashkey of each file i to a given random seed
x from the key space S. The algorithm works as follows:

1. Each node i chooses a seed s(x) randomly from the key space S when it
joins the system.
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2. When the datastore at a node is full and a new file f with key key(f)
arrives (from either a new insertion of a file or a successful request), the
node finds out from the current datastore the file with key v farthest
from the seed in terms of the distance in the key space S:

dmax(datastore) = max
file g in datastore

d(key(g), x) (6.16)

(a) If d(key(f), s(x)) < dmax cache f and evict v. Create an entry for
f in the routing table. This has the effect of clustering the keys in the
routing table around the seed of the node.
(b) Otherwise, cache f , evict v, and create an entry for f in the rout-
ing table only with a probability p (randomness). This has the effect of
creating a few random shortcuts.

The authors fixed p to 0.03 because this value worked best in the ex-
periments conducted. The procedure is called the Enhanced-clustering Cache
Replacement Scheme and produces routing table entries that resemble small-
worlds in the sense that each node preferentially stores those files that are
near to its own key. The authors show that this small, local improvement is
able to increase the hit ratio significantly, where the hit ratio is defined as
the ratio of the number of successful requests to the total number of requests
made. The approach of Zhang, Goel and Govindan follows quite closely the
original small-world concept of Watts and Strogatz.

Another approach that is more closely related to the Kleinberg small-
worlds is given by a protocol named Symphony [400]. This approach is similar
to the first in that it also relies on a hash-function that assigns each file a
unique key with which it is addressable. The idea is that all nodes are placed
on a circle with unit perimeter and every node is responsible for (stores) all
files with a key equal to or greater than its own key and smaller than the
key of the next node. This part of the circle is its segment of responsibility.
The joining node draws its position on the circle uniformly at random from
the interval [0, 1[ and connects to its next neighbor on each side. In this
property it resembles the Chord protocol, introduced in [575]. Additionally,
every node tries to connect to k randomly drawn nodes. The probability that
a connection with a node responsible for x is established is given by the
following probability distribution:

P (X == x) =
1

x log n
(6.17)

This approach has the problem that the total number of nodes n has to
be known in advance. The authors estimate this value from the length of the
circle each node is responsible for: If all nodes draw their position uniformly
at random, the expected mean length of the segment of responsibility is 1/n.
Averaging these lengths over a set of known nodes, the number of nodes
in the system can be approximated. The probability distribution belongs to
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the family of harmonic distributions (a fact which inspired the name for the
protocol). As in the Kleinberg paper, the actual routing protocol is greedy:
Every message holder sends it to the one node known to have a key next to
the requested file key.

The authors ensure that no node has more than a fixed number k of
(incoming) long range contacts. If, by chance, one node asks to establish a
long-range link to a node that has already reached this number, the latter
will refuse the new connection. The most interesting property of this protocol
is that it shows a trade-off between the number of links a node has and the
expected path length within the network to find a file:

Theorem 6.5.3. Symphony
The expected path length in an n-node network with k = O(1) edges, built
by the Symphony protocol, is inversely proportional to k and proportional to
(log n)2.

This is true whether long-range links are used in one direction only (from the
one building it to the one randomly chosen) or in both directions.

The Symphony approach is elegant and smoothly transforms the idea of
Kleinberg small-worlds to the world of Peer-to-Peer systems. An even more
sophisticated approach was given by Hui, Lui and Yau in [309]. In their
Small-World Overlay Protocol (SWOP), clusters emerge in a self-organized
way. The basic idea is again based on a hash-function and nodes that are
placed on a unit-perimeter circle. Additionally, every node tries to connect
to one random node with the probability distribution in Equation 6.17. Here,
n is the number of clusters in the system.
A new node joining the circle will be the basis for a new cluster if both of its
neighbors are members of a cluster with a maximum size. Otherwise, it will
join the cluster with smaller size and create some intra-cluster connections.
The maximal cluster size is given as a variable of the system and might
be changed dynamically. Each cluster has one designated head node that is
chosen by some periodically repeated voting mechanism. This head node is
responsible for maintaining some ‘long-range’ inter-cluster connections. The
routing protocol is the same greedy protocol used in the other approach: Each
message holder will send the message to the one node known to have a key
next to the requested file key.
The article is mainly concerned with the proper behavior of a protocol in a
flash crowd scenario: These are situations, in which some static or dynamic
object is heavily requested. The example provided by the authors is the crush
on the CNN web server for news documents that was initiated by the 9/11
incident. Here, the news consists not only of static documents but might also
be changing within minutes. A careful distribution within the net can prevent
server crashes.
The idea proposed by the authors is that heavily requested documents should
be copied via the inter-cluster links so that nearly every cluster has its own
copy. This is sufficient in static scenarios, but an additional version number
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has to be maintained if the document is changing. The source node can
then send update messages over the long-range connections to other nodes
holding the copy. The nodes within a cluster can be informed by using local
links. Because of the small-world character of the protocol, the clustering
coefficient of such a system is high and, depending on the cluster size and the
actual value of the clustering coefficient, the update message soon reaches all
members of the cluster.

6.5.3 Scale-Free Overlay Networks in Peer-to-Peer Systems

The most prominent feature of Scale-Free Networks is its fault tolerance
[21, 129]. Since the degree is very heterogeneously distributed in the system,
a random failure will very likely strike one of the nodes with low degree.
These are most often not crucial for the connectivity of the network. It has
been shown [21] that the diameter of the Internet at the autonomous system
level in July, 2000 would not be changed considerably if up to 2.5% of the
routers were removed randomly. This is an order of magnitude larger than
the failure rate.
The authors further compared the fragmentation of random graphs and Scale-
Free Networks. By randomly removing nodes from a random graph the net-
work will soon fragment. For a failure rate of 5% in networks with 10,000
nodes the biggest connected component holds approximately 9,000 nodes.
For a failure rate of 18% there is no biggest connected component any more,
but only components with a size between 1 and 100. For a failure rate of
45% all components have only one or two nodes. For Scale-Free Networks the
story is different: For a failure rate of 5% only some one- or two-node compo-
nents break off the network. For a failure rate of 18%, the biggest connected
component still holds 8,000 nodes with isolated clusters of size 1 to 5. Even
for an unrealistically high failure rate of 45% the large cluster persists and
the size of the broken-off fragments is below 12.
This behavior is desired for most Peer-to-Peer systems because it stabilizes
the network structures in these highly dynamic systems. Fortunately, some of
the protocols in Peer-to-Peer systems generate this favoured network topol-
ogy for free: The idea of Gnutella is that every new node joining the system
first connects to a handful of known servers. Later, it remembers some of
the nodes involved in queries it is interested in. It could be shown that this
behavior leads to pure scale-free or scale-free-like networks [516, 534].
On the other hand, the same scale-free architecture makes a network ex-
tremely vulnerable to attacks [21, 129, 532]: If it is possible to detect the hubs
of the system and to attack them, e.g., with a Denial-of-Service-Attack, the
network is more rapidly fragmented than the corresponding random graph.
This led Keyani, Larson and Senthil to the idea of changing the network
architecture as soon as an attack is detected. With a local protocol, each



76 6. Random Graphs, Small-Worlds and Scale-Free Networks

node is enabled to decide whether the loss of a neighbor node is probably
the result of an attack. To do so, the node periodically tries to connect to
its immediate and second degree neighbors (neighbors of neighbors). If, in
time period T , the percentage of lost second degree neighbors is greater than
the percentage of lost direct neighbors and a given threshold P , an attack is
assumed. For this eventuality, every node holds a list of random contacts to
other nodes. This list is collected during normal work, e.g., while receiving
a query or other messages. In case of a detected attack all detecting nodes
establish connections to these nodes, and a random graph is generated. Of
course, for ‘friendly’ times the more robust scale-free network is still favoured
and will be restored after the attack is over.

6.6 Summary

This chapter has presented three prominent network models that are able to
model different aspects of many complex and dynamic networks. First was
the random graph model. It is easy to simulate and many properties can be
analyzed with stochastic methods. It can be a good model for some Peer-to-
Peer systems. Other Peer-to-Peer systems exhibit the so-called small-world
effect: High clustering of nodes that share similar interests and just a few
links between nodes with very different interests. These few ‘long-range’ or
‘short-cut’ links decrease the diameter such that the average path length in
these networks is almost as short as in a random graph with the same number
of nodes and links. Finally, we presented a model that generates scale-free
networks. In these networks the presence of highly connected nodes (‘hubs’)
is much more probable than in random graphs, i.e., the probability of finding
a node P (k) is proportional to k−γ , where γ is a constant.

Small-world networks are interesting for Peer-to-Peer systems because
they provide a good way to structure nodes with similar interests into groups
without losing the small diameter of random graphs. Scale-free networks ex-
hibit a good fault tolerance, but on the other hand, the are extremely vul-
nerable to attacks.

As shown, some authors have already tackled the problem of how de-
sired properties of these three network models can be transmitted to overlay
networks in Peer-to-Peer systems using simple and local protocols. Future
research will have to show which kind of network model is best for build-
ing structured, yet self-organizing overlay networks for Peer-to-Peer systems
that are stable despite dynamic changes and scale nicely under the constantly
increasing number of peers.
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