
20. Supporting Information Retrieval in
Peer-to-Peer Systems

Wolf-Tilo Balke (L3S Research Center and University of Hannover)

This chapter focuses on information retrieval techniques in Peer-to-Peer in-
frastructures. Peer-to-peer systems are already being used for a vast number
of applications in content exchange, but most searching is done by simple
keyword lookups. In contrast information retrieval means that not only some
more or less matching objects have to be retrieved, but a list of the best
matching objects over the entire network given a user’s information needs.
Since the 1960ies the information retrieval community considers ways to ef-
ficiently and effectively query document collections and designs dedicated
retrieval systems like e.g. SMART [96]. Usually a query is seen as a (possibly
weighted) set of keywords a user specifies to express his/her information need.
Documents that contain those (or sufficiently similar) keywords are consid-
ered to be relevant to the user’s information need as expressed by the query.
Thus, for information retrieval in Peer-to-Peer infrastructures the challenge
is not only to retrieve documents efficiently, but also to effectively find a set
of best matching objects. Usually the degree of effectiveness is measured by a
precision-recall analysis, where the precision of a retrieval algorithm is given
by the ratio of relevant delivered documents with respect to the size of the
delivered result set (i.e. number of correctly retrieved documents divided by
the number of all retrieved documents). The recall is given by the ratio of the
relevant delivered documents with respect to the all relevant documents in
the collections (i.e. number of correctly retrieved documents divided by the
number of all relevant documents).

20.1 Content Searching in Peer-to-Peer Applications

Peer-to-peer (P2P) systems are highly distributed computing or service sub-
strates built from thousands or even millions of typically non-dedicated nodes
across the Internet that may flexibly join or leave the system at any time.
In contrast to centralized system architectures Peer-to-Peer networks try to
avoid central services and will usually share local resources like computing
power [30] or storage space (e.g. Freenet [124]). They are characterized by
a high resilience against failures of single nodes, good scalability by joining
resources and a high degree of autonomy for each peer.

R. Steinmetz and K. Wehrle (Eds.): P2P Systems and Applications, LNCS 3485, pp. 337-352, 2005.
 Springer-Verlag Berlin Heidelberg 2005

338 20. Supporting Information Retrieval in Peer-to-Peer Systems

20.1.1 Exchanging Media Files by Meta-Data Searches

The first big application of Peer-to-Peer technology was the free exchange
of music files (mostly mp3 files, but also a limited amount of videos) over
the Internet. As early as 1999 Napster [436] offered a platform to exchange
files in a distributed fashion. Peers could offer files for download and directly
download files from other peers in the network. The Napster platform was not
Peer-to-Peer technology in the strict sense, because Napster still relied on a
central server administrating addresses of peers and lists of offered files. The
files offered were, however, not moved to the server, but all downloads were
directly initiated between two peers. The content searches in the Napster
network were made on a restricted amount of meta-data like filename, artist,
or song title. Matching this limited meta-data with a user’s query keywords
content searches thus only decided, if there was a peer offering an adequate
file and ordered possible downloads by the expected quality of the download
connection.

Since a central index approach could only handle the Napster network’s
enormous success in terms of scalability by hierarchies of peers and provided
a single point of responsibility for the content, from 2000 on the Gnutella
[249] network began to build a file exchange platform on a real Peer-to-
Peer structure. Content searches were performed by flooding queries from
the originating peer to all neighboring nodes within a certain radius (the
time to live (TTL) for a query). Also this approach proved not to be scalable
beyond a certain point and the Gnutella network spectacularly broke down
in August 2000 because of heavy overloads in low bandwidth peers. This
breakdown led to the introduction of load-balancing and the construction of
schema-based networks (Fast Track, e.g. KaZaA [343] or Morpheus [432]),
where a backbone of high bandwidth peers (so-called super-peers) takes a
lot of the query routing responsibility. Search in schema-based Peer-to-Peer
networks will be discussed in a different chapter of this book.

20.1.2 Problems in Peer-to-Peer Information Retrieval

Previous applications for media exchange dealt mostly with exact or substring
matching of simple meta-data descriptions of media files. When it comes
to the exchange of (predominantly) textual documents , meta-data is not
enough, but fulltext searches have to be supported. Though meta-data can
capture some basic traits of a document (e.g. that some text is a ’newspaper
article’ related to ’sports’), they cannot anticipate and capture all the aspects
of a text a user might be interested in. Thus, in information retrieval all terms
that can be in some way important for a document should be searchable (i.e.
indexed). The second major difference to meta-data-based retrieval is that
information retrieval cannot use an exact match retrieval model, but has
to rely on ranked retrieval models. These models introduce the notion of a

20.1 Content Searching in Peer-to-Peer Applications 339

certain degree of match of each document with respect to the query. The
higher the degree of match the better the document is expected to satisfy
a user’s information need. Thus in contrast to simple media file exchanges,
where the connection speed was the most interesting factor for choosing a
peer for download, information retrieval really has to find the document with
best degree of match from any peer within the entire network. A well balanced
expected precision and recall of such a content search is thus a major indicator
for the effectiveness of the search capabilities.

Very early information retrieval research encountered the necessity to not
only take information in each document into account, but also use some
background information regarding the entire collection, prominently e.g. the
discriminatory power of each keyword within the specific collection. For ex-
ample considering different news collections, the occurrence of the keyword
’basketball’ in a document will have a good discriminatory power in a general
news collection, a severely lesser power to discriminate between documents
in a sports news collection and virtually no discriminative power within a
collection of NBA news. One of the most popular information retrieval mea-
sure thus is the well-known TFxIDF type. This measure is a combination
of two parts (typically with some normalizations), the term frequency (TF,
measures how often a query term is contained in a certain document), and
the inverted document frequency (IDF, inverse of how often a query term
occurs in documents of the specific collection). Intuitively a document gets
more relevant the more often the query term(s) occur in the document and
the less often the query terms occur in other documents of the collection (i.e.
the more discriminating query terms are with respect to a collection). Though
TF can be determined locally by each peer, the IDF measure needs to inte-
grate collection-wide information and cannot be determined locally. A typical
instance of the TFxIDF measure (with sq(D) as the score for query term q
in document D and N as the total number of documents in the collection) is
e.g. given by:

sq(D) := TFq(D)
maxt∈D(TFt(D)) ∗ log(N

DFq
)

Collection-wide information is thus essential to provide proper docu-
ment scores. In information retrieval research the problem of disseminat-
ing collection-wide information was first encountered when retrieval systems
moved beyond stand-alone systems over collections like e.g. given by TREC,
and had to deal with vast distributed document collections like the WWW.
Here due to the random-like distribution of content over the WWW, re-
search on effective retrieval in Web IR applications showed that a complete
dissemination with immediate updates is usually unnecessary, even if new
documents are included into the collection [607]. The required level of dis-
semination, however, was found to be dependent on the document allocation
throughout the network [606]: random allocation calls for low dissemination,
whereas higher dissemination is needed if documents are allocated based on

340 20. Supporting Information Retrieval in Peer-to-Peer Systems

content. In Peer-to-Peer networks such a random-like distribution does usu-
ally not hold. In practical applications peers often will not carry a random
portion of the entire document collection, but rather a set of documents that
represent their individual interests.

Consider e.g. the news servers example from above. In the WWW there
are some big centralized news serves like e.g. CNN or the New York Times
that deal with all kinds of news, i.e, cover a wide range of topics. Even
if news items change, the overall distribution of topics and keywords can
be assumed to change only slowly. In contrast in Peer-to-Peer applications
peers usually only provide a couple of sets of topically close documents they
are interested in. That means that if a peer joins or leaves the network the
collection-wide information may considerably change. Thus, a lazy dissemi-
nation in settings like the WWW usually has comparable effectiveness as a
centralized approach for general queries, but if only parts of the networks
containing most promising documents with similar content are queried like
in Peer-to-Peer applications, the collection-wide information has to be dis-
seminated and regularly updated. On the other hand this information does
not necessarily always need to be completely up-to-date; obviously there is
a trade-off between index information that is ’still current enough’ given the
network volatility and the accuracy of the query results.

Thus, in contrast to previous work in distributed information retrieval,
not only the distributed aspect of the retrieval, but also the peers’ autonomy
and the relatively high network churn are major problems in Peer-to-Peer
information retrieval. The problems for information retrieval can be roughly
classified into four main categories:

– Ranked Retrieval Model: Exact match models will immediately lead to
a valid result object once any document has been encountered fulfilling the
query predicate. When answering queries in a ranked model a large number
of documents have to be compared to find the ’best matching’ document or
the peers offering them. Moreover, queries often consist of a conjunction of
different keywords to express a user’s information need, hence the retrieval
model has to allow for assessing a document’s degree of match for complex
queries.

– Efficient Evaluation Scheme: An efficient ranked retrieval model does
not allow for simply flooding queries until a suitable peer for download is
found, because a prohibitive number of peers would have to be addressed.
Since the best matching document to a query could be encountered query-
ing the most distant peer, guaranteeing correct retrieval results by flooding
queries can only be facilitated by addressing every peer in the network. An
efficient evaluation scheme thus needs ways to select most appropriate peers
for querying.

– Reliability Facing Network Churn: Centralized index structures for
the Peer-to-Peer network can provide all necessary information about what
documents are available, but this solution does not scale, provides a single

20.1 Content Searching in Peer-to-Peer Applications 341

point of failure and needs a high communication overhead for keeping track
of content changes in the network (e.g. peers changing their local content
by adding or deleting documents or peers joining or leaving the network).
Thus distributed index structures that are still reliable even in the face of
network churn, have to be used.

– Integration of Collection-Wide Information: Queries cannot be an-
swered by the individual peers having only local knowledge, but a peers
needs up-to-date collection-wide information for correct scoring. Con-
stantly disseminating this collection-wide information needs a high amount
of bandwidth, if the network is rather volatile, with a high number of peers
joining or leaving the network. Moreover, quick dissemination is necessary,
if peers show a certain locality in their interests and provide document
collections for specific topics, instead of a broad variety that resembles the
topic distribution of the network.

20.1.3 Related Work in Distributed Information Retrieval

The problem of distributed information retrieval occurred already early in
information retrieval literature and was mainly concerned with the merging
of results and database content discovery. Together with the emergence of
the World Wide Web as a highly distributed information source the research
was intensified and the following paragraphs will revisit some important ap-
proaches that are also common in today’s Peer-to-Peer information retrieval.

Abstracts of Information Sources. To support distributed informa-
tion retrieval individual collections often have to send abstracts to a central
(or distributed) repository. The abstract of a collection is usually simply the
set of terms in the collection’s inverted index. The most renown technique of
efficiently representing these abstracts are Bloom filters [77]. A Bloom filter
is data structure in the form of a bit vector compactly representing a set and
allowing membership queries. In our case the set represented is the set of
terms in a peer’s inverted index. The filter computed is created by deriving n
different indexes for each term using n different hash functions, each yielding
a bit location in the vector. All bits at these positions in the Bloom filter
are set to 1. The membership of a query term now can be efficiently deter-
mined by hashing the query term using the same n functions and comparing
it bitwise with the filter. If there exists a position where a bit is set for the
query term, but not in the filter, the query term is definitely not a member of
the peer’s abstract, which was used for creating the filter. Otherwise, with a
certain probability it is member of the peer’s abstract (Bloom filters allow for
false positives. The probability of false positives is decreasing with growing
n). Today Bloom filters are a popular technique for exchanging summaries
of a peer’s document collection. The PlanetP system for instance uses such

342 20. Supporting Information Retrieval in Peer-to-Peer Systems

Bloom filters for retrieval and disseminates them throughout the community
using gossiping algorithms [140].

Collection Selection. If no central index of all collections’ contents is
given, choosing ’just the right’ collections for querying is a major problem. For
the use in distributed environments like the WWW several benefit estimators
for collection selection have been proposed. Basically these estimators use
aggregated statistics about the individual collections to estimate the expected
result quality of each individual collection. Expected qualities can then be
used for deciding which collections to select for querying or for determining
a querying sequence of the collections. The most popular benefit estimator is
the CORI measure [101], which computes the collection score si for collection
i with respect to a query q as:

si :=
∑

t∈q
α+(1−α)∗Ti,t∗Ii,t

|q|

with Ti,t := β + (1 − β) ∗ log(cdfi,t+0.5)
log(cdfmax

i,t +1.0) and Ii,t :=
log(n+0.5)

cft

log(n+1.0)

where n is the number of collections, cdf the collection document fre-
quency, cdfmax the maximum collection document frequency and finally cft

denotes the collection frequency of query term t, i.e. the number of collections
that contain the term. See [101] for appropriate choices of α and β.

Later [100] proposed to use a different formula for computing Ti,t subse-
quently leading to better results:

Ti,t := cdfi,t

cdfi,t+50+150∗ |Vi|
|V avg |)

where Vi is the term space of the collection i, i.e. the distinct terms in the
collection’s inverted index. V avg is the average term space of all collections
whose inverted index contains term t. However, it is important to notice
that statistics like the collection frequency cft or the average term space size
V avg have to be collected over all peers. That means they are collection-wide
information that cannot be determined locally but has to be disseminated
globally or estimated. Also the CORI estimators are widely used in Peer-
to-Peer information retrieval, because they allow choosing collections with
a sufficient quality, while having to exchange only a very limited amount of
statistical data.

Metacrawlers. Closely related to the field of collection selection are
so-called metacrawlers like e.g. GlOSS [259] (shorthand for Glossary of
Server Servers). Metacrawlers have been designed in connection with the
text database discovery problem, i.e. the problem of selecting most promis-
ing document collections from the WWW with respect to a query. The basic
idea is that a metacrawler does not crawl the actual document collection and
build a complete index over the documents, but rather collects only meta-
data about the individual collections like the number of documents in each

20.2 Indexstructures for Query Routing 343

collection and how many documents for each keyword (above a certain criti-
cal threshold number) in a collection are present. Abstracting from the actual
information which document contains the keyword, the indexes build by the
metacrawler are much smaller than inverted keyword indexes, however, of
course due to the aggregation of information also less reliable. For instance
the information whether keywords appear conjunctively in any document of
the collection is lost. But the resulting index can be handled centrally and
the meta-data used for giving probabilities of finding suitable documents in
each collection.

In GlOSS the usefulness of a collection for single keyword queries can be
characterized by the number of documents that contain the keyword normal-
ized by the total number of documents the collection offers. Building on the
assumption that keywords appear independently in documents, the usefulness
for multi-keyword queries is given as the product of the normalized numbers
for each individual keyword [259]. This basic text database discovery using
a central glossary of servers supports boolean retrieval and retrieval in the
vector space model (vGlOSS). Experiments on the GlOSS system show that
average index sizes can be reduced by about two orders of magnitude and
produced a correct estimation (compared to a complete inverted document
index) of the most useful collections in over 80% of cases. But still, since
the glossary index is a central index, it needs to be updated every time a
collection changes and thus does not lend itself easily to information retrieval
in Peer-to-Peer infrastructures.

Although the work on distributed information retrieval and metasearch is
definitely relevant related research, it addresses only the problem of integrat-
ing a small and typically rather static set of underlying retrieval engines and
information sources. Such a small federation of systems is of course less chal-
lenging than a collaborative search process in highly dynamical Peer-to-Peer
systems. We will take a closer look at specific techniques used in Peer-to-Peer
infrastructures in the following sections.

20.2 Index Structures for Query Routing in
Peer-to-Peer Infrastructures

Since traditional index structures cannot be readily employed in Peer-to-Peer
systems, distributed paradigms must be used to find those peers in the net-
work which offer suitable documents. Information retrieval queries then have
to be routed directly to those peers. As stated before, given the network churn
in typical Peer-to-Peer applications, the overhead of maintaining indexes in
the presence of churn is a particularly important aspect.

344 20. Supporting Information Retrieval in Peer-to-Peer Systems

20.2.1 Distributed Hash Tables for Information Retrieval

The simplest method of querying peer to peer systems is flooding queries
iteratively from the querying peer to all adjacent peers until a certain number
of hops (the ’time to live’ for the query) is reached. While this solution is
simple and robust even when peers join and leave the system, it does not
scale and will only provide query answers within a limited radius around the
querying peer. This can be fundamentally improved if content-based routing
is allowed in the network. One of today’s main technique for indexing such
Peer-to-Peer systems are so-called distributed hash tables (DHTs) (see e.g.
[505], [575]) which allow to route queries with certain keys to particular peers
containing the desired data without requiring a central index. Typically, an
exact match keyword search can be routed to the proper peers in a limited
number of hops logarithmic of the network size, and likewise no peer needs
to maintain more than a logarithmic amount of routing information. But to
provide this functionality, all new content in the network has to be published
at the node for the respective key, if new data on a peer arrives or a new peer
joins the network. In case a peer leaves the network, the information about
its content has to be unpublished. Moreover, if a new document is added to
any peer’s collection, it will usually contain a large set a of various terms
that need to be indexed. Since in DHTs a hashing function decides on what
peer the index for each term resides, chances are that a considerable number
of peers holding some part of the DHT have to be addressed to fully publish
all the information about the new document, see e.g. [237].

Recent research in [393] shows that due to the publishing/unpublishing
overhead, distributed hash tables lack efficiency when highly replicated items
are requested. In practical settings, they have shown to perform even worse
than flooding approaches degrading even further, if stronger network churn
is introduced. Therefore, first hybrid Peer-to-Peer infrastructures have been
proposed [394] that use DHTs only for less replicated and rare items, where
DHTs are efficient, and rely on flooding in the rest of cases. But for the use in
practical scenarios, recent investigation of file exchange behavior [113] show
that rare items are also rarely queried (’People are looking for hay, not for
needles’). Usually, the querying behavior in practical applications follows a
Zipf distribution: there is a moderate number of popular items containing
many replicas in the network, and a long tail of rarely queried items contain-
ing few replicas. Thus, though having a large potential in speed-up by using
DHTs in queries for rare items, relying on flooding for the majority of queries
does not seem a sensible approach and cannot support information retrieval
queries.

Another problem with distributed hash tables is that the retrieval uses
exact matches of single keywords, whereas information retrieval queries are
usually conjunctions of several keywords. If such a query has to be answered
using DHTs the peers offering content for each of the keywords have to be
retrieved [347]. The intersection of the individual peer lists then may offer

20.2 Indexstructures for Query Routing 345

documents also relevant to the conjunctive query. However, there is still no
guarantee that a peer in this intersection offers relevant content because the
publishing of the peer for each keyword may have been based on different
documents. Thus even if a peer offers content for each single keyword, it
is not clear whether it offers a single document containing the conjunction
of the keyword. Of course, the documents of the respective keyword have
to be evaluated with a suitable scoring function to assess their degree of
match and thus the ranking of the final result. Obviously, this process is
no efficient solution to the information retrieval challenge in Peer-to-Peer
infrastructures. Moreover, typical search processes in document collections
like browsing navigation or prefetching are complicated by the virtualization
of the namespaces by DHTs (see e.g. [347] for a discussion).

20.2.2 Routing Indexes for Information Retrieval

A sophisticated strategy for accurately finding very commonly queried items
can be provided using so-called routing indexes . A routing index is a local
collection of (key, peer) pairs where the key is either a keyword or a query. The
basic notion of a routing index is that in contrast to flooding all neighbors
or selecting some randomly, the index points to an interesting peer or in
the direction of interesting peers for a query. Peers thus can route a given
query along connections that lead to collections of peers relevant for a query.
Usually, it is distinguished between links in the default network pointing only
in the direction of peers holding interesting collections and real links to some
specific peers, forming an overlay and often referred to as shortcuts (since
peers in the index do not have to be directly adjacent to the peer keeping the
index). A topic-specific clustering of shortcuts represents a semantic overlay
that may be completely independent from the underlying physical network.

Routing indexes were first introduced by [137] with the goal to choose best
neighbors of a peer to forward a query to until the desired number of results
is reached. While this approach only focused on routing, a lot of research soon
focused on directly contacting relevant peers using semantic characteristics,
like [274] or [444]. Subsequently, routing indexes were extended to different
uses in Peer-to-Peer systems like top k retrieval [54]. The maintenance of
such a routing index is of only local nature (that means that no publish-
ing/unpublishing overhead like in DHTs is caused), and the recall for the
indexed items is usually quite high. Since users in Peer-to-Peer environments
are usually interested in popular queries and show a certain consistency in
their interests, a routing index in most applications is a good solution.

But the question arises how to construct local indexes in a manner that
is both effective in recall and efficient in performance. It is clear that in or-
der to be effective in terms of recall, the local indexes should have a large
amount of knowledge of the collections on different peers. On the other hand,

346 20. Supporting Information Retrieval in Peer-to-Peer Systems

having collected a large amount of knowledge calls for constant updates to
keep track of changes in the collections. Different routing index policies have
been proposed to tackle this trade-off. Generally, it can be distinguished be-
tween restricted index sizes and unrestricted index sizes. For restricted index
sizes index entries are collected and exchanged, if the maximum index size is
reached but new information has been gathered. Getting rid of stale index
entries is thus implemented by letting index entries compete with respect to
their expected usefulness. One of the most often used strategy here is the
LRU-strategy (’least recently used’) that assigns higher usefulness to those
index entries that have been successfully used in the recent past. The more
recent, the more accurate and thus the more useful. However, the optimal
size of such restricted indexes is a difficult problem and strongly dependent
on the network’s actual volatility that is hard to determine locally.

In terms of unrestricted indexes, the peers keeping them locally have to
combat network churn in a different way. For structured networks, the work
on distributed retrieval in [54] proposes to use a backbone of superpeers for
query routing where each superpeer keeps only a strictly locally maintained
routing index. Queries are always routed along a minimum spanning tree of
the backbone and the individual results are routed back the same way. Each
routing index contains the recently asked query terms, all local peers that
contributed to the result set of best documents, and the direction in terms
of adjacent superpeers, where high quality documents came from. If a super-
peer does not have a matching index entry for a query term, it forwards the
query in all directions along the backbone and collects accurate information
for its index, when the best documents have been determined and the results
are routed back. Each index entry is assigned a certain time to live to com-
bat network churn. Experiments show that this kind of index maintenance
is especially suitable for Zipfian query frequency distributions like often en-
countered in Peer-to-Peer scenarios, where it essentially reduces the number
of contacted peers and gives a recall comparable to central indexes.

Another approach using unrestricted index sizes are InfoBeacons [131]
mainly maintaining a set of local indexes that are loosely coupled to the
document sources on the peers. Like in the GlOSS approach [259] the in-
dexes save space by containing only statistics about the documents in the
underlying collections. This statistics can then be used to compute the ex-
pected usefulness of each known document source. To combat network churn
or changes in underlying document collections [131] proposes to apply a ’for-
getting factor’ that periodically weighs down stale information about a source
until it is finally ’forgotten’. In the same way the statistics about a source
can be refreshed by evaluating answers to recent queries of that source (a so-
called ’experience factor’). By closely investigating the result documents, an
InfoBeacon index can not only learn about the query terms, but also about
other terms that are contained in some result document.

20.2 Indexstructures for Query Routing 347

20.2.3 Locality-Based Routing Indexes

A different approach for routing queries to most interesting document col-
lections is based on the idea of social metaphors. Inspired by information
retrieval processes between people in real life, social networks of peers can
be used to get queries to the most relevant peers. Experiments about how
information is gathered, showed that people in real world settings are quite
capable of efficiently constructing chains of acquaintances that will bring
them at least close to the desired information, though each person only had
very local knowledge of the network (see e.g. [413] or [353]). The resulting
so-called ’small worlds’ have subsequently been employed to retrieve relevant
information with respect to a peer’s information need as expressed by the
peer’s queries.

Using small worlds for retrieval an often made assumption is the principle
of interest-based locality. It posits that, if a peer has a particular document
that is relevant to a query, it might very probably also have other interesting
items that the querying peer is interested in. Building on this principle [571]
studied interest-based overlays over Gnutella-style networks and proposes
to generate interest-based shortcuts connecting querying peer and content-
providing peer. Queries with semantically close information needs can then
rely on already established shortcuts. Traces on practical data collections il-
lustrate how peers in the overlay network get very well connected and that
the overlay graph shows the highly-clustered characteristics of small world
networks with a small minimum distance between any two nodes. The clus-
tering coefficient of a peer is defined to be the fraction of edges that exist
between its neighbors over the possible total number of edges. The clustering
coefficient is a relevant measure for the degree of the small world characteris-
tic as reflected by the network. Clusters in the shortcut graph can be said to
correspond to clusters of interests and peers looking for content within their
usual areas of interest, will be successful with high probability by using their
shortcuts.

Other work, like e.g. [586], directly relied on social metaphors for routing
queries to peers that can be assumed to offer interesting documents. A peer
builds an index of shortcuts e.g. by ’remembering’ content provider that have
offered relevant documents in the past for a query or for queries on semanti-
cally similar topics, or by ’overhearing’ communications between other peers
that are just routed through the peer. Best peers that are likely to offer rel-
evant documents, can then be queried by just following the shortcuts whose
topic best matches the query semantics. Randomly sending queries also to
some peers from the default network helps to extend the knowledge about
relevant peers and is a limited help facing the problems of interest changes
and network churn. Experiments show that such shortcut-based approaches
can offer a decent recall and dramatically reduce the communication needed
for answering queries.

348 20. Supporting Information Retrieval in Peer-to-Peer Systems

20.3 Supporting Effective Information Retrieval in
Peer-to-Peer Systems

20.3.1 Providing Collection-Wide Information

As has been stated, providing collection wide is essential for the retrieval ef-
fectiveness. There is a challenging trade-off between reduced network traffic
by lazy dissemination however leading to less effective retrieval, and a large
network traffic overhead by eager dissemination facilitating very effective re-
trieval. What is needed is ’just the right’ level of dissemination to maintain
a ’suitable’ retrieval effectiveness. Thus previous approaches to disseminate
collection-wide information rely on different techniques.

The PlanetP system [140] does not use collection-wide information like
e.g. the inverted document frequency of query terms directly, but circum-
navigates the problem by using a so-called inverted peer frequency (IPF).
The inverted peer frequency estimates for all query terms, which peers are
interesting contributors to a certain query. For each query term t the inverted
peer frequency is given by IPFt := log(1 + N

Nt
) where N is the number of

peers in the community and Nt is the number of peers that offer documents
containing term t. In PlanetP summarizations of the content in the form of
Bloom filters are used to decide what content a peer can offer. Since these
are eagerly disseminated throughout the network by gossiping algorithms,
each peer can locally decide values for N and Nt. The relevance of a peer for
answering multi-keyword queries is then simply the sum of the inverted peer
frequencies for all query terms. Peers are then queried in the sequence of their
IPFs and the best documents are collected until queried peers do no longer
improve the quality of the result set. In terms of retrieval effectiveness [140]
show that the approach is quite comparable to the use of inverted document
frequencies in precision and recall and also the documents retrieved using
IPF show an average overlap of about 70% to result sets retrieved using
IDF . However, by using gossiping to disseminate Bloom filters the system’s
scalability is severely limited.

Structured Peer-to-Peer infrastructures allow for a more scalable way of
providing collection-wide information than simple gossiping. Based on the
notion that in answering a query current collection-wide information is only
needed for the query terms, each superpeer can disseminate such informa-
tion together with a query. [53] shows for a setting of distributed servers
hosting collections of newspaper articles that employing an index collecting
information like IDFs for certain query terms in parallel to the query routing
index can provide sufficiently up-to-date collection-wide information. The ba-
sic idea of both indexes is the same: the routing index of a super-peer states
what peers are interesting to address for a given query and the CWI index
provides collection-wide data for each keyword. The data in the CWI index
can change in two ways: like in routing indexes existing entries have only a
certain time to live, such that stale entries are periodically removed. On the

20.3 Supporting Effective Information Retrieval 349

other hand it can be updated evaluating the answers of the peers that the
query was forwarded to. These peers can easily provide the result documents
together with local statistics about their individual collections. This statis-
tical information can then be aggregated along the super-peer backbone to
give an adequate snapshot of the currently most important document col-
lections for a keyword (e.g. document frequencies and collection sizes can be
added up). As stated in [607] the collection-wide informations does usually
only change significantly, if new peers join the network with corpora of docu-
ments on completely new topics. Since index entries only have a certain time
to live, occasionally flooding queries about query terms not in the index (and
disseminating only an estimation of the statistics needed), usually refreshes
the CWI index sufficiently, while not producing too many incorrect results.
Experiments in [53] show that by using an CWI index and disseminating the
collection-wide information together with the query, even in the presence of
massive popularity shifts the CWI index recovers quickly.

20.3.2 Estimating the Document Overlap

As another important factor for supporting the overall retrieval quality is
assessing the novelty of collections as e.g. motivated in [66]. In collection se-
lection approaches usually precomputed statistics about the expected quality
of results from a collection is used to minimize the number of collections that
have to be accessed. Minimizing the number of collection accesses (and thus
the necessary communication) is even more important in Peer-to-Peer set-
tings. Given typical popularity distributions with a high amount of replication
of popular items in today’s file sharing applications [113], it seems probable
that also in document exchange such overlap between the individual peers’
repositories will exist. However, accessing promising peers in an information
retrieval process that show a high overlap in their collection is not going to
improve the result sets. When deriving result sets from distributed sources,
like e.g. in [54], the result merging will ignore documents that have occurred
before and simply put out requests (and thus probably contact more peers)
for more answers until enough distinct documents have been found.

The novelty of a collection a new peer offers always has to be computed
with respect to a reference collection, i.e. collections that are already part
of the querying peer’s local routing index or more general the collection of
already returned result documents. [66] defines the novelty of a peer p’s col-
lection Cp with respect to a reference collection Cref as:

Novelty(Cp) := |Cp| − |Cp ∩ Cref |
However, since there is usually no information disseminated exactly what

documents are given by a certain peer, this information has to be approxi-
mated by the information disseminated. Thus, for estimating what is actually

350 20. Supporting Information Retrieval in Peer-to-Peer Systems

in a peer’s collection with respect to multi keyword queries the index lists
or summaries of the peer have to be investigated. Using Bloom filters as
summaries [66] proposes to build a peer p’s combined Bloom filter bp with
respect to the query as the bitwise logical AND of its filters for the individual
keywords and then estimate the novelty by comparing it to bprev :=

⋃
i∈S bi

as the union of those Bloom filters bi of the set of collections S that have
already been investigated previously during the retrieval process. The degree
of novelty can then be approximated by counting the locations where peer
p’s Bloom filter gives set bits that are not already set in the combined filter
of previous collections:

|{k|bp[k] = 1 ∧ bprev[k] = 0}|
Analogously, the overlap between the collections can be estimated by

counting the number of bits that are set in both filters. Of course this is
only a heuristic measure as the actual documents have been abstracted into
summaries. Having the same summary, however, does not imply being the
same document, but only being characterized by the same keywords. That
means those documents are probably not adding new aspects for the user’s
information need as expressed in the query. Generally speaking estimating the
overlap and preferably querying peers that add new aspects to an answer set
is a promising technique for supporting information retrieval in Peer-to-Peer
environments and will need further attention.

20.3.3 Prestructuring Collections with Taxonomies of Categories

Retrieval in Peer-to-Peer systems considered two different kinds of paradigms:
the meta-data-based queries and the fulltext-based queries. Often it is useful
to consider them not as two orthogonally used paradigms, but to integrate
them into a single query. A major problem in information retrieval where such
an integration is helpful, is for instance the disambiguation of query terms.
In Peer-to-Peer systems offering documents that show a certain similarity in
terms of their types (like collections of newspaper articles, etc.), the retrieval
process can essentially be supported by introducing a common system of
categories that classify the documents. Given that categories are usually not
entirely independent of each other a taxonomy of the categories can find
related categories that are semantically closer than others. A query then can
be given using keywords and the category the result documents should be
in. The approach given in [53] shows that queries have to be answered in
each category separately starting with the category specified in the query.
Thus, the query routing index has to contain also category information. If
no sufficient number of documents can be retrieved from that category the
search has to be extended first to the children of the category and then
to its parents. For each category own collection-wide information has to be

20.4 Summary and Conclusion 351

collected and disseminated, e.g. by building CWI indexes as described above
per category.

Following [382] the semantic similarity for different categories c1 and c2

can be considered to be determined by the shortest path length as well as
the depth of the common subsumer:

sim(c1, c2) = e−αl · eβh−e−βh

eβh+e−βh

where l is the shortest path between the topics in the taxonomy tree, h
is the depth level of the direct common subsumer, and α ≥ 0 and β > 0
are parameters scaling the contribution of shortest path length and depth,
respectively. Using optimal parameter (α = 0.2 and β = 0.6) this measure
shows a correlation coefficient with human similarity judgements performing
nearly at the level of human replication. Experiments in a scenario of feder-
ated news collections in [53] show that the retrieval process can be effectively
supported, if documents can be classified sufficiently well by a taxonomy of
common categories.

20.4 Summary and Conclusion

This chapter has given a brief survey of techniques for information retrieval
in Peer-to-Peer infrastructures. In most of today’s applications in Peer-to-
Peer scenarios simple retrieval models based on exact matching of meta-data
are prevalent. Whereas meta-data annotation has to anticipate the use of
descriptors in later applications, information retrieval capabilities work on
more complex and unbiased information about the documents in each collec-
tion offered by a peer. Thus, such capabilities offer much more flexibility in
querying and open up a large number of semantically advanced applications.

Generally speaking, information retrieval differs from simple meta-data-
based retrieval in that a ranked retrieval model is employed where not only
some suitable peer for download needs to be found, but the ’best’ docu-
ments within the entire network must be located. Moreover and in contrast
to Gnutella-style infrastructures, querying has to be performed in a more ef-
ficient manner than simple flooding. Generally, only a small number of peers
should be selected for querying. In addition, the querying method has to be
relatively stable in the face of network churn and since rankings usually rely
on collection-wide information, it has to estimated or efficiently disseminated
throughout the network.

The basic retrieval problem is heavily related to previous research in dis-
tributed information retrieval as is used for querying document collections in
the WWW. But the Peer-to-Peer environment still poses different challenges,
especially because network churn causes a much more dynamic retrieval en-
vironment and centralized index structures cannot be efficiently used. Also,
related work in Peer-to-Peer systems, e.g., distributed hash tables can not be

352 20. Supporting Information Retrieval in Peer-to-Peer Systems

readily used either due to the limitations in scalability caused by publishing
and unpublishing information in more volatile networks.

Thus, the main problem for Peer-to-Peer information retrieval today is
managing the trade-off between the efficient maintenance of local indexes
with only limited knowledge about the Peer-to-Peer network’s global param-
eters and the expensive dissemination of dynamically changing global infor-
mation about the network needed to guarantee a satisfying recall in result
sets. Heuristic techniques like estimating the document overlap of collections
or integrating taxonomies of document classifications into the retrieval pro-
cess, have been proved to be helpful and should be further investigated.

	20.1 Content Searching in Peer-to-Peer Applications
	20.2 Index Structures for Query Routing in Peer-to-Peer Infrastructures
	20.3 Supporting Effective Information Retrieval in Peer-to-Peer Systems
	20.4 Summary and Conclusion

