14. Web Services and Peer-to-Peer

Markus Hillenbrand, Paul Miiller (University of Kaiserslautern)

14.1 Introduction

Peer-to-Peer and Web services both address decentralized computing. They
can be considered as rather distinct from each other, but a closer look at the
Web services technology reveals a great potential for a combination of both
Peer-to-Peer and Web services.

The basic idea behind Web services technology is to provide functionality
over the Internet that can be accessed using a well-defined interface. This
idea of a service-oriented architecture forms the next evolutionary step in
application design and development after procedural programming, object
orientation, and component-oriented development. During the last twenty
years, different middleware approaches and application designs have been
introduced to leverage dated technology and provide easy access over open
and mostly insecure access networks.

higher
-
>

J2EE/EJB
€D

complexity of creating distributed applications

»
>
higher

level of abstraction

Fig. 14.1: Programming paradigms: abstraction and distribution

The most recognized and well established technologies for creating dis-
tributed systems are the Remote Procedure Call (RPC, 1988) from Sun
Microsystems, the Distributed Computing Environment (DCE, 1993) from

R. Steinmetz and K. Wehrle (Eds.): P2P Systems and Applications, LNCS 3485, pp. 207-224, 2005.
© Springer-Verlag Berlin Heidelberg 2005



208 14. Web Services and Peer-to-Peer

the Open Software Foundation (OSF), the Common Object Request Broker
Architecture (CORBA, 1990s) from the Open Management Group (OMG),
the Java Remote Method Invocation (RMI, 1990s) and Java Enterprise Beans
(EJB, 1990s) from Sun Microsystems, and the Distributed Component Object
Model (DCOM, 1997 and COM+, late 1990) from Microsoft. Each of these
technologies introduced a higher level of abstraction for creating distributed
applications and reduced the implementation effort necessary to achieve this
goal. Figure 14.1 illustrates the relationship between the underlying pro-
gramming paradigm, the level of abstraction, and the complexity of creating
a distributed application.

Distribution aspects have always been an addendum to procedural pro-
gramming and object-orientation (mostly using some kind of remote proce-
dure call mechanism) and are not intrinsic to the paradigms. Solutions fol-
lowing the component-oriented paradigm provide middleware functionality
and software containers that allow for distribution during software develop-
ment and help managing the resulting software systems. In contrast to this,
Web services are based on open, well-defined, and established standards and
encompass distribution from within the specifications. In combination with
currently evolving additional standards (cf. Chapter 14.2.6) they have a good
chance to achieve the goals of a real and secure distributed middleware ar-
chitecture.

The Web services technology has been initiated by industry and not
academia, and more and more large companies are working on Web services
technology and apply it in real world applications. Though what is the reason
for this development? Unfortunately, there is no commonly used definition
for Web services. Instead, several distinct definitions have to be consulted to
investigate what Web services are and how to use them. Two major driving
forces of the Web services technology — IBM and Microsoft — define Web
services as follows:

Definition 14.1.1. (IBM, 2003) “Web services are self-contained, modular
applications that can be described, published, located, and invoked over a net-
work. Web services perform encapsulated business functions, ranging from
simple request-reply to full business process interactions. These services can
be new applications or just wrapped around existing legacy systems to make
them network-enabled. Services can rely on other services to achieve their
goals.”

Microsoft favors a similar definition of the Web services technology, but
it emphasizes standard Internet protocols:

Definition 14.1.2. (MSDN, 2001) “A Web service is a programmable ap-
plication logic accessible using standard Internet protocols, or to put it an-
other way, the implementation of Web-supported standards for transparent
machine-to-machine and application-to-application communication.”



14.2 Architecture and Important Standards 209

The common aspect of definitions 14.1.1 and 14.1.2 is their focus on busi-
ness and application-to-application communication. A more technical view
on Web services is given by the following definition from the World Wide
Web Consortium in 2003:

Definition 14.1.3. (W3C: May, 2003) “A Web service is a software system
identified by a URI (Uniform Resource Identifier), whose public interfaces
and bindings are defined and described using XML. Its definition can be dis-
covered by other software systems. These systems may then interact with the
Web service in a manner prescribed by its definition, using XML based mes-
sages conveyed by Internet protocols.”

This definition completely abstracts from the implementation and usage
of Web services and is entirely based on XML. During the definition phases
of Web services related standards, the W3C has revised this definition several
times to make it more specific in terms of technology while trying to keep it
as general as possible. As of 2004, the current definition reads as follows:

Definition 14.1.4. (W3C Feb, 2004) “A Web service is a software system
designed to support interoperable machine-to-machine interaction over a net-
work. It has an interface described in a machine-processable format (specif-
ically WSDL). Other systems interact with the Web service in a manner
prescribed by its description using SOAP messages, typically conveyed us-
ing HT'TP with an XML serialization in conjunction with other Web-related
standards.”

Compared to definition 14.1.3, not only XML [89] but also WSDL [118,
115] and SOAP [265] are part of the definition. And HTTP [206] is mentioned
as the typical transport protocol. This makes the definition of a Web service
more precise from a technological view, but also narrows applicability and
extensibility.

The relevant standards mentioned in the definitions will be briefly intro-
duced in the next sections. A sample Web service (providing functionality to
add an integer or a complex number) will be used to illustrate them.

14.2 Architecture and Important Standards

The Web services technology permits loose coupling and simple integration
of software components into applications — irrespective of programming lan-
guages and operating systems by using several standards. The basic archi-
tecture is shown in figure 14.2.

Three participants interact to perform a task. A service provider is re-
sponsible for creating and publishing a description of a service interface us-
ing WSDL. The provider also contributes the actual implementation of the
service on a server responding to requests from clients that adhere to this



210 14. Web Services and Peer-to-Peer

publish

Client Service

Fig. 14.2: Web services: Overview and Standards

interface description. A UDDI registry collects and categorizes interface de-
scriptions and offers them to customers via a browsable directory or a search
engine. A client can either be a human user or another software component
acting on behalf of a user. It discovers a service by asking the UDDI registry
and then contacts the actual service using the interface definitions and proto-
cols defined in the associated WSDL document. This WSDL document might
refer to external XML Schema (XSD) documents on the Internet where data
types for the service are defined (this allows for re-use and compatible data
structures).

The basic operational steps to consume a service are publish, find, and
bind. A service provider publishes a service using a WSDL service descrip-
tion and the UDDI registry, a service requestor finds this service using the
UDDI registry, and the service requestor binds his program to the service
endpoint using the protocols defined in the WSDL document (mostly SOAP
over HTTP).

The binding process on the client side can be realized using different tech-
niques: stubs, dynamic proxy, or dynamic invocation. The automatic gener-
ation of stubs at compile time takes a WSDL document and creates a local
representation of the remote Web service. This only allows for a tight coupling
of client and service. The dynamic prozy technique does not create the stubs
at compile time but generates a local representation of the remote service at
runtime. Only a local interface definition is needed to make the actual call.
Dynamic invocation on the other hand can be used to create a Web service
call completely during runtime — which makes loosely coupled applications



14.2 Architecture and Important Standards 211

possible. In each case the information needed can be retrieved solely from the
WSDL document.

The necessary standards and protocols to either publish, find, or bind
a Web service will now be explained in greater detail. Exemplification will
adhere to the WSDL 1.1 specification because this version is currently widely
used and has a large tool support.

14.2.1 XML and XML Schema

XML [89] is the key to platform and programming language neutral data
exchange. It provides the mechanisms to create complex data structures as
well as it allows for modeling dependencies between data sets. An XML doc-
ument itself is a plain text file using a given character encoding scheme (e.g.
ISO8859-15 or UTF-8). In the following, the necessary parts of the XML
specification will be introduced to give a better understanding of the next
chapters.

Structure

An XML document adheres to a well defined structure. It is divided into a
header and a body part (cf. Figure 14.3). The header contains useful informa-
tion for other software systems such as XML parsers. The XML version and
character encoding are defined there. The body part of the XML document
contains the actual data of the document. This information is contained inside
XML elements and uses the “<...>” syntax known from HTML documents.
Additionally, these elements can have attributes that provide more detailed
information. The XML body part can then be seen as a tree consisting of
XML elements and attributes attached to the nodes.

. . XML header|
<?xml version="1.0" encoding="UTF-8"?>

XML body]|
<schema targetNamespace="http://www.icsy.de/books/p2p/types/SimpleMath"

XML
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" namespaces|

xmlns:tns="http://www.icsy.de/books/p2p/types/SimpleMath"
xmlns="http://www.w3.0rg/2001/XMLSchema">

<complexType name="Complex"> XML complex type definition

<sequence>
<element name="im" type="long"/>
<element name="re" type="long"/>
</sequence>
</complexType>

</schema>

Fig. 14.3: XML Schema for the Complex data type




212 14. Web Services and Peer-to-Peer

XML Namespaces (XMLNS)

XML allows to use any name as an element name. Thus, the vocabulary of
XML documents is not fixed. To avoid collisions of such element names, XML
namespaces [89] have been introduced in 1999 and were updated in 2004. A
namespace can be defined inside an element (usually the root element) and is
valid for all child elements (“XML namespaces” in figure 14.3). A namespace
is specified using a Uniform Resource Identifier (URI [68]) which itself can
either be a Uniform Resource Locator (URL) or a Uniform Resource Name
(URN). A URL points to a specific location where more information about
the namespace can be found while a URN is just a globally unique name.
It is possible to use different namespaces inside an XML document, and the
XML document itself can use elements from these namespaces in any suitable
order.

XML Schema (XSD)

Together with XML Namespaces, XML Schema [200, 593, 75] is one impor-
tant building block for creating modular XML documents. Its major goal is
to make syntactical restrictions for XML elements, i.e. XML Schemas can
be used to assign and define data types. Besides basic data types such as
integer, string, date, etc. provided by the standard, it is possible to define
new datatypes (“XML complex type definition” in figure 14.3). Using the
appropriate XML Schema elements, it is further possible to define new sim-
ple (primitive) data types, complex data types (like structures, arrays, etc.)
as well as enumerations and choices. It is also possible to define and assign
structural patterns restricting the range of values for the data types. Ad-
ditionally, XML Schemas can be imported into other XML documents, e.g.
WSDL documents. This allows for re-use of XML data types and a modular
design of XML documents.

14.2.2 WSDL

The Web Services Description Language (WSDL [118, 115]) is an XML based
format for describing the interface of a Web service. The WSDL document
starts with an XML header and the body is divided into several parts (shown
in figure 14.4):

Root Element

The root element of a WSDL document is a definitions element and con-
tains a target namespace, the namespaces used throughout the document



14.2 Architecture and Important Standards 213

. . XML header|
<?xml version="1.0" encoding="utf-8"?>

WSDL definitions|
<definitions name="SimpleMath"

targetNamespace="http://www.icsy.de/books/p2p/services/SimpleMath"
xmlns="http://schemas.xmlsoap.org/wsdl/" XML namespaces|
xmlns:sim="http://www.icsy.de/books/p2p/types/SimpleMath">

<types> WSDL types

</types>

WSDL messages
<message name="Message_addComplex"> E

</message>

<portType name="SimpleMathPortType"> WSDL port types

</portType>

<binding name="SimpleMathBinding" type="tns:SimpleMathPortType"> UEDL (R

</binding>

<service name="SimpleMathService"> WSDL service

</service>

</definitions>

Fig. 14.4: WSDL document and its structure

(“XML namespaces” in figure 14.4), and an optional documentation of the
Web service.

Types

The data types used by the Web service should be designed using XML
Schema. Inside the types element it is possible to define data types for
the current service or to import data types from remote documents using
the XML Schema import element. In figure 14.5 the types element is used
to import the Complex data type defined in figure 14.3. The actual XML
Schema file location is specified using the schemalocation attribute and
its namespace is specified using the namespace attribute accordingly. The
targetNamespace attribute can be used to map the namespace of the XML
Schema document into another namespace.

pe— WSDL types

<xsd:schema targetNamespace="http://www.icsy.de/books/p2p/types/SimpleMath" >
<xsd:import namespace="http://www.icsy.de/books/p2p, types/SimpleMath"
schemaLocation="http://localhost:8080/types/SimpleMath.xsd" />
</xsd:schema>
</types>

Fig. 14.5: WSDL types element used to import a XML Schema data type




214 14. Web Services and Peer-to-Peer

Messages

Messages are exchanged between the client and the service and represent
the data necessary to call a Web service function or to create a response. A
message element has a name and several parts that make up the message.
Every part element usually has a type — and this type is either imported
or defined in the types element. In figure 14.6 four messages are defined.
The first (Message_addComplex) has two child elements x and y, and the
second message (Message_addComplexResponse) contains only one child el-
ement result. As the name of the message suggests, it is used as a response
to the first message. Messages three and four work in the same manner.

WSDL messages|
<message name="Message_addComplex">

<part name="x" type="sim:Complex"/>
<part name="y" type="sim:Complex"/>
</message>
<message name="Message_addComplexResponse">
<part name="result" type="sim:Complex"/>
</message>
<message name="Message_addInt">
<part name="x" type="xsd:int"/>
<part name="y" type="xsd:int"/>
</message>
<message name="Message_addIntResponse">
<part name="result" type="xsd:int"/>
</message>

Fig. 14.6: WSDL message element

Port Types

A Web service can have several porttype elements!, each containing a set
of operations provided by the Web service. The port types use the messages
defined using the message elements to create input and output messages
for each operation. In figure 14.7 the two operations Message_addComplex
and Message_addInt are defined using the messages from figure 14.6 and
thus form a request-response operation addComplex. With WSDL 1.1 other
operation types are possible: one-way (the endpoint behind the operation
receives a message), solicit-response (the endpoint receives a message and
sends a correlated message), and notification (the endpoint sends a message).

Bindings

The binding element assigns a data encoding format and a transport protocol
to the Web service operations. It is possible to assign more than one protocol

' In the WSDL 2.0 specification the porttype element has been renamed to
interface and extended to support more types of communication.



14.2 Architecture and Important Standards 215

WSDL port type|
<portType name="SimpleMathPortType">

<operation name="addComplex" parameterOrder="x y">
<input message="tns:Message_addComplex" />
<output message="tns:Message_addComplexResponse" />
</operation>
<operation name="addInt" parameterOrder="x y">
<input message="tns:Message_addInt"/>
<output message="tns:Message_addIntResponse"/>
</operation>
</portType>

Fig. 14.7: WSDL port type element

to the same operation. In figure 14.8 both operations are defined to use SOAP
over HTTP.

<binding name="SimpleMathBinding" type="tns:SimpleMathPortType"> WSDLgbindiing

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="addComplex">
<soap:operation/>
<input><soap:body use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap;encoding/"
namespace="http://www.icsy.de/services/test/SimpleMath" /></input>
<output><soap:body use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.icsy.de/services/test/SimpleMath"/></output>
</operation>
</binding>

Fig. 14.8: WSDL binding element

Service

The service element finally defines for each binding a port as the actual end-
point, i.e. the place in the network where the actual software runs and offers
the service?. In figure 14.9 the binding defined in figure 14.8 is assigned to
the SOAP access point provided by the software running on localhost on
port 8080.

. j . WSDL service]
<service name="SimpleMathService">

<port name="SimpleMathPort" binding="tns:SimpleMathBinding">
<soap:address location="http://localhost:8080/axis/services/SimpleMathPort" />
</port>
</service>

Fig. 14.9: WSDL service element

2 In the WSDL 2.0 specification the port element has been renamed to endpoint
in order to clarify the meaning.



216 14. Web Services and Peer-to-Peer

14.2.3 SOAP

Designed as an XML-based lightweight protocol, SOAP? [265] is responsible
for encoding and exchanging data between applications. According to defini-
tion 14.1.4 it is used as a communication means between service providers,
service requestors, and service brokers. A SOAP message itself can be trans-
ported using various transport protocols. Most applications use HTTP (Hy-
pertext Transfer Protocol [206]) as the underlying transport protocol; other
protocols are SMTP (Simple Mail Transfer Protocol [357, 433]) or BEEP
(Blocks Extensible Exchange Protocol [525]).

A SOAP message acts as a message container that delivers structured and
typed data between applications. A SOAP message has three elements:

o 2 XML header]
<?xml version="1.0" encoding="UTF-8"?>

SOAP Envelope|

<goapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

SOAP Header|
<soapenv:Header>

</soapenv:Header>

SOAP Body|
<soapenv:Body>

<nsl:add soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:nsl="http://www.icsy.de/wsdl/SimpleMathService">

<int_1 xsi:type="xsd:int">47</int_1>
<int_2 xsi:type="xsd:int">11</int_2>

</nsl:add>
</soapenv:Body>

</soapenv:Envelope>

Fig. 14.10: The SOAP message structure

The mandatory envelope (“SOAP envelope” in figure 14.10) provides a
container for the next two elements and is the XML root element where
referenced XML namespaces have to be defined.

The optional header (“SOAP header” in figure 14.10) can be used to
transport additional information to recipients of a SOAP message. A recipient
can either be the final destination of the message or any intermediate entity
routing the message through a complex distributed Web service application.
It can be used for routing information, information about quality of service,
billing purpose, etc.

3 Up to version 1.1 SOAP was an acronym for Simple Object Access Protocol. This

is no longer the case, SOAP has become a term on its own. One reason for this
is that Web services should not be conceived as objects.



14.2 Architecture and Important Standards 217

The mandatory body (“SOAP body” in figure 14.10) finally carries all ap-
plication specific information for the final recipient. This final recipient must
be able to semantically understand the body elements. A fault element inside
the body can be used to carry an error message to one of the intermediaries
or back to the origin of the message.

An additional standard allows for attachments to be transmitted in MIME
encoded form, enabling Web services to process large binary data files.

14.2.4 HTTP

The Hypertext Transfer Protocol (HTTP [206]) is a stateless application-
level protocol for exchanging data between two entities. It is primarily used
by Web browsers to access Web servers and retrieve HTML pages. Several
extensions concerning request methods, header information, and error code
have widened the scope of applicability. In the context of Web services it is
the most commonly used protocol for exchanging SOAP messages between a
client and a Web service.

14.2.5 UDDI

Universal Description, Discovery and Integration (UDDI [454]) can be used
to publish or find a specific Web service. UDDI is basically a directory ser-
vice providing registration and search capabilities for Web services. Such a
UDDI registry offers a Web service interface for service providers and service
requestors. Based on several meta data information structures and well es-
tablished categorization formalisms, either of them can store or retrieve Web
service information, respectively.

A globally synchronized UDDI registry is currently maintained by IBM,
Microsoft, and SAP. It is also possible to establish a private UDDI for closed
user groups or applications.

14.2.6 WS-*

In addition to the basic underlying standards and protocols some industry
driven standardization efforts are undertaken to retrofit Web services for com-
mercial and secure usage. They are usually referred to as WS-* standards,
where * is a placeholder for the purpose of the standard. The following de-
scriptions of the most relevant WS-* standards have been taken from their
respective specification; a complete introduction can be found there.



218 14. Web Services and Peer-to-Peer

WS-Addressing

The WS-Addressing [86] standard provides transport-neutral mechanisms to
address Web services and messages. The specification defines XML elements
to identify Web service endpoints and to secure end-to-end endpoint iden-
tification in messages. It furthermore enables messaging systems to support
message transmission through networks that include processing nodes such
as endpoint managers, firewalls, and gateways in a transport-neutral manner.

WS-Federation

WS-Federation [331] defines mechanisms that are used to enable identity,
account, attribute, authentication, and authorization federations across dif-
ferent trust realms.

WS-Policy

The Web Services Policy Framework [540] provides a general purpose model
and corresponding syntax to describe and communicate the policies of a Web
service. It defines a base set of constructs that can be used and extended
by other Web services specifications to describe a broad range of service
requirements, preferences, and capabilities.

WS-ReliableMessaging

WS-ReliableMessaging [205] describes a protocol that allows messages to be
delivered reliably between distributed applications in the presence of soft-
ware component, system, or network failures. The protocol is described in an
independent manner allowing it to be implemented using different network
transport technologies.

WS-ResourceFramework

The Web Services Resource Framework [258] defines a family of specifications
for accessing stateful resources using Web services. The motivation for these
specifications is that while Web service implementations typically do not
maintain state information during their interactions, their interfaces must
frequently allow for the manipulation of state, that is, data values that persist
across and evolve as a result of Web service interactions.



14.3 Service Orchestration 219

WS-Security

WS-Security [435] describes enhancements to SOAP messaging to provide
message integrity and confidentiality. It can be used to accommodate a wide
variety of security models and encryption technologies. The specification also
provides a general-purpose mechanism for associating security tokens with
message content.

WS-Transaction

The WS-Transaction [377] standard describes coordination types — name-
ly Atomic Transaction (AT) and Business Activity (BA) — for building ap-
plications that require consistent agreement on the outcome of distributed
activities.

14.3 Service Orchestration

As Web services evolve and are deployed on a larger scale, the need for
the combination of several Web services in order to create a business pro-
cess arises. Several languages and specifications can be identified that deal
with service orchestration. The most relevant are XML Process Definition
Language (XPDL [452]), Business Process Modeling Language (BPML [33]),
Web Service Choreography Interface (WSCI [34]), Electronic Business using
eXtensible Markup Language (ebXML [455]), and Business Process Execu-
tion Language for Web services (BPEL4AWS [588]). The latter is currently
the most promising candidate for a common standard.

BPEL4WS is based on XML and can be used to combine distributed
Web services to a business process. Interaction between Web services can be
modeled as well as between the business process and its clients. The clients
can thus be detached from the actual business logic and be kept simple.

BPEL4WS is driven by major companies such as IBM and Microsoft and
provides a language to implement complex processes by allowing for different
actions like calling a Web service, manipulating data, and handling errors.
Flow control can be realized using control flow statements like tests, loops,
and threads. To the outside, a BPEL4WS business process can be described
like a normal Web service and have its own WSDL description — a client does
not need to know the internal structure or control flow of the process.

14.4 Comparison of Peer-to-Peer and Web Services

As Peer-to-Peer and Web services are both addressing decentralized comput-
ing, it is reasonable to compare the two techniques and show differences that



220 14. Web Services and Peer-to-Peer

might also be used as incentives for further research and development in this
area.

14.4.1 What Can Peer-to-Peer Learn from Web Services?

The Web services standards evolve at a high rate and influence other tech-
nologies as well. There are several issues that also concern Peer-to-Peer tech-
nology:

XML

All data formats and all data exchange protocols in the Web services area are
based on XML. XML Schema is used to define platform and programming
language neutral data types, SOAP is used to transfer these data types to the
service, and WSDL is used to describe the service itself. New XML standards
or enhancements can be integrated into the Web services technology with
small effort, as XML security or XML encryption have shown.

Another benefit would be to use XML schema definitions for describ-
ing resources, data, services, and peers within a Peer-to-Peer system with
meta data. An XML based description of the resources and data shared in
a Peer-to-Peer system would be more flexible (with regard different schema
files and namespaces) and extensible, because a schema file can be easily
extended without having effect on existing software and thus allow for a
smooth upgrade or change in meta data description. A more detailed view
on schema-based Peer-to-Peer systems is given in chapter 19.

Service Registration

Irrespective of its rather centralized approach, Web services provide an ele-
gant registration mechanism with thorough content description and enhanced
search capabilities. Classification schemes can be used to categorize or classify
services so that users are able to find them using different search requests.

Security

Web services security is of major importance for Web services to be accepted
as building blocks for distributed applications running on the Internet. Sev-
eral standards have been developed to enable secure communication between
Web service entities. These security standards are mostly based on XML and
are thus not limited to the Web services world.



14.4 Comparison of Peer-to-Peer and Web Services 221

Interoperability

One of the design goals of Web services has been to be as open and interop-
erable as possible. Standardized interfaces (written in WSDL) can be used
and accessed by any system capable to process XML documents. There is no
artificial language or operating system barrier in a Web services scenario. To-
gether with security standards this accounts for large business processes and
applications to be deployed over the Internet using different programming
languages and operating systems.

Service orchestration

Web services can be combined to create a business process using Web service
orchestration. This allows for re-use and encapsulation. The JXTA SOAP
project (http://soap.jxta.org) for example brings together Web services
and Peer-to-Peer technology by defining a bridge between SOAP and the
JXTA protocol. This can be further extended by defining workflows on top
of these services. JXTA is explained in more detail in chapter 21.3.1.

14.4.2 What Can Web Services Learn from Peer-to-Peer?

Web services and Peer-to-Peer technologies are used to decentralize comput-
ing. However, Web services are based on a client/server architecture. In the
following, some aspects of Peer-to-Peer systems will be highlighted that might
be applied to the Web services world:

Decentralization

In a Web services scenario, a rather centralized UDDI registry is used to
publish and find Web service descriptions. This accounts for a very easy
usage but also means that all clients and service providers have to access this
single service (or a few central services) and it thus might form a bottleneck
and single point of failure. Additionally, the UDDI does not know whether a
service is currently available or not. It only delivers stored information to the
service requestors. In a Peer-to-Peer system, every node offers its service and
distributed search algorithms are used to retrieve information from all nodes.
A service currently not available will usually not be found in the system.

Transport Protocols

The success of the World Wide Web and Web services is partly based on the
simplicity and scalability of HTTP. Operating in real time and being state-



222 14. Web Services and Peer-to-Peer

less allows for a tight coordination between client (browser) and server (Web
server) — with little overhead. But in systems with a high need for synchro-
nization (like instant messaging) HTTP is inadequate due to its design. This
also applies to services that need a lot of time to process a request (large
data base operations or complex calculations). HTTP is designed to deliver
an answer immediately. Some systems have instead adopted the Simple Mail
Transfer Protocol (SMTP) for asynchronous messaging in this case. But there
are several other protocols that might prove useful in different usage scenar-
ios. Especially Peer-to-Peer instant messaging protocols are designed to allow
for a flexible two-way communication.

Addressing Scheme

Peer-to-Peer systems operate mostly outside the Domain Name Service
(DNS) because its nodes might not have a permanent IP address. In order to
access the resources of these nodes, a logical and often user-created address is
continuously mapped to the current IP address. For Web services this could
mean to make them accessible by using different addressing schemes and not
only using IP addresses or host names, respectively.

Client/Server Architecture

On the World Wide Web roles like client and server are largely fixed — the
Web server is always a server, and a Web browser is always a client. This also
applies to Web services running on a Web server. In Peer-to-Peer systems
however, these roles are only temporary. A node usually acts as client or
server, depending on the current task. This also affects scalability. A strong
client/server architecture only scales with the servers, while a Peer-to-Peer
infrastructure scales depending on the roles taken by the nodes.

14.4.3 Side-Effects Arising when Joining Web Services and
Peer-to-Peer

Compared to either Web services or Peer-to-Peer alone, any combination® of
the two technologies would theoretically cause side-effects in different areas.
The following list is not complete but addresses the most important issues:

4 Such a combination could be a Peer-to-Peer system using Web service technology
or a Web service application scenario adopting Peer-to-Peer techniques.



14.5 Resulting Architectures 223

Bandwidth

Using XML message formats and searching for services using Peer-to-Peer
technology in distributed applications will increase the need for bandwidth
dramatically compared to a central registry such as UDDI. If there is no
central registry, a lot of nodes (peers) of the system have to be queried for
their services — this is especially the case when using unstructured Peer-to-
Peer systems (cf. Part II).

Security

Security in closed client/server systems can be handled very well. It is easily
possible to define access control and access policies. A server can always
decide whether to answer a client request or not. If servers are replaced by
peers in an open Peer-to-Peer system where all nodes are equal, security
cannot be assured as easily anymore. Here new ways for providing similar
security have to be found and applied.

Maintenance

The maintenance of distributed systems is a complex task. Security issues,
the optimal usage and availability of distributed resources and services, and
software deployment become even more complex in a heterogenous combina-
tion of Web services and Peer-to-Peer technology.

14.5 Resulting Architectures

Several architectures can be imagined when joining Web services and Peer-
to-Peer technologies. One of the most promising can be outlined as follows.

Distributed applications will have two faces: Peer-to-Peer in a closed and
rather secure system (i.e. the Intranet or a similar form) and additional Web
service access points for external communication on the Internet — as long as
security is weak there. It is possible to have the benefits of Peer-to-Peer sys-
tems like decentralization, scalability, and availability inside an application,
inside a complex system, or inside a company. On the edge to the Internet
this is changed to the benefits of Web services like security and standardized
WSDL interface descriptions.

This approach could be used to design service brokers (i.e. the entities
responsible for finding a service matching a request like in [211]) and search
engines (i.e. entities responsible for finding arbitrary information matching a
request like in [296]) by using Peer-to-Peer technology internally and offering
their results in XML/WSDL.



224 14. Web Services and Peer-to-Peer

Further Reading

This chapter about Web services and Peer-to-Peer was only a short in-
troduction into the world of distributed services. A good start for ob-
taining more knowledge are the following references (in no particular or-
der) [25, 291, 193, 496, 141].



	14.1 Introduction
	14.2 Architecture and Important Standards
	14.3 Service Orchestration
	14.4 Comparison of Peer-to-Peer and Web Services
	14.5 Resulting Architectures



