
12. ePOST

Alan Mislove, Andreas Haeberlen, Ansley Post, Peter Druschel
(Rice University & Max Planck Institute for Software Systems)

ePOST is a Peer-to-Peer email system that provides the same functionality
as existing, server-based email systems while providing better availability,
scalability, fault tolerance, and security. The ePOST system has been in pro-
duction use within the Computer Science department at Rice University since
early 2004 and is being adopted by an increasing number of outside users.

Traditional email and news services, along with newer collaborative appli-
cations like instant messaging, bulletin boards, shared calendars, and white-
boards, are among the most successful and widely used distributed appli-
cations. Today, such services are mostly implemented in the client-server
model, where messages are stored on and routed through dedicated servers,
each hosting a set of user accounts. This partial centralization limits avail-
ability, since a failure or attack on a server denies service to all the users it
supports. Also, dedicated infrastructure and a substantial maintenance and
administration effort are required to provide services to large numbers of
users.

A decentralized, cooperative approach, i.e., a Peer-to-Peer (P2P) based
solution like ePOST, seems like a natural fit for collaborative applications.
Rather than requiring dedicated server infrastructure, ePOST scales organ-
ically with the number of participating users, since each participant con-
tributes resources to offset the additional demand he places on the system.
Also, ePOST removes all single points of failure by distributing the services
across all member nodes, thus providing the potential for a more highly avail-
able system. Lastly, the self-organizing properties of ePOST promise to re-
duce the cost of maintaining email services.

To use ePOST, users download and run a Pastry [527] node on their desk-
top, which connects to the ePOST overlay network. Folder information and
email messages are stored in the network using the PAST [526] distributed
hash table, and the Scribe [109] multicast system is used to efficiently com-
municate among users. To allow for users to view and send mail, each ePOST
node acts as a IMAP, POP3, and SMTP server. Thus, each user has their own
private mail server on their desktop, which he accesses using any standard
mail client program.

ePOST is built upon the POST distributed messaging system. POST of-
fers a resilient, decentralized infrastructure by providing three basic, efficient
services to applications: (i) secure, durable storage, (ii) metadata based on
single-writer logs, and (iii) event notification. While ePOST is currently the

R. Steinmetz and K. Wehrle (Eds.): P2P Systems and Applications, LNCS 3485, pp. 171-192, 2005.
 Springer-Verlag Berlin Heidelberg 2005

172 12. ePOST

only deployed application built upon POST, a wide range of collaborative
applications, such as instant messaging and shared calendars, can be con-
structed on top of POST using just these services.

The architecture of ePOST is shown in Figure 12.1. In this chapter, we
start by describing scoped overlays, which provide autonomy and locality
for organizations using ePOST. Next, we describe the POST system, which
provides support for secure, reliable messaging and data storage. We then
describe how ePOST is built using POST. Lastly, we detail the Glacier data
durability system, which ePOST and POST use to ensure that data is durable
even in the event of a large-scale correlated failure.

ePOST

POST

Pastry

POP3 SMTPIMAP

Email Client Interacts with user

Standard email access protocols

Uses POST to provide email services

Securely and reliablely delivers messages

Stores data / disseminates messages

Routes messages in overlay

Layers Function

PAST ScribeGlacier

Fig. 12.1: ePOST Stack

12.1 Scoped Overlays

In most structured overlays, applications cannot ensure that a key is stored
in the inserter’s own organization, a property known as content locality. Like-
wise, one cannot ensure that a routing path stays entirely within an organi-
zation when possible, a property known as path locality. In an open system
where participating organizations have conflicting interests, this lack of con-
trol can raise concerns about autonomy and accountability [279]. This is par-
ticularly problematic when deploying highly reliable services, as organizations
may require that internal data and message traffic remain local. For instance,
organizations using ePOST will probably want all intra-organizational email
data to stay within the organization, even in encrypted form.

Moreover, participants in a conventional overlay must agree on a set of
protocols and parameter settings such as the routing base, the size of the
neighbor set, failure detection intervals, and the replication strategy. Opti-
mal settings for these parameters depend on factors like the expected churn
rate, node failure probabilities, and failure correlation. These factors may not
be uniform across different organizations and may be difficult to assess or es-

12.1 Scoped Overlays 173

timate in an Internet-wide system. The choice of parameters also depends on
the required availability and durability of data, which may differ between par-
ticipating organizations. Yet, conventional overlays require global agreement
on protocols and parameter settings among all participants. For example,
Company A may use mostly of desktop PCs with a high churn rate, while
Company B may use mostly dedicated servers. In a traditional overlay, these
two companies are required to use the same replication and fault tolerance
parameters, even though they may be inappropriate for both.

The ePOST system is organized as a hierarchy of overlay instances with
separate identifier spaces. This hierarchy reflects administrative and organi-
zational domains, and naturally respects connectivity constraints. This tech-
nique leaves participating organizations in control over local resources, choice
of protocols and parameters, and provides content and path locality. Each
organization can run a different overlay protocol and use parameter settings
appropriate for the organization’s network characteristics and requirements.
Scoped overlays generalize existing structured overlay protocols with a single
ID space, thus leveraging prior work on all aspects of structured Peer-to-Peer
overlays, including secure routing [108].

12.1.1 Design

A multi-ring protocol interfaces between organizational rings and implements
global routing and lookup. To applications, the entire hierarchy appears as a
single instance of a structured overlay network that spans multiple organiza-
tions and networks. The rings can use any structured overlay protocol that
supports the key-based routing (KBR) API [148].

Figure 12.2 shows how our multi-ring protocol is layered above the KBR
API of the overlay protocols that implement the individual rings. Shown at
the right is a node that acts as a gateway between the rings; an instance of
the gateway node appears in each separate ring. The structured overlays that
run in each ring are completely independent. In fact, different protocols can
run in the different rings, as long as they support the KBR API. Thus, in
the example discussed above, company A and company B can run separate
rings with different protocols and parameters while maintaining connectivity
between them.

12.1.2 Ring Structure

The system forms a two-level tree of rings, consisting of a global ring at
the root and several organizational rings at the lower level. Each ring has
a globally unique ringId, which is known to all members of the ring. The
global ring has a well-known ringId consisting of all zeroes. It is assumed

174 12. ePOST

Ring A Ring B

Chord Chord

KBR API KBR API

Multiring Multiring

Pastry

KBR API

Multiring

AppApp App

Fig. 12.2: Diagram of application layers. Note that rings may be running different
protocols, as in this example.

that all members of a given ring are fully connected in the underlying physical
network, i.e., they are not separated by firewalls or NAT boxes.

All nodes in the entire system join the global ring, unless they are con-
nected behind a firewall or a NAT. In addition, each node joins an organi-
zational ring consisting of all the nodes that belong to a given organization.
A node is permitted to route messages and perform other operations only in
rings of which it is a member.

An example configuration is shown in Figure 12.3. Nodes shown in gray
are instances of the same node in multiple rings and nodes in black are only in
a single ring because they are behind a firewall. The nodes connected by lines
are actually instances of the same node, running in different rings. Ring A7
consists of nodes in an organization that are fully connected to the Internet.
Thus, each node is also a member of the global ring. Ring 77 represents a set
of nodes mostly behind a firewall.

Ring A7

Global Ring

Ring 77

Fig. 12.3: Example of a ring structure.

The global ring is used primarily to route inter-organizational queries and
to enable the global lookup of keys, while application objects are stored in
the organizational rings. Each organizational ring defines a set of nodes that
use a common set of protocols and parameter settings; they enjoy content
and path locality for keys that they insert into the overlay. In addition, an

12.1 Scoped Overlays 175

organizational ring may also include nodes that are connected to the Internet
through a firewall or NAT box.

12.1.3 Gateway Nodes

Recall that a node that is a member of more than one ring is a gateway
node. Such a node supports multiple virtual overlay nodes, one in each ring,
but uses the same nodeId in each ring. Gateway nodes can forward messages
between rings, as described in the next subsection. In Figure 12.3 above, all
of the nodes in ring A7 are gateway nodes between the global ring and ring
A7. To maximize load balance and fault tolerance, all nodes are expected to
serve as gateway nodes, unless connectivity limitations (firewalls and NAT
boxes) prevent it.

Gateway nodes announce themselves to other members of the rings in
which they participate by subscribing to a multicast group in each of the
rings. The group identifiers of these groups are the ringIds of the associated
rings. In Figure 12.3 for instance, a node that is a member of both the global
ring and A7, joins the Scribe groups:

Scribe group A700...0 in the global ring
Scribe group 0000...0 in ringId A7

12.1.4 Routing

Recall that each node knows the ringIds of all rings in which it is a member.
We assume that each message carries, in addition to a target key, the ringId
of the ring in which the key is stored. Gateways forward messages as follows.
If the target ringId of a message equals one of these ringIds, the node simply
forwards the message to the corresponding ring. From that point on, the
message is routed according to the structured overlay protocol within that
target ring.

Otherwise, the node needs to locate a gateway node in the target ring,
which is accomplished via a Scribe anycast. If the node is a member of the
global ring, it then forwards the message via anycast in the global ring to
the group that corresponds to the destination’s ringId. The message will be
delivered by Scribe to a gateway node for the target ring that is close in the
physical network, among all such gateway nodes. This gateway node then
forwards the data into the target ring, and routing proceeds as before.

If the sender is not a member of the global ring, then it forwards the
message into the global ring via a gateway node by anycasting to the group
local Scribe group whose identifier corresponds to the ringId of the global
ring. Routing then proceeds as described above.

176 12. ePOST

As an optimization, it is possible for nodes to cache the identities of
gateway nodes they have previously obtained. Should the cached information
prove stale, a new gateway node can be located via anycast. This optimization
drastically reduces the need for anycast messages during routing.

12.1.5 Global Lookup

In the previous discussion, we assumed that messages carry both a key and the
ringId of the ring in which the key is stored. In practice, however, applications
may need to look up a key without knowledge of where the object is stored.
For instance, keys are often derived from the hash of a textual name provided
by a human user. In this case, the ring in which the key is stored may be
unknown.

The following mechanism is designed to enable the global lookup of keys
even when the ring in which it resides is not known to the requester. When
a key is inserted into an organizational ring and that key should be visible
at globally, a special indirection record is inserted into the global ring that
associates the key with the ringIds of the organizational rings where replicas
of the key are stored. The ringIds of a key can now be looked up in the global
ring. Note that indirection records are the only data that need to be stored
in the global ring. To prevent space-filling attacks, only legitimate indirection
records are accepted by members of the global ring

12.2 POST Design

ePOST uses the POST messaging system to provide email services. At a high
level, POST provides three generic services: (i) a shared, secure, durable mes-
sage store, (ii) metadata based on single-writer logs, and (iii) event notifica-
tion. These services can be combined to implement a variety of collaborative
applications, such as email, news, instant messaging, shared calendars, and
whiteboards.

In a typical pattern of use, users create messages (such as emails in the
case of ePOST) that are inserted in encrypted form into the secure store.
To send a message to another user or group, the event notification service
is used to provide the recipient(s) with the necessary information to locate
and decrypt the message. The recipients may then modify their personal,
application-specific metadata to incorporate the message into their view, such
as a private mail folder in ePOST.

POST assumes the existence of a certificate authority. This authority signs
identity certificates binding a user’s unique name (e.g., his email address) to
his public key. The same authority issues the nodeId certificates required
for secure routing in Pastry [108]. Users can access the system from any

12.2 POST Design 177

participating node, but it is assumed that the user trusts her local node,
hereafter referred to as the trusted node, with her private key material.

Though participating nodes may suffer from Byzantine failures, POST
also assumes that a large majority (> 75%) of nodes in the system behave
correctly, and that at least one node from each PAST replica set has not
been compromised. If these assumptions are violated, POST’s services may
not be available, though the durability of stored data is still ensured thanks to
Glacier, an archival storage layer that is described in Section 12.4.2. Addition-
ally, POST makes the common assumption that breaking the cryptographic
ciphers and signatures is computationally infeasible.

Table 12.1 shows pseudocode detailing the POST API that is presented
to applications. The store and fetch methods comprise the single-copy mes-
sage store. Similarly, the readMostRecentEntry, readPreviousEntry, and
appendEntry methods provide the metadata service, and the notify method
represents the event notification service.

The most interesting of these APIs is the metadata service, and we de-
scribe it in more detail here. Each of the user’s logs is given a name unique to
the user, denoted below by LogName. Applications can scan through a log in
reverse order by first calling readMostRecentEntry, followed by successive
invocations of readPreviousEntry. Similarly, applications can write to the
log by simply calling writeLog with the desired target log’s name.

// these two methods provide the single-copy message store
Key store(Object)
Object fetch(Key)

// and these methods provide the metadata service
LogEntry readMostRecentEntry(LogName)
LogEntry readPreviousEntry(LogEntry)
void appendEntry(LogName, LogEntry)

// lastly, this method provides the notification service
void notify(User, Message)

Table 12.1: POST API

12.2.1 Data Types

POST uses the PAST distributed hash table to store three types of data:
content-hash blocks, certificate blocks, and public-key blocks.

178 12. ePOST

Content-Hash Blocks

Content-hash blocks, which store immutable data objects such as email data,
are stored using the cryptographic hash of the block’s contents as the key.
Content-hash blocks can be authenticated by obtaining a single replica and
verifying that its contents match the key; because they are immutable, any
corruption of the content can be easily detected.

Certificate Blocks

Certificate blocks are signed by the certificate authority and bind a name
(e.g. an email address) to a public key. Certificate blocks are stored using
the cryptographic hash of the name as the key and are also immutable after
creation. Certificate blocks can be authenticated based on their digital sig-
nature, since all users are assumed to know the certificate authority’s public
key.

Public-Key Blocks

Public-key blocks contain timestamps, are signed with a private key, and
are stored using a secure hash of the corresponding public key as the key.
The signature attached to the block allows for block mutation after creation.
First, the nodes storing replicas of the block must verify that the signature
on the update matches the already-known public key. To prevent an attacker
from trying to roll the block back to an earlier valid state, the storage nodes
verify that the timestamps are increasing monotonically. Finally, the object
requester must obtain all live replicas, verify their signatures, and discard
any with older timestamps.

12.2.2 User Accounts

Each user in POST possesses an account, which is associated with an identity
certificate. This certificate is stored as a certificate block, using the secure
hash of the user’s name as the key. Also associated with each account is a
user identity block, which contains a description of the user and the contact
address of the user’s current trusted node. The identity block is stored as a
public-key block, and signed with the user’s private key. Finally, each user
account has an associated Scribe group used for event notification, with a
groupId equal to the cryptographic hash of the user’s public key.

The immutable identity certificate, combined with the mutable public-key
block, provides a secure means for the certificate authority to bind names to
keys, while giving users the ability to subsequently change their personal
contact data later without having to interact with the certificate authority.

12.2 POST Design 179

The Scribe group provides a rendez-vous point for nodes waiting for news
from the associated user, or anybody wishing to notify the user that new
data is available. For example, users waiting for another user A to come
online can subscribe to A’s group. Once A is online again, he publishes to his
group, informing others of his presence.

12.2.3 Single-Copy Store

While POST stores potentially sensitive user data on nodes throughout the
network, the system seeks to provide a level of privacy, integrity and durabil-
ity comparable to maintaining data on a trusted server. A technique called
convergent encryption [176] is used. This allows a message to be disclosed to
selected recipients, while ensuring that copies of a given plain-text message
inserted by different users or applications map to the same cipher-text, thus
ensuring that only a single copy of the message is stored.

To store a message X , POST first computes the cryptographic Hash(X),
uses this hash as a key to encrypt X with an efficient symmetric cipher, and
then stores the resulting ciphertext with the key

Hash
(
EncryptHash(X) (X)

)

which is the secure hash of the ciphertext. To decrypt the message, a user
must know the hash of the plain-text.

Convergent encryption reduces the storage requirements when multiple
copies of the same content are inserted into the store independently. This
happens, for example, when a popular document is sent as an email attach-
ment or posted on bulletin boards by many different users.

In certain scenarios, it may be undesirable to use convergent encryption,
such as when the plain-text can easily be guessed. In these cases, the POST
store can be configured to use conventional symmetric encryption with ran-
domly generated keys.

12.2.4 Event Notification

The notification service is used to alert users and groups of users to certain
events, such as the availability of a new email message, a change in the state
of a user, or a change in the state of a shared object.

For instance, after a new message was inserted into POST as part of an
email or a newsgroup posting, the intended recipient(s) must be alerted to
the availability of the message and be provided with the appropriate decryp-
tion key. Commonly, this type of notification involves obtaining the contact
address from the recipient’s identity block. Then, a notification message is

180 12. ePOST

sent to the recipient’s trusted node, containing the message’s decryption key,
and is encrypted with the recipient’s public key and signed by the sender.

In practice, the notification can be more complicated if the sender and
the recipient are not on-line at the same time. To handle this case, the sender
delegates the responsibility of delivering the notification message to a set of
k random nodes. When a user A wishes to send a notification message to
a user B whose trusted node is off-line, A first sends a notification request
message to the k nodes numerically closest to a random Pastry key C. This
message is encrypted with B’s public key and signed by A. The k nodes are
then responsible for delivering the notification message (contained within the
notification request message) to B. Each of these nodes stores the message
and then subscribes to the Scribe group associated with B.

Whenever user B is on-line, his trusted node periodically publishes a
message to the Scribe group rooted at the hash of his public key, notifying
any subscribers of his presence and current contact address. Upon receipt
of this message, the subscribers deliver the notification by sending it to the
contact address. As long as not all of the replica nodes fail at the same time,
the notification is guaranteed to be delivered. POST relies on Scribe only for
timely delivery – if Scribe messages are occasionally lost due to failures, the
notification will still be delivered since users periodically publish to the their
group.

12.2.5 Metadata

POST provides single-writer logs that allow applications to maintain meta-
data. Typically, a log encodes a view of a specific user or group of users and
refers to stored messages. For instance, a log may represent updates to a
user’s private email folder, or the history of a public newsgroup. An email or
news application would then use such a log consisting of insert, update, and
delete records to keep track of the state of the folder or newsgroup.

The log head is stored as a public-key block and contains the location of
the most recent log record. Keys for log heads may be stored in the user’s
identity block, in a log record, or in a message. Each log record is stored as
a content-hash block and contains application-specific metadata and the key
of the next recent record in the log. Applications can optionally encrypt the
contents of log records depending on the intended set of readers.

To allow for more efficient log traversal, POST aggregates clusters of M
consecutive log records in a single PAST object. Partially filled clusters are
buffered in the log head object, and are added to the log as a separate cluster
entry once they are full. This reduces the number of keys associated with log
entries by a factor of M and increases the speed of log traversals accordingly.

Other optimizations are used to reduce the overhead of log traversals,
including caching of log records at clients and the use of snapshots. POST

12.2 POST Design 181

applications periodically insert snapshots of their metadata into PAST. Thus,
log traversals can be terminated at the most recent snapshot.

12.2.6 Garbage Collection

In order to make the PAST DHT practical for use in applications such as
ePOST, we found it necessary to introduce a mechanism for removing objects
from the DHT.

Disk space is not necessarily a problem, since the rapid growth in hard
disk capacity would probably make it possible to store all inserted data ad
infinitum. However, the network bandwidth required to repair failed replicas
would become unwieldy over time. Such maintenance is necessary to ensure
that there always are at least k live replicas of each stored object, and re-
replicating each object as necessary.

The obvious solution is to add a delete operation to PAST that removes
the object associated with the given key. However, a delete method is un-
safe, because a single compromised node could use it to delete data at will.
Moreover, safe deletion of shared objects requires a secure reference-counting
scheme, which is difficult to implement in a system with frequent node failures
and the possibility of Byzantine faults.

As an alternative solution, we added leases to objects stored in PAST.
Each object inserted into the DHT is given a expiration date by the insert-
ing node. Once the expiration date for a given object has passed, the storage
nodes are free to delete the object. Clients must periodically extend the leases
on all data they are interested in. The modified PAST API is shown in Ta-
ble 12.2.

void put(Key, Object, Expiration)
Object get(Key)
void refresh(Key, NewExpiration)

Table 12.2: Modified PAST API

Adding leases to PAST required other slight modifications. Specifically,
the replication protocol must now exchange tuples (key, expiration). When
a node is told to refresh a key that it already stored with a different lease,
it simply extends the expiration date of the stored key if the new lease is
longer.

We cannot assume that the clocks on different storage nodes are per-
fectly synchronized. Therefore, expired objects are not deleted immediately;

182 12. ePOST

instead, they are kept for an additional grace period TG. During this time,
the objects are still available for queries, but they are no longer advertised
to other nodes during maintenance. Thus, nodes that have already deleted
their objects do not attempt to recover them.

12.2.7 POST Security

POST is designed to face a variety of threats, ranging from nodes that simply
fail to operate, to attackers trying to read or modify sensitive information.
POST must likewise be robust against free riding behavior, including users
consuming more resources than they contribute, and to application-specific
resource consumption issues, such as the space consumed by spam messages.

Threat Model

Our threat model for POST includes of attacks from both within and outside
of POST. Internal attacks can be broken down into two classes: free riding
and malicious behavior. Free riding, discussed below, consists of either selfish
behavior or simple denial of service. Malicious behavior, however, can consist
of nodes attempting to read confidential data, modify existing data, or delete
data from the ePOST system.

Data Privacy

While convergent encryption provides the benefit of a single-copy store, it is
known to be vulnerable to known-plaintext attacks. An attacker who is able
to guess that plaintext of a message can verify its existence in the store, and
may be able to determine whether any given node has requested that partic-
ular message. This is a particular concern for short messages, messages that
are highly structured, or generally any messages with low entropy. To ad-
dress these concerns, POST uses traditional cryptographic techniques (AES
encryption with a random key) to encrypt such messages, and to protect data
that is not meant to be shared, such as the logs and other per-user metadata
maintained by the system.

Data Integrity

Due to the single-writer property and the content-hash chaining [408] of the
logs, it is computationally infeasible for a malicious user or storage node to
insert a new log record or to modify an existing log record without the change
being detected. This is due to the choice of a collision-resistant secure hash

12.2 POST Design 183

function to chain the log entries and the use of signatures based on public
key encryption in the log heads.

To prevent version rollback attacks by malicious storage nodes, public-key
blocks contain timestamps. When reading a public-key block (e.g., a log-head)
from the store, nodes read all replicas and use the authentic replica with
the most recent timestamp. When reading content-hash blocks or certificate
blocks, they can use any authentic replica.

Denial of Service

A variety of denial of service (DoS) attacks may be mounted against Peer-to-
Peer networks. A common DoS strategy might be to control enough nodes to
effectively partition the overlay network, or even to control all of the outgoing
routes from a given node. Likewise, DoS attacks may be aimed at controlling
all of the replicas of a given document, allowing the attacker to effectively
censor any desired document. Pastry’s secure routing mechanism provide an
effective defense against such DoS attacks, both from within and outside the
overlay [108]. When secure routing is used, an attacker would need to control
over 25% of the overlay nodes to mount an effective DoS attack.

Another type of DoS attack is space-filling, where a malicious node sim-
ply tries to insert as much junk data as possible into the DHT. While this
attack is not unique to ePOST, the organizational scoping of rings in ePOST
helps to mitigate this attack. Since all nodes in a given ring are in a single
administrative domain, space-filling attacks can be detected and the faulty
node shut down or punished by the local administrator.

Free Riding

Nodes within the network may try to consume much more remote storage
than they provide to the network. Likewise, nodes may wish to fetch objects
more often than they serve objects to other nodes. If bandwidth or storage are
scarce resources, users will have an incentive to modify their POST software
to behave selfishly. Nodes can generally be coerced into behaving correctly
when other nodes observe their behavior and, if they determine a node to
be a freeloader, will refuse to give it service [448, 135]. Such mechanisms can
guarantee that it is rational for nodes to behave correctly.

POST, in its present form, does not yet include any explicit incentives
mechanisms [448, 135]. The reason is that within an administrative domain,
members generally have external incentives to cooperate. If abuses do occur,
they can be localized to an organizational ring, and the offending users can
be reprimanded within the organization.

184 12. ePOST

12.3 ePOST Design

Each ePOST user is expected to run a daemon program on his desktop com-
puter that implements ePOST, and contributes some CPU, network band-
width and disk storage to the system. The daemon also acts as an SMTP
and IMAP server, thus allowing the user to utilize conventional email client
programs. The daemon is assumed to be trusted by the user and holds the
user’s private key material. No other participating nodes in the system are
assumed to be trusted by the user.

12.3.1 Email Storage

When ePOST receives messages from a client program, it parsers them into
MIME components (message body and any attachments) and these are stored
as separate objects in POST’s secure store. Recall that frequently circulated
attachments are stored in the system only once.

The message components are first inserted into POST by the sender’s
ePOST daemon; then, a notification message is sent to the recipient. Sending
a message or attachment to a large number of recipients requires very little
additional storage overhead beyond sending to a single recipient, as the data is
only inserted once. Additionally, if messages are forwarded or sent by different
users, the original message data does not need to be stored again; the message
reference is reused.

12.3.2 Email Delivery

The delivery of new email is accomplished using POST’s notification service.
The sender first constructs a notification message containing basic header
information, such as the names of the sender and recipients, a timestamp,
and a reference to the body and attachments of the message. The sender
then requests the local POST service to deliver this notification to each of
the recipients. This message is signed by the sender and encrypted using the
receiver’s public key in the usual fashion, combining asymmetric public key
cryptography with a fast symmetric cipher.

If the recipient of the email is in a different ring than the sender, the
recipient has the option of referencing the received email body and attach-
ments in the ring of their originator, or to fetch and insert copies into his
own local ring. The latter approach leads to higher availability and greater
confidence in message durability, due to the greater replication and the fact
that a recipient typically has greater confidence in his own organizational
ring. Therefore, ePOST replicates all incoming mail in the recipient’s local
ring by default.

12.3 ePOST Design 185

12.3.3 Email Folders

Each email folder is represented by an encrypted POST log. Each log entry
represents a change to the state of the associated folder, such as the addition
or deletion of a message. Since the log can only be written by its owner and
its contents are encrypted, ePOST preserves or exceeds the level of privacy
and integrity provided by conventional email systems with storage on trusted
servers. A diagram of the logs used in ePOST is shown in Figure 12.4.

Log Head Log Entries Email Data

Update Email #43

Insert Email #56

Delete Email #54

Delete Email #22

Headers

Body

Attachment

Attachment

Fig. 12.4: Log structure used in ePOST. Each box or circle represents a separate
object in the DHT.

Next, we describe a log record representing an insertion of an email mes-
sage into a user’s folder, such as his inbox. Other types of log records are
analogous. An email insertion record contains the content of the message’s
MIME header, the message’s key, and its decryption key, protected by a sig-
nature and taken from the sender’s original notification message. All of this
data is then encrypted with a unique session key, using a low-cost symmetric
cipher like AES. As these insertion records need only be legible to the original
sender, the session key is encrypted with a master key, also using the cheap
symmetric cipher. This symmetric master key is maintained with the same
care as the user’s private key. This allows the owner of the folder, and none
other, to read messages in the inbox and verify their authenticity without
performing expensive public key operations. The exact messages are shown
in Figure 12.5.

EncryptedEmail = EncryptHash(X) (X)
MessageHeader = (A, B, T,Hash (EncryptedEmail) , Hash (X))

Notification = EncryptKB

(
MessageHeader ,SignKA

(MessageHeader)
)

Fig. 12.5: Messages transmitted sending an email.

186 12. ePOST

12.3.4 Incremental Deployment

To allow an organization to adopt ePOST as its email service, ePOST must
be able to interoperate with the existing, server-based email infrastructure.
We describe here how ePOST is deployed in a single organization and how it
interoperates with conventional email services in the general Internet.

For outgoing mail, if an email recipient is not reachable within ePOST,
then the sender’s ePOST proxy contacts the recipient’s mail server us-
ing SMTP. For inbound email, the organization’s DNS server provides MX
records referring to a set of trusted ePOST nodes within the local organiza-
tion. These nodes act as incoming SMTP mail gateways, accepting messages,
inserting them into POST, and notifying the recipient’s node. Suitable head-
ers are generated such that the receiver is aware the message may have been
transmitted on the Internet unencrypted. If no identity block can be found
for the recipient in the local ring, then the email “bounces” as in server-based
systems.

The inbound proxy nodes need to be trusted to the extent that they re-
ceive plaintext email messages for local users. Typically, the desktop worksta-
tions of an organization’s system administrators can be used for this purpose.
Administrators of conventional email services own root passwords that allow
them to access incoming email anyway. Thus, ePOST provides the same pri-
vacy for incoming email from non-POST senders as existing systems, and
provides stronger security for email transmitted within ePOST.

12.3.5 Management

If ePOST is to replace existing email systems, there must be a viable man-
agement strategy for organizations to adopt when deploying ePOST. The
management tasks in ePOST can be broken down into three categories: soft-
ware distribution, storage, and access. In the paragraphs below, we discuss
these tasks in detail and show how they can be minimized in the context of
ePOST.

Software

The first management task incurred with ePOST is maintaining the proxy
software. This software needs to be kept running and up-to-date as bugs
are fixed and features are added. In our deployment, the ePOST proxy is
configured as a service that is restarted automatically if it fails. Software
upgrades are handled by signing updated code and having users’ proxies
periodically check and download authorized updates.

To allow administrators to efficiently monitor the ePOST system, we have
built a graphical administrative monitoring interface. This application allows

12.4 Correlated Failures 187

administrator to monitor an entire ePOST ring at a glance and to track down
any problems. Administrators are automatically alerted to error conditions
or unusual behavior.

Storage

In a distributed storage system such as ePOST, a certain level of adminis-
tration is necessary to monitor the storage pool. For example, administrators
need to ensure that space-filling attacks are not taking place and that nodes
that are running out of disk space are promptly serviced. Such monitoring
can be done using the tool described in the previous section. The administra-
tor is alerted to nodes that are close to their disk space limit, and can then
take appropriate actions.

Access Control

Controlling access to ePOST can be broken down into two related tasks:
trust and naming. Trust is based on certificates, which users must obtain
from their organization to participate in the system. This is no different from
current email systems, where each user is required to obtain an account on
an email server. For example, in our experimental deployment, we provide a
web page where users can sign up and download certificates. In practice, the
process may require various forms of authentication before the new certificate
is produced.

Naming in ePOST is managed in a manner similar to current systems.
Organizations ensure that email addresses are unique and associated with
only one public key. This is easy to accomplish, since each user must obtain
a certificate from his organization.

ePOST has the potential for requiring substantially lower administrative
overhead than conventional email systems, since the self-organizing properties
of the underlying Peer-to-Peer substrate can mask the effect of node failures.
Additionally, the organic scalability granted to ePOST by the overlay has
the potential to significantly reduce the overhead associated with scaling an
existing email service to more users.

12.4 Correlated Failures

ePOST relies on cooperative storage to store email messages. Each node is
required to contribute a small fraction of its local disk space; the system then
aggregates this storage and provides the abstraction of a giant single store.
As mentioned earlier, this approach is well suited for serverless applications
like POST because it is highly scalable - not only in terms of overhead, but

188 12. ePOST

also because as the size of the system increases, the storage supply increases
also. This allows the system to support organic growth.

Since the system is built out of unreliable components, it must be prepared
to handle occasional node failures. Cooperative storage systems like PAST
often assume that the node population is highly diverse, i.e., that the nodes
are running different operating systems, use different hardware platforms, are
located in different countries, etc. Under these conditions, node failures can
be approximated as independent and identically distributed. To ensure data
durability, it is thus sufficient to store a small number of replicas for each
object, and to create new replicas when a node failure is detected.

Unfortunately, most real distributed systems exhibit high diversity only
in some aspects, but not in others. For example, the fraction of nodes running
Microsoft Windows can be as high as 60% or more in many environments.
In such a system, failures are not independent. For example, if the Windows
machines share a common vulnerability, a worm that exploits this vulnera-
bility may cause a large-scale correlated failure that can affect a majority of
the nodes. Moreover, if the worm can obtain administrator privileges on the
machines it infects, the failures can even be Byzantine.

The reactive replication strategy in PAST is clearly not sufficient to han-
dle failures of this type. Even if the failure is not Byzantine, there may simply
not be enough time to create a sufficient number of additional replicas. As a
consequence, early deployments of ePOST sometimes suffered data loss dur-
ing correlated failures. Since this is not acceptable for critical data like email,
the system needed another mechanism to ensure data durability.

12.4.1 Failure Models

If the system must sustain fast-spreading correlated failures such as power
outages or Warhol worms [572], a reactive defense that detects and repairs
failures as they occur is not enough. Instead, the system must b e proactive
and prepared for the failure in advance.

An ideal proactive system would foresee which nodes are going to be
affected by the next failure and then store the data on the remaining nodes.
This method has zero overhead but is infeasible, so practical systems must
use an approximation. A common technique, which is used in systems like
Phoenix [329], is to use introspection to collect information about each node,
which is then used to predict correlations between the nodes. The data is
then stored on a set of nodes that are expected to fail with low correlation.

Introspective systems are still very storage efficient but crucially depend
on the correctness of their failure model. Even small inaccuracies may lead
to incorrect placement decisions and thus to data loss in a correlated failure.
Moreover, the participants in an introspective system actually have an incen-
tive to report incorrect data, e.g. to reduce their load by making their node

12.4 Correlated Failures 189

R

R

R

5

Full replica

Fragment

Node (offline)

Node (online)

R

4

5

3

2

1

H(o)

H(o) +
6

H(o) +
6

H(o) + 1
6

H(o) +
6

H(o) +
6

5

4

3

2

Fig. 12.6: Fragment placement in Glacier.

appear heavily correlated with others. Finally, it is very difficult to identify
all potential sources of correlation in a realistic system.

12.4.2 Glacier

The durability layer in POST, which is called Glacier, takes a different ap-
proach [269]. Instead of relying on a sophisticated failure model, it makes a
very simple assumption, namely that the correlated failure does not affect
more than a fraction fmax of the nodes; all failure scenarios up to that frac-
tion are assumed to be equally likely. In order to tolerate such a wide range
of failures, Glacier must sacrifice some capacity in the cooperative store for
additional redundancy; thus, it trades abundance for increased reliability.

When a new object is inserted, Glacier applies an erasure code to trans-
form it into a large number of fragments. Together, the fragments are much
larger than the object itself, but a small number of them is sufficient to re-
store the entire object. For example, Glacier may be configured to create
48 fragments, each of which is 20% the size of the object. This corresponds
to a storage overhead of 9.6, but the object can be restored as long as any
five fragments survive.

Glacier then attaches to each fragment a so-called manifest which, among
other things, contains hashes of all the other fragments. This is used to au-
thenticate fragments. Finally, Glacier spreads the fragments across the over-
lay, calculating the key of fragment i as

ki = K +
i

n + 1

where K is the key of the object and n is the total number of fragments.
This ensures that the fragments are easy to find without extra bookkeeping

190 12. ePOST

(which may be lost in a failure). Also, if the overlay is large enough, each
fragment is stored on a different node, which ensures that fragment losses are
not correlated.

For security reasons, Glacier does not allow fragments to be overwritten
or deleted remotely. If these operations were permitted, a compromised node
could use them to delete its own data on other nodes. However, objects may
be associated with a lease, and their storage is reclaimed when the lease
expires. Also, Glacier supports a per-object version number to implement
mutable objects.

12.4.3 Maintenance in Glacier

Since some fragments are continually lost due to individual node failures
and departures, Glacier implements a maintenance mechanism to reconstruct
missing fragments. However, because of the high redundancy, Glacier can
afford high latencies between the loss of a fragment and its recovery; thus,
the maintenance mechanism need not be tightly coupled.

Because of the way fragments are placed in the ring, each Glacier node
knows that its peers at a distance k · 1

n+1 (k = 1..n) in ring space store a set of
fragments that is very similar to its own. Thus, each node periodically (say,
once every few hours) asks one of its peers for a list of fragments it stores,
and compares that list to the fragments in its own local store. If it finds a key
for which it does not currently have a fragment, it calculates the positions
of all corresponding fragments and checks whether any of them fall into its
local key range. If so, it asks its peers for a sufficient number of fragments to
restore the object, computes its own fragment, and stores it locally.

Glacier also takes advantage of the fact that nodes often depart the overlay
for a certain amount of time (e.g. because of a scheduled downtime) but
return afterwards with their store intact. Therefore, Glacier nodes do not
immediately take over the ring space of a failed neighbor, but wait for a
certain grace period T . If the node returns during that time, it only needs
to reconstruct the fragments that were inserted while it was absent; the vast
majority of its fragments remains unmodified.

The loosely coupled maintenance mechanism greatly reduces the band-
width required for fragment maintenance. In the actual deployment which
has moderate churn and the configuration mentioned earlier, Glacier uses
less bandwidth than PAST, even though it manages over three times more
storage.

12.4 Correlated Failures 191

12.4.4 Recovery After Failures

A large-scale correlated failure has two main effects on a Glacier deployment:
First, a large fraction of nodes may lose the fragments they store locally,
and second, the overlay may be shattered, and communication with other
nodes may become impossible. Both effects may be aggravated by Byzantine
failures: Malicious nodes may corrupt their local fragments in order to com-
plicate recovery, and they may mount attacks on the overlay (e.g. an Eclipse
attack) to interrupt communication. However, even a malicious node cannot
change its certified nodeId and take over a portion of the ring space that is
occupied by an unaffected node. Therefore, the fragments on the surviving
nodes remain safe as long as their leases do not expire.

While the failure lasts, we cannot assume that the unaffected nodes can
make any progress towards recovery, since this would require communication
with other nodes. Therefore, these nodes simply ‘weather the storm’ and do
nothing. Eventually, the administrators of the failed nodes will notice the
problem and repair their nodes. After that, the maintenance mechanism will
gradually recover the lost fragments and thus restore full redundancy. To
prevent congestion collapse, the amount of bandwidth each node is allowed
to spend on maintenance is limited, so full recovery may take several hours
to complete; however, even though the data is not fully durable during that
time, it still remains available and can be retrieved on demand.

12.4.5 Object Aggregation

In ePOST, the storage load mainly consists of small objects (email texts and
headers). This causes more overhead in Glacier because the number of keys
is higher, and thus more storage space and bandwidth is required for per-key
metadata such as the fixed-size manifests. To reduce this overhead, ePOST
aggregates objects before inserting them into Glacier.

The main challenge in object aggregation is how to do it securely in an
environment with large-scale Byzantine failures. Even though there are con-
siderable advantages in performing aggregation on the storage nodes, Glacier
cannot allow this because these nodes cannot be trusted. Therefore, each
node is required to create and maintain its own aggregates. This includes
keeping a mapping from object keys to aggregate keys (which is required to
locate objects), extending the leases of aggregates whose objects are still in
use, and merging old aggregates whose objects have mostly expired.

The mapping from object keys to aggregates requires special attention
because it is crucial during recovery. Without it, the application may be
unable to find its objects after a failure without searching Glacier’s entire
store, which is infeasible. For this reason, the system adds to each aggregate
a few pointers to other aggregates, thus forming a directed acyclic graph
(DAG). During recovery, an ePOST node traverses its DAG and is thus able

192 12. ePOST

to locate all non-expired objects it has inserted. Moreover, the DAG contains
a hash tree, which is used to authenticate all aggregates. The only additional
requirement for ePOST is to maintain a pointer to the top-level aggregate;
this pointer is kept in an object with a well-known key that is directly inserted
into Glacier.

12.5 Preliminary Experience

We implemented a version of POST and ePOST on top of FreePastry, an
open-source implementation of Pastry, PAST and Scribe, and the POST and
ePOST code was released alongside FreePastry 1.4 [233]. Our initial deploy-
ment of ePOST began in January of 2004 with very few users. As confidence
in the system grew, we expanded our userbase and incorporated new features.
Many of our users rely on ePOST as their primary email system, no longer
using their conventional accounts. For more information on our deployment,
please see http://www.epostmail.org.

The current ePOST deployment has two separate ePOST rings: a ring at
Rice University limited to members of Rice only, and a ring based on Planet-
Lab [486], which is open to the public. We currently have approximately 20
registered users in the Rice ring and 73 registered in the PlanetLab ring. We
have found the storage and bandwidth requirements to be relatively modest:
the average storage requirement on the Rice nodes after one year of use was
approximately 500 MB, and the average bandwidth usage was 500 bytes per
second per node.

	12.1 Scoped Overlays
	12.2 POST Design
	12.3 ePOST Design
	12.4 Correlated Failures
	12.5 Preliminary Experience

