
10. P-Grid: Dynamics of Self-Organizing
Processes in Structured Peer-to-Peer
Systems

Karl Aberer, Anwitaman Datta, Manfred Hauswirth (EPFL)

10.1 The Concept of Self-Organization

Peer-to-peer systems are often characterized as self-organizing systems. Such
characterization is frequently used to informally express properties of Peer-to-
Peer systems such as the distribution of control, locality of processing, and
the emergence of global structures from local interactions. Self-organizing
systems are considered as being particularly scalable and failure resilient.

In this chapter we would like to explore the nature of self-organization in
Peer-to-Peer systems in more detail, with a particular emphasis on structured
overlay networks. Overlay networks facilitate the organization of application-
specific address spaces in Peer-to-Peer systems by constructing a logical net-
work on top of the physical network. They are one of the central concepts that
have been introduced in the field of Peer-to-Peer systems. We will investigate
the issue of self-organization first for unstructured overlay networks, such as
Gnutella [126], where issues of self-organization are more widely studied, and
then show how self-organization also plays a role for the design of structured
overlay networks. We will study self-organization for the P-Grid structured
overlay network [3] which has been designed as a highly self-organizing sys-
tem.

Self-organizing systems are well-known from many scientific disciplines,
in particular from physics and biology, for example, crystallization processes
or insect colonies. In computer science self-organization and the resulting
phenomena have been studied in particular in the field of artificial intelligence
(agent systems, distributed decision making, etc.).

Self-organization is the process of evolution of a complex system with lo-
cal interaction of system components only, resulting in system states with
certain observed or intended global properties. A self-organizing process is
driven by randomized local variations—movements of molecules in the case
of crystallization, movements of individual insects in insect colonies. These
“fluctuations” or “noise”, as they are also called, lead to a continuous per-
turbation of the system and allow the system to explore a global state space
until it enters into equilibrium states. These states correspond to the global,
emergent structures [294].

R. Steinmetz and K. Wehrle (Eds.): P2P Systems and Applications, LNCS 3485, pp. 137-153, 2005.
 Springer-Verlag Berlin Heidelberg 2005

138 10. P-Grid: Dynamics of Self-Organizing Processes

More formally, a self-organizing system can be described as a Markovian
process. Given a set of possible states S, which usually is very large, the evo-
lution of a complex system can be described deterministically by a function
fT : S → S. In practice, the lack of information about the precise state will
make a deterministic description of the system evolution infeasible. Thus a
more realistic way to describe the system evolution is by a stochastic process
where for each given state si we can give the probability that a state sj is
reached, i.e. P (sj |si) = Mij ∈ [0, 1], where M is the transition matrix of
a Markovian process. Given the probability distribution of states P (si, t) at
time t it is thus possible to calculate the time evolution of the system as

P (sj , t + 1) =
∑

i

Mij P (si, t).

Usually we are interested in emergent properties of such self-organizing
systems. Emergent properties are global properties of the state space that
result after the system has converged to an equilibrium. In the following we
will demonstrate how this view of self-organizing systems can be adopted in
the context of Peer-to-Peer systems.

10.2 An Example of Self-Organization in Unstructured
Peer-to-Peer Systems

Unstructured Peer-to-Peer systems have generated substantial interest be-
cause of their self-organization behavior resulting in interesting global struc-
tural properties of their state, in particular the structure of the resulting
network graphs. For example, the Gnutella network graph exhibits the fol-
lowing characteristics [516]:

1. The network has a small diameter, which ensures that a message flood-
ing approach for search works with a relatively low time-to-live (approx-
imately 7).

2. The node degrees of the overlay network follow a power-law distribution.
Thus few peers have a large number of incoming links, whereas most
peers have a very low number of such links.

These properties result from the way Gnutella performs network main-
tenance: Each peer discovers other peers by constrained flooding. From the
discovered peers a fixed number of randomly selected peers are used to con-
struct the Gnutella network. Thus nodes in the network graph have a con-
stant out-degree. During this process peers with a larger number of incoming
connections are more likely to be selected. This corresponds to a preferential
attachment mechanism during network construction. Preferential attachment
has been identified as a mechanism that generates a power-law distribution
of node degrees for many types of networks, for example, the World Wide

10.2 Example of Self-Organization in Unstructured P2P Systems 139

Web, citation networks, and genetic networks. Similarly, for unstructured
overlay networks this mechanisms leads to a power-law distribution of nodes’
in-degrees.

A non-rigorous argument why preferential attachment generates power-
law distributed node degrees is as follows [422]. We model the system state by
the distribution of node degrees. Let P (j, t) be the probability that at time t
a node has in-degree j and assume that at each time step one peer joins the
network and adds one additional connection. Assume that with probability α
the node to which the new peer connects is chosen uniformly randomly and
with probability 1 − α proportionally to the current node degree. Then the
process of network evolution can be modeled as follows.

P (j, t+1) = P (j, t)+α(P (j−1, t)−P (j, t))+(1−α)((j−1)P (j−1, t)−jP (j, t)).

Now assume that the degree distribution is in steady state, i.e. P (j, t) =
cj , t > 0. We can derive

cj

cj−1
= 1 − 2 − α

1 + α + j(1 − α)
≈ 1 − 2 − α

1 − α

1
j

where the approximation is valid for large j. This relationships is satisfied
approximately for

cj ≈ j−
2−α
1−α .

To see this, note that for this cj we have

cj

cj−1
≈ (1 − 1

j
)

2−α
1−α ≈ 1 − 2 − α

1 − α

1
j

This is a first example of how a self-organization process results in a global
structural feature, namely the power-law degree distribution. The probability
that a node has a given in-degree remains invariant while the network grows,
thus the system is in a dynamic equilibrium during network construction.

The structure of the resulting overlay network is the basis for performing
searches efficiently. In Gnutella, searches are performed by message flooding.
A low network diameter, as in the power-law graph, guarantees low search
latency. Message flooding however induces a high consumption of network
bandwidth. Therefore other strategies for performing searches in Gnutella
networks have been investigated. The independence of the network main-
tenance and search protocols makes it possible to use alternative search
strategies which may exploit the emergent overlay network structure more
efficiently. Examples of such alternative strategies are the random walker
model [397] and the percolation search model [537], which both exploit the
specific structure of the network.

To summarize, we can observe two important points for unstructured
overlay networks such as Gnutella. First, the structure of the network and

140 10. P-Grid: Dynamics of Self-Organizing Processes

its global properties are induced by the (self-organizing) dynamic process
used for their construction. Second, the design of efficient search algorithms
exploits the structural features of the overlay network that results from the
self-organized construction process. In the following we will show that the
same principles can be applied analogously for structured overlay networks.

10.3 Self-Organization in Structured Peer-to-Peer
Systems

One of the important drawbacks of unstructured overlay networks is the high
network bandwidth consumption during searches, apart from the fact that
successful searches are not guaranteed unless all peers are contacted. This
motivated the development of structured overlay networks where nodes coor-
dinate among themselves by partitioning the key space and maintaining state
information on the resources stored at neighboring nodes. This enables the
implementation of directed searches and thus to dramatically reduce band-
width consumption used in search. This approach, however, requires also a
higher degree of coordination among the nodes while constructing and main-
taining the overlay network.

To achieve this coordination, maintenance algorithms are provided that
maintain structural invariants during the lifetime of the overlay network.
Typically these structural invariants are ensured through localized opera-
tions. This is the approach taken by most structured overlay networks, such
as Chord [575]. The structural invariant of Chord is related to the selection of
routing table entries. Each node maintains a link to the first node located on
predefined partitions of the key space, which are increasing exponentially in
size with distance from the node. During network maintenance, for example,
during a node join, the routing tables of the joining node and existing nodes
in the network are updated immediately such that after the join is completed,
the structural constraints on the routing tables are satisfied. This approach
is very different from the self-organization mechanism we have analyzed for
unstructured networks, where a structural property, i.e., the node in-degree
distribution, is ensured not through localized operations but as a property
resulting from a self-organization process.

In the following we will show how self-organizing processes can also be
used in the context of structured overlay networks. With such an approach
structural properties are not guaranteed through localized operations, but
emerge as a global property from a self-organization process. We will demon-
strate this approach for the P-Grid overlay network [3]. P-Grid uses self-
organizing processes for the initial network construction to achieve load-
balancing properties as well as for maintenance to retain structural properties
of the overlay network intact during changes in the physical network. We will
give first an overview of the structural design of P-Grid and then discuss its
self-organization mechanisms and the techniques used for their analysis. Our

10.3 Self-Organization in Structured Peer-to-Peer Systems 141

focus is on the exemplification of general self-organization principles which
are applicable to many overlay networks to varying extents and with different
performance implications as we will briefly discuss at the end of this chapter.

10.3.1 The Structure of P-Grid Overlay Networks

We assume that the data keys are taken from the interval [0, 1[. The struc-
ture of a P-Grid overlay network is based on two simple principal ideas: (1)
the key space is recursively bisected such that the resulting partitions carry
approximately the same workload. Peers are associated with those partitions.
Using a bisection approach greatly simplifies decentralized load-balancing by
local decision-making. (2) Bisecting the key space induces a canonical trie
structure which is used as the basis for implementing a standard, distributed
prefix routing scheme for efficient search.

This is illustrated in Fig. 10.1. At the bottom we see a possible skewed
key distribution in the interval [0, 1[. We bisect the interval such that each
resulting partition carries (approximately) the same load. Each partition can
be uniquely identified by a bit sequence. We associate one or more peers (in
the example exactly two) with each of the partitions. We call the bit sequence
of a peer’s partition the peer’s path. The bit sequences induce a trie structure,
which is used to implement prefix routing. Each peer maintains references in
its routing table that pertain to its path. More specifically, for each position
of its path, it maintains one or more references to a peer that has a path
with the opposite bit at this position. Thus the trie structure is represented
in a distributed fashion by the routing tables of the peers, such that there
is no hierarchy in the actual overlay network. This construction is analogous
to other prefix routing schemes that have been devised [491, 527]. Search in
such overlay networks is performed by resolving a requested key bit by bit.
When bits cannot be resolved locally, peers forward the request to a peer
known from their routing tables.

P-Grid uses replication in two ways in order to increase the resilience of the
overlay network when nodes or network links fail. Multiple references are kept
in the routing tables, thus providing alternative access paths, and multiple
peers are associated with the same key space partitions (structural replica-
tion) in order to provide data redundancy. The self-organization mechanisms
we will discuss for P-Grid will relate to these two replication mechanisms.

Contrary to standard prefix routing approaches P-Grid does not assume
a maximal key length that limits the tree depth and thus search cost. This
assumption would compromise the load-balancing properties achieved by bi-
section. Thus search efficiency is not guaranteed structurally, since in the
worst case search cost is related to the maximal path length of the trie,
which for skewed key distributions can be up to linear in the network size.

142 10. P-Grid: Dynamics of Self-Organizing Processes

0 1

R
ecu

rsive
P

artition
in

g
R

ecu
rsive

P
artition

in
g

Load distribution

1 : 2

01 : 3

1 00*

1 : 6

01 : 8

7 00*

1 : 6

00 : 1

011: 8

5 010*

1 : 2

00 : 7

011: 3

4 010*

1 : 2

00 : 1

010: 5

8 011*

1 : 6

00 : 1

010: 4

3 011*

0 : 3

6 1*

0 : 1

2 1*

010 011

0 1

00 01

ID peer identifier

00* data keys

Trie abstraction

for prefix routing

1 : 2 routing table entry

Replica sub-network

1 : 2

01 : 3

1 00*

1 : 6

01 : 8

7 00*

1 : 6

01 : 8

7 00*

1 : 6

00 : 1

011: 8

5 010*

1 : 6

00 : 1

011: 8

5 010*

1 : 2

00 : 7

011: 3

4 010*

1 : 2

00 : 7

011: 3

4 010*

1 : 2

00 : 1

010: 5

8 011*

1 : 2

00 : 1

010: 5

8 011*

1 : 6

00 : 1

010: 4

3 011*

0 : 3

6 1*

0 : 1

2 1*

0 : 1

2 1*

010 011

0 1

00 01

ID peer identifier

00* data keys

Trie abstraction

for prefix routing

1 : 2 routing table entry

Replica sub-network

Fig. 10.1: P-Grid structure

To guarantee efficient search, P-Grid constructs its routing tables in a
randomized fashion. For example, all peers that adopted 0 as the first bit of
their path, can choose at the first level of their routing table any peer with
first bit 1. This is in contrast to a deterministic approach where a specific
peer would have to be chosen, e.g., the first in the respective interval. It
turns out that with such a randomized approach in expectation routing cost
is exactly log n, where n is the number of leaves of the trie underlying the
routing table construction. Informally, by randomly selecting in the routing
tables peers among all peers that can resolve the next bit during routing, in
expectation more than one bit will be resolved in a single step. An analysis
for the routing cost is found in [2].

There is another motivation for having a trie-structured overlay network
instead of a standard distributed hash table: The real advantage of tradition-

10.3 Self-Organization in Structured Peer-to-Peer Systems 143

ally using a hash table in main memory is the constant time of lookup, insert,
and delete operations. But to facilitate this, a hash table sacrifices the order-
relationship of the keys. However, over a network, where only parts of the
hash table are stored at each location, we need multiple overlay hops anyway.
For most conventional DHTs the number of hops is logarithmic in the network
size. Thus the main advantage of constant-time access no longer exists. In
fact the fundamental issue to address now is, whether we can realize a search
tree, which still is similarly efficient as a DHT in terms of fault-tolerance,
load-balancing, etc., but also provides properties such as preservation of key
ordering and hence supports efficient exact queries but also efficiently enables
higher-level search predicates such as substring search, range queries [157],
etc. This is a major goal in the design of the P-Grid overlay network.

10.3.2 Dynamics of P-Grid Overlay Networks

From a structural perspective P-Grid is based on a distributed trie struc-
ture that preserves key ordering. This naturally enables prefix and range
queries [157]. However, a number of algorithmic issues need to be addressed
in order to adapt the structure of the overlay to a given key distribution and
to maintain it in a dynamic network environment.

Usually maintenance for overlay networks is considered for a sequential
node join and leave model. Algorithms are provided for inserting new nodes
contacting an existing network node. The arrival of a new node requires up-
dates to the routing tables of the new node and of some of the existing nodes
in the network. In case of node failures or uncooperative node departure,
routing table entries need to be repaired. This is performed by maintenance
algorithms which either periodically poll routing table entries or piggy-back
repair actions to other operations, e.g., searches.

In addition to these standard techniques P-Grid also supports the efficient
construction of an overlay network from scratch. We call this the bootstrap-
ping problem and it corresponds to the standard database problem of index
construction. For addressing this problem, it is critical that the large number
of peers participating in the construction of the overlay network can work in
parallel.

This problem has been largely ignored in the literature, but has to be
solved for a number of practical reasons, in particular for data-oriented appli-
cations. The need to bootstrap a new overlay structure can occur for semantic
needs of applications, e.g., for indexing new attribute types of resources with
structured metadata annotations or due to performance considerations, e.g.,
for periodically rebuilding an inverted file in a Peer-to-Peer retrieval system
rather than continuously maintaining it, or for operational reasons, e.g., for
rebuilding an overlay network after catastrophic failure, where the standard

144 10. P-Grid: Dynamics of Self-Organizing Processes

maintenance method is no longer capable of reconstructing a stable overlay
network.

In the following we will first discuss a self-organizing process that is used
to realize efficient bootstrapping of P-Grid networks, and then discuss a rout-
ing table maintenance technique used in P-Grid for maintaining consistency
of routing tables under network churn which is based on an adaptive, self-
organizing process.

10.3.3 Bootstrapping a P-Grid Overlay Network

The process of bootstrapping an overlay network from scratch should be per-
formed with low latency, i.e., highly parallel, and with minimal bandwidth
consumption. At the same time, for a P-Grid overlay network it should si-
multaneously achieve two load-balancing properties:

1. The partitioning of the search space should be such that each partition
holds approximately the same load, e.g., measured as the number of keys
present in the partition.

2. Each resulting partition should be associated with approximately the
same number of peers, such that the availability of the different data
keys is approximately the same.

P-Grid achieves these goals by a distributed, self-organizing process. Using
a self-organizing process allows to largely decouple the operation of different
peers and thus enables the parallelization of the task.

The design of the process takes advantage of the fact that a P-Grid over-
lay network structure results from the recursive bisection of the key space.
The process is based on random encounters of peers. These are initiated by
performing random walks on a pre-existing unstructured overlay network. In
their encounters the peers decide whether the current partition contains a
sufficient number of keys to justify a further split. The problem to solve is
that a large number of peers have to split fast into two peer populations of
which the ratio matches the ratio of the key set sizes in the two partitions.

We provide the algorithm used for the basic case of performing a bisection
into two partitions 0 and 1 with n + 1 peers, where the workload associated
with the two partitions is p and 1 − p. We assume that each peer knows
the value of p and that 0 ≤ p ≤ 1

2 . Then the problem can be formulated as
follows.

1. Proportional replication: Each peer has to decide for one of the two par-
titions such that (in expectation) a fraction p of the peers decides for 0
and a fraction 1− p for 1. Thus the average workload becomes uniformly
distributed among the peers.

10.3 Self-Organization in Structured Peer-to-Peer Systems 145

2. Referential integrity: During the process each of the peers has to en-
counter at least one peer that decided for the other partition. Thus the
peers have the necessary information to construct the routing table.

The second condition makes the problem non-trivial, since otherwise peers
could simply select partition 0 with probability p and 1 otherwise. P-Grid uses
the following distributed algorithm to solve the problem.

1. Each undecided peer initiates interactions with a uniformly randomly
selected peer until it has reached a decision.

2. If the contacted peer is undecided the peers perform a balanced split with
probability 0 ≤ α(p) ≤ 1 and maintain references to each other.

3. If the contacted peer has already decided for 1 then the contacting peer
decides for 0 with probability 0 ≤ β(p) ≤ 1 and with probability 1−β(p)
for 1. In the first case it maintains a reference to the contacted peer. In
the second case it obtains a reference to a peer from the other partition
from the contacted peer.

We can model this algorithm as a Markovian process. We assume that in
each step i one peer without having found its counterpart so far contacts an-
other randomly selected peer. We denote by P (0, t) and P (1, t) the expected
number of peers that have decided in step t for 0 and 1 respectively. Initially
P (0, 0) = P (1, 0) = 0. At the end of the process at some step te we have
P (0, te) + P (1, te) = n + 1. We analyze the case α(p) = 1. Then the model
can be given as

P (0, t) = P (0, t − 1) +
1
n

(n − P (0, t − 1) − (1 − β)P (1, t − 1))

P (1, t) = P (1, t − 1) +
1
n

(n − βP (1, t − 1))

In order to determine the proper value of β for a given value of p, we have
to solve the recursive system. By standard solution methods we obtain

P (0, t) =
n

β
(2β − 1 + (1 − β

n
)t − 2β(

n − 1
n

)t)

P (1, t) =
n

β
(1 − (1 − β

n
)t)

We observe that the recursion terminates as soon as no more undecided
peers exist, i.e., as soon as P (0, te) + P (1, te) = n + 1. By evaluating this
termination condition we obtain

te(n) =
log(2)

log(n
n−1)

+ 1 (10.1)

146 10. P-Grid: Dynamics of Self-Organizing Processes

Note that te does not depend on p, and thus the partitioning process
requires the same number of interactions among peers independent of load
distribution. By definition p = P (0,te)

n+1 , thus we obtain a relationship among
the network size n + 1 and the load distribution p with β(p, n). For large
networks, by letting n → ∞, we obtain the following relationship among p
and β(p)

p = 1 − 1
β

(1 − 2−β) (10.2)

Positive solutions for β(p) cannot be obtained for all values of p. From
Equation 10.2 we derive that positive solutions exist for p ≥ 1 − log(2). In-
formally speaking, since balanced splits are always executed unconditionally,
the algorithm cannot adapt to arbitrarily skewed distributions. Therefore
for 0 ≤ p < 1 − log(2) we have to pursue a different strategy, by reducing
the probability of balanced splits, i.e. α(p) < 1. The analysis of this case is
analogous and therefore we omit it here.

Various non-trivial issues still need to be addressed to extend this basic
process to a complete method for constructing a P-Grid overlay network with
load-balancing characteristics. The value of p is normally not known, thus it
needs to be estimated from the key samples the peers have available locally.
This introduces errors into the process which require non-trivial corrections.
The process needs to be performed recursively, thus errors in proportionally
bisecting the key space accumulate. The process needs to be approximately
synchronized to leave the assumptions made for the basic process valid. The
bisection process should terminate as soon as the number of peers in the
same partition falls below a threshold. Since peers cannot know during the
bootstrapping all potential replica peers in the same partition, other criteria,
based on the locally available keys, need to be evaluated. Solutions for these
problems have been developed and it has been shown that in fact it is pos-
sible to efficiently construct a P-Grid overlay network satisfying the desired
load-balancing properties based on the elementary process introduced in this
section [6, 7].

10.3.4 Routing Table Maintenance

Another aspect of overlay network dynamics is related to the dynamics of the
underlying physical networks. Entries in routing tables can turn stale due to
temporary or permanent failures of peers or network connections. Standard
approaches that address this problem use periodic probing or correct entries
immediately upon changes (correction-on-change).

These approaches are specifically designed for environments where peer
reliability is relatively high. For P-Grid we assume the contrary, i.e., peers

10.3 Self-Organization in Structured Peer-to-Peer Systems 147

are generally unavailable. Therefore P-Grid relies on a high degree of redun-
dancy in the routing tables, such that with high probability routing can be
performed successfully. Trying to keep all redundant routing entries contin-
uously consistent would not be appropriate in a highly dynamic network.
P-Grid rather uses a lazy approach, where routing entries are only corrected
if routing fails. We distinguish two possibilities when to perform a repair:
(1) immediate repair of stale routing table entries (among a large number
of redundant entries) encountered during routing (correction-on-use) and (2)
initiate repairs upon failure of all redundant entries at one level of the routing
table of a peer (correction-on-failure) [5].

Using a lazy repair approach one can tolerate a certain fraction of stale
routing entries in the routing tables. This has the advantage that routing
entries to peers that are only temporarily unavailable and reappear, do not
require a repair. Furthermore, peers can maintain their path and thus the
keys they store also in case of temporary absence, which further reduces the
maintenance cost.

In order to enable repairs, P-Grid uses the overlay network itself as a direc-
tory for storing the current binding of logical peer identifiers to their current
physical address. Peers joining the network have to provide this data. For
repair then the binding can be retrieved from the overlay network. Note that
during repairs more failures may occur, such that repairs may recursively
trigger other repairs. Recursive triggering queries for repair has an inherent
self-healing property. With few stale mappings, there is hardly any deteriora-
tion in answering the queries, but as the stale entries accumulate over time,
they lead to more frequent recursions. An important question is whether such
a system can operate in a stable state. For analyzing this, we will model the
overlay network as a dynamical, self-organizing system.

To illustrate the route maintenance mechanism we first provide a simple
example below. Note that though in the example P-Grid is used as a self-
referential directory service for storing identity-to-address mappings of peers,
the approach is generally applicable and provides a generic self-contained
directory service, such that any information about the participating peers
(e.g., trust, history, resource meta-data, etc.) can be stored within the system
itself.

Figure 10.2 shows a typical state of a P-Grid network.
Peer Pi is denoted by i inside an oval. Online peers are indicated by

shaded ovals, offline peers by unshaded ovals. Peers under the same branch
are replicas. For example, P1 and P7 are both responsible for paths starting
with 000. Without loss of generality we assume that the identity of a peer p
(Idp) has a length of 4 bits. Thus P7 holds the public key and latest physical
address mapping about P1 (updated by P1) because P7 is responsible for
the paths 0000 and 0001. The shaded rectangle in the upper-right corner
of each peer shows the peer IDs that a peer is responsible for, i.e., whose
public key and physical address mapping it manages. Note that there exists

148 10. P-Grid: Dynamics of Self-Organizing Processes

1 : 12, 13
01 : 5, 10
001: 9,4

1 1

1 : 12, 13
01 : 5,14
001: 9,4

7 1

1 : 6,13
01 :10,14
000: 1,7

4 2,3

1 : 8,2
01 : 3, 10
000: 1,7

9 2,3

1 : 8, 13
00 : 7,9
011: 3,10

5 4,5

1 : 2,12
00 : 9,4
011: 3,10

14 4,5

1 : 6,8
00 : 1,7
010: 5,14

10 6,7

1 : 11,12
00 : 1,9
010: 5,14

3 6,7

0 : 4,7
11 : 2,12
101: 8,13

11 8,9

1 : 1,3
11 : 2,12
101: 8,13

6 8,9

0 : 5,9
11 : 2,12
100: 6,11

13 10,11

0 : 4,9
11 : 2,12
100: 6,11

8 10,11

0 : 5,7
10 : 6,13

12 12,13,14

0 : 1,14
10 : 11,13

2 12,13,14

0 1

00

000 001

01

010 011

10

100 101

11

ID

ID

1 : 2 ,12

Stale cache

Up-to-date cache

Presently online

Presently offnline

LEGEND

Fig. 10.2: An example P-Grid network

no dependency between the peer identity (idP7 = 0111) and the path it is
associated with (π(P7) = 0000). In its routing table P7 stores references for
paths starting with 1, 01 and 001, so that queries with these prefixes can be
forwarded closer to the peers holding the searched information. The cached
physical addresses of these references may be up-to-date (for example, P13’s)
or be stale (denoted by underlining, for example, P5).

A peer Pq decides that it has failed to contact a peer Ps, if one of the
following happens: (1) No peer is available at the cached address (trivial case)
or (2) the contacted peer has a different identifier. In either of these cases
an up-to-date identity-to-address mapping can be obtained by querying the
P-Grid. If peer Ps goes offline, and comes online later with a different IP
address, it can insert a new identity-to-address mapping into P-Grid.

If a peer fails to contact peers in its routing table, it initiates a new query
to discover the latest identity-to-address mapping of any of those peers. If
this is successful it forwards the query.

Assuming the initial setup while the P-Grid is in the state shown in Fig-
ure 10.2, the query processing will work as follows. Assume that P7 receives
a query Q(01∗). P7 fails to forward the query to either of P5 or P14 since
their cache entries are stale. Thus P7 initiates a recursive query for (P5), i.e.,
Q(0101), which needs to be forwarded to either P5 or P14. This fails again.
P7 then initiates a recursive query for (P14), i.e., Q(1110), which needs to be
forwarded to P12 and (or) P13. P12 is offline, so irrespective of the cache being
stale or up-to-date, the query cannot be forwarded to P12. P13 is online, and
the cached physical address of P13 at P7 is up-to-date, so the query is for-
warded to P13. P13 needs to forward Q(P14) to either P2 or P12. Forwarding

10.3 Self-Organization in Structured Peer-to-Peer Systems 149

to P12 fails and so does the attempt to forward the query to P2 because P13’s
cache entry for P2 is stale. Thus P13 initiates a recursive query for (P2), i.e.,
Q(0010). P13 sends Q(P2) to P5 which forwards it to P7 and/or P9. Let us
assume P9 replies. Thus P13 learns P2’s address and updates its cache. P13

also starts processing and forwards the parent query (P14) to P2. P2 provides
P14’s up-to-date address, and P7 updates its cache.

Having learned P14’s current physical address, P7 now forwards the origi-
nal query Q(01∗) to P14. This does not only satisfy the original query but P7

also has the opportunity to learn and update physical addresses P14 knows
and P7 needs, for example, P5’s latest physical address (we assume that peers
synchronize their routing tables during communication since this does not in-
cur any overhead). In the end, the query Q(01∗) is answered successfully and
additionally P7 gets to know the up-to-date physical addresses of P14 and
possibly of P5. Furthermore, due to child queries, P13 updates its cached
address for P2. Figure 10.3 shows the final state of the P-Grid with several
caches updated after the the completion of Q(01∗) at P7.

Fig. 10.3: P-Grid after query(01*) at P7

Peers thus do not discard routing information immediately if it is not
usable, since peers may come online at a later time. However, it is also pos-
sible that a peer never rejoins the network, and thus a garbage collection
mechanism can be used in the background which can be obtained with no or
marginal overhead.

150 10. P-Grid: Dynamics of Self-Organizing Processes

10.3.5 Analysis of the Maintenance Mechanism

As the example illustrates, the maintenance mechanism is a highly recursive
process. If too many entries become stale the network runs the risk of being
no more able to restore correct routing table entries and to catastrophically
fail. Thus it is important to understand under which conditions the network
remains stable. In order to analyze this we will model the algorithm as a
self-organizing process.

We will analyze the dynamics of one of the possible variants of main-
tenance, eager correction-on-use, in which during routing all routing table
entries are probed and get repaired if they are encountered to be stale. We
chose this variant here as the analysis is not overly complex. We further sim-
plify the analysis here by considering that only the address changes but the
peers always stay online. A complete analysis also considering the probabil-
ity of peers being online (pon) for both the maintenance mechanisms is much
more complicated but uses the same ideas. A detailed analysis taking into
account all parameters is given in [5].

We analyze the degree of consistency of routing tables by modeling the
time evolution of the probability Pµ(t) that a entry in a routing table is
stale. We assume that at each time step t one query is issued by a peer and a
peer changes its address with probability pc between two queries. The queries
issued as a result of the maintenance mechanism will repair a certain fraction
of stale routing table entries. The process is in a stable dynamic equilibrium
if the expected number of repaired entries matches the expected number of
entries becoming stale. The analysis will allow us to determine for which
parameters the system is in such an equilibrium state.

In the following n is the number of leaves of the P-Grid tree and r is the
number of redundant references kept in a routing table at each depth. We
will assume in the following a balanced P-Grid tree.

While cached entries continuously get stale owing to network dynamics,
they trigger recursive queries in order to update the stale mappings. In each
step of processing a query, an expected number of rPµ(t) stale references
are encountered and thus trigger a new recursive query. Thus, if we denote
by Nrec the total number of queries triggered by one original query and
consider that in a balanced P-Grid the expected search cost is log2 n

2 we
obtain the recursive relationship Nrec = 1+rPµ(t) log2 n

2 Nrec. The relationship
is recursive since each query triggered for repair is expected to recursively
trigger more queries.

Not every query (original or recursively triggered) will succeed. Denoting
the probability of failure of a query by ε, the probability of successfully routing
a query is 1 − ε = (1 − Pµ(t)r)H where H is the number of times the query
needs to be forwarded to reach the leaf node. Thus, the expected value of the
achievable success probability is 1 − ε = EH [(1 − Pµ(t)r)H]. For a balanced

10.4 Summary 151

P-Grid, H is a binomial random variable of size log2n and parameter 0.5.
Hence, 1 − ε ≈ (1 − Pµ(t)r

2)log2 n.
We now can give the Markovian process that determines the time evolu-

tion of Pµ(t).

Pµ(t + 1) = Pµ(t) − pc(1 − Pµ(t)) +
1

r log2 n
(Nrec − 1)(1 − ε) (10.3)

Nrec and ε can be expressed in terms of Pµ(t). The negative contribution
in the recursion corresponds to the fraction of correct routing table entries
of a peer that turns stale between two queries issued by the peer and the
positive contribution is the fraction of incorrect routing table entries of a
peer that are repaired due to recursively triggered and successfully processed
queries.

The system is in a dynamic equilibrium if Pµ(t) = µ for some constant µ.

pc(1 − µ)r log2 n = (Nrec − 1)(1 − ε)

In this state the rate at which changes occur in the system will equal the
rate at which self-maintenance is done due to recursions. This allows us to
determine the equilibrium state for different network dynamics expressed by
pc.

In Figure 10.4 we provide contour maps corresponding to Nrec values,
with pon in the x-axis and rup = pc/(1+pc) in the y-axis. If we consider that
there are two kinds of events that trigger the whole self-maintenance process
in the system–queries and changes in peers’ address mapping–rup represents
the fraction of these events being the changes. The interpretation of the plot
is thus that if a system is willing to incur an Nrec factor of increase of effort
per query with respect to the ideal case (pon = 1 and pc = 0), the network
will operate for all pon, pc combinations below the curve, with the success
probability being 1. If the system is unwilling to use more than Nrec effort and
if the system operates in the region above the curves of Figure 10.4, there is a
non-zero failure probability, which increases with the distance from the curve.
Figure 10.4 thus captures two important trade-offs in the system. The first
trade-off is that of efficiency versus probabilistic success guarantee of queries.
The second trade-off is the system’s resilience against the two “demons” of
networks, i.e., the network dynamics pc versus average availability of peers
in the network pon.

10.4 Summary

We have seen three examples of how self-organizing processes induce struc-
tural features of Peer-to-Peer overlay networks, one example for unstructured
overlay networks and two examples for structured overlay networks. Each of

152 10. P-Grid: Dynamics of Self-Organizing Processes

0.5 0.6 0.7 0.8 0.9
p_on

0.05

0.1

0.15

0.2

0.25

r_upOperational zone with atmost Nrec overhead

Nrec=25

Nrec=10

Nrec=5

Nrec=2

Fig. 10.4: Analytical result: Contour maps for Nrec

the examples was slightly different both in the nature of the process studied,
in the type of equilibrium obtained as well as in the purpose for which the
model of the process was developed.

The ideas presented in this chapter which we explored during the process
of designing and implementing the P-Grid system are generally applicable,
however. Often dynamic systems will have to be analyzed as Markovian sys-
tems, be it for a-posteriori analysis, or to study their evolution over time,
given a set of rules for local interactions, or to investigate the equilibrium
state in the presence of perturbations.

Also, in the context of Peer-to-Peer systems, reactive route maintenance
strategies have been studied by other projects, e.g., in DKS, as well as other
systems also try to address the problem of fast and parallel overlay construc-
tion mechanisms, for example, [31]. Other systems that focus more on storage
load-balancing for arbitrary load distributions and use small-world routing
include SkipGraphs [36] and Mercury [72] (among several other recent Peer-
to-Peer proposals). Increasingly, there is a confluence of ideas which arrived
independently by various research groups dealing with self-organization prob-
lems.

More importantly, analysis of network evolution and maintenance are ei-
ther explicitly or implicitly assuming a Markovian model, an analytical ap-
proach which we tried to present here formally by elaborating on three differ-
ent self-organizing processes. In the case of modeling preferential attachment
in unstructured overlay networks the stochastic model has been developed
to explain a-posteriori a phenomenon that has been observed in many artifi-
cial and natural networks, including Peer-to-Peer overlay networks. Thus it is
used to explain empirical evidence. The model itself identifies a dynamic equi-

10.4 Summary 153

librium state that is maintained throughout network growth. The dynamics
of the network results from the network growth.

In contrast, the stochastic model developed for bootstrapping P-Grid
overlay networks is used in order to a priori derive certain design param-
eters for a distributed algorithm, i.e., the probabilities by which peers take
local decisions in order to lead the system globally to a desired state. Also the
nature of the stochastic process is different as it is a transient process that
converges during network growth to a static equilibrium point. The dynamics
of the network results from active interactions performed by peers.

The approach taken for maintenance of P-Grid networks again differs
in terms of modeling and methodology. Here the stochastic model is used
to determine under which network conditions a stable system behavior for
a given algorithm can be expected. As in the first example the stochastic
model is used to analyze a dynamic equilibrium state. However, in this case as
opposed to the previous examples, the network is stable in size. The dynamics
of the network results from operations externally triggered by failures in the
physical network.

This illustrates that the basic concept of modeling the large-scale be-
havior of Peer-to-Peer networks as self-organizing, dynamic processes leaves
ample room for different modeling and analysis approaches and has various
methodological uses. We would also like to point to the fact that the anal-
ysis techniques presented in this chapter mostly have involved substantial
approximations and do not necessarily conform to a rigorous mathematical
treatment for analyzing dynamical systems. In that respect there exists a
substantial need and potential for further interdisciplinary research drawing
on the substantial body of knowledge from studying self-organizing systems
in other domains. Thus the field of modeling and analyzing complex Peer-to-
Peer systems as self-organizing systems currently is still in its early stages.

	10.1 The Concept of Self-Organization
	10.2 An Example of Self-Organization in Unstructured Peer-to-Peer Systems
	10.3 Self-Organization in Structured Peer-to-Peer Systems
	10.4 Summary

