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Foreword

Ion Stoica (University of California at Berkeley)

Starting with Napster and Gnutella, Peer-to-Peer systems became an inte-
grated part of the Internet fabric attracting millions of users. According to
recent measurements of several large ISPs, Peer-to-Peer traffic exceeds Web
traffic, once the dominant traffic on the Internet. While the most popular
Peer-to-Peer applications continue to remain file sharing and content distri-
bution, new applications such as Internet telephony are starting to emerge.

Not surprisingly, the popularity of Peer-to-Peer systems has fueled aca-
demic research. In a very short time, Peer-to-Peer has evolved into an exciting
research field which brings together researchers from systems, networking,
and theory. During the past five years, Peer-to-Peer work has appeared in
the proceedings of virtually all top system and networking conferences.

However, while the huge popularity of the Peer-to-Peer systems and the
explosion of Peer-to-Peer research have created a large body of knowledge,
there is little structure to this body. Surveys on Peer-to-Peer systems and
books providing comprehensive coverage on the Peer-to-Peer technologies are
few and far apart. The fact that Peer-to-Peer is still a rapidly evolving field
makes the relative lack of such materials even more critical.

This book fills this void by including a collection of representative articles,
which gives an up-to-date and comprehensive snapshot of the Peer-to-Peer
field. One of the main challenges that faces any book covering such a vast and
relatively new territory is how to structure the material. This book resolves
this conundrum by dividing the material into roughly three parts.

The first part of the book covers the basics of Peer-to-Peer designs, un-
structured and structured systems, and presents a variety of applications in-
cluding e-mail, multicast, Grid computing, and Web services. The book then
goes beyond describing traditional systems, by discussing general aspects of
the Peer-to-Peer systems, namely the self-organization nature of the Peer-
to-Peer systems, and the all-important topic of evaluating these systems. In
addition, the book illustrates the broad applicability of Peer-to-Peer by dis-
cussing the impact of the Peer-to-Peer technologies in two computer-science
areas, namely searching and information retrieval, and mobile computing. No
Peer-to-Peer book would be complete without discussing the business model,
accounting, and security. This book touches on these topics in the last part.



VIII Foreword

With this book, Steinmetz and Wehrle have made a successful attempt
to present the vast amount of knowledge in the Peer-to-Peer field, which was
accumulated over the last few years, in a coherent and structured fashion.
The book includes articles on most recent developments in the field. This
makes the book equally useful for readers who want to get an up-to-date
perspective on the field, as well as for researchers who want to enter the field.
The combination of the traditional Peer-to-Peer designs and applications and
the discussion of their self-organizing properties and their impact on other
areas of computer science make this book a worthy addition to the Peer-to-
Peer field.

Berkeley, July 20th, 2005 Ion Stoica
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1. Introduction

Klaus Wehrle (Universität Tübingen)
Ralf Steinmetz (Technische Universität Darmstadt)

The term “Peer-to-Peer” has drawn much attention in the last few years;
particularly for applications providing file-sharing, but distributed comput-
ing and Internet-based telephony have also been successfully implemented.
Within these applications the Peer-to-Peer concept is mainly used to share
files, i.e., the exchange of diverse media data, like music, films, and pro-
grams. The growth in the usage of these applications is enormous and even
more rapid than that of the World Wide Web. Also, much of the attention
focused on early Peer-to-Peer systems concerned copyright issues of shared
content.

But, the concept of Peer-to-Peer architectures offers many other inter-
esting and significant research avenues as the research community has re-
peatedly pointed out. Due to its main design principle of being completely
decentralized and self-organizing - as opposed to the Internet’s traditional
Client-Server paradigm - the Peer-to-Peer concept emerges as a major de-
sign pattern for future applications, system components, and infrastructural
services, particularly with regard to scalability and resilience.

The perspective of the Peer-to-Peer concept offers new challenges, e.g.,
building scalable and resilient distributed systems and a fast deployment of
new services. Based on the decentralized Peer-to-Peer approach, new Internet
services can be deployed on demand and without spending time-consuming
efforts in the process of product placement for the appropriate market, com-
munity, or company.

1.1 Why We Wrote This Book

In recent years, the scientific community developed different approaches for
Peer-to-Peer-based applications, identified new application scenarios, and im-
proved the scientific advancements of the Peer-to-Peer paradigm. Many re-
searchers have already revealed interesting possibilities and opportunities for
the Peer-to-Peer idea.

But, from our point of view, something important is missing: A funda-
mental overview of all facets of research in the area of Peer-to-Peer systems
and applications. Also, adequate teaching material for classes and lectures
on Peer-to-Peer systems and applications, covering the whole field, is not
currently available.

R. Steinmetz and K. Wehrle (Eds.): P2P Systems and Applications, LNCS 3485, pp. 1-5, 2005.
© Springer-Verlag Berlin Heidelberg 2005



2 1. Introduction

Thus, the editors of this book have followed certain objectives with the
writing and editing of this book:

– Overview of the Peer-to-Peer Research Area:
Although research on Peer-to-Peer systems and applications is very young,
the Peer-to-Peer concept has already proven to be applicable and useful
in many cases. With this book, we want to give a broad overview of the
broad range of applications of the Peer-to-Peer paradigm. In addition to
a definition of the term “Peer-to-Peer” and a discussion of fundamental
mechanisms we want to show all the different facets of Peer-to-Peer research
and its applications. These manifold facets are also nicely reflected by the
structure of the book and its ten parts.

– Common Understanding of the Peer-to-Peer Paradigm:
After providing a good overview of the research field, our second objec-
tive is to define our notion of the “Peer-to-Peer paradigm”. In the past,
many things were called “Peer-to-Peer” – yet were often not even slightly
related to it – and most people only associated “Peer-to-Peer” with pop-
ular file-sharing applications and not with the promising advantages and
possibilities the paradigm can offer in a variety of other scenarios.

– Compendium and Continuing Knowledge Base for Teaching:
There does not yet exist in the literature a good overview of Peer-to-Peer
systems which is also useful for teaching purposes. Thus, the third intention
of this book is to provide a common basis for teaching, with material for
lectures, seminars, and labs. The knowledge of many experts has been
assembled for this book, each in their own specific research area. Thus,
teachers can choose from a wide range of chapters on all aspects of Peer-
to-Peer systems and applications, and therefore, can design the syllabus
for their classes with individual accents. In addition to this text book,
electronic slides are available on the companion website.

The idea to write and edit this book arose from a sequence of international
and German activities and events that fostered the idea (1) to coordinate and
to support research in the area of Peer-to-Peer systems and applications and
(2) to establish a highly webbed research community. Among these events
have been the KuVS Hot Topics Meeting (GI/ITG KuVS Fachgespräch)
“Quality in Peer-to-Peer-Systems” (TU Darmstadt, September 2003) [197],
the Dagstuhl Seminar “Peer-to-Peer Systems” (March 2004) [149] and the
GI/ITG Workshop “Peer-to-Peer Systems and Applications” (Kaiserslautern,
March 2005) [244]. In the course of these events, a scientific community of re-
searchers, mostly from German-speaking countries, but also from elsewhere,
in particular the U.S., formed in the area of Peer-to-Peer systems and appli-
cations.
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1.2 Structure and Contents

This book consists of thirty-two chapters on aspects of Peer-to-Peer systems
and applications, grouped into ten parts, each dealing with a major sub-topic.
These parts will now be introduced to give a brief overview of each thematic
aspect.

Part I: Peer-to-Peer: Notion, Areas, History and Future
Chapter 2 elaborates on our definition of the Peer-to-Peer paradigm and gives
a brief overview of the basic Peer-to-Peer concepts. Chapter 3 follows with a
journey through the evolution of early Peer-to-Peer systems and Chapter 4
concludes Part I with an overview of Peer-to-Peer application areas.

Part II: Unstructured Peer-to-Peer Systems
Part II deals with all aspects of unstructured Peer-to-Peer systems. Chapter
5 gives an overview of the first and second generations of file-sharing applica-
tions. The interesting aspects of small-worlds, random graphs and scale-free
networks are addressed in Chapter 6.

Part III: Structured Peer-to-Peer Systems
Part III focuses on the realm of structured Peer-to-Peer systems. First, Chap-
ter 7 introduces the fundamental concepts of Distributed Hash Tables (DHTs)
and their potential. Chapter 8 follows with an introduction to selected ap-
proaches for DHT algorithms and a discussion of their specific details. Chap-
ter 9 provides an overview of load-balancing and reliability in DHTs. Chapter
10 concludes Part III by looking at the dynamics of self-organizing processes
in structured Peer-to-Peer systems, using the example of the P-Grid system.

Part IV: Peer-to-Peer-Based Applications
Part IV presents a selection of Peer-to-Peer-based applications. Starting with
end-system-based multicast in Chapter 11, the benefits of realizing services
on the application-layer are shown. Chapter 12 presents the completely de-
centralized e-mail system ePOST running on a structured Peer-to-Peer over-
lay. Then, Chapters 13 and 14 discuss Peer-to-Peer issues in Grid and Web-
Services applications.

Part V: Self-Organization
Part V deals with the fascinating topic of self-organization. General aspects
and a characterization of self-organization is given in Chapter 15. Chapter 16
follows with a discussion of self-organization in Peer-to-Peer-based systems.

Part VI: Search and Retrieval
Part VI discusses techniques for search and (information) retrieval in widely
distributed systems and addresses scalability aspects. Chapter 17 compares
different search strategies and discusses scalability issues. Chapter 18 studies
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basic algorithmic tasks on overlay networks. It explores both the communi-
cation and the computation needed to perform such tasks. Chapter 19 intro-
duces schema-based Peer-to-Peer systems and relations to Semantic Web and
database research. Chapter 20 continues with an survey of information re-
trieval techniques in Peer-to-Peer infrastructures. Chapter 21 concludes this
Part by discussing the challenges of hybrid Peer-to-Peer systems.

Part VII: Peer-to-Peer Traffic and Performance Evaluation
Part VII deals with traffic and load issues of Peer-to-Peer systems and ap-
plications. Chapter 22 presents facts about the amount and effects of Peer-
to-Peer traffic measured in an ISP’s backbone. Chapter 23 deals with traffic
characterization and performance evaluation of unstructured systems.

Part VIII: Peer-to-Peer in Mobile and Ubiquitous Environments
Part VIII discusses the emerging topics of using Peer-to-Peer techniques in
mobile and ubiquitous environments. Chapter 24 evaluates the use of un-
structured and structured Peer-to-Peer techniques in mobile environments.
Chapter 25 presents techniques for spontaneous collaboration in mobile ad
hoc networks using the Peer-to-Peer paradigm. Chapter 26 deals with epi-
demic data dissemination for Peer-to-Peer-based lookup services in mobile
ad hoc networks. Chapter 27 concludes Part VIII by discussing the com-
munication needs of ubiquitous computing architectures, showing that many
similarities with Peer-to-Peer based systems exist, and explaining how they
may be explored.

Part IX: Business Applications and Markets
Part IX addresses distributed, self-organizing markets and business applica-
tions based on Peer-to-Peer techniques. Chapter 28 discusses revenue models
for Peer-to-Peer-based business applications. Chapter 29 focuses on market-
managed P2P systems and discusses their requirements. Chapter 30 addresses
electronic markets and discusses their Peer-to-Peer nature.

Part X: Advanced Issues
Part X deals with advanced issues concerning Peer-to-Peer-based systems
and applications. Chapter 31 addresses security aspects of decentralized self-
organized systems on the network and application layers. Chapter 32 ad-
dresses accounting aspects in Peer-to-Peer systems and proposes an suit-
able architecture for this purpose. Chapter 33 concludes with a description
of the PlanetLab testbed. PlanetLab is a widely used, global platform for
researchers to develop, deploy, and evaluate widely-distributed applications
such as Peer-to-Peer systems.
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1.3 Teaching Materials and Book Website

The authors of each chapter were asked to supply related teaching materi-
als, in particular slides in the current PowerPoint format. All this e-learning
content can be retrieved by instructors from www.peer-to-peer.info – the
website of this book. The slides can be used without charge and adapted in-
dividually by teachers provided that this book and the origin of the material
is appropriately acknowledged.

Teachers may also want to publish their modifications at the book website
so that they are accessible to a wide audience. Our hope is that contributions
from the community will allow the companion website to grow into a large
knowledge base.

More information on accessing and using the website can be found at
www.peer-to-peer.info . Please provide us with your comments on improve-
ments, errors, or any other issues to be addressed in the next edition through
this website. Thank you!
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2. What Is This “Peer-to-Peer” About?

Ralf Steinmetz (Technische Universität Darmstadt)
Klaus Wehrle (Universität Tübingen)

Currently, a new and highly interesting paradigm for communication on the
Internet, known as Peer-to-Peer (P2P), is emerging. Although originally de-
signed exclusively for pragmatic (and legally controversial) file swapping ap-
plications, Peer-to-Peer mechanisms can be used to access any kind of dis-
tributed resources and may offer new possibilities for Internet-based applica-
tions.

According to several Internet service providers, more than 50% of Inter-
net traffic is due to Peer-to-Peer applications, sometimes even more than
75% (see also Chapter 22). The continuous growth of the Internet in terms of
users and bandwidth is accompanied by increasing requirements of a diver-
sified wealth of applications. Today, the traditional client-server approaches
require a tremendous amount of effort and resources to meet these challenges.
Thus, three main requirements of future Internet-based applications can be
identified:

– Scalability is a fundamental prerequisite necessary to satisfy the vast de-
mand for resources such as bandwidth, storage capacity, or processing
power of certain applications caused by large numbers of users. Therefore,
bottlenecks must be identified and avoided at an early stage of system de-
sign so the system can be scaled by several orders of magnitude without
loss of efficiency.

– Security and reliability form core criteria for the availability of strategi-
cally important and security-sensitive services in the face of distributed
denial-of-service attacks on centralized systems. Furthermore, anonymity
and resistance to censorship are of growing importance in today’s world.

– Flexibility and Quality of Service for quickly and easily integrating new
services are crucial to the success of emerging Internet technologies. For
example, a lack of such features prevents the wide spread deployment of
highly desirable services such as group communication and mobility.

It is becoming increasingly obvious that client-server-based applications,
which have become popular since the early 1980s, can no longer fully meet the
evolving requirements of the Internet. In particular, their centralized nature
is prone to resource bottlenecks. Consequently, they can be easily attacked
and are difficult and expensive to modify due to their strategic placement
within the network infrastructure. The concepts of Peer-to-Peer networking

R. Steinmetz and K. Wehrle (Eds.): P2P Systems and Applications, LNCS 3485, pp. 9-16, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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and Peer-to-Peer computing1 promise to provide simpler solutions to the
problems mentioned above through a fundamental shift of paradigms.

2.1 Definitions

Oram et al. [462] gives a basic definition of the term “Peer-to-Peer” which is
further refined in [573]:

[a Peer-to-Peer system is] a self-organizing system of equal, autonomous
entities (peers) [which] aims for the shared usage of distributed resources in
a networked environment avoiding central services.

In short, it is a system with completely decentralized self-organization and
resource usage. Apart from these basic principles, Peer-to-Peer systems can
be characterized as follows (though a single system rarely exhibits all of these
properties):

Decentralized Resource Usage:

1. Resources of interest (bandwidth, storage, processing power) are used in
a manner as equally distributed as possible and are located at the edges
of the network, close to the peers. Thus with regard to network topology,
Peer-to-Peer systems follow the end-to-end argument [531] which is one
of the main reasons for the success of the Internet.

2. Within a set of peers, each utilizes the resources provided by other peers.
The most prominent examples for such resources are storage (e.g. for
audio and video data or applications) and processing capacity. Other
possible resources are connectivity, human presence, or geographic prox-
imity (with instant messaging and group communication as application
examples).

3. Peers are interconnected through a network and in most cases distributed
globally.

4. A peer’s Internet address typically changes so the peer is not constantly
reachable at the same address (transient connectivity). Typically, peers
are dynamically assigned new Internet addresses every time they con-
nect to the network. Often, they may be disconnected or shut down over
longer periods of time. Among other reasons, this encourages Peer-to-
Peer systems to introduce new address and name spaces above of the
traditional Internet address level. Hence, content is usually addressed
through unstructured identifiers derived from the content with a hash

1 We do not distinguish between Peer-to-Peer computing and Peer-to-Peer net-
working but focus on Peer-to-Peer (P2P) as a property, characteristic, method,
or mechanism.
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Fig. 2.1: Classification of Peer-to-Peer Systems

function. Consequently, data is no longer addressed by location (the ad-
dress of the server) but by the data itself. With multiple copies of a data
item, queries may locate any one of those copies. Thus, Peer-to-Peer sys-
tems locate data based on content in contrast to location-based routing
in the Internet.

Decentralized Self-Organization:

5. In order to utilize shared resources, peers interact directly with each
other. In general, this interaction is achieved without any central con-
trol or coordination. This represents one of the main properties of Peer-
to-Peer systems which is markedly different from client-server systems:
while the the latter rely on centralized coordination through a server
as a structural paradigm, Peer-to-Peer systems establish a cooperation
between equal partners. This departure from a centralized infrastructure
most importantly avoids bottlenecks but is concomitant with the reduced
availability of end-systems compared to client-server solutions.

6. Peers directly access and exchange the shared resources they utilize with-
out a centralized service. Thus, Peer-to-Peer systems represent a funda-
mental decentralization of control mechanisms. However, performance
considerations may lead to centralized elements being part of a complete
Peer-to-Peer system, e.g. for efficiently locating resources. Such systems
are commonly called hybrid Peer-to-Peer systems (cf. Fig. 2.1b).

7. In a Peer-to-Peer system, peers can act both as clients and servers
(cf. Fig. 2.1c). This is radically different from traditional systems with
asymmetric functionality (cf. Fig. 2.1a). It leads to additional flexibility
with regard to available functionality and to new requirements for the
design of Peer-to-Peer systems.

8. Peers are equal partners with symmetric functionality. Each peer is fully
autonomous regarding its respective resources.
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9. Ideally, resources can be located without any central entity or service (in
Figures 2.1a and 2.1b, centralized services are necessary in contrast to
Figure 2.1c). Similarly, the system is controlled in a self-organizing or
ad hoc manner. As mentioned above, this guide line may be violated for
reasons of performance. However, the decentralized nature should not be
violated. The result of such a mix is a Peer-to-Peer system with a hybrid
structure (cf. Fig. 2.1b).

2.1.1 Shift of Paradigm in Internet Communication

The Peer-to-Peer approach is by no means just a technology for file sharing.
Rather, it forms a fundamental design principle for distributed systems. It
clearly reflects the paradigm shift from coordination to cooperation, from
centralization to decentralization, and from control to incentives. Incentive-
based systems raise a large number of important research issues. Finding a
fair balance between give and take among peers may be crucial to the success
of this technology.

2.2 Research Challenges in Peer-to-Peer Systems and
Applications

One important research aspect is the detailed analysis of the suitability of the
Peer-to-Peer paradigm to various types of applications, in particular those
beyond the domain of file sharing. During the Workshop ,,Quality in Peer-to-
Peer Networks”2 a number of types of Peer-to-Peer applications were iden-
tified and put on a time scale as illustrated by Figure 2.2. Figure 2.3 lists
several possible obstacle to research in the Peer-to-Peer area and its day-
to-day use. Figures 2.5 and 2.4 show certain future research challenges as
found during the GI-Meetings. The main question was: When do these topics
become important?

One of the main challenges of Peer-to-Peer systems lies in the decentral-
ized self-organization of a distributed system and in achieving a high level
of quality of service without the need for centralized services. Central to a
solution to this problem is to efficiently look up and locate data items and
to manage them accordingly. Many aspects of Peer-to-Peer systems base on
this functionality. In contrast to centralized server applications, for which
the location of data items is inherently known, decentralized systems store
content in multiple, possibly distant, locations within the system. There are
two main approaches which have been developed to solve this problem: un-
structured and structured Peer-to-Peer systems.

2 TU Darmstadt, Sept. 2003, http://www.kom.tu-darmstadt.de/ws-p2p/



2.2 Research Challenges in Peer-to-Peer Systems & Applications 13

2010

2004

2005

2006

2007

2008

2009

2011
Applications

Telephony StreamingSupport For Different
Communication Forms

Scalable and Flexible
Naming System

Personal Communications 
(IM, Email,…)

Intra-organization
Resource Sharing

Context/Content
Aware Routing

GRID on P2P P2P-Spam

Construction Of Inter-organisational
Information/Knowledge Bases

Multiplayer Games

Knowledge Management

Information Dissemination
Offline Access To Data

In Mobile Adhoc Networks

Video Conferences

Distribution of Learning
Material

Location Based Service in MANET
(Distributed & Decentralized)

Context Aware Services Trustworthy Computing

Fig. 2.2: Applications beyond File-Sharing

2004

2005

2006

2008

2009

Reasons Against P2P

Law Suits Against Users Software Patents

Intellectual Property P2P Requires „Flat Rate“ Access

Commercialisation as the
End of P2P

Digital Right Management

Still Low Bandwidth
End-nodes

Interoperability

P2P Ideas integrated into other Topics

Lack of Trust

Best-effort Service Insufficient
for Most Applications

2007

2010

Fig. 2.3: Developments hindering the Development and Dissemination of Peer-to-
Peer-Technologie.



14 2. What Is This “Peer-to-Peer” About?

2008

2009

2007

Research Focus
2010

Anonymous but still
Secure E-commerce Interoperability and/vs. Standard Real-time P2P Data Dissemination

P2P File Systems P2P for Business
Information Systems

Concepts of Trust & Dynamic
Security (ACLs)

P2P Technologies in Mobile,
Adhoc, UbiComp Environments Mobile P2P

Dynamic Content Update Distributed Search Mechanisms

Intelligent Search

Service Differentiation

P2P/GRID Integration

Fig. 2.4: Challenges in Peer-to-Peer Research II (2007 - 2010)

2005

2006

2004

Research Focus

Realistic P2P Simulator

Semantic Integration of the Different Inform. 
Types in the Specific Peer-Databases

P2P and Non-Rrequest-Reply
Interactions (E.G. Pub/Sub)

Highly Adaptive DHTs

Legacy Application Support
in Overlays

QoS Criteria (Consistency, Availability
Security, Reliability,…

Overlay Optimization

Decentral Reputation Mechanisms

Accounting + Incentives

Efficient P2P Content
Distribution

Content-Based
Search-Queries, Metadata

Self-Determination of 
Information Source

Semantic Queries

Reliable Messaging

Data-Centric P2P Algorithms
Content Management

Application/Data Integration

P2P Signalling
Efficiency

Resource Allocation Mechanism & Protocols)
& Guaranteeing QoS in P2P-Systems

2007
P2P in Mobile Networks Celluar/Adhoc

Security Trust, Authentication,
Transmission

Reduction of Signalling Traffic
(Compression, Mapping of Layer7-Layer3/1

Incentives Market
Mechanism

Data Dissemination (Pub/Sub)

Fig. 2.5: Challenges in Peer-to-Peer Research I (2003 - 2007)



2.2 Research Challenges in Peer-to-Peer Systems & Applications 15

2.2.1 Unstructured Peer-to-Peer Systems

First-generation Peer-to-Peer-based file sharing applications employed so-
called unstructured approaches. For example, these systems relied on lookups
via a central server which stored the locations of all data items. Only after
looking up the location of a data item via the server was the data transferred
directly between peers (hybrid approach, cf. Fig. 2.1b). Other approaches,
e.g. Gnutella, use a flooding technique, i.e. look-up queries are sent to all
peers participating in the system until the corresponding data item or peer
is found (cf. Chapter 5).

It is apparent that neither approach scales well. The server-based system
suffers from exhibiting a single point of attack as well as being a bottleneck
with regard to resources such as memory, processing power, and bandwidth
while the flooding-based approaches show tremendous bandwidth consump-
tion on the network. Generally, these unstructured systems were developed
in response to user demands (mainly file sharing and instant messaging) and
consequently suffer from ad hoc designs and implementations.

Part II of this book discusses unstructured Peer-to-Peer systems in more
detail.

2.2.2 Structured Peer-to-Peer Systems

The challenge to develop scalable unstructured Peer-to-Peer applications has
attracted the research community. Inspired by the significant advantages and
possibilities of decentralized self-organizing systems, researchers focused on
approaches for distributed, content-addressable data storage (distributed in-
dexing structures). These so called Distributed Hash Tables (DHTs) were
developed to provide such distributed indexing as well as scalability, relia-
bility, and fault tolerance. DHTs outperform unstructured approaches in the
above listed properties and efficiency. Commonly, a data item can be retrieved
from the network with a complexity of O(log N) - equal to the complexity of
well-known non-distributed search and indexing techniques. The underlying
network and the number of peers in structured approaches can grow arbitrar-
ily without impacting the efficiency of the distributed application; this is in
marked contrast to the previously described unstructured Peer-to-Peer ap-
plications which usually exhibit linear search complexity at best. Necessary
management operations, like adding new content or peers and handling fail-
ures, commonly have a complexity of O(log N) and O(log2 N), respectively.

Typically, DHTs are based on similar designs, while their search and man-
agement strategies differ. Ring-based approaches such as Pastry, Tapestry,
and Chord all use similar search algorithms such as binary ordered B*-trees.
Geometric designs, such as Content Addressable Networks (CAN) or Viceroy
also exist. Each peer is assigned a section of the search space [0, 2n − 1].
To provide redundancy, replicas may be stored on neighboring peers. Using
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a routing tree, e.g. Pastry, or finger tables, e.g. Chord, a request is routed
towards the desired data item. For such requests a logarithmic complexity
is guaranteed. Often, the amount of routing information is in the order of
O(log N) entries per peer (see also Chapter 8).

Next to the already discussed similarities to known database indexing
techniques, DHTs employ additional techniques to manage data structures,
to add redundancy, and to locate the nearest instances of a requested data
item.

Part III in this book deals with all details on structured Peer-to-Peer
systems with a special focus on Distributed Hash Tables.

2.3 Conclusion

To guarantee a wide deployment in the Internet, future distributed systems
and applications must cope with several challenges. Apart from scalability,
efficiency, and high flexibility, reliability and protection against attacks will
form key features of future systems. Their development and successful de-
ployment will have a strong impact on the future of Peer-to-Peer-based ap-
plications and systems.
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Jörg Eberspächer, Rüdiger Schollmeier
(Munich University of Technology)

3.1 Status Quo: Networks (Over)Filled with
Peer-to-Peer Traffic

Within the last few years, starting with the introduction of Napster in May
1999, the disruptive technology of Peer-to-Peer networking has encountered
an enormous growth. Today the traffic caused by Peer-to-Peer networks rep-
resents a significant portion in the Internet. For example in the German
Research Network (Deutsches Forschungsnetz DFN) Peer-to-Peer causes up
to 60 percent of the traffic [210]. Similar trends can be observed in other
networks e.g. in the Abilene backbone [42]. As we can observe in Figure 3.1,
at the beginning of 2002 the traffic caused only by the signaling traffic of
Peer-to-Peer applications (no user-data-transfers included) already amounts
to 50 percent of the total traffic volume (see Figure 3.1).
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Fig. 3.1: Portions of traffic measured per week in the Abilene Backbone from
18.02.2002 until 18.07.2004 (peaks at 18.12.2002 and 18.02.2004 result
from measurement errors. source:[42])
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Until the end of 2004 the amount of Peer-to-Peer traffic decreased down
to a value of approximately 15 percent. This might point to an increasing ef-
ficiency of the Peer-to-Peer protocols, since the signaling traffic is reduced or
to a decreasing usage of Peer-to-Peer applications. However if we also have a
look at the unidentified traffic and the traffic identified as data-transfers, we
can observe that these volumes are increasing and that the total amount of
traffic stemming from these three sources stays at a constant level of nearly 90
percent. Analyzing the networking techniques of different Peer-to-Peer appli-
cations in more detail this could also indicate that Peer-to-Peer applications
are “going underground”, i.e. they use TCP port 80, so that they can, on the
port level, not be distinguished from common data transfers. Further on more
and more Peer-to-Peer applications use so called port hopping, meaning that
they change frequently their communication port during run time and can
thus not be identified as file sharing applications on the port level. Thus the
amount of unidentified traffic and data transfers increases and the amount
of identified Peer-to-Peer traffic decreases, while the total amount stays at a
constant level of approximately 90 percent.

Hence, Peer-to-Peer communication plays a dominant role in todays net-
works and is also proliferating into many new application areas. In this chap-
ter, we will have a look at the development of Peer-to-Peer applications in the
last few years, analyze the development of the capabilities of the user termi-
nals and finally consider possible directions that development of Peer-to-Peer
technology might take in the future.

3.2 How It All Began: From ARPANET to
Peer-to-Peer

Peer-to-peer networking is not new. Basically, it started in the late 1960s with
the establishment of the ARPANET. The goal of this physical network was
to share computing resources and documents between different US research
facilities. In this original system there was nothing like a typical client or a
typical server. Every host was being treated equally and one could therefore
call this network a first Peer-to-Peer network, although this network was not
self organizing and no overlay network was established. Everything matched
still to a large extent the physical connection and not virtual connections as
we can observe them in today’s Peer-to-Peer networks.

Nevertheless, the early “killer-applications” in the ARPANET were typi-
cal client server applications, namely FTP and TelNet. Every computer could
run a server and client so that every participating node could request and
serve content. The missing part however was an instance to inform the par-
ticipating nodes where which content is provided.

Therefore in 1979 the UseNet protocol was developed. It is a newsgroup
application, helping to organize the content and offering a self-organizing
approach to add and remove newsgroup servers by the participating users
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via a rigorous “democratic” process. However the application itself is still a
typical client server application, with “simple” requesting nodes, the clients,
and more powerful content providing nodes, the servers.

Approximately 10 years later, around 1990, there was a rush of the general
public to join the Internet community. A number of applications were devel-
oped, like WWW, email and streaming. Modem connections via the SLIP and
the PPP protocol became increasingly popular, with the result that millions
of commercial users and customers joined. The basic communication model
was the client/server model, with a simple application on the user side (e.g.
the Web Browser) which initiates a temporary connection to a well known
server, from which the client downloads the requested content and then dis-
connects again. It is a simple and straightforward model, which provides also
the content provider with an easy model to administrate and to control the
distribution of content. Further on new security concerns in the Internet had
to be taken into account resulting in an Internet partitioned by firewalls.

3.3 The NAPSTER-Story

This was about to change in May 1999. Home users started to use their con-
nected computers for more than just temporarily requesting content from
web or email servers. With the introduction of the music- and file-sharing
application Napster by Shawn Fenning [437], the users opened their comput-
ers not only to consume and download content, but also to offer and provide
content to other participating users over the Internet. This phenomenon is
best described by the artificial term SERVENT for one node, which is a com-
bination of the first syllable of the term SERVer and the second syllable of
the term cliENT.

Comparing the Peer-to-Peer networks, which started with Napster, to the
architecture established by the ARPANET we can observe that in contrast
to today’s Peer-to-Peer realizations, the ARPANET was not self organiz-
ing. It was administrated by a centralized steering committee, and did not
provide any means for context or content based routing beyond “simple”
address based routing. In current Peer-to-Peer networks, the participating
users establish a virtual network, entirely independent from the physical net-
work, without having to obey any administrative authorities or restrictions.
These networks are based on UDP or TCP connections, are completely self-
organizing and are frequently changing their topology, as users join and leave
the network in a random fashion, nearly without any loss of network func-
tionality.

Another decentralized and application-layer oriented communications
paradigm is Grid computing which became famous with the project SETI-
home [557] . It is often compared to Peer-to-Peer as being a more structured
approach with the dedicated aim to especially share computing power and
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storage space for distributed computations and simulations [217]. Yet, the ba-
sic principles in Peer-to-Peer and Grid are similar. However concerning the
number of participating users and thus also the traffic volumes Grid com-
puting is taking currently a minor role. Nevertheless it has a high growth
potential.

Because of the mostly illegal content shared in the Napster network (con-
tent was mostly copyright protected, mp3 compressed music), the Recording
Industry Association of America (RIAA) filed in December 1999 a lawsuit
against Napster Inc. This was possible, because the Napster network relies
heavily on a centralized lookup/index server operated by Napster Inc. This
server, which represents a single point of failure in the Napster network could
therefore be targeted by the RIAA.

3.4 Gnutella and Its Relatives: Fully Decentralized
Architectures

Under the impression of the lawsuit against Napster the company Nullsoft
released in March 2000 the Gnutella application as an open source project.
In Gnutella the participating peers do not only act as a servent. They ad-
ditionally take over routing functionalities initially performed in Napster by
the Napster server. Thus not only the file exchange and provisioning are
completely distributed, but also the content lookup/routing functionality.
Thus any central entity and also any single point of failure is avoided. The
Gnutella application was taken over by a fast growing development and
research community and shortly after its release a variety of similar Peer-
to-Peer protocols followed, e.g. Audiogalaxy, FastTrack/KaZaA, iMesh and
Freenet [38, 123, 232, 317, 343]. Kazaa is not an open source project and en-
crypts the signaling traffic between the peers and also to possible centralized
elements. Thus the RIAA can not track the peer behavior and as a result
can hardly prove any illegal activities on the part of the inventors and op-
erators of the FastTrack network. Other approaches tried to decentralize the
Napster server, by distributing the lookup server on several more powerful
participating peers [625].

Although the legal pressure on Napster increased further, as some copy-
right holders, like the hard-rock band Metallica additionally sued Napster,
the number of exchanged files in Napster was still growing and reached a
total of 2.79 billion files exchanged only within February 2001. However in
July 2001 Napster Inc. was convicted and finally had to stop the operation
of the Napster server and therefore the service was no longer available.

As we can observe from Figure 3.1 and Figure 3.2, the users of Nap-
ster adapted very fast to this situation and switched to other protocols, like
Gnutella or FastTrack/Kazaa. In August 2001 for example already 3.05 billion
files were exchanged per month via the Gnutella network. The attractiveness
of Gnutella did not only result from its distributed structure, but also from
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the enhanced protocol, which consists of two hierarchical routing layers [359].
The foundation for this development of Gnutella has already been laid in
October 2000 by the presentation of the Reflector/SuperPeer concept. These
Peer-to-Peer networks with a second dynamic routing hierarchy are called the
second generation Peer-to-Peer networks. As shown by Figure 3.2, even today
second generation Peer-to-Peer protocols are widely used. Edonkey2000 and
FastTrack are based on such an overlay routing concept [184, 358, 410, 423].

However in May 2003 things began to change again. Applications based on
the FastTrack protocol caused significantly less traffic, whereas on the other
hand the traffic amounts of e.g. Gnutella or Edonkey increased. In addition,
we can observe from Figure 3.2, that the traffic caused by the BitTorrent
network increased significantly and caused at the end of 2004 the majority
of the traffic [127, 320].

Two main reasons explain this phenomenon. First of all in KaZaA the
amount of hardly identifiable corrupted content increased significantly due to
the weakness of the used hashing algorithm (UUHASH). Thus users switched
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to applications like Gnutella or Edonkey, where the number of corrupted
files was significantly smaller. Secondly, upon having a closer look at the
traffic caused by the BitTorrent protocol we have to take into account that
in contrast to other Peer-to-Peer protocols, in BitTorrent also the traffic
caused by the file transfers is part of the measured amount of data given by
Figure 3.2.

Today one of the major drivers for Peer-to-Peer is certainly the exchange
of all kinds of content (mp3 encoded music, videos, DVDs, pornographic
content, software, ...), free of charge and administration. However there do
already exist attempts to use this new and successful networking paradigm
for other applications and to develop a business case out of it. One first
promising approach is to use the Peer-to-Peer overlay network as a kind of
distributed phone book to provide means to establish IP based voice com-
munication channels between participants without any centralized instances.
One approach, Skype, allows calls free of charge within the Internet any and
charges users only at gateways to other fixed telephony systems [567].

To increase the reliability of such a system it is necessary to adapt the
overlay routing schemes to reflect the characteristics of a significantly de-
creased replication rate. Every user is available only once instead of several
times as is the case for a common mp3 encoded music file. Further on, it is
also necessary to establish a call fast and to receive a dedicated answer from
the overlay network, whether a certain user is currently available or not.
Therefore research on the third generation of Peer-to-Peer networks started
around 2001 [526, 575]. The third generation Peer-to-Peer networks and pro-
tocols are mainly characterized by using a proactive routing algorithm based
on Distributed Hash Tables (DHTs).

Yet the question why Peer-to-Peer came up in 1999 and developed so
rapidly to the major application in the Internet at 2002 has still not been
answered completely, though one reason is certainly the possibility to receive
copyright protected content for free.

3.5 Driving Forces Behind Peer-to-Peer

In the following we want to have a look at the development of the physical
and technical capabilities of the used physical networks and the participat-
ing terminals. Regarding the data rates at the access level around 1997/98
the first broadband connections for residential users were available via cable
modems which allow data rates of up to 10 Mbps. Beginning in 1999 DSL and
ADSL connections became available for the public with data rates of up to
8.5 Mbps. Compared to 56 kbps modem connections the available data rate
for the private user was plentiful at the beginning of 2000. Further on the
deregulation of the telecommunication markets showed already first effects,
as the ISPs and telecommunication network providers reduced their tariffs
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significantly due to increased competition. Thus not only a significantly in-
creased access data rate became available but additionally at comparably low
prices, e.g. flat rates.

In a similar manner the storage space and the processing power of com-
mon end user computers evolved. In 1992 the average size of hard disks was
around 0.3 Gbyte and developed within 10 years to sizes of several 100 Gbyte.
Regarding the processing power personal computers in 1992 were available
with clock frequencies of 100 MHz, whereas in 2004 computers with more
than 3 GHz are commonly available. Thus the computers available since the
beginning of 2000 have capabilities comparable to those of servers a few years
earlier. Resulting the technical prerequisites to operate a personal computer
as a high performance server and a client at the same time for reasonable
prices were available, when the first Peer-to-Peer networks appeared. Addi-
tionally we could observe since the end of the 1990s a general trend towards
self organizing networks also in the mobile area (mobile ad hoc networks,
MANET) [483, 548].

This also resulted in more and more intelligence distributed over a whole
network and pushed to the place where it is demanded, i.e. at the edge of the
networks. Currently it appears that this trend is still unbroken, as e.g. the
application of Peer-to-Peer networks to telephony application or the traffic
amounts caused by Peer-to-Peer applications show. A number of other fu-
ture application areas of Peer-to-Peer networking certainly also include self
organizing collaborative environments, context and location based services in
conjunction with mobile networks, especially MANETs, Peer-to-Peer media
streaming networks or the self organization of active network environments.
Therefore certainly a number of open research issues, e.g. how to provide
security, trust and authentication or accounting and access control in such
a distributed environment to provide the basis for business in the area of
Peer-to-Peer have to be solved. Further open problems which have to be
addressed also include reliability, availability, load-balancing, QoS and net-
work organization, as well as cross layer communication especially in mobile
environments.

There is no doubt about it: Peer-to-Peer technology is yet in its infancy,
and will play a key role in next generation networks!
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Detlef Schoder, Kai Fischbach, Christian Schmitt
(University of Cologne)

The Peer-to-Peer paradigm provides an alternative way of managing resources
in various application domains. The primary emphasis of this chapter is
placed on presenting an overview of possible approaches for managing the
various types of resources, i.e., information, files, bandwidth, storage, and
processor cycles, with Peer-to-Peer networks.

4.1 Information

The following sections explain the deployment of Peer-to-Peer networks using
examples of the exchange and shared use of presence information, of docu-
ment management and collaboration.

– Presence information: Presence information plays a very important role in
respect of Peer-to-Peer applications. It is decisive in the self-organization of
Peer-to-Peer networks because it provides information about which peers
and which resources are available in the network. It enables peers to es-
tablish direct contact to other peers and inquire about resources. A widely
distributed example of a Peer-to-Peer application which essentially uses
presence information is instant messaging systems. These systems offer
peers the opportunity to pass on information via the network, such as
whether or not they are available for communication processes. A more
detailed description of the underlying architecture of instant messaging
systems can be found in [311].
The use of presence information is interesting for the shared use of pro-
cessor cycles and in scenarios related to omnipresent computers and in-
formation availability (ubiquitous computing). Applications can indepen-
dently recognize which peers are available to them within a computer grid
and determine how intensive computing tasks can be distributed among
idle processor cycles of the respective peers. Consequently, in ubiquitous
computing environments it is helpful if a mobile device can independently
recognize those peers which are available in its environment, for example
in order to request Web Services, information, storage or processor cycles.
The technological principles of this type of communication are discussed
in [627].
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– Document management: Customarily Document Management Systems
(DMS), which are usually centrally organized, permit shared storage, man-
agement and use of data. However, it is only possible to access data which
has been placed in the central repository of the DMS. As a result, additional
effort is required to create a centralized index of relevant documents. Expe-
rience shows that a large portion of the documents created in a company are
distributed among desktop PCs, without a central repository having any
knowledge of their existence. In this case, the use of Peer-to-Peer networks
can be of assistance. For example, by using the NextPage-NXT 4 platform,
it is possible to set up networks which create a connected repository from
the local data on the individual peers [447]. Indexing and categorization
of data is accomplished by each peer on the basis of individually selected
criteria.
In addition to linking distributed data sources, Peer-to-Peer applications
can offer services for the aggregation of information and the formation of
self-organized Peer-to-Peer knowledge networks. Opencola [380] was one
of the first Peer-to-Peer applications to offer their users the opportunity
to gather distributed information in the network from the areas of knowl-
edge which interest them. For this purpose, users create folders on their
desktop which are assigned keywords which correspond to their area of in-
terest. Opencola then searches the knowledge network independently and
continuously for available peers which have corresponding or similar areas
of knowledge without being dependent on centrally administered informa-
tion. Documents from relevant peers are analyzed, suggested to the user
as appropriate and automatically duplicated in the user’s folder. If the
user rejects respective suggestions, the search criteria are corrected. The
use of Opencola results in a spontaneous networking of users with similar
interests without need for a central control.

– Collaboration: Peer-to-Peer groupware permits document management at
the level of closed working groups. As a result, team members can commu-
nicate synchronously, conduct joint online meetings and edit shared doc-
uments. In client/server based groupware a corresponding working area
for the management of central data has to be set up and administered on
the server for each working group. To avoid this additional administrative
task, Peer-to-Peer networks can be used for collaborative work. Currently,
the best-known application for collaborative work based on the principles
of Peer-to-Peer networks is Groove Virtual Office [261]. This system offers
functions (instant messaging, file sharing, notification, co-browsing, white-
boards, voice conferences and data bases with real time synchronization)
similar to those of the widely used client/server based Lotus products,
Notes, Quickplace and Sametime, but does not require central data man-
agement. All of the data created is stored on each peer and is synchronized
automatically. If peers cannot reach each other directly, there is the option
of asynchronous synchronization via a directory and relay server. Groove
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Virtual Office offers users the opportunity to set up so-called shared spaces,
which provide a shared working environment for virtual teams formed on
an ad-hoc basis, as well as to invite other users to work in these teams.
Groove Virtual Office can be expanded by system developers. A devel-
opment environment, the Groove Development Kit, is available for this
purpose [187].

4.2 Files

File sharing is probably the most widespread Peer-to-Peer application. It is
estimated that as much as 70% of network traffic in the Internet can be at-
tributed to the exchange of files, in particular music files [579]. (More than
one billion downloads of music files can be listed each week [457].) Charac-
teristic of file sharing is that peers which have downloaded the files in the
role of a client subsequently make them available to other peers in the role
of a server. A central problem for Peer-to-Peer networks in general, and for
file sharing in particular, is locating resources (lookup problem) [52]. In the
context of file sharing systems, three different models have developed: the
flooded request model, the centralized directory model and the document
routing model [416]. These can be illustrated best by using their prominent
implementations - Gnutella, Napster and Freenet.

Peer-to-Peer networks which are based on the Gnutella protocol function
without a central coordination authority. All peers have equal rights within
the network. Search requests are routed through the network according to the
flooded request model, which means that a search request is passed on to a
predetermined number of peers. If they cannot answer the request, they pass
it on to various other nodes until a predetermined search depth (ttl=time-to-
live) has been reached or the requested file has been located. Positive search
results are sent to the requesting entity which can then download the desired
file directly from the entity which is offering it. A detailed description of
searches in Gnutella networks, as well as an analysis of the protocol, can
be found in [517] and [515]. Because the effort for the search, measured in
messages, increases exponentially with the depth of the search, the inefficiency
of simple implementations of this search principle is obvious [328]. In addition,
there is no guarantee that a resource will actually be located. Operating
subject to certain prerequisites (such as non-randomly structured networks),
numerous prototypical implementations (e.g. [146, 182, 469, 505, 138, 397, 3,
446, 642]) demonstrate how searches can be effected more ’intelligently’ (see,
in particular, [181], but also [8] for a brief overview). The FastTrack protocol
enjoys widespread use in this respect. It optimizes search requests by means
of a combination of central supernodes which form a decentralized network
similar to Gnutella.
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In respect of its underlying centralized directory model, the early Napster
[437] can be viewed as a nearly perfect example of a hybrid Peer-to-Peer
system in which a part of the infrastructure functionality, in this case the
index service, is provided centrally by a coordinating entity. The moment
a peer logs into the Napster network, the files which the peer has available
are registered by the Napster-server. When a search request is issued, the
Napster-server delivers a list of peers which have the desired files available
for download. The user can obtain the respective files directly from the peer
offering them.

Searching for and storing files within the Freenet network [123, 122] takes
place via the so-called document routing model [416]. A significant difference
to the models which have been introduced so far, is that files are not stored
on the hard disk of the peers providing them, but are intentionally stored at
other locations in the network. The reason behind this is that Freenet was
developed with the aim of creating a network in which information can be
stored and accessed anonymously. Among other things, this requires that the
owner of a network node does not know what documents are stored on his
local hard disk. For this reason, files and peers are allocated unique identi-
fication numbers. When a file is created, it is transmitted, via neighboring
peers, to the peer with the identification number which is numerically closest
to the identification number of the file and is stored there. The peers which
participate in forwarding the file save the identification number of the file
and also note the neighboring peer to which they have transferred it in a
routing table to be used for subsequent search requests. The search for files
takes place along the lines of the forwarding of search queries on the basis
of the information in the routing tables of the individual peers. In contrast
to searching networks which operate according to the flooded request model,
when a requested file is located, it is transmitted back to the peer requesting
it via the same path. In some applications each node on this route stores a
replicate of the file to be able to process future search queries more quickly.
In this process, the peers only store files up to a maximum capacity. When
their storage is exhausted, files are deleted according to the least-recently-
used principle. This results in a correspondingly large number of replicates
of popular files being created in the network, whereas, over time, files which
are requested less often are removed. In various studies [416], the document
routing model has been proven suitable for use in large communities. The
search process, however, is more complex than, for example, in the flooded
request model. In addition, it can result in the formation of islands - i.e., a
partitioning of the network in which the individual communities no longer
have a connection to the entire network [376, 123].
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4.3 Bandwidth

Because the demands on the transmission capacities of networks are con-
tinuously rising, in particular on account of the increase in large volume
multimedia data, effective use of bandwidth is becoming increasingly im-
portant. Currently, centralized approaches, in which files are held on the
server of an information provider and transferred from there to the request-
ing client, are primarily used. In this case, a problem arises when spontaneous
increases in demand exert a negative influence on the availability of the files
since bottlenecks and queues develop. Without incurring any significant addi-
tional administration, Peer-to-Peer-based approaches achieve increased load-
balancing by taking advantage of transmission routes which are not being
fully exploited. They also facilitate the shared use of the bandwidth provided
by the information providers.

– Increased load-balancing: In contrast to client/server architectures, hybrid
Peer-to-Peer networks can achieve a better load-balancing. Only initial re-
quests for files have to be served by a central server. Further requests can be
automatically forwarded to peers within the network, which have already
received and replicated these files. This concept is most frequently applied
in the areas of streaming (e.g., PeerCast [480], Peer-to-Peer-Radio [466],
SCVI.net [554]) and video on demand. The Peer-to-Peer-based Kontiki
network [361] is pursuing an additional design which will enable improved
load-balancing. Users can subscribe to information channels or software
providers from which they wish to obtain information or software updates.
When new information is available the respective information providers
forward it to the peers which have subscribed. After receiving the infor-
mation, each peer instantaneously acts as a provider and forwards the
information to other peers. Application areas in which such designs can be
implemented are the distribution of eLearning courseware in an intranet
[151], the distribution of anti-virus and firewall configuration updates (e.g.
Rumor [406]), and also updating computer games on peer computers (e.g.,
Descent [489] and Cybiko [416]).

– Shared use of bandwidth:In contrast to client/server approaches, the use of
Peer-to-Peer designs can accelerate the downloading and transport of big
files which are simultaneously requested by different entities. Generally,
these files are split into smaller blocks. Single blocks are then downloaded
by the requesting peers. In the first instance, each peer only receives a part
of the entire file. Subsequently, the single file parts are exchanged by the
peers without a need for further requests to the original source. Eventually
the peers reconstruct the single parts to form an exact copy of the original
file. An implementation utilizing this principle can be found in BitTorrent
[127].
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4.4 Storage Space

Nowadays, Direct Attached Storage (DAS), Network Attached Storage (NAS)
or Storage Area Networks (SAN) are the main design concepts used to store
data in a company. These solutions have disadvantages, such as inefficient
use of the available storage, additional load on the company network or the
necessity for specially trained personnel and additional backup solutions.

However, increased connectivity and increased availability of bandwidth
permit alternative forms of managing storage which resolve these problems
and require less administrative effort. With Peer-to-Peer storage networks,
it is generally assumed that only a portion of the disk space available on
a desktop PC will be used. A Peer-to-Peer storage network is a cluster of
computers, formed on the basis of existing networks, which share all storage
available in the network. Well-known approaches to this type of system are
PAST [528], Pasta [430], OceanStore [368], CFS [147], Farsite [13], and In-
termemory [254]. Systems which are particularly suitable for explaining the
way in which Peer-to-Peer storage networks operate are PAST, Pasta and
OceanStore. They have basic similarities in the way they are constructed
and organized. To participate in a Peer-to-Peer storage network, each peer
receives a public/private key pair. With the aid of a hash function, the public
key is used to create an unambiguous identification number for each peer. To
gain access to storage on another computer, the peer must either make avail-
able some of its own storage, or pay a fee. Corresponding to its contribution,
each peer is assigned a maximum volume of data which it can add to the
network. When a file is to be stored in the network, it is assigned an unam-
biguous identification number, created with a hash function from the name
or the content of the respective file, as well as the public key of the owner.
Storing the file and searching for it in the network take place in the manner
described for the document routing model before. In addition, a freely deter-
mined number of file replicates are also stored. Each peer retrieves its own
current version of the routing table which is used for storage and searches.
They check the availability of their neighbors at set intervals to establish
which peers have left the network. In this way, new peers which have joined
the network are also included in the table.

To coordinate Peer-to-Peer storage networks, key pairs must be generated
and distributed to the respective peers and the use of storage has to be
monitored. OceanStore expands the administrative tasks to include version
and transaction management. As a rule, these tasks are handled by a certain
number of particularly high performance peers which are also distinguished
by a high degree of availability in the network. To ensure that a lack of
availability on the part of one of these selected peers does not affect the
functional efficiency of the entire network, the peers are coordinated via a
Byzantine agreement protocol [105]. Requests are handled by all available
selected peers. Each sends a result to the party which has issued the request.
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This party waits until a certain number of identical results are received from
these peers before accepting the result as correct.

By means of file replication and random distribution of identification num-
bers to peers using a hash function, the Peer-to-Peer storage network auto-
matically ensures that various copies of the same file are stored at different
geographical locations. No additional administration or additional backup so-
lution is required to achieve protection against a local incident or loss of data.
This procedure also reduces the significance of a problem which is character-
istic of Peer-to-Peer networks: in Peer-to-Peer networks there is no guarantee
that a particular peer will be available in the network at a particular point
in time (availability problem). In the case of Peer-to-Peer storage networks,
this could result in settings where no peer is available in the network which
stores the file being requested. Increasing the number of replicates stored at
various geographical locations can, however, enhance the probability that at
least one such peer will be available in the network.

The low administration costs, which result from the self-organized char-
acter of Peer-to-Peer storage networks, and the fact that additional backup
solutions are seldom required are among the advantages these new systems
offer for providing and efficiently managing storage.

4.5 Processor Cycles

Recognition that the available computing power of the networked entities
was often unused was an early incentive for using Peer-to-Peer applications
to bundle computing power. At the same time, the requirement for high per-
formance computing, i.e., computing operations in the field of bio-informatics,
logistics or the financial sector, has been increasing. By using Peer-to-Peer
applications to bundle processor cycles, it is possible to achieve computing
power which even the most expensive super-computers can scarcely provide.
This is effected by forming a cluster of independent, networked computers in
which a single computer is transparent and all networked nodes are combined
into a single logical computer. The respective approaches to the coordinated
release and shared use of distributed computing resources in dynamic, virtual
organizations which extend beyond any single institution currently fall under
the term ’grid computing’ [220, 48, 247, 213, 224]. The term grid comput-
ing is an analogy to customary power grids. The greatest possible amount of
resources, particularly computing power, should be available to the user, ide-
ally unrestricted and not bound to any location - similar to the way in which
power is drawn from an electricity socket. The Proceedings [51] provide an
overview of diverse aspects of grid computing.

One of the most widely cited projects in the context of Peer-to-Peer which
is, however, only an initial approximation of the goal of grid computing,
is SETI@home (Search for Extraterrestrial Intelligence) [28]. SETI@home
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is a scientific initiative launched by the University of California, Berkeley,
with the goal of discovering radio signals from extraterrestrial intelligence.
For this purpose, a radio telescope in Puerto Rico records a portion of the
electromagnetic spectrum from outer space. This data is sent to the central
SETI@home server in California. There, they take advantage of the fact that
the greater part of processor cycles on private and business computers re-
mains idle. Rather than analyzing the data in a costly supercomputer, the
SETI-Server divides the data into smaller units and sends these units to the
several million computers made available by the volunteers who have regis-
tered to participate in this project. The SETI-Client carries out the calcula-
tions during the idle processor cycles of the participants’ computers and then
sends the results back. In the related literature, SETI@home is consistently
referred to as a perfect example of a Peer-to-Peer application in general, and,
more specifically, a perfect example of grid computing [414]. This evaluation,
however, is not completely accurate, as the core of SETI@home is a classical
client/server application, due to the fact that a central server co-ordinates
the tasks of the nodes and sends them task packets. The peers process the
tasks they have been assigned and return the results. In this system there is
no communication between the individual nodes. SETI@home does, however,
have Peer-to-Peer characteristics [416]. The nodes form a virtual community
and make resources available in the form of idle processor cycles. The peers
are, to a large extent, autonomous, since they determine if and when the
SETI@home-Software is allowed to conduct computing tasks [28, 29]. The
shared accomplishment of these types of distributed computing tasks, how-
ever, is only possible if the analytic steps can be separated and divided into
individual data packets.

The vision of grid computing described earlier, however, extends far be-
yond projects such as SETI@home. At an advanced stage of development, it
should not only be possible for each network node to offer its own resources,
but it should also be possible for it to take advantage of the resources avail-
able in the Peer-to-Peer network. A currently influential initiative, the Globus
Project [590], which is working on a standardized middleware for grid applica-
tion, has been greeted with wide acceptance throughout the grid community.
The project is being supported by important market players, such as IBM,
Microsoft, Sun, HP and NEC.
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5.1 General Characteristics of Early Peer-to-Peer
Systems

Peer-to-Peer (P2P) networks appeared roughly around the year 2000 when a
broadband Internet infrastructure (even at the network edge) became widely
available. Other than traditional networks Peer-to-Peer networks do not rely
on a specific infrastructure offering transport services. Instead they form
“overlay structures” focusing on content allocation and distribution based
on TCP or HTTP connections. Whereas in a standard Client-Server con-
figuration content is stored and provided only via some central server(s),
Peer-to-Peer networks are highly decentralized and locate a desired content
at some participating peer and provide the corresponding IP address of that
peer to the searching peer. The download of that content is then initiated
using a separate connection, often using HTTP. Thus, the high load usually
resulting for a central server and its surrounding network is avoided lead-
ing to a more even distribution of load on the underlying physical network.
On the other hand, such networks are typically subject to frequent changes
because peers join and leave the network without any central control.

While some legal aspects of Peer-to-Peer networks are still heavily con-
tended between the entertainment industry and some user groups, we focus on
the technical aspects of this approach. In the last years, several Peer-to-Peer
technologies were developed. Figure 5.1 provides an overview of current Peer-
to-Peer technologies and compares them to the conventional Client-Server
model.

As shown in Figure 5.1, in a Client-Server system the server is the only
provider of service or content, e.g. a web server or a calendar server. The
peers (clients) in this context only request content or service from the server,
the IP address of which is assumed to be available to the peers. Content in
this context may be an MP3-compressed audio file, the profile of a person a
user wants to establish a call to or context information, e.g. where the next
taxi can be found. The clients do not provide any service or content to run
this system. Thus generally the clients are lower performance systems and
the server is a high performance system. This does not exclude that a server
may be set up as a server farm with one specified entry point for the clients,
which redirects the clients to different computers to share the load.

R. Steinmetz and K. Wehrle (Eds.): P2P Systems and Applications, LNCS 3485, pp. 35-56, 2005.
© Springer-Verlag Berlin Heidelberg 2005



36 5. First and Second Generation of Peer-to-Peer Systems

� � � � � � � � � 	 
 � � � � 
 � � � � � � 	 
 � � �

� � � � � � � 	 
� �  	 � � � � � � �  � 
 � � � �� 	 � �  � � � � 	 
 � � � �

� � � � � � � � 	 
 � � �  � � � � � � � � �


 � � � � � � � � � � � � � � �

� � � � � � 
 � � � � � 	 � � � � 
 � 
 � �

� 	 � � � � � � � � � � � � �

� � 
 � � � 
 � � �   � � � �

� � � � 
 � � � 	 � � 
 �

� � � � � � � � � 
 � 	 � � � � 
 � 
 � � 

� � � � � � � � 
 � � �  � � � � 
 � � �

� � � � � 	 � � 	 � � �  � � ! � � "

# ! 	 � $ � �  % � � � � � � & � � � �

� � � � � � � � 	 
 � � �  � � � � � � � � �


 � � � � � � � � � � � � � � �

� � � � � � 
 � � � � � 	 � � � � 
 � 
 � �

� 	 � � � � � � � � � � � � �

� � 
 � � � 
 � � �   � � � �

� � � � 
 � � � 	 � � 
 �

� � � � � � 	 � � � � � � � 
 � 	 � �

� � 
 � 
 � � 

# ! 	 � $ � � % � ' � � 
 � � � 	 � ( � ) & �

* + , �

� � � � � � � � 	 
 � � �  � � � � � � � � �


 � � � � � � � � � � � � � � �

� � � � � � 
 � � � � � 	 � � � � 
 � 
 � �

� 	 � � � � � � � � � � � � �

� � 
 � � � 
 � � �   � � � �

� � � � 
 � � � 	 � � 
 �

� � � � � � � � � 
 � 	 � � � � 
 � 
 � � 

# ! 	 � $ � �  % � ' � � 
 � � � 	 � ( � � & �

- � � � � � 


� � � � � � � � 	 
 � � �  � � � � � � � � �


 � � � � � � � � � � � � � � � �

� � � � � 
 � 	 � � � � 
 � 
 � � �  �

� � � �   	 � � � 
 � �

$ � � � � � � � 
 � � �  � � � � � � �

� � � � � 
 � 	 � � � � 
 � 
 � � �  �

 � � � � . � � � � � � �

� � � � ! / 0 � � � $ �

� 	 
 	 � 	  �

# ! 	 � $ � � % � � 	 $  
 � �

� � � � � � � � � � 	 
 � 
�  � � � � � � � � � � 	 
 � 


� � 1 �  � � � � �  � 	 � � �  � 	 � � � � � � 
 � � � � � 
 � � � $ � � � 

� � 1 �  � � � � �  � � 	 � � � � � 	 � � �   � � � � � � � � 
 � � � � � � � � � 
 � � � � $ � � �  �

� � � � � � � �  � $ � � � � � � � � 	 � � � � � 2 � �  
 � � � 3 4 � � � � � 
 � � � � � $ 
 5

� � 4 � � � � � � �  � 
 � � � � � � 
 � 	 � �

� � 
 � 
 � � 	 � � � � � � � �

$ � � � � � � � � � � �  � � � � � � �

	 � � � � � � 
 � � 
 �

� � � 
 � � � . � � 	 � 	 0 � � �

� � � 
 � � � 4 � � � � �

� � 4 � � � � � � 	  � 
 � � � � � 0 � � � �

$ � � � � � � 	 � � � �  �  
 � � �

� � � � � � � 
  � 	  � 
 � � � � � � � � �

$ � � � � � � 	 � � � �  �  
 � �

# ! 	 � $ � � % � 6 6 6


 � � � � � � � 
 � � �� � � �  � � � � � � � �

� � � � � � � � � 	 
 � � � � 
 � � � � � � 	 
 � � �

� � � � � � � 	 
� �  	 � � � � � � �  � 
 � � � �� 	 � �  � � � � 	 
 � � � �

� � � � � � � � 	 
 � � �  � � � � � � � � �


 � � � � � � � � � � � � � � �

� � � � � � 
 � � � � � 	 � � � � 
 � 
 � �

� 	 � � � � � � � � � � � � �

� � 
 � � � 
 � � �   � � � �

� � � � 
 � � � 	 � � 
 �

� � � � � � � � � 
 � 	 � � � � 
 � 
 � � 

� � � � � � � � 
 � � �  � � � � 
 � � �

� � � � � 	 � � 	 � � �  � � ! � � "

# ! 	 � $ � �  % � � � � � � & � � � �

� � � � � � � � 	 
 � � �  � � � � � � � � �


 � � � � � � � � � � � � � � �

� � � � � � 
 � � � � � 	 � � � � 
 � 
 � �

� 	 � � � � � � � � � � � � �

� � 
 � � � 
 � � �   � � � �

� � � � 
 � � � 	 � � 
 �

� � � � � � 	 � � � � � � � 
 � 	 � �

� � 
 � 
 � � 

# ! 	 � $ � � % � ' � � 
 � � � 	 � ( � ) & �

* + , �

� � � � � � � � 	 
 � � �  � � � � � � � � �


 � � � � � � � � � � � � � � �

� � � � � � 
 � � � � � 	 � � � � 
 � 
 � �

� 	 � � � � � � � � � � � � �

� � 
 � � � 
 � � �   � � � �

� � � � 
 � � � 	 � � 
 �

� � � � � � � � � 
 � 	 � � � � 
 � 
 � � 

# ! 	 � $ � �  % � ' � � 
 � � � 	 � ( � � & �

- � � � � � 


� � � � � � � � 	 
 � � �  � � � � � � � � �


 � � � � � � � � � � � � � � � �

� � � � � 
 � 	 � � � � 
 � 
 � � �  �

� � � �   	 � � � 
 � �

$ � � � � � � � 
 � � �  � � � � � � �

� � � � � 
 � 	 � � � � 
 � 
 � � �  �

 � � � � . � � � � � � �

� � � � ! / 0 � � � $ �

� 	 
 	 � 	  �

# ! 	 � $ � � % � � 	 $  
 � �

� � � � � � � � � � 	 
 � 
�  � � � � � � � � � � 	 
 � 


� � 1 �  � � � � �  � 	 � � �  � 	 � � � � � � 
 � � � � � 
 � � � $ � � � 

� � 1 �  � � � � �  � � 	 � � � � � 	 � � �   � � � � � � � � 
 � � � � � � � � � 
 � � � � $ � � �  �

� � � � � � � �  � $ � � � � � � � � 	 � � � � � 2 � �  
 � � � 3 4 � � � � � 
 � � � � � $ 
 5

� � 4 � � � � � � �  � 
 � � � � � � 
 � 	 � �

� � 
 � 
 � � 	 � � � � � � � �

$ � � � � � � � � � � �  � � � � � � �

	 � � � � � � 
 � � 
 �

� � � 
 � � � . � � 	 � 	 0 � � �

� � � 
 � � � 4 � � � � �

� � 4 � � � � � � 	  � 
 � � � � � 0 � � � �

$ � � � � � � 	 � � � �  �  
 � � �

� � � � � � � 
  � 	  � 
 � � � � � � � � �

$ � � � � � � 	 � � � �  �  
 � �

# ! 	 � $ � � % � 6 6 6


 � � � � � � � 
 � � �� � � �  � � � � � � � �

Fig. 5.1: Summary of the characteristic features of Client-Server and Peer-to-Peer
networks

In contrast, in Peer-to-Peer systems all resources, i.e. the shared content
and services, are provided by the peers. Some central facility may still exist,
e.g. to locate a given content. A peer in this context is simply an application
running on a machine, which may be a personal computer, a handheld or a
mobile phone. In contrast to a Client-Server network, we can generally not
distinguish between a content requestor (client) and a content provider, as
one application participating in the overlay in general offers content to other
peers and requests content from other participants. This is often expressed
by the term “Servent”, composed of the first syllable of the term Server and
the second syllable of the term Client.

Using this basic concept Figure 5.1 outlines various possibilities currently
used. Peer-to-Peer networking started with the first generation centralized
concept. In this case some central server is still available. However, contrary
to the Client-Server approach this server only stores the IP addresses of
peers where some content is available, thus greatly reducing the load of that
server. However, the address of that server must be known to the peers in
advance. This concept was widely used and became especially well known
due to Napster, offering free music downloads by providing the addresses of
peers sharing the desired content. This approach subsequently lost much of
its importance due to legal issues.
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As a replacement for that scheme decentrally organized schemes such as
Gnutella 0.4 and Freenet became widely used. These schemes do not rely
on any central facility (except possibly for some bootstrap server to ease
joining such a network), but rely on flooding the desired content identifier
over the network, thus reaching a large number of peers. Peers which share
that content will then respond to the requesting peer which will subsequently
initiate a separate download session.

It is an important drawback of these schemes that they generate a po-
tentially huge amount of signaling traffic by flooding the requests. In fact,
that signaling traffic dominates the Internet traffic in some cases even today.
To avoid that, schemes like Gnutella 0.6 or JXTA introduce a hierarchy by
defining Superpeers, which store the content available at the connected peers
together with their IP address. Thus the Superpeers are often able to answer
incoming requests by immediately providing the respective IP address, so
that on average less hops are required in the search process, thus reducing
the signaling traffic.

The above schemes are generally termed “Unstructured Peer-to-Peer”,
because the content stored on a given node and its IP address are unrelated
and do not follow any specific structure. Contrary to that also Peer-to-Peer
approaches have been proposed which establish a link between the stored
content and the IP address of a node. In the rightmost column of Figure 5.1
such networks are termed “Structured Peer-to-Peer”. The link between a
content identifier and the IP address is usually based on Distributed Hash
Tables (DHT) (cf. Chapter 7). However, in a frequently changing network
such an approach requires frequent redistribution of content. We therefore
do not address this approach in more detail.

5.2 Centralized Peer-to-Peer Networks

5.2.1 Basic Characteristics

As described above, centralized Peer-to-Peer networks are characterized by
the fact that they rely on one central lookup server. The overlay topology
of a centralized Peer-to-Peer network can therefore be described as a star
network. Every peer is connected to the centralized lookup server, to which
it can issue requests for content matching the keywords stated in the request.
If the request can be resolved by the centralized lookup server, it returns
the access coordinates of the peers (mostly IP-addresses and ports) offering
content which is described with the same keywords as stated in the request.
The content itself is then transmitted out of band, i.e. not via the signaling
(overlay) network, but via an additional, mostly HTTP-based, connection.

The most prominent example application, which is based on a central-
ized Peer-to-Peer network, is Napster http://www.napster.com/what_is_
napster.html. Napster is used for (free) file sharing between Internet users



38 5. First and Second Generation of Peer-to-Peer Systems

and is considered as the starting point of Peer-to-Peer networks. Due to legal
issues and the centralized responsibility Napster had to change its service to
a legal file sharing service. The basic concept and architecture of the Napster
file sharing system is still used by other applications, e.g. Audiogalaxy [38]
or WinMX [625]. BitTorrent [127, 320] is a similar file sharing system, the
major objective of which is to quickly replicate a single large file to a set of
clients.

As depicted in Figure 5.1 the Napster network can be characterized by its
centralized topology. The file searching protocol uses a Client-Server model
with a central index server. However the file transfer is done in a true Peer-
to-Peer way. The file exchange occurs directly between the Napster hosts
without passing the server.

With Napster, no file can be found, if the central lookup table is not avail-
able. Only the file retrieval and the storage are decentralized. Thus the server
represents a bottleneck and a single point of failure. The computing power
and storage capabilities of the central lookup facility must grow proportional
to the number of users, which also affects the scalability of this approach.

As every node wanting to log into the Napster network has to register at
the central server, no keep alive signal or any electronic heart beat must be
exchanged between the Napster server and the peer. The server acts compa-
rable to a DNS server to guide each requesting peer to those peers, which host
the demanded content. No additional application layer routing is necessary,
as the server has a complete network view.

Further on, if the content is shared by at least one participant, the con-
tent can be found instantly with one lookup. Thus the content availability
in a Napster network can only take the values zero or one. Zero, if the con-
tent is not shared by any node, one if the content is shared by at least one
node, assuming that the server and the peers work correctly. If the content
is available more than once, only the replication rate, and thus in this case
the download performance increases, but not the availability of content.

5.2.2 Signaling Characteristics

The messages employed in Napster are fairly simple and easy to track, as
they are transmitted as plain text messages. We describe in the following the
basic messages used in Napster to announce and to search for content.

Each message to/from the Napster server has the basic structure given
in Figure 5.2. The first four bytes provide the <Length> parameter, which
specifies the length of the payload of this message. The <Function> param-
eter stated in the following four bytes, defines the message type, e.g. login
or search, which are described in the following. The payload finally carries
parameters necessary for the different messages, e.g. the keywords of a search
message.
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Fig. 5.2: Basic Napster message structure

The blocks/parameters in the payload are separated by spaces. This
makes the separation of the information provided in each incoming message
possible, as most blocks have no fixed length. We divide the messages in two
phases, the initialization and the file request. The <Function> parameter of
each message is given in brackets, e.g. SEARCH (0xC8).

Initialization
A registered Napster host, acting as a client, sends to the Napster server a

LOGIN (0x02) message to become a member of the overlay network. For user
verification this message includes the nickname (<nick>) and <password> of
the user who started the application. Further on this message also includes
the port number (<port>) on which the peer listens for incoming data re-
quests and information about the clients access data-rate (<Link Type>).
The <Client-Info> parameter contains information about the version of the
used software. On average a LOGIN-message is about 40 bytes long.

Fig. 5.3: LOGIN (0x02) message

After a successful login, the server sends a LOGIN ACK (0x03) (size: 20
bytes) to the client. If the <nick> is registered, the email address given at
registration time is returned.

If the <nick> is not registered, a dummy value is returned. As soon as the
peer is logged in, it sends one “CLIENT NOTIFICATION OF SHARED FILE”
(0x64) message for every file it wants to share (see Figure 5.4). Thus routing
is possible, as every client announces its shared objects to the Napster server.
This message contains the filename (<Filename>) of the file, the MD5-hash
value of the file <MD5> [519] and the size in byte of the file (<Size>). The
MD5 (Message Digest 5) algorithm produces a 128-bit “fingerprint” of any
file. It is extremely unlikely that two messages contain the same hash value.

The MD5 algorithm is therefore intended to provide any user with the
possibility to secure the origin of the shared file, even if parts of the file are
provided by different Napster users. As specific parameters of the music file,
this message additionally provides the bitrate (<Bitrate>), the sampling rate
of the MP3 (<frequency>), and the playout time of a music file (<time>). The
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bit rate represents the quality of the used coding and compression algorithm.
The average size of this message is 74 bytes.

Fig. 5.4: CLIENT NOTIFICATION OF SHARED FILE message (0x64)

File Request
To be able to download a file from the Napster network, peers which

share the requested file have to be found. The format of a request is shown
in Figure 5.5. Therefore the requesting peer sends a SEARCH (0xC8) message
to the Napster server. To specify the search this message contains several
parameters stating keywords describing the requested object (artistname and
parts of the songname). Further on this message also specifies a filter, e.g. to
state a certain quality of the requested file, like the bitrate and the sampling
frequency of the requested file. The parameter <compare> can have the values
“at least”, “at best” or “equal to”. Thus the requesting peer can choose the
quality of the file and also the file size, which together with the link type
(parameter <Link Type> e.g. a T1 connection) of the providing peer can
strongly influence the download speed. The parameter <MAX RESULTS>
finally states the maximum number of results the requesting peer wants the
Napster server to return. The average size of such a message is 130 bytes.

Fig. 5.5: SEARCH message (0xC8)

Upon receiving a SEARCH message, the Napster server tries to match the
parameters stated in the SEARCH message with the entries of its database,
consisting of data previously received from other peers upon initialization
(CLIENT NOTIFICATION OF SHARED FILE (0x64) messages). If the server
can resolve the query, it answers with at least one RESPONSE (0xC9) con-
taining information about shared files matching the previously stated criteria
(see Figure 5.6). To provide the requesting peer with information about the
available data and where it can be downloaded from, this message contains
the full filename (<File-Name>) and the IP-address (<IP>) of the providing
peer, so that the requesting peer can download the requested file directly
via its HTTP-instance [365]. Further on the file size (<Size>), the playout
time (<length>), the sample and the bitrate of the file are stated (<Freq>,
<Bitrate>). To check the integrity of the file and to be able to download the
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file from multiple sources the MD5 hash value of the shared file is also stated
(<MD5>). The average size of such a message is 200 bytes.

Fig. 5.6: RESPONSE message (0xC9)

5.2.3 Discussion

To summarize the details of the Napster protocol we provide as an exam-
ple the message sequence chart for the communication between two Napster
peers and the Napster server in Figure 5.7. Here the requesting peer (Req)
first initializes at the Napster server. As mentioned above the requesting peer
(Req) therefore sends a LOGIN message to the Napster server with a payload
of 36 bytes, which equals to 0x24 bytes in hexadecimal notation. Upon re-
ceiving the acknowledgement it announces its three shared objects to the
Napster server. In this example we assume the same message lengths, given
by the average message length stated above.

Now the new peer is fully registered with the Napster network and can
start a search. Therefore it sends a SEARCH message to the Napster server,
including the search keywords describing the requested object. As the Nap-
ster server in our example knows two possible peers which share the requested
object, it answers with two RESPONSE messages. Thus the peer can now re-
quest a download of the requested object from one of the providing peers
with a HTTP-Get-request. In case of success, as assumed in this example,
the providing peer responds to this request with an OK message, which in-
cludes the requested file. In this figure we can clearly see, that besides the
initialization traffic only few traffic is caused by this Peer-to-Peer network.
The reason is that only one central lookup table is available and therefore no
flooding is necessary to find the requested object. The Napster server thus
works similar to a DNS-lookup server.

If we assume a user, which shares 10 files and requests one comparatively
popular file, which thus would result in 20 responses, we can compute the
generated bytes to:

1 · (login + login ack) + 10 · notif + 1 · search + 10 · response =
= 40 + 4 + 10 · 74 + 130 + 10 · 200 = 2914bytes

(5.1)

If we further on assume an average session length of 10 minutes, we can
compute the average necessary signaling data rate to 38.85 bits/s, which is
very reasonable.
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Napster
Peer (Req)

Napster
Server

Napster
Peer (Prov)

Login: [0x24|0x02|…]

Login Ack: [0x00|0x03|…]

HTTP: GET[Filename]

OK[data]

Notif: [0x46|0x64|…]

Notif: [0x46|0x64|…]

Notif: [0x46|0x64|…]

Search: [0x7E|0xC8|…]

Response: [0xC4|0xC9|…]

Response: [0xC4|0xC9|…]

Fig. 5.7: Sample message sequence chart for one Napster server with one request-
ing and one providing peer

5.3 Pure Peer-to-Peer-Networks

5.3.1 Basic Characteristics

Pure Peer-to-Peer networks/protocols came up shortly after the introduction
of Napster. Examples of these protocols are the Freenet protocol and the
Gnutella 0.4 protocol [123, 126, 232] . To analyze the properties, possibilities
and limitations of pure Peer-to-Peer networks, we describe the Gnutella 0.4
protocol in this section. The Gnutella 0.4 network [126] consists of a large
number of nodes which may be distributed throughout the world, without any
central element. The overlay topology can be characterized by a node degree
distribution as given by equation 5.2 [328]. With this truncated powerlaw dis-
tribution, ranging from degree (d) one to a maximum degree of seven, we can
describe the topology of a Gnutella 0.4 network and can generate networks
graphs as given by Figure 5.8. Here we can observe that separated subcom-
ponents may occur due to the random connection establishment. This is also
expected to happen in real networks, although in this case the subcompo-
nents are magnitudes larger, as also the total number of considered nodes is
magnitudes larger.

p (d) =
{

c · d−1.4, 0 < d ≤ 7
0, in any other case

, with c =
(∑

d

p(d)
c

)−1

average : d̄ = 2.2
var (d) = 1.63

(5.2)
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A node becomes part of the Gnutella network by establishing an average
of 3 TCP-connections to other active Gnutella nodes, whose IP addresses it
may receive from a bootstrap server [549]. New nodes, to which the node can
connect if an active connection breaks, are explored by broadcasting PING
messages in the virtual overlay network. These PING messages are also used
as keep alive pattern and are broadcasted in regular time intervals.

All messages are coded in plain text. This results in large message sizes
of QUERY and especially QUERY-HIT messages, as they contain meta data
about the queried objects. Similar to Napster, Gnutella uses MD5 hash keys
[519] to identify objects explicitly. For routing Gnutella employs simple flood-
ing of the request messages, i.e. QUERY and PING messages. Every new in-
coming PING or QUERY, which has not been received before, is forwarded to
all neighbors except the one it received the message from, if the Time-to-Live
(TTL) value (default set to seven hops) is at least one. If a node receives
the same message more than once, these messages are not further flooded.
Response messages, like PONG or QUERY-HIT messages, are routed back on
the same path the request message used, which is called backward routing.

In Gnutella 0.4 the virtual Peer-to-Peer layer is not matched to the phys-
ical layer, which leads to zigzag routes, as described in [550]. Only enhance-
ments, as described by the approach of geo-sensitive Gnutella [550], provide
means to adapt the virtual network to the physical network.

Fig. 5.8: Sample graph of a simulated Gnutella 0.4 network (100 nodes)
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5.3.2 Signaling Characteristics

The nodes communicate directly with each other without any central instance
. However at the beginning, i.e. in a bootstrap phase, a central entity like a
beacon server, from which IP addresses of active nodes can be retrieved,
is necessary. If a node already participated in the network, it may also be
able to enter the network by trying to connect to nodes, whose addresses it
cached in a previous session. As soon as a new node knows the IP address
and port of one active Gnutella node it first establishes a TCP connection
to this node and then connects to this node by sending the ASCII encoded
request string “GNUTELLA CONNECT/<protocol version string>\n\n” to it.
If the participating peer accepts this connection request it must respond with
a “GNUTELLA OK\n\n”.

Gnutella mainly uses four messages as stated above. The messages are
setup in a similar manner as in Napster. They consist of a general message
header and the additional payload (see Figure 5.9). However since in Gnutella
the messages are flooded through the overlay network, some additional pa-
rameters are necessary beyond those used for Napster. The <Descriptor ID>
is a 16-byte string uniquely identifying the message on the network. Thus cir-
cles can be detected, i.e. every message which is received twice by a node is
not forwarded any further. Simultaneously and backward routing of possible
response messages is possible.

Every node therefore has to store this ID and the IP address from which
it received the message for a certain time. The <TTL> (Time-to-Live) value
determines the number of hops a message is forwarded in the overlay network.
This value is decreased by every node which received the message before the
message is forwarded. When the TTL value reaches zero, the message is not
forwarded any further, to avoid infinitely circulating messages. Generally a
TTL value of seven is considered to be sufficient to reach a large fraction
of the nodes participating in the overlay network. The <Hops>-value states
the number of hops a message has already been forwarded and is therefore
increased by one by every forwarding peer. It can be used to guarantee, that
initially no larger value than seven has been used by a requesting peer, as

TTL(0) = TTL(i) + Hops(i) ≤ 7 (5.3)

The <Payload length> parameter states the size of the message so that the
next message in the incoming stream can clearly be identified.

Fig. 5.9: Basic Gnutella message structure
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However the most important field, which determines the payload is the
<Payload-Descriptor> field. The messages we distinguish here are 0x00 for
a PING, 0x01 for a PONG, 0x80 for a QUERY and 0x81 for a QUERYHIT
message [126]. The network exploration message PING does not contain any
payload, whereas in the payload of the PONG message in addition to the con-
tact information (IP address+port) information about the amount of shared
files is stated. To search for data, the QUERY message contains, besides the

Fig. 5.10: PONG (0x01) payload structure

parameter which states the requested minimum download speed, a null termi-
nated search string containing the keywords separated by blanks, describing
the requested object. The average size of this message is 78.4 bytes. If we
now assume, that an average word has a length of eight characters plus one
character for the blank, we can also compute the average number of words a
user states as search criteria, as every character is described with one byte.
For Gnutella this results in an average of 7.35 words per QUERY. Similar
to the PING messages, the QUERY messages are flooded through the over-
lay. As soon as one node receives a QUERY-message, it compares the search

Fig. 5.11: QUERY (0x80) payload structure

keywords to the keywords describing the locally shared content. In case of at
least one hit, it sends back a QUERYHIT message which is routed back on the
same way the QUERY message was distributed through the network (back-
ward routing). A QUERYHIT message contains the information, as shown in
Figure 5.12 and Figure 5.13. However in contrast to Napster one QUERYHIT
message can contain in its result set more than only one file. The average size
of one QUERYHIT message is 748.8 bytes, which is comparatively large.

Fig. 5.12: QUERYHIT (0x81) payload structure
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Fig. 5.13: Result set structure

5.3.3 Discussion

To summarize the basic signaling behavior of a Gnutella network we as-
sume a sample Gnutella network, where node 1 just joined (see Figure 5.14).
Therefore node 1 first sends a CONNECT message to the nodes 5, 2 and 3
(see Figure 5.15). To explore its surrounding further on, node 1 also sends a
PING message to its neighbors, which forward this message further and thus
this message and its corresponding PONG messages propagate through the
network, as shown in Figure 5.15.

1

7

3

2

4

5

6

8

Fig. 5.14: Sample Gnutella 0.4 network

In our example the flooding of the request messages results, as we can see
from Figure 5.15, in 12 PING and 12 PONG messages, and 6 messages for the
initial connection establishment. Taking the message sizes from above into
account (PING: 23 byte, PONG: 37 byte) and assuming for a each connection
(GnuCon+OK) message pair 34 byte, this results in a total of 462 bytes.
This traffic is necessary to merely explore the network. We can also observe
in Figure 5.15, that several messages are not forwarded any further, because
they are received for a second time.

If we further on assume that the node would start a search in this small
network, this would result in 12 QUERY messages. Assuming that three nodes
answer this QUERY, and this results in eight additional QUERYHIT messages,
we can calculate a total traffic this node caused in this small network to 6.928
bytes. Together with the initialization traffic we can compute a total of 7.390
transmitted bytes. This is significantly more than the traffic caused by the
Napster peer. For a larger network we can assume that the amount of traffic
grows even further as the messages are flooded via more hops. The main
reason is the distributed nature of the Gnutella network. This causes on the
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one hand a lot of traffic as no central lookup is available, but on the other
hand also makes this network hard to attack, as no central single point of
failure exists.
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Fig. 5.15: Sample message sequence chart to illustrate the basic signaling behavior
of Gnutella 04

Thus the amount of traffic caused by this application is high, although we
only considered the traffic on the application layer . If we have a look at the
topology of the Gnutella network on a geographical level, it turns out that the
overlay topology differs significantly from the physical network, which results
in zigzag routes, as depicted by Figure 5.16, Figure 5.17 and Figure 5.18. The
route starts in New Mexico/USA. A PING or a QUERY message is sent in
the first hop to other nodes located in the USA but also to a node located in
Poland, i.e. the request is transmitted for the first time across the Atlantic
(see Figure 5.16). Most of the connections of the node located in Poland
lead directly back to the USA again. Thus in the second hop this message
is transmitted e.g. to a node in California/USA and therefore crosses the
Atlantic a second time (see Figure 5.17). In the third hop the message is
then transmitted to a node located in Sweden (see Figure 5.18), resulting in
a third transmission of the message across the Atlantic. Thus within three
hops the message has been transmitted three times across the Atlantic, which
results in the zigzag structure shown in Figure 5.18.

Every message routed/flooded in this overlay via the node in New Mexico
has to be transmitted at least three times across the Atlantic, before it reaches
its destination. The behavior depicted by Figure 5.16 to Figure 5.18 is only
one example of a common behavior of the Gnutella topology.
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Fig. 5.16: Map of Gnutella Network measured on 12.08.2002 up to 1st hop level

Fig. 5.17: Map of Gnutella Network measured on 12.08.2002 up to 2nd hop level

Fig. 5.18: Map of Gnutella Network measured on 12.08.2002 up to the 3rd hop
level, including the zigzag PING-PONG route (bold line)
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In addition to the unnecessary consumption of bandwidth between the
USA and Europe, the zigzag routes cause high delays, which can be perceived
by any user logged onto the overlay network. At least every third message
crosses several times the Atlantic. The performance of the overlay network
could certainly be improved, by directing the message first to nodes in the
local proximity of the querying node and then only once across the Atlantic
and similar long distances to then distribute the query in the respective local
area.

A solution of this problem would be to adapt the virtual overlay to the
physical network via cross-layer communication as e.g. proposed in [550]. Fur-
ther on the large message sizes are also a concern. Here further compression
of the signaling traffic can reduce the traffic significantly [424, 530, 585]. How-
ever another solution which is discussed in more detail in the next section is
the introduction of a dynamic hierarchy, so that not every message has to be
flooded through the whole network.

5.4 Hybrid Peer-to-Peer Networks

5.4.1 Basic Characteristics

As outlined above, hybrid Peer-to-Peer networks are characterized by the
introduction of another dynamic hierarchical layer. As an example of such
a hybrid Peer-to-Peer network we consider in this section the Gnutella 0.6
network.

A major goal of the Gnutella 0.6 architecture is to reduce the high message
load, which can be observed in a Gnutella 0.4 network. Therefore several
protocol enhancements have been proposed in [522], [523] resulting in the
creation of a hierarchy in the network to establish a hub based network. These
extensions are subsumed in the Gnutella protocol 0.6 [359]. The messages
used in Gnutella 0.4 stay the same to guarantee downward compatibility.
However, they are handled differently as explained below.

An efficient way to reduce the consumption of bandwidth is the intro-
duction of hierarchies, as e.g. in Napster the Napster Server. To keep the
advantages of Gnutella, i.e. the complete self organization and decentraliza-
tion, Superpeers and Leafnodes are introduced in [563].

By introducing such enhancements, the load on the network can be re-
duced without introducing preconfigured, centralized servers. The network is
still scalable, but one Superpeer should not have more than 50 to 100 Leafn-
odes, depending on the processing power and the connection of the Superpeer.
Thus it is necessary, that the number of Superpeers increases according to
the total number of leafnodes (peers) in the network.

A hybrid Peer-to-Peer network can not be modeled any further with a
simple truncated powerlaw distribution. This can not reflect the Superpeers,
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which are characterized by a high degree and a significantly smaller number
than simple peers. However the powerlaw degree distribution for the leafnodes
is still expected to hold. Therefore we can assume a node degree distribution
as given by equation 5.4.

p (d) =

⎧⎪⎪⎨
⎪⎪⎩

c · d−1.4, 1 < d ≤ 7
c · 1−1.4 − 0.05, d = 1

c · 0.05, d = 20
0, in any other case

, with c =
(∑

d

p(d)
c

)−1

average : d̄ = 2.8
var (d) = 3.55

(5.4)

Figure 5.19 depicts a sample network which is based on the Superpeer dis-
tribution stated above. Due to the nodes with degree 20 it has a hub-like
structure, similar to the measured structure of a Gnutella 0.6 network (see
Figure 5.20). These hubs dominate the structure of this overlay network.
Because of their high degree these nodes establish with a higher probability
connections between each other (marked by dashed lines in Figure 5.19). This
results in a kind of second hierarchical layer which occurs in the Gnutella 0.6
network. The nodes with a small degree are mainly located at the edge of the
network.

�

Fig. 5.19: Sample graph of a simulated Gnutella 0.6 network (100 nodes)
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Although the number of nodes with degree one is high (47%) in this
distribution, the number of separate sub-components is small, which can
be observed by inspection. This results in a comparably high number of
reachable nodes, within a few hops. This behavior can be explained by the
fact, that the average degree of the Superpeer distribution with d = 2.80
is higher than in the powerlaw distribution for a Gnutella 0.4 network used
earlier.

If we transform the abstract network structure depicted by Figure 5.20
into the geographical view, depicted by Figure 5.21, we can make the network
visible and can determine e.g. the popularity of the Gnutella network in
different countries (see Figure 5.21). Further on we can observe the hub like
structure of the Gnutella 0.6 network, which can not be retrieved from the
geographical view. However, comparing both figures we can again observe
the problem of the random structure, resulting in zigzag routes.
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Fig. 5.20: Abstract network structure of a part of the Gnutella network (222 nodes
Geographical view given by Figure 5.21, measured on 01.08.2002)
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Fig. 5.21: Geographical view of a part of the Gnutella network (222 nodes); the
numbers depict the node numbers from the abstract view (measured on
01.08.2002)

5.4.2 Signaling Characteristics

All messages, i.e. PING, PONG, QUERY and QUERYHIT, defined in Gnutella
0.4, are also used in Gnutella 0.6 . However, to reduce the traffic imposed
on the Leafnodes and to use the Superpeer layer efficiently, the Leafnodes
have to announce their shared content to the Superpeers they are connected
to. Therefore the ROUTE TABLE UPDATE message (0x30) is used (see Fig-
ure 5.22 and Figure 5.23). The <Variant> parameter is used to identify a
ROUTE TABLE UPDATE message either as Reset or as an Update.

The Reset variant is used to clear the route-table on the receiver, i.e.
the Superpeer. Therefore additionally the table length (<Table Length>) to
be cleared must be stated. The parameter <Infinity> is not used currently
and was intended to clear the route-table on several nodes, if the route-table
would be broadcasted in the overlay.

The variant Patch is used to upload and set a new route-table at the
Superpeer. To avoid one large table to be transferred at once, which might
block the communication channel of a Gnutella node, it is possible to break
one route table into a maximum of 255 chunks, which are numbered with the
parameter <Seq No>, where the maximum number of used chunks is stated
with the parameter <Seq Size>. To reduce the message size further on, the
parameter <Compression> can be used to state a compression scheme which
is used to compress the route table (0x0 for no algorithm, 0x1 for the ZLIB
algorithm). For details of the decompression the parameter <Entry Bits> is
used, which is not explained in detail here. The parameter <DATA> contains
32 bit long hash-values of the keywords describing all objects shared by the
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Leafnode. These values are concatenated to each other and transmitted as
one data-string, or if necessary broken into smaller chunks, as mentioned
above. The average message size of a ROUTE TABLE UPDATE is 269 byte.

The Superpeer uses the route tables, to decide which QUERY to forward to
which Leafnode. Only in case that at least one keyword stated in the QUERY
matches at least one entry in the route table of a Leafnode, the QUERY is
forwarded to this Leafnode by the Superpeer.

Fig. 5.22: ROUTE TABLE UPDATE (0x30) payload structure (Reset, Variant
=0x0)

Fig. 5.23: ROUTE TABLE UPDATE (0x30) payload structure (Patch, Vari-
ant=0x1)

As mentioned above, Superpeers establish a higher hierarchy level, in
which they form a pure Peer-to-Peer network, i.e. are connected to each other
directly via TCP connections. To one Superpeer several Leafnodes are con-
nected. The Superpeer shields its Leafnodes from the PING and PONG traffic.
The Superpeer does not forward incoming PING messages to its Leafnodes.
If a Superpeer receives a PING from one of its Leafnodes it answers with a
series of previously received PONG messages from other Superpeers, so that
the Leafnodes know which other Superpeers are currently available. There-
fore the Superpeer also has to initialize PING messages in regular intervals in
the Superpeer layer.

Further on Superpeers provide better QUERY routing functionalities by
indexing the shared objects of all of their Leafnodes (with the ROUTE -
TABLE UPDATE). Thus the Superpeer forwards QUERY messages to all Su-
perpeers, but only to those Leafnodes which announced to host content de-
scribed with the same keywords, as given in the QUERY (except the one it
received it from and if the TTL is not exceeded and it has not received the
same message before). Additionally the Superpeer broadcasts the request in
the Superpeer layer, to receive more results.
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5.4.3 Discussion

To summarize the properties of a hybrid Peer-to-Peer network, we consider
the example Gnutella 0.6 overlay network depicted by Figure 5.24. This fig-
ure shows three Superpeers S1 to S3 and seven Leafnodes L1 to L7, whereas
node L1 just joined. We assume that the rest of the network is stable, i.e.
all ROUTE TABLE UPDATE messages have been exchanged successfully be-
tween the Leafnodes and their corresponding Superpeers.

4L1 L3

S2

S3

S1

L2

L5

L4

L6

L7

Fig. 5.24: Sample Gnutella 0.6 network

To join the network, node L1 first has to establish a TCP connection to
node S1, whose IP address is assumed to be known by L1 (either from a pre-
vious session or from a bootstrap server). After it successfully established its
TCP connection, node L1 performs the regular handshake with the Super-
peer (see Figure 5.25). To announce its shared content to its Superpeer, node
L1 sends a ROUTE TABLE UPDATE message (RTU) to S1, containing all
keywords which describe the content shared by L1. Thus the content of L1 is
available in the Gnutella 0.6 network. To be on the safe side, L1 additionally
sends a PING message to S1, from which it receives in response three PONG
messages announcing the presence of S1, S2 and S3. Thus L1 can still stay
connected to the Gnutella 0.6 network, even when S1 fails. For illustration
Figure 5.25, also shows how a PING message initiated by S1 is flooded in
the Superpeer layer. This is completely in accordance with the Gnutella 0.4
protocol, except that the PING messages are not forwarded to the Leafnodes.

To illustrate further on the search behavior in a Gnutella 0.6 network we
assume, that L1 searches an object, whose description matches objects shared
by L3, L5 and L7. To initiate the search L1 sends a QUERY message con-
taining the description of the requested object to S1. As only L2 announced
to share an object matching the request, S1 forwards this QUERY only to
L3. Additionally S1 floods the QUERY in the Superpeer layer, i.e. forwards
it to S2 and S3. S2 and S3 also flood it further on in the Superpeer layer, i.e.
S2 sends it to S3 and vice versa (assumption: S2 did not receive the QUERY
before from S3 and S3 neither from S2). These two QUERY-messages are
taken from the network and not flooded any further. However, as the routing
table of L5 on S2 and the routing table of L7 on S3 result in a match upon
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a comparison with received request, S2 forwards the QUERY to L5 and S3
forwards it to L7. Upon receiving the QUERY, L3, L5 and L7 initiate each
a QUERYHIT (QUHIT) message, which is then routed back on the shortest
path through the overlay to node L1. Now L1 is able to establish a HTTP
connection to L3, L5 or L7 to download the requested object.

' � � � � � �

= � = � = � 4 � 4 � 4 � = 7

9 :

� 9 � '

= ) = 8 = �

1 , >

� ; � '

� 9 � '

� 9 � '

� ; � '

� ; � '

� 9 � '

� 9 � '

� ; � '� ; � '

? > # 1 @

? > # 1 @

? > # 1 @

? > # 1 @? > # 1 @

? > # 1 @

? > # 1 @

? > # 1 @

? > A ; ,

? > A ; , ? > A ; ,? > A ; ,

? > A ; ,

? > A ; ,

? > A ; ,

? > A ; ,

Fig. 5.25: Sample message sequence chart to illustrate the basic signaling behavior
of Gnutella 0.6

If we calculate the traffic caused by one node, we again assume 34 byte
for the connection message pair (GnuCon+OK). Further on we have to take
into account the ROUTE TABLE UPDATE (RTU) message with 269 byte.
Further on we have to take one seventh (as seven peers participate) of the
PING/PONG traffic between the Superpeers into account, which results in
our example in 4 PING messages and two PONG messages for every Superpeer,
i.e. in total in 12 PING and 6 PONG messages. In addition for S1 we have to
take into account three additional PONG messages and one PING message.
This results in a total of approximately 508 byte. For the search traffic we
also have to take into account one seventh of the previously exchanged RTU-
messages, which results in 269 messages, i.e. one RTU message, which we took
into account already above. Further on we have to take into account in this
example eight QUERY messages (each with 78.4 byte) and eight QUERYHIT
messages (each with 748.4 byte). This would result in a total of 6614 bytes
for the search traffic. In total the traffic caused by this node can thus be
computed to 7122 bytes. This is already less than the traffic caused by the
Gnutella 0.4 network. However especially in large, i.e. more realistic, networks
the advantage of hybrid Peer-to-Peer networks becomes more evident, as the
amount of flooded messages is reduced significantly by the introduction of
Superpeers.
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Other protocols which establish a similar hierarchical overlay routing
structure are edonkey2000 [410] and FastTrack. Applications like Kazaa [343]
or Skype [567] and emule [191] or mldonkey [423] are based on these. In Fast-
Track the peers in the higher hierarchical level are called Superpeers and in
edonkey2000 they are simply called servers. Both protocols are proprietary
and therefore they are not officially and publicly documented. However a
number of details of the two protocols have been re-engineered by users and
creators of open source alternative applications [184, 188, 243, 358]. Already
some basic measurements, mostly on IP-level, are available, concerning packet
and data rates [43, 336, 600].
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6.1 Introduction

In this chapter we will introduce two famous network models that arose
much interest in recent years: The small-world model of Duncan Watts and
Steven Strogatz [615] and scale-free or power-law networks, first presented
by the Faloutsos brethren [201] and filled with life by a model of Albert-
László Barabási and Réka Alberts [60]. These models describe some structural
aspects of most real-world networks. The most prevalent network structure
of small-world networks is a local mesh-like part combined with some random
edges that make the network small.

The preceding chapters sketched the field of Peer-to-Peer concepts and
applications. The field and its history are deeply intertwined with the area
of distributed computing and sometimes overlaps with concepts from client-
server systems and ad hoc networks. To set a clear foundation we base this
chapter on the following, quite general definition of Peer-to-Peer systems:

Definition 6.1.1. Peer-to-Peer Systems
A Peer-to-Peer system consists of computing elements that are:

(1) connected by a network,
(2) addressable in a unique way, and
(3) share a common communication protocol.

All computing elements, synonymously called nodes or peers, have comparable
roles and share responsibility and costs for resources.

The functions of Peer-to-Peer systems are manifold. They may be coarsely
subsumed under communication of information, sharing services, and
sharing resources. To implement these functions, the system has to pro-
vide some infrastructure. What are the requirements to make a Peer-to-Peer
infrastructure useful? Here, we will concentrate on the following four condi-
tions:

Condition 1 Decentrality
One inherent claim of the Peer-to-Peer idea is that there is no
central point in which all information about the system, data
and users is stored. If there is no central organizing element
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© Springer-Verlag Berlin Heidelberg 2005
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in a system, each node needs some built-in rules with which it
can, e.g., join the system, route information to others, or make
queries.

Condition 2 Structure
To share data and other resources efficiently it is helpful if
the system is structured in a way that improves searching and
facilitates routing.

Condition 3 Reliability despite Dynamic Changes
Nearly all Peer-to-Peer systems are under constant changes:
nodes join the system, others leave it, and some are just tem-
porarily unavailable. This necessitates elaborate mechanisms
to stabilize important system properties like the diameter and
connectivity of the system.

Condition 4 Scalability
One effect of decentralization is that the number of nodes may
be arbitrarily large. Nonetheless, the system should be able to
service the needs of all nodes in an efficient and fast way.

These four conditions are especially interesting and resemble features of
social networks: A social network is inherently self-organized but nonethe-
less structured. Despite the fact that people are born and die, many global
structural properties of social networks are stable. Further, there seems to
be no limit to the number of humans that can take part in our global social
network - only with respect to the network’s structure, of course.
Other ‘real’ networks that have evolved over time show similar properties, like
the Internet, metabolic networks, or the WWW [201, 60, 324]. What makes
evolving, decentralized networks structured and stable despite their dynam-
ics? Recent research has revealed that there are two important properties of
evolving networks that help to satisfy the above conditions: The first property
is termed the small-world effect, the second property is a scale-free degree dis-
tribution. Networks with a small-world effect are called small-worlds and
networks with a scale-free degree distribution are called Scale-Free Net-
works. Peer-to-peer systems that create overlay networks with these fea-
tures are likely to satisfy the conditions without further concern. This chap-
ter presents both properties, presents families of networks that display these
features and the corresponding decentralized models to create them. To do
so, we first define some notions in graph theory in Sec. 6.2. In Sec. 6.3 we will
briefly describe how the analysis of social networks was challenged by a series
of elegant experiments in the 1960’s. Sec. 6.4 presents the most common mod-
els that answer the questions raised by those experiments. Specifically, these
are models that create families of Small Worlds and Scale-Free networks. In
Sec. 6.5 we describe approaches that build small-worlds or Scale-Free overlay
networks in Peer-to-Peer systems. In this section we will present the most
important properties of each of the network families which influence the per-
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formance of Peer-to-Peer systems. In Sec. 6.6 we will summarize the results
and discuss possible improvements.

6.2 Definitions

Let V = {1, 2, 3, . . . , n} be the set of all n nodes, or peers, in the system. Each
node is identified and addressable by its number. The underlying network
makes it possible to route a message from each node to any other node.
Because of the decentralized nature of a Peer-to-Peer system, not every node
v is required to store routing information to each and every other node.
The set of nodes over which node v will route outgoing messages is denoted
by N(v) and called the neighbors of v. Every Peer-to-Peer network can be
associated with a graph G = (V, E). E is the set of edges e = (i, j) where
j is a neighbor of i, i.e., there is at least one entry in the routing table of i
that uses j as the next node. For edge e = (i, j), i is the source node and j is
the target node. The number of edges is denoted by m. G is sometimes called
the overlay network of a Peer-to-Peer system. The edges might be weighted,
e.g., with the number of entries that use j as the next node or the cost for
the traverse of this edge. All edges are directed.

The set of edges can also be represented in the adjacency matrix A(G)
with dimension n× n. aij is 1 if and only if the edge e = (i, j) ∈ E. If edges
are weighted with a weight function ω : E → R then aij is commonly given
by ω(e = (i, j)) if e = (i, j) and zero otherwise. The set of eigenvectors and
eigenvalues of a matrix is defined as the set of all vectors x and real numbers
λ such that:

Ax = λx (6.1)

The outdegree ko(v) of a node v is defined as the number of neighbors it
has: ko(v) = |N(v)|. The indegree ki(v) is defined as the number of neigh-
bor sets in which v is an element: ki(v) =

∑
w∈V [v ∈ N(w)]. The Boolean

expression in brackets is given in Iverson-notation (see [257]) and evaluates
to 1 if the expression is true and to zero otherwise. The degree k(v) of a
node v is defined as the sum of indegree and outdegree. A path P (i, j) from
node i to node j is defined as a subset P ⊆ E of edges {e1, e2, . . . , ek} where
e1 = (i, v1), ek = (vk−1, j) and ∀ 1 < l < k: el = (vl−1, l). The path length of
a path P is defined as the number of edges in it. If the edge set is weighted
with a weight function ω : E → R, then the path length L(P (i, j) of a path
P (i, j) of two nodes i and j is defined as:

L(P (i, j)) =
∑

e∈Ps(i,j)

ω(e) (6.2)

In the following, we will use the first definition to reduce complexity. All
further definitions can be easily transformed for weighted graphs.
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Any path with minimal length between two nodes is a shortest path be-
tween these nodes. The distance d(i, j) between two nodes is the length of
any shortest path between them. The diameter D(G) of a graph G is defined
as the maximal distance between any two nodes in the graph:

D(G) = max
(i,j)∈V ×V

d(i, j) (6.3)

The average path length D�(G) of a graph G is defined as the sum of the
distances over all pairs of nodes divided by the number of all pairs of nodes:

D�(G) =

∑
(i,j)∈V ×V d(i, j)

n · (n − 1)
(6.4)

A graph is connected if there is at least one path between every two nodes.
A graph is k-connected if the removal of any set with k − 1 nodes leaves
the graph connected. Let VC ⊆ V be a subset of nodes. The induced graph
G(VC) = (VC , EC) is defined as the graph with the following edge set EC :
EC = {e = (i, j)|i, j ∈ VC}. An induced graph is a (simple) component if it
is connected.

The set of edges in a graph is formally a relation R ⊆ V ×V on the set of
possible edges. A network family is an (infinite) set of graphs with the same
relation. Normally, this relation is given as an algorithm that decides which
edges are added to the graph and which are not.

6.3 The Riddle – Analysis of Real Networks

In the 1960’s Stanley Milgram conducted a series of interesting experiments
[413, 596] that posed new questions about how humans are organized into
social networks: He prepared letters to a friend of his and sent them to people
chosen randomly in Kansas and Nebraska (cf. Fig. 6.1). They were asked to
deliver the letter but they got no more information than the name of the
recipient, his profession (stock broker) and the town he lived in (Boston).
Furthermore, they were asked to deliver the letter in a special way: Instead
of using the address, the letter should be given to someone they knew on
a first-name basis and which they thought to be ‘closer’ to the recipient in
any way. Eventually, some of the letters reached the broker and, surprisingly,
these letters did not need many steps to find him. On average, it were not
more than six steps 1. This result was very surprising because social networks
are dominated by relationships to people that live and work near to us. This
was especially true in a time when there was no Internet, and where cars and
airplanes were too expensive to be an everyday means of transportation for
1 Most interestingly, the concept of six degrees of separation was already men-

tioned in a short story entitled ‘Chains’ by the Hungarian writer Karinthy in
1929 [339]
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Fig. 6.1: Letter sent in the Milgram Experiment

most people. In terms of graph theory the result signifies that the diameter
of social networks is quite small despite their dense local structure. What
kind of network model can reproduce this special combination of properties?
This is the riddle that was not to be solved until the 1990s. In the following
sections we will describe the most important approaches with which social
and other evolving networks are modeled today. We will show that some of
the features of these networks are interesting for Peer-to-Peer applications
and present ideas about how their favored properties can be transferred to
Peer-to-Peer overlay networks.

6.4 Families and Models for Random Graphs,
Small-Worlds and Scale-Free Networks

Historically, random graphs form the first family of networks that were in-
tensely studied. Since many Peer-to-Peer applications choose neighbors more
or less randomly, like Gnutella, this model is also valuable for the analysis of
Peer-to-Peer systems.

6.4.1 Random Graphs

The analysis of social relationships as graphs can be traced back to the 1950s
[614]. At the same time, the first graph models, concerning random graphs,
were introduced. They were so successful that they were used as simulation
models for very different networks over the following 30 years. Random graphs
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were introduced independently by Gilbert [245] and Erdős and Renyi [464].
We will first present the model of Erdős and Renyi, following [84].

Erdős and Renyi’s Notation

Gn,m denotes the space of all
(
N
m

)
graphs with n nodes and m edges where

N =
(
n
2

)
is the number of possible edges between n nodes. This set can be

transformed into a probability space by taking the elements of Gn,m with
the same probability. An instance of Gn,m, drawn uniformly at random, is
denoted by Gn,m. Since the whole model is based on stochastic processes, we
can only give probabilistic statements about expected properties, i.e., we
say that Gn,m shows property P with a high probability if:

Pr(Gn,m has P ) → 1 for n. → ∞ (6.5)

It is important to note here that this is only interesting if m is a function
of n. If it is constant for all n, the graph will be disconnected for large n
and most interesting properties like the average degree or the connectivity of
the graph will vanish with n → ∞. This leads to a question regarding the
first important property of random graphs: When will a random graph be
connected with high probability? The following theorem gives the important
relationship between m and the connectedness of the resulting graph ([464]):

Theorem 6.4.1. Connectedness of random graphs
Let mω = n

2 (log n + γ) where γ = γ(n) is a function of n. If γ → −∞,
then a typical Gn,mγ is disconnected, whereas if γ → ∞, a typical Gn,mγ is
connected.

This theorem can often be found in the following form: If we ensure that
the average degree of nodes is Ω(log n), then the random graph will be con-
nected with high probability. In the analysis of most network models it is
shown that the average degree grows with O(log n) which also fulfills the
above given theorem, if we set γ to log n.

Gilberts Model

A totally different approach was given by Gilbert in [245]. A graph Gn,p is
defined as a graph in which the probability that an edge e = (v, w) exists
is p. This definition simultaneously gives a construction algorithm: For each
possible edge, a random number between 0 and 1 is drawn. Whenever this
number is smaller than p, the edge is added to the graph. Again, p can be a
function of n, though in this case, families with constant p are also interesting
to study.
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Connection Between Both Random Graph Models

For M ∼ pN the two models Gn,M and Gn,p are almost interchangeable [84].

Basic Results for Classical Random Graphs

Here, we will just review some of the important results for Random Graphs
that are interesting in comparison with small-worlds and Scale-Free Networks,
cited from [80]. We use the Gilbert notation.

For the first theorem cited, the random graph is built up sequentially,
by adding random edges one at a time. Analyzing the connectivity of the
evolving graph, we can make an interesting observation: After having added
approximately n/2 edges, we get a giant connected component with a size of
Θ(n) as stated in the following theorem.

Theorem 6.4.2. Giant Connected Component
Let c > 0 be a constant and p = c/n. If c < 1 every component of Gn,p has
order O(log n) with high probability. If c > 1 then there will be one component
with high probability that has a size of (f(c) + O(1)) · n, where f(c) > 0. All
other components have size O(log n) [84].

This theorem is easy to remember and nonetheless surprising: The giant
connected component emerges with high probability when the average degree
is about one.

The next property concerns the degree distribution: If one node is drawn
randomly from V , how high is the probability P (k) that it has degree k? In
random graphs the degree distribution is described as a Poisson-distribution
P (k) = cke−c

k! as stated in the following theorem:

Theorem 6.4.3. Degree distribution
Let Xk be the number of nodes with degree k in Gn,p. Let c be a constant with
c > 0 and p = c/n. Then, for k = 0, 1, 2 . . .

Pr
(

(1 − ε)
cke−c

k!
≤ Xk

n
≤ (1 + ε)

cke−c

k!

)
(6.6)

as n → ∞ [84].

This can easily be seen by the following argument: First, we can construct
Gn,p in a Bernoulli experiment with

(
n
2

)
variables Xij , i 	= j, i, j ∈ V that are

1 with probability p. The degree of node i is the sum of all variables Xij and
for reasonably small p and n → ∞, the degree can be described by a Poisson
distribution.

The next question to be answered is the diameter of Gn,p. It is given by
the following theorem:
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Theorem 6.4.4. Diameter of Gn,p

If pn/ logn → ∞ and log n/ log(pn) → ∞ then the diameter of Gn,p is
asymptotic to log n/ log(pn) with high probability.

The last property presented here is the expected clustering coefficient
for random graphs. The clustering coefficient measures how many edges are
between neighbors of node i divided by the maximum possible number of
edges between them. Thus, it measures how ‘clique-like’ the neighborhood of
node i is where a clique denotes a subgraph in which all nodes are connected
to all other nodes. Let E(N(i)) denote the number of edges between neighbors
of node i. Then, the clustering coefficient C(i) is defined as:

C(i) =
E(N(i))

d(i)(d(i) − 1)
(6.7)

The clustering coefficient can also be interpreted as the probability that
two randomly drawn neighbors of i are themselves neighbors. Seen under this
perspective the following theorem is easily proven:

Theorem 6.4.5. Clustering Coefficient of random graphs
The clustering coefficient of a random graph is asymptotically equal to p with
high probability.

Random graphs were very famous for a long time for two reasons: Many
of their properties are exactly solvable in a rigorous analysis. They can be ex-
actly defined and varied in many different ways. Second, they provide a much
richer field of application than the other network model that was popular at
the time, i.e., regular graphs in which every node has the same degree, such
as a lattice. No one doubted that social networks cannot be exactly random,
but as long as some of their properties were well described by it, it seemed
that random graphs were an easy and useful way to model all kind of different
networks.

6.4.2 Small-Worlds – The Riddle’s First Solution

Despite the excitement that followed the Milgram experiment there was no
convincing network model generating a network that is locally highly clus-
tered and at the same time has a small diameter until 1998. Then, Watts
and Strogatz [615] analyzed three different kinds of real networks: A film col-
laboration network in which two actors are connected by an undirected edge
whenever they have acted together in at least one film, the neural network
of the worm C. elegans, and the power grid of the United States. For each of
these networks they measured the average path length in the graph and com-
pared it with a random graph with the same number of nodes and edges. The
average path length was in each case slightly higher but clearly within the
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same order of magnitude. On the other hand one could see that the real net-
works were much more densely connected on a local level than the random
ones. To measure this density, the authors introduced a new measure, the
clustering coefficient which we have already defined in Equation 6.7. Watts
and Strogatz compared the average clustering coefficient of these real net-
works with the corresponding random networks: The clustering coefficients
were at least ten times higher in real networks and for the film collaboration
network the factor is more than 1000. With this analysis the surprising result
of Milgram’s work could be made more intelligible: Real networks have nearly
the same diameter as Random Graphs and at the same time show a high,
local clustering.

D�(real) D�(random) C(real) C(random)

Film collaboration 3.65 2.99 0.79 0.00027

Power grid 18.7 12.4 0.08 0.005

C. elegans 2.65 2.25 0.28 0.05

Table 6.1: Average path length D� and average clustering coefficient C for three
real networks, compared with random graphs that have the same num-
ber of nodes and the same average degree. The first network represents
actors that are connected by an edge if they have contributed to at
least one film together, the second is defined as the set of all genera-
tors, transformers and substations that are connected by high voltage
transmission lines. The neural network of C. elegans displays all neu-
rons and considers them as connected if they share a synapse or gap
junction. All three networks show the small-world phenomenon, with
an average path length comparable to that of the corresponding ran-
dom graph and a clustering coefficient that is considerably larger than
in the random graphs ([615]).

With this, small-worlds are defined as networks with a dense, local struc-
ture, evaluated by the clustering coefficient, and a small diameter that is
comparable to that of a random graph with the same number of nodes and
edges. Watts and Strogatz introduced a very simple network model that is
able to reproduce this behavior. It starts with a chordal ring: Nodes are num-
bered from 1 to n and placed on a circle. Then, every node is connected with
its k clockwise next neighbors (Fig. 6.2)

This ring is traversed and for every encountered edge a random number
between zero and one is drawn. If it is smaller than a given constant 0 ≤
p ≤ 1 the edge will be rewired. The rewiring is done by drawing uniformly
at random a new target node from the set of all nodes V , deleting the old
edge and inserting the new edge between the old source and the new target
node. It is important to preclude duplicate edges in this process. If p is small,
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p=0 p=1

Regular Small World Random

increasing randomness

Fig. 6.2: The small-world model introduced by Watts and Strogatz [615] starts
with a chordal ring in which n nodes are placed on a circle and connected
with their k clockwise next neighbors (here, k = 2). With probability p
every edge can be rewired once. The rewiring is done by choosing uni-
formly at random a new target node, such that the old edge is removed
and the new one connects the old source node with the new target node.
The figure shows that as p grows the model can be tuned between total
regularity and total randomness. With sufficiently small p it is possible to
maintain the local structure and yet provide an overall small diameter.
This state thus displays the properties of small-worlds as they can be
found in reality.

almost no edges will be rewired and the local structure is nearly completely
preserved. If p is near to 1 the graph produced is claimed to be a random
graph with a small average path length. Interesting are the states in between
these two extremes. Fig. 6.3 shows the dependency of the clustering coefficient
and average path length on p for a graph with 5000 nodes. Clearly, even a
quite small p of about 0.005 is sufficient to reduce the diameter so much that
it resembles the diameter in the corresponding random graph without losing
the local structure that is measured with the clustering coefficient.

Viewed from another perspective, the findings of Watts and Strogatz indi-
cate that a small number of random edges decreases the average path length
significantly since they can be viewed as ‘short-cuts’ spanning the regular
graph. With this model a part of the riddle regarding real networks was
solved.

In Sect. 6.5 we will present some more properties of small-worlds that
are especially interesting for Peer-to-Peer applications. In Subsect. 6.5.1 we
will present a more generalized model of Small World Networks in multi-
dimensional spaces, introduced by Kleinberg in [353, 354]. But despite the
immediate success of the small-world model of Watts and Strogatz the riddle
was only partly solved, as would soon become clear.
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Fig. 6.3: The diagram shows the dependency of the clustering coefficient C and
the average path length L on the rewiring probability p. For each prob-
ability ten different small-worlds with 5000 nodes have been simulated.
The clustering coefficient of the small-world after the rewiring phase was
divided by the clustering coefficient of the chordal ring before rewiring.
Analogously, the average path length is given in relation to the aver-
age path length before the rewiring. It can be clearly seen that a small
rewiring probability of approximately 0.005 is sufficient to reduce the av-
erage path length to 1/10 without decreasing the clustering coefficient by
more than 1.5%.

6.4.3 Scale-Free Networks: How the Rich Get Richer

Although the small-world model explains how two seemingly contradictory
properties can be merged into one model, it is clear that it cannot explain how
these properties emerge in real, evolving networks. Practically no real network
can be represented by a ring topology where some edges exist between two
randomly chosen nodes. This is a drawback of the model.

But there is another, more significant property missing in the model: In
the small-world model nearly every node has the same degree and it is very
improbable that a node with a very high degree will emerge. In real ran-
dom graphs the probability of drawing a node with degree k is proportional
to ck/k!. How probable is it to find nodes with a very high degree in real
networks?

In 1999, three brothers, Michael, Petros and Christos Faloutsos, made a
very extensive analysis of the Internet backbone [201]. They were interested
in the following questions: “What does the Internet look like? Are there any
topological properties that don’t change in time? How will it look like a year
from now? How can I generate Internet-like graphs for my simulations?”.
They examined the inter-domain topology of the Internet from the end of
1997 to the end of 1998. In this phase the Internet grew about 45% in size
(number of routers). They found four properties of these networks that follow
a power law:

E 1) First, a list of all existing outdegrees was made and sorted. The ’rank’
ri of a node i is defined as its place in the list according to its outdegree
ko(i). The outdegree ko(i) of a node i is proportional to its rank, to the
power of a constant R:
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ko(i) ∝ rRi (6.8)

E 2) The number of nodes fk with the same outdegree ko is proportional to
the outdegree to the power of a constant O:

fko ∝ kO
o (6.9)

E 3) The eigenvalues, λj , of a graph are proportional to the order, j, to the
power of a constant, E :

λj ∝ jE (6.10)

E 4) The total number P (d) of pairs of nodes (i, j) within a distance d(i, j) ≤
d is proportional to the degree d to the power of a constant H:

P (d) ∝ dH (6.11)

This last property is more approximative than the other properties but
is nonetheless useful as the authors show in their paper [201].

After the authors had found this self-organizing structure, they asked in
their discussion “Why would such an unruly entity like the Internet follow
any statistical regularities?”. The answer to this question was given by an
elegant model of Barabási and Albert in the same year[60]. They examined
a part of the World Wide Web (WWW) [60] (see also [20]) and displayed
the result as a graph. In this graph, all visited pages were represented as
nodes, and two pages were connected by a directed edge (i, j) if page i had
a link pointing to page j. In this graph the number of nodes with a given
degree was calculated. By dividing it by the number of nodes in the graph,
the probability P (k) of drawing uniformly at random a node with degree k
is computed. The authors observed that the probability P (k) is proportional
to k to the power of a constant γ (similar to E3 above):

P (k) ∝ k−γ (6.12)

Networks with this property are called Scale-Free Networks, or sometimes
Power-Law Networks. Barabási and Albert also examined the film collabora-
tion network and power-grid of the USA and found the same property there.
To model this property they introduced the following new model that dif-
fers in two important aspects from the small-world model and random graph
model:

The Barabási-Albert-Model

1. The network grows in time.
2. A new node joining the network will have preferences to whom it wants

to be connected. This preferential attachment is modeled in the following
way: Each new node i wants to connect to m0 other nodes that are
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already in the network. The probability Πt(j) that some old node j gets
one of the m edges is proportional to its current degree kt(j) at time t:

Π(j) =
kt(j)∑

v∈V kt(v)
(6.13)

=
kt(j)
2 · mt

(6.14)

with mt being the number of edges in the graph at time t.

Thus, the network model works as follows:

1. Begin with a small network of at least m0 nodes and some edges.
2. In each simulation step add one node. For each of its m0 edges draw one

of the nodes j that are already in the graph, each with probability Π(j).

It should be clear that this algorithm is not a model in the mathematical
sense [80] but rather defines a family of possible implementations. Later,
Albert and Barabási could show in [22, 19] that the only requirement for the
emergence of a scale-free behavior is that the probability of gaining a new
edge is proportional to the degree of a node in each timestep. Thus, it is
sufficient that any network model show this preferential attachment in order
to generate scale-free networks. This property can be easily remembered as
a behavior in which ‘the rich get richer’.
To date, many different variants of network models that generate scale-free
networks have been published: A mathematical model more precisely defined
than the Barabási-Albert-model is the linearized chord diagram, introduced
in [79]. Here, two groups provide each node with an initial attractiveness that
increases the probability of being chosen by a constant value [180, 175]. A
quite complicated but powerful model with many parameters was given in
[132].

A model that is simple to adapt to Peer-to-Peer systems was first intro-
duced by Kumar et al. [369] for web graphs, and independently by Vazquez
et al. [605] and Pastor-Satorras et al. [477] for modeling protein interaction
networks: In each timestep of this model, one of the existing nodes is cloned
with all the links to other nodes and the clones are connected to each other.
Then, both clones lose some edges at random with a very small probabil-
ity and gain as many new edges to new, randomly drawn target nodes. It
can be easily shown that the probability of node j getting a new node in
timestep t is proportional to its degree at that time: The more edges it has,
the more probable it is that one of its neighbors is chosen to be cloned. If
one of the neighbors is cloned, the edge to j is copied and thus the degree of
j is increased by 1. Thus, this model shows preferential attachment and the
resulting networks are scale-free with respect to the degree distribution.

In the following we want to discuss some of the properties of Small Worlds
and Scale-Free Networks that are interesting for Peer-to-Peer systems.
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6.5 Applications to Peer-to-Peer Systems

6.5.1 Navigating in Small-Worlds

Jon Kleinberg was also intrigued by the experiments conducted by Milgram
and the simple small-world model given by Watts and Strogatz. This latter
model explained why there exist short paths in a social network where only
a small fraction of edges are actually random. But Kleinberg saw that there
was more to it: he asked himself why people can find these short paths:
“Why should arbitrary pairs of strangers be able to find short chains of
acquaintances that link them together?” [354]
This question is totally different from the question of why short paths exist
in a network. It is easy to invent a network with low average path length but
where it is impossibility to find those short paths: The difficulty arises if every
node just has local information. This is certainly the case in social networks:
here, every person just knows a very small number of people on a first-name
basis. Of these, one may also know some more data, like the profession,
address, hobbies, and so on. When challenged with the task of sending a
letter to a stranger via acquaintances, people choose the one friend that they
think to be ‘next’ to the recipient. Milgram’s results showed experimentally
that the first steps of the letter were the largest (geographically) while later
they became shorter as they were closing in on the target area [413].

The aim of Kleinberg was thus to find a family of simple networks with
small average path length in which decentralized algorithms are able to find
short paths. We will first begin with the underlying network model. It is
applicable to multi-dimensional spaces, but here it will be represented in a
twodimensional space for simplicity.

The Kleinberg Small-World Model

The model starts with a set of grid points in an n × n square. Each node
i is identified by the two coordinates xi, yi that define its position P (i) in
the grid. The distance d′(i, j) is here defined as the number of ‘lattice steps’
separating them:

d′(i, j) = |xi − xj | + |yi − yj| (6.15)

The set of (directed) edges is constructed in two parts:

1. First, every node i is connected with all nodes j that are within distance
d′(i, j) ≤ q for some given integer q.

2. Second, for each node i q additional edges are built. The probability that
the ith directed edge has endpoint j is proportional to d′(i, j)−r, with
r a given real constant. To generate a proper probability distribution,
the normalizing constant is given by

∑
v∈V d′(i, v)−r. This probability

distribution is called the inverse rth-power distribution.
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If p and q are given as fixed constants, this network family is described only
by parameter r.

Now, a message is to be sent within this network. The transmission model
is as follows: We start with two arbitrary nodes in the network, source node
s and target node t. The goal is to transmit the message from s to t with
as few steps as possible. An algorithm is defined as decentralized if at any
time-step the current message holder u has knowledge of only:

DA 1) the set of local contacts among all nodes (i.e. the underlying grid
structure),

DA 2) the position, P (t), of target node t on the grid, and
DA 3) the locations and long-range contacts of all nodes that have come in

contact with the message.

Here, we just want to state the results of this approach. The proofs can be
found in [354]. The first result is that there is only one possible parameter for
r in a twodimensional grid where a decentralized algorithm is able to perform
the transmission task in expected O(log n) steps. This efficiency is measured
as the expected delivery time, i.e., the number of steps before the message
reaches its target:

Theorem 6.5.1. Navigability in Kleinberg Small-Worlds
There is a decentralized algorithm A and a constant α, independent of n,
so that when r = 2 and p = q = 1, the expected delivery time is at most
α · (log n)2.

The next theorem shows that r = 2 is the only parameter for which the
expected delivery time is polynomial in O(log n):

Theorem 6.5.2. (a) Let 0 ≤ r < 2. There is a constant αr, depending
on p, q, r, but independent of n so that the expected delivery time of any
decentralized algorithm is at least αrn

(2−r)/3.
(b) Let r > 2. There is a constant αr, depending on p, q, r, but independent
of n, so that the expected delivery time of any decentralized algorithm is at
least αrn

(r−2)/(r−1).

These results can be generalized for multi-dimensional spaces. For any
k-dimensional space, a decentralized algorithm can construct paths of length
polynomial in O(log n) if and only if r = k.

What does this decentralized algorithm look like? In each step, the current
message-holder u chooses a contact that is as close to the target as possible, in
terms of lattice distance. And that is all. Note, that this very simple algorithm
does not make use of DA 3). Accordingly, we do not need any memorization
of the route a message has taken to get to node i.

Summarizing, Kleinberg-small-worlds provide a way of building an overlay
network for Peer-to-Peer applications, in which a very simple, greedy and
local routing protocol is applicable. On the other hand, it requires some
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information that is not naturally given in a Peer-to-Peer system, namely a
distinct mapping for nodes and files to a k-dimensional position. In principle,
this can be provided by a distributed hash table (DHT) approach but this is
not always possible. For more information on DHTs see Chapter 7.

Second, we need a metric that allows us to measure the distance between
two positions in the system. Third, and somewhat counter-intuitive to the
decentralized approach, we need some global information, especially a list of
all neighbors within a given distance and a list of all other nodes in the system
and their distance to a given node, to choose the q longe range contacts. The
next subsections give some approaches that try to achieve this. Protocols
discussed in these subsections are explained in more detail in Chapter 8.

6.5.2 Small-World Overlay Networks in Peer-to-Peer Systems

Some papers indicate that Peer-to-Peer systems sometimes voluntarily evolve
into a small-world [16, 302, 639]. For Freenet it could be shown that a low
to medium load, in terms of the number of files in the system, leads to a
small-world network. This is achieved by the following routing table update:
Every file is correlated with a key, e.g., by a hash function. The file is origi-
nally stored at some node with a similar key. Each request is at every time
forwarded to the one node in the routing table that has the closest key to the
requested key. The request has a time to live (TTL), i.e., there is a counter
in the request that is incremented with every forwarding, and the request is
removed when the counter reaches TTL. If a node has no more neighbors to
route a request to, it will send a backtracking ‘request failed’ message. If the
request is successful, the file will be sent over the routing nodes back to the
requesting node. Every routing node will thereby save the file and add the
sending node’s key to its routing table. If either the file space or the rout-
ing table space is full, the least recently used (LRU) entry is replaced by the
new entry. With this simple LRU-replacement algorithm, the system copies
frequently requested files and most files in the file space are requested many
times before they are replaced. But with a high load, i.e., a high number of
different files and requests, the set of files at each node is rapidly changing and
the number of successful requests for any of the stored files decreases. This
unexpected behavior motivated Zhang, Goel, and Govindan to use a small-
world overlay network to improve Freenet’s performance [639]. The authors
try to build a network in which most files on one node were ‘close neighbors’,
and only some of the stored files are ‘distant’ files. The notion of distance
d(i, x) used here is given by the hashkey of each file i to a given random seed
x from the key space S. The algorithm works as follows:

1. Each node i chooses a seed s(x) randomly from the key space S when it
joins the system.
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2. When the datastore at a node is full and a new file f with key key(f)
arrives (from either a new insertion of a file or a successful request), the
node finds out from the current datastore the file with key v farthest
from the seed in terms of the distance in the key space S:

dmax(datastore) = max
file g in datastore

d(key(g), x) (6.16)

(a) If d(key(f), s(x)) < dmax cache f and evict v. Create an entry for
f in the routing table. This has the effect of clustering the keys in the
routing table around the seed of the node.
(b) Otherwise, cache f , evict v, and create an entry for f in the rout-
ing table only with a probability p (randomness). This has the effect of
creating a few random shortcuts.

The authors fixed p to 0.03 because this value worked best in the ex-
periments conducted. The procedure is called the Enhanced-clustering Cache
Replacement Scheme and produces routing table entries that resemble small-
worlds in the sense that each node preferentially stores those files that are
near to its own key. The authors show that this small, local improvement is
able to increase the hit ratio significantly, where the hit ratio is defined as
the ratio of the number of successful requests to the total number of requests
made. The approach of Zhang, Goel and Govindan follows quite closely the
original small-world concept of Watts and Strogatz.

Another approach that is more closely related to the Kleinberg small-
worlds is given by a protocol named Symphony [400]. This approach is similar
to the first in that it also relies on a hash-function that assigns each file a
unique key with which it is addressable. The idea is that all nodes are placed
on a circle with unit perimeter and every node is responsible for (stores) all
files with a key equal to or greater than its own key and smaller than the
key of the next node. This part of the circle is its segment of responsibility.
The joining node draws its position on the circle uniformly at random from
the interval [0, 1[ and connects to its next neighbor on each side. In this
property it resembles the Chord protocol, introduced in [575]. Additionally,
every node tries to connect to k randomly drawn nodes. The probability that
a connection with a node responsible for x is established is given by the
following probability distribution:

P (X == x) =
1

x log n
(6.17)

This approach has the problem that the total number of nodes n has to
be known in advance. The authors estimate this value from the length of the
circle each node is responsible for: If all nodes draw their position uniformly
at random, the expected mean length of the segment of responsibility is 1/n.
Averaging these lengths over a set of known nodes, the number of nodes
in the system can be approximated. The probability distribution belongs to
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the family of harmonic distributions (a fact which inspired the name for the
protocol). As in the Kleinberg paper, the actual routing protocol is greedy:
Every message holder sends it to the one node known to have a key next to
the requested file key.

The authors ensure that no node has more than a fixed number k of
(incoming) long range contacts. If, by chance, one node asks to establish a
long-range link to a node that has already reached this number, the latter
will refuse the new connection. The most interesting property of this protocol
is that it shows a trade-off between the number of links a node has and the
expected path length within the network to find a file:

Theorem 6.5.3. Symphony
The expected path length in an n-node network with k = O(1) edges, built
by the Symphony protocol, is inversely proportional to k and proportional to
(log n)2.

This is true whether long-range links are used in one direction only (from the
one building it to the one randomly chosen) or in both directions.

The Symphony approach is elegant and smoothly transforms the idea of
Kleinberg small-worlds to the world of Peer-to-Peer systems. An even more
sophisticated approach was given by Hui, Lui and Yau in [309]. In their
Small-World Overlay Protocol (SWOP), clusters emerge in a self-organized
way. The basic idea is again based on a hash-function and nodes that are
placed on a unit-perimeter circle. Additionally, every node tries to connect
to one random node with the probability distribution in Equation 6.17. Here,
n is the number of clusters in the system.
A new node joining the circle will be the basis for a new cluster if both of its
neighbors are members of a cluster with a maximum size. Otherwise, it will
join the cluster with smaller size and create some intra-cluster connections.
The maximal cluster size is given as a variable of the system and might
be changed dynamically. Each cluster has one designated head node that is
chosen by some periodically repeated voting mechanism. This head node is
responsible for maintaining some ‘long-range’ inter-cluster connections. The
routing protocol is the same greedy protocol used in the other approach: Each
message holder will send the message to the one node known to have a key
next to the requested file key.
The article is mainly concerned with the proper behavior of a protocol in a
flash crowd scenario: These are situations, in which some static or dynamic
object is heavily requested. The example provided by the authors is the crush
on the CNN web server for news documents that was initiated by the 9/11
incident. Here, the news consists not only of static documents but might also
be changing within minutes. A careful distribution within the net can prevent
server crashes.
The idea proposed by the authors is that heavily requested documents should
be copied via the inter-cluster links so that nearly every cluster has its own
copy. This is sufficient in static scenarios, but an additional version number
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has to be maintained if the document is changing. The source node can
then send update messages over the long-range connections to other nodes
holding the copy. The nodes within a cluster can be informed by using local
links. Because of the small-world character of the protocol, the clustering
coefficient of such a system is high and, depending on the cluster size and the
actual value of the clustering coefficient, the update message soon reaches all
members of the cluster.

6.5.3 Scale-Free Overlay Networks in Peer-to-Peer Systems

The most prominent feature of Scale-Free Networks is its fault tolerance
[21, 129]. Since the degree is very heterogeneously distributed in the system,
a random failure will very likely strike one of the nodes with low degree.
These are most often not crucial for the connectivity of the network. It has
been shown [21] that the diameter of the Internet at the autonomous system
level in July, 2000 would not be changed considerably if up to 2.5% of the
routers were removed randomly. This is an order of magnitude larger than
the failure rate.
The authors further compared the fragmentation of random graphs and Scale-
Free Networks. By randomly removing nodes from a random graph the net-
work will soon fragment. For a failure rate of 5% in networks with 10,000
nodes the biggest connected component holds approximately 9,000 nodes.
For a failure rate of 18% there is no biggest connected component any more,
but only components with a size between 1 and 100. For a failure rate of
45% all components have only one or two nodes. For Scale-Free Networks the
story is different: For a failure rate of 5% only some one- or two-node compo-
nents break off the network. For a failure rate of 18%, the biggest connected
component still holds 8,000 nodes with isolated clusters of size 1 to 5. Even
for an unrealistically high failure rate of 45% the large cluster persists and
the size of the broken-off fragments is below 12.
This behavior is desired for most Peer-to-Peer systems because it stabilizes
the network structures in these highly dynamic systems. Fortunately, some of
the protocols in Peer-to-Peer systems generate this favoured network topol-
ogy for free: The idea of Gnutella is that every new node joining the system
first connects to a handful of known servers. Later, it remembers some of
the nodes involved in queries it is interested in. It could be shown that this
behavior leads to pure scale-free or scale-free-like networks [516, 534].
On the other hand, the same scale-free architecture makes a network ex-
tremely vulnerable to attacks [21, 129, 532]: If it is possible to detect the hubs
of the system and to attack them, e.g., with a Denial-of-Service-Attack, the
network is more rapidly fragmented than the corresponding random graph.
This led Keyani, Larson and Senthil to the idea of changing the network
architecture as soon as an attack is detected. With a local protocol, each
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node is enabled to decide whether the loss of a neighbor node is probably
the result of an attack. To do so, the node periodically tries to connect to
its immediate and second degree neighbors (neighbors of neighbors). If, in
time period T , the percentage of lost second degree neighbors is greater than
the percentage of lost direct neighbors and a given threshold P , an attack is
assumed. For this eventuality, every node holds a list of random contacts to
other nodes. This list is collected during normal work, e.g., while receiving
a query or other messages. In case of a detected attack all detecting nodes
establish connections to these nodes, and a random graph is generated. Of
course, for ‘friendly’ times the more robust scale-free network is still favoured
and will be restored after the attack is over.

6.6 Summary

This chapter has presented three prominent network models that are able to
model different aspects of many complex and dynamic networks. First was
the random graph model. It is easy to simulate and many properties can be
analyzed with stochastic methods. It can be a good model for some Peer-to-
Peer systems. Other Peer-to-Peer systems exhibit the so-called small-world
effect: High clustering of nodes that share similar interests and just a few
links between nodes with very different interests. These few ‘long-range’ or
‘short-cut’ links decrease the diameter such that the average path length in
these networks is almost as short as in a random graph with the same number
of nodes and links. Finally, we presented a model that generates scale-free
networks. In these networks the presence of highly connected nodes (‘hubs’)
is much more probable than in random graphs, i.e., the probability of finding
a node P (k) is proportional to k−γ , where γ is a constant.

Small-world networks are interesting for Peer-to-Peer systems because
they provide a good way to structure nodes with similar interests into groups
without losing the small diameter of random graphs. Scale-free networks ex-
hibit a good fault tolerance, but on the other hand, the are extremely vul-
nerable to attacks.

As shown, some authors have already tackled the problem of how de-
sired properties of these three network models can be transmitted to overlay
networks in Peer-to-Peer systems using simple and local protocols. Future
research will have to show which kind of network model is best for build-
ing structured, yet self-organizing overlay networks for Peer-to-Peer systems
that are stable despite dynamic changes and scale nicely under the constantly
increasing number of peers.
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In the last few years, an increasing number of massively distributed systems
with millions of participants has emerged within very short time frames. Ap-
plications, such as instant messaging, file-sharing, and content distribution
have attracted countless numbers of users. For example, Skype gained more
than 2.5 millions of users within twelve months, and more than 50% of In-
ternet traffic is originated by BitTorrent. These very large and still rapidly
growing systems attest to a new era for the design and deployment of dis-
tributed systems [52]. In particular, they reflect what the major challenges
are today for designing and implementing distributed systems: scalability,
flexibility, and instant deployment.

As already defined in Chapter 2, the Peer-to-Peer paradigm relies on
the design and implementation of distributed systems where each system
has (nearly) the same functionality and responsibility. By definition, these
systems have to coordinate themselves in a distributed manner without cen-
tralized control and without the use of centralized services. Thus, scalability
should be an inherent property of Peer-to-Peer systems. Unfortunately, not
all of them have shown this to be true so far. In this chapter, we will demon-
strate this by discussing the lookup problem – a fundamental challenge for all
kinds of massively distributed and Peer-to-Peer systems.

First, we introduce the problem of managing and retrieving data in dis-
tributed systems, compare three basic approaches for this, and show that
some of them do not scale well, even though they are Peer-to-Peer approaches.
As a result, we introduce the promising concept of the Distributed Hash Ta-
ble (DHT) for designing and deploying highly scalable distributed systems.
In this chapter, we focus only on the basic properties and mechanisms of
Distributed Hash Tables; specifics of certain DHT approaches are presented
in the next chapter.

The remainder of this chapter is organized as follows. After discussing
in Section 7.1 general concepts for distributed management and retrieval of
data in Peer-to-Peer systems, the subsequent sections introduce Distributed
Hash Tables, in particular their fundamentals (Section 7.2), the concept of
content-based routing (Section 7.3), and DHT interfaces (Section 7.4). The
next chapter presents specific algorithms of popular DHT approaches, e.g.,
how to organize the address space, and how routing in a Distributed Hash
Table is performed. In Chapter 9, we discuss aspects of reliability and load-
balancing in Distributed Hash Tables.
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I want item „D“.
How can I find „D“?D

I have item „D“.
Where to place „D“?

? ??

Internet nodes participating in the distributed system

distributed system

Node A Node B

data item „D“

Fig. 7.1: The lookup problem: Node A wants to store a data item D in the dis-
tributed system. Node B wants to retrieve D without having prior knowl-
edge of D’s current location. How should the distributed system, espe-
cially data placement and retrieval, be organized (in particular, with
regard to scalability and efficiency)?

7.1 Distributed Management and Retrieval of Data

Peer-to-Peer systems and applications raise many interesting research ques-
tions. Because of the completely decentralized character of Peer-to-Peer sys-
tems, the distributed coordination of resources, such as storage, computa-
tional power, human presence, and connectivity becomes a major challenge
(Section 2.1). In most cases, these challenges can be reduced to a single prob-
lem: Where to store, and how to find a certain data item in a distributed
system without any centralized control or coordination? (Figure 7.1) [52]

The lookup problem can be defined as follows: Some node A wants to store
a data item D in the distributed system. D may be some (small) data item,
the location of some bigger content, or coordination data, e.g., the current
status of A, or its current IP address, etc. Then, we assume some node B
wants to retrieve data item D later. The interesting questions are now:

– Where should node A store data item D?
– How do other nodes, e.g., node B, discover the location of D?
– How can the distributed system1 be organized to assure scalability and

efficiency?

The remainder of this section presents three approaches to answer these
questions and discusses the advantages of drawbacks for each.

1 In the context of Peer-to-Peer systems, the distributed system – the collection
of participating nodes pursuing the same purpose – is often called the overlay
network or overlay system.



7.1 Distributed Management and Retrieval of Data 81

Transmission: D Node B

“Where is D ?”

“A stores D”

Node A

Node B

Server S

“A stores D”

“A stores D”

Fig. 7.2: Central Server: (1) Node A publishes its content on the central server S.
(2) Some node B requests the actual location of a data item D from the
central server S. (3) If existing, S replies with the actual location of D.
(4) The requesting node B transmits the content directly from node A.

7.1.1 Comparison of Strategies for Data Retrieval

This section advocates the use of Distributed Hash Tables by comparing three
basic strategies to store and retrieve data in distributed systems: centralized
servers, flooding search, and distributed indexing.

7.1.2 Central Server

The approach of first generation Peer-to-Peer systems, such as Napster [436],
is to maintain the current locations of data items in a central server. After
joining the Peer-to-Peer system, a participating node submits to the central
server information about the content it stores and/or the services it offers.
Thus, requests are simply directed to the central server that responds to the
requesting node with the current location of the data (Figure 7.2). Thereupon,
the transmission of the located content is organized in a Peer-to-Peer fashion
between the requesting node B and the node storing D.

The server-based approach is common in many application scenarios
and was the major design principle for distributed applications in the past
decades. It has the advantage of retrieving the location of the desired infor-
mation with a search complexity of O(1) – the requester just has to know
the central server. Also, fuzzy and complex queries are possible, since the
server has a global overview of all available content. However, the central
server approach has major drawbacks, which have been become increasingly
evident in recent years. The central server is a critical element within the
whole system concerning scalability and availability. Since all location infor-
mation is stored on a single machine, the complexity in terms of memory
consumption is O(N), with N representing the number of items available in
the distributed system. The server also represents a single point of failure
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& Transmission: D Node B
“I have D ?”

“B searches D”

Node A

Node B

“I store D”

Fig. 7.3: Flooding Search: No routing information is maintained in intermediate
nodes. (1) Node A sends a request for item D to its “neighbors” in the
distributed system. They forward the request to further nodes in a recur-
sive manner (flooding/breadth-first search). (2) Node(s) storing D send
an answer to A, and A transmits D directly from the answering node(s).

and attack. If it fails or becomes unavailable for either of these reasons, the
distributed system – as a whole – is no longer useable.

Overall, the central server approach is best for simple and small applica-
tions or systems with a limited number of participants, since the costs for
data retrieval are in the order of O(1) and the amount of network load (in
proximity of the server) and the necessary storage capacity increase by O(N).
But, scalability and availability are vital properties, especially when systems
grow by some orders of magnitude or when system availability is crucial.
Therefore, more scalable and reliable solutions need to be investigated.

7.1.3 Flooding Search

Distributed systems with a central server are very vulnerable since all requests
rely on the server’s availability and consistency. An opposite approach is pur-
sued by the so-called second generation of Peer-to-Peer systems (cf. Chap-
ter 5.3). They keep no explicit information about the location of data items in
other nodes, other than the nodes actually storing the content. This means
that there is no additional information concerning where to find a specific
item in the distributed system. Thus, to retrieve an item D the only chance
is to ask as much participating nodes as necessary, whether or not they
presently have item D, or not. Second generation Peer-to-Peer systems rely
on this principle and broadcast a request for an item D among the nodes
of the distributed system. If a node receives a query, it floods this message
to other nodes until a certain hop count (Time to Live – TTL) is exceeded.
Often, the general assumption is that content is replicated multiple times in
the network, so a query may be answered in a small number of hops.
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Fig. 7.4: Comparison of complexity in terms of search effort (y-axis) and storage
cost per node (x-axis). Bottlenecks and special characteristics of each
approach are named.

A well-known example of such an application is Gnutella [249], which is
described in more detail in Section 3.4. Gnutella includes several mechanisms
to avoid request loops, but it is obvious that such a broadcast mechanism
does not scale well. The number of messages and the bandwidth consumed
is extremely high and increases more than linearly with increasing numbers
of participants. In fact, after the central server of Napster was shut down in
July 2001 due to a court decision [438], an enormous number of Napster users
migrated to the Gnutella network within a few days, and under this heavy
network load the system collapsed (Section 3.4).

The advantage of flooding-based systems, such as Gnutella, is that there
is no need for proactive efforts to maintain the network. Also, unsharp queries
can be placed, and the nodes implicitly use proximity due to the expanding
search mechanism. Furthermore, there is are efforts to be made when nodes
join or leave the network.

But still, the complexity of looking up and retrieving a data item is O(N2),
or even higher, and search results are not guaranteed, since the lifetime of
request messages is restricted to a limited number of hops. On the other
hand, storage cost is in the order of O(1) because data is only stored in the
nodes actually providing the data – whereby multiple sources are possible –
and no information for a faster retrieval of data items is kept in intermediate
nodes.

Overall, flooding search is an adequate technique for file-sharing-like pur-
poses and complex queries.
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I want D !
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Fig. 7.5: Distributed Hash Table: The nodes in the distributed system organize
themselves in a structured overlay and establish a small amount of rout-
ing information for quick and efficient routing to other overlay nodes.
(1) Node A sends a request for item D to an arbitrary node of the DHT.
(2) The request is forwarded according to DHT routing with O(logN)
hops to the target node. (3) The target node sends D to node A.

7.1.4 Distributed Indexing – Distributed Hash Tables

Both central servers and flooding-based searching exibit crucial bottlenecks
that contradict the targeted scalability and efficiency of Peer-to-Peer systems.
Indeed, central servers disqualify themselves with a linear complexity for
storage because they concentrate all references to data and nodes in one single
system. Flooding-based approaches avoid the management of references on
other nodes and, therefore, they require a costly breadth-first search which
leads to scalability problems in terms of the communication overhead.

A better solution for the lookup problem should avoid these drawbacks
and should enable scalability by finding the golden path between both ap-
proaches (Figure 7.4). In this case, scalability is defined as follows: the search
and storage complexity per node should not increase significantly – by means
not more than O(logN), even if the system grows by some orders of magni-
tude.

Distributed Indexing, most often in the form of Distributed Hash Tables,
promises to be a suitable method for this purpose. In the realm of Peer-to-
Peer systems, these approaches are also often called structured Peer-to-Peer
systems because of their structured and proactive procedures. Distributed
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Hash Tables provide a global view of data distributed among many nodes,
independent of the actual location. Thereby, location of data depends on the
current DHT state and not intrinsically on the data.

Overall, Distributed Hash Tables posses the following characteristics:

– In contrast to unstructured Peer-to-Peer systems, each DHT node manages
a small number of references to other nodes. By means these are O(log N)
references, where N depicts the number of nodes in the system.

– By mapping nodes and data items into a common address space, routing
to a node leads to the data items for which a certain node is responsible.

– Queries are routed via a small number of nodes to the target node. Because
of the small set of references each node manages, a data item can be located
by routing via O(log N) hops. The initial node of a lookup request may be
any node of the DHT.

– By distributing the identifiers of nodes and data items nearly equally
throughout the system, the load for retrieving items should be balanced
equally among all nodes.

– Because no node plays a distinct role within the system, the formation of
hot spots or bottlenecks can be avoided. Also, the departure or dedicated
elimination of a node should have no considerable effects on the function-
ality of a DHT. Therefore, Distributed Hash Tables are considered to be
very robust against random failures and attacks.

– A distributed index provides a definitive answer about results. If a data
item is stored in the system, the DHT guarantees that the data is found.

7.1.5 Comparison of Lookup Concepts

The following table compares again the main characteristics of the presented
approaches in terms of complexity, vulnerability and query ability. Accord-
ing to their complexity in terms of communication overhead, per node state
maintenance, and their resilience, Distributed Hash Tables show the best per-
formance unless complex queries are not vital. For fuzzy or complex query
patterns, unstructured Peer-to-Peer systems are still the best option.

System Per Node Communication Fuzzy Robust-
State Overhead Queries ness

Central Server O(N) O(1) � ×
Flooding Search O(1) ≥ O(N2) � �
Distributed Hash Table O(log N) O(log N) × �

Table 7.1: Comparison of central server, flooding search, and distributed indexing.
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7.2 Fundamentals of Distributed Hash Tables

This section introduces the fundamentals of Distributed Hash Tables, such
as data management, principles of routing, and maintenance mechanisms.
Chapter 8 provides a detailed explanation of several selected Distributed
Hash Table approaches.

7.2.1 Distributed Management of Data

A Distributed Hash Table manages data by distributing it across a number
of nodes and implementing a routing scheme which allows one to efficiently
look up the node on which a specific data item is located. In contrast to
flooding-based searches in unstructured systems, each node in a DHT be-
comes responsible for a particular range of data items. Also, each node stores
a partial view of the whole distributed system which effectively distributes
the routing information. Based on this information, the routing procedure
typically traverses several nodes, getting closer to the destination with each
hop, until the destination node is reached.

Thus, Distributed Hash Tables follow a proactive strategy for data re-
trieval by structuring the search space and providing a deterministic routing
scheme. In comparison, the routing information in unstructured systems is
not related to the location of specific data items but only reflects connec-
tions between nodes. This reactive strategy results in queries being flooded
on demand throughout the network because routing cannot be directed to-
wards the lookup target. With a centralized system, the lookup strategy is
implicit: routing a query (above the IP level) is unnecessary since the lookup
procedure itself is confined to a single system.

7.2.2 Addressing in Distributed Hash Tables

Distributed Hash Tables introduce new address spaces into which data is
mapped. Address spaces typically consist of large integer values, e.g., the
range from 0 to 2160−1. Distributed Hash Tables achieve distributed indexing
by assigning a contiguous portion of the address space to each participating
node (Figure 7.6). Given a value from the address space, the main operation
provided by a DHT system is the lookup function, i.e., to determine the node
responsible for this value.

Distributed Hash Table approaches differ mainly in how they internally
manage and partition their address space. In most cases, these schemes lend
themselves to geometric interpretations of address spaces. As a simple ex-
ample, all mathematical operations on the address space could be performed
modulo its number of elements, yielding a ring-like topology.
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In a DHT system, each data item is assigned an identifier ID, a unique
value from the address space. This value can be chosen freely by the applica-
tion, but it is often derived from the data itself via a collision-resistant hash
function, such as SHA-1 [207]. For example, the ID of a file could be the
result of hashing the file name or the complete binary file. Thus, the DHT
would store the file at the node responsible for the portion of the address
space which contains the identifier.

The application interfaces of Distributed Hash Tables abstract from these
details and provide simple but generic operations. Based on the lookup func-
tion, most DHTs also implement a storage interface similar to a hash table.
Thus, the put function accepts an identifier and arbitrary data (e.g., the hash
value of a file and the file contents) to store the data (on the node responsible
for the ID). This identifier and the data is often referred to as (key,value)-
tuple. Symmetrically, the get function retrieves the data associated with a
specified identifier.

With this generic interface and the simple addressing scheme, Distributed
Hash Tables can be used for a wide variety of applications. Applications are
free to associate arbitrary semantics with identifiers, e.g., hashes of search
keywords, database indexes, geographic coordinates, hierarchical directory-
like binary names, etc. Thus, such diverse applications as distributed file
systems, distributed databases, and routing systems have been developed on
top of DHTs (see Chapters 11 and 12) [526, 367, 574, 373].

Most DHT systems attempt to spread the load of routing messages and
of storing data on the participating nodes evenly (Chapter 9) [513, 450].
However, there are at least three reasons why some nodes in the system may
experience higher loads than others: a node manages a very large portion of
the address space, a node is responsible for a portion of the address space with
a very large number of data items, or a node manages data items which are
particularly popular. Under these circumstances, additional load-balancing
mechanisms can help to spread the load more evenly over all nodes. For
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example, a node may transfer responsibility for a part of its address space to
other nodes, or several nodes may manage the same portion of address space.
Chapter 9 discusses load-balancing schemes in more detail.

7.2.3 Routing

Routing is a core functionality of Distributed Hash Tables. Based on a routing
procedure, messages with their destination IDs are delivered to the DHT node
which manages the destination ID. Thus, it is the routing algorithms of DHTs
which solve the lookup problem.

Existing DHT systems implement a large variety of approaches to routing.
However, the fundamental principle is to provide each node with a limited
view of the whole system by storing on it a bounded number of links to
other nodes. When a node receives a message for a destination ID it is not
responsible for itself, it forwards the message to one of these other nodes.
This process is repeated recursively until the destination node is found.

The choice of the next-hop node is determined by the routing algorithm
and the routing metric. A typical metric is that of numeric closeness: mes-
sages are always forwarded to the node managing the identifiers numerically
closest to the destination ID of the message. Ideally, such a scheme reliably
routes a message to its destination in a small number of hops. Obviously, it is
challenging to design routing algorithms and metrics such that node failures
and incorrect routing information have limited or little impact on routing
correctness and system stability.
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Fig. 7.8: Two methods of storing data in Distributed Hash Tables.

7.2.4 Data Storage

There are two possibilities for storing data in a Distributed Hash Table.
In a Distributed Hash Table which uses direct storage, the data is copied
upon insertion to the node responsible for it (Figure 7.8(a)). The advantage
is that the data is located directly in the Peer-to-Peer system and the node
which inserted it can subsequently leave the DHT without the data becoming
unavailable. The disadvantage is the overhead in terms of storage and network
bandwidth. Since nodes may fail, the data must be replicated to several nodes
to increase its availability. Additionally, for large data, a huge amount of
storage is necessary on every node.

The other possibility is to store references to the data. The inserting node
only places a pointer to the data into the Distributed Hash Table. The data
itself remains on this node, leading to reduced load in the DHT (Figure
7.8(a)). However, the data is only available as long as the node is available.

In both cases, the node using the Distributed Hash Table for lookup pur-
poses does not have to be part of the Distributed Hash Table in order to use
its services. This allows to realize a DHT service as third-party infrastructure
service, such as the OpenDHT Project [511].

7.3 DHT Mechanisms

Storage and retrieval of distributed data is the main purpose of Distributed
Hash Tables. In this section, common mechanisms for the management of
data and nodes in Distributed Hash Tables are discussed. These tasks address
the insertion and retrieval of data and the arrival, departure, and failure of
nodes.
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7.3.1 Overview

To store or access data in a Distributed Hash Table, a node first needs to join
it. The arrival of new nodes leads to changes in the DHT infrastructure, to
which the routing information and distribution of data needs to be adapted.
At this stage, the new node can insert data items into the Distributed Hash
Table and retrieve data from it. In case a node fails or leaves the system, the
DHT needs to detect and adapt to this situation.

7.3.2 Node Arrival

It takes four steps for a node to join a Distributed Hash Table. First, the
new node has to get in contact with the Distributed Hash Table. Hence, with
some bootstrap method it gets to know some arbitrary node of the DHT. This
node is used as an entry point to the DHT until the new node is an equivalent
member of the DHT. Then, the new node needs to be assigned a partition
in the logical address space. Depending on the DHT implementation, a node
may choose arbitrary or specific partitions on its own or it determines one
based on the current state of the system. Third, the routing information in
the system needs to be updated to reflect the presence of the new node.
Fourth, the new node retrieves all (key, value) pairs under its responsibility
from the node that stored them previously.

7.3.3 Node Failure

Node failures must be assumed to occur frequently in distributed systems
consisting of many unreliable and often poorly connected desktop machines.
Thus, all non-local operations in a Distributed Hash Table need to resist
failures of other nodes. This reflects the self-organizing design of DHT algo-
rithms. They have to be designed to always fulfill their purpose and deal with
all likely events and disruptions that may happen.

For example, routing and lookup procedures are typically designed to use
alternative routes towards the destination when a failed node is encountered
on the default route. This is an example of reactive recovery, i.e., a fault is
handled during a regular DHT operation. Many Distributed Hash Tables also
feature proactive recovery mechanisms, e.g., to maintain their routing infor-
mation. Consequently, they periodically probe other nodes to check whether
these nodes are still operational. If they are not, the corresponding routing
entry is replaced with a working node.

Furthermore, node failures lead to a re-partitioning of the DHT’s ad-
dress space. This may in turn require (key, value)-pairs to be moved be-
tween nodes and additional maintenance operations such as adaptation to
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Fig. 7.9: Interface of a Distributed Hash Table. With a simple put-/textsfget-
interface, the DHT simply abstracts from the distribution of data among
nodes.

new load-balancing requirements. When a node fails, the application data
that it stored is lost unless the Distributed Hash Table uses replication to
keep multiple copies on different nodes. Some Distributed Hash Tables fol-
low the simpler soft-state approach which does not guarantee persistence of
data. Data items are pruned from the Distributed Hash Table unless the
application refreshes them periodically. Therefore, a node failure leads to a
temporary loss of application data until the data is refreshed.

7.3.4 Node Departure

In principle, nodes which voluntarily leave a Distributed Hash Table could
be treated the same as failed nodes. However, DHT implementations often
require departing nodes to notify the system before leaving. This allows other
nodes to copy application data from the leaving node and to immediately up-
date their routing information leading to improved routing efficiency. When
triggered explicitly, replication and load-balancing mechanisms can also work
more efficiently and reliably.

7.4 DHT Interfaces

There are two angles from which the functionality of Distributed Hash Tables
can be viewed: they can be interpreted as routing systems or as storage
systems. The first interpretation focuses on the delivery of packets to nodes
in a DHT based on a destination ID. In the second, a Distributed Hash Table
appears as a storage system similar to a hash table. These notions are reflected
in the interface that a Distributed Hash Table provides to applications.
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7.4.1 Routing Interface

Routing in a Distributed Hash Table is performed in the logical address space
which is partitioned among the participating nodes. Any identifier from the
address space can serve as a destination address for a message. Thus, the
functionality provided by the DHT is to forward a message for an ID to the
node which is responsible for this identifier.

An interface with two primitives suffices to build distributed applications
on this foundation. The send primitive accepts a destination ID and a message
and delivers the message from an arbitrary node in the system to the node
which manages the destination ID. The receive primitive passes incoming
messages and their destination identifiers to the application on the receiving
node.

All other details of DHT management, such as node arrival and departure
or repair mechanisms, are implemented by the Distributed Hash Table itself
and are not exposed to the application. This generic, stateless interface imple-
ments little functionality but leaves a lot of flexibility to the application de-
sign. In particular, the storage and retrieval of data including load-balancing
strategies can be implemented on top of the routing interface.

7.4.2 Storage Interface

As a storage system, a Distributed Hash Table implements an interface for
persistently storing and reliably retrieving data in a distributed manner. On
each node, the application interface provides the two main primitives of a
hash table. The put primitive takes a (key, value) pair and stores it on the
node responsible for the identifier key. Similarly, the get primitive accepts an
identifier and returns the value associated with the specified identifier.

The implementation of this interface adds to a Distributed Hash Table
another level of complexity beyond correct and efficient routing. The storage
layer needs to deal with routing failures, prevent data loss from node failure
through replication, achieve load-balancing, provide accounting and admis-
sion control, etc. DHT implementations use different solutions to address
these problems as described in Chapter 8.

7.4.3 Client Interface

Given the above interfaces, a node can only utilize its primitives after joining
a Distributed Hash Table. However, a distributed system can also be struc-
tured such that the nodes participating in the DHT make available the DHT
services to other, non-participating hosts. In such an environment, these hosts
act as clients of the DHT nodes. This setup can be desirable where, for ex-
ample, the Distributed Hash Table is run as an infrastructure service on a
dedicated set of nodes for increased reliability. The interface between clients
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and DHT nodes is also well-suited to realize access control and accounting
for services available on the Distributed Hash Table. Note that this interface
can itself be implemented as an application on top of the DHT routing or
storage layer.

7.5 Conclusions

Distributed Hash Tables provide an efficient layer of abstraction for routing
and managing data in distributed systems. By spreading routing information
and data across multiple nodes, the scalability issues of centralized systems
are avoided while data retrieval is significantly more efficient than in unstruc-
tured Peer-to-Peer networks. Also, the generic interface of Distributed Hash
Tables supports a wide spectrum of applications and uses.

DHT implementations, such as those discussed in Chapter 8, focus on
different conceptual and functional aspects. This is reflected in their different
properties, such as scalability, routing latency, fault tolerance, and adaptabil-
ity. Since the design of a Distributed Hash Table has to meet several, often
conflicting, goals, each system exhibits its own strengths and weaknesses in
different application scenarios.

Among these design challenges are:

– Routing efficiency: The latency of routing and lookup operations is in-
fluenced by the topology of the address space, the routing algorithm, the
number of references to other nodes, the awareness of the IP-level topology,
etc.

– Management overhead: The costs of maintaining the Distributed Hash Ta-
ble under no load depend on such factors as the number of entries in routing
tables, the number of links to other nodes, and the protocols for detecting
failures.

– Dynamics: A large number of nodes joining and leaving a Distributed Hash
Table – often referred to as “churn” – concurrently puts particular stress
on the overall stability of the system, reducing routing efficiency, incurring
additional management traffic, or even resulting in partitioned or defective
systems.

Distributed Hash Tables also face fundamental challenges related to the
principle of distributed indexing. For example, it is not clear how Distributed
Hash Tables can operate reliably in an untrusted environment with Byzantine
faults, i.e., when participating nodes are non-cooperative or malicious and
damage the system. Furthermore, data retrieval in Distributed Hash Tables is
based on numeric identifiers. Thus, query metrics based on tokens of strings or
any other arbitrary data as well as fuzzy searches are very difficult to achieve
efficiently. Among others, it is these challenges that will drive research in the
area of Distributed Hash Tables in the future.
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Several different approaches to realizing the basic principles of DHTs have
emerged over the last few years. Although they rely on the same fundamental
idea, there is a large diversity of methods for both organizing the identifier
space and performing routing. The particular properties of each approach
can thus be exploited by specific application scenarios and requirements.

This overview focuses on the three DHT systems that have received the
most attention in the research community: Chord, Pastry, and Content Ad-
dressable Networks (CAN). Furthermore, the systems Symphony, Viceroy,
and Kademlia are discussed because they exhibit interesting mechanisms and
properties beyond those of the first three systems.

8.1 Chord

The elegance of the Chord algorithm, published by Stoica et al. [575] in
2001, derives from its simplicity. The keys of the DHT are l-bit identifiers,
i.e., integers in the range [0, 2l − 1]. They form a one-dimensional identifier
circle modulo 2l wrapping around from 2l − 1 to 0.

8.1.1 Identifier Space

Each data item and node is associated with an identifier. An identifier of
a data item is referred to as a key, that of a node as an ID. Formally, the
(key, value) pair (k, v) is hosted by the node whose ID is greater than or
equal to k. Such a node is called the successor of key k. Consequently, a node
in a Chord circle with clockwise increasing IDs is responsible for all keys that
precede it counter-clockwise.

Figure 8.1 illustrates an initialized identifier circle with l = 6, i.e., 26 = 64
identifiers, ten nodes and seven data items. The successor of key K5, i.e.,
the node next to it clockwise, is node N8 where K5 is thus located. K43’s
successor is N43 as their identifiers are equal. The circular structure modulo
26 = 64 results in K61 being located on N8.

R. Steinmetz and K. Wehrle (Eds.): P2P Systems and Applications, LNCS 3485, pp. 95-117, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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Fig. 8.1: A 6-bit Chord identifier space. Dotted lines indicate which nodes host
which keys. Black lines represent the fingers of node N8.

8.1.2 Routing

Given a Chord identifier circle, all identifiers are well-ordered and keys and
nodes are uniquely associated. Thus, each (key, value) pair is located and
managed on a single, well-defined node. The DHT is formed by the set of
all (key, value) pairs on all nodes of an identifier circle. The key to efficient
lookup and modification operations on this data is to quickly locate the node
responsible for a particular key.

For a very simple routing algorithm, only very little per-node state is re-
quired. Each node needs to store its successor node on the identifier circle.
When a key is being looked up, each node forwards the query to its successor
in the identifier circle. One of the nodes will determine that the key lies be-
tween itself and its successor. Thus, the key must be hosted by this successor.
Consequently, the successor is communicated as the result of the query back
to its originator.

This inefficient form of key location involves a number of messages linear
to the number of nodes on the identifier circle. Chord utilizes additional per-
node state for more scalable key lookups.

Each node maintains a routing table, the finger table (cf. Figure 8.1),
pointing to other nodes on the identifier circle. Given a circle with l-bit
identifiers, a finger table has a maximum of l entries. On node n, the table
entry at row i identifies the first node that succeeds n by at least 2i−1, i.e.,
successor(n + 2i−1), where 1 ≤ i ≤ l. In Figure 8.1, for example, the second
finger of node N8 (8+21 = 10) is node N10 and the third finger (8+22 = 12)
is node N15. The first finger of a node is always its immediate successor on
the identifier circle.

As a finger table stores at most l entries, its size is independent of the
number of keys or nodes forming the DHT. Each finger entry consists of
a node ID, an IP address and port pair, and possibly some book-keeping
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information. Even for large identifiers, e.g., l = 256, this is a relatively small
amount of data per node which can be efficiently managed and searched. The
routing information from finger tables provides information about nearby
nodes and a coarse-grained view of long-distance links at intervals increasing
by powers of two.

The Chord routing algorithm exploits the information stored in the finger
table of each node. A node forwards queries for a key k to the closest pre-
decessor of k on the identifier circle according to its finger table. When the
query reaches a node n such that k lies between n and the successor of n on
the identifier circle, node n reports its successor as the answer to the query.

Thus, for distant keys k, queries are routed over large distances on the
identifier circle in a single hop. Furthermore, the closer the query gets to
k, the more accurate the routing information of the intermediate nodes on
the location of k becomes. Given the power-of-two intervals of finger IDs,
each hop covers at least half of the remaining distance on the identifier circle
between the current node and the target identifier. This results in an average
of O(log(N)) routing hops for a Chord circle with N participating nodes. For
example, a Chord network with 1000 nodes forwards queries, on average, in
roughly O(10) steps. In their experiments, Stoica et al. show that the average
lookup requires 1

2 log(N) steps.

8.1.3 Self-Organization

The Chord system described so far also needs to allow for nodes joining and
leaving the system as well as to deal with node failures.

Node Arrivals

In order to join a Chord identifier circle, the new node first determines some
identifier n. The original Chord protocol does not impose any restrictions on
this choice. For example, n could be set at random assuming that the prob-
ability for collisions with existing node IDs is low in a identifier space large
enough. There have been several proposals to restrict node IDs according to
certain criteria, e.g., to exploit network locality or to avoid identity spoofing.

For the new node n, another node o must be known which already par-
ticipates in the Chord system. By querying o for n’s own ID, n retrieves its
successor. It notifies its successor s of its presence leading to an update of
the predecessor pointer of s to n. Node n then builds its finger by iteratively
querying o for the successors of n + 21, n + 22, n + 23, etc. At this stage, n
has a valid successor pointer and finger table. However, n does not show up
in the routing information of other nodes. In particular, it is not known to
its predecessor as its new successor since the lookup algorithm is not apt to
determine a node’s predecessor.
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Stabilization Protocol

Chord introduces a stabilization protocol to validate and update successor
pointers as nodes join and leave the system. Stabilization requires an addi-
tional predecessor pointer and is performed periodically on every node. The
stabilize() function on a node k requests the successor of k to return its
predecessor p. If p equals k, k and its successor agree on being each other’s
respective predecessor and successor. The fact that p lies between k and its
successor indicates that p recently joined the identifier circle as k’s successor.
Thus, node k updates its successor pointer to p and notifies p of being its
predecessor.

With the stabilization protocol, the new node n does not actively de-
termine its predecessor. Instead, the predecessor itself has to detect and fix
inconsistencies of successor and predecessor pointers using stabilize(). Af-
ter node n has thus learnt of its predecessor, it copies all keys it is responsible
for, i.e., keys between predecessor(n) and n, while the predecessor of n re-
leases them.

At this stage, all successor pointers are up to date and queries can be
routed correctly, albeit slowly. Since the new node n is not present in the
finger tables of other nodes, they forward queries to the predecessor of n
even if n would be more suitable. Node n’s predecessor then needs to forward
the query to n via its successor pointer. Multiple concurrent node arrivals
may lead to several linear forwardings via successor pointers.

The number of nodes whose finger table needs to be updated is in the
order of O(log(N)) in a system with N nodes. Based on the layout of a
finger table, a new node n can identify the nodes with outdated finger tables
as predecessor(n − 2i−1) for 1 < i ≤ l. However, the impact of outdated
finger tables on lookup performance is small, and in the face of multiple node
arrivals, the finger table updates would be costly. Therefore, Chord prefers to
update finger tables lazily. Similar to the stabilize() function, each node
n runs the fix fingers() function periodically. It picks a finger randomly
from the finger table at index i (1 < i ≤ l) and looks it up to find the true
current successor of n + 2i−1.

Node Failures

Chord addresses node failures on several levels. To detect node failures, all
communication with other nodes needs to be checked for timeouts. When a
node detects a failure of a finger during a lookup, it chooses the next best
preceding node from its finger table. Since a short timeout is sufficient, lookup
performance is not significantly affected in such a case. The fix fingers()
function ensures that failed nodes are removed from the finger tables. To
expedite this process, fix fingers() can be invoked specifically on a failed
finger.
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It is particularly important to maintain the accuracy of the successor
information as the correctness of lookups depends on it. If, for example, the
first three nodes in the finger table of node n fail simultaneously, the next live
finger f might not be the true live successor s. Thus, node n would assume
that a certain key k is located at f although it is located at s and would
accordingly send incorrect replies to queries for k. The stabilization protocol
can fail in a similar fashion when multiple nodes fail, even if live fingers are
used as backups for failed successors.

To maintain a valid successor pointer in the presence of multiple simul-
taneous node failures, each node holds a successor list of length r. Instead of
just a single successor pointer, it contains a node’s first r successors. When
a node detects the failure of its successor, it reverts to the next live node
in its successor list. During stabilize(), a successor list with failed nodes
is repaired by augmenting it with additional successors from a live node in
the list. The Chord ring is affected only if all nodes from a successor list fail
simultaneously.

The failure of a node not only means that it becomes unreachable but also
that the data it managed is no longer available. Data loss from the failure of
individual nodes can be prevented by replicating the data to other nodes. In
Chord, the successor of a failed node becomes responsible for the keys and
data of the failed node. Thus, an application utilizing Chord ideally replicates
data to successor nodes. Chord can use the successor list to communicate this
information and possible changes to the application.

Node Departures

Treating nodes that voluntarily leave a Chord network like failed ones does
not affect the stability of the network. Yet it is inefficient because the failure
needs to be detected and rectified. Therefore, a leaving node should transfer
its keys to its successor and notify its successor and predecessor. This ensures
that data is not lost and that the routing information remains intact.

8.2 Pastry

The Pastry distributed routing system was proposed in 2001 by Rowstron and
Druschel [527]. Similar to Chord, its main goal is to create a completely de-
centralized, structured Peer-to-Peer system in which objects can be efficiently
located and messages efficiently routed. Instead of organizing the identifier
space as a Chord-like ring, the routing is based on numeric closeness of iden-
tifiers. In their work, Rowstron and Druschel focus not only on the number
of routing hops, but also on network locality as factors in routing efficiency.
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Fig. 8.2: A 4-bit Pastry identifier space with six keys mapped onto five nodes.
Numeric closeness is an ambiguous metric for assigning keys to nodes as
illustrated for key K22.

8.2.1 Identifier Space

In Pastry, nodes and data items uniquely associate with l-bit identifiers, i.e.,
integers in the range of 0 to 2l−1 (l is typically 128). Under such associations,
an identifier is termed a node ID or a key, respectively. Pastry views identifiers
as strings of digits to the base 2b where b is typically chosen to be 4. A key
is located on the node to whose node ID it is numerically closest.

Figure 8.2 illustrates a Pastry identifier space with 4-bit identifiers and
b = 2, so all numbers are to the base of 4. The closest node to, e.g., key
K01 is N01, whereas K03 is located on node N10. The distances of key K22
to node N21 and N23 are equal so both nodes host this key to satisfy the
requirements.

8.2.2 Routing Information

Pastry’s node state is divided into three main elements. The routing table,
similar to Chord’s finger table, stores links into the identifier space. The
leaf set contains nodes which are close in the identifier space (like Chord’s
successor list). Nodes that are close together in terms of network locality are
listed in the neighborhood set.

Pastry measures network locality based on a given scalar network proxim-
ity metric. This metric is assumed to be already available from the network
infrastructure and might range from IP hops to actual the geographical lo-
cation of nodes.
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Fig. 8.3: Pastry node state for the node 103220 in a 12-bit identifier space and a
base of 4 (l = 12, b = 2). The routing table lists nodes with the length
of the common node identifier prefix corresponding to the row index.

Routing Table

A Pastry node’s routing table R (see Figure 8.3) is made up of l
b rows with

2b − 1 entries per row (an additional column in Figure 8.3 also lists the
digits of the local node ID for clarity). On node n, the entries in row i hold
the identities of Pastry nodes whose node IDs share an i-digit prefix with n
but differ in digit n itself. For example, the first row of the routing table is
populated with nodes that have no prefix in common with n. When there
is no node with an appropriate prefix, the corresponding table entry is left
empty.

Routing tables built according to the Pastry scheme achieve an effect
similar to Chord finger tables. A node has a coarse-grained knowledge of
other nodes which are distant in the identifier space. The detail of the routing
information increases with the proximity of other nodes in the identifier space.
Without a large number of nearby nodes, the last rows of the routing table
are only sparsely populated. Intuitively, the identifier space would need to be
fully exhausted with node IDs for complete routing tables on all nodes. In
a system with N nodes, only log2b(N) routing table rows are populated on
average.

In populating the routing table, there is a choice from the set of nodes
with the appropriate identifier prefix. During the routing process, network
locality can be exploited by selecting nodes which are close in terms of a
network proximity metric.

Leaf Set

The routing table sorts node IDs by prefix. To increase lookup efficiency, the
leaf set L of node n holds the |L| nodes numerically closest to n. The routing



102 8. Selected DHT Algorithms

table and the leaf set are the two sources of information relevant for routing.
The leaf set also plays a role similar to Chord’s successor lists in recovering
from failures of adjacent nodes.

Neighborhood Set

Instead of numeric closeness, the neighborhood set M is concerned with nodes
that are close to the current node with regard to the network proximity
metric. Thus, it is not involved in routing itself but in maintaining network
locality in the routing information.

8.2.3 Routing Procedure

Routing in Pastry is divided into two main steps. First, a node checks whether
the key k is within the range of its leaf set. If this is the case, it implies that k
is located on one of the nearby nodes of the leaf set. Thus, the node forwards
the query to the leaf set node numerically closest to k. In case this is the
node itself, the routing process is finished.

If k does not fall into the range of leaf set nodes, the query needs to be
forwarded over a longer distance using the routing table. In this case, a node
n tries to pass the query on to a node which shares a longer common prefix
with k than n itself. If there is no such entry in the routing table, the query
is forwarded to a node which shares a prefix with k of the same length as n
but which is numerically closer to k than n.

For example, a node with a routing table as in Figure 8.3 would send a
query for key 103200 on to node 103210 as it is the leaf set node closest to
the key. Since the leaf set holds the closest nodes, the key is known to be
located on that node. A query for key 102022, although numerically closer to
node 101203, is forwarded to node 102303 since it shares the prefix 102 with
the key (in contrast to 10 as the current node does). For key 103000, there is
no routing table entry with a longer common prefix than the current node.
Thus the current node routes the query to node 103112 which has the same
common prefix 103 but is numerically closer than the current node.

This scheme ensures that routing loops do not occur because the query
is routed strictly to a node with a longer common identifier prefix than the
current node, or to a numerically closer node with the same prefix.

8.2.4 Self-Organization

In practice, Pastry needs to deal with node arrivals, departures, and failures,
while, at the same time, maintaining good routing performance if possible.
This section describes how Pastry achieves these goals.
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Node Arrival

Before joining a Pastry system, a node chooses a node ID. Pastry itself allows
arbitrary node IDs, but applications may have more restrictive requirements.
Commonly, a node ID is formed as the hash value of a node’s public key or
IP address.

For bootstrapping, the new node n is assumed to know a nearby Pastry
node k based on the network proximity metric. Now n needs to initialize its
node, i.e., its routing table, leaf and neighborhood set. Since k is assumed to
be close to n, the nodes in k’s neighborhood set are reasonably good choices
for n, too. Thus, n copies the neighborhood set from k.

To build its routing table and leaf set, n needs to retrieve information
about the Pastry nodes which are close to n in the identifier space. To do
this, n routes a special “join” message via k to a key equal to n. According
to the standard routing rules, the query is forwarded to node c with the
numerically closest node ID. Due to this property, the leaf set of c is suitable
for n, so it retrieves c’s leaf set for itself.

The join request triggers all nodes, which forwarded the request towards
c, to provide n with their routing information. Node n’s routing table is
constructed from the routing information of these nodes starting at row zero.
As this row is independent of the local node ID, n can use the entries at row
zero of k’s routing table. In particular, it is assumed that n and k are close
in terms of the network proximity metric. Since k stores nearby nodes in its
routing table, these entries are also close to n. In the general case of n and k
not sharing a common prefix, n cannot re-use entries from any other row in
k’s routing table.

The route of the join message from n to c leads via nodes v1...vn with
increasingly longer common prefixes of n and vi. Thus, row 1 from the routing
table of node v1 is also a good choice for the same row of the routing table of
n. The same is true for row 2 on node v2 and so on. Based on this information,
the routing table can be constructed for node n.

Finally, the new node sends its node state to all nodes in its routing
data. These nodes can update their own routing information accordingly. In
contrast to the lazy updates in Chord, this mechanism actively updates the
state in all affected nodes when a new node joins the system. At this stage,
the new node is fully present and reachable in the Pastry network.

The arrival and departure of nodes affects only a relatively small number
of nodes in a Pastry system. Consequently, the state updates from multiple
such operations rarely overlap and there is little contention. Thus, Pastry uses
the following optimistic time-stamp-based approach to avoid major inconsis-
tencies of node state: the state a new node receives is time-stamped. After
the new node initializes its own internal state, it announces its state back
to the other nodes including the original time-stamps. If the time-stamps do
not match on the other nodes, they request the new node to repeat the join
procedure.
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Node Failure

Node failure is detected when a communication attempt with another node
fails. Routing requires contacting nodes from the routing table and leaf set,
resulting in lazy detection of failures. Since the neighborhood set is not in-
volved in routing, Pastry nodes periodically test the liveness of the nodes in
their neighborhood sets.

During routing, the failure of a single node in the routing table does not
significantly delay the routing process. The local node can choose to forward
the pending query to a different node from the same row in the routing table.
Alternatively, a node could store backup nodes with each entry in the routing
table.

Failed nodes need to be evicted from the routing table to preserve routing
performance and correctness. To replace a failed node at entry i in row j of
its routing table (Ri

j), a node contacts another node referenced in row i.
Entries in the same row j of the the remote node are valid for the local node.
Hence it can copy entry Ri

j from the remote node to its own routing table
after verifying the liveness of the entry. In case it failed as well, the local
node can probe the other nodes in row j for entry Ri

j . If no live node with
the appropriate node ID prefix can be obtained in this way, the local node
expands its horizon by querying nodes from the preceding row Rj−1. With
very high probability, this procedure eventually finds a valid replacement for
the failed routing table entry Ri

j , if one exists.
Repairing a failed entry in the leaf set L of a node is straightforward by

utilizing the leaf sets of other nodes referenced in the local leaf set. The node
contacts the leaf set entry with the largest index on the side of the failed
node in order to retrieve the remote leaf set L′. If this node is unavailable,
the local node can revert to leaf set entries with smaller indices. Since the
entries in L′ and L are close to each other in the identifier space and overlap,
the node selects an appropriate replacement node from L′ and adds it to its
own leaf set. In the event that the replacement entry failed as well, the node
again requests the leaf sets of other nodes from its local leaf set. For this
procedure to be unsuccessful, |L|

2 adjacent nodes need to fail simultaneously.
The probability of such a circumstance can be kept low even with modest
values of |L|.

Nodes recover from node failures in their neighborhood sets in a fashion
similar to repairing the leaf set. However, failures cannot be detected lazily
since the nodes in the neighborhood set are not contacted regularly for rout-
ing purposes. Therefore, each node periodically checks the liveness of nodes
in its neighborhood set. When a node failure is detected, a node consults
the neighborhood sets of other neighbor nodes to determine an appropriate
replacement entry.
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Node Departure

Since Pastry can maintain stable routing information in the presence of node
failures, deliberate node departures were originally treated as node failures
for simplicity. However, a Pastry network would benefit from departure opti-
mizations similar to those proposed for Chord. The primary goals would be
to prevent data loss and reduce the amount of network overhead induced by
Pastry’s failure recovery mechanisms.

Arbitrary Failures

The approaches proposed for dealing with failures assumed that nodes fail
by becoming unreachable. However, failures can lead to a random behavior
of nodes, including malicious violations of the Pastry protocol. Rowstron and
Druschel propose to amend these problems by statistically choosing alter-
native routes to circumvent failed nodes. Thus, a node chooses randomly,
according to the constraints for routing correctness, from a set of nodes to
route queries to with a bias towards the default route. A failed node would
thus be able to interfere with some traffic but eventually be avoided after a
number of retransmissions. How node arrivals and departures can be made
more resilient to failed or malicious nodes is not addressed in the original
work on Pastry.

8.2.5 Routing Performance

Pastry optimizes two aspects of routing and locating the node responsible for
a given key: it attempts both to achieve a small number of hops to reach the
destination node, and to exploit network locality to reduce the overhead of
each individual hop.

Route Length

The routing scheme in Pastry essentially divides the identifier space into
domains of size 2n where n is a multiple of 2b. Routes lead from high-order
domains to low-order domains, thus reducing the remaining identifier space
to be searched in each step. Intuitively, this results in an average number of
routing steps related to the logarithm of the size of the system. This intuition
is supported by a more detailed analysis.

It is assumed that routing information on all nodes is correct and that
there are no node failures. There are three cases in the Pastry routing scheme,
the first of which is to forward a query according to the routing table. In
this case, the query is forwarded to a node with a longer prefix match than
the current node. Thus, the number of nodes with longer prefix matches is
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reduced by at least a factor of 2b in each step, so the destination is reached
in log2b(N) steps.

The second case is to route a query via the leaf set. This increases the
number of hops by one.

In the third case, the key is neither covered by the leaf set nor does the
routing table contain an entry with a longer matching prefix than the current
node. Consequently, the query is forwarded to a node with the same prefix
length, adding an additional routing hop. For a moderate leaf set of size
|L| = 2 ∗ 2b, the probability of this case occurring is less than 0.6% so it is
very unlikely that more than one additional hop is incurred.

As a result, the complexity of routing remains at O(log2b(N)) on average.
Higher values of b lead to faster routing but also increase the amount of
state that needs to be managed at each node. Thus, b is typically 4 but
Pastry implementations can choose an appropriate trade-off for the specific
application.

Locality

By exploiting network locality, Pastry routing optimizes not only the number
of hops but also the costs of each individual hop. The criteria to populate a
node’s routing table allow a choice among a number of nodes with matching
ID prefixes for each routing table entry. By selecting nearby nodes in terms
of network locality, the individual routing lengths are minimized. This ap-
proach does not necessarily yield the shortest end-to-end route but leads to
reasonable total route lengths.

Initially, a Pastry node uses the routing table entries from nodes on a
path to itself in the identifier space. The proximity of the new node n and
the existing well-known node k implies that the entries in k’s first row of
the routing table are also close to n. The entries of subsequent rows from
nodes on the path from k to n may seem close to k but not necessarily to
n. However, the distance from k to these nodes is relatively long compared
to the distance between k and n. This is because the entries in later routing
table rows have to be chosen from a logarithmically smaller set of nodes in
the system. Hence, their distance to k and n increases logarithmically on
average. Another implication of this fact is that messages are routed over
increasing distances the closer they get to the destination ID.

8.3 Content Addressable Network CAN

Ratnasamy et al. presented their work on scalable content-addressable net-
works [505] in 2001, the same year in which Chord and Pastry were intro-
duced. In CAN, keys and values are mapped onto numerically close nodes.
Locating objects and routing messages in CAN is very simple as it requires
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Fig. 8.4: A two-dimensional six-bit CAN identifier space with four nodes. For sim-
plicity, it is depicted as a plane instead of a torus.

knowledge only about a node’s immediate neighbors. However, CAN intro-
duces the notion of multi-dimensional identifier spaces by which routing effi-
ciency is greatly improved compared to linear neighbor traversal in a single
dimension. CAN generalizes the Chord and Pastry approaches in certain areas
and introduces design optimizations also applicable to other DHT systems.

8.3.1 Identifier Space

A CAN identifier space can be thought of as a d-dimensional version of a
Chord or Pastry identifier space. Each data item is assigned an identifier,
e.g., of the form < x, y, z > for d = 3. All arithmetic on identifiers is again
performed modulo the largest coordinate in each dimension. The geometrical
representation of a CAN identifier space is thus a d-torus. The original work
on CAN suggests a space with continuous coordinates between 0.0 and 1.0
but it also applies to discrete coordinate spaces.

The identifier space in CAN is partitioned among the participating nodes
as shown in Figure 8.4. Each node is said to own a zone, i.e., a certain
part of the identifier space. CAN ensures that the entire space is divided
into non-overlapping zones. In Figure 8.4, a two-dimensional identifier space
(represented by a plane instead of a torus for simplicity) is divided into four
zones. In contrast to Chord and Pastry, CAN does not assign a particular
identifier to a node. Instead, the extent of its zone is used to locate and
identify a node.

As typical for (key, value) pairs in DHTs, CAN keys are derived from the
value (or a representation of it) by applying a uniform hash function. The
easiest way of deriving multi-dimensional identifiers from flat hash values
is to apportion a fixed set of bits to the coordinate in each dimension. For
example, a 160-bit hash value would be divided into two 80-bit segments
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Fig. 8.5: The route from node N1 to
a key K with coordinates
(x, y) in a two-dimensional
CAN topology before node
N7 joins. Neighbor set of
N1: {N2, N6, N5}
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Fig. 8.6: New node N7 arrives in the
zone of N1. N1 splits its
zone and assigns one half to
N7. Updated neighbor set
of N1: {N7, N2, N6, N5}.

which represent < x, y > coordinates in a two-dimensional identifier space.
Because a key represents a point P in the identifier space, (key, value) pairs
are stored on the node owning the zone which covers P .

8.3.2 Routing Information

For routing purposes, a CAN node stores information only about its immedi-
ate neighbors. Two nodes in a d-dimensional space are considered neighbors
if their coordinates overlap in one dimension and are adjacent to each other
in d−1 dimension. Figure 8.5 illustrates neighbor relationships. For example,
node N1 and N6 are neighbors as they overlap in the y dimension and are
next to each other in the x dimension. At the same time, node N5 and N6 are
not neighbors as they do not overlap in any dimension. Similarly, node N1
and N4 overlap in the x dimension but are not adjacent in the y dimension,
so they are not neighbors of each other.

The routing information in CAN is comprised of the IP address, a port,
and the zone of every neighbor of a node. This data is necessary to access
the CAN service on a neighbor node and to know its location in the identifier
space. In a d-dimensional identifier space partitioned into zones of equal size,
each node has 2d neighbors. Thus, the number of nodes participating in a
CAN system can grow very large while the necessary routing information per
node remains constant.
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8.3.3 Routing Procedure

Conceptually, routing in CAN follows a straight line in the cartesian identifier
space from the source to the destination coordinates. Each node contributes
to this process utilizing its neighbor information.

Each CAN message contains the destination coordinates. If the local node
does not own the zone that includes these coordinates, it forwards the message
to the neighbor with the coordinates closest to the destination, as illustrated
in Figure 8.5. In a d-dimensional space equally partitioned into n zones, this
procedure results in an average of O((d/4)(n

1
d )) routing steps. This expresses

the intuitive consequence that increasing the number of dimensions signifi-
cantly reduces the average route length.

8.3.4 Self-Organization

CAN dynamically organizes nodes into an overlay network which implements
the operations in the identifier space. It assigns zones of the identifier space
to individual nodes in such a way that zones do not overlap and there are no
gaps in the identifier space. This partitioning needs to be robust when nodes
join or leave a CAN system or when they fail.

Node Arrival

A node n joining a CAN system needs to be allocated a zone and the zone
neighbors need to learn of the existence of n. The three main steps in this
procedure are: to find an existing node of a CAN system; to determine which
zone to assign to the new node; and to update the neighbor state.

Like Chord and Pastry, CAN is not tied to a particular mechanism for
locating nodes in the overlay network to be joined. However, Ratnasamy et
al. suggest using a dynamic DNS name to record one or more nodes belonging
to a particular CAN system. The referenced nodes may in turn publish a list
of other nodes in the same CAN overlay. This scheme allows for replication
and randomized node selection to circumvent node failures.

Given a randomly chosen location in the identifier space, the new node
n sends a special join message via one of the existing nodes to these coordi-
nates. Join messages are forwarded according to the standard CAN routing
procedure. After the join message reaches the destination node d, d splits
its zone in half and assigns one half to n (cf. Figure 8.6). In order to ease
the merging of zones when nodes leave and to equally partition the identifier
space, CAN assumes a certain ordering of the dimensions by which zones
are split. For example, zones may be split along the first (x) dimension, then
along the second (y) dimension and so on. Finally, d transfers the (key, value)
pairs to n for which it has become responsible.
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Node n and d exchange neighborhood information such that n learns of its
neighbors from d and d adds n to its own set of neighbors. Then node n im-
mediately informs all its neighbors of its presence. Through update messages,
every node in the system also provides its direct neighbors periodically with
its own neighborhood and zone information. Thus, only a small region of the
identifier space is affected by node arrival. Its size depends on the number of
dimensions but stays constant with the total number of nodes in the system.

Node Failure

The zones of failing or leaving nodes must be taken over by live nodes to
maintain a valid partitioning of the CAN identifier space. A CAN node de-
tects the failure of a neighbor when it ceases to send update messages. In such
an event, the node starts a timer. When the timer fires, it sends takeover mes-
sages to the neighbors of the failed node. The timer is set up such that nodes
with large zones have long timeouts while small zones result in short time-
outs. Consequently, nodes with small zone sizes send their takeover messages
first.

When a node receives a takeover message, it cancels its own timer pro-
vided its zone is larger than the one advertised in the message. Otherwise,
it replies with its own takeover message. This scheme efficiently chooses the
neighboring node with the smallest zone volume. The elected node claims
ownership of the deserted zone and merges it with its own zone if possible.
Alternatively, it temporarily manages both zones.

The hash-table data of a failed node is lost. However, the application
utilizing CAN is expected to periodically refresh data items it inserted into
the DHT (the same is true for the other systems presented here). Thus, the
hash table state is eventually restored.

During routing, a node may find that the neighbor to which a message
is to be forwarded has failed and the repair mechanism has not yet set in.
In such a case, it forwards the message to the live neighbor next closest to
the destination coordinates. If all neighbors failed, which are closer to the
destination, the local node floods the message in a controlled manner within
the overlay until a closer node is found.

Node Departure

When a node l deliberately leaves a CAN system, it notifies a neighbor n
whose zone can be merged with l’s zone. If no such neighbor exists, l chooses
the neighbor with the smallest zone volume. It then copies the contents of its
hash table to the selected node so this data remains available.

As described above, departing and failing nodes can leave a neighbor node
managing more than one zone at a time. CAN uses a background process
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which reassigns zones to nodes to prevent fragmentation of the identifier
space.

8.3.5 Routing Performance

CAN comes with a number of design optimizations which focus both on
reducing the number of hops in a CAN overlay and on lowering path latencies.
In combination, these steps result in a significant overall improvement of
routing performance.

Increasing the number of dimensions in the identifier space reduces the
number of routing hops and slightly increases the amount of neighbor state
to store on each node. The average path length in a system with n nodes
and d dimensions scales as O(d(n

1
d )). Higher dimensionality also improves

routing fault tolerance because each node has a larger set of neighbors to
choose from as alternatives to a failed node.

CAN also supports multiple instances of a DHT in different coordinate
spaces termed realities. A node is present in all identifier spaces and owns a
different zone in each of them. In each reality, all DHT data is replicated and
distributed among the nodes. Thus, a system with r realities implies that
each node manages r different zones and neighbor sets, one for each reality.

With multiple realities, data availability is improved through the replica-
tion of data in each reality. Also, a node has more options to route around
failed neighbors. Furthermore, a node can choose the shortest route from
itself to a destination in all realities. Thus, the average length of routes is
reduced significantly. The different advantages and per-node state require-
ments of multiple dimensions and realities need to be traded off against each
other based on application requirements.

The nonconformance of a CAN overlay and the underlying IP infrastruc-
ture may lead to significantly longer route lengths than direct IP routing.
Hence, CAN suggests incorporating routing metrics which are not based on
the distance between two nodes in the identifier space. For example, each
node could measure the round-trip time (RTT) to neighboring nodes and
use this information to forward messages to those neighbors with the best
ratio of RTT and ID space distance to the destination. Experiments show an
improvement of 24% to 40% in per-hop latency with this approach [505].

Another optimization is to overload a zone by allowing multiple nodes to
manage the same zone. This effectively reduces the number of nodes in the
system and thus results in fewer routing hops. Each node also forwards mes-
sages to the neighboring node with the lowest RTT in a neighbor zone, thus
reducing per-hop latency. Finally, when the DHT data for a zone is replicated
among all nodes of that zone, all these nodes need to fail simultaneously for
the data to be lost.
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With multiple hash functions, a (key, value) pair would be associated with
a different identifier per hash function. Storing and accessing the (key, value)
at each of the corresponding nodes increases data availability. Furthermore,
routing can be performed in parallel towards all the different locations of a
data item reducing the average query latency. However, these improvements
come at the cost of additional per-node state and routing traffic.

The mechanisms presented above reduce per-hop latency by increasing
the number of neighbors known to a node. This allows a node to forward
messages to neighbors with a low RTT. However, CAN may also construct
the overlay so it resembles more closely the underlying IP network. To place
nodes close to each other, both at the IP and the overlay level, CAN assumes
the existence of well-known landmark nodes. Before joining a CAN network,
a node samples its RTT to the landmarks and chooses a zone close to a
landmark with a low RTT. Thus, the network latency en route to its neighbors
can be expected to be low resulting in lower per-hop latency.

For a more uniform partition of the identifier space, nodes should not join
a CAN system at a random location. Instead, the node which manages the
initial random location queries its neighbors for their zone volume. The node
with the largest zone volume is then chosen to split its zone and assign half
of it to the new node. This mechanism contributes significantly to a uniform
partitioning of the coordinate space.

For real load-balancing, however, the zone size is not the only factor to
consider. Particularly popular (key, value) pairs create hot spots in the iden-
tifier space and can place substantial load on the nodes hosting them. In a
CAN network, overload caused by hot-spots may be reduced through caching
and replication. Each node caches a number of recently accessed data items
and satisfies queries for these data items from its cache if possible. Overloaded
nodes may also actively replicate popular keys to their neighbors. The neigh-
bors in turn reply to a certain fraction of these frequent requests themselves.
Thus, load is distributed over a wider area of the identifier space.

8.4 Symphony

The Symphony protocol can be seen as a variation of Chord that exploits
the small world phenomenon. As described by Manku et al. in [400], it is
of constant degree because each node establishes only a constant number of
links to other nodes. In contrast, Chord, Pastry, and CAN require a number
of links which depends on the total number of nodes in the system. This
basic property of Symphony significantly reduces the amount of per-node
state and network traffic when the overlay topology changes. However, with
an increasing number of nodes, it does not scale as well as Chord.

Like Chord, the identifier space in Symphony is constructed as a ring
structure and each node maintains a pointer to its successor and predeces-
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sor on the ring. In Symphony, the Chord finger table is replaced by a con-
stant but configurable number k of long distance links. In contrast to other
systems, there is no deterministic construction rule for long distance links.
Instead, these links are are chosen randomly according to harmonic distribu-
tions (hence the name Symphony). Effectively, the harmonic distribution of
long-distance links favors large distances in the identifier space for a system
with few nodes and decreasingly smaller distances as the system grows.

The basic routing in this setup is trivial: a query is forwarded to the
node with the shortest distance to the destination key. By exploiting the bi-
directional nature of links to other nodes, routing both clockwise and counter-
clockwise leads, on average, to a 25% to 30% reduction of routing hops.
Symphony additionally employs a 1-lookahead approach. The lookahead table
of each node records those nodes which are reachable through the successor,
predecessor, and long distance links, i.e., the neighbors of a node’s neighbors.
Instead of routing greedily, a node forwards messages to its direct neighbor
(not a neighbor’s neighbor) which promises the best progression towards the
destination. This reduces the average number of routing hops by 40% at the
expense of management overhead when nodes join or leave the system.

In comparison with the systems discussed previously, the main contribu-
tion of Symphony is its constant degree topology resulting in very low costs
of per-node state and of node arrivals and departures. It also utilizes bi-
directional links between nodes and bi-directional routing. Symphony’s rout-
ing performance (O( 1

k log2(N))) is competitive compared with Chord and the
other systems (O(log(N))) but does not scale as well with exceedingly large
numbers of nodes. However, nodes can vary the number of links they main-
tain to the rest of the system during run-time based on their capabilities,
which is not permitted by the original designs of Chord, Pastry, and CAN.

8.5 Viceroy

In 2002, Malkhi et al. proposed Viceroy [399], another variation on Chord. It
improves on the original Chord algorithm through a hierarchical structure of
the ID space with constant degree which approximates a butterfly topology.
This results in less per-node state and less management traffic but slightly
lower routing performance than Chord.

Like Symphony, Viceroy borrows from Chord’s fundamental ring topology
with successor and predecessor links on each node. It also introduces a new
node state called a level. When joining the system, a node chooses a random
level in the range from 1 to log(N). Thus, the Viceroy topology can be thought
of as log(N) vertically stacked rings. However, the node ID still serves as the
unique identifier for nodes so that no two nodes may occupy the same node
ID, regardless of their level.
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Fig. 8.7: A Viceroy topology with 18 nodes. Lines indicate short- and long-range
downlinks; other links and lower levels are omitted for simplicity.

A Viceroy node n maintains a total of seven links to other nodes, inde-
pendent of the network size. As n’s two closest neighbors in the ID space, i.e.,
its successor and predecessor, might reside on any level, it also establishes a
level-ring link to each of the closest nodes clockwise and counter-clockwise
on its own level l. In order to connect to other levels, n creates an uplink to a
nearby node at level l−1 and a short-range and long-range downlink to level
l + 1. The long-range downlink is chosen such that it connects to a node at
a distance of roughly 1

2l . Thus, the distance covered by the long-range links
is reduced logarithmically with lower levels as depicted in Figure 8.7.

The routing procedure is split into three phases closely related to the
available routing information. First, a query is forwarded to level one along
the uplinks. Second, a query recursively traverses the downlinks towards the
destination. On each level, it chooses the downlink which leads to a node
closer to the destination, without overshooting it in the clockwise direction.
After reaching a node without downlinks, the query is forwarded along ring-
level and successor links until it reaches the target identifier. The authors
of Viceroy show that this routing algorithm yields an average number of
O(log(N)) routing hops.

Like Symphony, Viceroy features a constant degree linkage in its node
state. However, every node establishes seven links whereas Symphony keeps
this number configurable even at run-time. Furthermore and similar to Chord,
the rigid layout of the identifier space requires more link updates than Sym-
phony when nodes join or leave the system. At the same time, the scalability
of its routing latency of O(log(N)) surpasses that of Symphony, while not
approaching that of Chord, Pastry, and CAN.

8.6 Kademlia

In their work on Kademlia [405], Maymounkov and Mazières observe a mis-
match in the design of Pastry: its routing metric (identifier prefix length) does
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Fig. 8.8: An example of a Kademlia topology. The black node 0010 knows about
the subtrees that do not match its identifier as indicated by the dot-
ted squares. Each node successively forwards a query to α nodes in a
destination subtree.

not necessarily correspond to the actual numeric closeness of identifiers. As a
result, Pastry requires two routing phases which impacts routing performance
and complicates formal analysis. Thus, Kademlia uses an XOR routing metric
which improves on these problems and optionally offers additional parallelism
for lookup operations.

Kademlia’s XOR metric measures the distance between two identifiers i
and j by interpreting the result of the bit-wise exclusive OR function on i
and j as an integer. For example, the distance between the identifiers 3 and
5 is 6. Considering the shortest unique prefix of a node identifier, this metric
effectively treats nodes and their identifiers as the leaves of a binary tree. For
each node, Kademlia further divides the tree into subtrees not containing the
node, as illustrated in Figure 8.8.

Each node knows of at least one node in each of the subtrees. A query
for an identifier is forwarded to the subtree with the longest matching prefix
until the destination node is reached. Similar to Chord, this halves the re-
maining identifier space to search in each step and implies a routing latency
of O(log(N)) routing hops on average.

In many cases, a node knows of more than a single node per subtree.
Similar to Pastry, the Kademlia protocols suggests forwarding queries to α
nodes per subtree in parallel. By biasing the choice of nodes towards short
round-trip times, the latency of the individual hops can be reduced. With
this scheme, a failed node does not delay the lookup operation. However,
bandwidth usage is increased compared to linear lookups.

When choosing remote nodes in other subtrees, Kademlia favors old links
over nodes that only recently joined the network. This design choice is based
on the observation that nodes with long uptime have a higher probability
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of remaining available than fresh nodes. This increases the stability of the
routing topology and also prevents good links from being flushed from the
routing tables by distributed denial-of-service attacks, as can be the case in
other DHT systems.

With its XOR metric, Kademlia’s routing has been formally proved con-
sistent and achieves a lookup latency of O(log(N)). The required amount
of node state grows with the size of a Kademlia network. However, it is
configurable and together with the adjustable parallelism factor allows for a
trade-off of node state, bandwidth consumption, and lookup latency.

8.7 Summary

The core feature of every DHT system is its self-organizing distributed opera-
tion. All presented systems aim to remain fully functional and usable at scales
of thousands or even millions of participating nodes. This obviously implies
that node failures must be both tolerated and of low impact to the operation
and performance of the overall system. Hence, performance considerations
are an integral part of the design of each system.

Since the lookup of a key is probably the most frequently executed op-
eration and essential to all DHT systems, a strong focus is put on its per-
formance. The number of routing hops is an important factor for end-to-end
latency, but the latency of each hop also plays an important role. Gener-
ally, additional routing information on each node also provides a chance for
choosing better routes. However, the management of this information and of
links to other nodes in a system also incurs overhead in processing time and
bandwidth consumption.

System Routing Hops Node State Arrival Departure

Chord O( 1
2
log2(N)) O(2log2(N)) O(log2

2(N)) O(log2
2(N))

Pastry O( 1
b
log2(N)) O( 1

b
(2b−1)log2(N)) O(log2b(N)) O(logb(N))

CAN O(D
2

N
1
D ) O(2D) O(D

2
N

1
D ) O(2D)

Symphony O( c
k
log2(N)) O(2k + 2) O(log2(N)) O(log2(N))

Viceroy O( c
k
log2(N)) O(2k + 2) O(log2(N)) O(log2(N))

Kademlia O(logb(N)) O(b · logb(N)) O(logb(N)) O(logb(N))

Table 8.1: Performance comparison of DHT systems. The columns show the aver-
ages for the number of routing hops during a key lookup, the amount
of per-node state, and the number of messages when nodes join or leave
the system.
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Table 8.1 summarizes the routing latency, per-node state, and the costs
of node arrivals and departures in the systems discussed above. It illustrates
how design choices, like a constant-degree topology, affect the properties of
a system. It should be noted that these results are valid only for the original
proposals of each system and that the O() notation leaves ample room for
variation. In many cases, design optimizations from one system can also be
transferred to another system. Furthermore, the effect of implementation op-
timizations should not be underestimated. The particular behavior of a DHT
network in a certain application scenario needs to be determined individually
through simulation or real-world experiments.



9. Reliability and Load Balancing in
Distributed Hash Tables
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(University of Tübingen)

After introducing some selected Distributed Hash Table (DHT) systems, this
chapter introduces algorithms for DHT-based systems which balance the stor-
age data load (Section 9.1) or care for the reliability of the data (Section 9.2).

9.1 Storage Load Balancing of Data in Distributed
Hash Tables

DHTs are used increasingly in widely distributed applications [52, 573]. Their
efficient, scalable, and self-organizing algorithms for data retrieval and man-
agement offer crucial advantages compared with unstructured approaches.
However, the underlying assumption is a roughly equal data distribution
among the cooperating peers of a DHT. If there is a significant difference
in the load of nodes in terms of data managed by each peer, i.e., data is
concentrated on just a few peers, then the system may become less robust.

Alongside their crucial advantages, DHTs still show one major weakness
in the distribution of data among the set of cooperating peers. All systems
usually rely on the basic assumption that data is nearly equally distributed
among the peer nodes. In most DHT approaches this assumption is based on
the use of hash functions for mapping data into the DHT’s address space.
Generally, one assumes that hash functions provide an even distribution of
keys and their respective data across the DHT address space. If there is a sig-
nificant difference in the load of nodes in terms of data managed by each peer,
the cost for distributed self-organization of such systems may increase dra-
matically. Therefore, appropriate mechanisms for load-balancing are required
in order to keep the complexity of DHT search algorithms in the intended
range of O(logN) or less, where N is the number of nodes in the DHT.

But, as proved in many papers [99, 501, 513], the simple assumption of
getting an equally distributed value space simply by using hash functions does
not hold. Therefore, several approaches for balancing the data load between
DHT peers have been developed.

The following figure [513] shows simulations by simply hashing data into
the target address space of a Chord ring. The distribution of documents
among the nodes was analyzed. For each scenario, a simulated DHT with
4,096 nodes was subjected to multiple simulation runs. The total number of
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Fig. 9.1: Distribution of data among a Chord DHT without load-balancing mech-
anisms.

documents to be stored ranged from 100,000 to 1,000,000 and for this purpose
the Chord ring’s address space had a size of m = 22 bits. Consequently,
222 = 4,194,304 documents and/or nodes could be stored and managed in
the ring. The keys for the data and nodes were generated randomly. The
load of a node was defined by the number of documents it stored.

The graphs in Fig. 9.1 clearly show that the assumption of an equal dis-
tribution of data among peers by simply using a hash function does not hold.
For example, Fig. 9.1(a) shows how many nodes (y-axis) store a certain num-
ber of documents (x-axis). It is obvious that there is an unequal distribution
of documents among the nodes. For an easier comparison, the grey line indi-
cates the optimal number in the case of equal distribution – approximately
122 documents per node in this example. Additionally, Fig. 9.1(b) plots the
number of nodes without a document.
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Fig. 9.1(c) shows the distribution of documents in a Chord DHT without
load-balancing. Between 100,000 and 1,000,000 documents were distributed
across 4,096 nodes. The upper value indicates the maximum number of doc-
uments per node,and the lower value (always zero) the minimum number.
The optimal number of documents per node is indicated by the marker in
the middle. Even with a large total number of documents in the whole DHT,
there are some nodes not managing any document and, consequently, are
without any load. Some nodes manage a data load of up to ten times the
average.

9.1.1 Definitions

Before discussing approaches for load-balancing in DHT systems, a clear def-
inition of the term load has to be given [501]. Also, it must be made clear
under what conditions a node may be referred to as overloaded, and a system
as optimally balanced.

The data load of a peer node is usually determined by the amount of
stored data per node. In the following, the load of a node is the sum of all
data stored in this node. The total data load of a Peer-to-Peer (P2P) system
is defined as the sum of the loads of all nodes participating in the system.
The load of a system with N nodes is optimally balanced, if the data load of
each node in the system is around 1/N of the total load. A node is referred
to as overloaded or heavy if it has a significantly higher load compared with
one in an optimal distribution. A node is light if it stores significantly less
data than the optimum.

9.1.2 A Statistical Analysis

Before discussing algorithms for load-balancing, this section takes a look at
the underlying statistics [450]. At the end of this section, theoretical evidence
is provided for the empirical behavior. In the following, N is the number of
nodes in the DHT, and m the number of data items.

Distribution of Data Items Among Peers with Equal-Sized Intervals
A simple model for load distribution is to consider all nodes to be responsible
for intervals of equal size. Thus, when distributing a data item, each node is
hit with a probability of 1

N . Focusing on one node, the distribution of the data
items is a series of independent Bernoulli trials with a success probability of
1
N . The number of data items on this node (successful Bernoulli trials) is
therefore following the binomial distribution.
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The binomial distribution pb and its standard deviation σb are defined as
follows:

pb(load == i) =
(

m

i

)(
1
N

)i(
1 − 1

N

)(m−i)

(9.1)

σb =

√
m

N

(
1 − 1

N

)
(9.2)

As an example, more than 300,000 collected file names from music and
video servers were hashed, and the ID space was divided into intervals ac-
cording to the first bits of an ID, e.g., 8 bits for 256 intervals. The load of each
of these intervals is distributed closely around the average with the empirical
standard deviation (σExperiment = 34.5) being close to the theoretical one
(σBinomial = 34.2).

However, the assumptions of this model are not realistic for DHTs because
interval sizes for nodes are not equal. The next section will deduce the interval
size distribution.

Distribution of Peers in Chord
This section looks at the distribution of nodes on the Chord ring, or any
other system randomly assigning node IDs. For the sake of simplicity, we use
a continuous model, i.e., we consider the ID space to be real-valued in the
interval [0, 1). The number of nodes in a Peer-to-Peer network (at most, say a
billion, i.e., roughly 230 nodes) is small compared to the 2160 IDs in Chord’s
ID space.

– n-1 experiments with U(0,1).
– Determine the distribution of the IDs of the peers in the experiments.

The rationale for using this continuous model is that it is easier than a
discrete one and the ID space is large compared with the number of nodes in
it.

The continuous uniform distribution is defined as:

U(x) =

{ 0 x < 0
x 0 ≤ x < 1
1 x ≥ 1

Let L be the distribution of the interval size. It is given as the minimum
of N − 1 experiments1:

1 For our statistical analysis it does not matter if the node responsible for the data
is at the beginning or the end of the interval.
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Fig. 9.2: Probability Density Function for Continuous Model with 4,096 nodes.

L(x) = 1 −
N−1∏
i=1

(1 − U(x)) = 1 − (1 − U(x))N−1

=

{ 0 x < 0
1 − (1 − x)N−1 0 ≤ x < 1

1 x ≥ 1

And the probability density function (pdf) shown in Fig. 9.2:

l(x) =
dL

dx
=

{
(N − 1) (1 − x)N−2 0 ≤ x < 1

0 else

It is interesting that the form of the probability density function and
the load distribution are quite similar. This is even better illustrated when
this calculation is done for a discrete ID space. To use this formula as an
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Fig. 9.3: Load Distribution (mean load = 128; 4,096 nodes) approximated with a
scaled probability function from the Discrete Model.
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approximation for the load, we use the number of data items as the ID space.
Consequently, we get an approximation for the probability of a certain load
(e.g., probability that a node has load = 10 items). If we multiply these
probabilities with the number of nodes, we get the frequency distribution
shown in Fig. 9.3.

9.1.3 Algorithms for Load Balancing in DHTs

To solve the problem of load-balancing, several techniques have been de-
veloped to ensure an equal data distribution across DHT nodes [512]. This
chapter presents Virtual Servers [501], Power of Two Choices [99], Heat Dis-
persion Algorithm [513], and a Simple Address-Space and Item Balancing
[338].

For clarity,the algorithms are mainly explained with Chord, but they are
suitable for most of the different DHT systems.

The Concept of Virtual Servers
The virtual server approach [501] is based on the idea of managing multiple
partitions of a DHT’s address space in one node. Thus, one physical node may
act as several independent logical nodes. Each virtual server will be considered
by the underlying DHT as an independent node. Within a Chord system,
one virtual server is responsible for an interval of the address space, whereas
the corresponding physical node may be responsible for several different and
independent intervals.

The basic advantage of this approach is the simplicity of displacement
of virtual servers among arbitrary nodes. This operation is similar to the
standard join or leave procedure of a DHT and content will be distributed as
ranges of hash values across a the nodes. Every participating node manages
virtual servers and has knowledge of all their neighbors from the fingers in
the finger-table. For example with Chord, this relates to all fingers within the
routing table. Now each node can transfer virtual servers to other nodes.

Transfer. The idea of the algorithm is to move a virtual server from a heavy
to a light node. This transfer can be organized using three different schemes,
known as: One-to-One, One-to-Many, and Many-to-Many.

In all of these schemes, the best virtual server which gets transferred
is the one which satisfies the following three constraints. First, the transfer
of a virtual server doesn’t make the node which receives the virtual server
heavy. Second, the virtual server is the lightest virtual server that makes the
releasing node light. And third, if there is no virtual server whose transfer
can make a node light, then the heaviest virtual server from this node gets
transferred.
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The third constraint results in the transfer of the largest virtual server
that will not make the receiving node heavy, therefore, the chance of finding
another light node in the next round which can receive a virtual server of
this heavy node is increased.
One-to-One Scheme. This scheme is the simplest one. Two nodes are picked
at random and a virtual server is transferred from a heavy node to a light
one. Each light node periodically selects a node and indicates a transfer if
that node is heavy, and if the above tree rules hold.
One-to-Many Scheme. This scheme allows a heavy node to consider more
than one light node at a time. Each heavy node transfers a virtual server
to one node of a known set of light nodes. For each light node of this set,
the best virtual server is computed as described above and only the lightest
virtual server of these will be transferred.
Many-to-Many Scheme. This scheme matches many heavy nodes to many
light nodes. In order to get many heavy nodes and many light nodes to
interact, a global pool of virtual servers is created – an intermediate step in
moving a virtual server from a heavy node to a light node. The pool is only
a local data structure used to compute the final allocation.

In three phases (unload, insert, and dislodge) the virtual servers to be
transferred are computed. In the first one (unload) each heavy node puts
the information about its virtual servers into a global pool until this node
becomes light.

The virtual servers in the pool must then be transferred to nodes in the
next step (insert). This phase is executed in rounds, in which the heaviest
virtual server from the pool is selected and transferred to a light node, de-
termined using the rules above. This phase continues until the pool becomes
empty, or until no more virtual servers can be transferred.

In the final phase (dislodge), the largest virtual server from the pool is
exchanged with another virtual server of a light node which is lighter and
does not make the node heavy. If such a node is found, the insert step begins
again, otherwise the algorithm terminates and the rest of the virtual servers
in the pool stay at their current nodes.

Power of Two Choices
The algorithm Power of Two Choices [99] relies on the concept of multiple
hash functions. These functions are used to map data into the address space
of a DHT. For the processes of inserting and retrieving, the results of all hash
functions are calculated. In the case of inserting a new document, all respec-
tive hash values are computed and the corresponding nodes are retrieved.
Finally, the document is stored on the retrieved node with the lowest load in
terms of stored data.

In formal terms, every node knows the universal hash function
h1, h2, · · · , hd which maps data onto the ring and so a node can compute
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h1(x), h2(x), · · · , hd(x) to insert the data x. For each of these computed re-
sults, the node responsible for this ID in the DHT is located. The data is now
placed on the peer with the lowest load.

There are two ways to implement the search. A simple implementation
requires that all hash functions be recalculated. After all lookups are made
to find the peers associated with each of these values, one node must have
successfully stored the data. These searches can be made in parallel and thus
enable searching in little more time than their classic counterparts since this
approach uses a factor of d more network traffic to perform each search.

The second way of searching is to use redirection pointers. Insertion pro-
ceeds exactly as before, but in addition to storing the item at the least
loaded peer, all other peers store a redirection pointer to this node. To re-
trieve document x, it is not necessary to calculate all possible hash func-
tions h1, h2, . . . , hd, because each possible node h1(x), h2(x), . . . , hd(x) stores
a pointer to document x. Thus, each of these nodes can forward the request
directly to the node which is actually storing the requested document. Hence,
a request for a certain key has to be made only to one of the d possible nodes.
If this node does not store the data, the request is forwarded directly to the
right node via the pointer. Nevertheless, the owner of a key has to insert
the document periodically to prevent its removal after a timeout (soft state).
Lookups now take at most only one more step.

Load Balancing Similar to Heat Dispersion
Rieche et. al [513] introduce another load-balancing algorithm for DHTs.
Content is moved among peers similar to the process of heat dispersion [521].
Usually, a material warmer than its environment emits heat to its surround-
ings until a balanced distribution is reached in the entire system. To deploy
a similar algorithm for balancing load among peers in a DHT, [513] pro-
poses a very simple approach which needs only three rules. But nodes in a
DHT can not simply move documents arbitrarily to other nodes, e.g., their
neighbors, because this would result in an inconsistent and inefficient search.
This reduces the performance and advantages of a DHT. Therefore, the al-
gorithm moves only complete intervals, or contiguous parts of them, between
the nodes in the DHT.

It seems appropriate to summarize the algorithm based on the DHT sys-
tem Chord [575]. Although the Chord system has been modified, the efficient
Chord routing algorithms remain unchanged. First of all, any fixed positive
number f is chosen. f indicates the minimum number of nodes assigned to
a specific DHT interval. If more than f nodes are assigned to a specific in-
terval, one or more of them may be moved to a different interval. In case of
more than 2f nodes, the respective interval can be split almost evenly. Now,
a node has to manage approximately half of the documents. Each node peri-
odically checks the data loads in its neighborhood – mainly its successors and
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predecessors – as well as destinations referenced in its DHT routing table.
This number f helps to balance the load, but also to make Chord more fault
tolerant.

The first node takes a random position in the Chord ring and a new node
is assigned to any other existing node in the system. This receiving node
announces each joining node to all other nodes responsible for the same in-
terval. Following this, a portion of the documents located within this interval
are copied to the new node. Then, the original methods to insert a node
in Chord are performed. Now the nodes, located within the same interval,
can balance the load with nodes of other intervals according to one of three
various methods.
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Fig. 9.4: Splitting of an Interval: Nodes 1 to 6 are assigned to the same interval
and are overloaded in terms of data load. Since only three nodes are
necessary to maintain an interval, this interval can be split.

2f Nodes with Excessive Load. If 2f different nodes are assigned to the same
interval, and each node stores significantly more documents than average,
then this interval gets divided. The point of separation is the center of the
interval. It can be easily computed as the half of the interval borders or the
half of the hash values representing the stored documents. This implies that
no load in terms of data has to be moved anywhere, and the respective nodes
lose approximately half of their data load at once. Finally, the predecessors
and successors will be adapted accordingly. Figure 9.4 shows an example of
such an interval division.

More than f Nodes in an Interval. Intervals with more than f but less than
2f nodes can release some nodes to other intervals. If nodes within a partic-
ular interval are overloaded, they wait for additional nodes to join them. If
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Fig. 9.5: Moving nodes: Nodes 1 to 4 are assigned to an interval. Since only three
nodes are necessary to maintain an interval, node 4 can be transferred
into another overloaded interval.

some nodes are very light, they periodically send this information to other
nodes placed in different intervals. These desired destinations (intervals) can
be found using routing entries of appropriate finger tables. Even if an interval
with a heavy load exists, nodes can be moved to this interval. Based on the
new situation, accumulated nodes within the new interval can try to split it
by the rules described above.

Figure 9.5 shows an example of such a shifting of nodes to regions of higher
load. Nodes 1 to 4 are very light in terms of data load and are responsible for
the same interval. Since only three nodes are required, node 4 can be moved
to an overloaded interval that should be divided.

No more than f Nodes within an Interval. As an additional alternative, in-
terval borders may be shifted. Nodes can compare their load with the load of
their immediate predecessors and successors. If its own interval shows more
load than its neighbor’s, part of the load can be released and thus interval
borders will be shifted. Figure 9.6 shows an example of such a shifting of
interval borders.

A Simple Address Space and Item Balancing
Karger and Ruhl introduce two protocols for load-balancing [338], especially
for Chord [575]. The first balances the distribution of the key address space
to nodes, the second directly balances the distribution of data among the
nodes.

Address-Space Balancing. Each node has a fixed set of O(log N) possible
positions in the Chord ring. These places are called virtual nodes (in com-
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Fig. 9.6: Intervals adjusted between neighbors: The nodes within the right interval
act together and are light, but the nodes located within the interval before
are overloaded. Interval borders can be changed there.

parison to virtual servers in section 9.1.3) and are computed with different
hash functions applied to their own ID. Each node chooses only one virtual
node to become active. The address of a node is denoted as (2b + 1)2−a by
〈a, b〉, where a and b are non-negative integers and b < 2a−1. This is an un-
ambiguous notation for all addresses with finite binary representation. These
addresses are ordered according to the length of their binary representation,
so 〈a, b〉 < 〈a′, b′〉 if a < a′ or (a = a′ and b < b′).

Each node now chooses its ideal state. Given any set of active virtual
nodes, each (possibly inactive) one spans a certain range of addresses between
itself and the succeeding active virtual node. Each real node has activated
the virtual node that spans the minimal possible (under the ordering just
defined) address space. Thus, each node occasionally determines which of its
virtual nodes spans the smallest address space and activates that particular
virtual node.

Item Balancing. This also shifts interval borders. Nodes can compare their
load with the loads of other nodes. If its own interval shows more load than
its neighbor’s, part of the load can be released and thus interval borders
between two intervals will be shifted.

9.1.4 Comparison of Load-Balancing Approaches

To analyze load-balancing in a DHT, a complete Chord ring simulator was de-
veloped in [513] to investigate and to compare the load-balancing algorithms
Virtual Servers [501], Power of Two Choices [99], and Heat Dispersion Al-
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gorithm [513]. The focus was on the distribution of documents among the
nodes.

Simulation Scenarios
In each scenario, a Chord DHT with 4,096 nodes was simulated and multiple
simulations were run per scenario to confirm the results. The simulation in
[513] shows that the results are comparable with the simulations presented
in [99]. The total number of documents to be stored ranged from 100,000 to
1,000,000. The keys for the data and nodes were generated randomly. For
this purpose, the Chord ring’s address space had a size of m = 22 bits.
Consequently, 222 = 4,194,304 documents and/or nodes could be stored and
managed in the ring. In the simulation, the load of a node is defined as the
number of documents it stores.

Simulation Results
Fig. 9.7(a) shows the distribution of documents in Chord without load-
balancing. Between 105 and 106 documents were distributed across 4,096
nodes. The upper value indicates the maximum number of documents per
node, the lower value the minimum number. The optimal number of docu-
ments per node is indicated by the marker in the middle.

Even for a large number of documents in the DHT, there are some nodes
not managing any documents and, consequently, without any load. Some
nodes have a load of up to ten times above the optimum. Fig. 9.7(b) shows
that Power of Two Choices works much more efficiently than the original
Chord without load-balancing. However, there are still obvious differences in
the loads of the nodes. Some are still without any document.

Applying the concept of Virtual Servers with the One-to-One scheme
(cf. Fig. 9.7(c)) results in a more efficient load-balancing. Nevertheless, this
is coupled with a much higher workload for each node because it has to
manage many virtual servers. Additionally, the data of all virtual servers of
one physical node has to be stored in the memory of the managing node.

Fig. 9.7(d) shows that the best results for load-balancing are achieved by
using the heat dispersion algorithm. Each node manages a certain amount of
data and load fluctuations are relatively small. Documents are only moved
from neighbor to neighbor. Using virtual severs, however, results in copying
the data of a whole virtual server. As a result, the copied load is always
balanced. In addition, more node management is necessary.
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Fig. 9.7: Simulation results comparing different approaches for load balancing in
Chord.

9.2 Reliability of Data in Distributed Hash Tables

Through much research in the design and stabilization of DHT lookup ser-
vices, these systems aim to provide a stable global addressing structure on
top of a dynamic network of unreliable, constantly failing and arriving nodes.
This will allow building fully decentralized services and distributed applica-
tions based on DHTs. This section shows algorithms for ensuring that data
stored at failing nodes is available after stabilization routines of the Peer-to-
Peer-based network have been applied.

There are two ways to store data in the DHT in a fault-tolerant manner.
One is to replicate the data to other nodes, another is to split the data and
make them more available through redundancy.
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9.2.1 Redundancy

The idea to increase availability through redundancy is realized by splitting
each data item into N fragments. Then K redundant fragments are computed
by means of an erasure code. Thus, any N of the N +K fragments will allow
reconstruction of the original data. For each fragment, its place in the ring is
computed. The data is split to K +N different keys. Each fragment is stored
using the standard Chord assignment rule. A read corresponds to K + N
recursive-style lookups and is successful if at least N parts are available.
But, every time a node crashes, a piece of the data is destroyed, and after
some time, the data may no longer be computable. Therefore, the idea of
redundancy also needs replication of the data.

9.2.2 Replication

Another more fault-tolerant way to store the data is to replicate it to other
nodes. This section describes two ways to replicate data in Chord.

Successor-List
The authors of Chord show in [575] a possibility to make the data more
reliable in their DHT. The idea to make the data in Chord more fault-tolerant
is to use a so-called successor-list. This list is also used to stabilize the network
after nodes leave. The successor-list of any node consists of the f nearest
successors clockwise on the Chord ring.

…

…

…

…

Address-
Space

Node

…

…

1                 2                    f

Fig. 9.8: Successor-list of a node with f nearest nodes clockwise on the Chord ring.

Because every node stores a successor-list of f nodes, the whole system
has n ∗ f additional links in a network with n nodes. This implies that a lot
of extra traffic is used just to keep the links consistent in case of node failures
or arrivals.

Figure 9.8 shows an example for a node and its successor-list. A node
stores pointers to the f nearest nodes clockwise on the Chord ring.
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The reliability of data in Chord is an application task. Therefore, the
successor-list mechanism helps a higher layer software to replicate inserted
data to the next f nodes. Any application using Chord has to ensure that
replicas of the data are stored at the f nodes succeeding the original node.
Figure 9.9 shows replication of data by the application using the successive
nodes in the ring.

Node Data

…

…

…

…

…

…

…

…

Copy of data to successors

Address-
Space

Fig. 9.9: Replication of inserted data in Chord by the application.

The application has to periodically check the number of replications of
the inserted data and the stabilization routine has to repair the network
successfully. Also, every node now has f intervals to store, hence the load of
each node increases dramatically.

Multiple Nodes in One Interval
The approach [514] uses multiple nodes per interval.

Each interval of the DHT may be maintained by several nodes at the
same time. In order to ensure correctness of this technique, each node stores
additional pointers to nodes maintaining the same interval. In Chord, these
additional pointers could be implemented as additional finger entries in an-
other routing table. In CAN, they would be deployed as new neighbors. Let
f be the minimum number of nodes assigned to a specific DHT region (or
interval).

If a new node joins an existing interval, it announces itself to all other
nodes responsible for the same interval. Additionally, all data associated with
this interval is copied to the new node.

The first node takes a random position in the Chord ring and a new node
is assigned to any existing node in the system. This receiving node announces
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each joining node to all other nodes responsible for the same interval. Follow-
ing this, parts of documents located within this interval are copied to this new
node. Then, the original methods to insert a node in Chord are performed.
To keep the complexity of the routing tables low, each node stores only one
reference to the list of nodes for each finger within its own routing table to
other intervals.

Figure 9.10 shows an example of the distribution of intervals on different
nodes, where each interval has the minimum of two different nodes assigned
to it.
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Fig. 9.10: Intervals with minimum of two nodes assigned to them.

According to [575], each node may maintain several virtual servers, but
most of them store only one. This allows nodes with higher performance to
store several virtual servers. Chord can take advantage of the high compu-
tational power of certain nodes. Such a node declares itself responsible for
two or more intervals. Thus, it manages several virtual servers, and each vir-
tual server is responsible for separate disjoint intervals. However, all intervals
stored at the virtual servers in the same physical node shall not be identical
in order to guarantee fault tolerance.

If new data has to be inserted into an interval, it will be distributed by
one node to all other nodes responsible for the same interval. But, no copies
of the data are replicated clockwise to the next n nodes along the ring, as
in the original Chord DHT. Figure 9.11 shows the distribution of replicas of
the inserted data to the neighbors responsible for the same interval.

If any node leaves the system and any other node takes notice of this, the
standard stabilization routine of Chord is performed. The predecessors and
successors are informed, and afterwards, inconsistent finger table entries are
identified and updated using the periodic maintenance routine.

Thus DHT systems become more reliable and far more efficient due to
the structured management of nodes. Generally, random losses of nodes are
not critical because at least f nodes manage one interval cooperatively. The
modified DHT system can cope with a loss of (f -1) nodes assigned to the
same interval. In case of less than f nodes within one interval, the algorithm
immediately merges adjacent intervals.
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Fig. 9.11: Copy of data to the neighbors responsible for the same interval.

9.3 Summary

This chapter introduces algorithms for DHT-based systems which balance
the storage data load or care for the reliability of the data.

All systems usually rely on the basic assumption that data is nearly
equally distributed among the peer nodes. But, as shown, the simple as-
sumption of getting an equally distributed value space simply by using hash
functions does not hold. To achieve a continuous balance of data and, more-
over, to ensure the scalability and efficiency in structured Peer-to-Peer sys-
tems, load-balancing mechanisms have to be applied. Therefore, this chapter
introduces some algorithms for balancing storage load in DHTs. Although
the algorithms are explained based on Chord, most of them can be easily
adapted to other DHTs, such as CAN.

The second part of the chapter shows two ways to store data in the DHT
in a fault-tolerant manner. One is to replicate the data to other nodes, and
another is to split the data, thus making them more available through redun-
dancy.
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10.1 The Concept of Self-Organization

Peer-to-peer systems are often characterized as self-organizing systems. Such
characterization is frequently used to informally express properties of Peer-to-
Peer systems such as the distribution of control, locality of processing, and
the emergence of global structures from local interactions. Self-organizing
systems are considered as being particularly scalable and failure resilient.

In this chapter we would like to explore the nature of self-organization in
Peer-to-Peer systems in more detail, with a particular emphasis on structured
overlay networks. Overlay networks facilitate the organization of application-
specific address spaces in Peer-to-Peer systems by constructing a logical net-
work on top of the physical network. They are one of the central concepts that
have been introduced in the field of Peer-to-Peer systems. We will investigate
the issue of self-organization first for unstructured overlay networks, such as
Gnutella [126], where issues of self-organization are more widely studied, and
then show how self-organization also plays a role for the design of structured
overlay networks. We will study self-organization for the P-Grid structured
overlay network [3] which has been designed as a highly self-organizing sys-
tem.

Self-organizing systems are well-known from many scientific disciplines,
in particular from physics and biology, for example, crystallization processes
or insect colonies. In computer science self-organization and the resulting
phenomena have been studied in particular in the field of artificial intelligence
(agent systems, distributed decision making, etc.).

Self-organization is the process of evolution of a complex system with lo-
cal interaction of system components only, resulting in system states with
certain observed or intended global properties. A self-organizing process is
driven by randomized local variations—movements of molecules in the case
of crystallization, movements of individual insects in insect colonies. These
“fluctuations” or “noise”, as they are also called, lead to a continuous per-
turbation of the system and allow the system to explore a global state space
until it enters into equilibrium states. These states correspond to the global,
emergent structures [294].

R. Steinmetz and K. Wehrle (Eds.): P2P Systems and Applications, LNCS 3485, pp. 137-153, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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More formally, a self-organizing system can be described as a Markovian
process. Given a set of possible states S, which usually is very large, the evo-
lution of a complex system can be described deterministically by a function
fT : S → S. In practice, the lack of information about the precise state will
make a deterministic description of the system evolution infeasible. Thus a
more realistic way to describe the system evolution is by a stochastic process
where for each given state si we can give the probability that a state sj is
reached, i.e. P (sj |si) = Mij ∈ [0, 1], where M is the transition matrix of
a Markovian process. Given the probability distribution of states P (si, t) at
time t it is thus possible to calculate the time evolution of the system as

P (sj , t + 1) =
∑

i

Mij P (si, t).

Usually we are interested in emergent properties of such self-organizing
systems. Emergent properties are global properties of the state space that
result after the system has converged to an equilibrium. In the following we
will demonstrate how this view of self-organizing systems can be adopted in
the context of Peer-to-Peer systems.

10.2 An Example of Self-Organization in Unstructured
Peer-to-Peer Systems

Unstructured Peer-to-Peer systems have generated substantial interest be-
cause of their self-organization behavior resulting in interesting global struc-
tural properties of their state, in particular the structure of the resulting
network graphs. For example, the Gnutella network graph exhibits the fol-
lowing characteristics [516]:

1. The network has a small diameter, which ensures that a message flood-
ing approach for search works with a relatively low time-to-live (approx-
imately 7).

2. The node degrees of the overlay network follow a power-law distribution.
Thus few peers have a large number of incoming links, whereas most
peers have a very low number of such links.

These properties result from the way Gnutella performs network main-
tenance: Each peer discovers other peers by constrained flooding. From the
discovered peers a fixed number of randomly selected peers are used to con-
struct the Gnutella network. Thus nodes in the network graph have a con-
stant out-degree. During this process peers with a larger number of incoming
connections are more likely to be selected. This corresponds to a preferential
attachment mechanism during network construction. Preferential attachment
has been identified as a mechanism that generates a power-law distribution
of node degrees for many types of networks, for example, the World Wide
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Web, citation networks, and genetic networks. Similarly, for unstructured
overlay networks this mechanisms leads to a power-law distribution of nodes’
in-degrees.

A non-rigorous argument why preferential attachment generates power-
law distributed node degrees is as follows [422]. We model the system state by
the distribution of node degrees. Let P (j, t) be the probability that at time t
a node has in-degree j and assume that at each time step one peer joins the
network and adds one additional connection. Assume that with probability α
the node to which the new peer connects is chosen uniformly randomly and
with probability 1 − α proportionally to the current node degree. Then the
process of network evolution can be modeled as follows.

P (j, t+1) = P (j, t)+α(P (j−1, t)−P (j, t))+(1−α)((j−1)P (j−1, t)−jP (j, t)).

Now assume that the degree distribution is in steady state, i.e. P (j, t) =
cj , t > 0. We can derive

cj

cj−1
= 1 − 2 − α

1 + α + j(1 − α)
≈ 1 − 2 − α

1 − α

1
j

where the approximation is valid for large j. This relationships is satisfied
approximately for

cj ≈ j−
2−α
1−α .

To see this, note that for this cj we have

cj

cj−1
≈ (1 − 1

j
)

2−α
1−α ≈ 1 − 2 − α

1 − α

1
j

This is a first example of how a self-organization process results in a global
structural feature, namely the power-law degree distribution. The probability
that a node has a given in-degree remains invariant while the network grows,
thus the system is in a dynamic equilibrium during network construction.

The structure of the resulting overlay network is the basis for performing
searches efficiently. In Gnutella, searches are performed by message flooding.
A low network diameter, as in the power-law graph, guarantees low search
latency. Message flooding however induces a high consumption of network
bandwidth. Therefore other strategies for performing searches in Gnutella
networks have been investigated. The independence of the network main-
tenance and search protocols makes it possible to use alternative search
strategies which may exploit the emergent overlay network structure more
efficiently. Examples of such alternative strategies are the random walker
model [397] and the percolation search model [537], which both exploit the
specific structure of the network.

To summarize, we can observe two important points for unstructured
overlay networks such as Gnutella. First, the structure of the network and
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its global properties are induced by the (self-organizing) dynamic process
used for their construction. Second, the design of efficient search algorithms
exploits the structural features of the overlay network that results from the
self-organized construction process. In the following we will show that the
same principles can be applied analogously for structured overlay networks.

10.3 Self-Organization in Structured Peer-to-Peer
Systems

One of the important drawbacks of unstructured overlay networks is the high
network bandwidth consumption during searches, apart from the fact that
successful searches are not guaranteed unless all peers are contacted. This
motivated the development of structured overlay networks where nodes coor-
dinate among themselves by partitioning the key space and maintaining state
information on the resources stored at neighboring nodes. This enables the
implementation of directed searches and thus to dramatically reduce band-
width consumption used in search. This approach, however, requires also a
higher degree of coordination among the nodes while constructing and main-
taining the overlay network.

To achieve this coordination, maintenance algorithms are provided that
maintain structural invariants during the lifetime of the overlay network.
Typically these structural invariants are ensured through localized opera-
tions. This is the approach taken by most structured overlay networks, such
as Chord [575]. The structural invariant of Chord is related to the selection of
routing table entries. Each node maintains a link to the first node located on
predefined partitions of the key space, which are increasing exponentially in
size with distance from the node. During network maintenance, for example,
during a node join, the routing tables of the joining node and existing nodes
in the network are updated immediately such that after the join is completed,
the structural constraints on the routing tables are satisfied. This approach
is very different from the self-organization mechanism we have analyzed for
unstructured networks, where a structural property, i.e., the node in-degree
distribution, is ensured not through localized operations but as a property
resulting from a self-organization process.

In the following we will show how self-organizing processes can also be
used in the context of structured overlay networks. With such an approach
structural properties are not guaranteed through localized operations, but
emerge as a global property from a self-organization process. We will demon-
strate this approach for the P-Grid overlay network [3]. P-Grid uses self-
organizing processes for the initial network construction to achieve load-
balancing properties as well as for maintenance to retain structural properties
of the overlay network intact during changes in the physical network. We will
give first an overview of the structural design of P-Grid and then discuss its
self-organization mechanisms and the techniques used for their analysis. Our
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focus is on the exemplification of general self-organization principles which
are applicable to many overlay networks to varying extents and with different
performance implications as we will briefly discuss at the end of this chapter.

10.3.1 The Structure of P-Grid Overlay Networks

We assume that the data keys are taken from the interval [0, 1[. The struc-
ture of a P-Grid overlay network is based on two simple principal ideas: (1)
the key space is recursively bisected such that the resulting partitions carry
approximately the same workload. Peers are associated with those partitions.
Using a bisection approach greatly simplifies decentralized load-balancing by
local decision-making. (2) Bisecting the key space induces a canonical trie
structure which is used as the basis for implementing a standard, distributed
prefix routing scheme for efficient search.

This is illustrated in Fig. 10.1. At the bottom we see a possible skewed
key distribution in the interval [0, 1[. We bisect the interval such that each
resulting partition carries (approximately) the same load. Each partition can
be uniquely identified by a bit sequence. We associate one or more peers (in
the example exactly two) with each of the partitions. We call the bit sequence
of a peer’s partition the peer’s path. The bit sequences induce a trie structure,
which is used to implement prefix routing. Each peer maintains references in
its routing table that pertain to its path. More specifically, for each position
of its path, it maintains one or more references to a peer that has a path
with the opposite bit at this position. Thus the trie structure is represented
in a distributed fashion by the routing tables of the peers, such that there
is no hierarchy in the actual overlay network. This construction is analogous
to other prefix routing schemes that have been devised [491, 527]. Search in
such overlay networks is performed by resolving a requested key bit by bit.
When bits cannot be resolved locally, peers forward the request to a peer
known from their routing tables.

P-Grid uses replication in two ways in order to increase the resilience of the
overlay network when nodes or network links fail. Multiple references are kept
in the routing tables, thus providing alternative access paths, and multiple
peers are associated with the same key space partitions (structural replica-
tion) in order to provide data redundancy. The self-organization mechanisms
we will discuss for P-Grid will relate to these two replication mechanisms.

Contrary to standard prefix routing approaches P-Grid does not assume
a maximal key length that limits the tree depth and thus search cost. This
assumption would compromise the load-balancing properties achieved by bi-
section. Thus search efficiency is not guaranteed structurally, since in the
worst case search cost is related to the maximal path length of the trie,
which for skewed key distributions can be up to linear in the network size.
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Fig. 10.1: P-Grid structure

To guarantee efficient search, P-Grid constructs its routing tables in a
randomized fashion. For example, all peers that adopted 0 as the first bit of
their path, can choose at the first level of their routing table any peer with
first bit 1. This is in contrast to a deterministic approach where a specific
peer would have to be chosen, e.g., the first in the respective interval. It
turns out that with such a randomized approach in expectation routing cost
is exactly log n, where n is the number of leaves of the trie underlying the
routing table construction. Informally, by randomly selecting in the routing
tables peers among all peers that can resolve the next bit during routing, in
expectation more than one bit will be resolved in a single step. An analysis
for the routing cost is found in [2].

There is another motivation for having a trie-structured overlay network
instead of a standard distributed hash table: The real advantage of tradition-
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ally using a hash table in main memory is the constant time of lookup, insert,
and delete operations. But to facilitate this, a hash table sacrifices the order-
relationship of the keys. However, over a network, where only parts of the
hash table are stored at each location, we need multiple overlay hops anyway.
For most conventional DHTs the number of hops is logarithmic in the network
size. Thus the main advantage of constant-time access no longer exists. In
fact the fundamental issue to address now is, whether we can realize a search
tree, which still is similarly efficient as a DHT in terms of fault-tolerance,
load-balancing, etc., but also provides properties such as preservation of key
ordering and hence supports efficient exact queries but also efficiently enables
higher-level search predicates such as substring search, range queries [157],
etc. This is a major goal in the design of the P-Grid overlay network.

10.3.2 Dynamics of P-Grid Overlay Networks

From a structural perspective P-Grid is based on a distributed trie struc-
ture that preserves key ordering. This naturally enables prefix and range
queries [157]. However, a number of algorithmic issues need to be addressed
in order to adapt the structure of the overlay to a given key distribution and
to maintain it in a dynamic network environment.

Usually maintenance for overlay networks is considered for a sequential
node join and leave model. Algorithms are provided for inserting new nodes
contacting an existing network node. The arrival of a new node requires up-
dates to the routing tables of the new node and of some of the existing nodes
in the network. In case of node failures or uncooperative node departure,
routing table entries need to be repaired. This is performed by maintenance
algorithms which either periodically poll routing table entries or piggy-back
repair actions to other operations, e.g., searches.

In addition to these standard techniques P-Grid also supports the efficient
construction of an overlay network from scratch. We call this the bootstrap-
ping problem and it corresponds to the standard database problem of index
construction. For addressing this problem, it is critical that the large number
of peers participating in the construction of the overlay network can work in
parallel.

This problem has been largely ignored in the literature, but has to be
solved for a number of practical reasons, in particular for data-oriented appli-
cations. The need to bootstrap a new overlay structure can occur for semantic
needs of applications, e.g., for indexing new attribute types of resources with
structured metadata annotations or due to performance considerations, e.g.,
for periodically rebuilding an inverted file in a Peer-to-Peer retrieval system
rather than continuously maintaining it, or for operational reasons, e.g., for
rebuilding an overlay network after catastrophic failure, where the standard
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maintenance method is no longer capable of reconstructing a stable overlay
network.

In the following we will first discuss a self-organizing process that is used
to realize efficient bootstrapping of P-Grid networks, and then discuss a rout-
ing table maintenance technique used in P-Grid for maintaining consistency
of routing tables under network churn which is based on an adaptive, self-
organizing process.

10.3.3 Bootstrapping a P-Grid Overlay Network

The process of bootstrapping an overlay network from scratch should be per-
formed with low latency, i.e., highly parallel, and with minimal bandwidth
consumption. At the same time, for a P-Grid overlay network it should si-
multaneously achieve two load-balancing properties:

1. The partitioning of the search space should be such that each partition
holds approximately the same load, e.g., measured as the number of keys
present in the partition.

2. Each resulting partition should be associated with approximately the
same number of peers, such that the availability of the different data
keys is approximately the same.

P-Grid achieves these goals by a distributed, self-organizing process. Using
a self-organizing process allows to largely decouple the operation of different
peers and thus enables the parallelization of the task.

The design of the process takes advantage of the fact that a P-Grid over-
lay network structure results from the recursive bisection of the key space.
The process is based on random encounters of peers. These are initiated by
performing random walks on a pre-existing unstructured overlay network. In
their encounters the peers decide whether the current partition contains a
sufficient number of keys to justify a further split. The problem to solve is
that a large number of peers have to split fast into two peer populations of
which the ratio matches the ratio of the key set sizes in the two partitions.

We provide the algorithm used for the basic case of performing a bisection
into two partitions 0 and 1 with n + 1 peers, where the workload associated
with the two partitions is p and 1 − p. We assume that each peer knows
the value of p and that 0 ≤ p ≤ 1

2 . Then the problem can be formulated as
follows.

1. Proportional replication: Each peer has to decide for one of the two par-
titions such that (in expectation) a fraction p of the peers decides for 0
and a fraction 1− p for 1. Thus the average workload becomes uniformly
distributed among the peers.
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2. Referential integrity: During the process each of the peers has to en-
counter at least one peer that decided for the other partition. Thus the
peers have the necessary information to construct the routing table.

The second condition makes the problem non-trivial, since otherwise peers
could simply select partition 0 with probability p and 1 otherwise. P-Grid uses
the following distributed algorithm to solve the problem.

1. Each undecided peer initiates interactions with a uniformly randomly
selected peer until it has reached a decision.

2. If the contacted peer is undecided the peers perform a balanced split with
probability 0 ≤ α(p) ≤ 1 and maintain references to each other.

3. If the contacted peer has already decided for 1 then the contacting peer
decides for 0 with probability 0 ≤ β(p) ≤ 1 and with probability 1−β(p)
for 1. In the first case it maintains a reference to the contacted peer. In
the second case it obtains a reference to a peer from the other partition
from the contacted peer.

We can model this algorithm as a Markovian process. We assume that in
each step i one peer without having found its counterpart so far contacts an-
other randomly selected peer. We denote by P (0, t) and P (1, t) the expected
number of peers that have decided in step t for 0 and 1 respectively. Initially
P (0, 0) = P (1, 0) = 0. At the end of the process at some step te we have
P (0, te) + P (1, te) = n + 1. We analyze the case α(p) = 1. Then the model
can be given as

P (0, t) = P (0, t − 1) +
1
n

(n − P (0, t − 1) − (1 − β)P (1, t − 1))

P (1, t) = P (1, t − 1) +
1
n

(n − βP (1, t − 1))

In order to determine the proper value of β for a given value of p, we have
to solve the recursive system. By standard solution methods we obtain

P (0, t) =
n

β
(2β − 1 + (1 − β

n
)t − 2β(

n − 1
n

)t)

P (1, t) =
n

β
(1 − (1 − β

n
)t)

We observe that the recursion terminates as soon as no more undecided
peers exist, i.e., as soon as P (0, te) + P (1, te) = n + 1. By evaluating this
termination condition we obtain

te(n) =
log(2)

log( n
n−1 )

+ 1 (10.1)
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Note that te does not depend on p, and thus the partitioning process
requires the same number of interactions among peers independent of load
distribution. By definition p = P (0,te)

n+1 , thus we obtain a relationship among
the network size n + 1 and the load distribution p with β(p, n). For large
networks, by letting n → ∞, we obtain the following relationship among p
and β(p)

p = 1 − 1
β

(1 − 2−β) (10.2)

Positive solutions for β(p) cannot be obtained for all values of p. From
Equation 10.2 we derive that positive solutions exist for p ≥ 1 − log(2). In-
formally speaking, since balanced splits are always executed unconditionally,
the algorithm cannot adapt to arbitrarily skewed distributions. Therefore
for 0 ≤ p < 1 − log(2) we have to pursue a different strategy, by reducing
the probability of balanced splits, i.e. α(p) < 1. The analysis of this case is
analogous and therefore we omit it here.

Various non-trivial issues still need to be addressed to extend this basic
process to a complete method for constructing a P-Grid overlay network with
load-balancing characteristics. The value of p is normally not known, thus it
needs to be estimated from the key samples the peers have available locally.
This introduces errors into the process which require non-trivial corrections.
The process needs to be performed recursively, thus errors in proportionally
bisecting the key space accumulate. The process needs to be approximately
synchronized to leave the assumptions made for the basic process valid. The
bisection process should terminate as soon as the number of peers in the
same partition falls below a threshold. Since peers cannot know during the
bootstrapping all potential replica peers in the same partition, other criteria,
based on the locally available keys, need to be evaluated. Solutions for these
problems have been developed and it has been shown that in fact it is pos-
sible to efficiently construct a P-Grid overlay network satisfying the desired
load-balancing properties based on the elementary process introduced in this
section [6, 7].

10.3.4 Routing Table Maintenance

Another aspect of overlay network dynamics is related to the dynamics of the
underlying physical networks. Entries in routing tables can turn stale due to
temporary or permanent failures of peers or network connections. Standard
approaches that address this problem use periodic probing or correct entries
immediately upon changes (correction-on-change).

These approaches are specifically designed for environments where peer
reliability is relatively high. For P-Grid we assume the contrary, i.e., peers
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are generally unavailable. Therefore P-Grid relies on a high degree of redun-
dancy in the routing tables, such that with high probability routing can be
performed successfully. Trying to keep all redundant routing entries contin-
uously consistent would not be appropriate in a highly dynamic network.
P-Grid rather uses a lazy approach, where routing entries are only corrected
if routing fails. We distinguish two possibilities when to perform a repair:
(1) immediate repair of stale routing table entries (among a large number
of redundant entries) encountered during routing (correction-on-use) and (2)
initiate repairs upon failure of all redundant entries at one level of the routing
table of a peer (correction-on-failure) [5].

Using a lazy repair approach one can tolerate a certain fraction of stale
routing entries in the routing tables. This has the advantage that routing
entries to peers that are only temporarily unavailable and reappear, do not
require a repair. Furthermore, peers can maintain their path and thus the
keys they store also in case of temporary absence, which further reduces the
maintenance cost.

In order to enable repairs, P-Grid uses the overlay network itself as a direc-
tory for storing the current binding of logical peer identifiers to their current
physical address. Peers joining the network have to provide this data. For
repair then the binding can be retrieved from the overlay network. Note that
during repairs more failures may occur, such that repairs may recursively
trigger other repairs. Recursive triggering queries for repair has an inherent
self-healing property. With few stale mappings, there is hardly any deteriora-
tion in answering the queries, but as the stale entries accumulate over time,
they lead to more frequent recursions. An important question is whether such
a system can operate in a stable state. For analyzing this, we will model the
overlay network as a dynamical, self-organizing system.

To illustrate the route maintenance mechanism we first provide a simple
example below. Note that though in the example P-Grid is used as a self-
referential directory service for storing identity-to-address mappings of peers,
the approach is generally applicable and provides a generic self-contained
directory service, such that any information about the participating peers
(e.g., trust, history, resource meta-data, etc.) can be stored within the system
itself.

Figure 10.2 shows a typical state of a P-Grid network.
Peer Pi is denoted by i inside an oval. Online peers are indicated by

shaded ovals, offline peers by unshaded ovals. Peers under the same branch
are replicas. For example, P1 and P7 are both responsible for paths starting
with 000. Without loss of generality we assume that the identity of a peer p
(Idp) has a length of 4 bits. Thus P7 holds the public key and latest physical
address mapping about P1 (updated by P1) because P7 is responsible for
the paths 0000 and 0001. The shaded rectangle in the upper-right corner
of each peer shows the peer IDs that a peer is responsible for, i.e., whose
public key and physical address mapping it manages. Note that there exists
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Fig. 10.2: An example P-Grid network

no dependency between the peer identity (idP7 = 0111) and the path it is
associated with (π(P7) = 0000). In its routing table P7 stores references for
paths starting with 1, 01 and 001, so that queries with these prefixes can be
forwarded closer to the peers holding the searched information. The cached
physical addresses of these references may be up-to-date (for example, P13’s)
or be stale (denoted by underlining, for example, P5).

A peer Pq decides that it has failed to contact a peer Ps, if one of the
following happens: (1) No peer is available at the cached address (trivial case)
or (2) the contacted peer has a different identifier. In either of these cases
an up-to-date identity-to-address mapping can be obtained by querying the
P-Grid. If peer Ps goes offline, and comes online later with a different IP
address, it can insert a new identity-to-address mapping into P-Grid.

If a peer fails to contact peers in its routing table, it initiates a new query
to discover the latest identity-to-address mapping of any of those peers. If
this is successful it forwards the query.

Assuming the initial setup while the P-Grid is in the state shown in Fig-
ure 10.2, the query processing will work as follows. Assume that P7 receives
a query Q(01∗). P7 fails to forward the query to either of P5 or P14 since
their cache entries are stale. Thus P7 initiates a recursive query for (P5), i.e.,
Q(0101), which needs to be forwarded to either P5 or P14. This fails again.
P7 then initiates a recursive query for (P14), i.e., Q(1110), which needs to be
forwarded to P12 and (or) P13. P12 is offline, so irrespective of the cache being
stale or up-to-date, the query cannot be forwarded to P12. P13 is online, and
the cached physical address of P13 at P7 is up-to-date, so the query is for-
warded to P13. P13 needs to forward Q(P14) to either P2 or P12. Forwarding
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to P12 fails and so does the attempt to forward the query to P2 because P13’s
cache entry for P2 is stale. Thus P13 initiates a recursive query for (P2), i.e.,
Q(0010). P13 sends Q(P2) to P5 which forwards it to P7 and/or P9. Let us
assume P9 replies. Thus P13 learns P2’s address and updates its cache. P13

also starts processing and forwards the parent query (P14) to P2. P2 provides
P14’s up-to-date address, and P7 updates its cache.

Having learned P14’s current physical address, P7 now forwards the origi-
nal query Q(01∗) to P14. This does not only satisfy the original query but P7

also has the opportunity to learn and update physical addresses P14 knows
and P7 needs, for example, P5’s latest physical address (we assume that peers
synchronize their routing tables during communication since this does not in-
cur any overhead). In the end, the query Q(01∗) is answered successfully and
additionally P7 gets to know the up-to-date physical addresses of P14 and
possibly of P5. Furthermore, due to child queries, P13 updates its cached
address for P2. Figure 10.3 shows the final state of the P-Grid with several
caches updated after the the completion of Q(01∗) at P7.

Fig. 10.3: P-Grid after query(01*) at P7

Peers thus do not discard routing information immediately if it is not
usable, since peers may come online at a later time. However, it is also pos-
sible that a peer never rejoins the network, and thus a garbage collection
mechanism can be used in the background which can be obtained with no or
marginal overhead.
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10.3.5 Analysis of the Maintenance Mechanism

As the example illustrates, the maintenance mechanism is a highly recursive
process. If too many entries become stale the network runs the risk of being
no more able to restore correct routing table entries and to catastrophically
fail. Thus it is important to understand under which conditions the network
remains stable. In order to analyze this we will model the algorithm as a
self-organizing process.

We will analyze the dynamics of one of the possible variants of main-
tenance, eager correction-on-use, in which during routing all routing table
entries are probed and get repaired if they are encountered to be stale. We
chose this variant here as the analysis is not overly complex. We further sim-
plify the analysis here by considering that only the address changes but the
peers always stay online. A complete analysis also considering the probabil-
ity of peers being online (pon) for both the maintenance mechanisms is much
more complicated but uses the same ideas. A detailed analysis taking into
account all parameters is given in [5].

We analyze the degree of consistency of routing tables by modeling the
time evolution of the probability Pμ(t) that a entry in a routing table is
stale. We assume that at each time step t one query is issued by a peer and a
peer changes its address with probability pc between two queries. The queries
issued as a result of the maintenance mechanism will repair a certain fraction
of stale routing table entries. The process is in a stable dynamic equilibrium
if the expected number of repaired entries matches the expected number of
entries becoming stale. The analysis will allow us to determine for which
parameters the system is in such an equilibrium state.

In the following n is the number of leaves of the P-Grid tree and r is the
number of redundant references kept in a routing table at each depth. We
will assume in the following a balanced P-Grid tree.

While cached entries continuously get stale owing to network dynamics,
they trigger recursive queries in order to update the stale mappings. In each
step of processing a query, an expected number of rPμ(t) stale references
are encountered and thus trigger a new recursive query. Thus, if we denote
by Nrec the total number of queries triggered by one original query and
consider that in a balanced P-Grid the expected search cost is log2 n

2 we
obtain the recursive relationship Nrec = 1+rPμ(t) log2 n

2 Nrec. The relationship
is recursive since each query triggered for repair is expected to recursively
trigger more queries.

Not every query (original or recursively triggered) will succeed. Denoting
the probability of failure of a query by ε, the probability of successfully routing
a query is 1 − ε = (1 − Pμ(t)r)H where H is the number of times the query
needs to be forwarded to reach the leaf node. Thus, the expected value of the
achievable success probability is 1 − ε = EH [(1 − Pμ(t)r)H ]. For a balanced
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P-Grid, H is a binomial random variable of size log2n and parameter 0.5.
Hence, 1 − ε ≈ (1 − Pμ(t)r

2 )log2 n.
We now can give the Markovian process that determines the time evolu-

tion of Pμ(t).

Pμ(t + 1) = Pμ(t) − pc(1 − Pμ(t)) +
1

r log2 n
(Nrec − 1)(1 − ε) (10.3)

Nrec and ε can be expressed in terms of Pμ(t). The negative contribution
in the recursion corresponds to the fraction of correct routing table entries
of a peer that turns stale between two queries issued by the peer and the
positive contribution is the fraction of incorrect routing table entries of a
peer that are repaired due to recursively triggered and successfully processed
queries.

The system is in a dynamic equilibrium if Pμ(t) = μ for some constant μ.

pc(1 − μ)r log2 n = (Nrec − 1)(1 − ε)

In this state the rate at which changes occur in the system will equal the
rate at which self-maintenance is done due to recursions. This allows us to
determine the equilibrium state for different network dynamics expressed by
pc.

In Figure 10.4 we provide contour maps corresponding to Nrec values,
with pon in the x-axis and rup = pc/(1+pc) in the y-axis. If we consider that
there are two kinds of events that trigger the whole self-maintenance process
in the system–queries and changes in peers’ address mapping–rup represents
the fraction of these events being the changes. The interpretation of the plot
is thus that if a system is willing to incur an Nrec factor of increase of effort
per query with respect to the ideal case (pon = 1 and pc = 0), the network
will operate for all pon, pc combinations below the curve, with the success
probability being 1. If the system is unwilling to use more than Nrec effort and
if the system operates in the region above the curves of Figure 10.4, there is a
non-zero failure probability, which increases with the distance from the curve.
Figure 10.4 thus captures two important trade-offs in the system. The first
trade-off is that of efficiency versus probabilistic success guarantee of queries.
The second trade-off is the system’s resilience against the two “demons” of
networks, i.e., the network dynamics pc versus average availability of peers
in the network pon.

10.4 Summary

We have seen three examples of how self-organizing processes induce struc-
tural features of Peer-to-Peer overlay networks, one example for unstructured
overlay networks and two examples for structured overlay networks. Each of
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the examples was slightly different both in the nature of the process studied,
in the type of equilibrium obtained as well as in the purpose for which the
model of the process was developed.

The ideas presented in this chapter which we explored during the process
of designing and implementing the P-Grid system are generally applicable,
however. Often dynamic systems will have to be analyzed as Markovian sys-
tems, be it for a-posteriori analysis, or to study their evolution over time,
given a set of rules for local interactions, or to investigate the equilibrium
state in the presence of perturbations.

Also, in the context of Peer-to-Peer systems, reactive route maintenance
strategies have been studied by other projects, e.g., in DKS, as well as other
systems also try to address the problem of fast and parallel overlay construc-
tion mechanisms, for example, [31]. Other systems that focus more on storage
load-balancing for arbitrary load distributions and use small-world routing
include SkipGraphs [36] and Mercury [72] (among several other recent Peer-
to-Peer proposals). Increasingly, there is a confluence of ideas which arrived
independently by various research groups dealing with self-organization prob-
lems.

More importantly, analysis of network evolution and maintenance are ei-
ther explicitly or implicitly assuming a Markovian model, an analytical ap-
proach which we tried to present here formally by elaborating on three differ-
ent self-organizing processes. In the case of modeling preferential attachment
in unstructured overlay networks the stochastic model has been developed
to explain a-posteriori a phenomenon that has been observed in many artifi-
cial and natural networks, including Peer-to-Peer overlay networks. Thus it is
used to explain empirical evidence. The model itself identifies a dynamic equi-
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librium state that is maintained throughout network growth. The dynamics
of the network results from the network growth.

In contrast, the stochastic model developed for bootstrapping P-Grid
overlay networks is used in order to a priori derive certain design param-
eters for a distributed algorithm, i.e., the probabilities by which peers take
local decisions in order to lead the system globally to a desired state. Also the
nature of the stochastic process is different as it is a transient process that
converges during network growth to a static equilibrium point. The dynamics
of the network results from active interactions performed by peers.

The approach taken for maintenance of P-Grid networks again differs
in terms of modeling and methodology. Here the stochastic model is used
to determine under which network conditions a stable system behavior for
a given algorithm can be expected. As in the first example the stochastic
model is used to analyze a dynamic equilibrium state. However, in this case as
opposed to the previous examples, the network is stable in size. The dynamics
of the network results from operations externally triggered by failures in the
physical network.

This illustrates that the basic concept of modeling the large-scale be-
havior of Peer-to-Peer networks as self-organizing, dynamic processes leaves
ample room for different modeling and analysis approaches and has various
methodological uses. We would also like to point to the fact that the anal-
ysis techniques presented in this chapter mostly have involved substantial
approximations and do not necessarily conform to a rigorous mathematical
treatment for analyzing dynamical systems. In that respect there exists a
substantial need and potential for further interdisciplinary research drawing
on the substantial body of knowledge from studying self-organizing systems
in other domains. Thus the field of modeling and analyzing complex Peer-to-
Peer systems as self-organizing systems currently is still in its early stages.





11. Application-Layer Multicast
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11.1 Why Multicast on Application Layer

Since the early days of the Internet, extending routing capabilities beyond
point-to-point communication has been a desired feature, mostly as a means
of resource discovery. The limited size of the Internet at that time permitted
the technique of broadcasting a single packet to every possible node. With
its growth, Internet-wide broadcasting became increasingly expensive which
imposed constraining the scope of broadcast packets to end points that ex-
pressed interest in receiving packets of a specific service (Selective Broadcast
[612]). This was in fact the first attempt to offer indirectly a group communi-
cation service over the Internet. Still, Deering’s seminal work [161] is regarded
as the groundwork in Internet-wide group communication. In his host-group
model, Deering also specified the extensions to unicast routing protocols re-
quired to support many-to-many communication. Since the first appearance
of the host-group model, a lot of research and standardization effort has been
put into ubiquitous multicast natively implemented on routers (network-layer
service). Despite years of ongoing work, deployment of native IP-multicast
still remains poor [170] and this has motivated the search for alternative ap-
proaches. However, it has been shown that the design choice of offering multi-
cast at the network layer violated the end-to-end argument [531]. Specifically,
the end-to-end argument suggests that it is only worth pushing a service to
lower layers of a system if, by doing so, the returned performance/cost im-
provement outweighs the increased complexity of implementing the service
at the network layer. Clearly, network-layer multicast and, in particular, its
de facto Any-Source Multicast standard (the Any-Source Multicast model is
implemented in the PIM-SM/MBGP/MSDP protocol suite) is violating the
end-to-end principle, for many of its deployment problems require the realiza-
tion of the service at the network layer (e.g., source discovery, inter-domain
routing). Alternatively, one of the newly arisen multicast proposals tries to
more closely adhere to the end-to-end argument by shifting the service im-
plementation to higher in the protocol stack, namely to the application layer.

Application-Layer Multicast (ALM) does not assume any support
from the network, i.e., it assumes just an elementary unicast forwarding ser-
vice. All specific group communication functionality including group manage-
ment (integrating new members into an existing group or coping with mem-
ber departures), multicast tree formation, and packet replication, is moved to
the application layer. In particular, ALM systems organize the participating
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nodes in the service as an overlay network; the end-to-end IP paths among
each node pair constitute the links of the overlay network. Group information
and forwarding state, stored in the overlay nodes, are then used for packet
replication over the overlay links and to deliver data packets originating from
any source to the entire group.

11.2 Design Aspects and Taxonomy

The ultimate goal of an ALM scheme is to build an efficient overlay network
and thus to maximize the service quality received by the service consumers
(group members). The QoS (Quality of Service) parameters of interest may
vary, depending on the requirements of the group communication application
utilizing the ALM service. For instance, an interactive teleconferencing appli-
cation would require an overlay optimized for stringently minimized delivery
delays and high bandwidth, whereas a TV streaming service could tolerate
larger overlay delays, but demands low loss and high bandwidth.

To date, numerous application-layer systems have been proposed to re-
alize multicast. Most of these schemes are based on the same fundamental
design choices and those characteristics are used here to classify the differ-
ent proposals. A principal characteristic refers to routing organization: many
ALM overlays first build a richly connected graph termed mesh (therefore,
the general approach is referred to as mesh-first) and subsequently construct
the distribution tree as a subgraph of the mesh (ESM [307] and ALMI [482]).
In contrast, other ALM schemes first build a spanning tree on the overlay
nodes (tree-first approach) and then enrich the tree by adding additional
control links (Yoid [228], HMTP [638]).

A second classification characteristic is associated with the type of overlay
used. Many ALM schemes implement multicast on top of a structured overlay
network like CAN 8.3, Pastry 8.2, or Chord 8.1 by defining a virtual space
and positioning the overlay nodes in it. Direct IP routing is abstracted to
routing in the virtual space and accordingly, overlay multicast is abstracted to
one- or many-to-many communication across the nodes in the virtual space.
Representative examples of this class of ALM systems are CAN multicast
[506] and Scribe [109]. Note that still the majority of ALM proposals is based
on unstructured overlays, using explicit routing mechanisms.

Finally, some of the proposed ALM schemes build overlays solely with
end user systems, thereby shielding their operation against abrupt departure
or failure of overlay nodes (ESM, ALMI, HMTP). In contrast to those, other
systems (like Overcast [322] and RON [26]) assume the existence of fixed
nodes (equivalently termed proxies, replicators, or multicast service nodes
in the bibliography) that are deployed inside the network and which are
essentially responsible for routing in the overlay. In these latter systems,
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end user nodes do not usually participate in packet replication and group
management, and act only as service consumers.

In the next section, we follow one of the possible taxonomies: classifying
ALM based on structured or unstructured overlays. For each category, we
further distinguish two sub-categories with reference to the peculiarities of
each category.

Finally, before delving into the specification details of ALM systems, it is
important to identify the performance overhead and service costs introduced
by moving multicast functionality to the application layer. Below is a list of
metrics that are often used to evaluate any given ALM system, but that also
represent a guideline for ALM design in general:

– Relative Delay Penalty (RDP) or Stretch: Strictly defined as the ratio of
the one-way overlay delay of a node pair over the unicast delay among the
same nodes in the identical direction. The goal here is to match routing
proximity as closely as possible to underlying IP routing, reducing the
resulting delay penalty.

– Throughput : Similarly to RDP, this performance metric measures the ef-
fective data throughput achieved for a single receiver (over time or on
average).

– Stress : Stress is defined as the number of times the same packet traverses
a specific physical link in either direction. Essentially, it quantifies the cost
of moving the replication effort to end systems in terms of data bandwidth.

– Control Overhead : Number of control messages exchanged throughout an
ALM session. This metric represents the cost in terms of control message
exchanges.

11.3 Unstructured Overlays

11.3.1 Centralized Systems

The term ”centralized” in the context of ALM design does not refer to data
replication handled by a centralized entity; instead, it points out the de-
sign principle of a centralized entity handling group management and cre-
ation/optimization of the distribution tree. This is the approach taken in the
Application Level Multicast Infrastructure (ALMI [482]).

The entire coordination task in ALMI is assigned to the ”session con-
troller”, as shown in the architecture diagram (Figure 11.1). The session
controller - residing either on a dedicated server of the service provider or
at a group member node - exchanges point-to-point messages (dashed ar-
rows) via unicast with every overlay node (drawn as a circular point). It is
worth mentioning that the controller does not lie on the data path, i.e., is not
part of the distribution tree (marked with bold, solid arrows), thus avoiding
bottlenecks in data distribution.
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A node that wants to join an ALMI session sends a JOIN message to the
session controller. Note that the discovery of the session controller’s location
for a given session ID is beyond the scope of the system specification and
realized by third party means, for example via a known URLs or e-mail
notification. When the newly arrived node is accepted into the group, it
receives a response containing its member ID (identifier in the overlay) and
the location of a parent node to which it should append itself. Finally, the
newly added node sends a GRAFT message to its parent and obtains in
response the data ports for the two-way communication with its parent. Node
departures are realized similarly by signaling the session controller with a
LEAVE message.

Tree creation and maintenance are also tasks performed by the session
controller. Given a performance metric of interest (e.g., delay), the controller
computes locally a minimal spanning tree on the group members graph and
assigns the upstream and downstream nodes to each overlay node in the
distribution tree. Note that, unlike other ALM systems, ALMI builds a single
shared tree with bidirectional links that is jointly used by all members for data
distribution. Measurement data for the metric to be optimized is provided by
each overlay node to the controller on a point-to-point basis. For this purpose,
each overlay node actively probes every other node and reports the results
to the controller. Obviously, this generates an O(n2) message overhead. To
scale the monitoring service to larger groups, ALMI limits the degree of each
node in the monitoring graph. Although this may initially lead to sub-optimal
multicast trees, over time each node dynamically prunes bad links and adds
new links to the monitoring topology, resulting in more efficient multicast
trees.

Recapitulating, the centralization approach adopted by ALMI offers two
primary advantages: high control over the overlay topology and ease of im-
plementation. Moreover, as a side-effect of the first advantage, detection of
malicious nodes is easier to realize because all control operations pass through



11.3 Unstructured Overlays 161

the session controller. On the other hand, ALMI is plagued with the scala-
bility and dependability concerns of all centralized systems. While the first
deficiency remains unresolved, ALMI tries to alleviate the negative effects of
controller failures by introducing backup controllers. These synchronize peri-
odically with the main controller’s state and, in case of failure detection, one
of the backup controllers replaces the session coordinator.

11.3.2 Fully Distributed Systems

Fully distributed application-layer multicast systems do not rely on a single
(or a few) coordinating entities for routing organization and group manage-
ment. Instead, each node maintains information about the overlay topology
- either partly or entirely - and self-configures/self-adapts to changes in the
overlay topology or the underlying network condition.

End System Multicast (ESM [307]) constitutes a fully distributed ALM
scheme - and is one of the elementary studies on application layer multicast.
ESM overlay networks utilize exclusively end systems, assuming only basic
unicast IP service and thus avoiding any proxy or dedicated server infrastruc-
ture deployed within the network. Group management and packet replication
among the end systems is managed by a protocol called Narada. Narada em-
ploys the mesh-first approach: overlay nodes first organize themselves in a
redundant mesh graph. On top of this mesh, source-specific multicast trees
are then created for data distribution. Consequently, service quality is at best
as good as the quality of the mesh. Therefore, Narada attempts to ensure
that the properties of the mesh meet the performance requirements of the
application running over ESM. More precisely, a good mesh should comprise
overlay links whose quality (e.g., delay, available bandwidth) is comparable
to the quality of the IP path connecting the two endpoints of the overlay node
pair. Second, it is desirable that each node has a limited fan-out, regulating
the replication effort and stress at each overlay node.

Group management in Narada is equally distributed on all nodes. For
the sake of robustness and efficiency of mesh maintenance, each overlay node
keeps track of every group member. As ESM targets at small to medium
sized multicast groups, scalability is not considered an important issue. If a
node want to join the group it contacts a small number of arbitrary group
members (the ID and location of these members is provided by a third party
service not provided by the system, e.g., via URL or e-mail notification). The
arrival of a new member is announced to all nodes by forcing each overlay
member to broadcast periodic heartbeat messages (”refresh” messages) on the
mesh. This leads ultimately to a situation where every overlay node is aware
of the newly arrived node. Similarly, when a node decides to leave the group,
the remaining group members detect its departure after they stop receiving
heartbeat messages from the leaving node. Note that the latter may also
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Fig. 11.2: Delay performance of ESM and induced cost in terms of link stress

occur when the abrupt failure of a node causes the partitioning of the mesh.
For this reason, when node A has not received any refresh message from node
B for a given time period, it starts actively probing node B. If B responds,
A creates an overlay link to B to repair the partition. Otherwise, it presumes
the departure of B and ultimately deletes B from its group member list.

The mesh constructed with Narada is heavily influenced by randomizing
effects, such as link failures after node departures, additions of bad quality
”emergency” links during partition repair, or additions of arbitrary links dur-
ing node arrivals (recall that a newly arrived node creates arbitrary links to a
few bootstrap nodes). Also, throughout the session, the varying conditions of
the network substrate may render a previously good mesh formation obsolete.
Due to the reasons mentioned above, ESM employs periodic re-evaluation of
the constructed mesh. This re-constructed mesh is achieved autonomically
by each member actively probing its mesh links and adding new, or dropping
existing, links. Various heuristics are used for evaluation of the utility of link
additions/drops, incorporating the effects of a potential overlay reconfigura-
tion on the entire group [307].

Finally, data delivery in ESM follows the reverse-path forwarding [150]
concept: a node ni that receives a packet from source S via a mesh-neighbor
nj forwards the packet, if and only if nj is the next hop on the shortest
path of ni to S. If that condition holds, ni replicates the packet to all of
its mesh-neighbors that use ni as their next hop to reach S. The forwarding
algorithm requires each node to maintain an entry to every other node in
its routing table, which does not only contain the next overlay hop and the
cost associated with the destination, but also the exact path that leads to it.
This extra information is also used for loops-avoidance and count-to-infinity
problems.

Figure 11.2(a) plots the delay penalty with regard to native unicast delay
obtained with an ESM overlay. The data originate from a simulation of the



11.4 Structured Overlays 163

Narada protocol, incorporating 1024 nodes, 3145 links and a group size of
128, where the out-degree of each node was limited to 3 to 6 neighbors. The
plot conveys that Narada minimizes the delay penalty experienced by node
pairs with high unicast delay, whereas the penalty increases for small unicast
delay values. The fairly large RDP values for node pairs with very low unicast
delays are justified by the fact that even a small suboptimal configuration of
the overlay topology magnifies the tiny delay of nodes residing close by to a
large penalty. Still, the effective delay among these node pairs adheres to real-
time requirements. In addition, the histogram in Figure 11.2(b) compares the
physical link stress in ESM against two common alternatives: naive unicast
and IP multicast using DVMRP [161]. Intuitively, native multicast is optimal
in terms of stress (stress 1 across all links). It is worth mentioning that ESM
manages to limit the maximum link stress to 9. In contrast, native unicast
leads to a longer tail, loading few links with stress greater than 9, and worse,
transmitting the same packet 128 times over a single link.

Summarizing, End System Multicast builds self-organizing overlays and
therefore provides increased robustness with minimal configuration effort.
As it does not require any support from network internal application-layer
entities, it constitutes a ready-to-deploy solution. Furthermore, beyond the
system specification presented herein, Narada can be optimized against var-
ious QoS metrics, such as throughput or node out-degree [306]. Finally, an
asset of the entire ESM endeavor is that the system prototype has already
been used for various Internet broadcasts, spanning multiple continents con-
necting home, academic and commercial network environments [305]. One of
the limitations of ESM is its inability to scale to large group sizes, mainly
because of the volume of routing information that needs to be exchanged and
maintained by each node. A major concern common to all host-based ALM
solutions is service interruption due to abrupt node failures. This failure type
however, is one of the major open issues in peer-to-peer research in general.

11.4 Structured Overlays

Shortly after the introduction of multicast at the application layer, scaling
to large group sizes (i.e., thousands of nodes) became a major concern in
ALM research. Scalability is difficult to achieve with unstructured overlays
- in the centralized case because of the bottleneck at the central point of
control (as in all centralized systems) and in the distributed case owing to
the large amount of state and control traffic required to establish a global
view of the entire overlay topology (node clustering in those schemes may
further increase the scalability of the distributed model). Instead, building a
multicast service on top of a structured overlay provides increased scalability.
In short, a structured overlay is an application-layer network whose nodes
form a virtual space. Part III in this book contains a thorough review of
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structured overlays and provides insight into issues pertaining to their design
and performance.

Two approaches have been taken towards extending the routing infras-
tructure of a structured overlay to support multicast and these differ primar-
ily in the manner they implement packet replication:

1. Directed flooding of each message across the virtual space.
2. Forming a tree, rooted at the group source used to distribute messages

from a specific source to the group members (tree leaves).

In the following, we review one representative system from each of the
two categories and end with a comparison of the two.

11.4.1 Flooding-Based Replication

A Content-Addressable Network (CAN [505] [504] and Section 8.3) utilizes a
d-dimensional Cartesian coordinate space that is dynamically split into dis-
tinct coordinate zones (finite coordinate intervals of the space) and each zone
is allocated to an overlay node according to a hash function. Two nodes in
the space are neighbors if their zones overlap along d-1 dimensions and dif-
fer in exactly one dimension. Point-to-point routing is then accomplished by
simply looking up the neighbor’s set at each node and greedy-forwarding to-
wards the node with coordinates closer to the destination’s coordinates. New
nodes join the system by contacting one of the well-known (e.g., retrievable
via a DNS query) bootstrap nodes, and then the requests are forwarded to
the destination node from which they claim a share of its space. Similarly,
node departures result in merging the freed coordinate space with the zone
of a neighboring node.

Multicast in CANs [506] is achieved by forming a ”mini” CAN consisting
of the CAN nodes that are members of the multicast group. Given a multicast
group identified by G, the identifier is hashed to a coordinate space (x, y). The
node responsible for the hashed coordinate space becomes the bootstrap node
of the new ”mini” CAN. The rest of the group members follow the usual CAN
construction process to join the new multicast CAN. It is worth mentioning
that as each node in the CAN has maximally 2d neighbors (where d stands
for the CAN’s dimensions), the per node multicast state requirements are
independent of the number of multicast sources in the group.

Replication of messages to enable delivery to multiple destinations is re-
alized as follows:

1. The source of the group forwards a message to all neighbors.
2. A node that receives a message from a neighboring node across dimension

i forwards the message to all its neighbors across dimensions 1..(i − 1)
and to its neighbors across dimension i, but only in the opposite direction
from which it received the message.
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Fig. 11.3: Multicasting in a sample two-dimensional CAN

3. If a message has already traversed at least half of the distance from the
source across a particular dimension, then the message is not forwarded
by a receiving node.

4. Each node caches the sequence numbers of received messages and discards
messages it has already forwarded.

Intuitively, rules 1 and 2 ensure that a message reaches all dimensions of
the virtual space and additionally that the message is flooded to all nodes in
one single dimension. Rule 3 prevents the flooding process from looping. A
sample one-to-many communication in a two-dimensional CAN is depicted
in Figure 11.3, where the listed forwarding rules are applied on a hop-by-hop
basis to flood a message to all members of the CAN. Note that if the coor-
dinate space is not perfectly partitioned, then a node may receive multiple
copies of the same packet. This is particularly true for nodes C and D in the
flooding example presented in Figure 11.3. [506] specifies enhancements to
the elementary forwarding process for avoiding, but not entirely eliminate,
an important fraction of duplicates.

11.4.2 Tree-Based Replication

Pastry [527] is a self-organizing overlay network of nodes, where each node
routes requests and interacts with local instances of one or more applications.
Each node in the Pastry overlay is assigned a 128-bit identifier, the nodeId.
The nodeId determines the node’s position in a circular nodeId space, ranging
from 0 to 2128−1. Message forwarding in Pastry is performed as follows: A
node with nodeId id1 intending to reach a destination node with nodeId idn,
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forwards the message to the node with nodeId id2, where a prefix of id2

matches in more than b bits the identifier idn compared with the match of
id1. If no such match exists, the node forwards the message to the node with
the numerically closest nodeId. It can be proven that the described routing
scheme always converges [527]. Forwarding decisions, as well as mapping of
nodeIds to IP addresses, is accomplished using routing state maintained at
each node. A more detailed presentation of the Pastry system can be found
in section 8.2, which discusses thoroughly the routing table structure (section
8.2.2), node bootstrapping (section 8.2.4), failure handling (section 8.2.4) and
proximity matching from the geographical/IP-level proximity to the identifier
space (section 8.2.5).

Scribe [109] builds a large-scale, fully decentralized, many-to-many dis-
tribution service on top of a Pastry infrastructure. Multicast distribution is
essentially core-based, using a Pastry node as the rendezvous point. Group
members ”join” the tree routed at the well known rendezvous point, while
group sources send multicast data directly to the core. Scribe exposes the
following simple API calls to group communication applications:

– Create(credentials,topicId): creates a group identified by a unique top-
icId, which is the result of hashing a textual description of the group’s topic
concatenated with the nodeId of the creator node. Credentials are used for
applying access control to group creation.

– Subscribe(credentials, topicId, eventHandler): commands the local
Scribe instance to join the group identified by the topicId, resulting in
receiving multicast data of a particular group. Arriving group data are
passed to the specified event handler.

– Unsubscribe(credentials, topicId): causes the local node to leave the
specified group.

– Publish(credentials, topicId, event): used by group sources to com-
municate an event (i.e., multicast data) to the specified group.

An application intending to create a group uses Scribe’s ”create” API
call. Then Scribe passes a CREATE message using the topicId and creden-
tials specified by the application to the local Pastry instance. The message is
routed to the node with the nodeId numerically closest to the topicId. The re-
ceiving node checks the credentials, adds the topicId to the locally maintained
groups and becomes the rendezvous point (RP) for the group. Adding a leaf
to the tree rooted at the RP is a receiver-initiated process: Scribe asks Pastry
to route a SUBSCRIBE message using the relevant topicId as the message
destination key. At each node along the route towards the RP, the message
is intercepted by Scribe. If the node already holds state of the particular top-
icId, it adds the preceding node’s nodeId to its children table and forwards
the message to the RP. If state does not exist, it creates a children table entry
associated with the topicId and again forwards the message towards the RP.
The latter process results in a reverse-path forwarding [150] distribution tree
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Temporary Pastry Route 1001  1100
Subscribe (0111)
Subscribe (0100)

Fig. 11.4: Tree creation and data replication in a sample Scribe overlay.

(assuming path symmetry). Multicast sources address messages to the group
by calling Scribe’s ”publish” primitive. This leads to a PUBLISH message
- enclosing the group data - being forwarded towards the RP (using either
Pastry or directly by using the IP address of the RP, if already discovered).
As soon as the PUBLISH message reaches the RP node and provided that a)
state of the specified topicId exists on the RP, and b) the credentials match,
the RP ”inserts” the message into the distribution tree by replicating it to
all nodes in its children table. The same replication in the internal part of
the tree assures that the PUBLISH message reaches all subscribed receivers.
Finally, departures from the distribution tree are accomplished in a similar
manner, using the ”unsubscribe” API call provided by Scribe.

Figure 11.4 illustrates a sample Pastry overlay, where for the sake of
presentation we only highlight nodes forming the Scribe distribution tree.
In this example, we assume that the b parameter of Pastry is configured to
b = 1, i.e., prefix matching is performed one bit at a time. We further assume
that a group with topicId = 1100 has already been created. Because the RP
node of a group is specified by locating the node with the numerically closest
nodeId to the topicId of the group, in this example, node 1100 constitutes
the RP. Let us assume that node 0111 is the first receiver that joins the
group. For this, it asks Pastry to forward a SUBSCRIBE message to the
RP. The message reaches its first ”Pastry-hop”, in this case node 1001. The
SUBSCRIBE is intercepted by Scribe at node 1001, creating a children table
entry with the nodeId 0111 as its single child and associating the table with
the topicId. Finally, the message is forwarded towards the RP. En route to
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Fig. 11.5: Relative delay penalty in various configurations of CAN multicast and
Scribe.

the RP, the message accumulates state on the nodes it traverses, including
the RP itself. As soon as the SUBSCRIBE message is treated at the RP,
multicast data start flowing on the distribution tree (which in this case is
a single node chain) towards node 1100. Now, let’s look at how the arrival
of a receiver in the ”vicinity” of node 1100, namely of node 0100, affects
the distribution tree. Following the common join process, node 0100 sends a
SUBSCRIBE message towards the RP. The message is again delivered first
to node 1001. Normally, the message would follow the path 1001-1111-1100
to reach the RP. However, since node 1001 already possesses state of the
group 1100, it just adds node 0100 to its respective children table entry and
terminates the SUBSCRIBE message.

11.4.3 Performance/Cost Evaluation

Selecting the more appropriate alternative between flooding and tree-based
group communication is not trivial. Generally, the latency and bandwidth
overhead for constructing per-group dedicated overlays are both greater with
flooding mechanisms. On the other hand, flooding exclusively incorporates
the members of a group into the group management and replication effort. As
a result, they are considered appropriate for small groups. If this is a desired
asset for the ALM service provider, flooding should be the mechanism of
choice.

A thorough quantitative comparison of the two mechanisms is presented
in [110]. The paper does not confine the evaluation to flooding over CAN, and
tree-multicast over Pastry (a.k.a. Scribe), but experiments further with other
alternative combinations as well (e.g., tree-multicast using CANs). The eval-
uation is performed using a random topology of 5050 routers and 80000 end
system nodes randomly assigned to routers. All end systems are part of a sin-
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Maximum Stress Average Stress

CAN (d=10, z=1) 1958 3.49

CAN (d=9, z=2) 1595 3.27

CAN (d=12, z=3) 1333 2.93

CAN (d=10, z=5) 985 2.73

CAN (d=8, z=10) 631 2.69

Scribe (RAND) 1910.6 3.87

Scribe (TOP) 23999.4 3.90

Table 11.1: Maximum and average link stress in CAN and Scribe multicast.
RAND corresponds to randomly assigning nodeIds to newly arriving
Pastry nodes, whereas TOP denotes a topologically aware assignment
of nodeIds, taking proximity into consideration.

gle multicast group with the same single source over all runs. Since there are
various parameter sets possible for the instantiation of a CAN/Pastry over-
lay, the authors have experimented with various configurations: a) in CAN,
by tuning the dimensions d of the Cartesian space and the maximum number
of nodes allowed in each zone, and b) in Pastry, by tuning the parameter b
(number of bits matched during per hop prefix matching).

A small excerpt of the results is illustrated in Figure 11.5 and Table 11.1.
Figure 11.5 shows that tree-based multicast over Pastry is superior to CAN-
flooding in terms of both maximum (RMD) and average (RAD) relative
delay penalty, making the former more suitable for delay-sensitive applica-
tions (e.g., multi-point teleconferencing). In contrast, certain configurations
of CAN-flooding manage to economize link utilization compared with Pastry,
as outlined in Table 11.1. Consequently, for a non delay-critical application
(e.g., TV broadcasting), CAN-flooding offers a cheaper solution. For more de-
tailed comparisons, including further metrics and evaluation against a larger
number of concurrent groups, please refer to [110].

11.5 Hot Topics

In this section we touch on various issues driving the future of application-
layer multicast. Some of them are already part of ongoing work; others
promise to unleash the full potential of multicast overlays.
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Topology-Awareness:
Matching proximity in the overlay sense with the actual proximity of the
underlying IP substrate is key in improving the performance (delivery de-
lay, throughput) and cost (stress) of ALM. While this is a pure necessity in
structured overlays [502], efforts are being spent on achieving a closer match
in unstructured overlays as well [370].

Quality of Service:
Recently, the provision of (probabilistic) QoS guarantees in overlay communi-
cation [383] is receiving increasing interest. To name an example, an overlay
node can take advantage of redundancy in overlay paths [539] to a given
destination and alternate over the several path options according to path
conditions. For instance, if node A is able to reach node B using two loss-
disjoint paths P1 and P2, A is able to pick the path with the lowest loss rate
to increase quality [538]. Similarly, multi-path routing together with redun-
dant coding inside the overlay can be used in k-redundant, directed acyclic
graphs to increase data throughput [643].

Multi-source Support:
Many of the existing ALM schemes employ source-specific multicast trees.
Still, various multicast applications inherently have multiple sources (such as
teleconferencing or online multi-player games). The trivial solution manifests
itself by creating one tree per source; still, it is evident that this is not the
most efficient solution in all practical cases. Alternatively, the overlay rout-
ing algorithm may take application semantics into consideration to provide
economical multi-source support [341] (e.g., by creating trees on demand and
applying tree caching).

Security:
Malicious node behavior can harm the performance and stability of an
application-layer multicast overlay. For example, Mathy et al. showed in
[401] the impact of malicious nodes reporting false delay measurement val-
ues. Clearly, shielding overlay networks with powerful cheating detection and
avoidance mechanisms is an interesting challenge.

11.6 Summary

In the preceding sections, we have introduced a first set of interesting ap-
plications of peer-to-peer networks: application-layer multicast. In this field,
peer-to-peer technology has helped to overcome the slow adaptation of mul-
ticast mechanisms at the network layer. While unstructured and centralized
peer-to-peer systems allowed for fast deployment of those networks, the fam-
ily of unstructured peer-to-peer networks offer unlimited scalability. The vast
amount of ongoing work will unleash further improvements of the existing
multicast systems and introduce new applications of peer-to-peer technology
in other networking areas.
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ePOST is a Peer-to-Peer email system that provides the same functionality
as existing, server-based email systems while providing better availability,
scalability, fault tolerance, and security. The ePOST system has been in pro-
duction use within the Computer Science department at Rice University since
early 2004 and is being adopted by an increasing number of outside users.

Traditional email and news services, along with newer collaborative appli-
cations like instant messaging, bulletin boards, shared calendars, and white-
boards, are among the most successful and widely used distributed appli-
cations. Today, such services are mostly implemented in the client-server
model, where messages are stored on and routed through dedicated servers,
each hosting a set of user accounts. This partial centralization limits avail-
ability, since a failure or attack on a server denies service to all the users it
supports. Also, dedicated infrastructure and a substantial maintenance and
administration effort are required to provide services to large numbers of
users.

A decentralized, cooperative approach, i.e., a Peer-to-Peer (P2P) based
solution like ePOST, seems like a natural fit for collaborative applications.
Rather than requiring dedicated server infrastructure, ePOST scales organ-
ically with the number of participating users, since each participant con-
tributes resources to offset the additional demand he places on the system.
Also, ePOST removes all single points of failure by distributing the services
across all member nodes, thus providing the potential for a more highly avail-
able system. Lastly, the self-organizing properties of ePOST promise to re-
duce the cost of maintaining email services.

To use ePOST, users download and run a Pastry [527] node on their desk-
top, which connects to the ePOST overlay network. Folder information and
email messages are stored in the network using the PAST [526] distributed
hash table, and the Scribe [109] multicast system is used to efficiently com-
municate among users. To allow for users to view and send mail, each ePOST
node acts as a IMAP, POP3, and SMTP server. Thus, each user has their own
private mail server on their desktop, which he accesses using any standard
mail client program.

ePOST is built upon the POST distributed messaging system. POST of-
fers a resilient, decentralized infrastructure by providing three basic, efficient
services to applications: (i) secure, durable storage, (ii) metadata based on
single-writer logs, and (iii) event notification. While ePOST is currently the

R. Steinmetz and K. Wehrle (Eds.): P2P Systems and Applications, LNCS 3485, pp. 171-192, 2005.
© Springer-Verlag Berlin Heidelberg 2005



172 12. ePOST

only deployed application built upon POST, a wide range of collaborative
applications, such as instant messaging and shared calendars, can be con-
structed on top of POST using just these services.

The architecture of ePOST is shown in Figure 12.1. In this chapter, we
start by describing scoped overlays, which provide autonomy and locality
for organizations using ePOST. Next, we describe the POST system, which
provides support for secure, reliable messaging and data storage. We then
describe how ePOST is built using POST. Lastly, we detail the Glacier data
durability system, which ePOST and POST use to ensure that data is durable
even in the event of a large-scale correlated failure.

ePOST

POST

Pastry

POP3 SMTPIMAP

Email Client Interacts with user

Standard email access protocols

Uses POST to provide email services

Securely and reliablely delivers messages

Stores data / disseminates messages

Routes messages in overlay

Layers    Function

PAST ScribeGlacier

Fig. 12.1: ePOST Stack

12.1 Scoped Overlays

In most structured overlays, applications cannot ensure that a key is stored
in the inserter’s own organization, a property known as content locality. Like-
wise, one cannot ensure that a routing path stays entirely within an organi-
zation when possible, a property known as path locality. In an open system
where participating organizations have conflicting interests, this lack of con-
trol can raise concerns about autonomy and accountability [279]. This is par-
ticularly problematic when deploying highly reliable services, as organizations
may require that internal data and message traffic remain local. For instance,
organizations using ePOST will probably want all intra-organizational email
data to stay within the organization, even in encrypted form.

Moreover, participants in a conventional overlay must agree on a set of
protocols and parameter settings such as the routing base, the size of the
neighbor set, failure detection intervals, and the replication strategy. Opti-
mal settings for these parameters depend on factors like the expected churn
rate, node failure probabilities, and failure correlation. These factors may not
be uniform across different organizations and may be difficult to assess or es-
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timate in an Internet-wide system. The choice of parameters also depends on
the required availability and durability of data, which may differ between par-
ticipating organizations. Yet, conventional overlays require global agreement
on protocols and parameter settings among all participants. For example,
Company A may use mostly of desktop PCs with a high churn rate, while
Company B may use mostly dedicated servers. In a traditional overlay, these
two companies are required to use the same replication and fault tolerance
parameters, even though they may be inappropriate for both.

The ePOST system is organized as a hierarchy of overlay instances with
separate identifier spaces. This hierarchy reflects administrative and organi-
zational domains, and naturally respects connectivity constraints. This tech-
nique leaves participating organizations in control over local resources, choice
of protocols and parameters, and provides content and path locality. Each
organization can run a different overlay protocol and use parameter settings
appropriate for the organization’s network characteristics and requirements.
Scoped overlays generalize existing structured overlay protocols with a single
ID space, thus leveraging prior work on all aspects of structured Peer-to-Peer
overlays, including secure routing [108].

12.1.1 Design

A multi-ring protocol interfaces between organizational rings and implements
global routing and lookup. To applications, the entire hierarchy appears as a
single instance of a structured overlay network that spans multiple organiza-
tions and networks. The rings can use any structured overlay protocol that
supports the key-based routing (KBR) API [148].

Figure 12.2 shows how our multi-ring protocol is layered above the KBR
API of the overlay protocols that implement the individual rings. Shown at
the right is a node that acts as a gateway between the rings; an instance of
the gateway node appears in each separate ring. The structured overlays that
run in each ring are completely independent. In fact, different protocols can
run in the different rings, as long as they support the KBR API. Thus, in
the example discussed above, company A and company B can run separate
rings with different protocols and parameters while maintaining connectivity
between them.

12.1.2 Ring Structure

The system forms a two-level tree of rings, consisting of a global ring at
the root and several organizational rings at the lower level. Each ring has
a globally unique ringId, which is known to all members of the ring. The
global ring has a well-known ringId consisting of all zeroes. It is assumed
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Ring A Ring B

Chord Chord

KBR API KBR API

Multiring Multiring

Pastry

KBR API

Multiring

AppApp App

Fig. 12.2: Diagram of application layers. Note that rings may be running different
protocols, as in this example.

that all members of a given ring are fully connected in the underlying physical
network, i.e., they are not separated by firewalls or NAT boxes.

All nodes in the entire system join the global ring, unless they are con-
nected behind a firewall or a NAT. In addition, each node joins an organi-
zational ring consisting of all the nodes that belong to a given organization.
A node is permitted to route messages and perform other operations only in
rings of which it is a member.

An example configuration is shown in Figure 12.3. Nodes shown in gray
are instances of the same node in multiple rings and nodes in black are only in
a single ring because they are behind a firewall. The nodes connected by lines
are actually instances of the same node, running in different rings. Ring A7
consists of nodes in an organization that are fully connected to the Internet.
Thus, each node is also a member of the global ring. Ring 77 represents a set
of nodes mostly behind a firewall.

Ring A7

Global Ring

Ring 77

Fig. 12.3: Example of a ring structure.

The global ring is used primarily to route inter-organizational queries and
to enable the global lookup of keys, while application objects are stored in
the organizational rings. Each organizational ring defines a set of nodes that
use a common set of protocols and parameter settings; they enjoy content
and path locality for keys that they insert into the overlay. In addition, an
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organizational ring may also include nodes that are connected to the Internet
through a firewall or NAT box.

12.1.3 Gateway Nodes

Recall that a node that is a member of more than one ring is a gateway
node. Such a node supports multiple virtual overlay nodes, one in each ring,
but uses the same nodeId in each ring. Gateway nodes can forward messages
between rings, as described in the next subsection. In Figure 12.3 above, all
of the nodes in ring A7 are gateway nodes between the global ring and ring
A7. To maximize load balance and fault tolerance, all nodes are expected to
serve as gateway nodes, unless connectivity limitations (firewalls and NAT
boxes) prevent it.

Gateway nodes announce themselves to other members of the rings in
which they participate by subscribing to a multicast group in each of the
rings. The group identifiers of these groups are the ringIds of the associated
rings. In Figure 12.3 for instance, a node that is a member of both the global
ring and A7, joins the Scribe groups:

Scribe group A700...0 in the global ring
Scribe group 0000...0 in ringId A7

12.1.4 Routing

Recall that each node knows the ringIds of all rings in which it is a member.
We assume that each message carries, in addition to a target key, the ringId
of the ring in which the key is stored. Gateways forward messages as follows.
If the target ringId of a message equals one of these ringIds, the node simply
forwards the message to the corresponding ring. From that point on, the
message is routed according to the structured overlay protocol within that
target ring.

Otherwise, the node needs to locate a gateway node in the target ring,
which is accomplished via a Scribe anycast. If the node is a member of the
global ring, it then forwards the message via anycast in the global ring to
the group that corresponds to the destination’s ringId. The message will be
delivered by Scribe to a gateway node for the target ring that is close in the
physical network, among all such gateway nodes. This gateway node then
forwards the data into the target ring, and routing proceeds as before.

If the sender is not a member of the global ring, then it forwards the
message into the global ring via a gateway node by anycasting to the group
local Scribe group whose identifier corresponds to the ringId of the global
ring. Routing then proceeds as described above.
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As an optimization, it is possible for nodes to cache the identities of
gateway nodes they have previously obtained. Should the cached information
prove stale, a new gateway node can be located via anycast. This optimization
drastically reduces the need for anycast messages during routing.

12.1.5 Global Lookup

In the previous discussion, we assumed that messages carry both a key and the
ringId of the ring in which the key is stored. In practice, however, applications
may need to look up a key without knowledge of where the object is stored.
For instance, keys are often derived from the hash of a textual name provided
by a human user. In this case, the ring in which the key is stored may be
unknown.

The following mechanism is designed to enable the global lookup of keys
even when the ring in which it resides is not known to the requester. When
a key is inserted into an organizational ring and that key should be visible
at globally, a special indirection record is inserted into the global ring that
associates the key with the ringIds of the organizational rings where replicas
of the key are stored. The ringIds of a key can now be looked up in the global
ring. Note that indirection records are the only data that need to be stored
in the global ring. To prevent space-filling attacks, only legitimate indirection
records are accepted by members of the global ring

12.2 POST Design

ePOST uses the POST messaging system to provide email services. At a high
level, POST provides three generic services: (i) a shared, secure, durable mes-
sage store, (ii) metadata based on single-writer logs, and (iii) event notifica-
tion. These services can be combined to implement a variety of collaborative
applications, such as email, news, instant messaging, shared calendars, and
whiteboards.

In a typical pattern of use, users create messages (such as emails in the
case of ePOST) that are inserted in encrypted form into the secure store.
To send a message to another user or group, the event notification service
is used to provide the recipient(s) with the necessary information to locate
and decrypt the message. The recipients may then modify their personal,
application-specific metadata to incorporate the message into their view, such
as a private mail folder in ePOST.

POST assumes the existence of a certificate authority. This authority signs
identity certificates binding a user’s unique name (e.g., his email address) to
his public key. The same authority issues the nodeId certificates required
for secure routing in Pastry [108]. Users can access the system from any
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participating node, but it is assumed that the user trusts her local node,
hereafter referred to as the trusted node, with her private key material.

Though participating nodes may suffer from Byzantine failures, POST
also assumes that a large majority (> 75%) of nodes in the system behave
correctly, and that at least one node from each PAST replica set has not
been compromised. If these assumptions are violated, POST’s services may
not be available, though the durability of stored data is still ensured thanks to
Glacier, an archival storage layer that is described in Section 12.4.2. Addition-
ally, POST makes the common assumption that breaking the cryptographic
ciphers and signatures is computationally infeasible.

Table 12.1 shows pseudocode detailing the POST API that is presented
to applications. The store and fetch methods comprise the single-copy mes-
sage store. Similarly, the readMostRecentEntry, readPreviousEntry, and
appendEntry methods provide the metadata service, and the notify method
represents the event notification service.

The most interesting of these APIs is the metadata service, and we de-
scribe it in more detail here. Each of the user’s logs is given a name unique to
the user, denoted below by LogName. Applications can scan through a log in
reverse order by first calling readMostRecentEntry, followed by successive
invocations of readPreviousEntry. Similarly, applications can write to the
log by simply calling writeLog with the desired target log’s name.

// these two methods provide the single-copy message store
Key store(Object)
Object fetch(Key)

// and these methods provide the metadata service
LogEntry readMostRecentEntry(LogName)
LogEntry readPreviousEntry(LogEntry)
void appendEntry(LogName, LogEntry)

// lastly, this method provides the notification service
void notify(User, Message)

Table 12.1: POST API

12.2.1 Data Types

POST uses the PAST distributed hash table to store three types of data:
content-hash blocks, certificate blocks, and public-key blocks.
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Content-Hash Blocks

Content-hash blocks, which store immutable data objects such as email data,
are stored using the cryptographic hash of the block’s contents as the key.
Content-hash blocks can be authenticated by obtaining a single replica and
verifying that its contents match the key; because they are immutable, any
corruption of the content can be easily detected.

Certificate Blocks

Certificate blocks are signed by the certificate authority and bind a name
(e.g. an email address) to a public key. Certificate blocks are stored using
the cryptographic hash of the name as the key and are also immutable after
creation. Certificate blocks can be authenticated based on their digital sig-
nature, since all users are assumed to know the certificate authority’s public
key.

Public-Key Blocks

Public-key blocks contain timestamps, are signed with a private key, and
are stored using a secure hash of the corresponding public key as the key.
The signature attached to the block allows for block mutation after creation.
First, the nodes storing replicas of the block must verify that the signature
on the update matches the already-known public key. To prevent an attacker
from trying to roll the block back to an earlier valid state, the storage nodes
verify that the timestamps are increasing monotonically. Finally, the object
requester must obtain all live replicas, verify their signatures, and discard
any with older timestamps.

12.2.2 User Accounts

Each user in POST possesses an account, which is associated with an identity
certificate. This certificate is stored as a certificate block, using the secure
hash of the user’s name as the key. Also associated with each account is a
user identity block, which contains a description of the user and the contact
address of the user’s current trusted node. The identity block is stored as a
public-key block, and signed with the user’s private key. Finally, each user
account has an associated Scribe group used for event notification, with a
groupId equal to the cryptographic hash of the user’s public key.

The immutable identity certificate, combined with the mutable public-key
block, provides a secure means for the certificate authority to bind names to
keys, while giving users the ability to subsequently change their personal
contact data later without having to interact with the certificate authority.
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The Scribe group provides a rendez-vous point for nodes waiting for news
from the associated user, or anybody wishing to notify the user that new
data is available. For example, users waiting for another user A to come
online can subscribe to A’s group. Once A is online again, he publishes to his
group, informing others of his presence.

12.2.3 Single-Copy Store

While POST stores potentially sensitive user data on nodes throughout the
network, the system seeks to provide a level of privacy, integrity and durabil-
ity comparable to maintaining data on a trusted server. A technique called
convergent encryption [176] is used. This allows a message to be disclosed to
selected recipients, while ensuring that copies of a given plain-text message
inserted by different users or applications map to the same cipher-text, thus
ensuring that only a single copy of the message is stored.

To store a message X , POST first computes the cryptographic Hash(X),
uses this hash as a key to encrypt X with an efficient symmetric cipher, and
then stores the resulting ciphertext with the key

Hash
(
EncryptHash(X) (X)

)
which is the secure hash of the ciphertext. To decrypt the message, a user
must know the hash of the plain-text.

Convergent encryption reduces the storage requirements when multiple
copies of the same content are inserted into the store independently. This
happens, for example, when a popular document is sent as an email attach-
ment or posted on bulletin boards by many different users.

In certain scenarios, it may be undesirable to use convergent encryption,
such as when the plain-text can easily be guessed. In these cases, the POST
store can be configured to use conventional symmetric encryption with ran-
domly generated keys.

12.2.4 Event Notification

The notification service is used to alert users and groups of users to certain
events, such as the availability of a new email message, a change in the state
of a user, or a change in the state of a shared object.

For instance, after a new message was inserted into POST as part of an
email or a newsgroup posting, the intended recipient(s) must be alerted to
the availability of the message and be provided with the appropriate decryp-
tion key. Commonly, this type of notification involves obtaining the contact
address from the recipient’s identity block. Then, a notification message is
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sent to the recipient’s trusted node, containing the message’s decryption key,
and is encrypted with the recipient’s public key and signed by the sender.

In practice, the notification can be more complicated if the sender and
the recipient are not on-line at the same time. To handle this case, the sender
delegates the responsibility of delivering the notification message to a set of
k random nodes. When a user A wishes to send a notification message to
a user B whose trusted node is off-line, A first sends a notification request
message to the k nodes numerically closest to a random Pastry key C. This
message is encrypted with B’s public key and signed by A. The k nodes are
then responsible for delivering the notification message (contained within the
notification request message) to B. Each of these nodes stores the message
and then subscribes to the Scribe group associated with B.

Whenever user B is on-line, his trusted node periodically publishes a
message to the Scribe group rooted at the hash of his public key, notifying
any subscribers of his presence and current contact address. Upon receipt
of this message, the subscribers deliver the notification by sending it to the
contact address. As long as not all of the replica nodes fail at the same time,
the notification is guaranteed to be delivered. POST relies on Scribe only for
timely delivery – if Scribe messages are occasionally lost due to failures, the
notification will still be delivered since users periodically publish to the their
group.

12.2.5 Metadata

POST provides single-writer logs that allow applications to maintain meta-
data. Typically, a log encodes a view of a specific user or group of users and
refers to stored messages. For instance, a log may represent updates to a
user’s private email folder, or the history of a public newsgroup. An email or
news application would then use such a log consisting of insert, update, and
delete records to keep track of the state of the folder or newsgroup.

The log head is stored as a public-key block and contains the location of
the most recent log record. Keys for log heads may be stored in the user’s
identity block, in a log record, or in a message. Each log record is stored as
a content-hash block and contains application-specific metadata and the key
of the next recent record in the log. Applications can optionally encrypt the
contents of log records depending on the intended set of readers.

To allow for more efficient log traversal, POST aggregates clusters of M
consecutive log records in a single PAST object. Partially filled clusters are
buffered in the log head object, and are added to the log as a separate cluster
entry once they are full. This reduces the number of keys associated with log
entries by a factor of M and increases the speed of log traversals accordingly.

Other optimizations are used to reduce the overhead of log traversals,
including caching of log records at clients and the use of snapshots. POST
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applications periodically insert snapshots of their metadata into PAST. Thus,
log traversals can be terminated at the most recent snapshot.

12.2.6 Garbage Collection

In order to make the PAST DHT practical for use in applications such as
ePOST, we found it necessary to introduce a mechanism for removing objects
from the DHT.

Disk space is not necessarily a problem, since the rapid growth in hard
disk capacity would probably make it possible to store all inserted data ad
infinitum. However, the network bandwidth required to repair failed replicas
would become unwieldy over time. Such maintenance is necessary to ensure
that there always are at least k live replicas of each stored object, and re-
replicating each object as necessary.

The obvious solution is to add a delete operation to PAST that removes
the object associated with the given key. However, a delete method is un-
safe, because a single compromised node could use it to delete data at will.
Moreover, safe deletion of shared objects requires a secure reference-counting
scheme, which is difficult to implement in a system with frequent node failures
and the possibility of Byzantine faults.

As an alternative solution, we added leases to objects stored in PAST.
Each object inserted into the DHT is given a expiration date by the insert-
ing node. Once the expiration date for a given object has passed, the storage
nodes are free to delete the object. Clients must periodically extend the leases
on all data they are interested in. The modified PAST API is shown in Ta-
ble 12.2.

void put(Key, Object, Expiration)
Object get(Key)
void refresh(Key, NewExpiration)

Table 12.2: Modified PAST API

Adding leases to PAST required other slight modifications. Specifically,
the replication protocol must now exchange tuples (key, expiration). When
a node is told to refresh a key that it already stored with a different lease,
it simply extends the expiration date of the stored key if the new lease is
longer.

We cannot assume that the clocks on different storage nodes are per-
fectly synchronized. Therefore, expired objects are not deleted immediately;
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instead, they are kept for an additional grace period TG. During this time,
the objects are still available for queries, but they are no longer advertised
to other nodes during maintenance. Thus, nodes that have already deleted
their objects do not attempt to recover them.

12.2.7 POST Security

POST is designed to face a variety of threats, ranging from nodes that simply
fail to operate, to attackers trying to read or modify sensitive information.
POST must likewise be robust against free riding behavior, including users
consuming more resources than they contribute, and to application-specific
resource consumption issues, such as the space consumed by spam messages.

Threat Model

Our threat model for POST includes of attacks from both within and outside
of POST. Internal attacks can be broken down into two classes: free riding
and malicious behavior. Free riding, discussed below, consists of either selfish
behavior or simple denial of service. Malicious behavior, however, can consist
of nodes attempting to read confidential data, modify existing data, or delete
data from the ePOST system.

Data Privacy

While convergent encryption provides the benefit of a single-copy store, it is
known to be vulnerable to known-plaintext attacks. An attacker who is able
to guess that plaintext of a message can verify its existence in the store, and
may be able to determine whether any given node has requested that partic-
ular message. This is a particular concern for short messages, messages that
are highly structured, or generally any messages with low entropy. To ad-
dress these concerns, POST uses traditional cryptographic techniques (AES
encryption with a random key) to encrypt such messages, and to protect data
that is not meant to be shared, such as the logs and other per-user metadata
maintained by the system.

Data Integrity

Due to the single-writer property and the content-hash chaining [408] of the
logs, it is computationally infeasible for a malicious user or storage node to
insert a new log record or to modify an existing log record without the change
being detected. This is due to the choice of a collision-resistant secure hash
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function to chain the log entries and the use of signatures based on public
key encryption in the log heads.

To prevent version rollback attacks by malicious storage nodes, public-key
blocks contain timestamps. When reading a public-key block (e.g., a log-head)
from the store, nodes read all replicas and use the authentic replica with
the most recent timestamp. When reading content-hash blocks or certificate
blocks, they can use any authentic replica.

Denial of Service

A variety of denial of service (DoS) attacks may be mounted against Peer-to-
Peer networks. A common DoS strategy might be to control enough nodes to
effectively partition the overlay network, or even to control all of the outgoing
routes from a given node. Likewise, DoS attacks may be aimed at controlling
all of the replicas of a given document, allowing the attacker to effectively
censor any desired document. Pastry’s secure routing mechanism provide an
effective defense against such DoS attacks, both from within and outside the
overlay [108]. When secure routing is used, an attacker would need to control
over 25% of the overlay nodes to mount an effective DoS attack.

Another type of DoS attack is space-filling, where a malicious node sim-
ply tries to insert as much junk data as possible into the DHT. While this
attack is not unique to ePOST, the organizational scoping of rings in ePOST
helps to mitigate this attack. Since all nodes in a given ring are in a single
administrative domain, space-filling attacks can be detected and the faulty
node shut down or punished by the local administrator.

Free Riding

Nodes within the network may try to consume much more remote storage
than they provide to the network. Likewise, nodes may wish to fetch objects
more often than they serve objects to other nodes. If bandwidth or storage are
scarce resources, users will have an incentive to modify their POST software
to behave selfishly. Nodes can generally be coerced into behaving correctly
when other nodes observe their behavior and, if they determine a node to
be a freeloader, will refuse to give it service [448, 135]. Such mechanisms can
guarantee that it is rational for nodes to behave correctly.

POST, in its present form, does not yet include any explicit incentives
mechanisms [448, 135]. The reason is that within an administrative domain,
members generally have external incentives to cooperate. If abuses do occur,
they can be localized to an organizational ring, and the offending users can
be reprimanded within the organization.
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12.3 ePOST Design

Each ePOST user is expected to run a daemon program on his desktop com-
puter that implements ePOST, and contributes some CPU, network band-
width and disk storage to the system. The daemon also acts as an SMTP
and IMAP server, thus allowing the user to utilize conventional email client
programs. The daemon is assumed to be trusted by the user and holds the
user’s private key material. No other participating nodes in the system are
assumed to be trusted by the user.

12.3.1 Email Storage

When ePOST receives messages from a client program, it parsers them into
MIME components (message body and any attachments) and these are stored
as separate objects in POST’s secure store. Recall that frequently circulated
attachments are stored in the system only once.

The message components are first inserted into POST by the sender’s
ePOST daemon; then, a notification message is sent to the recipient. Sending
a message or attachment to a large number of recipients requires very little
additional storage overhead beyond sending to a single recipient, as the data is
only inserted once. Additionally, if messages are forwarded or sent by different
users, the original message data does not need to be stored again; the message
reference is reused.

12.3.2 Email Delivery

The delivery of new email is accomplished using POST’s notification service.
The sender first constructs a notification message containing basic header
information, such as the names of the sender and recipients, a timestamp,
and a reference to the body and attachments of the message. The sender
then requests the local POST service to deliver this notification to each of
the recipients. This message is signed by the sender and encrypted using the
receiver’s public key in the usual fashion, combining asymmetric public key
cryptography with a fast symmetric cipher.

If the recipient of the email is in a different ring than the sender, the
recipient has the option of referencing the received email body and attach-
ments in the ring of their originator, or to fetch and insert copies into his
own local ring. The latter approach leads to higher availability and greater
confidence in message durability, due to the greater replication and the fact
that a recipient typically has greater confidence in his own organizational
ring. Therefore, ePOST replicates all incoming mail in the recipient’s local
ring by default.
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12.3.3 Email Folders

Each email folder is represented by an encrypted POST log. Each log entry
represents a change to the state of the associated folder, such as the addition
or deletion of a message. Since the log can only be written by its owner and
its contents are encrypted, ePOST preserves or exceeds the level of privacy
and integrity provided by conventional email systems with storage on trusted
servers. A diagram of the logs used in ePOST is shown in Figure 12.4.

Log Head Log Entries Email Data

Update Email #43

Insert Email #56

Delete Email #54

Delete Email #22

Headers

Body

Attachment

Attachment

Fig. 12.4: Log structure used in ePOST. Each box or circle represents a separate
object in the DHT.

Next, we describe a log record representing an insertion of an email mes-
sage into a user’s folder, such as his inbox. Other types of log records are
analogous. An email insertion record contains the content of the message’s
MIME header, the message’s key, and its decryption key, protected by a sig-
nature and taken from the sender’s original notification message. All of this
data is then encrypted with a unique session key, using a low-cost symmetric
cipher like AES. As these insertion records need only be legible to the original
sender, the session key is encrypted with a master key, also using the cheap
symmetric cipher. This symmetric master key is maintained with the same
care as the user’s private key. This allows the owner of the folder, and none
other, to read messages in the inbox and verify their authenticity without
performing expensive public key operations. The exact messages are shown
in Figure 12.5.

EncryptedEmail = EncryptHash(X) (X)
MessageHeader = (A, B, T,Hash (EncryptedEmail ) , Hash (X))

Notification = EncryptKB

(
MessageHeader ,SignKA

(MessageHeader )
)

Fig. 12.5: Messages transmitted sending an email.
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12.3.4 Incremental Deployment

To allow an organization to adopt ePOST as its email service, ePOST must
be able to interoperate with the existing, server-based email infrastructure.
We describe here how ePOST is deployed in a single organization and how it
interoperates with conventional email services in the general Internet.

For outgoing mail, if an email recipient is not reachable within ePOST,
then the sender’s ePOST proxy contacts the recipient’s mail server us-
ing SMTP. For inbound email, the organization’s DNS server provides MX
records referring to a set of trusted ePOST nodes within the local organiza-
tion. These nodes act as incoming SMTP mail gateways, accepting messages,
inserting them into POST, and notifying the recipient’s node. Suitable head-
ers are generated such that the receiver is aware the message may have been
transmitted on the Internet unencrypted. If no identity block can be found
for the recipient in the local ring, then the email “bounces” as in server-based
systems.

The inbound proxy nodes need to be trusted to the extent that they re-
ceive plaintext email messages for local users. Typically, the desktop worksta-
tions of an organization’s system administrators can be used for this purpose.
Administrators of conventional email services own root passwords that allow
them to access incoming email anyway. Thus, ePOST provides the same pri-
vacy for incoming email from non-POST senders as existing systems, and
provides stronger security for email transmitted within ePOST.

12.3.5 Management

If ePOST is to replace existing email systems, there must be a viable man-
agement strategy for organizations to adopt when deploying ePOST. The
management tasks in ePOST can be broken down into three categories: soft-
ware distribution, storage, and access. In the paragraphs below, we discuss
these tasks in detail and show how they can be minimized in the context of
ePOST.

Software

The first management task incurred with ePOST is maintaining the proxy
software. This software needs to be kept running and up-to-date as bugs
are fixed and features are added. In our deployment, the ePOST proxy is
configured as a service that is restarted automatically if it fails. Software
upgrades are handled by signing updated code and having users’ proxies
periodically check and download authorized updates.

To allow administrators to efficiently monitor the ePOST system, we have
built a graphical administrative monitoring interface. This application allows
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administrator to monitor an entire ePOST ring at a glance and to track down
any problems. Administrators are automatically alerted to error conditions
or unusual behavior.

Storage

In a distributed storage system such as ePOST, a certain level of adminis-
tration is necessary to monitor the storage pool. For example, administrators
need to ensure that space-filling attacks are not taking place and that nodes
that are running out of disk space are promptly serviced. Such monitoring
can be done using the tool described in the previous section. The administra-
tor is alerted to nodes that are close to their disk space limit, and can then
take appropriate actions.

Access Control

Controlling access to ePOST can be broken down into two related tasks:
trust and naming. Trust is based on certificates, which users must obtain
from their organization to participate in the system. This is no different from
current email systems, where each user is required to obtain an account on
an email server. For example, in our experimental deployment, we provide a
web page where users can sign up and download certificates. In practice, the
process may require various forms of authentication before the new certificate
is produced.

Naming in ePOST is managed in a manner similar to current systems.
Organizations ensure that email addresses are unique and associated with
only one public key. This is easy to accomplish, since each user must obtain
a certificate from his organization.

ePOST has the potential for requiring substantially lower administrative
overhead than conventional email systems, since the self-organizing properties
of the underlying Peer-to-Peer substrate can mask the effect of node failures.
Additionally, the organic scalability granted to ePOST by the overlay has
the potential to significantly reduce the overhead associated with scaling an
existing email service to more users.

12.4 Correlated Failures

ePOST relies on cooperative storage to store email messages. Each node is
required to contribute a small fraction of its local disk space; the system then
aggregates this storage and provides the abstraction of a giant single store.
As mentioned earlier, this approach is well suited for serverless applications
like POST because it is highly scalable - not only in terms of overhead, but
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also because as the size of the system increases, the storage supply increases
also. This allows the system to support organic growth.

Since the system is built out of unreliable components, it must be prepared
to handle occasional node failures. Cooperative storage systems like PAST
often assume that the node population is highly diverse, i.e., that the nodes
are running different operating systems, use different hardware platforms, are
located in different countries, etc. Under these conditions, node failures can
be approximated as independent and identically distributed. To ensure data
durability, it is thus sufficient to store a small number of replicas for each
object, and to create new replicas when a node failure is detected.

Unfortunately, most real distributed systems exhibit high diversity only
in some aspects, but not in others. For example, the fraction of nodes running
Microsoft Windows can be as high as 60% or more in many environments.
In such a system, failures are not independent. For example, if the Windows
machines share a common vulnerability, a worm that exploits this vulnera-
bility may cause a large-scale correlated failure that can affect a majority of
the nodes. Moreover, if the worm can obtain administrator privileges on the
machines it infects, the failures can even be Byzantine.

The reactive replication strategy in PAST is clearly not sufficient to han-
dle failures of this type. Even if the failure is not Byzantine, there may simply
not be enough time to create a sufficient number of additional replicas. As a
consequence, early deployments of ePOST sometimes suffered data loss dur-
ing correlated failures. Since this is not acceptable for critical data like email,
the system needed another mechanism to ensure data durability.

12.4.1 Failure Models

If the system must sustain fast-spreading correlated failures such as power
outages or Warhol worms [572], a reactive defense that detects and repairs
failures as they occur is not enough. Instead, the system must b e proactive
and prepared for the failure in advance.

An ideal proactive system would foresee which nodes are going to be
affected by the next failure and then store the data on the remaining nodes.
This method has zero overhead but is infeasible, so practical systems must
use an approximation. A common technique, which is used in systems like
Phoenix [329], is to use introspection to collect information about each node,
which is then used to predict correlations between the nodes. The data is
then stored on a set of nodes that are expected to fail with low correlation.

Introspective systems are still very storage efficient but crucially depend
on the correctness of their failure model. Even small inaccuracies may lead
to incorrect placement decisions and thus to data loss in a correlated failure.
Moreover, the participants in an introspective system actually have an incen-
tive to report incorrect data, e.g. to reduce their load by making their node
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Fig. 12.6: Fragment placement in Glacier.

appear heavily correlated with others. Finally, it is very difficult to identify
all potential sources of correlation in a realistic system.

12.4.2 Glacier

The durability layer in POST, which is called Glacier, takes a different ap-
proach [269]. Instead of relying on a sophisticated failure model, it makes a
very simple assumption, namely that the correlated failure does not affect
more than a fraction fmax of the nodes; all failure scenarios up to that frac-
tion are assumed to be equally likely. In order to tolerate such a wide range
of failures, Glacier must sacrifice some capacity in the cooperative store for
additional redundancy; thus, it trades abundance for increased reliability.

When a new object is inserted, Glacier applies an erasure code to trans-
form it into a large number of fragments. Together, the fragments are much
larger than the object itself, but a small number of them is sufficient to re-
store the entire object. For example, Glacier may be configured to create
48 fragments, each of which is 20% the size of the object. This corresponds
to a storage overhead of 9.6, but the object can be restored as long as any
five fragments survive.

Glacier then attaches to each fragment a so-called manifest which, among
other things, contains hashes of all the other fragments. This is used to au-
thenticate fragments. Finally, Glacier spreads the fragments across the over-
lay, calculating the key of fragment i as

ki = K +
i

n + 1

where K is the key of the object and n is the total number of fragments.
This ensures that the fragments are easy to find without extra bookkeeping
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(which may be lost in a failure). Also, if the overlay is large enough, each
fragment is stored on a different node, which ensures that fragment losses are
not correlated.

For security reasons, Glacier does not allow fragments to be overwritten
or deleted remotely. If these operations were permitted, a compromised node
could use them to delete its own data on other nodes. However, objects may
be associated with a lease, and their storage is reclaimed when the lease
expires. Also, Glacier supports a per-object version number to implement
mutable objects.

12.4.3 Maintenance in Glacier

Since some fragments are continually lost due to individual node failures
and departures, Glacier implements a maintenance mechanism to reconstruct
missing fragments. However, because of the high redundancy, Glacier can
afford high latencies between the loss of a fragment and its recovery; thus,
the maintenance mechanism need not be tightly coupled.

Because of the way fragments are placed in the ring, each Glacier node
knows that its peers at a distance k · 1

n+1 (k = 1..n) in ring space store a set of
fragments that is very similar to its own. Thus, each node periodically (say,
once every few hours) asks one of its peers for a list of fragments it stores,
and compares that list to the fragments in its own local store. If it finds a key
for which it does not currently have a fragment, it calculates the positions
of all corresponding fragments and checks whether any of them fall into its
local key range. If so, it asks its peers for a sufficient number of fragments to
restore the object, computes its own fragment, and stores it locally.

Glacier also takes advantage of the fact that nodes often depart the overlay
for a certain amount of time (e.g. because of a scheduled downtime) but
return afterwards with their store intact. Therefore, Glacier nodes do not
immediately take over the ring space of a failed neighbor, but wait for a
certain grace period T . If the node returns during that time, it only needs
to reconstruct the fragments that were inserted while it was absent; the vast
majority of its fragments remains unmodified.

The loosely coupled maintenance mechanism greatly reduces the band-
width required for fragment maintenance. In the actual deployment which
has moderate churn and the configuration mentioned earlier, Glacier uses
less bandwidth than PAST, even though it manages over three times more
storage.



12.4 Correlated Failures 191

12.4.4 Recovery After Failures

A large-scale correlated failure has two main effects on a Glacier deployment:
First, a large fraction of nodes may lose the fragments they store locally,
and second, the overlay may be shattered, and communication with other
nodes may become impossible. Both effects may be aggravated by Byzantine
failures: Malicious nodes may corrupt their local fragments in order to com-
plicate recovery, and they may mount attacks on the overlay (e.g. an Eclipse
attack) to interrupt communication. However, even a malicious node cannot
change its certified nodeId and take over a portion of the ring space that is
occupied by an unaffected node. Therefore, the fragments on the surviving
nodes remain safe as long as their leases do not expire.

While the failure lasts, we cannot assume that the unaffected nodes can
make any progress towards recovery, since this would require communication
with other nodes. Therefore, these nodes simply ‘weather the storm’ and do
nothing. Eventually, the administrators of the failed nodes will notice the
problem and repair their nodes. After that, the maintenance mechanism will
gradually recover the lost fragments and thus restore full redundancy. To
prevent congestion collapse, the amount of bandwidth each node is allowed
to spend on maintenance is limited, so full recovery may take several hours
to complete; however, even though the data is not fully durable during that
time, it still remains available and can be retrieved on demand.

12.4.5 Object Aggregation

In ePOST, the storage load mainly consists of small objects (email texts and
headers). This causes more overhead in Glacier because the number of keys
is higher, and thus more storage space and bandwidth is required for per-key
metadata such as the fixed-size manifests. To reduce this overhead, ePOST
aggregates objects before inserting them into Glacier.

The main challenge in object aggregation is how to do it securely in an
environment with large-scale Byzantine failures. Even though there are con-
siderable advantages in performing aggregation on the storage nodes, Glacier
cannot allow this because these nodes cannot be trusted. Therefore, each
node is required to create and maintain its own aggregates. This includes
keeping a mapping from object keys to aggregate keys (which is required to
locate objects), extending the leases of aggregates whose objects are still in
use, and merging old aggregates whose objects have mostly expired.

The mapping from object keys to aggregates requires special attention
because it is crucial during recovery. Without it, the application may be
unable to find its objects after a failure without searching Glacier’s entire
store, which is infeasible. For this reason, the system adds to each aggregate
a few pointers to other aggregates, thus forming a directed acyclic graph
(DAG). During recovery, an ePOST node traverses its DAG and is thus able
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to locate all non-expired objects it has inserted. Moreover, the DAG contains
a hash tree, which is used to authenticate all aggregates. The only additional
requirement for ePOST is to maintain a pointer to the top-level aggregate;
this pointer is kept in an object with a well-known key that is directly inserted
into Glacier.

12.5 Preliminary Experience

We implemented a version of POST and ePOST on top of FreePastry, an
open-source implementation of Pastry, PAST and Scribe, and the POST and
ePOST code was released alongside FreePastry 1.4 [233]. Our initial deploy-
ment of ePOST began in January of 2004 with very few users. As confidence
in the system grew, we expanded our userbase and incorporated new features.
Many of our users rely on ePOST as their primary email system, no longer
using their conventional accounts. For more information on our deployment,
please see http://www.epostmail.org.

The current ePOST deployment has two separate ePOST rings: a ring at
Rice University limited to members of Rice only, and a ring based on Planet-
Lab [486], which is open to the public. We currently have approximately 20
registered users in the Rice ring and 73 registered in the PlanetLab ring. We
have found the storage and bandwidth requirements to be relatively modest:
the average storage requirement on the Rice nodes after one year of use was
approximately 500 MB, and the average bandwidth usage was 500 bytes per
second per node.
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13.1 Introduction

The idea of GRID computing originated in the scientific community and was
initially motivated by processing power and storage intensive applications
[213]. The basic objective of GRID computing is to support resource sharing
among individuals and institutions (organizational units), or resource enti-
ties within a networked infrastructure. Resources that can be shared are, for
example, bandwidth, storage, processing capacity, and data [304, 429]. The
resources pertain to organizations and institutions across the world; they
can belong to a single enterprize or be in an external resource-sharing and
service provider relationship. On the GRID, they form distributed, hetero-
geneous, dynamic virtual organizations [221]. The GRID provides a resource
abstractions in which the resources are represented by services. Through the
strong service-orientation the GRID effectively becomes a networked infras-
tructure of interoperating services. The driving vision behind this is the idea
of “service-oriented science” [215].

The GRID builds on the results of distributed systems research and im-
plements them on a wider scale. Through the proliferation of the Internet and
the development of the Web (together with emerging distributed middleware
platforms), large-scale distributed applications that span a wide geographical
and organizational area becoming possible. This has been taken advantage of
within the Peer-to-Peer and the GRID communities more or less at the same
time. The GRID has been driven from within the science community, which
first saw the potential of such systems and implemented them on a wider
scale. Application areas here are distributed supercomputing (e.g., physical
process simulations), high-throughput computing (to utilize unused processor
cycles), on-demand computing (for short-term demands and load-balancing),
data intensive computing (synthesizing information from data that is main-
tained in geographically distributed repositories), and collaborative comput-
ing [225].

It is important to note that the prime objective of GRID computing
is to provide access to common, very large pools of different resources that
enable innovative applications to utilize them [227]. This is one of the defining
differences between Peer-to-Peer (P2P) and GRID computing. Although both
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are concerned with the pooling and co-ordinated use of resources, the GRID’s
objective is to provide a platform for the integration of various applications,
whereas initially Peer-to-Peer applications were vertically integrated [217].

Many current GRID implementations are based on the Globus ToolkitTM ,
an open source toolkit [203, 219]. Within the Globus project, a pragmatic
approach has been taken in implementing services needed to support a com-
putational GRID. The Open GRID Services Architecture (OGSA) developed
by the Global GRID Forum (GGF) - inspired by the Globus project - devel-
ops the GRID idea further and is also concerned with issues that have not
been the focus of the Globus project such as architectural and standardiza-
tion matters. OGSA combines GRID technology with Web services. This has
led to a strong service orientation, where services on the GRID are generally
autonomous and not subject of centralized control.

Besides Globus and OSGA there is the European driven development
around Unicorn. It has especially influenced information GRIDs in the cor-
porate world but is also still very much in the development phase. In this
chapter we concentrate on the developments within Globus and GGF. Un-
fortunately, a comprehensive discussion is not possible within the space of
this chapter. It rather provides an overview of the ideas and concepts be-
hind the GRID, but also shows how they have evolved from an infrastructure
driven approach towards a service-oriented architecture. This is particularly
important since the GRID is still a very active and fast developing area. More
information can be found in [225] and on the GGF Web site (www.ggf.org).

In this chapter, the main initiatives and concepts driving GRID develop-
ments are introduced. This includes an outline of the architectural concepts
behind GRID but also a discussion of the Globus Project and the develop-
ments around OGSA. Subsequently, the relationship between Peer-to-Peer
and GRID is outlined.

13.2 The GRID Architecture

The GRID idea has evolved over the years and there is no prescribed or
standardized GRID architecture. The current understanding of the GRID
has been influenced by a number of initiatives and individuals who have been
driving the development. Therefore, the GRID architecture presented in the
following represents a generally accept view and not a standardized reference
framework. It should be regarded as abstraction in which the various GRID
tools and services can be located according to their functionality.

A computational GRID is more formally defined as “a hardware and soft-
ware infrastructure that provides dependable, consistent, pervasive, and in-
expensive access to high-end computational capabilities” [225]. Different ap-
plications can be implemented on top of this infrastructure to utilize the
shared resources. If different institutions or individuals participate in such a
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sharing relationship, they form a virtual organization [222]. The concept un-
derlying the GRID facilitates collaboration across institutional boundaries.
To achieve this a protocol architecture is proposed and standard components
are specified that can be used by the different parties entering into a sharing
relationship [227].

Collective

Resource

Connectivity

Fabric

Application

Fig. 13.1: GRID Layered Architecture

The GRID architecture can be described by a layered model where the
different components are placed within a layer depending on their function-
ality and capabilities. An hourglass model (comparable to the Internet), in
which a small group of core protocols and components forms the link between
the high-level mechanisms and a number of lower level base technologies, has
been adopted [67]. The components of the architecture (as depicted in Figure
13.1) are the Fabric Layer, the Connectivity Layer, the Resource Layer and
the Collective Layer [227]. The applications that reside on top of this infras-
tructure can use the components of the Collective, Resource and Connectivity
Layers directly, depending on their requirements.

The Fabric Layer makes the resources that are provided by the different
nodes of the GRID available for common usage, i.e., it provides common
access to resources that are shared within a virtual organization. Resources
are divided into computing resources, storage, network resources, code stor-
age, and directories [227]. The Fabric Layer implements the resource specific
operations and offers a unified interface to the upper layers.

The Connectivity Layer hosts the most important communication and
authentication protocols required for GRID specific communication. It en-
ables data exchange between the resources located at the Fabric Layer. The
communication protocols employed in this context are predominantly from
the TCP/IP protocol suite. Security is provided by a public key infrastruc-
ture based on special GRID security protocols [223]. Above the Connectivity
Layer, the Resource Layer is responsible for resource management opera-
tions such as resource negotiation, resource reservation, resource access and
management, QoS control, accounting, etc. The actual resources that are
managed, however, are the resources under the control of the Fabric Layer.
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The Collective Layer is concerned with the overall co-ordination of dif-
ferent resource groups. It hosts components such as directory services [144],
scheduling and brokering services, monitoring and diagnostic services, data
replication services, workload management, etc. [227].

Finally, the Application Layer comprises the user applications used to
achieve the virtual organization. Applications are utilizing the services offered
by the underlying layers. They can directly access these services.

13.3 The Globus Project

The Globus project started in 1996 and is hosted by Argonne National Lab-
oratory’s Mathematics and Computer Science Division, the University of
Southern California’s Information Sciences Institute, and the University of
Chicago’s Distributed Systems Laboratory. It was one of the first and most
visible activities in this area. It is supported by a number of institutional
(e.g., National Computational Science Alliance (USA), NASA, Universities
of Chicago and Wisconsin) and industry partners (e.g., IBM and Microsoft)
[248]. The project is centered on four main activity areas:

1. Building of large-scale GRID applications such as distributed supercom-
puting, smart instruments, desktop supercomputing tele-immersion.

2. Support for planning and building of large-scale testbeds for GRID re-
search, as well as for functional GRID systems

3. Research into GRID related issues such as resource management, secu-
rity, information services, fault detection and data management.

4. Building of software tools for a variety of platforms (the so-called Globus
ToolkitTM), which are, however, considered research prototypes only.

The Globus ToolkitTM supplies the building blocks for a GRID infrastruc-
ture, i.e., it provides services and modules required to support GRID appli-
cations and programming tools. It is a community-based, open architecture,
open source set of services and software libraries [221]. The services are pro-
grams that interact with each other to exchange information or co-ordinate
the processing of tasks. They can be used independently or together to form
a supporting platform for GRID applications.

A Globus service encapsulates a certain functionality and provides an
abstraction for resources. For instance, a number of services deal with re-
source selection, allocation, and management. “Resource”, in this context,
is a generic term for everything required to process a task. This includes
system resources such as CPU, network bandwidth and storage capacity.
The Resource Selection Service (RSS) provides a generic resource selection
framework for all kinds of GRID applications. For a specific case it identifies
a suitable set of resources by taking into account application characteristics
and system status [392].
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An end-to-end management of QoS for different resource types such as
bandwidth, CPU, and storage is provided by the General-Purpose Archi-
tecture for Reservation and Allocation (GARA) system [226][533]. Dynamic
feedback is used among resource managers to coordinate resource manage-
ment decisions [226]. The Globus Resource Allocation Manager (GRAM) is
part of the lowest level of the resource management architecture. It provides
resource allocation, process creation, monitoring, and management services.
The GRAM service maps requests expressed in the Resource Specification
Language (RSL) into commands to local schedulers and computers [145].
The resource management tools build on existing languages, protocols, and
infrastructure. Their capabilities depend on the functionality and capacity of
the hosting environments in which they operate, i.e., they can only guarantee
a certain level of QoS if this is supported by the underlying networks and
operating systems.

A central service within the Globus Toolkit is the Monitoring and Discov-
ery Service (MDS-2). This generic service provides a framework for service
and data discovery. The MDS-2 service supplies information concerning sys-
tem configuration and status information to other services. This includes
server configuration, location of data replica, network status, etc. Two pro-
tocols are used for accessing and exchanging information in this context;
namely GRIP - the GRID Information Protocol (used to access information
about entities) and GRRP - the GRID Registration Protocol (used to notify
directory services of the availability of certain information) [144].

A number of other services are available within the Globus Toolkit to deal
with issues such as:

– security, authentication, integrity and confidentiality (provided by the
GRID Security Service, GSI);

– the management of data movement and access strategies (provided by
Global Access to Secondary Storage, GASS);

– data transfer in and replication management (for instance provided by
GridFTP);

– and the monitoring of the system state (provided by Heartbeat Monitor,
HBM), cf. [23, 24, 248].

Each Globus service has an API (written in C); in addition Java classes
are available for important services. The Globus services have been imple-
mented in a joint effort by the participating project partners. The services
support GRID applications that run on existing hardware platforms and host-
ing environments. Thus, the implementations make extensive use of existing
technologies, platforms, languages (e.g. CORBA, Java, MPI Python) and ser-
vices (such as the LDAP, SLP, DNS, UDDI) whenever deemed appropriate.
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13.4 Defining the GRID: The Global GRID Forum
Initiative

The Global GRID Forum (GGF) subsumes the major activities in the GRID
domain. It is a community of users, developers, and vendors that is leading
the global standardization effort for GRID computing. GGF promotes the
adoption of GRID computing in research and industry by defining GRID
specifications and building an international community for the exchange of
ideas, experiences, requirements and best practices.

Within GGF the Open GRID Services Architecture (OGSA) has been
defined. OGSA integrates key GRID technologies (including the Globus
ToolkitTM ) and combines them with Web services to build an open archi-
tecture for GRID services [222]. The goal is to provide a set of well-defined
basic interfaces and an architecture that is extensible, vendor neutral and ad-
heres (and in some cases actively contributes) to open standards. The Open
GRID Services Infrastructure (OGSI) supports the definition of services that
compose OGSA by extending WSDL (Web Services Description Language)
and XML schema. It builds on the GRID and Web services technologies
and defines mechanisms for creating, managing, and exchanging information
among GRID services [599]. One of the major issues in this context is how
to express the relationship between stateful resources and Web services. The
WS-Resource Framework has been defined to model stateful resources and to
formalize interaction with state [216]. This section introduces OGSA and the
basic concepts behind it. Further, some of the current issues in the develop-
ment of GRID services are discussed. It is important to note, however, that
the development within the GRID community and GGF has not stopped.
Thus, this provides a snapshot of the current state.

13.4.1 The Open GRID Services Architecture (OGSA)

Within OGSA, everything is regarded as a service - including applications
that become Web services. This implies that all components in this environ-
ment are virtual objects1. OGSA enables the development of virtual infras-
tructures, which form part of virtual organizations. These virtual organiza-
tions can be of different sizes, lifetimes, spanning multiple (physical) organi-
zations and run on heterogeneous infrastructures (i.e., provide a consistent
functionality across various platforms and hosting environments) [221].

OGSA defines the mechanisms required for sophisticated distributed sys-
tems (including change and lifetime management, and notification). This is
done using the Web Services Description Language (WSDL) and associated
conventions. The combination of GRID technology and Web services makes

1 Note, OGSA does not use the term “object” since it is regarded as overused.
Instead, it defines services.
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best use of the advantages of both technologies. Web services define tech-
niques for describing software components and accessing them. Further, Web
service discovery methods allow the identification of relevant service providers
within the system regardless of platform or hosting environment-specific fea-
tures. Web services are open in that they are programming language, pro-
gramming model, and system software neutral.

GT 3 Base Services
(Resource Management, Data Transfer,

Information Services, Reservation, Monitoring)

GT 3 Core
(Interface & Behaviour)

GT 3
Data

Services

Other GRID Services

Fig. 13.2: Open GRID Services Infrastructure: GT3

In the context of OGSA, a new version of the Globus toolkit was de-
veloped (Globus Toolkit Version 3, GT3). From GT3 onwards the Globus
architecture was defined together with OGSA. Currently (i.e. in 2005) GT4
is the most recent version. It is a refined version compared to GT3 where the
main concepts are still valid. The Core as shown in Figure 13.2 implements
service interfaces and behaviors as specified in the GRID Services Specifica-
tion [599]. The Core and Base Service Layer are part of the OGSI system
framework.

A number of (standard) high-level services that address requirements of
eBusiness and eScience applications are being discussed within GGF. Such
services include:

– distributed data management services (e.g., for database access, data trans-
lation, replica management and location, and transactions);

– workflow services (for coordinating different tasks on multiple Grid re-
sources);

– auditing services (for recording usage data);
– instrumentation and monitoring services (for measuring and reporting sys-

tem state information); and
– security protocol mapping services (for enabling distributed security pro-

tocols to be transparently mapped onto native platform security services).

These services can be implemented and composed in various different ways
replacing some of the current Globus toolkit services, for instance, dealing
with resource management and data transfer [222].
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13.4.2 GRID Services: Building Blocks for the GRID

With the strong service orientation adopted by OGSA the GRID can be re-
garded as a network of services. Web service mechanisms provide support for
describing, discovering, accessing and securing interaction (see chapter 14) for
a more detailed discussion on Web services). More formally OGSA defines a
GRID service as a network-enabled entity that represents computational and
storage resources, networks, programs, and databases, inter alia. Within the
virtual organization formed by these networked services, clear service defini-
tions and a set of protocols are required to invoke these services. Note, the
protocols are independent of the actual service definitions and vice versa.
They specify a delivery semantic and address issues such as reliability and
authentication. A protocol that guarantees that a message is reliably received
exactly once can, for instance, be used to achieve reliability, if required. Mul-
tiple protocol bindings for a single interface are possible because WDSL is
used for the service definition [222]. However, the protocol definition itself is
outside the scope of OGSA.

To ensure openness virtual service definitions are used according to which
multiple (ideally interworking) implementations can be produced. Thus, a
client invoking a service does not have to consider the platform a service in-
stantiation is running on, or have to know anything about the implementation
details. The interaction between services happens via well-defined, published
service interfaces that are implementation independent. To increase the gen-
erality of the service definition, authentication and reliable service invocation
are viewed as service protocol binding issues that are external to the core ser-
vice definition. Though, they have to be addressed within a complete OGSA
implementation.

The OGSA services are also concerned with transient service instances
within the GRID infrastructure because services are not necessarily static
and persistent (i.e., a service can be created and destroyed dynamically).
Furthermore, OGSA conventions allow identification of service changes such
as service upgrades. The information documenting these changes also states
whether the service is backward compatible regarding interface and seman-
tics.

Since GRID services have to run on multiple platforms in a distributed
heterogeneous environment, service implementations should, be portable not
only in terms of their design, but also as far as code and the hosting environ-
ment are concerned. OGSA defines the basic behavior of a service but does
not prescribe how a service should be executed. It is the hosting environment,
which defines how a GRID service implementation realizes the GRID service
semantics [221]. Apart from the traditional OS based implementations, GRID
services can also be built on top of new hosting environments such as J2EE,
Web-sphere, .NET, JXTA, or Sun ONE. These hosting environments tend to
offer better programmability and manageability, they are usually also more
flexible and provide a degree of safety.
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Despite OGSA not being concerned with implementation details, the def-
inition of baseline characteristics can facilitate the service implementation.
Issues that have to be addressed in the context of hosting environments are
the mapping of GRID wide names and service handles into programming lan-
guage specific pointers or references, the dispatch of invocations into actions
such as events and procedure calls, protocol processing and data formatting
for network transmission, lifetime management, and inter-service authentica-
tion.

13.4.3 Stateful Web Services: OGSI and the WS-Resource
Framework

As mentioned before, GRID services are Web services conforming to con-
ventions regarding their interfaces and behavior. By using Web services the
service paradigm has been firmly adopted for OGSA. However, a major con-
cept lacking in WSDL is state.

The Open GRID Services Infrastructure (OGSI) defines the mechanisms
for creating, naming, managing the lifetime of instances of services, and ex-
changing information between GRID services; it forms the basis for OGSA
[599]. Further, it is concerned with declaring and inspecting service data state,
asynchronous notification of service state change, representing and managing
collections of service instances (so-called ServiceGroups), and for common
handling of service invocation faults [142]. Therefore, WSDL is extended to
make it suitable for the definition of these conventions. In particular, these
extensions deal with state (i.e., they allow to create and manipulate stateful
Web services) and service typed instances. Furthermore, global naming and
addressing is an issue addressed by OGSI. GRID Service Handles in con-
junction GRID Service References and interface extensions that introduce
portTypes are used to address these issues.

Though, OGSI is regarded as too heavy-weight and not fully compat-
ible with the Web services view [142]. To overcome this the WS-Resource
Framework (WS-RF) [143] is specified that defines the means by which a
Web service and stateful resources are composed. WS-RF is primarily con-
cerned with the creation, addressing, inspection, and lifetime management of
stateful resources. Its advantage is that it better exploits existing XML and
emerging Web service standards (e.g., WS-Addressing). In short, WS-RF de-
fines a Web service resource as a composition of a Web service and a stateful
resource described by an XML document associated with the Web service’s
port type and addressed using WS-Addressing [312].
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13.5 GRID and Peer-to-Peer Computing

There is an ongoing argument about GRID and Peer-to-Peer computing,
their merits, differences, and commonalities. It is difficult to delineate the two
concepts since there is a lot of overlap in their motivation, though they have
a different background and take a different approach. According to Foster’s
three point GRID checklist [214], for example, a GRID is a system that:

1. coordinates resources that are not subject to centralized control ...
2. ...using standard, open general-purpose protocols and interfaces...
3. ... to deliver non trivial quality of service

From this list especially the first two points apply to many Peer-to-Peer
systems as well. Even on a system level the distinction between Peer-to-Peer
and GRID is not clear cut. For instance, the PlanetLab initiative originally
conceived as testbed for the Peer-to-Peer research community is also used as
example of a GRID infrastructure [215].

A comparison of the two areas at a conceptual level is even more difficult
since there is first of all no universally accepted definition of Peer-to-Peer.
Moreover, the idea of the GRID is also continuously further developed. Orig-
inally it was defined as a “hardware and software infrastructure that pro-
vides dependable, consistent, pervasive, and inexpensive access to high-end
computational capabilities” [225]. Later, the emphasis has shifted towards
virtual organizations and the importance of standard protocols in enabling
interoperability to build the common infrastructure [214]. Today the focus
is on “service-oriented science” and the GRID as infrastructure that enables
scientific research by distributed networks of interoperating services [215].

A number of publications are combining both concepts or are describing
GRID systems that employ Peer-to-Peer mechanisms [9, 218, 314]. To com-
pare both concepts and assess how much they have in common, it is necessary
to characterize Peer-to-Peer in this context in more detail.

In Chapter 2, a Peer-to-Peer system is defined as a self-organizing system
of equal, autonomous entities (i.e., peers) that operates preferably without
using any central services based on a communication network for the purpose
of resource sharing. Here, the emphasis is on the system aspect that allows
joint resource utilization. Another characterization stresses that Peer-to-Peer
is a class of applications that takes advantage of resources that are available
at the edge of the network [217]. This latter definition gives a much more con-
crete but also restricted view of the nature of Peer-to-Peer computing in that
it describes it as “class of application”, not systems, components or platform.
Therefore, it is important to distinguish between the Peer-to-Peer paradigm,
which encompasses decentralization, self-organization, and autonomous col-
laboration between independent entities in a system context, and Peer-to-
Peer applications, which are mostly vertically integrated applications [217]
used for the sharing of specific resources (e.g., file and information sharing
[352]). Further, there are also emerging Peer-to-Peer platforms that provide
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an operating system independent middleware layer, which allows sharing of
resources in a Peer-to-Peer fashion [404].

13.5.1 Comparing GRID and Peer-to-Peer: Commonalities and
Differences

The original motivation behind GRID and Peer-to-Peer applications has been
similar; both are concerned with the pooling and organization of distributed
resources that are shared between (virtual) communities connected via an
ubiquitous network (such as the Internet). The resources and services they
provide can be located anywhere in the system and are made transparently
available to the users on request. Both also take a similar structural approach
by using overlay structures on top of the underlying communication (sub-
)system.

However, there are also substantial differences on the application, func-
tional and structural levels. The applications supported through the GRID
are mainly scientific applications that are used in a professional context. The
number of entities is still rather moderate in size, and the participating in-
stitutions are usually known. Current Peer-to-Peer applications, in contrast,
provide open access for a large, fluctuating number of unknown participants
with highly variable behavior. Therefore, Peer-to-Peer has to deal with scal-
ability and failure issues much more than GRID applications. Peer-to-Peer
applications are still largely concerned with file and information sharing.
In addition, they usually provide access to simple resources (e.g. process-
ing power), whereas the GRID infrastructure provides access to a resource
pool (e.g., computing clusters, storage systems, databases, but also scientific
instruments, sensors, etc.) [217]. Peer-to-Peer applications usually are ver-
tically integrated, i.e. the application itself realizes many of the conceptual
and basic functionalities that should be part of and architecture or the in-
frastructure. An example are overlay structures as part of the application.
In contrast, the GRID is essentially a multipurpose infrastructure where the
core functionality is provided by a set of services that are part of the architec-
ture. The resources are represented by services that can be used by different
applications.

In recent years, a number of Peer-to-Peer middleware platforms have been
developed that provide generic Peer-to-Peer support. The functionality they
support comprises, for example, naming, discovery, communication, security,
and resource aggregation. One example is JXTA [330], an open platform
designed for Peer-to-Peer computing. Its goal is to develop basic building
blocks and services to enable innovative applications for peer groups. An-
other, emerging Peer-to-Peer platform is Microsoft’s Windows Peer-to-Peer
Networking (MSP2P) [119], which provides simple access to networked re-
sources. There is also ongoing research in this area. For instance, in the EU
funded project on Market Managed Peer-to-Peer Services (MMAPPS) a mid-
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dleware platform has been created that incorporates market mechanisms (in
particular, accounting, pricing and trust mechanisms) [578]. On top of this
platform, a number of applications (i.e., a file sharing application, a medical
application, and a WLAN roaming application) have been implemented to
show how such a generic platform can be used.

13.5.2 GRID and Peer-to-Peer: Converging Concepts?

The GRID has been successfully in operation within the scientific community
for a number of years. However, the potential of the GRID goes beyond
scientific applications and can for instance also be applied to the government
domain, health-care, industry and the eCommerce sector [62]. Many of the
basic concepts and methods could remain unchanged when applied to these
new domains. Other issues not within the scope of the current GRID initiative
will have to be addressed in the context of these application areas (e.g.,
commercial accounting and IPR issues). Further, with a more widespread
adoption of the GRID, there is a greater need for scalability, dependability
and trust mechanisms, fault-tolerance, self-organization, self-configuration,
and self-healing functionality. This indicates that mechanisms from the Peer-
to-Peer application and platform domain and the Peer-to-Peer paradigm in
general could be adopted more widely by the GRID. This would result in
a more dynamic, scalable, and robust infrastructure without changing the
nature or fundamental concepts. Though, this will only happen in the context
of the service-oriented architecture. Thus, the developments between Peer-to-
Peer and Web services as described in Chapter 14 and between Peer-to-Peer
and GRID are actually running in parallel.

Peer-to-Peer applications are also developing into more complex systems
that provide more sophisticated services. A platform approach has been pro-
posed by some vendors and research initiatives to provide more generic sup-
port for sophisticated Peer-to-Peer applications. It is expected that devel-
opers of Peer-to-Peer systems are going to become increasingly interested in
such platforms, standard tools for service description, discovery and access,
etc. [217]. Such a Peer-to-Peer infrastructure would then have a lot in com-
mon with the GRID infrastructure. However, the goal behind the GRID (i.e.,
providing access to computational resources encapsulated as services) is not
necessarily shared by these middleware platforms. They are built for better
and more flexible application support.

Essentially, it is a matter of substantiating the claims represented by the
Peer-to-Peer paradigm of providing more flexibility, dynamicity, robustness,
dependability and scalability for large scale distributed systems. If this is
successful and additional quality of service features (such as performance and
efficiency) can also be ensured, Peer-to-Peer mechanisms can become central
to the GRID. Peer-to-Peer applications, on the other hand, will have to adopt
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a more platform-based development to provide sufficient flexibility in a very
dynamic environment. It remains to be seen if this means a convergence of
the two areas or if they will co-exist, continually influencing each other.

13.6 Summary

The idea for the GRID was conceived within the science community and
inspired by the success of the Internet and results produced by distributed
systems research. The main target application areas are resource sharing,
distributed supercomputing, data intensive computing, and data sharing and
collaborative computing. The GRID provides an abstraction for the different
resources in form of services.

The architectural view of the GRID can be compared to the Internet
hourglass model where a small group of core protocols and components build
the link between the high-level mechanisms and a number of lower level base
technologies [67]. The various services in this architecture can be located
at one of the different layers, namely the Fabric, Connectivity, Resource,
and Collective Layer. The Globus ToolkitTM provided the first tools for a
GRID infrastructure. These tools exploit the capabilities of the platforms
and hosting environments they run on, but do not add any functionality on
the system level. Using this pragmatic approach, some remarkable systems
have been realized by the Globus project, or with the help of the Globus
Toolkit. The OGSA initiative within the Global GRID Forum (conceived
within the Globus Project) is developing the original ideas further. It takes
a more systematic approach and defines a universal service architecture in
which the advantages of GRID technology and Web services are combined.
It is strictly service-oriented; i.e. everything is regarded as a service charac-
terized by well-specified platform and protocol independent interfaces. This
universal service idea combined with openness and platform independence,
allows building very large and functional complex systems. Applying these
concepts could provide a way to deal with management issues that have so
far restricted the size of distributed systems.

The relationship between Peer-to-Peer and GRID is still a controversial
topic. Since GRID is defined as infrastructure formed out of services repre-
senting resources, its scope and extent are more well defined than that of
Peer-to-Peer. The term Peer-to-Peer is on the one hand, being used for a
group of distributed applications (such as the well known file sharing appli-
cations); on the other hand it also refers to a paradigm encompassing the
concepts of decentralization, self-organization, and resource sharing within a
system context [573]. Recently, middleware platforms have been developed
that provide generic support for Peer-to-Peer applications, implementing the
Peer-to-Peer paradigm in an operating system-independent fashion. The ob-
jective of the GRID is to provide an infrastructure that pools and coordinates
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the use of large sets of distributed resources (i.e., to provide access to compu-
tational resources similar to the access to electricity provided by the power
grid). The most recent development within the GRID community go towards
a strong service orientation. Within GGF the ideas developed in the service-
oriented architecture and Web service domain are being adopted. Hence, a
convergence between GRID and Peer-to-Peer would actually run in parallel
or be predated by a convergence of Peer-to-Peer and Web Services. Though,
it has been recognisee that an adoption of Peer-to-Peer principles could be
beneficial in terms of scalability, dependability, and robustness. The pooling
and sharing of resources is also a common theme in Peer-to-Peer applica-
tions. This could be supported by Peer-to-Peer middleware platforms in the
future. However, this does not mean global access to computational resources
(represented by services) anywhere, anytime. The question of how, indeed if,
the two concepts converge is still open.



14. Web Services and Peer-to-Peer

Markus Hillenbrand, Paul Müller (University of Kaiserslautern)

14.1 Introduction

Peer-to-Peer and Web services both address decentralized computing. They
can be considered as rather distinct from each other, but a closer look at the
Web services technology reveals a great potential for a combination of both
Peer-to-Peer and Web services.

The basic idea behind Web services technology is to provide functionality
over the Internet that can be accessed using a well-defined interface. This
idea of a service-oriented architecture forms the next evolutionary step in
application design and development after procedural programming, object
orientation, and component-oriented development. During the last twenty
years, different middleware approaches and application designs have been
introduced to leverage dated technology and provide easy access over open
and mostly insecure access networks.

Fig. 14.1: Programming paradigms: abstraction and distribution

The most recognized and well established technologies for creating dis-
tributed systems are the Remote Procedure Call (RPC, 1988) from Sun
Microsystems, the Distributed Computing Environment (DCE, 1993) from

R. Steinmetz and K. Wehrle (Eds.): P2P Systems and Applications, LNCS 3485, pp. 207-224, 2005.
© Springer-Verlag Berlin Heidelberg 2005



208 14. Web Services and Peer-to-Peer

the Open Software Foundation (OSF), the Common Object Request Broker
Architecture (CORBA, 1990s) from the Open Management Group (OMG),
the Java Remote Method Invocation (RMI, 1990s) and Java Enterprise Beans
(EJB, 1990s) from Sun Microsystems, and the Distributed Component Object
Model (DCOM, 1997 and COM+, late 1990) from Microsoft. Each of these
technologies introduced a higher level of abstraction for creating distributed
applications and reduced the implementation effort necessary to achieve this
goal. Figure 14.1 illustrates the relationship between the underlying pro-
gramming paradigm, the level of abstraction, and the complexity of creating
a distributed application.

Distribution aspects have always been an addendum to procedural pro-
gramming and object-orientation (mostly using some kind of remote proce-
dure call mechanism) and are not intrinsic to the paradigms. Solutions fol-
lowing the component-oriented paradigm provide middleware functionality
and software containers that allow for distribution during software develop-
ment and help managing the resulting software systems. In contrast to this,
Web services are based on open, well-defined, and established standards and
encompass distribution from within the specifications. In combination with
currently evolving additional standards (cf. Chapter 14.2.6) they have a good
chance to achieve the goals of a real and secure distributed middleware ar-
chitecture.

The Web services technology has been initiated by industry and not
academia, and more and more large companies are working on Web services
technology and apply it in real world applications. Though what is the reason
for this development? Unfortunately, there is no commonly used definition
for Web services. Instead, several distinct definitions have to be consulted to
investigate what Web services are and how to use them. Two major driving
forces of the Web services technology – IBM and Microsoft – define Web
services as follows:

Definition 14.1.1. (IBM, 2003) “Web services are self-contained, modular
applications that can be described, published, located, and invoked over a net-
work. Web services perform encapsulated business functions, ranging from
simple request-reply to full business process interactions. These services can
be new applications or just wrapped around existing legacy systems to make
them network-enabled. Services can rely on other services to achieve their
goals.”

Microsoft favors a similar definition of the Web services technology, but
it emphasizes standard Internet protocols:

Definition 14.1.2. (MSDN, 2001) “A Web service is a programmable ap-
plication logic accessible using standard Internet protocols, or to put it an-
other way, the implementation of Web-supported standards for transparent
machine-to-machine and application-to-application communication.”
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The common aspect of definitions 14.1.1 and 14.1.2 is their focus on busi-
ness and application-to-application communication. A more technical view
on Web services is given by the following definition from the World Wide
Web Consortium in 2003:

Definition 14.1.3. (W3C: May, 2003) “A Web service is a software system
identified by a URI (Uniform Resource Identifier), whose public interfaces
and bindings are defined and described using XML. Its definition can be dis-
covered by other software systems. These systems may then interact with the
Web service in a manner prescribed by its definition, using XML based mes-
sages conveyed by Internet protocols.”

This definition completely abstracts from the implementation and usage
of Web services and is entirely based on XML. During the definition phases
of Web services related standards, the W3C has revised this definition several
times to make it more specific in terms of technology while trying to keep it
as general as possible. As of 2004, the current definition reads as follows:

Definition 14.1.4. (W3C Feb, 2004) “A Web service is a software system
designed to support interoperable machine-to-machine interaction over a net-
work. It has an interface described in a machine-processable format (specif-
ically WSDL). Other systems interact with the Web service in a manner
prescribed by its description using SOAP messages, typically conveyed us-
ing HTTP with an XML serialization in conjunction with other Web-related
standards.”

Compared to definition 14.1.3, not only XML [89] but also WSDL [118,
115] and SOAP [265] are part of the definition. And HTTP [206] is mentioned
as the typical transport protocol. This makes the definition of a Web service
more precise from a technological view, but also narrows applicability and
extensibility.

The relevant standards mentioned in the definitions will be briefly intro-
duced in the next sections. A sample Web service (providing functionality to
add an integer or a complex number) will be used to illustrate them.

14.2 Architecture and Important Standards

The Web services technology permits loose coupling and simple integration
of software components into applications – irrespective of programming lan-
guages and operating systems by using several standards. The basic archi-
tecture is shown in figure 14.2.

Three participants interact to perform a task. A service provider is re-
sponsible for creating and publishing a description of a service interface us-
ing WSDL. The provider also contributes the actual implementation of the
service on a server responding to requests from clients that adhere to this
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Fig. 14.2: Web services: Overview and Standards

interface description. A UDDI registry collects and categorizes interface de-
scriptions and offers them to customers via a browsable directory or a search
engine. A client can either be a human user or another software component
acting on behalf of a user. It discovers a service by asking the UDDI registry
and then contacts the actual service using the interface definitions and proto-
cols defined in the associated WSDL document. This WSDL document might
refer to external XML Schema (XSD) documents on the Internet where data
types for the service are defined (this allows for re-use and compatible data
structures).

The basic operational steps to consume a service are publish, find, and
bind. A service provider publishes a service using a WSDL service descrip-
tion and the UDDI registry, a service requestor finds this service using the
UDDI registry, and the service requestor binds his program to the service
endpoint using the protocols defined in the WSDL document (mostly SOAP
over HTTP).

The binding process on the client side can be realized using different tech-
niques: stubs, dynamic proxy, or dynamic invocation. The automatic gener-
ation of stubs at compile time takes a WSDL document and creates a local
representation of the remote Web service. This only allows for a tight coupling
of client and service. The dynamic proxy technique does not create the stubs
at compile time but generates a local representation of the remote service at
runtime. Only a local interface definition is needed to make the actual call.
Dynamic invocation on the other hand can be used to create a Web service
call completely during runtime – which makes loosely coupled applications
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possible. In each case the information needed can be retrieved solely from the
WSDL document.

The necessary standards and protocols to either publish, find, or bind
a Web service will now be explained in greater detail. Exemplification will
adhere to the WSDL 1.1 specification because this version is currently widely
used and has a large tool support.

14.2.1 XML and XML Schema

XML [89] is the key to platform and programming language neutral data
exchange. It provides the mechanisms to create complex data structures as
well as it allows for modeling dependencies between data sets. An XML doc-
ument itself is a plain text file using a given character encoding scheme (e.g.
ISO8859-15 or UTF-8). In the following, the necessary parts of the XML
specification will be introduced to give a better understanding of the next
chapters.

Structure

An XML document adheres to a well defined structure. It is divided into a
header and a body part (cf. Figure 14.3). The header contains useful informa-
tion for other software systems such as XML parsers. The XML version and
character encoding are defined there. The body part of the XML document
contains the actual data of the document. This information is contained inside
XML elements and uses the “<...>” syntax known from HTML documents.
Additionally, these elements can have attributes that provide more detailed
information. The XML body part can then be seen as a tree consisting of
XML elements and attributes attached to the nodes.

Fig. 14.3: XML Schema for the Complex data type
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XML Namespaces (XMLNS)

XML allows to use any name as an element name. Thus, the vocabulary of
XML documents is not fixed. To avoid collisions of such element names, XML
namespaces [89] have been introduced in 1999 and were updated in 2004. A
namespace can be defined inside an element (usually the root element) and is
valid for all child elements (“XML namespaces” in figure 14.3). A namespace
is specified using a Uniform Resource Identifier (URI [68]) which itself can
either be a Uniform Resource Locator (URL) or a Uniform Resource Name
(URN). A URL points to a specific location where more information about
the namespace can be found while a URN is just a globally unique name.
It is possible to use different namespaces inside an XML document, and the
XML document itself can use elements from these namespaces in any suitable
order.

XML Schema (XSD)

Together with XML Namespaces, XML Schema [200, 593, 75] is one impor-
tant building block for creating modular XML documents. Its major goal is
to make syntactical restrictions for XML elements, i.e. XML Schemas can
be used to assign and define data types. Besides basic data types such as
integer, string, date, etc. provided by the standard, it is possible to define
new datatypes (“XML complex type definition” in figure 14.3). Using the
appropriate XML Schema elements, it is further possible to define new sim-
ple (primitive) data types, complex data types (like structures, arrays, etc.)
as well as enumerations and choices. It is also possible to define and assign
structural patterns restricting the range of values for the data types. Ad-
ditionally, XML Schemas can be imported into other XML documents, e.g.
WSDL documents. This allows for re-use of XML data types and a modular
design of XML documents.

14.2.2 WSDL

The Web Services Description Language (WSDL [118, 115]) is an XML based
format for describing the interface of a Web service. The WSDL document
starts with an XML header and the body is divided into several parts (shown
in figure 14.4):

Root Element

The root element of a WSDL document is a definitions element and con-
tains a target namespace, the namespaces used throughout the document
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Fig. 14.4: WSDL document and its structure

(“XML namespaces” in figure 14.4), and an optional documentation of the
Web service.

Types

The data types used by the Web service should be designed using XML
Schema. Inside the types element it is possible to define data types for
the current service or to import data types from remote documents using
the XML Schema import element. In figure 14.5 the types element is used
to import the Complex data type defined in figure 14.3. The actual XML
Schema file location is specified using the schemaLocation attribute and
its namespace is specified using the namespace attribute accordingly. The
targetNamespace attribute can be used to map the namespace of the XML
Schema document into another namespace.

Fig. 14.5: WSDL types element used to import a XML Schema data type
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Messages

Messages are exchanged between the client and the service and represent
the data necessary to call a Web service function or to create a response. A
message element has a name and several parts that make up the message.
Every part element usually has a type – and this type is either imported
or defined in the types element. In figure 14.6 four messages are defined.
The first (Message addComplex) has two child elements x and y, and the
second message (Message addComplexResponse) contains only one child el-
ement result. As the name of the message suggests, it is used as a response
to the first message. Messages three and four work in the same manner.

Fig. 14.6: WSDL message element

Port Types

A Web service can have several porttype elements1, each containing a set
of operations provided by the Web service. The port types use the messages
defined using the message elements to create input and output messages
for each operation. In figure 14.7 the two operations Message addComplex
and Message addInt are defined using the messages from figure 14.6 and
thus form a request-response operation addComplex. With WSDL 1.1 other
operation types are possible: one-way (the endpoint behind the operation
receives a message), solicit-response (the endpoint receives a message and
sends a correlated message), and notification (the endpoint sends a message).

Bindings

The binding element assigns a data encoding format and a transport protocol
to the Web service operations. It is possible to assign more than one protocol

1 In the WSDL 2.0 specification the porttype element has been renamed to
interface and extended to support more types of communication.
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Fig. 14.7: WSDL port type element

to the same operation. In figure 14.8 both operations are defined to use SOAP
over HTTP.

Fig. 14.8: WSDL binding element

Service

The service element finally defines for each binding a port as the actual end-
point, i.e. the place in the network where the actual software runs and offers
the service2. In figure 14.9 the binding defined in figure 14.8 is assigned to
the SOAP access point provided by the software running on localhost on
port 8080.

Fig. 14.9: WSDL service element

2 In the WSDL 2.0 specification the port element has been renamed to endpoint
in order to clarify the meaning.
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14.2.3 SOAP

Designed as an XML-based lightweight protocol, SOAP3 [265] is responsible
for encoding and exchanging data between applications. According to defini-
tion 14.1.4 it is used as a communication means between service providers,
service requestors, and service brokers. A SOAP message itself can be trans-
ported using various transport protocols. Most applications use HTTP (Hy-
pertext Transfer Protocol [206]) as the underlying transport protocol; other
protocols are SMTP (Simple Mail Transfer Protocol [357, 433]) or BEEP
(Blocks Extensible Exchange Protocol [525]).

A SOAP message acts as a message container that delivers structured and
typed data between applications. A SOAP message has three elements:

Fig. 14.10: The SOAP message structure

The mandatory envelope (“SOAP envelope” in figure 14.10) provides a
container for the next two elements and is the XML root element where
referenced XML namespaces have to be defined.

The optional header (“SOAP header” in figure 14.10) can be used to
transport additional information to recipients of a SOAP message. A recipient
can either be the final destination of the message or any intermediate entity
routing the message through a complex distributed Web service application.
It can be used for routing information, information about quality of service,
billing purpose, etc.
3 Up to version 1.1 SOAP was an acronym for Simple Object Access Protocol. This

is no longer the case, SOAP has become a term on its own. One reason for this
is that Web services should not be conceived as objects.
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The mandatory body (“SOAP body” in figure 14.10) finally carries all ap-
plication specific information for the final recipient. This final recipient must
be able to semantically understand the body elements. A fault element inside
the body can be used to carry an error message to one of the intermediaries
or back to the origin of the message.

An additional standard allows for attachments to be transmitted in MIME
encoded form, enabling Web services to process large binary data files.

14.2.4 HTTP

The Hypertext Transfer Protocol (HTTP [206]) is a stateless application-
level protocol for exchanging data between two entities. It is primarily used
by Web browsers to access Web servers and retrieve HTML pages. Several
extensions concerning request methods, header information, and error code
have widened the scope of applicability. In the context of Web services it is
the most commonly used protocol for exchanging SOAP messages between a
client and a Web service.

14.2.5 UDDI

Universal Description, Discovery and Integration (UDDI [454]) can be used
to publish or find a specific Web service. UDDI is basically a directory ser-
vice providing registration and search capabilities for Web services. Such a
UDDI registry offers a Web service interface for service providers and service
requestors. Based on several meta data information structures and well es-
tablished categorization formalisms, either of them can store or retrieve Web
service information, respectively.

A globally synchronized UDDI registry is currently maintained by IBM,
Microsoft, and SAP. It is also possible to establish a private UDDI for closed
user groups or applications.

14.2.6 WS-*

In addition to the basic underlying standards and protocols some industry
driven standardization efforts are undertaken to retrofit Web services for com-
mercial and secure usage. They are usually referred to as WS-* standards,
where * is a placeholder for the purpose of the standard. The following de-
scriptions of the most relevant WS-* standards have been taken from their
respective specification; a complete introduction can be found there.



218 14. Web Services and Peer-to-Peer

WS-Addressing

The WS-Addressing [86] standard provides transport-neutral mechanisms to
address Web services and messages. The specification defines XML elements
to identify Web service endpoints and to secure end-to-end endpoint iden-
tification in messages. It furthermore enables messaging systems to support
message transmission through networks that include processing nodes such
as endpoint managers, firewalls, and gateways in a transport-neutral manner.

WS-Federation

WS-Federation [331] defines mechanisms that are used to enable identity,
account, attribute, authentication, and authorization federations across dif-
ferent trust realms.

WS-Policy

The Web Services Policy Framework [540] provides a general purpose model
and corresponding syntax to describe and communicate the policies of a Web
service. It defines a base set of constructs that can be used and extended
by other Web services specifications to describe a broad range of service
requirements, preferences, and capabilities.

WS-ReliableMessaging

WS-ReliableMessaging [205] describes a protocol that allows messages to be
delivered reliably between distributed applications in the presence of soft-
ware component, system, or network failures. The protocol is described in an
independent manner allowing it to be implemented using different network
transport technologies.

WS-ResourceFramework

The Web Services Resource Framework [258] defines a family of specifications
for accessing stateful resources using Web services. The motivation for these
specifications is that while Web service implementations typically do not
maintain state information during their interactions, their interfaces must
frequently allow for the manipulation of state, that is, data values that persist
across and evolve as a result of Web service interactions.
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WS-Security

WS-Security [435] describes enhancements to SOAP messaging to provide
message integrity and confidentiality. It can be used to accommodate a wide
variety of security models and encryption technologies. The specification also
provides a general-purpose mechanism for associating security tokens with
message content.

WS-Transaction

The WS-Transaction [377] standard describes coordination types – name-
ly Atomic Transaction (AT) and Business Activity (BA) – for building ap-
plications that require consistent agreement on the outcome of distributed
activities.

14.3 Service Orchestration

As Web services evolve and are deployed on a larger scale, the need for
the combination of several Web services in order to create a business pro-
cess arises. Several languages and specifications can be identified that deal
with service orchestration. The most relevant are XML Process Definition
Language (XPDL [452]), Business Process Modeling Language (BPML [33]),
Web Service Choreography Interface (WSCI [34]), Electronic Business using
eXtensible Markup Language (ebXML [455]), and Business Process Execu-
tion Language for Web services (BPEL4WS [588]). The latter is currently
the most promising candidate for a common standard.

BPEL4WS is based on XML and can be used to combine distributed
Web services to a business process. Interaction between Web services can be
modeled as well as between the business process and its clients. The clients
can thus be detached from the actual business logic and be kept simple.

BPEL4WS is driven by major companies such as IBM and Microsoft and
provides a language to implement complex processes by allowing for different
actions like calling a Web service, manipulating data, and handling errors.
Flow control can be realized using control flow statements like tests, loops,
and threads. To the outside, a BPEL4WS business process can be described
like a normal Web service and have its own WSDL description – a client does
not need to know the internal structure or control flow of the process.

14.4 Comparison of Peer-to-Peer and Web Services

As Peer-to-Peer and Web services are both addressing decentralized comput-
ing, it is reasonable to compare the two techniques and show differences that
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might also be used as incentives for further research and development in this
area.

14.4.1 What Can Peer-to-Peer Learn from Web Services?

The Web services standards evolve at a high rate and influence other tech-
nologies as well. There are several issues that also concern Peer-to-Peer tech-
nology:

XML

All data formats and all data exchange protocols in the Web services area are
based on XML. XML Schema is used to define platform and programming
language neutral data types, SOAP is used to transfer these data types to the
service, and WSDL is used to describe the service itself. New XML standards
or enhancements can be integrated into the Web services technology with
small effort, as XML security or XML encryption have shown.

Another benefit would be to use XML schema definitions for describ-
ing resources, data, services, and peers within a Peer-to-Peer system with
meta data. An XML based description of the resources and data shared in
a Peer-to-Peer system would be more flexible (with regard different schema
files and namespaces) and extensible, because a schema file can be easily
extended without having effect on existing software and thus allow for a
smooth upgrade or change in meta data description. A more detailed view
on schema-based Peer-to-Peer systems is given in chapter 19.

Service Registration

Irrespective of its rather centralized approach, Web services provide an ele-
gant registration mechanism with thorough content description and enhanced
search capabilities. Classification schemes can be used to categorize or classify
services so that users are able to find them using different search requests.

Security

Web services security is of major importance for Web services to be accepted
as building blocks for distributed applications running on the Internet. Sev-
eral standards have been developed to enable secure communication between
Web service entities. These security standards are mostly based on XML and
are thus not limited to the Web services world.
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Interoperability

One of the design goals of Web services has been to be as open and interop-
erable as possible. Standardized interfaces (written in WSDL) can be used
and accessed by any system capable to process XML documents. There is no
artificial language or operating system barrier in a Web services scenario. To-
gether with security standards this accounts for large business processes and
applications to be deployed over the Internet using different programming
languages and operating systems.

Service orchestration

Web services can be combined to create a business process using Web service
orchestration. This allows for re-use and encapsulation. The JXTA SOAP
project (http://soap.jxta.org) for example brings together Web services
and Peer-to-Peer technology by defining a bridge between SOAP and the
JXTA protocol. This can be further extended by defining workflows on top
of these services. JXTA is explained in more detail in chapter 21.3.1.

14.4.2 What Can Web Services Learn from Peer-to-Peer?

Web services and Peer-to-Peer technologies are used to decentralize comput-
ing. However, Web services are based on a client/server architecture. In the
following, some aspects of Peer-to-Peer systems will be highlighted that might
be applied to the Web services world:

Decentralization

In a Web services scenario, a rather centralized UDDI registry is used to
publish and find Web service descriptions. This accounts for a very easy
usage but also means that all clients and service providers have to access this
single service (or a few central services) and it thus might form a bottleneck
and single point of failure. Additionally, the UDDI does not know whether a
service is currently available or not. It only delivers stored information to the
service requestors. In a Peer-to-Peer system, every node offers its service and
distributed search algorithms are used to retrieve information from all nodes.
A service currently not available will usually not be found in the system.

Transport Protocols

The success of the World Wide Web and Web services is partly based on the
simplicity and scalability of HTTP. Operating in real time and being state-
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less allows for a tight coordination between client (browser) and server (Web
server) – with little overhead. But in systems with a high need for synchro-
nization (like instant messaging) HTTP is inadequate due to its design. This
also applies to services that need a lot of time to process a request (large
data base operations or complex calculations). HTTP is designed to deliver
an answer immediately. Some systems have instead adopted the Simple Mail
Transfer Protocol (SMTP) for asynchronous messaging in this case. But there
are several other protocols that might prove useful in different usage scenar-
ios. Especially Peer-to-Peer instant messaging protocols are designed to allow
for a flexible two-way communication.

Addressing Scheme

Peer-to-Peer systems operate mostly outside the Domain Name Service
(DNS) because its nodes might not have a permanent IP address. In order to
access the resources of these nodes, a logical and often user-created address is
continuously mapped to the current IP address. For Web services this could
mean to make them accessible by using different addressing schemes and not
only using IP addresses or host names, respectively.

Client/Server Architecture

On the World Wide Web roles like client and server are largely fixed – the
Web server is always a server, and a Web browser is always a client. This also
applies to Web services running on a Web server. In Peer-to-Peer systems
however, these roles are only temporary. A node usually acts as client or
server, depending on the current task. This also affects scalability. A strong
client/server architecture only scales with the servers, while a Peer-to-Peer
infrastructure scales depending on the roles taken by the nodes.

14.4.3 Side-Effects Arising when Joining Web Services and
Peer-to-Peer

Compared to either Web services or Peer-to-Peer alone, any combination4 of
the two technologies would theoretically cause side-effects in different areas.
The following list is not complete but addresses the most important issues:

4 Such a combination could be a Peer-to-Peer system using Web service technology
or a Web service application scenario adopting Peer-to-Peer techniques.
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Bandwidth

Using XML message formats and searching for services using Peer-to-Peer
technology in distributed applications will increase the need for bandwidth
dramatically compared to a central registry such as UDDI. If there is no
central registry, a lot of nodes (peers) of the system have to be queried for
their services – this is especially the case when using unstructured Peer-to-
Peer systems (cf. Part II).

Security

Security in closed client/server systems can be handled very well. It is easily
possible to define access control and access policies. A server can always
decide whether to answer a client request or not. If servers are replaced by
peers in an open Peer-to-Peer system where all nodes are equal, security
cannot be assured as easily anymore. Here new ways for providing similar
security have to be found and applied.

Maintenance

The maintenance of distributed systems is a complex task. Security issues,
the optimal usage and availability of distributed resources and services, and
software deployment become even more complex in a heterogenous combina-
tion of Web services and Peer-to-Peer technology.

14.5 Resulting Architectures

Several architectures can be imagined when joining Web services and Peer-
to-Peer technologies. One of the most promising can be outlined as follows.

Distributed applications will have two faces: Peer-to-Peer in a closed and
rather secure system (i.e. the Intranet or a similar form) and additional Web
service access points for external communication on the Internet – as long as
security is weak there. It is possible to have the benefits of Peer-to-Peer sys-
tems like decentralization, scalability, and availability inside an application,
inside a complex system, or inside a company. On the edge to the Internet
this is changed to the benefits of Web services like security and standardized
WSDL interface descriptions.

This approach could be used to design service brokers (i.e. the entities
responsible for finding a service matching a request like in [211]) and search
engines (i.e. entities responsible for finding arbitrary information matching a
request like in [296]) by using Peer-to-Peer technology internally and offering
their results in XML/WSDL.
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Further Reading

This chapter about Web services and Peer-to-Peer was only a short in-
troduction into the world of distributed services. A good start for ob-
taining more knowledge are the following references (in no particular or-
der) [25, 291, 193, 496, 141].





15. Characterization of Self-Organization

Hermann De Meer, Christian Koppen (University of Passau)

15.1 Introduction

Self-organization is used in many disciplines to refer to several, related phe-
nomenons. Some of the more prominent phenomenons summarized under the
umbrella of self-organization are autonomy, self-maintenance, optimization,
adaptivity, rearrangement, reproduction or emergence. An exact match, how-
ever, has yet to be accomplished. Even in the context of this book on Peer-
to-Peer systems, self-organization is used in various forms to relate to several
interesting but distinct properties of Peer-to-Peer networking. Before Peer-
to-Peer networks are analyzed in more detail in Chapter 16 for their degree
of affinity to self-organization, we juxtapose selected but prominent defini-
tions and criteria of self-organization from all disciplines in this chapter. The
purpose of that exercise is to broaden scope and horizon of understanding
self-organization in the context of Peer-to-Peer networks. It is hoped such
an approach may spearhead new developments and stimulate innovative dis-
cussions. Due to the nature of some of the disciplines, the definitions may
lack mathematical preciseness and some ambiguities may not be overcome.
It is still believed by comparing and relating the existing manifold perspec-
tives and concepts a more objective and thought-provoking discussion in the
context of Peer-to-Peer networking can result. This is particularly so as self-
organization may offer great potentials and pose high risks by the same token.

The notion of self-organization is not a new one. In fact, its roots may
even be traced back to ancient times. It was Aristoteles who stated that “The
whole is more than the sum of its parts” [32, 10f-1045a], a simple definition
for a phenomenon that nowadays is called emergence which is attributed to
self-organizing systems. In the 20th century, the pioneer discipline engaging
in self-organization was the science of cybernetics, originated as theory of
communication and control of regulatory feedback in the 1940s; cyberneti-
cists study the fundamentals of organizational forms of machines and human
beings. The name and concept of self-organization as it is understood to-
day emerged in the 1960s, when related principles were detected in different
scientific disciplines.

The biologists Varela and Maturana formed the term of autopoiesis, a
way of organization that every living organism seems to exhibit [402, 403].
The chemist Ilya Prigogine observed the formation of order in a special class
of chemical system which he then called dissipative [495]. The biochemists
Eigen and Schuster detected autocatalytic hypercycles, a form of chemical
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molecules which align with each other and reproduce themselves to build
up and maintain a stable structure [551]. The physicist Haken analyzed the
laser and found that the atoms and molecules organize themselves so that a
homogeneous ray of light is generated [271]. The field of synergetics resulted
as a whole new discipline from this research [272]. These are just some exam-
ples, a lot more have appeared in natural, social, economic and information
sciences.

Each approach has revealed some basic principles of self-organization, and
it is interesting to see how similarities can be identified. Self-organization may
appear in different facets or it can be seen as an assembly of several, many
or all of the described properties. We first describe the various properties
in more detail in Section 15.2, use them to characterize self-organization in
Section 15.3 and then apply the results to examples in computer science,
emphasizing of what we see as positive impact of self-organization on these
example areas, in Section 15.4. Section 15.5 concludes this chapter.

15.2 Basic Definitions

Self-organization is used in many disciplines to refer to several, related phe-
nomenons. Selected but prominent definitions and criteria of self-organization
from all disciplines are summarized in this section. The ultimate purpose is
to broaden scope and horizon of understanding self-organization in the con-
text of Peer-to-Peer networks. It is hoped such an approach may spearhead
new developments and stimulate innovative discussions. Due to the nature
of some of the disciplines, some of the definitions of this section may lack
mathematical preciseness.

15.2.1 System

Definition: System

A system is a set of components that have relations between each
other and form a unified whole. A system distinguishes itself from its

environment.

A simple example of a system is a computer network where computers
are the components and connections between the computers are the relations.
The network can be seen as a single entity (instead of an accumulation of
computers) which differs from its environment, e.g., the users of the network.

Another example for a system is a cup of water. It consists of the H2O-
molecules and the intermolecular forces between them. The environment is,
strictly speaking, the ceramics of the cup and the rest of the universe. In most
cases, it is sufficient to consider only the relevant parts of the environment,
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such as the cup in this example. The system is not observed as a giant set of
single molecules, but as one big entity.

15.2.2 Complexity

The term “complexity” is used to denote diverse concepts coming from do-
mains which exhibit strong differences, like social [57], economic [120] and
computer sciences [628]. Even the theory of complexity is used to denominate
multiple disciplines, including theoretical computer science, systems theory
and chaos theory. For example, in theoretical computer science the Landau
symbols (e.g., O(n), ω(n), Θ(n)) are used to describe the time or space com-
plexity of an algorithm, independently of a certain implementation. The Kol-
mogorow complexity, the degree of order in a string, is determined by the
size of the shortest computer program that creates this string. A general
definition of complexity is therefore hard to achieve.

Definition: Complexity

We use the term complexity to denote the existence of system
properties that make it difficult to describe the semantics of a system’s
overall behavior in an arbitrary language, even if complete information

about its components and interactions is known. [58]

We differentiate this meaning from another meaning of the term complex-
ity in the sense of “complicatedness” which describes the number of elements
or components of a system [623, Komplexität (orig. in German)].

Complexity as used here is independent of the language that is used for
the system description. There are many different perspectives on a system,
which lead to different descriptions, although the system remains the same
for all descriptions. A cup of water can be described by some formulae for
the H2O molecules, the water’s volume and temperature. It may as well be
described using a large table that contains position, size and speed of each
molecule. The formulae are a more compact description than the table, but
the complexity of the system stays the same for both descriptions.

A system does not need to keep its complexity over time. If it changes
so that its behavior can be described more compactly, the complexity of
the system is reduced. An example for this are the Bénard convection cells,
which are best explained by a small experiment [440]. Consider a closed
and completely filled pot of water. It can be easily described because the
molecules don’t move. Now consider it being heated from the bottom and
cooling down from the top. The molecules first move up and then back down
because they cool down. More information (the effecting powers) is needed to
describe the system – its complexity is increased. If the temperature difference
is increased further the water flows suddenly in form of big rolls which are
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called convection cells (Figure 15.1). The water moves up on one side and
down on the other side, in a regular movement. The more regular movement
can now be easier described by a formula due to a reduced complexity.

Fig. 15.1: Bénard convection cells.

15.2.3 Feedback

Definition: Feedback

We use the term “feedback” to describe “the return to the input of a
part of the output of a machine, system, or process (as for producing

changes in an electronic circuit that improve performance or in an
automatic control device that provide self-corrective action)” [409].

Feedback can lead to effects that do not proportionally depend on the
causes [246]. Feedback allows the amplification or attenuation of external
influences within a system. An amplification is due to positive feedback and
an attenuation is due to negative feedback.

15.2.4 Emergence

The term “emergence” is used in various disciplines [190] and there is by far
no general agreement about its meaning: “First, it is often applied to situa-
tions, agent behaviors, that are surprising and not fully understood. Second,
it refers to a property of a system that is not contained in any one of its parts.
This is the typical usage in the fields of artificial life, dynamical systems, and
neural networks for phenomena of self-organization. Third, it concerns behav-
ior resulting from the agent-environment interaction whenever the behavior
is not preprogrammed”[488]. The term “emergence” is also used to describe
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something new or unknown – which heavily depends on the current knowl-
edge of the observer [194, p. 4]. We do not pursue further such a view.
We use the following definition of “emergence” for our studies:

Definition: Emergence

“Emergence refers to unexpected global system properties, not present
in any of the individual subsystems, that emerge from component

interactions.” [104]

Emergent properties are influenced by, but cannot completely be inferred
from, characteristics of the components. Interactions between the components
are necessary for emergence [300]. An example for emergence is an ant colony
where no central control instance exists that decides about the ants’ behav-
ior. Each ant reacts to local stimuli (e.g., in form of chemical substances or
contact with other ants) but the combination of ants and their behavior form
a working colony which is therefore emergent.
Another example of emergence are deadlocks. When multiple CPUs operate
without being affected by each other, there is no reason for a deadlock. But
as soon as the CPUs are connected so that they become dependent on each
other, deadlocks may occur.

Emergence can often be explained by the process of the components’
interactions, but not just by the character or count of the components. An
important detail is that the emergent structure or property can influence the
components retroactively, which is a form of feedback. The rolls in the Bénard
system described above are an example for such an emergent structure. Once
formed by the water molecules, the (macroscopic) structure of a roll influences
the movement of the (microscopic) molecules.

15.2.5 Complex System

Definition: Complex system

“Complex systems are systems with multiple interacting components
whose behavior cannot be simply inferred from the behavior of the

components.” [552]

If definitions 15.2.1 and 15.2.2 were combined, a complex system would
be a system with a description that needs a lot of information, or in other
words, whose behavior cannot be described in a compact manner. “What
distinguishes a complex system from a merely complicated one is that in a
complex system, some behaviors and patterns emerge as a result of the pat-
terns of relationship between the elements.” [623, Emergence]. So emergence
is a necessary property of complex systems.
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15.2.6 Criticality

The term “criticality” is used in many domains but has acquired special
importance in the field of thermodynamics. Criticality “is used in connection
with phase transitions. When the temperature of the system is precisely equal
to the transition temperature, something extraordinary happens. [. . .] The
system becomes critical in the sense that all members of the system influence
each other.” [323] Since this definition is not general enough to be valid in
the context of self-organization, we denote a group of system components an
“assembly” and use the following definition:

Definition: Criticality

“An assembly in which a chain reaction is possible is called critical,
and is said to have obtained criticality.”[623, Criticality]

Per Bak identifies a relationship between criticality and order. He uses
the term to describe a critical point between order and disorder in complex
systems [45]. The degree of order of a complex system can reach from total
order to pure disorder. In total order, all relations are structured homoge-
neously and are stable, no unpredictable behavior can be detected in this
case. The water molecules in an ice crystal are an example for this. Due to
the minimal amount of energy in the system, every component has a stable
position that will not change without external perturbation. In pure disorder,
it’s much harder to find a rule for the behavior of the components since no
persistent stability can be observed. Systems in this state are usually ana-
lyzed with stochastic methods. For example, the molecules of water vapor
move very fast and collide often, which makes it hard to anticipate their po-
sition and movement in future states. States that show little order are also
called subcritical, those which are largely structured are called supercritical.

On the border between these two states lies criticality, which has a big
impact on the stability of a system. Under certain circumstances, local per-
turbations may propagate so that all or most components may eventually get
perturbed (if the relations are not static and able to propagate the influence).
A chain reaction could easily result so that stability could be lost altogether.
Whereas in a disordered system, the influence of a single component is most
likely to be absorbed without a big impact on the overall system. Systems
that reside in the state of criticality are basically stable, at the same time
having the ability to change by keeping perturbations locally [647].

A simple example for a system in a critical state is the well-known Abelian
Sandpile Model, first proposed in [47]. In this model, single grains of sand
are repeatedly dropped onto a random field of a n×n-grid. If the height of a
field exceeds a critical value (e.g., 4), the grains of this field topple down and
are equally distributed among the four neighbor fields. Grains that leave the
grid are taken out of the system. Figure 15.2 shows a simulation run of the
model.
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Fig. 15.2: Example for a simulation run of the Abelian Sandpile Model. A single
grain of sand causes an avalanche that affects all but the upper left field.

Simulations have shown that this system moves into a critical state, many
fields have a height between 1 and 3 – they are stable because another grain
of sand will not change the system structure. At the same time, a few fields
reside at the critical value of 4 – another grain of sand will cause an avalanche
that changes the system’s structure [647]. A combination of critical and non-
critical field states causes the system to remain stable in most of the cases
(because under the assumption of a random distribution of newly dropped
sand grains, the probability of hitting a stable field is high), at the same
time keeping the possibility for change (at least a few fields can cause a top-
pling). Bak concludes: “A frozen state cannot evolve. A chaotic state cannot
remember the past. That leaves the critical state as the only alternative.”
[46, p. 6]

Note that some systems (e.g., the Abelian Sandpile Model) have the abil-
ity to move themselves into a critical state without external influences. This
phenomenon is called self-organized criticality [45] and can be observed in
most diverse real systems such as earthquakes, stock exchange crashes, traf-
fic jams or sun storms [172].

15.2.7 Hierarchy & Heterarchy

Definition: Hierarchy

For this context, we define a hierarchy as a rooted tree. “A tree is an
undirected simple graph G” satisfying the condition that “any two

vertices in G can be connected by a unique simple path. [. . .] A tree is
called a rooted tree if one vertex has been designated the root, in which

case the edges have a natural orientation, towards or away from the
root.” [623, Rooted Tree]

If a communication system is organized in form of a hierarchy, the com-
munication path between the components is unique, i.e. there is exactly one
path between two arbitrary nodes. A level can be assigned to each element,
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i.e., its distance from the root. This allows us to order the elements partially.
Thus, a hierarchy can be seen as an indication of order.

Definition: Heterarchy

“A heterarchy is a type of network structure that allows a high degree
of connectivity. By contrast, in a hierarchy every node is connected to
at most one parent node and zero or more child nodes. In a heterarchy,
however, a node can be connected to any of its surrounding nodes.”

[623, Heterarchy]

Compared to a hierarchy, a heterarchy describes a more general type of
network; a heterarchy may contain or resemble a tree, but is not limited to it.
Although not completely precise, the term heterarchy is often used to point
out the differences to a hierarchy [609]: since there is no root and all nodes
may be arbitrarily cross-linked to each other, no level assignment and thus
no order between the nodes can be detected.

If hierarchical and heterarchical organizational forms are applied to com-
munication networks, advantages and disadvantages can be seen. In a hier-
archy, there is exactly one single path between two arbitrary nodes A and
B. This means that no communication between A and B is possible when
one of the nodes on the path between A and B fails; the system would break
into two disjoint parts then. A heterarchy can offer a higher fault tolerance
because there may be more than one path between A and B. On the other
hand, a lot of communication overhead can occur in a heterarchy. This would
be the case if all nodes were contacted, or if the point of contact was not
known in advance. The high number of connections then leads to a lot of
communication.

The possibility for a high number of edges in a heterarchy allows for
feedback behavior because any node may be able to reach any other node
with a small number of hops. In a hierarchy, only neighbor nodes can contact
each other so that information usually propagates slower. Thus, a heterarchy
can be an indication for feedback.

Fig. 15.3: Schematic outline of a) hierarchy and b) heterarchy.
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15.2.8 Stigmergy

Definition: Stigmergy

“Stigmergy defines a paradigm of indirect and asynchronous
communication mediated by an environment.” [173, Stigmergy]

It is used mainly in decentralized systems where the individual compo-
nents of the system communicate with each other by modifying their local
environment. An example are ants that can perceive the concentration of
pheromones in their environment and adapt their behavior to it. The source
of the pheromones (usually dropped by other ants) is thereby unimportant.
Thus, the environment can mediate triggering ants to behave in a certain way
depending on the pheromone concentration. Considering that ants themselves
are responsible for the pheromone concentration in their environment, stig-
mergy can be seen as a means to enable self-organization.

15.2.9 Perturbation

Definition: Perturbation

A perturbation is a disturbance which causes an act of compensation,
whereby the disturbance may be experienced in a positive or negative

way. [594, p. 118] (orig. in German)

Perturbations are central to system adaptations mediated by the environ-
ment.

15.3 Characteristics of Self-Organization

We now point out some characteristics that can be observed in different
systems referred to as self-organizing. A more detailed description about their
occurrence in natural, social and information systems is given in [362].

15.3.1 Self-Determined Boundaries

Every system is separated from its environment, so every self-organizing sys-
tems is, too. But to enable self-organization, it is important that the border
between system and environment is defined by the system itself. Otherwise,
the environment could shape the system arbitrarily or even completely tear
it down. An example for this self-determination is the semi-permeable mem-
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brane of a cell. With its help, the cell determines which substances gain access
and which are rejected.

15.3.2 Operational Closure & Energetic Openness

To build up its boundaries, a system must be able to operate independently
of its environment. That does not mean that the system could survive in
complete autarchy – the definition of a system clearly states that there must
always exist an environment. A system cannot evolve if it does not obtain
some input from its environment such as matter, energy, or information.
Thus, a constellation must be found that allows autonomy from the environ-
ment on the one hand and interaction with it on the other hand. A system
that fulfills these requirements is called operationally closed and energetically
open [402].

15.3.3 Independence of Identity and Structure

Maturana makes a clear distinction between the concept of organisation and
structure of a self-organizing system:

”The term organisation denotes the relations that must exist between
the components of something to recognize it as member of a certain class.
The structure of something are the components and relations that consti-
tute a certain unity in a concrete manner and realize its organisation.”[403,
orig. in German] In other words, the structure is a certain instance of compo-
nents and relations within a system. It may vary (e.g., removal or change of
a single component) without the collapse of the system. On the other hand,
the organisation is the set of relationships or dependencies that must essen-
tially exist for a certain system. With its help, the system can be classified
independently of its current structure. In a way, it constitutes the identity
of a system, because it does not vary as long as the system exists. To cir-
cumvent ambiguities about the term organisation, we will denote Maturana’s
organisation as identity from now on.

The distinction between identity and structure allows to explain flexibil-
ity and adaptivity, because an influence on a system’s structure does not
necessarily influence its identity. Thus, the system can be maintained under
perturbations. An example for this from software engineering is the principle
of information hiding, which postulates that the user should know what a
certain algorithm does (identity), but not how (structure). This allows inde-
pendence between definition and the current implementation.
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15.3.4 Maintenance

To be able to exist over time, a self-organizing system must try to maintain
itself. Therefore it needs abilities to repair or recreate defect components.
New components do not have to be isomorphic to replaced ones – as long
as the identity is sustained the structure may change. The components have
to be viable, i.e., capable of maintaining identity. Often there are a lot of
possibilities for viability so that a form of mutation, one of the basic vehicles
for the evolution of a system, can be applied. Another feature of viability (in
contrast to isomorphism) is that the system is able to adapt to changes from
the environment. If a required input is no longer available the system may
change over to use another one and change its structure accordingly.

An example for a self-maintaining entity is a human being – it is per-
manently recreating its constituting components (the cells). No isomorphic
copies are created, though, the appearance of a human being changes over
time.

15.3.5 Feedback & Heterarchy

If a system is perturbed, it may have to restructure itself in order to maintain
itself. For this reason, the perturbed components must be able to communi-
cate with the rest of the system. A prerequisite for this requirement is the
cross-linking of components so that feedback between them becomes possible.
This kind of linking allows the components to perform bidirectional commu-
nication, amplification or attenuation of external influences, or also recursive
application of transformations. All these mechanisms can lead to feedback.
Since a heterarchy allows for such cross-linked relations, it is has particular
importance for self-organizing systems.

15.3.6 Feedback

Positive feedback can be used to build up viable structures very fast, an
example for this is the laser [301]. It consists of a laser medium (e.g., a
gas) between two mirrors. If low voltage is imposed the atoms of the laser
medium are oscillating in different frequencies so that different colors are
produced. The higher the voltage, the more atoms influence their neighbors to
oscillate in a viable frequency (which depends on the atoms and the distance
of mirrors) – the frequency is amplified through positive feedback.

In this example, not only viable but all kinds of frequencies are produced
initially. As the system evolves, the less appropriate ones are sorted out.
Randomness plays an important role, because there’s no need to know in
advance exactly what frequencies are viable.
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Negative feedback prevents the system from growing so fast that it would
collapse. Even if it is built of viable components only, it can reach a criti-
cal size where it might break or cannot react to perturbations fast enough.
Therefore, it is necessary to damp positive feedback eventually. In a thermo-
stat the positive feedback of increasing the water flow (and thus the heat)
is opposed to the negative feedback of decreasing it. This allows the self-
regulatory adaption of temperature independently from the environment.

15.3.7 Criticality

Systems such as the Abelian Sandpile Model (see Section 15.2.6) show that
local influences can have global effects: every cell can only influence its 4
neighbor cells. It depends only on the system’s state if the addition of another
grain of sand triggers a massive toppling, which may reach every cell on the
grid. In this case, the reason for the uncertainty of effect is that the system
resides in the state of criticality. As described in Section 15.2.6, criticality
offers a basic stability as well as the capability for changes. Both properties
are essential for evolving systems – instability causes breakdown, inflexibility
prevents from growth and adaptivity. Other phenomena which are regarded
as being self-organizing, like an evolution [45] or earthquakes [172], are also
assumed to reside in a critical state. Therefore, criticality can be seen as an
indication for self-organization.

15.3.8 Emergence

It appears that not only the state of criticality but also emergence (see Sec-
tion 15.2.4) connects local influences and global effects. In systems like ant
colonies [174], a set of simple rules in combination with randomness allows
the ants to fulfill tasks like building an ant hill or foraging. Although no ant
knows the overall environment, the swarm as a whole is able to determine
short paths to food sources (a more detailed description is given later in Sec-
tion 15.4.2). Since the effect depends on the whole system and not only on
its parts, it is denoted as emergent.

Emergence is often characterized as being unpredictable. Consider the
appearance of convection cells in the Bénard system (described in Sec-
tion 15.2.2). Although the effects of heating and cooling are known as well
as the properties of water, the rotational direction of the rolls (clockwise or
counter clockwise) cannot be predicted.
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15.3.9 Self-Determined Reaction to Perturbations

If a self-organizing system tries to maintain itself, it needs metrics and means
to detect and evaluate perturbations. The system can then react, e.g., by
adapting the structure to the external influences. Measure and evaluation
can be done explicitly, like in a thermostat, but also implicitly. For example,
the state of criticality of the Abelian Sandpile Model (see Section 15.2.6) is a
way to react to the perturbation of adding grains of sand. The metrics is given
by the height of a field, and the evaluation and reaction by the underlying
rules for toppling.

The Abelian Sandpile Model also shows that the reaction to such a per-
turbation is determined autonomously by the system. It is not predictable if
the next (randomly located) grain of sand will change the structure of the
system or of any part of it. A system can compensate for perturbations on
its own, and thus exhibits self-organization.

15.3.10 Reduction of Complexity

Another way that was observed as response to perturbations is the reduction
of a system’s complexity. An example for this is the Bénard convection (de-
scribed in Section 15.2.2): if a pot of liquid is heated from the bottom and
cooled down from the top, the liquid is shaped in form of convection rolls.
The behavior of the liquid can then be described by a formula, the behavior
of the molecules is determined by a rule. This means that less information is
required for their description compared to the state when there was no rule
– the complexity is reduced.

Another example is the coupling of multiple independent systems, as de-
scribed in [293]. The systems described there have symbiotic relations to each
other and form a new and stable supersystem which follows rules (whereas
the single systems did not). The coupling is irreversible, i.e., once established,
the subsystems cannot survive without each other. An instance of this cat-
egory is the pollination of flowering plants by insects while these get nectar
as food.

15.4 Applications in Computer Science

In this section, we describe three examples which show some of the charac-
teristics specified above and their positive effects.
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15.4.1 Small-World and Scale-Free Networks

This is a short overview about small-world and scale-free networks with re-
gard to self-organization. For more details we refer to Chapter 6.

Milgram’s Experiment

In 1967, the psychologist Stanley Milgram conducted an experiment, often re-
ferred to as the small-world experiment [413]. He asked 60 recruits to forward
a letter from Kansas to Massachusetts. The participants were only allowed to
pass the letter by hand to friends who they thought might be able to reach
the destination, no matter if directly or via a “friend of a friend”. The per-
haps surprising outcome was that the letters reached their target in six steps
on average. This lead to the term “small-world”.

Small-World Networks

A small-world network is characterized by high sparsity and high clustering.
This can be measured by the overall number of edges, which is in O(n) where
n is the number of nodes (in contrast to O(n2) for a fully meshed network),
and the clustering coefficient which is defined for each node i by:

C(i) =
2 · e(i)

deg(i)(deg(i) − 1)
, (15.1)

where e(i) is the number of edges between neighbors of i and deg(i) corre-
sponds to the degree of i [615]. Since deg(i) is the number of neighbors of
i, the clustering coefficient describes the relation of actually existing edges
between neighbors of i and the maximum number of possible edges between
them. The more edges actually exist, the higher is the clustering coefficient.

A small-world network can be constructed from an existing regular struc-
tured network [615]. In this case, every edge (i, j) is changed to (i, k) with a
certain probability p, where k is chosen uniformly at random over all nodes
but i and j (with duplicate edges forbidden). The higher p is chosen, the more
the network becomes random. Small-world properties are observed some-
where between low and high p [163]. The appropriate value for p is often
hard to determine. To cope with these issues, an alternative model was de-
veloped.

Scale-Free Networks

The scale-free (SF) model [60] describes networks in a more dynamical way
than the small-world model and is mainly based on the two mechanisms:

– Dynamic construction and
– Preferential attachment.
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The construction process usually starts with m nodes and no edges. New
nodes are added incrementally, and a constant number of edges is attached
to them (to stay within O(n)). The probability that an edge from a new node
n is connected to a certain node with degree ki is given by:

P (n → ki) =
ki∑
j kj

. (15.2)

Due to the additivity and homogeneity (on algebraic grounds) of this func-
tion, the correlation between the degree of a node and the probability for
new nodes to connect to it is linear. This leads to a scale-free network, the
structure of the system is independent of its current size (Figure 15.4). Scale-
free networks show the property that most nodes have a small number of
connections while only a few are highly meshed (“hubs”). This relation can
be mathematically described by a power law: P (k) ∼ k−γ (where γ is a sys-
tem constant). Therefore, these networks are also called power law networks.
Sometimes they are also denoted fractal networks, signifying a correlation to
fractals1. For power law networks as well as fractals, a part of the system has
the same structure as the whole (Figure 15.4). This property, which is called
self-similarity for fractals, is just another expression for freedom of scale.

Connection to Self-Organization

In addition to Milgram’s small-world experiment about social networks [413],
other popular networks such as the Internet [325] and the WWW [10], the
pattern of viral infections [59], relations between actors or scientists and
even computer programs [434] show small-world and scale-free properties.
In all cases, the properties appeared as an accidental feature rather than
intentionally incorporated – the properties arose in a self-organized form.

The incremental building of a scale-free network exposes another corre-
lation to self-organization: every node has only a local view on the system
and makes a local decision about its connections. This results in a global
scale-free structure, apart from external influences. This structure is a mixed
form of hierarchy and heterarchy. It supports scalability, the overhead for
connecting to it is constant and the diameter is very small. It is also robust,
failure or attack of a random node have little effect on the overall system
with high probability due to a high degree of redundancy [18]. However, a
targeted attack on hubs can divide the network into disjoint parts (again
of the same structure). Randomness is used for the linking between compo-
nents, which results in flexibility and makes the occurrence of single points
of failures (SPoFs) less likely.

1 A fractal is a geometric object which can be divided into parts, each of which is
similar to the original object. [623, Fractal].
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Fig. 15.4: Example for a hierarchical, fractal, scale-free network. Every part of the
system has the same structure as the whole.

15.4.2 Swarming

Swarm intelligence is a property that has been investigated in the area of
artificial intelligence. Swarm intelligence indicates the ability of single agents
to make correct decisions without knowledge of all other members of the
swarm and the overall system. A system composed of such agents is coordi-
nated without a dedicated control instance. According to [415], there are five
fundamental principles of swarms:

– Proximity – a swarm can make simple calculations about time and space.
– Quality – a swarm can react to indications by the environment.
– Diverse response – activities can be performed in different ways.
– Stability – not every environmental change modifies the swarm.
– Adaptability – a swarm can change its behavior if that seems promising.

These properties have been implemented in many agent-based models.
We use the class of ant algorithms [87] for our further explanations.
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Ant Algorithms

Ant algorithms are used to solve a problem by means of many agents called
ants. The strategies of these ants have been inferred by watching nature,
where real ants use chemical substances (“pheromones”) to communicate
with each other. Ants spread pheromones while moving around and detecting
the trails of their conspecifics. The substance evaporates over time. Ants
follow traces with a probability proportional to the strength of the pheromone
signals. One application of ant algorithms is the traveling salesman problem
(TSP), i.e., finding the shortest cycle through a given number of cities. Ant
algorithms are based on a model of foraging behavior of real ants as illustrated
in Figure 15.5.

Fig. 15.5: How real ants find the shortest path. 1) Ants move from their nest to
a food source. 2) They arrive at a decision point. 3) Some ants choose
the upper path, some the lower path. The choice is random. 4) Since
ants move approximately at constant speed, the ants which choose the
lower, shorter path reach the opposite decision point faster than those
which choose the upper, longer, path. 5) Pheromone accumulates at a
higher rate on the shorter path, so consequently more and more ants
choose this path. 6) The decision of the following ants is influenced by
the higher pheromone concentration.

A swarm of ants can find cooperatively an approximative shortest path
from their nest to a source of food. This observation has been taken advantage
of for finding a solutions to the well-known TSP problem [174].
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Connection to Self-Organization

A swarm of artificial as well as real ants exhibits many indications of a self-
organizing system. First of all, ants are organized in a form of heterarchy (all
ants are equally important), although they don’t communicate directly. The
ants use stigmergy for communication rather than an explicit communica-
tion channel. Spreading of pheromones is a form of positive feedback while
the evaporation corresponds to negative feedback. No ant has global knowl-
edge but acts upon very basic, local rules. The use of randomness makes it
even simpler. While the collective swarm may find the shortest path (or at
least a good approximation of it) based on teamwork, a single ant, follow-
ing simple rules, could have never completed the task on its own. So the
overall collective behavior can be called emergent based on interactions the
constituent elements that follow simple rules for their behavior.

15.4.3 Cellular Automata

The concept of cellular automata can be traced back to the 1940s when
John von Neumann investigated self-replicating systems [610]. A cellular au-
tomaton can be explained as an accumulation of many deterministic finite
automata which all have the same set of rules. It consists of an infinite, n-
dimensional grid of homogeneous cells ci which have a state s(ci, t) at time
t. For each cell ci, a neighborhood N(ci) is defined. It can be chosen ac-
cording to certain metrics, e.g., the two neighbors in each dimension, or the
two neighbors and additionally ci itself. For each combination of states of
N(ci), a rule is defined which determines s(ci, t + 1). The rules are valid for
all cells so that the total number of rules is given by the number of cells in
the neighborhood to the power of the number of possible states |N ||s|.

A very simple example is the mod 2-automaton. It is one-dimensional
(n = 1), has two possible states (s(c, t) ∈ {0, 1}) and has only the single rule
for all cells y:

∀y : N(y) = (x, y, z) ⇒ s(y, t + 1) = (x + z) mod 2. (15.3)

Eq. (15.3) implies that s(y, t + 1) is independent of s(y, t). A plot showing
the states of this simple automaton over time is illustrated in Figure 15.6.

Unexpectedly, the automaton builds the structure of a well-known fractal,
the Sierpinski-triangle. Other automata show similar behavior, but there are
differences which lead to the following classification [628]:

– Class 1 (trivial automata): lead to the same state for each cell, independent
of the initial state.

– Class 2 (periodic automata): lead to a fixed state for each cell, dependent
on the initial state.
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Fig. 15.6: Visualization of the mod 2-automaton (time progresses from top to bot-
tom): the Sierpinski-triangle

– Class 3 (chaotic automata): change incessantly without observable struc-
tures.

– Class 4: create different, complicated structures that move along the grid
over time.

Matthew Cook has shown that class 4 automata can be used for computa-
tions and furthermore are Turing-complete [628], which is noteworthy taking
the simplicity of the model into account.

Connection to Self-Organization

Animations of cellular automata, showing moving patterns like blinkers or
gliders, trigger assumptions about an underlying self-organization. Indeed,
several indications can be identified, the iterative and recursive application
of simple rules to a local neighborhood may cause an evolution of complex
structures. The structures are continuously reproduced. Furthermore, some
patterns are self-stabilizing. The current state of a cell is used as input for
the modification of future states of the same cell which is a form of feedback.
The resulting structures are emergent because no single cell could produce
them.

15.5 Conclusions

Self-organization increasingly attracts interest within several areas of com-
puter science. By incorporating self-organization autonomous operation can
be fostered. Decentralized control or self-management could be attractive re-
sults. Self-organization can be found in many disciplines and a comparative
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study may therefore reveal stimulating insights. Enabling features of self-
organization were identified in this chapter including complexity, feedback,
emergence, criticality, heterarchy, stigmergy or perturbation. Characteristics
can be used to classify Peer-to-Peer and other systems concerning their de-
gree of affinity to self-organization. Self-organization has widely been praised
as being the key for incorporating attractive features into networks and sys-
tems. Small-world and scale-free networks are robust as well as efficient, a
swarm may subsume a very large number of agents without global control or
knowledge, or cellular automata may trigger global structures purely based
on locally applied rules. Autonomy, scalability, flexibility or robustness may
largely be provided as a result. Other implications of self-organization (for
example, an unpredictability of behavior, danger of deadlock creation etc.)
may be less attractive.

Most problematic from computer science point of view, however, is the
fact that it seems hard to impose control and to exercise management onto
those systems for more efficiency, security purpose or general goal orientation.
The analysis provided in this chapter aims at providing a first step towards
a better understanding of self-organization in general. Further research is
needed, however, before more comprehensive and goal-driven control and
management will be possible in particular.



16. Self-Organization in Peer-to-Peer Systems
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Self-organization is seen as an attractive feature of Peer-to-Peer networks
although meaning and significance of this term are far from being clear. In this
chapter, principles of self-organization in Peer-to-Peer systems are identified.
The potential enabled by incorporating these principles and further potentials
of increasing the degree of self-organization are outlined. The Active Virtual
Peer (AVP) concept is used as an example for incorporation of an enhanced
level of self-organization into Peer-to-Peer systems.

16.1 Introduction

In the year 1999, the first Peer-to-Peer system, Napster [436], began its
(short) career in the Internet. The popularity of Peer-to-Peer networks has
grown immensely ever since. Nowadays, the traffic load on the Internet ap-
pears to be dominated by Peer-to-Peer applications (see Chapter 22 for de-
tails). As the downside of the success story scalability and flexibility issues be-
came visible. If well understood and carefully implanted self-organization may
provide a useful means to handle these challenges. But since self-organization
may resist imposed control if done naively, self-organization can as well be
the source of inefficiency. Many Peer-to-Peer systems have been advertised
as being self-organizing, although meaning and significance of this claim are
far from being clear. There are several classes of Peer-to-Peer systems that
exhibit different properties with different degrees of self-organization. Peer-to-
Peer systems have to provide services like routing, searching for and accessing
of resources. An open question is if and how much can self-organization, with
all its illusiveness, emerge as an essential means for improving the quality of
the services. Improved service quality, thereby, is to be achieved equally for
performance, robustness, security and scalability in an all open world.

Based on the characteristics as outlined in Chapter 15, we describe criteria
for self-organization of Peer-to-Peer systems. In Section 16.2.1, these criteria
are first introduced and motivated. Following that, the criteria are applied to
some of the more popular unstructured and structured Peer-to-Peer systems
in Section 16.2.2 and Section 16.2.3, respectively. In each case the overall
degree of self-organization incorporated is first identified and then potential
enhancements of self-organization are discussed. In Section 16.3 the Active
Virtual Peer concept is introduced as an example for a higher degree of self-
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organization in Peer-to-Peer systems from certain perspectives. Section 16.4
concludes this chapter.

16.2 Evaluation of Peer-to-Peer Systems

16.2.1 Criteria

The analysis of Peer-to-Peer networks is based on the characteristics of self-
organization as introduced in Chapter 15. Since these characteristics still
remain somewhat elusive we first provide more specific criteria that can be
easier applied for our purpose. The goal is to use simpler criteria for the
analysis of the extent to which a Peer-to-Peer system can be characterized
as being self-organizing. We divide the criteria into two groups: basic criteria
and criteria for autonomy. A conformity with criteria for autonomy enables
a system to adapt autonomously and develop a “life of its own”. The criteria
to be investigated are the following:

Basic criteria
– Boundaries:

The boundaries of a self-organizing Peer-to-Peer system should be self-
determined. In other words, the decision about the affiliation of its compo-
nents, i.e., the peers, is should be made by the system itself. The boundary
of a Peer-to-Peer system can be understood as the point where new, un-
known nodes enter the system. Peers which offer new nodes the possibility
to join are often called bootstrap nodes.

– Reproduction:
A self-organizing Peer-to-Peer system can and does reproduce its structure.
This may include addition, removal or change of a peer, its data or its
relations or connections to other peers. Reproduction does not necessarily
mean the creation of an isomorphic copy but may include mutations.

– Mutability:
A self-organizing Peer-to-Peer system is able to change its structure. The
change may concern constitution and number of peers and relations. Pos-
sible instances are the change of connections or the formation of clusters.

– Organization:
A self-organizing system is organized in form of a hierarchy, a heterarchy or
both. The organization has effects on the system’s structure, e.g., whether
there are fixed communication paths or single points of failure.

– Metrics:
A self-organizing system is able to detect perturbations triggered from
the environment. For Peer-to-Peer systems, the following perturbations
are typical:
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– Failure of a peer or connection,
– Overload or DoS-attacks,
– Manipulation of data (“fakes”).
In addition, Peer-to-Peer systems often suffer from the problem of “freerid-
ers” – peers which make use of the system without supplying resources.
Effects of freeriders are not considered as perturbations because they have
their cause within the system.

– Adaptivity:
A self-organizing Peer-to-Peer system is able to react to perturbations ap-
propriately. The reaction may include restructuring of peers, authorization
of peers to avoid “fakes” and incorporation of redundancy as a further
measure of precaution.

Criteria for autonomy
– Feedback:

A self-organizing Peer-to-Peer system is often exposed to positive and neg-
ative feedback, whereupon the structure or behavior of the system changes
in a balanced way. Feedback includes messages that peers send to each
other.

– Reduction of complexity:
A Peer-to-Peer system which is self-organizing develops structures and
hides details from the environment to reduce the overall complexity. This
may include the forming of clusters or the creation of other entities, e.g., an
Active Virtual Peer (AVP) (described in Section 16.3) or a holon which is
a group of agents that appears as a single agent to the outside (the concept
of holons is further detailed in [208] and [270]).

– Randomness:
A self-organizing system makes use of randomness as a prerequisite for
creativity. This allows the creation of new structures with little effort.
An example from another discipline are ant algorithms where ants decide
randomly between different paths when they have no sufficient knowledge
about their environment (see Section 15.4.2 for details).

– Self-organized criticality (SOC):
A system which is self-organizing drives itself into a state of criticality. Too
much order as well as too much disorder are to be avoided by adequate
procedures. This should result in an increased degree of flexibility because
the system is able to cope with different types of perturbations.

– Emergence:
A self-organizing Peer-to-Peer system shows properties that no single peer
has on its own, or properties that may have been unknown at design time.
Peers forming a small-world exemplify an emergent structure.

Besides the degree of conformance to these criteria, every system has an
identity (in the meaning described in Section 15.3.3), or a main purpose,
that is an essential characteristic of the system. The identity of a Peer-to-Peer
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system is (as usual for information systems) imposed from the outside, i.e.,
from the developers, and does not arise self-determined.

The results of our analysis are presented in Tables 16.1 and 16.2. Explana-
tions are given in Sections 16.2.2 and 16.2.3. We use the following structure for
each subsection of Sections 16.2.2 and 16.2.3: the first paragraph gives a very
short description of the analyzed Peer-to-Peer system (for details, we refer
to other chapters of this book). The second paragraph contains our results
concerning the basic criteria identity, boundaries, reproduction, mutability
& organization. The third paragraph deals with the basic criteria metrics
& adaptivity. The last paragraph illustrates conformance to the criteria for
autonomy.

16.2.2 Unstructured Peer-to-Peer Networks

In this subsection, we analyze some of the more popular Peer-to-Peer systems
for their ability to self-organize.

Napster Gnutella FastTrack eDonkey Freenet

Identity Filesharing Anonymity

Boundaries × × © © ×
Reproduction × × × × �
Mutability × × © © ×
Organization × × � � ×
Metrics © © © © ©
Adaptivity © × © © �
Feedback × × × × �
Reduction of
complexity

× � × × ×
Randomness × × × × ×
SOC × × × × ×
Emergence × � × × ×

Table 16.1: Self-organization in unstructured Peer-to-Peer systems. The sym-
bols show the degree of conformance with the criteria listed in Sec-
tion 16.2.1.
� – full conformance © – partial conformance× – no conformance
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Napster

Napster [436] was conceived as a platform to share audio data in the well-
known MP3-format.

The server of the system is the only bootstrap node. It admits every peer
to enter, so boundary conditions are not actively enforced by the system
itself. Of course there could be set external policies for admittance, but these
policies are not an integral part of the Peer-to-Peer system. Consequently,
one of the essential characteristics of self-organization, namely self-bounding,
is not fulfilled. Neither peer structure nor data is actively reproduced; when
a peer leaves the system, its data is no longer available if not provided by
other peers. Clients cannot take over management tasks from the server and
the server does not share files. As a result, mutability is not given as far
as the system structure is concerned. The type of organization is a mix of
a very flat hierarchy (between the clients and the server) and a heterarchy
(among the clients). The heterarchical organization is of advantage – it does
not affect the whole system if a single peer fails. Unfortunately, clients direct
their search requests to the central server only, which is therefore urgently
required for the operation of the system. Thus the server is a single point of
failure (SPoF) which ruins the positive effects of the heterarchy.

Metrics can be attained by means of keep-alive-messages (ping/pong)
that peers exchange among each other; these messages are an appropriate
way to detect the failure of a node or connection. If such a message fails to
appear, the server can be asked once again for the respective file to be lo-
cated at another peer. Such a form of adaptivity can be of advantage to the
overall system. However, no explicit precaution against or response to over-
load conditions is taken into account. Similarly no defence against possible
DoS attacks or against infiltration by corrupted data is integrated. Thus, the
criterion of metrics is not fully satisfied.

Keep-alive-messages are a form of internal communication which is an
indication for feedback. But for conformity to criterion “feedback”, reactions
and structural changes are also necessary. This is not the case in Napster, so
feedback is hardly incorporated. No further properties that satisfy the criteria
for autonomy are known.

Gnutella

Gnutella [250] was developed to avoid effects of centralization (including limi-
tations of scalability, unused resources on the clients and the server as SPoF).
In this section, we refer to version 0.4 of Gnutella, where every peer (“ser-
vent”) is equal.

Since every servent is equal every servent is a bootstrap node, too. In
analogy to Napster, no node is barred from accessing the system, so the
boundaries are not determined by the system. Also, no automatic reproduc-
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tion occurs. A difference to Napster lies in the (strictly) heterarchical orga-
nization of the peers. This causes search and signaling being done in form
of flooding which has been identified as the main culprit for limitations in
scalability [518]. Since the heterarchical organization remains invariant, no
restructuring can occur and thus no mutability is given.

Gnutella uses the same mechanism to achieve metrics as in Napster, peers
excessively exchange keep-alive-messages. The risk of overloading is notably
high due to flooding of messages through the network; there are no provi-
sions against manipulation of data. Concerning adaptivity, Gnutella resem-
bles Napster: a missing pong causes the peer which sent the ping to termi-
nate related connections. But since the network is flooded with keep-alive
messages, adaptivity is even harder to achieve than in Napster.

In analogy to Napster, keep-alive messages are used. But besides the ter-
mination of connections no structural changes occur, thus feedback control
is not incorporated. An interesting property of a Gnutella network is the
connectivity pattern or node degree. Very often the node degrees can be ap-
proximated by a power law distribution [517]. Gnutella additionally seems
to feature the emergent property of a small-world network. This can be ex-
plained by the way the system is used: a few peers have high capabilities
(bandwidth and capacity) and provide a lot of files. This is accompanied by
many peers primarily connecting to such a privileged servent. Many peers
only download something and then disconnect without having offered any-
thing (“freeriders”). This structure is typically formed without external in-
fluence and is facilitated by the flexibility of the underlying heterarchy. The
traffic is strongly controlled by the servents with high capabilities, which re-
duces stress on the network resources.
The existence of randomness or an appearance of self-organized criticality
cannot be attributed to Gnutella according to the definitions as used through-
out this chapter.

FastTrack

FastTrack [202] can be seen as a hybrid of Napster and Gnutella. All peers
are equal, but every peer can decide to become a SuperNode, which offers
services to other peers (“successors”) that connect to it. This concept is a
structural response to Gnutella’s usage profile.

The boundaries of FastTrack can at least be somehow influenced, because
the system offers a possibility to limit bandwidth and connection count. When
overload is on the raise, a peer can refuse requests (including requests from
new nodes that want to enter the network). This feature, however, has to be
adjusted manually and is not self-organizing; furthermore it does not allow
to reject a request or node based on some characteristics. Thus FastTrack is
not fully compliant to the criterion “boundaries”. FastTrack clients do not
replicate data without user interaction, so no active reproduction occurs. The
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SuperNode concept is a form of mutability because it allows differentiation of
peers, albeit not automatically. The SuperNode concept allows for a dynamic
(but manual) adjustment of the organizational form; besides the underlying
heterarchy a (very flat) hierarchy between a SuperNode and its successors can
emerge. A drawback of this implementation is that every node is exclusively
assigned to one SuperNode (which makes it a local SPoF, a common problem
in hierarchies).

FastTrack uses the same mechanisms as Napster to obtain metrics. If a
pong-message of a SuperNode is missing its successors connect to a new
SuperNode; thus a perturbation may affect the performance of a system but
not its basic operation. Such a characteristics can be seen as an indication
of a higher level of adaptivity. Another enhanced technique of dealing with
overload situations is “swarming”: a single peer can download different parts
of the same file from various peers simultaneously. The problem of “fakes” is
not addressed and could pose a major problem for such a network.

Another newly introduced concept is the “rank” which determines the
priority of a peer. The inclusion of this parameter prioritizes the traffic flows.
But since it does not change the traffic flows (which would be a change
of the structure of the system) this is no form of feedback in the sense of
Section 16.2.1. One could argue that the SuperNode concept is an indication
for the reduction of complexity; but the change of the peer status must be
done manually and is non self-organizing. No further properties were found
to conform a criterion of autonomy.

eDonkey

The eDonkey network [185] has strong parallels to FastTrack, but is geared
to the transfer of very large files. In addition to swarming, peers can help
each other by means of “hording”, i.e., swapping received data among each
other so that data does not need to be downloaded from (far away) sources.
In eDonkey, a peer runs either a client application or a server application or
both.

eDonkey conforms to the “boundaries” criterion in analogy to FastTrack:
every interested node can connect to a server, while the server may reject
requests if it is overloaded. Also in eDonkey, no reproduction is done auto-
matically. Every peer (preferably with high capabilities) can run a server.
A server in eDonkey is comparable to the SuperNode concept in FastTrack,
thus the same arguments are valid concerning mutability. The organization
of peers is quite similar, too; as an enhancement, a client can connect to
multiple servers at the same time, which makes the system more robust.

Considerations about metrics go according to the Peer-to-Peer systems
analyzed above. The failure of a node does not concern the whole network; if
the node ran a server, its clients can connect to another server and continue.
Swarming and hording are designed to reduce the traffic load. The use of
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native UDP-transport could pose a problem due to the lack of congestion,
error or flow control. Traffic flows to servers which are offline can continue
for a long time, wasting resources. eDonkey is the first Peer-to-Peer system
that addresses the problem of “fakes”. For this purpose, there are websites
which list files with probably incorrect or inconsistent data. This allows the
manual circumvention of fakes – so no self-organization here.

There are mechanisms to handle priorities and queuing; these have, in
analogy to FastTrack, no impact on the structure of the system, but merely
reorder the traffic flows. Thus, feedback cannot be detected. Besides, there’s
no indication for properties that fulfill one of the criteria for autonomy.

Freenet

The identity of the Freenet approach [231] differs from the one of the sys-
tems covered so far. Its purpose is to provide an infrastructure for free and
anonymous information exchange. The detailed mechanisms are described in
[123] and [124].

Like the other approaches, Freenet offers no control for joining or leav-
ing nodes, and thus has no means to decide about its boundaries in a self-
determined way. But it provides the reproduction of data: requested infor-
mation is cached on the nodes between source and target. This results in
the movement of data towards its requesters. More than that, it leads to the
duplication of popular data while unrequested data is timing out. The data
is adapted to user requests. All peers are equal; they are organized in form of
a heterarchy which does not allow for mutability of the system structure. In
addition, every node only knows a fixed number of neighbors, which leads to
inefficiency on the one hand but higher potential for anonymity on the other
hand.

The use of metrics, especially the handling of perturbations, is exception-
ally interesting in Freenet, as it is hard for perturbations to have an effect on
the system at all. A failure of a peer or connection can be tolerated, because
its data (at least the popular part of it) is cached on its neighbors. This is
also why overload of a node is unlikely to occur: the more peers request data
that a certain node holds, the more copies will be made and, thus, later re-
quests will not even reach the original node but be answered by increasingly
“closer” nodes. A similar argument applies to the threat of DoS attacks – the
intended effect is a temporary high load in the network until an attacker gets
swamped by responses. All these properties result from Freenet having the
focus on data, and not on the peers. An attack or request can not be done to
a peer, but to data (which is adapted on demand). The manipulation of data
is also hard to achieve because of the multiple encryption techniques and the
lack of knowledge about the location of data. As a conclusion, Freenet in
fact does offer less measures and reactions to perturbations but incorporates
preventions by design.
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The adaption of data to user requests is a form of feedback: favored data
is “amplified” while unpopular information is deleted. Further conformance
to the criteria of autonomy could not be detected.

Note: All mentioned indications of self-organization in Freenet concern
the data only, and not the structure (which would be necessary for more
complete self-organization).

16.2.3 Structured Peer-to-Peer Systems

Structured Peer-to-Peer networks make use of distributed hash tables (DHT)
to allow for a more efficient allocation of resources and routing to information.

Chord PAST CAN NICE

Identity Allocation
Storage &
allocation Allocation Distribution

Boundaries × × × ×
Reproduction © © © ©
Mutability © © × �
Organization � � © ©
Metrics © © © ©
Adaptivity © � © ©
Feedback � × × ×
Reduction of
complexity

× × × �
Randomness × × × ×
SOC × × × ×
Emergence × × × ×

Table 16.2: Self-organization in structured Peer-to-Peer systems. The symbols
show the degree of conformance with the criteria listed in Sec-
tion 16.2.1
� – full conformance © – partial conformance× – no conformance

Chord

Chord [117], [575] arranges all peers on a ring of size N . Every peer holds a
routing table which contains log N “fingers”, i.e., addresses of other peers.
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These are not set arbitrarily but in a way to gain small-world characteristics:
there are many entries for nearby peers and a few for distant ones. Due to the
universality of DHTs, the identity of Chord is not filesharing but allocation
of data in a more general way.

In analogy to Gnutella, every peer can serve as a bootstrap node and
every unknown node is admitted to the system, so the “boundaries” crite-
rion is not met. Chord does not reproduce peers or connections, but the ring
structure is always preserved. Additionally, the redundant storage of data is
possible: when a new node enters the system, it obtains the data it is respon-
sible for while its predecessor may keep a copy of (at least a part of) it. In
case of the departure of a node, its neighbors redistribute the data among
each other. So Chord conforms at least partially the “reproduction” crite-
rion. Since the ring structure is a design principle it is immutable. However,
a smart (or maybe dynamic re-) assignment of IDs can be used to balance the
traffic load so that mutability is partially given. Concerning the organization,
arbitrary connections may exist between peers, so peers form a heterarchy.
Nevertheless, communication paths are not chosen arbitrarily but structured
because every peer has a routing table. This table is different for each peer
so that no SPoF exists. This means that every peer is part of many hierar-
chies (i.e., routing tables with distance as order). Taken altogether, Chord
implements a sophisticated combination of hierarchy and heterarchy.

Metrics are used as in unstructured Peer-to-Peer systems, the failure of a
node can be detected by the absence of keep-alive-messages. If such a failure
occurs, the predecessor of the missing node takes over the responsibilities of
its successor. This allows a high measure of robustness in conjunction with
the application of redundancy. On the other hand, an overload of peers is not
unlikely: since data is portioned in disjoint parts, there is only one peer for
every piece of information. Thus, the nodes which keep popular data are at
high risk to be congested. The problem of intentionally faked data or routing
tables has not been addressed so far. Taking it all together, Chord offers some
mechanisms to support adaptivity.

The peers’ routing tables are periodically checked for consistency. This is
a form of feedback which is explained as follows. Entry i in the routing table
of peer n contains the address of a peer p whose distance to n on the ring
is between 2i and 2i+1. If p fails, n searches for a peer q which is neighbor
of p and whose distance to n also is between 2i and 2i+1. If such a peer q is
found, n directs the respective requests to q instead of p. Since this means a
change of connections, the system structure is changed (the ring is stabilized).
Thus, messages between peers lead to a more stable system structure which
preserves consistency and efficiency and conforms to the criterion “feedback”.
There is no indication for the satisfaction of another criterion for autonomy.
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PAST

PAST [476] is an approach for the allocation and archival storage of data. The
allocation is managed by Pastry [527], an algorithm based on prefix routing.
Each of the bn peers in a Pastry system is part of n nested clusters and knows
b−1 peers on each cluster level which resembles a scale-free network. Further
details can be found in [526], [528].

Every interested peer gains access to the system, so the boundaries are
not exclusively determined by the system. In analogy to Chord, replication
is possible; the actual deployment can be adjusted by the replication param-
eter k on a per-file basis. Since this parameter is an integral part of PAST, at
least reproduction of data can be identified. The system is immutably struc-
tured in form of a b∗-tree with peers being the leaves. But as in Chord, a
dynamic assignment of IDs could be used for load-balancing. Another anal-
ogy to Chord is the organization. Peers may arbitrarily connect to each other
(heterarchy), but communication is forced to traverse along the cluster hier-
archy. Additional data structures named leaf set and neighborhood set
allow direct and thus efficient communication to topological or domain spe-
cific nearby peers. The cluster hierarchy on the other hand offers an upper
bound to the number of necessary hops to deliver a message to distant peers.
Pulled together, the organization is designed to support for both efficiency
and robustness.

Concerning metrics, PAST differs only slightly from aforementioned Peer-
to-Peer systems – the number of keep-alive-messages sent to nearby peers is
higher than those sent to distant peers. When a failure or overload occurs,
redundancy is used to confine effects locally so the global system is safe-
guarded. The replication parameter, which is crucial to support adaptivity,
is adjusted manually only so that self-organization is limited in that respect.
PAST offers a dedicated security concept that allows authorization via smart-
cards after a peer has joined. This clearly reduces the danger of fakes (that
represent a negative perturbation), but on the other hands restricts strongly
the application of the system and number of users.

No property was found to satisfy one of the criteria for autonomy.

CAN

With the approach of content addressable networks (CANs) [504] data is or-
ganized in form of D-dimensional vectors; for every dimension a different hash
function is used. Requests are routed from a node to both of his neighbors
in every dimension, what leads to a complexity of O(D D

√
N) with constant

storage cost for each of the N peers.
As in the other cases, no peer willing to enter the system is rejected

and thus the boundaries are not exclusively determined by the system itself.
First ideas considering reproduction of data (similar to Chord) are described



258 16. Self-Organization in Peer-to-Peer Systems

in [505]. Peers are immutably arranged in form of a D-dimensional torus, so
mutability in the sense of section 16.2.1 is excluded by design. Peers form a
hierarchy because every peer communicates only with its direct neighbors.
If failure of a peer p is detected, p’s neighbors correct their neighborhood
information so that the system stabilizes. Therefore, the occurrence of a SPoF
can be excluded in this case.

Peers use keep-alive messages to build up metrics (they check if their
neighbors are available). Whenever a failure of a peer p is detected, one of
its neighbors takes over p’s data range; a proper defined replication scheme
could lead to a high degree of adaptivity in this case. It is noticeable that the
number of affected nodes in the case of failure is constant, since the failed
peer has only influence on its direct neighbors. The problem of “fakes” is not
discussed.

Characteristics that conform to the criteria for autonomy could not be
identified.

NICE

NICE [449] is a framework for group cooperation such as multicasting. Peers
are organized in form of a b-tree (which is kept in balance via merge- and
split-mechanisms). A cluster is a group of peers on the same level of the
b-tree. A cluster has a designated node called leader which represents the
(exclusive) communication interface between the children and the rest of the
system. All leaders of clusters on level i in the b-tree form a new cluster on
level i+1. NICE can therefore be seen as a hierarchy of leaders with “normal”
peers as leaves. A cluster is able to change its leader but the change process
may be expensive in terms of management cost.

A joining peer is assigned to the most appropriate cluster (depending on
a definable metrics, e.g., the RTT) which means that some characteristics of
the new peer are taken into account for the join process. But since these
characteristics are only used to decide where and not whether a new peer is
added, the system has few control about its boundaries. One of the main goals
of NICE is efficient distribution of data which implies reproduction of data;
peers or connections are not reproduced, though. Due to the incorporation of
split- and merge-mechanisms, NICE is able to change the system structure
which is an indication for mutability. The organization is hybrid because
peers within a cluster are fully meshed and can communicate directly which
means that (small) heterarchies are encapsulated within the (big) hierarchy
of leaders. This hybrid form of organization reveals a possible problem of
NICE. Since peers within a cluster can communicate with the rest of the
system only via the cluster leader, the leader is a SPoF. An enhancement
of NICE, called ZigZag [595], confirms this: the leaders are supported by
vice-leaders which exclusively care about the distribution of data, while the
leaders are responsible for management only.



16.2 Evaluation of Peer-to-Peer Systems 259

NICE uses keep-alive (“heartbeat”) messages to build up metrics con-
cerning perturbations. The failure or attack of a peer can have system-wide
effects if the target of an attack is a leader. But due to highly meshed clusters
failures are detected quite fast, the peers then simply elect a new leader. Clus-
ters formations as well as leaders may be changed so that NICE can adapt
to perturbations. There are no measures to detect or avoid manipulation of
data.

The technique of clustering is an indication for the reduction of com-
plexity. A cluster is constituted of multiple components, but appears as one
entity to the outside. Additionally, communication follows clearly defined
rules (traversing the b-tree). The obedience to rules is another indication
for a reduction of complexity (as described in Section 15.3.10). Clustering
as incorporated in NICE resembles the concept of “holons” which is further
described in [208] and [270].

16.2.4 Summary of Peer-to-Peer Evaluations

None of the analyzed Peer-to-Peer systems can be called fully self-organized in
terms of the criteria described in Section 16.2.1. In this section some of the ad-
vantages and disadvantages of incorporating the principle of self-organization
into Peer-to-Peer networks are discussed.

Advantages Gained from Using Self-Organization

The ability of NICE to change the system’s structure dynamically allows
adaptivity and efficient communication. Gnutella’s pure heterarchical design
gives enough freedom to cultivate a small-world structure. The DHT ap-
proaches combine a “physical” 1 heterarchy with different levels of logical
hierarchies; this leads to the situation that no peer is more important than
any other, at the same time allowing for efficient communication between
arbitrary peers, that is, in O(log n) in most approaches. The reproduction
of data, especially in Freenet but also in the DHT approaches, increases the
robustness of a system significantly. FastTrack can reject new nodes if it is
congested, NICE evaluates new peers – first steps to build and control the
boundaries of a system. The fake lists developed for eDonkey are at least an
attempt to anticipate the manipulation of data.

Disadvantages Implied from Using Self-Organization

None of the investigated Peer-to-Peer networks have the ability to decide
completely in a self-determined way about the respective boundaries, which

1 at least as physical as an overlay network can be
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evocates the problem of freeriders and attackers. Even worse, most systems
even have no metrics to detect perturbations appropriately, not to mention
reactions to perturbations. While Napster and NICE can be taken as exam-
ples for the power of hierarchies to assure efficiency, Napster and NICE can
also serve as warning examples for the risks of SPoFs that can result from
hierarchies. Networks like native Gnutella, on the other hand, may suffer
from signaling overhead due to flooding in a (fixed) heterarchical connectiv-
ity structure. Most systems have an invariant structure, they are at most able
to change the distribution of data.

16.3 Towards More Self-Organization in Peer-to-Peer
Overlays

16.3.1 Active Virtual Peers

Self-organization is seen as an attractive feature of Peer-to-Peer networks as it
essentially enables running a complex system without exercising stricter form
of control and management. We have seen in Chapter 15 how characteristics
and criteria can be defined as a basis for an analysis whether Peer-to-Peer
systems exhibit crucial properties of self-organization. In fact, most current
Peer-to-Peer systems show less resemblance to self-organization as might have
been anticipated. A corresponding analysis has been presented in this chapter.
Either criteria of self-organization do not apply at all or they apply only
if the Peer-to-Peer system at hand had been configured manually. A truly
self-organizing Peer-to-Peer system that exhibits important criteria of self-
organization and is also operating autonomously is hard to find.

Peer-to-Peer systems are often referred to as being self-organizing where
a coherent behavior emerges spontaneously without external coercion or con-
trol. Pure Peer-to-Peer architectures, such as early the Gnutella service, how-
ever turned out to be non-scalable. As a response, the need to introduce
structure and limited control has been recognized, cf. [398]. In order to in-
troduce heterogeneity into unstructured, pure Peer-to-Peer services, various
mechanisms have been proposed. The suggestions range from “ultrapeers”
and “superpeers”, as in Gnutella [563] and Kazaa [558] respectively, to dis-
tributed mediation servers and peer caches as in eDonkey2000 [185]. These
approaches comprise only partial solutions to a more complex control prob-
lem. In particular, variability in service demand or load patterns can only
be dealt with in a limited way. The demand for services may form hot spots
which may shift within an overlay from one location to another one over
time. Peer-to-Peer applications may therefore require a more flexible and
dynamic method of control and management [160]. In particular, different
control methods should be in place when and where needed, should be flex-
ibly usable in combination with each other, and should be extensible in an
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evolutionary manner. More generally, it is our goal to introduce and to im-
plement control and structure into Peer-to-Peer applications on demand.

The approach is based on the introduction of the concept of virtual nodes,
called Active Virtual Peers (AVP). The proposed approach based on AVPs
includes for example a dynamic forming and maintaining of Peer-to-Peer
overlays or an adaptive routing of signaling and download traffic.

16.3.2 Objectives and Requirements on Control for Peer-to-Peer
Overlays

We believe that there exist four areas where the enforcement of control will
be beneficiary for such applications.

The first is access control. Participants of Peer-to-Peer overlays are typ-
ically granted access to all resources offered by the peers. These resources
are valuable. Thus, the resource provider, either content provider or network
provider, need to identify and regulate the admission to the overlay. In par-
ticular for Peer-to-Peer file sharing applications, access control should block
off Peer-to-Peer applications or enable controlled content sharing.

The second area is resource management. The resources of individual peers
have to be treated with care, e.g., low-bandwidth connected peers should not
be overloaded with download requests and exploited equally. For Peer-to-
Peer file sharing applications, for example, content caching capabilities will
improve the performance while reducing the stress imposed on the network.

A third area of interest is overlay load control. Overlay load control copes
with traffic flows inside the overlay. Its goal is to balance the traffic and
load in order to maintain sufficient throughput inside the overlay while also
protecting other network services by mapping this load in an optimum way
onto the underlying network infrastructure.

Finally, the forth area of command is adaptive topology control. Overlay
connections may be established or destroyed arbitrarily by the peers since
they can join or leave the virtual network at any time. Topology control may
enforce redundant connections, thus increasing the reliability of the service.
In addition, topology control may force the structure of the virtual network
to be more efficient and faster in locating resources when using broadcast
protocols.

Having identified the objectives of control for a Peer-to-Peer overlay, it is
important to examine how adaptive and un-supervised control mechanisms
need to be implemented, without diminishing the virtues of the Peer-to-Peer
model or introducing further complexity and overhead to the network. We
believe that it is vital to preserve the autonomy of the peers inside a Peer-
to-Peer network. Additional control loops, which adapt to the behavior of
a Peer-to-Peer overlay, must not interfere with the autonomous nature of
any Peer-to-Peer application. To achieve this goal, we suggest implementing
control through an additional support infrastructure.
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16.3.3 An Implementation of the AVP Concept

The main element of the support infrastructure suggested in this section is
the Active Virtual Peer (AVP). As its name implies, an AVP is a virtual
entity which interacts with other peers inside a Peer-to-Peer network. An
AVP is a representative of a community of peers. Its purpose is to enhance,
control and make the Peer-to-Peer relation more efficient inside that commu-
nity. AVPs enable flexibility and adaptivity by the use of self-organization.
An AVP consists of various distributed and coordinated components that fa-
cilitate different forms of control. By combining these components based on
network conditions or administrative policies, we can create AVPs of different
functionality.

The AVP performs certain functions, not expected by an ordinary peer.
These AVP functions are arranged in horizontal layers as well as in vertical
planes, see Figure 16.1. The horizontal layers correspond to the layers on
which an AVP imposes control. The vertical separation describes the func-
tional planes of AVPs. These architectural planes have been examined in
detail in [160].

Fig. 16.1: The AVP architectural layers.

The upper horizontal layer of an AVP is called the “Application Opti-
mization Layer (AOL)”. It controls and optimizes the Peer-to-Peer relation
on the application level. The AOL may apply application-specific routing
in conjunction with access policies. The routing performed by the AOL is
based on metrics such as the state of the peers (“virtual peer state”) or the
state of the links between peers (“virtual overlay link state”) thus chang-
ing the peer load and overlay link characteristics such as packet drop rate,
throughput, or delay. In addition, the AOL allows for active overlay topology
control, which is accomplished in two ways. The Active Virtual Peer may
initiate, accept or terminate overlay connections based on access restriction
or topology features. Topology characteristics such as the number of overlay
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Fig. 16.2: The AVP realm.

connections or characteristic path length can be enforced or may govern the
overlay structure. Furthermore, the AOL layer makes also use of the Applica-
tion Layer Active Networking control mechanisms [242], examined below, for
implementing its self-organization features. The AOL can instantiate modules
implementing AOL functions whenever and wherever needed. These features
enable the AOL to adapt the virtual overlay structure to varying demand,
traffic patterns and connectivity requirements by launching new overlay con-
nections and new virtual peers. These self-organization features make the
AOL a very flexible architecture.

The middle layer of the AVP is denoted as the “Virtual Control Cache
(VCC)”. The VCC provides content caching on the application-level similar
to conventional proxies. By maintaining often-requested content in close prox-
imity, for instance inside an ISP’s domain, large economies in resources and
performance gains can be achieved. In addition, the VCC may offer control
flow aggregation functions.

The lower layer of AVPs is denoted as the “Network Optimization Layer
(NOL)”. Its main task is the implementation of dynamic traffic engineering
capabilities that map the Peer-to-Peer traffic onto the network layer in an
optimized way. The mapping is performed with respect to the performance
control capabilities of the applied transport technology. The AVP architecture
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may apply traffic engineering for standard IP routing protocols [212] as well
as for explicit QoS enabled mechanisms like MPLS [630].

Figure 16.2 depicts a scenario where two AVPs, AVP 1 and AVP 2, are
located within a single administrative domain. AVP 1 consists of three AOL
modules and one VCC component, while AVP 2 comprises of two AOL mod-
ules. Multiple ordinary peers, denoted by “Peer”, maintain connections to
them. The two AVPs maintain overlay connections to each other. The AOL
modules of the AVPs are in command of the overlay connections. This way,
the AVPs can impose control on the overlay connection.

Having identified earlier the objectives for control of a Peer-to-Peer over-
lay, it is time to see how the AVP facilitates these control issues. Deployed
AVPs create a realm wherein they constantly exchange information. Each
AVP consists of multiple AOL and VCC proxylets which communicate and
collaborate. The exchange of information allows for coordinated control of the
overlay. A realm of AVPs is more suitable to evaluate the conditions inside a
particular part of a Peer-to-Peer overlay than a single entity and this knowl-
edge is distributed in order to achieve better results. Again, this capability
promotes the flexibility and adaptivity of the AVP approach. Continuing, an
AVP imposes control by providing effectors on connection level. The effec-
tors comprise so far the Router module and the Connection Manager module.
The Connection Manager enforces control by manipulating the connections
peers maintain with each other. That is a significant difference compared to
most Peer-to-Peer applications where the way peers connect to each other is
random. By applying connection management, the AVP can enforce different
control schemes.

The Router module governs the relaying of messages on application-level
according to local or federated constraints, e.g., access restriction or virtual
peer state information. The Sensor module provides state information for the
distributed and collaborative control scheme.

The proposed concept relies on Active Virtual Peers as the main build-
ing block. The presented AVPs implement means for overlay control with
respect to access, routing, topology forming, and application layer resource
management. The AVP concept not only allows for a flexible combination of
algorithms and techniques but enables operation over an adaptive and self-
organizing virtual infrastructure. The significance of the approach is based
on the automatic expendability and adaptivity of the whole overlay network
as Peer-to-Peer services evolve. From this perspective, AVPs are inherently
different to all other Peer-to-Peer systems. While some other Peer-to-Peer
systems do comply with criteria of self-organization, a similar autonomy in
developing features of self-organization seems unique to AVPs. AVPs adapt
to the environment without manual triggers as opposed to other Peer-to-Peer
approaches.
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16.3.4 Related Work

The concept of AVPs is similar to the “ultrapeers” since both apply a peer
hierarchy and reduce signaling traffic. AVPs differ from “ultrapeers”, how-
ever, because of their overlay load control capability and adaptivity to the
underlying network structure. The well-known Kazaa Peer-to-Peer fileshar-
ing service [558] applies a concept similar to “ultrapeers”. In Kazaa these
distinct nodes are denoted as “superpeers”.

The OverQoS architecture [580] aims to provide QoS services for overlay
networks. Dedicated OverQoS routers are placed at fixed points inside an
ISP’s (Internet Service Provider) network and connected through overlay
links. The aggregation of flows into controlled flows of an overlay enables
this architecture to adapt to varying capacities of the IP network and ensure
a statistical guarantee to loss rates. This OverQoS approach complements
and extends the limited load control provided so far in the AOL proxylet.
However, it lacks any adaptivity to the varying network topology as addressed
by the AVP.

Resilient overlay networks (RONs) [26] provide considerable control and
choice on end hosts and applications on how data can be transmitted, with
the aim of improving end-to-end reliability and performance. However, RONs
are mostly restricted within single administrative domains.

16.4 Conclusions

Since self-organization in relation to Peer-to-Peer systems seems often to be
identified with even more elusive properties such as emergence, criticality
or autonomy, it is difficult to define hard criteria for the existence of self-
organization and to apply the criteria rigorously. In a very puristic sense,
self-organization in Peer-to-Peer systems can yet only be identified in a very
limited form. The question, however, remains whether more self-organization
would be desirable. And there is good reason to assume that this would indeed
be the case.

Internal feedback is an efficient way to keep a system in balance; the same
is true for the state of criticality. b-trees are an example from computer sci-
ence that illustrates the benefit of a balanced system: efficient operational
modus, controlled management cost and the existence of upper bounds for
the traversal. Such balancing operations don’t seem to have attracted yet too
much attention in the context of Peer-to-Peer networks. Randomness is often
used as a means to circumvent complex operations (e.g., in approximations).
A flexible structure is the basis for adaptivity and robustness. A dynamical
clustering or hierarchy could be basis for a promising approach. Equality of
peers counteract the danger of SPoFs and is widely realized in approaches
based on DHTs. A self-organizing Peer-to-Peer system should ideally be able
to reproduce its structure, and not only its data. The reproduction should
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occur automatically and not be manually triggered or come from the outside.
Viable structures should emerge autonomously. Furthermore, the boundaries
of a self-organizing Peer-to-Peer network should be self-determined, a prop-
erty hardly observed with current Peer-to-Peer systems. Detrimental effects
caused by attackers or freeriders should be confined or prevented.

Self-organization reaches beyond the obviously desirable properties like
flexibility, adaptivity or robustness. It includes the use of random compo-
nents that allow the system to create new viable structures. Appearances
of emergent properties are entailed that are triggered by interacting compo-
nents. It extends to the state of criticality that allows for appropriate reaction
and restructuring to perturbations. A reduction of complexity for a scalable
growth is also often seen as a property of self-organization while maintaining
identity. In all cases, control that can be exercised externally is limited to a
minimum.

A decentralized self-management comes very close to the ideal of self-
organization. In addition, it would be desirable if self-organizing Peer-to-Peer
networks could be steered towards a certain overall purposeful goal. Such a
steering may take place in accordance to observations made with emergent
properties of self-organizing systems. Emergence is relying on simple rules,
adapts sensibly to perturbations according to an “implanted” goal and does
not develop pathological features under various forms of stress but compen-
sates for stress to a wider extend in a reasonable way. Studying emergence
may lead to identifying the simple rules to be implanted into Peer-to-Peer
networks such that purposeful behavior may emerge. Pathological behavior in
terms of detrimental performance or security should be made autonomously
avoidable. If self-organizing systems are seen as systems which “create their
own life” purposeful and efficient operation may become a big challenge. Self-
organizing Peer-to-Peer systems with the inert property of well-behavedness
that can be purposefully “implanted” would be the ideal case. How such an
“implant” can be created and inserted is one of the big remaining challenges.
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17.1 Peer-to-Peer Search and Lookup in Overlay
Networks

In large-scale Peer-to-Peer networks without any central server instances,
lookup and search , i.e., locating or finding objects by their unique name or
a keyword description, respectively, require the collaboration of many nodes.
Peers initiate and forward or route queries for objects along overlay links.
Other peers who have information on how to locate the searched for objects
send their answers via the same or different overlay links back to the ini-
tially requesting peer. Finally, the object itself is normally transferred to the
requestor by directly using the underlying network protocol, thus, in most
cases the Internet Protocol (IP).

The peer initiating a search request or query is called the requestor, a peer
holding the requested object the object owner. A peer that merely has infor-
mation on the location of an object, i.e., a link to the object owner, is termed
the indexing node or indexer. The process of receiving and forwarding search
requests through the overlay network until it reaches the indexer or owner of
the desired object is called query routing. Query routing strongly ties the pro-
cess of searching in the distributed system, defined through a search protocol,
to the structure of the underlying overlay network. A controlled communi-
cation for search usually involves the explicit design and maintenance of the
overlay network.

Figure 17.1 illustrates the relation of Peer-to-Peer applications, search
mechanisms, and overlay networks in a systems view. The overlay network
builds on top of the network infrastructure that provides end-to-end connec-
tivity between peers. It is usually designed such as to support the Peer-to-Peer
search middleware which hides the distributed nature of object lookup and
search from the Peer-to-Peer application. While search is a fundamental part
of most Peer-to-Peer systems, further middleware functionality is, depend-
ing on the application, also required, like distributed accounting, reputation
building, or group management. This other functionality can either build on
the same overlay network constructed for search, or it can create and use its
own, possibly better-suited overlay structure. Examples of such additional,
beyond lookup functionality with specific overlay needs include application-
level multicast [107] or fault resilient routing like RON (Resilient Overlay
Network, [26]). This implies that several overlay structures may coexist in
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the same Peer-to-Peer system, each serving a different purpose. Examples of
current search overlay networks are given in the following section.

P2P Search Middleware (MW)

Overlay Network

Network Layer / End-to-End Connectivity

Other MWOther MW

Peer-to-Peer Application

Overlay

…

Fig. 17.1: Peer-to-Peer Networks – Systems View and Layering

17.1.1 Problem Statement and Chapter Overview

The move toward large and completely decentralized Peer-to-Peer systems,
handling millions of active nodes, imposes huge challenges on distributed
search and overlay request routing. Many efforts have been undertaken to
design and built middleware that overcomes the hurdles of decentralization,
to construct suitable overlay networks, and to design Peer-to-Peer lookup
and routing systems. However, a complete and clear structure including the
delineation of these particular important and advanced designs is yet miss-
ing as well as a formalized comparative evaluation, except on an interesting
example-driven basis [536], [52], and [276]. Furthermore, there is no clear
statement as to which groups of design will show a viable approach in very
large networks. Thus, this chapter and additionally [419] provide answers on
how to (1) lay out the problem space for single-identifier lookup in Peer-to-
Peer networks, (2) define a formal mathematical framework for scalability,
and (3) to develop a highly advanced scheme – termed SHARK – for achieving
good scalability in these cases.

17.1.2 Search and Lookup – Functional Options

In much of the literature today, “search” refers to a wide range of operations
on values stored in the network. This may encompass uni- or multidimen-
sional search, full-text search, or aggregate operations. In contrast, “lookup”
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refers to finding the node hosting data for a particular identifier. For this
work, the canonical search process has been broken into different phases,
where necessary steps and possible short-cuts have been identified. Figure
17.2(a) shows the process from keywords over names and addresses to the
path to target node hosting the desired resources. Of course, for retrieving a
document additional techniques may be applied, such as multiple keyword
search or approximate keyword search, however, the full set of information
retrieval techniques are limited in this section to Peer-to-Peer search and
lookup.

Keywords Name Node
Address

Path To
Target
Node

Keyword
Search Lookup Routing

Name RoutingKeyword Lookup

Keyword Routing

(a) Search in Distributed Systems

Keywords Name
Node Address/

Path to 
Target Node

Keyword
Search

Lookup/
Name Routing

Keyword Lookup/Routing

(b) Search in Peer-to-Peer Systems

Fig. 17.2: Search in (a) Distributed and (b) Peer-to-Peer Systems

Usually, a user wants to specify what he is looking for in terms of key-
words. In the simplest case, keywords are just one or more terms appearing
in the desired content or describing the desired resource. More sophisticated
approaches apply content/resource meta information based on attribute-
value pairs, e.g., the Resource Description Framework (RDF, [462]). Keyword
search describes the functionality of mapping the resource meta information
onto one, or, in the case of multiple matching resources, several unique names
or identifiers in the network. Examples of such names are the Uniform Re-
source Locator, URL, or file names in a Unix file system. Lookup maps unique
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names onto addresses in the network. Addresses specify the network location
of the node hosting the resource with a given name, e.g., the IP address of
the host. Finally, routing is the process of finding a path and moving queries
to the target node.

Three short-cut mechanisms can help optimize search. Name routing com-
bines the (distributed) lookup of the target node address with path identi-
fication and query forwarding to that node. Keyword lookup returns one or
more addresses of nodes hosting resources with given keyword descriptions.
Napster is the most prominent example. Finally, keyword routing directly
routes towards a node hosting specified resources. Keyword routing is some-
times also called semantic routing or content routing. For the Peer-to-Peer
case, the process can be simplified as shown in Figure 17.2(b). Since Peer-
to-Peer systems build on overlay networks, routing becomes a trivial task:
knowing the target node address, the requestor simply creates a new virtual
link to that address. Only few circumstances (like the anonymity requirement
in Freenet [122]) lead to a more difficult overlay routing approach, which is
an issue separate from search.

17.1.3 Design Space

Based on those initial discussions, the focus for this chapter is drawn on scal-
able keyword lookup for a single keyword. With the search process defined
and disaggregated, it becomes obvious that searching requires a series of map-
pings, from the keyword space to the name space to the address space to the
space of paths to nodes. The fundamental structural options in a distributed
environment are the same for each mapping, and a complete classification
and in our definition optimum design space is provided in Figure 17.3. The
criteria of mutually exclusive and collectively exhaustive branches at each
level have directly been built into the classification

A mapping can only be defined through a computation or a table. A (pre-
defined) computation is difficult to achieve but some attempts have been
made, usually involving hashing. More widely adopted are tables with (up-
datable) entries for the desired search items, e.g., a node address for each
valid name. Mapping then comes down to finding the desired table entry
and looking up the associated value. In a distributed environment, a table
can either reside on a central entity like a search engine server, or be fully
replicated on each node, or be distributed among the nodes.

Distributed tables are most interesting and challenging in that they require
for each mapping to collaboratively find and contact the node that offers
the desired information or table entry. Two important aspects distinguish
distributed table approaches: the structure of the table, i.e. the distribution
of table entries to nodes, and the physical or overlay topology of the network.
The distribution of table entries can happen at random or in a well-designed
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process leading to a clear target table structure; the same applies for the
distribution of links and, hence, the topology. Whether the table structure
and topology are designed and aligned, or both random or at least one of
them designed but not aligned with the other has a substantial implication
on search.

In a random table structure and random topology, it is natural that each
node at least carries information about itself, i.e. its address, the names of
the objects it hosts, and corresponding keyword descriptions. In addition
to information on their own tables, nodes may have knowledge on the ta-
ble entries of their neighbors in an aggregated or non-aggregated form. The
knowledge on neighboring table entries will in some cases be restricted to
the direct neighbors, but can also involve recursion: An arbitrary node A not
only learns about the table entries of its neighbors Bi, but also through Bi

about Bi ’s neighbors Cij , Cij ’s neighbors Dijk, and so on. This way, nodes
eventually know about most or even all keywords, names, or addresses in the
direction of each neighbor in a usually aggregated way.

Rather than keeping explicit knowledge on neighboring table entries,
nodes can exploit implicit knowledge when the table distribution and topology
follow a clear and aligned structure that every node knows. The most com-
mon approach is certainly the classical hierarchy. A root node informs about
table areas represented by a number of second-level nodes. The second-level
nodes, in turn, delegate to third-level nodes for sub-areas within their own
area, and so on, until a request finally reaches the leaf node responsible for
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the desired entry. Particularly in the quest for scalable Peer-to-Peer search al-
gorithms, “symmetric hierarchies” have been created by adding redundancy.
In symmetric redundant hierarchies, every node can act as the root or be
on any other level of the hierarchy. This can be achieved by replicating root
information on table areas on each node as well as second-level information
on sub-areas. Symmetric redundant hierarchies show structural similarities
to k-ary n-cubes (cf. [535]).

Non-hierarchical structures are also possible and available. In an ordered
space, the table is split into consecutive areas. Each of the areas is represented
on one node. The nodes, in turn, are ordered in the same way, i.e. neighboring
table areas reside on neighboring nodes. Examples of such spaces are rings
or Euclidean spaces, but other forms are possible.

Unaligned table structures and topologies occur when the table is dis-
tributed according to a clear structure, but the topology is random, or the
topology is designed, but the table structure random, or both table and topol-
ogy are clearly structured, but in different ways. While the first case is helpful
to allow for aggregation of table area information, the second case is advan-
tageous for performance improvements compared to a completely random
approach. It appears difficult to gain from the third case.

Designs based on any kind of structured table regardless of the topology
are often referred to as Distributed Hash Tables (DHT).

17.1.4 Overlay Topology Requirements

Peer-to-Peer systems of all kinds build on overlay networks. Nodes in Peer-
to-Peer networks are required to have physical, link layer and network layer
connectivity. For instance, in TCP/IP, every node is connected to the global
Internet. It is, however, possible to contact every node via the corresponding
network layer protocol in other networks as well, like X.25, or Novell IPX.
In fact, it is sufficient to have a transport service that allows every node to
send data to every other node. Theoretically, it would, e.g., even be possible
to use the Short Message Service (SMS) in GSM (Global System for Mobile
Communications) or UMTS (Universal Mobile Telecommunications System)
to build an overlay network of mobile nodes, provided appropriate software
can be installed on the mobile devices.

The assumption of network layer connectivity allows Peer-to-Peer net-
works to abstract from the underlying networking infrastructure and its com-
plexities and form an overlay network among themselves, which is discussed
elsewhere in this book.
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17.1.5 Overlay Topology Parameters

In general, network topologies can be characterized through their degree of
symmetry, the network diameter, the bisection width, the average node de-
gree, and the average wire length [313]. The functional and performance
requirements determine the desired target characteristics:

– Symmetry
Only symmetric topologies are appropriate for true Peer-to-Peer systems
as only in this case all peers are equal from a topology point of view, thus
forming the term symmetry with respect to peers’ behavior. Consider a
non-symmetric topology like the classic tree: It is obvious that the root
of the tree has a far more central role than all leaves. At the same time,
symmetry assists load-balancing. While, in non-symmetric networks, hot
spots with high traffic load (the root in the tree) may exist, the load will
balance over available connections in a symmetric network. Examples of
symmetric topologies include rings, buses, hyper-cubes, complete meshes,
cube-connected circles, or k-ary n-cubes. While symmetry appears to be
one of the most basic requirements for a Peer-to-Peer topology, measure-
ments as stated in [535] prove a huge heterogeneity among peer nodes in
terms of their uptime, average session duration, bottleneck bandwidth, la-
tency, and the number of services or files offered. Thus, it can make sense
to explicitly design asymmetric overlay networks, where some peers adopt
a server-like role.

– Network Diameter (D)
The diameter of a network is defined by the number of hops required to
connect from one peer to the most remote peer. It strongly influences la-
tency and aggregate bandwidth for communication. In this context, hops
in the overlay network have to be counted; actual hops in the underlying
networking infrastructure will indirectly be considered through the wire
length (cf. below). The average rather than the maximum number of hops
between any two nodes in the overlay network is called characteristic path-
length PLCh [462].

– Bisection Width (β)
The number of connections from one part of the overlay network to the
other part defines its bisection width. Assuming proper load balancing
(which can be ensured through symmetry, at least partly), the maximum
throughput of the network is proportional to the bisection width (and the
average bandwidth of a connection). Even more importantly, there is a
direct relation between bisection width and fault tolerance: the bisection
width determines the number of links that have to break before the system
goes down or, at least, operates only as two partial systems.

– Node Degree (d)
The node degree is defined as the number of overlay links that each peer has
to maintain. While a node degree higher than one is desirable for improved



276 17. Peer-to-Peer Search and Scalability

fault tolerance of the network from the perspective of a single peer, the
node degree can be a significant inhibitor for scalability: The node degree
determines the size of the routing table on each peer with the according
impact on memory consumption and processing power.

– Wire Length (τ̄)
The wire length is the average round trip delay of an overlay link, con-
tributing to the latency in the system. The wire length is closely related
to mapping an overlay network properly onto a physical network: A low
wire length in a Peer-to-Peer overlay network can be achieved by choosing
neighbors that are also neighbors or at least physically and topologically
close in the underlying network. Closely related to wire length is the no-
tion of stretch: The stretch of a path in an overlay network is the ratio of
total physical network hops underlying the overlay path that separates two
peers to the minimum number of physical network hops between the two
when routing is not confined to the overlay network.

17.2 Scalability in Peer-to-Peer Systems

Scalability determines a key metric of distributed systems to describe in which
sense this system is able to cope with many occurrences of an event. Thus,
the mathematical model and formal definition of scalability is given for the
non-Peer-to-Peer world and refined for Peer-to-Peer specifics in order to de-
rive Peer-to-Peer-relevant metrics for scalability and efficiency in all relevant
dimensions of scale.

Strict scalability of a system demands that its efficiency asymptotically
remain constant as the system grows to large (or infinite) scale [313]. Produc-
tion systems, for instance, often exhibit significant economies of scale, where
efficiency even increases with scale, whereas communication systems tend
to demonstrate disadvantages of scale due to the communication overhead
involved. Therefore, most Peer-to-Peer systems are unlikely to be strictly
scalable. It is thus sensible to introduce a more pragmatic definition and
apply it throughout this thesis. Scalability is the asymptotic ratio of a sys-
tem’s efficiency to the efficiency of an idealized reference system. Assuming
an efficiency of 1 for the reference, this is equal to the asymptotic efficiency
behavior of the system. In contrast to scalability, extensibility refers to the
possibility to grow a system step by step. That means, growing scale can be
accommodated for through incremental addition of resources. This avoids the
necessity to build a large system right in the beginning, dimensioned to cope
with the ultimately expected scale.

It is important to understand that while Peer-to-Peer systems are usually
highly extensible – with resources automatically being added along with join-
ing peers – reasonable scalability properties are not ensured. For instance, the
Gnutella network can grow simply by new nodes installing the servent and
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contacting an arbitrary peer in the system, but query traffic can eventually
lead to a collapse. In order to quantitatively assess the above measures, it is
necessary to define suitable metrics, which determine a standard of measure-
ment that can be applied to a corresponding dimension. This metric quantifies
a dimension in that it associates each pair of elements of that dimension with
a number or parameter reflecting the distance of these members along that
dimension. The metric also defines the unit to measure the distance in.

17.2.1 Definition of Peer-to-Peer Scalability

Before providing a mathematical notation of scalability in a Peer-to-Peer
context, this section introduces the notions of resources, efficiency, and scale
that the scalability definition directly or indirectly builds upon. Resources
are the replenishable goods used to perform a certain task or produce a cer-
tain product. Replenishable resources of a Peer-to-Peer system are processing
power, memory/storage, bandwidth, time/latency. For efficiency and scala-
bility considerations, consumption of these resources has to be separated into
productive resource consumption and overhead resource consumption. Pro-
ductive resource consumption of a Peer-to-Peer system is defined by reference
to an idealized, overhead-free system that does not incur any distribution
overhead:

– Processing power
Productive is the processing power required on a single processor machine
to perform a computation, where the result of the computation should be
desired by the service user, otherwise it would be overhead. In Peer-to-
Peer, a significant proportion of the processing power might be used for
overhead like synchronization and routing in the distributed environment.
Processing power is measured in terms of the number of operations on a
reference processing unit.

– Memory/storage
Productive is the memory needed for intermediate computation results
or content or application storage as demonstrated in a non-distributed
environment. In Peer-to-Peer, storage of, e.g., routing tables on a peer
node may constitute to the system overhead. Memory/storage is measured
in KByte.

– Bandwidth
The bandwidth needed to transmit the desired results of a service, i.e., com-
putation results or content, is productive. There may be communication
overhead for discovering other peers, for instance. Bandwidth is measured
in KBit per second (Kbit/s).

– Time/latency
Particularly from a service user perspective, time is an important good
and waiting times or latency can not only be annoying but also lead to
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system malfunctions. Significant latency can result from several hops onto
different peer nodes. No latency is productive, all is overhead. Latency is
measured in milliseconds (ms).

All resource consumption of a Peer-to-Peer system that is not defined as
productive above is considered overhead. More specifically, the overhead com-
prises all protocols and functionality of the distributed architecture that are
necessary to operate the system and to give it certain properties. In a math-
ematical notation, total resource consumption can be represented by a vector

⇀
ptot = ⇀

pprod + ⇀
pOH ; ⇀

p =

⎡
⎢⎢⎣

ProcessingPower
Memory
Bandwidth
Latency

⎤
⎥⎥⎦

including straightforward notations for total (tot), productive (prod), and
overhead (OH) resources. Note that resource consumption is a function of
scale ⇀

σ, where the elements of the scale vector denote those different dimen-
sions of scale.

17.2.2 Efficiency and Scale

Efficiency and Scale Efficiency is the ratio of productive resource consump-
tion and total resource consumption. It describes the level of optimization
of an approach to perform a task or produce a product with respect to
its resource consumption. An efficiency of 1 indicates a perfect approach
in that it does not incur any overhead resource consumption. Due to the
multi-dimensionality of the resource vector, the ratio of productive to total
resource consumption has to be represented as a multiplicative equation:

⇀
pprod = ε · ⇀

p tot; ε = Diag

⎡
⎢⎢⎣

ProcessingPowerEfficiency
MemoryEfficiency
BandwidthEfficiency
LatencyEfficiency

⎤
⎥⎥⎦,

where Diag() creates a diagonal matrix from a vector, i.e., a matrix with all
zeroes except for the diagonal elements. Like the resource consumption, the
efficiency heavily depends on the scale ⇀

σ.
Scale is the size and frequency of tasks or the system performing the tasks

along possibly multiple dimensions. In light of the variety of possible dimen-
sions scale can refer to, it is necessary to identify a set of requirements that
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a proper choice of scale dimensions should fulfill. With an eye to scalability,
suitable scale metrics have to be mutually exclusive, collectively exhaustive,
and relevant:

– Mutually exclusive:
Different dimensions of scale chosen must not overlap. For instance, the
number of peers and the number of files per peer are mutually exclusive,
whereas the total number of files in the system as a third dimension could
be derived from the previous two, resulting in an overlap that is to be
avoided.

– Collectively exhaustive:
The set of dimensions chosen has to describe all aspects in terms of size of
the system that matter. For instance, the number of peers alone are not
sufficient to derive storage requirements for all objects in the system.

– Relevant:
The term “that matter” above already indicates that only those dimen-
sions are to be introduced that are relevant for the specific consideration.
For scalability research in particular, in order to be relevant, the selected
dimensions have to be (a) key drivers of efficiency of the system in consid-
eration: As scalability is defined through the efficiency depending on scale,
only scale dimensions that actually have an influence on efficiency are rel-
evant; and (b) subject to growth: Only those dimensions that are expected
to grow are obviously interesting for scalability. While the number of peers
in a system is usually growing, this may, e.g., not be the case in a specific
closed-group scenario.

In the sense of the definition of scale above, a task in a Peer-to-Peer
system could be, e.g., a file download, a computation, or any combination
of these or other simple tasks. The number and the average size of tasks
obviously constitute the most high-level scale dimensions for a Peer-to-Peer
system. A multiplicative disaggregation automatically ensures that the set of
dimensions is mutually exclusive and collectively exhaustive. This yields:

– The size of a task as its productive resource consumption in terms of pro-
cessing power, memory/storage, and bandwidth.

– The number of tasks that can be disaggregated into the multiplicative
components: (a) number of potential peers; (b) average percentage of peer
nodes active, i.e., online and responding to Peer-to-Peer messages; (c) av-
erage number of objects per peer, e.g., number of services or content files
or information items; (d) request frequency, i.e., number of tasks per online
peer node, object, and unit of time.

The most important dimensions are the number of peer nodes and the
number of objects, as they are set for the fastest growth. While these scale
dimensions probably cover most aspects of efficiency, some of the overhead
functionality might have additional scale dimensions as key drivers for re-
source consumption. Even though a detailed evaluation is only possible for a
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concrete system, one can hypothetically expect a couple of scale dimensions
in addition to the ones above. The scale vector can now be defined as

⇀
σ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

# peerrs
% online
objects per peer
task frequency
processing size of task
memory size of task
bandwidth size of task
· · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where these dots symbolize additional scale dimensions that may be required
for specific systems.

In summary, mechanisms for managing the (resources of the) Peer-to-Peer
network include the Peer-to-Peer overlay network management, driven by the
rate of joins to and departures from overlay Peer-to-Peer network, and a QoS
control. Mechanisms for offering and retrieving services in a distributed en-
vironment address (a) a service description and classification driven by the
variety and complexity of services, (b) lookup and search driven by users’ to-
tal queries per successful query/task, (c) pricing, indexing, and advertising,
(d) negotiations and the percentage of negotiated tasks, and (e) contract-
ing driven by the percentage contracts per task. Mechanisms for fulfilling
a service cover accounting and charging and invoicing, a.o. driven by the
number of clearing or payment authorities. The set of organizational and
self-learning mechanisms for peers includes the building and maintenance of
peer groups, affected by the diversity of interests of peers, and the reputation
of peers, effect by the frequency of reputation updates. Finally, security mech-
anisms, such as the identification, authentication, authorization, encryption,
and decryption, are driven by the percentage of tasks requiring the respective
security mechanism.

17.2.3 Scalability Metric and Notation

Building on these notations for scale and efficiency, scalability can now be
captured mathematically. Strict scalability, the asymptotically constant effi-
ciency requirement, can be translated into

ε = ε
(

⇀
σ
′)→ const; ⇀

σ =∞

where ’ denotes the matrix/vector transposition. For the non-strict scalability
definition, the scalability matrix Σ is defined by
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εSystem

(
⇀
σ
′)

=
∑(⇀

σ
′) · εReference

(
⇀
σ
′)

where the scalability matrix is required to be diagonal. The structure of the
matrix is:

∑
=

⎡
⎢⎢⎣

Σ1 (σ1, σ2, ...) 0 0 0
0 Σ2 (σ1, σ2, ...) 0 0
0 0 Σ3 (σ1, σ2, ...) 0
0 0 0 Σ4 (σ1, σ2, ...)

⎤
⎥⎥⎦

All elements of the diagonal refer to the corresponding resource in the effi-
ciency matrix, i.e., Σ1 is the processing-power scalability, Σ2 is the memory
scalability, Σ3 is the bandwidth scalability, Σ4 is the latency scalability. Each
of these scalability metrics depends on all or a subset of the scale dimensions
σi, i = 1, 2, ...

17.3 An Assessment Scheme for Peer-to-Peer Lookup
and Search Overlay Network Scalability

The scalability evaluation can be simplified. Rather than by determining the
efficiency as a function of scale and then deriving the scalability matrix as
defined above, it is possible to investigate scalability by only calculating the
overhead for a certain functionality as a function of scale and determining
its behavior in a growing system. This allows a straightforward assessment
whether or not the overhead grows out of bounds. Furthermore, it does not
preclude a more formal determination of percentage efficiency values as de-
scribed above as a subsequent step.

Usually, a logarithmic increase of overhead resource consumption with
scale is regarded as the maximum tolerable. Care is due, though: even a linear
increase may be alright if the absolute amount of overhead at maximum
expected system size is still low, and, vice versa, even logarithmic or sub-
logarithmic increase may be fatal when the starting value is already very
close to bearable limits. For illustration, Table 1 gives an idea of expected
system sizes and most important resource constraints for different Peer-to-
Peer applications.

This section focuses on overhead for lookup and search – for two rea-
sons. First, lookup and search with their complex n-to-n relationship of peers
appear most vulnerable to network growth, with the number of nodes that
possibly need to get involved growing linearly in n and the number of possible
peer relationships even growing with the factorial of n. Second, the assess-
ment scheme may be applied to other schemes and algorithms to allow for
an objective comparison.
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System Expected Scale
(# Peers)

Resource Constraints

File Sharing
Peer-to-Peer Trading 10, 000, 000

Bandwidth: 56 . . . 2, 000 Kbit/s
Latency: < 7 s

Corporate Backup
System 30, 000

Storage: 1 . . . 10 GB
Processing Power: 5% of 1-2GHz

Peer-to-Peer Special
Interest News 1, 000

Bandwidth: 56 . . . 2, 000 Kbit/s
Latency: < 7 s

Mobile Collaboration
Groupware 50 Bandwidth: 9.6 . . . 384 Kbit/s

Table 17.1: Peer-to-Peer System Sizes and Resource Constraints (Illustrative)

17.3.1 Overhead for Lookup and Search

The overhead resource consumption for lookup and search is a function of
scale

⇀
pOH,search

(
⇀
σ

′)
=

⇀
pOH(task size, task freq, queries per task, # peers, % online, objects per peer)

applying the scale vector defined in Section 17.2.1 and the additional dimen-
sion queries per task that was identified as being relevant for search task size
stands for bandwidth/memory/processing size of task, respectively.

This expression can be simplified. First of all, task size is only relevant
for productive resource consumption to accomplish tasks, not for overhead.
Second, # peers and % online will only appear in product form, so it is pos-
sible to aggregate. Similarly, it is possible to aggregate the query frequency:
query freq = task freq · queries per task. Finally, search functionality can be
separated into query (routing and processing) and overlay network manage-
ment. The query overhead will be directly proportional to query freq, while
the overlay network management will be independent of it. Abbreviating

|o| = objects per peer

yields

⇀
pOH,search

(
⇀
σ
′)

= ⇀
pquery (n, |o|) · query freq + ⇀

pOVLmgmt (n, |o|)
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17.3.2 Dimensions of Lookup and Search Overhead and
Quantitative Drivers

Resource consumption comprises the dimensions bandwidth, latency, pro-
cessing power, and memory/storage. The most crucial scalability dimensions
are the ones that refer to the most critical resources. More specifically, the
scalability consideration should be focused on the resources that the sys-
tem runs out of first or that are most expensive. As current utilization of
processing power on PCs is usually around 4% [90], and storage is getting
cheaper and cheaper, the most critical resources in a Peer-to-Peer system
are most likely bandwidth and latency. Bandwidth is particularly scarce as
many ’last hop’ rather than backbone connections are involved in a Peer-to-
Peer network. The following paragraphs will take a closer look at the drivers
of bandwidth and latency overhead for queries before giving some intuition
on memory and processing power overhead for queries as well as on overlay
network management overhead in general.

The request path-length PLR is the number of hops that a lookup or search
request makes on a Peer-to-Peer overlay network. Depending on the context,
it may be a random variable or denote an average.

The pruning factor fp = PLR/PLCH denotes the average percentage
of the characteristic path-length that a request needs to travel before being
pruned off. The pruning factor can be calculated from the pruning probability
at each hop pp,i (i.e., the probability that the requested object is found at
that hop) through

fp =
1

PLCH

PLCH∑
i=1

i·
i−1∏
k=0

(1 − pp, k); i, k ∈ ℵ

The pruning probability pp,0 at node 0, the requesting node, will usually
be zero.

The latency L for a query is driven by the characteristic path-length PLCh

and the wire length τ̄ as well as the pruning factor fp:

L = PLR · τ̄ = PLCh · fp · τ̄

Routing efficiency εroute is defined as

εroute =
d − x

d − 1
,

where x denotes the number of nodes that a query is forwarded to at any hop.
The routing efficiency is defined to be 1 if only one node has to be contacted
at each hop and 0 if all d neighbors have to be contacted. In that sense,
Gnutella with its flooding approach has a routing efficiency of 0, whereas
consistent hashing algorithms like Chord [575] have a routing efficiency of 1.
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With the aggregate number of messages sent in the network to resolve
a query, magg and the average size of a query message message size, the
aggregate data transmission B becomes = message size ·ma. Further analysis
yields:

B = message size · E
[

PLR∑
i=1

i∏
k=1

[d − εroute,i (d − 1)]

]

, where E[.] yields the expected value in case the request path-length PLR,
the node degree d, and/or the routing efficiency are random variables.

As for the latency, the characteristic path-length and the pruning prob-
ability influence the bandwidth overhead (and scalability) in a major way,
bearing in mind PLR = PLCh ·f . Furthermore, the routing efficiency plays a
significant role. It is also obvious that the packet size should be kept as small
as possible. The equation further suggests that the node degree be kept low.
However, this applies only if the routing efficiency is smaller than 1. And even
then, a lower node degree entails a larger characteristic path-length with its
negative influence on aggregate bandwidth. Note that a higher node degree
also increases in principle the bandwidth available as it augments the number
of links from or to a node. However, these links are only virtual links in the
overlay network that all have to be mapped onto one and the same physical
access line of a node.

Memory overhead for search is mainly driven by the state information
to be kept on each node. In particular, this is the size of the routing table,
determined by the node degree d, as well as any other state information like
object links to objects on remote nodes. Processing power is mostly consumed
for query routing. Hence, the routing table size and thus the node degree
should be kept low to keep processing overhead in bounds. The frequency of
messages to be routed will automatically be optimized when attempting to
reduce the number of aggregate messages magg.

The overlay network management overhead is too system-specific to be
properly addressed in this general section. It comprises all tasks to create
and maintain overlay network links and routing tables. In random networks
like Gnutella, e.g., it is limited to ping and pong messages only, whereas it
becomes more complicated in structured networks like Chord. Typical tasks
then include the insertion of new nodes and new object links into the overlay.
As for queries, the path-length and the aggregate number of messages for
these insertion events have to be evaluated.

17.3.3 The Assessment Scheme

17.2 develops the scheme to assess the scalability of a Peer-to-Peer lookup or
a search mechanism. It starts from the most generic or aggregate components
or contributors to overhead resource consumption on the left hand side and
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Com- Resource Disaggre- Disaggre- Disag- Unit Depen-
ponent gation 1 gation 2 greg. 3 dence

pquery n/a f(n)

Latency s f(n)

τ̄ s or link
layer
hops

f(1)

Latency / PLR hops f(n)

Bandwidth PLCh hops f(n)

fp % f(1)

Bandwidth Byte f(n)

magg (PLR) (see PLR) (see PLR)

εroute % f(1)

d 1 f(n)

message size Byte f(1)

Processing
Power,

Message
frequency

(magg) (see magg) (see magg)

Memory/
Storage

State
Informa-
tion

(d) (see d) (see d)

query freq s−1 f(n, |o|)
pOV Lmgmt n/a n/a

Cost of node insertion n/a f(n)

Cost of object insertion n/a f(n, |o|)
other n/a n/a

Table 17.2: Scalability Assessment Scheme for Peer-to-Peer Lookup and Search

analyzes the types of resources affected. It then breaks overhead resource
consumption down into more specific or granular drivers or metrics on the
right hand side in three levels (Disaggregation 1-3), applying the formulae
derived throughout this section. For each metric, it shows the respective unit
of measurement as well as its expected primary dependence on scale, which in
most cases is a function of the number of nodes (f(n)) or the number of ob-
jects per node (f(|o|)). When evaluating the scalability of a lookup or search
system, the alternative levels of granularity yield equivalent information and
can be chosen at the evaluator’s discretion.

17.4 Scalable Search with SHARK

Having outlined the key concepts on search and lookup in overlay networks
and having defined the model for a formal Peer-to-Peer scalability approach,
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a particular scheme termed “SHARK” (Symmetric Hierarchy Adaption for
Routing of Keywords) is developed. This novel concept and middleware is
scalable and offers a service for search in Peer-to-Peer networks [417, 418] and
is discussed in the light of the formal model presented. Rather than flooding
a network like Gnutella or imposing numerical IDs on objects like distributed
hash tables, it is based on directed routing of keywords in a multidimensional
redundant meta-data hierarchy. SHARK autonomously arranges nodes and
objects in the network and in semantic clusters. In spite of its rich keyword
search capabilities, it achieves a high degree of scalability, outperforming
random networks by several orders of magnitude. It can easily be adopted
for applications as diverse as file-sharing, Peer-to-Peer trading, or distributed
expert and knowledge market places.

A Peer-to-Peer network consists of a set of nodes N being connected via
a set of links. Each neighboring node stores a set of objects which constitute
to the unique objects in the Peer-to-Peer network. An object is described
through meta-data M, which determine the essential hierarchical structure
for the construction and operation of SHARK. I.e., this example addresses
music categorization. The meta-data M11 yields the top-level music genre
that is further divided into subgenres M21. In a second dimension M12, mu-
sic is classified by decade of release, then by more granular timing M22. M0

is the search string, e.g., ’John Patton: Let ’em roll’. In general, applications
may choose to add dimensionality just for certain categories, e.g., add an ’in-
strumentation’ dimension to ’rock&roll’ in addition to subgenres and timing.
Search for objects in SHARK is based on query routing. A query is defined
through a meta-data description Mq of the desired object(s) and thresholds
tstruct and trand for the minimum required similarity of object and query de-
scription for the structured and the string expression part of the meta-data
description, respectively. SHARK returns a set of query answers including
is a similarity metric. The development of reasonable similarity metrics is
orthogonal to and, hence, not focus of this work.

SHARK arranges nodes into a multidimensional symmetric redundant hi-
erarchy. The overlay topology exactly matches the structure of the query
meta-data such as to exploit the alignment for query routing. Figure 17.4
shows as an example a simplified description of two levels and two dimen-
sions.

Each node is assigned to a group-of-interest (GoI) according to the objects
it stores and to its prior request behavior. Each GoI represents a leaf in the
hierarchy. Let P (1) =

(
p11, p12

)
denote a position on level one of the hierarchy

P (2) =
(
p11, p12, p21, p22

)
, a position on level 2. The values pij numerically

represent the respective meta-data information mij . Node A in the figure
would then be a member of the GoI on a leaf position PA = (7, 2, 2, 3).
In contrast to a classic hierarchy, an symmetric redundant hierarchy adds
redundancy so that all peers have symmetric roles in the overlay; i.e., each
peer can assume the role of the root of the network or be on any other level.
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Fig. 17.4: Multi-dimensional Symmetric Redundant Hierarchy in SHARK

This improves fault tolerance and load-balancing as there is no single node
acting as a root, and waives the necessity of central infrastructure, hence
removing the largest roadblocks for an adoption of hierarchical structures in
Peer-to-Peer networks.

SHARK adds redundancy as follows. Each node NA on a leaf position
P

(2)
A =

(
p11

A , p12
A , p21

A , p22
A

)
also assumes partial responsibility for the parent

positions P
(1)
A =

(
p11

A , p12
A

)
, the parent’s parent and so on up to the root

(in the two level case, the parent’s parent is identical to the root). Hence,
each node is virtually replicated on every level of the hierarchy (cf. dark
grey nodes in Figure 17.4). The partiality of the responsibility results from
two reasons. First, many different peers share the same parent position, thus
inherently distributing the load of that position among themselves. Second,
a node only maintains links to a subset of the positions on the respective
next lower level in the hierarchy. As indicated in the figure, those positions
form the relevant level-i-subset for a node NA that differ from position P

(i)
A in

only one dimension. We have chosen this approach to limit state information
on the nodes as well as the maintenance burden when nodes join or leave
the network, thus increasing scalability of the system at the cost of only
one additional hop for query routing per level. Within the leaf GoIs, peers
maintain links to further neighbors SNR

A , as indicated in the figure. The
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overlay network at this stage is, however, unstructured or random. It has
been shown that such networks exhibit a power-law distribution of links.

17.5 Summary and Conclusions

This overview on Peer-to-Peer lookup and scalability has shown that effi-
ciency and scalability of these mechanisms can be formalized and may have
impacts on existing systems. A heuristic approach to scalability evaluation
currently prevails. Therefore, this work provides an analytical yet pragmatic
assessment scheme that can help to formalize and standardize scalability in-
vestigations of Peer-to-Peer systems. As a newly proposed scheme SHARK
has been outlined as a scalable approach of a symmetric hierarchy adapta-
tion, which autonomously arranges nodes and objects in the network and in
semantic clusters.



18. Algorithmic Aspects of Overlay Networks

Danny Raz (Technion, Israel Institute of Technology)

18.1 Background and Motivation

This chapter studies basic algorithmic tasks over overlay networks. The main
idea is to explore both the communication and the computation needed to
perform a task. Unlike many of the work in this area (and other chapters
of the book) we mainly consider in this chapter tasks related to information
gathering or dissemination, as they can be used as building blocks in many
overlay applications.

Overlay networks are logical networks that are created on top of the “real”
physical network. Recently, various forms of such overlay networks have been
deployed in the Internet. The most popular ones are file sharing Peer-to-
Peer (P2P) networks and Content Distribution Networks (CDN). As well
explained in other chapters of this book, in a Peer-to-Peer network, users
voluntarily contributed their computers to form an overlay network that is
then used mainly for file swapping. CDNs are overlay networks that are used
to distribute Web context to distribution points of context delivery service
providers, aiming at bringing content closer to the end users.

While the specific characterizations of these networks (and other overlay
networks) vary, the main features are similar. In overlay networks we are
dealing with two layers: a fast underlying network layer, and a much slower
application layer. In this application layer, arbitrary complex computations
(mostly related to data) are being done. In such an environment it is no
longer true that the inter-node computations are fast with respect to the
communication delay.

In order to study the algorithmic aspects of such networks one has to con-
sider both the propagation delay through the network, and the computation
delay at the overlay nodes. The well known distributed models [37] assume in
many cases a global bound on the propagation delay and on the computation
delay, in order to bound the overall time complexity, and therefore we need to
adopt a different model in our case. The two-layer structure described above
is very similar to the situation in an Active Network Node [587], and thus
we can adopt the model from [507], based on a similar model for high speed
networks [121].

In this model, the underlying networking layer handles packets with min-
imal delay and thus we assume a fixed constant C units of delay per packet,
which includes the propagation delay along the link. In the upper layer, more
complex computation is done and thus the time complexity depends on the
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exact algorithm and the size of the data. We denote this complexity by P (k),
where k is the size of the input to the computation. In this chapter we follow
[507] and assume that P (k) = P × k for some constant P , since we at least
need to copy all the data from the fast layer to the computation layer.

Recall that a link in the overlay network is a virtual link and it may be
a long path in the underlying network. Figure 18.1 depicts such a network.
The big circles represent overlay nodes and the wide dotted lines represent
links between nodes in the overlay network. The translation of overlay links
to physical links depends on the routing in the underlying (IP) network. For
example a packet going from node C to node D may be routed through node
E, even though E is not connected to C in the overlay network.

There are two different methods in which overlay networks can handle
routing. In the first one, the overlay network takes care of routing, and thus
packets are forwarded by the overlay layer to the appropriate virtual neighbor.
For example, if node C needs to send a message to node G, it may route it
through node B, thus the actual packet may travel more than once over
several links of the underlying networks. The second routing method uses
the underlying routing, i.e., if node C needs to send a message to node G, it
will get its actual address (say IP address) and will send the message directly
to this address. The actual performance of the algorithms depends, of course,
on the routing methods, and we will carry out the analysis for each of the
methods.

Now, under this model, the time complexity (i.e. the time it takes to
complete the task) of data collection is no longer just a function of the length
of the paths along which the data is collected. In fact, this time complexity
also depends on the number of overlay network nodes in which the data is
processed, and on the complexity of the processing algorithm itself.

In particular, it is no longer true that the popular solution of collecting
data along a spanning tree as described in [37] is optimal. Consider for ex-

G

A

B

C

E

D

F

Fig. 18.1: An Example of an Overlay Network.
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ample the tree described in Figure 18.2. Since the amount of information
passed along each of the nodes on the long path is O(n), the overall time
complexity is Ω(Pn2). Another naive solution for this problem is to itera-
tively query each node in the network, however, this solution will require
that (for the same tree) n separate messages will arrive to the root, and an
overall Ω(n2) messages if the overlay network takes care of the routing. The
goal is to develop algorithms that will have both a linear time and message
complexity.

We start with a simpler problem, where data is collected along a given
path in the overlay network. We study different simple algorithms for this
case (similar to the one presented in [507] for the active networking case) and
analyze their performance in the two overlay routing methods. Then we turn
to the algorithm, called collect-rec in [507], that uses recursion to collect data.
When the algorithm collects data from a path, it partitions the path into two
segments, and runs recursively on each segment. The data collected from the
second segment is sent to the first node in the path. The complexity analysis
of this algorithm shows that the algorithm time complexity is O(nP + nC)
and the message complexity is O(nlog(n)) in the first routing method, as in
the active networking case. If routing in the overlay network is done using the
second method then the algorithm time complexity is O(nP +ndnC) and the
message complexity can be bounded by min O(ndnlog(n)), O(d̄log(n)), where
dn is the average distance (in underlying network hops) between overlay
neighbors, and d̄ is the average distance (in underlying network hops) between
any two overlay nodes.

The more general problem is the problem of efficiently collecting data from
a general overlay network. We are given a network with a specific node called
root, where the number of nodes in the overlay network is n, its diameter is D,
the number of logical links is m, and each node holds one unit of information.
The root intends to collect the data from all the nodes in the overlay network.
We assume that the network topology is arbitrary and no global routing
information is available to the nodes. That is, a node in the overlay network
may know the name (or IP address) of its logical neighbors, but no global
information about the structure of the overlay network is known. Our aim is
to develop an algorithm that solves the problem defined above, with minimal
time and message complexity.

The need for such data collection depends on the specific network. For the
popular Peer-to-Peer networks, one can think of obtaining a snapshot of the
network at a given time, or finding the number of copies of a very popular
file. For CDNs, obtaining usage statistics is always a need, and doing so
with minimal delay and network overhead is very desirable. As shown before,
the naive implementation of collecting data along a given spanning tree may
perform badly. One possible approach is to extend Algorithm collect-rec([507])
from a path to a general graph. We explain this method, and generalize the
data collection algorithm to an algorithm that collects an arbitrary amount
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Fig. 18.2: Worst case broom.

of data from any link on a path. This last algorithm is then used as a building
block in the more general algorithm that collects data in an almost optimal
way from any given spanning tree.

For many overlay applications (such a CDN), assuming that the over-
lay network maintains a spanning tree is a very natural assumption as some
information should be sent (or collected) from all the nodes. For other ap-
plications, like a Peer-to-Peer file sharing application, maintaining a global
spanning tree may be too expensive since the amount of users that join (or
leave) the Peer-to-Peer network each time unit is too big. Nevertheless, in all
non-trivial proposals for a structural Peer-to-Peer network, maintaining such
a tree requires at most a very small change to the existing infrastructure.
If a spanning tree does not exist, one will have to create a spanning tree,
and run the algorithm on top of it (assuming the amount of data collected
is big enough). In order to create such a tree, one can use the well known
algorithm, [37] in which every node that receives a message indicating the
creation of the tree, sends this message to all its neighbors. The creation of
such a tree in our model will take O(CD + mP ) time and O(m) messages.
This can be naturally included in the number assigning step of Algorithm
collect-rec, resulting in a message complexity of O(m + nlog(n)) and a time
complexity of O(mP + nC).

The rest of the chapter is organized as follows. We start with the formal
definition of the model, then in section 18.3.1 we describe algorithms that
collect information from a path in the overlay network. In Section 18.4 we
describe a data collecting algorithm that works on a single path but when
the amount of data in each node is not fixed. Apart from being an interesting
problem by itself, this algorithm presents the basic building block for the more
general algorithm, weighted collect on trees, described in Section 18.5. This
algorithm collects information from a tree that spans the overlay network.
We deal with the creation of such a spanning tree in section 18.6 and with
general functions that can be computed from the nodes’ data in section 18.7.
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Then, in section 18.8 we present a simulation study done to evaluate the
performance of these algorithms in an Internet like setting.

18.2 Model Definition

Normally, the nodes of an overlay network are not interior nodes of the un-
derlying IP network. However, in general they may be interior, and recent
works such as [503] address “Topologically Aware” overlay networks. Thus,
in order to be able to describe the system in a consistent way we assume
that all nodes reside inside the network. In such a case, each internal node of
an overlay network (see Fig. 18.3) consists of two parts: the Fast Networking
Layer (FNL), and the Application Layer (AL). The FNL is an IP forwarding
mechanism that in addition to transmitting the main data traffic, can filter
packets destined to the AL from all packets passing through the node and
redirect these packets to the AL. The AL provides means for executing the
received programs.

��������	
��

�����

���������
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�����
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Fig. 18.3: A node structure.

This model is similar to the one introduced in [507] for active networks.
It distinguishes between two types of delay: the delay of the message that
only passes through the FNL module and the delay of the message that
also triggers a computation in the AL. A message that passes only through
the FNL suffers a constant delay. We bound this delay by the constant C;
note that in practice the propagation time between neighbors (in the overlay
network) may vary from 1Ms (in a LAN) to 80Ms (In a WAN). Since in most
systems, messages are exchanged using the TCP protocol over links that
have enough bandwidth (say more than 144Kbs), the propagation delay of
messages is almost constant, which justifies this constant delay assumption.
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A message that performs computations in the AL suffers an additional delay
of kP time units, where P is a given constant, and k is a measure for the
size of the input and output of the local computation. Note, that k is at least
linear in the message size, since the message must be copied from the FNL
to the AL. Our network in unsynchronized but throughout the chapter we
do assume reliability, i.e., messages are never lost.

As explained before, we consider two different methods in which routing
is done in the overlay layer. In the first one, the overlay network takes care
of routing, and thus packets are forwarded by the overlay layer to the ap-
propriate virtual neighbor. The second routing method uses the underlying
routing, i.e., if a node needs to send a message to another overlay node it will
get its actual address (say IP address) and will send the message directly to
this address. The actual performance of the algorithms depends, of course,
on the routing methods, and we will carry out the analysis for each of the
methods. We use dn to denote the average distance (in underlying network
hops) between a node and its neighbors, and d̄ to denote the average distance
(in underlying network hops) between any two nodes in the network. Note
that if the overlay network does not use any localization these distances may
be equal. However, in many cases (see for example [503]) proximity in the
underlying network plays a major part in the creation of the neighboring
relation in the overlay network. In such cases dn may be significantly smaller
than d̄. In the extreme case where the overlay network is exactly the under-
lying network, dn = 1 and d̄ is the average distance between nodes in the
underlying network.

We consider two cost functions. The first one is the time complexity that
describes the time it takes to accomplish the task. The second cost function
we consider is the message complexity that counts the number of messages
that pass between neighbors in the underlying network during the algorithm
execution.

Throughout this chapter we say that a message passes between nodes
through the fast track if it is not processed by any of the AL’s on its way
from the source to the destination. Otherwise we say that the message passes
through the slow track. Note, that a fixed size message that passes through
the fast track between two nodes of distance n in the overlay network, suffers
an average delay of ndnC time units in the first routing method and an
average delay of d̄C in the second routing method. When the same message
passes through the slow track it suffers an average delay of ndnC + nP time
units, in both methods since the slow track forces the overlay network to send
the message from one overlay node to another.
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18.3 Gathering Information Along a Path

The problem can be stated as follows. A node v seeks to learn the ids of the
nodes along the route (in the overlay network) from itself to another node
u. Recall that in our model, v only knows the id of the next hop node along
this route.

18.3.1 Basic Algorithms

In a naive implementation (naive), node v queries its next hop node for the id
of the second hop node. Then it iteratively queries the nodes along the route
until it reaches the one leading to the destination. This method resembles
the way the traceroute program works, but it does not use the TTL field
which is not part of the model. The delay of the naive algorithm is comprised
of n activations of an AL level program plus the network delay. The average
network delay in the first routing method is 2idnC for i = 1, 2, . . . , n−1 hops,
which sums up to O(n2)dnC time units. The message complexity in this case
is given by

∑n−1
i=1 2idn = O(n2)dn. Using the second routing method, each

message travels on the average d̄ underlying network hops, and thus the
average delay of the algorithm is O(n(P + d̄C)), and the average message
complexity is 2nd̄.

Next we describe two simple algorithms, collect-en-route and report-en-
route, (presented in [507] ) that improve the above solution to the route
exploration problem, and analyze their performance using our model. Fol-
lowing this discussion we turn to more sophisticated solutions that achieve
near optimal performances.

collect-en-route

In algorithm collect-en-route the source initiates a single packet that traverses
the route and collects the host ids from each node. When the packet arrives
at the destination node, it sends the data directly (using only the FNL) back
to the source. The packet contains the source node id, the destination node
id, and a list of ids it traversed. The source starts the algorithm by sending
the message MSG∗(s, d, {s}) towards the destination, and outputs the list it
receives from the destination.

Clearly, the message complexity of this algorithm for a node at distance
n is 2dnn in the first routing method, and dnn + d̄ using the second routing
method.

The communication delay for this algorithm is 2ndnC and ndnC + d̄C
for the two routing methods since exactly one message traverses the route in
each direction. The execution delay at a node at distance i is iP since the
message length is increased by one unit each hop. The total delay is given
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collect-en-route
1. for MSG∗(s, d, list)
2. if i == d
3. send Report(list|i) to s
4. else
5. send MSG∗(s, d, list|i) to d

Fig. 18.4: collect-en-route for an intermediate node i

by 2ndnC +
∑n

i=1 iP = 2ndnC + n(n+1)
2 P for the first routing method, and

by ndnC + d̄C +
∑n

i=1 iP = ndnC + d̄C + n(n+1)
2 P for the second routing

method. Note that this algorithm is somewhat more sensitive to packet loss
than the previous (and the following) one since no partial information is
available at the source before the algorithm terminates. Furthermore, the
time-out required to detect a message loss here is significantly larger than
with the other algorithms presented here.

report-en-route

In algorithm report-en-route the source sends a request packet downstream the
path. When a request packet arrives at a node, it sends the required informa-
tion back to the source and forwards the request downstream to the next hop.
This design minimizes the time of arrival of each part of the route information,
while it compromises communication cost. The algorithm uses two message
types: a forward going message, MSG∗, that contains the source node id,
the destination node id, and a hop counter; and a backward going Report.
The source starts the algorithm by sending the message MSG∗(s, d, 0), each
node increases the hop counter by one, forwards the message towards the
destination, and sends a Report towards the destination with its id and the
hop counter value. The source uses the hop count to order the list of nodes
in its output.

report-en-route
1. for MSG∗(s, d, c)
2. send Report(id, c + 1) to s
3. if i �= d
4. send MSG∗(s, d, c + 1) to d

Fig. 18.5: report-en-route for an intermediate node i

The message complexity using the first routing method is clearly O(dnn2),
and using the second routing method t becomes O(n(dn + d̄)). The communi-
cation delay for this algorithm using the first routing method is 2dnnC since
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exactly one message traverses the route in the forward direction until the
destination, and this message is then sent back to the source. If we use the
second routing method, the communication delay of the message sent from
the destination back to the source is Cd̄. The execution delay in all the nodes
is P since the message length is exactly one unit. The total delay is given
then by n(2Cdn + P ) for the first routing method, and n(Cdn + P ) + Cd̄ for
the second routing method.

Algorithm collect-en-route features a linear message complexity with a
quadratic delay, while algorithm report-en-route features a linear completion
delay with a quadratic message complexity. Combining these two algorithms
we can achieve tradeoffs between these two measures. In particular, if both
measures are equally important we may want to minimize their sum.

Report-Every-l

An algorithm that enables us to optimize the two measures combined works
as follows. First step is to obtain n, the length of the route between the two
endpoints. This may be known from previous executions of the algorithm
or can be obtained by an algorithm which is linear both in time and mes-
sage complexity (see next sub-section). Next we send a fixed size message to
initiate collect-en-route in n/l segments each of length l. This can be done
using a counter that is initialized to l at the beginning of every segment,
and decreased by one at every intermediate node. Thus, for the first rout-
ing method, the execution of collect-en-route in the segment i starts after
at most (i − 1)(Cdn + P ) time units, and the overall time complexity is
(n − l)(Cdn + P ) +

∑l
i=1(Cdn + iP ) = O(ndnC + (n + l2)P ). The message

complexity is O(ndn)+
∑ndn/l

i=1 (l+il) = O(n2

l dn). Choosing l =
√

n results in
a linear time complexity while using O(n

√
n) messages. The requirement to

balance the two measures (up to a constant factor of P), translates to l2 = n2

l

which gives l = n2/3. For this l value both time and message complexity are
O(n4/3).

18.3.2 collect-rec

A different approach, however, is needed in order to reduce both the time and
message complexity. The following algorithm, collect-rec, achieves an almost
linear time and linear message complexity. The main idea is to partition the
path between the source and the destination into two segments, to run the
algorithm recursively on each segment, and then to send the information
about the second segment route from the partition point to the source via
the FNL track. In order to do so on the segment (i, j), in each recursive step
one needs to find the id of the partition point, k, and to notify this node, k,
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that it has to both perform the algorithm on the segment (k, j) and report to
i. In addition, i has to know that it is collecting data only until this partition
point, k, and it should get the rest of the information via the fast track.
The partition can be done, naively, in two passes. First we find the segment
length. Then sending the segment length and a counter in the slow track
allows k to identify itself as the partition node.

The idea behind the algorithm, as described above is very simple. How-
ever, the detailed implementation is somewhat complex. A pseudo-code im-
plementation of this algorithm is given below.

main(i, d, l)
1. if l = 0
2. return({vali})
3. send Reach1

port(i, d, �l/2�, �l/2�) to d
4. L1 ← main(i, d, �l/2�)
5. L2 ← receiveport()
6. return(L1|L2)

Fig. 18.6: Function main for some node i.1

1. For Reach(s, d, count, l)
2. if count > 0
3. send Reach(s, d, count − 1, l)
4. else
5. L ← main(i, d, l)
6. send Report(L) to s

Fig. 18.7: Reaction of collect-rec for receipt of message Reach()

collect(d)
1. l ← getlength(s, d)
2. L ← main(s, d, l)
3. return(L)

Fig. 18.8: Algorithm collect-rec for a source node, s.

1 Subindexing with port is to indicate a possible implementation where the port
number is used to deliver incoming messages to the correct recursive instantia-
tion.
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As explained before, finding the id of the partition point k, and sending
the information to this node is the most difficult technical part of the imple-
mentation. This is done by sending the Reach() message with a counter that
reaches 0 at node k. The id of the node who performed the partition, s, is
part of the packet data, and thus once the information regarding the segment
is available at node k it can send it directly via the fast track, to s.

The implementation of getlength(s, d), which finds the hop length of the
route between s and d, is similar to collect-en-route. The only difference is
that the source sends a counter initialized to zero as the third parameter
instead of an empty list. Intermediate nodes increase the counter by one
instead of concatenating the next hop. Using the first routing method, this
requires an average message complexity of 2dnn, and time complexity of
(n+1)P +2nCdn. If the overlay network uses the second routing method then
the average message complexity is dnn + d̄, and the average time complexity
is (n + 1)P + C(ndn + d̄).
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Fig. 18.9: Example for the logical tree for n = 16

In order to analyze the time and message complexity of the algorithm, we
need a better understanding of the properties of collect-rec algorithm. Con-
sider the logical tree that is built by collect-rec algorithm (see Figure 18.9.a).
This logical tree is built above the logical structure of the overlay network,
and it defines the partition of the path into segments such that node i is
responsible for collecting the information from segment [i, i + segmentsizei].
The tree represents the hierarchy among the segments in the recursive exe-
cution of the algorithm. Note, that the same node can appear several times
continuously in the logical tree but all the appearances must be on the path
from its leaf appearance to the root. The main properties of this logical tree
in our case (when each node has one unit of data) are:
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1. The number of nodes with height2h is bounded by n/2h.
2. At level l, the amount of data that a node sends to its father is smaller

than 2l and greater than or equal to 2l−1. This data is copied at most
log(n) − l times during the algorithm run.

3. The distance on the path from a node with height l (a leaf has height 0)
to its father in the logical tree is bounded by 2l.

Using the above properties, one can conclude that the time complexity
for a segment of length n is bounded by the time complexity of a segment of
length n/2 plus a processing time of n/2 data units plus sending the Reach()
message in the slow track along a (logical) path of length n/2, plus sending
the data via the fast track back along a path of length n/2. All together we
get the following recursive formula for the first routing method,

TC(n) ≤ TC(n/2) + Pn/2 + (P + Cdn)n/2 + Cdnn/2,

and for the message complexity

MC(n) ≤ 2MC(n/2) + ndn.

For the second routing method we get the following recursive formulae,

TC(n) ≤ TC(n/2) + Pn/2 + (P + Cdnn/2 + Cd̄),

and for the message complexity

MC(n) ≤ 2MC(n/2) + dnn/2 + d̄.

By solving these equations and adding the time complexity of
getlength(s, d), we can prove the following theorem.

Theorem 18.3.1. Algorithm collect-rec solves the route detection prob-
lem with time complexity of O(n(P + Cdn)), and message complexity of
O(ndn log n) for the first routing method, and time complexity of O(n(P +
Cdn) + Cd̄ log n), and message complexity of O(n(d̄ + dn + log n)) for the
second routing method.

Tables 18.1 and 18.2 summarize the time and message complexity of the
algorithms we described for collecting uniform information along a logical
path for the two routing methods.

18.4 weighted collect-rec Algorithm

In this section we consider the problem of collecting data along a path where
each node has an arbitrary amount of data. If we simply collect the informa-
tion along the path, the time complexity may be quadratic if all the data is
2 The height of a leaf in the logical tree is 0, and the height of the root is log n.
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algorithm time message

name complexity complexity

naive O(nP + dnn2C) O(dnn2)

collect-en-route O(n2P + dnnC) O(dnn)

report-en-route O(nP + dnnC) O(dnn2)

report-every-l O((n + l2)P + dnnC) O(dnn2/l)

collect-rec O(nP + dnnC) O(dnn log n)

Table 18.1: Summary of route exploration algorithms - first routing method.

algorithm time message

name complexity complexity

naive O(nP + d̄nC) O(d̄n)

collect-en-route O(n2P + C(dnn + d̄) O(dnn + d̄)

report-en-route O(n(Cdn + P ) + Cd̄) O(n(dn + d̄))

report-every-l O((n + l2)P + C(dnn + d̄) O(dnn + d̄n/l)

collect-rec O(nP + C(dnn + log nd̄)) O(dnn log n + nd̄)

Table 18.2: Summary of route exploration algorithms - second routing method.

concentrated at the end of the path. collect-rec algorithm is also not optimal
for this problem, since when all the data is concentrated in the last node
the data is copied log(n) times during its transmission to the first node and
thus the execution complexity of collect-rec will be O(nlog(n)P ). Thus, we
developed a new algorithm that improves collect-rec and solves this problem
more efficiently.

Our problem can be formally defined as follows: We are given an overlay
network with two designated nodes i and j. Node i intends to collect data
from all the nodes along the path from itself to j, where the amount of data in
each node may vary. Let the length of the path be n and the total amount of
data in all the nodes along the path be n̄. We assume that no global routing
information is available to the node, and thus every node knows only the ids
of its neighbors. Our goal is to develop an algorithm that solves the described
problem while minimizing the message and time complexity.
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18.4.1 Algorithm Description

Our algorithm, called algorithm weighted collect-rec, follows the steps of the
collect-rec algorithm. In order to collect the data along the path from node
i to node j the algorithm partitions the path into two segments, runs itself
on each segment recursively and then sends data from the second segment to
i via the Fast Network Layer. However, in our case we cannot assume that
the amount of data in each segment is proportional to the segment size since
nodes may hold an arbitrary amount of data. Thus we need to adjust the
destination of each node’s data according to the amount of data that the
node sends, and the total amount of data in the system.

Consider the logical tree properties of algorithm collect-rec described in
the previous section. Item 2 is not valid for this logical tree if the data is
distributed arbitrarily along the path. In the example on Figure 18.9.a node
O has 4 units of data while each other node has one unit of data. Since O
has extra data, the amount of data processed by node M is not bounded by
22. In this case algorithm weighted collect-rec adjusts the logical tree in such
a way that O sends its data directly to node I (see Figure 18.9.b). Let n̄ be
the total amount of data in the tree; we assume for simplicity that n̄ ≥ n and
term the value n̄/n the amount ratio. The adjusted tree has the following
properties:

1. The number of nodes with height h is bounded by O(n/2h).
2. If the amount of data that a node sends to its father is greater than n̄2l/n

and smaller than or equal to n̄2l−1/n, then the data is copied at most
log(n) − l times during the algorithm run.

3. If the amount of data that a node sends to its father is greater than n̄2l/n
and smaller than or equal to n̄2l+1/n, then the distance on the path from
the node to its father in the logical tree is bounded by O(2log(n)−l).

These properties allow the weighted collect-rec algorithm to reach good
complexity. weighted collect-rec algorithm uses two parameters to determine
the distance of the data transmission. These parameters are the node’s po-
sition in the basic logical tree, and the amount of data that the nodes in its
logical subtree have.

18.4.2 Detailed Algorithm Description

The algorithm consists of three phases. During the first phase the algorithm
computes the path parameters, i.e., the path length and the total amount
of information along the path, assigns length level to each node and defines
the destination for each node according to the basic logical tree, i.e. a tree
that does not consider the amount of data in each node. The purposes of the
second phase are to adjust the length of transporting data when required,
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and to allow each node to know the amount of data it should receive during
the last phase and the id of the parent node in the adjusted logical tree. In
the third phase, all the nodes send their own data and the data they received
from other nodes to their parent in the adjusted logical tree. At the end of
this phase, the root (the first node in the path) receives all the data, and the
algorithm accomplishes its task.

Phase 1

In this phase the algorithm builds the basic logical tree (of collect-rec algo-
rithm) and computes the amount ratio which indicates the total amount of
data in the path. Later, in the next phase, this information is used to modify
the logical tree as needed. Recall that the logical tree defines the partition
of the path into segments such that node i is responsible for collecting the
information from segment [i, i+ segmentsizei]. The same idea is deployed in
the weighted collect-rec algorithm. The weighted collect-rec algorithm builds
a logical tree (see for example Figure 18.9.a), in which links indicate the
responsibility of nodes for segments.

At the beginning of the algorithm the root sends a message with two
counters towards the last node in the path. The counters are the length and
total data amount of the path. The message passes through the Application
Layer until it reaches the last node in the path. Each node that is traversed
by this message, increments the length and adds its local data amount to the
total data amount. The last node sends the message to the root through the
Fast Network Layer.

When the root receives the message containing the path parameters, it
initiates a recursive partition process. During this process each node i sends
partition messages to nodes with numbers (i + �segmentsizei/2k�), where
k changes from 0 to i’s length level−1. The messages are delivered through
the Application Layer. Each such message, destined to node i, contains the
address of its sender (i.e., i’s parent in the logical tree who is also called i’s
destination), i’s length level that describes the length of i’s segment, and the
amount ratio. Partition messages are sent via the Application Layer using a
counter in the same way this process is done in algorithm collect-rec. Upon
receiving the partition message each node stores all received parameters, it
sends a hello message containing its id to its parent in the logical tree, and
initiates a partition process on its segment. At the end of this phase, each
node knows the ids of its parent and of its children in the basic logical tree.
Note, that the root’s length level is log(n) and the size of its segment is n.

Phase 2

As mentioned above, the goal of the second phase is to compute the adjusted
logical tree. This includes determining the ids of the parents and children in
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the new tree, and computing the amount of data that will be collected. This is
done by collecting information regarding the amount of data in each segment,
and disseminating this information along the hierarchy toward the root. This
can be viewed as running algorithm collect-rec when the data collected is the
amount of data at each node, and the length of its segment. This information
is sufficient in order for each node to determine which of the nodes in its
subtree are its children in the adjusted tree, and how much information each
one of them sends.

This phase starts with a message Comput-Adjusted-Tree (n,n̄,idList), sent
by the root using the fast track along the basic logical tree. Upon receiving
this message, each node in the tree stores locally the idList that contains
the ids of all the logical nodes from the root to it, adds its id to the idList,
and forwards the message to the children in its basic logical tree. When a
leaf gets this message, it computes the id of its destination according to
the idList, and the amount of data it has according to the following rule.
If the amount of data is greater than n̄2l/n and smaller than or equal to
n̄2l−1/n, then the destination is the (log(n) − l)’s element in the idList. It
then sends an AdjustTree(DataList) message to its parent in the basic logical
tree. Upon receiving an AdjustTree(DataList) message from all children, each
intermediate node computes the amount of data it should receive, the ids of
its children in the adjusted tree, and by adding its own data amount, the
amount of data it needs to send up the tree. Using this data and the rule
specified above, the node can use the idList it stored to compute the id of
its adjusted destination (i.e. its parent in the adjusted tree). It then appends
all lists it received from its children, adds its own amount and dest-id, and
sends an Adjust() message to its parent in the basic logical tree.

This phase ends when the root gets an Adjust() message from all its
children. At this point each node in the tree knows how much information it
should get, and the ids of the nodes that will send it information, and also
the id of its destination, i.e., its parent in the adjusted logical tree.

Phase 3

In this phase, data is sent along the links of the adjusted logical tree (as
described in Figure 18.9). Each node sends data to its destination. The
nodes, that receive data from other nodes, must wait until receiving all the
data and only then they transmit this received data together with their local
data to their destination. This is done through the fast track. At the end
of the phase the root receives all the data of the path and the algorithm
accomplishes its task.
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weighted collect-rec-Phase2-3(i)
1. if received ComputeAdjustTree(n, n̄,idList)
2. if(segmentsizei > 1)
3. idList = id | idList
4. send ComputeAdjustTree(n, n̄,idList) to ChildL

5. send ComputeAdjustTree(n, n̄,idList) to ChildR

6. else
7. dest = parent
8. if (local data amount >0 )
9. l= log n + 1 - �log(n/n̄· local data amount)�
10. dest = idListl

11. DataList = (i,local data amount,dest)
12. send AdjustTree(DataList) to perent
13. send report(Data) to dest
14. i=0
15. while (i < number − of − children)
16. if received AdjustTree(DataList)
17. i++
18. List = List | DataList
19.
20. dataAmount = processAdjustTree(List)
21. dataAmount+=local data amount
22. dest = parent
23. if (local data amount >0 )
24. l= log n + 1 - �log(n/n̄· local data amount)�
25. dest = idListl l=�log(n̄/n· dataAmount)�
26. DataList = (i,dataAmount,dest) | DataList
27. send AdjustTree(DataList) to perent
28. collectedAmount = dataAmount - local data amount
29. L ← collectData(collectedAmount)
30. L ← L|(localdata)
31. send Report(L) to dest

Fig. 18.10: Function main (phases 2 and 3) for node i.

18.4.3 Complexity Analysis of weighted collect-rec Algorithm

As explained above, the first and second phases of algorithm weighted collect-
rec can be viewed as an execution of algorithm collect-rec, where the data
collected is the triple (i, amount(i), dest(i)) and not the real data of each
node. The only change here is that we added at the beginning of Phase 2 the
message AdjustTree(idList) which goes down the logical tree. However, since
the amount of data in the idList is bounded by the tree hight (logn), the
complexity of these phases is the same as the complexity of collect-rec, which
can be formally stated as follows.

Lemma 18.4.1. The time complexity of Phase 1 and Phase 2 is O(n(P +
Cdn)), and the message complexity is O(n(dn + log n)) for the first routing
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collectData(n)
1. L ← empty
2. while( n > 0)
3. if received Report(data)
4. L ← L|data
5. n− = sizeof(data)
6. return L

Fig. 18.11: Function collectData().

processAdjustTree(List)
1. amount = 0
2. for each entry in List
3. if( entry.dest == i) amount+=entry.amount
4. return amount

Fig. 18.12: Function processAdjustMessage.

method, and time complexity is O(n(P + Cdn) + Cd̄ log n), and the message
complexity is O(n(d̄ + dn + log n)) for the second routing method.

The more difficult part is to analyze the complexity of the third phase in
which data is actually sent along the logical links of the adjusted tree. We
need to prove the following lemma.

Lemma 18.4.2. The time complexity of Phase 3 is O(n(P + Cdn)), and
the message complexity of O(n(dn + log n)) for the first routing method, and
time complexity is O(n(P + Cdn) + Cd̄ log n), and the message complexity is
O(n(d̄ + dn + log n)) for the second routing method.

Proof. When the algorithm collects data all the messages are sent towards
the first node in the path, therefore the communication delay of phase 3 is
O(Cdnn) using the first routing method and O(Cd̄ log n) using the second
routing method.

Define the length level of a node to be l if its segment size is smaller than
2l+1 but bigger than or equal to 2l. A node has an amount level l if the
amount of data it sends ( this includes its own data and the data received
from the other nodes during the algorithm execution) is greater than or equal
to (n̄/n)2l and smaller than (n̄/n)2l+1. Finally we define the node’s level to
be the maximum between its length level and its amount level.

According to the algorithm every node sends its data to a node with a
higher level. The amount level of the node determines the execution delay
in the node. The execution delay in the node with amount level la equals at
worst to the amount of data it might process without increasing its amount
level, hence it equals to n̄/n(2la−1). There are log(n) possible amount levels
and processing in the nodes with the same level is done simultaneously, hence
the execution delay of Phase 3 is:
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log(n)∑
l=0

n̄

n
(2l) ≤ O(n̄).

Therefore the time complexity of Phase 3 is O(n(P+Cdn)) for the first routing
method, and O(n(P + Cdn) + Cd̄ log n) for the second routing method.

During the data collection phase each node sends one message with data
to its destination. The distance (in terms of overlay hops) between the node
and its destination is bounded by 2l where l is the node’s level. The number
of nodes with level l is bounded by n/2l−1 since there are at most n/2l nodes
with amount level l and at most n/2l nodes with length level l. Hence, when
using the first routing method, the total number of messages passing during
the third phase is bounded by

log(n)∑
l=0

ndn

2l−1
(2l) ≤ O(nlog(n)).

If we use the second routing method, the average message complexity is
simply d̄ log n.

Combining all three phases together we can prove the following theorem.

Theorem 18.4.1. The time complexity of the algorithm weighted collect-rec
is O(n(P + Cdn)), and the message complexity is O(n(dn + log n)) for the
first routing method, and the time complexity is O(n(P + Cdn) + Cd̄ log n),
and the message complexity is O(n(d̄ + dn + log n)) for the second routing
method.

18.5 Gathering Information from a Tree

In this section we deal with a more general problem where we need to collect
information from a general graph, and not from a specific path. First, we
assume the existence of a spanning tree rooted at the root, and we want to
collect information from all leaves of this tree along the paths to the root.
As shown in the introduction to this chapter, the naive solution of collecting
data along a spanning tree as described in [37] is not optimal in our model.

One can show that in the first routing method, it is impossible to gather all
information with a time complexity lower than Ω(DC +nP ), where D is the
diameter of the overlay network. This is true because a message cannot arrive
at the most remote element faster than DC time units, and the algorithm
must spend at least P time units to copy the message from every element
in the network. The message complexity cannot be lower than Ω(n), since
every element in the network must send at least one message, thus the root
must process at least n units of data. Moreover, if no global structure such
as a spanning tree is available, the message complexity is bounded by O(m),
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Fig. 18.13: A simple extension of collect-rec.

where m is the number of logical links in the overlay network, since every
link in the graph must be tested in order to insure that we cover all nodes.

A first step towards developing algorithms that will have both a linear
time and message complexity is to modify collect-rec to work on trees. This
can be done (see Figure 18.13) by assigning a number to every node in the
tree according to a pre-order visiting starting at the root. We now consider
the path that goes from node 1 (the root) to node n, according to this order.
Note that node i and node i+1 may not be neighbors in the overlay network
(for example nodes 11 and 12 in Figure 18.13), and therefore this path is not
a simple path. However, the total length of the path in terms of overlay nodes
is bounded by 2n.

Creating such a path requires assigning numbers to the nodes in the tree
according to the pre-order visiting order, and allowing nodes in the tree to
route messages according to this node number. For this, each node should
know its own number, and the number range of each of its subtrees. This can
be easily done by a bottom up pass on the tree that collects the sizes of the
subtrees, followed by a top down pass on the tree in which every node assigns
ranges to each of its subtrees. Since the size of the messages is constant, the
time complexity of this process can be bounded by O(CdnD + Pn), and the
message complexity is O(n).

After this phase we can run Algorithm collect-rec on this path and ob-
tain the message and time complexity of collect-rec. All together we get the
following theorem.

Theorem 18.5.1. One can collect data from any given spanning tree with
time complexity of O(n(P + Cdn)), and message complexity of O(n(dn +
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log n)) for the first routing method, and time complexity of O(n(P + Cdn) +
Cd̄ log n), and message complexity of O(n(d̄ + dn + log n)) for the second
routing method.

However, in practice n might be very big (100,000 nodes or more in a
typical Peer-to-Peer network) while the diameter of the network (and thus
the height of the spanning tree) is much smaller (typically 10). It is thus both
practically important and theoretically interesting to reduce the complexity
of the data collecting algorithm in this model.

In the rest of this section we describe an algorithm, called weighted collect
on trees, for the general data collection problem. As indicated before, we
assume the existence of a spanning tree rooted at the root, and we want to
collect information from all leaves of this tree along the paths to the root. Our
algorithm follows the ideas presented in the previous section for the weighted
collect-rec algorithm. We start with the given spanning tree (as we started
with he basic logical tree in algorithm weighted collect-rec, and we modify it
by assigning new destinations to some nodes. This is done in a way that data
is always sent up the tree towards the root, balancing between the amount
of data that a node sends and the length of path along which the data is
transported.

In order to do so, we assign what we call a length level to each node. These
length level values should have the following two properties: The number of
the nodes with length level l must be greater than or equal to the total num-
ber of the nodes with length level greater than l, and the distance between
a node with length level l and the nearest node towards the root with length
level greater than l must be bounded by O(2l). Finding an appropriate as-
signment that has the desired properties is not easy. As will be proven later,
the following algorithm assigns length level to the nodes of the tree with
the desired properties. All leaves have length level 0. The length level of each
internal node is the minimum between the maximum of all the length levels
in the node’s sub-tree plus 1, and the position of the first 1 in the binary
representation of the distance of the node from the root. Once length levels
are assigned, each node should send its data to the first node, on the way
to the root in the tree, that has a length level that is bigger that the node’s
length level.

18.5.1 Detailed Algorithm Description

Phase 1

As explained above, the goals of the first phase are to assign a length level to
each node, to find the destination of each node, and to compute the number
of the adjust messages that each node needs to receive during the second
phase.
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Definition 18.5.1. Let lengthbin(i) be the binary representation of the dis-
tance between the root and node i.

Definition 18.5.2. Let η(i) be the position of the least significant bit that
equals to 1 in lengthbin(i).

The algorithm assigns length level 0 to all leaves. The length levels of all
other nodes are defined by the formula min{η(i), lm(i) + 1} (where lm(i) is
the maximal length level in the sub-tree of i excluding i).

In order to find the distance from each node to the root, the root dis-
seminates among its children a message with one counter that is equal to 1.
Each node that receives such a message stores the value of the counter as the
distance to the root, increments the counter, and disseminates the message
to its children.

Then, the algorithm computes the maximal length level in the sub-tree of
each node and assigns the length level to each node. During this computa-
tion each node receives one message from each of its children. This message
contains the maximal length level in the child sub-tree. Upon receiving this
message the node computes both its length level and the maximal length level
in its sub-tree (considering its own level as well), and sends the message with
the computed value to its parent. This computation is done bottom up, and it
starts in the leaves immediately after receiving the message with the distance
to the root.

Once a node knows its length level it starts searching for its destination.
this is done by creating a request that contains the node’s length level and
sending it towards the root via the Application Layer. Each node that receives
such a request stores the address of the child who sent it. Then, the node
forwards the request to its parent iff the node’s length level is smaller than or
equal to the received length level and the node did not send a request before
with the same length level.

If the node’s length level is bigger than the requested length level, it sends
a reply with its address and length level to the appropriate child. When a
node receives a reply, it disseminates the reply to all children who had sent
the appropriate requests before, and stores the address from the reply if this
is also its own destination.

In order to move on to the last task of the phase, it is important that
each node will know that it has received all messages from its subtree. This
is done by sending notification messages up the tree. Each leaf sends such a
notification immediately after sending its request. Other nodes send their no-
tification when they receive notification from all of their children and finished
processing all the received requests. Note, that a node delays the dissemina-
tion of replies to its children until it sends a notification towards the root.
Only after the node notifies its father, it is guaranteed that it knows about
all its children who are waiting for the delayed replies.

The last task of the phase is to figure out the number of length sources of
each node. Recall, that node j is the length source of node i if j received i’s
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address as a destination address during the first phase. Denote by Vl(i) the set
of the length sources of i with the length level l. The number of length sources
equals the sum of Vl(i), for all l smaller than i’s length level. Next we describe
how the algorithm computes Vl(i) for a specific l. Consider the virtual tree
that contains all the paths through which the replies with i’s address passed.
When replies reach their destinations this virtual tree is well-defined, since
each node has the addresses of the children that received these messages,
and the node will not receive new requests since its children finished sending
requests. The root of this sub-tree is i. Note, that two such virtual trees, that
are built from the paths passed by the replies with the same length level, have
no common edges if their roots are distinct. The algorithm then computes
the sum of the values of all the virtual tree nodes in a bottom up way, where
each node adds the value 1 iff the node’s length level is l.

Phase 2 and Phase 3

Once the destination of each node is known, the algorithm proceeds exactly
as in algorithm weighted collect-rec since the balancing between the amount
of data and the length level is exactly the same, and sending the data is of
course the same.

18.5.2 Complexity Analysis of weighted collect on trees Algorithm

For simplicity, we do not explicitly state the pseudo code that implements the
algorithm. The main difference between algorithm weighted collect on trees
and algorithm weighted collect-rec is in the first phase and the definition of
the length levels. Once the logical tree on top of the overlay tree is created,
the algorithm and the analysis is very similar to the one in algorithm weighted
collect-rec. We begin with two definitions.

Definition 18.5.3. Let Vl be the group of nodes whose length level assigned
by the algorithm is l. Denote by nx the size of Vx.

Lemma 18.5.1. The size of Vl is equals to or greater than the sum of sizes
of Vi, for all i > l, i.e. nl ≥

∑max length level
i=l+1 ni.

Proof. Consider the group V>l =
⋃

Vi such that i > (l + 1). Denote by vi

a node from V>l, and by M(vi) the nearest to vi node in its sub-tree with
length level l. Such a node always exists, because under each node with length
level x there are nodes with all length levels less than x. If there are two or
more such nodes we can arbitrarily choose one of them.

Consider two distinct nodes v1, v2 from V>l. There are two cases. The
first case is when none of these two nodes is in the sub-tree of the second
node. The second case is when one node is in the sub-tree of the second node.
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M(vi) is always in the sub-tree of vi. Thus, in the first case M(v1) and M(v2)
are distinct nodes. Consider now the second case. Assume, that v2 is in the
sub-tree of v1. M(v2) is in the sub-tree of v2. Since the length levels of the
considered nodes is greater than l, both η(v1) and η(v1) are greater than l.
Hence, the path from v2 to v1 contains at least one node with length level
equals to l. Henceforth, M(v1) and M(v2) are distinct nodes.

In both cases we proved that M(v1) 	= M(v2), hence for each vi there
is M(vi) that is distinct from all other M(vj) if vi 	= vj . Thus, nl ≥∑max length level

i=l+1 ni, and the lemma follows.

Lemma 18.5.2. The number of the nodes with length level l is bounded by
n/2l.

Proof. In order to prove the lemma it is sufficient to prove the following
equation

max length level∑
i=l

ni ≤ n

2l
(18.1)

since ni ≥ 0 for every i.
The proof of Equation 18.1 is obtained using induction on length level.
Base case. The length level equals to 0. The lemma holds, because the

total number of nodes in the tree is n.
Inductive step. Suppose that the lemma holds for all length levels less

than or equal to l. We prove that the lemma holds also for length level l + 1.
Equation 18.1 equals to:

nl +
max length level∑

i=l+1

ni ≤ n

2l
. (18.2)

According to Lemma 18.5.1 nl ≥ ∑max length level
i=l+1 ni. Thus, Equation

18.3 follows from Equation 18.2.

2
max length level∑

i=l+1

ni ≤ n

2l
,

max length level∑
i=l+1

ni ≤ n

2l+1
(18.3)

The lemma follows.

Lemma 18.5.3. The distance from node i with length level l to the nearest
node towards the root with a bigger length level is bounded by 2(l+1).

Proof. When the distance from i to the root is equal to or smaller than 2(l+1)

the lemma follows, since the root has the highest length level among other
nodes. Suppose now that the distance to the root is greater than 2(l+1). There
are two cases: the first case is when the first 1 in lengthbin(i) is placed at
position l, and the second case is when the first 1 in lengthbin(i) is placed at
a position greater than l.
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Consider the first case. Since the distance from i to the root is greater
than 2(l+1) there is 1 in lengthbin(i) at position k which is greater than l.
Let ī be the node that lies on the path from i to the root and lengthbin(̄i) is
the same as lengthbin(i) except in position l. The ī’s length level cannot be
smaller than (l +1) because the first 1 in lengthbin(̄i) is at a position greater
than l and the maximal length level in ī’s sub-tree is at least l since i is in
this sub-tree. The distance from i to ī is 2l, thus the lemma follows in this
case.

Consider the second case. Let k be the position of the first 1 in lengthbin(i).
Let ī be the node that lies on the path from i to the root and the distance
between i and ī is 2l+1. There are two sub-cases, when k > (l + 1) and when
k = (l+1). When k > (l+1) lengthbin(̄i) has no 1 at positions less than l+1.
When k = (l + 1) lengthbin(̄i) is the same as lengthbin(i) except in position
k. Since the distance from i to the root is greater than 2(l+1), lengthbin(i) has
1 at a position greater than k. In the two sub-cases the first 1 in lengthbin(̄i)
is in a position greater than l. Since i is in the ī’s sub-tree the maximal length
level in this sub-tree is at least l. Therefore, ī’s length level cannot be smaller
than (l + 1). The lemma follows.

Before we will prove the next lemma we must note that the maximal
length level assigned by the algorithm is log(D).

Lemma 18.5.4. The time complexity of phase 1 is O(DdnC + nP ) and its
message complexity is O(dnn log(D)).

Proof. During the first phase the algorithm uses the following types of mes-
sages: a message with distance to the root, a message with maximal length
level in the sub-tree of each node, a message that notifies the node’s father
that the node finished sending requests, a message with request for the ad-
dress of the destination, and a message with reply that contains the destina-
tion address. The complexities related to the first three types of the messages
are the same. The complexity related to the last two types are also the same.
Hence the complexity of the second phase is determined by the complexity re-
lated to the messages with distance to the root and by the complexity related
to the messages with destination address.

Consider the messages with distance to the root. Each node receives one
such message, thus their message complexity is O(n). The messages are dis-
seminated in one direction, hence their communication delay is O(DC). In
order to evaluate the execution delay related to these messages consider a
critical path {s0, s1, ..., sk}, where messages are sent from si+1 to si and s0

is the root. The execution delay of these messages is equal to the sum of
execution delays at each node, denoted by ti:

k∑
i=0

ti, (18.4)
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The node spends a constant time when it sends such a message to each
of its children, hence ti equals to the number of node’s children. Since the
sum of children in the tree cannot exceed the number of the nodes of the
tree, the execution delay of the messages with distance to the root is bounded
by O(nP ). The time complexity related to the messages with distance to the
root is O(DC + nP ).

Consider now the messages that contain the addresses of the destinations.
These messages are always sent in one direction, hence their communication
delay is O(DC). Since the paths, which messages with the same level but
iwhich are sent by the different nodes pass, have no common edges, the ex-
ecution delay is the

∑log(D)
i=0 ti, where ti is the execution delay of processing

messages with level i. ti consists of the execution delay of receiving the mes-
sage from the node’s father and retransmitting the message to the children.
According to Lemma 18.5.3 the first component is bounded by 2i+1. The
second component is bounded by the number of nodes with length level i.
According to Lemma 18.5.2 this number is bounded by n/2i. Hence, the
execution delay is:

log(D)∑
i=0

2i+1 +
n

2i
≤ O(n) (18.5)

The time complexity of these messages is O(DC+nP ). Consider now their
message complexity. Each node sends one such message to a distance bounded
by 2i+1, where i is the node’s length level, according to Lemma 18.5.3. The
number of nodes with length level i is bounded by n/2i according to Lemma
18.5.2. Hence, the message complexity of these messages is:

log(D)∑
i=0

2i+1 n

2i
≤ O(nlog(D)) (18.6)

The lemma follows.

As explained, the continuation of the algorithm is very similar to al-
gorithm weighted collect-rec and thus we omit the detailed description and
analysis. The overall complexity of the algorithm is stated in the following
theorem.

Theorem 18.5.2. The time complexity of the algorithm weighted collect on
trees is O(n(P+Cdn)), and the message complexity is O(n(dn+log D)) for the
first routing method, and the time complexity is O(n(P + Cdn) + Cd̄ log D),
and the message complexity is O(n(d̄ + dn + log n)) for the second routing
method.
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18.6 Gathering Information from General Graphs

In the previous sections we assumed that the overlay network maintains a
spanning tree, in which each node knows its parent and its descendants. For
many overlay applications (such a CDN) this is a very natural assumption as
some information should be sent (or collected) from all the nodes. For other
applications, such as Peer-to-Peer file sharing applications, maintaining a
global spanning tree may be too expensive since the amount of users that
join (or leave) the Peer-to-Peer network each time unit is too big.

Nevertheless, in all non-trivial proposals for a structural Peer-to-Peer net-
work, maintaining such a tree requires at most a very small change to the
existing infrastructure. If a spanning tree does not exist, one will have to cre-
ate a spanning tree, and run our algorithm on top of it (assuming the amount
of data collected is big enough). In order to create such a tree, one can use
the well known algorithm, [37] in which every node that receives a message
indicating the creation of the tree, sends this message to all its neighbors.
Each node replies to the first creation message with an “I am your child”
message, and to all other messages (i.e. not the first one) with an “already in
tree” message. This phase can be combined with the first phase of the algo-
rithms described in the previous section, as they both start with a message
being sent from the root down the spanning tree.

The complexity of creating such a tree is independent of the routing
method since messages are exchanged only among overlay neighbors. The
message complexity is of course O(dnm), where m is the number of links
in the overlay network, and the time complexity is O(CdnD + SnP ), where
Sn = maxall paths π in tree

∑
n∈π degree(n).a

In general the only bound for the value of Sn is 2m, but in many cases
one can build a tree with much better values (see [93] for a discussion on
this subject in a different model). If, however, the outdegrees of the overlay
network is bounded by log n and the height of the spanning tree is also
logarithmic in the number of nodes, as indeed is the case in most practical
scenarios, then the time complexity of creating the tree becomes O(CdnD +
P log n2), and the overall time complexity of gathering information from the
entire overlay network without assuming a spanning tree is the same as the
one stated in Theorem 18.4.1, namely O(n(P + Cdn)) for the first routing
method, and O(n(P + Cdn) + Cd̄ log D) for the second routing method.

18.7 Global Functions

In many cases, exploring the path between two nodes is just an intermediate
step towards computing some function along this path. A typical example
is bottleneck detection: we want to detect the most congested link along a
path. Another typical example is the need to know how many copies of a
certain file are available in a Peer-to-Peer file sharing system. In both cases
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the computation can be done using a single pass on the data (path in the
first example, and tree in the second one) using constant size messages.

Bottleneck detection is a special case of a a global sensitive function [121]
which we term succinct functions. These functions, e.g., average, min, max,
and modulo, can be computed with a single path on the input, in any order,
requiring only constant amount of memory. For such functions we can prove
the following theorem.

Theorem 18.7.1. Every succinct function on a path can be computed with
time complexity Θ(ndn(P +C)) and a message complexity of Θ(n), and these
bounds are tight.

In a similar way, we can define succinct-tree functions as functions from
a set of elements {Xi} to a single element x, such that if f({xi}) = x and
f({yi}) = y then f({xi} ∪ {yi}) = f({x} ∪ {y}). Such functions can be
computed on a tree using a single bottom up pass with fixed length messages,
and thus the following theorem holds.

Theorem 18.7.2. Every succinct-tree function can be computed on an over-
lay network with time complexity of Θ((CdnD+SnP ), and message complex-
ity of Θ(m) (Θ(n) if a spanning tree is available), and these bounds are tight.

Note that since we only use messages between neighbors in the overlay net-
work, the same results hold for both routing methods.

18.8 Performance Evaluation

In order to verify the practicality of the algorithms presented in this chapter,
we evaluated their performance on large networks that contain thousands
of internal nodes. The results were obtained using a specially built simula-
tor that allows us to simulate runs on arbitrary big networks. To make the
presentation clear, we only considered the first routing scheme, with dn = 1.

18.8.1 weighted collect-rec Algorithm Performance

In this section we present the results of running the weighted collect-rec algo-
rithm. Figure 18.14 depicts the results of collecting data that is distributed
uniformly among all the nodes. The X axis is the path length. In these runs
we checked the time and message complexity of the algorithm for different
values of amount ratio, from 1 up to 1.8. Remember that the amount ratio
is the ratio between the amount of the data in all the nodes and the path
length. The results show that the message complexity is independent of the
amount of transported data. For clarity of the presentation, we plotted in
Fig.(18.14.b) the line for the theoretical bound O(nlog(n)).
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As for time complexity, there is a clear difference in the running time with
different amount ratios. Note, however, that this difference is not proportional
to the difference in the amount ratio. This can be explained by the fact that
the running time of the first two phases depends only on the path length. The
difference in the running time of the algorithm for different amount rations,
is introduced by the third phase, when the actual data collection is done.
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Fig. 18.14: weighted collect-rec performance

Figure 18.15 depicts the results of collecting data from a path where all
the data is concentrated in one node. Note, that in this case the node that
contains all the data must send the data directly to the root during the last
phase. In each chart, the X axis describes the distance from the single node
that contains data to the root. The number of nodes in the path is 100 in
charts a and b. Both, the number of messages and the running time increase
when data is located further away from the root. The initial values show the
minimal time and number of messages required to accomplish the first two
phases (i.e. the time complexity or the number of messages when the data is
actually located at the root). The number of messages increases proportionally
to the distance from the node to the root. As the node is further away from
the root the message with the data is transmitted over a greater distance,
and the number of messages grows. The growth of the running time looks
like a step function. The figures show that the steps appear at values of n/2i.
Since the node sends the data directly to the root during the last phase,
the algorithm must deliver the address of the root to this node during the
second phase. Considering the path of the address delivering. The message
with the address may be processed by other nodes and each time when the
maximal length level of the nodes that participate in the delivering increases
a new step starts. This is because the amount of work done by the node
during the second phase is proportional to n/2i. Inside each step (that is
better seen for the small values of x) there is a weak increase of the running
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time. This increase is caused by the growth of the communication delay that
a message with data suffers when the distance to the root increases. The
presented results were obtained by running one experiment for each value of
x. A larger number of experiments here is useless, since the simulator gives
the same results for exactly same starting parameters.
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Fig. 18.15: weighted collect-rec performance. All data in one node

Figure 18.16 depicts the results of collecting data from a path where an
arbitrary group of nodes contains all the data in the system. The number
of nodes in the path is 100 in charts a and b. In each chart the X axis
describes the size of the set of the nodes that contains all data. Note that
the data is distributed uniformly among all the nodes in the set. The charts
show that the running time decreases when the group size grows from 4 − 5
up to approximately 20% of n. When the size of the group increases the
data processing becomes more parallel and this causes the processing time to
decrease. When the size of the group continues to grow, the time required for
processing the data in each node increases since there are more data packets.
This process balances the effect of the parallel processing and the total time
required is the same.

As can be seen from Figure 18.16 (b), the number of messages increases
logarithmically with the increasing of the group size. The charts show that as
the group grows the average cost (in messages) of adding new nodes decreases.
The average value of the standard deviation for the running time is 13% and
for the number of messages is 3%. The standard deviation has higher values
for the small group and it decreases as the group size increases.
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Fig. 18.16: weighted collect-rec performance. All data in a set of nodes

18.8.2 Performance of weighted collect on trees Algorithm

In order to evaluate the weighted collect on trees algorithm we used two net-
work models. The networks created according these models have different
topology properties. The first model, denoted by random tree, is the network
topology where probability that a new node will be linked to an existing node
is the same for all existing nodes (also known as G(n, p)). However, recent
studies indicate that the Internet topology is far from being a random graph
[201]. In order to capture spanning trees of such model the described algo-
rithm were also tested on Barabasi trees. In this model the probability that a
new node will be linked to an existing node with k links is proportional to k
[637]. As it will be shown below, the differences in the network models affect
the performance of the algorithm. The results of evaluating the performance
of weighted collect on trees algorithm is depicted in Figures 18.17. In both
charts, the x axis describes the size of the tree. Figure 18.17 (a) shows the
results of running the algorithm on random trees and Figure 18.17 (b) shows
the results of running the algorithm on Barabasi trees. The plotted results
reflect an average cost taken from 1000 runs per each tree size, and the values
of standard deviation do not exceed 4%.

One can observe that both the time and the number messages grow lin-
early, 3 this agrees with the theoretical analysis. The running time of the al-
gorithm is smaller on random trees than on Barabasi trees. This is explained
by the fact that Barabasi trees have a small group of nodes with a larger
number of children (in random trees the distribution of children among the
internal nodes is more uniformly) and these nodes perform a lot of work. The
number of messages is greater when the algorithms run on the random trees.
This can be explained by the fact that the diameter of Barabasi trees is less
than the diameter of random trees.
3 Note that the time scale is logarithmic.
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Fig. 18.17: weighted collect on trees algorithm performance

Note that the actual value of the time complexity depends on the ratio
between C and P . In practical scenarios this ratio depends on the network
RTT (since C also present the propagation delay), the type of processing,
the architecture of the overlay network, and the efficiency of data handling
at the nodes. However, in a Peer-to-Peer network, where distant hosts can
be neighbors in the overlay layer, this ratio could indeed be small (i.e. ≤ 1),
while in local area overlay networks (as in Active Networks prototypes) this
ratio could be as big as 20.

When creating the graphs in Figure 18.17, we used p = c = 1 to calculate
the case c = p, c = 1, p = 20 to calculate the case p = 20c, and p = 1, c = 20 to
calculate the case c = 20p. It is clear then, that the fastest case is when c = p.
However, as indicated by the graphs the affect of increasing p is much more
severe than increasing c. If we look at the Barabasi tree, we see that it takes
about 2000 time units to collect information from a 1000 node tree (where
c = 20p). Assuming p = 0.1Ms, we can infer that a 100,000 node graph could
be collected in 20 seconds assuming RTT of 2Ms. For more realistic RTTs, and
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assuming an open TCP connection between peers, one can collect information
from 100,000 nodes in less than a minute, using algorithm weighted collect on
trees.



19. Schema-Based Peer-to-Peer Systems

Wolfgang Nejdl, Wolf Siberski (L3S and University of Hannover)

19.1 Introduction

When sharing information or resources — the most prominent application of
Peer-to-Peer systems — one is immediately faced with the issue of searching.
Any application which provides an information collection needs some means
to enable users finding relevant information. Therefore, the expressivity of
the query language supported by the system is a crucial aspect of Peer-to-
Peer networks. Daswani et al. [154] distinguish key-based, keyword-based and
schema-based systems.

Key-based systems can retrieve information objects based on a unique
hash-key assigned to it. This means that documents for example have to
be requested based on their name. This kind of queries is supported by all
DHT networks (cf. Chapter 7). Typically, key-based search features are not
exposed to end-users, but rather used as basic infrastructure.

Keyword-based systems extend this to the possibility to look for docu-
ments based on a list of query terms. This means that users do not have to
know the document they are looking for, but can ask for all documents rele-
vant to particular keywords. Non-ranking keyword-based systems find match-
ing resources by executing a string or string pattern matching algorithm, e.g.
on the file name. Ranking keyword-based approaches score documents ac-
cording to their relevance depending on statistics derived from document full
text. Chapter 20 describes the latter kind of systems.

Schema-based systems manage and provide query capabilities for struc-
tured information. Structured means that the information instances adhere
to a predefined schema. For example, in a digital archive any document is
described using a schema consisting of elements as title, author, subject,
etc. In schema-based systems, queries have to be formulated in terms of the
schema (e.g. “find all documents with author=Smith”). Nowadays the domi-
nant schema-based systems are relational databases; other important variants
are XML and Semantic Web data stores. Schema-based Peer-to-Peer systems
are sometimes also called Peer Data Management Systems (e.g., in [273]).

Digital archives are an application area where schema-based queries pro-
vide significant value. Here, users often need to formulate complex queries,
i.e., queries with constraints regarding several criteria, to specify their search.
For example, to find recent books about Java programming, one would need
to exclude outdated books and to disambiguate between the Java program-
ming language (“find all books where ’Java’ occurs in the title, publication

R. Steinmetz and K. Wehrle (Eds.): P2P Systems and Applications, LNCS 3485, pp. 323-336, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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date is less than three years ago, and subject is a subtopic of computer”).
Such complex queries are only supported by schema-based systems.

We can observe two converging development lines, one regarding database
systems, the other in Peer-to-Peer networks. Databases started as central-
ized systems, where one server processes queries from all clients. Since then,
they have evolved towards a higher degree of distribution, e.g by introducing
mediator-based [622] distributed query processing1. At the same time Peer-
to-Peer systems have developed towards support for more expressive queries
[445, 70, 4, 274, 308]. Schema-based Peer-to-Peer systems are the point where
these two directions of research meet, as shown in figure 19.1(see also [260]).
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Fig. 19.1: Schema Capabilities and Degree of Distribution

Schema-based Peer-to-Peer systems inherit characteristics of database
systems as well as Peer-to-Peer networks:

– Strict adherence of data to a schema All data stored at the peers is struc-
tured according to a schema. Note that not necessarily all peers share the
same schema. For example, a peer storing information about courses, pro-
fessors and students will use another schema than a digital archive peer
storing information about scientific documents. This leads to the require-
ment of schema mapping in Peer-to-Peer systems (see 19.4)

– Schema-based query expressions Query constraints as well as requested
information are specified with reference to schema elements. In a hetero-
geneous network, i.e., where more than one schema is used, queries will be
sent to a subset of peers only, depending on the query constraints.

1 A good overview of distributed database technology is [363].
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– No global knowledge Maintaining global information such as a schema
repository doesn’t scale if the network grows, because this information
would have to be replicated to all peers, and the update frequency grows
with network size. Therefore query processing needs to rely on local infor-
mation only, and we can’t use techniques from distributed databases which
require a central mediator.

– Self-organization and -administration A Peer-to-Peer network has no ad-
ministrator who could create indexes, materialized views, etc., as in a cen-
tral database. All management activities necessary to improve query pro-
cessing need to be executed in a self-organizing fashion (cf. Chapter 16).

The chapter is structured as follows: Several design dimensions for schema-
based Peer-to-Peer systems can be distinguished. These dimensions and pos-
sible choices for each dimension are presented in section 19.2. Semantic Web
standards allow to represent information in a structured way which is espe-
cially suited for sharing. Therefore, they are a perfect basis for a schema-
based Peer-to-Peer network. 19.3 exemplifies the connections between design
choices by describing an existing Peer-to-Peer system for the Semantic Web.
19.4 includes the advanced topics schema mapping, distributed query plans
and top-k query processing.

19.2 Design Dimensions of Schema-Based Peer-to-Peer
Systems

Several decisions influence the design of a schema-based Peer-to-Peer sys-
tem: the choice of the data model and associated query language, how to
distribute the data among the peers (data placement), how to connect the
peers (topology), and the query routing algorithm all determine search capa-
bilities and performance [154]. This section describes options for each such
design dimension along with their consequences for the resulting system.

19.2.1 Data Model and Query Language

The Data model used to store information is tightly connected to the aspect
of the query language. Many data models have been proposed for storing
structured data and it is out of scope to discuss them in detail. We rather
want to mention some basic distinctions with respect to the data model that
influence the ability of the system. The most basic way of storing structured
data is in terms of a fixed, standardized schema that is used across the whole
system. In this view, less complex data models like the one used in key- or
keyword-based systems can be considered as special case of a very simple
fixed schema. Despite the obvious limitations, fixed schema approaches are
often observed in Peer-to-Peer systems because this eliminates the problem of
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schema interoperability. Interoperability is a problem in systems that allow
the user to define and use a local schema. This does not only ask for a
suitable integration method, it also leads to maintenance problems, because
local schemas can evolve and new schemas can be added to the system when
new peers join.

Nevertheless, several schema-based Peer-to-Peer systems which support
flexible and/or heterogeneous schemas have been developed in the last years.
Nearly all of them have employed common and widespread data models to
benefit from well-defined semantics and a lot of experience. The most preva-
lent are the relational (e.g. PIER [308]), the XML (e.g. Piazza [273]) and the
Semantic Web (e.g. Edutella [445], REMINDIN [586]) data model. In these
models schemas can be viewed a collection of type definitions which in turn
consist of attribute definitions. Taking the relational model as example, ta-
ble definitions specify types and column definitions the attributes associated
with each type.

Usually, one or several default query languages are associated with a data
model. For the relational model this is SQL, for XML it is XPath and XQuery
(see 19.3.1 for a discussion of query languages for the Semantic Web). To
improve query processing efficiency, in schema-based Peer-to-Peer systems
often only a subset of the associated query language is supported.

19.2.2 Data Placement

The data placement dimension is about where the data is stored in the net-
work. Two different strategies for data placement in the network can be iden-
tified: placement according to ownership and placement according to search
strategy.

Placement according to ownership. In a Peer-to-Peer system it seems most
natural to store information at the peer which is controlled by the information
owner. And this is indeed the typical case. The advantage is that access and
modification are under complete control of the owner. For example, if the
owner wants to cease publishing of its resources, he can simply disconnect his
peer from the network. In the owner-based placement approach the network
is only used to increase access to the information.

Placement according to search strategy. The complementary model is the
when peers do not only cooperate in the search process, but already in storing
the information. Then the network as a whole is like a uniform facility to store
and retrieve information. In this case, data is distributed over the peers so
that it can be searched for in the most efficient manner, i.e. according to
the search strategy implemented in the network. Thus, the owner has less
control, but the network becomes more efficient.

Both variants can be further improved in terms of efficiency by the in-
troduction of additional caching and replication strategies. Note that while
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this improves the network performance, it also reduces the owner’s control of
information.

19.2.3 Topology and Routing

As with all Peer-to-Peer systems, the choice of topology and correspond-
ing routing algorithms is crucial for schema-based networks. The distinction
between unstructured and structured topologies is significant here, too. Hi-
erarchical approaches such as super-peer networks can be of specific use for
schema-based networks, and therefore are described separately.

Structured Networks. As shown in Chapter 7, structured networks, especially
DHTs allow very efficient access for known keys. Thus, they are a good foun-
dation for the creation of indexes. However, one DHT overlay can’t serve for
indexing more than one schema element (e.g. one column of a table). To an-
swer queries containing arbitrary constraints one would need to maintain a
separate DHT for every attribute. PIER [308] is such a system. It allows for
efficient querying, but only for queries based on indexed attributes. For each
of them, PIER maintains a DHT overlay network. This works good if network
and/or data changes are limited, but at the price of increased maintenance
effort otherwise.

Unstructured Networks. In unstructured networks, evaluation of complex
queries is much simpler. They are forwarded to relevant peers and fully pro-
cessed there. Each peer sends back its results, and all result sets are finally
merged at the originating peer. A representative such networks is the Piazza
system [273].The obvious drawback of such an approach is that some kind of
flooding algorithm has to be used to distribute the query within the network.
Traditional limitation techniques like time-to-live do only work well if the
data is significantly replicated. This is common for file-sharing networks, but
does not necessarily apply for information-sharing systems. A better way to
reduce query distribution is to let peers apply filters on their connections for
each query and send it only in the direction of relevant peers. The relevancy
can be determined either based on a content summary provided by each peer
[446] or based on the results of previous query evaluations [586].

Introducing short-cuts increases the probability further that a query
reaches all relevant peers. Here, all peers continually asses their current
connections based on the results of previous queries. If connections didn’t
yield enough results, they are given up. As replacement, the peer establishes
new direct (short-cut) connections to peers relevant for past queries. Over
time, this leads to an optimized topology [586]. Interestingly, specific recon-
nection strategies can lead to the emergence of regular topologies, although
not enforced by the network algorithms [542]. This is characteristic for self-
organizing systems in other areas (like biology) too, and seems to be a promis-



328 19. Schema-Based Peer-to-Peer Systems

ing middle way between pure structured and pure unstructured networks (cf.
Chapter 15).

Super-Peer Networks. Inspired by the mediator work in distributed databases,
a special kind of hybrid networks, so-called super-peer networks have gained
attention as topology for schema-based Peer-to-Peer networks. The distri-
bution of peer performance characteristics (processing power, bandwidth,
availability, etc.) is not distributed uniformly over all peers in a network.
Exploiting these different capabilities in a Peer-to-Peer network can lead to
an efficient network architecture [635], where a small subset of peers, called
super-peers, takes over specific responsibilities for peer aggregation, query
routing and possibly mediation. For this purpose, only the super-peers form
a Peer-to-Peer network, and all other peers connect directly to the resulting
super-peer backbone.

Super-peer-based Peer-to-Peer infrastructures usually exploit a two-phase
routing architecture, which routes queries first in the super-peer backbone,
and then distributes them to the peers connected to the super-peers. Like
database mediators, super-peers only need to know which schema elements
each connected peer supports. This is a small amount of information and thus
easily indexed and maintained. Another advantage is the ability of super-
peers to perform coordinating tasks as creating a distributed query plan for
a query (see 19.4.2). The disadvantage of super-peer networks is the need
to dedicate explicitly specific nodes to the super-peer role which limits the
self-organization capabilities of the network.

When ontologies are used to categorize information, this can be exploited
to further optimize peer selection in a super-peer network. Each super-peer
becomes responsible for one or several ontology classes. Peers are clustered at
these super-peers according to the classes of information they provide. Thus,
an efficient structured network approach can be used to forward a query to
the right super-peer, which distributes it to all relevant peers [395].

Discussion. Structured and unstructured networks have complementary ad-
vantages and disadvantages regarding their use for schema-based networks.
The predetermined structure allows for more efficient query distribution in
a structured network, because each peer ’knows’ the network structure and
can forward queries just in the right direction. But this does only work well
if query complexity is limited, otherwise too many separate overlay networks
have to be created and maintained.

In unstructured networks, peers do not know exactly in which direction
to send a query. Therefore, queries have to be spread within the network
to increase the probability of hitting the peer(s) having the requested re-
source, thus decreasing network efficiency. On the other hand, queries can
take more or less any form, as long as each peer is able to match its resources
against them locally. For support of highly expressive queries, as needed
e.g. in ontology-based systems, only unstructured networks are feasible. An
exception are some DHT systems which have been extended recently into
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hybrid networks that also support flooding-based query distribution strate-
gies [106, 393].

Super-peer networks can alleviate the performance issues of pure unstruc-
tured topologies, but at the price of introducing two distinct peer classes.

19.3 Case Study: A Peer-to-Peer Network for the
Semantic Web

To get an insight of all the issues which have to be solved in a schema-based
Peer-to-Peer system it is instructive to take a thorough look at an existing
system and the design choices involved in building it. As shown below, the
Semantic Web data model is especially suited for sharing of structured data.
Therefore a system from that context – Edutella – has been selected as case
study.

The aim of the Edutella project [186, 445] is to design and implement
a schema-based Peer-to-Peer infrastructure for the Semantic Web. Edutella
relies on W3C Semantic Web standards [360, 91] to describe distributed re-
sources, and uses basic Peer-to-Peer primitives provided as part of the JXTA
framework ([255], see also 21.3.1).

19.3.1 Semantic Web Data Model and Query Language

In the Semantic Web, an important aspect for its overall design is the
exchange of data among computer systems without the need of explicit
consumer-producer relationships. The Resource Description Format stan-
dard (RDF, [360]) is used to annotate resources on the Web and pro-
vide the means by which computer systems can exchange and compre-
hend data. All resources are identifiable by unique resource identifiers (URIs
plus anchor ids). All annotations are represented as statements of the
form <subject, property, value>, where subject identifies the resource we
want to describe (using a URI), property denotes which attribute we spec-
ify, and value the attribute value, expressed as a primitive datatype or
an URI referring to another resource. For example, to annotate document
http://site/sample.html with its author, we could use the statement
<http://site/sample.html dc:creator ‘‘Paul Smith’’>.

RDF Schema (RDFS, [91]) is used to define the vocabulary used for de-
scribing our resources. RDFS schema definitions include resource classes,
properties and property constraints (domain, range, etc.). For example, prop-
erty dc:creator is a property of the standardized Dublin Core metadata
schema for document archives [159]. We can use any properties defined in
the schemas we use, possibly mix different schemas, and relate different re-
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sources to each other, when we want to express interdependencies between
these resources, hierarchical relationships, or others.

Another important characteristic of RDF metadata is the ability to use
distributed annotations for one and the same resource. In contrast to tra-
ditional (non-distributed) database systems, it is not necessary to store all
annotations of a resource on one server. One server might collect detailed
information about authors, e.g., affiliation and contact information. Other
servers which hold document metadata could just reference author URIs de-
fined as part of the author servers data and don’t need to repeat that in-
formation locally. This ability for distributed allocation of metadata makes
RDF very suitable for the construction of distributed repositories.

In the Semantic Web context two types of query languages have been
developed, SQL-like and rule-based languages. The former has the advantage
that users familiar with SQL very quickly become familiar with the query
language. Essentially, they allow the formulation of constraints on the RDF
data graph and thus extraction of matching subgraphs.

But, although RDF data are basically graphs, query languages based on
simple graph matching and subgraph extraction are not sufficient: they can-
not reason about the semantics underlying such data, given in the form of
schema languages like RDFS or OWL [407]. Even if we have a query lan-
guage that takes RDFS into account, this built-in support for exactly one
fixed schema language is not sufficient, as it does not allow us to query and
combine RDF data expressed in multiple schema languages which is necessary
in the case of distributed scenarios where providers can neither be forced to
use the same schema nor the same schema language. Therefore, more expres-
sive query formalisms have been investigated, which usually build on rule-like
languages [78, 445, 564].

It is therefore required that a query language supports the definition of the
semantics of several schema languages. This can appropriately be done with
rule languages based on Datalog (or Horn logic in general). In Edutella, the
Query Exchange Language (QEL, [451]) provides us with an expressive query
exchange language which serves as a common query interchange format, into
which local query languages can be translated (quite a common approach in
distributed databases). Edutella peers are connected to the network using a
wrapper-based architecture, where the wrapper is responsible for translating
local query languages into the Edutella common query model.

Edutella peers can be highly heterogeneous in terms of the functionality
they offer. In order to handle different query capabilities, Edutella defines
several QEL language compliance levels, describing which kind of queries a
peer can handle (conjunctive queries, relational algebra, transitive closure,
etc.) Obviously, restricting query expressiveness allows for better optimiza-
tion of query processing, so e.g. for publish/subscribe systems based on such
a Peer-to-Peer network, a quite restricted form of queries is sufficient [116].
However, all peers still can use the same internal query representation for
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all capability levels, thus enabling reuse of existing functionality, e.g., for
translation purposes.

19.3.2 Schema-Based Routing Indices

Edutella uses a super-peer topology, where super-peers form the network
backbone and take care of routing queries through the network [446]. Only a
small percentage of nodes are super-peers, but these are assumed to be highly
available nodes with high computing capacity. In the Edutella network they
are arranged in the HyperCuP topology [541].

The HyperCuP algorithm is capable of organizing peers into a recursive
graph structure from the family of Cayley graphs, out of which the hypercube
is the most well-known topology. This topology allows for log2 N path length
and log2 N number of neighbors, where N is the total number of nodes in the
network (i.e. the number of super-peers in our case). The algorithm works as
follows: All edges are tagged with their dimension in the hypercube. A node
invoking a request sends the message to all its neighbors, tagging it with
the edge label on which the message was sent. Nodes receiving the message
forward it only via edges tagged with higher edge labels (see [541] for details).

The Edutella super-peers employ routing indices, which explicitly ac-
knowledge the semantic heterogeneity of schema-based Peer-to-Peer net-
works, and therefore include schema information as well as other possible
index information. This super-peer backbone is responsible for message rout-
ing and integration of metadata. Super-peers in the Edutella network are
arranged in the HyperCuP topology discussed in the last section.

Peers connect to the super-peers in a star-like fashion, providing content
as well as content metadata. Figure 19.2 shows a very simple example of
such a backbone. Alternatives to this topology are possible, as long as they
guarantee the spanning tree property for the super-peer backbone, which is
required for maintaining our routing indices and distributed query plans [94].
Other topologies are possible for other kinds of indices [137].

Super-Peer/Peer Routing Indices. Edutella super-peers characterize their as-
sociated peers using super-peer/peer routing indices. Whenever a new peer
connects to a super-peer, it sends a self-description, including some meta-
information about available data, during the initial handshake. The super-
peer uses this self description to create indices at different granularities which
are later on used to select appropriate peers for answering incoming queries.
The following indices are always maintained:

– Schema Index. A base assumption is that different peers will support dif-
ferent schemas. These schemas are uniquely identified by their respective
namespace, therefore the SP/P routing index contains the schema identifier
and the peers supporting the respective schema.
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Fig. 19.2: HyperCuP Super-Peer Topology

– Property/Sets of Properties Index. This Routing index contains properties
or sets thereof thus enabling peers to support only parts of schemas. If a
query only refers to the supported property subset, it is forwarded to the
corresponding peer.

Additionally super-peers can use even more fine-grained indexes, e.g. a Prop-
erty Value Range Index or even a Property Value Index to restrict the set of
relevant peers even further, at the price of increased index size.

These SP/P indices are updated when a peer connects to a super-peer,
and contain all necessary information about connected peers. Entries are valid
only for a certain time, and are deleted when the peer does not renew/update
it regularly (e.g., because it leaves the network). Peers notify the super-peer
when their content changes in ways that trigger an update of the index.

Super-Peer/Super-Peer Routing Indices. As with peers, queries should not
be sent to all super-peers. To achieve this goal super-peer/super-peer routing
indices can be used to route among the super-peers. These SP/SP indices
are essentially extracts and summaries from the local SP/P indices. They
contain the same kind of information as SP/P indices, but refer to the (direct)
neighbors of a super-peer. Queries are forwarded to super-peer neighbors
based on the SP/SP indices (restricting the basic HyperCuP broadcast), and
sent to connected peers based on the SP/P indices.

Update of Edutella SP/SP indices is based on the registration (or up-
date) messages from connected peers. Whenever an SP/P index changes,
this change is propagated to (potentially) all super-peers using a (reversed)
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HyperCuP broadcast. Whenever an SP/SP index stays the same after the
update, propagation stops.

Because one important aspect of Peer-to-Peer networks is their dynamic-
ity, the SP/SP indices are not, in contrast to distributed architectures in the
database area (e.g., [88]), replicated versions of a central index, but rather
parts of a distributed index similar to routing indices in TCP/IP networks.

When a query arrives at a super-peer, it matches the schema elements
occurring in the query against the index information. The query is only for-
warded to the peers and along the super-peer connections which use the same
schema elements and are therefore able to deliver results. Thus, the indices
act as message forwarding filter which ensure that the query is distributed
only to relevant peers.

19.4 Advanced Topics

19.4.1 Schema Mapping

Mappings that explicitly specify the semantic relation between information
objects in different sources are the basis for the integration of information
from different sources. Normally, such mappings are not defined between
individual data objects but rather between elements of the schema. Conse-
quently, the nature of the mapping definitions strongly depend on the choice
of a schema language. The richer the schema language, the more possibilities
exist to clarify the relation between elements in the sources. However, both
creation and use of mappings becomes more complex with the increasing ex-
pressiveness. There are a number of general properties mappings can have
that influence their potential use for information integration:

– Mappings can relate single objects from the different information sources or
connect multiple elements that are connected by operators to form complex
expressions.

– Mappings can be undirected or directed and only state the relation from
the point of view of one of the sources connected.

– Mappings can declaratively describe the relation between elements from
different sources or consist of a procedural description of how to convert
information from one source into the format of the other

– Declarative mappings can be exact or contain some judgement of how cor-
rect the mapping reflects the real relation between the information sources

In the context of Peer-to-Peer information sharing, the use of mappings
is currently restricted to rather simple mappings. Most existing systems use
simple equality or subsumption statements between schema elements. Ap-
proaches that use more complex mappings (in particular conjunctive queries)
do not scale to a large number of sources. A prominent example is the Piazza
approach [273].
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19.4.2 Distributed Query Plans

Currently, data processing in Peer-to-Peer networks works as follows: The
Peer-to-Peer network is queried for information satisfying some given condi-
tions, and this query is routed to the peers which can answer it. When the
possibly large number of results from distinct data sources is returned to the
client peer, further query processing takes place centrally at the client. On
the other side, data integration systems such as ObjectGlobe [88] distribute
query plans to the distributed hosts as much as possible and thus are able
to place operators close to the data sources. To generate the query plans,
however, these systems need to know where all data are located.

The naive and straightforward way to combine both approaches is to
first use Peer-to-Peer capabilities to find out where data is stored, and then
use this information to generate a distributed query plan at the client. This
query plan becomes instantiated and executed on different hosts. But this
would be not very efficient. Based on the super-peer architecture described in
section 19.3.2 the query execution can be optimized by pushing abstract query
plans through the super-peer-based network, where each super-peer picks and
expands those parts of the query plan that can be executed locally [94]. The
decision which operations can be executed locally is guided by SP/SP and
SP/P indices. This leads to a dynamic on the fly distribution and expansion
of query plans. Operators are placed next to data sources and thus utilize
distributed computing resources more effectively.

The expansion of these abstract query plans can be based on different
strategies, related to the quality of clustering in the Peer-to-Peer network. If
the data are clustered well with respect to the queries, it is most efficient to
push joins in the query as near as possible to the data sources, and then take
the union of the results for these joins. If the clustering does not reflect the
partitions needed by the query, it is more beneficial to gather the data and
do the joins on these data on a central super-peer (see also [349]).

19.4.3 Top-k Query Processing

Meaningful querying for information, whether on the Web or in information
systems and databases, often retrieves answers together with an indication
of how well the results match the query. Various kinds of metadata available
through the Semantic Web offer additional semantic information which may
be integrated into the retrieval process. However, this generally comes at the
price of large result set sizes that are often unmanageable for the individual
user, especially because they are in arbitrary order (at least with respect to
the relevance for the user). Since users are usually only interested in a few
most relevant answers, the goal is to return manageable result sets of answers
ranked by their relevance according to the query.
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Ranking scores each resource that matches a query using a certain set of
criteria and then returns it as part of a ranked list. Additionally, we need
to restrict the number of results, to make it easier for the user to use the
results, and to minimize traffic in a Peer-to-Peer environment. In databases,
this approach is referred to as top-k query processing, where only the k best
matching resources are returned to the user.

Top-k ranking in Peer-to-Peer networks has to address two additional
challenges [444]:

Mismatch in scoring techniques and input data. Scoring techniques and input
data used by the different peers can have a strong impact on getting the
correct overall top-scored objects. Since we want to minimize network traffic,
but nevertheless integrate the top-scored objects from all different peers (and
super-peers) within each super-peer, each super-peer has to decide how to
score answers to a given query. In general we want to assume that every
peer throughout the network uses the same methods to score documents
with respect to a query, though input data to compute these scores may be
different.

Using only distributed knowledge. Distributed information and thus differ-
ent input data to score answers complicates top-k retrieval, because many
scoring measures that take global characteristics into account simply cannot
be evaluated correctly with limited local knowledge. See section 20.1.2 for a
context where some global knowledge (or estimation) is required for correct
score calculation.

One algorithm for top-k query evaluation is presented in [54]. It uses the
same super-peer architecture as described in section 19.3.2. The algorithm is
based on local rankings at each peer, which are aggregated during routing of
answers for a given query at the super-peers involved in the query answering
process. Each peer computes local rankings for a given query, and returns just
the best matches to its super-peer. At the super-peer, the results are merged,
using the result scores, and routed back to the query originator. On this way
back, each involved super-peer again merges results from local peers and from
neighboring super-peers and forwards only the best results, until the aggre-
gated top k results reach the peer that issued the corresponding query. While
results are routed through the super-peers, they note in an index the list of
peers / super-peers which contributed to the top k results for a query. This
information is subsequently used to directly route queries that were answered
before only to those peers able to provide top answers. Thus, the distribution
of queries can be limited significantly and query processing becomes much
more efficient. To cope with network churn, index entries expire after some
time, and the query is again sent to all relevant peers. Algorithm details can
be found in [54], together with optimality proofs and simulation results.
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19.5 Conclusion

Schema-based Peer-to-Peer networks are the next step in the evolution of
distributed database query processing. We can see two research directions in
this area, infrastructures which view the Peer-to-Peer network as one virtual
database, and infrastructures for creating a Peer-to-Peer network of indepen-
dent, possibly heterogeneous data sources.

To create an efficient distributed, but homogeneous database, structured
networks are a suitable foundation, although the issue of multi-dimensional
queries has not been solved completely. The paradigmatic example for such a
system is PIER. Query processing in such systems is very efficient, at the price
of restricted query expressivity. A typical characteristic is that data is not
placed on the data owner’s peer, but distributed according to the underlying
network structure.

On the other hand, for largely heterogeneous networks no pure structured
network is suitable as underlying topology, because no global schema exists
on which a uniform index could be built. Thus, unstructured networks are
the prevalent foundation for such networks. Starting from random graphs,
algorithms have emerged which optimize peer connections and thus improve
query processing performance. However, these systems do not yet scale to
more than thousands of participants. Hybrid topologies (e.g. super-peer net-
works like Edutella) can improve efficiency further by dedicating peers to the
traditional database mediator role.

Schema mapping is still a challenging issue in distributed databases, and
therefore it is no wonder that highly scalable solutions do not (yet) exist for
the Peer-to-Peer case. However, systems like Piazza have already gone far
towards loosely-coupled integration of heterogeneous systems in a Peer-to-
Peer network.

The need for more information sharing and information integration on the
Web and in other open contexts is growing, and schema-based Peer-to-Peer
systems are a promising way to meet these needs. While not yet escaped
from research labs, we will probably see practical applications based on such
infrastructures soon.



20. Supporting Information Retrieval in
Peer-to-Peer Systems

Wolf-Tilo Balke (L3S Research Center and University of Hannover)

This chapter focuses on information retrieval techniques in Peer-to-Peer in-
frastructures. Peer-to-peer systems are already being used for a vast number
of applications in content exchange, but most searching is done by simple
keyword lookups. In contrast information retrieval means that not only some
more or less matching objects have to be retrieved, but a list of the best
matching objects over the entire network given a user’s information needs.
Since the 1960ies the information retrieval community considers ways to ef-
ficiently and effectively query document collections and designs dedicated
retrieval systems like e.g. SMART [96]. Usually a query is seen as a (possibly
weighted) set of keywords a user specifies to express his/her information need.
Documents that contain those (or sufficiently similar) keywords are consid-
ered to be relevant to the user’s information need as expressed by the query.
Thus, for information retrieval in Peer-to-Peer infrastructures the challenge
is not only to retrieve documents efficiently, but also to effectively find a set
of best matching objects. Usually the degree of effectiveness is measured by a
precision-recall analysis, where the precision of a retrieval algorithm is given
by the ratio of relevant delivered documents with respect to the size of the
delivered result set (i.e. number of correctly retrieved documents divided by
the number of all retrieved documents). The recall is given by the ratio of the
relevant delivered documents with respect to the all relevant documents in
the collections (i.e. number of correctly retrieved documents divided by the
number of all relevant documents).

20.1 Content Searching in Peer-to-Peer Applications

Peer-to-peer (P2P) systems are highly distributed computing or service sub-
strates built from thousands or even millions of typically non-dedicated nodes
across the Internet that may flexibly join or leave the system at any time.
In contrast to centralized system architectures Peer-to-Peer networks try to
avoid central services and will usually share local resources like computing
power [30] or storage space (e.g. Freenet [124]). They are characterized by
a high resilience against failures of single nodes, good scalability by joining
resources and a high degree of autonomy for each peer.

R. Steinmetz and K. Wehrle (Eds.): P2P Systems and Applications, LNCS 3485, pp. 337-352, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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20.1.1 Exchanging Media Files by Meta-Data Searches

The first big application of Peer-to-Peer technology was the free exchange
of music files (mostly mp3 files, but also a limited amount of videos) over
the Internet. As early as 1999 Napster [436] offered a platform to exchange
files in a distributed fashion. Peers could offer files for download and directly
download files from other peers in the network. The Napster platform was not
Peer-to-Peer technology in the strict sense, because Napster still relied on a
central server administrating addresses of peers and lists of offered files. The
files offered were, however, not moved to the server, but all downloads were
directly initiated between two peers. The content searches in the Napster
network were made on a restricted amount of meta-data like filename, artist,
or song title. Matching this limited meta-data with a user’s query keywords
content searches thus only decided, if there was a peer offering an adequate
file and ordered possible downloads by the expected quality of the download
connection.

Since a central index approach could only handle the Napster network’s
enormous success in terms of scalability by hierarchies of peers and provided
a single point of responsibility for the content, from 2000 on the Gnutella
[249] network began to build a file exchange platform on a real Peer-to-
Peer structure. Content searches were performed by flooding queries from
the originating peer to all neighboring nodes within a certain radius (the
time to live (TTL) for a query). Also this approach proved not to be scalable
beyond a certain point and the Gnutella network spectacularly broke down
in August 2000 because of heavy overloads in low bandwidth peers. This
breakdown led to the introduction of load-balancing and the construction of
schema-based networks (Fast Track, e.g. KaZaA [343] or Morpheus [432]),
where a backbone of high bandwidth peers (so-called super-peers) takes a
lot of the query routing responsibility. Search in schema-based Peer-to-Peer
networks will be discussed in a different chapter of this book.

20.1.2 Problems in Peer-to-Peer Information Retrieval

Previous applications for media exchange dealt mostly with exact or substring
matching of simple meta-data descriptions of media files. When it comes
to the exchange of (predominantly) textual documents , meta-data is not
enough, but fulltext searches have to be supported. Though meta-data can
capture some basic traits of a document (e.g. that some text is a ’newspaper
article’ related to ’sports’), they cannot anticipate and capture all the aspects
of a text a user might be interested in. Thus, in information retrieval all terms
that can be in some way important for a document should be searchable (i.e.
indexed). The second major difference to meta-data-based retrieval is that
information retrieval cannot use an exact match retrieval model, but has
to rely on ranked retrieval models. These models introduce the notion of a
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certain degree of match of each document with respect to the query. The
higher the degree of match the better the document is expected to satisfy
a user’s information need. Thus in contrast to simple media file exchanges,
where the connection speed was the most interesting factor for choosing a
peer for download, information retrieval really has to find the document with
best degree of match from any peer within the entire network. A well balanced
expected precision and recall of such a content search is thus a major indicator
for the effectiveness of the search capabilities.

Very early information retrieval research encountered the necessity to not
only take information in each document into account, but also use some
background information regarding the entire collection, prominently e.g. the
discriminatory power of each keyword within the specific collection. For ex-
ample considering different news collections, the occurrence of the keyword
’basketball’ in a document will have a good discriminatory power in a general
news collection, a severely lesser power to discriminate between documents
in a sports news collection and virtually no discriminative power within a
collection of NBA news. One of the most popular information retrieval mea-
sure thus is the well-known TFxIDF type. This measure is a combination
of two parts (typically with some normalizations), the term frequency (TF,
measures how often a query term is contained in a certain document), and
the inverted document frequency (IDF, inverse of how often a query term
occurs in documents of the specific collection). Intuitively a document gets
more relevant the more often the query term(s) occur in the document and
the less often the query terms occur in other documents of the collection (i.e.
the more discriminating query terms are with respect to a collection). Though
TF can be determined locally by each peer, the IDF measure needs to inte-
grate collection-wide information and cannot be determined locally. A typical
instance of the TFxIDF measure (with sq(D) as the score for query term q
in document D and N as the total number of documents in the collection) is
e.g. given by:

sq(D) := TFq(D)
maxt∈D(TFt(D)) ∗ log( N

DFq
)

Collection-wide information is thus essential to provide proper docu-
ment scores. In information retrieval research the problem of disseminat-
ing collection-wide information was first encountered when retrieval systems
moved beyond stand-alone systems over collections like e.g. given by TREC,
and had to deal with vast distributed document collections like the WWW.
Here due to the random-like distribution of content over the WWW, re-
search on effective retrieval in Web IR applications showed that a complete
dissemination with immediate updates is usually unnecessary, even if new
documents are included into the collection [607]. The required level of dis-
semination, however, was found to be dependent on the document allocation
throughout the network [606]: random allocation calls for low dissemination,
whereas higher dissemination is needed if documents are allocated based on
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content. In Peer-to-Peer networks such a random-like distribution does usu-
ally not hold. In practical applications peers often will not carry a random
portion of the entire document collection, but rather a set of documents that
represent their individual interests.

Consider e.g. the news servers example from above. In the WWW there
are some big centralized news serves like e.g. CNN or the New York Times
that deal with all kinds of news, i.e, cover a wide range of topics. Even
if news items change, the overall distribution of topics and keywords can
be assumed to change only slowly. In contrast in Peer-to-Peer applications
peers usually only provide a couple of sets of topically close documents they
are interested in. That means that if a peer joins or leaves the network the
collection-wide information may considerably change. Thus, a lazy dissemi-
nation in settings like the WWW usually has comparable effectiveness as a
centralized approach for general queries, but if only parts of the networks
containing most promising documents with similar content are queried like
in Peer-to-Peer applications, the collection-wide information has to be dis-
seminated and regularly updated. On the other hand this information does
not necessarily always need to be completely up-to-date; obviously there is
a trade-off between index information that is ’still current enough’ given the
network volatility and the accuracy of the query results.

Thus, in contrast to previous work in distributed information retrieval,
not only the distributed aspect of the retrieval, but also the peers’ autonomy
and the relatively high network churn are major problems in Peer-to-Peer
information retrieval. The problems for information retrieval can be roughly
classified into four main categories:

– Ranked Retrieval Model: Exact match models will immediately lead to
a valid result object once any document has been encountered fulfilling the
query predicate. When answering queries in a ranked model a large number
of documents have to be compared to find the ’best matching’ document or
the peers offering them. Moreover, queries often consist of a conjunction of
different keywords to express a user’s information need, hence the retrieval
model has to allow for assessing a document’s degree of match for complex
queries.

– Efficient Evaluation Scheme: An efficient ranked retrieval model does
not allow for simply flooding queries until a suitable peer for download is
found, because a prohibitive number of peers would have to be addressed.
Since the best matching document to a query could be encountered query-
ing the most distant peer, guaranteeing correct retrieval results by flooding
queries can only be facilitated by addressing every peer in the network. An
efficient evaluation scheme thus needs ways to select most appropriate peers
for querying.

– Reliability Facing Network Churn: Centralized index structures for
the Peer-to-Peer network can provide all necessary information about what
documents are available, but this solution does not scale, provides a single
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point of failure and needs a high communication overhead for keeping track
of content changes in the network (e.g. peers changing their local content
by adding or deleting documents or peers joining or leaving the network).
Thus distributed index structures that are still reliable even in the face of
network churn, have to be used.

– Integration of Collection-Wide Information: Queries cannot be an-
swered by the individual peers having only local knowledge, but a peers
needs up-to-date collection-wide information for correct scoring. Con-
stantly disseminating this collection-wide information needs a high amount
of bandwidth, if the network is rather volatile, with a high number of peers
joining or leaving the network. Moreover, quick dissemination is necessary,
if peers show a certain locality in their interests and provide document
collections for specific topics, instead of a broad variety that resembles the
topic distribution of the network.

20.1.3 Related Work in Distributed Information Retrieval

The problem of distributed information retrieval occurred already early in
information retrieval literature and was mainly concerned with the merging
of results and database content discovery. Together with the emergence of
the World Wide Web as a highly distributed information source the research
was intensified and the following paragraphs will revisit some important ap-
proaches that are also common in today’s Peer-to-Peer information retrieval.

Abstracts of Information Sources. To support distributed informa-
tion retrieval individual collections often have to send abstracts to a central
(or distributed) repository. The abstract of a collection is usually simply the
set of terms in the collection’s inverted index. The most renown technique of
efficiently representing these abstracts are Bloom filters [77]. A Bloom filter
is data structure in the form of a bit vector compactly representing a set and
allowing membership queries. In our case the set represented is the set of
terms in a peer’s inverted index. The filter computed is created by deriving n
different indexes for each term using n different hash functions, each yielding
a bit location in the vector. All bits at these positions in the Bloom filter
are set to 1. The membership of a query term now can be efficiently deter-
mined by hashing the query term using the same n functions and comparing
it bitwise with the filter. If there exists a position where a bit is set for the
query term, but not in the filter, the query term is definitely not a member of
the peer’s abstract, which was used for creating the filter. Otherwise, with a
certain probability it is member of the peer’s abstract (Bloom filters allow for
false positives. The probability of false positives is decreasing with growing
n). Today Bloom filters are a popular technique for exchanging summaries
of a peer’s document collection. The PlanetP system for instance uses such
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Bloom filters for retrieval and disseminates them throughout the community
using gossiping algorithms [140].

Collection Selection. If no central index of all collections’ contents is
given, choosing ’just the right’ collections for querying is a major problem. For
the use in distributed environments like the WWW several benefit estimators
for collection selection have been proposed. Basically these estimators use
aggregated statistics about the individual collections to estimate the expected
result quality of each individual collection. Expected qualities can then be
used for deciding which collections to select for querying or for determining
a querying sequence of the collections. The most popular benefit estimator is
the CORI measure [101], which computes the collection score si for collection
i with respect to a query q as:

si :=
∑

t∈q
α+(1−α)∗Ti,t∗Ii,t

|q|

with Ti,t := β + (1 − β) ∗ log(cdfi,t+0.5)
log(cdfmax

i,t +1.0) and Ii,t :=
log(n+0.5)

cft

log(n+1.0)

where n is the number of collections, cdf the collection document fre-
quency, cdfmax the maximum collection document frequency and finally cft

denotes the collection frequency of query term t, i.e. the number of collections
that contain the term. See [101] for appropriate choices of α and β.

Later [100] proposed to use a different formula for computing Ti,t subse-
quently leading to better results:

Ti,t := cdfi,t

cdfi,t+50+150∗ |Vi|
|V avg | )

where Vi is the term space of the collection i, i.e. the distinct terms in the
collection’s inverted index. V avg is the average term space of all collections
whose inverted index contains term t. However, it is important to notice
that statistics like the collection frequency cft or the average term space size
V avg have to be collected over all peers. That means they are collection-wide
information that cannot be determined locally but has to be disseminated
globally or estimated. Also the CORI estimators are widely used in Peer-
to-Peer information retrieval, because they allow choosing collections with
a sufficient quality, while having to exchange only a very limited amount of
statistical data.

Metacrawlers. Closely related to the field of collection selection are
so-called metacrawlers like e.g. GlOSS [259] (shorthand for Glossary of
Server Servers). Metacrawlers have been designed in connection with the
text database discovery problem, i.e. the problem of selecting most promis-
ing document collections from the WWW with respect to a query. The basic
idea is that a metacrawler does not crawl the actual document collection and
build a complete index over the documents, but rather collects only meta-
data about the individual collections like the number of documents in each
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collection and how many documents for each keyword (above a certain criti-
cal threshold number) in a collection are present. Abstracting from the actual
information which document contains the keyword, the indexes build by the
metacrawler are much smaller than inverted keyword indexes, however, of
course due to the aggregation of information also less reliable. For instance
the information whether keywords appear conjunctively in any document of
the collection is lost. But the resulting index can be handled centrally and
the meta-data used for giving probabilities of finding suitable documents in
each collection.

In GlOSS the usefulness of a collection for single keyword queries can be
characterized by the number of documents that contain the keyword normal-
ized by the total number of documents the collection offers. Building on the
assumption that keywords appear independently in documents, the usefulness
for multi-keyword queries is given as the product of the normalized numbers
for each individual keyword [259]. This basic text database discovery using
a central glossary of servers supports boolean retrieval and retrieval in the
vector space model (vGlOSS). Experiments on the GlOSS system show that
average index sizes can be reduced by about two orders of magnitude and
produced a correct estimation (compared to a complete inverted document
index) of the most useful collections in over 80% of cases. But still, since
the glossary index is a central index, it needs to be updated every time a
collection changes and thus does not lend itself easily to information retrieval
in Peer-to-Peer infrastructures.

Although the work on distributed information retrieval and metasearch is
definitely relevant related research, it addresses only the problem of integrat-
ing a small and typically rather static set of underlying retrieval engines and
information sources. Such a small federation of systems is of course less chal-
lenging than a collaborative search process in highly dynamical Peer-to-Peer
systems. We will take a closer look at specific techniques used in Peer-to-Peer
infrastructures in the following sections.

20.2 Index Structures for Query Routing in
Peer-to-Peer Infrastructures

Since traditional index structures cannot be readily employed in Peer-to-Peer
systems, distributed paradigms must be used to find those peers in the net-
work which offer suitable documents. Information retrieval queries then have
to be routed directly to those peers. As stated before, given the network churn
in typical Peer-to-Peer applications, the overhead of maintaining indexes in
the presence of churn is a particularly important aspect.
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20.2.1 Distributed Hash Tables for Information Retrieval

The simplest method of querying peer to peer systems is flooding queries
iteratively from the querying peer to all adjacent peers until a certain number
of hops (the ’time to live’ for the query) is reached. While this solution is
simple and robust even when peers join and leave the system, it does not
scale and will only provide query answers within a limited radius around the
querying peer. This can be fundamentally improved if content-based routing
is allowed in the network. One of today’s main technique for indexing such
Peer-to-Peer systems are so-called distributed hash tables (DHTs) (see e.g.
[505], [575]) which allow to route queries with certain keys to particular peers
containing the desired data without requiring a central index. Typically, an
exact match keyword search can be routed to the proper peers in a limited
number of hops logarithmic of the network size, and likewise no peer needs
to maintain more than a logarithmic amount of routing information. But to
provide this functionality, all new content in the network has to be published
at the node for the respective key, if new data on a peer arrives or a new peer
joins the network. In case a peer leaves the network, the information about
its content has to be unpublished. Moreover, if a new document is added to
any peer’s collection, it will usually contain a large set a of various terms
that need to be indexed. Since in DHTs a hashing function decides on what
peer the index for each term resides, chances are that a considerable number
of peers holding some part of the DHT have to be addressed to fully publish
all the information about the new document, see e.g. [237].

Recent research in [393] shows that due to the publishing/unpublishing
overhead, distributed hash tables lack efficiency when highly replicated items
are requested. In practical settings, they have shown to perform even worse
than flooding approaches degrading even further, if stronger network churn
is introduced. Therefore, first hybrid Peer-to-Peer infrastructures have been
proposed [394] that use DHTs only for less replicated and rare items, where
DHTs are efficient, and rely on flooding in the rest of cases. But for the use in
practical scenarios, recent investigation of file exchange behavior [113] show
that rare items are also rarely queried (’People are looking for hay, not for
needles’). Usually, the querying behavior in practical applications follows a
Zipf distribution: there is a moderate number of popular items containing
many replicas in the network, and a long tail of rarely queried items contain-
ing few replicas. Thus, though having a large potential in speed-up by using
DHTs in queries for rare items, relying on flooding for the majority of queries
does not seem a sensible approach and cannot support information retrieval
queries.

Another problem with distributed hash tables is that the retrieval uses
exact matches of single keywords, whereas information retrieval queries are
usually conjunctions of several keywords. If such a query has to be answered
using DHTs the peers offering content for each of the keywords have to be
retrieved [347]. The intersection of the individual peer lists then may offer
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documents also relevant to the conjunctive query. However, there is still no
guarantee that a peer in this intersection offers relevant content because the
publishing of the peer for each keyword may have been based on different
documents. Thus even if a peer offers content for each single keyword, it
is not clear whether it offers a single document containing the conjunction
of the keyword. Of course, the documents of the respective keyword have
to be evaluated with a suitable scoring function to assess their degree of
match and thus the ranking of the final result. Obviously, this process is
no efficient solution to the information retrieval challenge in Peer-to-Peer
infrastructures. Moreover, typical search processes in document collections
like browsing navigation or prefetching are complicated by the virtualization
of the namespaces by DHTs (see e.g. [347] for a discussion).

20.2.2 Routing Indexes for Information Retrieval

A sophisticated strategy for accurately finding very commonly queried items
can be provided using so-called routing indexes . A routing index is a local
collection of (key, peer) pairs where the key is either a keyword or a query. The
basic notion of a routing index is that in contrast to flooding all neighbors
or selecting some randomly, the index points to an interesting peer or in
the direction of interesting peers for a query. Peers thus can route a given
query along connections that lead to collections of peers relevant for a query.
Usually, it is distinguished between links in the default network pointing only
in the direction of peers holding interesting collections and real links to some
specific peers, forming an overlay and often referred to as shortcuts (since
peers in the index do not have to be directly adjacent to the peer keeping the
index). A topic-specific clustering of shortcuts represents a semantic overlay
that may be completely independent from the underlying physical network.

Routing indexes were first introduced by [137] with the goal to choose best
neighbors of a peer to forward a query to until the desired number of results
is reached. While this approach only focused on routing, a lot of research soon
focused on directly contacting relevant peers using semantic characteristics,
like [274] or [444]. Subsequently, routing indexes were extended to different
uses in Peer-to-Peer systems like top k retrieval [54]. The maintenance of
such a routing index is of only local nature (that means that no publish-
ing/unpublishing overhead like in DHTs is caused), and the recall for the
indexed items is usually quite high. Since users in Peer-to-Peer environments
are usually interested in popular queries and show a certain consistency in
their interests, a routing index in most applications is a good solution.

But the question arises how to construct local indexes in a manner that
is both effective in recall and efficient in performance. It is clear that in or-
der to be effective in terms of recall, the local indexes should have a large
amount of knowledge of the collections on different peers. On the other hand,
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having collected a large amount of knowledge calls for constant updates to
keep track of changes in the collections. Different routing index policies have
been proposed to tackle this trade-off. Generally, it can be distinguished be-
tween restricted index sizes and unrestricted index sizes. For restricted index
sizes index entries are collected and exchanged, if the maximum index size is
reached but new information has been gathered. Getting rid of stale index
entries is thus implemented by letting index entries compete with respect to
their expected usefulness. One of the most often used strategy here is the
LRU-strategy (’least recently used’) that assigns higher usefulness to those
index entries that have been successfully used in the recent past. The more
recent, the more accurate and thus the more useful. However, the optimal
size of such restricted indexes is a difficult problem and strongly dependent
on the network’s actual volatility that is hard to determine locally.

In terms of unrestricted indexes, the peers keeping them locally have to
combat network churn in a different way. For structured networks, the work
on distributed retrieval in [54] proposes to use a backbone of superpeers for
query routing where each superpeer keeps only a strictly locally maintained
routing index. Queries are always routed along a minimum spanning tree of
the backbone and the individual results are routed back the same way. Each
routing index contains the recently asked query terms, all local peers that
contributed to the result set of best documents, and the direction in terms
of adjacent superpeers, where high quality documents came from. If a super-
peer does not have a matching index entry for a query term, it forwards the
query in all directions along the backbone and collects accurate information
for its index, when the best documents have been determined and the results
are routed back. Each index entry is assigned a certain time to live to com-
bat network churn. Experiments show that this kind of index maintenance
is especially suitable for Zipfian query frequency distributions like often en-
countered in Peer-to-Peer scenarios, where it essentially reduces the number
of contacted peers and gives a recall comparable to central indexes.

Another approach using unrestricted index sizes are InfoBeacons [131]
mainly maintaining a set of local indexes that are loosely coupled to the
document sources on the peers. Like in the GlOSS approach [259] the in-
dexes save space by containing only statistics about the documents in the
underlying collections. This statistics can then be used to compute the ex-
pected usefulness of each known document source. To combat network churn
or changes in underlying document collections [131] proposes to apply a ’for-
getting factor’ that periodically weighs down stale information about a source
until it is finally ’forgotten’. In the same way the statistics about a source
can be refreshed by evaluating answers to recent queries of that source (a so-
called ’experience factor’). By closely investigating the result documents, an
InfoBeacon index can not only learn about the query terms, but also about
other terms that are contained in some result document.
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20.2.3 Locality-Based Routing Indexes

A different approach for routing queries to most interesting document col-
lections is based on the idea of social metaphors. Inspired by information
retrieval processes between people in real life, social networks of peers can
be used to get queries to the most relevant peers. Experiments about how
information is gathered, showed that people in real world settings are quite
capable of efficiently constructing chains of acquaintances that will bring
them at least close to the desired information, though each person only had
very local knowledge of the network (see e.g. [413] or [353]). The resulting
so-called ’small worlds’ have subsequently been employed to retrieve relevant
information with respect to a peer’s information need as expressed by the
peer’s queries.

Using small worlds for retrieval an often made assumption is the principle
of interest-based locality. It posits that, if a peer has a particular document
that is relevant to a query, it might very probably also have other interesting
items that the querying peer is interested in. Building on this principle [571]
studied interest-based overlays over Gnutella-style networks and proposes
to generate interest-based shortcuts connecting querying peer and content-
providing peer. Queries with semantically close information needs can then
rely on already established shortcuts. Traces on practical data collections il-
lustrate how peers in the overlay network get very well connected and that
the overlay graph shows the highly-clustered characteristics of small world
networks with a small minimum distance between any two nodes. The clus-
tering coefficient of a peer is defined to be the fraction of edges that exist
between its neighbors over the possible total number of edges. The clustering
coefficient is a relevant measure for the degree of the small world characteris-
tic as reflected by the network. Clusters in the shortcut graph can be said to
correspond to clusters of interests and peers looking for content within their
usual areas of interest, will be successful with high probability by using their
shortcuts.

Other work, like e.g. [586], directly relied on social metaphors for routing
queries to peers that can be assumed to offer interesting documents. A peer
builds an index of shortcuts e.g. by ’remembering’ content provider that have
offered relevant documents in the past for a query or for queries on semanti-
cally similar topics, or by ’overhearing’ communications between other peers
that are just routed through the peer. Best peers that are likely to offer rel-
evant documents, can then be queried by just following the shortcuts whose
topic best matches the query semantics. Randomly sending queries also to
some peers from the default network helps to extend the knowledge about
relevant peers and is a limited help facing the problems of interest changes
and network churn. Experiments show that such shortcut-based approaches
can offer a decent recall and dramatically reduce the communication needed
for answering queries.
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20.3 Supporting Effective Information Retrieval in
Peer-to-Peer Systems

20.3.1 Providing Collection-Wide Information

As has been stated, providing collection wide is essential for the retrieval ef-
fectiveness. There is a challenging trade-off between reduced network traffic
by lazy dissemination however leading to less effective retrieval, and a large
network traffic overhead by eager dissemination facilitating very effective re-
trieval. What is needed is ’just the right’ level of dissemination to maintain
a ’suitable’ retrieval effectiveness. Thus previous approaches to disseminate
collection-wide information rely on different techniques.

The PlanetP system [140] does not use collection-wide information like
e.g. the inverted document frequency of query terms directly, but circum-
navigates the problem by using a so-called inverted peer frequency (IPF ).
The inverted peer frequency estimates for all query terms, which peers are
interesting contributors to a certain query. For each query term t the inverted
peer frequency is given by IPFt := log(1 + N

Nt
) where N is the number of

peers in the community and Nt is the number of peers that offer documents
containing term t. In PlanetP summarizations of the content in the form of
Bloom filters are used to decide what content a peer can offer. Since these
are eagerly disseminated throughout the network by gossiping algorithms,
each peer can locally decide values for N and Nt. The relevance of a peer for
answering multi-keyword queries is then simply the sum of the inverted peer
frequencies for all query terms. Peers are then queried in the sequence of their
IPFs and the best documents are collected until queried peers do no longer
improve the quality of the result set. In terms of retrieval effectiveness [140]
show that the approach is quite comparable to the use of inverted document
frequencies in precision and recall and also the documents retrieved using
IPF show an average overlap of about 70% to result sets retrieved using
IDF . However, by using gossiping to disseminate Bloom filters the system’s
scalability is severely limited.

Structured Peer-to-Peer infrastructures allow for a more scalable way of
providing collection-wide information than simple gossiping. Based on the
notion that in answering a query current collection-wide information is only
needed for the query terms, each superpeer can disseminate such informa-
tion together with a query. [53] shows for a setting of distributed servers
hosting collections of newspaper articles that employing an index collecting
information like IDFs for certain query terms in parallel to the query routing
index can provide sufficiently up-to-date collection-wide information. The ba-
sic idea of both indexes is the same: the routing index of a super-peer states
what peers are interesting to address for a given query and the CWI index
provides collection-wide data for each keyword. The data in the CWI index
can change in two ways: like in routing indexes existing entries have only a
certain time to live, such that stale entries are periodically removed. On the
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other hand it can be updated evaluating the answers of the peers that the
query was forwarded to. These peers can easily provide the result documents
together with local statistics about their individual collections. This statis-
tical information can then be aggregated along the super-peer backbone to
give an adequate snapshot of the currently most important document col-
lections for a keyword (e.g. document frequencies and collection sizes can be
added up). As stated in [607] the collection-wide informations does usually
only change significantly, if new peers join the network with corpora of docu-
ments on completely new topics. Since index entries only have a certain time
to live, occasionally flooding queries about query terms not in the index (and
disseminating only an estimation of the statistics needed), usually refreshes
the CWI index sufficiently, while not producing too many incorrect results.
Experiments in [53] show that by using an CWI index and disseminating the
collection-wide information together with the query, even in the presence of
massive popularity shifts the CWI index recovers quickly.

20.3.2 Estimating the Document Overlap

As another important factor for supporting the overall retrieval quality is
assessing the novelty of collections as e.g. motivated in [66]. In collection se-
lection approaches usually precomputed statistics about the expected quality
of results from a collection is used to minimize the number of collections that
have to be accessed. Minimizing the number of collection accesses (and thus
the necessary communication) is even more important in Peer-to-Peer set-
tings. Given typical popularity distributions with a high amount of replication
of popular items in today’s file sharing applications [113], it seems probable
that also in document exchange such overlap between the individual peers’
repositories will exist. However, accessing promising peers in an information
retrieval process that show a high overlap in their collection is not going to
improve the result sets. When deriving result sets from distributed sources,
like e.g. in [54], the result merging will ignore documents that have occurred
before and simply put out requests (and thus probably contact more peers)
for more answers until enough distinct documents have been found.

The novelty of a collection a new peer offers always has to be computed
with respect to a reference collection, i.e. collections that are already part
of the querying peer’s local routing index or more general the collection of
already returned result documents. [66] defines the novelty of a peer p’s col-
lection Cp with respect to a reference collection Cref as:

Novelty(Cp) := |Cp| − |Cp ∩ Cref |
However, since there is usually no information disseminated exactly what

documents are given by a certain peer, this information has to be approxi-
mated by the information disseminated. Thus, for estimating what is actually
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in a peer’s collection with respect to multi keyword queries the index lists
or summaries of the peer have to be investigated. Using Bloom filters as
summaries [66] proposes to build a peer p’s combined Bloom filter bp with
respect to the query as the bitwise logical AND of its filters for the individual
keywords and then estimate the novelty by comparing it to bprev :=

⋃
i∈S bi

as the union of those Bloom filters bi of the set of collections S that have
already been investigated previously during the retrieval process. The degree
of novelty can then be approximated by counting the locations where peer
p’s Bloom filter gives set bits that are not already set in the combined filter
of previous collections:

|{k|bp[k] = 1 ∧ bprev[k] = 0}|
Analogously, the overlap between the collections can be estimated by

counting the number of bits that are set in both filters. Of course this is
only a heuristic measure as the actual documents have been abstracted into
summaries. Having the same summary, however, does not imply being the
same document, but only being characterized by the same keywords. That
means those documents are probably not adding new aspects for the user’s
information need as expressed in the query. Generally speaking estimating the
overlap and preferably querying peers that add new aspects to an answer set
is a promising technique for supporting information retrieval in Peer-to-Peer
environments and will need further attention.

20.3.3 Prestructuring Collections with Taxonomies of Categories

Retrieval in Peer-to-Peer systems considered two different kinds of paradigms:
the meta-data-based queries and the fulltext-based queries. Often it is useful
to consider them not as two orthogonally used paradigms, but to integrate
them into a single query. A major problem in information retrieval where such
an integration is helpful, is for instance the disambiguation of query terms.
In Peer-to-Peer systems offering documents that show a certain similarity in
terms of their types (like collections of newspaper articles, etc.), the retrieval
process can essentially be supported by introducing a common system of
categories that classify the documents. Given that categories are usually not
entirely independent of each other a taxonomy of the categories can find
related categories that are semantically closer than others. A query then can
be given using keywords and the category the result documents should be
in. The approach given in [53] shows that queries have to be answered in
each category separately starting with the category specified in the query.
Thus, the query routing index has to contain also category information. If
no sufficient number of documents can be retrieved from that category the
search has to be extended first to the children of the category and then
to its parents. For each category own collection-wide information has to be
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collected and disseminated, e.g. by building CWI indexes as described above
per category.

Following [382] the semantic similarity for different categories c1 and c2

can be considered to be determined by the shortest path length as well as
the depth of the common subsumer:

sim(c1, c2) = e−αl · eβh−e−βh

eβh+e−βh

where l is the shortest path between the topics in the taxonomy tree, h
is the depth level of the direct common subsumer, and α ≥ 0 and β > 0
are parameters scaling the contribution of shortest path length and depth,
respectively. Using optimal parameter (α = 0.2 and β = 0.6) this measure
shows a correlation coefficient with human similarity judgements performing
nearly at the level of human replication. Experiments in a scenario of feder-
ated news collections in [53] show that the retrieval process can be effectively
supported, if documents can be classified sufficiently well by a taxonomy of
common categories.

20.4 Summary and Conclusion

This chapter has given a brief survey of techniques for information retrieval
in Peer-to-Peer infrastructures. In most of today’s applications in Peer-to-
Peer scenarios simple retrieval models based on exact matching of meta-data
are prevalent. Whereas meta-data annotation has to anticipate the use of
descriptors in later applications, information retrieval capabilities work on
more complex and unbiased information about the documents in each collec-
tion offered by a peer. Thus, such capabilities offer much more flexibility in
querying and open up a large number of semantically advanced applications.

Generally speaking, information retrieval differs from simple meta-data-
based retrieval in that a ranked retrieval model is employed where not only
some suitable peer for download needs to be found, but the ’best’ docu-
ments within the entire network must be located. Moreover and in contrast
to Gnutella-style infrastructures, querying has to be performed in a more ef-
ficient manner than simple flooding. Generally, only a small number of peers
should be selected for querying. In addition, the querying method has to be
relatively stable in the face of network churn and since rankings usually rely
on collection-wide information, it has to estimated or efficiently disseminated
throughout the network.

The basic retrieval problem is heavily related to previous research in dis-
tributed information retrieval as is used for querying document collections in
the WWW. But the Peer-to-Peer environment still poses different challenges,
especially because network churn causes a much more dynamic retrieval en-
vironment and centralized index structures cannot be efficiently used. Also,
related work in Peer-to-Peer systems, e.g., distributed hash tables can not be
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readily used either due to the limitations in scalability caused by publishing
and unpublishing information in more volatile networks.

Thus, the main problem for Peer-to-Peer information retrieval today is
managing the trade-off between the efficient maintenance of local indexes
with only limited knowledge about the Peer-to-Peer network’s global param-
eters and the expensive dissemination of dynamically changing global infor-
mation about the network needed to guarantee a satisfying recall in result
sets. Heuristic techniques like estimating the document overlap of collections
or integrating taxonomies of document classifications into the retrieval pro-
cess, have been proved to be helpful and should be further investigated.
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21.1 Introduction

Peer-to-Peer systems have been receiving considerable attention from the
networking research community recently. Several approaches have been pro-
posed as communication schemes in order to supply efficient and scalable
inter-peer communication. These schemes are designed on top of the physical
networking infrastructure as overlay networks taking advantage of the rich
flexibility, which is accomplished at low cost. A number of important design
approaches has been already presented in previous chapters. Their topologies
and operation mechanisms influence greatly the performance of routing and
topology maintenance algorithms and hence, the efficiency of the correspond-
ing Peer-to-Peer system.

However, Peer-to-Peer systems are distributed systems with a large num-
ber of non-functional requirements such as scalability, dependability (includ-
ing fault-tolerance, security, integrity, consistency), fairness, etc. These re-
quirements should be met in order to design systems, which are easily de-
ployed on top of the Internet while making use of available resources in an
optimal way. Most approaches have been designed to deal with a subset of
these requirements. Nevertheless, they have intrinsic limitations fulfilling the
complete set of the aforementioned requirements. In most cases, trade-offs in
meeting these requirements exist, thus, raising severe constraints.

To elaborate further the aforementioned trade-off issue, we consider the
design of a Peer-to-Peer system where fault-tolerance should be supported in
the presence of heterogeneous environments (peers may have different physi-
cal capabilities and behavioral patterns). In the context of Peer-to-Peer sys-
tems where peers represent unreliable components, fault-tolerance is achieved
mostly by the employment of redundancy and replication mechanisms. Pure
DHT-based approaches such as Chord [576] or Pastry [527] suggest a large
number of neighbors that usually increases logarithmically with respect to
the size of the system. While it has been shown that such approaches pro-
vide high fault-tolerance [385]1, they ignore practical limitations raised by
peers of low physical capabilities that may not fulfill the continuously in-
creasing requirements as system’s size expands. In addition, by ignoring het-
1 That study assumes a Peer-to-Peer system where both peers’ inter-arrival and

service (lifespan) time distributions follow the Poisson model. However, as it has
been empirically observed in many studies (e.g. cf. [98]) that peer lifespan follows
a different distribution.
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erogeneity and dealing equally with each peer, the system maintenance cost
increases significantly, while the least reliable peers contribute minimally in
the fault-tolerance of the system. Further, similar requirement trade-offs (i.e.
anonymity versus efficiency, heterogeneity versus load-balance, etc.) appear
when pure design approaches are selected.

In this chapter we investigate Peer-to-Peer systems, which follow a hy-
brid design approach. The word hybrid is used in many disciplines such as
in biology, in sociology or in linguistics. In general, it is used to characterize
“something derived from heterogeneous sources or composed of incongruous
elements” (Oxford Dictionary). Though initially the term “hybrid Peer-to-
Peer system” was used in the context of Peer-to-Peer systems to describe
approaches that combined both Peer-to-Peer and Client/Server aspects, its
usage was broadened to cover further combinations of heterogeneous ap-
proaches.

In general, hybrid systems are claimed to be intrinsically better than pure
approaches, mostly because of the great heterogeneity observed in deployed
systems. They allow for the synergistic combination of two techniques with
more strengths and less weaknesses than either technique alone.

In the remaining of this chapter we investigate and define a coarse-grained
classification scheme for the observed topologies of the most important, state-
of-the-art, hybrid overlay networks, their underlying mechanisms and the
algorithms employed to operate on them. Then, we discuss their benefits
and drawbacks in a general system-unaware way that does not consider spe-
cific Peer-to-Peer systems, where hybrid approaches are compared with non-
hybrid approaches.

21.2 Overlay Network Design Dimensions

In order to meet the critical set of the aforementioned (and possibly ad-
ditional) non-functional requirements for the operation of the Peer-to-Peer
overlay networks, a great variety of approaches have been proposed. An-
alyzing the design mechanisms that characterize the Peer-to-Peer overlay
networks, three major design dimensions can be identified to classify the pro-
posed systems (cf. Figure 21.1). An alternative three dimensional approach
is presented in [154].

Overlay networks vary in their structural design from tightly structured
networks such as Chord [576] or Pastry [527] to loosely structured ones such
as Freenet [124] or Gnutella [251]. This design dimension is graphically de-
picted in the projected axis of the design space in Figure 21.1. Tightly struc-
tured (or simply structured) overlays continuously maintain their topology,
targeting to a “perfect” structure (e.g., a hypercube or a butterfly topol-
ogy). Structured topologies may require high maintenance cost especially in
the presence of high churn rate. Also, they deal uniformly with the shared
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objects and services provided by the system and they are unaware of their
query distribution, a fact that might cause a significant mismatch. Moreover,
Distributed Hash Table (DHT) based approaches (which is the most com-
mon mechanism to build structured overlay networks) cannot support easily
range queries2. Alternative investigations include several mappings of local
data structures to distributed network topologies, such as tries [230] or modi-
fications of traditionally used topologies such as hypercubes [541], butterflies
[399] and multi-butterflies [155].

On the other hand, loosely structured (or simply unstructured) overlays
do not aim to reach a predefined targeted topology, but rather they have a
more “random” structure. However, it has been observed that certain con-
nectivity policies (i.e., preferential attachment) may emerge their topology
to power-law networks or networks with small-world characteristics. Unstruc-
tured topologies are typically inefficient in finding published, rare items and
the embedded searching operations are in general considerably costly in terms
of network overhead (most approaches use flooding or at best, selective dis-
semination mechanisms[398]). The observed power-law topology, though it
provides a graph with a small diameter3, it distributes unevenly the commu-
nication effort and introduces potential hot spots at these peers with high
degree playing the role of a “hub”. However, in scenarios where the query dis-
tribution is non-uniform (i.e., lognormal, Zipf) unstructured networks may
be designed to operate efficiently.

Further, overlay networks may vary on the dependency of the peers on
each other, as it is shown in the vertical axis of Figure 21.1. Approaches
such as Chord or Freenet treat all of the participants equally and they are
referred as pure or flat Peer-to-Peer networks. On the other hand, hierarchi-
cal approaches such as Napster [436] or eDonkey [185] separate the common
overlay related responsibilities and assign the majority (or all) of the tasks
to a small subset of (usually) more powerful nodes only (e.g. for resource
indexing). These subset of peers is usually named as “servers”, “super-peers”
or “ultra-peers”. The fault-tolerance of flat approaches is considerably higher
than the hierarchical ones since failures or attacks to any single peer do not
have significant consequences. However, such approaches do not deal well
with the heterogeneity of the participating peers both in terms of physical
capabilities and user behavior. The complexity of flat approaches is usually
higher compared to the hierarchical counterparts. On the other hand, hi-
erarchical solutions require a certain infrastructure to operate and may be
controlled by third parties easier than the non-hierarchical alternatives. The
operational load is unequally balanced among the networked entities and high
dependency exists among them.
2 Range queries are queries searching not for a single item that matches a specific

key but rather for a set of items, which are “close” to a description based on e.g.
metadata.

3 Small diameter is a desirable feature for a network topology in order to reduce
the maximum number of hops required to reach any destination in the overlay.
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Finally, overlay networks can be designed either following deterministic
or probabilistic (e.g., based on Bloom filters [77]) approaches. The selection
of the former or the latter approach may improve the accuracy or the ef-
ficiency of the Peer-to-Peer systems, respectively. Also, a mixture of these
mechanisms may provide improved results. A characteristic example demon-
strating both probabilistic and deterministic mechanisms is OceanStore [368].
Deterministic approaches provide repeatedly similarly consistent results (as
long as there are no critical intermediate changes in the system) and the
provided operations can be well predicted and their cost is upper bounded.
On the other hand, probabilistic approaches tolerate some unpredictability
on the provided results, aiming to operate at a much lower cost than their
deterministic alternatives. Such variation is shown in the horizontal axis of
the overlay network design space in Figure 21.1.

Dependency

Structure

Determinism

Pure (flat)

Hierarchical

Probabilistic Deterministic

Tightly structured

Loosely structured

Fig. 21.1: Overlay network design dimensions

In this chapter we focus on systems that lie in the middle of at least one of
the axes shown in Figure 21.1, though many of the proposed systems follow
hybrid mechanisms in more than one dimensions. By doing so, hybrid designs
aim to deal with the limitations of the pure approaches.

21.3 Hybrid Architectures

In this section we focus on Peer-to-Peer systems that mainly follow hybrid
approaches in the architectural design of their overlay topologies.
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21.3.1 JXTA

JXTA4 [597] defines a common set of protocols for building Peer-to-Peer
applications to address the recurrent problem with existing Peer-to-Peer sys-
tems of creating incompatible protocols. The main goal of JXTA is to define
a generic Peer-to-Peer network overlay, which may be used to implement a
wide variety of Peer-to-Peer applications and services. While JXTA offers the
means to developers to design any kind of overlay network that suits to the
needs of their applications, JXTA itself develops a hybrid overlay network to
orchestrate the deployed applications and services. Peers in the JXTA net-
work are self-organized into peergroups. A peergroup represents an ad hoc set
of peers that have a common set of interests, and have agreed upon a com-
mon set of policies (membership, routing, searching, etc). However, there is
a global peergroup as a bootstrap point where all the specialized peergroups
can be advertised.

The JXTA specifications define the Resolver Service Protocol as a uni-
versal resource binding service. The Resolver Service is used to perform res-
olution operations found in traditional distributed systems, such as resolving
a peer name into an IP address (DNS) or binding an IP socket to a port.

The global JXTA overlay network provides a default resolver service based
on rendezvous peers. Rendezvous peers are peers that have agreed to index
other peer advertisements to facilitate the discovery of resources in a peer-
group. A peergroup can have as many rendezvous peers as required to support
the size of the peergroup. Rendezvous peers are defined in the scope of peer-
groups to reduce the communication complexity. Any peer can potentially
become a rendezvous peer, unless there are security restrictions.

Rendezvous maintain an index of advertisements published by edge peers
via the Shared Resource Distributed Index (SRDI) service. Edge peers use
SRDI to push advertisement indices to their rendezvous when new adver-
tisements are published. The rendezvous/edge peer hierarchy allows resolver
queries to be propagated between rendezvous only, significantly reducing the
amount of peers that need to be searched when looking for an advertisement.
Such a structure is illustrated in Figure 21.2.

Rendezvous Peers are organized into a loosely-coupled network to reduce
the high maintenance cost that occurs in Peer-to-Peer systems with high
churn. The JXTA approach separates the cost of a DHT solution into index
maintenance, and data access. Project JXTA utilizes a hybrid approach that
combines the use of a loosely-consistent DHT with a limited-range rendezvous
walker. Rendezvous peers are not required to maintain a consistent view of
the distributed hash index leading to the term loosely-consistent DHT. Each
rendezvous maintains its own Rendezvous Peer View (RPV), which is an
ordered list of known rendezvous in the peergroup. Inconsistency among the

4 The name of JXTA come from the verb juxtapose, which means place things side
by side to suggest a link together or emphasize the contrast between them.
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Fig. 21.2: JXTA overlay network

RPVs of different rendezvous peers might occur. A loosely-coupled algorithm
is used for converging local RPV. A rumor-based technique is employed to
disseminate information about the rendezvous peers. Seeding rendezvous are
special rendezvous peers to accelerate the RPV convergence, as all rendezvous
should know about all seeding rendezvous of a peergroup.

The hybrid approach of a loosely-consistent DHT combined with a limited
range walker to search for advertisements has the advantages of not requiring
a strong-consistency DHT maintenance, and is well adapted to ad hoc un-
structured Peer-to-Peer networks. However, when very large peergroups are
constructed requiring several hundreds of rendezvous the system may suffer
considerably from the resulting inconsistency, which becomes a boomerang
to the performance of the system.

21.3.2 Brocade

The majority of DHTs assume that most nodes in the system are uniform in
resources such as network bandwidth and storage. As a result, messages are
often routed across multiple autonomous systems (AS) and administrative
domains before reaching their destinations.

Brocade is a hybrid overlay network proposal, where a secondary overlay
is layered on top of a primary DHT. The secondary overlay exploits knowl-
edge of underlying network characteristics and builds a location-aware layer
between “supernodes”, which are placed in critical locations in each AS of the
Internet. Supernodes are expected to be endpoints with high bandwidth and
fast access to the wide-area network and act as landmarks for each network
domain. Sent messages across different ASs can be delivered much faster if
normal peers are associated with their nearby supernodes that can operate
as “shortcuts” to tunnel the messages towards their final destination, thus,
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greatly improving endpoint-to-endpoint routing distance and reducing net-
work bandwidth usage.

The critical aspects in designing an effective Brocade overlay are the ap-
propriate selection of supernodes and the mappings between supernodes and
normal DHT nodes. A straightforward solution is to exploit the hierarchical
structure of network domains. Each network gateway may act as a brocade
routing landmark for all nodes in its subdomain. An example of this mapping
is shown in Figure 21.3. Supernodes are organized in a different DHT (i.e.,
Tapestry).
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Fig. 21.3: Brocade overlay network

The routing operation works as follows. When a message reaches a su-
pernode, the supernode may do a lookup to determine whether the message
is destined for a local node, or whether brocade routing may be useful. In
the brocade overlay, each supernode advertises the IDs on this list as IDs
of objects it stores. When a supernode tries to route an outgoing message
which should be delivered out of the local AS, it uses the supernode DHT
to search for destination supernode. By finding the object on the brocade
layer, the source supernode forwards the message directly to the destination
supernode, which resumes normal overlay routing to the final destination.

Summarizing, Brocade is a hybrid system aiming merely to exploit the
underlying network topology to supply more efficient routing services. How-
ever, the load balance of the network may be unevenly distributed among the
peers. Moreover, superpeers may either act maliciously or become targets of
attacks.
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21.3.3 SHARK

Pure DHT-based solutions rely on hash functions, which may map adver-
tised items to certain locations in the overlay structure (by assigning hash-
generated identifiers both to each item and overlay location). Such mecha-
nisms (while they are very efficient) are limited to single lookup queries of
these identifiers. Range (or rich) search queries based on keywords remain
challenging features for such systems. However, usually users prefer to specify
what they are looking for in terms of keywords. For instance, a user of a file
sharing application could look for a certain genre of music and not for a par-
ticular song. Additionally, multiple dimensions of meta-data are also highly
desirable, for instance, looking for a document released at a certain period
and related with a specific topic.

SHARK (Symmetric Hierarchy Adaption for Routing of Keywords) [421]
employs a hybrid DHT solution for rich keyword searching. Its hybrid over-
lay structure is composed of two parts: a structured one that considers the
Group of Interest (GoI) concept of AGILE [420] and several unstructured
subnetworks grouping peers with similar interests. Queries are initially being
forwarded in the structured part of the network to reach the targeted un-
structured subnetwork. Then, they are broadcasted to the set of interesting
peers that provide the matched items. SHARK is described in deeper detail
in Section 17.4.

21.3.4 Omicron

Omicron (Organized Maintenance, Indexing, Caching and Routing for Over-
lay Networks) [153] is a Peer-to-Peer overlay network aiming to address issues
of heterogeneous, large-scale and dynamic Peer-to-Peer environments. Its hy-
brid, DHT-based topology makes it highly adaptable to a large range of
applications. Omicron deals with a number of conflicting requirements, such
as scalability, efficiency, robustness, heterogeneity and load balance.

The rational in Omicron’s approach is to reduce the high maintenance cost
by having a small, constant number of connections and routing table sizes per
peer (at least for the majority of them), while still performing lookup opera-
tions at low costs. For this reason the usage of appropriate graph structures
(such as de Bruijn graphs) is suggested. However, while the small number of
connections reduces the operational cost, it causes robustness problems. To
address this issue, clusters of peers are formed with certain requirements on
their stability over time. In order to maintain their stability, new joins are di-
rected to the least stable clusters. When the stability of a cluster gets below
a certain threshold, a merging operation takes place between the unstable
cluster and a neighbor cluster.

Before we present the way de Bruijn graphs are deployed in Omicron,
the topology of these graphs and the way the routing algorithm works is
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described. The upper part of Figure 21.4 shows a (2, 3) directed de Bruijn
graph denoting a graph with a maximum out-degree of 2, a diameter of 3 and
order 8. Each node is represented by k-length (three in this example) strings.
Every character of the string can take d different values (two in this example).
In the general case each node is represented by a string such as u1u2...uk.
The connections between the nodes follow a simple left shift operation from
node u1(u2...uk) to node (u2...uk)ux, where ux can take one of the possible
values of the characters (0, d−1). For example, we can move from node (010)
to either node (100) or (101).
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Fig. 21.4: Omicron overlay network

The most attractive feature of de Bruijn digraphs is the constant degree
requirement for every node. However, this is also their “Achilles’ heel” since
robustness is difficult to achieve. As an alternative approach Omicron sug-
gests the construction of clusters of peers and where application of a de Bruijn
topology for the inter-cluster communication is proposed. This way the nodes
(clusters of peers) of the digraph will be much more stable than single peers.

A dual identification scheme has been introduced for Omicron with a
number of advantages. Clusters are assigned a Globally Unique IDentifier
(GUID) that is used to route requests over the network. Advertised items are
assigned a GUID and are located at the clusters whose GUID matches best.
Moreover, peers are assigned their own GUID to trace their actions in the
system.
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Inter-cluster routing of messages is based on shift operations performed
on the cluster GUID to select the neighbor cluster whose GUID matches best
to the requested key. The operation is repeated until the final destination is
reached.

Going a step further, a role-based scheme is introduced to deal with the
heterogeneity of the peer capabilities and user behavior. This scheme fits
the contribution of each node to its resource capabilities and aims at the
maximization of the cluster efficiency by providing appropriate incentives to
peers to take a certain role. The identified roles are based on the core overlay
operations:

– Overlay maintenance. Maintainers perform the most demanding opera-
tion since peers are required to maintain complete routing tables, indexing
information and cluster organization.

– Indexing. Indexers are required to handle the indexing responsibilities of
the whole cluster in a balanced and co-operative way. Information redun-
dancy is an additional requirement in order to shield the system against the
single peer (mis-)behavior. Indexers can provide the final reply to queries
when they reach the destination cluster.

– Routing. Routing is the most simple operation where Routers should for-
ward messages to the neighbor clusters that are closer to the final destina-
tion. Combined with the low requirements raised by the de Bruijn digraphs
it is a role suitable for any peer, even those that have very low capabilities
and an unstable behavior. They participate only in the inter-cluster mes-
sage forwarding service but they do not have the required information to
provide the final reply as Indexers have.

– Caching. Although caching is not a basic operation (it is rather considered
as advanced operation) it is included in the basic scheme because of the
low requirements it poses and the fact that it closes the design gap between
the Routers and the other more demanding roles. Cachers are expected to
perform caching of the indexing information for the most popular items in
order to reduce the effort of the Indexers. Studies (i.e. [379]) indicate that
there is a Zipf-law distribution of the queries in popular content-related
Peer-to-Peer systems.

An illustration of Omicron and a typical intra-cluster structure is pictured
in the lower part of Figure 21.4.

It is clear that different requirements are related with each role (appar-
ently, this is the design goal). Peers are “promoted” to adopt roles with higher
requirements as they prove their stability and they fulfill the physical capa-
bility needs. Incentive mechanisms are present to motivate the promotion
procedure.

Finally, an incrementally expandable algorithm has been designed to
adapt the exponentially growing de Bruijn graphs to the incrementally ex-
pandable Peer-to-Peer systems.
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21.4 Hybrid Routing

In this section, we describe hybrid Peer-to-Peer systems that focus on im-
proving the performance of the routing mechanism. The constructed overlay
network might also be hybrid, though in general, an additional mechanism
such as caching might be required to enable the hybrid routing algorithm.

21.4.1 OceanStore

OceanStore [368] is a Peer-to-Peer storage system built on top of Tapestry
[642] to take advantage of its scalable characteristics. However, OceanStore,
employs an additional probabilistic mechanism based on attenuated Bloom
Filters, resulting to a hybrid solution to improve even further Tapestry’s
routing performance.

The Bloom Filters algorithm was initially proposed by Bloom in the
early ’70s [77] to help word processors perform capitalization and/or hy-
phenation on a document. Bloom filters exploit efficiently the usually present
non-uniform distribution of requests, where a small set of items is requested
much more often than the rest of the stored items. In general, Bloom fil-
ters are capable of answering questions of the type: “Is this item member
of that group”? The algorithm uses hash functions, though it requires less
space and is faster than a conventional one to one hash-based mapping al-
gorithm. However, it allows errors to happen. While negative replies to the
aforementioned question are always correct (the mechanism is capable of re-
plying correctly that an item does not belong to a group), it might provide
false positive replies (an item that does not exist in a group might be falsely
reported as a member). The probability of false positive replies can be con-
figured with a number of parameters (e.g., increasing the space required for
the data structure) and reduced to obey certain predefined bounds.

OceanStore uses attenuated Bloom Filters to provide a fast probabilistic
search algorithm, where attenuated Bloom Filters are arrays of such filters.
In the context of the OceanStore algorithm, the first Bloom filter (located at
position ’0’) is a record of the objects contained locally on the current node.
The ith Bloom filter is the union of all of the Bloom filters for all of the
nodes a distance i through any path from the current node. An attenuated
Bloom filter is stored for each directed edge in the network. A query is routed
along the edge whose filter indicates the presence of the object at the smallest
distance.

When the fast probabilistic algorithm fails to provide the requested re-
sults, OceanStore activates the Tapestry routing mechanism to forward the
request to the final destination. As a result, OceanStore provides replies much
faster for the very popular items than is using a Tapestry approach. However,
the routing cost is increased for the cases where Bloom Filters provide false
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replies. Moreover, the dissemination of Bloom Filters may consume consid-
erable bandwidth.

21.4.2 Hybrid PIER

PIER [308] is a distributed query engine built on top of CAN. Similarly to
the goal of OceanStore, in order to exploit the advantages of looking for
popular items, a hybrid system has been proposed for PIER [394]. Hybrid
PIER benefits both from DHTs and popularity-aware mechanisms, which
are employed to get an improved overlay network. Hybrid PIER overlay is
composed of two components, (i) an UltraPeer-based Gnutella network5 and
(ii), a structured CAN where UltraPeers may only participate. The hybrid
search infrastructure utilizes selective publishing techniques that identify and
publish only rare items into the DHT (a decision taken by the UltraPeers).
The search algorithm uses flooding techniques for locating popular items, and
structured (DHT) search techniques for locating rare items.

As long as the distribution of object replicas in the system follow a long
tail distribution, such a hybrid system may perform better than a pure DHT
alternative. However, the indexing and routing load is not evenly distributed.

21.5 Comparison with Non-hybrid Systems

In this section we compare hybrid solutions with non-hybrid in a general,
abstract way, thus avoiding references to specific concrete systems in order
to understand better the advantages and the shortcomings of following a
hybrid design approach.

On the one hand, hybrid systems have increased complexity since they
are combinations of more than one approaches and moreover, merged in a
possibly constrained way that reveals the advantages of each sub-component.
Hybrid systems naturally follow temporally the non-hybrid approaches that
should be first well understood and both their benefits and drawbacks be
identified.

On the other hand, hybrid systems may be better designed since their
designers learn from the limitations and the mistakes of the pioneered pure
approaches. Hybrid solutions show high adaptability to environmental con-
ditions. Usually they are designed considering these conditions and they may
reveal certain scenario-aware advantages or avoid related limitations. Perfor-
mance may be greatly increased and new characteristics may be added to the
constrained pure alternatives. Apparently, hybrid approaches may be the only
viable way to address the large number of (usually) conflicting requirements
raised in large-scale, dynamic and heterogeneous Peer-to-Peer systems.

5 Based on Gnutella v0.6 protocol.
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21.6 Summary and Conclusion

We have examined a large number of important hybrid Peer-to-Peer systems
in order to reveal their advantages and the design purpose they serve. Though
initially hybrid Peer-to-Peer systems were targeting in merging the Peer-
to-Peer and Client/Server paradigms in different services they have been
extended to explore a much wider range of combinations. Table 21.1 provides
a summary of the main objectives and the key mechanisms to achieve them
for each described hybrid systems.

In summary, with respect to the non-functional requirements, all the de-
scribed systems address the scalability issue with a structured component.
JXTA, Brocade and Omicron make heavy use of peers with special char-
acteristics to deal with the heterogeneity of the peers. However, it is only
Omicron that addresses heterogeneity in a balanced way where each peer
contributes to the common overlay operations. Hybrid PIER and OceanStore
take advantage of the popularity distributions for documents to increase their
performance and reduce the network overhead. Brocade and Omicron deal
in a certain degree with the creation of vicinity-aware overlay construction.
Fault-tolerance is mainly achieved through redundancy mechanisms or the as-
signment of certain responsibilities to stable peers (or combination of both).
SHARK and JXTA address the requirement for range queries support.

Hybrid Peer-to-Peer systems are interesting alternatives to pure system
designs since they may overcome the limitations of the original approaches.
Reality has shown that hybrid systems are usually the ones that are widely
deployed and extensively used.

Hybrid Peer-to-

Peer systems

Main objectives Key mechanisms

Omicron Efficient and stable large scale,
heterogeneous, dynamic Peer-to-
Peer systems

Clustering, Dynamic
role assignment

SHARK Scalable range queries Hybrid structural
Overlay

JXTA Low cost overlay management Role separation

Brocade Efficient mapping of overlay to
underlay network

Location-aware sub-
network

OceanStore Low cost search for popular
queries

Bloom Filters based
caching

Hybrid PIER Low cost search for popular
items

Hybrid structural
overlay

Table 21.1: Objectives of Hybrid Peer-to-Peer systems
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What is missing is a more systematic approach that may identify the
requirements of the targeted systems, select and appropriately combine the
identified components to meet these requirements. There are three main de-
sign dimensions to explore in the design of hybrid overlay networks, however,
researchers may investigate further options defined in the context of the prob-
lem to be solved.

Further Reading
For the interested reader, a number of further citations are provided here
to trigger further research areas. A hybrid topology inspired by Peer-to-Peer
overlays and applied in mobile ad hoc networks can be found in [364]. A
two-tier hierarchical Chord is explored in [238]. Measurement efforts on the
KaZaA system can be found in [384]. A hybrid topology that extends Chord
to increase the degree of user anonymity can be found in [562]. An early
comparison of some pioneering hybrid approaches such as Napster and Point-
era is provided in [634]. A hybrid protocol named Borg [641] aims in scal-
able Application-level Multicast. A generic mechanism for the construction
and maintenance of superpeer-based overlay networks is proposed in [428]. A
Peer-to-Peer overlay network simulator has been implemented especially to
augment the evaluation of a wide range of hybrid designing methods [152].
A hybrid approach on deploying hybrid Content Delivery Networks (CDNs)
based on an ad hoc Peer-to-Peer overlay and a centralized infrastructure is
described in [633].





22. ISP Platforms Under a Heavy Peer-to-Peer
Workload

Gerhard Haßlinger (T-Systems, Technologiezentrum Darmstadt)

22.1 Introduction

Peer-to-peer (P2P) applications presently contribute the main part of the
traffic volume on Internet access platforms in Europe and North America.
Distributed file sharing systems first emerged as a widely used application
supported by a number of protocols, where the size of most popular networks
counts millions of nodes being involved in mutual online data exchange. In
addition, large voice over IP networks are using Peer-to-Peer technology and
more applications based on a Peer-to-Peer overlay structure are expected to
become popular. This has ambivalent consequences on the business models of
service and network providers. Peer-to-peer networking is a driving demand
of broadband access, motivating many users to subscribe to ADSL access with
1 - 6 Mbit/s line speed as presently offered by Deutsche Telekom and other
Internet service providers (ISPs). At the same time Peer-to-Peer overlays also
open the market for many additional services as a technology to make them
globally present for a small investment in protocol development.

In this context, an efficient transport of data in Peer-to-Peer networks is
crucial for the success of Peer-to-Peer applications and is also a main concern
of ISPs and especially the network management on the IP layer. Some early
versions of Peer-to-Peer protocols were subject to a large messaging overhead.
Measurement in the Gnutella network [517] attributed a minimum overhead
of 6 kbit/s per connection. In addition, search queries got flooded through
the Gnutella network and thus limited its scalability. The current version of
Gnutella as well as other popular file sharing networks like eDonkey, BitTor-
rent or FastTrack have reduced the routing overhead and become scalable
with millions of interacting peers. Nevertheless, a significant messaging over-
head often remains; see chapter 24 on traffic characteristics and performance
evaluation.

The data search and selection of sources for downloading establish routing
mechanisms on the application layer, which are usually independent of the
routing on the IP network layer. The distribution of data over the Peer-to-
Peer network and the (mis-)match of routing strategies on different layers
is essential for an efficient bandwidth utilization and data throughput on IP
platforms. On the other hand, the diversity and variability of Peer-to-Peer
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protocols make it difficult to monitor them or even to control and optimize
their performance on the management level of IP platforms.

In this chapter we will have a closer look at the implications of Peer-to-
Peer applications on traffic and network management for IP platforms with
broadband access. Besides a brief discussion of monitoring and traffic analysis
of Peer-to-Peer applications, the main focus is on the efficiency of resource
usage and consequences of a dominant Peer-to-Peer workload on the quality
of service in IP networks, which support an expanding variety of services.

22.2 Peer-to-Peer Traffic Characteristics

22.2.1 Traffic Mix on IP Platforms

From 1999 Napster has offered a platform for file sharing, which generated a
considerable portion of traffic (> 20%) on IP networks in the USA within a
few months. Despite the shut-down of Napster due to copyright infringements
and persisting problems of illegal content distribution, file sharing traffic has
continuously increased until it became the dominant source of traffic [555].

Table 22.1 shows some representative measurement results for the com-
ponents of the Internet traffic mix in Europe in 2003-2004. Based on the
evaluation of TCP ports, more than half of the traffic is attributed to Peer-
to-Peer applications. In addition, the Peer-to-Peer traffic portion becomes
even larger when observed at application layer [475] e.g. from 50% to al-
most 80% as reported in [40]. In recent time, most of the FastTrack protocol
has been replaced by BitTorrent activity in Deutsche Telekom’s and France
Telecom’s traffic statistics, while eDonkey is still dominant [492].

22.2.2 Daily Traffic Profile

The application mix on IP networks also varies according to the time of day:
web browsing (HTTP) oscillates between a peak in heavy traffic hours in the
evening and almost no activity for some hours after midnight. Figure 22.1 il-
lustrates the main traffic portions of Peer-to-Peer, web browsing (HTTP) and
other applications, which again have been distinguished via TCP standard
ports.

Peer-to-peer applications again dominate the traffic volume and at the
same time show an overall smoothing effect on traffic profiles as compared
with client-server architectures for several reasons:

– Traffic variability over time:
The daily traffic profiles in broadband access platforms typically show high
activity during the day time or in the evening. For Peer-to-Peer traffic, the
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Application Mix
from TCP Port
Measurement

Deutsche
Telekom
1st Half
2004

France
Telecom

2003

France
Telecom

Sept.
2004

CacheLogic at
an EU Tier-1

Provider
in June 2004

eDonkey 60 % 38 % ∼ 54.5 % ∼ 20 %

FastTrack 6 % 8 % ∼ 1 % ∼ 10 %

BitTorrent - - ∼ 3.5 % ∼ 16 %

Other Peer-to-
Peer

4 % 4 % ∼ 1 % ∼ 10 %

All Peer-to-Peer 70 % 50 % ∼ 60 % ∼ 56 %

HTTP 10 % 15 % - ∼ 12 %

Other (non-

Peer-to-Peer /
unknown)

20 % 35 % - ∼ 32 %

Table 22.1: Port measurement of Peer-to-Peer traffic in Europe

ratio of the peak to the mean rate is usually smaller than 1.5 due to back-
ground transfers which often last throughout the night. Web browsing and
many other applications have a ratio of 2 or higher. The ongoing Peer-
to-Peer data transfers through the night time are initiated by long-lasting
background downloads of large video files with sizes often in the Gigabyte
range. When peers are connected via ADSL access lines, the throughput
of Peer-to-Peer transmission is limited by the upstream speed of the peers.
Thus it requires hours or days for a peer to download a file of Gigabyte size
at a rate of about 100 kbit/s when peers are staying continuously online.

– Traffic variability over network topology:
The popularity of many Internet servers is often changing dynamically.
Traffic sources may spontaneously arise and vanish at different locations
in the network topology, where servers are attached. On the contrary, the
nodes in large Peer-to-Peer networks are more or less uniformly distributed
over the access area. In search phases the Peer-to-Peer protocols often in-
volve supernodes which are similar to servers as traffic sources. Downloads
on the other hand run completely distributed among the peer nodes. While
spontaneous accesses from many clients to a server can lead to bottlenecks,
frequently referenced data is soon replicated and afterwards downloaded
from many nodes in a Peer-to-Peer network. Hence, Peer-to-Peer applica-
tions lead to a more uniform distribution of traffic sources over the network
independent of sudden changes in the popularity of material on the Inter-
net and the locations of originating nodes.
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Fig. 22.1: Usual profile of Peer-to-Peer, HTTP and other traffic on Deutsche
Telekom’s IP platform measured over three days in the 2. half of 2003

– Variability due to different access speeds:
Most of the Peer-to-Peer source traffic originates from subscribers with a
limited access rate especially for uploads. The upload speed is presently in
the range of 128 - 512kbit/s even in most broadband access lines. Owing to
upload speed limitation and a preference for splitting the transfer of large
files into many data chunks, which can be transmitted in parallel TCP
connections to and from the peers, the traffic of Peer-to-Peer applications
is subdivided into a large number of small flows. Thus the preconditions
for the smoothing effect of statistical multiplexing are strengthened due
to the increased multiplexing degree for Peer-to-Peer applications. As a
consequence, the burstiness of aggregated traffic on network and especially
backbone links is significantly reduced.

When the user population and thus the number of parallel sessions is
constant and transfer activities in the sessions are independent of each other,
then the central limit theorem is applicable to the rate statistics of aggregated
traffic being composed of a large number of small and independent flows.
Remote access routers at the boundary of IP platforms already aggregate the
traffic of hundreds or several thousand users.

As a consequence, the coefficient of variation, i.e. the ratio of the variance
to the square of the mean, becomes smaller with a higher level of aggregation
and the traffic rate approaches a Gaussian distribution [40, 280]. Simple link
dimensioning rules are available for Gaussian traffic with regard to quality of
service aspects [278, 281].
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22.2.3 Traffic Growth and Prognosis

In recent years, the deployment of broadband access lines for the mass mar-
ket together with extensive use of file sharing applications pushed the traffic
volume [459]. From 2000 to 2003 Deutsche Telekom supplied several million
homes with ADSL access and the traffic on the Internet platform increased by
a factor of more than 100 over this 3 year period, coming close to the scalabil-
ity limits of mature carrier-grade routing equipment available on the market.
Meanwhile the broadband access penetration is continuously expanding with
higher access speeds being offered, while the traffic growth rate is flattening.
In general, there are still undoubted requirements for larger bandwidths in
telecommunication networks, whereas the future development of Peer-to-Peer
traffic is difficult to predict.

Most video files are currently using MPEG compression in order to adapt
to limited transmission capacities on account of reduced quality. Television
studios presently demand high resolution for their video transmissions in high
definition television (HDTV) quality together with coding schemes without
loss of information. The corresponding transmission rate amounts to several
Gbit/s for a single video stream. Nowadays IP backbone and access speeds
would have to be increased about 1000-fold for a widespread transport of
video in HDTV quality. Although many people may nowadays be satisfied
with low video quality, improving quality for video and further emerging
broadband applications will continue to increase demand for even larger band-
widths for at least the next decade.

With regard to Peer-to-Peer applications, the illegitimate use of copyright
protected content and the future effect of countermeasures are unknown fac-
tors of influence. In addition, legal downloads and video streaming are cur-
rently being offered on client-server architectures via Internet under accept-
able conditions for the mass market, which may then partially satisfy the
requirements of present Peer-to-Peer users. Moreover, scalability and many
security aspects including resistance against denial-of-service attacks seem to
be handled without much care by current Peer-to-Peer protocols.

On the other hand, the superior efficiency of the Peer-to-Peer principle for
fast widespread distribution of large amounts of data is attractive for software
distribution, especially when updates are frequently required, e.g., for virus
scanning programs. There is a high potential for supporting various upcoming
applications by Peer-to-Peer networks including online gaming, radio and TV
over IP etc., with some candidates for drivers of future traffic growth among
them.

22.2.4 Asymmetrical Versus Symmetrical Access Lines

On the whole, Peer-to-Peer traffic is symmetrical in up- and downstream
directions, since an upstream flow from a sources always corresponds to a
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downstream flow to the destination when no data is lost during transmission.
Since many users are at first interested in downloading files, Peer-to-Peer pro-
tocols have to take care of a balanced transfer in both directions. Nowadays,
protocols in widespread use start to upload data in parallel to a download
as soon as the first data chunks of a downloaded file have been received.
Moreover, they enforce a give and take policy for each participant such that
users with a higher upload volume are preferred when they are requesting
downloads.

On the other hand, broadband access lines are usually asymmetrical with
smaller upstream rate, e.g., 128 kbit/s versus 1 Mbit/s. Therefore, the up-
stream capacity in broadband access platforms becomes a bottleneck for Peer-
to-Peer applications. In measurement of upstream traffic the Peer-to-Peer
portion is very high, since most other transmissions go downstream.

Symmetrical access lines would be more appropriate for Peer-to-Peer data
exchange, but if service providers were to replace ADSL lines with symmetri-
cal DSL at comparable speed, then Peer-to-Peer traffic could be expected to
increase with the upstream speed. This shows that enforcement of a close re-
lation between up- and download volume of each user is essential to achieve a
high throughput of Peer-to-Peer traffic on broadband IP platforms. An adap-
tation of Peer-to-Peer video streaming to asymmetrical access is studied in
[646].

There are other symmetrical broadband applications e.g. video telephony
and conferencing, which demand symmetrical access or at least a more bal-
anced ratio of up- to downstream capacity.

22.3 Cross Layer Aspects

22.3.1 Routing on Application and IP Layer

Peer-to-peer networks establish their own routing on the application layer
when searching and selecting data sources. They are different from the rout-
ing principles on the network layer with consequences for the efficiency and
scalability. Earlier versions of the Gnutella network simply forwarded broad-
cast search requests to all neighbours within a limited distance measured by
the hop count, i.e. the number of intermediate nodes. In this way, a large
amount of messages were exchanged for each search, which imposed restric-
tions on the scalability of the Gnutella network [517].

Presently, Peer-to-Peer protocols often introduce hierarchically structured
search nodes to reduce the overhead together with functions known from IP
routing like hello messages to confirm connectivity to the peers. Neverthe-
less, a significant messaging overhead can be observed in large Peer-to-Peer
networks. The implementation of two independent routing layers causes inef-
ficiency to the extent of the mismatch between different underlying network
structures.
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22.3.2 Network and Transport Layer Analysis

Monitoring and analysis of Peer-to-Peer traffic is essential for Internet service
providers

– to determine the components of the traffic mix, which may indicate shifts
and trends in the usage of applications,

– to estimate the overhead in Peer-to-Peer messaging and
– to analyze the Peer-to-Peer network structure and transmission paths to

be compared with the routing on the network layer.

The components of traffic can be analyzed by evaluating information in
the IP and TCP header, i.e. IP addresses, TCP ports and information about
the TCP signaling and connection status. Peer-to-peer protocols are often
associated with a standard port or a range of specific ports, which allows
them to be recognized on the transport layer. When the search phase relies
on a small set of servers then the corresponding requests can be traced by an
analysis of IP addresses. The analysis on this layer is supported by sampling
mechanisms provided by the router equipment and can be performed at line
speed even on backbone links.

However, most widely used Peer-to-Peer protocols can be configured to
use any arbitrary TCP port and thus an essential part of Peer-to-Peer traffic
cannot be categorized on this layer, which runs over non-standard TCP ports
or even standard ports of other applications. Dynamically changing ports are
another variant. Recently, the portion of unknown TCP ports is increasing
in transport layer statistics, as can be observed e.g. in the Internet2 NetFlow
statistics [318].

22.3.3 Application Layer Pattern

To get better insight into Peer-to-Peer traffic components, application level
analysis is necessary which also inspects the payload of transmitted packets.
Depending on the protocol, patterns can be recognized, which indicate data
transmitted in Peer-to-Peer search phases or the initiation of data exchanges.
Afterwards they can be traced on the transport layer until the termination
of a corresponding TCP connection [285, 160]. Table 22.2 shows examples of
patterns observable in current versions of popular file sharing protocols [336].

In general, the analysis on this layer is complex and cannot be performed
permanently for the complete traffic on high speed links. Recognition patterns
have to be identified for each relevant Peer-to-Peer protocol and, in addition,
the analysis has to be updated whenever new protocols or new variants of
existing protocols emerge. Although there are approaches for the analysis
of several currently used protocols, a complete classification of Peer-to-Peer
traffic remains difficult since some protocols have developed techniques to
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P2P Protocol eDonkey2000 FastTrack BitTorrent

Transport TCP & UDP TCP & UDP TCP

Standard Ports 4661 – 4665 1214 6881 – 6889

Block Sizes 10,240 Byte
65,536 Byte
2,048 Byte

16,384 Byte
32,768 Byte

Characteristic
Pattern
in Packets

eDonkey: 0xe3
eMule: 0xc5

TCP:
GET /.hash;
GIVE;

GET
/announce?info.hash;
GET /torrents/;
GET TrackPak;
0x13 BitTorrent;
0x00000005;
0x0000000d;
0x00004009

Table 22.2: Characteristic protocol pattern in IP packets and their payload

disguise their purpose also on the application layer. Anonymous Peer-to-
Peer actions are addressed in the chapter on security. Nevertheless, several
manufacturers of measurement equipment offer tools for monitoring traffic
including Peer-to-Peer application layer analysis to some extent.

Besides the analysis of the components of complete data flows, another
approach of application layer analysis has been carried out by crawling into
Peer-to-Peer protocols [534]. To do this, a node is inserted into a Peer-to-Peer
network, which can collect data about the connectivity and structure of the
network as well as the status of other nodes.

22.3.4 Distribution of Sources for eDonkey File-Sharing

Peer-to-peer networks have no knowledge of the infrastructure of the under-
lying IP network structure. Thus, protocols on the application layer can be
developed independently of the lower layers. Nevertheless, layered protocols
should be coordinated in order to make the transport efficient. One aspect
is the length of paths from source to destination in Peer-to-Peer downloads.
Figure 22.2 shows an example of source locations, which have been selected
for downloading a popular file in the eDonkey network to a destination in
Darmstadt, Germany.

On the whole, the sources of the download are partly concentrated in the
near of the destination, most of them in Europe, but nevertheless some are
spread over the globe and only a minority is located on the IP platform of the
same service provider. Thus, most of the traffic for the download originates
from a number of remote autonomous systems and is routed as off-net traffic
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through peering points and the backbone of the IP platform to which the
destination is attached.

Fig. 22.2: Globally Distributed Sources for Downloading a File with eDonkey

On the other hand, Figure 22.3 illustrates the usual access and back-
bone structure of broadband access providers. Tree-shaped access areas are
attached to the backbone at points of presence (PoPs), where remote ac-
cess control routers handle the registration and sessions being set up for the
users. For large provider networks serving millions of subscribers, it can be
expected that a majority of the data of global file sharing systems can already
be found to be replicated at some sources on the same ISP platform and of-
ten even in the same access area. This especially holds for the most popular
and referenced data, since it is observed that the major portion of downloads
comes from a small set of very popular files. Thus the source distribution
of figure 22.2 indicates unnecessarily long transmission paths increasing the
traffic load between autonomous systems and in backbone areas. This leaves
potential for more efficient data exchange when a better match of network
structures on the application and IP layer could be achieved.

In the considered example, a Linux software file was downloaded. The
situation may be different when most audio and video data is transmitted by
people in some country in their own language. France Telecom observed that
a major part of the file sharing traffic in their Internet platform is locally to
France, as can be expected by a differentiation of communities by languages
[196].
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Fig. 22.3: Basic structure of ISP Platforms for Internet Access

22.3.5 Caches for Peer-to-Peer Data

Web caches provide an opportunity to optimize traffic flows. Usual web caches
do not apply to Peer-to-Peer traffic and have become inefficient. On the other
hand, caches can be set up specially for Peer-to-Peer traffic. Therefore, they
act as a proxy node in a Peer-to-Peer network, which stores a large amount
of data. A major problem of usual caching is that data in the cache is often
expired, while it has already been updated on the corresponding web site.
Peer-to-peer file sharing systems are not subject to expired data since data
is referenced via unique hash identifiers.

Web caches are not intended to play an active role in Peer-to-Peer net-
works. They should be transparent and used only to shorten transmission
paths to distant nodes, but should not be directly addressed as a source in
the Peer-to-Peer network. When a download is requested for some data chunk
available in the cache, then the cache can respond instead of a source, which
has been selected in the search phase. For transparency reasons, the data
should be transferred as if it originated from the selected source with regard
to

– the IP addresses,
– the upstream access bandwidth of the source and
– possible changes in the status of the source, e.g. accounting for balanced

up- and download volume of Peer-to-Peer network nodes.

However, caches cannot be made completely transparent. A data transfer
from the cache will usually have a shorter transmission delay and a cache will
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not be able to match the available upstream rate of the original source, in-
cluding time-varying bottlenecks on the transmission path beyond the cache.
But at least the online availability and the access speed of the original source
should be taken into account. In fact, the upload capacity of the caches
will substitute a part of the upload capacity of nodes in the Peer-to-Peer
network with consequences for the total data throughput. The efficiency of
caches depends on the source selection by the Peer-to-Peer protocol. In prin-
ciple, unnecessary load on backbone and expensive international links can be
avoided.

By this method, caches for Peer-to-Peer traffic have to be adapted to
discover data for the most popular protocols in use. They do not reduce the
messaging overhead in the search phase. An alternative approach has been
taken by eDonkey, where caches of service providers can be directly included
as a configuration option of the Peer-to-Peer protocol. An open issue for
caching again lies in its partial use for illegal content, which was already a
problem before Peer-to-Peer became popular, but is becoming more serious
with file sharing.

22.4 Implications for QoS in Multi-service IP Networks

The Internet has developed from data transfer applications to a service in-
tegrating platform with steadily increasing variety of service types including
file transfer, email, web browsing, voice over IP, Peer-to-Peer data exchange
etc. Each service type has its specific quality of service (QoS) demands re-
garding bandwidth, transmission time, e.g., real time constraints, as well as
tolerance for transmission errors and failure situations. Peer-to-peer data ex-
change is usually of the best effort service type without strict QoS demands.
Downloads often run for several hours or days in the background.

Although shorter transfers or even real time transmissions would be desir-
able for some Peer-to-Peer applications, users are aware that economic tariffs
in a mass market impose access bandwidth limitations such that broadband
transfers require considerable time even with increasing access speeds.

On the other hand, the impact of Peer-to-Peer traffic on other services
has to be taken into account. The present traffic profile in IP networks with
a dominant Peer-to-Peer traffic portion of the best effort type suggests that
the differentiated services architecture [102, 618, 76] is sufficient as a simple
scheme to support QoS by introducing traffic classes to be handled at different
priorities.

Since presently less than 20% of the traffic in ISP networks seems to
have strict QoS requirements including voice over IP and virtual private net-
works (VPN), sufficient QoS could be guaranteed for those traffic types by a
strict forwarding priority. Even applications like web browsing and email are
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included in a 20% portion of traffic with the most demanding QoS require-
ments.

When the network is dimensioned for an essentially larger traffic volume
as is generated only by the preferred traffic classes, then they will not suffer
from bottlenecks and queueing delay in normal operation. Vice versa, the
impact of preferring a small premium traffic class on a much larger portion
of Peer-to-Peer traffic is moderate.

The delivery for premium traffic classes can even be assured in some
failure situations, e.g. for single link breakdowns, provided that restoration
links are available in an appropriate network design. Since overload may occur
on those links, the best effort traffic will then often be affected.

Nowadays Peer-to-Peer protocols can cope with temporary disconnections
on the application layer and recover transmission from the last current state
afterwards. When file transfers via FTP or HTTP protocols are interrupted,
an essential part of the transmission is often lost and a complete restart of
the transfer may be required. Segmentation and reassembly of large data files
into small chunks improves reliability and efficiency of Peer-to-Peer transfers,
which is essential for non-assured QoS of best effort transmission.

An obstacle for the application of differentiated services is the difficulty to
classify Peer-to-Peer traffic. A treatment with lower priority based on TCP
port numbers will increase the tendency to disguise Peer-to-Peer applications
by using randomly chosen ports for unknown protocols or by transporting
Peer-to-Peer data exchange e.g. over the HTTP port for web browsing. There-
fore, the only efficient way to classify traffic seems to be through a declaration
and marking of the complete premium type traffic by the users themselves
or by the originating servers, combined with a corresponding differentiated
tariff scheme. But even then unresolved problems remain for supporting QoS
for inter-domain traffic and for QoS-sensitive traffic which is transferred over
peering points into a service provider platform.

22.5 Conclusion

Despite of increasing the traffic volume on the Internet, Peer-to-Peer traffic
has a smoothing effect on the variability of the traffic rate and the daily
profiles on broadband platforms. The geographical distribution of sources
becomes more uniform as compared to most other traffic types. Potential for
more efficient transport can be seen in unnecessarily long transmission paths
due to the source selection in popular file sharing protocols.

These properties partly facilitate the network dimensioning and planning
for service providers, but the monitoring, analysis and control of the Peer-
to-Peer components and the prediction of their future development remains
difficult.
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The present traffic mix with a dominant portion of best effort type data
exchanges in the background has implications for the quality of service con-
cept, suggesting that differentiated services [1] are sufficient to support QoS-
sensitive traffic types. Presently such traffic types generate less traffic volume,
even including applications like web browsing. A comprehensive and appro-
priate classification of service types is still subject to many unresolved issues.



23. Traffic Characteristics and Performance
Evaluation of Peer-to-Peer Systems

Kurt Tutschku, Phuoc Tran-Gia (University of Würzburg)

23.1 Introduction

Peer-to-Peer services have become the main source of traffic in the Inter-
net and are even challenging the World Wide Web (WWW) in popularity.
Backbone operators and Internet Service Providers (ISP) consistently report
Peer-to-Peer-type traffic volumes exceeding 50% of the total traffic in their
networks [42, 337, 372, 556], sometimes even reaching 80% at nonpeak times
[39, 236], see also chapter 22.

Peer-to-Peer services are highly lucrative due to their simple administra-
tion, their high scalability, their apparent robustness, and easy deployment.
The use of a distributed, self-organizing Peer-to-Peer software might reduce
capital and operational expenditures (CAPEX and OPEX) of service opera-
tors since fewer entities have to be installed and operated. In a commercial
context, high performance Peer-to-Peer means that these services meet tight
statistic performance bounds; for carrier gradeness this bound is typically
99.999%, the so called “five nines” concept. Before Peer-to-Peer services or
Peer-to-Peer-based algorithms might be released in a production environ-
ment, it has to be evaluated whether these Peer-to-Peer-based solutions meet
these requirements or not.

This aim of this chapter is to present selected characteristics of Peer-to-
Peer traffic and discuss their impact on networks. In addition, the chapter
will outline what performance can be expected from Peer-to-Peer-based al-
gorithms and which factors influence Peer-to-Peer performance. First, this
chapter discusses in Section 23.2 the relationship of basic Peer-to-Peer func-
tions with performance. Section 23.3 is dedicated to the traffic patterns of
popular Peer-to-Peer services. In particular, the characteristics of Gnutella
overlays (Section 23.3.1) and of the eDonkey file sharing application in wire-
line and wireless networks (Section 23.3.2) are investigated. The efficiency of
a Chord-like resource mediation algorithm is discussed in Section 23.4. Sec-
tion 23.5 is devoted to the performance of exchanging resources in a mobile
Peer-to-Peer architecture.

R. Steinmetz and K. Wehrle (Eds.): P2P Systems and Applications, LNCS 3485, pp. 383-397, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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23.2 A Concept for Peer-to-Peer Performance

A comprehensive description of the performance of Peer-to-Peer systems is a
challenging task. The term “Peer-to-Peer” describes not a single architecture
but subsumes a rather huge variety of architectures and applications. A single
evaluation metric for Peer-to-Peer services is rather impossible. Peer-to-Peer
architectures and Peer-to-Peer algorithms have to be evaluated according to
the task they accomplish.

All Peer-to-Peer systems have in common that they are highly distributed
application architectures where functional equal entities (peers) voluntarily
share resources. In order to participate in the resource exchange, Peer-to-Peer
systems support two fundamental coordination functions: a) resource medi-
ation mechanisms, i. e. functions to search and locate resources or entities,
and b) resource access control mechanisms, i. e. functions to permit, prior-
itize, and schedule the access to resources. In addition, since Peer-to-Peer
is a networked application architecture, the efficiency and the performance
of a Peer-to-Peer system has to be evaluated on the network layer (e. g. by
describing the load imposed by a Peer-to-Peer application on the network),
as well as on the applications layer (e. g. by considering the time to locate a
resource).
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Fig. 23.1: Cartography of Peer-to-Peer applications and content distribution ar-
chitectures
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Figure 23.1 depicts a two-dimensional cartography for comparing Peer-to-
Peer systems by their architectural characteristics with other well-established
information dissemination mechanisms. The basic Peer-to-Peer control func-
tions (resource mediation/resource access control) form the Cartesian space
in Figure 23.1. The degree of distribution (centralization/decentralization) is
used as the range of the axes. The cartography visualizes the architectural
options of operators and users for providing information distribution services
(“operator-centric” or “user-centric” architectures)1. The cartography pro-
vides an initial guideline of how to choose the components of a Peer-to-Peer
architecture under given application requirements. A specific selection of a
Peer-to-Peer-based algorithm will be based on its performance.

The overall performance of Peer-to-Peer services is determined by the
combined performance of the two basic control functions. Since the control
functions solve different tasks, the algorithms have to be evaluated by sep-
arate performance metrics. The resource mediation functions, for example,
can be evaluated by:

– the needed time to locate a resource (cf. Section 23.4)
– the probability to locate a certain resource
– the amount of communication needed to locate a resource (cf. 23.3.1)

The metrics for resource access control are more user-oriented and may com-
prise:

– the time needed to exchange a resource (cf. Section 23.5)
– the throughput obtained during the exchange of a resource (cf. Sec-

tion 23.3.2)

The range of the axes of the cartography indicates another constraint for
the evaluation of Peer-to-Peer. Decentralization includes scalability, thus the
performance of Peer-to-Peer algorithms has to be considered with respect to
the number of entities participating in the system. Another feature of Peer-to-
Peer is the autonomy of the nodes, i. e. the peers may join or leave the system
arbitrarily. This leads to the requirements to evaluate Peer-to-Peer algorithms
with respect to the stochastic on-line behavior, which is summarized under
the term “churn”, cf. also Section 23.5.

A key reason for the success of Peer-to-Peer systems is their use of
application-specific overlays. Peer-to-Peer overlays, however, show a high
variability due to the churn behavior of the peers. The stability of the over-
lay, e. g. the life time of overlay connections (cf. Section 23.3.1), and the
consistency of the overlay, e. g. the probability that an overlay splits, are
Peer-to-Peer-specific performance metrics for overlays.

1 A detailed discussion of Figure 23.1 is provided in [27]
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23.3 Traffic Characteristics of Peer-to-Peer-Systems

23.3.1 Gnutella

Gnutella was one of the first successful Peer-to-Peer file sharing applications
[335] and sparked largely the wide spread interest in Peer-to-Peer due to its
pure Peer-to-Peer architecture. The Gnutella service forms an application-
specific overlay of Internet accessible hosts running Gnutella-speaking appli-
cations like LimeWire [388] or Bearshare [65]. In Gnutella, the overlay is used
for locating files and for finding other peers; the later in order to maintain
the integrity of the overlay. The initial version of Gnutella [126] uses a simple
flooding protocol combined with a back-tracking mechanisms for locating the
resources (files or hosts) in the overlay. While the qualitative evaluation has
revealed that Gnutella suffers from scalability problems [518], little is known
of quantitative results on the traffic and the dynamics in Gnutella overlays.
In particular, time scale and variability of the number of virtual connections
have to be characterized [601].

Measurements at an unrestricted Gnutella client have been carried out
in March 2002 at the University of Würzburg. The observations (cf. Fig-
ure 23.2) reveal that even without sharing files, a Gnutella client is consum-
ing tremendous high amounts of bandwidth for locating resources (files or
hosts), reaching up in the order of tens of Mbps.
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Fig. 23.2: Sum of signaling traffic load

In addition, Figure 23.2 shows that the traffic in Gnutella overlays varies
strongly over short timescales. This is mainly due to the use of flooding
protocols in Gnutella.
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Fig. 23.3: Number of simultaneous overlay relations

In Gnutella, a peer tries to maintain a certain, pre-configured number
of overlay connections. Due to the churn behavior of the peer the number of
parallel maintained overlay connections can vary significantly, cf. Figure 23.3.

The investigation of the overlay connection holding time in Gnutella
showed that the distribution typically has bi-modal characteristic, cf. Fig-
ure 23.4.

The modes correspond to a “short” state, where typically host informa-
tion is transmitted, and to a “stable” mode, where mainly content queries
are exchanged. The modes identify the time scales on which a dynamic and
adaptive management of Peer-to-Peer overlays and Peer-to-Peer services is
of advantage or needed.

23.3.2 eDonkey

The eDonkey Peer-to-Peer filesharing service2[410, 589] continues to be one of
the most popular file swapping applications in the Internet [616]. The eDon-
key system is typically used for exchanging very large files like audio/video
CDs or even DVD images, and possesses a hybrid Peer-to-Peer architecture
with distinct servers and clients. The eDonkey system makes use of the multi
source download (MSD) feature, which permits the simultaneous transmis-

2 This chapter subsumes eDonkey2000 and all its derivatives by the single term
eDonkey.
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sion of file chunks to a downloading peer. The traffic profile [600] shows that
resource mediation traffic (also denoted as “signaling” traffic) and download
traffic have significantly different characteristics. Figure 23.5 depicts a scatter
plot describing graphically the correlation of the TCP holding time and the
size of eDonkey flows.

Each dot in the scatter plot represents an observed eDonkey flow. The
brighter dots are identified download flows, the dark dots represent non-
download connections. The scatter plot shows that almost all identified down-
load flows are within the same region. In turn, the non-download flows are
in an disjunct region of the plot. This graph reveals that download and non-
download flows have significantly different characteristics. A Peer-to-Peer
traffic model has to distinguish between both types of traffic.

The differences between the types of traffic are underlined in Fig-
ure 23.6 and Figure 23.7. The complementary cumulative distribution func-
tion (CCDF) of the flow size is depicted in Figure 23.6. Part (a) of Fig-
ure 23.6 shows that the download flow size decreases stronger than linear in
the log/log plot. That means that the flow sizes don’t show a strong “heavy
tailed” feature.

An approximation of the observed data with a lognormal distribution
achieves a good estimate. The reduced strength of the heavy tail feature is
not expected, but can be explained: the download flows are limited due to the
segmentation of files into chunks and due to the application of the multiple
source download principle. This observation gives evidence that the expected
“mice and elephant” phenomenon [479, 73] in eDonkey traffic is not as severe
as expected.
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Fig. 23.5: Correlation of eDonkey TCP holding time and flow size

Part (b) of Figure 23.6 depicts the size of non-download flows. The prob-
ability that a flow is larger than a given value decreases almost exponen-
tially until a limit (approx. 14Kbytes). Beyond this limit, the decrease is not
regular. This is an expected behavior since non-download flows are typical
signaling flows to renew requests.

Figure 23.7 depicts the CCDF of the eDonkey flow holding times on TCP
level. The download connection holding time CCDF decrease moderately,
cf. Figure 23.7(a), and reminds more of a linear decay in a log/log plot.
The CCDF of the holding time of non-download streams, cf. Figure 23.7(b),
decreases rapidly as well as un-regularly. This is an expected behavior since
non-download connections are short and limited in their sensitivity on TCP
flow control.

Mobile Peer-to-Peer Filesharing
The feasibility and throughput of mobile Peer-to-Peer file sharing in infra-
structure-based GPRS and UMTS mobile networks is examined by measure-
ments in [298]. The measurements have been carried out in networks of two
German GPRS network operators and, for the first time, in a UMTS network.
The subject of the empirical investigation was the eDonkey application due
to its continuing popularity [616] and its hybrid architecture, which give op-
portunities for network operators to interfere [456].

The measurements demonstrated that mobile Peer-to-Peer is technically
feasible for GPRS technology but stability and throughput are unaccept-
able low if compared to fixed Peer-to-Peer. Particularly, the direct exchange
of large parts of files between two mobile peers and multiple source down-
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Fig. 23.6: CCDF of the observed eDonkey Flow Size
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load is not practical in GPRS. UMTS technology, in contrast, is more sta-
ble and has superior throughput. It extends the capabilities of the GPRS
service into sufficient performance for mobile Peer-to-Peer file sharing. Fig-
ure 23.8(a) depicts the observed throughput for a multiple source download
for a mobile peer downloading from a fixed peer and a mobile peer (abbrevi-
ated as fix/mob→mob). The throughput for MSD reaches a sustained level
of 25KBytes/sec. This is a value which even permits the download of larger
files.

The number of traversals of the air interface, however, has to be minimized
in order to reduce the traffic and the transmission delay. Figure 23.8(b) com-
pares the TCP connection holding times for an eDonkey file part of the same
size for a fixed-to-mobile transmission and for a mobile-to-mobile transmis-
sion in UMTS. Figure 23.8(a) reveals that the uplink capacity of the providing
mobile peer is the bottleneck and that the connection setup time is almost
doubled in the mobile-to-mobile transmission. A reduction of the necessary
traversal of the air interface can be achieved efficiently by the application of
caches, which has also the advantage of overcoming the asymmetric access
bandwidths of mobile stations [297].

23.4 Evaluation of a Peer-to-Peer Resource Mediation
Mechanism

A distributed and highly scalable approach for Peer-to-Peer resource me-
diation mechanisms is the concept of distributed hash tables (DHTs) [52].
DHT-based Peer-to-Peer algorithms like Chord [575] only need to store the
location of O(log2(n)) other peers where n is the number of peers in the
overlay network. They are furthermore able to retrieve information stored in
the distributed network using O(log2(n)) messages to other peers. This state-
ment, however, is very vague. It tells only the order of the magnitude of the
search delay and does not provide sufficient details on the actual search time
statistics. As a matter of fact the physical link delay, which is highly prob-
abilistic, strongly influences the performance of searches in a Peer-to-Peer
overlay network. Thus, the impact of network delay variation on resource
mediation times, i. e. search times, in DHT based Peer-to-Peer systems has
to be evaluated. The goal is to prove scalability of Chord rings in order to
guarantee quality-of-service demands. An analytical model for Chord has to
be deduced in order to evaluate the performance in large peer populations
[74].

The phase diagram of the search delay is depicted in Figure 23.9. A par-
ticular path i is chosen with probability pi and consists of i network transmis-
sions TN to forward the query to the closest known finger and one network
transmission TA to send the answer back to the searching peer. By means of
the phase diagram, the generating function and the Laplace transform respec-



392 23. Traffic Characteristics and Performance Evaluation of P2P Systems

Fig. 23.9: Phase diagram of the search duration T

tively can be derived to cope with the case of discrete-time or continuous-time
network transfer delay.

The distribution function of the search delay as seen from a user entering
a search query to a peer in the Chord ring is computed. The analysis also
gives insight into the quantiles of the search delay.

Figure 23.10, e. g., analyzes different quantiles of the search delay. It can
be seen that Chord searches indeed scale logarithmically. One can observe
that the search delay bound rapidly increases at smaller values of n, but
stays moderate for very large peer populations. The curve is not strictly
monotonically increasing as expected since a small decrease can be seen when
the population n just exceeds a binary exponential value 2i. This effect can
be explained as follows: once the size of the population crosses the next power
of 2, the finger table of each peer grows by one entry. Thus, the mean search
duration slightly decreases at this point.

The curve with the 99%-quantile indicates that 99 percent of search du-
rations lie below that curve. For a peer population of, e. g., n = 3000 in 99
percent of all cases the search delay is less then roughly 15 times the aver-
age network latency. That is, the curves indicate bounds of the search delay,
which can be used for dimensioning purposes. Compared to the mean of the
search delay the quantiles of the search delay are on a significantly higher
level. Still, the search delay scales in an analogous manner for the search
delay quantiles.

Figure 23.11 depicts the 99%-quantile of the search delay, with the coeffi-
cient of variation of TN as parameter. There are five vertical lines at n = 512,
256, 128, 64, and 32 to point out the previously mentioned oscillations at
n = 2i. The larger cTN we choose, i. e. the more variation there is in the
network delay, the larger is the 99%-quantile of the search duration. There-
fore, it is more difficult to guarantee Service Level Agreements in networks
with larger delay variation. Timeouts, e. g. have to be set to higher values
accordingly.
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Fig. 23.11: Influence of CoV of TN on search delay quantile

The numerical results presented above illustrate the dependency of the
search duration on the variation of the network transfer delay and analyze
the scalability of the Chord-based Peer-to-Peer mediation mechanism. The
analysis also gives insight into the quantiles of the search delay, which can be
used for system dimensioning purposes. This becomes of particular interest
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if real-time requirements should be obeyed in case such an algorithms is used
to locate users in a Peer-to-Peer VoIP system like Skype [567].

23.5 Evaluation of a Peer-to-Peer Resource Access
Mechanism in Mobile Environment

The second key function provided by Peer-to-Peer systems is the group of re-
source access mechanisms, i. e. algorithms for exchanging files. So far, mainly
empirical investigations of their efficiency have been published. A comprehen-
sive measurement-based evaluation of KaZaA [558], for example, is provided
in [379] and the empirical performance of the BitTorrent file swapping system
[128] is reported in [320, 494]. Two of the few available analytical investiga-
tions are presented in [71, 497].

Before deploying resource exchange mechanisms in the wild, it is necessary
to validate their capability. In particular, if resources are limited as in mobile
networks. Mobile networks differ from wireline networks mainly by the limited
capacity of the radio link and the mobility of the users. High overhead for
exchanging data is considered to be too expensive in mobile networks and
payload traffic should traverse the air interface only once on its way to the
requesting peer.

In order to meet these requirements, a hybrid architecture for mobile
Peer-to-Peer file sharing is proposed in [456] and analyzed in [298]. The sug-
gested architecture, shown in Figure 23.12, is based on the popular eDonkey
file sharing network and is enhanced by three specific mobile Peer-to-Peer
components: a modified index server for mediation, a cache peer for storing
popular files and a crawling peer, which supports mobile peers searching the
global community.

The architecture permits the operator to a) participate in service creation
and service control, b) to offer value-added services, while c) maintaining
the characteristic of direct and efficient Peer-to-Peer interaction between the
users, e. g. fast file swapping while minimizing the traffic on the user’s uplink.

The impact of the node life time, i. e. the churn behavior, on the download
time is depicted in Figure 23.13

Figure 23.13 shows the CCDF for downloading files with average size of
5 MBytes and by applying GPRS as the access technology of mobile peers.
Figure 23.13(a) shows the CCDF of the download time for popular files, i. e.
the cache peer is used (for details see [298]). The mobile peers with the longest
churn time of 12 h (red curve in Figure 23.13(a)) have the smallest download
times. The more the average churn time decreases in Figure 23.13, i. e. 2 h
(green line) and 30min (blue line), the more the download time increases.
Figure 23.13(b) illustrates the CCDF of the download time for unpopular
files with respect to the different churn times.
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Fig. 23.12: Overview of Mobile Peer-to-Peer Architecture
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Fig. 23.13: Download time for different churn times

The results shows that churn behavior of the peers has significant impact
on the download time of files, however the additional infrastructure entity,
the cache peer, can reduce this effect.

Figure 23.14 compares the CCDF of the download time for popular and
unpopular mp3-files of 8MBytes. The UMTS subscribers get quite reason-
able performance values since the download time exceeds 1 hour only with
a small probability. On the other hand, the GPRS subscribers have much
higher download times and the shape of the curve is completely different
to the CCDF for UMTS. It seems that there exists a minimal required up-
load/download bandwidth of the peers for a given file size in order to retrieve
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Fig. 23.14: Download of mp3-audio files with GPRS and UMTS

a file efficiently. The shape of the blue curve in Figure 23.14 is characteris-
tic for the CCDF of the download time in an efficient system, while the red
one illustrates the behavior for unefficient systems. This effect becomes even
more obvious for unpopular files which are not cached by the cache peer.

The results of Figure 23.14 show that mobile Peer-to-Peer file sharing is
almost impossible with GPRS whereas UMTS is a good candidate for efficient
Peer-to-Peer file swapping.

23.6 Conclusion

Peer-to-Peer architectures and Peer-to-Peer algorithms have to be evaluated
according to the task they accomplish. Peer-to-Peer systems support two
functions: a) resource mediation mechanisms and b) resource access control
mechanisms.

The performance of a Chord-based Peer-to-Peer resource mediation mech-
anisms has been assessed in Section 23.4. It has turned out that the network
delay has significant impact on the time to locate a resource and that the al-
gorithm scales even for tight delay bounds, in this way fulfilling carrier grade
requirements.

The efficiency of a multiple source download mechanism (resource access
mechanisms) has been investigated in Section 23.5. It was shown that the
download time depends highly on the type of the air interface as well as on
the churn behavior of the peers.

Furthermore, it was shown by measurements that Peer-to-Peer traffic
is highly variable and that Peer-to-Peer overlay management has to be
performed on two timescales (cf. “short” and “stable” state in and Sec-
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tion 23.3.1). Moreover the measurements have revealed that multiple source
download mechanisms do not increase the “mice and elephant” phenomenon
(cf. Section 23.3.2) and that these mechanisms can perform efficiently even
in mobile environments.

In the case of a mobile environment, measurements and the performance
evaluation indicate that an optimal transfer segment size exists, which is
dependent on the type of access network and the churn behavior of the peers.
The determination of this size is for further research.
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As we have seen in previous chapters, Peer-to-Peer-based applications are not
limited to the well-known file sharing applications. Also, the Peer-to-Peer in-
frastructure is not limited to the hard-wired Internet infrastructure, but is
starting to penetrate wireless networks of different characteristics. This chap-
ter discusses the application of Peer-to-Peer based concepts in mobile infras-
tructure environments – including cellular systems and ad-hoc style networks.
Starting with a motivation, application scenarios, and an overview of mobile
system characteristics, the main part of this chapter describes challenges and
possible solutions for optimizing Peer-to-Peer systems to meet the require-
ments of mobile scenarios. Both unstructured and structured Peer-to-Peer
concepts for mobile scenarios are analyzed and discussed.

24.1 Why Is Peer-to-Peer Technology Interesting for
Mobile Users and Mobile Services ?

Peer-to-Peer systems have previously been defined as self-organizing systems
supporting to find and use distributed resources, i.e., services (cf. Chapter 2).
With the increasing availability of mobile data communications – including
Internet access in mobile networks – wired network originated Peer-to-Peer
applications become available also to mobile users. They should enjoy the
same level of service as they know from fixed line access while being mobile.

Furthermore, the Peer-to-Peer paradigm provides the unique opportunity
for service offerings by individual users. For mobile users it is advantageous
to be able, e.g., to offer instant services directly instead of uploading them
to a centralized server. Moreover, services based on the local proximity of
the users can benefit from a Peer-to-Peer style of provisioning without any
infrastructure backing. However, for commercial applications there is still a
need for some support by special, trusted parties to control service negotiation
and to observe the fulfillment of service agreements [569].

However, wireless resources are usually limited and vary in performance
and availability, which restricts the use of Peer-to-Peer applications in mobile
environments. There are some general features in Peer-to-Peer that already
address changes in the conditions of the users communication environment.
For example, most Peer-to-Peer solutions can accommodate changes of a
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Fig. 24.1: Possible application scenario for location-based services: Locating a taxi.

node’s availability caused, e.g., due to failures or joins and leaves of users.
Too frequent changes as typical in wireless environments appear as a threat
to conventional Peer-to-Peer-systems.

In general, the application of Peer-to-Peer to mobile environments pro-
vides a number of opportunities and challenges since, originally, Peer-to-Peer
was not designed for mobile environments, which we will outline in what
follows. As we will see in the next sections, two scenarios are providing the
impetus for the application of Peer-to-Peer concepts in mobile environments.

Besides the well-known file sharing applications based on Peer-to-Peer
networks, new wireless applications are also feasible in mobile networks, es-
pecially when we consider multi-hop links such as in mobile ad-hoc networks
(MANETs). Therefore, we motivate two basic examples in the next two sec-
tions, that may be realized with Peer-to-Peer technology on top of an ad-hoc
wireless network.

24.1.1 Scenario 1: Taxi Locator

Imagine, for example, a user standing at the side of a road, requires a taxi,
but can not see any nearby. The user could now call the central taxi agency
and order a taxi, having to state his current position. The agency, which has
to track the current location of its taxis, could then direct the nearest one to
the user.

If context-based routing was supported by the available MANET, the user
could simply send out a request which would be broadcasted in a multihop
manner, via a pre-configured number of hops, in its proximity. All participat-



24.2 Introduction to Mobile Communication Systems 403

ing nodes would forward the request until a taxi receives it, as illustrated in
Figure 24.1. The taxi could then reply with an appropriate response message
to the requesting node, and finally, pick up the user.

Thus our context-based routing scheme allows the utilization of Location-
based Services (LBS) without the need for centralized elements. The underly-
ing MANET limits flooding of the search request to the geographical proxim-
ity. Additionally, the creation of all kinds of search requests can be imagined.
Possible request categories could thus also include bars, restaurants or closest
bus stops.

24.1.2 Scenario 2: University Campus

The second scenario is not that highly dynamic as the first one, but also bases
on ad-hoc network technology. On a university campus, today, students and
teaching staff are often equipped with wireless technology, like laptops, PDAs,
and Smartphones. During courses, seminars, reading groups, or in spare time,
they may form groups of collaborating ’peers’. But often, collaboration with
networked systems can not be deployed because of missing infrastructure
support (e.g., network plugs) or due to restrictive network policies.

A solution to such problems is the formation of spontaneous wireless ad-
hoc networks, e.g., based on bluetooth, IEEE 802.11x or both. Students are
then able to collaborate, share teaching materials, and many more. After
the courses are finished, students then move to the next activity. Thus, the
spontaneous groups separate and – after a short and highly dynamic period
– form new collaborative groups. These new groups may have a very different
purpose.

The formation of spontaneous ad-hoc groups can easily be supported
by existing MANET technology. They may also be interconnected by some
Internet-connected peers, if two MANETs are within wireless reachability.
But the sharing of information, the support for collaboration, and the real-
ization of other services is not directly supported by MANET technology.

We think, that Peer-to-Peer technology has greatly proven to be appro-
priate for such tasks in the wired Internet. The interesting questions are now:

– Can these Peer-to-Peer-based approaches be used in MANET scenarios,
e.g., like the two described here?

– What modifications and adaptations are necessary for such a purpose?

24.2 Introduction to Mobile Communication Systems

Before we take a deeper look into the challenges of Peer-to-Peer communi-
cation in mobile environments, we will briefly describe the variety of mobile
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communication systems and their features [348]. By ”mobile communication”
we mean systems with at least one hop of the communication path effected by
a wireless link. They usually support interactive bi-directional communica-
tion. Broadcast systems such as Digital Video Broadcast (DVB) and Digital
Audio Broadcast (DAB), or satelite-based systems are not considered in this
chapter.

In general, mobile access networks can be divided into two subcategories:
cellular networks, and mobile ad hoc networks (MANETs). The latter are
realized either with wireless LAN or other short range wireless transmission
technology. Table 24.1 summarizes the most important characteristics such
as data rate and coverage.

Second generation cellular networks such as the Global System for Mobile
Communication (GSM) have been enhanced to offer higher data rates and
packet-based communication. For example, by providing up to 50 kbps the
General Packet Radio Service (GPRS) in GSM offers much more efficient ac-
cess to web resources than the 9.6 kbps, data service of GSM itself. With the
recent introduction of third generation systems such as UMTS, offering up
to 384kbps, more demanding data services such as audio or video streaming,
and the downloading of large media files, are also now possible. The described
systems are only a small snapshot of the variety of cellular standards. Inte-
gration is expected with the introduction of the fourth generation. Cellular
terminals are usually constrained in terms of processing power, storage space
and battery power. Though the terminals offer only limited display capabili-
ties, most data formats such as audio, video, image are processed. Connecting
a laptop through a mobile phone to a wireless network overcomes end sys-
tems limitations, but still leaves data rate restrictions, the general problem
of today’s commonly available cellular networks such as GSM and GPRS.

System Data Rate Coverage Frequency Range

Cellular Networks

GSM 9.6 kbps country-wide 900, 1800,
GSM/GPRS < 50 kbps ” 1900 MHz
UMTS < 384 kbps partially 2GHz

country-wide

Wireless LAN

IEEE 802.11b max. 11Mbps 50-300 m 2.4 GHz
IEEE 802.11a 6-24Mbps ” 5GHz

Short Range

Bluetooth max. 1Mbit/s 10 or 100 m 2.4 GHz
IrDA 4Mbps line of sight infrared

Table 24.1: Overview of mobile communication systems
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Wireless data networks such as wireless LAN are of increasing importance
for wireless access providing data rates of up to tens of Mbps. In contrast
to cellular networks, which offer country-wide coverage and a feeling of al-
ways being connected, wireless LAN-based access is still restricted to certain
isolated locations (hot spots).

Wireless LAN technology, in concert with short range communication,
such as Bluetooth, also provides the infrastructure for mobile ad hoc net-
works. MANETs are self-configuring, multi-hop wireless networks that are
not based on any fixed infrastructure such as base stations, hot spots or any
central database. A node participating in a MANET acts at the same time
as a data source, sink, and router on the network layer. This is very similar
to Peer-to-Peer systems in that Peer-to-Peer nodes have the same roles on
the application layer (cf. Chapter 2). In multi-hop MANETs, such as illus-
trated in both example scenarios, nodes in physical proximity are used as
relay stations for routing. The main challenge for Peer-to-Peer techniques in
MANETs is overcoming the instability of the physical network as connec-
tions are changing due to the movement of the nodes. This may lead to long
unstable zig-zag routes on the Peer-to-Peer layer.

24.3 Challenges for Peer-to-Peer Techniques in Mobile
Networks

Summarizing the observations about mobile communication systems de-
scribed above, we can set down the following main challenges for Peer-to-
Peer techniques in mobile networks: Mobile networks are usually resource-
constrained systems limited by low data rates, low processing power, and low
storage capacity of mobile terminals. Furthermore, they are characterized by
frequent joins and leaves of nodes. This, what we call high churn rate, is
resulting from node failures, e.g., when moving out of coverage, exhausted
batteries, or from short session times, e.g., due to high online cost. To adapt
to the scarce wireless resources, Peer-to-Peer solutions for mobile networks
have to employ a more efficient search strategy than current flooding-based
concepts. Traffic can also be minimized if Peer-to-Peer networks are aware
of the underlying physical topology and long zig-zag routes are thus avoided.
This is especially important for multi-hop networks in order to reduce the
number of hops for the Peer-to-Peer path and to find the nearest shared
resource.

As have been said, we mainly distinguish mobile ad-hoc and cellular net-
works in mobile environments. Cellular wireless networks are only one-hop
wireless networks. Mobile Peer-to-Peer nodes are thus connected to the fixed
Internet by a single wireless link. Consequently, we can state that even if
the node moves, the physical path to this node does not alter very much.
We therefore can regard Peer-to-Peer nodes connected to the Internet via a
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cellular wireless link as low performance nodes because we have to consider
their bandwidth restrictions. Significant changes to the Peer-to-Peer proto-
col, which take into particular account the mobility of the nodes in cellular
wireless systems are therefore not necessary from our point of view.

However, if we want to operate a Peer-to-Peer network on top of a
MANET, we certainly do have to take into account the mobility of the nodes.
The reason of course is that MANETs are self-configuring, wireless multi-hop
networks, within which we have to assume the possibility of the physical path
between two nodes changing frequently, due to the movement of the nodes
[263]. If the overlay structure was to be established completely independently
from the underlying MANET topology, it would result in a significant num-
ber of long and unstable zig-zag routes in the MANET layer, as already said.
This would lead to high traffic volumes, which might not be sustainable by
the MANET [356]. In the following, therefore, we will focus more narrowly
on MANETs.

24.3.1 Peer-to-Peer Systems in Mobile Ad-Hoc Networks

Peer-to-Peer and MANET network architectures are very promising concepts.
Although they use different layers for operation, we think that the idea to
combine both architectures shows a high potential. As described in [547], the
architectures have several similarities, but also many differences. To achieve
a workable integration of the two architectures, a new inter-layer communi-
cation is necessary. Peer-to-Peer protocols are not aware of the underlying
MANET and assume a fixed network infrastructure, causing additional and
unnecessary network traffic. Thus a simple utilization of ad hoc networks for
common Peer-to-Peer applications is not feasible, as we shall now see.

Common Peer-to-Peer applications have optimized algorithms to find in-
formation within their overlay network, but for information exchange they
generally rely on TCP and assume stable connections. Whenever connections
break, Peer-to-Peer nodes assume that their distant communication partners
have left the network and switch to other, randomly chosen nodes, which can
also provide the requested content, or which offer further connectivity to the
network to initiate new search requests.

In MANETs, link breaks are common, as all nodes are in motion. When-
ever two adjacent nodes move out of each others’ radio range, the link between
them breaks. A MANET protocol unaware of the Peer-to-Peer application,
tries to re-establish a new route to the same destination, independently from
the necessary effort. Instead of trying to create a new route to the same source
of information after the network topology changed, other sources could pro-
vide the information at less cost. Therefore the MANET nodes have to report
route breaks to the upper Peer-to-Peer node which then decides whether the
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old source is still utilizable, or wether another connection partner is more
appropriate.

As common Peer-to-Peer networks operate on top of fixed network in-
frastructures, Peer-to-Peer nodes mostly do not distinguish between com-
munication partners in close proximity and those more distant. Peer-to-Peer
networks use multi-hop connections only for search requests. Subsequent in-
formation downloads use direct TCP connections between source and des-
tination. The distance between nodes generally does not affect the stability
and error-free operation of connections. Therefore Peer-to-Peer nodes might
create connections to distant nodes, even though the information searched
for might also be available more close by.

The distances between communication partners in MANETs are quanti-
fied by the number of intermediate hops. It is the most important parameter
for route lifetimes [263]. Numerous unnecessarily lengthened routes induce
additional routing overhead, delay data packet transmissions and as a result,
greatly reduce overall network performance. Therefore, the client application
must classify incoming search replies according to the hop distances to their
respective destinations. As a consequence, a combined Peer-to-Peer-MANET
approach must be well aware, on the one hand, of the underlying network
infrastructure, and on the other hand, of the overlaying application.

This situation introduces specific requirements on flexibility and resilience
of Peer-to-Peer systems in ad-hoc networks. Another difference between wired
and wireless networks is that global connectivity cannot be presumed in mo-
bile ad-hoc networks. Even if the network splits up in several parts the Peer-
to-Peer system still have to be operational to enable communication between
nodes.

Limited resources of mobile devices – such as computational power, mem-
ory, energy, and bandwidth – complicate the situation even more. Conse-
quently, mobile Peer-to-Peer-systems have to use these scarce resources effi-
ciently. Avoiding unnecessary transmissions may be thought of as an example.
In regions with a high density of nodes low bandwidth must be expected be-
cause of the shared medium. Because of the long distances between nodes a
low signal quality has to be expected in regions with a low density of nodes.
Therefore, ad-hoc networks have an obviously lower bandwidth while the
self-organization of the network causes a noticeably higher overhead.

24.4 Solutions for Peer-to-Peer in Mobile and Wireless
Networks

In the following, we will present and discuss approaches to enable the use
of Peer-to-Peer applications in a mobile environment [286]. As seen in the
previous parts of this book, Peer-to-Peer technology can roughly be divided
into two basic approaches: structured and unstructured Peer-to-Peer systems
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(see Chapter 2). Therefore, we will discuss the use of both paradigms sepa-
rately in Sections 24.4.1 and 24.4.2 though there may be some overlapping
similarities between both.

24.4.1 Solutions Based on Unstructured Peer-to-Peer Networks

If we want to employ Peer-to-Peer networks in MANETs as mentioned in
Section 24.3, we have to take into account, in contrast to cellular wireless
networks, that the topology of the underlying physical network frequently
changes. Due to the assumed node movements (sensor networks are not re-
garded in this context), the links between the nodes frequently change leading
to frequent path breaks [263]. Therefore it is necessary to align the virtual to
the physical topology to avoid zig-zag routes as described in [550].

Summarizing, we can state that although pure Peer-to-Peer networks and
MANETs employ similar networking approaches, their combination by sim-
ply establishing a Peer-to-Peer network upon a MANET, without provid-
ing any interaction between them will most probably show low performance
[356]. Thus, only recently have some approaches been developed to provide
content-based routing, caching, or Peer-to-Peer networking in mobile ad hoc
networks, which take into consideration the physical topology.

7DS [387], for example, employs local broadcast messages to provide an
infrastructure for web browsing without a direct connection to the Internet.
Therefore, every node acts as a mobile cache, which is continually renewed if
a direct connection is available.

Besides providing Internet content in MANETs, ORION [356] is, next to
the Mobile Peer-to-Peer protocol (MPP) [548, 264], a system, which aims to
provide Peer-to-Peer services in a MANET indexMPP. ORION provides a
general purpose distributed lookup service and an enhanced file transmission
scheme to enable file sharing in MANETs. In contrast to MPP, ORION, to a
certain extent, separates the Peer-to-Peer network from the physical network.
In order to describe the methods used and the properties exploited for Peer-
to-Peer in MANETs, we will first describe some of the details of the Mobile
Peer-to-Peer protocol.

The Mobile Peer-to-Peer protocol adapts the overlay structure to the
physical MANET structure via a cross-layer communication channel between
the physical network layer and the virtual Peer-to-Peer layer [547]. This inte-
grated approach significantly reduces the messaging overhead and increases
the search success rate compared with approaches using a separated treat-
ment of the overlay and the physical networks. Further, MPP allows the
introduction of a variety of new services, since it provides the possibility of
context based-routing and location-based services, instead of simple address
routing as is provided by current MANET routing algorithms. Thus new ser-
vices like the search for a taxi or a cash dispenser in your proximity can be
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realized without the necessity for further location-sensitive sensors and cen-
tral instances. Further applications of such a combined approach have been
described previously.

To minimize the effort to create a new protocol and to benefit from former
developments, the MPP protocol stack reuses existing network protocols as
much as possible. For node-to-node communication, the protocol utilizes an
enhanced version of the Dynamic Source Routing (DSR) protocol [326] . For
the transportation of user data it uses HTTP over TCP, as illustrated by
Fig. 24.2. Thus the Enhanced Dynamic Source Routing (EDSR) requires
only a new application layer protocol and minor changes within the DSR
protocol. To connect the application layer protocol (MPP) with the physical
network layer protocol (EDSR), the Mobile Peer Control protocol (MPCP)
is used.

Since MANETs already provide routing algorithms which enable the lo-
calization of network participants by their IP addresses, an additional Peer-
to-Peer implementation of this functionality is unnecessary and even degrades
the performance. Consequently, EDSR is designed to perform the necessary
routing tasks on the network layer and supplements the application layer
protocol (MPP). This approach provides valuable advantages compared with
a separate treatment of both networks:

– The MANET controls the organization of the network. Thus changes in
the topology of the mobile network are taken into account automatically
by the Peer-to-Peer network.

– The network layer is responsible for routing and the application controls
the data exchange.

– The integration of both networks avoids redundant information requests.
– The inter-layer communication of the protocol optimizes performance, since

the overlay network can be optimally adjusted to the physical network.
– The application layer protocol MPP simplifies the implementation of new

services.



410 24. Peer-to-Peer in Mobile Environments

The separation of data exchange and routing tasks allows the reuse of
existing protocols like TCP and HTTP. Only for routing tasks must MPP
directly interact with EDSR residing in the network layer (cf. Fig. 24.2).

MPP allows distant peers to transparently exchange data. Therefore MPP
is responsible for file transfers within the Peer-to-Peer network and resides
in the Peer-to-Peer client application. MPP utilizes HTTP for data exchange
since it is simple to implement and well tested. The HTTP content range
header is able to resume file transfers in case of network errors due to link
breaks. EDSR is mostly based on the DSR protocol, but additionally specifies
new request and reply types to provide the means for finding peers by criteria
other than the IP address. EDSR thus extends DSR and therefore EDSR
nodes can be an integral part of DSR networks.

MPCP is the inter-layer communication channel between the application
and the network layer. Thus MPCP links the EDSR Protocol in the net-
work layer with the Peer-to-Peer application in the application layer. Using
MPCP, the application can register itself in the EDSR layer to initialize
search requests and to process incoming search requests from other nodes.
It communicates to the corresponding protocol all incoming and outgoing
requests and responses, exept the file exchange itself.

On startup, the Peer-to-Peer application on the mobile device announces
itself to the EDSR layer via MPCP. If a user initializes a data search,
MPCP forwards the request to EDSR which transforms it into a search re-
quest (SREQ). Similar to DSR route requests (RREQ), EDSR floods SREQs
through the MANET. EDSR nodes receiving the request, forward it to the
registered Peer-to-Peer application via MPCP. Thus the Peer-to-Peer applica-
tion can determine whether locally shared data satisfies the request’s criteria.
If the request matches the description of a file shared by the node, the ap-
plication initializes an EDSR file reply. This reply is sent back to the source
node and contains all necessary information for the file transfer. Similar to
DSR route replies (RREP), a file reply (FREP) includes the complete path
between source and destination.

To compare the performance of a protocol adapted to the underlying
physical network, like MPP, with a protocol which establishes its overlay
still completely independently of the physical layer, we use an analytical
approach. First, we have to evaluate the number of reachable nodes in a
MANET environment.

If we assume x0 neighbors on a per node average and a radio reach of R0,
we can compute the node density as:

nodedensity =
x0

R2
0Π

(24.1)

If we further assume a uniform distribution of the nodes in the plane, the
cumulative distribution of the distance between two nodes is given by:
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F (r) =
r2Π
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r

R0

)2

(24.2)

which results in an increasing probability of occurrence for an increasing
distance between two ad hoc nodes. The pdf of this function can now be
computed by taking the derivate of F (r):

f (r) =
2r

R2
0

(24.3)

This simply reflects the fact that the differential surface increases linearly
with an increasing radius r. Accordingly, this also means that the probability
of occurrence of nodes within the distance r also increases linearly. Thus the
average distance between two nodes can be computed by:

d̄ =

R0∫
0

2r

R2
0

· rdr =
2
3
R0 (24.4)

This means, as illustrated by Figure 24.3, that the multihop reach of
an average node only increases by 2

3R0 instead of R0. Thus the number of
reachable nodes via h physical links can be computed by:

ΔNphys =

⎧⎪⎨
⎪⎩

R2
0Π · x0

R2
0Π

= x0, h = 1((
1 + (h − 1) · 2

3

)2 − (1 + (h − 2) · 2
3

)2)
R2

0Π · x0
R2

0Π

= 8
9hx0, h > 1

(24.5)
If we now assume that a node in a Peer-to-Peer network does not adapt its

overlay network to the underlying physical network, then it must establish its
connections randomly. From equation 24.5 we can already observe that the
further away a node is, in terms of physical hops, the higher the probability
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is that it connects to it. If we assume random selection, we can compute the
probability in detail by:

pcon (h) =
ΔNphys(

R0 + (hmax − 1) · 2
3R0

)2
Π · x

R0Π

=

⎧⎨
⎩

1

(1+ 2
3 (hmax−1))2 , h = 1

8h

9(1+ 2
3 (hmax−1))2 , h > 1

(24.6)
where hmax defines the maximum possible number of physical hops, which

is commonly limited to six [263]. The average path length of a not-adapted
overlay network in a physical network can thus be computed by:

l = 1 · (1 + 2
3 (hmax − 1)

)−2 +
hmax∑
h=2

8
9h2
(
1 + 2

3 (hmax − 1)
)−2

=
(

8
9

(
hmax(hmax+1)(2hmax+1)

6 − 1
)

+ 1
) (

1 + 2
3 (hmax − 1)

)−2
(24.7)

Thus if we assume, for example, a maximum of six hops in the overlay
network, we can compute the average path length in a not-adapted overlay
network to 4.31 physical hops. This means that every message is transmitted
in the network 4.31 times more often, than in an adapted overlay network
like in MPP. In MPP, every overlay message is transmitted only once via one
physical link, as a result of the cross-layer communication channel between
the physical and the application layers. Further reduction of signaling traffic
can thus be achieved because no additional keep-alive messages are necessary.

24.4.2 Solutions Based on Structured Peer-to-Peer Networks

Due to characteristics like flexibility, scalability, and resilience, structured
Peer-to-Peer systems became a common approach for building decentralized
self-organizing networks of any size. In particular, Distributed Hash Tables
(DHT) have been proven as the primary design choice, as already discussed
in Chapter 2 and Part III1. On the other hand, ad-hoc networks gain greater
importance due to the increasing occurrence of scenarios without a central-
ized infrastructure. Whenever there is need for a scalable data management
without any infrastructure, the combination of ad-hoc network- and DHT-
technology seems to be an obvious solution [286]. The question, whether this
is a fruitful combination, will be discussed in the following.

In general, DHTs have been developed for the infrastructural Internet,
and therefore, some basic assumptions can not be directly applied for the
use in ad-hoc networks. In the following, we will show the main differences
1 Therefore, in the following, we will focus on DHTs as the state-of-the-art tech-

nique in structured Peer-to-Peer systems and will use both terms interchange-
ably.
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between these network technologies, discuss resulting problems, give solutions
for dedicated problems, and will show scenarios in which ad-hoc networks and
DHT-protocols may be combined.

Challenges
As shown in Part III, numerous DHT approaches with versatile character-
istics determined by the subjacent topological structure (routing geometry)
exist. This structure induces different characteristics regarding flexibility and
resilience. A high flexibility in the choice of neighboring nodes enables opti-
mizations with respect to the underlaying network topology. A resilient DHT
structure can still operate without the need for evoking expensive recovery-
algorithms – even if many nodes fail at the same time. These issues are es-
sential for the DHT to react flexibly on topological changes of the underlying
network.

Flexibility in the Choice of Neighboring Nodes
According to [266], the flexibility of a DHT is the ”algorithmic freedom left
after the basic routing geometry has been chosen”. For a Peer-to-Peer system
this freedom is essential to build an efficient overlay-network. DHT structures
with a high degree of flexibility are capable of adapting the routing to the
frequent changes in an ad-hoc network. Two respective approaches have been
proposed in [266].

Proximity node selection (PNS) describes the selection of nodes as op-
timal routing-table entries. A node can build its routing table with respect
to several criteria, e.g., hop-count, delay, bandwidth, battery life, remaining
capacity, or transmission power. As a result, short paths and stable underlay-
connections improve overlay routing. This pre-selection of neighboring peers
can be integrated into existing DHT protocols if the DHT structure is flexible
enough. As shown in [266], PNS can easily be achieved in ring-based DHTs
such as Chord. The strict rules for building the routing table make an effi-
cient PNS impossible for tree-, butterfly-, or hypercube- based DHTs. With
node movement in mind, the PNS procedure has to be repeated from time
to time to achieve continuous improvements.

Proximity route selection (PRS) can be used to find optimal routes when
using a pre-existing routing table. During the routing process a node can
decide to which known node the request will be routed to. This decision is
made upon the same criteria which are used for PNS. Less latency and a
higher network stability can be achieved when routing to weak nodes, which
are likely to fail, is omitted. Depending on the geometric structure used by a
DHT, the routing protocol is able to adapt its routing behavior. According
to [266], hypercube based DHTs are very well suited to use PRS because of
varying, equidistant paths between two distant nodes (all are shortest). On
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the other hand, tree and butterfly based DHT protocols are not capable of
using PRS because there is only one path existing in the DHT structure that
allows a decrease in the distance between the two nodes. For this reason the
routing algorithm does not allow any variations. Ring-based DHT-protocols
have to make a tradeoff between an increased hop-count in the overlay and
an eventually shorter or more stable path in the underlay.

In wireless networks the inherent broadcasting of packets to neighbors
can be used to improve the peers overlay routing, e.g., like ”shortcuts” in the
overlay network. Routing to these surrounding peers causes just one hop in
the underlying network which makes it very efficient. Keeping the connections
to these nodes causes only small amounts of locally restricted network traffic.

If the ad-hoc network protocol is able to analyze packets, a message can
be intercepted by a node which takes part at the routing process in the
underlay network. This node may redirect the request to a node which is
closer to the destination based on stored information on surrounding peers.
The decision whether intercepting a message or not must be taken in respect
to the progress that would be achieved in the overlay structure compared
to the distance on the alternative route. If connection speed is not an issue,
even nodes not directly involved in the routing may intercept a message.
The route can be changed, and a route change message has to be sent to
the node responsible for processing the routing request. If no route change
message is received within a specified period of time, the routing progress
will be continued. However, this procedure will decrease network traffic at
the cost of increased latency. Route interception and active routing of non-
involved peers can be used to achieve more redundancy, leading to a more
stable network in case of node failures.

Resilient Networks
DHTs are considered to be very resistant against node failures. Backup and
recovery mechanisms, that use distributed redundant information, ensure
that no information is lost if a node suddenly fails. Depending on the sub-
jacent DHT topology, the DHT experiences a reduced routing performance
until the recovery has finished. [266] shows that especially tree and butterfly
based topologies are vulnerable to node failures. Due to the high flexibility of
ring based topologies, these DHTs are still operable in case of massive node
failures.

When DHT protocols are used in an ad-hoc environment, resilience has
to be considered as a very important issue. The resilience of a DHT deter-
mines how much time may pass before expensive recovery mechanisms have
to be evoked. As the quality of connections in ad-hoc networks is highly de-
pendent of the environment of the nodes, some nodes may be temporarily
inaccessible or poorly accessible because of node movement. If the recovery
process is started too early, an avoidable overhead is caused if the node be-
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comes accessible again. If the topological structure allows the DHT protocol
to delay recovery mechanisms without losing routing capability these costly
recovery measures can be avoided. This approach has a positive effect on
the maintenance costs of a DHT. In a worst case scenario, a node which is
partly available and unavailable over a longer period of time can stress the
whole network because of numerous join and leave procedures. This scenario
can easily be provoked by node movement along the network perimeter. Re-
silience is therefore an important factor when DHTs are used in combination
with ad-hoc networks. Resilient DHT structures are capable of compensating
node failures and are able to use recovery mechanisms more accurately.

Member Selection Based upon Node Characteristics
To avoid problems with heterogenous nodes in ad-hoc networks it is impor-
tant to judge the suitability of nodes by means of measurable criteria. The
duration of the connection to the network, energy, link quality, or node mo-
bility are indicators for the reliability of a node. If the decision whether a
node may join the network or not, is based upon these parameters, a higher
stability can be achieved due to a network consisting of reliable nodes. If
free-riding is not a problem or if measures can be taken against free-riders,
nodes rejected because of their low reliability could still use the DHT without
being involved in the routing process. That way all nodes can benefit from
the DHT without imposing weakness.

The indicators described above can also be used to predict node failures
due to low energy or weak connections. Nodes which are likely to fail soon
can inform their neighboring nodes in the DHT about their likely failure.
Costly recovery mechanisms can be avoided, which leads to a lower overhead
caused by sudden node failures.

Splitting and Merging DHTs
A separation of the network into multiple parts may be caused by the failure
of one single node. For the nodes connected to a smaller part of the separated
network the separation is equal to the failure of the majority of all nodes.
This can hardly happen in infrastructural networks. Thus, a higher degree of
redundancy is necessary to keep a DHT operational. By distributing a nodes’
information to n neighbors the probability of a fatal DHT failure can be kept
below 1/2n if the network splits up in two equal parts.

Common DHT approaches are built upon the fact that only one instance
of a DHT – accessible for every node in a global network – exists. When DHTs
are used in an ad-hoc network this assumption leads to a serious problem: If
two independent DHTs (parts of a separated DHT or completely independent
DHTs) encounter, suited methods – to either merge those structure or to
enable communication between them – have to be found.
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Merging two DHTs imposes a vast amount of network traffic. Many key-
value pairs have to be redistributed and new neighborhood connections must
be established. This stress may often be unacceptable, especially if the con-
nection between the DHTs is weak or short-lived. A method to merge large
DHT structures has to be designed in respect to the limitations (low band-
width, high latency, etc.) of an ad-hoc network, to avoid network overload.
Criteria like the stability of inter-DHT connections must be judged to avoid a
merge of two DHTs which is likely to split up again. However, if the merging of
DHTs is omitted – and structured communication between DHTs is chosen as
an alternative – continuously separating a DHT will create many small DHTs
and causes an enormous communication overhead. In both cases the simul-
taneous coexistence of DHTs requires an unambiguous DHT-identification.

Improving the Teamwork Between Ad-Hoc Network and DHT
The characteristics of the underlying ad-hoc network protocol has great ef-
fect on the performance of the overlay as the DHT induces a constant flow of
control and query messages. An optimized interaction between ad-hoc net-
work and DHT is essential to create an efficient combination. Two aspects
of the teamwork between over and underlay will be discussed exemplarily in
the following section.

Reactive routing algorithms as AODV maintain their routing tables as
they process routing requests. Old routes (to other nodes) become invalid
after a certain period of time. If the time between keep-alive-messages, which
are sent by the DHT-nodes is shorter than the time that may pass before an
AODV-route becomes invalid, constant route finding requests can be avoided.
The steadily used routes never become invalid and efficient underlay routing
on overlay connections is possible.

On the other hand, proactive routing algorithms [483] are suited better for
the use of PNS. PNS opens many connections to different nodes to examine
the connection characteristics of many potentially optimal neighbors. The
best nodes will be chosen as routing table entries. High initial delay and
the additional overhead caused by the route requests of an reactive ad-hoc
protocol interdict the use of PNS in reactive ad-hoc networks. These examples
show that an arbitrary combination of ad-hoc network protocols and DHT
protocols can result in inefficient solutions.

24.5 Summary

In this chapter, we have investigated the opportunities and challenges of the
application of Peer-to-Peer concepts to mobile environments. A discussion
of mobile network characteristics shows that mobile ad-hoc networks impose
most severe problems in terms of low data rate, limited terminal capabilities,
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and high churn rate to conventional Peer-to-Peer systems. Therefore, they
are in the focus of this chapter.

Although there is an inherent similarity of ad-hoc networks and Peer-to-
Peer systems a powerful combination of both technologies cannot be created
without a careful investigation of the resulting problems. Common Peer-to-
Peer systems must be modified in many ways to enable their use in ad-hoc
networks. Due to the nature of ad-hoc networks the choice of a specific Peer-
to-Peer approach has to be considered carefully.

Structured and unstructured Peer-to-Peer-concepts have been discussed
for their suitability to run on ad-hoc networks. As of their robustness and
reactive behavior, unstructured Peer-to-Peer concepts seem the natural choice
for ad-hoc networks. The application of cross-layer interworking of application
layer and routing layer protocol, as described here, improves the performance
of unstructured Peer-to-Peer systems over ad-hoc networks significantly. This
is shown with an example protocol and in an analytical investigation.

Regarding the practical use of structured Peer-to-Peer concepts (DHT
structures) in ad-hoc networks further investigation on split and merge al-
gorithms for multiple DHTs are necessary. Furthermore, the impact of node
movements on the DHT structure will be interesting topics of future research.
The question what degree of redundancy is needed to provide a stable ser-
vice – while operating in a highly dynamic network – has to be answered if
real-life applicability is the final goal.

As applications operating on DHTs gain greater importance in the infras-
tructural Internet, efficient porting to wireless scenarios might also be needed
soon. DHT structures suited for the use in ad-hoc networks could provide a
generic interface which enables their usage without profound modifications.
Applications like the ones presented in Part IV might be usable in ad-hoc
scenarios if efficient Peer-to-Peer solutions can be provided for the challenges
discussed in this chapter.
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25.1 Introduction and Motivation

The field of mobile Peer-to-Peer networks (MP2P) has various forms and
currently there exists no coherent view on what is understood by it. The
term mobile emphasizes that nodes/peers in the network are mobile, and
therefore need to be equipped with some kind of wireless communication
technology. Examples of nodes include pedestrians with mobile devices [284]
or vehicles with wireless communication capabilities [632]. Since all mobile
Peer-to-Peer networks construct an overlay over an existing wireless network,
implementations range from MP2P over mobile ad hoc networks (MANETs)
[156] to MP2P over cellular based networks [299, 298].

This chapter looks into a specific class of application for mobile Peer-to-
Peer networks. Here the Peer-to-Peer network is formed by humans carrying
mobile devices, like PDAs or mobile phones, with ad hoc communication
capabilities. All presented applications exploit the physical presence of a user
to support digital or real-life collaboration among them. The integration of
wireless communication technologies like Bluetooth or IEEE 802.11b WiFi
into mobile devices makes this kind of mobile Peer-to-Peer networks feasible.

As stated by Dave Winer, “The P in P2P is People” [624]; most of the
Peer-to-Peer systems rely on the users’ will to contribute. This could be ob-
served in the success of first generation file-sharing applications like Napster
[438] or Gnutella [252].

The key issue of user contribution prevails even more in mobile Peer-
to-Peer networks, where in general anonymous users form the network with
their personal devices. Resources on the device are typically limited. Espe-
cially battery power can be a problem. A user risks draining his battery
by contributing its resources to other users. The device may also become
unavailable for personal tasks, like accessing the calender or making phone
calls. However user contribution may be stimulated by the usefulness of an
application.

Currently, we see the emergence of several mobile Peer-to-Peer applica-
tions, both as commercial products and in research, as described in Section
25.2. As stated above, all these applications make use of the physical presence
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of a user to support collaboration among participating parties. This leads us
to our hypothesis:

Often, people in close proximity share a common goal or have a
related motivation. Some of them may have valuable information
relevant but unknown to others.

The common goal for these mobile Peer-to-Peer applications is to make
this information available to other interested parties. Through this, we see
new forms of spontaneous collaboration that can be distinguished in active
and passive collaboration (cf. Section 25.1.2).

25.1.1 Mobile Peer-to-Peer Networks and Mobile Ad Hoc
Networks

A thorough comparison of (infrastructure-based) Peer-to-Peer and mobile
ad hoc networks (MANETs) has been carried out in [82]. The fundamental
commonalities between the two are:

– Decentralized architectures. Neither network type relies on a central com-
ponent (a centralized server).

– Transient connectivity. In both kinds of networks, nodes connect and dis-
connect unpredictably. In addition, MANET nodes are mobile and they
move in and out of the communication range (which may appear to other
nodes as a disconnection).

– Heterogeneity of resources. A mobile ad hoc network may be formed by
different mobile devices, such as a laptop, mobile phone, or PDA. These
devices typically differ in battery life, CPU power, and storage capacity.
Likewise, computers that run the same Peer-to-Peer application typically
vary in their specification.

– Sharing of resources. In both network types, a user actively shares her re-
sources (battery power, CPU power, storage capacity, network connection)
with others and the network exploits these resources to provide its services.

– Identity management. Both networks have to address the identification of
any entity (e.g., nodes, peers, users, and content). This may also include
privacy protection, in order to allow users to act anonymously within the
network or application.

– Routing and message forwarding. Although MANETs handle routing on
the network layer and Peer-to-Peer networks handle it typically on the
application layer, routing remains a critical issue for both kinds of network.

On the other hand, there exist the following differences:

– Network size. Whereas MANETs are generally concerned with networks of
a few hundred nodes, modern Peer-to-Peer networks can span much larger
networks
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Fig. 25.1: Multi-hop communication.

– Focus in the ISO/OSI Model. Research and development of mobile ad hoc
networks particularly focuses on the network layer. Several multi-hop rout-
ing algorithms have been proposed (see [484, 327]). Conversely, research in
Peer-to-Peer networks addresses more the construction of overlay networks
in the application layer.

As stated in the introduction, this chapter focuses on mobile Peer-to-Peer
networks and applications. In many ways, mobile Peer-to-Peer networks are
similar to MANETs, since they are also formed by individuals carrying a
mobile device. Hence, the networks are of a similar size. However, there are
certain important differences between the traditional MANETs and the mo-
bile Peer-to-Peer networks we consider here. MANETs have been investigated
in the context of military networks, emergency response, and sensor networks.
These networks have several key characteristics in common, namely that all
nodes in the network are strongly related to each other, trust each other, and
share a goal they want to accomplish.

Mobile Peer-to-Peer networks, as we consider them, are formed between
anonymous groups of individuals. This poses several additional challenges
to the network. Consider the situation in Figure 25.1 with A, B, and C
as mobile nodes, that is, individuals equipped with mobile devices. A is in
communication range of B but not in range of C, who, on the other hand, is
in communication range of B. If A wants to communicate with C, all traffic
has to be routed via B. Bearing in mind that A, B, and C, a priori, do not
know each other, two questions arise:

– What is the incentive for node B to route messages between A and C? Why
should node B be willing to donate part of her battery power to enable
communication between A and C ?

– Why should node A and C trust and rely on node B for their communica-
tion? Node B could easily eavesdrop, manipulate, or just reject messages.

Without an incentive scheme and extra security mechanism built in, the
standard multi-hop communication schemes of MANETs appear to fall short
of providing for communications in mobile Peer-to-Peer networks.

The alternative to the multi-hop MANETs are the so-called one-hop net-
works. In these networks, information is not forwarded over several hops;
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Mobile one-hop peer-to-peer
information exchange

- Active collaboration
- Physical user interaction

- Passive collaboration
- Multi-hop information
dissemination

Fig. 25.2: Design space of mobile one-hop Peer-to-Peer communication

instead all communications always happen between two directly connected
nodes, both of which have a direct incentive to participate in this communi-
cation.

We define mobile Peer-to-Peer networks to be such one-hop communica-
tion networks, where the individual nodes participate only when they have
a direct interest in participating. This avoids the problems of incentives for
traditional MANETs in standard situations. These one-hop networks will be
the focus for the rest of this chapter. Note that limiting the communications
to a single hop on the network layer does not limit multi-hop information
propagation on the application layer, as we demonstrate in Section 25.4.1.

25.1.2 One-Hop Peer-to-Peer Design Space

Starting from the one-hop communication approach, the Peer-to-Peer design
space for applications is divided into two general areas, as shown in Fig-
ure 25.2:

– Active collaboration focuses on the physical proximity of users. In ad-
dition to the exchange of digital information with users nearby, this allows
using the device as a link to the user itself. Via non-intrusive user notifi-
cation, this could lead to real world collaboration, such as a conversation.
Tap and tickle, two form of digital gestures from the Socialight project (see
Section 25.2.4), are a good example for non-intrusive user notification.

– Passive collaboration aims to collect and pass any kind of information to
users in the vicinity without user interaction. Shark [553] and AdPASS [577]
are the most prominent examples for this kind of application scenarios.
Passive collaboration leads to on-the-fly information dissemination. In
other terms, it is a form of digital word-of-mouth communication.

Applications that include both forms of collaboration are also possible.
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The second important aspect in the design space is the relation among
the users participating in the system. Questions to be answered are:

– Is the number of users known/fixed or unknown/open?
– Are the users identifiable or do they work with pseudonyms or even act

totally anonymous?

Answers to these questions have impact on the usage and suitability of the
mobile Peer-to-Peer building blocks we present in Section 25.3.

25.1.3 Chapter Overview

The rest of this chapter is organized as follows. Section 25.2 presents emerg-
ing applications for mobile Peer-to-Peer networks, namely in the following
domains: enterprise knowledge management, spontaneous recommendation
passing, conference collaboration, spontaneous encounter with friends and
foafs1, and spontaneous advertisement passing. Common building blocks for
mobile Peer-to-Peer networks and applications are derived from these ex-
amples in Section 25.3. Following this analysis, the iClouds project is pre-
sented in Section 25.4. iClouds provides an architecture that includes building
blocks for easier mobile Peer-to-Peer application development. This chapter
concludes with Section 25.5.

25.2 Application Domains and Examples

This following list of applications is not meant to be exhaustive. Earlier work
include the 7DS system [471, 472] and similar ideas can be found in more re-
cent work [158, 256]. Nonetheless the examples present a variety of interesting
and useful applications and are sufficient for the identification and extraction
of common functionality.

25.2.1 Shark

Shark [553] supports management, synchronization and exchange of knowl-
edge in mobile user groups. The system distinguishes three components: the
Shark Mobile Station, the Shark Central Station and the Shark Local Station.

The mobile station runs on a mobile phone and is able to exchange know-
ledge with a nearby central station, local station or another mobile station.
Bluetooth is used for ad hoc communication. The knowledge is stored using
TopicMaps [319]. The central station manages the complete knowledge base.

1 foaf = friend of a friend
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Local stations store and manage only location relevant knowledge. This al-
lows for simple location based services. Each local station synchronizes its
knowledge with the central station.

One possible application for Shark is enterprise knowledge management.
Here, each mobile staff member is equipped with a mobile station. Local sta-
tions are installed at subsidiaries. A customer (with his own mobile station)
is able to learn about all kinds of information about the enterprise, e.g., prod-
uct descriptions, price lists or white papers, while talking to a mobile staff
member or visiting a subsidiary or shop.

25.2.2 MobiTip

The MobiTip [529] system allows its users to express their opinions on any-
thing of interest in the environment. Opinions are aggregated and presented
to the users as tips or recommendations. Opinions are entered in free text
form on the user’s device (a mobile phone) and shared in a Peer-to-Peer
manner on-the-fly with users nearby using Bluetooth.

A typical example is a shopping mall, where MobiTip users share their
personal views on certain shops or product offers.

The core MobiTip system can be extended by so-called connection hotspots.
A connection hotspot is placed at a selected location, e.g., the entrance of a
shopping mall, to collect tips and pass them to future visitors. This idea is
similar to the time-shifted communication in the Socialight system based on
Sticky Shadows (see Section 25.2.4).

25.2.3 SpotMe

A quite advanced collaboration system and tool for conferences, symposia,
and corporate meetings is called SpotMe [561]. With a special purpose hand-
held device (with similar size to a mobile phone), each user can exchange
information with other users in a Peer-to-Peer manner. Communication to a
local server via base stations is also possible.

A user’s device is personalized during the conference registration process.
This step includes taking a photo of the attendee. The photo with other
contact information is stored on the device and in a central database. Users
can query this database during the event. Thus, they learn who is actually on
site. The radar function allows a user to scan all other attendees in a range
of 30 meters. With this information, a user can look for a conversational
partner or simply identify the people sitting nearby at lunch. A user can
specify special interest in another user. The device will then give a notice
when this other user is nearby. This may help to start a conversation.
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Several other functions require the communication with the local server,
e.g., last minute agenda update, news dissemination and questionnaires.

SpotMe includes some basic post event services. The collected data and
contact information is made available for every participant online on the web
and sent as e-mail.

25.2.4 Socialight

Socialight [332], a mobile social networking platform that uses mobile phones,
supports spontaneous encounter and interaction with friends and friends of
friends. Using the current or past location of friends, Socialight enables real-
time and time-shifted communication.

Location of users is determined by infrastructure based technology (GPS
and Cell-ID), or ad hoc by signal recognition of Bluetooth devices nearby.
Users have to register on a central platform before using Socialight. The
platform also stores information about the social network of users.

Peer-to-peer communication among users may happen via Tap & Tickle
or Sticky Shadows. Tap & Tickle are two digital gestures that allow users to
exchange information by vibration of their devices. Pressing a button on a
user’s phone will make his friend’s phone vibrate once (Tap) or rhythmically
(Tickle). This is meant as a non-intrusive way to communicate with nearby
friends.

With Sticky Shadows, users can attach digital information to a certain
location. This digital information is recognized by friends when they pass
the same location at a different time. Examples include restaurant reviews
for friends, sales or shopping recommendations, and educational purposes,
where teachers set Sticky Shadows for students.

25.2.5 AdPASS

AdPASS [577] is a system to spread digital advertisements (ads) among inter-
ested users. Each user specifies his interests in a profile that is stored on the
mobile device. The communication scheme resembles the way information is
spread by word of mouth between human beings, e.g., when recommending
something to someone else.

As an incentive for users to take part in the system, AdPASS provides an
anonymous bonus point model that rewards a user who carries an advertise-
ment on the way down from the vendor to a potential customer.

AdPASS has three kinds of participants:

– A merchant disseminates digital advertisements within its vicinity. For ex-
ample, there are several fixed nodes located in a merchant’s shop. These in-
formation sprinklers, which are stationary transmitter units, are described
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in [288]. Customer devices learn about advertisements while their owners
are browsing the shop.

– A customer carries a mobile device (PDA). This device collects adver-
tisements and transports or passes the ads to other interested customers.
Ideally, some of them come to the shop and buy the advertised good.

– A mediator keeps track of the users’ accumulated bonus points. It works
similar to a central database that both the merchant and the customer
can access (e.g. via the Internet). Thus, it guarantees reachability to the
customers In addition, the mediator acts as an “anonymizer” to guarantee
customers’ anonymity.

Figure 25.3 illustrates the different communication steps. The participants
interact as follows:

1. Customer A visits a merchant. While being in the shop, his device learns
about several advertisements and filters them against his personal pro-
file. The advertisements are stored on the user’s device. In the example,
customer A learns about a DVD advertisement.

2. Customer A (after leaving the shop) encounters another potential cus-
tomer B (on the street for instance), who is interested in the ad. B stores
the ad and then later passes it on to another interested user C.

3. C itself is taken with the ad, goes to the shop and buys the adver-
tised good. C also passes information to the merchant about how he
has learned about the ad – in our example, via A and B.

4. The merchant informs the mediator which customers should be rewarded
bonus points.

5. Assuming that there is a Internet connection available, A, B, and C
can download their bonus points from the mediator’s server onto their
devices. This can happen for example during a PC-to-device synchro-
nization operation.

A detailed description about AdPASS, including how the bonus point
system works and how user anonymity is provided, is given in [577].

25.3 Building Blocks for Mobile Peer-to-Peer Networks

Analyzing the example applications in Section 25.2 identifies a number of
common functionalities among them. These building blocks for mobile Peer-
to-Peer applications are described as services in this section.

Presence Awareness Service
Provides the application with information about which other nodes or
users are currently active and in communication range. This service typ-
ically also provides some kind of neighbourhood information.
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Fig. 25.3: Communication steps

Message Exchange Service
A service that allows sending messages to and receiving messages from
peers in the neighbourhood.

Information Filtering Service
Since in mobile Peer-to-Peer applications there is also the danger of
SPAM, there should be a way to filter out information that might not
be relevant to the user. This functionality is provided by an information
filtering service.

Information Distribution Service
The information distribution service offers three functional choices. A
peer can give information it receives straight away to other peers. The
user may also review a received piece of information and decide on a per
item basis whether to share it with other peers. Finally, the information
may not be shared at all.

Security Service
To support data or communication integrity, the security service of-
fers sign and encrypt operation on information items. This may involve
public/private-key cryptographic operations, based on some PKI or other
trusted sources.

Identity Management Service
The system design has to specify how a user appears in the system. Users
can act anonymously, under a pseudonym or with assigned identities. The
identity management service supports this design criteria.
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Project

Service Shark MobiTip SpotMe Socialight AdPASS

Presence Awareness � � � � �
Message Exchange � � � � �
Info. Filtering � � � � �
Info. Distribution � � �
Security �
Identity Management � � � � �
Incentive Schemes �
Reputation

User Notification � �

Table 25.1: Common mobile Peer-to-Peer service integration

Service for Incentive Schemes
As stated in the introduction, user contribution is an important issue
in mobile Peer-to-Peer applications. Contribution can be stimulated by
introducing some kind of incentive schemes for individual users. These
schemes may vary from application to application, but may rely on com-
mon basic service functionality, e.g., accounting, to implement a certain
incentive scheme.

Reputation Service
This service allows individual users to build a reputation within an ap-
plication. Other users might value received information based on the
reputation of the user who sends out information. This may especially
be needed for systems with anonymous users. Currently, none of the pre-
sented projects in Section 25.2 use a reputation service. Nonetheless, this
is an important service for future mobile Peer-to-Peer applications.

User Notification Service
This service instantly notifies the user of incoming information that may
require some sort of instant reaction. For example, a real-life conversation
with a discussion partner can only happen while the partner is nearby.

Table 25.1 summarizes the common services and their conceptual usage
in the presented sample applications.

The next section presents the iClouds project. The project goal is to design
a sound and coherent architecture for mobile Peer-to-Peer applications. This
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architecture integrates the identified set of common building blocks/services
for mobile Peer-to-Peer application.

25.4 The iClouds Project

Within the scope of mobile Peer-to-Peer networks, the iClouds Project
[289, 287] investigates several kinds of collaboration among mobile users.
Based on the one-hop communication paradigm, the iClouds architecture
separates common mobile Peer-to-Peer application requirements as services.
Making use of these services, the architecture facilitate easy and rapid appli-
cation development in this emerging area. We will describe the architecture
in Section 25.4.3.

iClouds devices are small mobile devices, such as a PDA or mobile phone,
with ad hoc communication support (Bluetooth or 802.11b WiFi). There is no
need for any central servers in the iClouds architecture; instead, each device
is completely independent. A special kind of iClouds devices are information
sprinklers. An information sprinkler is mounted at a dedicated location to
support simple location based services. Local station (Shark), base station
(SpotMe) and connection hotspot (MobiTip) reflect similar concepts.

The diameter of the iClouds communication horizon (see Figures 25.4(a)
and 25.4(b)) should not exceed a few hundred meter. iClouds users are given
the opportunity for spontaneous collaboration. When two iClouds users “see”
each other, they should be within a short walking distance from each other
(a couple of minutes at maximum).

Following the assumption form the introduction (cf. Section 25.1.1), we
specifically exclude multi-hop communication on the network layer. All com-
munications happen directly between the concerned parties. On the applica-
tion layer, iClouds supports indirect multi-hop information dissemination,as
described below.

25.4.1 Multi-hop Information Dissemination

Information in iClouds can pass through several nodes, as shown in Fig-
ure 25.5 and Figure 25.6, assuming certain conditions are met. We call the
first scenario information passing. Information can only pass between A and
B or between B and C, since A and C are not in communication range. Their
communication horizons overlap, but the devices themselves do not fall into
the other’s communication horizon. In this situation, information can pass
from A to B and on from B to C if and only if it passes from A to B, and it
would get to C if B and C were in communication range and have interest
in the same information provided by A.
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(a) Communica-
tion horizon

(b) iClouds with 3
peers

Fig. 25.4: Information clouds

CA B

Fig. 25.5: Information passing in iClouds

The second scenario in which information is transported with iClouds
involves physical movement of nodes, as shown in Figure 25.6. This is called
information moving. In Figure 25.6, B gets some information from A. B later
meets C, who is interested in the same information and B passes it to C.
Again, a prerequisite for the information to get from B to C is that B and
C share interest in the same information.

25.4.2 Data Structures and Communication Semantics

The two most important data objects found on the iClouds device are two
information lists (iLists for short):

– iHave-list (information have list or information goods):
The iHave-list holds all the information the user wants to contribute to
other users.

– iWish-list (information wish list or information needs):
In the iWish-list, the user specifies what kind of information he is interested
in.
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A B C

A B C

B) moves from A) to C)

Fig. 25.6: (Physical) Information moving in iClouds

pull (from Bob) push (to Bob)

iHave-list Standard search Advertise

iWish-list Active service inquiry Active search

Table 25.2: Information flow semantics (from Alice’s point of view)

Each iClouds device periodically scans its vicinity to see if known nodes
are still active and in communication range and also to see if any new nodes
have appeared. Information about active nodes is stored in a neighbourhood
data structure.

By exchanging iLists, the iClouds devices align their information goods
and needs. Items on the iWish-lists are matched against items on the iHave-
lists. On a match, information items move from one iHave-list to the other.

For example, consider two iClouds users, Alice and Bob, who meet on the
street. When their iClouds devices discover each other, they will exchange
their iHave-lists and match them locally against their iWish-lists. If an item
on Bob’s iHave-list matches an item on Alice’s iWish-list, her iClouds device
will transfer that item onto her iHave-list.

There are two main communication methods for transferring the iLists.
Peers can either pull the iLists from other peers or they can push their own
iLists to peers they meet. Either of these two operations is applicable to
both lists, which gives four distinct possibilities of communication. Table 25.2
summarizes these possibilities, along with their real-world equivalents.

In each of the four cases shown in Table 25.2, the matching operation
is always performed on the peer who receives the list (Alice’s peer in pull
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and Bob’s peer in push). A key strength of iClouds is that each of the four
possible combinations corresponds to an interaction in the real world:

– Standard search.
This is the most natural communication pattern. Alice asks for the informa-
tion stored on Bob’s device and performs a match against her information
needs (specified in her iWish-list) on her device.

– Advertise.
This is a more direct approach. Alice gives her information goods straight
to Bob and it’s up to Bob to match this against the things he is inter-
ested in. As an example, consider an iClouds information sprinkler mounted
on shopping mall doorways pushing advertisements onto customer devices
when they enter the building. This is implemented in the AdPASS system
(cf. Section 25.2.5).

– Active service inquiry.
This is best suited for shopping clerks. They learn at a very early stage
what their customers are interested in. An example of this query could be:
“Can I help you, please tell me what are you looking for?”.
In general, especially for privacy reasons and user acceptance, we believe
it is a good design choice to leave the iWish-list on the iClouds device.
Hence, this model of communication would likely be extremely rare in the
real world.

– Active search.
With active search, we model the natural “I’m looking for X. Can you help
me?”. This is similar to the standard search mechanism, except that the
user is actively searching for a particular item, whereas in the standard
search, the user is more passive.

25.4.3 Architecture

Figure 25.7 shows the architecture that is proposed and used in iClouds.
There is a general distinction between a communication layer and a ser-
vice layer. The communication layer provides simple one-hop message ex-
change between peers in communication range. A neighbourhood data struc-
ture keeps track of active peers in the vicinity.

The common services are located on the next layer. Each service can use
functionality provided by other services or by the communication layer below.
Note that the service layer is extensible for new services that might be needed
by future applications.

The applications reside on the topmost. To fulfil its purpose, an applica-
tion has access to both the service and the communication layer.
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Fig. 25.7: iClouds architecture

25.5 Conclusion

This chapter points out that there are several similarities in mobile Peer-to-
Peer applications. The analysis of emerging applications in this area identifies
a set of common services that serve as basic building blocks.

The iClouds architecture aims to provide a framework for mobile Peer-
to-Peer application developers who do not want to re-invent common func-
tionality over and over again. The architecture is implemented in Java as a
lightweight set of classes and runs on Java2 Micro Edition compliant mobile
devices with 802.11b WiFi communication support.



26. Epidemic Data Dissemination for Mobile
Peer-to-Peer Lookup Services

Christoph Lindemann, Oliver P. Waldhorst (University of Dortmund)

26.1 Motivation and Background

Building efficient lookup services for the Internet constitutes an active area
of research. Recent issues concentrate on building Internet-scale distributed
hash tables as building block of Peer-to-Peer systems, see e.g., [505], [575].
Castro et al. proposed the VIA protocol, which enables location of applica-
tion data across multiple service discovery domains, using a self-organizing
hierarchy [111]. Recently, Sun and Garcia-Molina introduced a partial lookup
service, exploiting the fact that for many applications it is sufficient to resolve
a key to a subset of all matching values [581]. The paper discusses various de-
sign alternatives for a partial lookup service in the Internet. However, none of
these papers consider distributed lookup services for mobile ad-hoc networks.

In MANET, lookup services can be implemented using either unstruc-
tured or structured Peer-to-Peer networks as described in Chapters 24.4.1
and 24.4.2, respectively. However, such approaches put some requirements
on the MANET environment: (1) The MANET must provide a high degree
of connectivity, such that a given node can contact each other node at any
time with high probability. (2) The nodes in the MANET must exhibit low
mobility in order to minimize the required number of updates of routing
tables and other structures. Typically, both structured and unstructured ap-
proaches will perform poorly in scenarios with low connectivity and high mo-
bility. This chapter descibes an approach for building a Peer-to-Peer lookup
service that can cope with intermittent connectivity and high mobility. The
approach builds upon the observation by Grossglauser and Tse, that mobil-
ity does not necessarily hinder communication in MANET, but may support
cost-effective information exchange by epidemic dissemination [262].

As a first approach to epidemic information dissemination in mobile en-
vironments, Papadopouli and Schulzrinne introduced Seven Degrees of Sep-
aration (7DS), a system for mobile Internet access based on Web document
dissemination between mobile users [470]. To locate a Web document, a 7DS
node broadcasts a query message to all mobile nodes currently located inside
its radio coverage. Recipients of the query send response messages containing
file descriptors of matching Web documents stored in their local file caches.
Subsequently, such documents can be downloaded with HTTP by the inquir-
ing mobile node. Downloaded Web documents may be distributed to other

R. Steinmetz and K. Wehrle (Eds.): P2P Systems and Applications, LNCS 3485, pp. 435-455, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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nodes that move into radio coverage, implementing an epidemic dissemina-
tion of information.

Using a related approach, Goel, Singh, Xu and Li proposed broadcast-
ing segments of shared files using redundant tornado encoding [253]. Their
approach enables nodes to restore a file, if a sufficient number of different seg-
ments have been received from one or more sources. In [351], Khelil, Becker,
Tian, and Rothermel presented an analytical model for a simple epidemic in-
formation diffusion algorithm inspired by the SPIN-1 protocol [290]. Both sys-
tems implement a push model for information dissemination. That is, shared
data is advertised or even actively broadcasted without a node requesting
it. Hanna, Levine, and Mamatha proposed a fault-tolerant distributed infor-
mation retrieval system for Peer-to-Peer document sharing in mobile ad hoc
networks [275]. Their approach distributes the index of a new document to a
random set of nodes when the document is added to the system. The complete
index of a document, i.e., all keywords matching it, constitutes the smallest
unit of disseminated information. Recently, Small and Haas proposed an epi-
demic approach for collecting information in a hybrid network consisting of
mobile nodes and fixed infostations [568]. Their architecture, denoted as
Shared Wireless Infostation Model (SWIM), actively transfers information
among wireless nodes on each contact, until information is unloaded to one
of the infostations.

All approaches [470], [253], [351], [275], and [568] are tailored to specific
applications like file-sharing and collecting information. Recall that global
lookup operations are a building block of many distributed applications.
Thus, such applications require a general-purpose lookup service. In the re-
mainder of this chapter, we present a general-purpose distributed lookup ser-
vice for mobile applications that uses epidemic information dissemination.

26.2 Passive Distributed Indexing

26.2.1 Overview

In this section, we describe the concept of a lookup service denoted Passive
Distributed Indexing (PDI, [389]), that supports resolution of application-
specific keys to application-specific values. As building block, PDI stores in-
dex entries in index caches maintained by each mobile device. Index entries
are propagated by epidemic dissemination, i.e., they are exchanged between
devices that get in direct contact, similar to the spread of an infections dis-
ease. By exploiting node mobility, such contacts occur randomly between
arbitrary devices. Using the information disseminated in this way, PDI can
resolve most queries locally without sending messages outside the radio cov-
erage of the inquiring node.

By local resolution of queries, PDI effectively reduces network traffic for
the resolution of keys to values for applications possessing a sufficiently high
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degree of temporal locality in their query streams. Thus, deployment of PDI
is attractive for various mobile applications. For example, since queries in a
Peer-to-Peer (P2P) file sharing system follow a Zipf-like distribution [570],
[355], PDI can implement a distributed search algorithm for such application,
that can be complemented by an effective transport protocol for subsequent
transfers of located files, e.g., [189]. Moreover, since it has been shown that
user queries for Internet search engines possess high temporal locality [631],
PDI can support searching in Web-based information portals or even the
World Wide Web without connection to an Internet search engine. Further
mobile applications effectively supported by PDI include instant messaging
(IM) and mobile city guides. In an IM application a lookup service resolves
user identifier to the terminal the user is currently logged on and the current
presence state of a user, e.g., available, busy, or away. In a city guide a user
queries for names and locations of places of interest, e.g., sights, hotels, or
restaurants. Both mobile applications are likely to exhibit high locality in the
query behavior, too.

In the remainder of this chapter, we consider a MANET consisting of
several mobile nodes, e.g. mobile users equipped with notebooks or PDAs
and wireless network interfaces as illustrated in Figure 26.1. All mobile nodes
collaborate in a shared application that uses a distributed lookup service.
Radio coverage is small compared to the area covered by all nodes, e.g.,
less than 5% of the covered area. Subsequently, we assume IEEE 802.11x in
the ad hoc mode as underlying radio technology [315]. However, we would
like to point out that that the approaches described in this chapter could
be employed on any radio technology that enables broadcast transmissions
inside a nodeÂs radio coverage.

26.2.2 Basic Concept

PDI implements a general-purpose lookup service for mobile applications. In
general, PDI stores index entries in the form of pairs (k, v). Keys k and values
v are both defined by the mobile application. For example, in case of a file
sharing application, keys are given by keywords derived from the file name
or associated meta-data. Values are given by references to files in form of
URIs. Opposed to Distributed Hash Table systems like [505], [575], PDI does
neither limit the number of keys matching a value nor the number of values
matched by a key. However, some mechanisms implemented in PDI require
that a value is unique in the system. That is, it is only added to the system
by a single node. This can be easily achieved by extending the application
specific value v by a unique node identifier for a node n. For example, the
node identifier in may be derived from the node’s IP address or the MAC
address of the radio interface. For ease of exposition, we will abbreviate the
unique value given by (v, in) pairs just by v.
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(a) The mobile phone broadcasts a query for key k, which matches 
value v based in the local index of the notebook. 
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(c) After changing its position, the second mobile phone receives a 
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(d) The second mobile phone generates a response for (k,v) 
from the index cache on behalf of the notebook. 
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Fig. 26.1: Illustration of epidemic information dissemination with PDI

A node n may contribute index entries of the form (k, v) to the system
by inserting them in a local index. In Figure 26.1, the local index is drawn
as the first box below each mobile device. We refer to such an index entry as
supplied. The node n is called the origin node of an index entry. For example,
the notebook shown in Figure 26.1 is the origin node of the index entry (k, v).
A key k matches a value v, if (k, v) is currently supplied to the PDI system.
Each node in the system may issue queries in order to resolve a key k to all
matching values vi (see Figure 26.1a). A node issuing a query is denoted as
inquiring node.

Query messages are sent to the IP limited broadcast address
255.255.255.255 and a well-defined port, using the User Datagram Proto-
col UDP. Using the IEEE 801.11 ad hoc mode, all nodes located inside the
radio coverage of the inquiring node receive a query message. Each of these
nodes may generate a response message. A response message contains the
key from the query and all matching values from either the local index or a
second data structure called index cache. To enable epidemic data dissemi-
nation, PDI response messages are sent to the IP limited broadcast address
255.255.255.255 and a well-defined port, too. Thus, all mobile nodes within
the radio coverage of the responding node will overhear the message (Fig-
ure 26.1b). Not only the inquiring node but also all other mobile nodes that
receive a response message extract all index entries and store them in the
index cache (see Figure 26.1b). In Figure 26.1, index caches are drawn as
the second box below mobile devices. Index entries from the index cache
are used to resolve queries locally, if the origin nodes of matching values re-
side outside the radio coverage of the inquiring node (see Figures 26.1c and
26.1d). Obviously, the index cache size is limited to a maximum number of
entries adjusted to the capabilities of the mobile device. The replacement
policy least-recently-used (LRU) is employed if a mobile device runs out of
index cache space. By generating responses from index caches, information
is disseminated to all other nodes that are in direct contact, similar to the
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spread of an infectious disease. By exploiting node mobility, index entries
are disseminated within the network without costly global communication.
However, information is only transferred when actively requested by a node.
In fact, PDI builds and maintains an index distributed among mobile node
of the MANET in a passive way.

26.2.3 Selective Forwarding for Extending Radio Coverage

Recall that all PDI messages are send to the limited broadcast address and
received by all nodes located inside the radio coverage of the sender. De-
pending on the transmission range of the wireless network interfaces, this
may considerably limit the number of nodes that receive a message. PDI in-
cludes a flooding mechanism that controls forwarding based on the content
of a message. The mechanism is illustrated in Figure 26.2. Query messages
are flooded with a TTL with value TTLquery, which is specified by the in-
quiring node. For detecting duplicate messages, each massage is tagged with
a unique source ID and a sequence number as described above. We will show
in Section 26.4 that TTLquery ≤ 2 yields a sufficient performance in most
scenarios. Thus, PDI communication remains localized despite of the flooding
mechanism.

Similarly to query messages, response messages are forwarded with time-
to-live TTLquery. Recall that the payload of query messages consists of a
few keys. Thus, query messages are small and may be flooded without sig-
nificantly increasing network load (see Figure 26.2a and 26.2b). In contrast,
response messages can contain numerous values that may each have a con-
siderable size, depending on the application using PDI. Therefore, flooding
of complete response messages will significantly increase network load, even
if the scope of flooding is limited to two hops. For the cost-efficient flooding
of response messages, PDI incorporates a concept called selective forward-
ing. That is each node that receives a response message will search the index
cache for each index entry contained in the message (see Figure 26.2d). If an
entry is found, the node itself has already sent a response for this query with
high probability (e.g., as shown in Figure 26.2c). Therefore, forwarding this
index entry constitutes redundant information. Using selective forwarding,
each relay node removes all index entries found in its local index cache from
the response message, before the message is forwarded (see Figure 26.2e).
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(a)  The mobile phone issues a query for key k 
and TTLquery > 0. 
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(b) The notebook relays the query. 
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(d) The second mobile phone generates a response message for 
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Fig. 26.2: Message forwarding in PDI

26.3 Consistency Issues

26.3.1 Configurable Value Timeouts for Dealing with Weak
Connectivity and Node Failures

The basic concept of PDI as described in Sections 26.2.2 and 26.2.3 does
not take into account intermittent connectivity and spontaneous departures
of nodes; circumstances under which all information previously supplied by
a node expire. Examples of these cases include node failure or nodes leav-
ing the area covered by the system. In such cases, an implicit invalidation
mechanism can achieve cache coherency. Timeouts constitute a common con-
cept to implement implicit invalidation in several distributed applications,
as they can assure cache consistency without the need to contact the source
of the cached information. PDI defines the concept of value timeouts to ap-
proximate the most recent information about the state of an index entry at
the origin node. Value timeouts limit the time any index entry (k, v) with
a given value v will be stored in an index cache. By receiving a response
from the origin node of (k, v), the corresponding value timeout will be reset.
Let age ((k, v)) be the time elapsed since (k, v) has been extracted from a
response message generated by its origin node. We define the age av of value
v as av = mink (age ((k, v))), i.e., the time elapsed since the most recent
response message of this kind was received. If at a node holds av > T for
the given timeout value T , all pairs (k, v) are removed from its index cache.
PDI implements only one timeout per value v rather than an individual time-
out for each index entry (k, v). This is motivated by the observation that in
most applications modification of an index entry (k, v) for a given v indi-
cates a substantial change of the value. Subsequently, all other index entries
(k′, v) are likely to be influenced. For example, in a file sharing system a pair
(keywordi, URI) is removed when the file specified by URI is withdrawn
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from the system. Thus, all other pairs (keywordj , URI) also become stale.
Note that depending on the application the concept of value timeouts can
be easily extended to incorporate individual timeout durations Tv for each
value v. Such duration may be included in a response message generated by
the origin node. For ease of exposition, we assume in the remainder of this
paper a global timeout value T for all values in the system.

To determine the current age of a value, an age field is included in the
response message for each value. This age field is set to zero in each response
from the origin node. When receiving a response message, a node n extracts
the age of each value and calculates the supply time sv. That is the time
of generating a response for this value by the origin node. Assume that the
response message contains age av, then sv is determined by sv = cn − av,
where cn denotes the local time of node n. sv is stored in the index cache
together with v. Note that v might already be present in the index cache with
supply time s′v. The copy the index cache might result from a more recent
response by the origin node, i.e., sv < s′v. Thus, in order to relate the age of
a value to the most current response from the origin node, the supply time
is updated only if sv > s′v. When a node generates a response for a cached
index entry (k, v), it sets the age field for each value v to av = cn − sv. Note
that only time differences are transmitted in PDI messages, eliminating the
need for synchronizing clocks of all participating devices.

26.3.2 Lazy Invalidation Caches for Dealing with Data
Modification at the Origin Node

Additional to the scenarios described above, a node produces stale index
entries by modifying information. That is the case when an index entry is re-
moved from the local index. One way to handle such modification of informa-
tion is to wait until the timeouts of the values in the stale index entries elapse.
Depending on the application and the timeout duration T , this straightfor-
ward solution may cause severe inconsistency, especially if T is large. A more
effective way to handle information modification in distributed applications
constitutes the explicit invalidation by control messages. Examples of explicit
invalidation schemes include the invalidation of cached memory blocks in dis-
tributed shared memory (DSM) systems, or the invalidation of documents in
web caches. To achieve consistency, the origin node of an item sends invali-
dation messages to exactly those nodes that are caching this item. In DSM
systems, the origin node of a shared page sends invalidation messages to all
nodes sharing this page. In web caching systems, the origin server of a web
document sends invalidation messages to each web cache that holds a copy of
the document. Note that both mechanisms require that the origin node knows
of all copies of an item and is connected to all sharers. Unfortunately, in a
mobile environment consisting of nodes with limited resources, connectivity
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(a) The notebook withdraws (k,v) from the local index and 
broadcasts an invalidation message for value v. 
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(b) The mobile phone relays the invalidation message and 
stores value v in the lazy invalidation cache. 
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cache on behalf of the notebook. The PDA invalidates (k,v). 
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Fig. 26.3: Epidemic dissemination of invalidation messages using lazy invalidation
caches

of nodes cannot be guaranteed nor directories for all cached copies of a shared
item can be maintained. To address these constraints in mobile systems, PDI
defines the concept of lazy invalidation caches implementing explicit invali-
dation of values by epidemic dissemination of invalidation messages. As basic
idea of PDIÂs explicit invalidation mechanism, a node removes all index en-
tries (k, v) from the index cache when it receives an invalidation message for
value v. Flooding with a TTL with value TTLinv is a straightforward way
to propagate invalidation messages. Unfortunately, in mobile systems even
a multi-hop connection between two nodes frequently does not exist. Subse-
quently, stale index entries remain in the index caches of nodes that are not
reached by the invalidation message. Note that these index entries will be re-
distributed in the system due to the epidemic dissemination. We have shown
that even repeated flooding of invalidation messages does not significantly
reduce the number of hits for stale index entries [389].

This observation is consistent with [162], which reports that deleted
database items ÂresurrectÂ in a replicated database environment due to epi-
demic data dissemination. In [162], a solution is proposed that uses a special
message to testify the deletion of an item, denoted as death certificate. Death
certificates are actively disseminated along with ordinary data and deleted af-
ter a certain time. In contrast, we propose a more or less passive (or ÂlazyÂ)
approach for the epidemic dissemination of invalidation messages, which is
illustrated in Figure 26.3. For the initial propagation of an invalidation mes-
sage by the origin node, we rely on flooding as described above (Figure 26.3a).
Each node maintains a data structure called lazy invalidation cache, which
is drawn as a third box below the mobile devices in Figure 26.3. When a
node receives an invalidation message for a value v it does not only relay it,
but stores v in the invalidation cache (Figure 26.3b). Note that an entry for
v is stored in the invalidation cache, regardless if the node stores any index
entry (k, v) for v in the index cache. Thus, every node will contribute to the
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propagation of invalidation messages, so that distribution of information and
invalidation messages is separated. To enable the epidemic dissemination of
the invalidation message, a node scans the invalidation cache for all values
contained in an overheard response message (Figure 26.3c). If a value v is
found, the node will generate an invalidation message, because the hit in
the invalidation cache indicates that the index cache of a nearby node con-
tains a stale entry (Figure 26.3d). The invalidation message is not flooded
through the entire network, but only with a certain scope TTLinv similar
to forwarding query and response messages as described in Section 26.2.3.
A node that receives a cached invalidation message for value v will store v
in the invalidation cache, and remove all index entries (k, v) from the index
cache. Additionally, the node checks whether it has recently received hits for
v in response to an own query, which must also be invalidated and may not
be passed to the application running on top of PDI.

As the index cache size, the invalidation cache size is limited to a fixed
number of values and LRU replacement is employed. We have shown in [389]
that setting the invalidation cache size to a fraction below 20% of the index
cache size achieves a sufficient reduction of false hits assuming a reasonable
rate of data modification. Note that LRU replacement does neither guaran-
tee that an invalidation cache entry is kept until all stale index entries are
invalidated, nor that it is removed after a certain time, inhibiting a node
indefinitely from restoring a value it has invalidated once. Increasing the in-
validation cache size solves the first problem, though, doing so amplifies the
second problem. To avoid this tradeoff, maintaining the supply time of inval-
idation messages similar to the supply time of values as described by Section
26.3.1 yields an efficient mechanism to decide whether a result for a value is
more recent than an invalidation message.

26.4 Performance Studies

26.4.1 Simulation Environment

To evaluate the performance of the PDI and the proposed consistency mech-
anisms, we conduct simulation experiments using the network simulator ns-2
[198]. We developed an ns-2 application implementing the basic concepts of
PDI, selective forwarding, value timeouts, and lazy invalidation caches as
described in Sections 26.2 and 26.3. An instance of the PDI application is
attached to each simulated mobile node, using the UDP/IP protocol stack
and a MAC layer according to the IEEE 802.11 standard for wireless com-
munication. Recall that PDI can be configured by the four parameters shown
in Table 26.2. As goal of our simulation studies, we will show that PDI can
be configured to the demands of different applications by adjusting these pa-
rameters. Therefore, we have to define detailed models of the system in which
PDI is deployed.
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The performance of PDI is affected by several characteristics of the mobile
environment. We separate these characteristics into system characteristics
and application characteristics. System characteristics describe the mobile
environment. These characteristics include the density of mobile nodes as
well as their arrivals and departures, the transmission range of the wireless
communication interfaces, and the mobility model, describing the movement
of the mobile nodes. Application characteristics are specific to the mobile
application using PDI. These characteristics include the number of values
supplied by each mobile node, the matching between keys and values, the
distribution of keys in the queries as, the distribution of pause times between
two successive queries by the same mobile node, and the validity of a value.

For modeling system characteristics, we assume that N mobile users
equipped with mobile devices participate in a mobile application. Assum-
ing the two-ray ground reflection model, we configure the transmission power
of the wireless interface to provide a radio-coverage with a radius R. We
assume that the mobile nodes move in an area of size A according to the ran-
dom waypoint (RWP) mobility model [92], which is commonly used to mimic
the movement of pedestrians. According to this mobility model, each node
starts at a location chosen uniformly at random inside the simulation area
and moves to another randomly chosen location. The speed of the node is
chosen uniformly from (0, vmax], where the maximum speed vmax may be dif-
ferent in different experiments. When a node reaches its destination, it rests
for a period Thold, before it continues its movement to the next randomly
chosen destination at randomly chosen speed. Note that the assumption of
movement at pedestrian speed might constitute a conservative assumption
for disseminating information by exploiting mobility.

In the remainder of this paper, we will use a workload model inspired
by a Peer-to-Peer file sharing application. To capture the characteristics of
this application, we assume that the application defines a set of keys K with
cardinality K = |K|. We associate each key with its popularity rank, i.e.,
K = 1, . . . , K, where key 1 is the most frequently requested key. Addition-
ally, the application defines a set of values K with cardinality V = |V|. We
use an arbitrary numbering of values, i.e., V = 1, . . . , V . The values are
equally distributed among the mobiles nodes, i.e., each node contributes the
same number of values. To determine the matching between keys and val-
ues we define a selection function. The selection function wselect(k) denotes
the probability that a key k matches a given value v for k = 1, . . . , K and
v = 1, . . . , V . Note that the selection function is independent of v. Follow-
ing [634], the selection function can be well represented by an exponential
distribution with mean 1/α:

wselect(k) = αe−αk

To determine which keys are used in queries, we define a query function
with probability density function (pdf) wquery(k) that denotes the probability
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that a query is for a given key k. As shown in [570], [355], query popularity
in Peer-to-Peer file sharing systems follows a Zipf-like distribution, i.e., the
query function for k = 1, . . . , K is given by:

wquery(k) ∼ k−β

To determine the timestamps of queries issued by the mobile users, we
define a pause function wpause(t) that denotes the probability that a node
pauses for the time t between two successive queries, 0 ≤ t ≤ ∞. We assume
that pause times are exponentially distributed with mean 1/λ, i.e., the pause
function is given by:

wpause(t) = λe−λt

Up to this point, the model of system and application characteristics
is still not suitable for evaluating the consistency mechanisms presented in
Section 26.3, since it does not incorporate node departures and data modi-
fications. To take node departures into account, we assume that the time t
between two successive arrivals or departures, respectively, follows an expo-
nential distribution with pdf warrival(t), 0 ≤ t ≤ ∞. We adjust the arrival
and departure rates such that approximately dN for 0 ≤ d ≤ 1 nodes will
arrive or depart during the considered simulation time T , respectively. Thus,
we define μ = dN/T and assume that he arrival function for 0 ≤ t ≤ ∞ is
given by a is given by an exponential distribution with mean 1/μ:

warrival(t) = μe−μt

Then, the number of arrivals or departures in simulation time T is Pois-
son distributed with a parameter given by μT = dN (i.e., it has mean dN),
matching our assumption. Arriving nodes enter the system with empty index
and invalidation caches and contribute values that are not used by any node
that is already in the system. Departing nodes do not send invalidation mes-
sages for supplied data, i.e., all index entries supplied by a departing node
expire.

To consider value modifications, we assume that each value expires exactly
once during a simulation of length T . Thus, we define an expiration function
with pdf wexpire(t) that denotes the probability that a value expires after a
time t, 0 ≤ t ≤ T , as continuous uniform distribution:

wexpire(t) =
1
T

If not stated otherwise, all parameters defining system and application
characteristics are chosen as shown in Table 26.1. The default settings of the
PDI protocol parameters are shown in Table 26.2.

We choose performance measures to evaluate the recall and the coherence
of the results delivered by PDI. Recall is measured by the hit rate HR,
i.e., HR = HF /KF for HF denoting the number of up-to-date hits and KF



446 26. Epidemic Data Dissemination for Mobile P2P Lookup Services

Parameter Value

Total simulation time T 7200 s

Simulation area A 1000 m × 1000 m

Number of devices N 64 or 80

Maximum speed vmax 1.5 m/s

Rest Period Thold 50 s

Transmission range R 115 m

Number of keys K 512

Number of values V 16

Parameter of selection function α 1/100

Parameter of query function β 0.9

Parameter of pause function λ 1/120

Fraction of arriving / departing nodes d 0.3

Table 26.1: Default values for simulation parameters

the total number of all up-to-date matching values currently in the system.
Coherence is measured by the stale hit rate SHR, i.e., SHR = HS/(HS +
HF ), where HS denotes the number of stale hits returned on a query. Note
that stale hit rate is related to the information retrieval measure precision
by precision = 1 − SHR.

In all experiments, we conduct transient simulations starting with ini-
tially empty caches. For each run, the total simulation time is set to 2 hours.
To avoid inaccuracy due to initial warm-ups, we reset all statistic counters
after a warm-up period of 10 min. simulation time. Furthermore, we initialize
positions and speed of all nodes according to the steady state distribution
determined by the random waypoint mobility model [85] to avoid initial tran-

PDI Protocol Parameter Default Value

Index cache size 2048 entries

Selective forwarding TTL 4 hops

Value timeout 1000 s

Invalidation cache size 128 entries

Table 26.2: Default values for PDI configuration parameters
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Fig. 26.4: Recall vs. system size for (a) different index cache sizes and (b) different
numbers of forwarding hops

sients. For each point in all performance curves, we performed 100 indepen-
dent simulation runs and calculated corresponding performance measures at
the end of the simulation. In all curves 99% confidence intervals determined
by independent replicates are included.

26.4.2 Sensitivity to System Characteristics

To evaluate the performance of PDI with respect to the system characteris-
tics, we do not consider consistency aspects in our first experiments. That is,
we do not model value expiration, assuming that all values are valid during a
simulation run. Furthermore, we do not consider node arrivals and departures,
assuming that the community of PDI users is static during the simulation
time. The impact of consistency issues is evaluated in Section 26.4.4.

In a first experiment, we investigate the sensitivity of PDI to the node
density, i.e., the number of mobile nodes moving in the simulation area and
participating in the application that uses PDI. The results of this perfor-
mance study are shown in Figure 26.4. Figure 26.4 (a) plots the hit rate as a
function of node density for different sizes of the index cache. We find that for
a small number of nodes, the size of the local index caches has only a limited
impact on the performance of PDI. In these scenarios, a low node density lim-
its the epidemic information dissemination due to a lack of contacts between
the nodes. For an increasing node density, we observe three different effects.
First, an increasing number of contacts between the nodes significantly fos-
ter epidemic information dissemination for sufficient large index caches (i.e.,
128 index cache entries or more). Second, connectivity increases with node
density. Thus, selective forwarding increases hit rate even for small index
caches (i.e., 32 index entries). Third, the hit rate for large caches decreases
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Fig. 26.5: Recall vs. radio coverage for (a) different index cache sizes and (b)
different numbers of forwarding hops

when the node density passes a certain number of nodes. To understand this
effect, recall that the overall number of values in the system increases with
node density because each node contributes additional values to the lookup
service. Furthermore, the keys in queries are selected according to a Zipf-like
selection function. Due to the heavy tailed nature of this function, responses
to a large number of queries must be cached in order to achieve high hit rates.
Thus, the hit rate decreases even for large caches when the number of index
entries for popular queries exceeds cache capacity and the epidemic dissem-
ination of data decreases. We conclude from Figure 26.4 (a) that epidemic
data dissemination requires a sufficient node density. To gain most benefit of
the variety of values contributed to the lookup service by a large number of
nodes, sufficient index cache size should be provided. In properly configured
systems with a reasonable node density, PDI achieves hit rates up to 0.9.

Similar to the impact of index cache size, the impact of message forward-
ing is limited in systems with a low node density, as shown in Figure 26.4 (b).
Forwarding messages for more than four hops yields only marginal improve-
ments in the hit rate due to limited connectivity. However, for an increasing
node density, the hit rate grows faster in systems with message forwarding
enabled than in non-forwarding systems, as increasing connectivity favors
selective forwarding. In environments with about 64 nodes, configuring the
system for packet forwarding can improve hit rate by almost 30%. Neverthe-
less, non-forwarding systems benefit from growing node density as it fosters
epidemic information dissemination. Thus, the benefit of selective forward-
ing with TTLquery ≥ 4 hops becomes negligible, if the number of mobile
nodes becomes larger than 64. In these scenarios, forwarding messages over
multiple hops will decrease the variety of information stored in the index
caches, because forwarded results replace other results in a high number of
caches. Thus, fewer different results are returned from the caches for succes-
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Fig. 26.6: (a) Recall vs. mobility for different index cache sizes and (b) message
volume vs. mobility for different numbers of forwarding hops

sive queries. We conclude from Figure 26.4 (b) that message forwarding is
beneficial in system environments showing a medium node density, while in
systems with high node density message forwarding should be disabled.

In a second experiment, we investigate the sensitivity of PDI to the trans-
mission range of the wireless communication interfaces used by the mobile
nodes. The results of this study are shown in Figure 26.5. Figure 26.5 (a)
shows hit rate as a function of transmission range for different cache sizes.
For a transmission range below 100 meters, i.e., a radio coverage of about 1%
of the simulation area, PDI does not gain sufficient hit rates despite index
cache size. Here, in most cases broadcasted query messages are received only
by a small number of nodes. Consistent with the results shown Figure 26.4
(b), given a reasonable size of the index cache and a transmission range of
115 meters (i.e., a radio coverage of about 4% of the considered area) PDI
achieves sufficiently high hit rate for Peer-to-Peer search queries. For larger
transmission ranges, most queries will reach the origin nodes of index entries
(k, v) for a query v. Thus, PDI does not benefit from caching index entries.
We conclude from Figure 26.5 (a) that for short-range communication de-
vices the number of participating devices must be high to enable the effective
employment of PDI, whereas for long-range communication, the system does
not significantly benefit from PDI.

Figure 26.5 (b) shows hit rate as a function of transmission range for dif-
ferent values of TTLquery. We find that message forwarding has no impact
in systems with small transmission ranges, while system with medium trans-
mission ranges heavily benefit from forwarding. As another interesting result,
we find that for high transmission ranges PDI with message forwarding dis-
abled gains best performance. Here, unnecessary forwarding of PDI messages
will result in a substantial number of collisions of wireless transmissions, as
confirmed by the examination of ns-2 trace files. These collisions reduce the
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number of response messages that reach the enquiring node. We conclude
from Figure 26.5 (b) that in environments with medium wireless transmis-
sion ranges, message forwarding should be enabled to benefit from PDI. If
transmission range is high, message forwarding should be disabled to avoid
congestion of the wireless medium.

As final system parameter, we investigate the sensitivity of PDI to node
mobility in Figure 26.6. Figure 26.6 (a) plots the hit rate as a function of
maximum node speed. Increasing device velocity from pedestrian speed to
the speed of cars in an urban environment, we find that hit rate is almost in-
dependent of node speed for the considered application scenario. Recall that
according to the pause function a node sends queries in an average interval
of 120s, while the holding time defined by the random waypoint mobility
model is 50s. That is, with high probability the node will change position
between two successive queries, so that epidemic information dissemination
is large despite of node mobility. Nevertheless, PDI benefits from increasing
mobility in terms of total volume of transmitted PDI messages as shown in
Figure 26.6 (b). As increasing mobility fosters epidemic information dissem-
ination to some extend, message volume is reduced up to 25% depending on
node mobility. As information is more equally distributed across the simu-
lation area for high mobility scenarios, most queries can be resolved locally,
i.e., from nearby nodes. Results from more distant nodes will be suppressed
by the selective forwarding mechanism, resulting in substantial savings in
message volume. We conclude from Figure 26.6 that PDI performs well for
a reasonable degree of mobility, while high mobility increases the benefit of
selective forwarding.

In an experiment not shown here, we employ the Reference Point Group
Mobility Model (RPGM) [303], which organizes nodes into groups that move
together across the simulation area. [303] argues that group mobility is more
realistic than individual mobility in mobile scenarios. Obviously, group mo-
bility reduces epidemic information dissemination, since nodes primarily get
in touch with members of their own group. The experiments show that PDI
performance is reduced by at most 10% for scenarios with few nodes (and
few groups, respectively). However, when the number of nodes exceeds 80,
simulation results converge against the results for the RWP mobility model,
since contacts among groups frequently occur. We conclude from these ex-
periments that PDI performs well even for more realistic mobility models if
a reasonable node density is provided.

26.4.3 Sensitivity to Application Characteristics

To evaluate the performance of PDI with respect to the characteristics of the
application runing on top of it, again, we do not consider consistency issues
originating from node departures and data modifications. As first application
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Fig. 26.7: Recall vs. shared data for (a) different index cache sizes and (b) different
numbers of forwarding hops

characteristics, we consider the overall data volume managed by PDI. Note
that data volume depends on the number of values supplied by each node,
which may be very different for different mobile applications. For example,
for a Peer-to-Peer file sharing application, we assume that the number of
values is up to 100, where each node in an instant messaging application
only contributes a single value. For searching a Web portal or even the entire
WWW, the overall number of values might be considerable larger, but does
not depend on the number of nodes. To capture the characteristics of these
different applications, we perform a sensitivity study with respect to the data
volume managed by PDI.

Figure 26.7 plot hit rate as a function of the number of values contributed
by each node. We investigate in Figure 26.7 (a) that the hit rate of PDI de-
creases with a growing number of values for all considered index cache sizes.
Furthermore we observe that PDI is most sensitive to the number of values
for medium index cache sizes (i.e., 128 and 512 index cache entries). As ob-
served in Figure 26.4 (a), index caches of these sizes cannot provide high hit
rates for an increasing amount of data, whereas a large cache can handle the
data easily. Recall that the performance of small caches shows low sensitivity
to the data provided to the system, as the hit rate is primarily determined by
selective forwarding. To illustrate the impact of selective forwarding at larger
index cache sizes, we investigate the performance of different forwarding op-
tions for an index cache size of 2048 index entries and an increasing number
of contributed values in Figure 26.7 (b). We find that setting TTLquery = 2
improves hit rate by 40%, while setting TTLquery ≥ 4 improves hit rate by
less than 5% compared to TTLquery = 2. We conclude from Figure 26.7 that
large index caches should be provided and selective forwarding enabled to
handle large numbers of values.
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Fig. 26.8: Recall vs. locality for (a) different forwarding options and (b) different
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In an experiment not shown here, we found that PDI is almost insensitive
to the shape parameter of the matching function α, which determines the
distribution of the number of values matched by a key. As all caching-based
mechanisms, PDI performance depends on locality in the query stream. Recall
that the selection function is given by a Zipf like distribution with shape
parameter beta. If 0 < β ≤ 0.5, the locality in the query stream is low, whereas
β > 1 indicates high locality. Hit rate as a function of the shape parameter β
is shown in Figure 26.8 for different index cache sizes and forwarding options,
respectively. Figure 26.8 (a) reveals that PDI is extremely sensitive to locality
in the query stream for small sizes of the index cache (i.e., 32 and 128 index
cache entries). For large cache sizes (i.e., 512 and 2048 entries), PDI can
achieve a hit rate of more than 0.75 despite of the locality. Figure 26.8 (b)
shows that PDI is most sensitive to query locality if no selective forwarding
is enabled. With TTLquery ≥ 2, however, PDI can effectively combine results
from several index caches and effectively cope with low locality. We conclude
from Figure 26.8 that sufficient index cache size should be provided and 2
hop forwarding enabled if the application using PDI provides low locality.

26.4.4 Impact of Consistency Mechanisms

In the final simulation experiments, we investigate the coherence of index
caches maintained by PDI with and without the invalidation mechanisms
presented in Section 26.3. These performance curves are shown in Figures
26.9 and 26.10. Figure 26.9 (a) plots hit rates as a function of node density
for different sizes of the index cache. Comparing Figure 26.9 (a) with Figure
26.4 reveals that the hit rate is reduced due to cache space occupied by
stale index entries. Stale hit rates as a function of node density is plotted
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Fig. 26.9: (a) Recall and (b) coherency vs. system size without invalidation

in Figure 26.9 (b). We find that without invalidation the stale hit rate may
reach 0.4. For smaller index cache sizes, the stale hit rate decreases with
node density. Jointly considering Figures 26.9 (a) and (b) reveals that for an
increasing node density the stale hit rate drops rapidly at the point when
the growth of the hit rate slows down. Looking closer at the index caches
in these scenarios, we find that the content of the caches is highly variable.
Thus, stale index entries are removed early from the caches. We conclude
from Figure 26.9 (b) that large caches yield a high amount of stale hits if
no invalidation mechanism is used. In contrary, small index caches naturally
reduce stale hits, while they fail to provide high hit rates as shown in Figure
26.9 (a). This evidently illustrates the need for invalidation mechanisms in
order to achieve both high hit rates and low stale hit rates.

In a last experiment, we investigate the performance of an integrated
approach combining both value timeouts and lazy invalidation caches to take
into account both weak connectivity and information modification. In further
experiments presented in [389], we found that suitable configuration of value-
timeouts reduces the stale hit rate due to intermittent connectivity and node
failure by 75%. Furthermore, lazy invalidation caches of moderate size reduce
stale results due to data modification by more than 50%. Thus, we fix the
duration of the value timeout to 1000s and the invalidation cache size to 128
entries, since these parameters achieved best performance for the considered
scenario [389]. Figure 26.10 (a) plots the hit rate versus node density. We
find that hit rate is reduced mostly for small systems due to invalidations
of up-to-date index entries by value timeouts. This leads to a decrease of
at most 20%. The performance of index cache sizes of both 512 and 2048
is equal because a large cache cannot benefit from long-term correlations
between requests due to the short timeout. For growing number of nodes,
the hit rate converges towards results without an invalidation mechanism as
shown in Figure 26.9 (a).
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Fig. 26.10: (a) Recall and (b) coherency vs. system size for hybrid invalidation

As settlement for the reduction of hit rate, the stale hit rate is significantly
reduced compared to a system without invalidation. As shown in Figure 26.10
(b), the stale hit rate is below 5% for all considered index cache sizes. We
conclude from Figure 26.10 that the integrated approach comprising of the
introduced implicit and explicit invalidation mechanisms can effectively han-
dle both spontaneous node departures and modification of information. In
fact, for large index caches, the stale hit rate can be reduced by more than
85%. That is, more than 95% of the results delivered by PDI are up-to-date.

26.5 Summary

In this chapter, we described a distributed lookup service for mobile appli-
cations denoted Passive Distributed Indexing (PDI). As key concept, PDI
employs epidemic dissemination of (key, value) pairs among mobile devices.
To foster information dissemination for devices with limited radio transmis-
sion range, PDI incorporates a bandwidth-efficient message relaying mech-
anism denoted selective forwarding. To provide coherent results in environ-
ments with frequently changing data, PDI incorporates implicit invalidation
by configurable value timeouts and explicit invalidation by lazy invalidation
caches.

In an extensive simulation study, we illustrated the recall and the result
coherence achieved by PDI for different system and workload characteristics.
We found that with the suitable configuration of index cache size and selec-
tive forwarding PDI can achieve hit rates of more than 90% despite of system
and application characteristics. Considering result coherence, we found that
a combination of both invalidation mechanisms provides more than 95% up-
to-date results. All presented simulation results are based on a workload
model inspired by a Peer-to-Peer file sharing application. However, we have
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shown that PDI can cope with different application characteristics using ap-
propriate configurations. Thus, PDI can be employed for a large set of mobile
applications that possess a sufficiently high degree of temporal locality in the
request stream, including Web-portal and Web search without connection to
the search server, instant messaging applications, and mobile city guides.

In recent work, we have developed a general-purpose analytical perfor-
mance model for epidemic information dissemination in mobile and hoc net-
works [390]. Currently, we are employing this modeling framework to opti-
mize PDI protocol parameters for selected mobile applications. Based on the
results, we are adopting PDI for developing software prototypes of a mobile
file sharing system, a mobile instant messaging application, and disconnected
Web search.



27. Peer-to-Peer and Ubiquitous Computing

Jussi Kangasharju (Darmstadt University of Technology)

27.1 Introduction to Ubiquitous Computing

Ubiquitous computing was introduced by Marc Weiser in the early 1990s [619].
In Weiser’s vision, computers would become ubiquitous, that is, they would
be present in every facet of human life. This vision has sometimes also been
called the vision of the disappearing computer, since, as Weiser said, once
computers become so commonplace that they are everywhere, they become
such a natural part of the environment that we no longer notice them. Hence,
it can be said that once computers are everywhere, they are, in fact, nowhere.

This vision is a logical consequence in the evolution of computer sys-
tems. In the early days of mainframe computers, several users shared a single
computer’s resources. In the current PC-era, one user typically uses a single
computer. With the advent of new devices, such as PDAs and cell phones, we
can already see that in the future a single user is likely to interact with several
computers. However, today’s world is still far from the vision of Marc Weiser,
where computers are a natural part of the environment and interaction with
them happens seamlessly.

The early days of ubiquitous computing were mainly focused along two
axes. On the one hand, researchers were building new kinds of interaction
devices, to explore how a person would live in a ubiquitous world. One of the
most famous examples is the ParcTab [613] system which consists of palm-
sized mobile computers that can communicate wirelessly through infrared
transceivers to workstation-based applications. Since then, there have been
many other projects around similar devices [602, 381, 598]. Such devices serve
as prototypes for experimenting in building larger scale ubiquitous comput-
ing environments and serve as basis for determining the requirements such
environments pose on the interaction devices.

Another important focus area has been location, or positioning systems.
Many ubiquitous applications require that they be able to locate the user and
adapt their behavior as a function of the movements of the user. An overview
of different location systems can be found in [295]. Indoor location systems
have been based on magnetism, ultrasound [12, 114], infrared [15] or radio
waves (RF) [44, 467] as the transmission medium. Each of the systems has
its strengths and weaknesses in terms of accuracy, range, and deployment
cost, and none of them can yet be considered as “the best solution for all
situations”. It is likely, that future ubiquitous computing architectures will
need to deal with several positioning systems concurrently.
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Recent developments in ubiquitous computing are more concerned with
defining and implementing architectures for formalizing and crystallizing the
vision of ubiquitous computing. These architectures also have the role of
tying together all the individual devices, services, and users. Some examples
of such architectures are Sahara [499], Mundo [277] and Oxygen [465]. These
architectures focus on the interactions between the different devices in the
ubiquitous environment, with a particular emphasis on the communication
needs and requirements of such environments. Indeed, these architectures
highlight the need for efficient communication infrastructures, mechanisms,
and protocols for building ubiquitous computing architectures.

In this chapter, we will focus on the communication needs of ubiquitous
computing architectures. As we will see, ubiquitous computing architectures
exhibit many properties similar to Peer-to-Peer systems. However, in contrast
to the traditional, “PCs on the Internet”-like Peer-to-Peer systems, ubiqui-
tous Peer-to-Peer systems have several additional challenges emerging from
the nature of ubiquitous computing architectures. The goal of this chapter is
to present an overview of the challenges and discuss current approaches for
solving the communication problems in ubiquitous computing architectures.

The rest of this chapter is organized as follows. In Section 27.2 we dis-
cuss the characteristics of ubiquitous computing applications. In Section 27.3
we present the main features of communication architectures in ubiquitous
applications. Section 27.4 looks into middleware in ubiquitous environments
and discusses the requirements for such middleware. Section 27.5 compares
the properties of Peer-to-Peer systems and ubiquitous computing applications
and discusses the use of Peer-to-Peer middleware for ubiquitous computing.
Finally, Section 27.6 presents the research challenges in Peer-to-Peer ubiqui-
tous computing.

27.2 Characteristics of Ubiquitous Computing
Applications

Ubiquitous computing applications have very different characteristics from
traditional stand-alone computer applications, or Internet applications. In
the ubiquitous computing world, we may have a very large number of de-
vices involved in any interaction, typically in an ad hoc fashion. This is in
stark contrast to the traditional computing world, where data is typically
placed in certain well-known places and interactions are more structured. In
this section, we will look at some of the main characteristics of ubiquitous
computing applications, paying special attention to the characteristics which
separate them from the “traditional” applications.

Table 27.1 presents a summary of the different characteristics we will
discuss in this section.
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Characteristics Typical properties

Information Small units, rapidly changing

Network Wireless, ad hoc

Collaboration Small devices, grouping, communities

Sharing Limited devices, shared resources

Context Behave “smartly”, use context

Table 27.1: Summary of Characteristics of Ubiquitous Applications

27.2.1 Information

Information in ubiquitous applications plays quite a different role than in
traditional applications. In the latter case, the user is often either a source
or a consumer of information, and this governs the use and properties of the
information transmitted in the applications.

In contrast, the information in ubiquitous applications is more often than
not information sent from one small device to another; the information deliv-
ered to a human user plays a relatively small role in this world. Information
in ubiquitous applications is also typically in small units and it may change
rapidly. One good example which illustrates this are all manners of sensors
which are a common building block of ubiquitous applications. For exam-
ple, a motion sensor is constantly sending information about whether or not
it detects movement. The actual amount of information is very small (i.e.,
is movement detected or not) and the state may change rapidly and asyn-
chronously.

Ubiquitous applications must therefore be able to handle several flows of
(possibly) rapidly changing information coming from a multitude of sources.

27.2.2 Network

Communication networks in ubiquitous computing applications also exhibit
several characteristics which reflect these new applications. Often, the com-
munications happen over ad hoc connections which are formed as the different
ubiquitous devices come into communication range of each other. This implies
that the network topology is highly dynamic and can change unpredictably.

Furthermore, since wired networks are typically not feasible for use in
ubiquitous applications, owing to their distributed and dynamic nature, we
must resort to wireless communication networks. Unfortunately, wireless net-
work links are far more unreliable than wired links, and the data rates which
can be achieved are considerably lower.



460 27. Peer-to-Peer and Ubiquitous Computing

All of the above factors require us to rethink the communication ab-
stractions in ubiquitous computing applications. We will revisit this issue in
Section 27.3.

27.2.3 Collaboration

Because ubiquitous devices are typically small and have only very limited
capabilities, they must collaborate in order to deliver useful services. This
collaboration not only includes simple communications between devices, but
extends to actual cooperation and active sharing of resources and information.

To achieve this collaboration, we need to resort to techniques such as
grouping or communities which can be formed in an ad hoc manner. Such
groups can be formed by, for example, the devices carried by a person, or all
the devices in a given room. The devices within a group share a context and
normally need to be aware of each other and each other’s capabilities and
needs.

27.2.4 Sharing Resources

Again, the limited resource of ubiquitous devices compel us to have them
share their resources, in order to enable them to offer more sophisticated
services. We consider the term “resources” in the broadest sense and include
in it, not only computing power and storage capability, but also information
contained in a device, as well as any additional devices attached to it.

27.2.5 Context Information

Since ubiquitous applications and devices can be used in many different cir-
cumstances, they need to be aware of the context in which they are being
used. One good example of context information is the current location of a
device, which may determine its behavior (e.g., when outside, a mobile phone
might ring loud, whereas in a meeting it would set itself to vibration mode).
Other context information are current environment conditions (light, tem-
perature, etc.) or higher level information, such as the stored preferences of
the current user [166].
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27.3 Communications in Ubiquitous Computing
Architectures

In this section, we will discuss the communication needs of ubiquitous com-
puting architectures. In particular, we will present the publish/subscribe-
communication paradigm as an attractive option for ubiquitous applications.

As we discussed in Section 27.2, the communication needs of ubiquitous
computing applications differ greatly from those of traditional applications.
Because of the highly autonomous nature of these new applications and their
highly dynamic behavior, a centralized approach to managing connections
(e.g., a fixed server handling all the devices in one room) is not possible. This
leads us to investigate self-organizing communication paradigms.

Self-organizing communication models are very attractive for ubiquitous
applications, since they allow us to handle the dynamics of the applications
in a scalable and robust manner. One promising communication paradigm for
ubiquitous computing is publish/subscribe communication [195, 103]. In the
Publish/Subscribe interaction scheme, subscribers have the ability to express
their interest in an event, or a pattern of events, and are subsequently notified
of any such event, generated by a publisher, which matches their registered
interest. The event is then asynchronously propagated to all subscribers that
registered interest in it. The strength of this event-based interaction style lies
in the full decoupling in time, space and synchronization between publishers
and subscribers.

One major advantage of a publish/subscribe communication model is that
it allows us to hide much of the communication handling from the applica-
tion. Because ubiquitous environments may present many challenges for the
communication layer (poor links, dropped connections, many errors, etc.) it
is highly advantageous to be able to incorporate all communication code in
a middleware layer. This frees the application programmer from having to
worry about possible error conditions and it also allows the middleware to
select the best possible communication means at any given time, without this
having to be programmed into the application.

27.4 Ubiquitous Computing Middleware

The key glue which holds ubiquitous computing applications together is a
middleware layer. This middleware provides the application with an inter-
face for communicating with the “rest of the world”, but it also protects
the application from the environment (especially in terms of communication
problems and issues).

However, because of the characteristics of ubiquitous applications, this
middleware must take into account many different factors, and it must fulfill
several requirements. In the rest of this section we will discuss these require-
ments in more detail.
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27.4.1 Support for Heterogeneous Devices

The world of ubiquitous computing is highly heterogeneous; no longer is there
a single dominant device type, such as a desktop computer. Instead, we have
many different kinds of devices, small sensors, personal devices, traditional
computers, large wall displays, etc. All these different devices have very dif-
ferent characteristics and these must be accounted for in a middleware. One
example are the communication capabilities of the devices, i.e., what kinds
of capabilities does the device possess and what does it “cost” to use them.

27.4.2 Resource Constraints

Many ubiquitous devices are very resource-constrained. Consider, for exam-
ple, a simple temperature sensor which normally would include only the sen-
sor, a simple processor with a minimal amount of memory, and means for
communicating with other devices. Because of these constraints, a middle-
ware must have a small memory footprint so that it can be embedded in
as many devices as possible. Even though the cost of memory is decreasing,
it will not be feasible to equip thousands and millions of ubiquitous devices
with enough memory and processing power to run conventional middleware.

A consequence of the requirement of a small memory footprint is the
modularity of the middleware. If we build the middleware around a small,
minimal kernel, with additional services which can be plugged in and un-
plugged on-demand, we satisfy the requirements of a small memory footprint
(since unnecessary services can be unloaded) and we have a flexible system
which can adapt to rapidly changing conditions.

27.4.3 Mobility Support

Ubiquitous applications and devices are highly mobile, hence the middleware
must be able to handle this. We can distinguish two kinds of mobility which
require connections to be handed off during the communication.

On the one hand, we have horizontal handoffs (or handovers), which are
currently commonly used in mobile phone networks. In a mobile phone net-
work, a horizontal handoff occurs when the phone moves from the coverage
of one base station to another. During this move, the base stations must
transfer the communication resources to the new base station and the mobile
phone must then switch to this base station. In the ubiquitous computing
world, we do not necessarily have base stations, but can define a horizontal
handoff in an analogous manner. A horizontal handoff occurs when the device
must change its communication partners, but it continues to use the same
technology (e.g., BlueTooth or WLAN) for the communication.
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On the other hand, we have vertical handoffs which occur when the device
must change communication technology in order to maintain the connection.
For example, a device in a WLAN hotspot which moves out of the reach of
the access point must switch to, e.g., UMTS, to remain connected.

Although horizontal handoffs are currently much more common, vertical
handoffs are likely to become more common with the proliferation of WLAN
networks. Some horizontal handoffs (especially in mobile phone networks)
can already be handled with current technology, but other types of handoffs,
especially vertical handoffs, usually result in broken connections.

Ubiquitous middleware must therefore have efficient support for both
kinds of handoffs, across a wide range of different networking technologies.

27.4.4 Networking Support

Networks and communication links between devices in ubiquitous computing
form spontaneously and in an ad hoc manner, without any necessary planning
in advance. This type of spontaneous networking implies that nearby devices
need to be found as they come in range, and communication links must be
formed on demand. This sets requirements for the middleware, implying that
it must handle these situations efficiently.

Another particular characteristic of ubiquitous networks is that devices
may disconnect and be unavailable for long periods of time. In other words,
“disconnected” is a normal state, not an exception as in traditional fixed
networks. The middleware must support long disconnects without having
the applications have to deal with them. In practice, this may seem to the
application as if the network was performing extremely slowly, but when the
network connection is resumed, the application should be able to continue as
if nothing had happened.

Ubiquitous networks are typically based on radio communications (e.g.,
BlueTooth, GSM, UMTS, WLAN, etc.). Radio links are, by their nature,
broadcast media and are therefore also well suited for (local) multicast com-
munications. Unfortunately, BlueTooth for example, goes to great lengths
to make it impossible for the application to use multicast, since BlueTooth
makes all links point-to-point. Such behavior should be discouraged in a
ubiquitous middleware, since the multicast (and broadcast) capabilities of
the underlying radio medium come “for free”.

27.4.5 Performance Issues

Ubiquitous computing environments present many challenges for building
high-performance systems. Many of these challenges stem from the nature
of ubiquitous devices, which was discussed in Section 27.2. Because of the
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different nature of the applications, we must emphasize different factors when
looking at the performance of ubiquitous middleware and applications.

Naturally, the more “traditional” performance metrics, such as processor
speed, network bandwidth, etc., are also important in ubiquitous computing,
but in addition to those, there are several other factors to consider.

For example, ubiquitous applications typically run over wireless networks.
Although the bandwidth of wireless networks is increasing, it is doing so at a
much slower rate than the bandwidth of wired networks or CPU speeds. This
implies that wireless bandwidth should be treated, to some degree, as a “rare
commodity”, and middleware and protocols should be designed to take this
explicitly into account. In other words, applications should not assume that
data can be transferred easily from one node to another on demand; instead,
applications should be prepared to work with slow connections and even the
occasional disconnect.

Furthermore, ubiquitous devices are often very constrained in terms of
processing power and memory. This puts a limit on the amount of processing
that can be done locally, and further implies that any heavy computation
might best be done on a networked server (keeping in mind the constraints
of the slower network, as mentioned above). The same applies for the on-
board storage of the device. Although CPU power and memory capacity are
increasing at a rapid pace, it may not be feasible to equip every single device
with a fast CPU and a large amount of memory for reasons of cost and
power-efficiency.

Power-efficiency is the third major difference between traditional and
ubiquitous applications. Many ubiquitous devices run on batteries and ev-
ery action they perform consumes the on-board batteries. Like wireless net-
work bandwidth, battery capacities are also growing very slowly (compared
to other components) and are likely to be the primary limitation for ubiqui-
tous devices and applications in the near future. Battery life is possibly the
most crucial of the performance aspects, since when the battery runs out, the
device can no longer function at all.

A high-performing ubiquitous application is therefore not necessarily one
which performs its tasks in the shortest time, but one which can take into ac-
count the above three factors and be the most efficient in those terms. This
may include designing protocols which, for example, avoid periodic main-
tenance messages (which consume battery power, since they require using
the network device and can jam networks), and instead are able to tolerate
network partitions and occasional inconsistencies (and thus prolong battery
life).
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27.5 Peer-to-Peer and Ubiquitous Computing

Peer-to-peer networks and systems are based on the principles of self-
organization, resource sharing, and independent devices collaborating to form
a larger system. These basic characteristics match well with the typical char-
acteristics of ubiquitous applications, where the conditions are similar. There-
fore, it is natural to consider Peer-to-Peer technologies as a building block of
ubiquitous computing architectures and applications.

Peer-to-peer networks are typically based on (highly) autonomous peers
collaborating to provide the different services. The peers provide the resources
for the network and for other peers to use, but individual peers remain in-
dependent in their actions. Individual peers are free to go offline and come
online as they please. These properties are the cornerstone of Peer-to-Peer
organization principle and are one of the main strengths of Peer-to-Peer net-
works.

In fact, if we look at Peer-to-Peer systems and networks from this or-
ganizational point of view, we can abstract their inherent capabilities and
properties and apply these same principles and properties to other kinds of
systems. By drawing the parallels between Peer-to-Peer organization and the
organization of entities in other systems (ubiquitous computing architectures
in our case), we can observe the similarities and exploit the power of Peer-
to-Peer systems in other fields.

Peer-to-peer principle is an attractive choice for organizing ubiquitous
computing systems for several reasons. As we look at ubiquitous computing
architectures, we can immediately see many common points with the Peer-
to-Peer organization principle. In ubiquitous computing architectures, there
are many completely autonomous devices (e.g., sensors, user devices, etc.)
scattered in the environment. Each of these devices has some functionality
which is important to other devices, i.e., each device provides some resources
for all other devices, services, and applications. A device may rely on the
information provided by another device in order to complete its function.
Furthermore, the mobility of the devices and the limited range of communi-
cation implies that, from the point of view of a single device, other devices
appear to have highly intermittent connectivity. In some cases, devices may
also disconnect in order to conserve battery life.

From the above comparison, we can see a possible mapping of the Peer-
to-Peer principle to ubiquitous computing architectures. At first sight, this
mapping appears quite straight-forward, due to the large similarities between
the two systems.

The main area of application for the Peer-to-Peer organization princi-
ple in ubiquitous computing lies in building communication architectures for
ubiquitous computing. As mentioned earlier, the key focus in ubiquitous com-
puting lies in efficient communication architectures which allow the different
devices to offer their services to other entities in the environment. Such com-
munication architectures exhibit many Peer-to-Peer-like properties and can
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benefit from the same principles as traditional Peer-to-Peer systems in the
Internet. However, ubiquitous computing has a host of special requirements,
which stem from the nature of the applications and devices, as we have pre-
sented above. This implies, that the traditional Peer-to-Peer solutions may
not be applicable in ubiquitous computing.

Before Peer-to-Peer solutions can be applied to ubiquitous computing, we
need to evaluate their suitability. As our discussion above shows, there are
many similarities between Peer-to-Peer systems and ubiquitous computing
architectures which suggest the possibility to leverage Peer-to-Peer technolo-
gies in ubiquitous computing. However, many of the constraints and special
requirements of ubiquitous computing make traditional Peer-to-Peer solu-
tions unsuitable for ubiquitous computing. Peer-to-peer systems are based
on overlay networks, which require significant effort just to maintain the
overlay structure. For ubiquitous devices, such effort implies large battery
consumption, just to be able to send messages to other devices. Traditional
Peer-to-Peer solutions implicitly assume that the peers are PCs connected to
the Internet with high-bandwidth links (where even a 56 kbps modem link
would be called high-bandwidth for a ubiquitous sensor with only a few bits
per second infrared communication means!). Traditional Peer-to-Peer solu-
tions need to be adapted to handle the high dynamics and unpredictability
of ubiquitous computing.

Abstracting the communication components into a middleware layer is
especially important for ubiquitous computing. Even in the traditional In-
ternet, code for communication has to handle several different kinds of fail-
ures (DNS failures, connection failures, etc.). In ubiquitous computing, the
number of possible failures is much higher (see Section 27.4) and we cannot
assume application programmers to be able to handle all possible errors. In-
deed, this would be the same as assuming that the application programmer
would be aware of all possible situations in which her application would be
used. Clearly this is not feasible. A middleware layer is responsible for hiding
the communication problems from the application and provides support for
the application programmer.

Peer-to-peer middleware for ubiquitous computing is still a topic of ongo-
ing research. The requirements for such a middleware are known, as outlined
in Section 27.4, but there are still many open challenges. As a conclusion, we
can say that Peer-to-Peer technologies and principles are a promising building
block for ubiquitous computing middleware.

27.6 Research Challenges in Ubiquitous Peer-to-Peer
Computing

In this section, we will outline the major research challenges in the area of
ubiquitous Peer-to-Peer infrastructures. Each of the topics mentioned below
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has several interesting research problems, which need to be solved before
ubiquitous infrastructures can become a commodity. Some of these problems
have been studied in the more traditional computing world, but whether
existing solutions are applicable to ubiquitous computing (due to the special
requirements) remains an open question.

27.6.1 Heterogeneous Devices

The heterogeneity of devices and networks in the ubiquitous computing world
is a big challenge. Applications and communication protocols must adapt
themselves to a variety of platforms and conditions. This includes running on
low-power devices with slow connections, as well as high-power servers with
gigabit networks. In addition, networks in the ubiquitous computing world
are typically wireless and therefore highly unpredictable, both in terms of
available bandwidth, as well as the availability of a network connection in
the first place.

27.6.2 Efficient Algorithms

Because of the constrained nature of ubiquitous devices, we need efficient
algorithms for the organization of, and communication in, these networks.

On the one hand, the algorithms must be efficient in terms of the algo-
rithmic performance; for example, a search algorithm must find the desired
object or service in a short time. This aspect of efficiency can in some cases
be directly adopted from the algorithms in the traditional systems, but may
need to be adapted to the specifics of the ubiquitous application.

On the other hand, considering the constrained resources of ubiquitous
devices, the algorithms must be efficient in how they use the available re-
sources. This includes taking into account things such as signaling overhead,
and possibly leveraging compression technologies for cases where we can trade
off CPU and battery power for better bandwidth utilization.

27.6.3 Security and Privacy

In a world where a multitude of devices are scattered around and are observ-
ing their environment, security and privacy issues are of paramount impor-
tance. Security allows us to authenticate the devices with which we commu-
nicate (and vice versa!) and is an important building block for establishing
trust. The world of ubiquitous computing is moving in a direction where more
and more of our everyday activities are taking place in the digital world and
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therefore it is vital that we (as human users) are able to trust the devices
and architectures handling our affairs.

Likewise, in a world with many devices observing us, privacy issues have
an important role to play. These issues include the technical problems of
handling and preserving user privacy, through the use of technologies such as
anonymous (or pseudonymous) communications and transactions. Another
aspect of privacy concerns the non-technical issues, such as user acceptance,
and more generally, the expectations of the society as a whole with regard to
what level of privacy can be expected in widespread adoption of ubiquitous
computing architectures.

27.6.4 Scalable Architectures

Due to the large number of devices in ubiquitous infrastructures (millions,
even billions in a global infrastructure), the underlying architecture must
be very scalable to handle them. This ties in with the efficient algorithms,
but also goes a step beyond, by extending the notion of efficiency to the
global level. The architectures must be designed in such a way as to allow
the efficient algorithms to work and enable a seamless interaction between
any components that need to communicate.

27.6.5 Next Generation Peer-to-Peer Middleware

Probably the most important challenge in the research on ubiquitous infras-
tructures is the development of a next generation middleware for ubiquitous
applications. As we discussed in Section 27.4, the requirements of such a Peer-
to-Peer middleware are already laid down, but a lot of work is still needed to
turn those requirements into an efficient and scalable infrastructure.

Peer-to-peer technologies are an attractive building block, since they, by
their nature, support autonomous self-organization, intermittent ad hoc net-
works, and exploitation of resources of the edge devices.

27.7 Summary

In this chapter we have discussed ubiquitous computing architectures and
how Peer-to-Peer technologies can be applied to them. We have outlined typ-
ical characteristics of ubiquitous applications and analyzed their needs, espe-
cially in terms of communication. Efficient communication architectures are
a key component in building middleware ubiquitous computing architectures.
Middleware is an important building block for ubiquitous computing archi-
tectures and asynchronous communication means, such as publish/subscribe
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provide an interesting basis for communication architectures in ubiquitous
computing.

The Peer-to-Peer organization principle can also apply to ubiquitous com-
puting. In the Peer-to-Peer principle, peers act autonomously, but collaborate
with other peers to provide services. In a similar vein, ubiquitous computing
devices act autonomously, but depend on each other in their actions. Peer-to-
peer middleware is an interesting possibility for solving the communication
problems in ubiquitous computing and providing an asynchronous communi-
cation abstraction to the applications. We finished the chapter by providing
an overview of open research problems in the area of ubiquitous Peer-to-Peer
infrastructures.
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28.1 Introduction

With the maturation of its technology, Peer-to-Peer applications have come
increasingly into the focus of business. The promise to do business in a faster,
more cost-effective and flexible way has lead to the rise of various start-ups
as well as the engagement of established market players. They have created
a broad variety of Peer-to-Peer business applications and services that have
come to the market. However, there has to be a viable revenue model behind
these business applications and services to lead them to economic success.
In other words, applications should not only be highly successful in terms of
adoption rates, like Instant Messaging, but also in terms of revenue genera-
tion. This chapter contains a discussion of revenue models for Peer-to-Peer
business applications.

It is certainly questionable whether there is a need for Peer-to-Peer rev-
enue models at all. Peer-to-Peer applications often focus on the principle of
reciprocity, i.e., they realize barter structures like the early version of Nap-
ster did. But this idea does not always hold, e.g., Peer-to-Peer applications,
like Instant Messaging, are provided as an infrastructure. Although indirect
revenues from ad space and cross-selling efforts are possible (a driving force
behind the free availability of AIM is to strengthen the online community),
direct revenue models are still of interest. For example, when digital file ex-
changes deal with the property rights of third parties and want to reimburse
these third parties plus recover their operating costs, a viable business model
is required.

Throughout this chapter, potential direct revenue models for Peer-to-Peer
applications and the issues they face will be presented. An abstract view will
be given that represents a generic Peer-to-Peer interaction and that allows
the evaluation of the potential for revenue generation for the parties involved.
Specifically, there will be a discussion of the following points:

1. Who are the parties that participate in a Peer-to-Peer interaction, direct
and indirect, in other words, who are the players that need to be part of
a revenue model so that they can recover their costs?

2. What are the open issues that Peer-to-Peer revenue models have to re-
solve?
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3. How can these parties potentially recover their cost and earn a margin
of profit?

The notion of a service and application style will be introduced, different
revenue models will be revealed and their relevant properties will be iden-
tified. The abstract view of Peer-to-Peer interaction will be the reference in
the analysis of the application/service styles. The discussion at the end of the
chapter suggests ways of dealing with the shortcomings from which current
revenue models suffer.

28.2 Definitions

28.2.1 Peer-to-Peer Applications and Service Styles

From the user perspective Peer-to-Peer business applications can be classified
into four different categories:

– Instant Messaging: applications and services for the direct exchange of
messages between two or more interacting parties (humans and/or ma-
chines).

– Digital Content Sharing: applications and services for the exchange of
digital content. Compared to simple messages, the generation of digital
content is more costly and complex. Furthermore, additional functionality
like digital rights management is often connected with the content.

– Grid Computing: applications and services that allow customers to send
computing tasks to a peer that temporally hosts a server application, which
manages the distribution, analysis, integrity checks and security of the data
sets to other computers that can offer some processing capacity.

– Collaboration: applications and services to work or play in ad hoc groups
that do not necessarily include organizational hierarchies. Unlike Instant
Messaging, Collaboration applications support working groups particularly
with regard to their coordination and cooperation.

All business applications can be provided in an application or a service
style. In this chapter, Peer-to-Peer application style is defined as the use of
software that is either provided as a packaged solution (such as Lotus In-
stant Messaging, Groove, etc.) or through a set of common definitions and
methodologies, i. e. programming models like J2EE and .NET, protocol def-
initions like Gnutella and the like. The user buys the software and runs it
on his own, i.e., no third party is involved. A Peer-to-Peer service style is a
service provided to third parties which is based on a Peer-to-Peer interac-
tion model. The software is not bought, but its functionality is leased by the
user. Therefore a Peer-to-Peer application provided in a service style is not
a once-bought-used-forever model.
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Fig. 28.1: Referential View of Peer-to-Peer Interactions.

28.2.2 A Referential View of Peer-to-Peer Interaction Styles

Looking at the broad variety of different application/service styles that fit the
concept of Peer-to-Peer, it is likely that there is no one-size-fits-all revenue
model for all these styles. Differentiated considerations are needed which
should be guided by a common pattern. In this chapter an abstract reference
view of the different Peer-to-Peer interaction styles shall be given, which can
then be mapped to different application/ service styles.

At the center of the reference view (Figure 28.1) is the object of interac-
tion. Depending on the relevant application/service style, the object can be
a message, a file, a data stream, a transaction, or a data object. Different
roles can perform operations on this object, which is provided from a provid-
ing interaction partner to a receiving interaction partner. The rights to the
object are the property of its legal owner. A mediating service facilitates the
interactions involving the object. The following overview outlines this view.

To facilitate the reading of this chapter, the elements of this abstract
reference view will be referred to as the Object, Provider, Receiver, Mediator
and Owner throughout the remainder of this text. It is important to note that
this view refers to roles not to participants. As a matter of fact, a participant
can play several roles at the same time. For example, the role of the Provider
can be taken by the same participant as the role of the Owner. In specific
situations some of the roles can be omitted altogether, e.g., in the case where
no Mediator is required to match the Receiver and Provider. Provider and
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Receiver can reverse their roles throughout an interaction sequence, i.e., the
Receiver can become the Provider in a following interaction step and vice
versa.

28.2.3 Business Models and Revenue Models

The terms “business model” and “revenue model” are often used interchange-
ably. However, for clarification distinctions should be made. A business model
is the totality of processes and arrangements that define a company’s ap-
proach to commercial markets in order to sell services and/or goods and
generate profits. In contrast, a revenue model is part of a business model.
It includes all arrangements that permit the participants in business interac-
tions to charge fees that are covered by one or several other participants in
order to cover costs and add a margin to create profits.[626]

Revenues can be generated in a direct or indirect way. In the direct way,
the receipts come directly from the customer. When an indirect revenue model
is adopted, the actual product will be provided for free. The gain is received
from a third party who is in one way or another interested in the diffusion
of the product. These two categories of possible revenue models can be reas-
signed (adapted from Laudon and Traver [378]):

– Indirect revenue models can be advertisements, affiliate models, or a
bundling. When the advertising model is adopted, the third party wants to
communicate a sales message that is visible during the usage. It should be
considered that the message is influenced by the reputation of the advertis-
ing media. In the case of the affiliate model, the vendor receives revenue for
passing customers to an affiliate partner, who sells the products or services.
For every purchase, the vendor receives a commission. The bundling model
is similar onto the affiliate model. The revenue is generated by products
or services that are connected to the free offering. Even though the basic
service is free, the customer has to pay for the additional offering.

– Direct revenue models are sales, transaction fees, and subscriptions. In
the sales model the customer pays directly for the object. Two forms have
to be distinguished. In the first one, licenses for the Peer-to-Peer business
application itself are sold. This model corresponds with the application
style. The second form is to use the application as an infrastructure to sell
goods or services. If the transaction fee model is used, the company will be
assigned the role of the mediating service. It provides a service that facili-
tates a transaction between the Provider and the Receiver. The Mediator
earns a fee for every transaction between them. Unlike the transaction fee
model, in the subscription model the fee is paid independently of the actual
usage. It is rather paid periodically, e. g. every month or year.
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Peer-to-Peer application styles and Peer-to-Peer service styles are not
mutually exclusive, e.g., a vendor might sell licenses for the use of specific
software and add some specific professional services for which he charges
service fees. A Peer-to-Peer software vendor needs to come up with a licensing
model, whereas a service provider has to develop an approach for the billing of
the service. There are several prerequisites that a viable revenue model needs
to fulfil. As an absolute minimum, two important features are required:

– Differentiated Charging: A viable revenue model needs to be capable
of covering costs and earning a margin of profit. However, in order to be
efficient a revenue model needs to provide a differentiated pricing struc-
ture, i. e. the capability to charge according to criteria that are tied to the
patterns of usage.

– Allocation Effectiveness: The capability of a revenue model to create
a revenue stream to the appropriate Receiver, i.e., to the party that has
incurred the cost, is called allocation effectiveness.

28.3 Revenue Models for Peer-to-Peer Business
Application/Service Styles

In the following, the interaction style will be mapped to the reference view.
Thus, potential revenue models and issues in the application style setting as
well as in the service style setting can be examined.

28.3.1 Instant Messaging

Instant Messaging (IM) refers to applications that enable two participants
to exchange information in real time. Typically this is done through typed
text messages, but various Instant Messaging applications have extended the
functionality to include voice messaging. Although the capability to exchange
files has practically become a standard feature in most messaging applica-
tions, it will not be discussed here but in the following section on Digital
Content Sharing.

Applying the reference view introduced above, the Object is a message
and the Owner is identical with the Provider, i.e., the sender of the message.
The software usually provides some specific functionalities, like a “buddy
list”, which provides presence services, i.e., a list of currently logged-on and
thus reachable interaction partners. This service, that often includes various
other functionalities like finding people based on their profile, does not have
to be central. Actually, three primarily different topologies exist which in-
fluence possible revenue models for instant messengers. The first one is not
really Peer-to-Peer from the technical point of view: In this topology the
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buddy list service as well as the actual messaging service is provided by a
server. However, the communication takes place between two autonomous
peers. In the more decentralized design the buddy list is managed by a server
but the communication is self-governed by the communication partners. In
both cases the Provider of the service acts in the role of the Mediator. As
long as the central software is used within the boundaries of a corporate net-
work, the service infrastructure Provider is the internal IT department (or
the outsourced equivalent). Once the software is used across organizations,
connectivity between the users is required and this can either be an ISP or a
Provider of an IM service. If the pure Peer-to-Peer topology is adopted both
(the message exchange and the buddy list service) are organized by peers, so
that no server is involved. One example for the latter is Skype.

The revenue model for an application style is rather straightforward and
can be built around license fees as well as around optional professional services
(integration support etc.). There are various models for license fees (e.g., base
fee and yearly maintenance fee, upgrade fees, etc.). The vendor faces the
challenge of opting for the best one to generate sufficient revenues – always
assuming that the application provides enough value to attract buyers and
that it generates sufficient revenues to offset costs plus provide a margin of
profit.

The situation becomes significantly more complicated when IM is deliv-
ered as a service style. Currently the most popular IM services on the Internet
are AIM, ICQ, MSN, and Yahoo!. Today these services are available for free.
It is sufficient to download and install a client application and attach it to
the network of the respective IM service provider. Highly successful services
like AIM claim to have 200 million users [411]. Although these figures refer
to the number of accounts rather than the real users, Instant Messaging has
unquestionably been a huge success in terms of adoption rates. It is clear
that a substantial infrastructure is needed to provide the users a stable and
convenient service, and obviously there is cost associated with that. Provid-
ing the service for free is a viable revenue model only if an indirect one is
adopted (one of the main reasons for AOL to provide AIM is to attract users
to its ISP service).

An undifferentiated subscription fee for using the service is the simplest
possibility. However it is not a very efficient one because it can hardly account
for differentiated charging. Heavy users and occasional users would not be
discriminated and in the end the difficulty is to strike a pricing scheme that
satisfies the occasional as well as the heavy users. Various modifications to
this approach could be suggested like a fee per log on, a fee per log on
and day, or a fee for the time during which a user periodically connects the
mediation server. A periodical connection is necessary for the user to keep
his buddy list up-to-date and to notify the server that he is still online. It
is clearly more interesting to take a transaction fee and bill for the actual
usage, but that is anything but simple. Where IM services are really built
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as Peer-to-Peer applications (e.g., ICQ [414]), the communication between
two participants is direct – i.e., there is no application server which connects
them for the message exchange. The only possibility for a third person to
find out about a message transfer is by monitoring the network providers’
hubs (on the network level). This makes charging per usage quite difficult –
a billing system would need to be able to get hold of, count and attribute
network packets to specific users. If the architecture of the services is realised
in pure Peer-to-Peer style, which is totally without a mediation service, even
the realization of a pay per time model is problematic. However, where IM
services are built in a client-server model (like MSN [414]) this problem is
minor, because the application server has control over the conversations and
because it can log the usage.

New problems arise with the emergence of interactive agents. Although
these agents have not found a wide diffusion yet, they can provide additional
services for the user of Instant Messaging. To put it simply, interactive agents
are pieces of software accessible through the IM infrastructure as if they were
real users. Advanced agents such as Active Buddy even provide interaction
with a rather sophisticated natural language dialogue [130]. Such interactive
agents enable the execution of transactions over the Instant Messaging infras-
tructure in a way which is very convenient for the user [439]. These agents
deliver for example important news or act as a text based service hotline,
which can help to solve customer problems. It is possible that they will play
a role in the currently emerging web services. IM services today have only
weak possibilities to deal with interactive agents on their networks. Even if
they succeed in detecting them (which is already only possible if an interac-
tive agent does not behave in the similar way as a real IM client), they face the
challenge of understanding what exactly the conversation is all about. The
trouble is that a charging approach that builds on the amount of information
exchanged is not a good fit with these agents. Human-human interaction is
often chatty - a human-application interaction which aims at performing a
transaction should be expected to be fairly brief. As long as the IM service
provider has no means of differentiating between a transaction and a conver-
sation, it has no means of performing any type of differentiated billing either.
Appropriate charging is only possible if the IM infrastructure service provider
owns the interactive agent or has at least an alliance with the Provider of
the agent. Microsoft has good reasons to weave its MSN Messenger deeply
into the .NET services infrastructure and build it on a client-server model. It
remains to be said that three popular IM services go into the market of the
application style IM or have already failed in doing so: MSN already bun-
dles the MSN client with Windows XP and sells an application named “Live
Communications Server”, whereas AOL announced that it would stop devel-
oping “AIM Enterprise” in order to cooperate with IMlogic. Yahoo! dropped
its messenger because instead of buying the business version, the free version
was being used by companies, as Yahoo! stated [345].
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Judging from the criteria that have been defined for viable business models
above, the application style allows for a differentiated charging through vari-
ous licensing models and fulfils the criteria of allocation effectiveness (as long
as the software is not illegally copied). However, when it comes to a service
style, revenue models for Instant Messaging face quite significant challenges
with respect to a differentiated charging structure. Allocation effectiveness
is not a problem for centralized and hybrid Peer-to-Peer architectures since
IM clients need to log on to the service provider’s network. However, this be-
comes a problem in pure Peer-to-Peer architectures. In this case it is rather
difficult to trace the communication between users in order to bring it to
account.

28.3.2 Digital Content Sharing

File sharing has become infamous through the quick rise and fall of Napster.
Although Napster collapsed with its first model, its place has been taken
over by others such as KaZaa, Morpheus, Grokster, and eDonkey. The music
industry is amidst a ferocious fight against the free exchange of music by
submitting empty music files or files that contain only part of a song plus
some affixed commercial content. Beside these technical weapons, the music
industry threatens users and service providers with lawsuits. By means of
rigorous penalties the users should be discouraged from sharing illegal media
files. For example, the RIAA made a settlement with four students in the
USA who ran a service for searching MP3 files in their college network. The
students pay penalties of between $ 12,000 and $ 17,000 each [83]. In Germany,
a trainee settled to the amount of EUR8,000 [478].

Whatever the fate of the various file sharing applications and the commu-
nities behind them will be in the end, they have shaken up the value chain of
the music industry and they might well lead to changes in business models
[310]. Although such digital media exchanges have become the best-known
examples, they should not be mistaken for the only possible instantiation of
this application/service style. Two points are important here:

1. The exchange of entertainment media files is only one specific type of
content exchange. Any other digital content can also be exchanged, e.g.,
design documents, training documents, reports etc. Thus, Digital Content
Sharing can be used as a decentralized form of knowledge management. If
an adequate index service exists, the documents containing the knowledge
of the network participants can be accessed without forcing them to save
these documents on a central server.

2. The definition needs to be broader than just file sharing. It should include
streaming content as well since this type of content can also be recorded
and exchanged in a Peer-to-Peer manner (such an extension to include
streaming content clearly leads to specific challenges in the technological
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implementation, but it does not change the considerations for revenue
models).

In terms of the reference view introduced above, the roles of the Provider
and Receiver are obvious. But the most important point is that the Owner
is not necessarily the Provider or Receiver – he can be a third party. De-
pending on the specific implementation of the file exchange, there can be a
Mediator providing a central catalogue of contents available as well as pro-
viding additional services, even though that is not a necessity for digital
content exchanges. Napster, for example, was essentially a Mediator; it ran a
central directory to which the client’s software connected in order to match
the Sender with the Receiver. In this case, only the exchange of the files as
such was performed in a Peer-to-Peer manner. Peer-to-Peer Digital Content
Sharing applications that are built on the Gnutella protocol do not need a
Mediator. They work on a pure Peer-to-Peer model even for matching Sender
and Receiver [396].

As an application style, software of Digital Content Sharing can be imple-
mented in corporate networks, e.g., for the facilitation of knowledge exchange
between employees. Peer-to-Peer collaboration tools also typically provide
such Peer-to-Peer file exchange functionalities. Again, the vendor of such
software can adopt various license models and provide consulting services for
implementation, training, and operations to create additional revenues. The
application style is not limited to the borders of a single corporation. Var-
ious Digital Content Sharing communities can be connected across several
organizations in a more or less ad hoc manner. Furthermore, a mediating
service Provider could act in such intercorporate Peer-to-Peer exchanges by
providing catalogue services for the content supplied by different organiza-
tions as well as other value added services. This can be the software vendor,
the participating organizations, or a third party. It brings us to a service style
type of Digital Content Sharing. If the Provider is also the Owner, then the
revenue model is fairly straightforward and the Provider can charge a fee for
the transfer of the object.

Things become significantly more complicated if Digital Content Sharing
applications are operated in a service style and if the Owner is not iden-
tical with the Provider. The most prominent case is Napster, which made
its market entry as a free service and allegedly intended to create a revenue
stream from advertisements. In principle, other revenue models would also
have been possible, like membership fees for subscriptions, log in fees, or even
a match making fee. However, given the legally precarious situation of the
whole approach, such revenue models would have been debatable anyway. To-
day there exists no serious Peer-to-Peer service for distributing legal content.
Whatever the real business idea of the makers of Napster and the look-alikes
is, the real problem is that the legal owner of the rights of the exchanged files
is not a participant in the transactions and hence he can not cover his costs.
BMG, EMI, Sony, Universal Music and Warner Music never participated in
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the original Napster transactions, and the BMG Napster did not do more
than stop the illegal activity. For digital content exchanges that embrace a
Mediator approach, one could think of implementing a billing step into the
content exchange, where any or both of the participants are required to pay
fees for exchanging content and those could then be paid to the Owner. If,
for the moment, it is assumed that this would be technically feasible, then
the Mediator adopts the role of an aggregating middleman for the content
which can be conveniently searched and compiled.

But it is questionable whether anybody other than the Owner should
be involved as a Provider. Why should the content first be bought from an
Owner and then be sold to another Receiver when at the same time the
Owner needs to be part of that transaction again and he needs to be prop-
erly reimbursed? Even though this distribution model could lead to technical
advantages, its economical benefits are not clear. It would be easier for the
Receiver to buy the content directly from the Provider. One might argue,
however, that the intermediary function can add additional value: Today’s
digital content exchanges integrate usually the recordings from different mu-
sic groups which would not be the case with separate download sites. But
that is hardly convincing – the music industry could run a joint catalogue
service without major problems since the artists are regularly bound through
exclusive contracts. Finally, there is the question of control. Digital content
exchanges perform an unbundling of content and provide a possibility for
free reassembly through the user: Rather than buying a complete album,
consumers can buy selected titles only and create their own specific albums
to their tastes. The music industry and artists alike have good reasons to
be reluctant to agree on the unbundling and recompilation of the content. It
is rather difficult to determine an appropriate price for popular as opposed
to less popular titles. Apart from that, a full CD can be sold for a higher
price than, e.g., the three popular titles only [125, 604]. Anyhow, it seems
that the music industry cannot surrender the market demand for digital con-
tent. Several distribution services have started up recently, e.g., the Apple
iTunes store. But nearly all of the serious upcoming Providers are based on a
client-server architecture because more control over the distribution process
is guaranteed. In short: taking an additional party into the transaction simply
because he or she happens to have the digital content at hand does not add
any clear economic value. It is more reasonable if the Provider once again
becomes identical with the Owner, in other words, the record companies sell
the content themselves or with the help of a few centralized licensed sellers.
Then it is likely to look more like iTunes, which follows a client-server-based
approach rather than a Peer-to-Peer exchange.

Finally all these considerations will only hold for Peer-to-Peer exchanges
if a billing scheme can be built into the digital content exchange and if the
fees can be allocated accordingly. If no Mediator is involved, e.g., if a digital
content exchange is built on the decentralized Gnutella protocol, the enforce-
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ment of a payment will be very difficult to achieve since interactions are
not centrally managed in the first place. Furthermore, there is always the
possibility to copy and forward the contents once a Receiver has them. A
billing scheme, even a well-built one, is not a content protection scheme, and
even if contents are bought legally once, they can be illegally copied infinite
times thereafter. Consequently, any (legal) revenue model will need to pro-
vide for the protection of digital rights. In addition, it will need to enforce
the payments to the appropriate legal owner. As simple as this may sound,
there are difficult technical challenges to solve, and the question of whether
digital content can be protected at all is still open [267]. The failure of the
SDMI initiative is quite an instructive example. The music industry asked
the Multimedia Telecom Italia Lab to create an encryptable and thus a safe
digital music format. The lab agreed and promised the amount of $ 25,000
to those who managed to break the code. When the group of people that
had managed to break the code wanted to publish their accepted paper, the
music industry filed for a court injunction and the paper was banned from
publication. Prof. Edward Felten from the University of Princeton put the
paper on the Internet, where it can still be downloaded [136]. Another prob-
lem with digital rights protection systems is that the Providers always have
to make tradeoffs between the security of such systems and the usability. If
the protection system is too restrictive, then it can deter potential customers
from buying the media file. Whether the music industry will win the fight
against digital content exchanges is an open question. In the end, it might be
wiser for the music industry to adopt a new business model instead. Rather
than trying to crush the online exchange communities, the music industry
could try to develop them and own the communities [310]. This way, through
word of mouth advertising, marketing affects can be achieved. This applies
especially to smaller labels and independent artists.

If these considerations are put in the context of the criteria for viable
revenue models introduced above, it can be stated that there is currently no
viable revenue model for Peer-to-Peer digital content exchanges in service
style and it is likely that there will never be one. The point is that it is very
difficult – if not impossible – to enforce allocation effectiveness when Me is
in the game. Digital content exchanges, where the Owner is identical with
the Provider, face comparable issues if the Provider does not sell the Object
itself but if he only sells limited rights to its usage. As soon as digital content
is provided to a Receiver, it is vulnerable to copying and handing over to
third parties. Differentiated charging, on the other hand, is easier to achieve
since digital content exchanges could be priced individually. The real issue to
resolve for digital content exchanges is its protection at such a level that the
customers are restrained from infringing the copyright. If protection needs to
be given up, new approaches will have to be found for the business models.

One example is the approach of Marillion, a group that has a long history
of releasing records the traditional way. It has built up a faithful community
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of fans over the years. When Marillion’s contract with their record label ex-
pired, they decided not to renew it. Instead they promoted the new record
using the Internet. The band members wrote to their fan base and asked
if they would be willing to pay for the CD in advance in order to finance
the making of the record. The response was overwhelming. Some fans even
offered to pay for two CDs “if that would help them”. When the production
was finished, the CD was offered through the band’s web site – not for down-
load, but for ordinary purchase through a secure web link. It remains to be
said, however, that there are other examples of such approaches that failed,
e.g., Stephen King’s experiment with an online book. A recent remarkable
approach without protection is addressed by the Potato System [493]. This
system tries to induce the users to license the media files by offering them the
possibility of earning a commission. When a user registers a media file and
hands this file to a friend he gets a commission if his friend buys a license as
well. So the users are motivated to license and to recommend the file. But
whether this model will work is questionable. Due to the absence of copyright
protection, the Owner has no chance to enforce his rights. It is likely that
this will be the main obstacle for music labels participating in this model.

28.3.3 Grid Computing

Grid Computing refers to the coordinated utilization of distributed comput-
ing resources [544]. Of all Peer-to-Peer applications, Grid Computing is the
one that least fits the definition of Peer-to-Peer computing in its contem-
porary realizations that are suitable for industrial use. Their computational
model is regularly client-server-based rather than decentralized. None of to-
day’s models work without a special server that manages the distribution,
analysis, integrity checks and security of the data sets. Peer-to-Peer in this
case refers to the idea of having complex problems broken down into parts
that are solved more or less independently by peers and that are then put
together to one solution. In doing so peers act autonomously to a large ex-
tend. They can choose, if and when they are willing to provide their com-
puting power. Examples for applications that use this computing model are
SETI@Home [28] and MoneyBee [426]. However, if the vision of Grid Com-
puting in its pure understanding should become true, peers should not only
be able to provide computing power, but to demand the resources available
in the network.

The point of Grid Computing is more about the work getting done by
peers than about the organization of the work [178]. Grid Computing has
not been very commonly used so far. Early applications in this area have
focused on the aggregation of computer processing cycles to solve complex
mathematical problems. Future applications can be expected in various ar-
eas, such as Biological and Chemical Engineering, Economics and Financial
Modelling. It is interesting to see that IBM’s patent on distributed comput-



28.3 Revenue Models for P2P Business Application/Service Styles 485

ing technologies was ranked as one of the five top patents to watch by the
MIT technology review in 2001 [583].

If Grid Computing is mapped to the reference view, the Provider(s) can
be interpreted as the one(s) providing available computing power and the
Receiver as the one using this computing power to solve complex problems.
The providing interaction partner can as well be seen as the one who provides
the task to be processed. In this chapter, the focus lies on the computing
power because of the interest in its payment. The Mediator is the central
server application, which manages the distribution, analysis, integrity checks,
and security of the data sets.

Dougherty et al. have distinguished four different revenue models for Grid
Computing: the enterprise software sale, the public Internet exchange, an ap-
plication service provider (ASP) and a B2B exchange model, though the ASP
and B2B models “have not yet developed and may never develop” [178, p.
114]. The enterprise software sale model is identical with the view of an ap-
plication style, i.e., the revenue model is about selling distributed computing
software for installation behind the firewall or “enterprise grid”. The ratio-
nale is to provide more control over the contributing resources which will lead
to higher availability and better security. Apart from that, the LAN/WAN
capacities typically allow the transport of much larger data sets. A revenue
model is typically straightforward and consists of license fees and professional
services for implementation.

The public Internet exchange or “mixed grid” approach is of the service
style. The idea is to provide access to vast computing power on a worldwide
scale. An example is Moneybee where Grid Computing is used to predict
stock prices and exchange rates. Participants download and install a free
screen saver that uses the idle PC resources when the screen saver is on in
order to perform complex operations that are downloaded from a Moneybee
server. Thereafter results are uploaded to the Moneybee server [426].

With respect to revenue models, Grid Computing is a quite different sit-
uation than the other Peer-to-Peer interaction styles. As far as the Mediator
is concerned, there is a need to distinguish whether the service manages the
Grid Computing tasks on behalf of a third party or whether the mediating
service is identical with the Receiver. If the work is done on behalf of a third
party (which corresponds to the ASP model in [178]), the cost for the medi-
ating service plus a margin will need to be charged. If the mediating service
is provided by the Receiver, then the business utilization of the grid com-
putation results will have to cover the cost. In both cases, the issue is how
to determine the computing cost per Provider and how to compensate the
Providers. Mediators currently ask users to donate their excess resources. In
exchange, they offer a portion of these resources to non-profit organizations,
or else they provide “sweepstakes entries” for prizes. The Providers at Mon-
eybee contribute their resources free of charge. Their incentive is to get part
of the results (forecasts for stock prices and exchange rates) that the system
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generates. It may certainly be that many other Grid Computing tasks are
taken on by Providers in a similar way for free (e.g., when they are bun-
dled with attractive add-ons like the lively graphics of a screen saver hosting
the client application as SETI@home does). What, however, if the Providers
want to be reimbursed monetarily for offering their excess resources? From
the technical point of view, it is not very difficult to employ a pay-per-use
model where the client application records resource usage and provides the
data to the mediating service which then reimburses based on usage. The real
problem is that the price paid for the resource supply is likely to be rather low
and (micro-) payments will need to be organized in a very efficient way, if the
transaction is not to use up all the benefit. It is doubtful whether financial
incentives will be capable of attracting a sufficient number of Providers – at
the end of the day a non monetary incentive seems to be the better idea.

In summary, even though Grid Computing probably has the most straight-
forward revenue model of the core Peer-to-Peer applications, it still faces the
challenge of creating enough business to generate sufficient micro payments
to attract a sufficient subscriber base. Judging from the criteria for revenue
models, there are no problems regarding the allocation effectiveness or effi-
ciency. The questions is whether Grid Computing will create sufficient busi-
ness value to earn its own living, once Providers want to charge for the use
of their resources.

28.3.4 Collaboration

Collaboration supporting Groupware applications have been around for about
fifteen years with differential success in providing functions beyond email and
workflow. Typically groupware functionality includes some of the functions of
email, chat, bulletin boards, calendaring/scheduling, file sharing (push and
pull models), and search. Today it is available in different facets of exist-
ing client-server tools. Peer-to-Peer concepts can add some flexibility that
client-server-based groupware lacks today, such as facilitated personalized
categorization of data and information, and the creation of ad hoc working
groups across organizations [560]. In the following, Groupware applications
that are used in the business context, will be considered. In this context the
workgroups are composed of defined and authenticated members. For that
reason, generally no problems arise in respect of copyright protection. The
files are not shared blindly, but are given to the other group members to
enable cooperation.

Like Instant Messaging and Digital Context Sharing, Groupware applica-
tions can be built according to three major topology types: Within the first,
communication is handled by a server. Thus Peer-to-Peer in its pure concep-
tion is not achieved. If the second topology is adopted, the communication will
take place between the clients, but a server gives additional services. Within
the third, no server is involved at all. According to the reference view, the Me-
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diator can be the server which facilitates the communication or which offers
additional services, depending on the topology type. The Provider and Re-
ceiver are the communication partners of the workgroup, whereas the Object
is the message or document that is exchanged between them. As described,
the Provider generally is the legal owner of the Object or is at least authorised
to hand it on to the Receiver.

The method of selling groupware as an application style is unlikely to
change with new architectures underlying the software. Various licensing
models as introduced in Section 28.3.1 can be used. A special opportunity
arises from the complexity of groupware applications via the aggregation of
different functions and their high integration in daily work. It can be assumed
that a comparatively high demand for professional services exists.

If groupware applications are hosted and brought to the users in the form
of a service style, the above considerations for the core applications of Instant
Messaging and Digital Content Sharing can be carried forward. A transaction-
based billing can only be arranged if a central instance that can observe the
usage of the service is used. In the case where the communication is held
by a server, a transaction-based fee can be accounted for by the amount of
transferred data or the usage time. Otherwise, only the usage of the services
provided by the server can be brought into account, e.g., the catalogue service
for members and files, memory to store files of temporary offline peers, or
security services such as logging. Whether it is possible to adopt the service
style in the case of a completely decentralized architecture is questionable. In
this case, the considerations of Instant Messaging apply. It should be added
that the Provider of a Peer-to-Peer collaboration service style should consider
whether he wants to bill for every user or for a complete group. It is inherent
in collaboration that the work between two members can also benefit the
other group members. So it seems adequate to leave the choice of accounting
method to the customer.

With respect to the criteria for revenue models the danger is that allo-
cation effectiveness cannot be ensured. If the infrastructure employs a real
Peer-to-Peer model, the revenue model will face efficiency challenges. It is the
bundling of various services (such as IM and File Sharing and other, poten-
tially non-Peer-to-Peer services) that makes groupware interesting. Revenue
models for groupware service styles can then be built around various other
criteria. The Peer-to-Peer functionality is only one of them.

28.4 Discussion

Summarizing the considerations, it can be concluded that revenue models
for Peer-to-Peer application styles are not different from revenue models for
traditional application styles. Revenue models for Peer-to-Peer service styles
face important challenges, especially in the areas of Instant Messaging and
Collaboration (where differentiated charging is difficult to achieve) as well
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as in digital content exchanges (where allocation effectiveness is difficult to
achieve). Because Instant Messaging and Collaboration Providers only make
infrastructure available and because digital content exchange affects copy-
rights belonging to third parties, these three applications require an account-
ing centre. However such a centre is difficult to build into Peer-to-Peer ar-
chitecture. That is not the problem with adopting revenue models for Grid
Computing, which least faces issues of the core Peer-to-Peer applications.
The transaction only takes place between Provider and Receiver, so that a
central instance has not to be paid. But still, the overhead of administer-
ing (micro-)payments is likely to diminish the attractiveness of these revenue
models.

The open question is what kind of strategies the different parties (Medi-
ators, Owners, etc.) could employ to increase their revenue. Until now, the
focus has been on direct revenue models for specific Peer-to-Peer interactions,
in order to understand what kind of issues charging and payment mechanisms
they will face. The focus on a revenue model for just one specific interaction,
as initially considered, is a rather tight restriction. As a matter of fact, real
world examples of Peer-to-Peer applications follow more a bundling approach.
Examples of service models are AIM as a means of fostering the AOL online
community and the close integration of MSN in the .NET infrastructure. The
benefits of bundling digital information goods as well as price discrimination
are well known [49, 50, 604] and the various Peer-to-Peer areas could very
well take advantage of this approach.

Instant Messaging services could be bundled with services which use the
existing infrastructure and which extends the basic services. One possibility
is to provide additional services through interactive agents. IM services would
then give access to agents that provide various services. These services can be
rather rudimentary, like information services (access to news, stock quotes,
and the like) or advanced, like a secure access to bank accounts, hosted per-
sonal calendars etc. This does not mean that the IM service provider controls
the bank accounts or calendars. It is sufficient that it provides a ubiquitous
infrastructure that conveniently integrates with applications of those provid-
ing the services in the first place (e.g., banks). These services will become
even more valuable if they are combined with contextual information. For
Example, mobile users could be given instant information based on their cur-
rent location through an interactive agent. These services fall under the label
“Location Based Services”. IM service providers would need to cooperate
with the companies offering these services to set up the required applications
and infrastructure as well as to provide convenient yellow pages so that the
IM access can be found easily by anybody using the IM services. There are
interesting opportunities for price discrimination as well. Another possibility
for bundling is shown by Skype. The Luxembourgian company offers a fully
decentralized Peer-to-Peer Instant Messenger providing a VoIP infrastructure
that allows making telephone calls between peers for free. The beta-version
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of Skype was made public at the end of August 2003. Due to the easy in-
stallation process, the easy-to-use user interface and the good sound quality,
Skype could – as it stated – adopt 10 million users in the first year, with more
than 600,000 users having logged on on average [199]. So, it was successful in
adopting a huge user community. This community gives Skype a user base
to establish a revenue model based on a costly service called SkypeOut. The
latter started at the end of July 2004 allowing users to make prepaid calls in
conventional telecommunication networks. It is conceivable that Skype could
use its VoIP infrastructure for further services, e.g., for a radio program or
for music distribution. For both IM bundling revenue models, the very basic
and rudimentary IM services could still be free (not the least since even a
small fee can put communities that have grown accustomed to free-of-charge
using at the risk of breaking apart). Additional services could be charged on
a pay-per-use basis. Premium services for secure access (e.g., for connections
to bank agents) could have a base subscription fee.

When it comes to Digital Content Sharing, it is currently unclear how the
battle between file exchanging and the music (or other, e.g., film) industry
will finally turn out. But as described above, it might be a better strategy
to try owning the communities. Clearly, owning a community would hardly
be possible if the participants of that community were required to pay for
something that they could get for free somewhere else. Once again, the way
to make such communities work would be to bundle the digital content with
other information goods that are not easily available through illegal content
exchanges. Examples would be reductions for concert tickets, fan articles that
could be ordered exclusively through the community, chat services with the
artists, competitions where authentic belongings from the artists can be won.

Bundling is not really a remedy for Grid Computing revenue models. If
the transfer of the (micro-) payments generates too much overhead, then
revenue in the sense of a pecuniary compensation might not be the way
to go. However, providing information goods as a reimbursement could be
feasible. For example, the screen saver running the distributed computing task
might not just be made of lively graphics but it might provide an information
channel, such as Moneybee does (even though Moneybee is not Peer-to-Peer)
[426]. These information channels can report parts of the grid-wide computed
results news independent of the computing task. At the end of the day, that
approach brings the revenue model back to barter-like structures.

Services for supporting Collaboration have possibilities for bundling sim-
ilar to IM. Basic services like document handover and communication can
be provided for free. Additional services, which fall back on central compo-
nents, can be charged per use. These central components can be especially
catalogue, buffering and security services. These services are not required for
smaller workgroups and Collaboration tasks, but they might become essential
with rising requirements.
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This chapter focuses on the economic aspects of Peer-to-Peer networks. In
particular, it describes the most important requirements and presents a ba-
sic architecture for a market-managed Peer-to-Peer system supporting com-
mercial applications going beyond pure file sharing. In general Peer-to-Peer
systems can be used to share any kind of resource, including but not limited
to, computing power, storage space, network capacity, files, and any combi-
nation thereof, e.g., online games or multimedia streams. In the following,
the term service will be used to refer to the individual provision of goods or
resources by peers. The main goal is a completely decentralized and generic
marketplace for efficient trading of such services among peers.

It has been observed in Peer-to-Peer file sharing applications, that in the
absence of appropriate economic and social mechanisms, Peer-to-Peer sys-
tems can suffer from the behavior of selfish peers, which do not cooperate [11].
This is also known as the free-rider problem. As peers are autonomous enti-
ties, they need to be given the right incentives for offering services to other
peers and to behave correctly. Without any central regulator, this is clearly a
non-trivial problem to be solved. Any approach has to consider both economic
and technical aspects in an integrated manner. This chapter tries to investi-
gate how a technically viable and incentive-compatible Peer-to-Peer system
can be built. Two case studies are presented which show how particular parts
of this given problem can be solved.

The remainder of this chapter is organized as follows. Section 29.1 derives
key requirements for a market-managed Peer-to-Peer system based on the
main problems identified. Section 29.2 describes the architecture of such a
system and outlines its core elements and mechanisms. Section 29.3 then
presents two specific approaches towards a Peer-to-Peer market. First, a Peer-
to-Peer middleware is presented which enables the architecture and focusses
on service negotiation and management aspects. Second, Peer-to-Peer double
auctions are described, which make it possible to extend the system with a
completely decentralized pricing mechanism. Finally, Section 29.4 concludes
this chapter.

29.1 Requirements

A set of key requirements need to be met in order to support real-world
applications by the design of a market-oriented Peer-to-Peer architecture. The
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main goal is to support market mechanisms, while maintaining the technical
benefits of Peer-to-Peer networks. The core functional and non-functional
requirements for such an architecture are derived from the various problems
currently observed in many Peer-to-Peer systems.

29.1.1 Main Problems

Peer-to-Peer systems are based on the idea that peers offer services to other
peers. Ideally and in the absence of a monetary payment system, each peer
should contribute as much as it uses from other peers. However, as peers
are autonomous entities acting in a rational way, it is unlikely that such
cooperation is going to happen without appropriate incentives for peers to
share their resources. In fact, it was shown in [11] that 70% of Gnutella users
share no files at all. Thus, many users in Gnutella compete for the resources
offered by only a few peers, which leads to a major degradation of the overall
system performance.

Some Peer-to-Peer systems use specific accounting or reputation mecha-
nisms to deal with this problem, such as BitTorrent’s tit-for-tat mechanism
[128], eMule’s credit system [589], or KaZaA’s peer points [558]. However,
most of these mechanisms are purely file sharing-oriented and can thus hardly
be used for other types of services. Moreover, due to weak security measures
these mechanisms can usually not be applied to commercial purposes.

Another major problem faced in Peer-to-Peer networks, is the fact that
individual peers are usually unreliable, i.e. they may be faulty or even act ma-
liciously. Peers may often join and leave the system, lose messages or stored
data, or deliberately misuse or harm the system. Replication can help to
increase data availability and reliability, however, without appropriate syn-
chronisation techniques replicated data may quickly become inconsistent. In
a commercial environment this problem becomes even more essential. A peer
may increase its own benefit by acting maliciously against potential competi-
tors, e.g., by not forwarding other peers’ service offers. It is hardly feasible
to use accounting mechanisms or payments as an incentive to fulfill such ba-
sic tasks, as it may be difficult to check whether a particular task has been
performed correctly or not. Also, the necessary accounting effort may quickly
exceed the effort for the actual task.

As a consequence of decentralisation and the potentially large size of a
Peer-to-Peer network, the efficient and scalable design of appropriate search
mechanisms and other distributed tasks is another difficult problem. Existing
Peer-to-Peer overlay infrastructures such as Pastry or Chord (cf. Chapter 8)
allow for efficient request routing, but have limited support against malicious
peers or insecure networks. In fact, many Peer-to-Peer mechanisms currently
do not consider malicious behavior at all.
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29.1.2 Functional Requirements

The following three main functional goals form the basis for a completely
decentralized and generic Peer-to-Peer marketplace:

Service Support
The targeted Peer-to-Peer system needs to support completely different ser-
vices, including purely resource-based services such as processing power, stor-
age, or transportation, as well as higher level services such as content or soft-
ware applications going beyond pure file sharing. Also, combinations of ex-
isting services offered by different peers need to be supported, to create new,
value-added services. The service usage model described in Section 29.2.2
illustrates how such combinations of distributed services may look like.

Market-Based Management
The most important goal is the creation of a marketplace for trading different
services, managed by true market mechanisms which provide appropriate
incentives. On the one hand, the traditional way for this is by introducing
a currency that can be used in exchange for the services being provided.
On the other hand, barter trade is a suitable alternative which has to be
supported, too. Barter is a simple form of trade where services are directly
exchanged against other services, e.g., a peer may only download a file if
it also provides one. The market model described in Section 29.2.1 further
details market-related aspects of the Peer-to-Peer architecture.

Decentralization
Today, many Internet-based marketplaces such as eBay [183] are based on
centralized infrastructures. However, a true Peer-to-Peer-based system must
use only Peer-to-Peer mechanisms which must be able to function without
any central components. Only this type of approach offers the full advantage
of the Peer-to-Peer concept and ensures that no central point of failure exists.

29.1.3 Non-functional Requirements

Apart from the key functional goals, a market-based Peer-to-Peer system is
subject to the following non-functional requirements:
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Efficiency
The adopted core mechanisms should lead to an economically efficient allo-
cation and use of the services being traded among the market participants.
Economic efficiency is reached when the services are allocated in a way which
maximizes the overall social benefit of all participants. Additionally, as far as
the technical design of the mechanisms is concerned, an efficient use of tech-
nical resources like network capacity, memory space, and processing power
has to be achieved. In a distributed system, network resources (i.e. commu-
nication bandwidth) determine clearly the main bottleneck. Thus, size and
number of exchanged messages have to be minimized.

Scalability
With respect to the technical performance, a solution should be capable to
operate under any load, i.e. any number of market participants or services
being offered. A system is scalable if the performance does not decrease as
the load increases. A centralized system does not scale well under these cir-
cumstances, because the load on it increases as more participants make use
of it. Therefore, a central system can quickly become overloaded, especially if
no centralized load-balancing concepts are applied. In contrast, Peer-to-Peer
systems benefit from the characteristic that the load caused by a participat-
ing peer can be compensated by those additional resources provided by that
peer. Emerging Peer-to-Peer overlay infrastructures (cf. Chapter 21) benefit
from this advantage and provide, in addition, scalable and efficient routing
mechanisms which can be used for object replication and load-balancing pur-
poses.

Reliability
It is important that a system designed for real-world applications is available
continuously and performs correctly and securely even in the case of individ-
ual failures. Centralized systems are highly vulnerable against total failures
or Denial-of-Service attacks which can basically make a system unusable.
Peer-to-Peer systems are by design more robust against such failures or at-
tacks. But at the same time they can suffer from the fact that those peers are
autonomous entities, which may not behave as intended by the designer of
the mechanism as mentioned earlier. A solution has to minimize the impact
and prevent or discourage such behavior.

Accountability
Making the services being traded among the peers accountable, is another
inevitable requirement for a market-managed Peer-to-Peer system. An ac-
counting or payment mechanism is required which provides the notion of a
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common currency that can represent the value of the individual services. This
may be a scalar value, which can be aggregated over time and thus represents
the current credit of a peer. Peer-to-Peer accounting systems are discussed
in detail in Chapter 32. One of the main challenges of an accounting system
is clearly to bind the accounting information to a real identity, thus making
re-entries of peers under a new identity costly and therefore unattractive.
Karma [608], PPay [636] or PeerMint [283] are potential systems that may
be used for this purpose. A similar mechanism is needed to keep track of
a trader’s reputation, considering its behavior in the past, such as cheat-
ing, freeriding, or running malicious attacks. There are trust mechanisms like
EigenTrust [334] which are able to aggregate such information in an efficient
way. The trust metric is needed to be able to exclude misbehaving peers from
the system.

Further desirable properties, such as privacy or anonymity, exist, which
may contradict accountability, as it is difficult to guarantee accountability and
anonymity at the same time. It depends on the dedicated target applications,
if a system has to comply with them.

29.2 Architecture

The previous section introduced the concept of service markets based on
Peer-to-Peer networks. It also stated the main requirements that a system
has to fulfill to enable such a market. This section describes the architecture
of such a system (cf. [240]). The architecture primarily consists of three mod-
els. The market model describes the roles of service providers and service
consumers in the market. The service usage model describes the different
ways of using services. The peer model describes the architecture of a single
peer. It is extended through the description of key mechanisms which have
to be implemented on every peer, in order to enable the Peer-to-Peer-based
service market.

29.2.1 Market Model

The classical market is a place where sellers and buyers meet to exchange
goods against payment, e.g., money. While in old times this market corre-
sponded to a closed physical location, nowadays the term is used in a much
broader sense, e.g., to describe a national or even the global market.

The goods traded in the market described here are services (cf. Chap-
ter 14). Thus, the sellers and buyers are service providers and service con-
sumers . However, participants in the market are not restricted to either pro-
vide or consume a service. Rather, they can take on any of these roles at any
point of time. This means, that they can provide a service to a second par-



496 29. Peer-to-Peer Market Management

ticipant and later use a service from a third participant or vice versa. They
can even do both at the same time, as shown in Figure 29.1.

Peer

Offer Service

Offer Payment

Peer

Peer
Peer

Peer

Peer

Peer
Peer

Fig. 29.1: The Market Model

The participants of the service market are peers of an underlying Peer-to-
Peer network, so the market covers the complete Peer-to-Peer network. When
properly implemented, such a Peer-to-Peer-based market offers low barriers
to entry to potential service providers as they do not have to spend a lot
of money on marketing first. Rather, Peer-to-Peer search mechanisms allow
consumers to easily find any service offering, not just the most visible ones.

As any market, this market shall lead to an equilibrium of supply and
demand. Especially, the competition between service providers shall lead to
the deployment of new services as well as low prices for existing services. In
order to achieve this, the market must give incentives for not overcharging
a service and for providing a proper Quality of Service (QoS). On the one
hand, the long-term development of the market provides some incentives by
itself. If the price of a service is considered to be too high noone will use it
and the provider will be forced to lower the price of the service. Similarly,
consumers are not likely to use the services of a provider who previously
provided them a low QoS. However, the basic market forces are not enough
if prices are to be created dynamically in accordance to the current market
situation. Neither do they prevent a provider from providing low QoS if the
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user base is large enough. Thus, additional incentives have to be provided
to stimulate a proper behavior in the market. E.g., auction mechanisms (cf.
Section 29.3.2) allow to create prices for services dynamically on short notice.
Reputation mechanisms allow users to judge the quality of service providers
and the services they offer, while Service Level Agreements (SLAs) allow to
specify the QoS and terms of service usage in a legally enforceable way.

29.2.2 Service Usage Model

The term service is defined as functionality which is offered by one peer to
other peers, and which can be accessed through input and output interfaces.
Services are described through service descriptions, which describe each ser-
vice’s functionality and interfaces, but also its non-functional characteristics
such as terms of usage, e.g., prices and methods of payment. Services in-
stances can be used by applications, which are programs running on peers
which are not provided as services themselves and offer user interfaces. In
addition, service instances can be used by other service instances. As men-
tioned earlier, examples of services include the provision of basic resources
like computing power and storage space, as well as higher-level functionality,
e.g., the provision of weather forecasts or booking services.

The service usage model shown in Figure 29.2 shows the various uses of
services. The most straightforward case is a peer providing a service instance
to another peer, where it is used by an application. Such a case is depicted
in Figure 29.2 between Peer 2 and Peer 4. Naturally, applications can use
several services at the same time, as is done by the application running on
Peer 2. Similarily, the same service can be provided to several users at the
same time (Peer 4 providing instances of the same service to Peer 2 and Peer
3). Finally, services can also be used by other services. In Figure 29.2 a service
running on Peer 3 which is being provided to Peer 1 is using a local service as
well as a service provided by Peer 4. The details of this service composition
are hidden from the application running on Peer 1 which only sees the single
service it uses.

29.2.3 Peer Model

Having laid the foundation for a Peer-to-Peer system through its market and
service usage models, it is now essential to derive the internal structure of a
peer. To ensure a sufficient degree of modularity of the architecture, a layered
structure is used for the peer model. The lowest layer are the resources that
are locally available at a certain peer node. On top of this layer services are
executed which can draw on local resources, such as storage space, computing
power or content. They can also access remote resources through other ser-
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Fig. 29.2: The Service Usage Model

vices. Finally, in parallel to the services layer, core functionality is required to
uphold the Peer-to-Peer network and facilitate the smooth operation and in-
teraction of services. Figure 29.3 illustrates the abstract architecture of each
peer participating in the market.
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Fig. 29.3: The Peer Model

The core functionality layer on each peer node provides the functional-
ity needed to uphold the peer network services. It is in charge of some basic
local functionality like local resource management as well as distributed func-
tionality and protocols like service discovery or reputation. In particular, it
includes all functionality needed to enable pricing, metering, and charging
and, hence, to support market management of the system. The core func-
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tionality layer on each peer accesses and cooperates with the corresponding
layers on remote peers but does not access remote or local services.

29.2.4 Key Elements and Mechanisms

The models presented above determine the general structure of a service-
oriented market based on a Peer-to-Peer network. Still, the core functionality
within each peer, which is responsible for enabling the complete architecture,
must be defined in detail and its mechanisms must be identified. The core
functionality must handle the management and interaction of services. There-
fore, typical business processes for the management and interaction of busi-
nesses in a common market provide a reasonable structure for the definition
of the core functionality’s mechanisms. Table 29.1 describes this structure.
Business processes on the left hand side are translated into necessary core
functionality mechanisms on the right hand side. While these mechanisms
alone are not able to carry out the corresponding business processes in a
completely autonomous manner, they are important tools supporting users
and user agents. Section 29.3.1 describes how the identified mechanisms work
together within a Peer-to-Peer middleware, in order to enable the architec-
ture.

Business Processes Required Core Functionality Mechanisms

Strategy development

Product management Offline task of the service provider

Human resource management

Budgeting and controlling Resource management and QoS control

Marketing and selling Service description, discovery,

pricing and negotiation

Contracting Service level agreements

Order fulfillment Service execution, accounting, charging

Business development Service composition uses existing

core functionality

External security mechanisms Security mechanisms included

Table 29.1: Mapping business processes to core functionality

While strategy development, product management, and human resource
management are without any doubt highly important processes for any busi-
ness, they mainly occur in the offline world, in a Peer-to-Peer services envi-
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ronment as well as in a client-server one. It is the service provider’s task to
think of a successful strategy, draft accurate business plans, employ, train,
and retain the right people and develop services accordingly. Hence, the ar-
chitecture does not need to take these processes into consideration.

Budgeting and controlling, the optimum allocation of resources and the
controlling thereof can be translated into local resource management and QoS
control.

Marketing, guiding a customer towards a product, is mapped onto service
description and discovery, certainly one of the most important mechanisms
within the core functionality. Sales, selling the product, then corresponds to
service negotiation.

In the normal business world the creation of contracts would be the task of
a legal department. In the core functionality the contracts are represented as
electronic Service Level Agreements (SLAs), which can be negotiated by the
core functionality itself, by applications acting as user agents, or by human
users themselves.

After a contract has been finalised, the provider needs to fulfill it, includ-
ing the capturing of all accounting and charging information for the invoicing
and payment steps.

Business development, the cutting of major deals and cooperations to
augment the business, corresponds to service composition, the cooperation
of several services to deliver a joint result as described in the service usage
model. However, this task is not part of the core functionality, but merely uses
important parts of it, e.g., service discovery, service negotiation and SLAs.

Finally, while offline businesses can leave security tasks to a high degree
to governmental authorities (police, courts), security aspects are crucial for a
Peer-to-Peer services architecture, e.g., identification, authentication, autho-
rization, encryption/decryption mechanisms.

29.3 Case Studies

The last two sections introduced the concept of a Peer-to-Peer based service
market and a system architecture to enable such a market. Still, this has
merely given an overview over the whole topic. Therefore, the purpose of this
section is to give a more detailed view on two sub topics to serve as examples
of the involved complexity and problems. First, the design of a Peer-to-Peer
middleware is introduced. Its purpose is to implement the key mechanisms
described in the previous sections, thus enabling the architecture, which in
turn enables the service market. This middleware has been developed and
implemented within the EU-funded MMAPPS project [591] where it has been
successfully used as a basis for various Peer-to-Peer-applications. Second,
one key mechanism, namely pricing, is presented in even more detail. Its
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specific implementation uses the overlay network Pastry to enable auctions
for services in a completely decentralized manner.

29.3.1 Peer-to-Peer Middleware

Different implementations of core functionality described in Section 29.2.3
can exist on different platforms and access the local resources through plat-
form dependent interfaces. However, all implementations follow a common
standard of protocols to communicate with each other and offer a uniform
interface to applications in the form of APIs (Application Programmers In-
terfaces). Thus, platform dependent details are hidden from the application
and its programmers. Together, the core functionalities of all peers act as a
middleware (cf. [69]), which makes it possible to treat the collection of all
peers as a single service-oriented Peer-to-Peer network.

Only the API of the local core functionality implementation is visible to a
service or application developer and thus the distributed nature of the middle-
ware is hidden from him. Therefore, in this section the single implementation
of the core functionality is also referred to as ’middleware’. A modular ap-
proach has been chosen for designing this middleware. This approach has the
following benefits:

– Details are hidden from modules which are not concerned by them.
– Implementors don’t have to consider the complexity of the complete mid-

dleware but only the less complex single modules.
– It facilitates maintenance, especially plugging in new modules.

The Peer-to-Peer middleware consists of six modules as shown in Figure
29.4. These modules belong to three different groups. The central group are
the Service Support modules, namely the Service Negotiation and Service
Management module. These modules are responsible for managing service
related information, i.e., service descriptions and SLAs, and for controlling
service execution. In order to enable the effects of market forces, additional
functionality is provided by Market Management modules, namely Pricing
to determine the price of services in the market, and Accounting and Charg-
ing (A&C) to collect information about service usage and calculate charges
based on this information. Finally, the Enabling modules provide basic func-
tionalities needed to enable the Peer-to-Peer network and offer support to
the other modules. The Search module is used to search and find services in
the Peer-to-Peer network, and the Security module provides encryption and
identity management to all other modules, especially access control to the
Service Negotiation module.

In Figure 29.4 each arrow represents a data flow. Dotted arrows denote
remote interfaces, i.e., a module of one peer communicating with a module of
the same type on another peer. When a new service is deployed, it sends its
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Fig. 29.4: The Middleware Design

description to the local Service Management module via interface A. From
there the service description is forwarded to the Search module via interface
B. Thus, whenever a remote peer searches a service via the remote interface
1, the Search module can compare the requirements stated in the received
service description to the service descriptions it has stored. If this comparison
leads to a match, the remote peer can decide to negotiate the terms of service
usage via the remote interface 2. In this case, the Service Negotiation module
will first let the Security module check the remote peer’s access rights. The
results of this check are returned via interface C. In order to perform this
check, i.e., to authenticate the remote peer, the Security module may contact
other peers via the remote interface 3. The Pricing module calculates an
appropriate price for the service requested and sends it to the Negotiation
module via interface D. In order to do so, it can retrieve information about
past peer behavior from the A&C module via interface E. Furthermore, it
can be configured by the Service Management module via interface L, e.g.,
to support a new service or to adapt to a change in the service market.
In order to make such decisions, the Service Management module can also
retrieve information about the past from the A&C module via interface K.
If a service negotiation is successful, the negotiation module uses interface G
to send the final SLA to the Service Management module to start the service
delivery.
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After informing the A&C module about the forthcoming service delivery
via interface I, the Service Management module instantiates, configures and
starts a new service instance through interface I. During the service delivery,
the service instance reports its status by sending events to the A&C module
via interface J. The A&C module compares these events against the SLA and
informs the Service Management module via interface K when necessary, e.g.,
in the case of an SLA breach or when the service instance has finished. The
Service Management module controls the service delivery via interface I, e.g.,
stops it in the case of an SLA breach. For special purposes the A&C module
can contact remote A&C modules, e.g., to receive an immediate payment
through tokens (cf. Chapter 32).

The middleware design has been described in more detail in [239] and
[241]. A prototype has been implemented within the MMAPPS project [591]
based on the JXTA framework [255]. The prototype serves as a proof of
concept, showing the middleware enables the architecture presented in Sec-
tion 29.2. It specifically fulfills the functional requirements of service support
and market-based management, as well as the non-functional requirements
of efficiency and accounting (cf. Section 29.1). The other requirements of
decentralisation, scalability and reliability depend on the underlying Peer-to-
Peer framework, JXTA. The middleware does not impede these requirements,
since it does not introduce centralized entities nor unscalable protocols into
the Peer-to-Peer environment.

29.3.2 PeerMart: Peer-to-Peer Auctions

Online auctions like eBay [183] are becoming increasingly popular market-
places for trading any kind of services over the Internet. Auction-based mar-
kets benefit from the flexibility to adjust prices dynamically and enable to
achieve efficient supply allocations (for an overview on auctions cf. [234]).
However, those markets usually rely on a central component, i.e. the auc-
tioneer which collects price offers of all participants and performs matches.

PeerMart, which is the second case study presented in this chapter, com-
bines the advantages of an economically efficient auction mechanism with
the scalability and robustness of Peer-to-Peer networks. It is shown, how
PeerMart implements a variant of the Double Auction (DA) on top of a
Peer-to-Peer overlay network, as an efficient pricing mechanism for Peer-to-
Peer services. Other than in a single-sided auction, like the English Auction
or the Dutch Auction, in the Double Auction both providers and consumers
can offer prices. The basic idea of PeerMart is to distribute the broker load
of an otherwise centralized auctioneer onto clusters of peers, each being re-
sponsible for brokering a certain number of services. PeerMart differs from
existing work, such as [165] and [460], since it applies a structured rather
than a random Peer-to-Peer overlay network, which enables deterministic lo-
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cation of brokers and is more efficient and scalable. It resolves the chicken
and egg problem between providing incentives for services and being itself
dependent on peers’ functionality by introducing redundancy. Under the as-
sumption, that a certain amount of peers behave correctly, PeerMart is thus
able to provide a high reliability even in the presence of malicious or un-
reliable peers. Key design aspects of PeerMart are presented briefly in the
following.

Basic Design
The basic pricing mechanism in PeerMart works as follows: Providers and
consumers which are interested in trading a particular service, have to contact
a responsible broker from which they can request the current price. Brokers
(realized by clusters of peers) answer such requests with two prices:

– the current bid price, i.e. the current highest buy price offered by a con-
sumer

– the current ask price, i.e. the current lowest sell price offered by a provider

Based on this information, consumers and providers can then send their
own price offers (bids or asks) to the brokers. Continuously, brokers run the
following matching strategy:

– Upon every price offer received from a peer, there is no match if the offer
is lower (higher) than the current ask price (bid price). However, the offer
may be stored in a table for later use.

– Otherwise, if there is a match, the offer will be forwarded to the peer that
made the highest bid (lowest ask). The resulting price for the service is set
to the mean price between the two matching price offers.

To implement this mechanism in a decentralized manner, PeerMart uses
Pastry [527], a structured Peer-to-Peer overlay infrastructure. The overlay
is applied for peers joining and leaving the system, and to find other peers
(brokers) in the network. Every peer is given a unique 128-bit node identifier
(nodeId), which can be calculated from a peer’s IP address or public key
using a secure hash function. In PeerMart it is assumed that every peer has
a public/private key pair, which is also used to sign and verify messages.
Furthermore, it is assumed that each service has a unique service identifier
(serviceId). For content services this can be achieved, e.g., by calculating the
hash value of the content data. The serviceId needs to have at least the same
length as the nodeId, to be able to map the services onto the address space
of the underlying network. The only varying service parameter considered at
this stage is the price.

A set of n peers (called broker set) which are numerically closest to the
serviceId are responsible to act as brokers for that service. Each peer in a
broker set keeps an auction table for the service to store m/2 highest bids and
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m/2 lowest offers (m can be adjusted depending on the service popularity).
As it is assumed that multiple services are available, multiple broker sets will
exist concurrently, each being responsible for a dedicated service. A broker
set corresponds to a leaf set in Pastry. It consists of n/2 numerically closest
larger nodeIds and n/2 numerically closest smaller nodeIds for a particular
serviceId.

When a new service is offered for the first time, the corresponding root
node (the node numerically closest to the serviceId) has to notify the other
peers in its leaf set about the new service. If the root node fails to do that
(e.g., because it is a malicious node), the following fallback method can be
applied. Recursively, peers on the path to the serviceId can be contacted,
until the next closest node in the leaf set is found. This peer then takes over
the responsibility of the root node and notifies the other peers. Furthermore,
every peer keeps a list of nodeIds of other peers which are in the same broker
set for a particular service. This list is updated regularly based on changes
in the leaf set which are notified to a PeerMart instance by its local Pastry
node.

An example for the double auction mechanism in PeerMart is given in
Figure 29.5. Two providers (P1, P2) and a consumer (C1) are interested in
trading a particular service (serviceId x). Pastry routes their requests to the
corresponding root node which returns the list of peers in the broker set.
If the root node fails to return the broker set, the same fallback method as
described above can be applied. Broker peers can now be contacted directly
to get the current bid or ask price and to notify new price offers. Apart from
the price, every offer contains a sequence number and a valid time and is
signed with the peer’s private key. The valid time cannot be larger than a
maximum time t. For every peer only the newest offer is kept. After an offer
becomes invalid it will be removed from the table.

Concurrently, other broker sets exist which are responsible for other ser-
vices. Note that a peer can act as a provider, a consumer, and as a broker for
several services at the same time. Note also, that only the first request (to
identify the broker set for a particular service) is routed through the overlay
network. All subsequent messages (namely price offers) are sent directly over
the underlying IP network.

Broker Set Synchronization
As a countermeasure against faulty or malicious peers, initial price requests
and subsequent price offers are always sent to f randomly selected broker
peers in parallel (1 <= f <= n). f is a design parameter that has to be
set very carefully with respect to the ratio of malicious peers, desired reli-
ability, and message overhead, for which there is always a trade-off. Broker
peers receiving an offer either reject it or store it in their tables according
to the strategy described above. Every broker peer forwards pairs of locally
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Fig. 29.5: Double Auction in PeerMart.

matching offers to all other peers in the broker set. Based on the signature
of an offer, brokers can verify its validity. In addition to the offers matching
locally, a broker also forwards the current highest bid and lowest ask, if it
has not already been sent earlier. Thus, only potential candidates for a match
are synchronized among peers in a broker set. Based on the offers received
from other brokers the current bid price (ask price) can be determined and
a globally valid matching can be performed by every broker. Asks and bids
matching globally are finally forwarded to the corresponding peers by those
broker peers which initially received them.

In this redundant approach message loss is implicitly considered. When a
message is lost accidentally between two brokers, it appears as if one of the
brokers would act maliciously. However, so far timing issues have not been
dealt with, and it was assumed that all messages are sent without any delay.
In PeerMart a slotted time is used for every individual auction to tackle the
problem of message delays. Time slots have a fixed duration which has to be
longer than the maximum expected round trip time between any two peers.
Every time slot has a sequence number starting at zero when a service is
traded for the first time. Price offers from providers (consumers) are collected
continuously. At the end of every even time slot, the potential candidates
for a match are forwarded to the other brokers and arrive there during an
odd time slot. Candidates arriving during even time slots are either delayed
or dropped, depending on the sequence number. At the end of every odd
time slot, the final matches are performed and notified to the corresponding
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peers. Since after this synchronization process all broker peers have the same
information needed to match offers, no matching conflict can occur. In the
rare case that more than one peers quoted exactly the same price within the
same time slot, a broker peer gives priority to the one that came in first.
After synchronization, the price offer which was prioritized by most brokers
is selected.

A prototype of PeerMart has been implemented and is available as open
source software for testing purposes [481]. More details about the imple-
mentation and results obtained from various experiments can be found in
[282]. These results show that PeerMart provides a reliable, attack-resistant
Peer-to-Peer pricing mechanism at a low overhead of messages and necessary
storage space and scales well for any number of peers trading services. The
mechanism is completely decentralized and suitable for trading any types of
services. Hence, it fulfills all the requirements stated in Section 29.1.

29.4 Conclusion and Outlook

In this chapter, the economic and technical aspects of a market-managed
Peer-to-Peer system were described in detail. A comprehensive list of require-
ments for such a system was given, and a generic architecture was outlined
containing key components and mechanisms of a Peer-to-Peer-based market-
place. Finally, two case studies were presented, giving a more detailed view on
two individual aspects of the overall approach. The first case study described
modules of a Peer-to-Peer middleware which is centered around core service
negotiation and management functionality. The second case study presented
the design of an auction-based pricing mechanisms based on a Peer-to-Peer
overlay network. Both studies covered specific parts of the proposed archi-
tecture.

Further important aspects exist and have been discussed in this chapter,
such as accounting and reputation, which have not been covered in detail.
Accounting is described separately in the next chapter.



30. A Peer-to-Peer Framework for Electronic
Markets

Michael Conrad, Jochen Dinger, Hannes Hartenstein, Marcus Schöller,
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30.1 Markets as Peer-to-Peer Systems

Markets — in their ideal form — naturally represent Peer-to-Peer (P2P) sys-
tems: market participants can be both client and server when exchanging
offers, general messages, or goods. They can directly address each other, and
interact in a decentralized and autonomous fashion. Most market implemen-
tations in history, however, were far from this ideal form.

As the construction and application of electronic markets began with
the emerging Internet, the prevailing paradigm for network communication
was client-server. To find a coherent implementation, market designers at
that time fell back on this most self-evident network topology. The design
of electronic marketplaces is still influenced by proven traditional implemen-
tations. Stock exchanges, for example, that were among the driving forces
for electronic markets are one such archetype. They classically fulfill the role
of an intermediary by reducing the number of communication links between
participants and providing a common contact point for aggregated market
information. So, by acting as client-server systems they reduce transaction
costs significantly.

And still, at their very core, some non-electronic stock exchanges show
— and always have shown — the Peer-to-Peer paradigm, as on the phys-
ical trading floor traders (peers) interact directly when exchanging stocks.
They exhibit this trade paradigm that, in the course of the development of
centralized market software systems, has been losing ground.

With the liberalization of markets, the formerly ‘dependent’ market par-
ticipants are now regaining autonomy in their market decisions. Harmoniza-
tion of markets unifies different groups of participants and thereby increases
the number of those that can interact with each other. This constitutes the
main theme of this chapter: when a market per se is a Peer-to-Peer system
and participants regain autonomy, how can we design an appropriate archi-
tecture for electronic markets that comprehensively implements the Peer-to-
Peer paradigm? While investigating this question, we particularly focus on
the support of spontaneity and interoperability by means of self-organization
in liberalized and harmonized markets.

R. Steinmetz and K. Wehrle (Eds.): P2P Systems and Applications, LNCS 3485, pp. 509-525, 2005.
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Fig. 30.1: The Peer-to-Peer paradigm at various levels of a system: the traditional
architectures as well as our view for electronic markets.

To systematically analyze Peer-to-Peer systems, the Peer-to-Peer para-
digm can be seen at three different levels, according to [545]: community, ap-
plication, and infrastructure. As mentioned above, a market can be regarded
as a Peer-to-Peer community at the top level. The remaining challenge is
whether, and if so, how the application and infrastructure levels can be de-
veloped in compliance with the Peer-to-Peer paradigm. After presenting our
approach, we also discuss its benefits and drawbacks.

30.1.1 Service and Distribution Basics

We propose a Peer-to-Peer architecture for electronic markets where all three
levels are based on the Peer-to-Peer paradigm (Figure 30.1). A market partic-
ipant is a peer not only by taking part in the marketplace and its mechanisms,
but also by contributing to these mechanisms. For example, peer nodes may
provide storage for storing intentions (statements of offers) and processing
power for discovery requests. To design such an integrated Peer-to-Peer con-
cept for electronic markets, the structure of the marketplace and the market
mechanisms is translated into a distributed service-oriented approach.

Service orientation seems to be a suitable approach because of the clear
functional separation. The functional separation facilitates extensions of mar-
ket mechanisms and reusing existing ones. In our view services can be pro-
vided by a single peer or by a set of peers as outlined in Section 30.2.2. For
different applications the common services can be reused with additional ser-
vices building on them. In the following, we call these common services ‘basic
services’. The ones tailored to our market application are called ‘application
services’.
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As basic services we have identified:

– document service that acts as repository for intentions
– authentication service to authenticate users and intentions
– protocol service that records the various steps of transactions

Examples of application services are:

– optimization service that determines the best offer (according to some spec-
ified criteria) out of a set of intentions

– legal mediator that checks whether a potential contract adheres to the legal
policies of the market participant.

The various basic and application services (application level) have to be
matched with appropriate overlay network techniques (infrastructure level)
for providing the required ‘quality of service’. Quality of service requirements
in this context can be characterized, for example, by robustness of a service,
search efficiency or accuracy, and depend on the corresponding service.

It is thus not only the fact that on the community level a market repre-
sents a Peer-to-Peer system that commends a Peer-to-Peer-implementation
of the application and infrastructure level. For us, the rationale is as follows:
a perfect market would offer total information to every participant and would
show no communication or exchange delays, i.e. no transaction costs. How-
ever, it is quite obvious that any centralized system will impose a lack of
scalability and flexibility, barriers to the market, e.g., via transaction costs
and a single point of failure. Compared to centralized systems, Peer-to-Peer
provides substantial advantages with the main general benefit of scalability.
The seamless integration of nodes to the network enables, firstly, the ade-
quate increase of storage or computation power, secondly, the addition of
new market mechanisms on the application level, and thirdly, the integration
of whole market segments in the course of harmonization. It also allows for
the combination of already existing but idly distributed resources to coop-
erate in a Peer-to-Peer system, thereby immensely reducing the investment
costs compared to setting up new resources. A distributed and self-organizing
system can also reduce market barriers and transaction costs, as well as en-
courage spontaneity with respect to market participation. In addition, such
an integrated Peer-to-Peer design can improve robustness.

Clearly, the benefits are matched against various challenges of a dis-
tributed design. First of all, there is the question of how to find intentions
and services. Therefore one needs search methods as well as standardized
ways to express intentions. Thus, ontologies come into play. Secondly, secure
and reliable operation of market transactions has to be ensured without a
centralized trusted third party.



512 30. A Peer-to-Peer Framework for Electronic Markets

30.1.2 SESAM Project Structure

The proposed architecture has been developed within the framework of the
SESAM project of the priority research program ‘Internet Economy’ funded
by the German Ministry of Education and Research (BMBF). The complete
project covers three scenarios: multi-utility markets, virtual power plants, and
wearable services. The latter two scenarios are of central interest regarding
the Peer-to-Peer paradigm. In the virtual power plant scenario, we assume
that many small devices producing electricity are deployed at locations such
as houses, small companies, and public buildings. The owners of these power
plants want to maximize their profit by selling the energy to the bidder with
the highest offer. The purchaser on the other hand wants to buy energy as
cheap as possible. From this starting point many interesting questions arise:
How does a purchaser find the cheapest offer? Can the purchaser and seller
enter the contract without personal adhesion? How are mini power plants
controlled to maximize profit? What to do if a mini power plant breaks
down? How is accounting accomplished?

These questions lead to several subprojects:

Electronic Contracting – Business processes are subject to legal rules. In or-
der to achieve transparency and seamlessness with high spontaneity in
the markets, the harmonization of the law must be promoted and signing
of contracts must be automated in the network.

Spontaneity, Transparency and Incentives. – The considered scenarios re-
quire smooth and comprehensible interaction of various connected com-
ponents and services. Transparency and incentives for the actors involved
are preconditions for the functioning of such self-organizing markets.

Optimization, Control and Business Models – Due to their inherent decen-
tralized nature and dynamics, self-organizing and spontaneous markets
require specially adapted business models as well as completely new de-
centralized optimization and control mechanisms.

Robustness and Security – One important requirement for the commercial
success of the applications is the security and robustness of all partici-
pating components and processes against active and passive breakdowns
and attacks of ‘normal’ activity.

The results of the virtual power plant scenario get carried onto the field
of so-called wearable services. New markets could emerge through communi-
cation among small devices like PDAs, mobile phones, and sensors in clothes
or worn directly on the body.

To build an integrated Peer-to-Peer system for electronic markets as out-
lined above, an architecture is needed that brings together service orientation
and overlay networks. In particular, the provision of standardized interfaces
to a pool of overlay networking techniques is needed. In this chapter we will
describe our service-oriented Peer-to-Peer architecture (Section 30.2) and dis-
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cuss various architectural considerations concerning security/dependability
issues (Section 30.3).

30.2 A Service-Oriented Peer-to-Peer Architecture

As mentioned in the previous section, markets and market mechanisms should
be modeled using services, where a service represents a functional unit, and in
which services can be loosely coupled through service composition. Examples
are a document service for storing intentions or an optimization service that
analyzes various offers and determines an optimal one. A service-oriented
approach helps to easily create new applications based on already available
services, thus, reuse, extensibility, and spontaneity are facilitated.

Since we argued that services should be distributed, in order to efficiently
use idle resources (e.g., to reduce transaction costs or market barriers), a ser-
vice will not in general reside on a single server but will be supported by peers
of an overlay network. Therefore, we introduce the notion of a ServiceNet as
an overlay network that provides a specific service. Clearly, service discovery
is a required first service to locate other services or, entry points to services.
Services themselves will be operated by collaboration between peer nodes as
it is the case for the document service.

The document service represents a decentralized document pool where
participants can insert and search for documents. In our scenarios this ser-
vice is used, e.g., for offering electricity. This service provides three basic
functions: insert, search and, revoke. The search functions can be parameter-
ized using a query language. This language allows expressing a keyword-based
search. Revoking documents would be the same as deleting them in the event
that we could guarantee the deletion. E.g., in unstructured Peer-to-Peer net-
works where the document locations are ‘unknown’ the deletion can not be
guaranteed. With this document service, organized as a ServiceNet, each par-
ticipant provides some resources for storage of documents and for processing
of queries or revoke operations.

When a set of intentions matching a query is found, the market partic-
ipant (or his agent) might submit this set to an optimization service. This
service estimates the best offer out of the given set based on the energy con-
sumption profile of the participant and prices implied in the offers. Here, the
user can benefit from a distributed service discovery mechanism (to find an
appropriate optimization service) but also from the Peer-to-Peer approach in
case the optimization is shared by various peers.

The document and optimization service were selected to serve as represen-
tative examples. Other services could focus on contracting and matching. But
even with the two examples mentioned above, it can be seen that ServiceNets
for various services will require different forms of Peer-to-Peer network or-
ganization. For example, the paper [52] outlines that keyword-based queries
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are not trivially carried out by a Distributed Hash Table (DHT) based Peer-
to-Peer network. Therefore, we need an architecture where service instances
on each peer easily can be attached to a specific Peer-to-Peer networking
approach, i.e., we need an ‘overlay API’ such as the one for DHT-based
methods [148].

Following the above reasoning, we will now first make a quick digression
to traditional service-oriented architecture. Then, we will discuss the concept
of a ServiceNet in more detail and outline the peer node architecture that
brings together service orientation and overlay networks.

30.2.1 Service Orientation

Service-oriented architectures (SOA) utilize services as basic elements to re-
alize applications [473]. Services are characterized by:

– Service Description. This description includes, in particular, the function-
ality that is provided by a service. All functionality of a service is provided
through interfaces. A well-known interface description language is neces-
sary for such interface descriptions.

– Autonomy. Services are autonomous entities that can be considered a black-
boxes, i.e., the concrete implementation cannot be seen from the outside
and only the interfaces are visible.

Services that are composed together to an application or system are
loosely coupled. Thus, a service can be exchanged without influencing the
system itself. The only requirement is that the functionality and interfaces
are the same. This is in contrast to distributed object oriented approaches,
like CORBA [133], that lead to tight coupling.

Furthermore, traditional service-oriented architectures follow the Publish-
Find-Bind paradigm. Services are published by the service provider in a ser-
vice registry. Service consumers can search in the registry for services and,
finally bind a service from a provider.

Web Services are an option to implement a service-oriented architecture.
Therefore they propose three main specifications following the Publish-Find-
Bind paradigm.

– SOAP [265] is a protocol for exchanging structured information based on
XML. It is independent from the underlying transport protocol. So-called
bindings are employed to use SOAP over a specific transport protocol.

– WSDL, the Web Services Description Language [115] is used to define
interfaces. It is also based on XML and makes it possible to describe a
service as a so-called endpoint.

– UDDI, the Universal Description Discovery and Integration [454] defines an
interface for a service registry. In such a registry, developers can publish and
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find services during the design of an application. Applications themselves
can use the registry to find services with suitable interfaces at runtime.

These specifications supplement each other, but can also be used on their own.
Furthermore, those specifications can be used to realize platform-independent
applications, which do not rely upon specific programming languages. Web
Services implementations exist for all major platforms and programming lan-
guages.

As identified in Section 30.1, reuse and extensibility in content and mech-
anism are essential. Service-oriented architectures take these two key points
into account. New applications can be rapidly created out of existing services
by combining them. New services can easily be deployed and adopted because
of the well defined interfaces. Furthermore, the loose coupling is similar to
typical Peer-to-Peer systems where peers are loosely coupled. Web Services
can be used as building blocks of our architecture because of their clearly
defined interface language and message format.

However, these service-oriented architectures emerged from the client-
server approach and therefore do not take Peer-to-Peer mechanisms and self-
organization into account. For example, UDDI defines interfaces for a service
registry and is therefore not centralized, but current implementations are
centralized and do not benefit from the Peer-to-Peer approach. In addition,
content-based addressing as a key principle of Peer-to-Peer network organi-
zation is not taken into account. Current service-oriented architectures focus
on addressing systems without considering the content.

30.2.2 ServiceNets

When services are offered through the collaboration of multiple participants,
a ServiceNet is created. Peer-to-Peer file sharing and the document service
mentioned before are examples of such ServiceNets. From a functional point
of view, how many functions a ServiceNet offers is independent of the num-
ber of peers forming the ServiceNet. But the non-functional aspects, such
as robustness and available content, might differ drastically with respect to
the degree of distribution. These non-functional issues, which can be seen
as quality or guarantees, also characterize a service, and might provide Ser-
viceNets with the competitive edge over a centralized approach as indicated
in Section 1.

A ServiceNet can be used from participating peers as well as from ‘ex-
ternal peers’ that do not participate in the ServiceNet. Mobile devices could,
for example, be such service consumers where active participation within a
ServiceNet is perhaps not reasonable because of very temporary availability.

Each ServiceNet uses an underlying Peer-to-Peer network that provides
self-organizing mechanisms for network organization. Hence, there is a one-to-
one mapping between a ServiceNet and a Peer-to-Peer network. For example,
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Fig. 30.2: ServiceNet example

an identity management service, which offers functions that are all based on
a unique key, could use a DHT-based Peer-to-Peer network. On the other
hand, the document service implements a keyword search for which a DHT-
based Peer-to-Peer network may not be suitable. For a document service, an
unstructured Peer-to-Peer network, like GIA [113], might be more suitable.

Using one Peer-to-Peer network for one ServiceNet has the advantage
that the characteristics of the Peer-to-Peer network can be better considered.
Clearly, to assist the process of service creation, a ‘catalogue’ is needed so
that one can find the suitable Peer-to-Peer network for a specific service and
ServiceNet, respectively, based on the required functionality or constraints.
For example, service developers and providers must characterize their service
by answering questions such as ‘Is there a unique key for data elements?’ etc.
Afterwards they should get a recommendation for a Peer-to-Peer network
their service should use. Papers like [346] provide an aid in building such
a catalogue. Currently we are developing a model that gives us a basis for
describing the characteristics and behavior of Peer-to-Peer networks. This
model will then be used for simulation and evaluation.

A peer in a ServiceNet (Figure 30.2) is characterized by:

– ServiceNet Class. A ServiceNet Class (SC) is a unique identifier for the type
of service which the ServiceNet offers. Thereby all peers of a ServiceNet
offer the same kind of interface and functionality. A document service is
one kind of service class.
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– ServiceNet Instance. A ServiceNet Instance (SI) is a unique identifier of
an instantiated ServiceNet Class. If there are two Document Services for
example, they are both instantiated from the same Class, but the instances
are independent of each other. E.g., if a ServiceNet uses Chord [575] as the
underlying Peer-to-Peer network, one ServiceNet instance also corresponds
to one Chord ring.

– Overlay Information. All ‘overlay-specific information’ can be summarized
herein, such as Peer-to-Peer organization form and so on. A simple example
could appear as follows: Chord://3456. Here the first part identifies the
Peer-to-Peer network form and the second part the identifier that the node
has in a specific Peer-to-Peer network.

– Communication Address. The Communication Address corresponds to the
one that a peer uses in the communication network. A communication
network could be an IP network or a Bluetooth network, for example.

– Meta Information. Meta-Information summarizes all additional informa-
tion about a ServiceNet. This could be class-depended information or
instance-depended information. An example: ‘This ServiceNet was founded
by UKA’.

Because there can be various ServiceNets, service discovery is needed.
Service discovery offers publishing and searching functions. Therefore it has
the same function as the service registry in service-oriented architectures.
If we think of extensibility regarding mechanisms, service discovery is espe-
cially necessary for finding and publishing new services. In contrast to a lot
of existing service registries, our service discovery is decentralized, i.e., the
discovery itself is provided by a ServiceNet.

30.2.3 Peer Architecture

In this section we will outline our peer architecture which integrates the
principles mentioned above. This platform offers a basis for current and fu-
ture services for electronic markets. The architecture of a peer is depicted in
Figure 30.3. This architecture can be divided into the following parts:

– Communication Layer. This layer provides an abstraction from a concrete
communication network like networks based on IPv6. This layer gives the
layer above the possibility to send and receive messages.

– Overlay Layer. The overlay layer makes various overlay techniques avail-
able. Chord and Pastry would be examples for DHT-based Peer-to-Peer
networks and GIA could be an example for an unstructured network. This
layer knows the appropriate algorithms and is responsible for initializing
procedures. For example, when a peer wants to join a ServiceNet, this layer
handles the initializing procedure like building a ‘finger table’ [575].

– SOAP-Processor. The SOAP-Processor translates programming language
objects into corresponding SOAP messages. These messages will be ex-



518 30. A Peer-to-Peer Framework for Electronic Markets

Service Layer

S
ervice -

D
isco

very, R
eg

istry
M

an
ag

em
en

t

Overlay Layer

Communication Layer

S
u

p
p

o
rtin

g
 S

ervices

Stub Stub Stub

Chord …GIA

…IPv6

System Access Layer

SOAP-Processor

Service Consumer/Provider

Doc Auth …

Fig. 30.3: Peer Architecture

changed between peers. These messages are used because of their indepen-
dence from specific transport protocols that are used in the communication
layer, and programming languages that are used for implementing the ser-
vices.

– Service Consumer/Provider. This part summarizes all service consumers
and providers. The connection between the underlying SOAP-Processor is
handled through stubs that can be generated out of the WSDL description
of a service. In this part all existing and future services will appear.

– Service Management. The Service Management includes all functions that
are necessary to find, publish and bind services. Therefore, the Service
Management makes use of the ServiceNet called service discovery, which
was mentioned in the previous section. If a service is bound, the manage-
ment has to inform the overlay layer so that a proper initialization can
take place.

– Supporting Services. These are additional services that support the service
developer by simplifying recurring tasks. For example, supporting services
can support the handling of transactions. This would involve session han-
dling and possibly calling roll-back functions, and compensations handlers,
etc. In such cases, existing specifications like WS-AtomicTransaction [377]
can be used.
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30.3 Security, Robustness, and Privacy Challenges

Challenges with respect to security, robustness, and privacy can again be
expressed in terms of community, application, and/or infrastructure require-
ments. Needs of the higher layers can be translated into infrastructure re-
quirements while lower layer characteristics influence the security, robustness
and privacy of the whole system. Conflicts between ease-of-use, security, ro-
bustness and market requirements have to be resolved: our project demands
an open system that encourages potential users to participate in the elec-
tronic market. On the other hand, it is also a requirement that we are able to
conclude a legally binding contract. Therefore, contracts have to be traceable,
such that they can be retraced by a judge.

Moreover, natural persons and companies alike want to control the disclo-
sure of information. There are differences between the US approach to privacy
regarding personally identifiable information and the EU approach to data
protection. According to [209], the US law is driven by ‘the right to be alone’
and the European law by the ‘right of informational self-determination’.
Hence in the US the main concern is to protect personal information against
unauthorized usage. Besides that, (natural) persons in Europe have the right
to determine what happens with their personally identifiable information. For
example, they can cause that their email address is deleted within 30 days.
These issues have to be considered in the system design.

Thus, security, robustness, and privacy can all be considered as cross-
layer issues and the proper placements of respective functionalities on the
various layers as well as their appropriate interactions are a key to success.
In the following we first present a threat analysis in a top-down fashion.
Afterwards we list technical challenges that arise primarily from following
the Peer-to-Peer paradigm on the ‘infrastructure’ and ‘application’ layers.
We then present three of these issues — persistent signatures, privacy aware
data handling, and trust models — in greater detail.

30.3.1 Attack Classification/Threat Analysis

Following the classification of [458] we can differentiate between profitable
attacks and ‘merely’ malicious ones. Profitable attacks take direct advantage
of the attack, e.g., a participant can try to modify the search algorithms
such that his offers always are found and hence the offers of competitors are
not available. Malicious attacks intend only to destroy something and do not
directly profit from that.

We can further classify attacks according to their target in: market place,
market participants, and market objects. The aim of attacking the market
place is to influence the system as a whole. These attacks range from denial-
of-service attacks that cause a system breakdown to ‘free riding’ [366], which
normally does not bring the system down but influences it negatively. The
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attack against a market participant tries to prevent or influence a single
participant or group from trading without aiming to influence the whole
market. For example, a company can try to prevent a competitor from trading
in order to sell more of its own products. The attack against market objects
arises especially in Peer-to-Peer systems because there is not necessarily a
dependency between market participant and object. A market object can be
any good or item related to trading in the market place, e.g., an electricity
offer.

In addition, we can distinguish between threats of external and internal
origin. External threats result from someone that is not participating in the
system, whereas internal threats result from participants. Internal attackers
can make use of their knowledge of topologies and protocols to influence the
system. Solutions for external threats are not our focus. Furthermore when
we can deal with internal threats in an open system, we can inherently deal
with external threats. However, the distinction can be used to clarify the new
challenges.

To protect ourselves against internal attackers, we must evaluate the
mechanisms of the involved Peer-to-Peer networks. Attacks can be directed at
the routing and searching mechanisms, but also at the storing and replication
mechanisms. The analysis gets more complex since most modifications of one
mechanism have a direct impact on one or more of the others. In Section 30.2
we noted that we are using various Peer-to-Peer networks. This means that
we must evaluate them all regarding security threats, but to do this efficiently
we discuss common requirements that we have for a secure and robust system
in Section 30.3.2. Based on these requirements, we will outline some generic
solutions that can be applied to various Peer-to-Peer networks and systems
in Section 30.3.3.

30.3.2 Peer-to-Peer-Related Challenges

Besides traditional issues like end-to-end security and service robustness, new
challenges arise from using a Peer-to-Peer network:

Partial encryption. In contrast to traditional networks where routing and
data is always clearly separated in header and payload, Peer-to-Peer systems
sometimes mix those up. For example, performing a search in GIA [113]
means that every involved node has to search in its local store of objects. If
we could assume that all nodes store only their own objects, then there would
not be a problem. But if we think about replication, then object encryption
and integrity become problematic. If we encrypt the whole object like the
payload in typical network protocols, nodes will not be able to search for these
objects. Hence, we have to encrypt the object in such a way that essential
information is accessible for routing and searching.
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Persistent signatures. In some Peer-to-Peer systems replication mechanisms
ensure that data is replicated to several places for safety reasons. If we use
communication channel encryption, we can ensure that the data has not been
exchanged between two parties. However, we can not guarantee the originator
of the data, if the data was replicated on an intermediate peer. Therefore, we
have to ensure that the signatures created by the originator are not lost on
intermediate peers.

Privacy-aware data handling. Regarding privacy two main challenges arise.
Through the replication mechanism, data and personally identifiable infor-
mation may be distributed over the network. In contrast to the primary goal
of the replication mechanism, the goal of privacy is to minimize the number
of stored data objects that include personal information. Furthermore, the
user (in Germany) has the right [97] to modify, block or delete personal in-
formation about him or herself. Such obligations are difficult to guarantee in
a Peer-to-Peer system.

Topology robustness. Another issue that arises is fault-tolerant routing. As
mentioned before, most Peer-to-Peer systems provide fault-tolerant routing
for safety, but we also have to ensure that no malicious node can influence
the routing table of nodes in such a way that some nodes can not be accessed,
objects can not be found, or the whole market breaks down. Therefore, the
routing and stabilizing algorithms of the involved Peer-to-Peer networks have
to be reviewed. The algorithms should offer multiple or by-pass routes and
they have to be stable against denial-of-service attacks.

Incentives. Besides the reachability attack mentioned above, an attacker can
try to benefit from the network by ‘free riding’, i.e., using the resources of
others but not contributing his or her own. To avoid such attacks incentives
and fairness control measurements are necessary.

Trust models. In traditional systems there is always a central trustable en-
tity. All system participants trust this entity and therefore it can be used
for authentication issues. Certainly, this is not always a single system, but
the authentication and trust problem is solved by centralizing it. Examples
of such architectures are PKI and Kerberos. Also some Peer-to-Peer systems
(e.g., PAST [526]) are based on some external trusted entities. As a result of
this authentication problem, encryption and integrity become more difficult
in Peer-to-Peer systems. Although it is easy to verify the integrity, without be
able to verify the authentication this integrity check is useless. For designing
appropriate distributed authentication mechanisms, threats like whitewash-
ing [204] and the Sybil Attack [177] also have to be kept in mind.

Multiple signatures. Many trust models use cryptography to secure their
trust information. Most often integrity of the trust information is guaran-
teed by attaching a signature. The requirement for such multiple signatures
arises in some distributed trust models. Typical centralized models usually at-
tach a single signature for each item of trust information. In distributed trust
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SESAMObject

SESAMSignature

−signature :byte[]
−signatureID :String
−signatureType :String

SESAMCertificate

−certificateIssuer :String
−certificateSubject :String
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−certificateValidFrom :Date
−certificateValidTo :Date

SESAMContainer
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Fig. 30.4: The SESAM Data Model

models multiple issuers may sign the trust data as is done in PGP. Besides
that, alternative trust models, like reputation or recommendation systems,
require multiple signatures attached to a single item of trust information.

30.3.3 Selected Issues

Having analyzed the robustness and security requirements for our framework
we now focus on persistent signatures, privacy-aware data handling and trust
models.

Persistent Multiple Signatures

As described in Section 30.3.2, a mechanism to provide persistent signatures
on data objects is required. We designed our data model based on the concepts
of S/MIME [500] and PGP [645]. As shown in Figure 30.4, the signatures
and certificates are an integral part of the data objects. This implies that
any component which distributes or stores the objects will automatically
serialize the object together with its signatures and certificates. Thus, the
signatures are persistently coupled to the object they sign.
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The root class of the data model is SESAMContainer, which consists of
two attributes: payload and signatures. The payload is always a subclass
of SESAMObject. Every SESAMObject can carry a list of SESAMSignatures,
where every list element contains a single signature. The SESAMSignature
class defines a set of common attributes and the attribute certificate ref-
erencing the related certificate. The class SESAMCertificate includes the
public key, which was used to create the signature, and attributes containing
information about issuer, subject and validity of the certificate.

The content (payload) of a data object can be integrity-protected with
one or more independent signatures of different peers. To be able to remove
one or more of these signatures without invalidating other signatures of this
object, every two signatures must be independent of each other. Therefore,
no previously existing signature will be included in the generation of a new
signature. This proceeding can be useful if the validity period of the data
object should be longer than the validity period of a signature and the cor-
responding certificate.

Trust Models

Using the data structure introduced in the last section (Figure 30.4) we
can ensure the integrity of data objects. To enable applications for a dis-
tributed marketplace where electronic contracting is supported, authenticity
of a peer’s identity is a major issue.

While the integrity of data objects is provided by signatures, peer identity
will be provided by digital certificates. Each signature contains an attribute
which links a certificate to the public key used. This attribute itself must
included in the generation of the signature, otherwise an attacker is able to
change the used certificate. A certificate itself contains one or more signa-
tures. This mechanism is suitable for building any trust model from simple
certificate lists up to more complex certificate trees such as in reputation
systems.

The diversity of applications in a Peer-to-Peer marketplace requires for
different trust models to verify identities. Therefore, we develop trust model
plugins which implement various trust models. First, we implement common
trust models such as Certificate Authority based (X.509 [629]) or distributed
models (PGP [645]). Later, plugins to support reputation and recommenda-
tion systems are added. All plugins are used by the trust component which
offers a common interface for checking identities. The certificate and the cho-
sen trust model are the input parameters of the verification method of the
trust component.
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Privacy-Aware Data Handling

Implicit routing in Peer-to-Peer networks can be used to guarantee anonymity
as outlined in [169, 17, 124, 168]. Anonymity is a good way to establish pri-
vacy, because without personally identifiable information there are no privacy
issues regarding personal information. But some market scenarios, like con-
cluding an electricity contract require personal information for the delivery
and accounting. Thus complete anonymization is no solution for that scenario.
Anonymization as mentioned above ‘only’ anonymizes on the communication
level, but on the higher level personal information can still be exchanged. For
example, let’s assume the communication between a browser and web server
is not traceable, but the user enters his name on a registration form. Then
the communication itself is anonymous, but not the transaction as a whole
on the application layer.

Therefore we have to integrate mechanisms for correctly handling person-
ally identifiable information. The project ‘Platform for Privacy Preferences
(P3P)’ [620] is an approach by the World Wide Web Consortium (W3C)
that facilitates for website operators the expression of their privacy policy.
This standard can be used to inform users, but not to enforce the correct
handling of data. The goal of the Enterprise Privacy Authorization Language
(EPAL) [35] is to ‘provide the ability to encode an enterprise’s privacy-related
data-handling policies and practices’. Thus policies can be easily exchanged
between different applications and also be automatically enforced. In [427]
an approach of identifier-based encryption (IBE) is presented to control the
disclosure of personal information. This approach goes beyond EPAL by in-
volving a third party in the process of information disclosure.

Through our modular approach, we can integrate the Peer-to-Peer net-
works mentioned above that guarantee anonymity in order to offer anonymity
mechanisms to service developers. For scenarios where this is insufficient, our
next step is to integrate the principles from EPAL and further approaches
like IBE.

30.4 Summary

In this chapter we have argued that markets should be viewed as Peer-to-Peer
systems on the community, application and infrastructure levels to achieve
scalability, spontaneity and reliability in liberalized and harmonized elec-
tronic markets. While many proposals favor a tight connection of an applica-
tion to a specific overlay network, the challenge we address is that of bringing
together service orientation (as the Peer-to-Peer paradigm on the application
level) with various overlay network techniques (as Peer-to-Peer networks on
the infrastructure level). We presented our concept of ‘ServiceNets’ and the
peer node architecture. We argued that there exist many benefits of such a
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distributed approach to electronic markets. However, securing this approach
is a difficult task. We presented the basic security challenges as well as some
ideas to tackle them. The proposed framework is a first step to enable Peer-
to-Peer markets: future work will have to come up with a catalogue of criteria
for deciding which overlay network organization to use for which service, a
good Peer-to-Peer network API, and a complete security framework. Thus, an
easily deployable framework can be created that makes market participation
more spontaneous and less costly.
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31.1 Introduction

The main characteristic of great autonomy of peers in Peer-to-Peer networks
and the resulting “openness” of such networks makes them vulnerable to di-
verse attacks on their integrity and security. The possibility and the feasibility
of obstruction of a Peer-to-Peer network as a whole, or forthright attacks on
a single peer depend largely on a usage scenario of a Peer-to-Peer network.
This aspect conditions the possibilities of attacks one has to either take care
of or ignore.

When deciding what kind of threats to treat, one has to consider the
tradeoff between the performance one wishes a particular Peer-to-Peer net-
work to reach and the level of security one wants to achieve. Due to the
different topologies Peer-to-Peer networks have, they face different kinds of
threats which one has to consider.

The security concerns can be divided between at least two layers: breaches
of security on the application layer and those on the networking layer. We
will discuss security issues in the following two subchapters based on this
differentiation.

31.2 Security Concerns on the Application Layer

In the following we specify the breaches of security that may take place on
the application layer of a Peer-to-Peer network. This presupposes a direct act
by a (malicious) user upon a Peer-to-Peer network through the application
interface which enables direct user-to-network interaction. This can happen
without a substantial effort by the user. Furthermore, we introduce the notion
of a malicious node”, meaning a node in the Peer-to-Peer network (and a user
behind it) that uses the network improperly, whether deliberately or not.

Malicious nodes on the application layer may give incorrect responses to
requests. They might report falsely about their bandwidth capacity in order,
e.g., to not have much traffic routed over their own node or they might (in
the case of file sharing) freeride in the network [11].

R. Steinmetz and K. Wehrle (Eds.): P2P Systems and Applications, LNCS 3485, pp. 529-545, 2005.
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These problems are usually met with incentives, where peers are rewarded
for good behavior and penalized for bad. Virtual money for file exchanges was
introduced by the now defunct Mojo Nation project [425]. Credits are given
to peers in eMule [589] as a reward for files being uploaded and used as an
entitlement for raising one’s priority in the upload queue of another peer-
client.

Following are security issues that arise from different applications of Peer-
to-Peer networks.

31.2.1 File Sharing Applications

In a completely decentralized and open Peer-to-Peer network, it is relatively
easy to disseminate spurious files that do not contain what their names or
metadata suggest, but instead random content or binary data. Thus users
get annoyed by contents that they were not looking for, and wasted their
resources to download them or cache them temporarily. These files can be
arbitrary files tagged with names that imply content that is usually searched
for in a particular network.

As stated in [463] some individuals are hired and paid by IFPI (Interna-
tional Federation of the Phonographic Industry) [316] to fill the file-sharing
networks with files with legitimate titles, but containing silence or random
noise. This process is called “network poisoning” and such files are referred
to as “junk” or “rogue” files. The aim was to make networks so disreputable,
that casual users would give up downloading files.

The reason for these actions is of course the copyright issues. Guidelines
for what kinds of files may or may not be placed in the network can be
easily set for a small group of users, e.g., inside of a company, but it is nearly
impossible to enforce them in an open network that spans multiple domains.

Furthermore, those downloading files from unknown peers exposes them-
selves to infection with viruses. “Mandragora” was a virus made by Spanish
virus-developers back in 2000 [371]. It was merely 8 kB and was exploiting the
possibility of blanking the file extensions in Windows computers. The virus
would scan the searches of a Gnutella client, intercepting one and reporting
itself as a successful hit. When downloaded by another peer not noticing a
very small file and not realizing that it was executable, it just installed itself
on the new computer. This virus was not meant to do any damage, but only
to expose the weaknesses of the Gnutella file sharing network.

31.2.2 Data Backup Service

One of the primary tasks in any kind of company environment is to efficiently
and reliably ensure data management and backup through automated peri-
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odic copies. The traditional backup approach in companies is to use a backup
server to maintain backup copies of data across the whole company. Conse-
quently backup servers are high-end, powerful, and expensive data storage
devices. Considering the large expenses for administration of these and the
usually low hard-disk utilization of individual workstations, a Peer-to-Peer-
based backup solution would save some of the backup budget of a company.
Several designs like [63], [386] or [134] deal with this topic.

There are basically two kinds of security issues here. One is the existence
of sensitive data of certain peers that should not be visible to other peers in
a network. This is a unique characteristic of a Peer-to-Peer backup system; a
client-server solution with a backup server would not have to deal with such
issues. A possible solution is to encrypt all the backups with a secret key which
only the owner-peer knows, but in the event of crash the passwords written on
it would also be lost. Taking into account the additional complexity for users
of such system, the sensitive data should instead be backed up individually
by users themselves using some traditional techniques like burning data on
digital media carriers such as CDs.

The other security issue affects the performance of a Peer-to-Peer backup
solution. Considering the variable availability of single workstations, a backup
would have to be saved on more than one workstation to ensure its availability
with a high probability in case of a crash. If there are, e.g., four backup copies
of each file, the peer-workstations taking part in Peer-to-Peer backup would
have to have a utilization of their hard disks of approximately 20 percent
in order to have the remaining 80 percent used by the backup application.
Disregarding this constraint, the system might not have enough resources for
smooth functioning and data might be lost.

This possibility can be regarded as a “violation of an agreement” between
peers rather than an intentional attack on the system’s resources. If hard
disk capacities continue to grow, then this specific problem will be mitigated.
However, this solution is more applicable for backup of text-based files than
for large multimedia content, because of the unique restriction of Peer-to-Peer
backup described above.

31.2.3 File Storage Service

The file storage service provides the storage of files on more than one loca-
tion in a Peer-to-Peer network by using a uniquely defined e.g. alphanumeric
character sequence for each file, called “handle”. Contrary to file-sharing
mechanisms where users are looking for specific content, the searches in the
file storage system can be accomplished only with help of these specific han-
dles which are mapped to a unique peer or a file in the network. Any peer in
the network can locate a file by using it, and the peer with writing rights can
update these files as well. In order to get a handle to find a file, a peer has



532 31. Security-Related Issues in Peer-to-Peer Networks

to obtain it through some other communication path than the Peer-to-Peer
network itself, like an e-mail exchange, an external website, or even through
out-of-band communication.

A file storage application may be used to enable an anonymous and decen-
tralized publication of contents (chapter 31.4.4). The security concern here
is the enforcement of an access control among peers in regard to read/write
rights on files. An access control list may be associated with each handle pro-
vided that all peers behave well. Once malicious peers participate in the net-
work, the files would have to be encrypted with secret keys (chapter 31.4.3)
and provided only to a smaller set of peers that are proven legitimate. In
anonymizing solutions (chapter 31.4.4) attacks could be directed at making
the files unavailable to legitimate peers by deleting them altogether.

31.3 Security Concerns on the Networking Layer

As Peer-to-Peer systems distribute resources and responsibilities into the net-
work, they also distribute security weaknesses allowing malicious peers to take
advantage of the vulnerabilities of the system. Malicious peers in a Peer-to-
Peer system are those which do not follow correctly the protocol which peers
use to administer themselves in a Peer-to-Peer network. They seek to mis-
guide other peers by providing them with false information about the state
of the network.

These attacks are mostly relevant in structured Peer-to-Peer networks
that use distributed hash table (DHT) lookup. The reason is their structure’s
vulnerability to false information about the routing in the network: the nodes
are mutually dependent on the correctness of each other’s routing tables.

31.3.1 Invalid Lookup

A malicious node may forward lookups to an invalid node, a non-existing node
or an existing but random node. Incorrect lookups would result in a waste
of bandwidth, time, and efficiency of a lookup until the TTL (time-to-live)
runs to zero and the requestor ceases to retransmit its queries. Deriving node
identifiers by a cryptographic hash of its IP address and a port, like in Chord
[576], can make it easy to tell if the correct node is approached since these
are needed to contact the node. By deriving node identities from public keys
of participants, a longer-term solution may be reached [565]. This solution
has performance disadvantages due to the cost of signatures, but provides
validity of the origin of a message.



31.3 Security Concerns on the Networking Layer 533

31.3.2 Invalid Routing Update

Nodes in a distributed hash table (DHT) lookup system build their routing
tables by consulting other nodes. A malicious node here may corrupt the
routing tables of others by sending invalid updates. In this case not only could
malicious nodes direct queries to invalid nodes, but well-behaving nodes might
give wrong routing information as well, due to invalid routing updates of their
own. A more sophisticated attack would be to provide nodes that actually
contradict general criteria of routing (high latency, low bandwidth). CAN
[504] uses measurements of RTT (round-trip-time) to favor lower latency
paths in routing updates. This method may be used for choosing nodes with
high latency path as well.

Pastry [527] makes these invalid routing tables easier to detect by forcing
entries to have a correct prefix. This way malicious nodes can not produce
totally random routing tables without being easily detected. Another way of
ensuring that a given node in an update table is authentic, is for every node
to ascertain that this node is actually reachable [565]. This method would
however cause enormous costs in bandwidth and delay.

31.3.3 Partition

When a node contacts another node in order to join a Peer-to-Peer network,
it might falsely join a parallel malicious network which aims to observe the
particular behavior of some nodes or contents of a network by running the
same protocols as the legitimate one [565]. By providing even the look up
capability into the original network and having a node connecting both of
these networks or having some original data from the legitimate one, this
coalition of malicious nodes could manage to “camouflage” itself and its true
intent. A new node might feel itself well off in the network, whereas it is
actually subject to observation of its actions which are supposed to be kept
private.

The use of public keys, though expensive, can establish some stronger
identity than mere IP-addresses, which are subject to frequent changes. If
a node has successfully joined a legitimate network in the past, it possesses
certain knowledge about the network and possibly nodes that successfully
answered its queries. It can indirectly check the routing tables of other nodes,
by performing random queries to gain knowledge about possible different
views of the network than its own.
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31.3.4 Sybil Attack

The Sybil Attack is a name for a node or any other single entity on a network
presenting multiple identities to other nodes. Thus other nodes might believe
in having an interaction with some distinct nodes whereas in fact there is only
one entity they are addressing. This would mean that given particularly huge
resources (bandwidth, disk space, computing power) some “deceiving” peer
could gain control of a large part of a Peer-to-Peer network, thus undermining
its redundancy [177], which is one of its basic properties. However, considering
a Peer-to-Peer network to be made up of nodes at the “edges of a network”
[28], one could assume rather moderate resources at the disposition of each
peer. In a network of several hundred thousand nodes, such a peer could
presumably cause rather little damage.

In order to prevent the generation of multiple identities in a Peer-to-Peer
network, computational puzzles, like in HashCash [41], might be used. This
is an old solution for defense from DoS (denial-of-service) attacks. Before
joining the network a peer has to solve some computational problem, thus
is forced to use his CPU-cycles needing more time to join than usual. But
in the case of an attacker with huge resources, it would at best slow down
the process of generation of false identities and the process of these “virtual”
nodes joining the network. In structured Peer-to-Peer networks like Chord,
CFS, and Pastry where the network determines different tasks that certain
peers have to do, hashing of IP addresses is performed partly to establish
some kind of identity of individual peers. This would surely complicate and
prolong the process of a Sybil Attack.

The most “intrusive” method of binding an identity directly to a node
would be, of course, to provide a distinctive identification for each computing
unit that is taking part in a network. The commercial platform EMBASSY
[292] provides cryptographic keys embedded inside of every hardware device.
Of course a user has to implicitly trust that these devices have an embedded
key (and not an arbitrary one) and the users actually use these as they are
supposed to. The concept of Pretty Good Privacy (PGP) [644] web-of-trust
may vouch for established identities for other “newcomers” in the network,
but may also be misused by the malicious node to subvert the chain of trust.
As a last resort for keeping all the possible weaknesses of the aforementioned
solutions somewhat under control, one can rely on certification authorities
and similar trusted agencies.

As stated in [171] “one can have, some claim, as many electronic personas
as one has time and energy to create”. Primarily this energy can be a decisive
constraining factor for success in such an attempt.
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31.3.5 Consideration of Implications of Topology

Structured networks like nodes in a Chord [575] ring impose an additional
burden on the available bandwidth of nodes. A considerable communication
overload occurs, which makes nodes vulnerable in ways they would not be in
a fully decentralized network like Gnutella [250].

Each instance of join and leave a structured network causes a DHT to re-
balance its keys and the data among the nodes which generates a considerable
traffic load and degrades the performance of the system [565]. In a Gnutella
network this kind of overload is feasible with a sudden increase of search
messages which will flood the network, as its search-protocol does not scale,
so this condition would be considered standard. In DHT systems this excess
data transfer and control traffic would render the whole network inefficient
and impair the secure functioning of the system.

In a classic denial-of-service attack (DoS) where an attacker generates
arbitrary packets and overloads a targeted node, it would seem as if the
targeted node failed in a normal way. As every node in a DHT is responsible
for certain data, some of it would be unavailable for a certain period of time.
The possible damage here or in a decentralized Peer-to-Peer network will
however seem much smaller than in centralized Peer-to-Peer networks like
the former Napster or a hybrid Peer-to-Peer network with super-peers. By
having the servers attacked with a DoS, whole portions of the network would
be “knocked out” for a certain time.

In order not to become too suspicious to many other nodes at once and
to make its own malicious behavior more difficult to detect, a node may
behave well with some part of the peers in a network and follow the protocol
correctly. In a DHT system those peers would be the immediate ones in the
vicinity of the malicious node’s identifier space [565]. Good behavior with
these peers guarantees, at least, longer connectivity to the whole Peer-to-
Peer network, as these peers would keep the malicious node in their routing
tables. Legitimate reports of bad nodes would not be distinguishable from
false accusations of the good ones. Public keys and digital signatures here
would help gain some assurance in the legitimacy of the reports by having
all peers sign their responses.

In conclusion, a structured topology of nodes provides considerable im-
provement in performance of the network as well as sensitivity to abrupt
changes in the protocol behavior due to the possible impact of malicious
nodes.

31.4 Security Concepts for Selected Systems

In following sections we will introduce some solutions which deal with security
in the Peer-to-Peer area in quite different ways. The first two address security
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in a “traditional” manner. This means ensuring that basic “building blocks”
of security are met, such as having a protected privacy of communication and
maintaining the integrity of messages. The other solutions aim at using the
characteristics of a Peer-to-Peer network for ensuring the anonymity of users
behind the network rather than a secure data flow among nodes.

The single most technologically advanced solution is “Groove”, which is
discussed in the next section. A system called “SixFour” is subsequently
described, which is an example of a most rudimentary solution for ensur-
ing confidentiality of an electronic data exchange. Finally, we will introduce
“Freenet” and other anonymizing solutions.

31.4.1 Groove

“Groove”, of Groove Networks Inc. [261], is a Peer-to-Peer groupware tool. It
concentrates on providing extensive support for the collaboration of partici-
pants on a group-project. It offers so-called “workspaces” for aggregation of
documents, messages, and application-specific data which are shared confi-
dentially and unaltered among group-members. Groove especially serves the
purpose of synchronizing documents and incremental parts of documents in
a secure way.

It does not need any administration and acts like an ad hoc virtual VPN
(virtual private network). Bootstrapping the whole constitution of a group
is accomplished by one participant inviting others to join the group. It ori-
ents around already mentioned “workspaces”, where all the messages and
documents related to any collaboration activities are saved.

The documents in these workspaces or even parts of these documents,
like incremental changes during some processing, are synchronized among all
peers. One is able to work offline and upon reconnecting, the system will
automatically synchronize the changes. This means that all changes will be
transmitted with help of so-called “delta messages” to all Groove-peers taking
part in a shared space.

Groove offers, besides the permanent secured connection, different ap-
plications on its platform as well, like permanent chat sessions, notepads,
a calendar, and a file archive. Besides offering an infrastructure for com-
munication, it is a commercial product oriented towards the needs of users
collaborating on a project and offers different add-on components of its soft-
ware such as Enterprise Management Servers, which can take some of the
decentralized tasks and administer them centrally.

All shared space data is encrypted on the hard disks as well, where it is
only readable and editable by its owner. This security configuration is always
on: it cannot be switched off by an administrator or accidentally by a random
peer. Groove provides authentication, data privacy, and data integrity.
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Groove has chosen Component Object Model (COM) as its component
integration model. COM is Microsoft’s framework for developing and sup-
porting program component objects. The Groove Development Kit (GDK) is
free for further development. For the distribution or selling of software devel-
oped with the GDK one needs an additional licence from Groove Networks
Inc.

Groove uses the following basic encryption technologies:

– Symmetric Key Encryption: the standard encryption algorithms are AES
and DES.

– Public Key Technology: the standard encryption algorithm is RSA-1; used
for securely sending symmetric encryption keys over the network and for
signing documents.

– Hashing: the standard encryption algorithm is SHA-1; it is used for pass-
word management (password hashed into a secret key), integrity protection
(storing a hash of data along with data), and signatures (hashing data to
be signed).

– Message Authentication Code (MAC): the standard encryption algorithm
is Keyed-Hash Message Authentication Code (HMAC); it is used for sig-
natures for data integrity; a key is used in the MAC computation when
communication participants share a secret key.

Authentication

Groove’s security model is based on an authentication mechanism that binds
a user’s identity to specific actions within a Groove environment. Generally,
Groove depends on relationships that are rooted in a real-world collaboration
because the very forming of a working space begins with an invitation (via
e-mail, a telephone call, or face-to-face contact) to a user to join a specific
group of people, whose relationships are represented through membership in
a workspace.

Before being invited to a workspace, a user must configure his Groove
software on his local device by creating his own account, including attributes
describing him as a user. This account is stored as an encrypted XML-object.
An account may contain more than one identity, e.g., one for personal and
one for professional use. Each of these identities will possess sets of keys for
communication with users in different workspaces.

Groove offers several ways for members of a workspace to authenticate
others members of the same workspace. One of them is fingerprinting of the
users’ public keys with SHA-1. This method includes an out-of-band contact
between the members of a workspace to confirm that the fingerprint is correct.
Groove can also use its own PKI where a so-called Management Server would
act as a CA (certification authority) for its own domain.
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Besides authentication of persons, Groove performs data authentication as
well. This is accomplished by using public key signature technology to “mark”
the communication between peers and thus map actions in the workspaces
to digital identities. Instant messages are signed with 2048-bit RSA keys and
incremental changes in workspaces are signed with 1536-bit ESIGN keys.

A login into a Groove network may proceed either by a password or
by a smart card. Both these logins are protected locally on the hard-disk
with different keys: User Key and Master Key. User’s password is processed
through a PBKDF2 algorithm (Password-Based Key Derivation Function
2, RFC 2828) that has additional parameters to hamper guessing attacks.
There are two master keys: the first protects the user’s other cryptographic
keys (like workspace keys) and the second protects non-cryptographic user
data (like tool and contact data).

A user is obtaining relevant data from two databases when participating
in Groove. The account database contains personal contact information for
each identity (name, phone number, e-mail, public parts of RSA or ElGammal
keys) and private keys associated with the identities held by the account.

Workspace Security

The beginning of a collaboration of peers in a workspace is accomplished by
one peer inviting another to join the workspace he just set up. As stated
above Groove depends on real-world relationships, so an invitation will be
directed at someone personally well known. An invitee who does not yet have
Groove software may be invited by an e-mail which will contain a URL of
where to download it, public keys of the inviting peer, and cryptographic
protocol settings for the workspace the invitee shall join. After receiving this
e-mail, the invitee should phone the peer inviting and authenticate each other
by checking their fingerprints.

After confirmation by the inviting peer, all other members in the work-
space will get to know about the invitee as a new member by a so-called
“add member delta” message and the invitee will receive the workspace with
shared keys used by other peers. From then on the invitee’s identity will
appear on each of the other user’s workspaces and by trusting the inviting
peer they might begin working with their new member. The “add member
delta” message contains data about the new member (ESIGN public key,
Diffie-Hellman public key, and other information) and makes the old members
aware of a new member joining them.

There is always someone who has to actually make a first step and kick-
start a project on which others will collaborate: Groove uses for this purpose
a hierarchy of roles and access controls. The three basic roles are: manager,
participant, and guest (with declining access rights). The initiator of a new
workspace automatically gets the role of manager and can therefore assign
roles to others and invite or even un-invite peers to or from the workspace.



31.4 Security Concepts for Selected Systems 539

The roles themselves map to certain permissions related to actions in the
workspace and actions with tools in the workspace.

By uninviting a peer from a workspace, which only the manager of
the workspace may do, a “rekey delta message” is sent to all peers in the
workspace except to the uninvitee, which contains the new workspace group
key encrypted in each member’s pair-wise key. The uninvited peer gets a
delta message informing him he is uninvited and removes all the data from
his workspace.

Communication over Relay Servers

With “relay services” users may exchange changes in workspace with a time
gap between the two actions. When a user goes offline the relay service will
“notice” it, save the changes, and pass them to a partner peer of the same
workspace that may be offline when this peer gets online again.

Groove software randomly chooses a relay server from a list it contains and
registers a new account that a user previously set up. From now on, the soft-
ware uses only this relay server and sends, along with its contact information,
also the URL of its relay server in order for other Groove peers to acquire
the full communication path. More precisely, an actual relay-to-workspace
communication is taking place with a secret key established between them,
whereas due to end-to-end encryption the relay service can not access data
inside delta or instant messages but only the header information needed to
locate another peer.

Furthermore, relay servers can enclose the messages in an HTTP - com-
patible format and use ports 80 or 443 (mostly configured open) to circumvent
the firewalls that may separate two peers collaborating over Groove. This ca-
pability may well arouse suspicion with managers of the company or network
administrators of a company’s LAN who may not approve of arbitrary data
being exchanged across the company’s boundaries.

Conclusion

Without relay servers Groove’s ad hoc synchronization of data made offline
would not work. This centralized feature plays an important role in an ef-
fective collaboration in Groove, so the Peer-to-Peer paradigm of fully au-
tonomous entities is constrained here. Such a server is still a single point of
failure and a potential target for a DoS attack. Furthermore, at the deepest
level of integration, any platform that wishes to integrate and further develop
Groove will have to support the Component Object Model (COM).
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31.4.2 SixFour (6/4) Peer-to-Peer

The SixFour Peer-to-Peer system [566] obtained its name from the date of the
Tiananmen Square protests in Beijing in 1989. The developers intended this
system for potential users who live in oppressive countries with limited access
to free press. The basics of the system enable a peer to establish an encrypted
connection to a trusted peer outside of his country and then have this peer
further forward any other requests into the Internet. The aim is to enable
peers to get data confidentially from the Internet thus evading censorship.

A peer wanting to connect to the SixFour network would already have
to know the address of the trusted peer and his RSA public key. The au-
thenticity of the key would have to be checked at the website of the SixFour
developers, hacktivismo.com. For this purpose the peers would have to know
the appropriate signature of Hacktivismo [268].

The trusted peer simply has to forward the requests of peers that “hang”
on them so they can access any TCP- or UDP-based service on the Internet,
provided the trusted peer itself has access to these services, too. One of the
important criteria for becoming a trusted peer is to provide a permanent
IP-connection (permanent IPv4 address). The most reasonable entities to
become trusted peers (according to the idea of developers) seem to be, e.g.,
human rights organizations or NGOs promoting democratic values.

The routing inside of the SixFour network is anonymous if it occurs over
more than 3 nodes. That is, every peer in the routing protocol knows only the
RoutingID, the source, and the target of the packet. The routing topology
of the SixFour network is like Gnutella’s, in that every peer is connected
with several others and floods his own requests or routes other requests at
random to his neighbors. Duplicate requests are rejected according to their
RoutingID. The node-to-node encryption is a classical SSL over port 443 and
the end-to-end encryption is RSA-based.

The shortcomings of this system are primarily the question of the estab-
lishment of the relationship between a peer inside a “censored” part of the
Internet and a trusted peer “outside”. How does a potential peer inside a
“censored” part of the Internet come to know which IP-address is an address
of a trusted peer, through which he could make requests and not be afraid
of possible reprimand from the “censor”? It seems that only some kind of
out-of-band information gathering would help.

Furthermore, it is not clear how these trusted peers could be protected
from possible attacks from entities that would have an interest in disrupt-
ing the SixFour network (like those very countries whose censorship SixFour
tries to break). The possible attackers on trusted peers presumably have the
same or even better know-how than the developers of any free software on
the market and possibly strong financial backing as well. An additional cri-
terion before accepting entities acting as trusted peers could be a display of
security measures that these peers employ locally and set requirements for.
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Otherwise one would never know which trusted peer could be compromised,
thus compromising the whole network.

Before becoming a serious application with wide acceptance, SixFour
would have to establish a wider community of users and proof of a longer
stable functioning (without security flaws and compromise of peers). It of-
fers the basic functionality of confidential data exchange and anonymity in
the network, but it does not tackle at all the question of key distribution.
Although at the beginning of a possible future enhancement, SixFour is a
fresh example of what Peer-to-Peer-systems are good for beyond simple file-
sharing.

31.4.3 Freenet

Freenet [124] is a Peer-to-Peer system that enables publication, retrieval and
replication of data whose authors and readers remain anonymous: a node can
not know whether the node to which a file is forwarded is the actual requestor
or itself a mere “forwarder” of the file. From another point of view a node
can not know whether the node, from which it is obtaining a file is the actual
originator or merely a forwarder of the file. Trust and adequate search of the
network are still open issues in this system.

The cornerstones of the architecture of this system are the knowledge
of the nodes of the immediate neighbors (routing tables are not exchanged
between nodes), association of files with hash-keys, and distributed storage
of files (the owners of a hard drive do not know implicitly what is stored
on their site). The emphasis of the system lies heavily on the protection of
privacy of users; in this case the disconnection of an association of a file with
its originator or submitter and a possible user (reader) of the same file. The
primary purpose of the network as a whole is censorship-resistant storage.

The files are replicated in the parts of network where they are most fre-
quently requested and deleted in those parts of the network where they are
seldom requested. Freenet acts like a distributed file system with location
independence and transparent replication.

Security Architecture

Every Freenet peer runs a node that provides some storage space for the net-
work. When adding a file, a user assigns a globally unique identifier (GUID)
to that file. This GUID will be sent when retrieving a file as well. The GUID
is calculated using the SHA-1 hash and made up of 2 keys: the content-hash
key (CHK) and the signed-subspace key (SSK). CHKs are hashed contents of
the files using the SHA-1. SSK is used to make up a specific namespace that
anyone (who has the keys) can read, but only its owner can write to. A peer
first generates an arbitrary public-private key and chooses a text description
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of the subspace. One then calculates the SSK by hashing both the public part
of the key and the descriptive string, concatenating them, and hashing them
again.

In order to retrieve the file, one needs the public key and the descriptive
string (to recreate the SSK). To add to, or update the file, one would need
the private part of the key to be able to compute the valid signature, which
the nodes storing the file would check and accept, or reject if false. The SSK
key can be used to store an indirect file containing a pointer to a CHK: a file
is stored under its CHK, which is in turn stored as an indirect file under the
SSK. Given the SSK the original file is retrieved in 2 steps, and the origin of
the file is obscured a step further.

One of the most distinctive characteristics of Freenet is that management
of the node and the management of the storage of the same node is somewhat
disjointed. If a node gets a query, it first checks it own store. The peculiarity
here is that the semantics of the content of the store itself is not comprehen-
sible to humans. The comparison between the request and the possible file in
the storage has to be computed.

If the request is not satisfied, the node forwards the request to the node
with the closest key to the one requested. This information will be gathered
at one specific node through time by having many requests running through
it. When the request is successful, each node which passed the request now
passes the file back and creates an entry in its routing table binding the data
holder with the requested key. On the way back the nodes might cache the
file at their stores. This way subsequent searches find the requested file faster.

For requesting and inserting a file, Freenet offers the possibility of adding
a mix-style “pre-routing” of messages [124]. This way the messages would
be encrypted by a succession of public keys which establish a route that
this message will follow. When the message reaches the end-point of this
pre-routing path it is injected into the Freenet network and thus the true
originator of the message is “obliterated”.

Inserting a file works similar to requests. A user assigns a GUID and
sends an insert message first to his own node with a new key and a TTL
value. The insert might fail because the same file is already in the network
(CHK collision) or there is a different file with the same description (SSK
collision). The checking for a same possible file refers to a lookup whether
the key already exists; if not, the node searches for the numerically closest
key and forwards the insert message to the corresponding node. If the TTL
expires without collision the final node sends the message that the insert
may be performed. On the way to the final node, the file is cached by every
intermediary node, the data is verified against the GUID and a routing entry
is made pointing to the final node as the data holder.

The makers of Freenet recommend encrypting all data before inserting
them into the network. Since the network does not perceive this encryption
since it only forwards already encrypted bits, the inserters have to distribute
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the secret keys as well as the corresponding GUIDs directly to the end users.
This is performed through some out-of-band means such as personal com-
munication. The same method is used when adding a new node to Freenet:
a user wishing to join sends his new public key and a physical address to a
node whose physical address he already knows.

In order not to let only one node decide what key to assign to a joining
node (and allow a sort of unilateral access to certain data) a chain of hashes
of the seeds of each node and XOR’ed results with other seeds down the path
and hashes thereof (called “commitments”) is produced to provide the means
for every node to check if other nodes revealed their seeds truthfully. The key
for a joining node is assigned as the XOR of all the seeds.

A still open issue is search adequacy of the Freenet network for relevant
keys. There is still no effective way to route searches, leaving the dissemina-
tion of keys solely to out-of-band means. One possible solution is to build
public subspaces for indirect keyword files. When inserting files, one could
insert several indirect files corresponding to search keywords for the original
file, so an indirect file would have pointers to more than one file (more than
one hashed key as content).

The management of storage determines how long a file will be kept by
the popularity of the file, measured by the frequency of the requests per file.
Files that are seldom requested are deleted when a new file has to be inserted.
Even when a file is deleted at one node, another one may still have a copy
of it. The node that already deleted it, will still have an entry in its routing
table pointing to the original data holder, as the routing tables entries are
much smaller than data and will be kept longer.

31.4.4 Further Peer-to-Peer Anonymizing Solutions

Following are several more solutions that have as a priority the anonymization
of a connection, transaction, data stream, or communication between two
peers in a network. These systems do not protect specific data from access
by an unauthorized peer or intrusions into peer-machines. They try to make
facets of communication between two peers invisible or not back-traceable
by a supposed eavesdropper. Usually the high connectivity of nodes in a
Peer-to-Peer network is used to obscure the path an arbitrary message has
taken.

Tarzan

Tarzan [229] determines sequences of mix-style relays randomly chosen from a
pool of volunteer peers in the network. The relays are all equal peers which can
be originators or relays of traffic, since they can not know whether they are the
first hop in a path. The two ends of a communication session inside the Tarzan
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network are a node running an application and another node running a NAT
that forwards the traffic to an end destination. Tarzan performs a nested
encryption per hop and encapsulates it in a UDP packet. These encryptions
are performed in the sequence of the nodes that will be passed through, so
the biggest share of encryptions is situated at the node seeking anonymity.
The method is similar to Onion routing [582] with the difference that the
nodes are chosen randomly and dynamically instead of using a fixed set. In
order to choose the relays, Tarzan uses the Chord lookup algorithm (relays
are in a Chord ring) with a random lookup key. When that key’s successor
is found, it responds with its IP address and public key. Tarzan claims thus
to provide anonymity in cases of malicious Tarzan participants, inquisitive
servers on the Internet, and observers with some limited capability to see
traffic on some links.

Publius

Publius [611] claims to be a censorship-resistant web publishing system. The
motivation for this system is the possible, presumably unfair legal attacks
from powerful corporate entities or similar litigious organizations which try
to prevent publishing of “unpleasant” details about them or practices related
to them.

A system-wide list of available static servers is assumed. The content is
encrypted by the publisher and spread over some of the web servers. The
publisher takes the key, K, that is used to encrypt the file and splits it into n
shares, such that any k of them can reproduce the original K, but k-1 give no
hints how to reproduce the key. Each server receives the encrypted content
and one of the shares. At this point, the server has no idea what it is hosting;
it is simply a store of random-looking data. To browse content, a retriever
must get the encrypted content from some server and k of the shares.

The publishing process produces a special URL that is used to recover the
data and the shares and that is cryptographically tied to the URL so that any
modification to the content or the URL results in the retriever being unable
to find the information, or a failed verification. Only publishers can update
or delete their Publius content. The Peer-to-Peer character of this system is
limited because of static IP addresses and the static set of servers. However,
the content is in fact distributed and the servers which host the content are
autonomous.

Onion Routing

Onion Routing [582] is a system for anonymous Internet connections based on
mix-networks. A user creates a layered data structure called an “onion” that
specifies the encryption algorithms and keys to be used as data is transported
to the target node. As data passes through each router on the way to the



31.5 Conclusion 545

final target, one layer of encryption is removed according to a directive found
on the outer layer of the “onion”. So the onion gets “peeled off” a layer every
time it passes through a router. The final target of the “onion” gets only
plain text (data).

Crowds

Users in this system [508] submit their requests through a “crowd” - a group
of Web surfers running the Crowds software. Crowds users forward HTTP
requests to another randomly selected member of their crowd. A path is con-
figured as the request crosses the network and each Crowds member encrypts
the request for the next member on the path, so the path is not predetermined
before it is submitted to the network. Thus an end server or the forwarding
Crowds member cannot know where a request really originated. By using
the symmetric ciphers Crowds claims to perform better than mix-based so-
lutions. A drawback of Crowds is that each peer on the path of the data to
the intended destination can “see” the plain text.

31.5 Conclusion

The large amount of security vulnerabilities in Peer-to-Peer networks surely
needs a considerable monitoring by all peers that are interested in the unob-
structed working of the network. As already stated, there is always a tradeoff
in Peer-to-Peer networks between security and performance issues.

Peer-to-Peer networks are supposed to be open to every peer that wishes
to voluntarily provide his resources and in return consume the resources of
others. Authenticating every one of them and signing all their messages would
create a new overload which could bring the performance of a network nearly
to a standstill. In accordance with its open character a Peer-to-Peer networks’
primary concerns are not “classic” security measures, but the smooth func-
tioning of a protocol that binds the peers in a network. This is what security
concerns in Peer-to-Peer networks should focus on.

Though Groove orients itself toward one specific use of its network, it
seems to be an up-to-date solution for classic security management. The use
of relay servers diminishes somewhat a “real” Peer-to-Peer character, but the
standard security features work just as well without them.

The anonymization tools constitute an “instrument” that the abundance
of autonomous nodes with an adequate innovative communication protocol
may establish. However they may always be a focus of social debate whether
providing such means to keep the identity of wrongdoers unknown is justified.
As always, all man-made tools, including Peer-to-Peer-networks, may or may
not be used in a legitimate way.
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32.1 The Purpose of Accounting

Today’s Peer-to-Peer (P2P) systems seem to work fine for file sharing appli-
cations. Though, is that true for all kinds of applications or is it just true
for file sharing of copyright protected content? In the latter case, clear incen-
tives for sharing exist - users download copyright protected media content for
free. Even here free riding is a widespread behavior [11]. Therefore, many file
sharing systems introduced incentive systems, like the eMule credit system
[192] or BitTorrent [320]. Obviously, for legally used Peer-to-Peer file sharing
applications giving incentives to users for sharing their resources in a fair
manner is an important feature.

Another important feature of Peer-to-Peer systems is fair resource al-
location. In fact, some people define the free rider problem as part of the
resource allocation problem [167]. However, we distinguish between incen-
tives and resource allocation. The goal of resource allocation is to allocate
the available resources in a fair manner among the system’s entities such
that bottlenecks are avoided. Resource allocation is an important feature for
applications where quality of service is critical.

We can imagine the Peer-to-Peer paradigm being used for business appli-
cations where users sell and offer services. Here, it is an important feature
that users can prove they delivered a service or paid for a service received.
This requires trustworthy bookkeeping.

All three of these features - incentives, resource allocation, and business
support - have a common requirement. Information is needed about the ac-
tions in the Peer-to-Peer system as well as evaluation of this information.
Peer-to-Peer systems cannot easily provide this kind of information because
it is completely distributed. The lack of information leads to the free rider
problem because users feel completely anonymous. Furthermore, this missing
information makes it difficult to do resource allocation. And without knowing
who bought/sold a service, business applications are impossible. The missing
functionality is obviously accountability. Accountability in information sys-
tems is defined as the process of tracing information system activities to a
responsible source [443]. If we can introduce accountability into Peer-to-Peer
systems, we can solve the problem of missing information and with it add
the aforementioned features to Peer-to-Peer systems.

R. Steinmetz and K. Wehrle (Eds.): P2P Systems and Applications, LNCS 3485, pp. 547-566, 2005.
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32.2 Why Is Not Accounting in Peer-to-Peer Straight
Forward?

Looking at Client/Server systems, accounting was never seen as a major
issue because it is intuitively easy. It was not even a real research topic (see
e.g. RADIUS [509]). To do accounting in Client/Server systems the server
simply logs every access activity of the client. The server can do so because
all communication is done either between client and server or between two
clients over the server. Two clients never communicate directly.

In Peer-to-Peer we have exactly the opposite situation. There is no server
but almost exclusively direct Peer-to-Peer communication. There is no unit
in the network that could log all the communication within the system. All
that can be done in Peer-to-Peer is limited to local observations. A peer
logs itself the communication in which it is involved. Accordingly, there is
no straightforward solution for gaining system-wide knowledge about the
activities in the system using this locally gathered information.

Furthermore, the problem is very complex because the collected infor-
mation must be stored and used in a trustworthy manner. Otherwise the
accounting system will not be reliable. For example KaZaA’s participation
level [342] is an accounting system with a trustworthiness problem. The sys-
tem stores locally at the peer information about the peer’s contribution to
the system in form of uploads. This information is evaluated and determines
the maximum download speed for the peer itself. Obviously, there is a strong
incentive to manually increase the participation level in order to cheat. And
cheating is easy, especially since KaZaA Lite (also known as K++), which
does not include the download limiter, is freely available [344].

This real life example leads directly to the next issue with accounting
in completely distributed autonomous systems: If there are defined rules of
behavior then there must also be a way to enforce them. In the case of
KaZaA the participation rule cannot be enforced because cheating cannot
be detected. Accordingly users get benefits only from using the KaZaA Lite
client application instead of using the original KaZaA client application.

Consequently, three aspects make accounting in Peer-to-Peer difficult: The
required information is distributed throughout the whole system, the infor-
mation must be stored and used in a trustworthy manner, and behavior rules
for incentive systems or resource allocation must be enforceable.

Finally, a fourth aspect should not be forgotten: An accounting system for
Peer-to-Peer should use the scarce resources of the system (e.g. bandwidth)
economically.
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32.3 The Solution Space – A Classification of
Peer-to-Peer Accounting Schemes

This section outlines the different design parameters for building an account-
ing system that meets the described requirements. The problem can be struc-
tured into two main parts: Information collection covers the options how and
in which form information is collected. Information storage concerns the op-
tions of where the collected information can be stored.

32.3.1 Information Collection

In Peer-to-Peer systems there are only a few options where accounting infor-
mation could be collected. Assuming real Peer-to-Peer connections (without
a third peer in the middle as a “trusted party”), the information can only
be collected at the service provider peer, at the service receiver peer, or at
both peers. This collection process usually consists of a metering process and
an evaluation process. The metering process measures the used bandwidth
(the amount of data received/sent), time (the duration of the service), or
collects some service specific signals like “file complete”. The evaluation pro-
cess interprets this information to generate accounting events. These events
determine when an accounting record is created.

Accounting records contain the accounting information and can take sev-
eral forms.

Plain Numbers

The simplest form is plain numbers. For every peer there exists an account
balance stored somewhere in the Peer-to-Peer systems. For example, for each
MByte uploaded the peer’s account balance is increased by one. Plain num-
bers can be changed very easily, therefore, this kind of accounting record is
especially vulnerable to fraud. Nevertheless, this form of information con-
sumes very little space and bandwidth when it is transferred between peers.

Receipts

Receipts are documents of fixed form that can contain all kinds of accounting
information, e.g. transaction partners, transaction object, metering informa-
tion, and an evaluation of it. This evaluation could be the information how
this receipt modifies the peer’s account balance. This part of information
would be similar to plain numbers. In comparison with plain numbers, the
additional information of a receipt adds some trustworthiness to the account-
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ing information, because more information is available, which could help to
detect fraud.

Signed Receipts

Signed receipts are normal receipts with a signature to add integrity to
the information contained in the receipt. This is a very important step to
achieve trustworthiness of information. Additionally, a signature authenti-
cates a receipt. Working with signed receipts requires that every peer owns
a private/public key pair. Such a key pair can e.g. be issued by a central
authority or peers could create the key pair themselves and using Public
Key Infrastructure (PKI) the keys would be certified. E.g. JXTA [412] uses
self signed certificates. This approach has the disadvantage that these keys
are not persistently associated with a peer. A peer can easily create a new
key pair if it wants to revoke its identification. This problem can be elab-
orated for example by using a Web of Trust as implemented by PGP [543]
or the cryptoID-project of JXTA [139]. A central authority implementing a
PKI does not have this disadvantage, though its usage seems contrary to the
Peer-to-Peer paradigm. Nevertheless, the responsibilities of a central author-
ity within the Peer-to-Peer system could be reduced to issuing certificates
with keys and approving the validity of keys. The services offered in the
system would continue to be delivered in a Peer-to-Peer manner.

Receipts are normally signed by the author of the contained information.
Indeed, receipts could also be signed by the transaction partner to include
an agreement about the information in the receipt. This can also be accom-
plished by bilaterally signing a receipt. However, one should bear in mind
that each signature increases the size of the receipt. And size matters for the
efficiency of the accounting system in terms of created overhead. Depending
on the cryptography mechanism used, the size of the signature could be large.
For example, today’s RSA signatures are typically chosen to be not smaller
than 1024 bit.

Tokens

In the context of this chapter the term token is used for any kind of issued
document. An issuer issues a specific number of these documents (tokens).
Thus, the number of tokens available in a Peer-to-Peer system can be limited.
This results in a specific characteristic that is otherwise hard to achieve -
through issuing a limited number of tokens they become a scarce resource.
Accordingly, tokens can represent other scarce resources. However, they are
not that easy to handle like normal receipts, because two major problems
must be addressed: Forgery and Double Spending, both of which have to be
avoided. With respect to double spending a token must be clearly identifiable.
Thus, a they must contain a unique identification. Also, there must be a
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mechanism built into an accounting system to check for double spending. To
avoid forgery it must be ensured that only the issuing authority can create
a token and therefore, a token must be signed by the issuing authority with
its private key.

There are several options for the token issuing authority in an accounting
system. For example, in digital cash systems a central bank issues the tokens
(e.g. [546]). This option ensures trustworthiness and control; however, this
does not conform to the Peer-to-Peer paradigm. In [636] a micropayment
scheme for Peer-to-Peer systems is presented that relieves the central bank
many of its responsibilities. The second option is that each peer issues its
own tokens. Here tokens are very similar to signed receipts. It is also difficult
to control the number of tokens issued by every peer. Therefore, determining
the economic value of a peer’s token is difficult, too. The third option is a
compromise between the first and second option. It is issuing tokens by a
subgroup of peers and controlling the subgroup’s actions in order to control
the total number of tokens in the system. In the second part of this chapter
an accounting system using this approach is presented.

Token-based accounting systems can further be distinguished by the usage
of the tokens. Tokens can either be used as kind of micropayment system or as
receipt, i.e. a token represents exactly a specific part of a provided/consumed
service (e.g. 1 MByte data transfer). Tokens become receipts by adding ac-
counting information to the token. Here, a token can represent all kinds of
transactions or parts of transactions.

Proof of Work

Proof of Work (PoW) is another micropayment concept where a user has
to show that he performed some computationally difficult problem to be
eligible to receive a service [167]. Nevertheless, PoW cannot be redeemed
by the receiver for something of value to him. Therefore, they can be used
to avoid denial of service attacks or flooding attacks. Further, they do not
present an economic measure [167]. Also, to create a PoW, CPU cycles that
are a limited and that might be traded in the Peer-to-Peer system (and will
then represent a scarce resource themselves) are needed. Therefore, PoW in
general can be regarded as improper for accounting systems.

32.3.2 Information Storage

In whichever form accounting data is collected, it must be stored at some
place in the network, a so called account. The account location is an impor-
tant design parameter because it strongly influences the traffic overhead of an
accounting system. For every transaction, one or more accounting records ac-
cumulate and must be transferred to the account. Also, the location influences
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how easy it is for a peer to manipulate accounting records and defraud the
system. There are three basic alternatives for the account location: accounts
can be located locally at the peer that collects the data, at a central server,
or remotely at a peer other than the collecting peer. Centrally held accounts
obviously are contrary to the Peer-to-Peer paradigm. For every transaction
communication with the central entity would be necessary to transfer the
record. Therefore, this solution is out of the question. The advantages and
disadvantages of the two other alternatives shall now be elaborated.

Local Accounts

Storing accounting records at the place where they accrue has the obvious
advantage of reduced traffic, because the records do not need to be sent to
the account holder. However, using local accounts poses an important trust
problem. Using plain numbers or self-signed receipts to store information en-
ables users to easily change the contained information in order to defraud the
accounting system. The appearance of KaZaA Lite as competitor to KaZaA
is an example to this behavior [344]. Therefore, receipts should be signed ei-
ther by the transaction partner or a third party. Alternatively, tokens should
be used. Accordingly, accounting records need to be transferred between the
transaction partners. Therefore, in terms of bandwidth usage, storing ac-
counting records locally is only advantageous in comparison to other storage
location, if the transaction partner needs to get the records for some reason.
For example, both transaction partners have to agree about the contained
accounting information. Further advantages are that users have immediate
control over the collected accounting records. No redundancy need be built
into the system, because a peer’s accounting records are not needed when it
is offline. Also, users are themselves responsible for doing a data backup.

Remote Accounts

The alternative location for storing accounting records is third peers. Using
third peers, hence separating account holders from account owners, clearly
makes it more difficult for any one peer to fraudulently manipulate accounting
records. Accordingly, depending on the Peer-to-Peer application’s require-
ments, special mechanism to ensure information integrity such as signing
might not be needed.

However, using remote accounts requires the exchange of more adminis-
trative messages between peers. This stems from the need for redundancy.
Because the account holder is not always available, several account holders
per peer, each holding a replication of the account, are required. All repli-
cations of an account need to be kept consistent. Therefore, mechanisms to
detect potential inconsistencies as well as mechanisms for determining the ac-



32.4 Proposed Accounting Schemes 553

tual account status in a situation of disagreement are required. For example,
a Byzantine quorum might be used for the latter case.

32.4 Proposed Accounting Schemes

In this section the presented structure of Peer-to-Peer accounting systems is
used to classify the known accounting systems. However, most of the related
work was not designed as accounting systems but as economic frameworks.
Economic frameworks contain an accounting mechanism and use it to intro-
duce economic based incentives into the Peer-to-Peer system. That is, users
have to “pay” accounting units to receive a service and gain accounting units
if they provide a service. Accordingly, these systems are concerned with the
economic value of an accounting unit. Therefore, they either include mecha-
nisms to regulate the amount of accounting units in the Peer-to-Peer system
or try to give users guidelines to assess the economic value of an accounting
unit.
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32.4.1 Plain Numbers-Based Systems

Currently the two most widely used Peer-to-Peer accounting mechanisms are
KaZaA’s participation level [342] and eMule’s credit system [192]. Both sys-
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tems account for the amount of data uploaded and downloaded and store
the collected information locally. KaZaA’s system uses the ratio of uploads
to downloads (measured in amount of data transferred) to calculate a peer’s
actual maximal allowed download speed. The higher this ratio is the higher is
the maximal allowed download speed. This is a typical incentive mechanism
for file sharing systems. However, KaZaA’s system is easy to cheat because the
accounting information is stored locally. In fact in the KaZaA clone KaZaA
Lite [344] the participation level is removed. In contrast, eMule’s credit sys-
tem is used to determine a requestor’s position in the provider’s download
queue. The position is determined by the amount of data the requestor up-
loaded to the provider. This system has the obvious advantage, that it cannot
be cheated. The provider keeps his accounting records that only influence his
own behavior. The disadvantage is that this system only accounts for local
observations. A peer could have upload to the system much more than it
downloaded. However, if it downloads from a peer to which it did not upload
before, it will get a bad position in the provider’s download queue.

Another system that uses local accounts to store plain numbers as ac-
counting information is Swift [584]. In contrast to the both systems mentioned
before, it is not used in practice yet. Swift basically is a behavior model for
Peer-to-Peer file sharing to support fair large scale distribution of files in
which downloads are fast. Each peer maintains a credit for every other peer
it is connected to. A peer will only upload to a peer with a positive credit
balance. Because the accounting data only affects the local peer behavior,
peers have no incentive to falsify the collected information.

A system taking into account a peer’s actions in the overall system is
Karma [603]. Karma stores for every peer in the system a value that rep-
resents Its balance of uploads against downloads. This balance is stored at
remote peers. These remote peers are called a peer’s bank set. The bank
set consists of multiple peers, for redundancy reasons. The balance of a peer
must not be lost. Accordingly, a bank set is rather large - a suggested size
is 64 peers. For every transaction the bank sets of the provider and receiver
peer communicate to adjust the peers’ balance according to the transaction
value. Further, Karma includes the concept of an epoch. At the beginning
of each epoch every peer’s balance is adjusted accordingly in order to avoid
inflation.

In [14] another system using remote accounts is presented. So called ac-
countants store a peer’s balance. Like in Karma the accountants are third
peers. To ensure that the balance is not lost a set of accountants is required
for each peer. With every transaction the balance of the two transaction part-
ners is updated to the new value. A non-mediated and a mediated settlement
protocol are presented.

There are other systems known to do accounting using numbers. However
these systems are not compliant with the Peer-to-Peer paradigm. These sys-
tems use a central server to do the accounting. Examples are the accounting
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mechanism in RADIUS [509], accounting mechanisms in content distribution
networks [95], and the accounting mechanism for GRID called Gridbank [61].

32.4.2 Receipt-Based Systems

SeAl [453] is a Peer-to-Peer accounting system that uses locally stored re-
ceipts. SeAl is working based on favors. For every transaction a receipt is
created and stored locally at the receiver and provider. As a result of the
transaction, the receiver owes the provider a favor. A favor can be paid back
by the receiver by providing a service to the provider. Also the provider can
use a favor by redirecting service requests of other peers to the receiver. Fur-
thermore, peers can publish Blacklist Reports about peers behaving against
the system’s rules. For each service request a score is calculated (using paid
back favors and Blacklist Reports) that influences the request’s position in
the provider’s request queue. Accordingly, not all accounting data is stored
locally. However, for Blacklist Reports there exist no accounts for storage.

32.4.3 Token-Based Systems

One class of token based accounting systems are micropayment systems that
use tokens as a micro currency. For payment these tokens are transferred be-
tween users. (Micropayment systems just modify centrally hold bank accounts
on request belong to the plain numbers-based systems.) All micropayment
systems use a central broker or bank. Thus, they are not appropriate for
Peer-to-Peer systems. A micropayments system tailored to Peer-to-Peer sys-
tems is presented in [636]. It relieves the broker of some task and these tasks
are facilitated by the peers of the system. As a result the broker can even go
off-line for short time periods and the system can still continue to operate.

Mojo Nation [441] was one of the earliest Peer-to-Peer systems to use a
payment protocol. Users had to use a virtual currency called Mojos to obtain
a service from another peer. Mojo Nation still required a centralized trusted
third party to issue the Mojos and to resolve double-spending issues.

A system using stamps for peers’ “evidence of participation” is presented
in [431]. Every peer issues personalized stamps and trades these with other
peers. If peer A requests a service from peer B, peer A has to pay a specific
amount of peer B’s stamps back to B. There is no limit how many stamps a
peer issues. However, if a peer issues too many stamps in comparison to its
offered services the stamps will devalue. Thus, the peer will have difficulty
obtaining other stamps, as rational nodes will not wish to purchase its stamps.
This way the stamps protocol combines a virtual currency and reputation.
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32.4.4 Proof of Work-Based Systems

In [520] two micropayment systems based on Proof of Works are presented.
In both systems each participant issues his own secrets. As mentioned before,
using such systems poses the problem for users to determine the economic
value of another user’s virtual currency. In order to overcome the need to
identify the exchange rate of two users’ virtual currency in [321] Proof of
Work-based systems are extended to work with a central broker that issues
secrets centrally. This way only one virtual currency exists in the system.
However, there is no way known to construct such a system according to the
Peer-to-Peer paradigm.

32.5 Token-Based Accounting Scheme

Within the scope of the EU Project “Market Management of Peer-to-Peer
Services” (MMAPPS) we were in need for a highly flexible and trustworthy
accounting scheme for Peer-to-Peer systems. In response to that need we
developed the here presented token-based accounting scheme.

32.5.1 Prerequisites

The token-based accounting system assumes that users can clearly be identi-
fied through a permanent id, (e.g. through a private/public key pair proven
through a certificate issued from a certification authority). Depending on
the application scenario, alternative approaches like [139] are also applica-
ble. Apart from the certification authority it is intended to avoid any central
element.

Further, we assume the use of a reputation mechanism in the Peer-to-Peer
system. This system is used to publish fraudulent behavior that technical
mechanisms cannot detect. The reputation mechanism assigns a reputation
value to each peer that represents the trustworthiness of the peer. A possible
solution is presented e.g. in [333].

32.5.2 Overview

The primary goal of the proposed system is to collect accounting data and
to enable system-wide coordination of resource service usage based on the
collected information. To enable the usage of receipts for coordination in
a distributed system, the receipts must have the basic characteristic of the
resources and services they represent, i.e. they must be scarce. Therefore,
the receipts must be issued. Accordingly, every user has a limited amount
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of receipts it can use in transactions. Thus, in the presented approach to-
kens are used rather as issued receipts than as a virtual currency. As a re-
sult, the tokens must not have the characteristics of micropayments, namely
anonymity and untraceability [112]. Therefore, tokens have a clear owner
that is contained in the token. This enables local tokens storage. Otherwise
(if anonymity should be maintained) untraceable tokens have to be stored at
trusted remote accounts to control double spending.

Each peer holds an account with a specific amount of tokens clearly issued
to it. A peer spends a token by sending it to its transaction partner in order
to receive a service. Accordingly, when a peer provides a service it collects
foreign tokens from other peers. Peers cannot spend foreign tokens. Using
the token aggregation process, peers exchange the collected foreign tokens
against new ones. To achieve trustworthiness new tokens are signed with the
systems shared private key using threshold cryptography [164]. Thus, a token
must be signed by a quorum of peers to become valid. The token structure
ensures protection against forgery, double spending and stealing. The three
basic protocols of the token-based accounting system are Token Aggregation,
Check for Double Spending, and Payment.

32.5.3 Token Structure

Figure 32.2 shows the information contained in a token. A new unused token
contains the first five information fields starting from the right hand of the
figure. The issuing date and time in milliseconds together with the serial
number and the owner id serve as unique identification of a token. This
is required to enable the detection of double spending. Further, this way
double spending can be traced to the owner. During the creation of a batch
of new tokens the serial number is randomly selected for every token. Thereby,
guessing which tokens exist in the system becomes hard. The account id is
used to allocate a token clearly to a specific application. Cross application
usage and trade of tokens are possible. The account id field is optional. The
fifth field contains the signature of the information contained in the first four
fields, signed with the system’s private key. This prevents forgery.

Since a token is basically a receipt, it contains further information about
the transaction for which a token is used. The service consumer is the token
owner.

Before the owner sends the token to the service provider, it also adds the
service provider’s id to the token as well as information about the transaction
(such as transaction object, date and information about the quality of the
service provisioning). The owner finally signs the complete token using its
private key. Subsequently, the contained information cannot be changed by
the service provider. The required information in a token is the information
needed for unique identification, i.e. the system signature, the service provider
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Fig. 32.2: Token Structure

as well as the service provider’s signature. This prevents tokens from being
stolen. Because unused tokens contain the owner, only the owner can spend
them. Used tokens are signed and contain the receiver of the token. Only
the receiver is allowed to exchange tokens against new, own tokens. A token
has no intrinsic value; it rather presents an accounting event. The value of a
token is determined in the token aggregation process.

32.5.4 Token Aggregation

The Token Aggregation process is used to exchange foreign tokens a peer col-
lected for new tokens issued to that peer. The eight-step Token Aggregation
procedure is shown in Figure 32.3 (a).

First the exchanging peer EP locates a trusted peer TP (1). Trusted peers
are eligible to exchange tokens and possess one part of the system’s private
key [164]. EP sends its N collected foreign tokens (Fn1, ..., FnN ) to TP (2).
TP checks the foreign tokens for their validity. Only tokens signed by the
owner and spent only once are valid for exchange.

Using the aggregation function M = A(Fn1, ..., FnN ) TP calculates the
amount M of new tokens EP must receive in return for the foreign tokens.
The aggregation function is public and can take any form. TP now creates
M new, unsigned tokens (Un1, ..., UnM ) (3).

To sign the new tokens with the system’s private key using threshold cryp-
tography [164] TP now locates further trusted peers (4). EP is not allowed
to choose the quorum of trusted peers itself. This alleviates the problem of
potential collaboration and fraud. The number of required trusted peers to
sign a token is determined by the used secret sharing scheme. The system’s
trustworthiness increases proportional with the size of the quorum of trusted
peers.
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TP sends the new tokens to this quorum of trusted peers (5). Each peer
of the quorum signs now the tokens with its part of the system’s private
key (6). The resulting partial tokens (Pn1, ..., PnM ) are transmitted back
to EP (7). Finally, EP combines the partial tokens to new complete tokens
(Tn1, ..., TnM) (8).

It is important to mention that the aggregation function adds an ad-
ditional degree of freedom to the system. With an appropriate aggregation
function specific economic systems can be implemented.
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32.5.5 Check for Double Spending

To check for double spending a token must be clearly identifiable. To facil-
itate the check in an efficient manner, for every peer (the account owners)
there is a set of account holding peers, i.e. the account holder set. The ac-
count holder peers are organized in a DHT manner, such as Pastry [527] (see
Figure 32.3 (b)). Account holders hold a list of tokens currently issued to the
account owner. The list is filled with the required information during token
aggregation. After new tokens have been created (Figure 32.3 (a), step 3),
TP sends a list of these new tokens to the exchanging peers account holders
(Figure 32.3 (b), step 3).

During the token validity check of the token aggregation process, TP
will ask the account holders responsible for a token, if the token is valid
(Figure 32.3 (b), step 2). The account holders will remove the token from the
list. Accordingly, if the token is not in the list, it is an invalid token. TP will
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discard such a token and the Peer-to-Peer system’s reputation mechanism
will be informed about the incident.

In order to avoid message manipulation, every message sent to the account
holders must be signed with the senders private key. To keep the list between
the account holders consistent, all account holders for one specific account
exchange the list whenever the set of account holders changes. This takes
place only when peers of that set join or depart from the system. Consistency
checks are only necessary, if the sender does not receive all confirmation
messages.

32.5.6 Transactions

During transactions the token-based accounting system accounts for resource
usage, service usage, or a combination of both. Service usage is valued dif-
ferently than resource usage. A service for example detects water marks in
pictures. Since special software is needed to provide such a service, it is valued
higher than the sum of the used resources. A token can contain information
about the used resources and value information of the service itself. The in-
formation is added to a token before it is sent to the service provider. By this
means information contained in a token can be used as basis for an external
payment mechanism.

Standard Transaction

The standard transaction process is shown in Figure 32.4 (a). After a ser-
vice has been requested by the service consumer C, the service provider P
informs C about the terms and conditions of the service, including the num-
ber of tokens it expects in return for the service. If C accepts the terms and
conditions, the service provisioning phase begins.

During this phase tokens can be transmitted before, after, or during the
service provisioning. For example a token can be transmitted after 1 MB
transferred or after 1 minute service received. Before a token is transmitted,
C fills in the required accounting information. C has no incentive to falsify
this information, because it influences only the token exchange of P. Then
C signs the token with its own private key and sends it to P. P checks the
signature of the received token using C ’s public key, which can be contained
in the token as owner id or transmitted with the service request. Thus, it can
be verified, that the token sender is also the token owner.

P can choose not to continue to provide the service, if the contained
accounting data was incorrect. As a result of each transaction C ’s own token
balance decreases and P ’s foreign token balance increases.

Transaction partners could try to gain tokens by not paying tokens after
receiving a service or by not delivering the service after receiving tokens. In
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order to avoid that transactions can be split into several parts. Then C sends
a signed token to P after P delivered a part of the service; e.g. C sends a
tokens after each MByte received data of a 5 MByte file transfer. A further
approach that eliminates the incentive for transaction partners to cheat on
the other partner is now presented.

Trustable Transaction

In a scenario where tokens are used as virtual currency, a more trustworthy
settlement process might be required. Here, the transaction party that de-
livers last has an incentive to cheat the other party. It still receives the full
benefit but does not have to deliver its part of the deal. Therefore, we have
designed and implemented a trustable payment procedure that eliminates the
incentive to cheat for the transaction partners. In addition, double spending
of tokens is not only detectable, but becomes impossible. Figure 32.4 (b)
shows the procedure. After a service request is received, P notifies C about
the conditions and terms of the transaction, including the required amount of
tokens. C answers with the token ids of the tokens it intends to spend for the
transaction. Now P contacts the account holders responsible for C (AH(C))
and checks if the tokens are valid. AH(C) mark in the token list these tokens
as “planned to spend”. Using the same tokens in another transaction becomes
impossible. If all tokens are valid, P informs C that the transaction phase
can begin. C starts the transaction by sending an unsigned token to P. C
loses the token. However, since it is not signed by C, P cannot exchange it
against own tokens. P has no incentive not to provide the service. Therefore,
P now provides the agreed service. Because C already lost the token, it has
no intention keeping the token for itself. C will sign the token and send it
to P. If C should fail to send the signed token, P can present the unsigned
token to AH(C). The possession of the token proves that the transaction had
started and the token will be removed from the list and is finally lost for
C. The aforementioned reputation system provides further incentives against
such malicious behavior. On the other hand, if both peers are consenting to
cancel the transaction, C does not lose its tokens. P informs AH(C) in order
to remove the “planned to spend”-mark in the token list.

32.5.7 Trust & Security Considerations

It is crucial for the use of an accounting mechanism that the information it
provides is correct. Therefore, the token-based system has been designed to
provide a high degree of trust for distributed systems.
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Fig. 32.4: Transaction Procedures

Robbery

Tokens were designed to eliminate robbery. Tokens contain the owner id that
cannot be changed without detection through the system signature. Spent
tokens contain the token receiver secured through the owner’s signature.

Forgery

The system signature on each token ensures that the basic token data cannot
be changed and that no peer can create tokens itself. Thus, the system sig-
nature prevents forgery and is crucial for the trustworthiness of the system.
Accordingly, fraudulent collaboration of trusted peers must be avoided.

This can be achieved if in a quorum of trusted peers there is at least one
trustworthy peer. The probability of a quorum consisting of at least one good
peer can be determined using the hypergeometric distribution. The resulting
probability p defines the trust level of the system according to:

p(T, t, pg) =

⎛
⎜⎝ T · (1 − pg)

t

⎞
⎟⎠

⎛
⎜⎝ T

t

⎞
⎟⎠

, where
T number of trusted peers
t quorum size
pg percentage of good peers

Figure 32.5 shows the required quorum size for specific trust levels. For
example to achieve a trust level of 99.9% with 50% bad trusted peers in
the system a quorum size of ten is required. However, because the trusted
peers are selected using the aforementioned reputation system the percentage
of bad trusted peers can be assumed to be much lower than 50%. Moreover,
because the trusted peers are not aware which other peers belong to a quorum,
having only bad peers in a quorum does not mean that this results in fraud.
The chosen (bad) trusted peers must also collaborate. Thus, the quorum
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peers must know which other peers have been chosen for the quorum. Thus,
the archived trust level is higher.

99,0% Trustworthiness

0

5

10

15

20

25

10 100 1000 10000

T

t

20%

33%

50%

67%

80%

(a) Trust level = 99.0

99,9% Trustworthiness

0

5

10

15

20

25

30

35

10 100 1000 10000

T

t

20%

33%

50%

67%

80%

(b) Trust level = 99.9

Fig. 32.5: Required quorum size for trust levels by percentage of good peers

Furthermore, peers can only become trusted and receive a part of the
shared system private key, if their reputation is above a specific threshold
value. Accordingly, the proportion of bad peers among the trusted peers can
be assumed less than the proportion of bad peers in the whole system. The
actual trust threshold value depends on the used reputation system.

Additionally, threshold cryptography provides different proactive mech-
anisms to secure the key from being compromised. The key parts will be
updated periodically using proactive secret sharing [498]. This makes the old
key parts obsolete without changing the actual key. The system’s public key
remains the same. Further, a new system key will be created periodically
using the decentralized method presented in [81]. This is enforced by tokens
being valid only for a specific period of time. Therefore, the unique token id
contains the creation date and time. Outdated tokens can be exchanged for
new tokens using the Token Aggregation process. If the system’s private key
is kept secret the system can be considered secure.

Double Spending

The verification for double spending relies on the data hold at the account
holders. Thus, users might try to corrupt their token list at the account
holders. This is avoided by not allowing peers to send any queries or enquiries
to the account list. Rule breaches are reported to the reputation system.
Further, the token list at the account holders is a positive list. If a peer plans
to double spend a token, it has to avoid that the token is marked in the
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list as planned-to-spend and later removed from it during token aggregation;
though in both actions the peer is not involved.

Malicious peers trying to remove tokens from the token list of another
peer must guess token ids of existing tokens. That is very hard because the
creation date and time in milliseconds and the random serial number have
to be guessed correctly. Therefore, this kind of messages is obvious malicious
behavior and will be reported to the reputation system.

In Peer-to-Peer systems (even if using a DHT) it cannot be guaranteed
that a remote account at the account holders is never lost. In such a case
the account owning peer would not be eligible to receive services anymore.
Since in the token-based system the tokens are stored locally, users can secure
themselves against loss by making a backup of their tokens. The loss of an
account at the account holders will just influence the ability to check for
double spending. Since a peer can not notice if its remote account is lost, it
must assume that double spending would still be detected. Hence, it will be
discouraged to cheat.

32.5.8 Performance Analysis

We have implemented the token-based accounting system based on JXTA
2.2.1 [412]. Measurements of message sizes were used to simulate the ac-
counting scheme with the simulator presented in [152].

To study the performance of the token-based accounting system two use
cases have to be distinguished - costs for maintenance and costs for transac-
tions.

Maintenance

Maintenance costs arise from keeping the remote accounts consistent and
from the requirement to keep the systems private key secret. This involves
calculating key updates at one quorum of trusted peers and distributing new
key parts afterwards to the rest of the trusted peers. Table 32.1 summarizes
the complexity of the maintenance actions, where k denotes the size of the
bank-sets and a (t, T) secret sharing scheme is used, where T denotes the
number of trusted peers in the system.

Account Consistency System Key Related Operations

Node Arrival O(k) Key Update Calculations O(t)

Node Departure O(k) Key Update Distribution O(t)

Table 32.1: Account Holder Set & System Key Maintenance Complexity
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Transactions

For the analysis we assume a conservative ratio of 67% good peers in the
system. Further, we set a trust level of 0,1% which results in a quorum size t
of 6 trusted peers. Furthermore, we set the account holder set size k to 4. We
model a file sharing scenario, where for 1 MB download 1 token is required
and the average file size s is 5 MB. Users exchange tokens in different batch
sizes b. The trustable transaction procedure is used. If n transactions are
carried out the average number of accounting messages M sent in such a
scenario results in:

M(n, k, t, b) = n(2s + 2k) + ns
b (1 + 2k b

s + 2k + 2t)

For 100 transactions exchanging 500 tokens with a batch size of 20 results
in 3125 messages. Simulating this scenario the token-based accounting system
creates an additional overhead of less than 1% (for the mentioned example
it is less than 3,5 MB overhead for file transfers of 500 MB). Figure 32.6
(a) shows the generated traffic for different batch sizes and up to one million
transactions. As it can be expected, the overall traffic generated by the token-
based accounting system is reduced as the batch size increases. However, the
effect levels off after a batch size of 20. Figure 32.6 (b) shows the influence of
increased quorum size. The effect is not strong. Even with a very high trust
level (t=18) the system still generates not more than 1% of overhead. The
effect of size of account holder set for the generated traffic is very small and
therefore the graph is omitted here.
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32.5.9 Summary & Conclusions

One of the biggest challenges for a wider deployment of Peer-to-Peer systems
is to retrieve, collect and use information about the resource utilization within
the system. It is crucial that the information is secure and reliable while the
core features of Peer-to-Peer are still maintained.

The presented token-based accounting scheme is flexible and trustworthy.
Its basic purpose is to collect accounting information of transactions. This
information can be used to coordinate the behavior of the system’s entities
to achieve a higher system performance. Further, the collected information
can be used as basis for pricing and price finding processes. Moreover, this
builds the foundation for the development of a market within Peer-to-Peer
systems. Further, the collected accounting information could be the basis for
a payment system to support commercial applications.

Since the responsibility of creating tokens is delegated to a randomly
selected quorum of peers, fraudulent behavior is prevented. Only if all peers
in the quorum would be malicious, tokens can be forged. Also, a trustable
payment mechanism is available that does not require to involve a third party.
Thus, this approach is especially scalable.

The token-based accounting scheme is very flexible through the intro-
duction of the aggregation function. Here the exchange ratio of used tokens
against new tokens can be defined by the usage policy. Thus, different eco-
nomic models can be implemented.

The further steps are detection of the need for a system key update or
system key creation procedure. Also the economic behavior of the system
with respect to inflation and deflation will be evaluated using simulations.



33. The PlanetLab Platform

Timothy Roscoe (Intel Research, Berkeley)

PlanetLab is an extensively used, global, community-maintained platform for
researchers to develop, deploy, and evaluate widely-distributed applications
such as Peer-to-Peer systems. Because of PlanetLab’s shared nature, and its
unusual design goal of continuous replacement of components by the research
community, it can also be viewed somewhat as a Peer-to-Peer system (and an
ongoing research project) itself. This chapter describes PlanetLab’s goals and
origins, and discusses in detail the design principles that have governed its
development and growth so far. It also discusses some of the methodological
issues in performing research using a platform like PlanetLab – what can be
learned from experimentation on PlanetLab, and what research claims can
be validated by the system.

This overview of PlanetLab’s architecture and development is necessarily
brief. More details can be found in a series of documents called PlanetLab
Design Notes, or PDNs, which are available on the PlanetLab web site at
http://www.planet-lab.org/.

33.1 Introduction and History

The PlanetLab platform for distributed applications arose in March 2002
from the intersection of several trends in computing research.

First of these was a sense of frustration among the networking research
community that the Internet and its protocols had become “ossified”: so much
infrastructure, commerce, and communication by now depended on the Inter-
net that experimenting with radically new approaches at scale was impossible.
At the same time, routing protocols like BGP had become so embedded in
the network infrastructure that changing them even in an incremental man-
ner became a delicate issue which most Internet Service Providers have shied
away from.

The corresponding effect on networking research was a reluctance to ex-
plore radically different approaches on the one hand, and an reluctance to
build real networks and systems on the other, with researchers relying in-
stead predominantly on analytical results, simulations from programs like
ns2 [592], or network emulation using platforms like EmuLab [621].

This issue was captured succinctly in a report commissioned by the
U.S. National Academy of Sciences entitled ‘‘Looking Over the Fence at
Networks’’ [442]. The report also suggested a potential way out of the im-
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passe: networking research could use the concept of an overlay to deploy,
and attract users to, a new network architecture without needing to explic-
itly change the underlying Internet. This naturally led to discussion of how
researchers could deploy overlay networks at sufficient scale to gain both
experience and real users.

The second trend was rather more optimistic: the emergence of Peer-to-
Peer systems both as a major research agenda, and at the same time the
source of a significant proportion of traffic on the Internet. Early 2002 saw
the end of the “Internet boom”, and there was a feeling that client-server
applications over the wide-area was now a mature and well-understood area,
and Peer-to-Peer systems provided a new direction in research.

However, this sense of excitement with a rich new research agenda encoun-
tered similar problems to the classical networking community: how to try out
and validate ideas with such systems at scale. As with networking, ideas such
as structured overlay networks were investigated mostly by simulation; in the
rare cases that a real deployment took place, it involved a very small number
of distributed hosts. For example, the original Chord paper [575] reported
experience deploying the system on only 10 sites.

Thirdly, a variety of related technologies had matured at approximately
the same time. These ranged from techniques for managing systems com-
posed of computers and networking elements, in the fields of cluster-based
computing and data center provisioning, to operating system virtualization
techniques and resource control mechanisms. It was felt that these mecha-
nisms could form the basis of an approach to moving research agendas in
networking and distributed systems out of the current impasse.

This was the context in which David Culler (of U.C. Berkeley) and Larry
Peterson (of Princeton University), incorporating an earlier idea from Tom
Anderson (of the University of Washington), met in early 2002 to discuss
building a community-maintained, shared, distributed platform for deploy-
ing and evaluating wide-area services such as Peer-to-Peer systems. An infor-
mal workshop was convened at Intel Research in Berkeley in March of 2002,
with enthusiastic attendence from systems researchers at U.S. universities, to
discuss the scheme.

The result of this meeting was a vision of a collection of machines spread
around the globe, contributed by participating institutions who provide local
server hardware, bandwidth, power, and cooling, in return for a share in the
worldwide platform.

A position paper outlining the PlanetLab vision followed [485], and In-
tel Research provided initial seed funding for the project. This consisted of
donating the first 100 machines, shipped to about 40 universities worldwide,
and providing operational support for the platform until 2004, when responsi-
bility for maintaining PlanetLab shifted to the PlanetLab Consortium, based
at Princeton University in New Jersey.



33.2 Architectural Principles 569

From the beginning, the target application area for PlanetLab has been
planetary-scale systems, Peer-to-Peer applications prime among these. Plan-
etary-scale applications are characterized as involving computation spread
geographically across a wide area, for some subset of the following reasons:

– Removing latency: to serve a large, dispersed user population and still
provide fast end-to-end response time, computation must be moved to-
wards users to reduce the round-trip time for messages between users and
the service. One obvious example of such services are content distribution
networks (CDNs) like Akamai, who are in the business of moving content
closer to a worldwide user population.

– Spanning domain boundaries: the service executes in many geographi-
cal locations so as to have a presence in many physical areas, legal jurisdic-
tions, financial domains, etc. Examples of this kind of requirement include
censorship-resistant systems like FreeNet [124], and federated archival stor-
age systems like that envisioned by Oceanstore [368], which is intended to
survive the physical destruction or financial dissolution of any participating
service provider.

– Multiple vantage points: the application needs to process and correlate
data in real time from many physical locations. For example, network map-
ping and measurement applications were among the first services deployed
on PlanetLab and continue to be major users of the platform. PlanetLab
has also been used to deploy distributed crawlers of Peer-to-Peer networks
like Gnutella.

PlanetLab was enthusiastically taken up as a research vehicle, and has
rapidly become a canonical part of how large-scale networked systems re-
search is performed. At time of writing, PlanetLab consists of over 500 ma-
chines worldwide at more than 250 sites, with a significant presence in North
America, Europe, China, Russia, Brazil, India, and elsewhere.

33.2 Architectural Principles

While supporting Peer-to-Peer systems, and wide-area distributed systems in
general, is the main goal of PlanetLab, the community model by which sites
donate local resources in return for a fraction of the global testbed means
that PlanetLab itself can also be considered a Peer-to-Peer system. Indeed,
from the outset PlanetLab has aimed at the twin goals of decentralized op-
eration (reducing or removing entirely any centralized management facility)
and decentralized development (encouraging the community to contribute the
software infrastructure required by the platform).

Taken together, these requirements are somewhat novel for a large-scale
distributed system, even a Peer-to-Peer system. It means that PlanetLab has
to be designed not so much as a single artefact, but as a continuously evolving
social process.
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This is complicated by the tension between two usage models for Planet-
Lab. The first is as a testbed for experiments: a system is implemented and
then deployed on PlanetLab for the purpose of obtaining measurement results
for a paper. The second is as a platform to support long-running services in
the wide area: several applications such as CoDeeN [468] and OpenDHT [340]
have been running continously on PlanetLab and attracting real users for over
a year, at time of writing.

To cope with these tensions, the PlanetLab team adopted a number of
design principles to follow as the platform evolved [486]. Some of these only
became clear during the course of the initial PlanetLab deployment, but
others were identified at the original March 2002 workshop, including the
three main principles of application-centric interfaces, distributed virtualiza-
tion, and unbundled management.

33.2.1 Application-Centric Interfaces

A central concern in the design of any platform for supporting applications is
the execution environment : what set of APIs must applications be written to?
The prior experience of some of the PlanetLab design team (who had been
involved in attempts to standardise interfaces for “active networks”) led to a
strong desire to keep application interfaces as conventional as possible.

There were several motivations for this. One was encouraging uptake: ex-
perience had shown that an unconventional API was less likely to be adopted
by developers. But there was a more practical, short-term issue: a strong
desire to get something working as fast as possible, since PlanetLab had an
eager user community well before the first node came online.

Linux was chosen from the outset as the initial execution environment.
The choice greatly facilitated development, since applications could be de-
bugged on laboratory machines or clusters before deployment. A Linux exe-
cution environment was also easy to deploy - the first version of PlanetLab
was indeed based on an unmodified Linux distribution.

As PlanetLab has evolved, new functionality has been added to the envi-
ronment. For example, users were provided early on with a virtualized Linux
machine to themselves, rather than explicitly sharing a physical machine,
for a greater degree of isolation between projects. As a second example, it
was long recognized that access to raw networking sockets was desirable for
implementing new transport protocols, performing network measurements,
etc.

In both these cases, functionality has been provided by modifying the
kernel underneath the interface to the execution environment (the Linux ap-
plication binary interface or ABI in this case), without changing the interface
in any fundamental way. In the case of raw sockets, a user obtains such a
socket in the conventional Linux manner, but the precise behaviour of the
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socket depends on privilege granted to that user’s project by the organization
administering that PlanetLab node.

Not all PlanetLab functionality can be presented through the operating
system interface. For example, the ability to change the resource allocation for
a project has no clear representation or analogue on a Linux machine. Con-
sequently, an orthogonal interface to the PlanetLab-specific software running
on a machine provides this access without polluting the operating system
ABI. This interface to the “node manager” (discussed below) is not required
by conventional users, but is essential for implementing what PlanetLab calls
“infrastructure services”: services which perform useful functions as part of
the normal running of PlanetLab (for example, resource location and broker-
ing).

Longer term, the principle of keeping the execution environment as con-
ventional as possible will remain, though Linux will cease to be the only
option. By replacing the Linux kernel with a virtual machine monitor such
as Xen [179], different operating system execution environments can be em-
ployed depending on user needs. Keeping the interface to the node manager
orthogonal to the execution environment allows each to evolve, and diversify,
separately.

33.2.2 Distributed Virtualization

The key abstraction in PlanetLab is the slice: a distributed collection of
virtual machines, in which an application or service executes. A PlanetLab
virtual machine is often referred to as a sliver, and forms a resource con-
tainer [56] for the application on a particular physical node.

PlanetLab faced a difficult choice as to the node virtualization mechanism
– the node software that presents a virtual machine abstraction to slices. Like
most of PlanetLab, this has evolved over time and is expected to change fur-
ther in the future. The key requirements are those of any operating system:
multiplexing the node resources, resource isolation (ensuring that one sliver
does not gain unfair use of resources allocated to another on the same ma-
chine), security (ensuring that one sliver cannot gain unauthorized access to
the state of another sliver), and abstraction (presenting the execution envi-
ronment discussed in the previous section).

Initially, PlanetLab slivers were simple accounts on an unmodified Linux
system. Each participating PlanetLab institution was allocated the same 10
user ids on every PlanetLab node. These simple Unix accounts were rapidly
replaced by virtual Linux kernels using the “VServer” patch [391], which pro-
vides an illusion of multiple Linux machines over a single underlying, modified
kernel. In time (and after some experimentation with different approaches),
the static allocation of 10 slices was replaced by a fully dynamic system where
slivers are created on demand on the nodes selected by the slice owner.
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In addition to the VServer modifications, the PlanetLab Linux kernel has
undergone a series of other modifications over time. Throughout, however,
the strategy has been to prefer externally supported (and so relatively “stan-
dard”) code to custom-written modules and patches, so as to reduce the
burden of support and development. At the same time, modifications made
by the PlanetLab support team (some minor changes to the VServer patch
for example), have where possible been fed back to the original developers.
The resource isolation mechanism was provided for some time using a version
of the SILK (Scout paths In the Linux Kernel) [64] module, which has now
been replaced by the more widely used Linux Class-based Kernel Resource
Management (CKRM) extensions.

Modifications to the Linux kernel were by no means the only virtualiza-
tion option on the table at PlanetLab’s inception. Full-scale virtual machine
technologies like VMware are attractive because they provide the ability to
run multiple unmodified operating systems, including custom kernels. How-
ever, full virtualization does not currently provide the scalability required:
it is not unusual for around 100 slices to be active on a PlanetLab node, in
particular shortly before a major conference deadline.

Another promising direction was isolation kernels [350]. Isolation ker-
nels are very small hypervisors, making verification of isolation and security
properties much easier. Rather than fully virtualizing the whole ia32 proces-
sor architecture and PC hardware, systems like Denali and Xen [179] perform
paravirtualization: they present a virtual hardware abstraction which is close
to the underlying architecture but much more efficient to virtualize.

Paravirtualization solutions were not mature in early 2002, but Xen has
become widely used since, making PlanetLab’s transition to a Xen-based
node architecture increasingly attractive. While this allows several different
execution environments, as discussed above, it would not entail changes to
the PlanetLab node manager interface.

PlanetLab encounted unexpected complexity in virtualizing the network
on a node. Since PlanetLab nodes exist on the public network and their re-
sources are donated by participating institutions, they typically have a single
globally-routable IP address each. Consequently, services running in slices
must share the space of available port numbers for listening sockets, just
like any set of processes on a single machine. However, PlanetLab’s target
applications include network measurement infrastructures and routing over-
lays, making access to raw sockets from many slices in a safe, efficient, and
controlled manner an important requirement for PlanetLab.

Even simple port contention can be a challenge. More than one Peer-to-
Peer-based replacement for the Domain Name Service has been deployed on
PlanetLab, and for compatibility with DNS all of them want to listen on
UDP port 53. A user-supplied DNS multiplexer, running in a slice, provided
a solution to this dilemma.
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33.2.3 Unbundled Management

A final design principle that characterizes PlanetLab as a platform is unbun-
dled management. Like any large, decentralized, federated system, PlanetLab
faces significant management challenges. In addition to the two roles for Plan-
etLab mentioned above (supporting short-term experiments and long-running
services), PlanetLab is also a research project in its own right, indeed, it is
a research project that is being pursued by a number of the participating
institutions simultaneously.

For PlanetLab to succeed as a community-built artifact and true Peer-to-
Peer system, therefore, it is important that the research community is able to
contribute functionality to the platform in the form of long-running infras-
tructure services that perform essential management functions (resource dis-
covering, slice creation, etc.), and that different approaches to implementing
these services can be tried out “for real” by different groups simultaneously.
We call this principle unbundled management : management of the platform
is as much as possible carried out by multiple, competing services contributed
by users.

As a side effect, this principle has also enabled PlanetLab to become op-
erational extremely quickly, albeit with a centralized management infrastruc-
ture. Since the intention has always been that all of PlanetLab’s management
functionality will be replaced by the community, this freed up the initial im-
plementors to rapidly deploy a simple, provisional management architecture,
as long as it was all replaceable in time.

The long-term goal, however, is for PlanetLab to evolve into a fully decen-
tralized Peer-to-Peer system itself, with little or no need for the centralized
“PLC” (or “PlanetLab Central”) database currently used to manage the
physical nodes themselves (installing the system software), slices, and user
accounts.

What kinds of system design decisions does the principle of unbundled
management lead to? The most immediate implication is that interfaces to
system information must be as low-level as possible, while remaining sharable:
multiple management subsystems on a node (themselves likely structured
as Peer-to-Peer systems) must be able to use the same interface instances.
Interfaces for querying PlanetLab management state are typically based on a
standard format [524] which supplies tuples with a minimum of preprocessing.

A consequence of exporting management interfaces at as low a level of
abstraction as possible is that the concepts that such interfaces deal with on
a node are purely local to the node. Any distributed abstractions, including
slices themselves, require some external service to implement them.

The decision has so far been reasonably successful: discovery services like
SWORD [461] and monitoring services like CoMon [474] are now widely used
by PlanetLab users, despite not being maintained by the core PlanetLab
support team.



574 33. The PlanetLab Platform

A more complex example is that of resource allocation. While the Plan-
etLab consortium has laid out a “framework” for resource allocation [490],
this largely focuses on the representation of resources on nodes in the form
of tickets, which represent promises of future resources, and leases, which
represent resources currently bound to a sliver. Details of how tickets may
be exchanged, and how the set of resources required by a slice are to be as-
sembled, are again left for 3rd-party services to define and implement. The
intention is to foster a number of different resource allocation schemes co-
existing alongside each other; as well as the initial one (PLC), at least two
others have been built: the Emulab portal [617] and SHARP [235].

33.3 PlanetLab Methodology

While some small-scale wide-area distributed testbeds existed previously,
PlanetLab is the first such platform which is widely available to researchers in
many countries with broad coverage over the globe. It has had, and continues
to have, a significant influence in how much work in distributed and Peer-
to-Peer systems is carried out: it is now possible to deploy many more large
systems and evaluate them alongside each other “for real” on the Internet.

However, there has yet to appear consensus within the research commu-
nity about what results obtained on PlanetLab actually mean, or how to
use PlanetLab to derive valid experimental results. This section reviews the
current state of thinking about how best to use broad-coverage testbeds in
general, and PlanetLab in particular.

33.3.1 Using PlanetLab

We start by briefly describing what is, at time of writing, the way most re-
searchers and students use PlanetLab: creating and controlling slices through
the PlanetLab Central (PLC) web interface, or a command line tool which
talks to PLC. Other interfaces exist, for example slices can be created via the
Emulab portal [617].

Users log into PLC and create a slice, giving it a name, for example
ucb p2ps. The first half of the name identifies the creating institution, while
the second is an arbitrary name for the slice. Having done this, users then
add nodes from anywhere on PlanetLab to the slice. Having added a node,
say planet1.berkeley.intel-research.net, to the slice, the user can log
into the machine via secure shell with a command like:

$ ssh ucb p2ps@planet1.berkeley.intel-research.net
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What the user sees when logging in looks like a networked Linux machine.
She can install programs, run code, su to root, create new user accounts, run
programs like tcpdump, etc.

This lack of restriction on what users can do in slices leads to great flexi-
bility in the code that can run, as well as providing a familiar programming
environment (PlanetLab applications are usually compiled on users’ desktop
machines and then deployed on PlanetLab).

That said, there are significant differences between the runtime environ-
ment of a program running on a PlanetLab node and one running on a work-
station or server in a lab: network conditions are very different, and the
machine is always being shared with other projects. This has led to some
debate about the kinds of experimental results that PlanetLab can provide,
and the kinds of claims about system designs that can legitimately be made
based on such results.

33.3.2 Reproducibility

Can PlanetLab be used to obtain reproducible results?
Naturally, the answer to this question depends a lot on what “repro-

ducible” means. PlanetLab has never been intended as a testbed suitable for
quantitatively reproducible experiments, in the sense that ns2, EmuLab, or
ModelNet is. A number of factors contribute to the basic unpredictability of
results obtained on the Internet, and PlanetLab in particular.

As numerous measurement studies have shown, observed conditions on
the Internet can change quite radically over a wide variety of timescales. Fur-
thermore, contention for resources (CPU, network bandwidth, disk activity)
on PlanetLab itself varies considerably: despite the increasing provision of
resource isolation on the platform, it will always be possible for one slice to
“notice” the load imposed by others. Consequently, experiments on Planet-
Lab where, for example, different design choices for a Peer-to-Peer system
are compared by running each choice consecutively for an hour or a day and
measuring the performance of each, are unlikely to convince peer reviewers
in the research community.

However, it is still possible to make valid comparisons between the per-
formance of different systems running over PlanetLab. Running services over
a long period of time with extensive measurement can provide clear evidence
of what options or algorithms can make a real difference to performance, a
methodology used by a number of projects (for example, the CoDeeN content
distribution network). In many cases, this approach works best in conjunction
with simulations, which we discuss below.

Another, complementary approach to providing some reproducibility of
results on PlanetLab has to date not been explored in detail, but presents
an interesting area of research in its own right. If conditions both on Planet-
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Lab and the Internet in general can be measured continuously (for example,
by some kind of “weather service”), it may be possible for the state of the
environment at the time of a particular experiment to be sufficiently char-
acterized that the results obtained can be rigorously compared with those of
other experiments which are found, after the fact, to have been conducted
under the same conditions.

There is, however, a different sense in which PlanetLab provides for re-
producibility: the functionality of systems can be verified, and indeed used,
by peer research groups. This has, of course, always been the case for small-
scale (in terms of deployment) systems like compilers and operating systems,
but the availability of PlanetLab now means that large-scale distributed sys-
tems built by research groups can also be taken up and used by other teams.
Of course, this tends to impose a different standard to that by which such
systems have traditionally been evaluated, a topic we return to below.

33.3.3 Representivity

Alongside the issue of how, and in what sense, experimental results from
PlanetLab are reproducible is the question of the extent to which they are
representative of reality. Like the issue of reproducibility, this has a number
of aspects.

PlanetLab nodes are situated in a wide variety of places, including com-
mercial colocation centers, industrial labs with commercial ISP connections,
universities with dual-homed connections to academic and commercial net-
works, and DSL lines and cable modems. Consequently, PlanetLab machines
provide an excellent set of vantage points from which to observe the Internet
as a whole. PlanetSeer [640] is an example of a service leveraging this: obser-
vation of user traffic to the CoDeeN proxy network from all over the Internet
is used to detect, triangulate, and diagnose Internet routing anomalies.

At the same time, however, the actual locations of PlanetLab nodes them-
selves is heavily skewed. Almost all nodes have much more bandwidth than a
typical domestic U.S. or E.U. broadband connections, and the overwhelming
majority are connected to lightly loaded academic networks with very differ-
ent traffic characteristics to the commercial Internet. Banerjee, Griffin, and
Pias [55] were to the first to point this out in print, and analyze the situation
in some detail, but the immediate practical implication is that measurements
of Internet paths between PlanetLab nodes are not likely to be representative
of the Internet as a whole.

It is suggested in [55] that PlanetLab node locations might be chosen
in the future so as to converge PlanetLab’s network coverage to be repre-
sentative of the Internet. However, resource constraints make this unlikely:
PlanetLab is primarily maintained by sites, which are usually universities,
hosting machines locally in exchange for access to the global platform.
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This kind of representative coverage is important for empirical measure-
ments of the Internet as it currently is experienced by ordinary users. The
issue is very different if we consider PlanetLab as a way of testing out services
for a future Internet or, more radically, a testbed for network architectures
(including Peer-to-Peer services) which may supplant or replace the Internet.
It is also worth remembering that many applications may not be targeted
at networks like the Internet. Enterprise IP networks, for example, are often
architected very differently to an ISP.

Networking aside, it is important to remember that PlanetLab nodes are
shared between many projects, and this is a rather different deployment sce-
nario to commercial services, which at time of writing typically are hosted on
dedicated servers. In this respect, Peer-to-Peer applications to be deployed
on domestic machines (which are presumably used for other applications as
well) are closer to PlanetLab’s situation.

A comprehensive study of PlanetLab’s availability has yet to be under-
taken, but it is clear that PlanetLab is significantly less stable at the node
level than a well-run commercial hosting service. This is both a challenge and
an opportunity: it is much harder to rely on any single PlanetLab node be-
ing available, but plenty of services have been deployed that demonstrate an
impressively high degree of reliability despite fluctuations in the underlying
platform.

Ultimately, a researcher has to be clear about the resemblence or other-
wise between PlanetLab as a deployment environment and the motivating
application environment for his or her research.

33.3.4 Quantitative Results

It is important to realize the value that PlanetLab brings to a Peer-to-Peer
systems project, and avoid the trap of naively transferring experimental
methodologies based on repeatable simulations and idealized models to an
inappropriate environment. PlanetLab’s significance is that, perhaps for the
first time, researchers have access to the experience of having to cope with
everything that a real systems environment can throw at any design.

PlanetLab can be used to validate simulation results. Modulo the repre-
sentivity caveats above, if a system does not behave on PlanetLab as it does
in simulation, there is likely to be some aspect of the real environment not
captured by the simulator. If the disparity is large, this casts doubt on the
validity of the simulation results. Conversely, if the measured behaviour of
a system on PlanetLab matches closely the simulation results, this provides
a supporting argument for simulation-based claims about how the system
scales beyond what can be tested directly on PlanetLab.

In this way, PlanetLab can be valuable in designing simulators, since it
provides an excellent source of phenomena, situations, and conditions that a
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simulation might need to take into account. Furthermore, long-term deploy-
ment of a service on PlanetLab can be used to quantitatively measure the
effect of algorithmic or implementation changes in a way not possible with
simulation or emulation environments. Finally, PlanetLab deployment may
be used to characterize and model workloads to drive simulation design.

33.3.5 Qualitative Experience

The drawbacks and challenges mentioned in the sections above illustrate, to
some extent, the tensions involved in any form of computer systems research,
including Peer-to-Peer systems. On the one hand, there is the scientific as-
pect: experimental results should be reproducible by the experimenter, inde-
pendently verifiable by the scientific community, and an accurate portrayal
of nature. On the other hand is the engineering aspect: systems research is
about creating new kinds of computer systems, and understanding not simply
how they work, but understanding how to build them in the first place.

Ultimately, perhaps PlanetLab’s greatest value is that it provides an op-
portunity to learn from the real world, demonstrate the qualitative feasibility
of a system, attract real users, and provide a longer-term deployment plat-
form for genuinely useful services.

There are great challenges in building robust Peer-to-Peer systems that
can operate even at the scale of PlanetLab (about 500 nodes), when exposed
to the full reality of the Internet. Nodes fail, and the resources available to
a PlanetLab sliver (CPU, network bandwidth, etc.) can vary suddenly and
dramatically over even quite small timescales. The network itself is not ho-
mogeneous even in connectivity: some pairs nodes on PlanetLab can never
directly communicate over IP, even though they both have excellent con-
nectivity to a variety of other PlanetLab nodes. Many assumptions implicitly
made by laboratory-based evaluations are violated by PlanetLab: packets are
seen to be duplicated, nodes are not fail-stop, etc. Almost all researchers who
have deployed a service on PlanetLab report their first experience of seeing
their code, which tested fine in the lab, fail for some unknown reason when
run on PlanetLab.

Despite this, a remarkable number of highly robust services have been
created and deployed on PlanetLab. Furthermore, it’s likely that many of
the insights gained by the researchers who have built and maintained these
applications could not have been produced with a large-scale deployment.

33.4 Effects on the Internet

As numerous studies have shown, Peer-to-Peer applications such as BitTor-
rent, Gnutella, Kazaa, etc. have had a profound effect on the traffic mix
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observed on the Internet at large. However, it has been hard to capture the
implications of such systems for the future design of the Internet itself, since
by their very nature these applications, and the effects they have on the
network, are not tracked in any detail.

The experience of running applications on PlanetLab – even though such
deployments are at a much smaller scale than a successful Peer-to-Peer file-
sharing application, for example – has led to a number of insights about
how Peer-to-Peer applications interact differently with the Internet. Three
features of Peer-to-Peer applications lead to this difference in behaviour.

33.4.1 Many-to-Many Connections

Peer-to-Peer services are, for the most part, many-to-many applications: a
particular node running a component of a Peer-to-Peer service can be ex-
pected to contact a large number of peer nodes in a small amount of time,
in contrast to clients in a traditional client-server application.

The many-to-many communication patterns of PlanetLab nodes running
many Peer-to-Peer systems simultaneously has caused problematic interac-
tions with IP routers, particularly low-end hardware which implements a
“caching model” of network forwarding. Such routers have a hardware en-
gine which can forward packets at line speed, using a cache of flows (based
on packet 5-tuples). Flows which “miss” in the cache are handled by the
route processor (typically a small embedded 32-bit RISC processor). Planet-
Lab overlay applications have been seen to generate new source-destination
pairs at a sufficient rate to overwhelm the processor on such routers, causing
the router to reboot (losing network connectivity in the process).

The Internet architecture, of course, strongly enshrines the idea that any
node should be able to address a packet to any other node, at any time.
What has happened in this case is that router vendors have optimized their
hardware for a “common case” (the Web, email, and other TCP-based appli-
cations) which does not include the communication patterns of Peer-to-Peer
systems. If Peer-to-Peer systems continue to grow as a proportion of Internet
traffic, this common-case assumption will become increasingly untenable.

33.4.2 Many Alternative Routes

A component of a Peer-to-Peer system running on a single node (a sliver,
to use the PlanetLab terminology) often has a large number of alternative
nodes to contact in order to fulfil some particular function. For example, a
filesharing system typically has many replicas of desired data scattered across
the network, and a routing overlay typically has many, roughly equivalent,
intermediate nodes that it can route traffic through (indeed, many DHT im-
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plementations by design keep multiple node addresses for each entry in their
routing table). In contrast, a traditional web client (for instance) typically
has few or no alternative addresses to contact in the event of a failure to
contact the server.

This opens up a new design space for node-to-node communication pro-
tocols. For example, if one is interested in minimizing message latency in the
presence of failures, as in DHTs like Bamboo [510], it pays to have very ag-
gressive timeouts on the hop-by-hop exchanges by which messages are routed
through the DHT. Even if a node is simply being a little slow, it’s probably
worthwhile to reroute the message around the node and along an alternate
path, as long as this does not unduly increase network congestion.

Such fine-grained control over, and rapid reaction to, message timeouts is
not possible with TCP as it is implemented in a mainstream operating sys-
tem kernel. Furthermore, TCP’s policy of reliable, in-order delivery of mes-
sages is not appropriate for many, if not most, high-performance Peer-to-Peer
systems. Consequently, almost all the Peer-to-Peer applications deployed on
PlanetLab today use UDP-based, TCP-friendly custom transport protocols
rather than vanilla, kernel-based TCP. This is in stark contrast to traditional
Internet applications, which are mostly TCP-based.

33.4.3 Overlays and Traffic Correlation

While only a few Peer-to-Peer applications claim to provide overlay networks
to their users, in effect some kind of overlay network is at the heart of every
Peer-to-Peer system. This leads to a correlation of traffic between nodes that
is qualitatively different from traditional point-to-point TCP connections.
For example, a flow traversing several overlay hops appears to the underlying
IP network as a series of highly correlated point-to-point connections, whose
path may bear no resemblance to the IP routing tables in operation at the
time. Peer-to-Peer systems whose implicit overlay networks exhibit multicast
behaviour further complicate this issue.

Some researchers are beginning to study the effects of such overlays on un-
derlying ISP-based networks, for example [350]. While such work is currently
at an early stage, it does appear that the traffic characterists of Peer-to-Peer
overlays do not interact with typical ISPs traffic engineering policies in the
way that traditional applications do.

33.5 Long-Term Goals

As was its intention, PlanetLab continues to evolve as a platform for deploying
broad-coverage Peer-to-Peer services. As the platform grows, there is a trend
towards the decentralization of control: the functionality unique to PlanetLab
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Central (PLC) is expected to decrease, though PLC itself will most likely
remain as one resource broker among many.

Beyond merely supporting distributed and Peer-to-Peer applications,
however, recall that an explicit motivation for PlanetLab was to break the
impasse facing Internet researchers, in not being to able introduce architec-
tural changes in the Internet. Overlay networks using the underlying Internet
were suggested as a way out of the problem.

Recently, the term network virtualization [559] has been coined to describe
the use of overlays above a network like the Internet to provide Internet-like
functionality themselves. By providing the ability to run multiple virtual
networks with real users, the argument goes, alternatives to the Internet can
be explored at scale without replacing the current infrastructure.

There are two broad schools of thought as to where this might lead. One
says that by experimenting with alternative network architectures, the net-
working community in the broadest sense (researchers, carriers, governments,
etc.) can select a new network architecture with properties preferable to the
Internet, and then continue to use network virtualization as a way to incre-
mentally deploy it.

The other, slightly more radical, school of thought is that network virtual-
ization is the next architecture, in other words, future networked applications
will operate in the main by setting up per-application virtual Peer-to-Peer
networks, which then connect with other applications at many points.

In any case, investigating issues such as these requires the ability firstly
to place computation at many points in the world (for routing and forward-
ing calculations), and secondly to acquire network paths between such points
whose resources are guaranteed in some way, possibly probabilistically. Plan-
etLab provides the former, existing commercial ISPs’ virtual private network
(VPN) services or optical switched wavelength paths could provide the lat-
ter. A combination of the two holds real possibilities for implementing the
successor to the Internet.
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[197] Fachgespräch, “Qualität in Peer-to-Peer-Systemen”, http://www.kom.e-
technik.tu-darmstadt.de/ws-p2p/, 2003.

[198] K. Fall and K. Varadhan, The ns-2 Manual, The VINT Project, UC
Berkeley, LBL, and Xerox PARC, 2003.

[199] J. Fallows, “Internet Calling, Skype Is Living Up to the Hype”, The New
York Times, 2004, September 5, 2004.

[200] D. Fallside and P. Walmsley, “XML Schema Part 0: Primer Second Edition”,
W3C, 2004, http://www.w3c.org/TR/xmlschema-0.

[201] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On Power-law Relationships
of the Internet Topology”, In SIGCOMM, pp. 251–262, 1999.

[202] FastTrack, http://en.wikipedia.org/wiki/FastTrack.

[203] G. Fedak, C. Germain, V. Neri, and F. Cappello, “XtremWeb: A Generic
Global Computing System”, In Proceedings of Workshop on Global Comput-
ing on Personal Devices, IEEE Computer Society Press, USA, 2001.

[204] M. Feldman, C. Papadimitriou, J. Chuang, and I. Stoica, “Free-riding and
whitewashing in peer-to-peer systems”, In PINS ’04: Proceedings of the ACM
SIGCOMM workshop on Practice and theory of incentives in networked
systems, pp. 228–236, ACM Press, 2004.

[205] C. Ferris and D. Langworthy, “Web Services Reliable Messaging Pro-
tocol (WS-ReliableMessaging)”, IBM, 2005, http://www.ibm.com/
developerworks/library/specification/ws-rm/.

[206] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee, “RFC 2616: Hypertext Transfer Protocol – HTTP/1.1”,
IETF, 1999, http://www.ietf.org/rfc/rfc2616.txt.

[207] FIPS, “Secure Hash Standard”, FIPS PUB 180-1, Federal Information
Processing Standards Publication, 1995.

[208] K. Fischer, “Holonic multiagent systems – theory and applications”, In
P. Barahona and J. J. Alferes, editors, EPIA, pp. 34–48, Springer-Verlag,
1999.
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Technology”, IEEE Communications, pp. 112–118, 2002.

[468] V. Pai, L. Wang, K. Park, R. Pang, and L. Peterson, “The dark side of the
Web: An open proxy’s view”, In Proceedings of the 2nd Workshop on Hot
Topics in Networks (HotNets-II), 2003.

[469] P. R. Pandurangan and E. Upfal, “Building low-diameter P2P Networks”,
In Proceedings of the 42nd annual IEEE Symposium on the Foundations of
Computer Science, pp. 1–8, 2001.

[470] M. Papadopouli and H. Schulzrinne, “Effects of Power Conservation,
Wireless Coverage and Cooperation on Data Dissemination among Mobile
Devices”, In Proc. 2nd ACM MobiHoc 2001, pp. 117–127, Long Beach, NY,
2001.

[471] M. Papadopouli and H. Schulzrinne, “Seven Degrees of Separation in Mobile
Ad Hoc Networks”, In Proceedings of the IEEE Conference on Global
Communications (GLOBECOM), pp. 1707–1711, San Francisco, USA, 2000,
IEEE Computer Society.

[472] M. Papadopouli and H. Schulzrinne, “Design and Implementation of a
Peer-to-Peer Data Dissemination and Prefetching Tool for Mobile Users”,
2001.

[473] M. P. Papazoglou and D. Georgakopoulos, “Service-oriented computing”,
Commun. ACM, 46(10):24–28, 2003.

[474] K. Park and V. Pai, “CoMon: A Monitoring Infrastructure for PlanetLab”,
http://comon.cs.princeton.edu/, 2005.

[475] A. Parker, “The true picture of peer-to-peer file sharing”,
www.cachelogic.com/research/index.php.

[476] PAST, http://research.microsoft.com/∼antr/PAST/.

[477] R. Pastor-Satorras, E. Smith, and R. Solé, “Evolving Protein Interaction
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S. Forsé;n, editors, Nobel Lectures in Chemistry 1971–1980, Singapore, 1977,
World Scientific Publishing Company.

[496] G. V. Putte, J. Jana, M. Keen, S. Kondepudi, R. Mascarenhas, S. Ogirala,
D. Rudrof, K. Sullivan, and P. Swithinbank, Using Web Services for Business
Integration, IBM Redbook, 2004.

[497] D. Qiu and R. Srikant, “Modeling and Performance Analysis of BitTorrent-
Like Peer-to-Peer Networks”, In Proceedings of the ACM SIGCOMM 2004,
Portland, USA, 2004.



Bibliography 613

[498] T. Rabin, “A simplified approach to threshold and proactive RSA”, In
Proceedings of Crypto, 1988.

[499] B. Raman, S. Agarwal, Y. Chen, M. Caesar, W. Cui, P. Johansson, K. Lai,
T. Lavian, S. Machiraju, Z. M. Mao, G. Porter, T. Roscoe, M. Seshadri,
J. Shih, K. Sklower, L. Subramanian, T. Suzuki, S. Zhuang, A. D. Joseph,
R. H. Katz, and I. Stoica, “The SAHARA Model for Service Composition
Across Multiple Providers”, In Proceedings of Pervasive Computing, Zurich,
Switzerland, 2002.

[500] B. Ramsdell, “Secure/Multipurpose Internet Mail Extensions (S/MIME)
Version 3.1 Message Specification”, IETF, RFC 3851 (Proposed Standard),
2004.

[501] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica, “Load
Balancing in Structured P2P Systems”, In Proceedings of 2nd Interna-
tional Workshop on Peer-to-Peer Systems (IPTPS ’03), Berkeley, USA, 2003.

[502] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “Topologically-Aware
Overlay Construction and Server Selection”, In Proceedings of IEEE Infocom
2002, IEEE, 2002.

[503] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “Topologically-aware
overlay construction and server selection”, In Proceedings of IEEE INFO-
COM’02, 6 2002.

[504] S. Ratnasamy, A Scalable Content-Addressable Network, Ph.D. The-
sis, University of California, Berkeley, 2002, http://berkeley.intel-
research.net/sylvia/thesis.pdf.

[505] S. Ratnasamy, P. Francis, M. Handley, R. M. Karp, and S. Shenker, “A
Scalable Content-Addressable Network”, In SIGCOMM, pp. 161–172, ACM
Press, 2001.

[506] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “Application-level
Multicast using Content-Addressable Networks”, In Proceedings of 3rd
International Workshop on Networked Group Communication (NGC),
Springer Verlag, 2001.

[507] D. Raz and Y. Shavitt, “New Models and Algorithms for Programmable
Networks”, Computer Networks, 38(3):311–326, February 2002.

[508] M. K. Reiter and A. D. Rubin, “Crowds: anonymity for Web transactions”,
In ACM Transactions on Information and System Security, pp. 66–92, 1998.

[509] RFC 2866, “RADIUS Accounting”, http://www.freeradius.org/rfc/
rfc2866.html, 2000.

[510] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling Churn in a
DHT”, In Proceedings of the 2004 USENIX Technical Conference, Boston,
MA, USA, 2004.

[511] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker,
I. Stoica, and H. Yu., “OpenDHT: A Public DHT Service and Its Uses.”, In
Proceedings of ACM SIGCOMM, August 2005.



614 Bibliography

[512] S. Rieche, L. Petrak, and K. Wehrle, “Comparison of Load Balancing Algo-
rithms for Structured Peer-to-Peer Systems”, In Workshop on Algorithms
and Protocols for Efficient Peer-to-Peer Applications, INFORMATIK 2004,
Vol. 2, LNCS-LNI Vol. 51, GI, 2004.

[513] S. Rieche, L. Petrak, and K. Wehrle, “A Thermal-Dissipation-based Ap-
proach for Balancing Data Load in Distributed Hash Tables”, In Proceedings
of IEEE Conference on Local Computer Networks. (LCN 2004), Tampa,
USA, 2004.

[514] S. Rieche, K. Wehrle, O. Landsiedel, S. Goetz, and L. Petrak, “Reliability of
Data in Structured Peer-to-Peer Systems”, In Proceedings of HOT-P2P ’04:
Hot Topics in Peer-to-Peer Computing, Volendam, Netherlands, 2004.

[515] M. Ripeanu, “Peer-to-Peer Architecture Case Study: Gnutella Network”,
In Proceedings of IEEE 1st International Conference on Peer-to-Peer
Computing, 2001.

[516] M. Ripeanu and I. Foster, “Mapping the Gnutella Network: Macroscopic
Properties of Large-Scale Peer-to-Peer Systems”, In 1st International
Workshop on Peer-to-Peer Systems (IPTPS), LNCS 2429, Springer, 2002.

[517] M. Ripeanu, I. Foster, and A. Iamnitchi, “Mapping the Gnutella Network:
Properties of Large-Scale Peer-to-Peer Systems and Implications for System
Design”, IEEE Internet Computing Journal, 6(1), 2002.

[518] J. Ritter, “Why Gnutella Can’t Scale. No, Really.”, 2001,
http://www.darkridge.com/∼jpr5/doc/gnutella.html.

[519] R. Rivest, “The MD5 Message-Digest Algorithm”, RFC 1321, 1992.

[520] R. L. Rivest and A. Shamir, “PayWord and MicroMint: Two Simple
Micropayment Schemes”, In Security Protocols Workshop, pp. 69–87, 1996.

[521] T. G. Robertazzi, “Ten Reasons to Use Divisible Load Theory”, IEEE
Computer Society: Computer magazine, 36(5):63–68, 2003.

[522] C. Rohrs, “The PING/PONG Scheme”, http://rfc-
gnutella.sourceforge.net/Proposals/PING-PONG, 2002.

[523] C. Rohrs, “QUERY Routing for the Gnutella Network”, http://rfc-
gnutella.sourceforge.net/Proposals/QRP/QUERY routing.htm, 2002.

[524] T. Roscoe, L. Peterson, S. Karlin, and M. Wawrzoniak, “A Simple Common
Sensor Interface for PlanetLab”, PDN–03–010, PlanetLab Consortium, 2003.

[525] M. Rose, “RFC 3080: The Blocks Extensible Exchange Protocol Core”,
IETF, 2001, http://www.ietf.org/rfc/rfc3080.txt.

[526] A. Rowstron and P. Druschel, “PAST: A large-scale, persistent peer-to-peer
storage utility”, In HotOS VIII, Schoss Elmau, Germany, 2001.

[527] A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed Object
Location and Routing for Large-Scale Peer-to-Peer Systems”, In IFIP/ACM
International Conference on Distributed Systems Platforms (Middleware),
pp. 329–350, Heidelberg, Germany, November 2001, Springer.

[528] A. Rowstron and P. Druschel, “Storage management and caching in PAST,
a large-scale, persistent peer-to-peer storage utility”, In 18th ACM SOSP’01,
Lake Louise, Alberta, Canada, 2001.



Bibliography 615

[529] S. Rudström, M. Svensson, R. Cöster, and K. Höök, “MobiTip: Using
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