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Preface

The explosion in the number and size of life science data resources, and the
rapid growth in the variety and volume of laboratory data has been fueled by
world-wide research activity and the emergence of new technologies. The mod-
eling, management and analysis of this data often requires a comprehensive in-
tegration of heterogeneous and typically semistructured data, distributed across
many possibly data sources. Recent interoperability standards such as XML and
WSDL solve some (easy) problems, but data and process integration often re-
main time-consuming and error-pone manual tasks. The difficulty of these tasks
is compounded by the high degree of semantic heterogeneity across data sources,
varying data quality, and other domain-specific application requirements.

DILS 2005 was the 2nd International Workshop on Data Integration in the
Life Sciences, following a successful first DILS workshop, March 2004 in Leipzig,
Germany. For a specialized workshop, the DILS 2005 call for papers created a
large interest (over 50 abstracts and eventually 42 paper submissions; an increase
of over 20% over DILS 2004), out of which the international Program Committee
selected 15 full papers, as well as 5 short papers, and 8 posters/demonstrations,
which are all included in this volume. They cover a wide spectrum of theoretical
and practical issues including scientific/clinical workflows, ontologies, tools and
systems, and integration techniques. DILS 2005 also featured keynotes by Dr.
Peter Buneman, Professor at the School of Informatics, University of Edinburgh,
and Dr. Shankar Subramaniam, Professor at the Department of Bioengineering
and Chemistry, UC San Diego. The program also included 6 invited presentations
and reports on ongoing research activities in academia and industry and a panel
organized by the AMIA Geomics Working Group.

The workshop was organized by the San Diego Supercomputer Center (SDSC)
and took place July 20-22, 2005 at the University of California, San Diego. Addi-
tional sponsors included Microsoft Research, the American Medical Informatics
Association (AMIA), the UC Davis Genome Center, and the University of Mary-
land Center for Bioinformatics and Computational Biology.

As the workshop co-chairs and editors of this volume, we thank all authors
who submitted papers and the Program Committee members and external re-
viewers for their excellent work. Special thanks also go to Amarnath Gupta who
served as workshop general chair, and his team, especially Donna Turner, Jon
Meyer, and LInda Ferri, all at SDSC. We thank Chani Johnson and the Microsoft
CMT Team for the excellent support of their paper management system. Finally,
we thank Alfred Hofmann, Erika Siebert-Cole, and the team from Springer for
their cooperation and help in putting this volume together.

June 2005 Bertram Ludé&scher and Louiga Raschid
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Challenges in Biological Data Integration
in the Post-genome Sequence Era

(Keynote Talk)

Shankar Subramaniam

University of California, San Diego
shankar@sdsc.edu

Abstract. We are witnessing the emergence of the “data rich” era in
biology. The myriad data in biology ranging from sequence strings to
complex phenotypic and disease-relevant data pose a huge challenge to
modern biology. The standard paradigm in biology that deals with “hy-
pothesis to experimentation (low throughput data) to models” is being
gradually replaced by “data to hypothesis to models and experimenta-
tion to more data and models”. And unlike data in physical sciences,
that in biological sciences is almost guaranteed to be highly heteroge-
neous and incomplete. In order to make significant advances in this data
rich era, it is essential that there be robust data repositories that al-
low interoperable navigation, query and analysis across diverse data, a
plug-and-play tools environment that will facilitate seamless interplay of
tools and data and versatile user interfaces that will allow biologists to
visualize and present the results of analysis in the most intuitive and
user-friendly manner. This talk will address several of the challenges
posed by enormous need for scientific data integration in biology with
specific exemplars and strategies. The issues addressed will include:

— Architecture of Data and Knowledge Repositories

— Databases: Flat, Relational and Object-Oriented; what is most
appropriate?

— The imminent need for Ontologies in biology

— The Middle Layer: How to design it?

— Applications and integration of applications into the middle layer

— Reduction and Analysis of Data: the largest challenge!

— How to integrate legacy knowledge with data?

— User Interfaces: web browser and beyond

The complex and diverse nature of biology mandates that there is no “one
solution fits all” model for the above issues. While there is a need to have
similar solutions across multiple disciplines within biology, the dichotomy
of having to deal with the context, which is everything in some cases, poses
severe design challenges. For example, can a system that describes cellu-
lar signaling also describe developmental genetics? Can the ontologies that
span different areas (e.g. anatomy, gene and protein data, cellular biology)
be compatible and connective? Can the detailed biological knowledge ac-
crued painstakingly over decades be easily integrated with high through-
put data? These are only few of the questions that arise in designing and
building modern data and knowledge systems in biology.

B. Ludéascher and L. Raschid (Eds.): DILS 2005, LNBI 3615, p. 1, 2005.
(© Springer-Verlag Berlin Heidelberg 2005



Curated Databases
(Keynote Talk)

Peter Buneman

School of Informatics and Digital Curation Centre,
University of Edinburgh
opb@inf.ed.ac.uk

Abstract. Measured in dollars per byte, the cost of data in some bio-
logical data sets exceeds that of “big science” data by several orders of
magnitude. This somewhat pointless observation does at least underline
the fact that biological databases are constructed and maintained with
a very great deal human effort—they are curated. So what are the issues
with curated data, and how well does current database technology serve
them?

In this talk I shall describe some of the new challenges to database
research that arise from curated databases and what my colleagues and
I are doing to tackle them. They include annotation, data provenance,
database archiving, data publishing and security. I shall also attempt
to summarise the work of the recently formed Digital Curation Centre,
which is concerned not only with these database-related issues but also
with the larger problems of ensuring that our scientific and scholarly
data is understandable not only by current users but is “curated” in the
sense that it will be usable in the future.

B. Ludéascher and L. Raschid (Eds.): DILS 2005, LNBI 3615, p. 2, 2005.
(© Springer-Verlag Berlin Heidelberg 2005



A User-Centric Framework for Accessing
Biological Sources and Tools*

Sarah Cohen-Boulakia!, Susan Davidson?, and Christine Froidevaux!

! LRI, CNRS UMR 8023, Université Paris-Sud, Orsay, France
{cohen, chris}@lri.fr
2 Department of Computer and Information Science,
University of Pennsylvania, USA
susan@cis.upenn.edu

Abstract. Biologists face two problems in interpreting their experi-
ments: the integration of their data with information from multiple het-
erogeneous sources and data analysis with bioinformatics tools. It is dif-
ficult for scientists to choose between the numerous sources and tools
without assistance. Following a thorough analysis of scientists’ needs
during the querying process, we found that biologists express preferences
concerning the sources to be queried and the tools to be used. Interviews
also showed that the querying process itself — the strategy followed — dif-
fers between scientists. In response to these findings, we have introduced
a user-centric framework allowing to specify various querying processes.
Then we have developed the BioGuide system which helps the scientists
to choose suitable sources and tools, find complementary information in
sources, and deal with divergent data. It is generic in that it can be
adapted by each user to provide answers respecting his/her preferences,
and obtained following his/her strategies.

Availability: http://www.lri.fr/~cohen/bioguide/bioguide.html

1 Introduction

Life sciences are continuously evolving so that the number and size of new sources
providing specialized information in biological sciences have increased exponen-
tially in the last few years,! as well as the number of tools required to carry
out bioinformatics tasks. Scientists are therefore frequently faced with the prob-
lem of selecting sources and tools when interpreting their data. The diversity of
sources and tools available makes it increasingly difficult to make this selection
without assistance.

We firstly introduce a framework allowing to specify various querying pro-
cesses. Our work was developed following a thorough study of scientists’ needs
during querying and data management. After interviewing scientists working in

* This work was supported in part by the European Project HKIS IST-2001-38153,
the Fulbright Program as well as a Hitachi Chair at INRIA.
! See the annual Nucleic Acids Research database issue (January).

B. Ludéascher and L. Raschid (Eds.): DILS 2005, LNBI 3615, pp. 3—18, 2005.
(© Springer-Verlag Berlin Heidelberg 2005



4 S. Cohen-Boulakia, S. Davidson, and C. Froidevaux

various domains, we found that they expressed preferences concerning the sources
queried and the tools used. Moreover, this study emphasized the fact that the pro-
cess of querying itself — the strategy — varies from one scientist to another. We have
then designed the BioGuide system, which provides scientists with support dur-
ing the querying process. BioGuide assists the scientist with data searches within
sources, providing information concerning the sequences of sources to be consulted
and the tools to be used: the paths between sources to be followed.

We first describe the method used to assess scientists’ requirements, and
present the needs identified (section 2). We then describe the notion of strategy
(section 3) and the way in which we propose to manage preferences (section 4).
Section 5 introduces the formal framework and presents the general architecture
of BioGuide, explaining how it provides support for the querying process. The
biological significance of the results obtained will be presented in section 6.
Section 7 compares our work to previous work and concludes the paper.

2 User Requirements

2.1  Process: Interviews and Questionnaire

We started with a thorough study of user requirements (cf. BioGuide site). We
investigated the way in which scientists query sources and perform bioinformatics
tasks (in the spirit of [18] and [6]), paying particular attention to determining
why biologists query one source rather than another (preferences) and identifying
the steps of their querying process (strategies).

A questionnaire was developed based on lists of user requirements in three
kinds of documents: (i) survey articles [11] and reports of workshops on biological
source querying (ii) studies on data quality [14], [4], [15] and (iii) studies on user
guidance during the querying process, involving BioMediator [12], BioNavigation
[9] and DSS [2]. The questionnaire comprised 28 questions and was constructed
according to standard guidelines. As an illustration, four questions are provided:

— Choose a particular context from your own area of study and list some
biological queries that you frequently make.

— If several sources yield answers for your query, do you access all of them or
only few? If you query only a few, how do you proceed?

— In your mind, what is a ”high-quality” source/tool?

When you look for data related to two linked entities (e.g. a gene and the

protein it encodes), how do you proceed (sources accessed, way of correlating

information, etc.)?

After collecting responses to the questionnaire, we conducted interviews accord-
ing to classical techniques. We sent questionnaires to 20 individuals, including
both biologists and bioinformatics specialists. Their research interests fell into
three main domains: studies of diseases, functional and structural genomics.
From the questionnaire, we identified 156 common queries. Some had almost
identical structures (e.g. the search for genes involved in breast or in bladder
cancer) and we grouped them together, giving a total of 119 distinct queries.
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2.2 Transparent Queries and Traceability

In most cases, neither the sources to access nor the tools to be used were specified
by the biologists in their queries. Instead, their queries involved only biological
entities and relationships between entities. An example of such queries is ”Re-
turn all contigs that map ’close’ to marker M on chromosome 19” which includes
the biological entities CONTIG, MARKER and CHROMOSOME and includes the
relationships “"maps close to” and ”(located) on”. We conclude that scientists
find it very useful not to have to specify the sources and tools that is, to make
transparent queries [10].

Follow-up interviews showed that scientists want to ask transparent queries
while being aware of the origin of the answers obtained. They want to
know the why-provenance [1] that is, which sources and/or which tools have
been used to calculate the data they obtain. Traceability is particularly impor-
tant for verifying results, drawing conclusions and testing biological hypothe-
ses [19].

2.3 Source and Tool Requirements

A more complex step in the querying process is the assembly of information be-
tween entities. From the sample queries, we observed that relationships between
entities are either explicitly stored in the sources or calculated by a bioin-
formatics tool. For example, in the query ”Return all contigs that map ’close’
to marker M on chromosome 19”, the fact that Marker M is on chromosome
19 must be stored in the data sources queried by the biologist. Conversely, the
relationship of ”close mapping” can be calculated (e.g. using Blastn). For each
calculated relationship between entities, we also determined which tools were
used to achieve it (e.g. Blastn) based on the interview information.

Different kinds of links between sources may therefore be distinguished: in-
ternal links (within the same source), cross-references (between different sources)
and tool-links. Internal links may be seen as a way of obtaining information on
one entity from another entity within the same source. Cross-references are hy-
pertext links from an entity in one source to complementary information in
another source, and are not necessarily symmetric (e.g. there are an increasing
number of specialized sources which crossreference GenBank but are not refer-
enced in return). Finally, tool-links are services provided by a source, yielding
links with entities in other sources. Each source may provide several different
services achieving a given relationship. For example, GenBank provides different
tools (e.g. Blastx, tBlastn) to enable users to carrying out ”similarity searches”
between the genes of GenBank and proteins of various sources.

It is also clear from interviews that scientists have preferences concerning
entities in sources and tools. One of the key issues facing bioinformaticians is
therefore to help the scientists to evaluate their confidence in sources and tools,
and to make use of this confidence in a semi-automatic querying process. We
return to this in section 4.
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3 Strategies

Interviews revealed that each scientist followed paths between sources and
queried the sources by first considering each entity for which information was
sought and then by linking information about entities by means of cross-
references or tools. Since information is collected entity by entity, each entity
is treated exactly once. However, the scientists differed considerably in other as-
pects of querying, in particular whether or not (i) they followed an order on the
entities, (ii) they were willing to explore other entities, and (iii) they were willing
to visit a source more than once. We term these query criteria Ord (Ordered),
OnlyGE (OnlyGivenEntities) and SourceOFA (SourceOnceForAll), respectively,
and call the combination of criteria the query strategy.

3.1 Querying Entities by Following an Order

The first criterion, Ord, determines whether the entities of interest are searched
in the given order or whether all orderings of the entities are considered. It is typ-
ically chosen when the scientists know that the desired information is provided
by the given ordering, as opposed to when they want to get as much information
as possible?. For example, if the scientists search for the chromosomal location
of the sequence of a given BAC (Bacterial Artificial Chromosome), they may ac-
cess a few sources containing BAC information and may follow cross-references
to sources providing information about chromosomal location. In this situation,
the scientists order the entities so as to start from the known entity and end
with the entity sought; only links from BAC to CHROMOSOME are followed.
However, if the information sought is not available in the data sources, the bi-
ologists may browse the sources to obtain as much information as possible. The
two entities are therefore also considered in reverse order (from CHROMOSOME
to BAC). Thus, they consider all the permutations between entities (from BAc
to CHROMOSOME and from CHROMOSOME to BAC).

3.2 Querying Only Given Entities

The second criterion, OnlyGE, determines whether the scientists are interested
in finding information using only the given entities, or whether they are willing
to explore additional entities that are biologically linked to the entities explicitly
sought. As an illustration, consider the previous example of scientists interested
in finding data on the chromosomal location of a given BAC b. If the scientists
do not find any information about the BAC b by querying sources for entities
BAc and CHROMOSOME, they may consult sources providing information on
other entities, such as GENE, and try to determine the location of genes known
to be present on b. This makes it possible to determine the location of the
BAC b.

2 Note that if the entities are not ordered the non-symmetric aspect of links between
sources can be resolved.
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3.3  Querying a Source Once for All

The third strategy criterion, SourceOFA, determines whether or not a given
source can be visited more than once. The second approach is primarily adopted
by scientists who wish to validate information already obtained. Visiting a given
source multiple times makes it possible for the biologist to check whether the
information obtained - and to which further information has been added via the
browsing of several sources - has remained coherent. This process is particularly
important when the data reflects expertise, as experts may disagree, resulting
in divergent data. Continuing with our example, the scientists may query the
source MapView to obtain data about a given BAC and follow a cross-reference
to GenBank to find the chromosomal location of that BAC. GenBank is queried
here because it contains all the available genomic data. However, GenBank is
a large public data repository, containing information originating from many
different laboratories; therefore, some of the data it contains may be erroneous.
The biologists then follow links from localization information in GenBank to the
same kind of information in MapView to compare the results.

3.4 Combining the Criteria

Interestingly, criteria may be combined, generating a wide variety of querying
processes. Scientists typically adopt the simple strategy where the criteria Ord,
OnlyGE, SourceOFA are chosen. If the results obtained are not satisfactory, the
scientists may then drop one of these criteria, e.g. allow the entities to be queried
in any order. Section 6 shows how following strategies allows the scientists to
find complementary data and to deal with divergent data. We will also see how
allowing them to choose his/her strategy represents a real challenge in the
development of systems providing support for the querying process.

4 Management of Preferences

Our goal is to get as much information as possible from the sources using al-
ternative paths that follow the chosen strategy. Unfortunately, the number of
alternative paths may be very large. BioGuide therefore allows users to state
preferences to filter and rank the paths considered.

4.1 Initializing Preferences

Responses to our questionnaire showed that the reason why a source or tool
is preferred varies between scientists. Interviews revealed that about 30 criteria
determine preferences (e.g. reliability, completeness and ease of use), mainly in
association with entities in sources and links between them. Some users even
base their preferences for tool-links on the sources which provide them. We
thus asked and helped the users to quantify the confidence that they have in
the components of each path, i.e. entities in sources and links between them.
To guide the user, initial confidence values for components of a path can be
automatically generated using information such as the average speed of a tool,
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Fig. 1. Initializing Preferences

or the source-entity cardinality (i.e. an estimate of the number of instances of
an entity in a source) [9]. These initial values may then be improved, adjusted
or rectified by comparing the values obtained for all the source-entities related
to a given set of entities and/or to a given set of sources. BioGuide provides a
user-friendly interface (Fig. 1) through which the user can adjust the improved
initial values.

4.2  Using Values of Preferences

Firstly, we introduce the notion of level of filter preference and distinguish
three different levels: (i) global, (ii) intermediate and (iii) local. The global level
corresponds to a filter on a path, i.e. on the sequence of sources and links taken
as a whole. Filters at the intermediate level focus on a given entity or relation-
ship. At the local level, filters relate to a given source or a given link, allow-
ing the biologist to name the source/tool to use. Section 6 will illustrate this
notion.

If the number of alternative paths is still too large, we can sort them ac-
cording to the biologist’s preferences [2], [9]. To do this, we must associate a
value with each path. The way in which the global value of a path is computed
from the confidence assigned to its components (source-entities and links), i.e.
the sort-operation used (e.g. the weighted sum), can vary (cf. BioGuide site).

5 BioGuide: Querying According to Strategies
In this section we introduce the architecture of BioGuide (see Fig. 2) and then

describe more precisely its two main modules: EntityPathsGenerator (EPG) and
SourceEntityPathTranslator (SEPT).
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5.1 Architecture

From a query expressed in natural language (Qnqt), the scientist first has to
extract the underlying biological entities and the relationships between them
(Qentret)- In BioGuide, this pre-process is performed by the user, but could
easily be automated, as described by [16]. BioGuide supports biologists in this
task by providing a graph of entities (described in the next subsection).

The steps (I) to (IV) of the BioGuide process are shown in Fig. 2. (I) The
initial user’s query Q consists of (i) Qentrer, the entities and relationships un-
derlying the user’s query; and (ii) the choice of the user concerning entity related
strategy criteria (Ord and OnlyGE). (II) From Q, the EPG module yields P.,
the set of paths in the graph of entities generated according to the entity re-
lated strategy criteria. (IIT) The extended user’s query Q. consists of (a) P,
the output of the EPG module, (b) the choice of the user concerning the strat-
egy criterion SourceOFA, and (c) the user’s preferences. (IV) Using Q. and the
source-entities graph, the SEPT module generates the list L,,. of paths between
source-entities that can be used to retrieve the data.
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Fig. 2. BioGuide architecture

5.2  EntityPathsGenerator: Transparency and Strategies

We now present how the EPG module processes and we describe its components.

Graph of Entities: We extracted entities and relationships from the collected
queries and used the answers given during interviews to build the graph of enti-
ties. The nodes are the biological entities and the edges are the biological rela-
tionships between them (see Fig. 3). This graph expresses biological knowledge
(e.g. proteins are encoded by genes), bioinformatics knowledge about tools (e.g.
proteins and genes may be similar) and knowledge about sources (e.g. informa-
tion on disease often cross-reference information on 3D-structure). Labels on
the edges specify the kind of semantic relationship between these entities. The
users can make use of this graph to build questions by selecting entities and, pos-
sibly, relationships between these entities. Moreover, if they do not want to only
consider the given entities of their query, they may characterize the additional
entities and relationships that they would like to consider or to avoid. This can
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Fig. 3. Graph of Entities (Subpart)

be done by explicitly referring to entities and relationships or by specifying the
kind of relationships (e.g. those achieved by tools) used to reach these additional
entities. We now present more formally the notion of initial query.

Input of the EPG Module: Q. The initial user’s query is Q={Lgnt, Sgel,
StrategyE, Snornts Snorel, PropertiesRel} where Lg,; and Sge; denote the list
of entities and the set of names of relationships (possibly empty), respectively;
StrategyE contains the choice of the user concerning the strategy criteria Ord
and OnlyGE; if OnlyGE is not chosen by the user then (a) s/he may specify
which entities (or relationships) s/he wishes to avoid, by adding them to the set
SnoEnt (Or Sporer) and (b) PropertiesRel is a conjunction of properties expressing
which kinds of relationships can be used to reach additional entities.

As an illustration, consider the previous example in which the user wishes
to find information connecting a given BAC and its Chromosomal location
(Lgnt=[BAc, CHROMOSOME]) without choosing an order between entities and
considering not only the given entities of his/her query (StrategyE ={}). The
user may wish to avoid distant entities such as EST (S, ,gn:={EST}) and may
choose to follow only non-tool relationships(Syomnt={}, Snoret={}, Properties-
Rel=0OnlyNonTool).

The EPG module is based on an algorithm which aims at calculating from
Q the corresponding set of paths in the graph of entities. As an illustration,
the following paths are returned by EPG from the previous query: (BAc isOn
CHrOMO)?, (CHROMO isOn BAC), (BAC isOn GENE), (GENE isOn CHROMO)*.

3 CuroMo will stand for CHROMOSOME.
4 Relationships between entities are symmetric.



A User-Centric Framework for Accessing Biological Sources and Tools 11

Output of the EPG Module: P.. More formally, the EPG module calculates
P., the set of paths in the graph of entities which respect the following four
properties. (1) Each path in P, contains all the entities and relationships specified
by the user and visits each entity once only. Moreover, (2) if the user has chosen
the strategy criterion Ord then the entities in each path must be considered in
the order indicated in the list Lg,¢, and (3) if the user has chosen the criterion
OnlyGE then each entity of each path must belong to Lg,:. Conversely, (4)
if OnlyGE has not been chosen, paths may consider additional entities and
relationships (i.e. not specified in Lg,; and Sge;). In this case, these entities
and relationships must be different from those in S,gnt, Snorer and the edges
followed must satisfy conditions expressed in PropertiesRel.

The EPG algorithm is sound and complete with respect to these properties.

5.3  SourceEntityPathTranslator: Preferences and Strategies

The next step involves finding the sources containing entities and the links giving
relationships, which is the aim of the SEPT module that we present with its main
components here-after.

The Graph of Source-Entities: After carrying out a thorough study of the
sources and tools mentioned in interviews, we designed a graph of source-entities
(see Fig. 4). Each node represents an entity in a source. Arrows indicate the
links between a given entity in a source and another entity (in the same source
or another source). Labels on arrows specify the kind of link. CrossRef and
Internal labels indicate cross-reference and internal links, respectively. Other
labels (such as Blast) refer to tools.

More formally, let E be the finite set of biological entities (e.g. BAC, GENE),
and R be the set of pairs of entities linked by relationships. Let Lab,. be the finite
set of labels of relationships between entities (e.g. SimilarTo), S be a finite set
of data sources (e.g. GenBank), NCSxE be the set of pairs (source,entity) (e.g.

Fig. 4. Graph of Source-Entities (Subpart: only source-entities relating to BAc, CHRO-
MOSOME and GENE)
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(GenBank,GENE)), A be the set of directed links (arrows) between (source,entity)
pairs, and Lab; be the finite set of labels of links (e.g. CrossRef, Blast) between
(source,entity) pairs. Lab; contains the names of the links achieving relationships,
the names of which are in Lab,.. In the rest of the paper we will use the following
abbreviations to mention sources: GB, LL, RF, MV, MVF and UG stand for
GenBank, RefSeq, LocusLink, MapView, MapViewFish and UCSCGenome.

Definition 1. The GraphOfSourceEntities is a directed labelled graph given
by the 3-tuple (N,A,f;.1:1), where (1) N is the set of nodes given as (source,entity)
(2) A C N x N is the set of arrows (directed links between nodes)

(3) fiapr: A — Lab; provides the label of each arrow.

Definition 2. A path in GraphOfSourceEntities is a sequence of pairs of
arrows and labels, (aj, l1), (az, l2), ..., (&g, lx) such that, for i (1 <i < k), a; is
an arrow from the node n;_; to the node n; (adjacent arrows) and such that
n; # n; (no cyclic path), for i # j, (0 <i,j < k). The length of the path is k,
the number of arrows.

The GraphOfSourceEntities is constructed so that: (i) (s,e) is a node if and
only if the source s contains the entity e and (i) a=(s,e) 1 (s’,¢’) is an arrow if
and only if (1) the source s provides a link labelled by 1 from entity e to entity
e’ of source s’ and (2) there is a relationship r in the graph of entities between
e and e’ such that 1 achieves the relation r.

Using the GraphOfSourceEntities the users can specify their filter preferences.
In this step, the users may also define their sort preferences and select whether
or not they wish to consider each source once for all. We present more formally
the notion of extended query based on the graph of source-entities.

Input of the SEPT Module: Q.. The extended query of the user (cf.
Figure 2 step (II1)) is Qse ={P.,PrefCond, L,qnk,Oprank, StrategyS} where P,
is the set of paths in the graph of entities obtained from Q (cf. section 5.1);
PrefCond is a boolean formula expressing filter preferences on paths of source-
entities (cf. section 4.1); L,qnk is a list of pairs (entity, preference criterion)
used to rank the paths; Op,qni is the sort-operation chosen to calculate the
value of the preference on each path from the value of preference criteria for
its components (pairs of source-entities and links); and StrategyS describes the
choice of the user concerning the criterion SourceOFA (cf. section 3.3).

The SEPT module is based on an algorithm which aims at calculating from
Qse the corresponding list of paths in the graph of source-entities, Lys.. An

BlastNH_NC’BI (RS,GENE) CrogRef (LL,

GENE) (GB, CHROMO). Let us mention that this path have been generated
using the path p.=BaAc mapsWith GENE isOn CHROMO of P..

example of path in Lys. is pse=(GB,Bac)

CrossRef
—

Definition 3. Let us consider p. = e;r;...r._1€; a path of Pe, ps. = (S1,€1)
l1(s2,€2) ...l,—1(Sn, €,) a path of P,. and m the number of entities in the query.
Pse corresponds to p. if and only if (1) the set of entities of p,. is equal to
the set of entities in p. and entities in ps. appear in the same order as in p, ;
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(2) several source-entities concerning the same entity are possible in p,e (M <
n) but they must be consecutive and linked by cross-references ; (3) let (s;,€;)
l; (Sit+1,€i+1) be an arrow of p,. (1 <i < n), if e; and e;; are occurrences of
two distinct entities, x and y, there must be an arrow X r y in p. such that I;
achieve r (3j,1 <j <m, X=X;, Yy = X;j41 and r =r;).

Let us return to our example. The path ps. corresponds to p. since: (1)
entities are the same and are in the same order; (2) the source-entities related
to the GENE entity are consecutive and linked with cross-references; and (3) the
BlastN_NCBI tool and a cross-reference achieve the relationships mapsWith and
isOn.

Output of the SEPT Module: Lyse. From Qg the SEPT module yields
Lyse a list of paths in the graph of source-entities. These paths satisfy the three
following properties: (1) Paths of L,. correspond to paths of P, according to the
previous definition; (2) each path in L,,. satisfies the preference filters; (3) the
list of paths in L. is ranked following sort-preferences specified in Op;.qnk and
Lyank. The SEPT algorithm is correct and complete with respect to these
properties.

5.4 Towards a Meaning for Source-Entities Paths

We provide below the meaning of paths between source-entities from a relational
database perspective: (i) each node (s,e) in the graph of source-entities is a view
over the source s of the entity e (represented by a table s_e); and (ii) each link is
a kind of join. More precisely, tool-links are mapped to a particular conditional
join, the similarity join, in which data are joined if and only if they are very
similar [17]. We considered several similarity functions based on those used by
tools (Blast etc.). Furthermore, internal and cross-reference links are mapped
to a link-join. A link-join between two tables si_ek and sj-ek’ (respectively re-
lated to source-entities (si, ek) and (sj, ek’)), with id as identifier (primary key),
is defined by using the table Link(IdBeg, SourceBeg, IdEnd, SourceEnd) as fol-
lows si_ek X (si_ek.id=Link.idBegin) LANK X (sj ek’ id=Link.idEnd) sj-ek’. Link contains
internal and cross-reference links. A tuple (i1, S1,12,S2) is in Link if there is a
cross-reference (or internal link) from a biological data identified by I in S; to
another data identified by i in Ss.

Consequently, depending on whether the Ord criterion is chosen or not, dif-
ferent paths are generated. Consider two ordered entities €; and e5: if only one
tuple of the form (is, So,i1,5S1) concerns S; and S in the Link table, then no
path between S; and Sy is generated. Conversely, if Ord is dropped then the
path (Sz,€2) — (S1,€1) is generated. Furthermore, if the criterion OnlyGE
is dropped, new data may be found due to the ability to introduce new en-
tities. Conversely, if SourceOFA is chosen then some links may be missed.
With three entities, paths of the form (s;,e1) — (Se,e2) — (S1,€3) cannot be
calculated.
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5.5 Complexity

The complexity of BioGuide is related to the number of source-entities paths
generated. The worst case occurs when the graphs of entities and source-entities
are complete. Table 1 gives the number of entities paths generated by EPG
according to the strategy followed. ¢ is the number of entities of the query, n+q
is the number of entities in the graph of entities.

In any strategy where Ord is dropped (cases b and d), all permutations
between the q entities of the user’s query are considered. In the case where
OGE? is dropped and Ord is taken (c), all the paths with at most i additional
entities between ¢ entities are considered (n is the upper bound of i), the first
entity and the last one staying fixed. Then, for each entity e, the maximal number
of paths of source-entities only focused on e (i.e. each source-entity concerns e)
generated is given by the following formula: fo#sf!k)! where nbse is the
number of sources that contain the entity e (k is the number of sources involved
in the paths of source-entities).

In the worst case, the time complexity is very high. However, the queries
identified in this study consider only a small number of entities at the same time
(only 8 % of the queries had more than three entities) and the source-entities
paths desired by the user rarely exceed 6 source-entities. Moreover, BioGuide
generates paths that are shorter than 15 source-entities long in less than 1 second.

Table 1. Number of paths depending on the criteria combination

a. {OGE, Ord}|b. {OGE}| c. {Ord} d. no criteria
1 q! ol Jala — 1) X o +q - 2)!

6 Results

6.1 Using Strategies

The ability to use different strategies and alternative ways of retrieving data
across sources, combined with the ability to use tools and take user prefer-
ences into account, was considered very useful by the biologists interviewed. A
knowledge of which tools may be used for a particular bioinformatics task was
considered important in a variety of domains, such as the annotation of newly
acquired genome with sequence similarity search and 3D-structure analysis with
structure comparison. Moreover, all of the biologists questioned used strategies
where they do not limit them to query the entities of their query. For ex-
ample, in cancer studies knowledge about PROTEINs and PATHWAYS is obtained
using FUNCTION as an additional entity. In protein-protein docking studies, bi-
ologists may use STRUCTURALDOMAINS to link PROTEIN and 3D-STRUCTURE.
In annotation projects, the CHROMOSOMAL location of INTRONs is found us-
ing data about ESTs. Furthermore, more than half the interviewees frequently

® OGE stands for OnlyGE.
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adopted strategies where no order is fixed between entities. Only when the goal
of the search was to find very high-quality data did biologists adopt strategies
with a fix order between entities. This is the case when searching for samples
for expensive experiments (e.g. crystallization of PROTEINS). Finally, strategies
where a source is queried once for all are adopted by biologists for only a
very small number of sources in which they have a high level of confidence. In
most cases, strategies where sources are queried several times are adopted to
ensure that the results obtained are reliable.

6.2 Example of CGH Analysis

A principal example of the use of BioGuide concerns the task of positioning
genomic BAC clones on the draft of the human genome sequence [2]. In CGH
(Comparative Genomic Hybridization) array experiments, BACs are used to
identify new cancer-related genes and it is of the utmost importance to know
the precise position of BACs on the genome sequence. We will study the follow-
ing query: ”Where are all the BACs of my CGH array located on the genome
sequence?” where the underlying entities are BAC and CHROMOSOME.® We ini-
tially assumed that the scientist adopted a simple strategy choosing all of the
criteria (Ord, OnlyGE, and SourceOFA). As for preferences, we assumed that the
user indicated the following filters: no source with low completeness whatever the
entity is (global level), no source providing CHROMOSOME with a medium relia-
bility (intermediate level), and the ensEMBL source should not be queried (local
level). The user also indicated that the results should be sorted by considering
completeness for BAC and reliability for CHROMOSOME. The sort-operation is
the weighted sum. Based on these filters and strategy criteria, BioGuide yielded
seven source-entities paths. Instantiated data have been got using BioGuide
within the HKIS platform? [2].

The results given by these paths are complementary, providing information
on different instances of BACs. They also give complementary results concern-
ing single instances of BACs. For example, the path (MVF,Bac) ™" (MVF,
Curomo) localizes BAC RP11-89F21 on chromosome band 17p11.2 whereas the
path (UG,Bac) "< (UG,CHROMO) is more precise, giving the exact position
of this BAC on the chromosome sequence (15,021,683-15,022,225). More globally,
these source-entities paths yield the location of about 80% of the BACs.

Let us assume that the user then tries to obtain information about the
20% missing BACs by adopting a more complex strategy without OnlyGE. The
user also chooses to follow relationships achieved by tools, and not to consider
MARKER as an additional entity. A new path of entities is generated with GENE
as an additional entity. In the corresponding source-entities paths, all the missing
BACs can now be located. For example, due to the path (GB,Bac) 2'***¥5VeP!

(RS,GENE) T2 (L1, Geng) ©77237 (GB,CHROMO) the chromosomal location

5 Sources were queried on January 3, 2005; more details on this example are available
from the BioGuide web site.
7 http://www.hkis-project.com
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of BAC RP11-782H1 was found. More precisely, this BAC (entry AC025749 in
GB) mapped with (using the BlastN tool from NCBI) the gene P85B (entry
N M 005027 in RS, which cross-refers entry 5296 in LL), which is is located on
chromosome 19 (in GB PIK3R2 entry).

Finally, let us assume that the scientist then analyzed the results obtained.
Several divergent locations were produced by these paths for the BACs CTD-
2012D15 and CTD-200816. Indeed, BAC CTD-2012D15 may be considered to be
located on chromosome X or 11. As sources locating the BAC on chromosome
X (GB and MV) are considered less reliable than those locating the BAC on
chromosome 11 (UG and MVF), the user is likely to consider it more proba-
ble that BAC CTD-2012D15 is located on chromosome 11 [2]. Conversely, the
sources involved in the paths which locate the BAC CTD-2008I6 on chromo-
some 3 or 17 (UG and MVF) are considered to be equally reliable. The biologist
must therefore explore new paths to correlate these pieces of information, and
does it by adopting a strategy without SourceOFA and by considering tools-
relationships between BAC and CHROMOSOME. Consequently a new path is gen-
erated: (UG,BacC) Blat DCsC (UG,CHROMO). The results provided allow the user
to conclude that BAC CTD-2008I6 is duplicated in the genome, and is present
on both chromosomes 3 and 17.

Due to its multiple-strategies approach, BioGuide enables the users to make
the most of the available data and guides them to deal with divergent data.

7 Discussion and Conclusion

Based on a thorough study of scientists’ needs, we have designed a user-centric
framework to specify the notions of queries, preferences and strategies. From
this framework we have proposed and implemented the BioGuide system which
calculates the paths between source-entities. Then, we have presented the archi-
tecture of BioGuide and have provided a very easy-to-use implementation.

Over the last few years, three systems considering paths between sources have
been developed: Biomediator [12], Bionavigation [8] [9] and DSS [2]. We sum-up
the differences between our approach and these works. Firstly, the underlying
query languages of [9] and [12] [13] are formal query languages: a regular expres-
sions based query language and an XML-based path language called PQL, re-
spectively. Following our user-centric approach we have proposed a user-friendly
graphical query language. This language enables to express the strategy cri-
teria which came out of the user requirements. Any query with a strategy com-
bining the presence/absence of the OnlyGE and Ord criteria can be expressed
using the query languages of [13] and [9]. Note that writing such queries may be
a complex task (e.g. if Ord is dropped then the user has to enumerate all the
possible orders between entities of his/her query). Finally, [12] and [9] require
the SourceOF A criterion to be present ([12] and [9] do not provide a way of
visiting a given source several times in a given path). In DSS, there is only one
available strategy where the OnlyGE criterion is present and the other criteria
are dropped.
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Furthermore, each of these systems considers user preferences at different
levels: [2] considers only global preferences whereas [9] considers both global and
intermediate preferences (called meta-data in [9]). Only BioGuide considers all
levels of preferences as far as it allows to deal with local preferences (sources
can be named) too. Last but not least, BioGuide differs from the previous works
in that it is based on labelled-graphs (graphs of entities and source-entities) in
which two given entities (resp. source-entities) may be related by several biolog-
ical relationships (resp. links like cross-references or tools). Therefore BioGuide
yields many more alternative paths.

BioGuide thus provides a framework which is general enough to take into
account all the abilities (strategies and preferences) of current systems and
enables to specify new preferences and strategies. Its implementation allows
these abilities to be managed in a simple yet unified and graphical way. We
have shown the benefit of BioGuide by highlighting the biological relevance of
the alternative paths obtained, through examples in various biological domains.
BioGuide has been implemented and is very flexible allowing users to adapt the
graphs and the preferences according to his/her needs. It is available for use at
http://www.Iri.fr/~cohen/bioguide/bioguide.html.

We are currently adding methods to filter and rank the paths in the spirit of
[9]. Moreover, as BioGuide is architecture-independent we are studying its use
in different integration systems: browsers (SRS [7]) but also mediators (K2 [3]).

Acknowledgments. We thank Olivier Biton for his help in the implementation
of BioGuide. For the interviews, we are very grateful to biologists of IGM, Curie
Institute, CIRAD, IBP, MIG, and IBBMC.3
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Abstract. We often realize that communicating with other colleagues who are
studying similar topics helps to identify information relevant to our area of
study, which otherwise may not have been found. We wish to accelerate acqui-
sition of collective knowledge in a defined area by identifying specific spheres
of inquiry. Such spheres correspond to groups of people who are experts in a
field. In this paper we provide a systematic way to gain knowledge from their
online search activity, and enable them to organize and share their search find-
ings for further analysis. We have built a prototype system, BioLog, to help
biomedical researchers share this implicit knowledge among their peers and
store their access patterns into a central system for reuse. BioLog has been de-
ployed it in two labs within TGen as a pilot study. The data has been gathered
and analyzed by preliminary text-mining and collaborative filtering methods.

1 Introduction

We often realize that communicating with other colleagues who are studying similar
topics helps to identify information relevant to our area of study, which otherwise
may not have been found. Hence, there have been many organizational efforts and a
variety of tools produced to support sharing of knowledge, as well as data, within
communities of shared research areas. The collective knowledge of sets of experts is
different from the massive, general, text archives of information that we typically rely
on since it is limited to a particular realm of findings. It is further different in that it
reflects the experts' current models of what that field suggests and it is dynamic, and
constantly changing as a result of researchers search activity. While data sharing
among experts is improving constantly, model sharing has not improved. We wish to
accelerate acquisition of collective knowledge in well defined areas by identifying
specific spheres of inquiry and corresponding groups of people. We also provide a
systematic way to gain knowledge from their online search activity, and enable them
to organize and share their findings for further analysis.
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One place where experts’ models are evident for further analysis and inferencing is
their interaction logs with archived information sources. For example, PubMed [1] is
a well-known repository of biological literature and serves as an invaluable biological
repository. It is frequently used as a first stage tool in creating and refining new hy-
potheses. An expert's prior understanding of the biological relationships and their
emerging models will be implicit in their search patterns of PubMed and other such
biomedical resources.

Biologists go to PubMed when they have a model with some supporting evidence
but want to seek further support. It is also sought when they have a incomplete model
with some missing elements or a fragmented model with missing relationships. They

type in keywords and PubMed

9 retrieves a list of keyword matching
% . . > /gl_’gs/\\‘ o abstracts. Researchers  scan
2/ ol s through the list and identify a sub-
& &3 o set of abstracts that might be rele-
\\~ \Co;\munication}'nd Collaboration vant to their mOdel — most hkely
N R s based on the titles and the authors
\ 198 - AN J%F % of articles. Once they identify the
9 / N e subset of articles, they follow-up on
N R :*”& those articles and read the corre-

\

sponding abstracts.  Sometimes,
Fig. 1. Communication and collaboration among they home in on their by iteratively
biologists to combine knowledge of missing links narrowing down their keyword

searches. However, they find it
more informative to talk to their expert colleagues, who are studying similar subjects,
to obtain recommendations and leads about other relevant articles that might contain
missing links, as illustrated in Figure 1.

One problem is that researchers often do not know whom to talk to. It could be
someone in their lab or someone at another institute. A precursor to collaboration is
to first find whom to work with or ask for help.

In most cases a biologist has some ‘handles’ (such as a set of nucleotide sequences
or gene names) and he or she searches the repositories using those handles. For exam-
ple, a biologist trying to figure out (parts of) a pathway that explains a particular phe-
nomena may start with a list of gene and protein names as handles. Starting with one
of those names, when one searches a repository like PubMed, it is likely that a large
number of matches will be found. For example, the search term “g-protein' leads to
51,286 matches in PubMed. The researcher is then faced with the problem of narrow-
ing down the articles that are relevant to his topic of investigation by adding addi-
tional keywords or trying alternative keywords. The time it takes to find the right
matches plays a huge role in the overall timely success of the quest. A biomedical
researcher would benefit tremendously if the various resources would rank the links
in a way that matches her own priority. The situation here is closer to recommender
systems such as the ones used in Netflix.com or Amazon.com where the system rec-
ommends movies and books respectively based on the users’ past interaction with the
system, the users’ feedback (in terms of ratings in case of Netflix.com) and the global
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knowledge extracted from the web log of all the users as well as the corresponding
web content.

We have built a helper application, named BioLog, to archive scientists’ access
pattern of PubMed of NIH/NCBI as well as the client software that allows users to
browse through group specific archives. The system logs the user identity, search
keywords used, list of matching articles, set of followed articles, and the amount of
time spent on each abstract. We also extract list of gene names using a state-of-the art
gene/protein extractor, the Abner [17] system, from each abstract. We developed
preliminary recommender algorithms based on gene-to-gene, abstract-to-abstract and
user-to-user relevance networks by using a combination of collaborative filtering and
content-based filtering techniques. BioLog system automatically recommends alterna-
tive lists of genes, articles and other researchers upon each keyword search.

In this paper we propose a recommendation algorithm based upon a clustering
technique. Clustering is a technique to group items or data points that are similar in
a given context. It has been widely used for many quantitative studies, including
gene expression data analysis [9,10]. This is a natural choice of approach to find
relevant or similar set of articles or genes given co-observations of genes and arti-
cles. A similar set of articles may represent a specific research subject, and a simi-
lar set of genes may indicate members of a regulatory network. However, in the
context of high dimensional datasets such as those relating PubMed articles, genes,
and users, where the datasets are wide and sparse, with many irrelevant dimensions,
it is difficult to find relationships that exist in subspace of the dataset. Subspace
clustering [11] is a form of unsupervised machine learning that seeks to uncover
groups of objects that are related in terms of only a subset of the attributes (dimen-
sions) in the dataset. In our effort to identify similar articles or genes, when the
number of genes runs over tens of thousands, the number of users in tens of thou-
sands and the number of articles in millions, but the number of users in a group who
access articles being relatively rather small, we demonstrate that subspace cluster-
ing is useful and effective.

The rest of the paper is structured as follows. Section 2 presents the related work.
Section 3 is the system flow. Section 4 is the system design. Section 5 presents rele-
vance networks. Section 6 presents the BioLLog’s recommendation algorithm. Finally,
Section 7 presents our preliminary pilot studies.

2 Related Work

Collaborative filtering (or recommender systems) predicts products or topics a new
user might like by using a database about other users past preferences. These systems
are popular for their use on e-commerce web sites, where the systems use input about
a customer's interests to generate a list of recommended items.

In Memory Based Algorithms [2] the task of collaborative filtering is to predict the
votes/interests of the active user from a database of user votes from a sample or popu-
lation of other users. The strategies mentioned in the memory based algorithms can be
used in our current problem of recommending abstracts and users. The user database,
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which is the log of browsing history in our case, contains information of the various
abstracts accessed by the users in the system. We can construct a user-abstract prefer-
ence/access table, which is analogous to the user-item information mentioned earlier.
Based on this information, we could compute the similarity between pairs of users.
Based on the similarity, other un-accessed abstracts could be recommended. Using
either of the similarity based metrics, similar users can be recommended too. The
user-abstract table/matrix constructed from the log would be very sparse since each
user would have accessed an insignificant percentage of the total number of abstracts
(from PubMed). The Pearson’s correlation based or the vector based similarity [3]
would not yield good measures if there are very few abstracts in common between
two users. Another major pitfall of this approach is in regard with its scalability.
Recommendations at runtime for the active user would require the system to scan
over the complete database to compute the similarity metrics between the active user
and the other set of users and then uses the weights over the common set of abstracts
for the selected users.

Probabilistic Cluster Models [4] is a model based method, in which the learning
phase can be done offline. Quick recommendations can be given in real time, thereby
making the recommendation system scalable. A crucial pitfall in this approach is the
Bayesian assumption that the conditional probabilities of the variables given the class
are independent. This may well not be the case in our domain. The probabilities of the
occurrence of genes given the class, in a given cluster might not be independent with
respect to each other. In fact, genes identified in a cluster might be strongly corre-
lated. On the other hand, evaluation results given by the authors for this approach do
not seem to be impressive. Other approaches based on correlation outperform this
model on most of the datasets.

Clustering is a technique to group items or data points that are similar in a given
context. It has been widely used for many quantitative studies, including gene ex-
pression data analysis [9,10]. This is a natural choice of approach to find relevant or
similar set of abstracts or genes given co-observations of genes and abstracts. A simi-
lar set of abstracts may represent a specific research subject, and a similar set of genes
may indicate members of a regulatory network.

As datasets become larger and more complex, clustering performance often de-
grades due to the curse of dimensionality [12, 13]. In high dimensional data, clusters
often exist in subspaces [14], and many of the dimensions are often irrelevant. These
irrelevant dimensions confuse clustering algorithms by hiding clusters in noisy data.
In very high dimensions it is common for all of the instances in a dataset to be nearly
equidistant from each other, completely masking the clusters. Feature transformation
and feature selection techniques have been used to address the difficulties in cluster-
ing high dimensional datasets [11]. However, neither of these techniques is suitable
for finding subspace clusters. Feature transformation such as Principle Components
Analysis (PCA) attempt to summarize the data by creating new attributes which are
combinations of the original attributes in the dataset. Since relative distances are pre-
served, the effects of the irrelevant dimension remain. Also, the new attributes can be
very difficult to interpret. Feature selection techniques attempt to select the most
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relevant attributes over the whole dataset. While successful at removing noisy attrib-
utes [15], feature selection does not allow us to discover clusters that exist in different
subspaces. Subspace clustering is a form of unsupervised machine learning approach
that we utilize in this paper to uncover groups of objects that are related in terms of
only a subset of the attributes (dimensions) in the dataset. In our effort to identify
similar abstracts or genes, when the number of genes runs over tens of thousands, the
number of users in tens of thousands and the number of articles in millions, but the
number of users in a group who access articles being relatively rather small, subspace
clustering is useful and effective.

Instead of matching the active user to similar customers, item-to-item based ap-
proach matches each of the user’s purchased and rated items to similar items, and then
combines those similar items into a recommendation list. To determine the most-
similar match for a given item, the algorithm builds a similar-items table by finding
items that customers tend to purchase together. Unlike the traditional collaborative
filtering techniques, this algorithm’s online computation scales independently of the
number of customers and number of items in the product catalog. The above men-
tioned algorithm can be modified, replacing items with abstracts. This way, we can
build up a similar-abstracts table by finding abstracts that users tend to look together.
As more users tend to access a set of related articles, their pair wise similarity scores
go up. Using the similar-abstracts table, related articles can be recommended. As
mentioned earlier, this method’s online computation scales independently to the num-
ber of abstracts and the set the genes, since we would be computing the similarity
tables offline. Unlike traditional collaborative filtering techniques, the algorithm also
reportedly performs well with limited user data, producing high-quality user data,
producing high-quality recommendations. The offline computation of the similarity
tables is extremely time intensive, with 0(N2M) as worst case, where N is the number
of abstracts/genes and M is the number of users/abstracts respectively for the two
above mentioned adaptations to the domain.

3 System Flow

As shown in Figure 5, a biologist initially goes to PubMed types in a keyword search
query and PubMed will fetch a list of articles matching the keyword. The biologist
scans through the list and identifies a subset of articles that might be relevant to their
inquiry, most likely based on the titles and the authors of articles. Once they find the
articles of high relevance, they will click on one of the articles and read the abstract to
make sure if it is really useful to what they are looking for. Biolog tracks these Web
pages in a database log and archives them in a central cache repository with all rele-
vant meta information. Currently we are using a MySQL backend but the module has
been built to be database independent. The cached documents are also indexed using a
high performance text search engine in order to support keyword searching in the
cached documents. Next, gene-to-gene and abstract-to-abstract relevance networks are
computed and the recommendation system uses these models.
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4 Biolog System Design

We have built a helper application for Internet Explorer® (IE) to archive scientist’s
accessing pattern of vast archive of biomedical literatures at PubMed of NIH/NCBI.
The archival process consists of a logger, which is responsible for capturing web
pages during browsing based on domains which are to be tracked. The capturing of
data is in terms of logging Meta information in the database as well as caching of web
pages in a central repository.

In Figure 2 below the logger uses browser helper objects (BHO) [5] to store html
pages in the file system cache as well as all relevant meta information such as
machine name, URL, time-stamp etc to the database.

[w]=]
Internet T
Explorer Flugin
Filesystem

Cache

Fig. 2. Logger Architecture

Browser Helper Objects are components — specifically, in-process Component
Object Model (COM) components — that Internet Explorer will load each time it
starts up. Such objects run in the same memory context as the browser and can
perform any action on the available windows and modules. Further, a new instance of
the BHO is created each time a new browser window is created. In its simplest form,
a BHO is a COM in-process server registered under a certain registry's key. Upon
start up, Internet Explorer looks up that key and loads all the objects whose CLSID is
stored there.

Logging of dynamic data on the Web has been a problem. By dynamic data we
mean the data input by the user at run time during filling of form elements. We
planted our logging module into the IE browser and this architecture can be imported
to any other browser with plug-in support. The problem of trapping the dynamic data
can be tackled during the pre-navigation step, which is, as soon as the dynamic data is
submitted and before the response page is loaded. During navigation, we trap the
BeforeNavigation event and at that precise moment we capture a snapshot of the cur-
rent dynamic page DOM and inspect its form elements for dynamic attribute-value
pairs.

The logger, a plug-in program to IE, is activated only when scientists go to Pub-
Med and type in keywords to search through the archive. Then, it records the key-
words used, the set of articles displayed, and the set of articles that scientists try to
read by clicking on the link to its abstract. It also records the time spent on an ab-
stract as well as other relevant information described above. All the archived informa-
tion is stored in MySQL database for easy access across many clients.
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5 Entity-to-Entity Relevance Networks

First, gene-abstract occurrence matrix (GA matrix, GA) is constructed for the entries
in the log. GA matrix is a matrix where its element, ga;, is 1 if a gene i appears in an
abstract j. Otherwise, it is zero. Similarly, we build user-abstract matrix (UA matrix,
UA). ua; is 1 if user i read an abstract j. Otherwise, it is zero. Based on these matri-
ces, we find gene-gene, abstract-abstract and user-user relevance networks as follows.

5.1 Gene-Gene Relevance Networks

Once GA matrix is constructed, we then compute gene-gene relevance matrix, GG
matrix (GG), by multiplying GA by the transpose of GA, and normalizing it by divid-
ing each row of GG by the number of abstracts. gg; is 0 if genes i and j never appear
in an abstract at the same time. gg; is 1 if genes i and j appear in all of the abstracts
looked at. The value obtained will be in the normalized range of [0,1] , 1 indicating
that the two genes co-occur all the time and 0 indicating that the two genes never co-
occur together. The idea is to assume if two genes are relevant either positively or
negatively, they would tend to appear often in same abstract. Often this assumption
may not be true; it is not rare to find an abstract to claim two genes are irrelevant in
particular context. However, we found that, even with this crude assumption, some of
the genes with high relevance could be identified.

5.2 Abstract-Abstract Relevance Networks

Abstract-abstract relevance, AAg matrix (AAg), can be built, by multiplying the
transpose of GA by GA, and normalizing it by dividing each row of AAg by the
number of genes appeared in either abstracts. aa; is O if abstracts i and j do not have
any gene in common. aay; is 1 if any gene appeared in one abstract appears in the
other. This AAg matrix corresponds to content-based relevance since the more genes
are shared between these two abstracts, the more relevant they are to each other. An-
other way to define an abstract-abstract relevance matrix is by using the user-abstract
access matrix, UA. The access matrix UA can be multiplied to its transpose to con-
struct another access-based relevance matrix, AAy. In this preliminary work, we re-
lied on a definition of the abstract-abstract relevance, AA, by using a weighted sum of
these two different similarity measures AAg and AAy. Similarly User-User relevance
matrix can be defined as a weighted sum of commonly accessed gene and abstract
based relevance matrices.

6 Biolog Recommendation System

Our hybrid recommendation system utilizes a combination of the above relevance
networks and a collaborative filtering based approach.

Content Based Clustering (of Genes and Abstracts): The log gives us information
about the abstracts accessed so far by various users. One can extract the list of
genes/proteins from these abstracts. The intention here is to find co-occurring genes
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based on the abstracts they are present in. Similar logic can be used in finding co-
occurring abstracts based on their composition of genes in each abstract.

Algorithm (in finding co-occurring genes)

a.  Build the gene-gene relevance network

b.  Normalize the obtained GxG matrix using the following formula.

S, = Cu . In this equation, Cxy denotes the un-normalized entries of

v c,+C,-C,

GxG. Each cell in the matrix is normalized according to the equation shown above.
The value obtained will be in the range of [0,1] , 1 indicating that the two genes co-
occur all the time and 0 indicating that the two genes never co-occur together.

c. Perform Hierarchical Agglomerative Clustering (HAC) [16] to reach a fixed
number of clusters or some termination condition. Genes that co-occur together fall
into one cluster.

This way we can identify similar genes. A similar approach can be done on cluster-
ing abstracts. Here we build up a normalized AxA matrix from the AxG matrix. Co-
occurring abstracts (based on the composition of their genes) fall into one cluster.
Therefore, we could find similar abstracts. In fact, this method was used in the pre-
liminary analysis of archives from our pilot studies.

Collaborative Filtering Based Approach: As contrast to content-based filtering, we
can also define the similarity between two abstracts/genes in terms of number of users
who have accessed both the abstracts/genes. To recommend similar abstracts, from
the log, we build the User by Abstract (UxA) matrix, and compute the AXA normal-
ized co-relational matrix from the UXA matrix. Given any abstract, we could rank the
‘k’ most similar abstracts based on the correlation similarity measure. Alternatively,
User by Abstract (UxA) matrix can be used to find the closest neighbours (similar
users), whose preferences can be used to predict the interest/vote on other abstracts.
Pearson’s correlation co-efficient can be used to find the neighbours, but this strategy
would fail if the UxA matrix is sparse.

Hybrid Approach — Combining Content and Collaborative Filtering Based
Approach: This approach combines a collaborative filtering and a content based
mining in finding similar abstracts. Two

abstracts are similar: LOG

i) if they have a good set of genes com-
mon in them (Content based perspec-

tive) and T Uxa AXG |
ii) if many users view both the abstracts

(Collaborative Filtering based perspec-

tive). In this way, we consider both the AXAy AXAG |

content and the user browsing pattern s

in associating similarity between ab- //

stracts. An approach, using weights to |
combine two different similarity matri-
ces is detailed Figure 3.
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Fig. 3. Similarity matrix computation
in the hybrid approach using weights
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7 Subspace Clustering for Recommendation with Sparse High
Dimensional Data

Finding subspace clusters in the gene-abstract occurrence matrix can reveal relation-
ships between genes and abstracts allowing us to recommend relevant subsets of arti-
cles for each query. In search of abstracts with shared genes, we can improve effi-
ciency and accuracy by focusing on clusters of abstracts that share relevant genes. On
one hand, the number of genes can be as many as fifty thousand and the number of
abstracts can be millions; on the other hand, each abstract usually has a small number
of genes (from 1 to 6 genes). That is, although the Abstract-Gene matrix has an ex-
tremely high dimensionality, clusters of abstracts can only exist in low dimensional
subspaces. By finding these low dimensional subspaces, we can achieve the follow-
ing: (1) given a new set of genes, subspaces defined by associated genes can be
quickly identified; (2) clusters of abstracts in these subspaces can be efficiently lo-
cated; and (3) similar abstracts can then be ranked and recommended as the number
of abstracts in the subspaces is significantly smaller than the total number of available
abstracts for search.

Given the Abstract-Gene matrix, abstracts are compared using a similarity measure
that considers only the positive (non-zero) values in the matrix. This comparison is
done first in low dimensional space, revealing those genes that occur frequently to-
gether in abstracts. Searches in the low dimensional space allow us to eliminate genes
or gene combinations that are not frequent which helps to reduce the search space.
The subspaces represent groups of genes that occur often together in abstracts. The
clusters represent abstracts that mention many of the same genes. When analyzed, the
smaller data set yields 10 clusters in 2-dimension (using only two words as features),
5 clusters in 3-dimension and 1 cluster in 4-dimension. The size of clusters in 2-D
ranges from two to 5 abstracts and the cluster found in 4-dimension is composed of 3
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Fig. 4. Subspace clustering finds closely related genes based on user’s access patterns of arti-
cles. Each cluster indicates that the genes grouped together appeared many times in the set of
articles accessed by the user. The set of articles in which the clustered genes appear together
can be pulled from each cluster as knowledge support. (a) The knowledge of Userl is frag-
mented due to the lack of relevant knowledge (links) in individual access patterns. (b) Collec-
tive knowledge helps Userl1 realize two pathways are connected
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abstracts. For the larger dataset, the cluster with the largest dimension was in 12-
dimensions with two abstracts belonging in the cluster. There were 4 clusters in 11-
D, 9 clusters in 10-D with at least 2 abstracts. In general, more clusters were found in
lower dimensional subspaces.

Adding the Abstract-User matrix further improves the utility of the tools, as illus-
trated in Fig. 5. As hypothesized, dynamic communication with other colleagues
studying similar subjects would help locate relevant information for biologists. Let us
consider a user (U1) has accessed many abstracts and accumulated knowledge during
his/her previous and current querries. The knowledge acquired through a previous
query might often be relevant to the current search based on information that has not
been realized by the user. If the proposed approach can identify this information by
pulling together and analyzing knowledge (abstracts) utilized by other scientists with
a similar research interest, such guidance will speed up adopting new knowledge,
such as new pathways.

Also, if two different biologists (Ul & U2) may not have a link (common research
interest; same gene or transcription factor) to directly connect them even if they might
indeed benefit from talking to each other due to some indirect links, the tool might be
able to locate such links by analyzing various links embedded in knowledge access
patterns, hence, enable their connection. Synergism resulting from such collaboration
would yield much faster knowledge discovery. An illustration similar to Fig. 5, re-
placing one of Userls with User2 can visualize our approach.

The Figure 4 above exhibits how subspace clustering can be applied effectively to
discover implicit knowledge for a researcher. Figure 4 (a) shows that two subspaces
exist for Userl alone where a subspace represents a set of genes occurring together.
Here, Userl thinks that genes 1,2,3,4 are linked to each other and genes 5,6,7,8 are
linked with each other independently with no connection between the subspaces.
Figure 4 (b) shows that there exists a subspace generated from all users where the
subspace suggests that there is a link between gene3 and gene7. Notice that Userl did
not realize or was not aware of the connection between the two genes but by using the
knowledge from the community of users, Userl can be given such knowledge. This
kind of knowledge could be very useful for Userl because if he was working inde-
pendently, it might have taken him a longer period of time or in the worst case the
user might not have been aware of this knowledge at all. Preliminary experimental
results of subspace clustering on large Web logs indicate that such knowledge can be
effectively discovered from the data.

8 Pilot Study in Two TGen Labs

Two biology labs at TGen [7] were selected to perform pilot study with BioLog. Both
labs are part of the Neurogenomics program at TGen. We set up two central servers to
archive their access patterns on PubMed separately.

Since both study brain-related diseases, they could share some commonality. How-
ever, they are two different labs studying different specific diseases; therefore, they
would differ significantly in accessing literatures in PubMed. We would like to see if
the archives show such difference as well as similarity. During one study 25 abstracts
accessed, while the other archive returned 253 abstracts accessed.
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The gene relevance network from smaller archive is shown in Figure 5. The net-
works are visualized to emphasize the co-occurrence of two genes; if two genes co-
occur more often than others, they were put close to each other in the visualizations.
Also, the thickness of edge represents the normalized frequency of co-occurrence of
the pair; thicker the edge, more often they co-occur. For example, in Figure 5, genes
smn, sma, smnl, smn2, and Kinase are very close to each other, indicating they ap-
pear in the same abstract often. We also found it interesting that these genes were
found in the second network which is constructed from the archive from the other lab.
Therefore, this shows that these two labs sometimes study similar genes. This is criti-
cal because it might imply that two lab studying similar subjects, brain-related disease
in this case, share the genes of their interests, and we might be able to use this clue to
find out other group or people that could study some of the subject common to one’s
research. However, since they do have many other genes that are not in the other’s.
This could indicate either that one is studying some other subjects that the other does
not (most likely), or that each one is taking a different route to find answers. In the
latter case, one might be interested in what other genes the other group is after.
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Fig. 5. BioLog: PubMed Recording, Reasoning and Recommending (R3) Navigation Assistant
Pilot Study

Figure 5 visualizes abstract-abstract relevance network. Interestingly, we have
identified a distinct cluster of abstracts in the relevance network from the smaller
archive shown in Figure 5, it was related to the cluster of genes identified in the pre-
vious section; all describing smn, sma, smnl, or smn2. Such clusters form the basis of
BioLog recommendations.
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9 Future Work

The components built as a part of the Biolog system (Figure 5) can also be suitable
for domains other than Biology, where a group of people is searching and interacting
with a set of entities. Once the recommendation algorithm is embedded into a browser
component we plan to perform detailed user evaluations in order to determine the
usefulness and validity of BioLog’s recommendations as compared to other existing
recommender algorithms.
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Abstract. A key challenge associated with the existing approaches for
data integration and workflow creation for bioinformatics is the effort
required to integrate a new data source. As new data sources emerge,
and data formats and contents of existing data sources evolve, wrapper
programs need to be written or modified. This can be extremely time
consuming, tedious, and error-prone.

This paper describes our semi-automatic approach for learning the
layout of a flat-file bioinformatics dataset. Our approach involves three
key steps. The first step is to use a number of heuristics to infer the
delimiters used in the program. Specifically, we have developed a metric
that uses information on the frequency and starting position of sequences.
Based on this metric, we are able to find a superset of delimiters, and
then we can seek user input to eliminate the incorrect ones. Our second
step involves generating a layout descriptor based on the relative order in
which the delimiters occur. Our final step is to generate a parser based
on the layout descriptor. Our heuristics for finding the delimiters has
been evaluated using three popular flat-file biological datasets.

1 Introduction

Bioinformatics research frequently requires accessing data from multiple data
sources, and analyzing this data. As the number of data sources is large, and
continues to grow, this is becoming an increasingly challenging task. Currently,
the number of molecular biology databases is between 500 and 1000 [18]. Even
DBcat [5], a metadatabase designed to keep track of all biological databases, fails
to report all activities in this rapidly evolving field. Biological databases are quite
diverse in their goals, structure, and use patterns. A variety of approaches are
used for data modeling, storing, and analysis. Out of 111 databases studied by
Kroger in 2003 [18], 36% to 40% are implemented as flat files collections, and
others use a variety of database technologies.

With increasing amount and heterogeneity of data, biological data manage-
ment and data integration have become important topics. The Sequence Re-
trieval System (SRS) [1], K2/BioKleisli [23], TAMBIS [11], DiscoveryLink [13],
and Biomediator [22] are some well-known examples of systems for biological
data integration. More recently, bioinformatics workflow systems like

B. Ludéascher and L. Raschid (Eds.): DILS 2005, LNBI 3615, pp. 31-45, 2005.
(© Springer-Verlag Berlin Heidelberg 2005
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Pegasys [21] and IBM BioWBI! are being built. These data integration and
workflow systems typically use wrapper programs to integrate data from mul-
tiple sources, or to translate from the format of a data source to the format
expected by an analysis program.

A key challenge associated with these existing approaches for data integration
and workflow creation is the effort required to integrate a new data source. As
new data sources emerge, and data formats and contents of existing data sources
evolve, wrapper programs need to be written or modified. This can be extremely
time consuming, tedious, and error-prone.

In recent years, the topic of automatic wrapper generation has received much
attention in the information integration community [3, 20, 6, 10, 7, 2]. Most of ex-
isting approaches in this field are applicable to HTML pages only, and even the
other approaches require that a number of pages with identical layout be avail-
able. Therefore, these approaches are not directly applicable to flat-file biological
datasets.

This paper describes our semi-automatic approach for learning the layout of
flat-file bioinformatics datasets. Our approach involves three key steps. The first
step is to use a number of heuristics to infer the delimiters used in the dataset.
Specifically, we have developed a metric, delimiter score or d_score, which uses
information on the frequency and starting position of sequences. Based on this
metric, we are able to find a superset of delimiters, and then we can seek user
input to eliminate the incorrect ones. Our second step involves generating a
layout descriptor based on the relative order in which the delimiters occur. Our
final step is to generate a parser based on the layout descriptor.

We have evaluated our approach for finding the delimiters in a dataset. We
have used three popular flat-file biological datasets, Swissprot, GenBank, and
Pfam. The effectiveness of our method varied across these datasets. In the case
of Swissprot, the 21 delimiters in the dataset were the sequences with the top 21
d_score values. For Genbank, all 18 delimiters were among the sequences with
the top 37 d_score values. Finally, for Pfam, the 31 delimiters were among the
sequences with the top 81 d_score values. In each of these cases, combining both
positional and frequency information turned out to be very important.

The rest of the paper is organized as follows. Our approach for identifying de-
limiters is described in Section 2. The method for generating a layout descriptor
is presented in Section 3. Experimental results from evaluating our techniques
for identifying the delimiters are presented in Figure 4. Finally, we compare our
work with related research efforts in Section 5 and conclude in Section 6.

2 Finding Delimiters Semi-automatically
Given a flat-file dataset, extracting its underlying structure is a difficult problem.

In the domain of biological databases, the data is often written in a file assuming
a human will read the data. In order to facilitate human reading, a delimiter

! See http://www.alphaworks.ibm.com/tech/wsbaw
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always precedes a specific data field of interest, specifying what that particular
field is. Thus, the first step in our process of wrapper generation is to determine
the set of delimiters used in a data file. This section describe our approach for
this step. We initially describe some heuristics we tried, and then, describe the
approach we finally implemented and evaluated.

2.1  Frequency Counting

As each file contains a set of similar records, we can expect the frequency of
delimiters to be quite high. In comparison, across the set of records, we expect
several different values for each data field. Thus, if we consider each token (a
word separated by a space) in the file, the delimiter tokens are expected to occur
more frequently than the other tokens. So, the simplest heuristic we used was
to count the frequency of all tokens appearing in the file, and take the most
frequent ones. If this set comprises a relatively small superset of the actual set
of delimiters, a domain expert could help remove the false positives.

This simple scheme, though intuitive and promising, fails to find the delim-
iters efficiently. The reason is that many tokens which are not delimiters can also
occur very frequently in a dataset. Also, in many datasets, the delimiters could
be a sequence of tokens and not just a single token.

2.2  Sequence Mining

As we just mentioned, one reason for the failure of the frequency counting heuris-
tic was that some delimiters could be a sequence of tokens, rather than a single
token. So, instead of counting single token frequencies, we could count frequently
occurring token sequences.

Sequence mining is a well known data mining problem, and several efficient
algorithms exist [15]. However, there were several problems that we had to ad-
dress in our implementation. The first problem with this approach is that we
do not know the delimiter sequence length in advance. This problem can be
addressed by finding token sequences in an iterative manner. We can start with
finding all sequences of a specified min_length, and sorting them in a list S, the
set of possible delimiter sequences. In the next iteration, we find all token se-
quences of length min_length +1. Again, domain knowledge or interaction with
a domain expert can be used to decide when to terminate the search.

We further use the following two rules to focus on sequences that are most
likely to be delimiters. In the following, S; represents any token sequence of
length i, f(s;) represents the frequency of the sequence s;, and s]_; represents
the j*" subsequence of s; with the length i — 1. The rules are as follows and are
applied when i is 3 or greater.

1. If f(s;) = f(s/_,) Vj, then remove s/_, Vj from S and insert s; into S.
2. If 3j such that f(s;) is much smaller than f(s]_;), then remove all s]_; from
S except the one having the highest frequency. Do not insert S; into S.

The following example illustrates the above two rules. Suppose ABC is a
token sequence of length 3 found in the current iteration with f(ABC) = 10. We



34 K. Sinha et al.

need to decide if ABC is to be inserted into S. If AB, BC, and CA are already
in S with f(AB) = 10, f(BC) = 10, and f(CA) = 10, then we remove AB, BC,
CA from S and insert ABC into S. This is done because the information about
AB, BC, and CA is already embedded in ABC.

Consider, alternatively, the following scenario. Again, let f(ABC) = 10. If
AB, BC, and CA are already in S with f(AB) = 20, f(BC) = 10, and f(CA) =
10, then we remove BC, CA from S and do not insert ABC into S. The intuition
for using this rule is that since BC and CA occur less frequently than AB, ABC
is not likely to be a delimiter sequence. Also, since AB occurs more frequently
that BC and CA, it is more likely that, AB will be a possible delimiter sequence
and not BC or CA.

This approach gave better results than just using frequency of tokens, but
had several limitations as well. This approach does not work well if token fre-
quencies are distributed in a skewed fashion. To illustrate this problem, con-
sider the following. In the Swissprot dataset /n,DR, and EMBL are tokens,
with f(/n,DR) > f(DR,EMBL) and f(/n,DR,EMBL) < f(/n,DR). Thus,
we only keep /nDR as a possible delimiter, which turns out to be correct.
However, in the case of Pfam dataset. /n, #=GF, and AC are tokens, with
f(/n,#=GF)> f(#=GF,AC) and f(/n,#=GF,AC)< f(/n,#=GF). Thus, we
only keep /n #=GF as the possible delimiter. But, this is incorrect because /n
#=GF AC is a valid delimiter. This happens when some of the delimiter token
subsequences have very high frequency as compared to the other delimiter token
subsequences. Moreover, since biological databases are created for humans to
read, it is very unlikely that the tokens will be distributed at different positions
within the line in the file they appear in. This fact is not exploited by just using
the frequency of sequences.

2.3 d_score Based Pruning

We now describe the final approach we implemented. This approach does not
completely rely on the frequency of sequences, but does give a high weightage to
such frequencies. In addition, it exploits the fact that delimiters are very likely to
start only at certain positions within a line. The overall metric we use is referred
to as d_score or delimiter score, and has two components, positional weight, and
frequency weight.

Positional Weight: As we have stated, biological datasets are often written for
a human to read. Thus, all the delimiters are expected to appear in a specific
position in a file. We capture the positional information in the following way.

Let P be set of different positions within a line where a token can appear.
Clearly, this is equal to the maximum number of tokens appearing in any line
in the file. For any position i € P, let tot_seq] represent total number of token
sequences of length J starting at position i. Similarly, tot_unique_seqf repre-
sents the total number of unique token sequences of length j, starting at the
position i. We define for any tuple (i, j), denoting sequences of length j starting
at the position i in a line, a metric p_ratio(i, j).
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tot seq’

_ratio(i,j) = ————
P (i.3) tot_unique_seq;

For any specific sequence length j we take the log of p_ratio(i, j) and nor-
malize it as follows,

log(p_ratio(i,j)) — min;cp log(p-ratio(i, j))
max;¢ep log(p_ratio(i, j)) — min;c p log(p_ratio(i, j))

p-wt(i,j) =
Clearly, p-wt(i,J) € (0,1) with the property that if the delimiters in a file
usually start at the position i then, p-wt(i, ) > p-wt(k, j), for any k # i.

Frequency Weight: Let SJ represent the set of all token sequences of length
j. For any sequence s}, which has length j and starts at the position i within its
file, we can find the log normalized frequency weight as follows:

log(f(s?)) — min sesi 109(F(s 7))
Maxjeg; log(f(s ))—mlnsgesj log(f(s ))

fwt(s)) =

Similar to the positional weight, f_Wt(SZ) € (0,1) with the property that if
f(s]) > f(s]) then, f_.wt(s]) > f_wt(s}).

d_score: For any sequence s/, once we have p-wt(i,j) € (0,1) and f.wt(s]) €
(0,1), we take a linear combination of these to define d_score:

d_score(s?) = a x p.wt(i,j) + (1 — a) x F_wt(s!)

where a € (0,1). The value of o can be chosen to vary the relative weight
of positional and frequency weights. Overall, d_score has the property that
d_score(s!) € (0,1), and d_score(s!) > d_score(s] ) implies that s? is more likely
to be a delimiter than sJ..

2.4  Finding Delimiters Using d_score

Even though the d_score value is closely correlated with the likelihood of a
sequence being a delimiter, several issues still need to be addressed. First, a
sharp and clear cut-off point, separating delimiters and other sequences, is often
not achieved. Second, we still do not know the most number of tokens a delimiter
might have.

We have used the following method to address this problem. We proceed in
an iterative fashion, trying to find delimiters of length i in the iteration i. Let
the cut-off point for d_score values be c;. This cut-off is determined by finding
a substantial difference in the d_score values between two consecutive sequences
in a sorted list. Let the number of sequences found with d_score greater than c;
be N;. We consider this as the set of potential delimiters.

The termination condition used in our algorithm is based on the following
heuristic. If the highest length of a delimiter sequence is i, and if we use the
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same cut-off score, we will expect N;;1 < N;. This observation can be explained
in the following way. If delimiters are of length i, then any token sequence of
length i + 1 (delimiter of length i appended by some token etc) will be less
frequent, thus having much lower f_wt, whereas, p_wt will remain almost the
same. Note that this observation should not be used with a very small value of
i, otherwise, we could terminate the process too soon. It should also be noted
that in the case of a skewed frequency distribution, this observation may not
hold true. However, it serves as a reasonable heuristic for most datasets. Once
we have a termination criteria, the delimiters can be found iteratively as shown
in the following algorithm.

Algorithm

1. Set initial value of i. Set S = @.

2. Find the potential delimiters (token sequences with d_score > ¢;) of length
i and store them in S.

Set Last N; = N;. Set i =i+ 1.

Find potential delimiters of length i.

If N; > Last_N; store the set of potential delimiters in S. Go to the step 3.
Sort S in descending order of d_score.

o Pt

Once the above algorithm stops, the list S contains potential delimiters sorted
by their d_score. As we had stated earlier, a domain expert can help in identi-
fying the frequent sequences which are not delimiters. These values are usually
frequently occurring values in data fields, and can be identified by using domain
knowledge.

3 Towards Generating Wrappers

After the delimiters have been identified, the next step is to generate a wrapper.
This involves understanding the structure of the dataset. Once the structure is
identified, a parser for the dataset can be generated automatically. In this section,
we initially describe the technique we use for determining the structure of the
dataset. This technique is based on constructing an Non-deterministic Finite
Automata (NFA) from the relative order of occurrence of delimiters. Then, we
give a quick overview of our work on generating parsers from such descriptors.

3.1 Generating Layout Descriptors

The set of states of the NFA is the set of delimiters. We insert an edge from a
delimiter A to the delimiter B if B is the immediate next delimiter following A
in any record in the data file. Because of optional or repeated fields, there could
be multiple out-going edges from a node.

To understand the structure, we carry out the following analysis. Initially, a
topological sort is done on the nodes in the NFA, breaking cycles by the order
of first appearance of a delimiter in the dataset. Based on the topological sort,
we classify the edges in the NFA to be in two groups:
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Fig. 1. NFA with Optional and Repeating States

Forward Edge: An edge between the delimiters A and B is a forward edge if A
appears before B in the topological sort.

Backward Edge: An edge between the delimiters A and B is a backward edge if
B appears before A in the topological sort.

We use the notion of forward and backward edges to define strict precedence
of appearance. If there exists a forward edge between delimiters A and B, A is
said to strictly precede B. The precedence relationship is based on the transitive
closure of the strict precedence relationship.

The NFA and the above definitions can be used to determine the structure.
In the following, with the help of Fig 1, we describe how we can extract simple
structures, as well as optional and repeating structures.

For simple structures without any repeating or optional fields, we can sim-
ply use the precedence of appearance to find which delimiter appears before
which delimiter. For more complex structures involving optional and repeating
patterns, we use the following two rules.

1. Repeating Fields: If any node A has a backward edge to the node B, and we
have a set of nodes {Y;]i =1,2,...,n}, such that B strictly precedes Yy, Y;
strictly precedes Y;11 (i=1,2,...,n—1), and Y,, strictly precedes A, then
we say that the set of nodes B, {Y;|i = 1,2,...,n}, and A, in that order,
repeat themselves.

2. Optional Fields: If there exists a forward edge from A to C, and there exists
another state B such that A precedes B and B precedes C, then B is an
optional state.

As a simple application of the above two rules, using the NFA in Figure 1, we
find that the node B as an optional node and nodes C and D together, in that
order, are repeating nodes. The fields following the delimiters which correspond
to these nodes are called optional and repeating delimiters, respectively.

To represent the structure, we use annotation which is much similar to reg-
ular expressions. If by X, we represent any unknown data field value, then Xx
represents unknown data field value X followed by delimiter X. If a delimiter
followed by its data field value is optional, we represent it by (XX)°Pt. Likewise,
if a number of delimiters Xy, ..., X,, are repeating, in that order, we represent it
by (X1X...X,X)". With this notation, structure corresponding to Fig 1 can be
represented as

AX(BX)°P*(CxDx)"EX
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3.2  Generating Parsers

After generating the descriptor of the type described above, the next task is to
be able to parse the data. As we have discussed, the datasets show a pattern of
alternate delimiters and variables, which we will refer to as a DLM-VAR, pairs.
We have designed a tree data structure to capture the layout. As an example,
the tree view for the TRANSFAC data is shown in Figure 2. TRANSFAC [16] is
a database on eukaryotic transcription factors, their genomic binding sites, and
DNA-binding profiles. In the tree, the leaves are DLM-VAR pairs. The last leaf
for TRANSFAC is a generalized DLM-VAR pair with a dummy variable. The
internal nodes in the tree, also called the environment nodes, indicate how the
children are repeated. The advantages of this view are that it is easy to interpret
and build. The depth first scan of the tree resembles the data layout. It also
simplifies the conversion process by interpreting the data at variable, instead of
data field level. Working at the finer level, the wrapper avoids the overhead of
reconstructing data fields. This reconstruction would consist of two processes,
the process of composing a field by merging variables when reading and the
reverse process of partitioning a field into several variables when writing.

ode DATASPACE root

O pLmcvaRnote

"AC"-AC “\w/An"~DUMMY | EOF

"WXX"-DUMMY ~ "WnRN'-RN > "WRL"-RL  "nXX'-DUMMY

"WRX'-RX "nRA"-RA "nRT"-RT

Fig. 2. Logical View of TRANSFAC Data Layout as a Tree

4 Results

Our experiments focused on evaluating the effectiveness of our d_score based
method for semi-automatically determining the set of delimiters in the dataset.
As we had discussed, this method reports the list of potential delimiters, sorted
by their d_score. The metric we use for determining the effectiveness of the
method is as follows. In the sorted list of sequences, we consider the position at
which the last delimiter appears, and compare it with the number of potential
delimiters. We believe this represents the ease with which a domain expert can
prune false positives. Besides evaluating the effectiveness of d_score based mech-
anism, we also considered other heuristics that we had described in Section 2.
Results from these heuristics are presented towards the end of this section.
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We used three different datasets for our experiments. The first is Swissprot
protein dataset from the Uniprot Knowledgebase?. The UniProt Knowledgebase
is the central database of protein sequences with sequence and functional anno-
tation. Swissprot is a section of Uniprot containing manually-annotated records
with information extracted from literature and curator-evaluated computational
analysis. The second dataset we used is the Genbank dataset from the National
Center for Biotechnology Information (NCBI)3. Data is stored in a flat-file for-
mat where each data field is preceded by a tag which describes what that data
field stands for. The third data set is the Pfam dataset*. Pfam is a collection
of protein family alignments which were constructed semi-automatically using
hidden Markov models (HMMSs). The alignment is in Stockholm format. This
includes mark-ups of four types:

#=GF < featurename >< freetext >
#=GC < featurename >< freetext >
#=GS < segname >< featurename >< freetext >
#=GR < seqname >< featurename >< freetext >

where freetext means any data field. Introducing mark-ups before the
featurenames make this data set different from the other two and difficult
to find delimiters from.

We initially report on the effectiveness of the d_score approach. For all the
experiments, we gradually vary o value from 0 to 1. Setting a=0 implies that
we only consider the frequency information, whereas, a=1 implies that only
positional information is considered. For other values, a linearly combines both
positional and frequency information. As we will show in the results, non-extreme
a values provide best results.

Swissprot data: Among the three datasets, the Swissprot dataset is the sim-
plest. All the delimiters are two character long, and they appear at the beginning
of a line. Table 1 shows the result for the Swissprot dataset. The values in the
second column is the metric we stated earlier, which is the position in the sorted
list where the last delimiter appears. The results from Table 1 show that if both
frequency and positional information is used, i.e., o is neither 0 nor 1, this ap-
proach is very effective. The results are the same as the value of a is changed
from 0.3 to 0.9. In these case, the 21 actual delimiters appear as the top 21
sequences in the sorted list.

Genbank data: Genbank data is more involved as compared to the Swissprot
data. This is because all delimiters are not of the fixed size. Further, certain
words appear in the same position in every record, but are not delimiters. Thus,
the performance of our approach is not as good. Table 2 shows the results for
Genbank dataset. Even though all delimiters were successfully found, unlike

2 http://us.expasy.org/sprot/
3 http://www.ncbi.nlm.nih.gov/Genbank/index.html
* http://www.sanger.ac.uk/Software/Pfam /ftp.shtml
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Table 1. Results from Using d_score Approach on the Swissprot dataset

@ Position where All 21 found?
last delimiter found

0.0 - 20 found within top 100

0.1 29 yes

0.2 25 yes

0.3 21 yes

0.4 21 yes

0.5 21 yes

0.6 21 yes

0.7 21 yes

0.8 21 yes

0.9 21 yes

1.0 - 10 found within top 50,
20 found within top 100

Table 2. Results from Using d_score Approach on Genbank dataset

« Position where All 18 found?
last delimiter found

0.0 62 yes

0.1 60 yes

0.2 53 yes

0.3 48 yes

0.4 43 yes

0.5 39 yes

0.6 38 yes

0.7 37 yes

0.8 37 yes

0.9 37 yes

1.0 - Only 1 found within top 50,

14 found within top 100

Swissprot data , the 18 actual delimiters were not necessarily found within the
top 18 positions. Best results are obtained when relatively high weightage is
given to the positional information. However, completely ignoring frequency in-
formation gives poor results.

Pfam dataset: Pfam dataset is the most difficult one to work with. The reason
is that we have delimiters that are a combination of words. On one hand, we
have delimiters like ” / /7, which stand for the end of a record entry. On the other
hand, we also have data fields in between a delimiter sequence, which is not part
of the delimiter. For example, ”#=GF AC” could be a delimiter, and ”#=GS
* AC” could be a delimiter, where * represents an actual value. Identifying the
latter can be a complex task. Because of this added complexity, the performance
for d_score method over Pfam data is worse, as shown in Table 3.
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Table 3. Results from Using d_score Approach on Pfam dataset

«@ Position where All 31 found?
last delimiter found

0.0 - 2 found

0.1 - 2 found

0.2 - 28 found

0.3 116 yes

0.4 82 yes

0.5 82 yes

0.6 82 yes

0.7 82 yes

0.8 82 yes

0.9 82 yes

1.0 - Only13 found within top 100

Table 4. Comparison of different heuristics

Swissprot Genbank Pfam
(21 delimiters) | (18 delimiters) (31 delimiters)
Frequency |All found within|All found within|Simple frequency count could
top 41 top 71 not find the delimiters
Sequence based| 20 found within | 14 found within| Dropping lower frequent
pruning top 100 top 100 subsequence could find
only 1 delimiter
d_score All found within|All found within All found within
top 21 top 37 top 81

While for the other two datasets, d_score based method works at least some-
what effectively for a=0.1 and a=0.2, it is not the case for the Pfam data.
The reason is that markups in Pfam data, like "#=GF” and "#=GS” have
a very high frequency, as compared to the other tokens or words. Because
of this, frequency information alone cannot find all delimiters. Thus, for this
dataset, d_score based method works only for high a values, as we have shown in
Table 3.

Comparison with other Heuristics: Finally, we compare the d_score based
method with two other simple heuristics we had described earlier. These heuris-
tics were, simply using the frequency of tokens, and using frequency of to-
kens with some pruning. Table 4 compares these approaches with the d_score
approach.

As we can see, these simple heuristics are not very effective, and the d_score
based approach has much better results.
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5 Related Work

Automatic wrapper generation has been an active research topic. Currently, most
of the automatic wrapper generation research has focused on extracting infor-
mation from tabular structures in HTML files [3, 20, 6, 10]. ROADRUNNER [7]
generates record layout structure by comparing HTML pages. Data fields are
annotated by the user after this inference process. Heuristic about HTML pages
are crucial to ROADRUNNER. For example, it relies on tags to tell field name
from field instance, the presence of closing tags to distinguish optional and re-
peating patterns. These features make it hard to extend the application of this
approach to data files other than HTML files. Arasu et al. have proposed an
approach [2] where no heuristics on HTML were used. However, multiple pages
generated from a same template must be collected for template construction.
This, although useful for web-service-based applications, is not directly suitable
for some bioinformatics applications when all records are listed in only one flat
file. The Web extractor developed by Hammer [14] could be used for flat files be-
sides HTML pages. However, it requires a declarative specification which states
how to extract information hierarchically.

A number of efforts exist on mediator-based bioinformatics integration, as
reviewed in [17]. Our goal is to enable integration of a larger number of sources,
and allow data formats to evolve over time, through automatic or semi-automatic
wrapper generation. In comparison, the existing mediator-based systems require
hand-written wrappers. K2/BioKleisli uses a specialized language called Collec-
tion Programming Language (CPL) [4]. It requires source specific wrappers and
uses these to map queries to heterogenous sources [23]. TAMBIS [11] also needs
external wrappers. The query plan in this system is also written in CPL, which
is supplied with a library that has wrapper services. Biomediator [22] relies on
wrappers to convert all data from various sources to XML format before further
processing. DiscoveryLink[13] allows its users to define their own wrappers and
re-configure the system through a registration process at a relatively higher level.
Yet, the wrapper still has to be hand-coded. BACIIS [19] is the only federated
biological databases that we are aware of that is able to automatically derive
extraction rules and store them in the source wrappers. However, the data source
schema files used by BACIIS can only describe HTML pages and the individual
schema is mapped to a common domain ontology contained by BACIIS.

Besides these mediator-based systems, there are other efforts on biological
information integration and query processing. Genomics Unified Schema (GUS)
uses datawarehousing [8]. Knowledge-based Integration of Neuroscience Data
(KIND) combines wrappers for each source with ontologies [12]. The Sequence
Retrieval System (SRS) [1] is a keyword-based retrieval system, which is based
on a locally stored index to retrieve entries. Eckman et al. have focused on
optimizing the execution of queries that access multiple biological databases in
a distributed environment [9].

The myGrid project has been developing technologies for integrating a variety
of services in the web, through the use of web service composition language [24].
IBM has been developing Bioinformatic Workflow Builder Interface (BioWBI)
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for creating web service based workflows for biological researchers®. These ef-
forts typically require: 1) Use of XML for exchange of data between different
sources, which can introduce high overheads, 2) Java wrappers on existing ap-
plications, which can also introduce overheads, and 3) users’ familiarity with web
services. Our proposed system can overcome each of the above three limitations,
though it cannot provide as much interoperability as is possible through web
services.

6 Conclusion

This paper has described our semi-automatic approach for learning the layout of
flat-file bioinformatics datasets. Our approach involves three key steps. The first
step is to use a number of heuristics to infer the delimiters used in the dataset.
Specifically, we have developed a metric, delimiter score or d_score, which uses
information on the frequency and starting position of sequences. Based on this
metric, we are able to find a superset of delimiters, and then we can seek user
input to eliminate the incorrect ones. Our second step involves generating a
layout descriptor based on the relative order in which the delimiters occur. Our
final step is to generate a parser based on the layout descriptor.

We have evaluated our approach for finding the delimiters in a dataset. We
have used three popular flat-file biological datasets, Swissprot, GenBank, and
Pfam. The effectiveness of our method varied across these datasets. In the case
of Swissprot, the 21 delimiters in the dataset were the sequences with the top 21
d_score values. For Genbank, all 18 delimiters were among the sequences with
the top 37 d_score values. Finally, for Pfam, the 31 delimiters were among the
sequences with the top 81 d_score values. In each of these cases, combining both
positional and frequency information turned out to be very important.
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Abstract. Few ontologies in the ecological domain exist, but their development
can take advantage of gained experience in other domains and from existing
modeling practices in ecology. Taxonomies do not suffice because more ex-
pressive modeling techniques are already available in ecology, and the perspec-
tive of flow with its centrality of events and processes cannot be represented
adequately in a taxonomy. Therefore, formal ontologies are required for suffi-
cient expressivity and to be of benefit to ecologists, which also enables future
reuse. We have created a formal mapping between the software-supported eco-
logical modeling method and software tool STELLA and ontology elements,
which simplifies bottom-up ontology development considerably and has excel-
lent potential for semi-automated ontology development. However, the con-
ducted experiments also revealed that ontology development for ecology is
close to being part of ecological research that through the formalized represen-
tation of the knowledge more clearly points to lacunas and suggestions for fur-
ther research in ecology.

1 Introduction

It is well-known that ontologies can be a valuable artifact for data(base) integration.
However, for ontologies to be useful, one first needs to develop a good ontology that
covers the domain accurately and precisely and has the right balance between utility
and ontological correctness (the ontological trade-off). Although multiple engineering
artifacts exist, from structured controlled vocabularies to formalized foundational
ontologies, ontologies in the domain of ecology do not exist to the extent as, for
instance, in cell biology. We can take advantage of lessons learned from developing
ontologies in other biology disciplines, most notably in molecular biology and anat-
omy, and from suggestions made by philosophical ontologists. The former includes
experiences with GO', OBOZ, and FMA3, the latter comprises the use of foundational
ontological aspects like the nature of entities/concepts and (primitive) relations [1]
and OntoClean [2] which provides a methodology for removing incorrect ontological

! Gene Ontology: http://www.geneontology.org.
% Open Biological Ontologies: http://obo.sourceforge.net.
3 Foundational Model of Anatomy: http://sig.biostr.washington.edu/projects/fm/index.html.

B. Ludidscher and L. Raschid (Eds.): DILS 2005, LNBI 3615, pp. 46 —62, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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decisions made in a taxonomy by relying on types of properties (characterising, sortal,
phased sortal. etc.) and metaproperties (rigidity, identity, etc.). However, whether we
can use a similar approach as taken by the Gene Ontology Consortium depends on the
result of a comparative analysis between molecular biology and ecology (§2). One of
the differences is that there is an established practice of modeling in ecology, that, al-
beit different from computer science and ontology research, can be advantageous to
enhance ontology development. A widely used, software-supported, ecological mod-
eling technique is STELLA®, which we have exploited in formulating formal corre-
spondences between STELLA model elements and ontology elements (§4). This was
identified and put to the test with formalizing ecological knowledge contained in a
STELLA pollution example and the Microbial Loop (ML) model [3], reported in §5
that also contains several ontology development considerations. Apart from simplify-
ing and speeding up ontology development by using the formalization, related facets
benefiting ontology development for ecology are discussed in §6 and the potential for
semi-automatic bottom-up ontology development based on STELLA models is as-
sessed. We finalize with some conclusions in §7.

2 Some Salient Features of the Ecology Subject Domain

An important factor in ecological and biogeochemical models is the flow of compo-
nents in a eco(sub)system’, i.e. the path components take or sequence of processes it
is involved in. A component can be a specific nutrient, such as nitrogen- or carbon-
containing substances, pollutant, energy, and so forth, hence the centrality of endu-
rants (entities that are wholly present in time) and instances thereof. However, the
‘component of concern’ is firmly embedded in the flow. For example, the nitrogen
cycle from nitrate in soil to bacterium (nitrogen fixation by e.g. a Rhizobium sp.),
transfer to a leguminous plant (like clover) with which the bacteria live in symbiosis
with, transport within the plant, consumption by a ruminant, metabolism of the ani-
mal, excretion by animal, return of (some of) the nitrogen-containing molecules back
to soil. One also can consider such cycles as a process of nested processes, i.e. from a
perspective of a specific combination or sequence of distinct perdurants (entities that
are partially present and happen in time). Thus the relation between ‘stuff’ (a sub-
stance, amount of matter etc.) and what happens to it are inextricably linked to one
another. Conversely, molecular biologists do distinguish more clearly a separation be-
tween structural components, their functions and the processes in which they can be
involved. GO consists of three distinct ontologies: Molecular Function (MF, describ-
ing activities), Biological Process (BP, with biological goals), and Cellular Compo-
nent (CC, for locations) [4]. This approach treats perdurants as if they are endurants,
but this objectification does not solve the connection between endurants and per-
durants. For example, if one wants to couple some biological process with a cellular
component, new relationships between the two ontologies need to be created (e.g.
[5D. Thus, adding new knowledge about the combination that may result in a separate

* ISEE Systems: http://www.iseesystems.com; ithink is the same tool but used for business
modeling.

3 For the remainder of the article, ‘ecological model’ comprises both types — a biogeochemical
model is element-conserving, but this aspect is irrelevant for ontology development.
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new ‘situation ontology’, or a mapping ontology that is positioned between BP and CC.
However, that ecological modelers use tightly coupled endurants and perdurants does
not necessarily prevent an ontologist to create artificial divisions between the two.
Perdurants include types of entities such as processes, events and states, in contrast
with modeling paradigms in informatics and most ontological investigations, where
the center of attention is the entity of the thing-quality paradigm. Philosophically,
there are arguments for and against such emphasis: processes can only exist when
there are endurants that are the ‘carriers’ of the process [5]. On the other hand, objects
only come into existence through a process (refer to [6] and [7] for a wider scope of
arguments). Few agreed-upon ontological categorizations exist, as can be observed in
Figure 1 or the Process Specification Language®, Business Process Management
Initiative’, and Petri-nets. From an ontology engineering perspective, the approaches
vary. One tactic is to separate perdurants from endurants linked by a participation re-
lation as in DOLCE (Descriptive Ontology for Linguistic and Cognitive Engineering)
[8], [1]. The Basic Formal Ontology (BFOS) consists of SNAP and SPAN ontologies
where the latter includes a time perspective. However, none addresses the thing-
process aspect as fully interdependent, which poses a potential problem when repre-
senting ecological knowledge in an ontology. Bittner et al [9] go to some length in
formalizing the difference between endurant and perdurant, but this does not solve the
nature of the relation when viewed from different perspectives. The Standard Upper
Ontology has set up a 4D Ontology Working group’, without useable results as of yet.

& E
Frocess Perdurant (PIN
™ RS
ContinuousProcess DiscreteProcess Event (EV) Stative (STV)
. A , s
Ewvent  State  Achievement Accomplishment State  Process
Initiation Continuation Cessation [ACH) (ACC) RO
A A U

Fig. 1. Two examples of process-related categorizations. A: [6]; B: DOLCE [1]

A second difference lies in the level of granularity and demarcation of the disci-
pline. The boundary of molecular biology lies at the cell-level and smaller entities,
whereas in ecology ‘ecosystem’ and ‘the environment’ have fiat boundaries. On the
one hand, earth is one ecosystem, but also the Amazon basin or the micro-
environment in tree tops. Other methods of differentiation include trophic levels and
‘grand processes’ such as eutrophication and El Nifio. While there are different ways
of partitioning the domain at the molecular biology level, such scope in ecology is
wider, thus when developing an ontology it requires involvement of a broader range
of (sub-)disciplines that are less reductionist than molecular biology.

® http://www.mel.nist.gov/psl/index.html.

" http://www.bpmi.org/.

8 http://ontology.buffalo.edu/bfo/, http://ontology.buffalo.edu/smith/articles/SNAP_SPAN.pdf.
? http://suo.ieee.org/SUO/SUO-4D/index.html.
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Third, ecologists have a different starting position compared to molecular biolo-
gists when modeling domain knowledge. Whereas in molecular biology no estab-
lished modeling tradition existed, ecologists do have multiple established standards
such as Odum’s conventions [10] and STELLA that are, depending on the sub-
discipline in ecology, more or less often used. STELLA is relatively widely used and
has software support comprising graphical elements and automatic generation of
equations. STELLA is used in research and education for systems analysis and simu-
lations of, for example, predator-prey interaction, effects of contamination, and food
chains. Ontologists should take advantage of these models for bottom-up ontology
development. However, this also means that one cannot begin with a structured con-
trolled vocabulary: whatever ontology is developed has to surpass semantic expressiv-
ity of existing ecological models for it to be perceived to be of benefit to ecologists.

A preliminary experiment in ontology development for ecology was carried out
with a simplified pollution example, which confirmed that an informal ontology lim-
ited to isA and partOf relationships could not capture the expressivity of its corre-
sponding STELLA model. The “extended semantic representation of equations” via
“placeholder objects” [11] did not represent the (partially implicit) semantics of the
STELLA model fully either (results omitted). An additional advantage of using
STELLA as a starting point for ontology development is that, with the mapping be-
tween STELLA and ontology elements, the STELLA representation serves as an in-
termediate representation. Thereby it bridges the two disciplines with a common
ground for communication. This will speed up bottom-up ontology development,
which will facilitate data integration sooner rather than later.

3 Methodology

The first experiment was carried out with STELLA v8 for Windows from ISEE Cor-
poration and the demonstration model Amalgamated Industries. The abstraction of
this model, including the STELLA terminology and modeling elements, was matched
to ontology jargon. Protégé v2.1.1 with OWL Plugin v1.2 Beta (Build 139) was used
to improve the level of formalization and test the translation. Racer v1.7.21 was used
for the ‘classify taxonomy’ and ‘check consistency’ features; Graphviz v1.12 plug-in
to activate OWLViz, and ezOWL plug-in (v20040412) were added for ontology visu-
alization of the developed ontology. To test the translation between STELLA and on-
tology elements, we used the larger ML model (Figure 4), converted it into a list of
candidate entities and relations, which was structured into a formal ontology, also in
Protégé. Development of both the Pollution and MicrobialLoop ontologies was aided
by structuring the candidate entities and relationships adhering to the formalized
DOLCE foundational ontology, which is intended for making already formed concep-
tualizations explicit (refer to [1] for explanation and categories).

4 Abstractions and Matching

Before addressing the formalization, a small STELLA model (Figure 2) of the simpli-
fied pollution scenario is outlined for illustration. This model captures a scenario
where a factory disposes toxic waste in the river that flows into the pond downstream,



50 C.M. Keet

in turn killing organisms living in the pond depending on the pollutant concentration.
The ecological ‘concept of concern’ is the concentration of the pollutant in the pond,
which has the related influencing factors modeled ‘around’ it, such as the released
amount of pollutant by the chemical plant. There are three main aspects: water and
pollutant in/outflow of the bound system, the combination of water volume and
amount of pollutant determining the pollutant concentration in the pond, and the com-
bination of water outflow and pollutant concentration determines the amount of pol-
lutant outflow. There are two factors of interest in comparing this type of model with
its variants in computing, such as UML class diagrams, (E)ER and ontologies:

1. The ecological model is event centered, hence contains the representation of time,
diagrammatically represented with the horizontal thick arrows with an open shaft,
or phrased as the route taken by an element.

2. Key aspects in the ecological model are Flow, Stock, Converter, and Action Connec-
tor. A Stock correspond to a noun, being it particulars or universals, Flow to verb,
Converter to attribute or property related to Flow or Stock, and Action Connector re-
lates the former. Figure 3 contains the comparison with computing verbiage (top
half). Object is a candidate for an entity, event_or_activity in OO terms a candidate
for a method and in an ontology categorised under a perdurant hierarchy and con-
verter maps to attribute_or_property, which says something about the object, such as
the outflow rate. The Action Connector (thin line with arrow) may be candidate for
binary (ternary?) relationship between any two of Flow, Stock and Converter.

iater in
the Pond

o 5 9, o)

wuater outflow

1]

wiater inflow

pollutant
cnncentrationJ;I
I
I
= .
ot & X
Pallutant in pollutant outflow
the Fond
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Fig. 2. Abstraction of the pollution example

Following from 2), the formalization for the translation is:

Vx ((Stock(x) <> Entity (x)) = ED(x)) €))
Vx ((Flow(x) <> Entity (x)) = PD(x)) 2)
Vx ((Converter(x) <> Entity (x)) — (Q(x) v ST(x))) 3)

Vx (ActionConnector(x) <> Relationship (x)) @)
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where ED means endurant, PD perdurant, Q quality (‘attribute’ belonging to an en-
tity), and ST state. Axiom (3) is open to experimentation: for example, the Converter
Pollutant concentration in Figure 2 can be a quality of the pond, liquid mixture, or
detritus — anything that can be polluted — but also a state as in ‘the pollutant concen-
tration of the pond where the river enters’ or ‘the pollutant concentration of the pond
on 20-7-2004’. Further, Pollutant concentration may be subsumed by Concentration
that can be applicable to a wider range of endurants and as such is not necessarily an
essential property (a pond is still a pond with or without some concentration of a pol-
lutant) but a situational one, or having concentration as a non-rigid property. There-
fore, (pollutant) Concentration is better modeled as an ST, but at this stage of the in-
vestigation, the mapping of Converter to Q cannot be excluded with certainty. This
ambiguity will be resolved by applying the proposed formalization to a formal pollu-
tion ontology and the larger ML model, which will clarify if the mappings are correct,
shed light on the distribution of Q and ST from a Converter, and might be solved by
adding additional axioms taking into account the context of the STELLA elements,
such as how the converters are related to the other elements.

Dbject

@ O 9 )

event or activity 1

event or Jetivity 2

ttribite or property Computing
Ecology
Stock
P N
@ — v YN
flow 1 flow 2

converter

Fig. 3. Comparing the ecological model components with its analogue in a computing model

The consequences of translating an ecological model into an ontology based on the
provided mapping is that temporality and the movement of energy or nutrients is not
yet represented exactly as is captured in the ecological model apart from incorporating
the fact that types of processes exist; however these extras in STELLA are epistemo-
logical aspects. The original ecological model now can be remodeled into an ontology
consisting of three features: endurants, ‘attributes’, and perdurants; what remains to
be solved are the relations between them, i.e. the Action Connectors. With further
testing of larger STELLA models such as LEEDS (Lake Eutrophication, Effect, Dose,
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Sensitivity model) and ML, and the provided formalization, it is possible to generate
an ontology by ‘loading’ several of the STELLA ecological models into one of the
ontology development tools.

5 Ontology Development

5.1 A Pollution Ontology

5.1.1 Motivating Example: Some Issues with an Informal Ontology
An informal ontology restricted to concepts and the iSA or partOf relation does not
suffice. For example, an isA relationship between Water and Molecule: although Wa-
ter is indeed a molecule, Water in the context of some ecological site is not pure H,O,
but water containing dissolved molecules and suspended particles, i.e. water as a mix-
ture (an amount of matter). The methodology of ontology base & commitment layers
of DOGMA [12] may be more advantageous, because Water isA Molecule can be in-
cluded in the ontology base and omitted from a commitment layer for an ecological
site, whereas it would be included in a commitment layer of a chemicals ontology that
omits Water isA LiquidMixture. In a simple taxonomy these options are unavailable.
Volume, Rate and Concentration capture a characteristic of their respective entity
they are attached to, alike an attribute. Molecule hasA Concentration, but it can only
have a concentration dissolved or suspended in something and not of itself, of itself
are properties like melting temperature and structure of a molecule. However, to con-
clude it is an attribute or state of only water in the pond is premature: if modeled as
such, the model will be unable to accommodate pollutants in sea, air, soil etc.

5.1.2 Upgrading to a Pollution Ontology

It is sub-optimal if one has to use different types of representation models (multiple
taxonomies and placeholder objects) to capture the semantics. For a formalization to
be exploited in full, one needs a formal ontology and a tool that is based on logic.
Two widely used ontology development and editing tools are DAG-Edit and Protégé;
the former provides functionality for structured controlled vocabularies (and taxono-
mies), whereas the latter is frame-based with Description Logic (DL) and OWL sup-
port. The DL version supports “maximum expressiveness without losing computa-
tional completeness ... and decidability ... OWL DL includes all OWL language
constructs with restrictions such as type separation (a class can not also be an individ-
ual or property, a property can not also be an individual or class)”'’. DAG-Edit is in-
sufficient for the task, because relationship types are limited to isA and underspecified
partOf (sometimes also developedFrom). Protégé, on the other hand, supports reason-
ing and allows higher expressivity by allowing specification of e.g. properties, range
restrictions, and disjointness of entities. However, it also supports multiple inheri-
tance, which complicates inferencing over the ontology and multiple inheritance may
indicate bad modeling decisions, but this is not necessarily so.

Multiple Inheritance. In the initial categorization, Molecule directly subsumed Pol-
lutant, Nutrient, OrganicMolecule, and AnorganicMolecule, where some molecules,

1% http://www.w3.0rg/TR/2004/REC-owl-guide-20040210/.
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like PHB and Phosphate, were subsumed by OrganicMolecule and Pollutant, and Nu-
trient respectively. Biologically, these are correct statements, but it would be better to
specify (not possible in Protégé, but implementable in a DL knowledge base):

if (concentration of AnorganicMolecule x) in (WaterBasin or AmountOfMatter) is
higher than [some number] then (x isA Pollutant and x isA AnorganicMolecule)
else (x isA Nutrient and x iSA AnorganicMolecule) for species y.

This statement indicates that the difference between pollutant and nutrient is problem-
atic: pollutants are harmful and nutrients beneficial to organisms'', thus a functional
categorization. However, there are two obstacles: first, a pollutant for species x can be
a nutrient to species y; this information may be used for in situ bioremediation'?,
hence lies within the UoD. Secondly, low molecule concentration can be a nutrient
but excess concentration pollutant; but when is ‘excess’ concentration high enough to
classify it as pollutant? Narrowing down Nutrient to NutrientBioremediation prevents
confusion with generic nutrients that never function as nutrients for bioremediation.
That Molecule subsumes Pollutant and Nutrient together with OrganicMolecule and
AnorganicMolecule is incorrect, because the former are functions assigned to the
molecules, whereas the distinction for OrganicMolecule and AnorganicMolecule is
based on the composition of molecules. Using the DOLCE categories for guidance,
Pollutant and Nutrient still are physical objects (POB), but classified according to
other criteria. For brevity of this experiment, they are separated into structure and the
function of molecules. H,0 and Amylose each had only one isA relation hence were
removed, but PHB and 3-chlorobenzoate can be used for bioremediation as each one
has 3 isA relationships: being an OrganicMolecule, Pollutant, and Nutrient. Although
multiple inheritance has not been eliminated, due to having structure and function in
one ontology, there is a major advantage in maintaining this sort of multiple inheri-
tance: when one adds a new entity under MoleculeStructure, Pollutant, and Nutrient,
i.e. the new entity has three isA relationships, then one can deduce there is potential
for in situ bioremediation (as is the case with 3-chlorobenzoate). On the other hand, if
the new entity has two isA relationships, one to MoleculeStructure and the other to
Pollutant, an ecosystem disruptive method to clean up the contaminated site is re-
quired; if there is only one isA relationship, then there is no need for the molecule to
be in the classification because it does not serve any particular purpose for the UoD,
or still needs to be grouped under NutrientBioremediation or Pollutant, thereby miss-
ing essential knowledge in the ontology. Thus from that perspective, multiple inheri-
tance is not a ‘bad thing’ and can be used to derive additional information from query-
ing the ontology.

Other modeling considerations and limitations include 1) Protégé prohibits creat-
ing an entity or individual starting with a number, in this case 3-chlorobenzoate,
which is problematic because names of many chemicals start with a number and
appending the number at the end is not an option with more complex chemical struc-

1 Pollutant = “waste matter that contaminates the water, air or soil” (Wordnet) although nature
may cause pollution as well; nutrient = “any substance that can be metabolized by an organ-
ism to give energy and build tissue” (Wordnet).

12 In situ bioremediation: removing a pollutant from a contaminated site without disrupting the
ecosystem by using organisms instead of soil excavation and chemical decontamination.
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tures. 2) The STELLA pollution model assumes Pollutant_concentration_in = Pollut-
ant_concentration_dumped_by_plant, thereby ignoring adsorption and absorption to
particulates in the river and sedimentation, consumption by organisms, and assuming
that the pollutant concentration is uniform throughout the pond. Adsorption and ab-
sorption can be added to the ontology, but this extension is omitted from Pollution
because its purpose is explorative with relation to the axioms. 3) Protégé tolerates un-
constrained property creation, which can become prohibitive if one desires to develop
an ontology with possible future ontology integration while another ontology has been
restricted to a few relationship types. 4) In order to create a sound ontological basis of
the categorization of entities, the structure of the DOLCE top-level categorization was
used, most notably the amount of matter (M), physical object (POB), and process
(PRO) versus ST, resulting in 56 entities for the Pollution ontology. Whereas relating
entities other than isA or partOf is not possible in a taxonomy, this is possible with a
formal ontology and therefore included in Pollution via 9 properties and correspond-
ing constraining axioms. The plug-in module OWLViz for Protégé only shows the
isA relationships in the graphical representation; for additional expressivity, ezOWL
is required. With a very small ontology, this creates a manageable view of the seman-
tics, but even with only 56 entities, the diagram is already too large to be manageable
(the OWL file of Pollution is available online as supplementary material). Comparing
this ontology with the original STELLA pollution model, the 11 elements are ‘trans-
lated” into 56 entities and 9 properties. This may seem excessive, but the ontology
captures more semantics than its STELLA counterpart does, hence has a higher likeli-
ness of being useful for more pollution models than STELLA’s dump-river-pond sce-
nario. From the perspective of semi-automated bottom-up development of ontologies
based on STELLA models, this poses a challenge: how labor-intensive is the addi-
tional structure one needs to add to adhere to sound ontological principles? Is it sensi-
ble to develop semi-automatic translation software if a considerable amount of ontol-
ogy development effort may have to be carried out manually anyway? Instead of
generating a structure of the ontology, a viable option is to translate STELLA ele-
ments into a list of entities and relationships that one needs to include in the ontology.
This reduces the manual analysis because it is possible to develop a backbone domain
ontology, ‘hang in’ the entities generated from the STELLA model, and augment this
with the relationships and properties that resulted from the translation.

5.2 The Microbial Loop Model

The formalization was applied to the ML model (Figure 4) to examine if the axioms
still hold in a real and larger STELLA model, to shed light on the distribution of Q
and ST from a Converter, and to investigate if additional axioms are required when
taking into account the context of the STELLA elements, such as how converters are
related to other elements. ML’s initial mapping to ontological categories contain 38
STELLA elements, of which 11 Stock/ED, 21 Flow/PD, two Converters that map to
ST, and four Action Connectors/Relationships that are modeled as properties in Pro-
tégé (mappings included as supplementary material). All Stock elements can be fur-
ther categorized as Non-Agentive Physical Object (NAPO) leaf categories. Further, to
accommodate these NAPOs in an ontology, extra entities related to the NAPOs were
added, such as Phytoplankton (which is an Agentive Physical Object APO), and De-
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tritus (an amount of matter M). Note that “Phyto C” is the organic carbon component
of phytoplankton, not the phytoplankton as a whole. To accommodate for this in the
ontology, adding phytoplankton only as an APO is insufficient. Apart from the phyto-
plankton carbon and nitrogen, the NPK parameters (Nitrogen, Phosphor, Potassium)
are relevant for agriculture and soil science in particular. Should one include other
molecules to be more comprehensive? From an ontological viewpoint probably yes,
but one might argue a utilitarian restriction “it’ll do” for the intended purpose.
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Fig. 4. The Microbial Loop model. (Source: [3])

A separate issue concerning categorization of organisms in the ML as APOs
emerged during a conversation with one of the creators of the ML model, Professor
Paul Tett. The distinction between individual organisms, their class and a population,
are called (phyto)plankter for the individual and (phyto)plankton for the “class with
the characteristics of the population”. From an ontological perspective, a class is dif-
ferent from a population: a population is a group of individual organisms belonging to
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the same species living in a given geographic region. The assumption in ML emerged
that both the —er and —on have the same properties but have only differing numerical
values (quales), i.e. entering the realm of the statistical properties of the population of
organisms categorized as being of the same type, hence ‘average organism classified
as belonging to species x’. At present, there is an empirical problem differentiating
between the characteristics of the individuals in the population, which is a challenge
at the epistemological level. One may expect that within several years, ecologists will
be able to distinguish between properties and their values of population, individual,
and class, which may have a knock-on effect on the design decisions made with the
MicrobialLoop ontology.

Seventeen of the 21 Flow elements are processes (PRO) and the other three ac-
complishment (ACC) (2x the entity Uptake and Excretion) and achievement (ACH)
(Oxidation). There is no particular contextual aspect why these three have to be cate-
gorized under a different type of perdurant. The two Converters, both called “grazing
pressure”, each is a parameter of the process Grazing. Hence, it might be a quality of
the process of grazing, because it is specifically constantly dependent on the entity it
inheres in (grazing): at any time, a quality cannot be present unless the entity it in-
heres in, in this case a PD, is also present, and a PD is present if its ED bearer is pre-
sent. However, if there is no plankton, the grazer (ED) may be grazing on something
else. If there are no grazers, then grazing (PD) is not there and its grazing pressure as
Q is also absent. Alternatively, the grazing pressure simply reaches zero, resulting in
“grazing pressure” as a ST: the notion of “grazing pressure” is there, thus a ST and
not a Q, which adheres to the ecology interpretation. Thus, this does not imply that
Converters automatically always can be translated into states. The Action Connectors
map well to properties (relationships between entities). There are 59 entities and 10
properties in the MicrobialLoop ontology (the OWL file is available as supplementary
material), of which a summarized section is shown in Figure 5. For instance, the left-
most rectangle is a visual representation of Protozoa as subtype of Microorganisms,
with (5) inherited from Microorganisms, (6) and (7) as necessary properties of Proto-
zoa, and (8) a necessary property of PhytoPlankton. MicroAlgae and MacroAlgae are
disjoint subtypes of Algae, and Phytoplankton and ZooPlankton are disjoint subtypes
of Plankton, and so forth.

Vx3dy (Protozoa(x) — hasProcess(x, y) A Respiration(y)) ®))
Vx3y (Protozoa(x) — grazesOn(x, y) A PhytoPlankton(y)) (6)
Vx3dy (Protozoa(x) — grazesOn(x, y) A Bacteria(y)) @)
Vx3y (Phytoplankton (x) — accomplishes(x, y) A Uptake(y)) ®)

The translation axioms provide an accurate high-level mapping for both the Micro-
bialLoop and Pollution, although the amount of Converters and Action Connectors in
the models may be to be too few to statistically conclusively confirm correctness of
the mapping.

6 Discussion

Additional entities had to be added to the ontology compared to its STELLA variant. In
spite of this, several factors ameliorate this issue. Ecology already divides concepts
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into three types: natural, functional and integrative concepts. The first two types of
ecological concepts can be identified in the ontology: the functional concepts are cate-
gorized under Perdurant and the natural concepts subsumed by PhysicalEndurant. Im-
posing a separation and categorization may actually benefit ecology. Ford [13] presents
the interdependencies between the three types of concepts indicating that “[n]ew func-
tional concepts arise to describe newly understood structures or interactions in natural
concepts and research into functional concepts is constantly used to refine the defini-
tion of existing natural concepts and their classifications” and “[d]evelopments in
measurement lead to refinements of functional concepts”. Hence, by defining the con-
cepts more clearly with the aid of formal ontology, the discipline of ecology itself may
advance at a faster pace. However, realize that the change in definition of concepts and
how they may be classified is the very essence of scientific advance [13]. Consequen-
tially, software for development of an ecological ontology must contain extensive fea-
tures for ontology maintenance, such as described by Klein and Noy [15]. Using the
DOLCE concept CN [14] or GO Guidelines, it means that a change in the definition of
a concept implies creation of a new concept, because ~(CN,; = CN,,,,) even though the
domain expert may perceive that the meaning is ‘updated’. Remains the challenge of
representing the integrative concepts of ecological models, which are sometimes estab-
lished and captured in axioms, but also may be conjectures or in the process of being
refined, where the second and third include alternative views of some ecological the-
ory. This indicates that the chosen ontology development process should be capable of
representing alternative views. This is not possible in Protégé, but DOGMA features
[12] do allow this in the ontology commitment layers.

A generated translation list from STELLA to entities and relationships as outlined
in the previous section may be used as ontology base where each commitment layer
represents a different view. An alternative can be to develop software that allows on-
tology browsing from different perspectives exploiting a theory of granularity applied
to the subject domain. Aside from diverging ideas on theories, the ‘windows on real-
ity’ differ depending on what the scientist is looking for. In ecology, it is common to
start with flows as opposed to starting with the object where processes act upon. From
a formal ontological perspective, this is not necessarily problematic: creating the on-
tology starting with perdurants and subsequently axiomatizing their influence on en-
durants is possible. In addition, two distinct methodological approaches in ecological
research exist. In theoretical ecology, one devises a theory that is tested on its appli-
cability in nature afterwards. On the other hand, ecological modeling via the empirical
approach involves tweaking the model until it fits the observed data, where only a
limited set of parameters of the subject matter is used [16]. The former approach indi-
cates that one starts with a framework that will be filled up inwardly and more
densely, where the latter starts small and gradually will evolve by spreading outward
once more research has been conducted. If one methodology is better than the other is
irrelevant here, however, it is important to realize that both approaches are used in
ecology, and, at least initially, might not result in the same output due to divergent de-
sign decisions. Also, cooperating with domain experts of either type involves a differ-
ent approach commencing ontology development.

Although engineering challenges of ecology ontology development can be solved,
the philosophical formal ontology development entertains itself with what and how to
represent what is known, where an ontologist for ecology will have to cooperate in the
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process that otherwise logically occurs before ontology creation, i.e. the why in the
semantics as part of regular science. The output must not only be usable for computer
science (the ontology), but also of use to ecologists, who will be pushing the bounda-
ries of their discipline by clarifying relevant concepts, thereby better formulating re-
search questions, and later their theories. Provided alternative views of integrative
concepts and theories can be accommodated for, it will aid the advance in ecological
science. Apart from the difficulty on class/population (§5.2), a second aspect emerged
during discussions with Tett: to compare and contrast more precisely a to-be-
developed ontology of the STELLA model for the ‘model organism’ ERSEM" with
his MicrobialLoop. In addition, this ERSEM-ontology or MicrobialLoop might func-
tion as template or backbone for other ecological models in marine science. Another
suggestion how ecology can benefit from the ontological approach is during the “fit-
ting stage” of simulation models to match empirical data, where, according to Tett,
parameters are added and removed “arbitrarily” and their values changed to fit obser-
vations. Adding the reasoning power of ontologies can ensure consistency. Inconsis-
tencies introduced during the fitting stage provide a focus for (re)assessment and in-
vestigation of (a section of) the domain.

Considering some practical aspects of ontology development, the mapping between
STELLA and ontology elements do not imply these correspondences will always be
applicable, although the devised correspondences were confirmed to be sufficient for
the MicrobialLoop development experiment. Accommodating the Converters remains
less straightforward, because decisions have to be made to translate it to a quality or
state. The use and meaning of the Action Connectors aided in determining the proper-
ties and relations in the Pollution and MicrobialLoop. The relative absence of serious
difficulties during the modeling of characteristics of the biological entities may be due
to the size of the (randomly) chosen models and/or the author’s domain knowledge.
Initial challenges during the development of a taxonomy were absent during the ‘up-
grade’ to Pollution, because the expressivity and flexibility of DL is much greater
than the limited hierarchies in a taxonomy. Our experience confirms observations
made by many other researchers that more expressive modeling languages do capture
a richer semantics. This is not only because it compels the user to do so but also be-
cause one has the possibility to ‘squeeze in’ more knowledge, which in turn enforces
closer inspection of the domain, resulting in ontologies with less errors and higher
precision, hence are more stable. This is in contrast with e.g. DAG-Edit or standard
UML class diagrams when one can gloss over such details. Moreover, where the flow
dynamics cannot be addressed in a taxonomy, this is dealt with in the developed on-
tologies by first categorizing the relevant perdurants under Process and State and us-
ing properties to create the relationships between these entities and the endurants they
act with/upon, all captured within one ontology instead of different representations.
An alternative considered was BFO. However, developing two ontologies (SNAP and
SPAN) that need to be ‘connected’ to capture the ecological semantics is prohibitive.
The DOLCE top-level categories intuitively make sense and aids understanding of
how distant or close biological semantics is from ontologies with a cognitive bias.

13 European Regional Seas Ecosystem Model; refer to [17] for the structure and methodology of
ERSEM and [18] for the microbial food web in marine systems.
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Fig. 5. Section of the MicrobialLoop ontology graphical representation with ezOWL

The two developed ontologies include more entities and relations than their
STELLA counterpart and easily can be further extended to increase reusability. The
latter can step up efforts to resolve ambiguities and assumptions; a very large ontol-
ogy may be practically difficult to work with or requires full support of many sub-
disciplines within ecology, analogous to the GO project [4]. Alternatively, one can
take advantage of the extant modularization of ecological models: ML and e.g. Sea-
Weed are composed of smaller sub-models, where the former contains Riley+, Mi-
croPlankton and Autotroph-Heterotroph [3], and the latter Vollenweider'* and a tide
& light simulation. Thus it is conceivable create ‘mini-ontologies’ based on the same
foundational ontology principles for each ecological model separately, then develop a
library where the user can choose the desired sections to create larger models, sup-
ported by a backbone ontology where for each situation one or a few ontologies can
be attached to it. This approach also facilitates representation of diverging views of
integrative ecological concepts. Challenges are the development of a backbone ontol-

' http://tejo.dcea.fct.unl.pt/resources.asp. Vollenweider models form the basis for eutrophica-
tion control, which in turn is used in the LEEDS model and semantically related to ML.



60 C.M. Keet

ogy and prospects of integrating ontologies. Analysis of differences between ‘simple’
and ‘complex’ versions of the Vollenweider models revealed that the more complex
models contain both additional sections as well as filling the existing structure with
more detail, thus both coverage and granularity changes. Tett and Wilson [3] indicate
that this may be the case with multiple ecological models, because there is a desire to
keep the amount of Stock elements to a minimum for reasons of computational power
and practical as well as theoretical challenges of estimating parameters. Smith [19]
claims that, in ecology terms, good simulations should include as much detail as pos-
sible, whereas good models should include as little as possible to capture the most im-
portant factors. This will affect ontology development for ecology, depending on with
which kind of model/simulation one starts ontology development. Perceptions and
knowledge about the subject domain change over time, is not always consensual, and
have the potential destabilizing effect of cascading uncertainties to larger modular
simulations and models, which are, according to [20], neither possible nor desirable to
include in one model. A design decision about one larger ontology versus multiple
mini-ontologies will have to be made.

Concerning the MicrobialLoop, one may argue that the author’s knowledge of the
subject domain prevented the need for making excessive amounts of assumptions,
such as knowing what “Phyto C” is, and microbiology in general. The outcome likely
would have been different without such prior domain knowledge. Temporal factors
such as accommodating changes in the rate of in/outflow are not addressed fully, be-
cause they are in the realm of instances. The richer expressiveness of the formal on-
tology approach using Protégé and DOLCE categories proved to be flexible enough
for the task as it allowed correct representation of entities from taxonomies, entities
that emerged from the semantic representation of equations, and other implicit knowl-
edge of the STELLA models. The (untrained) ecologist indicated that the richer
ezOWL graphical representation (Figure 5) that includes properties and constraints
was preferred over a simplified taxonomic tree generated with OWLViz. Further, and
more importantly, the ecologist judged the logic made the knowledge captured in the
formal ontology become clearer than both STELLA and natural language, and con-
sidered to have useful potential to disambiguate the semantics to advance ecological
research. The translation of the STELLA models into ontologies did introduce many
new concepts, especially with the simple pollution experiment, but this was much less
the case with the larger ML model. This indicates that with larger ecological models
the issue of manual intervention during ontology development decreases. The transla-
tion axioms simplified ontology development from the ML considerably (a first ver-
sion including initial mappings including comments was created within three hours
and required only a few minor changes afterwards); therefore, utilizing other
STELLA models with the provided formalization of the translation will also speed-up
the overall development process of ontologies in ecology.

7 Conclusions

Although few ontologies in the ecological domain exist, their development can take
advantage from existing modeling practices in ecology in particular. Taxonomies are
insufficiently expressive compared to existing ecological modeling techniques and the
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perspective of flow in ecological models cannot be represented adequately in a taxon-
omy. We have created a formal mapping between the software-supported ecological
modeling method STELLA and ontology elements, which simplifies bottom-up on-
tology development and has excellent potential for semi-automated ontology devel-
opment. We developed two formal ontologies, Pollution and MicrobialLoop, in Pro-
tégé, exploiting the expressivity of OWL DL to capture the semantics of ‘flow’ in
salient in ecology models. STELLA serves as an intermediate representation, widely
used by ecologists and is translatable to a representation usable for ontologists. In ad-
dition, the more comprehensive semantics of the ontologies have not only a higher
level of reusability within the domain, but also for future ontology integration as both
Pollution and MicrobialLoop were developed with the same ontological foundational
principles which shall facilitate reuse of ontologies. However, the experiments also
revealed that ontology development for ecology is close to being part of ecological re-
search that through the formalized representation of the knowledge more clearly
points to lacunas and suggestions for further research in ecology, thereby aiding hy-
pothesis generation. We are currently extending this research with ontology develop-
ment and management aspects such as modularization and ontology integration.
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Abstract. In many areas of life science, such as biology and medicine, ontolo-
gies are nowadays commonly used to annotate objects of interest, such as biolog-
ical samples, clinical pictures, or species in a standardized way. In these appli-
cations, an ontology is merely a structured vocabulary in the form of a tree or a
directed acyclic graph of concepts. Typically, ontologies are stored together with
the data they annotate in relational databases. Querying such annotations must
obey the special semantics encoded in the structure of the ontology, i.e. relation-
ships between terms, which is not possible using standard SQL alone.

In this paper, we develop a new method for querying DAGs using a pre-
computed index structure. Our new indexing method extends the pre-/ postorder
ranking scheme, which has been studied intensively for trees, to DAGs. Using
typical queries on ontologies, we compare our approach to two other commonly
used methods, i.e., a recursive database function and the pre-computation of the
transitive closure of a DAG.

We show that pre-computed indexes are an order of magnitude faster than
recursive methods. Clearly, our new scheme is slower than usage of the transitive
closure, but requires only a fraction of the space and is therefore applicable even
for very large ontologies with more than 200,000 concepts.

1 Introduction

Ontologies play an important role in biology, medicine, and environmental science. The
probably oldest ontology in biology is the taxonomic classification of flora and fauna.
The NCBI taxonomy [1] is represented as rooted, directed tree, where nodes represent
organisms or families, while edges represent an evolutionary relationship between two
nodes.

In the area of medicine and molecular biology several ontologies were introduced in
the last years, including the Gene Ontology (GO) [2]. The project aims at providing a
structured, precisely defined, commonly used, and controlled vocabulary for describing
the roles of genes and gene products in any organism. In contrast to the NCBI taxonomy,
which resembles a tree, the Gene Ontology is structured in the form of a rooted directed
acyclic graph (DAG). Each GO term represents a labeled node in the graph, while an
edge represents a direct relationship between two terms.

Ontologies as those mentioned before are used to annotate biological and environ-
mental samples, or to define functional characteristic of genes and gene products. Both,
the annotated data and the ontologies are stored in information systems, usually in
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relational database systems. Clearly, these data are not just stored, but also queried to
answer biologically interesting questions and to find correlations between data items.

The main advantage of ontologies lies in their hierarchical structure. When a query
asks for all samples annotated with a certain concept, not only the term itself needs to
be considered, but also all its child, grand-child, etc. concepts. Consider the question
“Is the concept transcription factor activity defined as a kind of nucleic acid binding in
the Gene Ontology?”.

1.1 Motivation

Graph structures are usually stored using two tables, one for nodes and one for edges.
Each edge represents a binary relationship between two nodes, i.e., a father and a child
concept. Using this model, it is easy to get parents or children of a node, but not an-
cestors or successors as these are in arbitrary distance of the start node. Answering this
simple question above using standard SQL alone is therefore impossible.

Generally, there are two different approaches for answering the question. The sim-
plest method is to program a recursive function — either as stored procedure or using
a host language — that traverses the ontology at run time to compute the answer to the
query. However, a recursive functions requires time proportional to the number of tra-
versed nodes in the tree or the DAG, leading to bad runtime performance. The second
possibility is to index the graph in some way. For instance, one could compute and store
the transitive closure of a tree or DAG before queries are posed. Then, a question as the
one above can be answered in almost constant time by a simple table lookup. But in-
dex structures require time for computation and space for being stored, rendering them
inapplicable for very large ontologies.

In this paper we present a new index structure for DAG-formed ontologies that is an
order of magnitude faster than recursive functions and in most situations consumes an
order of magnitude less space than a pre-computed transitive closure.

The rest of the paper is organized as follows. Section 2 describes our model of stor-
ing ontologies, defines typical queries for ontologies, and describes how these queries
can be answered using recursive functions. Section 3 describes two well-known index-
ing schemes for tree structures, i.e., pre-/ postorder ranks and transitive closure. Section
4 describes how these indexing structures can be extended to index DAGs. The ex-
tension of the pre-/ postorder ranking to DAGs is the main contribution of the paper.
Section 5 shows our results on implementing and benchmarking the different methods.
Finally, Section 6 concludes the paper.

2 Storing and Querying Ontologies

In this section we first describe our model of storing graphs in relational database sys-
tems and we then introduce and specify common questions on ontologies. We demon-
strate how these data can be queried using recursive database functions. In the next
section we then present index structures and how to query them.
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2.1 Data Model

We consider ontologies that are rooted, directed trees or DAGs. In both structures, a
path is a sequence of nodes that are connected by directed edges. The length of a path
is the number of nodes it contains. The length of the shortest path between two nodes
is called the distance between the nodes. In a tree each node can be reached on exactly
one path from the root node. The same is true for any other two nodes in a directed
tree, if a path between the two nodes exists. DAGs are a simple generalization of trees,
as nodes may have more than one parent. Therefore, nodes may be connected by more
than one path.

In any directed graph successors of a node v are all nodes w for which a path from v
to W exists. The successor set of v are all nodes w that can be reached from v. In analogy
ancestors of node Vv are all nodes U where a path from U to Vv exists. The ancestor set of
Vv are all nodes U from which v can be reached.

Graphs are stored as a collection of nodes and edges. The information on nodes
includes a unique identifier and possibly additional textual annotation. Information on
edges is stored as binary relationship between two nodes. Additional attributes on edges
can be stored as well. In a relational database system both collections are stored in
separate tables. The NODE-table contains all node information including the unique
identifier, node_name. The second table is called EDGE, where the binary relationship
between two nodes is stored in the attributes from node and to_node.

2.2 Typical Queries on Ontologies

The main questions on taxonomies and ontologies can be grouped into three categories,
namely reachability, ancestor- or successor set, and least common ancestor of two or
more nodes.

Q1: Reachability is concerned with questions like *Does the species Nostoc linckia
belong to the phylum Cyanobacteria?’ . To answer the question, one has to find out, if
the node labeled *Nostoc linckia’ has an ancestor node labeled *Cyanobacteria’ in the
NCBI taxonomy. The length of the path between the two nodes does not matter.

Q2: Ancestor-/ Successor set of a given node contains all ancestor and successor
nodes, respectively. Given a set of proteins, annotated by Gene Ontology terms, a re-
searcher may want to find all proteins that are involved in nucleic acid binding. Of
course, not only the proteins directly annotated by the term 'nucleic acid binding’ are
of interest, but also all proteins that have a successor term of the original term as anno-
tation. The first step in answering the question is to retrieve all successor nodes of the
given start term — in short the successor set.

Q3: Least common ancestor is of interest when a common origin of a set of nodes
should be computed. For instance, microarray experiments produce expression levels
of thousands of different genes within a single experiment. A typical analysis is the
clustering of genes by the expression levels. A biologist now wants to find commonali-
ties among genes in a cluster. In this situation, GO annotations of genes are helpful, as
the least common ancestors of the annotated GO terms defines the most specific com-
mon description of the genes in the cluster. Note that for computing the least common
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ancestor of a set of nodes, the lengths of the paths between nodes is crucial. Ancestor
sets of nodes may have several nodes in common, and one has to decide which of these
is the closest to all given nodes. Obviously, for answering this question it suffices to
know the distance between the nodes.

2.3  Querying Ontologies

The conventional way is to use recursion to traverse a tree or graph on query time.
Algorithm 1. performs a depth-first search over a tree and returns the successor set for
a node V. The function first looks for children of the start node v and appends each
child, m to the successor set. It then searches for successors of m by calling itself with
node m as the new start node. Doing so, it also holds a counter for the length of the
path v and the current node. As in trees only one path between any two nodes exists,
this is equivalent to the distance. As soon as no more child nodes are found the by then
accumulated successor set is returned.

Algorithm 1. Recursive Algorithm to retrieve the successor set of a node v

FUNCTION successorSet(v, dist) RETURNS succcessors
BEGIN
FOR EACH m € 0from.node=v EDGE DO
append (m,1) to successors;
successorList(m) := successorSet(m, dist+1);
append successorList(m) to successors;
END FOR;
return successors;
END;

To compute the ancestor set of a node a second function has to be created, called
ancestorSet (). This function takes the same parameters as the one presented in
Algorithm 1., but instead of looking for child nodes the algorithm will look for all
parent nodes and append them to an ancestor set, which will be returned at the end.

Using these stored procedures, it is possible to query tree and DAG structures. How-
ever, for DAGs the function is not optimal. Using the functions the exemplary questions
presented in Section 2.2 can be answered with the following SQL statements:

— Q1: Reachability - Q3: Least common ancestor
SELECT 1 SELECT A.anc,
FROM successorSet (v, 0) A.dist+B.dist AS dist
WHERE suc = w; FROM (SELECT anc, dist

FROM ancestorSet(s)) A

- Q2: Ancestor/Successor set INNER JOIN (SELECT anc, dist
SELECT suc FROM ancestorSet(t)) B
FROM successorSet (v, 0); ON A.anc = B.anc

ORDER BY dist;
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3 Indexing and Querying Tree Structures

We now show how to index and query tree structures using the pre- and postorder rank-
ing scheme as well as the transitive closure.

3.1 Pre- and Postorder Ranks

The pre- and postorder rank indexing is well studied for trees [3]. Several systems sug-
gested to use it for indexing XML documents in relational databases [4]. The advantage
of pre- and postorder rank indexing for an XML document is that the document order is
maintained, i.e., the user is able to query for descendant nodes as well as for following.
Note that in our case only descending and ascending nodes are of interest, as ontolo-
gies usually do not contain any order among children of a node. In chapter 4, we will
extend the pre-/ postorder ranking scheme to DAGs. Therefore, we describe the method
in detail in the following.

Algorithm 2. shows the function for assigning pre- and postorder ranks to a node in
a tree. Ranks are assigned during a depth-first traversal starting at the root node. The
preorder rank for a node is assigned as soon as this node is encountered during the
traversal. The postorder rank of a node is assigned before any of the ancestor nodes and
after all successor nodes have received a postorder rank. We store pre- and postorder
ranks together with the node ID in a separate table forming the index. Clearly, the space
requirement of the ranks is proportional to the number of nodes in the tree.

Algorithm 2. Pre-/postorder rank assingments of nodes, starting with root node r
var pr:=0; var post:=0;
FUNCTION prePostOrder(r)
BEGIN
FOR EACH child, m € 0 from_node=r EDGE DO
pre:=pr; pr:=pr+1;
prePostOrder(m);
INSERT m, pre, post, pr-pre INTO prePostOrder;
post:=post+1;
END FOR;
END;

To illustrate the steps of the algorithm consider the tree in Figure 1(a). Starting at
the root node A, we traverse the tree in depth-first order. Node B gets the preorder rank
of 1, while E gets 2. As node E has no further child nodes it is the first node to get a
postorder rank and is stored with both ranks in table prePostOrder. This way the
rest of the tree is traversed. The pre- and postorder rank of root node A is assigned
separately.

In addition to the ranks, we also store the number of descendants, S for each node,
which we will use later for improving queries. This number can be computed as the
difference between the current preorder rank and the preorder rank of the node to be
inserted next. To clarify this, consider node C in Figure 1(a). This node is inserted with
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Fig. 1. Pre-/postorder rank assignment of a tree

the preorder rank of 3. The current preorder rank is 6 as the last successor node of C,
| has this preorder rank. The difference between the two preorder ranks is 3, which is
exactly the number of successor nodes of C.

Pre- and postorder ranking becomes clearer when it is plotted in a two dimensional
co-ordinate plane, with the preorder rank on the x-axis and postorder rank on the y-axis
as shown in Figure 1(b).

Querying Pre-/Postorder Indexed Trees. As indicated for node G in Figure 1(b) the
pre-post plane can be partitioned into four disjoint regions for each node v. The upper-
left partition contains all ancestors of v, while the successors can be found in the lower-
right area. The remaining two areas hold the preceeding and following nodes of v.

As ontological structures are usually order-independent, only the ancestor and suc-
cessor sector are of interest. Using the preassigned ranks, nodes in these two partitions
can be retrieved without recursion, since any successor of node v must have a preorder
rank that is higher and a postorder rank that is lower than that of v. The location of
the successors of a node v within the lower-right partition can be further restricted. Let
node V have preorder rank pre,. If v has s successor nodes, then each successor W of
node v will have a preorder rank pre,, with pre, < pre,, < pre, +S.

To find the least common ancestor of two nodes the ancestor sets of both nodes have
to be joined on the attribute node_name and the common ancestor with the highest
preorder rank is least common ancestor of both nodes.

Using the refinement on the location of the successors the queries for answering
questions Q1, Q2, and Q3 are the following:

— Q1: Reachability (is w successor of v)

SELECT 1
FROM prePostOrder pl, AND p2.node_name = v
prePostOrder p2 AND pl.pre > p2.pre

WHERE pl.node_name = w AND pl.pre < p2.pre+p2.s;
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— Q2: Ancestor set
SELECT pl.nodename AS u
FROM prePostOrder pl,
prePostOrder p2
WHERE p2.node name = v
AND pl.pre < p2.pre
AND pl.post > p2.post;
— Q2: Successor set
SELECT pl.node.name AS w
FROM prePostOrder pl
prePostOrder p2
WHERE p2.node_name = v
ANDpl .pre > p2.pre
AND pl.pre < p2.pre+p2.s;
— Q3: Least common ancestor
SELECT A.node_name, A.pre

FROM (
SELECT pl.nodename, pl.pre
FROM prePostOrder pl,
prePostOrder p2
WHERE p2.node name = s
AND pl.pre < p2.pre
AND pl.post > p2.post) A
INNER JOIN (
SELECT pl.node_name, pl.pre
FROM prePostOrder pl,
prePostOrder p2
WHERE p2.nodename = t
AND pl.pre < p2.pre
AND pl.post > p2.post) B
ON A.nodename = B.node_name
ORDER BY A.pre desc;

3.2 Transitive Closure

The transitive closure of a graph is a set of edges. Edge (v, w) is inserted into the transi-
tive closure if either (v, W) is an edge in the graph or if there exists a path between node
v and w. Using the transitive closure, queries on reachability and queries for ancestor
and successor sets can be answered very efficiently. Finding the least common ances-
tor of two or more nodes requires to store the length of the shortest path between two
nodes.

In the past, several algorithms have been developed to compute the transitive clo-
sure within a relational database system [5]. We found that the so called *Logarithmic
algorithm’ [6] performed best for trees as well as DAGs. The function is presented in
Algorithm 3..

Algorithm 3. Computing the transitive closure
FUNCTION transtiveClosure()
BEGIN
INSERT INTO TC SELECT from_node, to_node, 1 FROM EDGE;
max_dist:=1;
REPEAT
INSERT INTO TC SELECT TCl.anc, TC2.suc, min(TC1.dist+TC2.dist)
FROM TC TC1, TC TC2 WHERE TCl1.suc=TC2.anc AND TCl1.dist=max _dist;
max_dist:= SELECT max(dist) FROM TC;
UNTIL INSERT = §)
END;

This algorithm first inserts all tuples of the initial edge relation with the distance 1
to the transitive closure table TC. In the next step the tuples from TC with a distance
equal to the maximum distance are self-joined with TC. The join condition is that the
successor node of one relation must be equal to the ancestor node of the other. The
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ancestor nodes of the first relation, the successor node of the second and the minimal
distance between the two nodes is stored in TC. This step is repeated until no further
tuples can be inserted into TC.

Note that the transitive closure requires space that is in worst case O(|V |?). Clearly,
the real space requirements are much smaller for trees, as they are for DAGs. In
Section 5, we will measure space consumption of transitive closures in more detail.

Querying the Transitive Closure. The transitive closure essentially contains one tuple
for each pair of ancestor - successor nodes. Accordingly, queries answering our three
problems may look as follows:

— Q1: Reachability - Q3: Least common ancestor
SELECT 1 SELECT A.anc, A.dist+B.dist
FROM TC AS distance
WHERE anc = v FROM (SELECT anc, dist

AND suc = w; FROM TC WHERE suc = §) A
INNER JOIN (SELECT anc, dist

- Q2: Ancestor/Successor set FROM TC WHERE suc = t) B
SELECT suc ON A.anc = B.anc
FROM TC ORDER BY distance;

WHERE anc = v;

4 Extending Index Structures to DAGs

So far, we only considered trees for querying. In this section we extend the indexing
schemes to work on DAGs, as ontologies often have the form of directed acyclic graphs.
Specifically, we present how the pre- and postorder ranking scheme can be used for
DAGs and how this structure can be queried.

4.1 Pre- and Postorder Ranks for DAGs

The pre-/ postorder ranking scheme we described in the previous chapter is restricted to
trees. The reason is that in DAGs, where nodes may be reached on more than one path
from root, neither the pre- nor the postorder rank is unique for a single node. If multiple
paths exist, a node is reached more than once during the traversal.

Obviously, it is no option to simply take any one of the ranks, e.g., the first to be
assigned, because then the relationships between the ranks of ancestors and successors
do not hold any more. Consequently, we would loose successors or ancestors during
querying.

In the following, we describe a new and simple extension of the ranking scheme that
is also capable of indexing DAGs. We will show in Section 5 that our method can be
seen as a compromise between recursive query methods, which are slow for queries but
need no further storage and the transitive closure, which allows for very fast queries, but
also requires considerable storage space. We will also show that the advantages of our
method depend on the "tree-likeness” of a DAG. For DAGs that are almost trees, our
method has considerable advantages when compared to the transitive closure, however,
these advantages are lost the less tree-like a DAG is.
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The basic idea of our extension is very simple. Instead of assigning only one pair
of ranks to a node, we allow for multiple rank pairs. More specifically we assign an
additional pre- and postorder rank to a node each time this node is encountered during
the depth-first traversal. Actually, Algorithm 2. already performs this computation, as
it inserts a new node-rank combination each time a node is encountered. After running
the function on a DAG, each node will have as many pre- and postorder ranks as this
node occurs in a path from the root node.

As an example, we add one more edge (the dotted edge) to the tree from figure 1(a).
Table 2(b) shows the resulting pre- and postorder ranks for each node in the DAG. As
one can see node C and all descendants of C get two different rank pairs, because these
nodes are encountered on two different paths, one directly from A to C and one from
Aover D and H to C.

Clearly, the number of node-rank pairs is higher for DAGs than for trees, leading
to an increase in space consumption for the index. The degree of increase depends
on the number of additional non-tree edges and the location of such an edge in the
graph. Clearly, additional edges in the upper levels of the tree will lead to an addition
of rank pairs for a large number of nodes, while additional edges close to the leaves
of a DAG only have marginal impact. Potentially there is an exponential growth of the
index structure in the number of edges added. However, we observed that in practice the
increase in size is not critical. The reason for this is that in ontologies concepts on the
upper level usually only have one parent concept. For instance, in the Gene Ontology
the first level where a node has two or more parents is on level four. In Section 5, we
will show the impact in size more precisely both on real ontologies and on randomly
generated trees and DAGs.

Like for trees, all rank pairs in the DAG can be plotted on a two-dimensional coor-
dinate plane (see Figure 3). Nodes appear as many times in the plane as they have rank
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pairs. This shows that, intuitively, our method multiplies all subtrees of nodes that have
more than one parent.

To query our new indexing scheme, we need to adapt the methods for querying pre-
post order indexes for trees. As an example, consider node G in Figure 3. This node
as well as its successor set appears twice in the coordinate plane as it can be reached
on two different paths from the root node A. However, the successor sets are identical
for each instance of G, because this set is independent of the number of paths G can
be reached from root. Thus, for successor queries it suffices to select any instance of
a node and query for all its children using the conditions on pre- and post order rank
used for trees. This is reflected by limiting the number of returned preorder ranks in the
query to 1. As for trees the search space can be reduced by using the information on
the number of descending nodes. However, caution must be taken to filter the result for
duplicates.

The situation is more complex for ancestor queries, e.g., the ancestor set of a
node V. Computing this set requires to merge all nodes in the upper-left partition of
any instances of Vv, as the set of one instance only contains nodes for one possible path
from root to V. Again, duplicates must be removed from the result.

— Successor set: — Ancestor set for DAGs:

SELECT DISTINCT SELECT DISTINCT
pl.node.name AS w p2.node_name AS u

FROM prePostOrder pl FROM prePostOrder pl,

WHERE pl.pre > ( prePostOrder p2
SELECT pl.pre WHERE pl.node_name = v
FROM prePostOrder p2 AND p2.pre < pl.pre
WHERE p2.node_name = v AND p2.post > pl.post;
LIMIT 1)

AND pl.pre < (
SELECT p2.pre+p2.s
FROM prePostOrder p2
WHERE p2.node name = v
LIMIT 1);
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We only gave the code for computing the successor and the ancestor set. Reacha-
bility can be computed in the same way as for trees. Least common ancestor requires
to compute the ancestor sets of all nodes, intersect them, and find the node with the
minimal sum of the differences between the preorder ranks of the two nodes and the
common ancestor node.

4.2 Transitive Closure on DAGs

Algorithm 3. can be applied without changes to index DAGs. The space complexity will
not change if only the minimal distance between any two nodes is stored. If all possible
path lengths between two nodes are needed, the situation would be different and the
upper bound would be exceeded.

Querying the transitve closure of DAGs is the same as for trees.

5 Results

In this section we compare both indexing methods and the recursive algorithm. We
measure in detail run time of queries, space consumption of the index structures, and
time necessary for building the indexes. We give results on generated tree and DAG
structures and on real data, i.e., queries against the Gene Ontology.

We have implemented both indexing algorithms and the recursive algorithm as
stored procedures in ORACLE 9i. Tests were performed on a DELL dual Xeon ma-
chine with 4 GB RAM. Queries were run without rebooting the database. Given the
relative small size of the data being studied (in the range of a couple of megabytes), we
expected that all computation is very likely performed solely in main memory, as both
data and index blocks can be cached completely. Thus, secondary memory issues were
not considered.

5.1 Time and Space Consumption of Graph Indexing Algorithms

To systematically measure the construction time and space consumption of the two
index algorithms we generated trees with a given number of nodes and a given average
degree of 8.0. The average degree is the average number of incoming and outgoing
edges of a node, therefore in our trees each node has on average 7 children. DAGs
were created by randomly adding additional edges to the tree, independent of the depth
of the newly connected nodes. Added edges had to fulfill two conditions: First, it was
not allowed to introduce parallel edges, and second, no edge between node vV and an
ancestor node of v was allowed, as this would introduce a cycle. The index structures
of the generated trees and DAGs were created using Algorithms 2. and 3..

Figure 4 shows the size of the index structures given as the number of tuples inserted
in the index relation. The starting point of a curve always stands for the tree with the
indicated number of edges. To create DAGs we have iteratively added additional 10 %
of the number of edges from the corresponding tree. For instance, starting with a tree
of 10,000 edges, the second measurement contains 11,000, the third 12,000 edges, ect.
Thus, in each line all but the first point represent DAGs. Altogether, we used 11 start
points of trees with 1,000 to 200,000 nodes, performing 1 to 5 rounds of edge additions.
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For a tree, the number of tuples inserted into prePostOrder equals the number
of nodes. For most measured cases, the size of the index using our method is an order
of magnitude smaller than the size of the transitive closure. However, we see that sizes
of TC and prePostOrder are converging as the number of non-tree edges in a DAG
increases. Adding up to 30 % more edges still leads to more than 50 % less tuples in
the pre-/postorder index than for transitive closure in any of the examined sets.

However, adding 40 % more edges reverses the situation in two of the shown sets.
The reason for this behavior is that, when adding additional edges to the tree, the end
node of the added edge plays an important role for the pre- and postorder ranking, but
not so much for the transitive closure. Imagine, you have already added a certain amount
of additional edges to the tree, and now you add a new edge. The pre-/ postorder ranking
now has to traverse another sub-structures more than once, and the nodes within that
structure will get an additional rank pair. The transitive closure will also increase, as
new connections are established. But the number of newly found connections decreases
the more edges already exist in the DAG, as many new edges only introduce new paths
between already connected nodes, thus not increasing the size of the transitive closure.

We can conclude that our method uses considerably less space than the transitive
closure for DAGs that are tree-like. Note that the measurements on a real ontology are
even more favorable for our method (see below).

The time required to construct the pre-/ postorder index for trees is always 3 to 10
times higher than for the transitive closure (data not shown). However, the actual time
difference is marginal, as both structures can be computed very fast even for large trees.
Computing the transitive closure for a tree of 200,000 nodes takes 58 seconds, while
the pre-/postorder ranking index needs 3:45 minutes.

The time difference increases quickly with the number of edges added. For up to
20 % more edges, the difference remains within the order of the differences for trees.
Adding more edges leads to a dramatic increase in the time necessary for computing the
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pre-/ postorder index. For a DAG with 10,000 nodes and 13,999 edges, it already takes
71 times more time to compute the pre-/ postorder than the transitive closure, although
the number of inserted tuples in both tables is nearly equal. The reason for this differ-
ence is that pre-/ postorder ranks require extensive graph traversal, while the transitive
closure can be efficiently computed using dynamic programming - style algorithms over
increasing path lengths.

5.2 Querying Ontologies

We measured query times for three exemplary questions described in Section 2.2, based
on real ontologies. We used real ontologies and not generated ones to obtain more re-
alistic results, as in human curated ontologies concepts on higher levels usually do not
have more than one parent. This specific edge distribution is not included in our DAG
generator.

Table 1. Number of tuples inserted in each relation and time (in min:sec) required for computing
the index structures

NCBI Taxonomy Gene Ontology
Tuples Time Tuples Time
Pre-/Postorder ranking 230.559 5:26 76.734 1:24
Transitive Closure 3.583.760 1:44 | 178.033 0:04

Table 1 shows for the two ontologies, i.e. the NCBI Taxonomy and the Gene Ontol-
ogy the size of the index structure and the time required for computing both indexes.
As the NCBI Taxonomy is a tree, the pre-/ postorder index is much smaller than the
transitive closure. The figures are more interestingly for the Gene Ontology. We used
a version with 16.859 nodes and 23.526 edges. Although the number of edges exceeds
the number of nodes by approximately 40 %, the size of the pre-/ postorder index is still
considerably smaller than the transitive closure, confirming our observation about the
edge distribution in real ontologies.

In the following, due to space restrictions, we only give query times for Gene Ontol-
ogy. For each of the queries, Q1, Q2, and Q3, 25 % of the nodes of the Gene Ontology
were randomly selected. The query for each node was issued 20 times. The following
figures give average query execution times.

Reachability. We computed times for answering the query ’Is W a successor node
of v?’ for randomly selected w and v. Figure 5(a) shows the times for 4,300 single
queries using either of the two index structures. As one can see, querying the transitive
closure is faster than querying the pre-/ postorder index, but only by a small and almost
constant factor. The recursive function, whose running time depends on the number of
nodes traversed, is not displayed, as it required between 6 and 11,000 times more time
than querying the indexing schemes.

Successor Set. The successor set for 25 % randomly selected nodes from the Gene
Ontology was retrieved using the queries presented in the former sections. Results can
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be found in Figure 5(b). Note that the successor set returned from the recursive function
and from querying the pre-/ postorder index can contain successor nodes several times.
The successor set from the transitive closure will contain any node only once.

Query times using a recursive function is linearly dependent on the number of tuples
returned. Times for both index structures remain fairly constant over the number of
tuples. Times for querying using the pre-/ postorder index are on average 1.5 times
higher than using the transitive closure.

Ancestor Set. Figure 5(c) shows the time needed to retrieve ancestor sets. In this case,
the indexing methods differ considerably. While query times using transitive closure are
similar to the times for the successor set, times for querying the pre-/ postorder index
is even more costly than using a recursive function. The reason that the pre-/ postorder
index is slow is that the ancestor set has to be calculated for every instance of the start
node leading to an extremely redundant ancestor set.

Least Common Ancestor. Computing the least common ancestor of two nodes first
requires to compute the ancestor sets of each node, second to find common nodes in
both sets, and third to select the node with the minimal distance to both original nodes.
Figure 5(d) shows the time necessary to compute the least common ancestor of 4,300
randomly selected pairs of nodes, sorted by the time required for computing the an-
swer using the recursive function. The figure shows that querying the pre-/ postorder
index structure is better than using a recursive database function and worse than using
the transitive closure. The results resemble the one shown in Figure 5(c), as the cost-
dominating operation is the computation of the ancestor sets. The steep rise in time
for some pathological” node pairs, i.e., queries where both sets have extremely large
ancestor sets, is somewhat surprising and deserves further study.

6 Discussion

Indexing tree and graph structures is a lively research area. In the XML community
the pre-/ postorder ranking scheme is widely used as it preserves information about
the document order and allows very fast queries at four axis of the XQuery model. To
further optimize access to tree data in relational databases, Mayer et al. [7] have created
the so called ’Staircase Join’, a special join operator for queries against pre-/ postorder
ranking schemes. It is unclear of this method could also be extended to DAGs.

Vagena et al. [8] presented a different numbering scheme for DAGs. This scheme
also conserves the document order, but it is restricted to planar DAGs. As we can not
guarantee that every ontology has such a structure, the algorithm is not universally
applicable. Another numeric indexing structure for DAGs was presented in [9], where
they label spanning trees with numeric intervals. In DAGs not the nodes with several
parent nodes get more than one interval, but all ancestor nodes get the first interval of
that node. They proposed a reduction, but as intervals are propagated upwards in real
ontologies this would probably lead to an index size in the same order of magnitude.

A different indexing method for trees and graphs was proposed by Schenkel et al.
[10]. Their method uses the 2-hop cover [11] of a graph, which is more space efficient
than the transitive closure and allows to answer reachability queries with a single join.
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Since computing optimal 2-hop covers is NP hard, they use an approximation optimized
for very large XML documents with XPointers. However, 2-hop covers do not allow for
least common ancestor queries, as no distance information can be preserved.

[12,13] are examples of attempts to index graph structures, one by finding and in-
dexing all frequent subgraphs, and one by exploiting properties of the network structure.
However, both methods are for full graphs, and we would expect them to perform rather
poor on DAGs. In the ontology community, we are not aware of any work on optimized
indexing and querying of large ontologies.

We have presented a novel structure for indexing and querying large ontologies,
extending the well known pre- and postorder ranking scheme to DAGs. Our method has
favorable properties for ontologies that are tree-like, which is true for most ontologies
we are aware of. In those cases, most queries for successors are almost as fast as using
the transitive closure, while space consumption is an order of magnitude lower. One
drawback of our method is the time for creating the index. Our current research is
geared towards reducing this time and speed up ancestor queries.
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Abstract. Biologists use scientific names to label the organisms described in
their data; however, these names are not unique identifiers for taxonomic enti-
ties. Alternative taxonomic classifications may apply the same name, associated
with alternative definition or circumscription. Consequently, labelling data with
scientific names alone does not unambiguously distinguish between taxon con-
cepts. Accurate integration and comparison of biological data is required on
taxon concepts, as defined in alternative taxonomic classifications. We have de-
rived an abstract, inclusive model for the diverse representations of taxonomic
concepts used by taxonomists and in taxonomic databases. This model has been
implemented as a proposed standard XML schema for the exchange and com-
parison of taxonomic concepts between data providers and users. The represen-
tation and exchange of taxon definitions conformant with this schema will
facilitate the development of taxonomic name/concept resolution services, al-
lowing the meaningful integration and comparison of biological datasets, with
greater accuracy than on the basis of name alone.

1 Introduction

Scientific names are inherently poor identifiers for organisms, because although
names are formalized and validated according to strict codes of nomenclature, the
same name can be applied by taxonomists to alternative taxonomic views of the ex-
tent or definition of a taxon (e.g. a species, genus etc.). Biologists (i.e. the 'users' of
taxonomic classifications) identify and label their data with scientific names, by iden-
tifying their organisms according to a particular taxonomic classification, as found for
example in field guides, but without recognizing and recording that taxonomic con-
text. As a consequence datasets cannot be reliably integrated on the basis of the scien-
tific names because the context or meaning of the name is not captured.

Taxonomic identification is emerging as a significant problem for the integration
and comparison of diverse datasets across all fields of biology from genomics to ecol-
ogy. For example, annotations of Genbank DNA sequences typically label the source
species according to the NCBI Taxonomy (www.ncbi.nlm.nih.gov/Taxonomy).
Whilst specifically disclaiming any 'taxonomic authority' NCBI attempts to provide a
single consensus view on taxonomy and represent name alterations and 'corrections'
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© Springer-Verlag Berlin Heidelberg 2005
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by encoding synonym relationships for use by their search engines (for example the
genus Fugu has recently been ‘renamed' Takifugu). Such an approach cannot deal with
complex, changing and unrecorded relationships between names as used according to
alternative taxonomic views. For example, the alternate classification and reclassifica-
tion of Orangutans into separate species or subspecies means that sequence data might
be labelled according to a variety of alternative classifications. (Currently over 50,000
nucleotide sequences are ascribed to Pongo pygmaeus, with fewer than 100 for each
'subspecies' abelii and pygmaeus). It is not clear how the NCBI Taxonomy might
handle the alternative reclassification of these sub-species as species or whether the
50, 000 P. pygmaeus sequences include data that some taxonomists would ascribe to
abelii (species or subspecies). These problems impact on other areas of biology and
beyond. For example, the increase between 1996 and 2000 in the number of officially
endangered primate species is partly attributable to the decision in 2000 to accept the
reclassification of some subspecies (including Orangutan) at the species level [1].
Clearly consideration of species names in isolation, without the appropriate classifica-
tory context, makes it difficult to interpret biodiversity data such as the distribution of
Orangutans, when collected at different times, and labelled according to different
(unrecorded) classification contexts.

1.1 Taxonomy and Nomenclature

Taxonomists classify organisms into hierarchically ranked taxa according to their
evolutionary relatedness, based on any of a variety of types of biological evidence
(morphology, genetics, palacontology efc.). Alternative classifications (taxonomic
revisions) arise over time reflecting new or alternative taxonomic opinion following
more detailed study, the discovery of new taxonomic information such as evidence
about relationships between taxa, description of new species, and increasingly mo-
lecular phylogenies based on DNA sequence comparison. Therefore taxonomy is
itself an investigative science, and taxonomic classifications represent partial and
evolving hypotheses rather than static identifications of absolute taxa. Any recorded
taxonomic classification represents an opinion, according to one authority, at a given
time. Relationships may be expressed or inferred between successive or alternative
taxonomies, relating the concepts (taxa) in one classification to concepts in another,
but without knowing the total genetic history of all life on earth it is not possible to
derive a final, 'true’ classification of existing (and extinct) organisms.

Taxonomists use scientific names in order to label and communicate about the
taxonomic concepts that they create. Names are applied to the taxa in a given
classification according to the codified rules of nomenclature, based on 'typification'
(i.e. by reference to archived 'type' specimens) and following the principle of 'priority’'
where names are dependent on the oldest type specimen included in the
circumscription of a taxon. This system provides stability to scientific names over
time, as they are preserved in relation to their original use and type specimen.
However, as a direct consequence of the application of these rules the same valid
scientific name will apply to different views of a taxon according to different
postulated taxonomic classifications. Indeed it is also true that very similar taxonomic
concepts may have different names according to different classifications.
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Names therefore are a part of a 'taxon concept', and cannot be used to unambigu-
ously identify a concept. The identifiers used by experimental biologists to label
organisms as a member or instance of a particular taxonomic concept should unambi-
guously refer to the taxon concept itself: true integration therefore requires unique
identifiers for taxon concepts. We propose these concept identifiers should minimally
include the scientific name applied and the classification context. This context is
represented by the authorship of the concept, i.e. an 'According To' or secundum
(sec.) citation. Assigning identifiers for concepts allows simple resolution of taxon
concepts based on identity, particularly if GUIDs were to be adopted for concepts.

Taxonomic concepts are created and defined (or revised) in taxonomic publica-
tions. These publications may include various levels of detail defining each taxon,
which might include: character descriptions (i.e. a list of structure, attribute, value
triples), lists of archived specimens which are included in the taxon (specimen cir-
cumscription), relationships to other concepts in the same classification (including
parent-child relationships between a taxon and its subordinate taxa), relationships
with concepts in earlier alternative classifications, assignment of rank (family, genus,
species etc.) and application of a scientific name for this taxon. Individual taxono-
mists have different perceptions or models for what constitutes and defines a taxon.
This makes comparison of alternative taxon concepts problematic, even if the full
rationale for the classification is available. However, comparing components of
concept definitions might allow experienced Taxonomists to establish and record
relationships between concepts with different GUIDs (e.g. two concepts can be
considered equivalent for some particular purpose).

1.2 The Users of Taxonomic Classifications

The complex issues of ambiguity surrounding taxonomic classification and naming
are well understood by expert taxonomists, but their importance and consequences are
probably not considered relevant by experimental biologists who wish to use the
names as static identifiers for the organisms described in their data. The explosion in
biological data makes the accurate identification of source organisms critical. For
example a researcher will frequently wish to identify which available datasets contain
information on a particular organism of interest. Typically datasets are annotated by
scientific name. However, correct identification of these datasets requires matching
the taxonomic concepts as used in the source datasets, with the taxonomic concept of
interest to the researcher (as defined by their reference classification). This requires
either the use of identifiers for concepts, or comparison of the actual definitions of the
concepts of interest with the definitions used by the authors of each dataset. A corol-
lary of this is that datasets should be marked up with unambiguous taxonomic concept
identifiers, for example they should reference the identification guide or classification
system used by the researcher: identification by scientific name alone is insufficient.
By way of example a researcher wishing to access data on a fictitious species Aus
bus from globally distributed databases might minimally want to recover data about
any species that had ever been known as species Aus bus, or they might want to
extend this query to recover information about all named species asserted to be
synonymous with Aus bus at some level. Alternatively, if they have precise
knowledge of the underlying concept described as species Aus bus they may only
want to retrieve information about concepts closely related to their own concept of
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information about concepts closely related to their own concept of Aus bus, regardless
of their identifying names. Such detailed exploration of all species that overlap or are
equivalent with Aus bus is only possible if 'names' are resolved according to the con-
cepts to which they have been attached, so that data is retrieved on the basis of con-
cept comparison, regardless of nomenclatural issues. Firstly however we require a
common exchange schema to facilitate the representation, exchange and query of
concepts.

In the following section we describe the current use of biological nomenclature and
present an example to illustrate the problems associated with relying upon scientific
names as identifiers for organisms. In section 3 we discuss the variety of approaches
taken by biologists when describing taxonomic concepts and in section 4 argue the
case for a standard schema to allow the exchange of this data to permit potential com-
parison and resolution of taxonomic concepts. In section 5 we present our work in
defining the Taxonomic Concept Schema, an XML exchange standard for taxonomic
concepts and names and compare this to other models in section 6. Finally some con-
clusions are drawn in section 7.

2 Using Names as Identifiers of Concepts

The formulation and application of valid scientific names for taxonomic groups is
governed by separate codes of nomenclature for botany, zoology, bacteria and viruses
(ICBN [2]; ICZN [3]; ICSP [4], ICTV [5]). According to these rules the name of a
taxon is usually determined by the oldest type specimen included in its circumscrip-
tion. The history of the fictitious genus Aus detailed in Figure 1 (and described more
fully online [6]) illustrates how the rules of nomenclature provide stability for names
throughout the history of taxonomic revisions, but automatically mean that names
cannot be used as unique, non-ambiguous identifiers of taxon concepts. In fact the use
of species names can never be truly separated from a taxonomic classification because
the rules of binomial nomenclature obscure the boundary between classification and
nomenclature for taxon names below the level of 'genus' (see for example [7]).

Where a full scientific name is used with attribution to the authors of the name and
of the taxonomic revision, this represents a clear identifier for a concept. However,
this level of detail is rare outwith specialist taxonomy. Most users and creators of
biological data are not expert in taxonomy, and the names or labels that they use to
refer to specimens and organisms include ad-hoc labels, common names or the (some-
times approximate or inaccurate) scientific name for a species or higher taxonomic
group. Published and electronically deposited data might therefore be labelled with a
variety of names, of varying precision and specificity. For example data about a par-
ticular species of 'daisy' can be found labelled as: lawn daisy, English lawn daisy,
european lawn daisy, USDA code BEPE2, APNI code 163507-3, ITIS TSN 36862,
Bellis perennis, Bellis perennis L., Bellis perennis L. Sp.Pl. 886, Bellis perennis L.
Species Plantarium 2 1753, Bellis perennnis L. Species Plantarium (1753): 886, Erig-
eron perennis (L.) Sessé & Moc., Conyzopsis bellis EHL Krause. Integration and
resolution between such diverse and semantically distinct names is clearly non-trivial,
where even a 'single' name might be recorded with minor variations due to errors and
corrections in spelling, or there may be variation in the abbreviations used.
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A growing number of taxonomic resources and databases are available online,
which seek to provide an integrated record of the names and taxonomic relationships
for a particular narrow or wide taxonomic range (e.g. FishBase, www.fishbase.org;
ITIS, www.itis.usda.gov). These taxonomic databases require quite complex models
of taxonomic names in order to represent their data and to account for the needs of
their users. Historically such databases only represented single, aggregated views of
taxonomy, but it is now recognized that the issue of multiple classifications should be
addressed. This requires consideration both of the synonymies between names as used
in alternative classifications, and the application of the same name to different con-
cepts in alternative classifications. Current representations of synonymy between
names fail to capture the full complexity of these relationships which imply differ-
ences between concept definitions not simply between names.

it A L1758 (i} Aus L1758 (i) Aus 11758 fivy Aus L7538 ) Aux L1758
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Fig. 1. Taxonomic history of the imaginary genus Aus L. 1758 (i) through four subsequent
revisions (ii — v). Individual specimen organisms are represented by the symbols O, O, A etc.,
with nomenclatural type specimens infilled: A, H, @. In 1965 Archer split Aus bus Archer
1965 from Aus aus L.1758 (ii), which was in turn 'split' creating Aus cus Fry 1989 (iii). Discov-
ery of new specimens in 1991 caused Tucker to re-lump' taxa in a single species Aus aus
L.1758 (iv), but according to Pargiter these new specimens indicated that bus (Archer) in fact
belonged in a separate new genus as Xus bus (Archer) Pargiter 2003 (v). Comparing the speci-
men circumscription of the various views on the taxa it is clear that the underlying concepts
referred to by the various names change over time. For example compare Aus aus L.1758 in (i)
versus (ii); or Aus bus Archer 1965 in (ii) and (iii); or the relationship of Aus bus with Xus bus

3 Defining Taxonomic Concepts

A taxonomic concept is one view of what constitutes a taxonomic entity, be it a spe-
cies, genus or taxon of higher rank. Typically this would be represented as a pub-
lished opinion or hypothesis according to a given author team, and include a valid
scientific name as controlled by the rules of nomenclature. Care should be taken to
distinguish between published taxonomic concepts, representing taxonomists' classifi-
cation hypotheses, and the publication of data by biologists who are only identifying
organisms according to some preexisting taxonomic concept, i.e. name usage [8].

A minimal representation of a taxon concept is therefore a scientific name plus ci-
tation of definition (i.e. an attribution). In this respect any first usage of a scientific
name represents an original taxon concept, as published by the author of the name. As
the rules of nomenclature require the original author to be included as part of the
name, e.g. Aus aus L. 1758, this combination does not uniquely distinguish the origi-
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nal concept in a taxonomic database, as the same name might be valid for subsequent
revision concepts, which should be distinguished by recording the originator of the
concept, in addition to the author of the name (as part of the full scientific name), e.g.
Aus aus L. 1758 sec. Fry 1989. Recording the originating (sec.) authorship for a con-
cept therefore distinguishes between concepts, but does not provide any information
with which to compare different concepts. The meaningful comparison of defined
concepts would require the user to consult and interpret the original citations, where
available. Any computer-assisted automatic comparison and resolution of concepts
will require that the elements of the concept definition are stored as part of the elec-
tronic representation of the concept in the taxonomic database sources.

We have modelled how taxon concepts can be represented with varying complex-
ity by a range of creators and users of concepts (including taxonomists, database pro-
viders and experimental biologists). Detailed analysis of the components that are used
by taxonomic databases or found in taxonomic publications to define their taxon con-
cepts includes (i) specimen and taxon circumscriptions, (ii) character descriptions or
circumscriptions and (iii) relationships with other taxon concepts.

There are a wide variety of relationships that might be expressed between taxon
concepts, which have been considered in detail by others (e.g. [9]; see online docu-
mentation, section 2.3 [10]). These relationships may implicitly or explicitly represent
set-based relationships defining the extent of overlap with or inclusion of other con-
cepts, or they may capture 'nomenclatural' relationships. However, the description of
types of relationships is complicated by the interdependence of nomenclature and classi-
fication. A strict interpretation of terms such as synonymy, homonymy etc. implies
relationships between the definitions of names, and it is questionable whether a relation-
ship between names can be asserted in the absence of the context or usage of those
names. Any relationship between taxon names at least minimally considers relationships
between the type specimens determining the names. In the Taxonomic Concept Schema
(TCS) model presented in this paper a nomenclatural' relationship is expressed as a
relationship between two concepts, implying between the names of the concepts.

4 The Requirement for Data Exchange Standards

Given that there are an increasing number of important database providers of taxo-
nomic information, and a large potential user base amongst biologists and non-
scientists, it is necessary to facilitate data exchange between the providers and the
users, so that data can be integrated from multiple sources, without losing or misrep-
resenting the semantics of the data according to the providers' information models.
This is necessary both from the perspective of database providers who wish to aggre-
gate information from multiple data sources into a single representation of taxonomy
without duplication of concepts, as well as for taxonomically naive users who wish to
integrate data from multiple database providers. If no exchange standard is globally
adopted, it will be necessary for any application or service that seeks to query multi-
ple taxonomic databases to implement bespoke query and exchange protocols for each
provider. It would then be impossible to develop standard mechanisms to match or
resolve concepts between different sources, and no guarantee of any protocol’s stabil-
ity or longevity.
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The need for data exchange standards across the domains of biology, particularly
in the context of biodiversity studies, has been identified by GBIF [11] and SEEK
[12] amongst others. The common approach being taken to provide these standards is
the development of XML Schemas that define the data transfer structure as an XML
document, including the structure of the metadata associated with the actual data. This
approach mirrors that already taken to provide Data Description, or ' Mark-up' Lan-
guages such as EML (EcologicalML [13]), CML (ChemicalML [14]) and GML
(GeographyML [15]). The necessary information exchange standards for taxonomy
might include those for taxon concepts, Specimen Records, Collection Details, Publi-
cations, Observation Data, Geographical Location and People (i.e. Authors efc.).
Standards and protocols for some of these facets are already available or under devel-
opment, including: DIGIR [16] and ABCD [17] for detailing and exchanging infor-
mation regarding biological specimens; TaxMLit allowing the complete mark-up of
the content of taxonomic work [18], and a number of standards for publication infor-
mation (MODS [19]; XOBIS [20]; XMLMARC [21]; etc.).

In order to achieve global data exchange standards it is necessary that the standards
process should be open and inclusive, and it is desirable that proposed standards
should be consistent, and well documented. TDWG (International Taxonomic Data-
bases Working Group, www.tdwg.org) has taken a lead in providing an international
forum for the development of standards for biological data exchange. Current stan-
dards being developed (as XML schema) include: the ABCD Task Group On Access
to Biological Data (providing standards for transfer and discovery of biological col-
lection data sets); the SDD Task Group on Structure of Descriptive Data (developing
a standard for storing and transferring detailed, character-based, descriptions of
specimens or taxa) and the Taxonomic Names Task Group on Taxonomic Concept
Standards (developing a standard for storing and transferring information about taxon
concepts and names, the work we present in section 5). Because of the overlap be-
tween these three proposed schemas (for example in their use of taxonomic names
and concepts and their referral to specimens and collections) it is proposed to modu-
larize their implementation to allow reuse of each other's data structures. Furthermore,
because each type of document will need to provide similar metadata elements de-
scribing the data transferred in a document (for example the source, ownership, ver-
sion efc.) it is proposed that documents conforming to each of these three schemata
are wrapped in a common format descriptor document.

5 The TDWG Taxon Concept Schema (TCS)

Considered in abstraction, models for both a taxon name and a taxon concept consist
of a label plus definition plus author. Therefore, as demonstrated by Pyle [22], a
taxon concept can be represented as a taxon name (protonym) plus definition plus
author. Taxonomic definitions of names include the type specimen for that name and
application of the rules of nomenclature, whereas the taxonomic definition of a con-
cept might take several explicit (or implicit) forms. A model for names that includes
relationships between names might be considered as incorporating elements of a con-
cept model as the relationships between names actually refers to both the usage con-
text and typification of that name.
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Because of the structural similarity between elements of names and concepts, and
to encourage a more rigorous representation of taxonomic identifiers (as defined con-
cepts rather than somewhat ambiguous names), an XML schema is proposed for the
representation and exchange of information regarding taxon concepts. Because the
schema includes a representation of names it will be possible to use this schema to
represent names as being concepts that lack definitions (i.e. as nominal concepts).

By making explicit the differences in composition between various types of taxon
concept definition, the schema will allow users to be aware of the variable accuracy or
quality of resolution, whether based solely upon names or upon more richly defined
taxon concepts. Various service providers, such as uBio (www.ubio.org) and Spe-
cies2000 (www.sp2000.org), are providing rich mechanisms for resolving names
across distributed taxonomic databases. However, resolution services based on taxon
concepts as represented by the TCS should provide more meaningful comparison of
taxonomic identifiers.

The TCS schema was derived by composing an abstract model of taxonomic con-
cepts as discussed above, which seeks to account for all the facets that different data
providers and users might wish to include in their definition of a taxon concept. This
was facilitated by detailed consultation with representatives of several taxonomic
databases and researchers with an active interest in modelling and implementing
taxonomic information systems (see acknowledgments). The abstract model has been
represented as an XML schema that defines the structure of XML documents for the
exchange of information about taxonomic concepts. This exchange schema aims to
capture data as understood by the data owners without distortion, and facilitate the
query of different data resources according to the common schema model. The full
schema and documentation can be found at tdwg.napier.ac.uk. The TDWG review
process is open and inclusive, giving the opportunity to any interested party to com-
ment and suggest amendments to the proposal.

An overview detailing some of the elements of the transfer schema is shown in
Figure 2. Each Dataset will carry MetaData detailing the source of the transferred
document. To allow cross-referencing within the document, Vouchers (Specimen
records), Publications and TaxonConcepts are given local identifiers (IDs) that could
be substituted with global IDs (GUIDs) if these are available (see below). As well as
recording the details of TaxonConcepts (which can include Relationships with other
TaxonConcepts, see Figure 3), the transfer document may also be used to detail third
party RelationshipAssertions between existing TaxonConcepts.

Because the model represented by the schema aims to be inclusive no 'components'
of a taxon concept definition are required by the schema, but are optional constituents
of a concept as represented by a given provider. However, in order to be useful, a
minimal representation would generally include both a Name and details of the con-
cept authorship (i.e. AccordingTo, or sec.). The representation of a full scientific
name (NameDetailed) that conforms to the requirements of all existing codes of No-
menclature has been developed outside the project (by the Linnean Core interest
group [23]) and integrated into the schema.

The various elements of the schema materialize information defining the concept
according to the original authors of the concept. This might include details of the
concept's Relationships to other pre-existing concepts, including its circumscription
by (inclusion of) other (lower rank) taxon concepts, or its membership of higher rank
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concepts. Further Relationships may detail similarity or overlap with concepts created
by other authors. These latter relationships can be considered 'horizontal' in the sense
that they can relate concepts defined according to different taxonomic classifications,
whilst the hierarchical relationships between concepts within a classification are 'ver-
tical'. A full list of the types of relationships that may be expressed between two con-
cepts is provided online [10].

The manner in which a concept may be circumscribed by 'Character’ data is as yet
undefined in the schema, and would require a formal model for representing character
descriptions. Various structured models for character data have been proposed (see
for example [24]), and the SDD working group of TDWG is developing a schema for
specimen or taxon descriptions that could be included or referenced within a TCS
CharacterCircumscription. The TCS schema does however provide the mechanism for
circumscribing concepts by reference to identifiers of specimen records (Vouchers in
the schema). Individual specimens that circumscribe a taxon can be labelled accord-
ing to whether they are accepted holotypes, isotypes, neotypes efc. for that taxon,
according to the codes of nomenclature.

MetaData

Vouchers £ == -

[vuset B

AccordingTo
e mmmmmmae PEEEEN FromTaxonConcept
RelationshipAssertions == -1 Relation -

[ref]

ToTaxonConcept

[ref]

[id] [type]

Fig. 2. Overview of the Proposed TDWG TCS XML Schema. The major components of the
schema for transferring taxonomic concepts are shown diagrammatically (XML Elements are
shown in boxes, with XML attributes listed [below]; generated with XMLSpy.com software).
Each document would carry MetaData recording source and creation details of the DataSet,
together with the details of the taxonomic concept information represented. To allow cross-
referencing within the document Vouchers (Specimen records), Publications and TaxonCon-
cepts are given local identifiers (ids), which could be substituted with global IDs (GUIDs) if
these are available. As well as recording the details of TaxonConcepts (which can include
Relationships with other TaxonConcepts, see Figure 3), the transfer document may also be used
to detail third party RelationshipAssertions between existing TaxonConcepts
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The structure of the TCS schema allows internal reference and reuse of 'top-level'
elements (i.e. TaxonConcepts, RelationshipAssertions, Voucher and Publication re-
cords). Indeed it is hoped to standardize the representation of Publications and
Vouchers (including Specimens) across the TDWG schemas (see above). Where any
of these reusable elements are globally defined and resolvable via Globally Unique
Identifiers (GUIDs) it will be possible to represent them in transfer documents simply
by reference to this GUID (see below).

AccordingToType —|

| E»\v:':ort:iingToSirn;:rle

Fig. 3. XML Schema Diagram for a Taxon Concept. A portion of the proposed TDWG TCS
schema for transferring Taxonomic Concepts is shown diagrammatically (generated with
XMLSpy.com software). Any combination of the optional component elements would be used
to detail TaxonConcept definitions according to the data model of the data provider, but typi-
cally at least Name and AccordingTo would be required (‘Nomenclatural Concepts' may only
provide Name). For these two components the detail recorded in different data sources will
vary, so a simple string representation will always be provided, whether or not detailed decom-
position is possible. The Relationship element allows the TaxonConcept to be defined in rela-
tion to existing TaxonConcepts. This can include hierarchical relationships to parent or child
taxa in the same classification, or synonymy and set based relationships with TaxonConcepts
defined in alternative classifications, based on the extent to which two concepts are congruent
or overlap. SpecimenCircumscriptions list the specimen details (Vouchers in Figure 2) that the
TaxonConcept is CircumscribedBy, but the nature of CharacterCircumscriptions is as yet
undefined. The PlaceholderType allows standards developed as other schemas to be incorpo-
rated; provision of the ProviderSpecificData element allows application specific extensions to
the representation of a Taxon Concept
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Some taxonomic work is concerned with re-using existing taxonomic concepts. For
example a taxonomist creating a revision of a large taxon may accept various included
taxa according to the work of various other published taxonomists, but wish to record
opinions about the relationships between these concepts. Where these relationships
are not created as part of a new concept definition they are treated as 'third party' in
the schema, and stored as RelationshipAssertions with an AccordingTo authority.

5.1 Globally Identified Taxonomic Concepts

At present each taxonomic database has its own internal (and sometimes external)
identifiers for taxon names or concepts (e.g. TSN numbers used by ITIS etc.). These
are not represented in the core TCS transfer schema, as there is no guarantee that any
given database ID would map uniquely to a TCS concept nor remain stable over time.

The TCS schema was devised to allow exchange of concepts together with their
definitions, and could be used to represent concepts stored in any global repository or
local cache. To provide a stable and resolvable identifier for these concepts it would
be highly desirable if GUIDs for taxon concepts were adopted. These could be as-
signed and maintained locally (by data owners) or globally according to agreed inter-
national policies, and would provide a stable reference to a taxon concept as
represented according to TCS (i.e. minimally Name plus AccordingTo). Once imple-
mented concept GUIDs would simplify the mark-up of any biological data, according
to available defined concepts, and could assist data retrieval based on concept iden-
tity. Provision of GUIDs would also help reduce the redundancy and overlap between
different data providers who currently reproduce alternative representations of the
'same' concept. Discussion within TDWG, SEEK, GBIF and the wider biological
community is investigating the feasibility of providing GUIDs not only for taxon
concepts, but also for other stable concepts such as Publications and Specimens.

The availability of stable GUIDs with which any biologist can annotate their data
to unambiguously record the organisms described in their work will greatly facilitate
the interpretation, integration and accurate reuse of data across the whole of biology
and beyond. Furthermore, eventually it should be possible for a given researcher to
chose to recognize and use concepts as provided and defined by a preferred taxo-
nomic resource (e.g. ITIS) or even to capture uncertainty by using less well-defined
concepts, or collections of possible concepts were identifications are uncertain.

5.2 Resolving Taxon Names and Concepts

The proposed schema was initially conceived in the context of SEEK's requirement
for a taxonomic concept/name resolution service with which to resolve taxonomic
names as recorded in ecological data sets, following the realisation that resolution by
name alone is insufficient, and in the absence of identification through GUID refer-
enced taxon concepts [12]. Typical scenarios would involve the matching of names as
provided by users querying the system with the names as found in the metadata of
global data repositories, by resolution through the defined concepts provided by taxo-
nomic name providers and servers.
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By capturing the individual components of concept definitions, according to any
data model, the schema will allow matching to be performed on any combination of
the individual components. The type and accuracy of the comparison performed may
vary according to the requirements of the user, i.e. concept matching should be 'fit for
the purpose'. For example, a match on the abbreviated scientific name Aus bus, will be
of lower quality (or precision) than matches specifically to the full, attributed name
Aus bus L. 1758 sec. Fry 1989. For some experimental purposes the loose match to
Aus bus will be sufficient, but for others greater precision is necessary. A related
notion is that comparison matches may be of higher or lower quality, and a 'reliability’
score might be provided for different concepts returned by the resolution service.

Where the concepts are fully defined in terms of the components of the TCS
model, matching on the actual definitions might be possible. When possible this will
allow very high quality matches, for example, where resolution is on the basis of
comparing full specimen circumscriptions. Alternatively, resolution only on the basis
of name-bearing type specimens would provide a less precise, lower quality resolu-
tion, which might still be 'fit for purpose'. Whilst it might be possible to assign 'qual-
ity scores' to different components of the concept definition model, in practice it
might be necessary to weight these scores to reflect the particular taxon model fa-
voured by a user, or the purposes for which they wish to represent a taxon concept.
This would allow users to differentially value the alternative components of a concept
definition, and recognize higher value in matches according to their favoured criteria.
Implementation of a name/concept resolution service would therefore need to include
its own quality model for matching, but allow users flexibility in weighting the com-
parison algorithms or interpreting the results.

6 TCS in Comparison to Other Models for Taxonomy

As stressed earlier the TCS schema and underlying model aims to be inclusive of all
other models of taxonomy, and allow data from any data source to be accurately rep-
resented. A strength of the TCS schema is that it supports many recent innovative
models and implementations of taxonomic information as well as dealing with legacy
data. Several of these models have been developed specifically to allow the represen-
tation of multiple, alternative taxonomic views (HICLAS [25,26]; PROMETHEUS
[27]; BERLIN/IOPI [7-9]; TAXONOMER [22]; NOMENCURATOR [28]; uBIO
www.ubio.org), rather than the standardized single view represented by many global
taxonomic checklists (e.g. ITIS www.itis.usda.org; Species2000 www.sp2000.org).
In the TCS model the taxon concept is the core object, which includes name,
attribution and definition elements. Whilst many database models also represent a
central notion of a taxon object, typically the name is used as an identifier for this
object. The Nomencurator database model [28] tracks nomenclatural history using a
dual name and publication based model to represent potential taxa by 'name usage'.
'Annotations' are used to record relationships between these name usages, providing
an implicit notion of taxon concepts. As such Nomencurator was designed to reflect
the manner in which taxonomists work in recording revisions, tracking the
development of taxonomic theories by changes in name usage. However, as there is
no representation of a taxon concept it is not possible to use the model to define taxa,
nor does it readily provide identifiable and exchangeable concepts that can be shared
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provide identifiable and exchangeable concepts that can be shared amongst the vari-
ous users of taxonomy. It should be possible to map each Nomencurator 'name usage'
(i.e. name plus publication) to a unique TCS taxon concept, using Name and Accord-
ingTo elements.

The Potential Taxon notion, i.e. the representation of subjective views of a taxon,
forms the basis of the Berlin IOPI model for botanical databases [8,9]. In this rich and
complex model botanical information can be linked to potential taxa (i.e. name plus
circumscription reference) rather than to name alone. Such information can include
nomenclatural and systematic relationships as well as linked specimen determinations
and character descriptions. Alternate taxonomic classifications are related to potential
taxa rather than names, closely corresponding to the TCS model. As with Nomencura-
tor it is envisaged that it will be desirable to present a Preferred View' of taxonomy to
users, by filtering according to preferred reference authorities. A number of databases
implement the Berlin model, including the MoReTax database [29, 9] which defines
fundamental, set-based relationships which can be expressed between potential taxa.
These relationships are included in the types of relation representable in the TCS [10].

The Taxonomer database model [22] also represents potential taxa, by the intersec-
tion of a Name and a Reference, called an Assertion. Assertions of the first usage of
that name are treated as a special case, as the name (or Protonym) provides the label
for the taxon concept. Protonyms form the name for later revised opinions on a taxon
concept as implicitly or explicitly circumscribed in a subsequent publication, repre-
sented in the model by an Assertion. Protonyms therefore provide common handle for
both the name and any taxon concepts or Potential Taxa that use this name. TCS
represents protonyms as the Name components of Original taxon concepts, and TCS
Revision taxon concepts may express various synonymy relationships to the Original
Concepts sharing a taxonomic name. As with TCS taxon concepts, Assertions may be
linked by concept relationships (such as those defined by Geoffroy and Berendsohn
[31]), and can have attached specimen determinations and character descriptions (as
text based 'Excerpts'). In the Taxonomer model, however, common names are repre-
sented not as individual concepts (or assertions) but as an attribute of an Assertion
(which must be or include a Protonym).

The uBio model of taxonomic information underlying their Taxonomic Name Ser-
vice (www.ubio.org) seeks to separate 'objective’ nomenclatural information into a
consensual reference model (NameBank), whilst representing classification informa-
tion in a separate but linked model of subjective opinions (ClassificationBank). uBio
assert that this separation whilst providing a rich representation of taxon concepts
through classification relationships will allow nomenclaturists to work with bare
names and represent relationships between them, without referring to concepts. The
justification being that whereas many aspects of nomenclature are not disputed, taxo-
nomic classifications are inherently unstable, disputed hypotheses. On the other hand
the TCS does not represent names independently, and relationships must be expressed
through a concept that bears a particular name. This reflects our opinion that it is
difficult to find any instances where names are used for identification and communi-
cation of taxa without at least an implied notion of the concept to which they apply.
Datasets containing only name information, are represented by 'mominal concepts'
which capture all concepts that share the same name.
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As with the Berlin and uBio models, the Prometheus taxonomic database model,
which is based on specimen circumscription, clearly distinguishes nomenclatural from
classification information [27] and was built to support the working practices of tax-
onomists performing botanical revisions. In this model naming is an automatic feature
of typification in the specimen circumscription. Alternative classification views,
based on specimen circumscription, can readily be compared on the basis of set-based
relationships (such as those defined in the MoReTax/Berlin model [9]).

The requirements for simple data discovery and exchange between database pro-
viders has favoured the development and implementation of simple generic data query
and retrieval protocols, which use simple models for the underlying data structure (for
example, the successful DIGIR [16] protocol with the underlying Darwin Core data
representation [30]). Whilst such flat, unstructured representations of taxonomic in-
formation are certainly simple, they may not be adequate for representing semanti-
cally complex information. Species2000 (www.sp2000.org) has developed a Standard
Dataset model for exchanging name-based species information according to a single
aggregated view of taxonomy, derived from various database sources. Although there
is no explicit statement on what 'defines' a named species concept in this model, each
species can be recognized as a 'concept’ according to the originating source database,
or a recorded taxonomic scrutinizer, and could therefore be represented in TCS as a
(not well defined) Taxon Concept. The synonymy relationships captured in Spe-
cies2000 are purely nomenclatural, as the synonyms do not belong to any alternative
conceptual hierarchy. Representing such synonymies in TCS would require that each
name be represented by a nominal concept.

Whilst the details captured in each of these theoretical and implementation models
of taxonomy vary greatly, they tend to converge on a central representation of a po-
tential taxon or taxon concept. TCS can therefore accommodate the salient features of
these models, as well as representing database models that use a more traditional
representation of taxonomic names as the identifiers.

7 Conclusion

The computerized systems and databases used by biologists and the bioinformatics
community are largely blind to the problems inherent in the (ambiguous) identifica-
tion of organisms by scientific name alone. As we have discussed, accurate integra-
tion of biological data sets is problematic due to many reasons including errors in
documenting taxonomic names; the lack of standards for capturing the definition of
taxonomic concepts; the inherent ambiguity the taxon definitions associated with
taxonomic names; the lack of understanding of this ambiguity by users of biological
names; and finally the lack of a global repository for taxonomic concepts with GUIDs
which can be used to refer to and aid matching concepts for data annotation and inte-
gration. Solutions to these problems require ensuring that references to biological taxa
in data sets cite the scientific name in the context of a particular classification, which
we have modelled as the defining attributes of a Taxon Concept. Data integration can
then be achieved either on Concept identity, or on individual components of a defined
concept. Where it is not possible to ascribe defined concepts to datasets (such as with
legacy data) poorly defined nominal concepts can be used (i.e. concepts with a name
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but no definition), thus making explicit the deficient quality of the taxon identifica-
tion. The schema has been used to map data from a variety of sources and is currently
being used as the basis for a taxonomic name/concept resolution service in the SEEK
project.
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Abstract. BioMediator is a data integration system that provides a common
interface to multiple Internet-accessible databases containing information about
genetics and molecular biology. Ontologies play several important roles in the
BioMediator system: First, ontologies of genetics and molecular biology can
serve as data sources. In this role concepts from the ontologies are returned as
results of queries. Second, queries are posed against a mediated schema, which
is an ontology describing the domain of discourse. User queries are expressed
using the concepts in the mediated schema to indicate which results to retrieve.
Third, each data source is an instance of the system ontology. This ontology
describes information about the data sources including how often the source is
updated and by whom. Finally, we are exploring the use of ontologies as a
mechanism for mapping data sources to the mediated schema. This will
facilitate extending BioMediator from a centralized integration platform to a
distributed network of peers.

1 Introduction

Biologists seeking to understand the molecular basis of human health and disease are
struggling with large volumes of diverse data (mutation, expression array, proteomic)
that need to be integrated and analyzed in order to develop and test hypotheses about
disease mechanisms and normal physiology. These data reside in multiple public and
private databases maintained by biologists in their laboratories. For example, a set of
experiments may generate both gene and protein expression data, which are queried in
aggregate to find a set of expression products of potential interest. Each of these
products is, in turn, queried against public domain databases such as Entrez [1],
SwissProt [2], and the Gene Ontology [3]. Given the dynamic nature of the datasets
federated database approaches provide advantages over warehousing approaches in
terms of data currency. Federated approaches with flexible mediated schemata
representing the entities of interest and their mappings to particular sources are well-
suited to handle the diverse schemata necessary, particularly for the laboratory
specific private data sets. The BioMediator data integration system [4, 5] takes an
ontology driven federated approach to data integration for these reasons.
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In this paper we present an overview of the BioMediator system emphasizing the
various roles that ontologies (a term we use loosely to refer to vocabularies such as
the Gene Ontology, a database schema, or a terminology expressed in a description
logic such as OWL) play in the system. At the source level, the schemata of sources
focused on data (e.g., Entrez) and those focused on concepts (e.g., the Gene
Ontology) are treated identically by our system and knowledge about the structure
and organization of both types of sources can be represented as ontologies (3.1). At
mediated level, the schemata used to query across these sources are also represented
as ontologies (3.2). We permit multiple mediated schemata customized to different
users/query tasks, pieces of which can be shared and reused. At a meta-level the
BioMediator system uses a system ontology (3.3) to describe meta-information about
the sources (such as information about validation and curation). Finally, we are
developing techniques for translating data from specific source schemata into a
mediated schema using knowledge stored in a mapping ontology (3.4).

i .. .codes for. . ,
15384 > - includes - .. M 010448 ** y P_034578

orgranism Mus musculus orgranism —p»{ Mus musculus orgre‘mism—b Mus musculus
| |
IocTus 11B1.3 sequence —p»| gaggceggtgge... sequence —p» msdaaeeqp...
symbol CBF-A

Fig. 1. Sample data viewed as a network of resources and properties; solid lines indicate
datatype properties (DTP) and dotted lines, object properties (OP)

2 Background

In BioMediator, the data contained in online public databases are viewed as a network
of interconnected records. For example, Online Mendelian Inheritance in Man
(OMIM) [6] contains records describing genes and genetic diseases. Entrez publishes
records that describe proteins and nucleotide sequences. Entrez also cross-references
its protein records with related OMIM records.

2.1 Semantic Web Data Model

The data sources thus constitute a semantic web for the life sciences. In this web, each
record corresponds to a node with a collection of attribute/value pairs. This is
illustrated in Figure 1. The Entrez node NM_010448 has two solid edges leading from
it: the organism edge indicates it pertains to the house mouse, and the sequence edge
indicates the nucleic acid sequence. Expressed using RDF [7] terminology, this record
is a resource with two datatype properties that link the resource to values.

LocusLink (LL) [8] provides other information related to this nucleotide sequence.
LL resource 15384 describes the CDF-A gene. Also, LL publishes an object property
that links the LL resource to the Entrez resource. This establishes that one possible
sequence for the CDF-A gene is described by the indicated Entrez resource.

We distinguish between datatype properties (DTP) and object properties (OP) for
two reasons. First, DTPs indicate the actual content of a resource. DTPss capture what
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can be thought of as the information represented by the resource. OP are
correspondences between resources; they are typically displayed (in a web browser)
as hyperlinks. The second distinction pertains to ownership. In BioMediator, each
resource is owned by a single data source and only that source can provide DTPs for
that resource. OPs, on the other hand, can be provided by any data source. For
example, not only does LL provide a property linking CDF-A to a sample sequence
(NM_010448), but LL also links this nucleotide sequence to a corresponding protein
(Entrez record NP_034578) using RefSeq [9].

Viewing the data sources as a semantic network distinguishes BioMediator from
other data integration projects (such as Kleisli [10] or OPM [11]). The semantic
network paradigm facilitates organizing the resources with an ontology. This
approach was pioneered (for biologic domains) by TAMBIS [12] and, as we describe
in this paper, extended by BioMediator. In this context, the ontology organizes the
resources (and properties) into a hierarchy of concepts, against which users can query.

2.2 System Interface

BioMediator allows client programs to interact with this semantic web in a number of
ways. The most basic interaction, seed, retrieves a specific resource and its associated
DTPs. The client program provides the resource’s accession number, and the database
in which the resource can be found. For example, a program can request resource
NM_010448 from Entrez, and BioMediator will retrieve the associated attribute/value
pairs (e.g., organism/Mus musculus). Microarray researchers with chips annotated
using accession numbers use this operation extensively [13].

Resources can also be retrieved using a guery. In this case, the client program
selects one of the classes in the mediated schema (see below) and one or more
attribute/value restrictions. BioMediator retrieves all of the resources that are
instances of the given class and that include all of the indicated attribute/value pairs.
For example, a program can request all phenotype resources whose name is
narcolepsy, or genes whose locus is 11 B1.3 and whose organism is the house mouse.

These first two interactions produce DTPs only. OPs can be retrieved using
expand. Given a resource (or set of resources), this operation retrieves all related OPs
(either leading from or pointing to the indicated resource). Both the mediated schema
and the system ontology (see below) can be used to restrict which OPs will be
retrieved. For example, a client program might be interested in the ‘codes-for’
property for a sequence, but not the more general ‘related-to’ property.

Finally, BioMediator can recursively grow the network, which expands each new
resource it encounters. In this case, it is often useful to limit the OPs using the system
ontology (e.g. limiting the growth to include only externally validated properties).

2.3 Architectural Overview

To support these operations, BioMediator relies on a series of components as
illustrated in Figure 2. The system relies heavily on the source knowledge base
(SKB), which is represented using Protégé-2000 [14], and accessed via the Protégé
API. The SKB (Fig. 2A) contains the mediated schema and the system ontology, both
of which are described in the following section.
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The query processor (Fig. 2B) provides an API for launching and managing
queries posed using the mediated schema. The metawrapper (Fig. 2C) translates these
mediated schema queries into source specific queries [15]. Wrappers (Fig. 2E) pass
the remapped queries through to the data sources (Fig. 2F). Data sources return
results in native format (e.g., HTML, ASN1), which are converted to XML syntax
with native semantics by the wrappers. The metawrapper applies mapping rules in
translating the XML results from native semantics to mediated schema semantics.

The query processor then retrieves data from the metawrapper, organizes that data
and generates events that can be used to synthesize a navigable representation of the
result set. Once a result set has been constructed, it may be repeatedly queried,
expanded or grown using the query processor's API.

3 Multiple Roles of Ontologies

As described in the previous section, BioMediator uses ontologies in several roles.
The SKB contains two ontologies: The mediated schema provides a hierarchical
vocabulary for organizing resources published by the underlying data sources and the
system ontology describes how the data sources are maintained. In addition,
BioMediator can access external ontologies as data sources.
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Fig. 2. Architecture pipeline of the BioMediator system

3.1 Data Source

In many cases, an ontology can be represented in the semantic web data model. In this
case, resources represent named concepts and properties represent relationships
among the concepts. For example, the Gene Ontology (GO) [3] includes two inter-
concept properties (‘is-a’ and ‘part-of”) and one property relating external resources to
concepts (‘classified-as’).

Properties provided by an ontology are treated no differently than other properties.
This means that, for better or worse, we do not attribute any meaning to these
properties. For example, given that the nuclear membrane is part of the nucleus, and
the nucleus is part of the cell, we should be able to infer that the nuclear membrane is
part of the cell. Instead of making this inference, BioMediator returns only those
properties explicitly present in the sources.
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This simplicity is advantageous because properties relating data resources and
properties relating concept resources are treated uniformly. For example, given a
collection of nucleotide sequences up-regulated in an experimental group (relative to
a control), BioMediator can first identify the corresponding proteins (using the
expand operation) and then organize these proteins based on functional classification
(using the expand operation a second time). This helps a researcher answer the
question, “What do these experimental results mean?”

When a simplistic view of the data is not sufficient (e.g., a user needs to answer a
very precise question), more machinery is needed. In this case, the mediated schema
provides a common vocabulary for expressing more precise interactions (such as “A
mutation of what gene results in dysprothrombinemia, haemophilia caused by an
inactive protein?”).

3.2 Mediated Schema

At the heart of a data integration system is a mediated schema. The simplest mediated
schema is the union of the source schemata which has two key limitations. First,
application developers are must understand all of the source schemata to author
queries. Second, when a new source is added, each application needs to be modified
to reference the new source. For example, both SwissProt [2] and Entrez [1] contain
information about proteins. In the absence of a mediated schema, the only way to
capture this similarity is by requiring all applications to query for the union of these
sources. When another source containing information about proteins (e.g., GeneTests
[16]) is identified, every application program must be updated.

Given this limitation, database research has focused on formalisms for expressing
the mediated schema in terms of the source schemata. In TAMBIS [12], the mediated
schema is an ontology expressed using the GRAIL description logic [17]. The
mediated schema is described independently of the underlying sources. The contents
of the sources are then described in terms of the mediated schema, and an inference
engine is used to determine how the source schemata relate to the mediated schema.
For example, an OMIM record can be defined to be the union of genes and
phenotypes for which the value of the organism attribute is human.

When a new source is added to the system, neither the existing definitions need to
be updated, nor do existing applications. As a result, new sources can more
transparently be introduced into the system. However, if the mediated schema is
changed, then it becomes necessary to revisit every definition.

BioMediator uses a strategy similar to TAMBIS, but with greater emphasis placed
on modularity. Instead of a single mediated schema, one of our goals is to support
multiple mediated schemata simultaneously. In Figure 2, each user group can have its
own SKB, independent of all other user groups.

Thus, even though the users see the same sources, they may organize these sources
differently. One sample mediated schema is shown in Figure 3. This schema was
developed for a statistician performing analyses on microarray data (i.e., it is not
intended to represent everything about microarray experiments, let alone all of
molecular biology). Several concepts in Figure 3 are common to a variety of user
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groups: Genes are an abstract unit of inheritance. Each gene can include a number of
closely related sequences as examples of the gene. These sequences code for proteins,
which produce (cause) the manifestation of a phenotype.

Some additional concepts are needed to support microarray analyses. First, we
added several classes that describe microarrays. An experiment is performed using a
specific chip. That chip contains several spots. Each spot is associated with a specific
sequence. The statistical analyses also required functional information (from GO),
which was one of the motivations for treating ontologies as data sources. Here GO is
modeled as a hierarchical vocabulary, which differs from a controlled vocabulary in
that inter-concept properties are allowed (as described above).
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Fig. 3. Sample mediated schema for annotating microarray experiments. The top half displays
the inheritance hierarchy; the bottom half displays containment relationships (diamonds) and
other object properties

Once the mediated schema has been designed, rules must be written so that the
metawrapper can transform source data into the mediated namespace. When multiple
groups agree on portions of the mediated schema, they can also share these
transformation rules. In the case of disagreement, transformation rules must be
modified or removed. Finally, each source must be added into the system ontology.

3.3 System Ontology

Within the system ontology, each data source is represented as an instance of the
database class. A database is a collection of resource tables and property tables. Of
the resource tables, one is designated as the primary table (references into a database
that do not specify a type are assumed to index into the primary table).

A resource table stores the metadata needed to retrieve a collection of resources.
Each resource table is associated with a class from the mediated schema; all resources
in the table are instances of that class. Likewise, each property table is associated
with a property from the mediated schema. The domain and range of each property
table must also be specified (i.e., the resource tables connected by the property table).
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Moreover, for each property table, we also record metadata describing how the
property table is maintained. These metadata include descriptions of: a.) population,
b.) validation, c.) update, and d.) causality (i.e., whether the correspondance indicates
a causal mechanism, such as gene coding for protein vs. merely observed correlation).

Metadata can be used to constrain the property tables that will be considered when
using the expand or grow operations. For example, a clinician might be interested in
browsing only those property tables ‘validated’ by an external review process,
whereas a researcher might choose to browse only ‘causal’ relationships (even if the
relationship has not yet been proven experimentally).

Each table is also associated with rules used by the metawrapper to convert source
data into the BioMediator data model. For example, a rule is used to indicate that
when OMIM returns a disease record it should be converted to a resource that is an
instance of the mediated class phenotype. The value of the title attribute is mapped to
a name datatype property.

3.4 Mappings

We have begun exploring OWL [18] as an alternative to the current rule language for
expressing relationships between the source schemata and the mediated schema. The
hope is that OWL constructs will allow us greater flexibility. Not only will it be
possible to translate from a source namespace to the mediated, but the inverse will
also be possible. This will allow us to distribute our system in a peer-to-peer fashion.

For example, we can declare that an OMIM record describes a gene or a
phenotype, i.e., an OMIM record is defined to be the union of these two classes. A
GeneTests record for a gene is equivalent to the class, Gene, in the mediated schema.
A query requesting information about a specific gene can be rewritten as a query
against GeneTests (because Gene = GeneTests Gene Record).

More sophisticated rewritings are also possible. At first, it does not seem that a
gene query can use OMIM because an OMIM record is more general than gene
(Phenotype < Gene U Phenotype = OMIM Record). However, assume the mediated
schema asserts that the domain of the property, AssociatedWith, is
NucleotideSequence U Gene, we can rewrite the query to request OMIM records that
participate in the AssociatedWith property (OMIM Record m =1 AssociatedWith).
We are exploring algorithms for efficiently generating all valid rewritings.

4 Conclusions

BioMediator is a data integration system that uses ontologies in several roles. The
network-based data model allows us to use an ontology such as the Gene Ontology as
a data source. This is particularly useful for organizing experimental results into
functional groups. To support more precise interactions, users can formulate queries
in terms of a mediated schema. The role of this mediated schema is to provide a
common nomenclature applicable to multiple local or remote data sources. The
mediated schema also defines the object properties that can link data instances. These
properties are further annotated using the system ontology, which describes how the
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underlying data sources are maintained. This approach provides several benefits.
First, the results returned by BioMediator are as current as the underlying sources.
Second, each user group can customize its mediated schema, and the mappings that
relate the data sources to that common namespace. Finally, our architecture supports
both precise queries (the database standard) and more generic browsing. These
advantages make BioMediator an excellent platform for supporting a variety of
biomedical data needs.
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Abstract. Microarrays are one of the latest breakthroughs in experi-
mental molecular biology. Thousands of different research groups gen-
erate tens of thousands of microarray gene expression profiles based on
different tissues, species, and conditions. Combining such vast amount
of microarray data sets is an important and yet challenging problem.
In this paper, we introduce a “correlation signature” method that allows
the coherent interpretation and integration of microarray data across dis-
parate sources. The proposed algorithm first builds, for each gene (row)
in a table, a correlation signature that captures the system-wide depen-
dencies existing between the gene and the other genes within the table,
and then compares the signatures across the tables for further analysis.
We validate our framework with an experimental study using real mi-
croarray data sets, the result of which suggests that such an approach
can be a viable solution for the microarray data integration and analysis
problems.

1 Introduction

Microarrays are one of the latest breakthroughs in experimental molecular biol-
ogy. It provides a powerful tool by which the expression patterns of thousands of
genes can be monitored simultaneously and are already producing huge amount
of valuable data. Analysis of such data is becoming one of the major bottlenecks
in the utilization of the technology. The gene expression data are organized
as matrices — tables where rows represent genes, columns represent various
samples such as tissues or experimental conditions, and numbers in each cell
characterize the expression level of the particular gene in the particular sam-
ple. Application of microarray technology to biological problems, ranges from
understanding of metabolic responses of microbes, to cancer in humans. The
main challenge of analyzing microarray is the virtual explosion in the volume
and complexity of gene expression data. Thousands of different research groups
generate tens of thousands of microarray gene expression profiles. Different ex-
periments utilize different tissue types, examine different treatment strategies,
and consider different stages of disease development. This, along with differences
in microarray platform, technology and protocols used in different labs, leads to
difficulties in integrating microarray data across experiments.

B. Ludéascher and L. Raschid (Eds.): DILS 2005, LNBI 3615, pp. 105-120, 2005.
(© Springer-Verlag Berlin Heidelberg 2005
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How to combine the data (gene expression levels) in different microarrays
is a challenging problem since these gene expression levels are not necessarily
directly comparable. The same gene may exhibit different bias at different data
sets. For instance, a gene in the liver tissue may have higher expression level
(higher values in a microarray) than that in the skin tissue (lower values in an-
other microarray) by the nature. As a result, directly integrating the microarrays
according to the gene ids would result in inconsistency. In addition, microarrays
may contain different (overlapping) sets of genes. This increases the difficulties
in the integration of the microarray data sets.

In this paper, we consider the problem of integrating heterogeneous gene
expression data sets. We try to tackle this problem by employing a novel corre-
lation signature method. The correlation signature captures the data set-wise
characteristics of a gene in terms of its correlations to a set of landmark genes.
Various methods can be used to choose the landmarks, e.g., genes from a par-
ticular pathway or deemed important by domain experts, etc. The expression
level of a gene at a microarray table can be converted into the similarity (or cor-
relation) to the set of landmark genes. For example, if there were 10 landmark
genes, then at each microarray table, a gene will have 10 correlation values each
of which corresponds to a landmark. We call these correlation values as the gene
signature vector. The signature vector removes the bias in the expression values
and can be used to compare genes across heterogeneous experiments.

The amount of data for all signature vectors could be very large, O(|G| x
IL| % |S|) where |G|, |L|, and |S| are the average number of genes in a study, the
number of landmark genes, and the number of studies, respectively. This could
range to tens or hundreds of Gigabytes. How to organize and represent the entire
set, of signature vectors is a challenging problem. A novel multi-dimensional data
model, gene signature cube, is proposed in this paper to represent the set of gene
signature vectors. The entire cube may not be fully instantiated because of its
size. We introduce two virtual signature cube organizations that materialize
parts of the cube on the fly upon request in the query time, and present the
result of the performance comparison of the two models. In summary, we make
the following contributions in this paper.

— We introduce a statistical model, correlation signature, that captures system-
wide dependency relations among data instances. The correlation signature
projects semantically non-conforming data instances from disparate sources
into common dimensions, allowing the coherent interpretation and integra-
tion of the data.

— The data set may be large. There are thousands of microarrays each con-
taining thousands of genes. As a result, the signature based integration will
also generate a large amount of data. We organize the set of transformed
data into a conceptual cube. In this paper, we present methods to store and
access the data in the cube.

— The proposed framework can also be applicable to other types of experimental
data. A typical scientific experiment involves a series of observations made
over a set of inter-related variables (e.g., in microarray, genes are variables and
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samples are observations.) Moreover, similar experiments typically share some
numbers of common variables (e.g., genes, proteins), and the variables are in
most cases not independent. The proposed model can exploit such properties.

The remainder of the paper is organized as follows: We first present the signa-
ture vector data model in Section 2. Then, in Section 3, we present the signature
cube data organization in detail. The related work is discussed in Section 4. Fi-
nally, Section 5 concludes the paper and outlines the future research directions.

2 Unified Data Model for Gene Expression Profiles

Figure 1 shows an overview of our signature calculation algorithm, SigCalc,
and Figure 2 illustrates the signature computation process through an example.
SigCalc takes as input a microarray table M and a set of k landmark genes.
The landmark genes can be selected either manually by the user or automatically
by the system. If user did not provide landmarks, the system can automatically
select candidate landmark genes. Different techniques can be used. For exam-
ple, depending on the application, the system may run a feature selection algo-
rithm [1,2] to choose a set of representative genes in the table, or simply choose
a random set of genes and use them as landmarks. With random landmarks, the
correlation signature model behaves similar to the random projection, a popular
dimensionality reduction method [3,4,5,6,7], except that the random projection

Input : Microarray table M (n x m, n genes and m conditions),
set of k landmark genes L = {l1,...,lx}
Output: Set of gene signature vectors S ={sig(g1),.-,5tg(gn)}

for each gene g; in M do
for each gene l; in L do

‘ d; — dist(g1, 1;)

end

—

si9(g:) < [d1,dz, ..., d]
end

Fig. 1. SigCalc: signature computation algorithm

cl c2 c3 c4 landmarks L 112
g1[ 6 [ 5 [ 7 6 |1 sig(g1)[0.00[0.07 i -
@21 2 11 7E> sig(g2)[0.91[0.76 i B octivated
g3 3 2 4 2 |12 sig(g3)| 0.07 | 0.00 i repressed
g4| 3 5 9 4 sig(g4)| 0.19]0.15 i I:l s
g5| 8 4 6 5 SigCalc(M, [g1,93]) Si9(95)| 0.26 | 0.22 i - unchanged
g6| 2 3 3 1 sig(g6)| 0.50 | 0.27 i
ar| 7 7 4 7 sig(g7)| 0.91]0.94

microarray M signature vectors heat map

Fig. 2. Example of signature vector computation. Assume /1 and [2 are regulator genes
with similar functions
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projects the original high-dimensional space onto a random subspace while the
correlation signatures project the original space onto a subspace whose coor-
dinates correspond to the landmark genes. Despite the similarity, the random
projection cannot be the solution for the microarray integration problem be-
cause the random subspaces projected from different datasets are not generally
comparable as each projected subspace consists of random dimensions.

When users provide landmarks to the system, they can either explicitly pass
a hand-selected genes to the system, or they can just state what kinds of genes
they want the system to use. For the latter case, the system can guide users
to make their choices on the group of genes, by providing information about
gene annotations, functional groups, known regulator genes, or genes that are
involved in a certain pathway, retrieved from some external sources such as GO
ontology database (http://www.geneontology.org) and KEGG pathway database
(http://www.genome.jp/kegg/).

Once landmark genes are selected, system calculates signature vectors of all
genes in the table as shown in Figure 1. SigCalc uses a distance function, dist,
to measure similarities and dissimilarities between gene vectors (rows of M). Any
conventional distance metric can be used including standard metrics such as Eu-
clidean or cosine distance, or some variants that are popular in microarray anal-
ysis such as correlation distance or mean-expression distance, as defined below.

— Euclidean Distance: Given two gene vectors X and Y, where X = [ay, ..., &)
and Y = [by,...,b,], respectively, the Euclidean distance is : euc(X,y) =
V(@ —b1)2+ ...+ (a, —by)2.

— Cosine Correlation: Given two gene vectors X and ¥, the cosine correla-
tion is: cos(X,y) = 2oy ibi —. The cosine correlation measures

n 2 n
\/ i=1 2% \/Z =1 b

the similarity between gene vectors. For a dissimilarity measure, simply
1—cos(X,V).
— Pearson Correlation: Given two gene vectors X and Y, Pearson correla-

: : ~ covariance(Z,y) e e
tion is: cor(X,y) = = — . For a dissimilarity
\/covariance( Z, @)X covariance(y,y)

measure, 1 — cor(X, 7))
— Mean-Expression Distance: Given two gene vectors, the mean-expression
distance is defined as: dist(X,y’) = mean(X) — mean(y).

Note that the correlation and mean-expression distances are not metrics in
a strict sense (e.g., do not satisfy triangular inequality) but introduced here
because they are commonly used in practice for microarray analysis. Although
Euclidean distance is a common method to represent the similarity or dissim-
ilarity between two vectors, it does not take into account the natural bias of
expression level of different types of genes. Some house-keeping genes may nat-
urally express highly while some other genes may always express at a low level.
Thus, the distance measure may appear larger for these two types of genes. If we
are interested in the fluctuation of the expression levels rather than the absolute
gene expression values, then the Euclidean distance measure may not be proper
to use. In this case, the correlation metrics could be used.
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The mean-expression distance is somewhat simplistic but popular in practice
because it gives a natural interpretation of the expression level differences, and
can be applicable to the gene vectors with different dimensions. In reality, gene
vectors (rows) from different microarray tables almost always have different di-
mensions (e.g., one table has columns of lymphoblastic leukemia samples and
the other has myeloid leukemia samples; number of columns also may differ.)
The first three metrics will not work for such comparison. In contrast, all four
distance metrics can be used with our model, after transforming the original
gene vectors into the corresponding signature vectors.

Now, consider the example in Figure 2. On the left, it shows an input microar-
ray data table M. Suppose the user selected g; and g3 as the two landmarks, |y
and ly, respectively. SigCalc transforms the original table into a 7x2 table whose
rows represent the signature vectors of the corresponding genes in the original
table. In this example we used the correlation distance (0.5 x (1 —cor(X,Y)) to

calculate the signatures. For example, consider STg) (97) in the signature vector
table. It has two entries [0.91, 0.94] representing correlation distances of gene g7
to the two landmark genes, g; and g3, respectively.

How do we interpret the distance to the landmarks from a gene? What does
it exactly mean that the distance is 0.91 or 0.197 The correlation distance ranges
from [0, 1], and a distance close to zero implies the two vectors are correlated
and a distance close to one implies the two vectors are inversely correlated.
If it is 0.5 it means there is no correlation. Now, let us assume that the two
landmark genes, |; and |y, are known regulator genes with similar functions. In
this example, if a gene’s signature vector contains close-to-zero values, it may
mean that the gene is activated by the two regulator genes. The opposite also
holds. The third table from the left of Figure 2 shows the heat map visualizing
the activation/repression relations. In our example, g; is repressed while gy is

activated (S_Ig)(gl) and STg)(gg) are also low but they are the landmark genes, and
thus ignored.)

A critical precondition that needs to hold to make the proposed approach
work is that some genome-wide dependency relations between genes exist and
that the relations are conserved across the different experiments, samples, organs,
or even across different organisms. In fact, this is a general belief in the biology
community. Genes do not act alone: one gene’s expression triggers another gene’s
expression. While most of the dependency relation will remain unchanged, some
statistically meaningful changes may be detected from a comparison like normal
cells vs. cancerous counterparts.

One of the main strengths of our approach is the flexibility in landmark
selection. The signatures can be further tuned for a specific analysis by choosing
landmarks from only the genes that are relevant to the current analysis. For
example, suppose one tries to identify how genes behave differently in two sets
of cancer samples (e.g., Leukemia and B-cell lymphoma), with respect to only the
genes of certain functions (e.g., cell cycle or metabolism). Using our approach,
such comparisons become straightforward; we just need to choose landmarks
from the genes with cell cycle or metabolism functions.
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Our approach also allows flexible cross-validation and analysis. Virtually any
expression data sets can be compared provided that the signatures are generated
over the common landmarks. One can compare the properties of genes across
different tissues (e.g., skin, liver, blood etc.), different clinical stages of cancers
(e.g., metastasis vs. primary, recurrent vs. non-recurrent etc.), or can compare
across even different organisms (e.g., mouse vs. human; mice and men share 99%
of genes [8]).

To demonstrate the efficacy of the proposed model, we conducted the fol-
lowing tests using the leukemia data set published by Golub et al. in [9]. The
following experiments were implemented using a statistics package, R [10], and
the Bioconductor library [11]. All experiments were performed on a machine
with P4 2.4GHz and 1 GB memory running Windows XP Professional.

2.1 Rejecting Null Hypothesis

One of the fundamental questions that we need to address is, will the gene
signature vectors really capture some information that is statistically meaningful?
To answer the question, we first split the leukemia table (1450 x 47, where 1450
genes tested over 47 Acute Lymphoblastic Leukemia (ALL) patient samples;
1450 genes selected out of 7129 genes after filtering out under-expressed genes)
into two partitions with randomly selected disjoint sets of 20 samples (1450 x
20). Then, we computed a separate set of signatures for each partition with
50 common landmark genes (selected by running k-means clustering, using the
correlation distance as a dissimilarity metric, with k = 50 over the original table,
and then choosing the medoids from each resulting cluster), and compared the
signatures across the two sets. If it really captures the information, at the very
least, the signature vectors of corresponding genes across the two sets should be
very similar because they are generated from the same type of samples (patients
with same type of cancer).
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Fig. 3. Correlation and p-value of matching signatures and non-matching signatures
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The preliminary test result is shown in Figure 3. Figure 3(a) compares the
correlation between matching pairs of signature vectors (for the same gene) and
the correlation between random pairs (different genes). The median correla-
tion between the matching pairs was 0.55 while the median correlation between
the non-matching pairs was 0.15. Figure 3(b) presents the p-values between the
matching and non-matching signature vectors. The median p-value of the match-
ing pairs was 0.000042 while that of the non-matching pairs was just over 0.064.
In our context, the p-value states the probability of observing a correlation be-
tween two signature vectors by chance at the level greater than or equal to the
observed correlation. The p-value is calculated by transforming the correlation
into t-statistics of N-2 degrees of freedom where N is the number of columns. If
a pair’s p-value is low we can assume that the correlation value between the pair
is statistically significant. On the other hand, a high p-value may suggest that
no statistically significant correlation exists between the two signature vectors.

The result shows clear differences in the correlation and the p-values be-
tween the pairs of matching and non-matching signature vectors, thereby reject-
ing null hypothesis of the signature vectors carrying no statistically meaningful
information.

2.2 Testing Convergence

Another important question to ask is, does the gene signature converge as more
columns (experiments) are added to the signature calculation? The signatures
would converge if it captures some genome-wide properties that are invariant
across the experiments. We tested this using the same Leukemia table. First, we
calculated the two sets of signature vectors by randomly selecting two disjoint
sets of five columns each. We then measured the correlation and p-value of
each pair of corresponding signatures across the two sets. We continued this
comparison while increasing the number of columns by five in each iteration.
The result of this test is shown in Figure 4.

Figure 4(a) shows the correlation between the two sets of signature vectors
while Figure 4(b) shows the p-values measured between the two sets. As ex-
pected, correlation improves as more numbers of columns were considered in the
signature calculation. Similarly, p-values were consistently decreasing as more
columns were added. This finding supports our hypothesis that gene signature
vector models can be used to combine multiple microarray experiment data and
summarize them into one coherent set of signature vectors for further analy-
sis and cross-validation. For example, we can calculate a set of signatures from
multiple ALL tables simply by juxtaposing the tables and calculate the signa-
tures from the combined table. Similarly, we can calculate a set of signatures
for Acute Myeloid Leukemia (AML) experiments, and compare the signatures
of corresponding genes between ALL and AML to identify those genes that
behave differently in the two cancers and genes that behave similarly across.
We can easily extend the analysis to virtually all other cancer types, tissues,
metastasis stages, etc.
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2.3  Stability of the Model

Microarray data sets are noisy; individual expression levels are affected by many
factors such as different lab protocols (e.g., how long the samples will be hy-
bridized in what temperature), platforms (¢cDNA or Affymetrix), choice of sam-
ples, etc. How well a model generalizes the underlying data is an important
factor. In order to test the stability of the model, we examined clustering re-
sults from the different sets of signatures computed using different subsets of
columns, and measured how consistent the clustering results were across the
tests.

Figure 5 shows the results. Figure 5(a) shows the histogram depicting the
number of gene pairs falling into the same cluster greater than or equal to 15
times out of 20 total iterations. In each iteration, we randomly selected a 20
column subtable, Mg, from the original table (47 columns), and computed the
signature table, Mg, from Mpg. We then ran the k-means clustering (w/ k=20)
over the two tables, Mg and Mg, and tallied up the pairs that fell into the same
cluster. We iterated this 20 times over different sizes of landmarks from 10 to 50.
For example, bucket number 20 contains all gene pairs that co-occurred in the
same clusters for all 20 times, and similarly bucket number 19 contains the pairs
that co-occurred 19 times out of 20. With 10 landmarks, the signature model
produced 92 pairs that co-occurred > 95% of time (sum of buckets 19 and 20),
and 175 pairs for > 85% of time. We compared the tallies from Mg and Mg.
As shown in Figure 5(a), there were no significant differences between the two
results.

Figure 5(b) shows the same result with varying sample sizes (#of columns in
M) while fixing the landmark size to 50. Four different sample sizes were tested,
including m =10, 20, 30 and 40. Unlike the previous test, the increase of sample
size improved the clustering results significantly for both the raw and signature
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Bucket number | Total
0| 275% 285% 295%
77 62 33 33 59 423 187 92
96 49 34 40 52 489 175 92
71 29 53 43 41 387 166 84
150 74 56 33 39 602 202 72
67 47 43 34 41 385 165 75
84 60 50 36 36 480 182 72
82 70 24 3 67 388 164 70
122 67 39 28 14 490 148 42
105 56 53 30 47| 440 186 i
157 73 77 28 43 676 221 71

Landmark
size

Size of bucket

Bucket number 10 Landmark size

(a) Varying landmark sizes

Bucket number Total
1516 17 18 19 20| =75% =85% =95%
Raw| 28 20 11 9 6 6 80 32 12
Sig 40 24 16 7 8 3| 98 34 11
[Lo[Raw | 150 71 29 53 43 41| 387 166 84
sample|“"|Sig | 250 150 74 56 33 39| 602 202 72
size [o[Raw | 532 327 235 137 118 79| 1428 560 197

Si 960 584 316 131 65 169 2225 681 234
4o[Raw [ 1586 1142 778 561 288 217| 4572 1844 505
Sig | 2536 1719 1229 698 384 383| 6949 2694 767

Size of bucket

Bucket number Sample size

(b) Varying sample sizes (#of columns)

Fig. 5. Testing stability of the model

tables. The rate of improvement, however, was greater with the signature model
than with the raw data. For example, although their performance were similar
in the 10-sample test, in the 40-sample test, the signature model produced about
50% more numbers of pairs in all three cases of > 75, 85, and 95%.

So far, we tested the stability of the model in terms of the consistency of
the clustering results, and showed that the result from the model is at least as
stable as that from the raw data. However, the previous tests did not show how
much the actual clustering results from the two tables are similar. If the model
properly reflects the signals from the original table, the clustering results of the
both tables should be similar at least for the genes that were highly agreed upon
in the both results. In order to show this, we examined the bucket 20 from the
two results. There were 217 gene pairs (105 unique genes) from the raw data and
383 pairs (118 unique genes) from the signatures. Intersecting the two sets of 105
and 118 genes resulted in 49 unique genes. We then selected the corresponding
49 rows from the raw data and from the signature table, and independently
ran a hierarchical clustering (w/ “average” agglomeration) over the two sets. As
shown in Figure 6, the results were strikingly similar. Each test clustered genes
into four main clusters that perfectly overlapped across the two sets.
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Fig. 6. Comparison of clustering dendrograms of top-49 genes computed using raw

data and signatures

A Novel Summary Data

Structure for the Global Study

.
.

Gene Signature Cube

3

In this section, we present a multi-dimensional data structure, the gene signa-
ture cube, in order to facilitate efficient storage and retrieval of multiple gene

signatures. Figure 7 shows an overview of the signature cube construction and

an example cube after the construction.
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cl c2 c3 c4 landmarks L1 n 12
g1[ 6 [ 5 [7 [ 6 |17 sig(g1)[0.00]0.07 | 11
g2| 1 2 1 1 sig(g2)[ 0.91]0.76
g3[ 3 [ 24 [ 2] sig(g3)[0.07]0.00 | 12
g4| 3 5 9 4 sig(g4)0.19]0.15
g5 8 4 6 5 SigCalc(M1, [g1,93]) Si9(95)| 0.26 | 0.22
96| 2 3 3 1 sig(g6)| 0.50 | 0.27
ar| 7 7 4 7 sig(g7)| 0.910.94
microarray M1 signature vectors
for M1
]
]
]
]
s1 s2 s3 landmarks Ln n 2
g1 3 2 4 |17 sig(g1)|0.000.05| 11
g2 1 3 2 sig(g2)| 0.85 | 0.80
g3| 3 2 4 |12 sig(g3)|0.100.00 | 12
g4| 2 4 8 sig(g4)| 0.150.20
g5 7 | 3 | 4 SigCalc(Mn, [g1,g3]) Si9(95)[0.30[0.25 Signature Cube
g6| 5 3 5 sig(g6)| 0.55 | 0.25
g7| 6 8 4 sig(g7)| 0.93 | 0.90
microarray Mn signature vectors
for Mn

Fig. 7. Overview of signature cube computation and an example gene signature cube

In essence, the gene signature cubes are constructed as follows. Suppose we
have k landmark genes in L. For each microarray data set M (€ M) (repre-
senting a set of microarrays produced in a study, e.g., a drug response study
on colon cancer samples, etc.), we transform each gene g; € M into its gene
signature vector STg>(gl) of k values [d;1,d;2,...,d;]. Let gene |; be the jth
landmark gene. We assume that the gene expression profile of g; and I; in M
is @ = [ei’l, €2, em] and U = [ej,l, €52, .. ,ej,n}, respectively. Now di,j is
calculated based on the similarity (or dissimilarity) of g; and ;.

After computing gene signature vectors for each gene in every microarray, we
can organize them in a gene signature cube. An example of the gene signature
cube is shown in Figure 7. The cube consists of three dimensions: genes, land-
marks, and studies. Let G be the set of all distinct genes in all the microarray
studies. The gene dimension consists of all genes in G; the landmark dimension
consists of all landmark genes in £; and the study dimension consists of all mi-
croarray experiments in M. Each entry C(g;,1;, M,) (with gene g;, landmark |,
and microarray set M,.) in the cube represents the gene signature value of gene
0; with respect to the landmark |; at microarray set M,.. It is possible that a mi-
croarray does not contain all genes in G. If gene g does not appear in microarray
M, then the entries associated with g in M will be set to a special value such as
N A. This gene signature cube can be considered as a conceptual representation
of the expression profiles of all gene in all heterogeneous microarrays. We can per-
form further (biological and computational) studies on the gene signature cube.

3.1 Evaluating Different Organizations for Cube Construction

We considered two possible approaches to construct a cube: (1) fully materialized
and (2) virtual (on the fly) cube. The fully materialized cube stores precomputed
signatures for all genes in all studies in a contiguous file layering values in each
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signature vectors in a predefined order. Users request signatures for particular
genes or set of genes across the studies. In order to correctly retrieve the cor-
responding vectors from the contiguous cube file, we maintain a separate meta
file that contains the information necessary for identifying the begin and end
location of each gene in each study.

Another possible way to construct the cube is not to store the precalculated
signature vectors but to calculate them on the fly upon request. We refer to
this organization as a virtual cube. In order to calculate the signatures on the
fly, unlike the materialized approach, we need to store the original microarray
tables instead. In our implementation, we used a relational database to store
the microarray data. There can be many different ways to organize the expres-
sion values in the database. We evaluated two different schemas: (1) multi-table
schema and (2) single table schema. With multi-table schema, we created one
table for each microarray experiments (e.g., one table for Golub et al.’s leukemia
experiments [9] and another for Pomeroy et al.’s brain tumor experiments [12])
while with single-table schema, we just created one big table for storing all
experiments. Each study typically consists of 1K-30K genes (rows) and about
5-100 samples (columns). Different studies have different numbers of genes and
samples. In order to store them in a single table, we employed a schema with
four columns, (study id, gene id, sample id, expression value), and stored each
expression value in a separate row. In the multiple table approach, each study
(genes x samples) is loaded into a separate table where each row contains all
expression values for a corresponding gene in a study.

While the three approaches (the materialized cube and the two virtual cubes)
employ different storage schemes, they all export the same API for the upper
layer, as follows:

cube[][][] SubCube(genes][], Imarks][], studies][])

Execution Time of SubCube(g[1], I[1..256], s[1..16]) Execution Time of SubCube(g[1..256], I[1..256], s[1..16])

. -Single—table
.| I Muti-table

| I Single-tablq
I Vutti—table

40

®
o

@
o

Access Time (sec)
Access Time (sec)

Landmark Size 1 Landmark Size 1

Number of Studies Number of Studies

Fig. 8. Execution time for SubCube(g[1], Fig.9. Execution time for Sub-
I[1..256], s[1..16]) Cube(g[1..256], I[1..256], s[1..16])
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SubCube accepts three parameters: lists of gene IDs, landmarks, and study
IDs. This interface allows users to access any point, vector, matrix, or sub-cube
of the signature cube along any dimension.

In our experiment, we evaluated the three organizations with queries of dif-
ferent access patterns (e.g., vector, cube, etc.), on different dimensions (e.g.,
within or across the studies), and different sizes (e.g., 256 genes from 16 stud-
ies). Unlike the virtual cube approaches, the materialized cube can only return
values that are precomputed with the preselected landmarks. For fair compari-
son, we materialized a maximal cube using a complete set of landmarks for each
study to ensure that the results returned by SubCube are all same across the
three organizations. As a result, the performance of the materialized cube was
far worse than the two virtual cubes, both in the time and space complexity. It
requires approximately O(gene? x study) space while the virtual cubes requires
O(gene x sample x study). As for the time complexity (in #of page I/0), the
materialized cube in the worst case reads |g| x |I| x |S| pages while the virtual
cubes read (|g|+|1|) % |s| pages, where |g],|l], and |S| are respectively the numbers
of genes, landmarks, and studies in the query.

The performance between the two virtual cubes were comparable as shown
in Figure 8 and 9. Figure 8 shows the execution time of SubCube(g[1], 1[1..256],
s[1..16]) where the number of gene is fixed to one while the numbers of landmarks
and studies vary 1 to 256 and 1 to 16, respectively. Figure 9 shows the result
of SubCube(g[1..256], 1[1..256], s[1..16]) where both the numbers of genes and
landmarks vary from 1 to 256. Overall, the single-table approach was about
100% faster than the multi-table counterpart. The number of page I/Os of the
two models are not significantly different because even with the single-table
approach, in most cases, all necessary records for one gene will be found within
one page. The performance difference is due to the number of queries issued. In
the single-table approach, only one query is issued for each SubCube call while
in the multi-table approach, one query is issued for each table (study) being
accessed in the call.

4 Background and Related Work

Microarray Analysis: In recent years, microarray gene expression profiles [13,
14] have become a common technique for inferring the relationship or regula-
tion among different genes. There exists a large body of work on microarray
data analysis [15,16,17,18,19,20,21]. Typical applications include identification
of differentially expressed genes and pathways under changing conditions (e.g.
disease related, tissue specific, developmental stage related, etc.) [18,19], drug
development [20], and the functional annotation of genes [21]. Numerous public
databases have been created such as ArrayExpress (www.ebi.ac.uk/arrayexpress),
Gene Expression Omnibus (www.ncbi.nih.gov/geo), Stanford Microarray
Database (genome-wwwb5.stanford.edu), etc.

While most of the previous work on microarray analysis focused on indi-
vidual microarray data sets, some global studies exploiting large numbers of



118 J. Kang et al.

microarrays have been presented recently. Stuart et al. [22] combined thousands
of microarrays to infer conserved genetic modules across the organisms. Segal
et al. in [18] exploited large numbers of microarray data to identify condition-
specific regulatory modules, and in [19], to discover a module map showing the
conditional activity of modules of genes in different types of cancers. Zhou et
al. [23] recently introduced a technique, 2"?-order correlation analysis, for inte-
grating heterogeneous microarray data. It works by first computing all pair-wise
correlations of genes from each data set (1%'-order correlation analysis) and then
analyzing the correlation patterns across multiple data sets.

To the best of our knowledge, however, no previous work has ever attempted
to build a unified data model that projects large numbers of heterogeneous mi-
croarray data into a coherent subspace, offering uniform interpretation and ac-
cess to the data.

Correlation Signatures and Random Projection: The random projection
(RP) is a popular dimensionality reduction method proven to be useful in many
application areas including text retrieval [5,6], image processing [5], clustering [24,
25], motif discovery in bioinformatics [26], multimedia indexing [27], just to name
a few. Our signature projection method has strong similarity with RP-based ap-
proaches. In fact, the correlation signature method is reduced to an RP problem
in a cosine-similarity metric space (i.e., if the cosine similarity is used as the dis-
tance metric for both the signature and the global distortion computation), with
only difference being that RP projects the original high-dimensional space onto a
random subspace while the correlation signatures project the original space onto
a subspace whose coordinates correspond to the landmark genes. Although RP is
known to be generally effective in embedding high-dimensional data into a low-
dimensional subspace, it may not solve our problem because the projected random
subspaces (from different datasets) are not generally comparable.

5 Conclusion

We studied the problem of integrating and analyzing the heterogeneous microar-
ray data sets and proposed a unified model, gene signature vector, and storage
organizations, sighature cube, for microarray data. In our model, a set of genes
are chosen as landmarks. The expression of each gene is transformed to a sig-
nature vector which represents the correlation between this gene and the set of
landmarks. To facilitate the efficient access and retrieval of the signature, we
organize the gene signature vectors into a signature cube. Real microarray data
sets are used to show the time and space efficiency of the gene signature cube.
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Abstract. The current knowledge about biochemical networks is largely
incomplete. Thus biologists constantly need to revise or extend existing
knowledge. These revision or extension are first formulated as theoret-
ical hypotheses, then verified experimentally. Recently, biological data
have been produced in great volumes and in diverse formats. It is a
major challenge for biologists to process these data to reason about hy-
potheses. Many computer-aided systems have been developed to assist
biologists in undertaking this challenge. The majority of the systems help
in finding “pattern” in data and leave the reasoning to biologists. Few
systems have tried to automate the reasoning process of hypothesis for-
mation. These systems generate hypotheses from a knowledge base and
given observations. A main drawback of these knowledge-based systems
is the knowledge representation formalism they use. These formalisms
are mostly monotonic and are now known to be not quite suitable for
knowledge representation, especially in dealing with incomplete knowl-
edge, which is often the case with respect to biochemical networks. We
present a knowledge based framework for the general problem of hy-
pothesis formation. The framework has been implemented by extending
BioSigNet-RR. BioSigNet-RR is a knowledge based system that supports
elaboration tolerant representation and non-monotonic reasoning. The
main features of the extended system include: (1) seamless integration
of hypothesis formation with knowledge representation and reasoning;
(2) use of various resources of biological data as well as human expertise
to intelligently generate hypotheses. The extended system can be con-
sidered as a prototype of an intelligent research assistant of molecular
biologists. The system is available at http://www.biosignet.org.

1 Introduction

Because of the complexity of living systems and the limitation of scientific meth-
ods available for the study of those systems, biological knowledge is inherently
incomplete. The incompleteness of knowledge constantly manifests itself in un-
explainable observations. To account for these novel observations, biologists need
to revise or extend the existing knowledge. The revision and extension are first
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formulated as hypotheses. After being verified experimentally, a hypothesis is
added to existing knowledge and becomes part of the accepted theory.

Recent advances in biological and computational sciences have produced di-
verse sources of biological data such as: research literature, high-throughput data
(e.g. microarray, mass spectrometry), and bioinformatic resources (e.g. interac-
tion databases, biological ontologies). It is a major challenge for biologists to
integrate these various data sets to generate hypotheses. Many computer-aided
systems have been developed to assist biologists in undertaking this challenge.
These systems differ in their goals, namely the automation of generating hy-
potheses either directly from data or based on knowledge. Although hypothesis
generation from data is an important first step, often use of high-level knowledge
is necessary to come of with more relevant hypothesis and to narrow down the
set of hypothesis. Our work in this paper aims at contributing towards this goal.

Knowledge-based hypothesis generation has been a focus of Artificial Intelli-
gence (AI) research in the past (1; 2). Regarding molecular biology and in par-
ticular biochemical networks, the related works in hypothesis generation include
HYPGENE (3), HinCyc (4), TRANSGENE (2), GENEPATH (5) and Patho-
Logic (6). These works are built upon knowledge representation languages that
are limited to “monotonic reasoning”. In monotonic reasoning, if a proposition
p can be concluded from a knowledge base K (denoted by K |= p), then p will
also be concluded after K is extended with H (i.e, K UH |= p). However, the
contrary is a common phenomena in biology. In that case, p becomes false after
the extension of the knowledge base: K UH £ p. Moreover, with the exception
of PathoLogic, the related works do not address the integration of multiple data
sources (probably because many of the data sources were not been available at
that time).

As noted above, making hypotheses from data is important because it creates
the foundation to build high-level knowledge. Towards this task, a vast array of
computational techniques has been developed (7; 8; 9; 10; 11). The computa-
tional systems produce “first-level” knowledge, which should be exploited by
large-scale knowledge-based systems for hypothesis formation. It is an impor-
tant requirement that such large-scale systems should allow for easy updating
(referred to as “elaboration tolerance”) of the knowledge base when new knowl-
edge becomes available and avoid significant overhauling (or surgery) of the old
model or scrapping of the old model and making a new model from scratch. This
issue of elaboration tolerance in knowledge representation has been addressed
successfully by recent advances in Al research (12).

In this work, we propose a knowledge-based framework for hypothesis for-
mation which is based on non-monotonic reasoning and elaboration tolerant
representation. We select the domain of biochemical networks as the test bed,
because this domain suffers from largely incomplete knowledge and at the same
time, databases and knowledge bases of biochemical networks exist in a great
number. We have implemented the framework by extending the BioSigNet-RR
knowledge based system (13). We named the new system BioSigNet-RRH, which
stands for “Representing, Reasoning and Hypothesizing about Biological Signal
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Network”. Besides generating hypotheses, the new system also supports ranking
of hypotheses and proposes plans for experimental verification.

The rest of the paper is organized as follows. First we discuss representative re-
lated works. Then we review basics of knowledge representation and formally define
the hypothesis formation problem. We continue with the description of system and
methods. Finally, we conclude with a case study of the p53 signal network.

2 Related Works

HYPGENE (3) treated the general problem of hypothesis formation as a plan-
ning problem. The actions are operators that modify an existing knowledge
base and/or assumed initial conditions of an experiment. The goal is to re-
solve the mismatch between theoretical predictions computed by the knowledge
base and experimental observations, with respect to the same initial conditions.
The knowledge base was implemented in a frame-based representation language.
HYPGENE was proposed to be domain-independent and has been tested on a
problem of E.coli gene regulation.

HYPGENE and BioSigNet-RRHtackle the same hypothesis formation problem
that arises when an existing theory does not predict an experimental observation.
The limitations of HYPGENE lie in methods, which include

— The frame-based representation language is limited to monotonic reasoning.
Thus HYPGENE would have difficulty in dealing with incompleteness of
biological knowledge.

— Although the biological knowledge is always incomplete, it is currently avail-
able in a great volume and in diverse formats. It is unclear how the cur-
rent knowledge could have been exploited for hypothesis formation in HYP-
GENE.

— A hypothesis involves the modification of an existing knowledge base and/or
assumed initial conditions of an experiment. HYPGENE was restricted to
the modification of the initial conditions. This restricted problem amounts
to a form of reasoning called explanation and studied in (13).

TRANSGENE (2) considered hypothesis formation as diagnosis and redesign
of theories. According to this model, when a theory cannot predict an experi-
mental observation, the theory must contain some faulty components that can
be found and fixed. TRANSGENE used a “functional representation” language
for knowledge representation (14). This representation language was chosen to
overcome the limitations of rule based and frame based system. Nevertheless, the
language could not allow for non-monotonic reasoning. To sum up, TRANSGENE
showed that limitations of knowledge representation language can seriously hinder
hypothesis formation. On the other hand, it illustrates that hypothesis formation
is intuitive and straightforward in knowledge based framework.

GenePath (5) automated the inference of genetic networks from experimen-
tal data. A knowledge base is a genetic network that represents positive and
negative influences of a gene on another. Experiments are perturbations to the
network, performed by means of gene mutations. A fixed set of inferencing rules
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was formalized and implemented in GenePath using Prolog. These rules encode
heuristic reasoning that are routinely applied by geneticists, namely epistasis
analysis. Prior background knowledge are encoded in an initial network. Start-
ing with the initial network, GenePath applies the rules to construct a plausible
network as a hypothesis that explains experimental data. GenePath can also
propose new experiments for further verification and refinement of hypotheses.
Although the knowledge representation and reasoning are simple in GenePath,
it has illustrated the important role of expert reasoning in hypothesis formation,
and that logic programming provides a straightforward and intuitive represen-
tation of human reasoning.

Integrative computational protocols (6; 15; 16) have been proposed for
prediction of metabolic and regulatory pathways. They have the general scheme:
(1) construct an initial template pathway; (2) fill in missing links in the template,
expand the template with new elements, or refine it; (3) verify experimentally the
predicted pathway(s). These works integrated various techniques for prediction
of missing genes and molecular interactions into functional contexts of pathways.
They indicate that more powerful hypotheses can be found by incorporating
more background knowledge and reasoning into search.

Cytoscape (17) provided an integration of various resources of molecular in-
teraction data. By means of simulation and visualization, the system is very useful
for biologist to identify novel patterns in high-throughput data. Observing novel
patterns in data, biologists reason to formulate hypotheses that may explain the
patterns; for example as in (18). Cytoscape has alleviated the manual processing
of high-throughput information. Nevertheless, in a near future, even the number
of such patterns would also become so great that biologists would have difficult
to handle such reasoning in their head. Hence, tools such as Cytoscape make the
automation of reasoning to formulate hypotheses even more pressing.

HyBrow (19) was designed for computer-aided evaluation of user-defined hy-
potheses. A hypothesis in the HyBrow system is a set of biological events that are
related logically and/or temporally. The knowledge base in HyBrow is a database
integration of various data sources (e.g annotated genomic database, microarray
expression data). Given a hypothesis, HyBrow checks if the hypothesis conflicts
with the knowledge base. It then provides explanation for conflicts as well as sug-
gestions for necessary refinements of the hypothesis. We will discuss later how the
output of HyBrow can be useful in the hypothesis formation in BioSigNet-RRH.

Robot Scientist (20) uses machine learning techniques (active learning, de-
cision tree, inductive logic programming) to predict gene function in metabolic
networks. The knowledge representation language is a monotonic logical for-
malism implemented in Prolog. The system is an interesting demonstration of
state-of-the-art AI methods, especially machine learning and robotics. However,
it is unclear how the system can incorporate elaboration representation and
non-monotonic reasoning into hypothesis formation. It is also unclear how this
approach can be scaled up to take advantage of multiple sources of biological
knowledge.
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3 Problem Definition

Before we formally define the hypothesis formation problem, let us review some
basic notions of knowledge representation.

3.1 Background of Knowledge Representation

In a computer system, knowledge is represented in a symbolic language with a
precise syntax and semantics. For our discussion, we will use the language A% of
BioSigNet-RR, (13; 21), but the general principles are applicable to any other
knowledge representation formalisms.

The language A9 has an alphabet, and a restricted syntax. The alphabet of
A9 consists of a set of Boolean symbols named fluent and a set of symbols named
action. Fluents represent properties of the world, and actions represent mecha-
nisms that cause the state of the world to change. For example, we can have a flu-
ent high(ligand) representing the property that the level of ligand is high. We can
have an action bind(ligand, receptor) representing the association of ligand with
receptor.

The language A% consists of three sub-languages: a language for knowledge
bases that describe the world, a language for our observations about the world,
and a language for queries about the world.

A knowledge base is a set of statements in the following syntax:

a causes Tif f, ..., . (1)
g1, --- , Om triggers b (2)
hy, ..., h, inhibits ¢ (3)

where a, b, c are actions, and f;, g;, hy are fluents. Statements of the form (1)
are called causal rule, which state that if a occurs in the world state s where
f1,... T, are true, then T will become true in the world state s’ resulted from the
occurrence of a in s. Statements of the form (2) are called trigger, which state
that action b has to occur if the preconditions g1, . . .0, hold. Statements of the
form (3) are called inhibition, which state that action ¢ cannot occur whenever
the preconditions hy,...h, hold.

Example 1. Let us consider the knowledge base:

bind(ligand, receptor) causes bound(ligand, receptor)

high(ligand) triggers bind(ligand, receptor)

bound(another, receptor) inhibits bind(ligand, receptor)
The knowledge base represents that the association of ligand and receptor results
in ligand being bound to receptor; that the association occurs when the level

of ligand is high and that the association is blocked when receptor is bound to
another molecule. O

Observations about the world involve properties or action occurrences. To
record the observation that a property f is true at time t, we write

f at t.
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To record the observation that some action a occurs at time t/, we write
aoccurs at t'.

The semantics of A% (21) defines when a set O of observations is entailed
from a knowledge base K and a set | of initial observations. The entailment
is usually written as (K, ) = O. For example, let K be the knowledgebase of
ligand and receptor. Let | and O be the following sets of observations

I ={high(ligand) at 0, —bound(another, receptor) at 0}
O ={bound(ligand, receptor) at 1}

then (K, 1) = O. We also say that the observation O is explained by K, given
the initial condition I.
We are now ready to discuss the general problem of hypothesis formation.

3.2 Hypothesis Formation

We take the view that hypothesis formation is a reasoning process to find expla-
nations for “novel” observations. Given a knowledge base K and initial condition
I, we call an observation O “novel” with respect to K and I if O is not entailed
(i.e. definitely concluded) by (K, I). For example, in the case of K and | as in
the previous section, a novel observation is

O’ ={-bound(ligand, receptor) at 1}

With the assumption that O’ is correct, we need to find explanations for O’
by modifying K and | to become K’ and I’ such that (K’,1’) = O’. The
modification involves expansion and/or revision of the existing knowledge (i.e.
K and I).

In this work, we focus on hypothesis formation as the expansion of an exist-
ing knowledge base to account for novel observations. This form of reasoning is
called abduction, which was introduced by (22; 23) and has been used in various
AT applications (24), including abductive logic programming (25; 26; 27; 28),
diagnosis (29), planning (30; 31), default reasoning (32; 33; 25), belief revision
and update (34). We formally define hypothesis formation as follows.

Definition 1. Let K be a knowledge base. Let O be some observation that cannot
be explained by K, given some initial condition I:

(K, 1) }£ 0.

A hypothesis space is a pair (Sk, Sr), where Sk is a set of rules and S; is a set
of observations. A hypothesis is a subset H C Sk such that there exists I’ C S
satisfying: (KUH,1Ul") = O. O

A hypothesis formation problem (K, I, O) is to find hypotheses as defined above.
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4 System and Methods

The main steps of hypothesis formation in BioSigNet-RRHare: (1) the con-
struction of the hypothesis space (Sk,Sr); (2) generation of hypotheses,
which includes search for and ranking of hypotheses. The ranking of hy-
pothesis is based on the estimation of the preferences of hypotheses. Hy-
potheses generated by BioSigNet-RRHare theoretical and thus have to be
verified experimentally. Because there are usually many ways to verify a
hypothesis and biological experiments are cost sensitive, BioSigNet-RRH
provides means to evaluate costs of experiments before they are performed.
We now present these major features of BioSigNet-RRH

4.1 Construction of Hypothesis Space (Sk,Sr)

In general, the rules and observations of the hypothesis space S = (Sk,Sr)
include new fluent and action symbols, which form an additional alphabet. Let
us denote the existing alphabet by A and the new alphabet by A*. The addition
of AT and the elements of S happen together, but we discuss them separately
as follows.

Addition of A™. The elements of the additional alphabet A" come from various
resources. The representative resources are as follows.

— Biologists define new fluents or actions describing biological properties or
processes to be studied. There is also a wide range of techniques to infer the
association between biological properties and events, for example Cytoscape
(17). If some properties and events are found to be associated with com-
ponents of the knowledge base, then they would be included as fluents and
actions in AT .

— Automated extraction of biological terms from literature has produced a
great resource of biological properties and molecular interactions (35).

— Many protein interaction maps have been constructed by computational and
high-throughput biological methods (10; 36). These interaction maps can be
used to define new actions.

— Biological ontologies and interaction databases (37; 38; 39) also contain bi-
ological properties and reactions as their alphabets.

Construction of Si. To distinguish the rules of the hypothesis space from the
rules of the knowledge base, we call the former possibilities.
To include a possibility r in the hypothesis space, we write

POSSp]:r

where p is a non-negative number called the preference of r. If we do not want to
take into account the preference, or if it is not available, we set p = 0. In the next
section, we will describe how the preferences are used in ranking hypotheses.
Causal rules can be constructed from interaction databases and biological
ontologies (37; 38; 39; 40). There exists no database that contains explicit in-
formation regarding triggers and inhibitions. However, there exist datasets from
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which associations between properties and processes can be found. Presently, we
take a simple approach to generate triggers and inhibitions of the hypothesis
space: if a set of fluents Ty, fa,... T, are found to be associated (or correlated)
with an action a, then there are the possibilities that

POSS[p]: fy, T, ... T, triggers a
fl, fg, .. fn inhibits a

where the number p is either estimated from the data, or defined by biologists.
We can also to take advantage of data integration efforts such as HyBrow (19).
Recall that HyBrow aides in manual construction of sets of biological events that
are consistent with respect to an integrated database. Such as set of events can
be used as suggestions for possibilities.
Example 2. Consider a simple set of events output by HyBrow: “Gal2p trans-
ports galactose into the cell. In the cytoplasm, galactose activates Gal3p. Gal3p
binds to the promoter of the Gall gene” (19). Based on this set of events, there
can be the following possibilities:

high(Gal2p) triggers trans(Gal2p, galact)
trans(Gals2p, galact) causes in(galact, cyto)
in(galact, cyto) triggers activates(Gal3p)
activates(Gal3p) causes active(Gal3p)
active(Gal3p) triggers binds(Gal3p, Gall promoter)

Such rules are possible elements of Sk O

Construction of S;. We declare possible unknown factors in the initial conditions
as follows

— f may be true or false initially: POSS initial f.
— a may occur initially: POSS initial a.

4.2  Generation of Theoretical Hypotheses

The reasoning in BioSigNet-RR is implemented using AnsProlog, a non-
monotonic logic programming language (12). The semantics of AnsProlog is
stable model semantics. For example, the AnsProlog program

a < noth
b+ nota

has 3 models {a}, {b} and {a,b}. The models {a} are {b} stable, while {a,b} is
not. Stable models are minimal with respect to the C ordering on sets.

The hypothesis generation in BioSigNet-RRHis also implemented using Ans-
Prolog. A hypothesis - a set of rules - is extracted from a stable model of the
AnsProlog implementation. Intuitively, we want to find hypotheses as simple as
possible. The minimality of stable models has an important role towards this
goal.

The ranking of hypotheses is based on the following partial ordering.
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Definition 2. Let y be some scoring function for hypotheses. A hypothesis H
is more preferred than a hypothesis H’, written as H < H’, if H ¢ H’ and

y(H) = y(H').

A hypothesis H is maximally preferred, if there exists no hypothesis H’ such
that H” < H. We now explain how BioSigNet-RRHgenerates hypotheses that
are maximally preferred. To ensure the minimality of hypotheses with respect to
the C relation search heuristics are added in the form of AnsProlog rules. Some
examples of heuristics are:

— A trigger is added only if it is the only cause of some action occurrence that
is needed to explain the novel observations.

— An inhibition is added only if it is the only blocker of some triggered action
at some time.

The implementation of these heuristics is straightforward, and they can function
as a plug-in component of BioSigNet-RRH.

The y scoring function is currently defined such that it can be maximized
using a built-in feature of the AnsProlog engine.

Let r be an element in the hypothesis space given by

POSSp]:r

Let pref(r) = p. The function y(H) is defined as the sum of the preferences of
the rules in H; that is,

y(H) =Y pref(r)

reH
4.3 Guidance for Experimental Verification

Because of the incompleteness of biological knowledge, hypotheses can only be
verified using some plausibility measure. In general, a hypothesis is accepted
as a theory when there are enough experimental evidences supporting it. Thus,
biologists would like to carry out as many experiments as possibile for the veri-
fication of a hypothesis. In reality, the set of possible experiments are seriously
constrained by resources such as time and available techniques. Hence, it is de-
sirable to perform only experiments that require a minimal available resource
but produce a maximal information.

In this section, we propose a model of guidance for experimental verification.

Let us represent a wet-lab experiment in the abstract form (I, O), where I
is the set of initial conditions of the experiment, and O is the set of observed
outcomes.

Definition 3. Let K be a knowledge base and H be a hypothesis. Let (I,0) be
a experiment. We say that (I, O) is an evidence for the hypothesis H, if O can
be explained by KUH given I:  (KUH,I) EO.

Example 3. Let K= {a causes g} and H = {f triggers a}. Let I, =
{f at 0,—g at 0}, O; ={g at 1}. Let I = {—~F at 0,—g at 0}, Oy = {—g at 1}.
Then (11,01) and (I3, O3) are evidences for the hypothesis H, but only (I, O2)
is an evidence for the hypothesis 0. O
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There are two important measures of an experiment, namely its cost and its
information content. Let us denote these measure as cost(l,O) and info(l, O).
Given a hypothesis H, the objective is to find a set E of evidences for H that
has minimal cost and maximal information content. Let us simply define:

cost(E) = ) cost(l,0)
(I,0)eE

info(E) = > info(l,0)

(I,0)eE

An initial condition such as T at 0 can be achieved by some wet-lab operation
and can be associated with some cost. We then define

cost(l) = ) _ cost(x)

zel

Biological observations are achieved by means of measurements, which also
have associated costs. Hence, we define

cost(0) = > cost(y)

yeO

Finally, cost(l, O) = cost(l) + cost(O).

Let Q(K, 1) be the maximal observations that can be entailed from K, given
I. That is, (K, 1) E Q(K, 1) and for all o, if (K, 1) E ® then w C Q(K, ). We
define the information content of (I, 0) as the deviation (or distance) of O from
Q(K, I). The distance between two sets of observations in turn is defined based
on the distance between their elements.

We now present the pb3 signal network as a case study to illustrate our
theoretical methods to automate the process of hypothesis formation.

5 Case Study

First, we describe the biology the p53 network in parallel with its knowledge-
based representation.

5.1 p53 Signal Network

The p53 protein plays a central role as a tumor suppressor and is subjected to
tight control through a complex mechanism involving several proteins. The key
aspects of the p53 network are as follows.

Tumor suppression by p53: The p53 protein has three main functional do-
mains; the N terminal transactivator domain, the central DNA-binding domain
and a C terminal domain that recognizes DNA damage. The binding of the
transactivator domain to the the promoters of target genes activates pathways
to lead to a reversible arrest of the cell cycle, prevention of genomic instability
or apoptosis and thus protects the cell from cancer (41). The ability to sup-
press tumors is retained when the interacting partners of p53 do not inhibit the
functionality of the transactivator domain.
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fluent bound(dom(p53, N))
action grow(tumor)
high(p53) inhibits grow(tumor)
high([p53 : P]), not bound(dom(p53, N)) inhibits grow(tumor)
(The keywords fluent and action are used to declare fluent and action symbols
in BioSigNet).
Interaction between Mdm2 and p53: Mdm?2 binds to the transactivator do-

main of p53, thus inhibiting the p53 induced tumor suppression. The binding of
Mdm?2 to pb3 also causes changes in the protein concentration levels.

fluent high(p53), high(mdm2), high([p53 : mdm2])
action bind(p53, mdm2)

bind([p53 : mdmz2]) causes bound(dom(p53,N))
high(p53), high(mdm2) triggers bind(p53, mdm2)
bind(p53, mdm2) causes high([p53 : mdm2]),
bind(p53, mdm2) causes —high(p53), —high(mdm2)

Mdm2 induced degradation of p53: Under normal physiological conditions, p53
levels remain low due to rapid and constant turnover. The short half life of p53
is due to the formation of a complex with Mdm?2 that gets targeted for ubiquitin
dependent proteosomal degradation.

action degrade(p53, mdm2)
high([p53 : mdmz2]) triggers degrade(p53, mdmz2)
degrade(p53, mdm2) causes —high([p53 : mdmz2])

Upregulation of p53: The elevated levels of p53 may be a result of upregulation
of p53 gene expression, increased transcript stability, enhanced translation of p53
mRNA (42), or post-translational modifications of the p53 protein which favor
a prolonged half life and increased activity (43).

For the case study, we consider the upregulation of pb3 expression, which is
represented as follows.

upregulate(mMRNA(p53)) causes high(mRNA(p53))
high(mRNA(p53)) triggers translate(p53)
translate(p53) causes high(p53)

Stress: UV, ionizing radiation, and chemical carcinogens cause stress. Stress
can induce the upregulation of p53.

high(UV) triggers upregulate(mRNA(p53))

Stress can induce changes in expression of tumor related genes, (e.g. cmyc),
which result in uncontrolled cell division (tumor).
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lcancer ®<_

Fig. 1. A hypothesis in p53 interaction network. The — represents trigger. The -
represents inhibition. The solid and dash lines represent known and hypothetical in-
teractions, respectively

high(UV) triggers alter(expr(cmyc))
alter(expr(tumorgenes)) causes altered(expr(cmyc))
altered(expr(cmyc)) triggers grow(tumor)
grow(tumor) causes tumorous

Given the theory of the p53 network, a hypothesis formation problem arises as
follows.

5.2 The Problem

X is a tumor-suppressor gene. Mutants of X are highly susceptible to cancer.
We would like to hypothesize on the various possible influences of X on the p53
pathway.

Thus, we have the hypothesis problem (K, I,0), where K is the knowledge
base of p53 biology, and | is the initial condition

I = {null(X) at 0}
and O is the observation
O ={eventually tumorous}

(Here, eventually F is a logical proposition denoting that some property F will
be true at some future time).
We need to extend K with H such that there exists 1’ satisfying: (KUH, 1 U

Iy = 0.
5.3 Hypothesis Formation

Construction of the Hypothesis Space. First, we show how various possi-
bilities can be found and included in the hypothesis space. In the following, the
literature means (41; 42; 43).
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There may be functional similarities between X and p53: X is a tumor sup-
pressor, so we have a prior knowledge that X may play the same effects as p53
in stressed cells, which is captured by the following possibilities:

POSS: high(UV) triggers upregulate(mRNA(X))
upregulate(mRN (X)) causes high(mRNA(X))
high(mRNA(X)) triggers translate(X)
translate(X) causes high(X)

Stress may induce high level of X: Data from the literature show that the levels

of protein X is found to be higher in cells subjected to stress. Consequently, it
is possible that stress induces the upregulation of X expression. That is,

POSS: high(UV) triggers upregulate(mRNA(X))

X or p53 may induce upregulation of the other: There are observations from
the literature that high levels of X are concomitant with elevated levels of p53.
Thus, it is possible that a high level of X induces the upregulation of p53, or
vice versus.
POSS : high(X) triggers upregulate(mRNA(p53))

high(p53) triggers upregulate(mRNA(X))
X may interact with the known proteins in the network: The possible interactions
are bind(p53, X) and bind(mdm2, X). The possibile properties are the protein
levels and the domains of p53. By associating a possible action with possible
effects, we form possibilities such as

POSS : bind(p53,X) causes bound(dom(p53,N))

bind(p53, X) causes —bound(dom(p53,N))
That is, binding of X to p53 may or may not affecting the transactivator domain.
X may influence (trigger/inhibit) other interactions: We consider all the possi-
bilities of X’s influences on the interactions in the network, which results in

POSS : high(X) influences upreg(mRNA(p53))
high(X) influences translate(p53)
high(X) influences bind(p53, mdmz2)

(where influences stands for either triggers or inhibits).
Hypotheses Generation. We present representative examples of the hypothe-
ses generated by BioSigNet-RRH.

— X is a negative regulator of Mdm2: Stress induces high expression of X. X
binds to Mdm2 and this complex is rapidly degraded by proteolysis. Scav-
enging of Mdm?2 arrests the proteolyis p53 (Fig. 1). The important elements
of the hypothesis are:

high(UV) triggers upregulate(mRNA(X))
high(X), high(mdm2) triggers bind(X, mdm2)
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— Xdirectly influences p53 protein stability: X binds to p53 protein at a domain
different from the transactivator domain, so p53 is stabilized (formation of
Mdm2-p53 complex is prevented) and still functional as tumor suppressor.
The important elements of the hypothesis are:

high(X), high(p53) triggers bind(p53, X)

bind(p53, X) causes —hound(dom(p53,N))
The non-monotonicity of the framework manifests itself in the results. The knowl-
edge base in Section 5.1 predicts that cancer will finally occur due to high level of
UV (stress). After being extended with the hypothesis described in Fig. 1., the new
knowledge base predicts that cancer will not occur, given the presence of UV.

The presented study is incomplete in the sense that changes in the regulation of

pb3 also occurs as aresult of stress induced damage to DNA. Due to the elaboration
tolerance feature, we could start by first constructing a small initial knowledge base,
then incrementally adding more knowledge. We have also represented simple rules
with only one or two preconditions. More elaborated representation and the results
on experiments with ranking can be found at the system’s Website.

6 Conclusion

We have presented a general framework for the automation of hypothesis forma-
tion in systems biology. We considered the hypothesis formation problem in the
context of knowledge representation and reasoning. We implemented an initial
system by extending BioSigNet-RR. The advantages of our approach includes:
(1) hypothesis formation is defined as a form of reasoning and is implemented
using AnsProlog, which is an elaboration tolerant and non-monotonic repre-
sentation and reasoning language; (2) it provides a mean to integrate various
resources of biological knowledge; (3) it is a high-level approach to hypothesis
formation that is necessary for building an intelligent system to aid biologists.

Our work is a proof-of-concept and substantial works remain for the scaling-
up the system for real-world applications. An immediate task is to automate
the construction of the hypothesis space. Besides, we identify many important
future works. First, it is important to allow for declaration and instantiation of
“similarity” background knowledge; such as gene homology, or the similarity of
relationships between proteins or biological processes. Next, we want to explore
different models for ranking hypotheses. We will explore how AnsProlog with
preferences can be applied for ranking hypotheses. Finally, we have restricted to
the hypothesis formation as knowledge extension. Hypothesis formation based
on knowledge revision is an important next development.
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Abstract. For execution of complex biological queries, data integration systems
often use several intermediate data sources because the domain coverage of
individual sources is limited. Quality of intermediate sources differs greatly
based on the method used for curation, frequency of updates and breadth of
domain coverage, which affects the quality of the results. Therefore, integration
systems should provide data provenance; i.e. information about the path used to
obtain every record in the result. Furthermore, since query capabilities of web-
accessible sources are limited, integration systems need to support refinement
queries of finer granularity issued over the integrated data. However, unlike the
individual sources, integration systems have to handle the absence of data and
conflicts in the integrated data caused by inconsistencies among the sources.
This paper describes the solution proposed by BACIIS, the Biological and
Chemical Information Integration System, for providing data provenance and
for supporting refinement queries over integrated data. Semantic
correspondence between records from different sources is defined based on the
links connecting these data sources including cross-references. Two
characteristics of semantic correspondence, namely degree and cardinality, are
identified based on the closeness of the links that exist between data records and
based on the mappings between domains of data records respectively. An
algorithm based on semantic correspondence is presented to handle absence of
data and conflicts in the integrated data.

1 Introduction

The rapid development of experimental biology has led to the emergence of a large
number of web-accessible biological data sources [1]. Together, these data sources
cover a wide range of subjects and data types. But each individual data source often
focuses on a specific subject area; and thus represents only a fraction of all the
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available data. Cross-references are provided between different data sources to
connect data into a network. In addition of cross-references, integration systems [2, 3]
use field values in records produced by one data source to connect to another data
source to address complex queries. So a query plan can contain chains of links
connecting several sources. One important issue is data quality control. Due to factors
such as the method of annotation, update frequency and overall coverage of the
subject area, not all of these sources are trusted equally. The quality of a data source
will affect both the quality of data fields and the quality of cross-references. It is
therefore important to specify the source of every piece of result data, and to
aggregate records with cross-references to each other.

Query capabilities of web-accessible data sources are limited and it is often not
possible to use every characteristic of biological entities in the query predicate.
Therefore, most initial queries are not specific enough and their results contain several
unwanted records. In such cases, once the integrated result of an initial query is
available, the integration system can allow scientists to issue refining queries.
However, unlike the initial query, while processing a refining query, complex inter-
relationships among records from different sources must be considered. Most
integration systems assume that different sources cover different characteristics of the
biological entities and hence, do not deal with absence of data or contradictory data
[4]. However, this does not represent the true nature of relationships among records
and consequently, the results of such systems are not complete and reliable. In reality
different sources have significant overlap of information and data inconsistencies are
present in the overlapping portions due to different methods of curating the data.
Therefore, to process refining queries in a comprehensive and correct manner, we
must assume an overlapping coverage of the global schema by different sources and
deal with the data absence and inconsistency.

The objective of this paper is to describe the solution proposed by BACIIS, the
Biological and Chemical Information Integration System [5-7], for providing data
provenance for result records and for supporting queries over integrated results.
Section 2 briefly introduces BACIIS system and its main data integration features.
Section 3 defines the concept of semantic correspondence and its characteristics. In
section 4, processing of refinement queries over the integrated data is discussed and
an algorithm is presented to handle the conflicts in the integrated data.

2 BACIIS: An Ontology Augmented Database Integration System

BACIIS (Biological and Chemical Information Integration System) is a highly
coupled federation of life science web-databases. It uses a mediator-wrapper
approach, augmented with a knowledge base. The wrapper extracts information from
a given remote data source. The mediator transforms data from its format in the
source database to the internal format used by the integration system. The BACIIS
knowledge base has two components: the ontology and data source schema. The
ontology provides a method for mapping differences in terminology to a common
term that is recognized throughout the domain. In addition to syntactic reconciliation,
the ontology is used for semantic reconciliation as well as a global schema in
BACIIS. Global queries are built by using concepts from the ontology. These global
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queries are decomposed within BACIIS into database specific sub-queries. The query
planner in BACIIS [7] identifies the data sources that can answer the sub-queries
based on the description of the data sources that is included in database specific data
source schema. The results of the graph planner is a graph where nodes represent data
sources and an edge is present between two nodes if a link can be established between
the corresponding data sources (see section 3.1). Finally, each database is associated
with a specific wrapper and these wrappers are responsible for executing the sub-
queries on the web databases and retrieving the result.

3 Semantic Correspondences Among Heterogeneous Data

In section 3.1, the concept of semantic correspondence is explored in the context of
integration of web-accessible life science data sources. Two characteristics of
semantic correspondence, degree and cardinality, are then introduced in section 3.2
and 3.3. Degree is a measure of how closely two data records from different databases
correspond with each other. Cardinality is a measure of domain mapping between two
real world objects with some semantic correspondence.

3.1 Concept of Semantic Correspondence (SC)

The issue of semantic correspondence between two objects that have significant
representational differences was examined in [8]. It also provides a way to distinguish
between different degrees of semantic correspondence using factors like the context,
abstraction, domains and the state of objects. However, in the context of integrating
domain specific data from autonomous, heterogeneous and semi-structured sources,
we maintain that the SC is established between two records when field values of one
record can be used to identify the other record. Sometimes, the link between records
is explicitly given by the data sources. For example, SwissProt records provide
hyperlinks to related records in PDB. This is similar to the concept of hyperlink
authority explored in [9]. However hyperlinks are not the only way to establish SC.
Consider the case of BIND [10], which does not have explicit hyperlinks to SwissProt
records. However, BIND records contain attributes ‘protein-name’ and ‘organism-
name’, which can be combined to identify a protein sequence record from SwissProt.
The roles of ‘protein-name’ and ‘organism-name’ here are similar to the role of
foreign keys in relational databases.

The idea of SC can be illustrated by an example query: “Which protein family does
chaperonin hsp60 precursor in Arabidopsis thaliana belong to? What is its coding
gene sequence? What are the 3D structures of proteins that belong to the same
family?” The predicate of this query has two constraints (i.e., Protein Name =
chaperonin HSP60 precursor and Organism Name = Arabidopsis thaliana), and the
output requires four characteristics (protein family, coding gene sequence, and 3D
structure). To the best of our knowledge, no individual life science data source can
answer the above query directly due to limited query capabilities and domain
coverage [7]. Information from multiple data sources has to be combined together for
a complete answer. Figure 1 shows one possible query plan and some results for
illustration purpose. The predicate criteria ‘protein-name’ and ‘organism-name’ are
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combined and submitted to SwissProt, which provides the sequence-info part of the
output. The SwissProt data record matching the protein name, also provide hyperlinks
to related data records in GenBank and PROSITE. These sources provide the gene
sequence information and the pattern description part of the output, respectively.
Finally, PROSITE data records provide hyperlinks to the related PDB data records,
which contain the 3-D structure part of the output. Thus, the result of this query
consists of data records that are obtained from four different sources.

Consider the SC between SwissProt record P29197 and the PROSITE record
PS00296 in figure 1. This semantic correspondence is established because the
SwissProt record has a hyperlink to the PROSITE record. In terms of domain
knowledge, this SC denotes the fact that the protein represented by the sequence in
SwissProt record belongs to the family represented by the PROSITE record.
Similarly, the SC between SwissProt and GenBank records denotes the domain
knowledge that the protein represented by the SwissProt record is a product of the
gene represented by the GenBank record.
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Fig. 1. Partial result of a query

3.2 Degree of Semantic Correspondence

Now consider the PROSITE and GENBANK records in figure 1. Do they have SC
among them? In terms of domain knowledge, the protein family represented by
PROSITE record and the gene represented by the GENBANK record, both are
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definitely related to the sequence represented by the SwissProt record, i.e., these
records represent different characteristics of the same protein. Therefore, GENBANK
and PROSITE records do have certain SC. However, this SC is not as strong as the
one that links GENBANK and SwissProt records; because there are neither direct
hyperlinks nor matching field values between the GENBANK and PROSITE records.
Formelly, we define two degrees of SC: strong SC and weak SC.

Strong SC (SSC): Two data records are said to have strong SC, if they are linked
directly either by matching field values or by hyperlinks. These data records are
immediate neighbors in the query plan. For example, the SwissProt and PROSITE
records mentioned in the example above, have strong SC, as do SwissProt and
GenBank records.

Weak SC (WSC): Two data records are said to have weak SC, if they are
connected using a chain of SSC that travels through at least one other data source.
These data records are connected but not immediate neighbors in the query plan.
Records connected by WSC may represent different characteristics of the same
biological entity. However, WSC is just a possibility and its validity must be
confirmed using some other means as explained in the next section.

ONE-ONE AND ONE-ONE MANY-ONE AND ONE-ONE

VALID WSC INVALID WSC

Fig. 2. Domain mapping and validity of WSC

3.3 Cardinality of Semantic Correspondence

According to the above definitions, SwissProt record P29197 and PDB record 1GRL
in figure 1 are connected by WSC because both of them have SSC with PROSITE
record PS00296. However it is misleading to connect them (P29197 and 1GRL)
together because they represent two different proteins. On the other hand, the WSC
between GenBank record Z11547 and PROSITE record PS00296 makes more sense
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because the gene record and the protein family record are both characteristics of the
protein represented by the connecting SwissProt record. In other words, the WSC
between SwissProt and PDB records is invalid while the WSC between PROSITE and
GENBANK is valid. The validity of WSC between two records thus depends on
whether or not we can biologically pair them with each other.

This can be determined from the mapping of domains of the biological entities
involved. For example, each protein record will have a corresponding Gene record
that it can be biologically paired with; however, each protein family record can be
paired with several corresponding protein records. Figure 2 shows the possible cases
of domain mappings and corresponding validity or invalidity of the WSC. The
mapping between the domain of intermediate source and its neighbors is the most
important factor in deciding validity of WSC. If the intermediate record maps to
multiple records with both its neighbors, its SC has a plural cardinality; otherwise it
has singular cardinality. When an intermediate record has plural cardinality, we
cannot reliably pair its neighbors and the WSC between them is labeled invalid.

4 Refinement Query Processing over Integrated Data

Query processing capabilities of web-accessible data sources are limited and not
every field in the record can be used in the predicate. For example, it is not possible to
use the field ‘induction’ as predicate in the initial query. Therefore, there will be
many records in the result of the initial query with values of ‘induction’ different than
the desired value. However, since BACIIS now has all the data locally, it can apply
the additional criterion to that data regardless of the sources’ capabilities. In general,
BACIIS can provide refinement query capabilities of arbitrary granularity over the
global schema and process those queries over the integrated data. For example,
refinement query ‘induction=heat shock’ will only keep those records that contain
‘heat shock’ in field ‘induction’, and their related records.

Given the rich population of biological databases available online, it is not
surprising that some portions of the domain be covered by multiple sources. For
example, protein sequence information is available from several sources such as
SwissProt, PIR, etc. Since BACIIS collects information from multiple data sources, it
may get multiple values about the same data field from records of different sources.
Those values may be inconsistent, but it is impossible to eliminate the wrong ones
automatically. So, BACIIS will present all the data to users by default. If a user wants
to further refine the result based on the value of one data field, inconsistent field
values may cause a problem.

Consider the following query issued to BACIIS “What is the GENE ontology
classification of protein featured for the protein phytochrome B in Arabidopsis
thaliana?” Along with many others, the result for this query contains the following
three records: At2g18790 from TIGR, NF00659007 from iProClass and 1005515
from TAIR. Figure 5 shows the cross-references among these records and using those
along with domain mapping information; we can state that there is a valid WSC
between the iProClass record and the TAIR record.

Now, consider the following refinement query issued on this result: “cellular
component = membrane”. From the data source schema, BACIIS finds out that only



Semantic Correspondence in Federated Life Science Data Integration Systems 143

TIGR and iProClass records can be directly evaluated for this predicate. Therefore,
TAIR record’s selection is completely dependent on its having valid semantic
correspondence with a record that can be evaluated. However, the value of this field is
different in both of such records, where iProClass record satisfies the predicate and
TIGR does not. This inconsistency of data can be attributed to the different methods
of annotation employed by the two sources. Nevertheless, the TAIR record now
corresponds to one record that satisfies the predicate and another that doesn’t.
However, BACIIS has to take into account the relative degree of SC between these
records and since the TAIR record has a SSC with the mismatching TIGR record, its
WSC with iProClass record should be considered invalid and it should not be
included in the result.

TIGR

At2g18790
[ellular component =
"nucleus”

Strong Semantic
Correspondence

Strong Semantic
Correspondence

Locus = 1005515

NF00659007

No Cellular
component Cross- ellular component
information references membrane

TAIR ?
Weak semantic
correspondence

iProClass

Fig. 3. Invalid WSC due to Data Inconsistency

To solve this problem, we propose an algorithm that first finds out all the records
that can be directly evaluated for the predicate, and marks them as either valid or
invalid. And then, the algorithm uses semantic correspondence to evaluate other
records. For each record that has not been marked yet, if its predecessor is not marked
invalid and if any of its neighbors are marked valid, then that record itself becomes
valid. The rest of the records are invalid. Thus, the validity of a record for the
refinement query is based on its being part of an unbroken chain of records in a path
expression. Therefore, records with SSC to invalid records are eliminated.

5 Conclusion

In this paper two challenges were addressed; providing provenance for records in
integrated data and processing queries over integrated data in a semantically
meaningful way. The concept of semantic correspondence was introduced for
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heterogeneous data obtained using several query paths. Two characteristics of
semantic correspondence were also defined. First, the degree of semantic
correspondence which represents the closeness of entities represented by different
records and second, the cardinality which represents the mapping between domains of
entities.

Data quality in biological data sources varies greatly based on several factors.
Therefore, integrating data from overlapping data sources may generate results with
missing data items or results that contain inconsistencies. The algorithm provided in
this paper deals with these conflicts based on the characteristics of semantic
correspondence among the records. It makes no assumption about the correctness of
any data source involved. Furthermore, by removing semantically distant records
from the integrated data, it achieves a better consistency for the integrated results.
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Abstract. Integrating data involving chemical structures is simplified
when unique identifiers (UIDs) can be associated with chemical struc-
tures. For example, these identifiers can be used as database keys. One
common approach is to use the Unique SMILES notation introduced
in [2]. The Unique SMILES views a chemical structure as a graph with
atoms as nodes and bonds as edges and uses a depth first traversal of the
graph to generate the SMILES strings. The algorithm establishes a node
ordering by using certain symmetry properties of the graphs. In this pa-
per, we present certain molecular graphs for which the algorithm fails to
generate UIDs. Indeed, we show that different graphs in the same sym-
metry class employed by the Unique SMILES algorithm have different
Unique SMILES IDs. We tested the algorithm on the National Cancer
Institute (NCI) database [7] and found several molecular structures for
which the algorithm also failed. We have also written a python script
that generates molecular graphs for which the algorithm fails.

1 Introduction

The volume of biological data, especially chemical structures, is increasing at
an unprecedented rate. There are numerous databases today that store chem-
ical substances and thousands of chemical structures are being added to these
databases each year. For example, the Chemical Abstracts Service (CAS) alone
has more than 71,285,000 records, while the NCI database has close to 250,251
chemical structures. In general, each database uses a different method of assign-
ing keys to the chemical compounds. For example, many databases assign keys
based upon the order the compound was added to the database. For this reason,
determining whether a compound has been entered into a database more than
once or comparing chemical structures across databases is difficult.

B. Ludéscher and L. Raschid (Eds.): DILS 2005, LNBI 3615, pp. 145-157, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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This paper is concerned with data integration techniques that use the struc-
tural features of chemical compounds to assign unique IDs (UIDs). Using UIDs
it is relatively simple to compare chemical structures across different databases,
something which facilitates the discovery of new drugs and therapeutic treatments.

In this paper, we consider two schemes for assigning UIDs: Unique SMILES [2]
and Universal Chemical Keys (UCKs) [20]. Although Unique SMILES are widely
deployed and very useful in practice, we show that the algorithm described in
[2] does not lead to unique IDs. We emphasize that the Unique SMILES as
deployed by the Daylight Chemical Information System is an enhanced version
of the algorithm described in [2], but, as far as we know, there is not a published
version of this algorithm.

We believe that our paper makes the following research contributions:

1. We show that the Unique SMILES IDs although extremely useful are not
unique.

2. We describe some common circumstances leading to the non-uniqueness of
Unique SMILES IDs.

This paper is organized as follows: Section 2 describes related work. Sections
3-4 described one popular technique of assigning IDs to chemical compounds
called Unique SMILES [2]. Sections 5-6 explain why Unique SMILES doesn’t al-
ways generated UIDs. Sections 7 provides some counter examples. The final sec-
tion summarizes the reason behind the failure of the unique SMILES algorithm
and suggests alternate techniques for data integration of chemical compound
databases using UIDs.

2 Related Work

The International Union of Pure and Applied Chemistry (IUPAC) rules [13]
have been use for several decades. However, these names are growing more com-
plicated and causing inconsistencies and mistakes as compounds become more
and more complex [14]. To deal with this problem, the IUPAC has initiated a
project [15] to assign unique keys known as [IUPAC Chemical identifiers (INChI)
to chemical compounds. This approach is based in part on graph theory. The
chemical identifiers are alphanumeric text strings obtained from the molecular
graph of the compound and are designed so that the chemical structure can be
recovered from the UID. However, the details are not yet published.

The most common approach for integrating information about chemical com-
pounds across databases is to use a unique key assigned by one of the databases,
such as an acquisition-based or Chemical Abstracts Service (CAS) based registry
numbers, as the foreign key for the other databases. For example, the NCI database
stores the corresponding CAS registry number for its chemical compounds. Inte-
grating databases in this way is labor intensive and does not easily scale.

Another approach is to view the molecular structures as a graph and to
compare them directly using a graph isomorphism algorithm. There are several
algorithms [11,12,17] which test for graph isomorphism. The problem with this
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approach is the amount of computing required to compare two structures. A
more important problem is that just identifying two graphs as isomorphic does
not directly provide a UID.

Several graph based techniques to solve the problem of assigning unique keys
to chemical structures are known. For example, Randic and coworkers [16] de-
veloped a technique that canonically orders the adjacency matrix to produce an
ID. Another popular method to discriminate molecular graphs is by means of
graph invariants and vertex-in-graph invariants. One such method is the Morgan
algorithm [18] which uses extended sum connectivities to distinguish atoms in a
molecule. Another molecular graph canonizer is MOLGEN-CID [19].

In contrast, the Universal Chemical Key (UCK) algorithm [20] enumerates
all paths up to a specified depth d in the molecular graph, lexicographically
orders them, and concatenates them to produce an ID. These strings are long
and cannot be used to recover the graphs. On the other hand, it is easy to use
them to integrate distributed bioinformatics databases [20]. For databases of
chemical compounds examined to date, a depth of d = 3 or 4 produces UlDs.

3 The Unique SMILES Algorithm

SMILES [1] (Simplified Molecular Input Line Entry System) is a popular chem-
ical notation system used for computerized processing of chemical information.
SMILES is a string obtained by enumerating the atomic symbols and bond types
via a depth-first tree-traversal of a molecular graph, where, as usual, the nodes
represent atoms and the edges represent bonds.

The problem with all such approaches is that there is no natural order to nodes
in a molecular graph, and different depth-first traversals will result from different
starting points. This means that there may be more than one correct SMILES
string obtained from the same molecular graph. For this reason, SMILES strings,
which in general are not unique, cannot be used as database keys.

To overcome this disadvantage, the creators of SMILES came up with a 2-
stage algorithm called CANGEN [2] to generate a unique SMILES string for a
given molecular structure. The first stage, CANON, involves CANonicalization
of the structure represented as a molecular graph. The second stage, GENES,
GENerates the unique SMILES notation as a depth-first traversal of the canon-
icalized molecular graph.

For most chemical structures the CANGEN algorithm as described in [2]
generates UIDs. However, as we show below by counter examples, there are ex-
ceptions. These exceptions need not be complicated. See Section 7. The reason is
simple: if the graph is symmetric enough, it is possible for the CANON stage of
the Unique SMILES algorithm to generate different canonical labels for the nodes
of the molecular graph. This results in several different Unique SMILES strings.

The Unique SMILES algorithm consists of the following two stages [2]:

1. The CANON stage labels a molecular graph with canonical labels. Each
atom/node is given a numerical label on the basis of its topology.
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Fig. 1. Molecular graph of 3,5 di-ethyl toluene. NSC number 62141

2. The GENES stage generates unique SMILES notation as a tree representa-
tion of the graph. GENES selects the starting atom and makes branching
decisions by referring to the canonical labels as needed.

The algorithm and its non-uniqueness will be explained with the example
of chemical compound 3,5 di-ethyl toluene, It is stored in the NCI database
with NSC number 62141. The molecular graph of this compound is described
in Figure 1, where the number beside each atom is just assigned for brevity to
refer to the atom in describing the following steps of the algorithm.

4 The CANON Stage of Unique SMILES

Node ordering for the generation of unique SMILES is obtained by develop-
ing topological symmetry classes, using the product of corresponding primes as
illustrated below.

Graph Invariants. The algorithm claims that a set of six atomic invariants
is sufficient for the purpose of obtaining a unique notation for simple SMILES.
(More invariants are added for cases like Absolute SMILES to differentiate be-
tween structural and stereo-isomers).

The set is described below in descending order of priority :

1. number of connections

2. number of non-hydrogen bonds
3. atomic number

4. sign of charge

5. absolute charge

6. number of attached hydrogen

For the molecular graph in Figure 1, the initial atomic invariants for the atoms
is described in Table 1(a) row labeled 'A’.
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Rank Equivalence. The algorithm replaces the initial node invariant values by
smaller numbers based on their sorted order to avoid numerical overflow since
there is nothing intrinsically meaningful in their specific values. The row labeled
"B’ in Table 1(a) describes the initial ranks.

Products of Primes. To obtain a canonical ordering of the nodes, and to obtain
and identify all the symmetry classes of the nodes, an extended connectivity
method using the product of the corresponding primes is used. This method is
essentially used only to break ties between the initial node ordering to obtain a
canonical order of the nodes.

The corresponding primes for the atoms of the molecular graph are described
in the row labeled ’ B* ” in Table 1(b). The product of the corresponding primes,
which is the product of the primes associated with the atoms adjacent to a given
atom, is displayed in the row labeled 'C’ of Table 1(b).

Notice that node 10’ was initially ranked '1’ and appeared to belong to the
same symmetry class as the other two nodes (1,7) with rank 1’ when actually
it did not, but by using the product of the corresponding primes we have been
able to break the tie. (row 'D’ of Table 1(b)).

By further following the steps of the algorithm as described in the unique
SMILES algorithm [9], we obtain the final node partitioning as in Table 2: (the
details of the steps are described in Table 1).

Table 1. Perception of Topological Symmetry classes for 3,5 di-ethyl toluene

Node 1 2 3 4 5 6 7 8 9 10 11

id

(a) Initial atomic invariants

A 1,01, 2,02, 404, 3,03, 4,04, 2,02, 1,01, 3,03, 4,04, 1,01, 3,03,
06,0, 06,0, 06,0, 06,0, 06,0, 06,0, 06,0, 06,0, 06,0, 06,0, 06,0,
03 02 00 01 00 02 03 01 00 03 01

B 1 2 4 3 4 2 1 3 4 1 3
(b) Classification by product of primes
B* 2 3 7 5 7 3 2 5 7 2 5
C 3 14 75 49 75 14 3 49 50 7 49
D 1 3 6 4 6 3 1 4 5 2 4
D* 2 5 13 7 13 5 2 7 11 3 7
E 5 26 245 169 245 26 5 143 147 11 143
F 1 3 7 5 7 3 1 4 6 2 4
F* 2 5 17 11 17 5 2 7 13 3 7
G 5 34 385 289 38, 34 5 221 147 13 221
H 1 3 7 5 7 3 1 4 6 2 4
Table 2. Invariant partitioning and symmetry classes of nodes
Canon- 1 2 3 4 5 6 7
ical label

Node ids 1,7 10 2,6 8,11 4 9 3,5
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5 Explanation of Non-uniqueness

Breaking Ties. We have observed that the extended connectivity method using
the product of corresponding primes was able to generate 7 different symmetry
classes. Since the highest rank/label (7) is smaller than the number of nodes
(11), there is more than one atom in certain symmetry classes. To avoid an
arbitrary decision among these atoms in a given symmetry class, the algorithm
proceeds to define a next step called 'breaking ties’. In this step, all the ranks
of the atoms are doubled and the value of the first (lowest valued) atom that is
tied is reduced by one. This set is then treated as a new invariant set and the
previous algorithm for generating an invariant partitioning is repeated until the
highest rank is equal to the number of nodes.

This concept of double-and-tie-break works for certain highly symmetric struc-
tures like cubane (consisting of eight carbon atoms at the vertices of a cube)
irrespective of the initial ordering of the nodes. However, for our example in
Figure 1, this ends up generating different canonical orderings of the graph re-
sulting in different unique SMILES strings.

In our example following the double-and-tie-break step, we detect the first tie
among the nodes with id’s 1,7. We need to reduce the first lowest valued atom
(out of nodes with id’s 1,7) that is tied by one. In our example since we can have
two starting nodes, and the notion of ’first’ in this case is ambiguous, we can
either choose node "1’ or ’7’. The algorithm fails to establish a mechanism of pref-
erence within the nodes belonging to the same symmetry class. It assumes that
choosing any of the nodes within a symmetry class will result in the same unique
SMILES string. This assumption works for certain regular graphs, however for
graphs similar to our example, it does not work as desired.

For our example, by merely changing the input order of the nodes we can
choose either node with id "1’ or "7’ as the first lowest valued atom and reduce its
rank by ’1’, totally changing the start node for the depth-first traversal (DFT).
If the graph was entered as shown in Figure 2, we would have ended up choosing
the node with id ’7’ of Figure 1 as the first node and reduced its rank making it
the start node for DFT.

By choosing the node with id ’1’ of Figure 1 as the first lowest valued atom
to break the tie and continuing the algorithm, we obtain a canonical ordering as
in Table 3. (This is just one of the many canonical orderings we can obtain, and
is explained later).

However, if we had chosen the node with id '7’ of Figure 1 as the first node,
and continuing the algorithm one of the many canonical orderings we would
obtain is shown in Table 4. This will be the case if we had input the graph as in
Figure 2.

The problem of establishing an order within a given symmetry class can
be solved for a limited enough collection of molecular graphs by considering
more chemical/topological characteristics to distinguish between these atoms
and establish a precedence order.
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Fig. 2. Alternate input graph of 3,5 di-ethyl toluene

Table 3. One of the final canonical orderings choosing node with id 1 of Figure 1

Node id 1 2 3 4 5 6 7 8 9 10 11
Canonical 1 4 10 8 11 5 2 7 9 3 6
label

Table 4. One of the final canonical orderings choosing node with id 7 of Figure 1

Node id 1 2 3 4 5 6 7 8 9 10 11
Canonical 2 4 10 8 11 5 9 3 6
label

=
N

Obtaining the Unique SMILES String via GENES. By following the
CANON process we have obtained a canonicalization of the graph. According
to the CANON process, the nodes with the same rank are supposed to belong
to the same symmetry class. The GENES process treats this structure as a tree
and generates a SMILES string by Depth-First Traversal.

1. Initial node selection: The lowest canonical numbered atom is chosen as the
starting point and it becomes the root of the Depth-First Traversal tree.

2. Branching decision: The following two rules apply :
(a) Branch to double or triple bond in the ring if one exists or
(b) Branch to the lower canonically numbered atom.

In this particular case, we observe that we can have two initial node selec-
tions, resulting in two different depth-first traversal trees from the two different
canonical orderings described in Table 3 and Table 4.
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Fig. 3. Depth-first traversal associated with the initial node ’1’ and the
canonical labeling described in Table 3. This gives the Unique SMILES
CCC1=CC(=CcCc(=C1)C)CC
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Fig.4. Depth-first traversal associated with the initial node ’'7’ and the
canonical labeling described in Table 4. This gives the Unique SMILES
CCC1=CC(=CC(=C1)CC)C

— The USMILES with start node id ’1’ is CCC1=CC(=CC(=C1)C)CC. The
node IDs are described in Figure 1. The canonical labeling is described in
Table 3. The depth-first traversal is described in Figure 3.

— The USMILES with start node id ’7’ is CCC1=CC(=CC(=C1)CC)C. The
node IDs are described in Figure 1. The canonical labeling is described in
Table 4. The depth-first traversal is described in Figure 4.
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— The UCK algorithm generated using the web-service at [10], generates one
unique key for this molecular graph, which is 85C7DC186897FD83DSECB6B
167D988BE.

6 Experimental Studies

We have written a Python program implementing the CANGEN algorithm. The
program takes as input an adjacency list of the molecular graph (described in [8])
and generates all possible unique SMILES strings for the graph. Once an invari-
ant partitioning is obtained and it is determined that there is more than one
node in any symmetry class, the script permutes the individual nodes within a
symmetry class and generates all possible node selections.

For the example above, since there are 4 symmetry classes, we will get 16 dif-
ferent final invariant partitionings. Once we obtain these different partitionings
we proceed to break ties in each of them and continue the remaining steps of the
algorithm. Not all of the 16 final canonical orderings obtained from these differ-
ent invariant partitionings generate different SMILES strings — only a subset of
these generate different unique SMILES strings. In our example only two of the
different final canonical orderings (Table 3 and Table 4) generate two different
unique SMILES strings.

A web interface to this program can be accessed at [6].

7 Examples from the NCI Database

Here are some counter examples found in the NCI Database [7]. A web interface
to these counter examples can be accessed at [6]. For each of the examples in
this section:

1. We verified that the two different unique SMILES strings obtained map onto
the same molecular graph via the on-line implementation [4] of the depict
algorithm [3] provided by Daylight software [4].

2. We also verified this using another on-line implementation [5] of the CAN-
GEN algorithm provided by the cactus service of the NCI chemical structure
database. Using this service, one can input a SMILES string and get the
unique SMILES for it.

NSC ID 4420. Here are two different Unique SMILES strings for N, N-Dially-
Imelamine with NSC id 4420:

— NC1=NC(=NC(=N1)N(CC=C)CC=C)N
— NC1=NC(=NC(=N1)N)N(CC=C)CC=C

See Figure 5 for the molecular graph. The unique key generated by UCK for this
compound is: 020A134950962096577666701295295E.

NSC ID 10392. Here are two different Unique SMILES strings for 2, 4-Mesity-
lenediamine with NSC ID 10392.
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Fig. 5. Structural formula of N, N-Diallylmelamine with NSC id 4420

Fig. 6. Structural formula of 2,4-Mesitylenediamine with NSC id 10392

— CC1=C(N)C(=C(N)C(=C1)C)C
— CC1=CC(=C(N)C(=CL(N))C)C

See Figure 6 for the molecular graph. The unique key generated by
UCK is F61473AE54FEC1737F7D15590650BBA2.

NSC ID 1889. Here are two different Unique SMILES strings for Pentamethyl-
benzene with NSC ID 1889.

— CC1=C(C)C(=C(C)C(=C1)C)C
— CC1=CC(=C(C)C(=C1(C))C)C
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Fig. 7. Structural formula of Pentamethylbenzene with NSC ID 1889

0

Fig. 8. Structural formula of 3-(3,5-dimethylphenoxy)-1,2-propanediol with NSC id
25239

See Figure 7 for the molecular graph. The unique UCK key generated by UCK:
1C5659F3ED5E10F02310455B56649849.

NSC ID 25239. Here are two different Unique SMILES strings for 3-(3,5-
dimethylphenoxy)-1,2-propanediol with NSC id 25239.

— CC1=CC(=CC(=C1)C)0CC(0)CO
~ CC1=CC(=CC(=C1)0CC(0)CO)C

See Figure 8 for the molecular graph. The unique key generated by
UCK: AFD17D1BB28847F4FFAADSC744A268AE.
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8 Summary and Conclusion

Data integration involving chemical compounds is greatly aided by attaching
unique IDs to chemical compounds. This is especially important when working
with distributed bioinformatics data.

It has been recognized for some time that common names for chemicals,
IUPAC names, CAS numbers, and general SMILES strings do not provide a
good infrastructure for data integration. In this paper, we show that Unique
SMILES strings [2] are also not a good foundation for data integration.

As the examples in the section above show, there are relatively simple chem-
ical compounds that do not have Unique SMILES IDs. We have computed ad-
ditional counter examples using our python script and these can be accessed
at [6].

The CANGEN component of the Unique SMILES algorithm starts with a
set of graph invariants and uses these to generate a canonical ordering of the
nodes. This is then used as a basis for a depth-first traversal of the graph to
generate the Unique SMILES string. Unfortunately, there is no set of invariants
known that can distinguish all possible graph asymmetries that arise with the
molecular graphs in common databases, such as the NCI database.

Although the Universal Chemical Key (UCK) algorithm [20] does not gener-
ate easy to interpret strings, it does generate unique keys for common databases
such as the NCI database.

This suggests a strategy of using UCK like strings as keys to integrate dis-
tributed bioinformatics data, supplemented by SMILES-like strings that are eas-
ier to interpret.
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Sample adjacency list used -
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CANON Algorithm (Extract from Reference [2])-

(1) Set the atomic vector to initial invariants.
Go to step 3.

(2) Set vector to product of primes corresponding to
neighbors’ ranks.

(3) Sort vector, maintaining stability over
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previous ranks.
(4) Rank atomic vector.
(56) If not invariant partitioning, go to step 2.
(6) On first pass, save partitioning as symmetry classes.
(7) If highest rank is smaller than number of nodes,

break ties, go to step 2.
(8)... else done
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Abstract. Researchers at the medical research institute Inserm U522, special-
ized in the liver, use high throughput technologies to diagnose liver disease
states. They seek to identify the set of dysregulated genes in different physiopa-
thological situations, along with the molecular regulation mechanisms involved
in the occurrence of these diseases, leading at mid-term to new diagnostic and
therapeutic tools. To be able to resolve such a complex question, one has to
consider both data generated on the genes by in-house transcriptome experi-
ments and annotations extracted from the many publicly available heterogene-
ous resources in Biomedicine. This paper presents GEDAW, a gene expression
data warehouse that has been developed to assist such discovery processes. The
distinctive feature of GEDAW is that it systematically integrates gene informa-
tion from a multitude of structured data sources. Data sources include: i) XML
records of GENBANK to annotate gene sequence features, integrated using a
schema mapping approach, ii) an inhouse relational database that stores detailed
experimental data on the liver genes and is a permanent source for providing
expression levels to the warehouse without unnecessary details on the experi-
ments, and iii) a semi-structured data source called BioMeKE-XML that pro-
vides for each gene its nomenclature, its functional annotation according to
Gene Ontology, and its medical annotation according to the UMLS. Because
GEDAW is a liver gene expression data warehouse, we have paid more atten-
tion to the medical knowledge to be able to correlate biology mechanisms and
medical knowledge with experimental data. The paper discusses the data
sources and the transformation process that is applied to resolve syntactic and
semantic conflicts between the source format and the GEDAW schema.

1 Introduction

In human health and life science, the rapid emergence of new biotechnological plat-
forms for high throughput investigations in genome, transcriptome and proteome,
prompts further advances in information management techniques to take in charge the

! Regulation of functional balances of normal and pathological liver.

B. Ludischer and L. Raschid (Eds.): DILS 2005, LNBI 3615, pp. 158 — 174, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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data and knowledge generated by these technologies. A tremendous amount of bio-
medical data is continuously deposited by scientists in public Web resources, and is in
return searched by other scientists to interpret results and generate and test hypothesis.

The management of these data is challenging, mainly because : (i) data items are
rich and heterogeneous: experiment details, raw data, scientific interpretations, im-
ages, literature, etc. ii) data items are distributed over many heterogeneous data
sources rendering a complex integration, iii) data are speculative and subject to errors
and omissions within these data sources, and bio-data quality is difficult to evaluate,
and iv) bio-medical knowledge is constantly morphing and in progress..

This paper reports on our experience in building GEDAW: an object-oriented Gene
Expression Data Warehouse to store and manage relevant information for analyzing
gene expression measurements [12]. GEDAW (Gene Expression DAta Warehouse)
aims on studying in silico liver pathologies by using expression levels of genes in dif-
ferent physiopathological situations enriched with annotations extracted from the va-
riety of the scientific sources and standards in life science and medicine.

A comprehensive interpretation of a single gene expression measurement requires
the consideration of the available knowledge about this gene, including its sequence
and promoters, tissue-specific expression, chromosomal location, molecular func-
tion(s) and classification, biological processes, mechanisms of its regulation, expres-
sion in other pathological situations or other species, clinical follow-ups and, increas-
ingly important, bibliographic information. Beyond the process of data clustering, this
knowledge provides representations that can help the scientist to address more com-
plex questions and suggest new hypothesis, leading in our context to a clearer identi-
fication of the molecular regulation mechanisms involved in the occurrence of liver
diseases and at mid-term to new diagnostic and therapeutic tools.

The required knowledge is spread world-wide and hosted on multiple heterogene-
ous resources. Manually navigating them to extract relevant information on a gene is
highly time-comsuming and error-prone. Therefore, we have physically integrated
into GEDAW a number of important sources in life science and medicine that are
structured or semi-structured. Our final objective is to propose a more systematic ap-
proach to integrate data on liver genes and to organize and analyze them within a tar-
get question - which is in our case specific to an organ and a pathological state. This
is a complex task, with the most challenging questions being: i) bio-knowledge repre-
sentation and modeling, ii) semantic integration issues and iii) integrated bio-data
analysis.

Building a scientific data warehouse to store microarray expression data is a well
studied problem. Conceptual models for gene expression are for instance discussed in
[18].The Genomic Unified Schema (GUS) integrates diverse life science data types
including microarray data, and a support of data cleansing, data mining and complex
queries analyses, thus making it quite generic [2]. The warehouse of [11] focuses on
storing as possible details on the experiments and the technologies used. In GEDAW
we only focus on the result of an experiment, i.e., expression measurements. No fur-
ther experimental details are stored within the warehouse. The Genome Information
Management System (GIMS) in which one of the authors has been participating, al-
lows the storage and management of microarray data on the scale of a genome, mak-
ing GIMS, in contrast to GEDAW, a genome-centric rather than gene-centric data
warehouse [9]. Finally, [10] describe the GeneMapper Warehouse for expression data
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integrating a number of genomic data sources. In contrast, GEDAW has a focus on
medical and “knowledge-rich” data sources.

1.1 Architecture for BioData Integration

GEDAW is a gene-centric data warehouse devoted to the study of liver pathologies
using a transcriptome approach. New results from medical science on the gene being
studied are extremely important to correlate gene expression patterns to liver pheno-
types. To connect to this information, we take advantage of the recent standards
developed in the medical informatics domain, i.e., the UMLS knowledge base [3].
GEDAW schema includes three major divisions: (i) gene and gene features along
with transcripts and gene products division, (ii) expression measurements of liver
genes division generated by in-house experiments and (iii), universal vocabularies and
ontologies division. As illustrated in Figure 1, to store the gene expression division a
local relational database has been built, as a repository of array data storing as many
details as possible on the methods used, the protocols and the results obtained. It is a
MIAME (Minimum Information About Microarray Experiment) compliant source [6].

E heterogeneous
Genew knowledge

: in life science

: and medicine

BIOMEKe unify and 5 Gene Nomenclature
structure i and universal concepts

in Biomedecine

relational DB XML XML i ‘
Microarray DDerived " Genbank ! More structured
Data gcumen Records knowledge
ource deployed
;’;’:irl:zs::& GO and Sequence annotations
o UMLS
conditions annotations

Data transformation

Experimental 5 Biomedical 5 Gene Sequence
Division H Ontologies H Features

Fig. 1. GEDAW System Architecture

The sources currently integrated are spread world wide and hosted on different rep-
resentation systems, each having its own schema. XML records from the GENBANK
[7] have been used to populate the gene sequence features division into GEDAW.

Explicit relationships associating genes and their expression profiles with diseases
are also extremely needed to understand the pathogenesis of the liver. For this
purpose, we use the system BioMeKE [8,17] to curate the ontology division of each
expressed gene with relative concepts in life science and medicine. The BioMEdical
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Knowledge Extraction module (BioMeKE) includes the Unified Medical Language
System® (UMLS) covering the whole biomedical domain, and the Gene Ontology™
(GO) that focuses on genomics. It includes additional terminologies, as that provided
by the HUman Genome Organisation (HUGO) Gene Nomenclature Committee
(HGNC) to resolve synonymy conflicts [19]. An XML document that annotates each
gene by exploring these biomedical terminologies is derived from BioMeKE. It is
then parsed and integrated into the warehouse.

1.2 Contribution

The aim of this paper is to share our experience on designing and implementing an in-
tegration process for biomedical data in the presence of syntactic and semantic con-
flicts. Other aspects such as biological data quality controlling, mining and refreshing
will be described elsewhere.

1.3 Outline

An overview on the biological background and the questions that motivate the design
of GEDAW are given in the next section. In section 3, the provenance, content and
the format of the structured resources used for integration in GEDAW are described.
In section 4, the integration process along with a brief schema design is presented.
The data mapping rules that have been defined for instances conciliation and clean-
sing during the integration process are also presented. The generic interface used for
queries composition and execution is tackled in section 5. Section 6 concludes and
presents the perspectives of our future works.

2 Biological Background and Motivations

Transcriptome is the study of the transcriptional response of the cell to different envi-
ronment conditions such as, growth factors, chemicals, foods treatments, genetic dis-
turbance, etc. The cell may response by an excessive expression or repression of cer-
tain genes in two different situations, for example normal vs. pathologic.

2.1 Transcriptome Experiments

In the liver framework, the objective of transcriptome experiments is to emphasize both
co-expressed genes and gene networks in a specific pathology within the hepatocyte.

To determine whether a single gene is expressed is a routine task for a biologist,
but this process becomes more complicated because the data generated are massive.
DNA-chips are indeed used and thousands of genes are deposited on a two dimen-
sional grid. The experiment generating thousands of data points requires an efficient
processing of the storage and the management of data. The key question is: which of
(and why?) the deposited genes are abnormally expressed in the injured tissues? Each
gene is represented by a spot, and its expression level is measured by means of the
spot intensity. This same gene does have other multiple features, recorded in World
Wide Web resources, and that must be considered to answer such questions.
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2.2 Biomedical Issues Underlying Data Integration

To study experimental data, the scientist expects an integrated environment that
captures his own experimental data enriched with information and expertise on the
expressed genes. Beyond the process of clustering expression measurements in gene
clusters, such an integrated environment should allow him to better focus on the
scientific interpretation derived from such a clustering that reveals such clusters.

Together with the collected gene data, the integrated environment should be able to
answer questions that need an integration of knowledge from the biological level to
the pathological level. Below we give three types of questions that scientists
frequently ask and that cannot be answered by simple SQL queries, but require the
application of data mining techniques.

1 The set of genes that have seen their expression modified in a given condition?

2 Within this set, is there a subset of genes that are co-regulated?

3 What are the elements that may explain a parallel (or opposite) modulation of
certain genes: membership to a functional class, homologies occurring in their
peptides sequences, or in their nucleic sequences particularly in the promoting
region?

Scientists may need to go thoroughly into sequences (question 3.) of the
co-expressed genes for discovering common motifs, because genes sharing similar
expression profiles must share transcription regulation mechanisms that include
common transcription factors. They also need to go thoroughly into disease informa-
tion and clinical follows-up in order to find out correlations between particular
mutants' phenotypes and expression patterns. The integrated environment should also
be able to answer questions such as:

1 Is there any correlation between gene expression levels and a certain pathologi-
cal phenotype?

2 What is the set of genes for which a dysregulation characterizes a pathological
sample by indicating a gravity level, a prognostic factor, a sensitivity level or on
a contrary a resistance to a certain treatment ?

Respective genes annotations that comes from the UMLS knowledge-base and the
Gene Ontology, along with gene expression profiles, are used to proceed such
questions. Relative conceptual terms in both ontologies are extracted from the unified
document-source, derived by BioMeKE.

2.3 GEDAW: An Object-Oriented Environment for Integrating Liver Genes
Data

Considering the different integration issues previously described, an object oriented
data warehouse called GEDAW (Gene Expression DAta Warehouse) has been
designed for integrating and managing : i) data being produced on the expressed
genes in public databanks and literature, ii) normalized experimental data produced
by Microarray experiments and iii) complementary biological, genomic, and medical
data.
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3 Data Resources

Searching across heterogeneous distributed biological resources is increasingly
difficult and time-consuming for biomedical researchers. Bioinformatics is coming to
the forefront to address the problem of drawing effectively and efficiently information
from a growing collection of multiple and distributed databanks. Several resources
can be used to instantiate the liver warehouse GEDAW. We describe here the ones
that have been selected for having the most appropriate properties, enabling a system-
atic extraction of gene attributes: 1) experiment resources, 2) genomic databanks and
3) ontological resources. We demonstrate for each selected resource, its provenance,
content, structure and which gene attributes are being extracted.

3.1 Experimental Resources

To not burden the warehouse, a MIAME compliant relational database has been built
independently (Figure2), in order to store and manage experimental microarray data
[12]. This database stores as much as possible details on the microarray experiments,
including the techniques used, protocols, samples and results obtained (ratios and
images).

We will not go in further details concerning this database, except saying that it acts
as a permanent source of expression levels delivered by in-house transcriptome ex-
periments on injured liver tissues, and provides facilities to select and export data.
Part of those data is exported to the data warehouse.

In-house experiment on the liver:
maximum details on the protocols
used, the images obtained,
normalisation,...

MGED
COMPLIANT select and
DATABASE export Ontology
(with regards to Transcriptome annotation
the imposed Class
description

Proteins

Fig. 2. An external source to manage liver transcriptome experiments

3.2 Genomic Databanks Resources

In order to perform consistent analyses on the expressed genes, the integration of the
precise pre-existing annotations of their sequences is necessary. Sequence data to
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consider include: 1) the DNA sequence and sequence components : known promoters,
known transcription binding sites, introns, exons, known regulators, 2) the mRNA
sequence, sequence components and alternative transcripts and 3) functional proteins.
Being conscious that an exhaustive gene annotation is available for a limited number of
genes, it is however helpful to infer new knowledge on yet unknown co-expressed
genes.

Data describing genomic sequences are available in several public databanks via
Internet: banks for nucleic acids (DNA, RNA), banks for protein (polypeptides, pro-
teins) such as SWISS-PROT , generalist or specialized databanks such as GENBANK,
EMBL (European Molecular Biology Laboratory), and DDBJ (DNA DataBank of
Japan). Each databank record describes a sequence with its several annotations.

As an example, the description of the Homosapiens Hemochromatosis gene HFE,
which mutation causes a genetic liver disease having the same name is given in
GENBANK. The description of this gene is available in both HTML? and XML’
formats. An XML format that focused on the sequence of HFE gene is also available®.

Each record is also identified by a unique accession number and may be retrieved
by key-words. Annotations include the description of the sequence: its function, its
size, the species for which it has been determined, the related scientific publications
(authors and references) and the description of the regions constituting the sequence
(start codon, stop codon, introns, exons, ORF, etc.). GENBANK (with more than 20
million records of different sequences) [7] is one of the first banks that propose XML
format for its records with a well-defined DTD specifying the structure and the
domain terminology for the records of genes and submitted sequences.

3.3 Ontological Resources

Relating genotype data on genes with their phenotype during the integration process
is essential to be able to associate gene expression levels to a pathological phenotype.

Tremendous web resources provide such information for a given gene. But their
heterogeneity is a major obstacle for a consistent semantic integration. They are numer-
ous and continually evolving, the number of biomolecular entities is very large, the
names of biological entities are associated with synonymy: a gene can have multiple
aliases (synonyms) in addition to its official symbol, and genes that are functionally
different across species may have the same name (ambiguity) [14,20], different data-
bases organize data according to different schemas and use different vocabularies.
Shared ontologies are used to conciliate and to attain as much as possible data conflicts.
Various standards in life science have been developed to provide domain knowledge to
be used for semantically driven integration of information from different sources.

3.3.1 Gene Ontology

Gene Ontology™ (GO) is an ontology for molecular biology and genomics [13]. The
three hierarchies of GO are molecular function (F), biological process (P) and cellular
component (C). GO terms are used as attributes of gene products to provide informa-
tion about the molecular functions, the biological processes, and the cellular compo-

2 www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&val=1890179
3 www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&list_uids=1890179&dopt=xml
* www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&list_uids=1890179&dopt=gbx
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nents related to the gene product. In our context of high throughput transcriptome
experiments, we use GO to annotate the genes expressed in different situations in the
liver. Furthermore, GO is broadly used by public databanks to annotate genes. There-
fore, it has become a standard and plays an important role in biomedical research, by
making possible to draw together information from multiple resources. To illustrate
with an example, to the ceruloplasmin concept (a gene involved in iron transport, having
a central role in iron metabolism and is secreted in plasma by hepatocytes) is associated
the set of concepts in each hierarchy of GO ontology (Table 1).

Table 1. Ceruloplasmin annotations in Gene Ontology

Molecular function Biological process Cellular Component

Multicopper Iron homeostasis Extracellular space
Feoxidase iron
Transport mediator

3.3.2 UMLS Knowledge Base

The UMLS is developed by the US National Library of Medicine. It comprises two
major inter-related components: the Metathesaurus®, a large repository of concepts
(around 900,000 concepts), and the Semantic Network, a limited network of 135 Se-
mantic Types [3]. The Metathesaurus is built by merging existing vocabularies, in-
cluding Medical Subject Headings (MeSH), which is used to index biomedical litera-
ture in MEDLINE, and GO. In the Metathesaurus, synonymous terms are clustered
under a same concept, each having a Concept Unique Identifier (CUI). To the ceru-
loplasmin concept is associated the CUI:C0007841 and a set of synonymous terms
(Table 2a) (2003AC release of the UMLS).

Although the UMLS was not specifically developed for bioinformaticists, it in-
cludes also terminologies such as the NCBI taxonomy, OMIM terminology and GO
that are of great interest for biologists. It also includes the MeSH, which is used to in-
dex MEDLINE abstracts. Therefore, the UMLS is a means to integrate resources
since it integrates (repetition) terminologies that are used to represent data in various
resources. The second motivation is that the UMLS contains 12 million relations
among the Metathesaurus concepts. The source vocabularies provide hierarchical re-
lations. RO (Other Relation) relations associate concepts from different kinds, such as
diseases and tissues, or diseases and kinds of cells. In addition, co-occurrences in
MEDLINE are also represented in the UMLS [3]. The last motivation is that the
UMLS includes an upper level ontology of the biomedical domain (the UMLS Se-
mantic Network) made of 135 Semantic Types. Each Metathesaurus concept is as-
signed to one or more Semantic Types. Three major relations are then concerned and
extracted for each concept from UMLS:

e Parent concept (Table 2b): the parents of ceruloplasmin concept illustrate hier-
archical relations in UMLS.

e Related concepts in diseases (Table 2c), tissues or kind of cells.

e Co-occurrences in Medline concepts (Table 2d), each with an additional nu-
meric frequency.
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Table 2. Ceruloplasmin annotations extracted from UMLS

Co-occurred
Synonymous Parents concepts Related concepts Concepts in
MEDLINE
) ) Copper Copper
Ceruloplasmin ) Alpha-Globulins Menkes Kinky Hair Syndrome ron
alpha(2)-Ceruloplasmin Acute-Phase Proteing copper oxidase Antioxidants
Ceruloplasm!n Ferroxidase Carrier Proteins Serum Ceruloplasmin Test Hepatolenticular
Ceruloplasmin Oxidase Alpha-Globulins Ceruloplasmin Serum Degeneration
CP - Ceruloplasmin Metalloproteins Decreased Ferritin
Fe(ll):oxygen oxidoreductase| Oxidoreductases Ceruloplasmin measurement | Brain
ferroxidase <1> Enzyme Liver
Superoxide
Dismutase
(@ (b) © d

3.3.3 Other Resources: Terminologies

At present, an additional terminology is mainly used to manage heterogeneity in nam-
ing genes, gene products or diseases, as well as in identifying items in different data-
banks. Given a term or a gene symbol, lexical knowledge is needed to deal with syno-
nyms and find the corresponding concept. Available resources in the biomedical
domain include the Genew database developed by the Human Gene Nomenclature
Committee to provide approved names and symbols for genes, as well as previous
gene names and symbols [19].

3.3.4 Mapping Ontologies into GEDAW

The use of ontologies and terminologies terms as attributes values for genes has been
made possible by the joint application project BioMeKE [17]. A local consistent sup-
port into BioMeKE system of the terminologies described above enables the extrac-
tion of respective nomenclature and conceptual terms in biology and medicine, given
a gene name, a symbol, or any gene relative identifier in biomedical databanks. To
navigate through these resources, a set of JAVA functions have been developed to:

¢ Find all the synonyms of a term and all the identifiers of a gene or gene product
in Genew and the UMLS Metathesaurus,

e Provide the cross-references between a gene and a protein (e.g. SWISS-PROT
ID) from Genew.

e Represent the different paths to reach the information about a gene or a gene
product via all the available cross-references.

e Search for information about a gene or a gene product, i.e. the set of concepts
related to this gene in GO (molecular function, biological process and cellular
component) and the set of concepts related to the gene in UMLS including
chemicals and drugs, anatomy, and disorders.

These annotations are then considered by the expert, filtered and stored within the
warehouse for further classifications using gene expression profiles. Because the aim
of this paper is not to describe BioMeKE but rather to introduce its general scope and
outputs, we will not go in further details. We suggest the reader to get further details
in another paper devoted to this application [8,17].
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<biomeke_annotation>
<biomeke_annotation_nomenclature>
A<seg-id_locuslink>1356</seg-id_locuslink>
<seq-id_hgnc>2295</seq-id_hgnc>
<seqg-name_hgnc>ceruloplasmin (ferroxidase)</seq-name_hgnc>
<seg-symbol_hgnc>CP</seg-symbol_hgnc> <seg-aliases_hgnc></seg-aliases_hgnc>
<seg-id_omim>117700</seq-id_omim>
<seq-id_refseq>NM_000096</seq-id_refseq>
<seq-id_swissprot>P00450</seq-id_swissprot>
<seq-id_pubmed></seg-id_pubmed>
</biomeke_annotation_nomenclature> GO
<biomeke_GO_annotation_list> annotations
<biomeke_GO_annotation-type value="molecular function">
<biomeke_GO_annotation>
<GO-accession>G0:0004322</GO-accession>
<GO-name>ferroxidase activity</GO-name>
<GO-evidence>TAS</GO-evidence> . . . etc
</biomeke_GO_annotation>
<biomeke_UMLS_annotation_list>
<biomeke_UMLS_annotation-name>
<UMLS_name_search> Ceruloplasmin </UMLS_name_search>
<UMLS_CUI_search>C0007841 </UMLS_CUI_search>
</biomeke_UMLS_annotation-name>
<biomeke_UMLS_annotation-semantic-type value = " Amino Acid, Peptide, or Protein">
<biomeke_UMLS_annotation-relation value = "Parent">
<biomeke_UMLS_annotation>
<UMLS-name>acute phase protein 2</UMLS-name>
</biomeke_UMLS_annotation> ...etc
<biomeke_UMLS_annotation-relation value = "other relations">
<biomeke_UMLS_annotation>
<UMLS-name>Metalloproteins</UMLS-name>
</biomeke_UMLS_annotation> ...etc
<biomeke_UMLS_annotation-relation value = "Co-occurences">
<biomeke_UMLS_annotation>
<UMLS-name>ATP phosphohydrolase</UMLS-name>
<UMLS-freq>4</UMLS-freq>
... etc

Gene
nomenclature

UMLS
annotations

Fig. 3. BioMeKE-xml document to annotate the ceruloplasmin Gene

To annotate each expressed gene, BioMeKE delivers an XML document (Figure 3)
to be parsed, transformed and stored into GEDAW within the Ontology_annotation
Class. This document-source standing as a structured data source derived by
BioMeKE.

4 Bio-data Integration

Designing a single schema that integrates syntactically and semantically the whole
heterogeneous life science data sources is still a challenging question. Integrating the
source schemas is presently the most commonly used approach in literature [15]. By
restricting ourselves to structured or semi-structured data sources, we have been able
to use a schema mapping approach with the GAV paradigm [16]. In our context,
schema mapping is the process of transforming data conforming to a source schema to
the corresponding warehouse schema by the definition of a set of mapping rules. The
data sources include : i) GENBANK for the genomic features of the genes recorded in
XML format, ii) conceptual annotations derived from the biomedical ontologies and
terminologies using BioMeKE outputs as XML documents, iii) and gene expression
measurements selected from the in-house relational database.
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By using a mapping approach from one source at a time, we have minimized as
much as possible the problem of identification of equivalent attributes between
sources, whereas the problem of duplicate detection is still important. Identifying
identical objects in the biomedical domain is a complex problem, since in general the
meaning of “identity” cannot be defined properly. In most applications, even the iden-
tical sequences of two genes in different organisms are not treated as a single object.
In GENBANK, each sequence is treated as an entity in its own, since it was derived
using a particular technique, has particular annotation, and could have individual er-
rors. For example, there are more than 10 records for the same DNA segment of the
HFE gene. Thus, classical duplicate detection methods [22] do not suffice. Duplicate
detection and removal is usually performed either using a simple similarity threshold
approach, as in the case of GEDAW, or based on manual intervention for each single
object, such as in RefSeq. Data submission to public biological databanks is often a
rather unformalized process that usually does not include name standardization or
data quality controls. Erroneous data may be easily entered and cross-referenced.
Even if a tool like LocusLink’proposes a cluster of records, across different biological
databanks, as being semantically related, biologists still must validate the correctness
of the clustering and resolve value differences among the records.

isa Non_transcribed_region

isa isa
Transcribed_region Promotor Terminator
s a

!
“
-tRNA . . . .
isT mRNA }0—{ Expression_levels ‘
isa

. Ontology_annotation
i isa
isa isa
UTR5 UTR3 ‘ GO_annotation ‘ UMLS_annotation ‘

Polypeptide

Fig. 4. GEDAW UML Conceptual schema

In GEDAW, a unique schema (Figure 4) has been defined to describe different as-
pects of a gene, to which has been added an ontological annotation class associated to
each gene transcript. The stored ontological annotations represent the more special-
ized concepts associated to the genes. The ontology annotation class used for storing
the terms from both medical and biological terminologies includes attributes like: on-
tology and annotation type along with category, value and description attributes of a
term. These attributes are extracted by parsing the XML files delivered by BioMeKE.
At the schema-level, the problem of format heterogeneity makes necessary to trans

> www.ncbi.nlm.nih.gov/LocusLink
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form data, so that they conform to the data model used by our warehousing system.
Information sources consist of sets of XML files, while the GEDAW target schema is
object-oriented. This translation problem is inherent in almost all data integration ap-
proaches, but becomes much more complex in the biological domain because the po-
tentially different (and not formalized yet) biological interpretations of schema ele-
ments and the fact that, together with the current state of knowledge, schemas and
interpretations tend to evolve quickly and independently in the different sources.

In order to define an appropriate data aggregation of all the available information
items, data conflicts have to be resolved using rules for mapping the source records
and conciliating different values recorded for a same concept. Mapping rules are de-
fined to allow the data exchange from the public databanks into GEDAW (Figure 5).
Apart from experimental data, public information items are automatically extracted by
scripts using the DTD (Document Type Definition) of the data source translated into
the GEDAW conceptual data model.

GenBank DTD

<IELEMENT Bioseq (
Bioseaq_id ,
Bioseq_descr? ,
Bioseq_inst,
Bioseq_annot? )>

<!ELEMENT Bioseq_id ( Bioseq_id__E+ )>
<IELEMENT Bioseq_descr ( Seadescr )>
<!ELEMENT Bioseq inst ( Seq inst )>
<!IELEMENT Biosea_annot ( Sea annot” )>
<IELEMENT Seadescr ( Seqdesc+ )>
<IELEMENT Seadesc (

Seqdesc_mottype |

ééqdescﬁtitle |

Seadesc molinfo)>
<IELEMENT Seqdesc_title (#PCDATA )>
<IELEMENT MolInfo (

Molinfo_biomol? ,

Mollnfo_tech? ,

Mollnfo_techexp? ,

MolInfo_completeness? )>
<IELEMENT Mollnfo_biomol ( %INTEGER; )>
<IATTLIST Mollio_biomol value (

unknown |

R1

R2

Region [<—&2—{ Non_transcii

Promotor

bed_region ‘

isa

Terminator
Experience
v

mRN

A P—{ Expression_levels ‘

y

: Ontology_annotation

isa isa
genomic | isa isa
pre-RNA | -
MRNA | GO_annotation UMLS_annotation
TRNA | UTRS UTR3 | | | |
tRNA |
snRNA |
scRNA | R
peptide | -
other-genetic | Polypeptide

genomicmRNA |
other) #IMPLIED >

Fig. 5. Example of mapping rules between GENBANK DTD and GEDAW schema

Three categories of mapping rules are proposed: 1) structural mapping rules, 2)
semantic mapping rules and 3) cognitive mapping rules according to the different
knowledge levels and perspectives for biological interpretation.

The structural mapping rules are defined at the schema level according to the
GEDAW model by identifying the existing correspondences with relevant DTD ele-
ments (e.g., the Seqdesc_title element in GENBANK DTD is used to extract the name
"name" of the gene and the Mollnfo_biomol value its type of molecule with respec-
tively structural mapping rules R1 and R2 in Figure 5). Then, the records of interest
are selectively structured and data are extracted.
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Semantic and cognitive mapping rules are used for data unification at the instance
level: several rules may use available tools for determining analogies between ho-
mologous data (such as sequence alignment, for example): the result of the BLAST
algorithm (implemented in a set of similarity search programs for Basic Local Align-
ment Search Tool) allows considering that two sequences match. The nomenclature
section provided by BioMeKE (Figure 3) is also considerably used to conciliate du-
plicate records. More semantic mapping rules have been built using this information
during the process of integration. For example, the Locus-ID is used to cluster submit-
ted sequences associated to a same gene (cross-referenced in LocusLink) and the offi-
cial gene name along with its aliases to relate different gene appearance with different
names, in literature for example.

Let us consider three distinct selectively structured records we may obtain from
GENBANK databank by querying the DNA sequence for gene HFE. A first record
identified by the accession number AF204869 describes a partial sequence (size =
3043) of the HFE gene with no annotation but one relevant information item about the
position of the promoter region. A second record identified by the accession number
AF184234 describes a partial sequence (size = 772) of the protein precursor of HFE
gene with a detailed but incomplete annotation. The third record identified by the ac-
cession number Z92910 describes the complete sequence (size = 12146) of the HFE
gene with a complete annotation. In this example, BLAST(sequence(Z92910), se-
quence(AF184234))=100% indicates the sequence in both records are perfectly ho-
mologous and can be merged. Cognitive mapping rules may be used in this example
for conciliating data such as:

R3 : Descriptive Inclusion: record(Z92910) contains record(AF184234)
R4 : Position Offset: position(Z92910.exon)=6364+position(AF184234.exon)

In our context a liver cDNA microarray corresponding to 2479 cDNA clones spot-
ted onto glass slides has been designed. The data unification process described above
has lead to identify 612 distinct genes on the 2479 deposited clones. A complete inte-
gration of 10 hybridization experiments took around one day runtime, with around 11
Mbytes charged database size.

5 Integration Results Construction and User Interface

Now to recapitulate, the integration process of transcriptomic data into GEDAW is
operated in four steps. During the first step, to the probes (or clones) used by in-house
experiments, is associated a set of gene names, in terms of accession numbers of simi-
lar sequences in GENBANK along with textual descriptions. The second step is in
charge of selecting the set of experiments for which the researcher wishes to integrate
and analyse the experiments results, and then of loading expression levels measured
for these genes. For each gene having its expression levels in different physiopa-
thological situations already stored in GEDAW, the full annotation of the sequence
associated to this gene is loaded from GENBANK by XML transformation to Objects.
BioMeKE is launched in Step 4 to bring for each integrated gene its nomenclature and
its ontological annotations in life science from Gene Ontology and in medicine from
UMLS. In step 5, the results are delivered to the expert, for a filtering phase using
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either predefined mapping rules, output nomenclature, or simply his expertise, to
eliminate duplicate records of genes.

When the user poses a query, the whole integration results for each gene are
brought in. Further refinements on these data can be operated, by selecting for exam-
ple genes having expression levels between a minimum value and a maximum value,
those belonging to a given biological process or co-occurring in Medline with a given
concept, or having a known motif in their mRNA sequences and co-located on a same
chromosome. It could be also a conjunction of these criteria. In Figure 6, we show an
example of a query composed in the generic java-based interface we have developed
for GEDAW. Resulting sets are presently browsed using either FastObjects interface,
or delivered as Textfiles to the expert for further analyses.

=
&
Choose the parameters for the request
J

Experimental conditions Exfitession fvesiod
Labsl P
= [Vl Iran averload 1 week |~ r
g
[ Iron overload 2 months
[ ]
= "
g UMLS Co-Occurences Semantic Types | Disease or syndrome - UMLS Co-Occurences Terms -
@l [Cataract
IFatty liver
) GO Biological Process | Cell cycle - | Hemaochromatosis

Hepatitis, chronic
Henatitis, viral, human
H\ infections

RUN

Fig. 6. Example of Query Composition

6 Conclusion

The GEDAW system presented in this paper allows massive importation of biological
and medical data into an object-oriented data warehouse that supports transcriptome
analyses specific to the human liver. This paper focused on the relevant genomic, bio-
logical and medical resources that have been used to build GEDAW. The integration
process of the full sequence annotations of the genes expressed is described. It is per-
formed by parsing and cleaning the corresponding XML description in GENBANK,
transforming the recorded genomic items to persistent objects and storing them in the
warehouse. This process is almost systematic because another aspect related to the
conciliation of duplicate records has been added. Elements of formalization of exper-
tise rules for mapping such data were given. This ongoing work is still a difficult
problem in information integration in life science and has not yet satisfied answers by
classical solutions proposed in existing mediation systems.

In order to lead strong analysis on expressed genes and correlate expression pro-
files to liver biology and pathological phenotype, a second way of annotation has
been added to the integration process. We chose to integrate Gene Ontology, due to
its available biological annotations in the most used bio-computer resources, mainly
Swissprot, GENBANK, Ensembl, TTEMBL and LocusLink databanks. It is also refer-
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enced in other relevant ontologies, like MGED [21]. More important is our considera-
tion during integration of the medical annotations of the genes from UMLS, a well
considered knowledge base in Medical Informatics [3,4,5]. These ontological annota-
tions have been delivered by BioMeKE within the semi-structured document source
BioMeKE-xml. Also, because a gene may have different appearances with different
names in several bio-data banks and literature the approved nomenclature of the gene
and its synonyms have been collected in BioMeKE-xml. This information is also a
pre-requisite to resolve the problem of duplicate records.

An exhaustive integrated tool that facilitates access to diverse data on the ex-
pressed genes is then provided to the researcher. Intensive querying of the integrated
database using OQL queries has been conducted with multiple criteria on genes at-
tributes. Current investigations are focusing on the application of advanced data min-
ing techniques for a combined analysis of expression levels on genes with enriched
annotations, and functional similarities are likely to reveal authentic clusters of genes.

With regards to the limits of our warehousing approach, it is relevant as long as
data integration from the heterogeneous sources in Biomedicine and their refreshment
in the warehouse stay feasible automatically and with a reasonable performance. One
argument in favor of actually storing data in GEDAW instead of dynamically linking
to the corresponding sources concerns reproducibility purposes, i.e., being able to
analyze several gene expression data in reference to the same domain knowledge at
different times. BioMeKE system provides domain knowledge useful for acquiring in-
formation from diverse resources. It is intended to be an ontology-based mediation
system that continuously supplies the gene expression warehouse with a homogene-
ous access to multiple data sources in Biomedicine. A filtering task is nevertheless
performed by the expert on the delivered annotations before their storage in the ware-
house by using multiple criteria, like the frequency information of a concept co-
occurrences in Medline.

The standard ontologies such as GO and UMLS continue to evolve. They are
physically supported by BioMeKE system rather than accessed via the web, making
possible their refinement to expert knowledge in specific sub-domains like the liver or
the iron metabolism. An interesting point to quote is the acquisition of news concepts
and relationships from the analyses operated on the transcriptome data. Expressive
and formal representation of this new biomedical knowledge will then be gradually
added to the domain, allowing the expansion of queries on transcriptomic data.
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Abstract. We present INDUS (Intelligent Data Understanding Sys-
tem), a federated, query-centric system for knowledge acquisition from
autonomous, distributed, semantically heterogeneous data sources that
can be viewed (conceptually) as tables. INDUS employs ontologies and
inter-ontology mappings, to enable a user or an application to view a col-
lection of such data sources (regardless of location, internal structure and
query interfaces) as though they were a collection of tables structured
according to an ontology supplied by the user. This allows INDUS to an-
swer user queries against distributed, semantically heterogeneous data
sources without the need for a centralized data warehouse or a common
global ontology. We used INDUS framework to design algorithms for
learning probabilistic models (e.g., Naive Bayes models) for predicting
GO functional classification of a protein based on training sequences that
are distributed among SWISSPROT and MIPS data sources. Mappings
such as EC2GO and MIPS2GO were used to resolve the semantic differ-
ences between these data sources when answering queries posed by the
learning algorithms. Our results show that INDUS can be successfully
used for integrative analysis of data from multiple sources needed for
collaborative discovery in computational biology.

1 Introduction

Ongoing transformation of biology from a data-poor science into an increasingly
data-rich science has resulted in a large number of autonomous data sources
(e.g., protein sequences, structures, expression patterns, interactions). This has
led to unprecedented, and as yet, largely unrealized opportunities for large-scale
collaborative discovery in a number of areas: characterization of macromolecular
sequence-structure-function relationships, discovery of complex genetic regula-
tory networks, among others.

B. Ludéscher and L. Raschid (Eds.): DILS 2005, LNBI 3615, pp. 175-190, 2005.
(© Springer-Verlag Berlin Heidelberg 2005
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Biological data sources developed by autonomous individuals or groups dif-
fer with respect to their ontological commitments. These include assumptions
concerning the objects that exist in the world, the properties or attributes of
the objects, relationships between objects, the possible values of attributes, and
their intended meaning, as well as the granularity or level of abstraction at which
objects and their properties are described [17]. Therefore, semantic di erences
among autonomous data sources are simply unavoidable. Effective use of mul-
tiple sources of data in a given context requires reconciliation of such semantic
differences. This involves solving a data integration problem. Development of
sound approaches to solving the information integration problem is a prerequi-
site for realizing the goals of the Semantic Web as articulated by Berners-Lee et
al. [5]: seamless and flexible access, integration and manipulation of semantically
heterogeneous, networked data, knowledge and services.

Driven by the semantic Web vision, there have been significant community-
wide efforts aimed at the construction of ontologies in life sciences. Examples
include the Gene Ontology (www.geneontology.org) [2] in biology and Unified
Medical Language System (www.nlm.nih.gov/research/umls) in heath informat-
ics. Data sources that are created for use in one context often find use in other
contexts or applications (e.g., in collaborative scientific discovery applications in-
volving data-driven construction of classifiers from semantically disparate data
sources [9]). Furthermore, users often need to analyze data in different contexts
from different perspectives. Therefore, there is no single privileged ontology that

a

Query Interface Query Answering Engine
Query

i1 = -I- ==
‘;@:w &w @

Query Formulation

o

Extended Data Source Ontologles
%/ | Data Source
& Mappings

Fig. 1. INDUS: a system for information integration and knowledge acquisition from
semantically heterogeneous distributed data. Queries posed by the user are answered
by a query answering engine, which uses mappings between the user ontology and the
data source ontologies to resolve semantic differences. A user-friendly editor is used to
specify ontologies and mappings between ontologies
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can serve all users, or for that matter, even a single user, in every context. Effec-
tive use of multiple sources of data in a given context requires flexible approaches
to reconciling such semantic differences from the user’s point of view.

Against this background, we have investigated a federated, query-centric ap-
proach to information integration and knowledge acquisition from distributed,
semantically heterogeneous data sources, from a user’s perspective. The choice
of the federated, query-centric approach was influenced by the large number
and diversity of data repositories involved, together with the user-specific na-
ture of the integration tasks that need to be performed. Our work has led to
INDUS, a system for information integration and knowledge acquisition (see
Figure 1). INDUS relies on the observation that both the information integra-
tion and knowledge acquisition tasks can be reduced to the task of answering
queries from distributed, semantically heterogeneous data sources. We associate
ontologies with data sources and users and show how to define mappings between
them. We exploit the ontologies and the mappings to develop sound methods
for flexibly querying (from a user perspective) multiple semantically heteroge-
neous distributed data sources in a setting where each data source can be viewed
(conceptually) as a single table [10,9].

The rest of the paper is organized as follows: Section 2 introduces the problem
we are addressing more precisely through an example. Section 3 describes the
design and the architecture of INDUS. Section 4 demonstrates how INDUS can
be used for knowledge acquisition tasks using as an example a simple machine
learning algorithm (Naive Bayes). We end with conclusions, discussion of related
work and directions for future work in Section 5.

2 Illustrative Example

The problem that we are wish to address is best illustrated by an example.
Consider several biological laboratories that independently collect information
about Protein Sequences in connection to their Structure and Function. Suppose
that the data D; collected by a first laboratory contains human proteins and it is
described by the attributes Protein 1D, Protein Name, Protein Sequence, Prosite
Motifs and EC Number (stored as in Table 1). The data D5 collected by a second
laboratory contains yeast proteins and it is described by the attributes Accession
Number AN, Gene, AA Sequence, Length, Pfam Domains, and MIPS Funcat
(stored as in Table 2). A data set D3 collected by a third laboratory contains
both human and yeast proteins and it is described by the attributes Entry ID,
Entry Name, Organism, CATH Domains and CATH Classes corresponding to
the domains (stored as in Table 3).

Consider a biologist (user) U who wants to assemble a data set based on
the data sources of interest D1, Do, D3, from his or her own perspective, where
the representative attributes are 1D, Source, AA composition (a.k.a. amino acid
distribution, i.e. number of occurrences of each amino acid in the amino acid
sequence corresponding to the protein), Structural Classes and GO Function.
This requires the ability to manipulate the data sources of interest from the
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Table 1. Data D; containing human proteins collected by a laboratory Lab:

lProtem ID[ Protein Name [Protem Sequence[ Prosite Motifs [ EC Number ‘
Beta-adrenergic |[MADLEAVLAD RGS 2.7.1.126
P35626 | receptor kinase 2 |[VSYLMAMEKS|PROT_KIN_DO M| Beta-adrenergic
e PH_DOMAIN | receptor kinase
Aspartyl/asparaginyl MAQRKNAKSS TPR 1.14.11.16

Q12797 | beta-hydroxylase | GNSSSSGSGS | TPR_REGION |Peptide-aspartate
e TRP beta-dioxygenase
MRLWSWVLHL 3.4.24.79

Q13219 Pappalysin-1 GLLSAALGCG SUSHI Pappalysin-1

Table 2. Data D2 containing yeast proteins collected by a laboratory Labs

l AN ‘ Gene‘ AA Sequence ‘Length‘ Pfam Domaz’ns‘ MIPS Funcat ‘
P32589| SSE1 |[STPFGLDLGN| 692 HSPT0 16.01 protein binding
NNSVLAVARN

P07278BCY1| VSSLPKESQA | 415 [cNM P _binding| 16.19.01 cyclic nucleotide
ELQLFQNEIN RIla binding (cAMP, cGMP, etc.)

Table 3. Data D3 containing human and yeast proteins collected by a laboratory Labs

lEntry ID‘ Entry Name ‘Orgam’sm‘ CATH Domains‘ CATH Classes ‘

P35626 | ARK2_HUMAN | Human lomwB0 Mainly beta
lomwGO0 Few Sec. Struct.
Q12797 | ASPH_HUMAN | Human not known not known
Q13219 |PAPPA_HUM AN| Human 1jmaB1 Mainly beta
1jmaB2 Mainly beta
1dkgA1l Alpha beta
P32589 | HST8.YEAST Yeast 1dkgA2 Mainly alpha
1dkgB1 Alpha beta
P07278 | KAPRYFEAST Yeast lex4Al Alpha beta
1dkgA?2 Alpha beta

user’s perspective. However, the three data sources differ in terms of semantics
from the user’s perspective. In order to cope with this heterogeneity of semantics,
the user must observe that the attributes Protein ID, Accession Number and
Entry ID, in the three data sources of interest, are similar to the user attribute
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ID; the attribute Protein Sequence in the first data source and the attribute AA
Sequence in the second data source are also similar and they can be used to infer
the user attribute AA Composition (by counting the number of occurrences of
each amino acid in the corresponding AA sequence); similarly, the attributes EC
Number and MIPS Funcat are similar to the user attribute GO Function; finally,
the attributes Organism and CATH Classes in the third data source are similar
to the attributes Source and Structural Classes in the user view.

Therefore, to assemble the user data, one would need to project the data
in Dy (with respect to the attributes Protein ID, Protein Sequence and EC
Number) and the data in Dy (with respect to AN, AA Sequence, and MIPS
Funcat) and take the union Djy of the resulting sets; then the third data set
D3 needs to be projected with respect to the attributes Entry Name, Organism,
and CATH Classes. The cross-product with respect to the common attribute
ID, between D15 and Dgs represents the data that the user is interested in.
Notice that all these operations can be written as a query whose result is Dy =
(project(D;) U project(D2)) x project(D3). However, before the query can be
executed, the semantic differences between values of similar attributes must be
resolved.

To establish the correspondence between values that two similar attributes
can take, we need to associate types with attributes and map the domain of the
type of an attribute to the domain of the type of the corresponding attribute
(e.g., AA Sequence to AA Composition or EC Number to GO Function). We
assume that the type of an attribute can be a standard type such as a collec-
tion of values (e.g., amino acids, Prosite motifs, etc.), or it can be given by a
simple hierarchical ontology (e.g., species taxonomy). Figure 2 shows examples
of (simplified) attribute value hierarchies for the attributes EC Numbers, MIPS
Funcat, and GO Function in the data sources Dq, Dy and the user perspective.

Examples of semantic correspondences in this case could be: EC 2.7.1.126
in Dy is equivalent to GO 0047696 in Dy, MIPS 16.01 in D5 is equivalent to
GO 0005515 in Dy and MIPS 16.19.01 is equivalent to GO 0016208 in Dy .
On the other hand, EC 2.7.1.126 in D; is lower than (i.e., hierarchically below)
GO 0004672 in Dy, or for that matter EC 2.7.1.126 is higher than GO0004672.
Similarly, MIPS 16.19.01 in D5 is lower than GO 0017076 in Dy, and so on.
Therefore the integrated user data Dy could look like in Table 4, where the
semantic correspondences have been applied.

In general, the user may want to answer queries such as the number of human
proteins that are involved in kinase activity from the integrated data or even
to infer models based on the data available in order to use them to predict
useful information about new unlabeled data (e.g., protein function for unlabeled
proteins). INDUS, the system that we have developed in our lab, can be used to
answer such queries against distributed, semantically heterogeneous data sources
without the need for a centralized data warehouse or a common global ontology.
We will describe INDUS in more detail in the next section.
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Fig. 2. Ontologies associated with the attributes EC Number, MIPS Funcat and GO
Function that appear in the data sources of interest D1, D2 and Dy
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Table 4. Integrated user data Dy

l 1D [Source[AA composition[ Struct. Classes [ GO Funct. Class
P35626|Human| 73914 --- Mainly beta |0047696:beta-adrenergic-receptor
Few Sec. Struct. kinase activity
Q12797|Human| 51712 --- not known 0004597: peptide-aspartate
beta-dioxygenase activity
Q13219|Human| 1086 15 --- Mainly beta 0008237: metallopeptidase
Mainly beta activity
Alpha beta
P39708| Yeast | 13 17 18 11 ---| Alpha beta 0005515: protein binding
Mainly alpha
Q01574 Yeast | 231681 --- Mainly alpha 0016208: AMP binding
Mainly alpha

3 INDUS Design and Architecture

A simplified version of INDUS architecture is shown in Figure 1. As can be
seen, several related distributed and semantically heterogeneous data sources
(servers) can be available to users (clients) who may want to query the data
sources through a query interface. Each user has his or her own view of the do-
main of interest reflected by a user ontology. The system provides default user
ontologies (e.g., GO Function) and mappings from the data source ontologies
to the user ontology (e.g., from AA Sequence to AA Composition or from EC
Number to GO Function) in a mapping repository. However, a user-friendly on-
tology and mapping editor is also available for users if they need to design or
modify their own ontologies or mappings (for example, if they need to explore
different mappings such as AA Sequence to AA composition or AA sequence to
hydrophobic versus hydrophilic AA Composition).

Once a query is posed by the user, it is sent to a query answering engine which
acts as a middleware between clients and servers. The query answering engine has
access to the data sources in the system and also to the set of mappings available.
Thus, when the query answering engine receives a user query, it decomposes this
query according to the distributed data sources, maps the individual queries to
the data source ontologies, then it composes the results to sub-queries into a
final result that is sent back to the user.

The main features of INDUS include:

(1) A clear distinction between data and the semantics of the data: this makes
it easy to define mappings from data source ontologies to user ontologies.

(2) User-specified ontologies: each user can specify his or her ontology and map-
pings from data source ontologies to the user ontology; there is no single
global ontology.

(3) A user-friendly ontology and mappings editor: this can be easily used to
specify ontologies and mappings; however, a predefined set of ontologies and
mappings are also available in a repository.
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(4) Knowledge acquisition capabilities: if the information requirements of an
algorithm for knowledge acquisition from data (e.g., learning algorithm) can
be formulated as statistical queries [10], then such an algorithm can be easily
linked to INDUS, making it an appropriate tool for information integration
as well as knowledge acquisition tasks.

Some of these features are shared by other systems developed independently,
e.g., BioMediator [25]. In the remaining of this section we describe the first
three features into more detail, while in the next section we show how INDUS
can be used to infer Naive Bayes models.

3.1 Ontology Extended Data Sources

Suppose that the data of interest are distributed over the data sources
D, -+, Dy, where each data source D; contains only a fragment of the whole
data D.

Let D; be a distributed data set described by the set of attributes
{AL,--- AL} and O; = {A%,---, AL} an ontology associated with this data set.
The element /\; € O; corresponds to the attribute A; and defines the type of
that particular attribute. The type of an attribute can be a standard type (e.g.,
types such as Integer or String; the enumeration of a set of values such as Prosite
motifs; etc.) or a hierarchical type, which is defined as an ordering of a set of
terms (e.g., the values of the attribute EC number) [6]. Of special interest to us
are isa hierarchies over the values of the attributes that describe a data source,
also called attribute value taxonomies (see Figure 2).

The schema S; of a data source D; is given by the set of attributes
{A%,--- AL} used to describe the data together with their respective types
{Ai,--- AL} defined by the ontology O;, ie., S = {A; : Ay, A, @ An}.
We define an ontology-extended data source as a tuple D; =<D,, S;, O;>, where
D, is the actual data in the data source, S; is the schema of the data source and
O, is the ontology associated with the data source. In addition, the following
condition needs also to be satisfied: D; C A¢ x - -+ x Al which means that each
attribute A;- can take values in the set /\é defined by the ontology O;.

3.2  User Perspective

Let <D4,5,,0,>,--+, <D,,S;,0,> be an ordered set of p ontology-extended
data sources and U a user that poses queries against the heterogeneous data
sources Dy, ---,D,. A user perspective is given by a user ontology Oy and a
set of semantic correspondences SC between terms in Oy, - - -, O,, respectively,
and terms in Opy. The semantic correspondences can be at attribute level (or
schema level), e.g., A;- :0; = AZU : Oy, or at attribute value level (or attribute
type level), e.g., X:0; < y:Op (X is semantically subsumed by y), x:O; > y:Oy
(X semantically subsumes y), X:0; = y:Op (X is semantically equivalent to y),
x:0; # y:Op (X is semantically incompatible with y), x:0; ~ y:Op (X is seman-
tically compatible with y) [7,21].
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We say that a set of ontologies Oy, ---, O, are integrable according to a user
ontology Oy in the presence of the semantic correspondences SC if there exist p
partial injective mappings Y, - -, from Oq,---, Oy, respectively, to Oy with
the following two properties [9, 6]:

(a) Forall X,y € O;, if X Xy in O; then Y;(X) < Y;(y) in Oy (order preservation
property);

(b) For all x € O; and y € Oy, if (X: O; opy : Oy) € SC, then Y;(X) op y in
the ontology Oy (semantic correspondence preservation property).

In general, the set of mappings can be (semi-automatically) inferred from the
set of semantic correspondences specified by the user [9].

3.3 Ontology-Extended Data Sources and Mappings Editor

In many practical data integration scenarios, the ontologies associated with data
sources are not explicitly specified in a form that can be manipulated by pro-
grams. In such cases, it is necessary to make explicit, the implicit ontologies
associated with the data sources before data integration can be performed. In
addition, users need to be able to specify the user ontology and the semantic
correspondences between user ontology and data source ontologies (used later to
generate a set of semantics preserving mappings). To address this need, we have
developed a user-friendly editor for editing data source descriptions (associated
with ontology extended data sources) and for specifying the relevant semantic
correspondences (a.k.a., interoperation constraints).

The current implementation of our data source editor provides interfaces for:

(a) Defining attribute types or isa hierarchies (attribute value taxonomies) or
modifying a predefined set of attribute types.

(b) Defining the schema of a data source by specifying the names of the at-
tributes and their corresponding types.

(c¢) Defining semantic correspondences between ontologies associated with the
data sources and the user ontology.

(d) Querying distributed, semantically heterogeneous data sources and retriev-
ing and manipulating the results according to the user-imposed semantic
relationships between different sources of data.

Figure 3 shows the interface that allows specification of semantic correspon-
dences between two data sources. The leftmost panel shows an ontology ex-
tended schema associated with a data source, which includes the hierarchical
type ontologies associated with attributes. The second panel shows the avail-
able semantic correspondences. The third panel shows the ontology extended
schema associated with the user data. The user can select a term in the first
schema, the desired semantic correspondence, and a term in the second schema.
The user-specified semantic correspondences that are used to infer consistent
mappings-specified are shown on the rightmost panel. The ontologies and map-
pings defined using the user-friendly editor in INDUS are stored in a repository
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Fig. 3. Editor for defining ontology-extended data sources and semantic correspon-
dences between two ontology-extended data sources

that is available to the query answering engine. INDUS contains a list of pre-
defined mappings (e.g., mappings from EC Number to GO Function or from
AA Sequence to AA Composition). Some of these functions are procedural (e.g.,
procedure that maps an AA Sequence to AA Composition), others represent
the enumeration of a list of mappings between values (e.g., EC Number to GO
Function). Furthermore, the user is given the freedom to define new mappings
or modify the existing ones according to his or her own needs. For example, if
the user wants to map AA Sequence to AA Composition and this mapping does
not exist in the repository, then the user can easily upload the corresponding
procedure through the editor interface. Also if a user decides to use a modified
version of a pre-defined mapping function, that particular function can be loaded
into the editor from the repository and edited according to the user needs.

4 Learning Classifiers for Assigning Protein Sequences
to Gene Ontology Functional Families

Caragea et al. [10] have shown that the problem of learning classifiers from
distributed data can be reduced to the problem of answering queries from dis-
tributed data by decomposing the learning task into an information integration
component in which the information needed for learning (i.e., su cient statistics)
is identified and gathered from the distributed data and a hypothesis generation
component, which uses this information to generate a model.
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Assigning putative functions to novel proteins and the discovery of sequence
correlates of protein function are important challenges in bioinformatics. In what
follows, we will show how a biologist interested in learning models for predicting
the GO Function of unlabeled proteins based on data coming from SWISSPROT
and MIPS databases, can use the tools provided by INDUS to achieve this task.

4.1 Data and Problem Specification

We consider again the data sources described in our illustrative example. Because
the user is interested in learning to predict the GO Function of a protein based
on the information contained in the amino acid sequence, the data of interest
to the user can be seen as coming from two horizontal fragments as in Table 5
(where the data set D; is assembled from SWISSPROT and the data set Dy is
assembled from MIPS).

Table 5. Horizontal data fragments that are of interest to a biologist

Protein ID Protein Sequence EC Number
P35626 |[MADLEAVLAD VSYLMAMEKS --:| 2.7.1.126 Beta-adrenergic...
D1 Q12797 | MAQRKNAKSS GNSSSSGSGS --- | 1.14.11.16 Peptide-aspartate...

AC AA Sequence MIPS Funcat
P32589 | STPFGLDLGN NNSVLAVARN - -- 16.01 protein binding
Ds| P07278 | VSSLPKESQA ELQLFQNEIN --- [16.19.01 cyclic nucleotide bind.

Typically a user (e.g., a biologist) might want to infer probabilistic models
(e.g., Naive Bayes) from the available data. Using INDUS the user defines the
semantic correspondences between the data source attributes Protein ID in Dy,
AC in Dy and the user attribute 1D; Protein Sequence in Dy, AA Sequence
in Dy and Sequence in Oy; and EC number in Dy, MIPS catfun in D, and
GO Function in the user perspective. Furthermore, the user can use predefined
mappings between the values of semantically similar attributes (e.g., mappings
from EC Number and MIPS Funcat to GO function) or modify existing mappings
according to the user’s view of the domain.

We will briefly review the Naive Bayes model, identify sufficient statistics
for learning Naive Bayes models from data and show how these sufficient statis-
tics can be computed from distributed, heterogeneous data using INDUS query
answering engine.

4.2  Classification Using a Probabilistic Model

Suppose we have a probabilistic model o for sequences defined over some al-
phabet X (which in our case is the 20-letter amino acid alphabet). The model
a specifies for any sequence S = si,---,S,, the probability P,(S = s1,--+,S,)
according to the probabilistic model a. We can construct such a probabilistic

model and explore it as a classifier using the following (standard) procedure:
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— For each class ¢; train a probabilistic model a(c;) using the sequences be-
longing to class c;. -
— Predict the classification ¢(S) of a novel sequence S = sy,---,S, as given

by: ¢(S) = argmax,;ec Pa(S =81, -+, 84[C;)P ()

The Naive Bayes classifier assumes that each element of the sequence is in-
dependent of the other elements given the class label. Consequently, ¢(S) =
argmaxe,ec Pa [T Pa(S1/C;) - - - Pa(Salc;)P (c;). Note that the Naive Bayes
classifier for sequences treats each sequence as though it were simply a bag
of letters and it calculates the number of occurences 0(s;|c;) of each letter in a
sequence given the class of the sequence as well as the number of sequences 6(c;)
belonging to a particular class ¢;. These frequency counts completely summarize
the information needed for constructing a Naive Bayes classifier, and thus, they
constitute su cient statistics for Naive Bayes classifiers [10]. An algorithm for
learning probabilistic models from data can be described as follows:

(1) Compute the frequency counts 0(s;|c;) and a(c;).
(2) Generate the probabilistic model a given by these frequency counts.

The query answering engine receives queries such as q(0(s;|c;)) and q(a(c;))
asking for frequency counts, it decomposes them into subqueries qx(0(s;[C;))
and gx(0(c;)) according to the distributed data sources Dy, (K = 1,p) and maps
them to the data source ontologies. Once the individual results are received back,
the query answering engine composes them into a final result by adding up the
counts returned by each data source. Thus, there is no need to bring all the data
to a central place. Instead queries are answered from distributed data sources
viewed from a user’s perspective.

Experimental results on learning probabilistic models for assigning protein se-
quences to gene ontology functional families are reported by our group in [1]. They
show that INDUS can be successfully used for integrative analysis of data from
multiple sources needed for collaborative discovery in computational biology.

5 Summary, Discussion and Further Work

5.1 Summary

We have presented INDUS, a federated, query-centric approach to answering
queries from distributed, semantically heterogeneous data sources. INDUS as-
sumes a clear separation between data and the semantics of the data (ontologies)
and allows users to specify ontologies and mappings between data source ontolo-
gies and user ontology. These mappings are stored in a mappings repository to
ensure their re-usability and are made available to a query answering engine.
The task of the query answering engine is to decompose a query posed by a
user into subqueries according to the distributed data sources and compose the
results into a final result to the intial user query.

In previous work [10] we have shown that learning algorithms can be decom-
posed into an information extraction component and a hypothesis generation
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component. This decomposition makes it possible to see learning algorithms as
pseudo-users that pose queries to the query answering engine in order to gather
the information that they need for generating the models that they output. Mod-
ular implementations of several learning algorithms have been linked to INDUS,
thus obtaining algorithms for learning classifiers from distributed, semantically
heterogeneous data sources. We have demonstrated how we can use INDUS to
obtain algorithms for learning Naive Bayes models for predicting the functional
classification of a protein based on training sequences that are distributed among
several distributed, semantically heterogeneous data sources.

An initial version of INDUS software and documentation are available at:
http://www.cild.iastate.edu/software/indus.html.

5.2 Discussion

There is a large body of literature on information integration and systems for in-
formation integration. Davidson et al. [12] and Eckman [13] survey alternative
approaches to data integration. Hull [19] summarizes theoretical work on data in-
tegration. Several systems have been designed specifically for the integration of bi-
ological data sources. It is worth mentioning SRS [15], K2 [29], Kleisli [11], IBM’s
DiscoveryLink [18], TAMBIS [28], OPM [22], BioMediator [25], among others.

Systems such as SRS and Kleisli do not assume any data model (or schema).
It is the user’s responsability to specify the integration details and the data
source locations, when posing queries. Discovery Link and OMP rely on schema
mappings and the definition of views to perform the integration task. TAMBIS
and BioMediator make a clear distinction between data and the semantics of
the data (i.e., ontologies) and take into account semantic correspondences be-
tween ontologies (both at schema level and attribute level) in the process of data
integration.

Most of the above mentioned systems assume a predefined global schema
(e.g., Discovery Link, OMP) or ontology (e.g., TAMBIS), with the notable ex-
ception of BioMediator, where users can easily tailor the integrating ontology to
their own needs. This is highly desirable in a scientific discovery setting where
users need the flexibility to specify their own ontologies.

While some of these systems can answer very complex queries (e.g., Bio-
Mediator), others have limited query capabilities (e.g, SRS which is mainly an
information retrieval system). Furthermore, for some systems it is very easy to
add new data sources to the system (e.g., SRS or Kleisli, where new data source
wrappers can be easily developed), while this is not easy for other biological in-
tegration systems (e.g., Discovery Link or OMP, where the global schema needs
to be reconstructed).

Finally, while some systems (e.g., SRS, BioMediator) provide support for
biological information retrieval tools (such as BLAST or FASTA), to the best of
our knowledge none of them are linked to machine learning algorithms that can
be used for data analysis, classification or prediction.

On a different note, there has been a great deal of work on ontology develop-
ment environments. Before developing INDUS editor, off-the-shelf alternatives
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such as IBM’s Clio [14] or Protege [24] were considered, but they proved in-
sufficient for our needs. Clio provides support only for schema mapping, but
not for hierarchical ontology mapping. Protege is a purely knowledge base con-
structing tool (including ontology mappings). It does not provide support for
the association of ontologies with data, data management or queries over the
data. Furthermore, neither of these systems allow procedural mappings (a.k.a.,
conversion functions), which are essential for data integration.

Of particular interest to ontology-based information integration is work on
modular ontolgies. Ontolingua [17,16] and ONION [23] support manipulation of
modular ontologies. Calvanese et al. [8] proposed a view-based mechanism for
ontology integration. However, a global ontology is typically unavailable in infor-
mation integration from loosely linked, distributed, semantically heterogeneous
data. We have explored a description logic based approach to modular design and
reuse of ontologies, specification of inter-ontology semantic correspondences, and
mappings [4]. However, support for asserting and reasoning with partially spec-
ified semantic correspondences between local ontologies and localized reasoning
in distributed description logic is lacking.

In terms of learning from distributed, semantically heterogeneous data, while
there is a lot of work on distributed learning (see [20] for a survey), there has
been little work on learning classifiers from semantically heterogeneous, dis-
tributed data. Ontology extended relational algebra [6] provides a framework
within which users can specify semantic correspondences between names and
values of attributes and obtain answers to relational queries. This approach has
been extended in our work on INDUS to handle more general statistical queries
across semantically heterogeneous data sources [9].

5.3 Further Work

Our approach has been applied successfully to scenarios where the ontologies
associated with some attributes are given by tree structured isa hierarchies.
It is desirable to extend our work to the more general case where the hier-
archies are directed acyclic graphs, as this case is more often encountered in
practice.

As Protege [24] is the most popular tool for creating knowoledge bases, in
the future INDUS will allow users to import ontologies that are edited using
Protege.

In our current framework, we assume that each data source can be seen as
a single table. It is of interest to extend INDUS to scenarios where each data
sources can be conceptually viewed as a set of inter-related (possibly hierar-
chical) tables. This requires a framework for asserting semantic correspondences
between tables and relations across multiple ontologies (see [14]). In this context,
recent work on description logics for representing and reasoning with ontologies
[3,27], distributed description logics [7] as well as ontology languages, e.g., web
ontology language (OWL) [26] are of interest. These developments, together with
our work on INDUS, set the stage for making progress on the problem of inte-
gration of a collection of semantically heterogeneous data sources where each
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data source can be conceptually viewed as a set of inter-related tables in its full
generality.
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Abstract. This paper presents an extensible architecture that can be
used to support the integration of heterogeneous biological data sets.
In our architecture, a clustering approach has been developed to sup-
port distributed biological data sources with inconsistent identification
of biological objects. The architecture uses the AutoMed data integra-
tion toolkit to store the schemas of the data sources and the semi-
automatically generated transformations from the source data into the
data of an integrated warehouse. AutoMed supports bi-directional, ex-
tensible transformations which can be used to update the warehouse
data as entities change, are added, or are deleted in the data sources.
The transformations can also be used to support the addition or removal
of entire data sources, or evolutions in the schemas of the data sources
or of the warehouse itself. The results of using the architecture for the
integration of existing genomic data sets are discussed.

1 Introduction

This paper presents work on an architecture for integrating biological data
sources, and reports our experience in applying it to an existing application
aimed at providing an integrated sequence/structure/function resource that sup-
ports analysis, mining and visualisation of functional genomics data (transcrip-
tomic and proteomic).

Biological data sources are characterised by a very high degree of hetero-
geneity in terms of the type of data model used, the schema design within a
given data model, as well as incompatible formats and nomenclature of values.
Further, such data sources frequently make use of large numbers of unstable,
inconsistent identifiers for biological entities. Our architecture addresses these
two issues by combining two data integration techniques supporting both data
heterogeneity and inconsistent identifiers.

The database community has done much work on integration of data from
heterogeneous data sources. Examples of significant applications to biological
data sources include DiscoveryLink [8], K2/Kleisli [12] and Tambis [5]. In prac-
tice, the most widely used system is Sequence Retrieval System (SRS) [30]. A
recent survey is provided by [17].

B. Ludéascher and L. Raschid (Eds.): DILS 2005, LNBI 3615, pp. 191-207, 2005.
(© Springer-Verlag Berlin Heidelberg 2005
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SRS represents one approach to integration: it acts as a portal to data sources
exploiting indexes built by the system. It therefore has a more restricted aim
than DiscoveryLink, K2/Kleisli and Tambis which are all aimed at supporting
higher level query facilities across data sources. DiscoveryLink and Tambis aim
to achieve this without users needing to be aware of source data schemas: in our
own work we also aim to insulate users in this way.

The two traditional approaches to providing such transparent access are to
materialise the integrated data in a warehouse, or alternatively to provide virtual
integration with mediator software supporting access to data in the original data
sources. Materializing integrated data in a warehouse is usually done on perfor-
mance grounds: not only is distributed access to remote data sources avoided,
but also centralised database query optimisation techniques can be applied to
enable complex queries to be supported more efficiently. Maintaining a mate-
rialised warehouse to correctly reflect updates in data sources can be complex,
however. While access to a virtual warehouse is likely to be less efficient than
with a materialised warehouse, it may be the only option if it is not possible
to extract data from the underlying data sources, or if the storage overheads of
materialisation would be too high.

In our own work we have chosen to exploit the AutoMed data integration
toolkit! to support the integration of heterogeneous biological data sources. The
particular strength of AutoMed for this application area is that it supports
bi-directional, extensible transformations from data source schemas to an inte-
grated schema enabling integration both through explicit materialisation in a
data warehouse as well as virtual integration of data remaining in the original
data resources. The extensibility of AutoMed transformations is also the basis for
update of schemas within both the data sources and any materialised warehouse.

AutoMed does not in itself provide a solution for transformations between
unstable, inconsistent identifiers. There are a number of significant initiatives
within the Life Sciences community to address the problem of inconsistent iden-
tifiers. For example, the Life Sciences Identifiers (LSID) initiative [25] is aimed
at a standardised scheme for assigning and recognising identifiers for biological
entities, while the International Protein Index (IPI) [10] is developing stable iden-
tifiers for human, mouse and rat proteomes. Meeting the needs of applications
that process and analyze transcriptomics and proteomics data is a particular
motivation for such work. Extensive work has also been done on standardisation
in more specialised areas, for example the work of the Microarray Gene Expres-
sion Data (MGED) Society on MAGE-ML for standardised recording of data
related to microarray gene expression experiments [11]. However, the legacy of
very large numbers of inconsistent non-standardised identifiers will remain.

Hence, in our work we have combined AutoMed with a clustering approach
to associate biological entities independently of their identifiers. In our applica-
tion of this approach so far, we have used gene sequence clustering to establish
associations, but the approach is not limited to sequence-based clustering.

! See http://www.doc.ic.ac.uk/automed/
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The remainder of the paper is organised as follows. Section 2 introduces those
features of AutoMed which have been exploited in our work, together with the
basis for combining AutoMed with a clustering approach. Section 3 presents
our data integration framework. Section 4 reports on our experience applying
this framework to the integration of biological data sources in a warehouse being
constructed to support the mining and visualisation of functional genomics data.
Conclusions and a discussion of ongoing work are given in Section 5.

2 Background

2.1 The AutoMed Toolkit

AutoMed is a heterogeneous data transformation and integration system which
offers the capability to handle virtual, materialised and indeed hybrid data inte-
gration across multiple data models. AutoMed supports a low-level hypergraph-
based data model (HDM), and provides facilities for specifying higher-level mod-
elling languages in terms of this HDM. These specifications are stored within
AutoMed’s Metadata Repository [1]. In the specific application described in this
paper, the problem addressed has been the integration of relational data sources
into a relational data warehouse.

AutoMed provides a set of primitive schema transformations that can be
applied to schema constructs. In particular, for every construct of a modelling
language M there is an add and a delete primitive transformation which add
to/delete from a schema an instance of that construct. For those constructs of
M which have textual names, there is also a rename primitive transformation.
For example, in a simple relational model there may be four kinds of modelling
construct, Rel, Att, primaryKey and foreignKey.

Instances of modelling constructs within a particular schema are uniquely
identified by their scheme, enclosed within double chevrons ((...)). AutoMed
schemas can be incrementally transformed by applying to them a sequence of
primitive transformations, each adding, deleting or renaming just one schema
construct (thus, in general, AutoMed schemas may contain constructs of more
than one modelling language). Each add or delete transformation is accompa-
nied by a query specifying the extent of the new or deleted construct in terms
of the rest of the constructs in the schema. This query is expressed in a func-
tional query language, IQL2. AutoMed also provides contract and extend prim-
itive transformations which behave in the same way as add and delete except
that they indicate that their accompanying query may only partially specify the
extent of the new/removed schema construct. Their query may just be the con-
stant Void, indicating that the extent of the new/removed construct cannot be
specified even partially, in which case the query can be omitted.

2 IQL is a comprehensions-based functional query language, and we refer the reader to
[18] for details of its syntax, semantics and implementation. Such languages subsume
query languages such as SQL and OQL in expressiveness [2].
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A sequence of primitive transformations from one schema S; to another
schema So is termed a transformation pathway from S; to Sy, denoted by
S1 — S,. All source, intermediate, and global schemas, and the pathways be-
tween them, are stored in AutoMed’s Metadata Repository.

AutoMed has its theoretical foundations in the schema transformation and
integration framework described in [22] where it was shown that this approach
generalises all the previous notions of ‘schema equivalence’. Intuitively, this is
because: (a) sequences of the primitive transformations are able to express syn-
tactically any transformation from one schema to another, with first a ‘growing’
phase which adds missing schema constructs and then a ‘shrinking’ phase which
removes redundant schema constructs; (b) IQL queries are able to express the
semantic relationships between a new schema construct and the existing con-
structs, or between a removed schema construct and the remaining constructs.

The IQL queries present within transformations that add or delete schema
constructs mean that each primitive transformation has an automatically deriv-
able reverse transformation. In particular, each add/extend transformation is re-
versed by a delete/contract transformation with the same arguments, while each
rename transformation is reversed by swapping its two arguments. [19] discusses
how the queries present within these reversible schema transformation pathways
can be used to generate view definitions for global schema constructs in terms of
source schema constructs. Essentially, this is by means of query unfolding using
the queries within delete, contract and rename transformations along the set of
reverse pathways from a global schema to a set of source schemas.

AutoMed pathways can be used to express the data cleansing, transformation
and integration processes involved in heterogeneous data integration. The queries
within transformations also allow the pathways to be used for materialising and
incrementally maintaining a materialised global database, and any materialised
databases derived from it, in the face of insertions/ deletions/ updates to the
data sources. The queries within transformations also allow the pathways to be
used for tracing the lineage of data in a materialised global database, or any
materialised databases derived from it, to the data sources. We refer the reader
to [13,14] for details of these uses of AutoMed pathways.

In any heterogeneous data integration environment, it is possible for either a
data source schema or the global database schema to evolve. This schema evolu-
tion may be a change in the schema, or a change in the data model in which the
schema is expressed, or both. An AutoMed pathway can be used to express the
schema evolution in all of these cases. Once the current transformation network
has been extended in this way, the actions taken to evolve the rest of the trans-
formation network and schemas, and any materialised derived data, are localised
to just those schema constructs that are affected by the evolution. We refer the
reader to [23, 24, 15] for details of how this can be achieved in both virtual [23, 24]
and materialised [15] integration scenarios. The algorithms used are mainly au-
tomatic, except for input of domain or expert human knowledge regarding the
semantics of new schema constructs added to a local or global schema which are
not semantically equivalent to any existing constructs in the schema.
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For our particular application here, the task has been to support the trans-
formation of biological data source schemas into a global warehouse schema. The
data source and warehouse schemas were relational, while we have used an XML-
based unifying data model for the intermediate schemas. We made this choice
in order to allow the use of AutoMed’s facilities for automatically transforming
and integrating XML data, which are discussed in detail in [28,29].

The standard schema definition languages for XML are DTD and XML
Schema. However, both of these provide grammars to which conforming doc-
uments adhere to, and do not summarise the tree structure of the data sources.
In our schema transformation setting, schemas of this type are preferable as
this facilitates schema traversal, structural comparison between a source and
a target schema, and restructuring the source schema(s) that are to be trans-
formed and/or integrated. Moreover, such a schema type means that the queries
supplied with AutoMed primitive transformations are essentially path queries,
which are easily generated.

The AutoMed toolkit therefore supports a modelling language XML Data-
Source Schema (XMLDSS) which summarises the tree structure of XML doc-
uments, much like DataGuides [16]. XMLDSS schemas consist of four kinds
of constructs (see [28] for details of their specification in terms of the HDM):
Element, Attribute, PCData and NestList. The last of these are parent-child re-
lationships between two elements €, and e, and are identified by a scheme of
the form (i, e, ec)), where i is the position of e, within the list of children of e,
in the XMLDSS schema. In an XML document there may be elements with the
same name occurring at different positions in the tree. To avoid ambiguity, in
XMLDSS schemas we use an identifier of the form elementName$count for each
element, where count is a counter incremented every time the same elementName
is encountered in a depth-first traversal of the schema. An XMLDSS schema can
be automatically derived from an XML document, as discussed in [28], and it
is also possible to automatically derive an XMLDSS schema from a DTD or an
XML Schema specification, if available.

2.2  Clustering for Supporting Multiple IDs

While AutoMed is well-suited to the task of supporting transformations of data
source schemas into a global warehouse schema, it provides no mechanisms for
supporting the equivalence of inconsistent identifiers. Integrating data sources
usually results in incomplete matching of related entities in the different data
sets, either due to identifier redundancy or due to the use of different reference
identifiers. In the case of some biological databases, the percentage of entities
that can be matched using a single identifier can be very low. When trying to
match proteins from KEGG Gene to the Gene Ontology Gene Products less than
40% match, despite the sources nominally describing the same entities.
Data-based entity clustering provides a general approach to integrating any
set of logically related entities and hence supporting multiple identifiers. Under
this approach, an appropriate relatedness measure is developed (for example se-
quence or structure similarity), allowing each entity in the data being integrated
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to be compared to each of the other entities and a similarity index derived. Once
the similarity measure values have been obtained they can be used to organise
the entities hierarchically into nested sets. Each level of nesting represents an
increasing degree of similarity between the entities contained in the set, allowing
each application built on the integrated data source to determine what is an
appropriate degree of clustering for that application. In the context of biological
data, for example, protein structure is conserved at low levels of sequence simi-
larity compared to function and therefore clusters with lower levels of similarity
can be used when structural annotation is desired rather than functional.

Having generated such sets of related entities, information applicable to each
set may be extracted and associated with that set. Moreover, an attribute which
is only defined for a subset of members may be inferred for remaining members
of a set if it is known that the attribute will be shared amongst similar entities.

Use of an appropriate similarity measure and clustering algorithm provides
sets of entities that represent the same ‘real world’ entity that may never have
been associated based purely on an identifier mapping. Sets of entities with a
lower level of similarity represent entities that are less closely related. While
this approach does not allow identification of identical entities, in biological
contexts it is often at least, if not more useful to identify similar entities, given
the incomplete knowledge about any individual entity.

This type of approach is applicable to many types of data. There is no in-
herent limitation on the type of clustering or the type or types of similarity
measures used to compare entities. For example given a measure of similarity
of scientific publications was available, the related articles could be organised
into clusters providing links between articles on similar topics. In the simplest
case this might be based on keyword matching, but other far more sophisticated
approaches are available.

3 Owur Data Integration Framework

The architecture of our biological data integration framework is illustrated in
Figure 1. There are two principal sources of information for the Global Schema —
data sources and cluster data — which are processed in the same way but con-
tain different types of information. Each Data Source is an externally main-
tained resource that is to be integrated as part of the global database. A data
source could be a conventional relational or other structured database, or a
semi-structured data source, such as an XML file. Conceptually, a data source
describes facts about biological entities. Each Cluster Data resource is constructed
from one or more data sources and provides the basis for a generally applica-
ble approach to the integration of data lacking a common reference identifier as
discussed in Section 2.2 above. Conceptually, a cluster data resource provides
a data-dependent classification of the entities within data sources into related
sets.

Each data source is either a structured data source such as a relational
database (in which case its associated Schema is a relational schema) or a semi-
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Fig. 1. Architectural Overview of the Data Integration Framework

structured file (in which case it may or may not have an associated schema). In
the latter case a schema appropriate for the data source can be generated by the
appropriate AutoMed wrapper (see [28, 1] for details of extracting schemas from
semi-structured data). Cluster data resources are maintained as relational data
with an associated relational schema. The schemas of data source and cluster
data resources are processed in the same way, and an arbitrary number of data
sources and methods of clustering can be integrated.

Some data sources do not contain a primary key identifier that is persistent
between versions of the resource. The lack of a persistent primary key identi-
fier makes the identification of changes between each version difficult. For such
data sources a non-volatile, primary key identifier is generated for each entity
and added to the data source. Persistent primary key identifiers provide a sim-
ple, generic primary key for the higher level tools to use and enables synchro-
nisation of the warehouse with the changing content of the underlying data
source.

Wrappers provided by the AutoMed Toolkit automatically generate the Au-
toMed internal representations of the Schemas and the Global Schema, and store
these in the AutoMed Metadata Repository. The AutoMed toolkit is then used to
generate the transformation pathways from the Schemas to the Global Schema.
These are described in detail with illustration from the example application in
Section 4.3 below.

Virtual Integration. After the integration process has been completed, and the
transformation pathways from a set of data source schemas to a global schema
have been set up, queries formulated with respect to the global schema can be
evaluated. Such a query is submitted to AutoMed’s Global Query Processor (see
[18]) which first reformulates it into a query that can be evaluated over the data
sources. This is accomplished by following the reverse transformation pathways
from the global schema to the data source schemas in order to generate view
definitions of global schema constructs in terms of data source constructs. These
view definitions are substituted into the original query, which is then optimised.
The query evaluator then interacts with the data source wrappers in submitting
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to them IQL subqueries which they translate into the local query language for
evaluation, returning sub-query results back to the evaluator for any further
necessary post-processing and merging.

Materialised Integration. The current version of the BioMap warehouse (see
Section 4 below) was materialised using conventional SQL queries on relational
sources, before the AutoMed components of our architecture were in place. This
approach is labour intensive as the queries must all be manually designed. Up-
coming iterations of the warehouse will however be able to benefit from Au-
toMed’s facilities for incrementally maintaining the warehouse. In general, the
data sources may be updated by the insertion, deletion or modification of data.
Deltas on data sources may result in deltas on cluster data resources also. Both
kinds of deltas can be propagated through the AutoMed transformation path-
ways up to the materialised global database (and to any other materialised
databases derived from it). In particular, the queries within add and extend
transformation steps can be used to compute a new set of deltas from the cur-
rent set of deltas, all the way up to the target database (see [14]).

4 Application of the Framework to Gene Family Based
Integration

The above architecture has been applied to biological data sources integrated
within the BioMap data warehouse. In this section we describe how the archi-
tecture has been applied and the results of the work to date.

4.1 The BioMap Warehouse

BioMap is a collaborative project to develop a warehouse integrating protein
family, structure, function and pathway/process data with gene expression and
other experimental data. The aim is to provide an integrated sequence/structure/
function resource that supports analysis, mining and visualisation of functional
genomics data (transcriptomic and proteomic). The warehouse is implemented
within Oracle, extending techniques developed for the CATH-PFDB database
[26] and is designed to serve as a source for data marts which will themselves be
constructed using the AutoMed techniques presented in this paper.

Current data sources include the CATH protein structure family database
[6], KEGG pathway database [20], Gene3D annotated protein sequence database
[21], Gene Ontology [9], EBI Macromolecular structure database (MSD) [4] and
ten other resources. Thus far, we have taken CATH, Gene3D, KEGG_Gene,
KEGG_Genome, KEGG_Orthology, and also a CLUSTER data source discussed
below, representing a significant subset of BioMap data sources describing struc-
tural, functional, sequence and ontological information. These contain a diverse
set of data structures, formatting conventions and sizes to use for evaluation of
our data integration framework.



Cluster Based Integration of Heterogeneous Biological Databases 199

4.2  The Clustering Approach

There are a variety of methods for classifying biological entities into sets and
these methods can be used on the facts within the data warehouse. The facts
concerning individual entities within a set will not all derive from precisely the
same biological entity, but by choosing an appropriate algorithm to create the
sets, the set will contain valuable information about biological entities that are
similar (in some way) to each other. One such categorisation method is UniGene
[7]. Our categorisation method is based on the PFScape protocol [21] which is
in turn based on the TRIBE-MCL algorithm [3]. The PFScape protocol was
developed for Gene3D and has been adapted and improved for BioMap. In brief,
to construct Gene3D the peptide sequences of more than 120 completed genomes
were obtained from the NCBI and from ENSEMBL. An ‘all vs all’ BLAST
was performed using the blastpgp program from the NCBI. The BLAST was
performed using a cluster of 50 dual processor machines running GNU /Linux
using Sun Grid Engine. An e-value cut off of 0.001 was used. The results were
used to create a similarity matrix which was used by TRIBE-MCL to create
protein families.

Since then, many more completed genomes have become available, in partic-
ular the genome of the Rat. Other genomes have been revised. For the BioMap
project an extension of the PFScape protocol has been developed to update the
Gene3D families.

The complete genomes of more than 203 Archea, Prokaryotes and Eukaryotes
were downloaded from the EBI. For each sequence in Gene3D and the down-
loaded proteomes an md5 was calculated and an ‘all vs all’ BLAST performed.
The BLAST results were filtered using an 80 percent overlap cutoff to select only
the BLAST hits that represented whole chain matches. Each novel sequence was
assigned into the best hit family for each of the new sequences, or if no fam-
ily was identified then a new family was created. Within the protein families
multi-linkage clustering was performed based on sequence identity using clus-
ter thresholds of 0.3, 0.35, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1. The clustering was
performed using TCluster, a locally developed program.

To integrate the other data sources, a representative sequence was obtained
for each entity in the data source and a md5 calculated. The set of md5s that
were not present in the genomic sequences was then obtained. The sequences
corresponding to those mdbs were then compared to the genomic sequences
using BLAST as described above. The entities were then classified in terms of
the genomic clusters based on their best hits.

4.3 The Integration Process

The integration process consists of the following steps, of which steps 3 to 6 are
explained in more detail below. Steps 1 and 2 are carried out automatically by
AutoMed’s relational wrapper, as mentioned in Section 3.

1. Automatic generation of the AutoMed relational schemas, LSy,...,LS,,
corresponding to the Data Source and Cluster Data Schemas.
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2. Similarly, automatic generation of the AutoMed relational schema, GS, cor-
responding to the Global schema.

3. Automatic translation of schemas LSy, ..., LS, and GS into the correspond-
ing XMLDSS schemas Xq,...,X, and GX.

4. Partial conformance of each schema X; to GX by means of appropriate
rename transformations, to ensure that only semantically equivalent schema
constructs share the same name, and that all equivalent schema constructs
do share the same name. This results in a set of new schemas X{,...,X/.

5. Completing the conformance of each schema X/ to GX by applying an au-
tomatic XMLDSS schema transformation algorithm to each pair of schemas
X!, GX, creating a set of new schemas X/, ..., X/

6. Application of any necessary data cleansing transformations on each X/,
creating a set of schemas GXy,...,GX,,. As the integration of the schemas
up to this point does not involve any reference to the actual data, the data
cleansing does not have to be performed prior to this step.

In Steps 4 - 6, the pathways LS; — Xy, ..., LS, — X,, generated by
Step 3 are extended with further primitive transformations, leading finally to
the schemas GX1,...,GX,, in Step 6.

Each GX; is identical to the global XMLDSS schema GX from Step 3. The
reverse of the pathway GS — GX generated in Step 3 can finally be appended
to each GX; to transform it into the relational global schema GS.

Step 3: Translating AutoMed relational to XMLDSS schemas. To trans-
late a relational schema into an XMLDSS schema we first generate a graph, G,
from the relational schema. There is a node in G corresponding to each table
in the relational schema. There is an edge from R; to Rs in G if there is a for-
eign key in Ry referencing the primary key of R;. In the given relation schemas
there are no cycles in G — in a general setting, we would have to break any
cycles at this point. We create a set of trees, T, obtained by traversing G from
each node that has no incoming edges, and we convert T into a single tree by
adding a generic root. We finally use T to generate the pathway from the rela-
tional schema to its corresponding XMLDSS schema. This last phase consists of
traversing T and, for each node t encountered, doing the following;:

(i) If tis the root, insert a PCData construct into the current schema, and then
insert the root itself as an Element construct.
(ii) else:
(a) insert t as an Element
(b) insert a NestList construct from the parent of t to t
(¢) find the columns c; belonging to the table that corresponds to t, and
for each c;: insert ¢; as an Element construct; insert a NestList construct
from t to ¢;; and insert NestList constructs from c; to PCData.
(ili) For each child of t, t, treat t; as t in step (i).
(iv) Remove the now redundant relational constructs from the schema.
To illustrate the translation, the top of Figure 2 illustrates a part of the
schema of the CLUSTER data source (where ASSIGNMENT_TYPE_ID in AS-
SIGNMENT_TYPES is referenced by CLUSTER_TYPE in CLUSTER_DATA,
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Fig. 2. Top: part of the CLUSTER relational schema. Bottom: corresponding part of
the CLUSTER XMLDSS schema

and the rest of the foreign keys have the same name as the primary keys they
reference). At the bottom, the XMLDSS schema that corresponds to this rela-
tional schema is illustrated. Similarly, Figure 3 illustrates a part of the relational
global schema and the corresponding AutoMed XMLDSS schema.

Step 4: Schema Matching. The XMLDSS schema transformation algorithm
used in Step 5 of the integration process assumes that if two schema constructs
in a local schema and in the global schema, respectively, have the same name,
then they refer to the same real-world concept, and if they do not have the same
name, they do not. We do not currently support automatic schema matching
in our integration process. Thus, after the XMLDSS schemas are produced,
and before the application of the schema transformation algorithm in Step 5,
the necessary rename transformations must be manually issued on each source
XMLDSS schema. These rename transformations effectively simulate a schema
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Fig. 3. Left: part of the global relational schema. Right: corresponding part of the
XMLDSS schema

matching phase and in our case they have been produced by a domain expert.
However, the AutoMed toolkit also offers a tool for performing semi-automatic
schema matching and generating the corresponding AutoMed transformation
pathways [1]. We also note that this schema matching step does not have to
be performed on the XMLDSS schemas, but could instead be performed on the
source relational schemas. The only necessity is for this step to be performed
before the application of the schema transformation algorithm.

In our running example, the domain expert produced the following rename
transformations on the XMLDSS schema in Figure 2:

rename (<<CLUSTER$1>>,<<GLOBAL$1>>) ;

rename (<<DESCRIPTION$1>>,<<ASSIGNMENT_DESCRIPTION$1>>);
rename (<<SEQUENCE_SOURCE_ID$1>>,<<PSEQID>>) ;

rename (<<SEQUENCE_SOURCE_ID$2>>,<<SEQUENCE_SOURCE_ID$1>>) ;
rename (<<SEQUENCE_SOURCE_ID$3>>,<<SSEQID>>);

rename (<<SEQUENCE_SOURCE_ID$4>>,<<SEQUENCE_SOURCE_ID$2>>) ;
rename (<<ASSIGNMENT_TYPE_ID$2>>,<<PASSID>>);

rename (<<ASSIGNMENT_TYPE_ID$3>>,<<ASSIGNMENT_TYPE_ID$2>>)

and the following rename transformation on the XMLDSS schema in Figure 3:

rename (<<SEQUENCE_SOURCE_ID$2>>,<<SSEQID>>)

Step 5: Automatic XMLDSS-based integration. The algorithm for au-
tomatically transforming a source XMLDSS schema S into a target XMLDSS
schema T has three phases:

Growing phase: Traverse T in a depth-first fashion and for every schema con-
struct encountered that is not present in S, issue an add or extend transformation,
resulting in an intermediate schema S;.
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Shrinking phase: Traverse S; in a depth-first fashion and for every schema
construct encountered that is not present in T, issue a delete or contract trans-
formation, resulting in an intermediate schema Ss.

Renaming phase: Traverse Ss in a depth-first fashion and issue the necessary
rename transformations needed to rename the ordering labels of the NestList
constructs in order to create the correct ordering of these constructs, resulting
in a final schema St syntactically identical to the target XMLDSS schema T.

For reasons of space, we refer the reader to [29] for a detailed description of
this algorithm. To illustrate the algorithm, we list below a part of the pathway
generated to transform the XMLDSS schema in Figure 2 to the XMLDSS schema
in Figure 3, after the earlier rename transformations of Step 4 have first been
applied. Here makelist is a built-in IQL function that takes a value v and a
number N and produces a list consisting of N copies of v:

add (<<0,GLOBAL$1,CLUSTER_DATA$1>>,
[{v0,v2}[{v0,v1}<-<<GLOBAL$1,SEQUENCE_SOURCES$1>>;
{v1,v2}<-<<SEQUENCE_SOURCES$1,CLUSTER_DATA$1>>]) ;
add (<<0,GLOBAL$1,SEQUENCES$1>>,
[{v0,v2}[{v0,v1}<-<<GLOBAL$1,SEQUENCE_SOURCES$1>>;
{v1,v2}<-<<SEQUENCE_SOURCES$1,SEQUENCES$1>>]);
extend (<<0,CLUSTER_DATA$1,ASSIGNMENT _DESCRIPTION$1>>,
[{v1,v2}{v0,v1}<-<<ASSIGNMENT_TYPES$1,CLUSTER_DATA$2>>;
{v0,v2}<-<<ASSIGNMENT_TYPES$1,ASSIGNMENT_DESCRIPTION$1>>) ;
delete(<<1,GLOBAL$1,SEQUENCE_SOURCES$1>>,
makelist {’GLOBAL$1’,’SEQUENCE_SOURCES$1’}
(count <<SEQUENCE_SOURCES$1>>));
delete(<<1,SEQUENCE_SOURCES$1,PSEQID>>,
makelist {’SEQUENCE_SOURCES$1°’,’PSEQID’}
(count <<PSEQID>>));
contract (<<1,PSEQID,PCData>>);
contract (<<PSEQID>>);
delete(<<2,SEQUENCE_SOURCES$1,CLUSTER_DATA$1>>,
makelist {’SEQUENCE_SOURCES$1’,’CLUSTER_DATA$1’}
(count <<CLUSTER_DATA$1>>));
delete(<<3,SEQUENCE_SOURCES$1,SEQUENCES$1>>,
makelist {’SEQUENCE_SOURCES$1’,’SEQUENCES$1’}
(count <<SEQUENCES$1>>));
contract (<<SEQUENCE_SOURCES$1>>) ;

The unwanted edges on the RHS of the XMLDSS schema of Fig