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Preface

The explosion in the number and size of life science data resources, and the
rapid growth in the variety and volume of laboratory data has been fueled by
world-wide research activity and the emergence of new technologies. The mod-
eling, management and analysis of this data often requires a comprehensive in-
tegration of heterogeneous and typically semistructured data, distributed across
many possibly data sources. Recent interoperability standards such as XML and
WSDL solve some (easy) problems, but data and process integration often re-
main time-consuming and error-pone manual tasks. The difficulty of these tasks
is compounded by the high degree of semantic heterogeneity across data sources,
varying data quality, and other domain-specific application requirements.

DILS 2005 was the 2nd International Workshop on Data Integration in the
Life Sciences, following a successful first DILS workshop, March 2004 in Leipzig,
Germany. For a specialized workshop, the DILS 2005 call for papers created a
large interest (over 50 abstracts and eventually 42 paper submissions; an increase
of over 20% over DILS 2004), out of which the international Program Committee
selected 15 full papers, as well as 5 short papers, and 8 posters/demonstrations,
which are all included in this volume. They cover a wide spectrum of theoretical
and practical issues including scientific/clinical workflows, ontologies, tools and
systems, and integration techniques. DILS 2005 also featured keynotes by Dr.
Peter Buneman, Professor at the School of Informatics, University of Edinburgh,
and Dr. Shankar Subramaniam, Professor at the Department of Bioengineering
and Chemistry, UC San Diego. The program also included 6 invited presentations
and reports on ongoing research activities in academia and industry and a panel
organized by the AMIA Geomics Working Group.

The workshop was organized by the San Diego Supercomputer Center (SDSC)
and took place July 20–22, 2005 at the University of California, San Diego. Addi-
tional sponsors included Microsoft Research, the American Medical Informatics
Association (AMIA), the UC Davis Genome Center, and the University of Mary-
land Center for Bioinformatics and Computational Biology.

As the workshop co-chairs and editors of this volume, we thank all authors
who submitted papers and the Program Committee members and external re-
viewers for their excellent work. Special thanks also go to Amarnath Gupta who
served as workshop general chair, and his team, especially Donna Turner, Jon
Meyer, and LInda Ferri, all at SDSC. We thank Chani Johnson and the Microsoft
CMT Team for the excellent support of their paper management system. Finally,
we thank Alfred Hofmann, Erika Siebert-Cole, and the team from Springer for
their cooperation and help in putting this volume together.

June 2005 Bertram Ludäscher and Louiqa Raschid
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Challenges in Biological Data Integration
in the Post-genome Sequence Era

(Keynote Talk)

Shankar Subramaniam

University of California, San Diego
shankar@sdsc.edu

Abstract. We are witnessing the emergence of the “data rich” era in
biology. The myriad data in biology ranging from sequence strings to
complex phenotypic and disease-relevant data pose a huge challenge to
modern biology. The standard paradigm in biology that deals with “hy-
pothesis to experimentation (low throughput data) to models” is being
gradually replaced by “data to hypothesis to models and experimenta-
tion to more data and models”. And unlike data in physical sciences,
that in biological sciences is almost guaranteed to be highly heteroge-
neous and incomplete. In order to make significant advances in this data
rich era, it is essential that there be robust data repositories that al-
low interoperable navigation, query and analysis across diverse data, a
plug-and-play tools environment that will facilitate seamless interplay of
tools and data and versatile user interfaces that will allow biologists to
visualize and present the results of analysis in the most intuitive and
user-friendly manner. This talk will address several of the challenges
posed by enormous need for scientific data integration in biology with
specific exemplars and strategies. The issues addressed will include:

– Architecture of Data and Knowledge Repositories
– Databases: Flat, Relational and Object-Oriented; what is most

appropriate?
– The imminent need for Ontologies in biology
– The Middle Layer: How to design it?
– Applications and integration of applications into the middle layer
– Reduction and Analysis of Data: the largest challenge!
– How to integrate legacy knowledge with data?
– User Interfaces: web browser and beyond

The complex and diverse nature of biology mandates that there is no “one
solution fits all” model for the above issues. While there is a need to have
similar solutions across multiple disciplines within biology, the dichotomy
of having to deal with the context, which is everything in some cases, poses
severe design challenges. For example, can a system that describes cellu-
lar signaling also describe developmental genetics? Can the ontologies that
span different areas (e.g. anatomy, gene and protein data, cellular biology)
be compatible and connective? Can the detailed biological knowledge ac-
crued painstakingly over decades be easily integrated with high through-
put data? These are only few of the questions that arise in designing and
building modern data and knowledge systems in biology.

B. Ludäscher and L. Raschid (Eds.): DILS 2005, LNBI 3615, p. 1, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Curated Databases
(Keynote Talk)

Peter Buneman

School of Informatics and Digital Curation Centre,
University of Edinburgh

opb@inf.ed.ac.uk

Abstract. Measured in dollars per byte, the cost of data in some bio-
logical data sets exceeds that of “big science” data by several orders of
magnitude. This somewhat pointless observation does at least underline
the fact that biological databases are constructed and maintained with
a very great deal human effort—they are curated. So what are the issues
with curated data, and how well does current database technology serve
them?

In this talk I shall describe some of the new challenges to database
research that arise from curated databases and what my colleagues and
I are doing to tackle them. They include annotation, data provenance,
database archiving, data publishing and security. I shall also attempt
to summarise the work of the recently formed Digital Curation Centre,
which is concerned not only with these database-related issues but also
with the larger problems of ensuring that our scientific and scholarly
data is understandable not only by current users but is “curated” in the
sense that it will be usable in the future.

B. Ludäscher and L. Raschid (Eds.): DILS 2005, LNBI 3615, p. 2, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A User-Centric Framework for Accessing
Biological Sources and Tools�

Sarah Cohen-Boulakia1, Susan Davidson2, and Christine Froidevaux1

1 LRI, CNRS UMR 8023, Université Paris-Sud, Orsay, France
{cohen, chris}@lri.fr

2 Department of Computer and Information Science,
University of Pennsylvania, USA

susan@cis.upenn.edu

Abstract. Biologists face two problems in interpreting their experi-
ments: the integration of their data with information from multiple het-
erogeneous sources and data analysis with bioinformatics tools. It is dif-
ficult for scientists to choose between the numerous sources and tools
without assistance. Following a thorough analysis of scientists’ needs
during the querying process, we found that biologists express preferences
concerning the sources to be queried and the tools to be used. Interviews
also showed that the querying process itself – the strategy followed – dif-
fers between scientists. In response to these findings, we have introduced
a user-centric framework allowing to specify various querying processes.
Then we have developed the BioGuide system which helps the scientists
to choose suitable sources and tools, find complementary information in
sources, and deal with divergent data. It is generic in that it can be
adapted by each user to provide answers respecting his/her preferences,
and obtained following his/her strategies.

Availability: http://www.lri.fr/∼cohen/bioguide/bioguide.html

1 Introduction

Life sciences are continuously evolving so that the number and size of new sources
providing specialized information in biological sciences have increased exponen-
tially in the last few years,1 as well as the number of tools required to carry
out bioinformatics tasks. Scientists are therefore frequently faced with the prob-
lem of selecting sources and tools when interpreting their data. The diversity of
sources and tools available makes it increasingly difficult to make this selection
without assistance.

We firstly introduce a framework allowing to specify various querying pro-
cesses. Our work was developed following a thorough study of scientists’ needs
during querying and data management. After interviewing scientists working in

� This work was supported in part by the European Project HKIS IST-2001-38153,
the Fulbright Program as well as a Hitachi Chair at INRIA.

1 See the annual Nucleic Acids Research database issue (January).

B. Ludäscher and L. Raschid (Eds.): DILS 2005, LNBI 3615, pp. 3–18, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



4 S. Cohen-Boulakia, S. Davidson, and C. Froidevaux

various domains, we found that they expressed preferences concerning the sources
queried and the tools used. Moreover, this study emphasized the fact that the pro-
cess of querying itself – the strategy – varies from one scientist to another. We have
then designed the BioGuide system, which provides scientists with support dur-
ing the querying process. BioGuide assists the scientist with data searches within
sources, providing information concerning the sequences of sources to be consulted
and the tools to be used: the paths between sources to be followed.

We first describe the method used to assess scientists’ requirements, and
present the needs identified (section 2). We then describe the notion of strategy
(section 3) and the way in which we propose to manage preferences (section 4).
Section 5 introduces the formal framework and presents the general architecture
of BioGuide, explaining how it provides support for the querying process. The
biological significance of the results obtained will be presented in section 6.
Section 7 compares our work to previous work and concludes the paper.

2 User Requirements

2.1 Process: Interviews and Questionnaire

We started with a thorough study of user requirements (cf. BioGuide site). We
investigated the way in which scientists query sources and perform bioinformatics
tasks (in the spirit of [18] and [6]), paying particular attention to determining
why biologists query one source rather than another (preferences) and identifying
the steps of their querying process (strategies).

A questionnaire was developed based on lists of user requirements in three
kinds of documents: (i) survey articles [11] and reports of workshops on biological
source querying (ii) studies on data quality [14], [4], [15] and (iii) studies on user
guidance during the querying process, involving BioMediator [12], BioNavigation
[9] and DSS [2]. The questionnaire comprised 28 questions and was constructed
according to standard guidelines. As an illustration, four questions are provided:

– Choose a particular context from your own area of study and list some
biological queries that you frequently make.

– If several sources yield answers for your query, do you access all of them or
only few? If you query only a few, how do you proceed?

– In your mind, what is a ”high-quality” source/tool?
– When you look for data related to two linked entities (e.g. a gene and the

protein it encodes), how do you proceed (sources accessed, way of correlating
information, etc.)?

After collecting responses to the questionnaire, we conducted interviews accord-
ing to classical techniques. We sent questionnaires to 20 individuals, including
both biologists and bioinformatics specialists. Their research interests fell into
three main domains: studies of diseases, functional and structural genomics.

From the questionnaire, we identified 156 common queries. Some had almost
identical structures (e.g. the search for genes involved in breast or in bladder
cancer) and we grouped them together, giving a total of 119 distinct queries.
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2.2 Transparent Queries and Traceability

In most cases, neither the sources to access nor the tools to be used were specified
by the biologists in their queries. Instead, their queries involved only biological
entities and relationships between entities. An example of such queries is ”Re-
turn all contigs that map ’close’ to marker M on chromosome 19” which includes
the biological entities Contig, Marker and Chromosome and includes the
relationships ”maps close to” and ”(located) on”. We conclude that scientists
find it very useful not to have to specify the sources and tools that is, to make
transparent queries [10].

Follow-up interviews showed that scientists want to ask transparent queries
while being aware of the origin of the answers obtained. They want to
know the why-provenance [1] that is, which sources and/or which tools have
been used to calculate the data they obtain. Traceability is particularly impor-
tant for verifying results, drawing conclusions and testing biological hypothe-
ses [19].

2.3 Source and Tool Requirements

A more complex step in the querying process is the assembly of information be-
tween entities. From the sample queries, we observed that relationships between
entities are either explicitly stored in the sources or calculated by a bioin-
formatics tool. For example, in the query ”Return all contigs that map ’close’
to marker M on chromosome 19”, the fact that Marker M is on chromosome
19 must be stored in the data sources queried by the biologist. Conversely, the
relationship of ”close mapping” can be calculated (e.g. using Blastn). For each
calculated relationship between entities, we also determined which tools were
used to achieve it (e.g. Blastn) based on the interview information.

Different kinds of links between sources may therefore be distinguished: in-
ternal links (within the same source), cross-references (between different sources)
and tool-links. Internal links may be seen as a way of obtaining information on
one entity from another entity within the same source. Cross-references are hy-
pertext links from an entity in one source to complementary information in
another source, and are not necessarily symmetric (e.g. there are an increasing
number of specialized sources which crossreference GenBank but are not refer-
enced in return). Finally, tool-links are services provided by a source, yielding
links with entities in other sources. Each source may provide several different
services achieving a given relationship. For example, GenBank provides different
tools (e.g. Blastx, tBlastn) to enable users to carrying out ”similarity searches”
between the genes of GenBank and proteins of various sources.

It is also clear from interviews that scientists have preferences concerning
entities in sources and tools. One of the key issues facing bioinformaticians is
therefore to help the scientists to evaluate their confidence in sources and tools,
and to make use of this confidence in a semi-automatic querying process. We
return to this in section 4.
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3 Strategies

Interviews revealed that each scientist followed paths between sources and
queried the sources by first considering each entity for which information was
sought and then by linking information about entities by means of cross-
references or tools. Since information is collected entity by entity, each entity
is treated exactly once. However, the scientists differed considerably in other as-
pects of querying, in particular whether or not (i) they followed an order on the
entities, (ii) they were willing to explore other entities, and (iii) they were willing
to visit a source more than once. We term these query criteria Ord (Ordered),
OnlyGE (OnlyGivenEntities) and SourceOFA (SourceOnceForAll), respectively,
and call the combination of criteria the query strategy.

3.1 Querying Entities by Following an Order

The first criterion, Ord, determines whether the entities of interest are searched
in the given order or whether all orderings of the entities are considered. It is typ-
ically chosen when the scientists know that the desired information is provided
by the given ordering, as opposed to when they want to get as much information
as possible2. For example, if the scientists search for the chromosomal location
of the sequence of a given BAC (Bacterial Artificial Chromosome), they may ac-
cess a few sources containing BAC information and may follow cross-references
to sources providing information about chromosomal location. In this situation,
the scientists order the entities so as to start from the known entity and end
with the entity sought; only links from Bac to Chromosome are followed.
However, if the information sought is not available in the data sources, the bi-
ologists may browse the sources to obtain as much information as possible. The
two entities are therefore also considered in reverse order (from Chromosome
to Bac). Thus, they consider all the permutations between entities (from Bac
to Chromosome and from Chromosome to Bac).

3.2 Querying Only Given Entities

The second criterion, OnlyGE, determines whether the scientists are interested
in finding information using only the given entities, or whether they are willing
to explore additional entities that are biologically linked to the entities explicitly
sought. As an illustration, consider the previous example of scientists interested
in finding data on the chromosomal location of a given BAC b. If the scientists
do not find any information about the BAC b by querying sources for entities
Bac and Chromosome, they may consult sources providing information on
other entities, such as Gene, and try to determine the location of genes known
to be present on b. This makes it possible to determine the location of the
BAC b.

2 Note that if the entities are not ordered the non-symmetric aspect of links between
sources can be resolved.
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3.3 Querying a Source Once for All

The third strategy criterion, SourceOFA, determines whether or not a given
source can be visited more than once. The second approach is primarily adopted
by scientists who wish to validate information already obtained. Visiting a given
source multiple times makes it possible for the biologist to check whether the
information obtained - and to which further information has been added via the
browsing of several sources - has remained coherent. This process is particularly
important when the data reflects expertise, as experts may disagree, resulting
in divergent data. Continuing with our example, the scientists may query the
source MapView to obtain data about a given BAC and follow a cross-reference
to GenBank to find the chromosomal location of that BAC. GenBank is queried
here because it contains all the available genomic data. However, GenBank is
a large public data repository, containing information originating from many
different laboratories; therefore, some of the data it contains may be erroneous.
The biologists then follow links from localization information in GenBank to the
same kind of information in MapView to compare the results.

3.4 Combining the Criteria

Interestingly, criteria may be combined, generating a wide variety of querying
processes. Scientists typically adopt the simple strategy where the criteria Ord,
OnlyGE, SourceOFA are chosen. If the results obtained are not satisfactory, the
scientists may then drop one of these criteria, e.g. allow the entities to be queried
in any order. Section 6 shows how following strategies allows the scientists to
find complementary data and to deal with divergent data. We will also see how
allowing them to choose his/her strategy represents a real challenge in the
development of systems providing support for the querying process.

4 Management of Preferences

Our goal is to get as much information as possible from the sources using al-
ternative paths that follow the chosen strategy. Unfortunately, the number of
alternative paths may be very large. BioGuide therefore allows users to state
preferences to filter and rank the paths considered.

4.1 Initializing Preferences

Responses to our questionnaire showed that the reason why a source or tool
is preferred varies between scientists. Interviews revealed that about 30 criteria
determine preferences (e.g. reliability, completeness and ease of use), mainly in
association with entities in sources and links between them. Some users even
base their preferences for tool-links on the sources which provide them. We
thus asked and helped the users to quantify the confidence that they have in
the components of each path, i.e. entities in sources and links between them.
To guide the user, initial confidence values for components of a path can be
automatically generated using information such as the average speed of a tool,
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Fig. 1. Initializing Preferences

or the source-entity cardinality (i.e. an estimate of the number of instances of
an entity in a source) [9]. These initial values may then be improved, adjusted
or rectified by comparing the values obtained for all the source-entities related
to a given set of entities and/or to a given set of sources. BioGuide provides a
user-friendly interface (Fig. 1) through which the user can adjust the improved
initial values.

4.2 Using Values of Preferences

Firstly, we introduce the notion of level of filter preference and distinguish
three different levels: (i) global, (ii) intermediate and (iii) local. The global level
corresponds to a filter on a path, i.e. on the sequence of sources and links taken
as a whole. Filters at the intermediate level focus on a given entity or relation-
ship. At the local level, filters relate to a given source or a given link, allow-
ing the biologist to name the source/tool to use. Section 6 will illustrate this
notion.

If the number of alternative paths is still too large, we can sort them ac-
cording to the biologist’s preferences [2], [9]. To do this, we must associate a
value with each path. The way in which the global value of a path is computed
from the confidence assigned to its components (source-entities and links), i.e.
the sort-operation used (e.g. the weighted sum), can vary (cf. BioGuide site).

5 BioGuide: Querying According to Strategies

In this section we introduce the architecture of BioGuide (see Fig. 2) and then
describe more precisely its two main modules: EntityPathsGenerator(EPG) and
SourceEntityPathTranslator (SEPT).
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5.1 Architecture

From a query expressed in natural language (Qnat), the scientist first has to
extract the underlying biological entities and the relationships between them
(QentRel). In BioGuide, this pre-process is performed by the user, but could
easily be automated, as described by [16]. BioGuide supports biologists in this
task by providing a graph of entities (described in the next subsection).

The steps (I) to (IV) of the BioGuide process are shown in Fig. 2. (I) The
initial user’s query Q consists of (i) QentRel, the entities and relationships un-
derlying the user’s query; and (ii) the choice of the user concerning entity related
strategy criteria (Ord and OnlyGE ). (II) From Q, the EPG module yields Pe,
the set of paths in the graph of entities generated according to the entity re-
lated strategy criteria. (III) The extended user’s query Qse consists of (a) Pe,
the output of the EPG module, (b) the choice of the user concerning the strat-
egy criterion SourceOFA, and (c) the user’s preferences. (IV) Using Qse and the
source-entities graph, the SEPT module generates the list Lpse of paths between
source-entities that can be used to retrieve the data.

Fig. 2. BioGuide architecture

5.2 EntityPathsGenerator : Transparency and Strategies

We now present how the EPG module processes and we describe its components.

Graph of Entities: We extracted entities and relationships from the collected
queries and used the answers given during interviews to build the graph of enti-
ties. The nodes are the biological entities and the edges are the biological rela-
tionships between them (see Fig. 3). This graph expresses biological knowledge
(e.g. proteins are encoded by genes), bioinformatics knowledge about tools (e.g.
proteins and genes may be similar) and knowledge about sources (e.g. informa-
tion on disease often cross-reference information on 3D-structure). Labels on
the edges specify the kind of semantic relationship between these entities. The
users can make use of this graph to build questions by selecting entities and, pos-
sibly, relationships between these entities. Moreover, if they do not want to only
consider the given entities of their query, they may characterize the additional
entities and relationships that they would like to consider or to avoid. This can
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Fig. 3. Graph of Entities (Subpart)

be done by explicitly referring to entities and relationships or by specifying the
kind of relationships (e.g. those achieved by tools) used to reach these additional
entities. We now present more formally the notion of initial query.

Input of the EPG Module: Q. The initial user’s query is Q={LEnt, SRel,
StrategyE, SnoEnt, SnoRel, PropertiesRel} where LEnt and SRel denote the list
of entities and the set of names of relationships (possibly empty), respectively;
StrategyE contains the choice of the user concerning the strategy criteria Ord
and OnlyGE ; if OnlyGE is not chosen by the user then (a) s/he may specify
which entities (or relationships) s/he wishes to avoid, by adding them to the set
SnoEnt (or SnoRel) and (b) PropertiesRel is a conjunction of properties expressing
which kinds of relationships can be used to reach additional entities.

As an illustration, consider the previous example in which the user wishes
to find information connecting a given BAC and its Chromosomal location
(LEnt=[Bac, Chromosome]) without choosing an order between entities and
considering not only the given entities of his/her query (StrategyE ={}). The
user may wish to avoid distant entities such as EST (SnoEnt={EST}) and may
choose to follow only non-tool relationships(SnoEnt={}, SnoRel={}, Properties-
Rel=OnlyNonTool).

The EPG module is based on an algorithm which aims at calculating from
Q the corresponding set of paths in the graph of entities. As an illustration,
the following paths are returned by EPG from the previous query: (Bac isOn
Chromo)3, (Chromo isOn Bac), (Bac isOn Gene), (Gene isOn Chromo)4.

3 Chromo will stand for Chromosome.
4 Relationships between entities are symmetric.
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Output of the EPG Module: Pe. More formally, the EPG module calculates
Pe, the set of paths in the graph of entities which respect the following four
properties. (1) Each path in Pe contains all the entities and relationships specified
by the user and visits each entity once only. Moreover, (2) if the user has chosen
the strategy criterion Ord then the entities in each path must be considered in
the order indicated in the list LEnt, and (3) if the user has chosen the criterion
OnlyGE then each entity of each path must belong to LEnt. Conversely, (4)
if OnlyGE has not been chosen, paths may consider additional entities and
relationships (i.e. not specified in LEnt and SRel). In this case, these entities
and relationships must be different from those in SnoEnt, SnoRel and the edges
followed must satisfy conditions expressed in PropertiesRel.

The EPG algorithm is sound and complete with respect to these properties.

5.3 SourceEntityPathTranslator : Preferences and Strategies

The next step involves finding the sources containing entities and the links giving
relationships, which is the aim of the SEPT module that we present with its main
components here-after.

The Graph of Source-Entities: After carrying out a thorough study of the
sources and tools mentioned in interviews, we designed a graph of source-entities
(see Fig. 4). Each node represents an entity in a source. Arrows indicate the
links between a given entity in a source and another entity (in the same source
or another source). Labels on arrows specify the kind of link. CrossRef and
Internal labels indicate cross-reference and internal links, respectively. Other
labels (such as Blast) refer to tools.

More formally, let E be the finite set of biological entities (e.g. Bac, Gene),
and R be the set of pairs of entities linked by relationships. Let Labr be the finite
set of labels of relationships between entities (e.g. SimilarTo), S be a finite set
of data sources (e.g. GenBank), N⊆SxE be the set of pairs (source,entity) (e.g.

Fig. 4. Graph of Source-Entities (Subpart: only source-entities relating to Bac, Chro-
mosome and Gene)
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(GenBank,Gene)), A be the set of directed links (arrows) between (source,entity)
pairs, and Labl be the finite set of labels of links (e.g. CrossRef, Blast) between
(source,entity) pairs. Labl contains the names of the links achieving relationships,
the names of which are in Labr. In the rest of the paper we will use the following
abbreviations to mention sources: GB, LL, RF, MV, MVF and UG stand for
GenBank, RefSeq, LocusLink, MapView, MapViewFish and UCSCGenome.

Definition 1. The GraphOfSourceEntities is a directed labelled graph given
by the 3-tuple (N,A,flabl), where (1) N is the set of nodes given as (source,entity)
(2) A ⊆ N x N is the set of arrows (directed links between nodes)
(3) flabl: A → Labl provides the label of each arrow.

Definition 2. A path in GraphOfSourceEntities is a sequence of pairs of
arrows and labels, (a1, l1), (a2, l2), ..., (ak, lk) such that, for i (1 ≤ i ≤ k), ai is
an arrow from the node ni−1 to the node ni (adjacent arrows) and such that
ni �= nj (no cyclic path), for i �= j, (0 ≤ i, j ≤ k). The length of the path is k,
the number of arrows.

The GraphOfSourceEntities is constructed so that: (i) (s,e) is a node if and
only if the source s contains the entity e and (ii) a=(s,e) l (s’,e’) is an arrow if
and only if (1) the source s provides a link labelled by l from entity e to entity
e’ of source s’ and (2) there is a relationship r in the graph of entities between
e and e’ such that l achieves the relation r.

Using the GraphOfSourceEntities the users can specify their filter preferences.
In this step, the users may also define their sort preferences and select whether
or not they wish to consider each source once for all. We present more formally
the notion of extended query based on the graph of source-entities.

Input of the SEPT Module: Qse. The extended query of the user (cf.
Figure 2 step (III)) is Qse ={Pe,PrefCond, Lrank,Oprank, StrategyS} where Pe

is the set of paths in the graph of entities obtained from Q (cf. section 5.1);
PrefCond is a boolean formula expressing filter preferences on paths of source-
entities (cf. section 4.1); Lrank is a list of pairs (entity, preference criterion)
used to rank the paths; Oprank is the sort-operation chosen to calculate the
value of the preference on each path from the value of preference criteria for
its components (pairs of source-entities and links); and StrategyS describes the
choice of the user concerning the criterion SourceOFA (cf. section 3.3).

The SEPT module is based on an algorithm which aims at calculating from
Qse the corresponding list of paths in the graph of source-entities, Lpse. An
example of path in Lpse is pse=(GB,Bac) BlastN NCBI→ (RS,Gene)

CrossRef→ (LL,

Gene)
CrossRef→ (GB, Chromo). Let us mention that this path have been generated

using the path pe=Bac mapsWith Gene isOn Chromo of Pe.

Definition 3. Let us consider pe = e1r1...rt−1et a path of Pe, pse = (s1, e1)
l1(s2, e2) ...ln−1(sn, en) a path of Pse and m the number of entities in the query.
pse corresponds to pe if and only if (1) the set of entities of pse is equal to
the set of entities in pe and entities in pse appear in the same order as in pe ;



A User-Centric Framework for Accessing Biological Sources and Tools 13

(2) several source-entities concerning the same entity are possible in pse (m ≤
n) but they must be consecutive and linked by cross-references ; (3) let (si, ei)
li (si+1, ei+1) be an arrow of pse (1 ≤ i ≺ n), if ei and ei+1 are occurrences of
two distinct entities, x and y, there must be an arrow x r y in pe such that li
achieve r (∃j, 1 ≤ j ≺ m, x = xi, y = xj+1 and r = rj).

Let us return to our example. The path pse corresponds to pe since: (1)
entities are the same and are in the same order; (2) the source-entities related
to the Gene entity are consecutive and linked with cross-references; and (3) the
BlastN NCBI tool and a cross-reference achieve the relationships mapsWith and
isOn.

Output of the SEPT Module: Lpse. From Qse the SEPT module yields
Lpse a list of paths in the graph of source-entities. These paths satisfy the three
following properties: (1) Paths of Lpse correspond to paths of Pe according to the
previous definition; (2) each path in Lpse satisfies the preference filters; (3) the
list of paths in Lpse is ranked following sort-preferences specified in Oprank and
Lrank. The SEPT algorithm is correct and complete with respect to these
properties.

5.4 Towards a Meaning for Source-Entities Paths

We provide below the meaning of paths between source-entities from a relational
database perspective: (i) each node (s,e) in the graph of source-entities is a view
over the source s of the entity e (represented by a table s e); and (ii) each link is
a kind of join. More precisely, tool-links are mapped to a particular conditional
join, the similarity join, in which data are joined if and only if they are very
similar [17]. We considered several similarity functions based on those used by
tools (Blast etc.). Furthermore, internal and cross-reference links are mapped
to a link-join. A link-join between two tables si ek and sj ek’ (respectively re-
lated to source-entities (si, ek) and (sj, ek′)), with id as identifier (primary key),
is defined by using the table Link(IdBeg, SourceBeg, IdEnd, SourceEnd) as fol-
lows si ek ��(si ek.id=Link.idBegin) Link ��(sj ek′.id=Link.idEnd) sj ek′. Link contains
internal and cross-reference links. A tuple (i1, s1, i2, s2) is in Link if there is a
cross-reference (or internal link) from a biological data identified by i1 in s1 to
another data identified by i2 in s2.

Consequently, depending on whether the Ord criterion is chosen or not, dif-
ferent paths are generated. Consider two ordered entities e1 and e2: if only one
tuple of the form (i2, s2, i1, s1) concerns s1 and s2 in the Link table, then no
path between s1 and s2 is generated. Conversely, if Ord is dropped then the
path (s2, e2) → (s1, e1) is generated. Furthermore, if the criterion OnlyGE
is dropped, new data may be found due to the ability to introduce new en-
tities. Conversely, if SourceOFA is chosen then some links may be missed.
With three entities, paths of the form (s1, e1) → (s2, e2) → (s1, e3) cannot be
calculated.
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5.5 Complexity

The complexity of BioGuide is related to the number of source-entities paths
generated. The worst case occurs when the graphs of entities and source-entities
are complete. Table 1 gives the number of entities paths generated by EPG
according to the strategy followed. q is the number of entities of the query, n+q
is the number of entities in the graph of entities.

In any strategy where Ord is dropped (cases b and d), all permutations
between the q entities of the user’s query are considered. In the case where
OGE5 is dropped and Ord is taken (c), all the paths with at most i additional
entities between q entities are considered (n is the upper bound of i), the first
entity and the last one staying fixed. Then, for each entity e, the maximal number
of paths of source-entities only focused on e (i.e. each source-entity concerns e)
generated is given by the following formula:

∑
nbse
k=1

nbse!
(nbse−k)! where nbse is the

number of sources that contain the entity e (k is the number of sources involved
in the paths of source-entities).

In the worst case, the time complexity is very high. However, the queries
identified in this study consider only a small number of entities at the same time
(only 8 % of the queries had more than three entities) and the source-entities
paths desired by the user rarely exceed 6 source-entities. Moreover, BioGuide
generates paths that are shorter than 15 source-entities long in less than 1 second.

Table 1. Number of paths depending on the criteria combination

a. {OGE, Ord} b. {OGE} c. {Ord} d. no criteria

1 q!
∑ n

i=0
(i+q−2)!
(q−2)!

q(q − 1)
∑ n

i=0(i + q − 2)!

6 Results

6.1 Using Strategies

The ability to use different strategies and alternative ways of retrieving data
across sources, combined with the ability to use tools and take user prefer-
ences into account, was considered very useful by the biologists interviewed. A
knowledge of which tools may be used for a particular bioinformatics task was
considered important in a variety of domains, such as the annotation of newly
acquired genome with sequence similarity search and 3D-structure analysis with
structure comparison. Moreover, all of the biologists questioned used strategies
where they do not limit them to query the entities of their query. For ex-
ample, in cancer studies knowledge about proteins and pathways is obtained
using Function as an additional entity. In protein-protein docking studies, bi-
ologists may use StructuralDomains to link Protein and 3D-structure.
In annotation projects, the Chromosomal location of Introns is found us-
ing data about ESTs. Furthermore, more than half the interviewees frequently

5 OGE stands for OnlyGE.
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adopted strategies where no order is fixed between entities. Only when the goal
of the search was to find very high-quality data did biologists adopt strategies
with a fix order between entities. This is the case when searching for samples
for expensive experiments (e.g. crystallization of Proteins). Finally, strategies
where a source is queried once for all are adopted by biologists for only a
very small number of sources in which they have a high level of confidence. In
most cases, strategies where sources are queried several times are adopted to
ensure that the results obtained are reliable.

6.2 Example of CGH Analysis

A principal example of the use of BioGuide concerns the task of positioning
genomic BAC clones on the draft of the human genome sequence [2]. In CGH
(Comparative Genomic Hybridization) array experiments, BACs are used to
identify new cancer-related genes and it is of the utmost importance to know
the precise position of BACs on the genome sequence. We will study the follow-
ing query: ”Where are all the BACs of my CGH array located on the genome
sequence?” where the underlying entities are Bac and Chromosome.6 We ini-
tially assumed that the scientist adopted a simple strategy choosing all of the
criteria (Ord, OnlyGE, and SourceOFA). As for preferences, we assumed that the
user indicated the following filters: no source with low completeness whatever the
entity is (global level), no source providing Chromosome with a medium relia-
bility (intermediate level), and the ensEMBL source should not be queried (local
level). The user also indicated that the results should be sorted by considering
completeness for Bac and reliability for Chromosome. The sort-operation is
the weighted sum. Based on these filters and strategy criteria, BioGuide yielded
seven source-entities paths. Instantiated data have been got using BioGuide
within the HKIS platform7 [2].

The results given by these paths are complementary, providing information
on different instances of BACs. They also give complementary results concern-
ing single instances of BACs. For example, the path (MVF,Bac) Internal→ (MVF,
Chromo) localizes BAC RP11-89F21 on chromosome band 17p11.2 whereas the
path (UG,Bac) Internal→ (UG,Chromo) is more precise, giving the exact position
of this BAC on the chromosome sequence (15,021,683-15,022,225). More globally,
these source-entities paths yield the location of about 80% of the BACs.

Let us assume that the user then tries to obtain information about the
20% missing BACs by adopting a more complex strategy without OnlyGE. The
user also chooses to follow relationships achieved by tools, and not to consider
Marker as an additional entity. A new path of entities is generated with Gene
as an additional entity. In the corresponding source-entities paths, all the missing
BACs can now be located. For example, due to the path (GB,Bac) BlastN NCBI→
(RS,Gene)

CrossRef→ (LL,Gene)
CrossRef→ (GB,Chromo) the chromosomal location

6 Sources were queried on January 3, 2005; more details on this example are available
from the BioGuide web site.

7 http://www.hkis-project.com
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of BAC RP11-782H1 was found. More precisely, this BAC (entry AC025749 in
GB) mapped with (using the BlastN tool from NCBI) the gene P85B (entry
NM 005027 in RS, which cross-refers entry 5296 in LL), which is is located on
chromosome 19 (in GB PIK3R2 entry).

Finally, let us assume that the scientist then analyzed the results obtained.
Several divergent locations were produced by these paths for the BACs CTD-
2012D15 and CTD-2008I6. Indeed, BAC CTD-2012D15 may be considered to be
located on chromosome X or 11. As sources locating the BAC on chromosome
X (GB and MV) are considered less reliable than those locating the BAC on
chromosome 11 (UG and MVF), the user is likely to consider it more proba-
ble that BAC CTD-2012D15 is located on chromosome 11 [2]. Conversely, the
sources involved in the paths which locate the BAC CTD-2008I6 on chromo-
some 3 or 17 (UG and MVF) are considered to be equally reliable. The biologist
must therefore explore new paths to correlate these pieces of information, and
does it by adopting a strategy without SourceOFA and by considering tools-
relationships between Bac and Chromosome. Consequently a new path is gen-
erated: (UG,Bac) Blat UCSC→ (UG,Chromo). The results provided allow the user
to conclude that BAC CTD-2008I6 is duplicated in the genome, and is present
on both chromosomes 3 and 17.

Due to its multiple-strategies approach, BioGuide enables the users to make
the most of the available data and guides them to deal with divergent data.

7 Discussion and Conclusion

Based on a thorough study of scientists’ needs, we have designed a user-centric
framework to specify the notions of queries, preferences and strategies. From
this framework we have proposed and implemented the BioGuide system which
calculates the paths between source-entities. Then, we have presented the archi-
tecture of BioGuide and have provided a very easy-to-use implementation.

Over the last few years, three systems considering paths between sources have
been developed: Biomediator [12], Bionavigation [8] [9] and DSS [2]. We sum-up
the differences between our approach and these works. Firstly, the underlying
query languages of [9] and [12] [13] are formal query languages: a regular expres-
sions based query language and an XML-based path language called PQL, re-
spectively. Following our user-centric approach we have proposed a user-friendly
graphical query language. This language enables to express the strategy cri-
teria which came out of the user requirements. Any query with a strategy com-
bining the presence/absence of the OnlyGE and Ord criteria can be expressed
using the query languages of [13] and [9]. Note that writing such queries may be
a complex task (e.g. if Ord is dropped then the user has to enumerate all the
possible orders between entities of his/her query). Finally, [12] and [9] require
the SourceOF A criterion to be present ([12] and [9] do not provide a way of
visiting a given source several times in a given path). In DSS, there is only one
available strategy where the OnlyGE criterion is present and the other criteria
are dropped.
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Furthermore, each of these systems considers user preferences at different
levels: [2] considers only global preferences whereas [9] considers both global and
intermediate preferences (called meta-data in [9]). Only BioGuide considers all
levels of preferences as far as it allows to deal with local preferences (sources
can be named) too. Last but not least, BioGuide differs from the previous works
in that it is based on labelled-graphs (graphs of entities and source-entities) in
which two given entities (resp. source-entities) may be related by several biolog-
ical relationships (resp. links like cross-references or tools). Therefore BioGuide
yields many more alternative paths.

BioGuide thus provides a framework which is general enough to take into
account all the abilities (strategies and preferences) of current systems and
enables to specify new preferences and strategies. Its implementation allows
these abilities to be managed in a simple yet unified and graphical way. We
have shown the benefit of BioGuide by highlighting the biological relevance of
the alternative paths obtained, through examples in various biological domains.
BioGuide has been implemented and is very flexible allowing users to adapt the
graphs and the preferences according to his/her needs. It is available for use at
http://www.lri.fr/∼cohen/bioguide/bioguide.html.

We are currently adding methods to filter and rank the paths in the spirit of
[9]. Moreover, as BioGuide is architecture-independent we are studying its use
in different integration systems: browsers (SRS [7]) but also mediators (K2 [3]).

Acknowledgments. We thank Olivier Biton for his help in the implementation
of BioGuide. For the interviews, we are very grateful to biologists of IGM, Curie
Institute, CIRAD, IBP, MIG, and IBBMC.8
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Abstract. We often realize that communicating with other colleagues who are 
studying similar topics helps to identify information relevant to our area of 
study, which otherwise may not have been found. We wish to accelerate acqui-
sition of collective knowledge in a defined area by identifying specific spheres 
of inquiry. Such spheres correspond to groups of people who are experts in a 
field. In this paper we provide a systematic way to gain knowledge from their 
online search activity, and enable them to organize and share their search find-
ings for further analysis. We have built a prototype system, BioLog, to help 
biomedical researchers share this implicit knowledge among their peers and 
store their access patterns into a central system for reuse. BioLog has been de-
ployed it in two labs within TGen as a pilot study. The data has been gathered 
and analyzed by preliminary text-mining and collaborative filtering methods. 

1   Introduction 

We often realize that communicating with other colleagues who are studying similar 
topics helps to identify information relevant to our area of study, which otherwise 
may not have been found.  Hence, there have been many organizational efforts and a 
variety of tools produced to support sharing of knowledge, as well as data, within 
communities of shared research areas.  The collective knowledge of sets of experts is 
different from the massive, general, text archives of information that we typically rely 
on since it is limited to a particular realm of findings.  It is further different in that it 
reflects the experts' current models of what that field suggests and it is dynamic, and 
constantly changing as a result of researchers search activity.  While data sharing 
among experts is improving constantly, model sharing has not improved.  We wish to 
accelerate acquisition of collective knowledge in well defined areas by identifying 
specific spheres of inquiry and corresponding groups of people. We also provide a 
systematic way to gain knowledge from their online search activity, and enable them 
to organize and share their findings for further analysis. 
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One place where experts’ models are evident for further analysis and inferencing is 
their interaction logs with archived information sources. For example, PubMed [1] is 
a well-known repository of biological literature and serves as an invaluable biological 
repository.  It is frequently used as a first stage tool in creating and refining new hy-
potheses.  An expert's prior understanding of the biological relationships and their 
emerging models will be implicit in their search patterns of PubMed and other such 
biomedical resources.  

Biologists go to PubMed when they have a model with some supporting evidence 
but want to seek further support.  It is also sought when they have a incomplete model 
with some missing elements or a fragmented model with missing relationships.  They 

type in keywords and PubMed 
retrieves a list of keyword matching 
abstracts.  Researchers scan 
through the list and identify a sub-
set of abstracts that might be rele-
vant to their model – most likely 
based on the titles and the authors 
of articles.  Once they identify the 
subset of articles, they follow-up on 
those articles and read the corre-
sponding abstracts.  Sometimes, 
they home in on their by iteratively 
narrowing down their keyword 
searches.  However, they find it 

more informative to talk to their expert colleagues, who are studying similar subjects, 
to obtain recommendations and leads about other relevant articles that might contain 
missing links, as illustrated in Figure 1. 

One problem is that researchers often do not know whom to talk to.  It could be 
someone in their lab or someone at another institute.  A precursor to collaboration is 
to first find whom to work with or ask for help. 

In most cases a biologist has some ‘handles’ (such as a set of nucleotide sequences 
or gene names) and he or she searches the repositories using those handles. For exam-
ple, a biologist trying to figure out (parts of) a pathway that explains a particular phe-
nomena may start with a list of gene and protein names as handles. Starting with one 
of those names, when one searches a repository like PubMed, it is likely that a large 
number of matches will be found. For example, the search term `g-protein' leads to 
51,286 matches in PubMed. The researcher is then faced with the problem of narrow-
ing down the articles that are relevant to his topic of investigation by adding addi-
tional keywords or trying alternative keywords. The time it takes to find the right 
matches plays a huge role in the overall timely success of the quest. A biomedical 
researcher would benefit tremendously if the various resources would rank the links 
in a way that matches her own priority. The situation here is closer to recommender 
systems such as the ones used in Netflix.com or Amazon.com where the system rec-
ommends movies and books respectively based on the users’ past interaction with the 
system, the users’ feedback (in terms of ratings in case of Netflix.com) and the global 
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knowledge extracted from the web log of all the users as well as the corresponding 
web content.  

We have built a helper application, named BioLog, to archive scientists’ access 
pattern of PubMed of NIH/NCBI as well as the client software that allows users to 
browse through group specific archives. The system logs the user identity, search 
keywords used, list of matching articles, set of followed articles, and the amount of 
time spent on each abstract.  We also extract list of gene names using a state-of-the art 
gene/protein extractor, the Abner [17] system, from each abstract. We developed 
preliminary recommender algorithms based on gene-to-gene, abstract-to-abstract and 
user-to-user relevance networks by using a combination of collaborative filtering and 
content-based filtering techniques. BioLog system automatically recommends alterna-
tive lists of genes, articles and other researchers upon each keyword search.  

In this paper we propose a recommendation algorithm based upon a clustering 
technique. Clustering is a technique to group items or data points that are similar in 
a given context.  It has been widely used for many quantitative studies, including 
gene expression data analysis [9,10].  This is a natural choice of approach to find 
relevant or similar set of articles or genes given co-observations of genes and arti-
cles.  A similar set of articles may represent a specific research subject, and a simi-
lar set of genes may indicate members of a regulatory network.  However, in the 
context of high dimensional datasets such as those relating PubMed articles, genes, 
and users, where the datasets are wide and sparse, with many irrelevant dimensions, 
it is difficult to find relationships that exist in subspace of the dataset. Subspace 
clustering [11] is a form of unsupervised machine learning that seeks to uncover 
groups of objects that are related in terms of only a subset of the attributes (dimen-
sions) in the dataset. In our effort to identify similar articles or genes, when the 
number of genes runs over tens of thousands, the number of users in tens of thou-
sands and the number of articles in millions, but the number of users in a group who 
access articles being relatively rather small, we demonstrate that subspace cluster-
ing is useful and effective.  

The rest of the paper is structured as follows. Section 2 presents the related work. 
Section 3 is the system flow. Section 4 is the system design. Section 5 presents rele-
vance networks. Section 6 presents the BioLog’s recommendation algorithm. Finally, 
Section 7 presents our preliminary pilot studies. 

2   Related Work 

Collaborative filtering (or recommender systems) predicts products or topics a new 
user might like by using a database about other users past preferences. These systems 
are popular for their use on e-commerce web sites, where the systems use input about 
a customer's interests to generate a list of recommended items.  

In Memory Based Algorithms [2] the task of collaborative filtering is to predict the 
votes/interests of the active user from a database of user votes from a sample or popu-
lation of other users. The strategies mentioned in the memory based algorithms can be 
used in our current problem of recommending abstracts and users.  The user database, 
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which is the log of browsing history in our case, contains information of the various 
abstracts accessed by the users in the system. We can construct a user-abstract prefer-
ence/access table, which is analogous to the user-item information mentioned earlier. 
Based on this information, we could compute the similarity between pairs of users. 
Based on the similarity, other un-accessed abstracts could be recommended. Using 
either of the similarity based metrics, similar users can be recommended too. The 
user-abstract table/matrix constructed from the log would be very sparse since each 
user would have accessed an insignificant percentage of the total number of abstracts 
(from PubMed). The Pearson’s correlation based or the vector based similarity [3] 
would not yield good measures if there are very few abstracts in common between 
two users. Another major pitfall of this approach is in regard with its scalability. 
Recommendations at runtime for the active user would require the system to scan 
over the complete database to compute the similarity metrics between the active user 
and the other set of users and then uses the weights over the common set of abstracts 
for the selected users. 

Probabilistic Cluster Models [4] is a model based method, in which the learning 
phase can be done offline. Quick recommendations can be given in real time, thereby 
making the recommendation system scalable.  A crucial pitfall in this approach is the 
Bayesian assumption that the conditional probabilities of the variables given the class 
are independent. This may well not be the case in our domain. The probabilities of the 
occurrence of genes given the class, in a given cluster might not be independent with 
respect to each other. In fact, genes identified in a cluster might be strongly corre-
lated. On the other hand, evaluation results given by the authors for this approach do 
not seem to be impressive. Other approaches based on correlation outperform this 
model on most of the datasets. 

Clustering is a technique to group items or data points that are similar in a given 
context.  It has been widely used for many quantitative studies, including gene ex-
pression data analysis  [9,10].  This is a natural choice of approach to find relevant or 
similar set of abstracts or genes given co-observations of genes and abstracts.  A simi-
lar set of abstracts may represent a specific research subject, and a similar set of genes 
may indicate members of a regulatory network.   

As datasets become larger and more complex, clustering performance often de-
grades due to the curse of dimensionality [12, 13]. In high dimensional data, clusters 
often exist in subspaces [14], and many of the dimensions are often irrelevant. These 
irrelevant dimensions confuse clustering algorithms by hiding clusters in noisy data. 
In very high dimensions it is common for all of the instances in a dataset to be nearly 
equidistant from each other, completely masking the clusters.  Feature transformation 
and feature selection techniques have been used to address the difficulties in cluster-
ing high dimensional datasets [11]. However, neither of these techniques is suitable 
for finding subspace clusters. Feature transformation such as Principle Components 
Analysis (PCA) attempt to summarize the data by creating new attributes which are 
combinations of the original attributes in the dataset. Since relative distances are pre-
served, the effects of the irrelevant dimension remain. Also, the new attributes can be 
very difficult to interpret. Feature selection techniques attempt to select the most  
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relevant attributes over the whole dataset. While successful at removing noisy attrib-
utes [15], feature selection does not allow us to discover clusters that exist in different 
subspaces. Subspace clustering is a form of unsupervised machine learning approach 
that we utilize in this paper to uncover groups of objects that are related in terms of 
only a subset of the attributes (dimensions) in the dataset. In our effort to identify 
similar abstracts or genes, when the number of genes runs over tens of thousands, the 
number of users in tens of thousands and the number of articles in millions, but the 
number of users in a group who access articles being relatively rather small, subspace 
clustering is useful and effective. 

Instead of matching the active user to similar customers, item-to-item based ap-
proach matches each of the user’s purchased and rated items to similar items, and then 
combines those similar items into a recommendation list. To determine the most-
similar match for a given item, the algorithm builds a similar-items table by finding 
items that customers tend to purchase together. Unlike the traditional collaborative 
filtering techniques, this algorithm’s online computation scales independently of the 
number of customers and number of items in the product catalog. The above men-
tioned algorithm can be modified, replacing items with abstracts. This way, we can 
build up a similar-abstracts table by finding abstracts that users tend to look together. 
As more users tend to access a set of related articles, their pair wise similarity scores 
go up. Using the similar-abstracts table, related articles can be recommended. As 
mentioned earlier, this method’s online computation scales independently to the num-
ber of abstracts and the set the genes, since we would be computing the similarity 
tables offline. Unlike traditional collaborative filtering techniques, the algorithm also 
reportedly performs well with limited user data, producing high-quality user data, 
producing high-quality recommendations.  The offline computation of the similarity 
tables is extremely time intensive, with O(N2M) as worst case, where N is the number 
of abstracts/genes and M is the number of users/abstracts respectively for the two 
above mentioned adaptations to the domain.  

3   System Flow 

As shown in Figure 5, a biologist initially goes to PubMed types in a keyword search 
query and PubMed will fetch a list of articles matching the keyword. The biologist 
scans through the list and identifies a subset of articles that might be relevant to their 
inquiry, most likely based on the titles and the authors of articles.  Once they find the 
articles of high relevance, they will click on one of the articles and read the abstract to 
make sure if it is really useful to what they are looking for. Biolog tracks these Web 
pages in a database log and archives them in a central cache repository with all rele-
vant meta information. Currently we are using a MySQL backend but the module has 
been built to be database independent. The cached documents are also indexed using a 
high performance text search engine in order to support keyword searching in the 
cached documents. Next, gene-to-gene and abstract-to-abstract relevance networks are 
computed and the recommendation system uses these models. 
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4   Biolog System Design 

We have built a helper application for Internet Explorer® (IE) to archive scientist’s 
accessing pattern of vast archive of biomedical literatures at PubMed of NIH/NCBI. 
The archival process consists of a logger, which is responsible for capturing web 
pages during browsing based on domains which are to be tracked. The capturing of 
data is in terms of logging Meta information in the database as well as caching of web 
pages in a central repository. 

In Figure 2 below the logger uses browser helper objects (BHO) [5] to store html 
pages in the file system cache as well as all relevant meta information such as  
machine name, URL, time-stamp etc to the database.  

Fig. 2. Logger Architecture 

Browser Helper Objects are components — specifically, in-process Component 
Object Model (COM) components — that Internet Explorer will load each time it 
starts up. Such objects run in the same memory context as the browser and can  
perform any action on the available windows and modules. Further, a new instance of 
the BHO is created each time a new browser window is created.  In its simplest form, 
a BHO is a COM in-process server registered under a certain registry's key. Upon 
start up, Internet Explorer looks up that key and loads all the objects whose CLSID is 
stored there. 

Logging of dynamic data on the Web has been a problem. By dynamic data we 
mean the data input by the user at run time during filling of form elements. We 
planted our logging module into the IE browser and this architecture can be imported 
to any other browser with plug-in support. The problem of trapping the dynamic data  
can be tackled during the pre-navigation step, which is, as soon as the dynamic data is 
submitted and before the response page is loaded. During navigation, we trap the 
BeforeNavigation event and at that precise moment we capture a snapshot of the cur-
rent dynamic page DOM and inspect its form elements for dynamic attribute-value 
pairs. 

The logger, a plug-in program to IE, is activated only when scientists go to Pub-
Med and type in keywords to search through the archive.  Then, it records the key-
words used, the set of articles displayed, and the set of articles that scientists try to 
read by clicking on the link to its abstract.  It also records the time spent on an ab-
stract as well as other relevant information described above. All the archived informa-
tion is stored in MySQL database for easy access across many clients. 
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5   Entity-to-Entity Relevance Networks  

First, gene-abstract occurrence matrix (GA matrix, GA) is constructed for the entries 
in the log. GA matrix is a matrix where its element, gaij, is 1 if a gene i appears in an 
abstract j. Otherwise, it is zero.  Similarly, we build user-abstract matrix (UA matrix, 
UA).  uaij is 1 if user i read an abstract j.  Otherwise, it is zero.  Based on these matri-
ces, we find gene-gene, abstract-abstract and user-user relevance networks as follows. 

5.1   Gene-Gene Relevance Networks 

Once GA matrix is constructed, we then compute gene-gene relevance matrix, GG 
matrix (GG), by multiplying GA by the transpose of GA, and normalizing it by divid-
ing each row of GG by the number of abstracts.  ggij is 0 if genes i and j never appear 
in an abstract at the same time.  ggij is 1 if genes i and j appear in all of the abstracts 
looked at.  The value obtained will be in the normalized range of [0,1] , 1 indicating 
that the two genes co-occur all the time and 0 indicating that the two genes never co-
occur together. The idea is to assume if two genes are relevant either positively or 
negatively, they would tend to appear often in same abstract. Often this assumption 
may not be true; it is not rare to find an abstract to claim two genes are irrelevant in 
particular context.  However, we found that, even with this crude assumption, some of 
the genes with high relevance could be identified. 

5.2   Abstract-Abstract Relevance Networks 

Abstract-abstract relevance, AAG matrix (AAG), can be built, by multiplying the 
transpose of GA by GA, and normalizing it by dividing each row of AAG by the 
number of genes appeared in either abstracts.  aaij is 0 if abstracts i and j do not have 
any gene in common.  aaij is 1 if any gene appeared in one abstract appears in the 
other.   This AAG matrix corresponds to content-based relevance since the more genes 
are shared between these two abstracts, the more relevant they are to each other. An-
other way to define an abstract-abstract relevance matrix is by using the user-abstract 
access matrix, UA. The access matrix UA can be multiplied to its transpose to con-
struct another access-based relevance matrix, AAU. In this preliminary work, we re-
lied on a definition of the abstract-abstract relevance, AA, by using a weighted sum of 
these two different similarity measures AAG and AAU.  Similarly User-User relevance 
matrix can be defined as a weighted sum of commonly accessed gene and abstract 
based relevance matrices. 

6   Biolog Recommendation System 

Our hybrid recommendation system utilizes a combination of the above relevance 
networks and a collaborative filtering based approach. 

Content Based Clustering (of Genes and Abstracts): The log gives us information 
about the abstracts accessed so far by various users. One can extract the list of 
genes/proteins from these abstracts. The intention here is to find co-occurring genes 
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based on the abstracts they are present in. Similar logic can be used in finding co-
occurring abstracts based on their composition of genes in each abstract. 

Algorithm (in finding co-occurring genes) 
a. Build the gene-gene relevance network  
b. Normalize the obtained GxG matrix using the following formula. 
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= . In this equation, Cxy denotes the un-normalized entries of 

GxG. Each cell in the matrix is normalized according to the equation shown above. 
The value obtained will be in the range of [0,1] , 1 indicating that the two genes co-
occur all the time and 0 indicating that the two genes never co-occur together. 

c. Perform Hierarchical Agglomerative Clustering (HAC) [16] to reach a fixed 
number of clusters or some termination condition. Genes that co-occur together fall 
into one cluster.  

This way we can identify similar genes. A similar approach can be done on cluster-
ing abstracts. Here we build up a normalized AxA matrix from the AxG matrix.  Co-
occurring abstracts (based on the composition of their genes) fall into one cluster.  
Therefore, we could find similar abstracts. In fact, this method was used in the pre-
liminary analysis of archives from our pilot studies. 

Collaborative Filtering Based Approach: As contrast to content-based filtering, we 
can also define the similarity between two abstracts/genes in terms of number of users 
who have accessed both the abstracts/genes. To recommend similar abstracts, from 
the log, we build the User by Abstract (UxA) matrix, and compute the AxA normal-
ized co-relational matrix from the UxA matrix. Given any abstract, we could rank the 
‘k’ most similar abstracts based on the correlation similarity measure.  Alternatively, 
User by Abstract (UxA) matrix can be used to find the closest neighbours (similar 
users), whose preferences can be used to predict the interest/vote on other abstracts. 
Pearson’s correlation co-efficient can be used to find the neighbours, but this strategy 
would fail if the UxA matrix is sparse. 

Hybrid Approach – Combining Content and Collaborative Filtering Based  
Approach: This approach combines a collaborative filtering and a content based 
mining in finding similar abstracts.  Two 
abstracts are similar:  

i) if they have a good set of genes com-
mon in them (Content based perspec-
tive) and 

ii) if many users view both the abstracts 
(Collaborative Filtering based perspec-
tive). In this way, we consider both the 
content and the user browsing pattern 
in associating similarity between ab-
stracts.  An approach, using weights to 
combine two different similarity matri-
ces is detailed Figure 3. 

Fig. 3. Similarity matrix computation 
in the hybrid approach using weights 
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7   Subspace Clustering for Recommendation with Sparse High 
Dimensional Data 

Finding subspace clusters in the gene-abstract occurrence matrix can reveal relation-
ships between genes and abstracts allowing us to recommend relevant subsets of arti-
cles for each query. In search of abstracts with shared genes, we can improve effi-
ciency and accuracy by focusing on clusters of abstracts that share relevant genes. On 
one hand, the number of genes can be as many as fifty thousand and the number of 
abstracts can be millions; on the other hand, each abstract usually has a small number 
of genes (from 1 to 6 genes). That is, although the Abstract-Gene matrix has an ex-
tremely high dimensionality, clusters of abstracts can only exist in low dimensional 
subspaces. By finding these low dimensional subspaces, we can achieve the follow-
ing: (1) given a new set of genes, subspaces defined by associated genes can be 
quickly identified; (2) clusters of abstracts in these subspaces can be efficiently lo-
cated; and (3) similar abstracts can then be ranked and recommended as the number 
of abstracts in the subspaces is significantly smaller than the total number of available 
abstracts for search.   

Given the Abstract-Gene matrix, abstracts are compared using a similarity measure 
that considers only the positive (non-zero) values in the matrix.  This comparison is 
done first in low dimensional space, revealing those genes that occur frequently to-
gether in abstracts.  Searches in the low dimensional space allow us to eliminate genes 
or gene combinations that are not frequent which helps to reduce the search space.  
The subspaces represent groups of genes that occur often together in abstracts.  The 
clusters represent abstracts that mention many of the same genes.  When analyzed, the 
smaller data set yields 10 clusters in 2-dimension (using only two words as features), 
5 clusters in 3-dimension and 1 cluster in 4-dimension.  The size of clusters in 2-D 
ranges from two to 5 abstracts and the cluster found in 4-dimension is composed of 3 

(a)   (b) 

Fig. 4. Subspace clustering finds closely related genes based on user’s access patterns of arti-
cles. Each cluster indicates that the genes grouped together appeared many times in the set of 
articles accessed by the user. The set of articles in which the clustered genes appear together 
can be pulled from each cluster as knowledge support. (a) The knowledge of User1 is frag-
mented due to the lack of relevant knowledge (links) in individual access patterns.  (b) Collec-
tive knowledge helps User1 realize two pathways are connected
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abstracts.  For the larger dataset, the cluster with the largest dimension was in 12-
dimensions with two abstracts belonging in the cluster.  There were 4 clusters in 11-
D, 9 clusters in 10-D with at least 2 abstracts. In general, more clusters were found in 
lower dimensional subspaces.

Adding the Abstract-User matrix further improves the utility of the tools, as illus-
trated in Fig. 5.  As hypothesized, dynamic communication with other colleagues 
studying similar subjects would help locate relevant information for biologists.  Let us 
consider a user (U1) has accessed many abstracts and accumulated knowledge during 
his/her previous and current querries.  The knowledge acquired through a previous 
query might often be relevant to the current search based on information that has not 
been realized by the user.  If the proposed approach can identify this information by 
pulling together and analyzing knowledge (abstracts) utilized by other scientists with 
a similar research interest, such guidance will speed up adopting new knowledge, 
such as new pathways.  

Also, if two different biologists (U1 & U2) may not have a link (common research 
interest; same gene or transcription factor) to directly connect them even if they might 
indeed benefit from talking to each other due to some indirect links, the tool might be 
able to locate such links by analyzing various links embedded in knowledge access 
patterns, hence, enable their connection.  Synergism resulting from such collaboration 
would yield much faster knowledge discovery.  An illustration similar to Fig. 5, re-
placing one of User1s with User2 can visualize our approach. 

The Figure 4 above exhibits how subspace clustering can be applied effectively to 
discover implicit knowledge for a researcher. Figure 4 (a) shows that two subspaces 
exist for User1 alone where a subspace represents a set of genes occurring together. 
Here, User1 thinks that genes 1,2,3,4 are linked to each other and genes 5,6,7,8 are 
linked with each other independently with no connection between the subspaces. 
Figure 4 (b) shows that there exists a subspace generated from all users where the 
subspace suggests that there is a link between gene3 and gene7.  Notice that User1 did 
not realize or was not aware of the connection between the two genes but by using the 
knowledge from the community of users, User1 can be given such knowledge. This 
kind of knowledge could be very useful for User1 because if he was working inde-
pendently, it might have taken him a longer period of time or in the worst case the 
user might not have been aware of this knowledge at all. Preliminary experimental 
results of subspace clustering on large Web logs indicate that such knowledge can be 
effectively discovered from the data. 

8   Pilot Study in Two TGen Labs 

Two biology labs at TGen [7] were selected to perform pilot study with BioLog. Both 
labs are part of the Neurogenomics program at TGen. We set up two central servers to 
archive their access patterns on PubMed separately. 

Since both study brain-related diseases, they could share some commonality. How-
ever, they are two different labs studying different specific diseases; therefore, they 
would differ significantly in accessing literatures in PubMed.  We would like to see if 
the archives show such difference as well as similarity. During one study 25 abstracts 
accessed, while the other archive returned 253 abstracts accessed. 
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The gene relevance network from smaller archive is shown in Figure 5. The net-
works are visualized to emphasize the co-occurrence of two genes; if two genes co-
occur more often than others, they were put close to each other in the visualizations. 
Also, the thickness of edge represents the normalized frequency of co-occurrence of 
the pair; thicker the edge, more often they co-occur. For example, in Figure 5, genes 
smn, sma, smn1, smn2, and kinase are very close to each other, indicating they ap-
pear in the same abstract often.  We also found it interesting that these genes were 
found in the second network which is constructed from the archive from the other lab. 
Therefore, this shows that these two labs sometimes study similar genes.  This is criti-
cal because it might imply that two lab studying similar subjects, brain-related disease 
in this case, share the genes of their interests, and we might be able to use this clue to 
find out other group or people that could study some of the subject common to one’s 
research.  However, since they do have many other genes that are not in the other’s.  
This could indicate either that one is studying some other subjects that the other does 
not (most likely), or that each one is taking a different route to find answers.  In the 
latter case, one might be interested in what other genes the other group is after. 

Fig. 5. BioLog: PubMed Recording, Reasoning and Recommending (R3) Navigation Assistant 
Pilot Study 

Figure 5 visualizes abstract-abstract relevance network.  Interestingly, we have 
identified a distinct cluster of abstracts in the relevance network from the smaller 
archive shown in Figure 5, it was related to the cluster of genes identified in the pre-
vious section; all describing smn, sma, smn1, or smn2. Such clusters form the basis of 
BioLog recommendations. 
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9   Future Work 

The components built as a part of the Biolog system (Figure 5) can also be suitable 
for domains other than Biology, where a group of people is searching and interacting 
with a set of entities. Once the recommendation algorithm is embedded into a browser 
component we plan to perform detailed user evaluations in order to determine the 
usefulness and validity of BioLog’s recommendations as compared to other existing 
recommender algorithms. 
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Abstract. A key challenge associated with the existing approaches for
data integration and workflow creation for bioinformatics is the effort
required to integrate a new data source. As new data sources emerge,
and data formats and contents of existing data sources evolve, wrapper
programs need to be written or modified. This can be extremely time
consuming, tedious, and error-prone.

This paper describes our semi-automatic approach for learning the
layout of a flat-file bioinformatics dataset. Our approach involves three
key steps. The first step is to use a number of heuristics to infer the
delimiters used in the program. Specifically, we have developed a metric
that uses information on the frequency and starting position of sequences.
Based on this metric, we are able to find a superset of delimiters, and
then we can seek user input to eliminate the incorrect ones. Our second
step involves generating a layout descriptor based on the relative order in
which the delimiters occur. Our final step is to generate a parser based
on the layout descriptor. Our heuristics for finding the delimiters has
been evaluated using three popular flat-file biological datasets.

1 Introduction

Bioinformatics research frequently requires accessing data from multiple data
sources, and analyzing this data. As the number of data sources is large, and
continues to grow, this is becoming an increasingly challenging task. Currently,
the number of molecular biology databases is between 500 and 1000 [18]. Even
DBcat [5], a metadatabase designed to keep track of all biological databases, fails
to report all activities in this rapidly evolving field. Biological databases are quite
diverse in their goals, structure, and use patterns. A variety of approaches are
used for data modeling, storing, and analysis. Out of 111 databases studied by
Kroger in 2003 [18], 36% to 40% are implemented as flat files collections, and
others use a variety of database technologies.

With increasing amount and heterogeneity of data, biological data manage-
ment and data integration have become important topics. The Sequence Re-
trieval System (SRS) [1], K2/BioKleisli [23], TAMBIS [11], DiscoveryLink [13],
and Biomediator [22] are some well-known examples of systems for biological
data integration. More recently, bioinformatics workflow systems like

B. Ludäscher and L. Raschid (Eds.): DILS 2005, LNBI 3615, pp. 31–45, 2005.
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Pegasys [21] and IBM BioWBI1 are being built. These data integration and
workflow systems typically use wrapper programs to integrate data from mul-
tiple sources, or to translate from the format of a data source to the format
expected by an analysis program.

A key challenge associated with these existing approaches for data integration
and workflow creation is the effort required to integrate a new data source. As
new data sources emerge, and data formats and contents of existing data sources
evolve, wrapper programs need to be written or modified. This can be extremely
time consuming, tedious, and error-prone.

In recent years, the topic of automatic wrapper generation has received much
attention in the information integration community [3, 20, 6, 10, 7, 2]. Most of ex-
isting approaches in this field are applicable to HTML pages only, and even the
other approaches require that a number of pages with identical layout be avail-
able. Therefore, these approaches are not directly applicable to flat-file biological
datasets.

This paper describes our semi-automatic approach for learning the layout of
flat-file bioinformatics datasets. Our approach involves three key steps. The first
step is to use a number of heuristics to infer the delimiters used in the dataset.
Specifically, we have developed a metric, delimiter score or d score, which uses
information on the frequency and starting position of sequences. Based on this
metric, we are able to find a superset of delimiters, and then we can seek user
input to eliminate the incorrect ones. Our second step involves generating a
layout descriptor based on the relative order in which the delimiters occur. Our
final step is to generate a parser based on the layout descriptor.

We have evaluated our approach for finding the delimiters in a dataset. We
have used three popular flat-file biological datasets, Swissprot, GenBank, and
Pfam. The effectiveness of our method varied across these datasets. In the case
of Swissprot, the 21 delimiters in the dataset were the sequences with the top 21
d score values. For Genbank, all 18 delimiters were among the sequences with
the top 37 d score values. Finally, for Pfam, the 31 delimiters were among the
sequences with the top 81 d score values. In each of these cases, combining both
positional and frequency information turned out to be very important.

The rest of the paper is organized as follows. Our approach for identifying de-
limiters is described in Section 2. The method for generating a layout descriptor
is presented in Section 3. Experimental results from evaluating our techniques
for identifying the delimiters are presented in Figure 4. Finally, we compare our
work with related research efforts in Section 5 and conclude in Section 6.

2 Finding Delimiters Semi-automatically

Given a flat-file dataset, extracting its underlying structure is a difficult problem.
In the domain of biological databases, the data is often written in a file assuming
a human will read the data. In order to facilitate human reading, a delimiter

1 See http://www.alphaworks.ibm.com/tech/wsbaw
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always precedes a specific data field of interest, specifying what that particular
field is. Thus, the first step in our process of wrapper generation is to determine
the set of delimiters used in a data file. This section describe our approach for
this step. We initially describe some heuristics we tried, and then, describe the
approach we finally implemented and evaluated.

2.1 Frequency Counting

As each file contains a set of similar records, we can expect the frequency of
delimiters to be quite high. In comparison, across the set of records, we expect
several different values for each data field. Thus, if we consider each token (a
word separated by a space) in the file, the delimiter tokens are expected to occur
more frequently than the other tokens. So, the simplest heuristic we used was
to count the frequency of all tokens appearing in the file, and take the most
frequent ones. If this set comprises a relatively small superset of the actual set
of delimiters, a domain expert could help remove the false positives.

This simple scheme, though intuitive and promising, fails to find the delim-
iters efficiently. The reason is that many tokens which are not delimiters can also
occur very frequently in a dataset. Also, in many datasets, the delimiters could
be a sequence of tokens and not just a single token.

2.2 Sequence Mining

As we just mentioned, one reason for the failure of the frequency counting heuris-
tic was that some delimiters could be a sequence of tokens, rather than a single
token. So, instead of counting single token frequencies, we could count frequently
occurring token sequences.

Sequence mining is a well known data mining problem, and several efficient
algorithms exist [15]. However, there were several problems that we had to ad-
dress in our implementation. The first problem with this approach is that we
do not know the delimiter sequence length in advance. This problem can be
addressed by finding token sequences in an iterative manner. We can start with
finding all sequences of a specified min length, and sorting them in a list S, the
set of possible delimiter sequences. In the next iteration, we find all token se-
quences of length min length +1. Again, domain knowledge or interaction with
a domain expert can be used to decide when to terminate the search.

We further use the following two rules to focus on sequences that are most
likely to be delimiters. In the following, si represents any token sequence of
length i, f(si) represents the frequency of the sequence si, and sj

i−1 represents
the jth subsequence of si with the length i − 1. The rules are as follows and are
applied when i is 3 or greater.

1. If f(si) = f(sj
i−1) ∀j, then remove sj

i−1 ∀j from S and insert si into S.
2. If ∃j such that f(si) is much smaller than f(sj

i−1), then remove all sj
i−1 from

S except the one having the highest frequency. Do not insert si into S.

The following example illustrates the above two rules. Suppose ABC is a
token sequence of length 3 found in the current iteration with f(ABC) = 10. We
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need to decide if ABC is to be inserted into S. If AB, BC, and CA are already
in S with f(AB) = 10, f(BC) = 10, and f(CA) = 10, then we remove AB, BC,
CA from S and insert ABC into S. This is done because the information about
AB, BC, and CA is already embedded in ABC.

Consider, alternatively, the following scenario. Again, let f(ABC) = 10. If
AB, BC, and CA are already in S with f(AB) = 20, f(BC) = 10, and f(CA) =
10, then we remove BC, CA from S and do not insert ABC into S. The intuition
for using this rule is that since BC and CA occur less frequently than AB, ABC
is not likely to be a delimiter sequence. Also, since AB occurs more frequently
that BC and CA, it is more likely that, AB will be a possible delimiter sequence
and not BC or CA.

This approach gave better results than just using frequency of tokens, but
had several limitations as well. This approach does not work well if token fre-
quencies are distributed in a skewed fashion. To illustrate this problem, con-
sider the following. In the Swissprot dataset /n,DR, and EMBL are tokens,
with f(/n, DR) > f(DR, EMBL) and f(/n, DR, EMBL) < f(/n, DR). Thus,
we only keep /nDR as a possible delimiter, which turns out to be correct.
However, in the case of Pfam dataset. /n, #=GF, and AC are tokens, with
f(/n,#=GF)
 f(#=GF,AC) and f(/n,#=GF,AC)� f(/n,#=GF). Thus, we
only keep /n #=GF as the possible delimiter. But, this is incorrect because /n
#=GF AC is a valid delimiter. This happens when some of the delimiter token
subsequences have very high frequency as compared to the other delimiter token
subsequences. Moreover, since biological databases are created for humans to
read, it is very unlikely that the tokens will be distributed at different positions
within the line in the file they appear in. This fact is not exploited by just using
the frequency of sequences.

2.3 d score Based Pruning

We now describe the final approach we implemented. This approach does not
completely rely on the frequency of sequences, but does give a high weightage to
such frequencies. In addition, it exploits the fact that delimiters are very likely to
start only at certain positions within a line. The overall metric we use is referred
to as d score or delimiter score, and has two components, positional weight, and
frequency weight.

Positional Weight: As we have stated, biological datasets are often written for
a human to read. Thus, all the delimiters are expected to appear in a specific
position in a file. We capture the positional information in the following way.

Let P be set of different positions within a line where a token can appear.
Clearly, this is equal to the maximum number of tokens appearing in any line
in the file. For any position i ∈ P , let tot seqj

i represent total number of token
sequences of length j starting at position i. Similarly, tot unique seqj

i repre-
sents the total number of unique token sequences of length j, starting at the
position i. We define for any tuple (i, j), denoting sequences of length j starting
at the position i in a line, a metric p ratio(i, j).
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p ratio(i, j) =
tot seqj

i

tot unique seqj
i

For any specific sequence length j we take the log of p ratio(i, j) and nor-
malize it as follows,

p wt(i, j) =
log(p ratio(i, j)) − mini∈P log(p ratio(i, j))

maxi∈P log(p ratio(i, j)) − mini∈P log(p ratio(i, j))

Clearly, p wt(i, j) ∈ (0, 1) with the property that if the delimiters in a file
usually start at the position i then, p wt(i, j) > p wt(k, j), for any k �= i.

Frequency Weight: Let Sj represent the set of all token sequences of length
j. For any sequence sj

i , which has length j and starts at the position i within its
file, we can find the log normalized frequency weight as follows:

f wt(sj
i ) =

log(f(sj
i )) − minsj

i
∈Sj log(f(sj

i ))

maxsj
i
∈Sj log(f(sj

i )) − minsj
i
∈Sj log(f(sj

i ))

Similar to the positional weight, f wt(sj
i ) ∈ (0, 1) with the property that if

f(sj
i ) > f(sj

k) then, f wt(sj
i ) > f wt(sj

k).

d score: For any sequence sj
i , once we have p wt(i, j) ∈ (0, 1) and f wt(sj

i ) ∈
(0, 1), we take a linear combination of these to define d score:

d score(sj
i ) = α × p wt(i, j) + (1 − α) × f wt(sj

i )

where α ∈ (0, 1). The value of α can be chosen to vary the relative weight
of positional and frequency weights. Overall, d score has the property that
d score(sj

i ) ∈ (0, 1), and d score(sj
i ) > d score(sj

k) implies that sj
i is more likely

to be a delimiter than sj
k.

2.4 Finding Delimiters Using d score

Even though the d score value is closely correlated with the likelihood of a
sequence being a delimiter, several issues still need to be addressed. First, a
sharp and clear cut-off point, separating delimiters and other sequences, is often
not achieved. Second, we still do not know the most number of tokens a delimiter
might have.

We have used the following method to address this problem. We proceed in
an iterative fashion, trying to find delimiters of length i in the iteration i. Let
the cut-off point for d score values be ci. This cut-off is determined by finding
a substantial difference in the d score values between two consecutive sequences
in a sorted list. Let the number of sequences found with d score greater than ci

be Ni. We consider this as the set of potential delimiters.
The termination condition used in our algorithm is based on the following

heuristic. If the highest length of a delimiter sequence is i, and if we use the
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same cut-off score, we will expect Ni+1 < Ni. This observation can be explained
in the following way. If delimiters are of length i, then any token sequence of
length i + 1 (delimiter of length i appended by some token etc) will be less
frequent, thus having much lower f wt, whereas, p wt will remain almost the
same. Note that this observation should not be used with a very small value of
i, otherwise, we could terminate the process too soon. It should also be noted
that in the case of a skewed frequency distribution, this observation may not
hold true. However, it serves as a reasonable heuristic for most datasets. Once
we have a termination criteria, the delimiters can be found iteratively as shown
in the following algorithm.

Algorithm

1. Set initial value of i. Set S = Ø.
2. Find the potential delimiters (token sequences with d score > ci) of length

i and store them in S.
3. Set Last Ni = Ni. Set i = i + 1.
4. Find potential delimiters of length i.
5. If Ni > Last Ni store the set of potential delimiters in S. Go to the step 3.
6. Sort S in descending order of d score.

Once the above algorithm stops, the list S contains potential delimiters sorted
by their d score. As we had stated earlier, a domain expert can help in identi-
fying the frequent sequences which are not delimiters. These values are usually
frequently occurring values in data fields, and can be identified by using domain
knowledge.

3 Towards Generating Wrappers

After the delimiters have been identified, the next step is to generate a wrapper.
This involves understanding the structure of the dataset. Once the structure is
identified, a parser for the dataset can be generated automatically. In this section,
we initially describe the technique we use for determining the structure of the
dataset. This technique is based on constructing an Non-deterministic Finite
Automata (NFA) from the relative order of occurrence of delimiters. Then, we
give a quick overview of our work on generating parsers from such descriptors.

3.1 Generating Layout Descriptors

The set of states of the NFA is the set of delimiters. We insert an edge from a
delimiter A to the delimiter B if B is the immediate next delimiter following A
in any record in the data file. Because of optional or repeated fields, there could
be multiple out-going edges from a node.

To understand the structure, we carry out the following analysis. Initially, a
topological sort is done on the nodes in the NFA, breaking cycles by the order
of first appearance of a delimiter in the dataset. Based on the topological sort,
we classify the edges in the NFA to be in two groups:
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A B C D
A1e eB1

eD1eC1
eA2

E

eD2

Fig. 1. NFA with Optional and Repeating States

Forward Edge: An edge between the delimiters A and B is a forward edge if A
appears before B in the topological sort.

Backward Edge: An edge between the delimiters A and B is a backward edge if
B appears before A in the topological sort.

We use the notion of forward and backward edges to define strict precedence
of appearance. If there exists a forward edge between delimiters A and B, A is
said to strictly precede B. The precedence relationship is based on the transitive
closure of the strict precedence relationship.

The NFA and the above definitions can be used to determine the structure.
In the following, with the help of Fig 1, we describe how we can extract simple
structures, as well as optional and repeating structures.

For simple structures without any repeating or optional fields, we can sim-
ply use the precedence of appearance to find which delimiter appears before
which delimiter. For more complex structures involving optional and repeating
patterns, we use the following two rules.

1. Repeating Fields: If any node A has a backward edge to the node B, and we
have a set of nodes {Yi|i = 1, 2, . . . , n}, such that B strictly precedes Y1, Yi

strictly precedes Yi+1 (i = 1, 2, . . . , n − 1), and Yn strictly precedes A, then
we say that the set of nodes B, {Yi|i = 1, 2, . . . , n}, and A, in that order,
repeat themselves.

2. Optional Fields: If there exists a forward edge from A to C, and there exists
another state B such that A precedes B and B precedes C, then B is an
optional state.

As a simple application of the above two rules, using the NFA in Figure 1, we
find that the node B as an optional node and nodes C and D together, in that
order, are repeating nodes. The fields following the delimiters which correspond
to these nodes are called optional and repeating delimiters, respectively.

To represent the structure, we use annotation which is much similar to reg-
ular expressions. If by x, we represent any unknown data field value, then Xx
represents unknown data field value x followed by delimiter X. If a delimiter
followed by its data field value is optional, we represent it by (Xx)opt. Likewise,
if a number of delimiters X1, ..., Xn are repeating, in that order, we represent it
by (X1x...Xnx)r. With this notation, structure corresponding to Fig 1 can be
represented as

Ax(Bx)opt(CxDx)rEx
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3.2 Generating Parsers

After generating the descriptor of the type described above, the next task is to
be able to parse the data. As we have discussed, the datasets show a pattern of
alternate delimiters and variables, which we will refer to as a DLM-VAR pairs.
We have designed a tree data structure to capture the layout. As an example,
the tree view for the TRANSFAC data is shown in Figure 2. TRANSFAC [16] is
a database on eukaryotic transcription factors, their genomic binding sites, and
DNA-binding profiles. In the tree, the leaves are DLM-VAR pairs. The last leaf
for TRANSFAC is a generalized DLM-VAR pair with a dummy variable. The
internal nodes in the tree, also called the environment nodes, indicate how the
children are repeated. The advantages of this view are that it is easy to interpret
and build. The depth first scan of the tree resembles the data layout. It also
simplifies the conversion process by interpreting the data at variable, instead of
data field level. Working at the finer level, the wrapper avoids the overhead of
reconstructing data fields. This reconstruction would consist of two processes,
the process of composing a field by merging variables when reading and the
reverse process of partitioning a field into several variables when writing.

"ID"−ID"AC"−AC

"\nXX"−DUMMY"\nXX"−DUMMY

< >

"\nRL"−RL"\nRN"−RN

"\nRT"−RT"\nRX"−RX "\nRA"−RA

< >

DATASPACE root

......2 39

3837

363534

331

0

DLM−VAR node

environment node

root node

[ ]

< >< >[ ]

[ ] "\n//\n"−DUMMY | EOF

Fig. 2. Logical View of TRANSFAC Data Layout as a Tree

4 Results

Our experiments focused on evaluating the effectiveness of our d score based
method for semi-automatically determining the set of delimiters in the dataset.
As we had discussed, this method reports the list of potential delimiters, sorted
by their d score. The metric we use for determining the effectiveness of the
method is as follows. In the sorted list of sequences, we consider the position at
which the last delimiter appears, and compare it with the number of potential
delimiters. We believe this represents the ease with which a domain expert can
prune false positives. Besides evaluating the effectiveness of d score based mech-
anism, we also considered other heuristics that we had described in Section 2.
Results from these heuristics are presented towards the end of this section.
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We used three different datasets for our experiments. The first is Swissprot
protein dataset from the Uniprot Knowledgebase2. The UniProt Knowledgebase
is the central database of protein sequences with sequence and functional anno-
tation. Swissprot is a section of Uniprot containing manually-annotated records
with information extracted from literature and curator-evaluated computational
analysis. The second dataset we used is the Genbank dataset from the National
Center for Biotechnology Information (NCBI)3. Data is stored in a flat-file for-
mat where each data field is preceded by a tag which describes what that data
field stands for. The third data set is the Pfam dataset4. Pfam is a collection
of protein family alignments which were constructed semi-automatically using
hidden Markov models (HMMs). The alignment is in Stockholm format. This
includes mark-ups of four types:

#=GF < featurename >< freetext >
#=GC < featurename >< freetext >
#=GS < seqname >< featurename >< freetext >
#=GR < seqname >< featurename >< freetext >

where freetext means any data field. Introducing mark-ups before the
featurenames make this data set different from the other two and difficult
to find delimiters from.

We initially report on the effectiveness of the d score approach. For all the
experiments, we gradually vary α value from 0 to 1. Setting α=0 implies that
we only consider the frequency information, whereas, α=1 implies that only
positional information is considered. For other values, α linearly combines both
positional and frequency information. As we will show in the results, non-extreme
α values provide best results.

Swissprot data: Among the three datasets, the Swissprot dataset is the sim-
plest. All the delimiters are two character long, and they appear at the beginning
of a line. Table 1 shows the result for the Swissprot dataset. The values in the
second column is the metric we stated earlier, which is the position in the sorted
list where the last delimiter appears. The results from Table 1 show that if both
frequency and positional information is used, i.e., α is neither 0 nor 1, this ap-
proach is very effective. The results are the same as the value of α is changed
from 0.3 to 0.9. In these case, the 21 actual delimiters appear as the top 21
sequences in the sorted list.

Genbank data: Genbank data is more involved as compared to the Swissprot
data. This is because all delimiters are not of the fixed size. Further, certain
words appear in the same position in every record, but are not delimiters. Thus,
the performance of our approach is not as good. Table 2 shows the results for
Genbank dataset. Even though all delimiters were successfully found, unlike

2 http://us.expasy.org/sprot/
3 http://www.ncbi.nlm.nih.gov/Genbank/index.html
4 http://www.sanger.ac.uk/Software/Pfam/ftp.shtml
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Table 1. Results from Using d score Approach on the Swissprot dataset

α Position where All 21 found?
last delimiter found

0.0 - 20 found within top 100
0.1 29 yes
0.2 25 yes
0.3 21 yes
0.4 21 yes
0.5 21 yes
0.6 21 yes
0.7 21 yes
0.8 21 yes
0.9 21 yes
1.0 - 10 found within top 50,

20 found within top 100

Table 2. Results from Using d score Approach on Genbank dataset

α Position where All 18 found?
last delimiter found

0.0 62 yes
0.1 60 yes
0.2 53 yes
0.3 48 yes
0.4 43 yes
0.5 39 yes
0.6 38 yes
0.7 37 yes
0.8 37 yes
0.9 37 yes
1.0 - Only 1 found within top 50,

14 found within top 100

Swissprot data , the 18 actual delimiters were not necessarily found within the
top 18 positions. Best results are obtained when relatively high weightage is
given to the positional information. However, completely ignoring frequency in-
formation gives poor results.

Pfam dataset: Pfam dataset is the most difficult one to work with. The reason
is that we have delimiters that are a combination of words. On one hand, we
have delimiters like ”//”, which stand for the end of a record entry. On the other
hand, we also have data fields in between a delimiter sequence, which is not part
of the delimiter. For example, ”#=GF AC” could be a delimiter, and ”#=GS
* AC” could be a delimiter, where * represents an actual value. Identifying the
latter can be a complex task. Because of this added complexity, the performance
for d score method over Pfam data is worse, as shown in Table 3.
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Table 3. Results from Using d score Approach on Pfam dataset

α Position where All 31 found?
last delimiter found

0.0 - 2 found
0.1 - 2 found
0.2 - 28 found
0.3 116 yes
0.4 82 yes
0.5 82 yes
0.6 82 yes
0.7 82 yes
0.8 82 yes
0.9 82 yes
1.0 - Only13 found within top 100

Table 4. Comparison of different heuristics

Swissprot Genbank Pfam
(21 delimiters) (18 delimiters) (31 delimiters)

Frequency All found within All found within Simple frequency count could
top 41 top 71 not find the delimiters

Sequence based 20 found within 14 found within Dropping lower frequent
pruning top 100 top 100 subsequence could find

only 1 delimiter
d score All found within All found within All found within

top 21 top 37 top 81

While for the other two datasets, d score based method works at least some-
what effectively for α=0.1 and α=0.2, it is not the case for the Pfam data.
The reason is that markups in Pfam data, like ”#=GF” and ”#=GS” have
a very high frequency, as compared to the other tokens or words. Because
of this, frequency information alone cannot find all delimiters. Thus, for this
dataset, d score based method works only for high α values, as we have shown in
Table 3.

Comparison with other Heuristics: Finally, we compare the d score based
method with two other simple heuristics we had described earlier. These heuris-
tics were, simply using the frequency of tokens, and using frequency of to-
kens with some pruning. Table 4 compares these approaches with the d score
approach.

As we can see, these simple heuristics are not very effective, and the d score
based approach has much better results.
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5 Related Work

Automatic wrapper generation has been an active research topic. Currently, most
of the automatic wrapper generation research has focused on extracting infor-
mation from tabular structures in HTML files [3, 20, 6, 10]. ROADRUNNER [7]
generates record layout structure by comparing HTML pages. Data fields are
annotated by the user after this inference process. Heuristic about HTML pages
are crucial to ROADRUNNER. For example, it relies on tags to tell field name
from field instance, the presence of closing tags to distinguish optional and re-
peating patterns. These features make it hard to extend the application of this
approach to data files other than HTML files. Arasu et al. have proposed an
approach [2] where no heuristics on HTML were used. However, multiple pages
generated from a same template must be collected for template construction.
This, although useful for web-service-based applications, is not directly suitable
for some bioinformatics applications when all records are listed in only one flat
file. The Web extractor developed by Hammer [14] could be used for flat files be-
sides HTML pages. However, it requires a declarative specification which states
how to extract information hierarchically.

A number of efforts exist on mediator-based bioinformatics integration, as
reviewed in [17]. Our goal is to enable integration of a larger number of sources,
and allow data formats to evolve over time, through automatic or semi-automatic
wrapper generation. In comparison, the existing mediator-based systems require
hand-written wrappers. K2/BioKleisli uses a specialized language called Collec-
tion Programming Language (CPL) [4]. It requires source specific wrappers and
uses these to map queries to heterogenous sources [23]. TAMBIS [11] also needs
external wrappers. The query plan in this system is also written in CPL, which
is supplied with a library that has wrapper services. Biomediator [22] relies on
wrappers to convert all data from various sources to XML format before further
processing. DiscoveryLink[13] allows its users to define their own wrappers and
re-configure the system through a registration process at a relatively higher level.
Yet, the wrapper still has to be hand-coded. BACIIS [19] is the only federated
biological databases that we are aware of that is able to automatically derive
extraction rules and store them in the source wrappers. However, the data source
schema files used by BACIIS can only describe HTML pages and the individual
schema is mapped to a common domain ontology contained by BACIIS.

Besides these mediator-based systems, there are other efforts on biological
information integration and query processing. Genomics Unified Schema (GUS)
uses datawarehousing [8]. Knowledge-based Integration of Neuroscience Data
(KIND) combines wrappers for each source with ontologies [12]. The Sequence
Retrieval System (SRS) [1] is a keyword-based retrieval system, which is based
on a locally stored index to retrieve entries. Eckman et al. have focused on
optimizing the execution of queries that access multiple biological databases in
a distributed environment [9].

The myGrid project has been developing technologies for integrating a variety
of services in the web, through the use of web service composition language [24].
IBM has been developing Bioinformatic Workflow Builder Interface (BioWBI)
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for creating web service based workflows for biological researchers5. These ef-
forts typically require: 1) Use of XML for exchange of data between different
sources, which can introduce high overheads, 2) Java wrappers on existing ap-
plications, which can also introduce overheads, and 3) users’ familiarity with web
services. Our proposed system can overcome each of the above three limitations,
though it cannot provide as much interoperability as is possible through web
services.

6 Conclusion

This paper has described our semi-automatic approach for learning the layout of
flat-file bioinformatics datasets. Our approach involves three key steps. The first
step is to use a number of heuristics to infer the delimiters used in the dataset.
Specifically, we have developed a metric, delimiter score or d score, which uses
information on the frequency and starting position of sequences. Based on this
metric, we are able to find a superset of delimiters, and then we can seek user
input to eliminate the incorrect ones. Our second step involves generating a
layout descriptor based on the relative order in which the delimiters occur. Our
final step is to generate a parser based on the layout descriptor.

We have evaluated our approach for finding the delimiters in a dataset. We
have used three popular flat-file biological datasets, Swissprot, GenBank, and
Pfam. The effectiveness of our method varied across these datasets. In the case
of Swissprot, the 21 delimiters in the dataset were the sequences with the top 21
d score values. For Genbank, all 18 delimiters were among the sequences with
the top 37 d score values. Finally, for Pfam, the 31 delimiters were among the
sequences with the top 81 d score values. In each of these cases, combining both
positional and frequency information turned out to be very important.
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Abstract. Few ontologies in the ecological domain exist, but their development 
can take advantage of gained experience in other domains and from existing 
modeling practices in ecology. Taxonomies do not suffice because more ex-
pressive modeling techniques are already available in ecology, and the perspec-
tive of flow with its centrality of events and processes cannot be represented 
adequately in a taxonomy. Therefore, formal ontologies are required for suffi-
cient expressivity and to be of benefit to ecologists, which also enables future 
reuse. We have created a formal mapping between the software-supported eco-
logical modeling method and software tool STELLA and ontology elements, 
which simplifies bottom-up ontology development considerably and has excel-
lent potential for semi-automated ontology development. However, the con-
ducted experiments also revealed that ontology development for ecology is 
close to being part of ecological research that through the formalized represen-
tation of the knowledge more clearly points to lacunas and suggestions for fur-
ther research in ecology. 

1   Introduction 

It is well-known that ontologies can be a valuable artifact for data(base) integration. 
However, for ontologies to be useful, one first needs to develop a good ontology that 
covers the domain accurately and precisely and has the right balance between utility 
and ontological correctness (the ontological trade-off). Although multiple engineering 
artifacts exist, from structured controlled vocabularies to formalized foundational  
ontologies, ontologies in the domain of ecology do not exist to the extent as, for  
instance, in cell biology. We can take advantage of lessons learned from developing 
ontologies in other biology disciplines, most notably in molecular biology and anat-
omy, and from suggestions made by philosophical ontologists. The former includes 
experiences with GO1, OBO2, and FMA3, the latter comprises the use of foundational 
ontological aspects like the nature of entities/concepts and (primitive) relations [1] 
and OntoClean [2] which provides a methodology for removing incorrect ontological 
                                                           
1 Gene Ontology: http://www.geneontology.org. 
2 Open Biological Ontologies: http://obo.sourceforge.net. 
3 Foundational Model of Anatomy: http://sig.biostr.washington.edu/projects/fm/index.html. 
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decisions made in a taxonomy by relying on types of properties (characterising, sortal, 
phased sortal. etc.) and metaproperties (rigidity, identity, etc.). However, whether we 
can use a similar approach as taken by the Gene Ontology Consortium depends on the 
result of a comparative analysis between molecular biology and ecology (§2). One of 
the differences is that there is an established practice of modeling in ecology, that, al-
beit different from computer science and ontology research, can be advantageous to 
enhance ontology development. A widely used, software-supported, ecological mod-
eling technique is STELLA4, which we have exploited in formulating formal corre-
spondences between STELLA model elements and ontology elements (§4). This was 
identified and put to the test with formalizing ecological knowledge contained in a 
STELLA pollution example and the Microbial Loop (ML) model [3], reported in §5 
that also contains several ontology development considerations. Apart from simplify-
ing and speeding up ontology development by using the formalization, related facets 
benefiting ontology development for ecology are discussed in §6 and the potential for 
semi-automatic bottom-up ontology development based on STELLA models is as-
sessed. We finalize with some conclusions in §7. 

2   Some Salient Features of the Ecology Subject Domain 

An important factor in ecological and biogeochemical models is the flow of compo-
nents in a eco(sub)system5, i.e. the path components take or sequence of processes it 
is involved in. A component can be a specific nutrient, such as nitrogen- or carbon-
containing substances, pollutant, energy, and so forth, hence the centrality of endu-
rants (entities that are wholly present in time) and instances thereof. However, the 
‘component of concern’ is firmly embedded in the flow. For example, the nitrogen 
cycle from nitrate in soil to bacterium (nitrogen fixation by e.g. a Rhizobium sp.), 
transfer to a leguminous plant (like clover) with which the bacteria live in symbiosis 
with, transport within the plant, consumption by a ruminant, metabolism of the ani-
mal, excretion by animal, return of (some of) the nitrogen-containing molecules back 
to soil. One also can consider such cycles as a process of nested processes, i.e. from a 
perspective of a specific combination or sequence of distinct perdurants (entities that 
are partially present and happen in time). Thus the relation between ‘stuff’ (a sub-
stance, amount of matter etc.) and what happens to it are inextricably linked to one 
another. Conversely, molecular biologists do distinguish more clearly a separation be-
tween structural components, their functions and the processes in which they can be 
involved. GO consists of three distinct ontologies: Molecular Function (MF, describ-
ing activities), Biological Process (BP, with biological goals), and Cellular Compo-
nent (CC, for locations) [4]. This approach treats perdurants as if they are endurants, 
but this objectification does not solve the connection between endurants and per-
durants. For example, if one wants to couple some biological process with a cellular 
component, new relationships between the two ontologies need to be created (e.g. 
[5]). Thus, adding new knowledge about the combination that may result in a separate 
                                                           
4 ISEE Systems: http://www.iseesystems.com; ithink is the same tool but used for business 

modeling. 
5 For the remainder of the article, ‘ecological model’ comprises both types – a biogeochemical 

model is element-conserving, but this aspect is irrelevant for ontology development. 
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new ‘situation ontology’, or a mapping ontology that is positioned between BP and CC. 
However, that ecological modelers use tightly coupled endurants and perdurants does 
not necessarily prevent an ontologist to create artificial divisions between the two.  

Perdurants include types of entities such as processes, events and states, in contrast 
with modeling paradigms in informatics and most ontological investigations, where 
the center of attention is the entity of the thing-quality paradigm. Philosophically, 
there are arguments for and against such emphasis: processes can only exist when 
there are endurants that are the ‘carriers’ of the process [5]. On the other hand, objects 
only come into existence through a process (refer to [6] and [7] for a wider scope of 
arguments). Few agreed-upon ontological categorizations exist, as can be observed in 
Figure 1 or the Process Specification Language6, Business Process Management  
Initiative7, and Petri-nets. From an ontology engineering perspective, the approaches 
vary. One tactic is to separate perdurants from endurants linked by a participation re-
lation as in DOLCE (Descriptive Ontology for Linguistic and Cognitive Engineering) 
[8], [1]. The Basic Formal Ontology (BFO8) consists of SNAP and SPAN ontologies 
where the latter includes a time perspective. However, none addresses the thing-
process aspect as fully interdependent, which poses a potential problem when repre-
senting ecological knowledge in an ontology. Bittner et al [9] go to some length in 
formalizing the difference between endurant and perdurant, but this does not solve the 
nature of the relation when viewed from different perspectives. The Standard Upper 
Ontology has set up a 4D Ontology Working group9, without useable results as of yet. 

 

Fig. 1. Two examples of process-related categorizations. A: [6]; B: DOLCE [1] 

A second difference lies in the level of granularity and demarcation of the disci-
pline. The boundary of molecular biology lies at the cell-level and smaller entities, 
whereas in ecology ‘ecosystem’ and ‘the environment’ have fiat boundaries. On the 
one hand, earth is one ecosystem, but also the Amazon basin or the micro-
environment in tree tops. Other methods of differentiation include trophic levels and 
‘grand processes’ such as eutrophication and El Niño. While there are different ways 
of partitioning the domain at the molecular biology level, such scope in ecology is 
wider, thus when developing an ontology it requires involvement of a broader range 
of (sub-)disciplines that are less reductionist than molecular biology.  
                                                           
6 http://www.mel.nist.gov/psl/index.html. 
7 http://www.bpmi.org/. 
8 http://ontology.buffalo.edu/bfo/, http://ontology.buffalo.edu/smith/articles/SNAP_SPAN.pdf. 
9 http://suo.ieee.org/SUO/SUO-4D/index.html. 
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Third, ecologists have a different starting position compared to molecular biolo-
gists when modeling domain knowledge. Whereas in molecular biology no estab-
lished modeling tradition existed, ecologists do have multiple established standards 
such as Odum’s conventions [10] and STELLA that are, depending on the sub-
discipline in ecology, more or less often used. STELLA is relatively widely used and 
has software support comprising graphical elements and automatic generation of 
equations. STELLA is used in research and education for systems analysis and simu-
lations of, for example, predator-prey interaction, effects of contamination, and food 
chains. Ontologists should take advantage of these models for bottom-up ontology 
development. However, this also means that one cannot begin with a structured con-
trolled vocabulary: whatever ontology is developed has to surpass semantic expressiv-
ity of existing ecological models for it to be perceived to be of benefit to ecologists.  

A preliminary experiment in ontology development for ecology was carried out 
with a simplified pollution example, which confirmed that an informal ontology lim-
ited to isA and partOf relationships could not capture the expressivity of its corre-
sponding STELLA model. The “extended semantic representation of equations” via 
“placeholder objects” [11] did not represent the (partially implicit) semantics of the 
STELLA model fully either (results omitted). An additional advantage of using 
STELLA as a starting point for ontology development is that, with the mapping be-
tween STELLA and ontology elements, the STELLA representation serves as an in-
termediate representation. Thereby it bridges the two disciplines with a common 
ground for communication. This will speed up bottom-up ontology development, 
which will facilitate data integration sooner rather than later. 

3   Methodology  

The first experiment was carried out with STELLA v8 for Windows from ISEE Cor-
poration and the demonstration model Amalgamated Industries. The abstraction of 
this model, including the STELLA terminology and modeling elements, was matched 
to ontology jargon. Protégé v2.1.1 with OWL Plugin v1.2 Beta (Build 139) was used 
to improve the level of formalization and test the translation. Racer v1.7.21 was used 
for the ‘classify taxonomy’ and ‘check consistency’ features; Graphviz v1.12 plug-in 
to activate OWLViz, and ezOWL plug-in (v20040412) were added for ontology visu-
alization of the developed ontology. To test the translation between STELLA and on-
tology elements, we used the larger ML model (Figure 4), converted it into a list of 
candidate entities and relations, which was structured into a formal ontology, also in 
Protégé. Development of both the Pollution and MicrobialLoop ontologies was aided 
by structuring the candidate entities and relationships adhering to the formalized 
DOLCE foundational ontology, which is intended for making already formed concep-
tualizations explicit  (refer to [1] for explanation and categories). 

4   Abstractions and Matching 

Before addressing the formalization, a small STELLA model (Figure 2) of the simpli-
fied pollution scenario is outlined for illustration. This model captures a scenario 
where a factory disposes toxic waste in the river that flows into the pond downstream, 
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in turn killing organisms living in the pond depending on the pollutant concentration. 
The ecological ‘concept of concern’ is the concentration of the pollutant in the pond, 
which has the related influencing factors modeled ‘around’ it, such as the released 
amount of pollutant by the chemical plant. There are three main aspects: water and 
pollutant in/outflow of the bound system, the combination of water volume and 
amount of pollutant determining the pollutant concentration in the pond, and the com-
bination of water outflow and pollutant concentration determines the amount of pol-
lutant outflow. There are two factors of interest in comparing this type of model with 
its variants in computing, such as UML class diagrams, (E)ER and ontologies: 

1. The ecological model is event centered, hence contains the representation of time, 
diagrammatically represented with the horizontal thick arrows with an open shaft, 
or phrased as the route taken by an element. 

2. Key aspects in the ecological model are Flow, Stock, Converter, and Action Connec-
tor. A Stock correspond to a noun, being it particulars or universals, Flow to verb, 
Converter to attribute or property related to Flow or Stock, and Action Connector re-
lates the former. Figure 3 contains the comparison with computing verbiage (top 
half). Object is a candidate for an entity, event_or_activity in OO terms a candidate 
for a method and in an ontology categorised under a perdurant hierarchy and con-
verter maps to attribute_or_property, which says something about the object, such as 
the outflow rate. The Action Connector (thin line with arrow) may be candidate for 
binary (ternary?) relationship between any two of Flow, Stock and Converter.  

 

Fig. 2. Abstraction of the pollution example 

Following from 2), the formalization for the translation is: 

∀x ((Stock(x) ↔  Entity (x)) → ED(x))        (1) 
∀x ((Flow(x) ↔ Entity (x)) → PD(x))        (2) 
∀x ((Converter(x) ↔ Entity (x)) → (Q(x) ∨ ST(x)))       (3) 
∀x (ActionConnector(x) ↔ Relationship (x))       (4) 
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where ED means endurant, PD perdurant, Q quality (‘attribute’ belonging to an en-
tity), and ST state. Axiom (3) is open to experimentation: for example, the Converter 
Pollutant concentration in Figure 2 can be a quality of the pond, liquid mixture, or 
detritus – anything that can be polluted – but also a state as in ‘the pollutant concen-
tration of the pond where the river enters’ or ‘the pollutant concentration of the pond 
on 20-7-2004’. Further, Pollutant concentration may be subsumed by Concentration 
that can be applicable to a wider range of endurants and as such is not necessarily an 
essential property (a pond is still a pond with or without some concentration of a pol-
lutant) but a situational one, or having concentration as a non-rigid property. There-
fore, (pollutant) Concentration is better modeled as an ST, but at this stage of the in-
vestigation, the mapping of Converter to Q cannot be excluded with certainty. This 
ambiguity will be resolved by applying the proposed formalization to a formal pollu-
tion ontology and the larger ML model, which will clarify if the mappings are correct, 
shed light on the distribution of Q and ST from a Converter, and might be solved by 
adding additional axioms taking into account the context of the STELLA elements, 
such as how the converters are related to the other elements. 

 

Fig. 3. Comparing the ecological model components with its analogue in a computing model 

The consequences of translating an ecological model into an ontology based on the 
provided mapping is that temporality and the movement of energy or nutrients is not 
yet represented exactly as is captured in the ecological model apart from incorporating 
the fact that types of processes exist; however these extras in STELLA are epistemo-
logical aspects. The original ecological model now can be remodeled into an ontology 
consisting of three features: endurants, ‘attributes’, and perdurants; what remains to 
be solved are the relations between them, i.e. the Action Connectors. With further 
testing of larger STELLA models such as LEEDS (Lake Eutrophication, Effect, Dose, 
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Sensitivity model) and ML, and the provided formalization, it is possible to generate 
an ontology by ‘loading’ several of the STELLA ecological models into one of the 
ontology development tools. 

5   Ontology Development 

5.1   A Pollution Ontology 

5.1.1   Motivating Example: Some Issues with an Informal Ontology  
An informal ontology restricted to concepts and the isA or partOf relation does not 
suffice. For example, an isA relationship between Water and Molecule: although Wa-
ter is indeed a molecule, Water in the context of some ecological site is not pure H2O, 
but water containing dissolved molecules and suspended particles, i.e. water as a mix-
ture (an amount of matter). The methodology of ontology base & commitment layers 
of DOGMA [12] may be more advantageous, because Water isA Molecule can be in-
cluded in the ontology base and omitted from a commitment layer for an ecological 
site, whereas it would be included in a commitment layer of a chemicals ontology that 
omits Water isA LiquidMixture. In a simple taxonomy these options are unavailable. 

Volume, Rate and Concentration capture a characteristic of their respective entity 
they are attached to, alike an attribute. Molecule hasA Concentration, but it can only 
have a concentration dissolved or suspended in something and not of itself; of itself 
are properties like melting temperature and structure of a molecule. However, to con-
clude it is an attribute or state of only water in the pond is premature: if modeled as 
such, the model will be unable to accommodate pollutants in sea, air, soil etc. 

5.1.2   Upgrading to a Pollution Ontology  
It is sub-optimal if one has to use different types of representation models (multiple 
taxonomies and placeholder objects) to capture the semantics. For a formalization to 
be exploited in full, one needs a formal ontology and a tool that is based on logic. 
Two widely used ontology development and editing tools are DAG-Edit and Protégé; 
the former provides functionality for structured controlled vocabularies (and taxono-
mies), whereas the latter is frame-based with Description Logic (DL) and OWL sup-
port. The DL version supports “maximum expressiveness without losing computa-
tional completeness … and decidability … OWL DL includes all OWL language 
constructs with restrictions such as type separation (a class can not also be an individ-
ual or property, a property can not also be an individual or class)”10. DAG-Edit is in-
sufficient for the task, because relationship types are limited to isA and underspecified 
partOf (sometimes also developedFrom). Protégé, on the other hand, supports reason-
ing and allows higher expressivity by allowing specification of e.g. properties, range 
restrictions, and disjointness of entities. However, it also supports multiple inheri-
tance, which complicates inferencing over the ontology and multiple inheritance may 
indicate bad modeling decisions, but this is not necessarily so.  

Multiple Inheritance. In the initial categorization, Molecule directly subsumed Pol-
lutant, Nutrient, OrganicMolecule, and AnorganicMolecule, where some molecules, 

                                                           
10 http://www.w3.org/TR/2004/REC-owl-guide-20040210/. 
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like PHB and Phosphate, were subsumed by OrganicMolecule and Pollutant, and Nu-
trient respectively. Biologically, these are correct statements, but it would be better to 
specify (not possible in Protégé, but implementable in a DL knowledge base):   

if (concentration of AnorganicMolecule x) in (WaterBasin or AmountOfMatter) is 
higher than [some number] then (x isA Pollutant and x isA AnorganicMolecule) 
else (x isA Nutrient and x isA AnorganicMolecule) for species y. 

This statement indicates that the difference between pollutant and nutrient is problem-
atic:  pollutants are harmful and nutrients beneficial to organisms11, thus a functional 
categorization. However, there are two obstacles: first, a pollutant for species x can be 
a nutrient to species y; this information may be used for in situ bioremediation12, 
hence lies within the UoD. Secondly, low molecule concentration can be a nutrient 
but excess concentration pollutant; but when is ‘excess’ concentration high enough to 
classify it as pollutant? Narrowing down Nutrient to NutrientBioremediation prevents 
confusion with generic nutrients that never function as nutrients for bioremediation. 
That Molecule subsumes Pollutant and Nutrient together with OrganicMolecule and 
AnorganicMolecule is incorrect, because the former are functions assigned to the 
molecules, whereas the distinction for OrganicMolecule and AnorganicMolecule is 
based on the composition of molecules. Using the DOLCE categories for guidance, 
Pollutant and Nutrient still are physical objects (POB), but classified according to 
other criteria. For brevity of this experiment, they are separated into structure and the 
function of molecules. H2O and Amylose each had only one isA relation hence were 
removed, but PHB and 3-chlorobenzoate can be used for bioremediation as each one 
has 3 isA relationships: being an OrganicMolecule, Pollutant, and Nutrient. Although 
multiple inheritance has not been eliminated, due to having structure and function in 
one ontology, there is a major advantage in maintaining this sort of multiple inheri-
tance: when one adds a new entity under MoleculeStructure, Pollutant, and Nutrient, 
i.e. the new entity has three isA relationships, then one can deduce there is potential 
for in situ bioremediation (as is the case with 3-chlorobenzoate). On the other hand, if 
the new entity has two isA relationships, one to MoleculeStructure and the other to 
Pollutant, an ecosystem disruptive method to clean up the contaminated site is re-
quired; if there is only one isA relationship, then there is no need for the molecule to 
be in the classification because it does not serve any particular purpose for the UoD, 
or still needs to be grouped under NutrientBioremediation or Pollutant, thereby miss-
ing essential knowledge in the ontology. Thus from that perspective, multiple inheri-
tance is not a ‘bad thing’ and can be used to derive additional information from query-
ing the ontology.  

Other modeling considerations and limitations include 1) Protégé prohibits creat-
ing an entity or individual starting with a number, in this case 3-chlorobenzoate, 
which is problematic because names of many chemicals start with a number and  
appending the number at the end is not an option with more complex chemical struc-

                                                           
11 Pollutant = “waste matter that contaminates the water, air or soil” (Wordnet) although nature 

may cause pollution as well; nutrient = “any substance that can be metabolized by an organ-
ism to give energy and build tissue” (Wordnet). 

12 In situ bioremediation: removing a pollutant from a contaminated site without disrupting the 
ecosystem by using organisms instead of soil excavation and chemical decontamination. 
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tures. 2) The STELLA pollution model assumes Pollutant_concentration_in = Pollut-
ant_concentration_dumped_by_plant, thereby ignoring adsorption and absorption to 
particulates in the river and sedimentation, consumption by organisms, and assuming 
that the pollutant concentration is uniform throughout the pond. Adsorption and ab-
sorption can be added to the ontology, but this extension is omitted from Pollution 
because its purpose is explorative with relation to the axioms. 3) Protégé tolerates un-
constrained property creation, which can become prohibitive if one desires to develop 
an ontology with possible future ontology integration while another ontology has been 
restricted to a few relationship types. 4) In order to create a sound ontological basis of 
the categorization of entities, the structure of the DOLCE top-level categorization was 
used, most notably the amount of matter (M), physical object (POB), and process 
(PRO) versus ST, resulting in 56 entities for the Pollution ontology. Whereas relating 
entities other than isA or partOf is not possible in a taxonomy, this is possible with a 
formal ontology and therefore included in Pollution via 9 properties and correspond-
ing constraining axioms. The plug-in module OWLViz for Protégé only shows the 
isA relationships in the graphical representation; for additional expressivity, ezOWL 
is required. With a very small ontology, this creates a manageable view of the seman-
tics, but even with only 56 entities, the diagram is already too large to be manageable 
(the OWL file of Pollution is available online as supplementary material). Comparing 
this ontology with the original STELLA pollution model, the 11 elements are ‘trans-
lated’ into 56 entities and 9 properties. This may seem excessive, but the ontology 
captures more semantics than its STELLA counterpart does, hence has a higher likeli-
ness of being useful for more pollution models than STELLA’s dump-river-pond sce-
nario. From the perspective of semi-automated bottom-up development of ontologies 
based on STELLA models, this poses a challenge: how labor-intensive is the addi-
tional structure one needs to add to adhere to sound ontological principles? Is it sensi-
ble to develop semi-automatic translation software if a considerable amount of ontol-
ogy development effort may have to be carried out manually anyway? Instead of 
generating a structure of the ontology, a viable option is to translate STELLA ele-
ments into a list of entities and relationships that one needs to include in the ontology. 
This reduces the manual analysis because it is possible to develop a backbone domain 
ontology, ‘hang in’ the entities generated from the STELLA model, and augment this 
with the relationships and properties that resulted from the translation. 

5.2   The Microbial Loop Model 

The formalization was applied to the ML model (Figure 4) to examine if the axioms 
still hold in a real and larger STELLA model, to shed light on the distribution of Q 
and ST from a Converter, and to investigate if additional axioms are required when 
taking into account the context of the STELLA elements, such as how converters are 
related to other elements. ML’s initial mapping to ontological categories contain 38 
STELLA elements, of which 11 Stock/ED, 21 Flow/PD, two Converters that map to 
ST, and four Action Connectors/Relationships that are modeled as properties in Pro-
tégé (mappings included as supplementary material). All Stock elements can be fur-
ther categorized as Non-Agentive Physical Object (NAPO) leaf categories. Further, to 
accommodate these NAPOs in an ontology, extra entities related to the NAPOs were 
added, such as Phytoplankton (which is an Agentive Physical Object APO), and De-
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tritus (an amount of matter M). Note that “Phyto C” is the organic carbon component 
of phytoplankton, not the phytoplankton as a whole. To accommodate for this in the 
ontology, adding phytoplankton only as an APO is insufficient. Apart from the phyto-
plankton carbon and nitrogen, the NPK parameters (Nitrogen, Phosphor, Potassium) 
are relevant for agriculture and soil science in particular. Should one include other 
molecules to be more comprehensive? From an ontological viewpoint probably yes, 
but one might argue a utilitarian restriction “it’ll do” for the intended purpose. 

 

Fig. 4. The Microbial Loop model. (Source: [3]) 

A separate issue concerning categorization of organisms in the ML as APOs 
emerged during a conversation with one of the creators of the ML model, Professor 
Paul Tett. The distinction between individual organisms, their class and a population, 
are called (phyto)plankter for the individual and (phyto)plankton for the “class with 
the characteristics of the population”. From an ontological perspective, a class is dif-
ferent from a population: a population is a group of individual organisms belonging to 
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the same species living in a given geographic region. The assumption in ML emerged 
that both the –er and –on have the same properties but have only differing numerical 
values (quales), i.e. entering the realm of the statistical properties of the population of 
organisms categorized as being of the same type, hence ‘average organism classified 
as belonging to species x’. At present, there is an empirical problem differentiating 
between the characteristics of the individuals in the population, which is a challenge 
at the epistemological level. One may expect that within several years, ecologists will 
be able to distinguish between properties and their values of population, individual, 
and class, which may have a knock-on effect on the design decisions made with the 
MicrobialLoop ontology. 

Seventeen of the 21 Flow elements are processes (PRO) and the other three ac-
complishment (ACC) (2x the entity Uptake and Excretion) and achievement (ACH) 
(Oxidation). There is no particular contextual aspect why these three have to be cate-
gorized under a different type of perdurant. The two Converters, both called “grazing 
pressure”, each is a parameter of the process Grazing. Hence, it might be a quality of 
the process of grazing, because it is specifically constantly dependent on the entity it 
inheres in (grazing): at any time, a quality cannot be present unless the entity it in-
heres in, in this case a PD, is also present, and a PD is present if its ED bearer is pre-
sent. However, if there is no plankton, the grazer (ED) may be grazing on something 
else. If there are no grazers, then grazing (PD) is not there and its grazing pressure as 
Q is also absent. Alternatively, the grazing pressure simply reaches zero, resulting in 
“grazing pressure” as a ST: the notion of “grazing pressure” is there, thus a ST and 
not a Q, which adheres to the ecology interpretation. Thus, this does not imply that 
Converters automatically always can be translated into states. The Action Connectors 
map well to properties (relationships between entities). There are 59 entities and 10 
properties in the MicrobialLoop ontology (the OWL file is available as supplementary 
material), of which a summarized section is shown in Figure 5.  For instance, the left-
most rectangle is a visual representation of Protozoa as subtype of Microorganisms, 
with (5) inherited from Microorganisms, (6) and (7) as necessary properties of Proto-
zoa, and (8) a necessary property of PhytoPlankton. MicroAlgae and MacroAlgae are 
disjoint subtypes of Algae, and Phytoplankton and ZooPlankton are disjoint subtypes 
of Plankton, and so forth. 

∀x∃y (Protozoa(x)  → hasProcess(x, y) ∧ Respiration(y))        (5) 
∀x∃y (Protozoa(x) → grazesOn(x, y) ∧ PhytoPlankton(y))        (6) 
∀x∃y (Protozoa(x) → grazesOn(x, y) ∧ Bacteria(y))         (7) 
∀x∃y (Phytoplankton (x) → accomplishes(x, y) ∧ Uptake(y))        (8) 

The translation axioms provide an accurate high-level mapping for both the Micro-
bialLoop and Pollution, although the amount of Converters and Action Connectors in 
the models may be to be too few to statistically conclusively confirm correctness of 
the mapping. 

6   Discussion 

Additional entities had to be added to the ontology compared to its STELLA variant. In 
spite of this, several factors ameliorate this issue. Ecology already divides concepts 
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into three types: natural, functional and integrative concepts. The first two types of 
ecological concepts can be identified in the ontology: the functional concepts are cate-
gorized under Perdurant and the natural concepts subsumed by PhysicalEndurant. Im-
posing a separation and categorization may actually benefit ecology. Ford [13] presents 
the interdependencies between the three types of concepts indicating that “[n]ew func-
tional concepts arise to describe newly understood structures or interactions in natural 
concepts and research into functional concepts is constantly used to refine the defini-
tion of existing natural concepts and their classifications” and “[d]evelopments in 
measurement lead to refinements of functional concepts”. Hence, by defining the con-
cepts more clearly with the aid of formal ontology, the discipline of ecology itself may 
advance at a faster pace. However, realize that the change in definition of concepts and 
how they may be classified is the very essence of scientific advance [13]. Consequen-
tially, software for development of an ecological ontology must contain extensive fea-
tures for ontology maintenance, such as described by Klein and Noy [15]. Using the 
DOLCE concept CN [14] or GO Guidelines, it means that a change in the definition of 
a concept implies creation of a new concept, because ¬(CNold = CNnew) even though the 
domain expert may perceive that the meaning is ‘updated’. Remains the challenge of 
representing the integrative concepts of ecological models, which are sometimes estab-
lished and captured in axioms, but also may be conjectures or in the process of being 
refined, where the second and third include alternative views of some ecological the-
ory. This indicates that the chosen ontology development process should be capable of 
representing alternative views. This is not possible in Protégé, but DOGMA features 
[12] do allow this in the ontology commitment layers. 

A generated translation list from STELLA to entities and relationships as outlined 
in the previous section may be used as ontology base where each commitment layer 
represents a different view. An alternative can be to develop software that allows on-
tology browsing from different perspectives exploiting a theory of granularity applied 
to the subject domain. Aside from diverging ideas on theories, the ‘windows on real-
ity’ differ depending on what the scientist is looking for. In ecology, it is common to 
start with flows as opposed to starting with the object where processes act upon. From 
a formal ontological perspective, this is not necessarily problematic: creating the on-
tology starting with perdurants and subsequently axiomatizing their influence on en-
durants is possible. In addition, two distinct methodological approaches in ecological 
research exist. In theoretical ecology, one devises a theory that is tested on its appli-
cability in nature afterwards. On the other hand, ecological modeling via the empirical 
approach involves tweaking the model until it fits the observed data, where only a 
limited set of parameters of the subject matter is used [16]. The former approach indi-
cates that one starts with a framework that will be filled up inwardly and more 
densely, where the latter starts small and gradually will evolve by spreading outward 
once more research has been conducted. If one methodology is better than the other is 
irrelevant here, however, it is important to realize that both approaches are used in 
ecology, and, at least initially, might not result in the same output due to divergent de-
sign decisions. Also, cooperating with domain experts of either type involves a differ-
ent approach commencing ontology development. 

Although engineering challenges of ecology ontology development can be solved, 
the philosophical formal ontology development entertains itself with what and how to 
represent what is known, where an ontologist for ecology will have to cooperate in the 
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process that otherwise logically occurs before ontology creation, i.e. the why in the 
semantics as part of regular science. The output must not only be usable for computer 
science (the ontology), but also of use to ecologists, who will be pushing the bounda-
ries of their discipline by clarifying relevant concepts, thereby better formulating re-
search questions, and later their theories. Provided alternative views of integrative 
concepts and theories can be accommodated for, it will aid the advance in ecological 
science. Apart from the difficulty on class/population (§5.2), a second aspect emerged 
during discussions with Tett: to compare and contrast more precisely a to-be-
developed ontology of the STELLA model for the ‘model organism’ ERSEM13 with 
his MicrobialLoop. In addition, this ERSEM-ontology or MicrobialLoop might func-
tion as template or backbone for other ecological models in marine science. Another 
suggestion how ecology can benefit from the ontological approach is during the “fit-
ting stage” of simulation models to match empirical data, where, according to Tett, 
parameters are added and removed “arbitrarily” and their values changed to fit obser-
vations. Adding the reasoning power of ontologies can ensure consistency. Inconsis-
tencies introduced during the fitting stage provide a focus for (re)assessment and in-
vestigation of (a section of) the domain. 

Considering some practical aspects of ontology development, the mapping between 
STELLA and ontology elements do not imply these correspondences will always be 
applicable, although the devised correspondences were confirmed to be sufficient for 
the MicrobialLoop development experiment. Accommodating the Converters remains 
less straightforward, because decisions have to be made to translate it to a quality or 
state. The use and meaning of the Action Connectors aided in determining the proper-
ties and relations in the Pollution and MicrobialLoop. The relative absence of serious 
difficulties during the modeling of characteristics of the biological entities may be due 
to the size of the (randomly) chosen models and/or the author’s domain knowledge. 
Initial challenges during the development of a taxonomy were absent during the ‘up-
grade’ to Pollution, because the expressivity and flexibility of DL is much greater 
than the limited hierarchies in a taxonomy. Our experience confirms observations 
made by many other researchers that more expressive modeling languages do capture 
a richer semantics. This is not only because it compels the user to do so but also be-
cause one has the possibility to ‘squeeze in’ more knowledge, which in turn enforces 
closer inspection of the domain, resulting in ontologies with less errors and higher 
precision, hence are more stable. This is in contrast with e.g. DAG-Edit or standard 
UML class diagrams when one can gloss over such details. Moreover, where the flow 
dynamics cannot be addressed in a taxonomy, this is dealt with in the developed on-
tologies by first categorizing the relevant perdurants under Process and State and us-
ing properties to create the relationships between these entities and the endurants they 
act with/upon, all captured within one ontology instead of different representations. 
An alternative considered was BFO. However, developing two ontologies (SNAP and 
SPAN) that need to be ‘connected’ to capture the ecological semantics is prohibitive. 
The DOLCE top-level categories intuitively make sense and aids understanding of 
how distant or close biological semantics is from ontologies with a cognitive bias.  

                                                           
13 European Regional Seas Ecosystem Model; refer to [17] for the structure and methodology of 

ERSEM and [18] for the microbial food web in marine systems. 
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Fig. 5. Section of the MicrobialLoop ontology graphical representation with ezOWL 

The two developed ontologies include more entities and relations than their 
STELLA counterpart and easily can be further extended to increase reusability. The 
latter can step up efforts to resolve ambiguities and assumptions; a very large ontol-
ogy may be practically difficult to work with or requires full support of many sub-
disciplines within ecology, analogous to the GO project [4]. Alternatively, one can 
take advantage of the extant modularization of ecological models: ML and e.g. Sea-
Weed are composed of smaller sub-models, where the former contains Riley+, Mi-
croPlankton and Autotroph-Heterotroph [3], and the latter Vollenweider14 and a tide 
& light simulation. Thus it is conceivable create ‘mini-ontologies’ based on the same 
foundational ontology principles for each ecological model separately, then develop a 
library where the user can choose the desired sections to create larger models, sup-
ported by a backbone ontology where for each situation one or a few ontologies can 
be attached to it. This approach also facilitates representation of diverging views of 
integrative ecological concepts. Challenges are the development of a backbone ontol-

                                                           
14 http://tejo.dcea.fct.unl.pt/resources.asp. Vollenweider models form the basis for eutrophica-

tion control, which in turn is used in the LEEDS model and semantically related to ML. 
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ogy and prospects of integrating ontologies. Analysis of differences between ‘simple’ 
and ‘complex’ versions of the Vollenweider models revealed that the more complex 
models contain both additional sections as well as filling the existing structure with 
more detail, thus both coverage and granularity changes. Tett and Wilson [3] indicate 
that this may be the case with multiple ecological models, because there is a desire to 
keep the amount of Stock elements to a minimum for reasons of computational power 
and practical as well as theoretical challenges of estimating parameters. Smith [19] 
claims that, in ecology terms, good simulations should include as much detail as pos-
sible, whereas good models should include as little as possible to capture the most im-
portant factors. This will affect ontology development for ecology, depending on with 
which kind of model/simulation one starts ontology development. Perceptions and 
knowledge about the subject domain change over time, is not always consensual, and 
have the potential destabilizing effect of cascading uncertainties to larger modular 
simulations and models, which are, according to [20], neither possible nor desirable to 
include in one model. A design decision about one larger ontology versus multiple 
mini-ontologies will have to be made. 

Concerning the MicrobialLoop, one may argue that the author’s knowledge of the 
subject domain prevented the need for making excessive amounts of assumptions, 
such as knowing what “Phyto C” is, and microbiology in general. The outcome likely 
would have been different without such prior domain knowledge. Temporal factors 
such as accommodating changes in the rate of in/outflow are not addressed fully, be-
cause they are in the realm of instances. The richer expressiveness of the formal on-
tology approach using Protégé and DOLCE categories proved to be flexible enough 
for the task as it allowed correct representation of entities from taxonomies, entities 
that emerged from the semantic representation of equations, and other implicit knowl-
edge of the STELLA models. The (untrained) ecologist indicated that the richer 
ezOWL graphical representation (Figure 5) that includes properties and constraints 
was preferred over a simplified taxonomic tree generated with OWLViz. Further, and 
more importantly, the ecologist judged the logic made the knowledge captured in the 
formal ontology become clearer than both STELLA and natural language, and con-
sidered to have useful potential to disambiguate the semantics to advance ecological 
research. The translation of the STELLA models into ontologies did introduce many 
new concepts, especially with the simple pollution experiment, but this was much less 
the case with the larger ML model. This indicates that with larger ecological models 
the issue of manual intervention during ontology development decreases. The transla-
tion axioms simplified ontology development from the ML considerably (a first ver-
sion including initial mappings including comments was created within three hours 
and required only a few minor changes afterwards); therefore, utilizing other 
STELLA models with the provided formalization of the translation will also speed-up 
the overall development process of ontologies in ecology. 

7   Conclusions 

Although few ontologies in the ecological domain exist, their development can take 
advantage from existing modeling practices in ecology in particular. Taxonomies are 
insufficiently expressive compared to existing ecological modeling techniques and the 



 Factors Affecting Ontology Development in Ecology 61 

 

perspective of flow in ecological models cannot be represented adequately in a taxon-
omy. We have created a formal mapping between the software-supported ecological 
modeling method STELLA and ontology elements, which simplifies bottom-up on-
tology development and has excellent potential for semi-automated ontology devel-
opment. We developed two formal ontologies, Pollution and MicrobialLoop, in Pro-
tégé, exploiting the expressivity of OWL DL to capture the semantics of ‘flow’ in 
salient in ecology models. STELLA serves as an intermediate representation, widely 
used by ecologists and is translatable to a representation usable for ontologists. In ad-
dition, the more comprehensive semantics of the ontologies have not only a higher 
level of reusability within the domain, but also for future ontology integration as both 
Pollution and MicrobialLoop were developed with the same ontological foundational 
principles which shall facilitate reuse of ontologies. However, the experiments also 
revealed that ontology development for ecology is close to being part of ecological re-
search that through the formalized representation of the knowledge more clearly 
points to lacunas and suggestions for further research in ecology, thereby aiding hy-
pothesis generation. We are currently extending this research with ontology develop-
ment and management aspects such as modularization and ontology integration. 
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Abstract. In many areas of life science, such as biology and medicine, ontolo-
gies are nowadays commonly used to annotate objects of interest, such as biolog-
ical samples, clinical pictures, or species in a standardized way. In these appli-
cations, an ontology is merely a structured vocabulary in the form of a tree or a
directed acyclic graph of concepts. Typically, ontologies are stored together with
the data they annotate in relational databases. Querying such annotations must
obey the special semantics encoded in the structure of the ontology, i.e. relation-
ships between terms, which is not possible using standard SQL alone.

In this paper, we develop a new method for querying DAGs using a pre-
computed index structure. Our new indexing method extends the pre-/ postorder
ranking scheme, which has been studied intensively for trees, to DAGs. Using
typical queries on ontologies, we compare our approach to two other commonly
used methods, i.e., a recursive database function and the pre-computation of the
transitive closure of a DAG.

We show that pre-computed indexes are an order of magnitude faster than
recursive methods. Clearly, our new scheme is slower than usage of the transitive
closure, but requires only a fraction of the space and is therefore applicable even
for very large ontologies with more than 200,000 concepts.

1 Introduction

Ontologies play an important role in biology, medicine, and environmental science. The
probably oldest ontology in biology is the taxonomic classification of flora and fauna.
The NCBI taxonomy [1] is represented as rooted, directed tree, where nodes represent
organisms or families, while edges represent an evolutionary relationship between two
nodes.

In the area of medicine and molecular biology several ontologies were introduced in
the last years, including the Gene Ontology (GO) [2]. The project aims at providing a
structured, precisely defined, commonly used, and controlled vocabulary for describing
the roles of genes and gene products in any organism. In contrast to the NCBI taxonomy,
which resembles a tree, the Gene Ontology is structured in the form of a rooted directed
acyclic graph (DAG). Each GO term represents a labeled node in the graph, while an
edge represents a direct relationship between two terms.

Ontologies as those mentioned before are used to annotate biological and environ-
mental samples, or to define functional characteristic of genes and gene products. Both,
the annotated data and the ontologies are stored in information systems, usually in

B. Ludäscher and L. Raschid (Eds.): DILS 2005, LNBI 3615, pp. 63–79, 2005.
c©Springer-Verlag Berlin Heidelberg 2005
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relational database systems. Clearly, these data are not just stored, but also queried to
answer biologically interesting questions and to find correlations between data items.

The main advantage of ontologies lies in their hierarchical structure. When a query
asks for all samples annotated with a certain concept, not only the term itself needs to
be considered, but also all its child, grand-child, etc. concepts. Consider the question
“Is the concept transcription factor activity defined as a kind of nucleic acid binding in
the Gene Ontology?”.

1.1 Motivation

Graph structures are usually stored using two tables, one for nodes and one for edges.
Each edge represents a binary relationship between two nodes, i.e., a father and a child
concept. Using this model, it is easy to get parents or children of a node, but not an-
cestors or successors as these are in arbitrary distance of the start node. Answering this
simple question above using standard SQL alone is therefore impossible.

Generally, there are two different approaches for answering the question. The sim-
plest method is to program a recursive function – either as stored procedure or using
a host language – that traverses the ontology at run time to compute the answer to the
query. However, a recursive functions requires time proportional to the number of tra-
versed nodes in the tree or the DAG, leading to bad runtime performance. The second
possibility is to index the graph in some way. For instance, one could compute and store
the transitive closure of a tree or DAG before queries are posed. Then, a question as the
one above can be answered in almost constant time by a simple table lookup. But in-
dex structures require time for computation and space for being stored, rendering them
inapplicable for very large ontologies.

In this paper we present a new index structure for DAG-formed ontologies that is an
order of magnitude faster than recursive functions and in most situations consumes an
order of magnitude less space than a pre-computed transitive closure.

The rest of the paper is organized as follows. Section 2 describes our model of stor-
ing ontologies, defines typical queries for ontologies, and describes how these queries
can be answered using recursive functions. Section 3 describes two well-known index-
ing schemes for tree structures, i.e., pre-/ postorder ranks and transitive closure. Section
4 describes how these indexing structures can be extended to index DAGs. The ex-
tension of the pre-/ postorder ranking to DAGs is the main contribution of the paper.
Section 5 shows our results on implementing and benchmarking the different methods.
Finally, Section 6 concludes the paper.

2 Storing and Querying Ontologies

In this section we first describe our model of storing graphs in relational database sys-
tems and we then introduce and specify common questions on ontologies. We demon-
strate how these data can be queried using recursive database functions. In the next
section we then present index structures and how to query them.
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2.1 Data Model

We consider ontologies that are rooted, directed trees or DAGs. In both structures, a
path is a sequence of nodes that are connected by directed edges. The length of a path
is the number of nodes it contains. The length of the shortest path between two nodes
is called the distance between the nodes. In a tree each node can be reached on exactly
one path from the root node. The same is true for any other two nodes in a directed
tree, if a path between the two nodes exists. DAGs are a simple generalization of trees,
as nodes may have more than one parent. Therefore, nodes may be connected by more
than one path.

In any directed graph successors of a node v are all nodes w for which a path from v
to w exists. The successor set of v are all nodes w that can be reached from v. In analogy
ancestors of node v are all nodes u where a path from u to v exists. The ancestor set of
v are all nodes u from which v can be reached.

Graphs are stored as a collection of nodes and edges. The information on nodes
includes a unique identifier and possibly additional textual annotation. Information on
edges is stored as binary relationship between two nodes. Additional attributes on edges
can be stored as well. In a relational database system both collections are stored in
separate tables. The NODE-table contains all node information including the unique
identifier, node name. The second table is called EDGE, where the binary relationship
between two nodes is stored in the attributes from node and to node.

2.2 Typical Queries on Ontologies

The main questions on taxonomies and ontologies can be grouped into three categories,
namely reachability, ancestor- or successor set, and least common ancestor of two or
more nodes.

Q1: Reachability is concerned with questions like ’Does the species Nostoc linckia
belong to the phylum Cyanobacteria?’. To answer the question, one has to find out, if
the node labeled ’Nostoc linckia’ has an ancestor node labeled ’Cyanobacteria’ in the
NCBI taxonomy. The length of the path between the two nodes does not matter.

Q2: Ancestor-/ Successor set of a given node contains all ancestor and successor
nodes, respectively. Given a set of proteins, annotated by Gene Ontology terms, a re-
searcher may want to find all proteins that are involved in nucleic acid binding. Of
course, not only the proteins directly annotated by the term ’nucleic acid binding’ are
of interest, but also all proteins that have a successor term of the original term as anno-
tation. The first step in answering the question is to retrieve all successor nodes of the
given start term – in short the successor set.

Q3: Least common ancestor is of interest when a common origin of a set of nodes
should be computed. For instance, microarray experiments produce expression levels
of thousands of different genes within a single experiment. A typical analysis is the
clustering of genes by the expression levels. A biologist now wants to find commonali-
ties among genes in a cluster. In this situation, GO annotations of genes are helpful, as
the least common ancestors of the annotated GO terms defines the most specific com-
mon description of the genes in the cluster. Note that for computing the least common
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ancestor of a set of nodes, the lengths of the paths between nodes is crucial. Ancestor
sets of nodes may have several nodes in common, and one has to decide which of these
is the closest to all given nodes. Obviously, for answering this question it suffices to
know the distance between the nodes.

2.3 Querying Ontologies

The conventional way is to use recursion to traverse a tree or graph on query time.
Algorithm 1. performs a depth-first search over a tree and returns the successor set for
a node v. The function first looks for children of the start node v and appends each
child, m to the successor set. It then searches for successors of m by calling itself with
node m as the new start node. Doing so, it also holds a counter for the length of the
path v and the current node. As in trees only one path between any two nodes exists,
this is equivalent to the distance. As soon as no more child nodes are found the by then
accumulated successor set is returned.

Algorithm 1. Recursive Algorithm to retrieve the successor set of a node v

FUNCTION successorSet(v, dist) RETURNS succcessors
BEGIN

FOR EACH m ∈ σfrom node=vEDGE DO
append (m,1) to successors;
successorList(m) := successorSet(m, dist+1);
append successorList(m) to successors;

END FOR;
return successors;

END;

To compute the ancestor set of a node a second function has to be created, called
ancestorSet(). This function takes the same parameters as the one presented in
Algorithm 1., but instead of looking for child nodes the algorithm will look for all
parent nodes and append them to an ancestor set, which will be returned at the end.

Using these stored procedures, it is possible to query tree and DAG structures. How-
ever, for DAGs the function is not optimal. Using the functions the exemplary questions
presented in Section 2.2 can be answered with the following SQL statements:

– Q1: Reachability
SELECT 1
FROM successorSet(v, 0)
WHERE suc = w;

– Q2: Ancestor/Successor set
SELECT suc
FROM successorSet(v, 0);

– Q3: Least common ancestor
SELECT A.anc,
A.dist+B.dist AS dist

FROM (SELECT anc, dist
FROM ancestorSet(s)) A

INNER JOIN (SELECT anc, dist
FROM ancestorSet(t)) B

ON A.anc = B.anc
ORDER BY dist;
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3 Indexing and Querying Tree Structures

We now show how to index and query tree structures using the pre- and postorder rank-
ing scheme as well as the transitive closure.

3.1 Pre- and Postorder Ranks

The pre- and postorder rank indexing is well studied for trees [3]. Several systems sug-
gested to use it for indexing XML documents in relational databases [4]. The advantage
of pre- and postorder rank indexing for an XML document is that the document order is
maintained, i.e., the user is able to query for descendant nodes as well as for following.
Note that in our case only descending and ascending nodes are of interest, as ontolo-
gies usually do not contain any order among children of a node. In chapter 4, we will
extend the pre-/ postorder ranking scheme to DAGs. Therefore, we describe the method
in detail in the following.

Algorithm 2. shows the function for assigning pre- and postorder ranks to a node in
a tree. Ranks are assigned during a depth-first traversal starting at the root node. The
preorder rank for a node is assigned as soon as this node is encountered during the
traversal. The postorder rank of a node is assigned before any of the ancestor nodes and
after all successor nodes have received a postorder rank. We store pre- and postorder
ranks together with the node ID in a separate table forming the index. Clearly, the space
requirement of the ranks is proportional to the number of nodes in the tree.

Algorithm 2. Pre-/postorder rank assingments of nodes, starting with root node r

var pr:=0; var post:=0;
FUNCTION prePostOrder(r)
BEGIN

FOR EACH child, m ∈ σfrom node=rEDGE DO
pre:=pr; pr:=pr+1;
prePostOrder(m);
INSERT m, pre, post, pr-pre INTO prePostOrder;
post:=post+1;

END FOR;
END;

To illustrate the steps of the algorithm consider the tree in Figure 1(a). Starting at
the root node A, we traverse the tree in depth-first order. Node B gets the preorder rank
of 1, while E gets 2. As node E has no further child nodes it is the first node to get a
postorder rank and is stored with both ranks in table prePostOrder. This way the
rest of the tree is traversed. The pre- and postorder rank of root node A is assigned
separately.

In addition to the ranks, we also store the number of descendants, s for each node,
which we will use later for improving queries. This number can be computed as the
difference between the current preorder rank and the preorder rank of the node to be
inserted next. To clarify this, consider node C in Figure 1(a). This node is inserted with
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Fig. 1. Pre-/postorder rank assignment of a tree

the preorder rank of 3. The current preorder rank is 6 as the last successor node of C,
I has this preorder rank. The difference between the two preorder ranks is 3, which is
exactly the number of successor nodes of C.

Pre- and postorder ranking becomes clearer when it is plotted in a two dimensional
co-ordinate plane, with the preorder rank on the x-axis and postorder rank on the y-axis
as shown in Figure 1(b).

Querying Pre-/Postorder Indexed Trees. As indicated for node G in Figure 1(b) the
pre-post plane can be partitioned into four disjoint regions for each node v. The upper-
left partition contains all ancestors of v, while the successors can be found in the lower-
right area. The remaining two areas hold the preceeding and following nodes of v.

As ontological structures are usually order-independent, only the ancestor and suc-
cessor sector are of interest. Using the preassigned ranks, nodes in these two partitions
can be retrieved without recursion, since any successor of node v must have a preorder
rank that is higher and a postorder rank that is lower than that of v. The location of
the successors of a node v within the lower-right partition can be further restricted. Let
node v have preorder rank prev . If v has s successor nodes, then each successor w of
node v will have a preorder rank prew with prev < prew ≤ prev + s.

To find the least common ancestor of two nodes the ancestor sets of both nodes have
to be joined on the attribute node name and the common ancestor with the highest
preorder rank is least common ancestor of both nodes.

Using the refinement on the location of the successors the queries for answering
questions Q1, Q2, and Q3 are the following:

– Q1: Reachability (is w successor of v)
SELECT 1
FROM prePostOrder p1,

prePostOrder p2
WHERE p1.node name = w

AND p2.node name = v
AND p1.pre > p2.pre
AND p1.pre ≤ p2.pre+p2.s;
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– Q2: Ancestor set
SELECT p1.node name AS u
FROM prePostOrder p1,

prePostOrder p2
WHERE p2.node name = v

AND p1.pre < p2.pre
AND p1.post > p2.post;

– Q2: Successor set
SELECT p1.node name AS w
FROM prePostOrder p1

prePostOrder p2
WHERE p2.node name = v

ANDp1.pre > p2.pre
AND p1.pre ≤ p2.pre+p2.s;

– Q3: Least common ancestor
SELECT A.node name, A.pre

FROM (
SELECT p1.node name, p1.pre
FROM prePostOrder p1,

prePostOrder p2
WHERE p2.node name = s

AND p1.pre < p2.pre
AND p1.post > p2.post) A

INNER JOIN (
SELECT p1.node name, p1.pre
FROM prePostOrder p1,

prePostOrder p2
WHERE p2.node name = t

AND p1.pre < p2.pre
AND p1.post > p2.post) B

ON A.node name = B.node name
ORDER BY A.pre desc;

3.2 Transitive Closure

The transitive closure of a graph is a set of edges. Edge (v, w) is inserted into the transi-
tive closure if either (v, w) is an edge in the graph or if there exists a path between node
v and w. Using the transitive closure, queries on reachability and queries for ancestor
and successor sets can be answered very efficiently. Finding the least common ances-
tor of two or more nodes requires to store the length of the shortest path between two
nodes.

In the past, several algorithms have been developed to compute the transitive clo-
sure within a relational database system [5]. We found that the so called ’Logarithmic
algorithm’ [6] performed best for trees as well as DAGs. The function is presented in
Algorithm 3..

Algorithm 3. Computing the transitive closure
FUNCTION transtiveClosure()
BEGIN

INSERT INTO TC SELECT from node, to node, 1 FROM EDGE;
max dist:=1;
REPEAT

INSERT INTO TC SELECT TC1.anc, TC2.suc, min(TC1.dist+TC2.dist)
FROM TC TC1, TC TC2 WHERE TC1.suc=TC2.anc AND TC1.dist=max dist;
max dist:= SELECT max(dist) FROM TC;

UNTIL INSERT = ∅
END;

This algorithm first inserts all tuples of the initial edge relation with the distance 1
to the transitive closure table TC. In the next step the tuples from TC with a distance
equal to the maximum distance are self-joined with TC. The join condition is that the
successor node of one relation must be equal to the ancestor node of the other. The
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ancestor nodes of the first relation, the successor node of the second and the minimal
distance between the two nodes is stored in TC. This step is repeated until no further
tuples can be inserted into TC.

Note that the transitive closure requires space that is in worst case O(|V |2). Clearly,
the real space requirements are much smaller for trees, as they are for DAGs. In
Section 5, we will measure space consumption of transitive closures in more detail.

Querying the Transitive Closure. The transitive closure essentially contains one tuple
for each pair of ancestor - successor nodes. Accordingly, queries answering our three
problems may look as follows:

– Q1: Reachability
SELECT 1
FROM TC
WHERE anc = v

AND suc = w;

– Q2: Ancestor/Successor set
SELECT suc
FROM TC
WHERE anc = v;

– Q3: Least common ancestor
SELECT A.anc, A.dist+B.dist
AS distance
FROM (SELECT anc, dist
FROM TC WHERE suc = s) A

INNER JOIN (SELECT anc, dist
FROM TC WHERE suc = t) B

ON A.anc = B.anc
ORDER BY distance;

4 Extending Index Structures to DAGs

So far, we only considered trees for querying. In this section we extend the indexing
schemes to work on DAGs, as ontologies often have the form of directed acyclic graphs.
Specifically, we present how the pre- and postorder ranking scheme can be used for
DAGs and how this structure can be queried.

4.1 Pre- and Postorder Ranks for DAGs

The pre-/ postorder ranking scheme we described in the previous chapter is restricted to
trees. The reason is that in DAGs, where nodes may be reached on more than one path
from root, neither the pre- nor the postorder rank is unique for a single node. If multiple
paths exist, a node is reached more than once during the traversal.

Obviously, it is no option to simply take any one of the ranks, e.g., the first to be
assigned, because then the relationships between the ranks of ancestors and successors
do not hold any more. Consequently, we would loose successors or ancestors during
querying.

In the following, we describe a new and simple extension of the ranking scheme that
is also capable of indexing DAGs. We will show in Section 5 that our method can be
seen as a compromise between recursive query methods, which are slow for queries but
need no further storage and the transitive closure, which allows for very fast queries, but
also requires considerable storage space. We will also show that the advantages of our
method depend on the ”tree-likeness” of a DAG. For DAGs that are almost trees, our
method has considerable advantages when compared to the transitive closure, however,
these advantages are lost the less tree-like a DAG is.
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A

B C D

E F G H
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(a) DAG

node pre post s

A 0 12 12
B 1 1 1
C 3 5 3
D 7 11 5
E 2 0 0
F 4 2 1
G 5 4 1
H 8 10 4
I 6 3 0
C 9 9 3
F 10 6 0
G 11 8 1
I 12 7 0

(b) Table with pre-/ postorder
ranks and number of successors

Fig. 2. Pre-/postorder rank assignment of a directed acyclic graph

The basic idea of our extension is very simple. Instead of assigning only one pair
of ranks to a node, we allow for multiple rank pairs. More specifically we assign an
additional pre- and postorder rank to a node each time this node is encountered during
the depth-first traversal. Actually, Algorithm 2. already performs this computation, as
it inserts a new node-rank combination each time a node is encountered. After running
the function on a DAG, each node will have as many pre- and postorder ranks as this
node occurs in a path from the root node.

As an example, we add one more edge (the dotted edge) to the tree from figure 1(a).
Table 2(b) shows the resulting pre- and postorder ranks for each node in the DAG. As
one can see node C and all descendants of C get two different rank pairs, because these
nodes are encountered on two different paths, one directly from A to C and one from
A over D and H to C.

Clearly, the number of node-rank pairs is higher for DAGs than for trees, leading
to an increase in space consumption for the index. The degree of increase depends
on the number of additional non-tree edges and the location of such an edge in the
graph. Clearly, additional edges in the upper levels of the tree will lead to an addition
of rank pairs for a large number of nodes, while additional edges close to the leaves
of a DAG only have marginal impact. Potentially there is an exponential growth of the
index structure in the number of edges added. However, we observed that in practice the
increase in size is not critical. The reason for this is that in ontologies concepts on the
upper level usually only have one parent concept. For instance, in the Gene Ontology
the first level where a node has two or more parents is on level four. In Section 5, we
will show the impact in size more precisely both on real ontologies and on randomly
generated trees and DAGs.

Like for trees, all rank pairs in the DAG can be plotted on a two-dimensional coor-
dinate plane (see Figure 3). Nodes appear as many times in the plane as they have rank
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Fig. 3. Pre-/postorder plane of a DAG

pairs. This shows that, intuitively, our method multiplies all subtrees of nodes that have
more than one parent.

To query our new indexing scheme, we need to adapt the methods for querying pre-
post order indexes for trees. As an example, consider node G in Figure 3. This node
as well as its successor set appears twice in the coordinate plane as it can be reached
on two different paths from the root node A. However, the successor sets are identical
for each instance of G, because this set is independent of the number of paths G can
be reached from root. Thus, for successor queries it suffices to select any instance of
a node and query for all its children using the conditions on pre- and post order rank
used for trees. This is reflected by limiting the number of returned preorder ranks in the
query to 1. As for trees the search space can be reduced by using the information on
the number of descending nodes. However, caution must be taken to filter the result for
duplicates.

The situation is more complex for ancestor queries, e.g., the ancestor set of a
node v. Computing this set requires to merge all nodes in the upper-left partition of
any instances of v, as the set of one instance only contains nodes for one possible path
from root to v. Again, duplicates must be removed from the result.

– Successor set:
SELECT DISTINCT

p1.node name AS w
FROM prePostOrder p1
WHERE p1.pre > (

SELECT p1.pre
FROM prePostOrder p2
WHERE p2.node name = v
LIMIT 1)

AND p1.pre ≤ (
SELECT p2.pre+p2.s
FROM prePostOrder p2
WHERE p2.node name = v
LIMIT 1);

– Ancestor set for DAGs:
SELECT DISTINCT

p2.node name AS u
FROM prePostOrder p1,

prePostOrder p2
WHERE p1.node name = v
AND p2.pre < p1.pre
AND p2.post > p1.post;
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We only gave the code for computing the successor and the ancestor set. Reacha-
bility can be computed in the same way as for trees. Least common ancestor requires
to compute the ancestor sets of all nodes, intersect them, and find the node with the
minimal sum of the differences between the preorder ranks of the two nodes and the
common ancestor node.

4.2 Transitive Closure on DAGs

Algorithm 3. can be applied without changes to index DAGs. The space complexity will
not change if only the minimal distance between any two nodes is stored. If all possible
path lengths between two nodes are needed, the situation would be different and the
upper bound would be exceeded.

Querying the transitve closure of DAGs is the same as for trees.

5 Results

In this section we compare both indexing methods and the recursive algorithm. We
measure in detail run time of queries, space consumption of the index structures, and
time necessary for building the indexes. We give results on generated tree and DAG
structures and on real data, i.e., queries against the Gene Ontology.

We have implemented both indexing algorithms and the recursive algorithm as
stored procedures in ORACLE 9i. Tests were performed on a DELL dual Xeon ma-
chine with 4 GB RAM. Queries were run without rebooting the database. Given the
relative small size of the data being studied (in the range of a couple of megabytes), we
expected that all computation is very likely performed solely in main memory, as both
data and index blocks can be cached completely. Thus, secondary memory issues were
not considered.

5.1 Time and Space Consumption of Graph Indexing Algorithms

To systematically measure the construction time and space consumption of the two
index algorithms we generated trees with a given number of nodes and a given average
degree of 8.0. The average degree is the average number of incoming and outgoing
edges of a node, therefore in our trees each node has on average 7 children. DAGs
were created by randomly adding additional edges to the tree, independent of the depth
of the newly connected nodes. Added edges had to fulfill two conditions: First, it was
not allowed to introduce parallel edges, and second, no edge between node v and an
ancestor node of v was allowed, as this would introduce a cycle. The index structures
of the generated trees and DAGs were created using Algorithms 2. and 3..

Figure 4 shows the size of the index structures given as the number of tuples inserted
in the index relation. The starting point of a curve always stands for the tree with the
indicated number of edges. To create DAGs we have iteratively added additional 10 %
of the number of edges from the corresponding tree. For instance, starting with a tree
of 10,000 edges, the second measurement contains 11,000, the third 12,000 edges, ect.
Thus, in each line all but the first point represent DAGs. Altogether, we used 11 start
points of trees with 1,000 to 200,000 nodes, performing 1 to 5 rounds of edge additions.
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Fig. 4. Size of index depending on the size of the tree or DAG, respectively. Black stars give the
size for TC, gray boxes for prePostOrder. Note that both axes use logarithmic scale

For a tree, the number of tuples inserted into prePostOrder equals the number
of nodes. For most measured cases, the size of the index using our method is an order
of magnitude smaller than the size of the transitive closure. However, we see that sizes
of TC and prePostOrder are converging as the number of non-tree edges in a DAG
increases. Adding up to 30 % more edges still leads to more than 50 % less tuples in
the pre-/postorder index than for transitive closure in any of the examined sets.

However, adding 40 % more edges reverses the situation in two of the shown sets.
The reason for this behavior is that, when adding additional edges to the tree, the end
node of the added edge plays an important role for the pre- and postorder ranking, but
not so much for the transitive closure. Imagine, you have already added a certain amount
of additional edges to the tree, and now you add a new edge. The pre-/ postorder ranking
now has to traverse another sub-structures more than once, and the nodes within that
structure will get an additional rank pair. The transitive closure will also increase, as
new connections are established. But the number of newly found connections decreases
the more edges already exist in the DAG, as many new edges only introduce new paths
between already connected nodes, thus not increasing the size of the transitive closure.

We can conclude that our method uses considerably less space than the transitive
closure for DAGs that are tree-like. Note that the measurements on a real ontology are
even more favorable for our method (see below).

The time required to construct the pre-/ postorder index for trees is always 3 to 10
times higher than for the transitive closure (data not shown). However, the actual time
difference is marginal, as both structures can be computed very fast even for large trees.
Computing the transitive closure for a tree of 200,000 nodes takes 58 seconds, while
the pre-/postorder ranking index needs 3:45 minutes.

The time difference increases quickly with the number of edges added. For up to
20 % more edges, the difference remains within the order of the differences for trees.
Adding more edges leads to a dramatic increase in the time necessary for computing the
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pre-/ postorder index. For a DAG with 10,000 nodes and 13,999 edges, it already takes
71 times more time to compute the pre-/ postorder than the transitive closure, although
the number of inserted tuples in both tables is nearly equal. The reason for this differ-
ence is that pre-/ postorder ranks require extensive graph traversal, while the transitive
closure can be efficiently computed using dynamic programming - style algorithms over
increasing path lengths.

5.2 Querying Ontologies

We measured query times for three exemplary questions described in Section 2.2, based
on real ontologies. We used real ontologies and not generated ones to obtain more re-
alistic results, as in human curated ontologies concepts on higher levels usually do not
have more than one parent. This specific edge distribution is not included in our DAG
generator.

Table 1. Number of tuples inserted in each relation and time (in min:sec) required for computing
the index structures

NCBI Taxonomy Gene Ontology
Tuples Time Tuples Time

Pre-/Postorder ranking 230.559 5:26 76.734 1:24
Transitive Closure 3.583.760 1:44 178.033 0:04

Table 1 shows for the two ontologies, i.e. the NCBI Taxonomy and the Gene Ontol-
ogy the size of the index structure and the time required for computing both indexes.
As the NCBI Taxonomy is a tree, the pre-/ postorder index is much smaller than the
transitive closure. The figures are more interestingly for the Gene Ontology. We used
a version with 16.859 nodes and 23.526 edges. Although the number of edges exceeds
the number of nodes by approximately 40 %, the size of the pre-/ postorder index is still
considerably smaller than the transitive closure, confirming our observation about the
edge distribution in real ontologies.

In the following, due to space restrictions, we only give query times for Gene Ontol-
ogy. For each of the queries, Q1, Q2, and Q3, 25 % of the nodes of the Gene Ontology
were randomly selected. The query for each node was issued 20 times. The following
figures give average query execution times.

Reachability. We computed times for answering the query ’Is w a successor node
of v?’ for randomly selected w and v. Figure 5(a) shows the times for 4,300 single
queries using either of the two index structures. As one can see, querying the transitive
closure is faster than querying the pre-/ postorder index, but only by a small and almost
constant factor. The recursive function, whose running time depends on the number of
nodes traversed, is not displayed, as it required between 6 and 11,000 times more time
than querying the indexing schemes.

Successor Set. The successor set for 25 % randomly selected nodes from the Gene
Ontology was retrieved using the queries presented in the former sections. Results can
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be found in Figure 5(b). Note that the successor set returned from the recursive function
and from querying the pre-/ postorder index can contain successor nodes several times.
The successor set from the transitive closure will contain any node only once.

Query times using a recursive function is linearly dependent on the number of tuples
returned. Times for both index structures remain fairly constant over the number of
tuples. Times for querying using the pre-/ postorder index are on average 1.5 times
higher than using the transitive closure.

Ancestor Set. Figure 5(c) shows the time needed to retrieve ancestor sets. In this case,
the indexing methods differ considerably. While query times using transitive closure are
similar to the times for the successor set, times for querying the pre-/ postorder index
is even more costly than using a recursive function. The reason that the pre-/ postorder
index is slow is that the ancestor set has to be calculated for every instance of the start
node leading to an extremely redundant ancestor set.

Least Common Ancestor. Computing the least common ancestor of two nodes first
requires to compute the ancestor sets of each node, second to find common nodes in
both sets, and third to select the node with the minimal distance to both original nodes.
Figure 5(d) shows the time necessary to compute the least common ancestor of 4,300
randomly selected pairs of nodes, sorted by the time required for computing the an-
swer using the recursive function. The figure shows that querying the pre-/ postorder
index structure is better than using a recursive database function and worse than using
the transitive closure. The results resemble the one shown in Figure 5(c), as the cost-
dominating operation is the computation of the ancestor sets. The steep rise in time
for some ”pathological” node pairs, i.e., queries where both sets have extremely large
ancestor sets, is somewhat surprising and deserves further study.

6 Discussion

Indexing tree and graph structures is a lively research area. In the XML community
the pre-/ postorder ranking scheme is widely used as it preserves information about
the document order and allows very fast queries at four axis of the XQuery model. To
further optimize access to tree data in relational databases, Mayer et al. [7] have created
the so called ’Staircase Join’, a special join operator for queries against pre-/ postorder
ranking schemes. It is unclear of this method could also be extended to DAGs.

Vagena et al. [8] presented a different numbering scheme for DAGs. This scheme
also conserves the document order, but it is restricted to planar DAGs. As we can not
guarantee that every ontology has such a structure, the algorithm is not universally
applicable. Another numeric indexing structure for DAGs was presented in [9], where
they label spanning trees with numeric intervals. In DAGs not the nodes with several
parent nodes get more than one interval, but all ancestor nodes get the first interval of
that node. They proposed a reduction, but as intervals are propagated upwards in real
ontologies this would probably lead to an index size in the same order of magnitude.

A different indexing method for trees and graphs was proposed by Schenkel et al.
[10]. Their method uses the 2-hop cover [11] of a graph, which is more space efficient
than the transitive closure and allows to answer reachability queries with a single join.
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Since computing optimal 2-hop covers is NP hard, they use an approximation optimized
for very large XML documents with XPointers. However, 2-hop covers do not allow for
least common ancestor queries, as no distance information can be preserved.

[12, 13] are examples of attempts to index graph structures, one by finding and in-
dexing all frequent subgraphs, and one by exploiting properties of the network structure.
However, both methods are for full graphs, and we would expect them to perform rather
poor on DAGs. In the ontology community, we are not aware of any work on optimized
indexing and querying of large ontologies.

We have presented a novel structure for indexing and querying large ontologies,
extending the well known pre- and postorder ranking scheme to DAGs. Our method has
favorable properties for ontologies that are tree-like, which is true for most ontologies
we are aware of. In those cases, most queries for successors are almost as fast as using
the transitive closure, while space consumption is an order of magnitude lower. One
drawback of our method is the time for creating the index. Our current research is
geared towards reducing this time and speed up ancestor queries.
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Abstract. Biologists use scientific names to label the organisms described in 
their data; however, these names are not unique identifiers for taxonomic enti-
ties. Alternative taxonomic classifications may apply the same name, associated 
with alternative definition or circumscription. Consequently, labelling data with 
scientific names alone does not unambiguously distinguish between taxon con-
cepts. Accurate integration and comparison of biological data is required on 
taxon concepts, as defined in alternative taxonomic classifications. We have de-
rived an abstract, inclusive model for the diverse representations of taxonomic 
concepts used by taxonomists and in taxonomic databases. This model has been 
implemented as a proposed standard XML schema for the exchange and com-
parison of taxonomic concepts between data providers and users. The represen-
tation and exchange of taxon definitions conformant with this schema will 
facilitate the development of taxonomic name/concept resolution services, al-
lowing the meaningful integration and comparison of biological datasets, with 
greater accuracy than on the basis of name alone. 

1   Introduction 

Scientific names are inherently poor identifiers for organisms, because although 
names are formalized and validated according to strict codes of nomenclature, the 
same name can be applied by taxonomists to alternative taxonomic views of the ex-
tent or definition of a taxon (e.g. a species, genus etc.). Biologists (i.e. the 'users' of 
taxonomic classifications) identify and label their data with scientific names, by iden-
tifying their organisms according to a particular taxonomic classification, as found for 
example in field guides, but without recognizing and recording that taxonomic con-
text. As a consequence datasets cannot be reliably integrated on the basis of the scien-
tific names because the context or meaning of the name is not captured.  

Taxonomic identification is emerging as a significant problem for the integration 
and comparison of diverse datasets across all fields of biology from genomics to ecol-
ogy. For example, annotations of Genbank DNA sequences typically label the source 
species according to the NCBI Taxonomy (www.ncbi.nlm.nih.gov/Taxonomy). 
Whilst specifically disclaiming any 'taxonomic authority' NCBI attempts to provide a 
single consensus view on taxonomy and represent name alterations and 'corrections' 
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by encoding synonym relationships for use by their search engines (for example the 
genus Fugu has recently been 'renamed' Takifugu). Such an approach cannot deal with 
complex, changing and unrecorded relationships between names as used according to 
alternative taxonomic views. For example, the alternate classification and reclassifica-
tion of Orangutans into separate species or subspecies means that sequence data might 
be labelled according to a variety of alternative classifications. (Currently over 50,000 
nucleotide sequences are ascribed to Pongo pygmaeus, with fewer than 100 for each 
'subspecies' abelii and pygmaeus). It is not clear how the NCBI Taxonomy might 
handle the alternative reclassification of these sub-species as species or whether the 
50, 000 P. pygmaeus sequences include data that some taxonomists would ascribe to 
abelii (species or subspecies). These problems impact on other areas of biology and 
beyond. For example, the increase between 1996 and 2000 in the number of officially 
endangered primate species is partly attributable to the decision in 2000 to accept the 
reclassification of some subspecies (including Orangutan) at the species level [1]. 
Clearly consideration of species names in isolation, without the appropriate classifica-
tory context, makes it difficult to interpret biodiversity data such as the distribution of 
Orangutans, when collected at different times, and labelled according to different 
(unrecorded) classification contexts. 

1.1   Taxonomy and Nomenclature 

Taxonomists classify organisms into hierarchically ranked taxa according to their 
evolutionary relatedness, based on any of a variety of types of biological evidence 
(morphology, genetics, palaeontology etc.). Alternative classifications (taxonomic 
revisions) arise over time reflecting new or alternative taxonomic opinion following 
more detailed study, the discovery of new taxonomic information such as evidence 
about relationships between taxa, description of new species, and increasingly mo-
lecular phylogenies based on DNA sequence comparison. Therefore taxonomy is 
itself an investigative science, and taxonomic classifications represent partial and 
evolving hypotheses rather than static identifications of absolute taxa. Any recorded 
taxonomic classification represents an opinion, according to one authority, at a given 
time. Relationships may be expressed or inferred between successive or alternative 
taxonomies, relating the concepts (taxa) in one classification to concepts in another, 
but without knowing the total genetic history of all life on earth it is not possible to 
derive a final, 'true' classification of existing (and extinct) organisms. 

Taxonomists use scientific names in order to label and communicate about the 
taxonomic concepts that they create. Names are applied to the taxa in a given 
classification according to the codified rules of nomenclature, based on 'typification' 
(i.e. by reference to archived 'type' specimens) and following the principle of 'priority' 
where names are dependent on the oldest type specimen included in the 
circumscription of a taxon. This system provides stability to scientific names over 
time, as they are preserved in relation to their original use and type specimen. 
However, as a direct consequence of the application of these rules the same valid 
scientific name will apply to different views of a taxon according to different 
postulated taxonomic classifications. Indeed it is also true that very similar taxonomic 
concepts may have different names according to different classifications. 
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Names therefore are a part of a 'taxon concept', and cannot be used to unambigu-
ously identify a concept. The identifiers used by experimental biologists to label  
organisms as a member or instance of a particular taxonomic concept should unambi-
guously refer to the taxon concept itself: true integration therefore requires unique 
identifiers for taxon concepts. We propose these concept identifiers should minimally 
include the scientific name applied and the classification context. This context is  
represented by the authorship of the concept, i.e. an 'According To' or secundum 
(sec.) citation. Assigning identifiers for concepts allows simple resolution of taxon 
concepts based on identity, particularly if GUIDs were to be adopted for concepts. 

Taxonomic concepts are created and defined (or revised) in taxonomic publica-
tions. These publications may include various levels of detail defining each taxon, 
which might include: character descriptions (i.e. a list of structure, attribute, value 
triples), lists of archived specimens which are included in the taxon (specimen cir-
cumscription), relationships to other concepts in the same classification (including 
parent-child relationships between a taxon and its subordinate taxa), relationships 
with concepts in earlier alternative classifications, assignment of rank (family, genus, 
species etc.) and application of a scientific name for this taxon. Individual taxono-
mists have different perceptions or models for what constitutes and defines a taxon. 
This makes comparison of alternative taxon concepts problematic, even if the full 
rationale for the classification is available. However, comparing components of  
concept definitions might allow experienced Taxonomists to establish and record 
relationships between concepts with different GUIDs (e.g. two concepts can be  
considered equivalent for some particular purpose). 

1.2   The Users of Taxonomic Classifications 

The complex issues of ambiguity surrounding taxonomic classification and naming 
are well understood by expert taxonomists, but their importance and consequences are 
probably not considered relevant by experimental biologists who wish to use the 
names as static identifiers for the organisms described in their data. The explosion in 
biological data makes the accurate identification of source organisms critical. For 
example a researcher will frequently wish to identify which available datasets contain 
information on a particular organism of interest. Typically datasets are annotated by 
scientific name. However, correct identification of these datasets requires matching 
the taxonomic concepts as used in the source datasets, with the taxonomic concept of 
interest to the researcher (as defined by their reference classification). This requires 
either the use of identifiers for concepts, or comparison of the actual definitions of the 
concepts of interest with the definitions used by the authors of each dataset. A corol-
lary of this is that datasets should be marked up with unambiguous taxonomic concept 
identifiers, for example they should reference the identification guide or classification 
system used by the researcher: identification by scientific name alone is insufficient.  

By way of example a researcher wishing to access data on a fictitious species Aus 
bus from globally distributed databases might minimally want to recover data about 
any species that had ever been known as species Aus bus, or they might want to  
extend this query to recover information about all named species asserted to be 
synonymous with Aus bus at some level. Alternatively, if they have precise 
knowledge of the underlying concept described as species Aus bus they may only 
want to retrieve information about concepts closely related to their own concept of 
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information about concepts closely related to their own concept of Aus bus, regardless 
of their identifying names. Such detailed exploration of all species that overlap or are 
equivalent with Aus bus is only possible if 'names' are resolved according to the con-
cepts to which they have been attached, so that data is retrieved on the basis of con-
cept comparison, regardless of nomenclatural issues. Firstly however we require a 
common exchange schema to facilitate the representation, exchange and query of 
concepts.  

In the following section we describe the current use of biological nomenclature and 
present an example to illustrate the problems associated with relying upon scientific 
names as identifiers for organisms. In section 3 we discuss the variety of approaches 
taken by biologists when describing taxonomic concepts and in section 4 argue the 
case for a standard schema to allow the exchange of this data to permit potential com-
parison and resolution of taxonomic concepts. In section 5 we present our work in 
defining the Taxonomic Concept Schema, an XML exchange standard for taxonomic 
concepts and names and compare this to other models in section 6. Finally some con-
clusions are drawn in section 7. 

2   Using Names as Identifiers of Concepts 

The formulation and application of valid scientific names for taxonomic groups is 
governed by separate codes of nomenclature for botany, zoology, bacteria and viruses 
(ICBN [2]; ICZN [3]; ICSP [4], ICTV [5]). According to these rules the name of a 
taxon is usually determined by the oldest type specimen included in its circumscrip-
tion. The history of the fictitious genus Aus detailed in Figure 1 (and described more 
fully online [6]) illustrates how the rules of nomenclature provide stability for names 
throughout the history of taxonomic revisions, but automatically mean that names 
cannot be used as unique, non-ambiguous identifiers of taxon concepts. In fact the use 
of species names can never be truly separated from a taxonomic classification because 
the rules of binomial nomenclature obscure the boundary between classification and 
nomenclature for taxon names below the level of 'genus' (see for example [7]). 

Where a full scientific name is used with attribution to the authors of the name and 
of the taxonomic revision, this represents a clear identifier for a concept. However, 
this level of detail is rare outwith specialist taxonomy. Most users and creators of 
biological data are not expert in taxonomy, and the names or labels that they use to 
refer to specimens and organisms include ad-hoc labels, common names or the (some-
times approximate or inaccurate) scientific name for a species or higher taxonomic 
group. Published and electronically deposited data might therefore be labelled with a 
variety of names, of varying precision and specificity. For example data about a par-
ticular species of 'daisy' can be found labelled as: lawn daisy, English lawn daisy, 
european lawn daisy, USDA code BEPE2, APNI code 163507-3, ITIS TSN 36862, 
Bellis perennis, Bellis perennis L., Bellis perennis L. Sp.Pl. 886, Bellis perennis L. 
Species Plantarium 2 1753, Bellis perennnis L. Species Plantarium (1753): 886, Erig-
eron perennis (L.) Sessé & Moc., Conyzopsis bellis EHL Krause. Integration and 
resolution between such diverse and semantically distinct names is clearly non-trivial, 
where even a 'single' name might be recorded with minor variations due to errors and 
corrections in spelling, or there may be variation in the abbreviations used. 
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A growing number of taxonomic resources and databases are available online, 
which seek to provide an integrated record of the names and taxonomic relationships 
for a particular narrow or wide taxonomic range (e.g. FishBase, www.fishbase.org; 
ITIS, www.itis.usda.gov). These taxonomic databases require quite complex models 
of taxonomic names in order to represent their data and to account for the needs of 
their users. Historically such databases only represented single, aggregated views of 
taxonomy, but it is now recognized that the issue of multiple classifications should be 
addressed. This requires consideration both of the synonymies between names as used 
in alternative classifications, and the application of the same name to different con-
cepts in alternative classifications. Current representations of synonymy between 
names fail to capture the full complexity of these relationships which imply differ-
ences between concept definitions not simply between names.  

 

Fig. 1. Taxonomic history of the imaginary genus Aus L. 1758 (i) through four subsequent 
revisions (ii – v). Individual specimen organisms are represented by the symbols , ,  etc., 
with nomenclatural type specimens infilled: , , . In 1965 Archer split Aus bus Archer 
1965 from Aus aus L.1758 (ii), which was in turn 'split' creating Aus cus Fry 1989 (iii). Discov-
ery of new specimens in 1991 caused Tucker to re-'lump' taxa in a single species Aus aus 
L.1758 (iv), but according to Pargiter these new specimens indicated that bus (Archer) in fact 
belonged in a separate new genus as Xus bus (Archer) Pargiter 2003 (v). Comparing the speci-
men circumscription of the various views on the taxa it is clear that the underlying concepts 
referred to by the various names change over time. For example compare Aus aus L.1758 in (i) 
versus (ii); or Aus bus Archer 1965 in (ii) and (iii); or the relationship of Aus bus with Xus bus 

3   Defining Taxonomic Concepts 

A taxonomic concept is one view of what constitutes a taxonomic entity, be it a spe-
cies, genus or taxon of higher rank. Typically this would be represented as a pub-
lished opinion or hypothesis according to a given author team, and include a valid 
scientific name as controlled by the rules of nomenclature. Care should be taken to 
distinguish between published taxonomic concepts, representing taxonomists' classifi-
cation hypotheses, and the publication of data by biologists who are only identifying 
organisms according to some preexisting taxonomic concept, i.e. name usage  [8].  

A minimal representation of a taxon concept is therefore a scientific name plus ci-
tation of definition (i.e. an attribution). In this respect any first usage of a scientific 
name represents an original taxon concept, as published by the author of the name. As 
the rules of nomenclature require the original author to be included as part of the 
name, e.g. Aus aus L. 1758, this combination does not uniquely distinguish the origi-
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nal concept in a taxonomic database, as the same name might be valid for subsequent 
revision concepts, which should be distinguished by recording the originator of the 
concept, in addition to the author of the name (as part of the full scientific name), e.g. 
Aus aus L. 1758 sec. Fry 1989. Recording the originating (sec.) authorship for a con-
cept therefore distinguishes between concepts, but does not provide any information 
with which to compare different concepts. The meaningful comparison of defined 
concepts would require the user to consult and interpret the original citations, where 
available. Any computer-assisted automatic comparison and resolution of concepts 
will require that the elements of the concept definition are stored as part of the elec-
tronic representation of the concept in the taxonomic database sources. 

We have modelled how taxon concepts can be represented with varying complex-
ity by a range of creators and users of concepts (including taxonomists, database pro-
viders and experimental biologists). Detailed analysis of the components that are used 
by taxonomic databases or found in taxonomic publications to define their taxon con-
cepts includes (i) specimen and taxon circumscriptions, (ii) character descriptions or 
circumscriptions and (iii) relationships with other taxon concepts.  

There are a wide variety of relationships that might be expressed between taxon 
concepts, which have been considered in detail by others (e.g. [9]; see online docu-
mentation, section 2.3 [10]). These relationships may implicitly or explicitly represent 
set-based relationships defining the extent of overlap with or inclusion of other con-
cepts, or they may capture 'nomenclatural' relationships. However, the description of 
types of relationships is complicated by the interdependence of nomenclature and classi-
fication. A strict interpretation of terms such as synonymy, homonymy etc. implies 
relationships between the definitions of names, and it is questionable whether a relation-
ship between names can be asserted in the absence of the context or usage of those 
names. Any relationship between taxon names at least minimally considers relationships 
between the type specimens determining the names. In the Taxonomic Concept Schema 
(TCS) model presented in this paper a 'nomenclatural' relationship is expressed as a 
relationship between two concepts, implying between the names of the concepts. 

4   The Requirement for Data Exchange Standards 

Given that there are an increasing number of important database providers of taxo-
nomic information, and a large potential user base amongst biologists and non-
scientists, it is necessary to facilitate data exchange between the providers and the 
users, so that data can be integrated from multiple sources, without losing or misrep-
resenting the semantics of the data according to the providers' information models. 
This is necessary both from the perspective of database providers who wish to aggre-
gate information from multiple data sources into a single representation of taxonomy 
without duplication of concepts, as well as for taxonomically naive users who wish to 
integrate data from multiple database providers. If no exchange standard is globally 
adopted, it will be necessary for any application or service that seeks to query multi-
ple taxonomic databases to implement bespoke query and exchange protocols for each 
provider. It would then be impossible to develop standard mechanisms to match or 
resolve concepts between different sources, and no guarantee of any protocol’s stabil-
ity or longevity. 
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The need for data exchange standards across the domains of biology, particularly 
in the context of biodiversity studies, has been identified by GBIF [11] and SEEK 
[12] amongst others. The common approach being taken to provide these standards is 
the development of XML Schemas that define the data transfer structure as an XML 
document, including the structure of the metadata associated with the actual data. This 
approach mirrors that already taken to provide Data Description, or ' Mark-up' Lan-
guages such as EML (EcologicalML [13]), CML (ChemicalML [14]) and GML 
(GeographyML [15]). The necessary information exchange standards for taxonomy 
might include those for taxon concepts, Specimen Records, Collection Details, Publi-
cations, Observation Data, Geographical Location and People (i.e. Authors etc.). 
Standards and protocols for some of these facets are already available or under devel-
opment, including: DIGIR [16] and ABCD [17] for detailing and exchanging infor-
mation regarding biological specimens; TaxMLit allowing the complete mark-up of 
the content of taxonomic work [18], and a number of standards for publication infor-
mation (MODS [19]; XOBIS [20]; XMLMARC [21]; etc.). 

In order to achieve global data exchange standards it is necessary that the standards 
process should be open and inclusive, and it is desirable that proposed standards 
should be consistent, and well documented. TDWG (International Taxonomic Data-
bases Working Group, www.tdwg.org) has taken a lead in providing an international 
forum for the development of standards for biological data exchange. Current stan-
dards being developed (as XML schema) include: the ABCD Task Group On Access 
to Biological Data (providing standards for transfer and discovery of biological col-
lection data sets); the SDD Task Group on Structure of Descriptive Data (developing 
a standard for storing and transferring detailed, character-based, descriptions of 
specimens or taxa) and the Taxonomic Names Task Group on Taxonomic Concept 
Standards (developing a standard for storing and transferring information about taxon 
concepts and names, the work we present in section 5). Because of the overlap be-
tween these three proposed schemas (for example in their use of taxonomic names 
and concepts and their referral to specimens and collections) it is proposed to modu-
larize their implementation to allow reuse of each other's data structures. Furthermore, 
because each type of document will need to provide similar metadata elements de-
scribing the data transferred in a document (for example the source, ownership, ver-
sion etc.) it is proposed that documents conforming to each of these three schemata 
are wrapped in a common format descriptor document. 

5   The TDWG Taxon Concept Schema (TCS) 

Considered in abstraction, models for both a taxon name and a taxon concept consist 
of a label plus definition plus author. Therefore, as demonstrated by Pyle [22], a 
taxon concept can be represented as a taxon name (protonym) plus definition plus 
author. Taxonomic definitions of names include the type specimen for that name and 
application of the rules of nomenclature, whereas the taxonomic definition of a con-
cept might take several explicit (or implicit) forms. A model for names that includes 
relationships between names might be considered as incorporating elements of a con-
cept model as the relationships between names actually refers to both the usage con-
text and typification of that name. 
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Because of the structural similarity between elements of names and concepts, and 
to encourage a more rigorous representation of taxonomic identifiers (as defined con-
cepts rather than somewhat ambiguous names), an XML schema is proposed for the 
representation and exchange of information regarding taxon concepts. Because the 
schema includes a representation of names it will be possible to use this schema to 
represent names as being concepts that lack definitions (i.e. as nominal concepts).  

By making explicit the differences in composition between various types of taxon 
concept definition, the schema will allow users to be aware of the variable accuracy or 
quality of resolution, whether based solely upon names or upon more richly defined 
taxon concepts. Various service providers, such as uBio (www.ubio.org) and Spe-
cies2000 (www.sp2000.org), are providing rich mechanisms for resolving names 
across distributed taxonomic databases. However, resolution services based on taxon 
concepts as represented by the TCS should provide more meaningful comparison of 
taxonomic identifiers. 

The TCS schema was derived by composing an abstract model of taxonomic con-
cepts as discussed above, which seeks to account for all the facets that different data 
providers and users might wish to include in their definition of a taxon concept. This 
was facilitated by detailed consultation with representatives of several taxonomic 
databases and researchers with an active interest in modelling and implementing 
taxonomic information systems (see acknowledgments). The abstract model has been 
represented as an XML schema that defines the structure of XML documents for the 
exchange of information about taxonomic concepts. This exchange schema aims to 
capture data as understood by the data owners without distortion, and facilitate the 
query of different data resources according to the common schema model. The full 
schema and documentation can be found at tdwg.napier.ac.uk. The TDWG review 
process is open and inclusive, giving the opportunity to any interested party to com-
ment and suggest amendments to the proposal. 

An overview detailing some of the elements of the transfer schema is shown in 
Figure 2. Each Dataset will carry MetaData detailing the source of the transferred 
document. To allow cross-referencing within the document, Vouchers (Specimen 
records), Publications and TaxonConcepts are given local identifiers (IDs) that could 
be substituted with global IDs (GUIDs) if these are available (see below). As well as 
recording the details of TaxonConcepts (which can include Relationships with other 
TaxonConcepts, see Figure 3), the transfer document may also be used to detail third 
party RelationshipAssertions between existing TaxonConcepts. 

Because the model represented by the schema aims to be inclusive no 'components' 
of a taxon concept definition are required by the schema, but are optional constituents 
of a concept as represented by a given provider. However, in order to be useful, a 
minimal representation would generally include both a Name and details of the con-
cept authorship (i.e. AccordingTo, or sec.). The representation of a full scientific 
name (NameDetailed) that conforms to the requirements of all existing codes of No-
menclature has been developed outside the project (by the Linnean Core interest 
group [23]) and integrated into the schema. 

The various elements of the schema materialize information defining the concept 
according to the original authors of the concept. This might include details of the 
concept's Relationships to other pre-existing concepts, including its circumscription 
by (inclusion of) other (lower rank) taxon concepts, or its membership of higher rank 
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concepts. Further Relationships may detail similarity or overlap with concepts created 
by other authors. These latter relationships can be considered 'horizontal' in the sense 
that they can relate concepts defined according to different taxonomic classifications, 
whilst the hierarchical relationships between concepts within a classification are 'ver-
tical'. A full list of the types of relationships that may be expressed between two con-
cepts is provided online [10]. 

The manner in which a concept may be circumscribed by 'Character' data is as yet 
undefined in the schema, and would require a formal model for representing character 
descriptions. Various structured models for character data have been proposed (see 
for example [24]), and the SDD working group of TDWG is developing a schema for 
specimen or taxon descriptions that could be included or referenced within a TCS 
CharacterCircumscription. The TCS schema does however provide the mechanism for 
circumscribing concepts by reference to identifiers of specimen records (Vouchers in 
the schema). Individual specimens that circumscribe a taxon can be labelled accord-
ing to whether they are accepted holotypes, isotypes, neotypes etc. for that taxon, 
according to the codes of nomenclature. 

 

 

Fig. 2. Overview of the Proposed TDWG TCS XML Schema.  The major components of the 
schema for transferring taxonomic concepts are shown diagrammatically (XML Elements are 
shown in boxes, with XML attributes listed [below]; generated with XMLSpy.com software). 
Each document would carry MetaData recording source and creation details of the DataSet, 
together with the details of the taxonomic concept information represented. To allow cross-
referencing within the document Vouchers (Specimen records), Publications and TaxonCon-
cepts are given local identifiers (ids), which could be substituted with global IDs (GUIDs) if 
these are available. As well as recording the details of TaxonConcepts (which can include 
Relationships with other TaxonConcepts, see Figure 3), the transfer document may also be used 
to detail third party RelationshipAssertions between existing TaxonConcepts 
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The structure of the TCS schema allows internal reference and reuse of 'top-level' 
elements (i.e. TaxonConcepts, RelationshipAssertions, Voucher and Publication re-
cords). Indeed it is hoped to standardize the representation of Publications and 
Vouchers (including Specimens) across the TDWG schemas (see above). Where any 
of these reusable elements are globally defined and resolvable via Globally Unique 
Identifiers (GUIDs) it will be possible to represent them in transfer documents simply 
by reference to this GUID (see below). 

 

Fig. 3. XML Schema Diagram for a Taxon Concept. A portion of the proposed TDWG TCS 
schema for transferring Taxonomic Concepts is shown diagrammatically (generated with 
XMLSpy.com software). Any combination of the optional component elements would be used 
to detail TaxonConcept definitions according to the data model of the data provider, but typi-
cally at least Name and AccordingTo would be required ('Nomenclatural Concepts' may only 
provide Name). For these two components the detail recorded in different data sources will 
vary, so a simple string representation will always be provided, whether or not detailed decom-
position is possible. The Relationship element allows the TaxonConcept to be defined in rela-
tion to existing TaxonConcepts. This can include hierarchical relationships to parent or child 
taxa in the same classification, or synonymy and set based relationships with TaxonConcepts 
defined in alternative classifications, based on the extent to which two concepts are congruent 
or overlap. SpecimenCircumscriptions list the specimen details (Vouchers in Figure 2) that the 
TaxonConcept is CircumscribedBy, but the nature of CharacterCircumscriptions is as yet 
undefined. The PlaceholderType allows standards developed as other schemas to be incorpo-
rated; provision of the ProviderSpecificData element allows application specific extensions to 
the representation of a Taxon Concept 
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Some taxonomic work is concerned with re-using existing taxonomic concepts. For 
example a taxonomist creating a revision of a large taxon may accept various included 
taxa according to the work of various other published taxonomists, but wish to record 
opinions about the relationships between these concepts. Where these relationships 
are not created as part of a new concept definition they are treated as 'third party' in 
the schema, and stored as RelationshipAssertions with an AccordingTo authority.  

5.1   Globally Identified Taxonomic Concepts 

At present each taxonomic database has its own internal (and sometimes external) 
identifiers for taxon names or concepts (e.g. TSN numbers used by ITIS etc.). These 
are not represented in the core TCS transfer schema, as there is no guarantee that any 
given database ID would map uniquely to a TCS concept nor remain stable over time.  

The TCS schema was devised to allow exchange of concepts together with their 
definitions, and could be used to represent concepts stored in any global repository or 
local cache. To provide a stable and resolvable identifier for these concepts it would 
be highly desirable if GUIDs for taxon concepts were adopted. These could be as-
signed and maintained locally (by data owners) or globally according to agreed inter-
national policies, and would provide a stable reference to a taxon concept as 
represented according to TCS (i.e. minimally Name plus AccordingTo). Once imple-
mented concept GUIDs would simplify the mark-up of any biological data, according 
to available defined concepts, and could assist data retrieval based on concept iden-
tity. Provision of GUIDs would also help reduce the redundancy and overlap between 
different data providers who currently reproduce alternative representations of the 
'same' concept. Discussion within TDWG, SEEK, GBIF and the wider biological 
community is investigating the feasibility of providing GUIDs not only for taxon 
concepts, but also for other stable concepts such as Publications and Specimens.  

The availability of stable GUIDs with which any biologist can annotate their data 
to unambiguously record the organisms described in their work will greatly facilitate 
the interpretation, integration and accurate reuse of data across the whole of biology 
and beyond. Furthermore, eventually it should be possible for a given researcher to 
chose to recognize and use concepts as provided and defined by a preferred taxo-
nomic resource (e.g. ITIS) or even to capture uncertainty by using  less well-defined 
concepts, or collections of possible concepts were identifications are uncertain. 

5.2   Resolving Taxon Names and Concepts  

The proposed schema was initially conceived in the context of SEEK's requirement 
for a taxonomic concept/name resolution service with which to resolve taxonomic 
names as recorded in ecological data sets, following the realisation that resolution by 
name alone is insufficient, and in the absence of identification through GUID refer-
enced taxon concepts [12]. Typical scenarios would involve the matching of names as 
provided by users querying the system with the names as found in the metadata of 
global data repositories, by resolution through the defined concepts provided by taxo-
nomic name providers and servers.  
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By capturing the individual components of concept definitions, according to any 
data model, the schema will allow matching to be performed on any combination of 
the individual components. The type and accuracy of the comparison performed may 
vary according to the requirements of the user, i.e. concept matching should be 'fit for 
the purpose'. For example, a match on the abbreviated scientific name Aus bus, will be 
of lower quality (or precision) than matches specifically to the full, attributed name 
Aus bus L. 1758 sec. Fry 1989. For some experimental purposes the loose match to 
Aus bus will be sufficient, but for others greater precision is necessary. A related 
notion is that comparison matches may be of higher or lower quality, and a 'reliability' 
score might be provided for different concepts returned by the resolution service. 

Where the concepts are fully defined in terms of the components of the TCS 
model, matching on the actual definitions might be possible. When possible this will 
allow very high quality matches, for example, where resolution is on the basis of 
comparing full specimen circumscriptions. Alternatively, resolution only on the basis 
of name-bearing type specimens would provide a less precise, lower quality resolu-
tion, which might still be 'fit for purpose'. Whilst it might be possible to assign 'qual-
ity scores' to different components of the concept definition model, in practice it 
might be necessary to weight these scores to reflect the particular taxon model fa-
voured by a user, or the purposes for which they wish to represent a taxon concept. 
This would allow users to differentially value the alternative components of a concept 
definition, and recognize higher value in matches according to their favoured criteria. 
Implementation of a name/concept resolution service would therefore need to include 
its own quality model for matching, but allow users flexibility in weighting the com-
parison algorithms or interpreting the results. 

6   TCS in Comparison to Other Models for Taxonomy 

As stressed earlier the TCS schema and underlying model aims to be inclusive of all 
other models of taxonomy, and allow data from any data source to be accurately rep-
resented. A strength of the TCS schema is that it supports many recent innovative 
models and implementations of taxonomic information as well as dealing with legacy 
data. Several of these models have been developed specifically to allow the represen-
tation of multiple, alternative taxonomic views (HICLAS [25,26]; PROMETHEUS 
[27]; BERLIN/IOPI [7-9]; TAXONOMER [22]; NOMENCURATOR [28]; uBIO 
www.ubio.org), rather than the standardized single view represented by many global 
taxonomic checklists (e.g. ITIS www.itis.usda.org;  Species2000 www.sp2000.org). 

In the TCS model the taxon concept is the core object, which includes name, 
attribution and definition elements. Whilst many database models also represent a 
central notion of a taxon object, typically the name is used as an identifier for this 
object. The Nomencurator database model [28] tracks nomenclatural history using a 
dual name and publication based model to represent potential taxa by 'name usage'. 
'Annotations' are used to record relationships between these name usages, providing 
an implicit notion of taxon concepts. As such Nomencurator was designed to reflect 
the manner in which taxonomists work in recording revisions, tracking the 
development of taxonomic theories by changes in name usage. However, as there is 
no representation of a taxon concept it is not possible to use the model to define taxa, 
nor does it readily provide identifiable and exchangeable concepts that can be shared 
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provide identifiable and exchangeable concepts that can be shared amongst the vari-
ous users of taxonomy. It should be possible to map each Nomencurator 'name usage' 
(i.e. name plus publication) to a unique TCS taxon concept, using Name and Accord-
ingTo elements. 

The Potential Taxon notion, i.e. the representation of subjective views of a taxon, 
forms the basis of the Berlin IOPI model for botanical databases [8,9]. In this rich and 
complex model botanical information can be linked to potential taxa (i.e. name plus 
circumscription reference) rather than to name alone. Such information can include 
nomenclatural and systematic relationships as well as linked specimen determinations 
and character descriptions. Alternate taxonomic classifications are related to potential 
taxa rather than names, closely corresponding to the TCS model. As with Nomencura-
tor it is envisaged that it will be desirable to present a 'Preferred View' of taxonomy to 
users, by filtering according to preferred reference authorities. A number of databases 
implement the Berlin model, including the MoReTax database [29, 9] which defines 
fundamental, set-based relationships which can be expressed between potential taxa. 
These relationships are included in the types of relation representable in the TCS [10].  

The Taxonomer database model [22] also represents potential taxa, by the intersec-
tion of a Name and a Reference, called an Assertion. Assertions of the first usage of 
that name are treated as a special case, as the name (or Protonym) provides the label 
for the taxon concept. Protonyms form the name for later revised opinions on a taxon 
concept as implicitly or explicitly circumscribed in a subsequent publication, repre-
sented in the model by an Assertion. Protonyms therefore provide common handle for 
both the name and any taxon concepts or Potential Taxa that use this name. TCS 
represents protonyms as the Name components of Original taxon concepts, and TCS 
Revision taxon concepts may express various synonymy relationships to the Original 
Concepts sharing a taxonomic name. As with TCS taxon concepts, Assertions may be 
linked by concept relationships (such as those defined by Geoffroy and Berendsohn 
[31]), and can have attached specimen determinations and character descriptions (as 
text based 'Excerpts'). In the Taxonomer model, however, common names are repre-
sented not as individual concepts (or assertions) but as an attribute of an Assertion 
(which must be or include a Protonym). 

The uBio model of taxonomic information underlying their Taxonomic Name Ser-
vice (www.ubio.org) seeks to separate 'objective' nomenclatural information into a 
consensual reference model (NameBank), whilst representing classification informa-
tion in a separate but linked model of subjective opinions (ClassificationBank). uBio 
assert that this separation whilst providing a rich  representation of taxon concepts 
through classification relationships will allow nomenclaturists to work with bare 
names and represent relationships between them, without referring to concepts. The 
justification being that whereas many aspects of nomenclature are not disputed, taxo-
nomic classifications are inherently unstable, disputed hypotheses. On the other hand 
the TCS does not represent names independently, and relationships must be expressed 
through a concept that bears a particular name. This reflects our opinion that it is 
difficult to find any instances where names are used for identification and communi-
cation of taxa without at least an implied notion of the concept to which they apply. 
Datasets containing only name information, are represented by 'nominal concepts' 
which capture all concepts that share the same name. 
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As with the Berlin and uBio models, the Prometheus taxonomic database model, 
which is based on specimen circumscription, clearly distinguishes nomenclatural from 
classification information [27] and was built to support the working practices of tax-
onomists performing botanical revisions. In this model naming is an automatic feature 
of typification in the specimen circumscription. Alternative classification views, 
based on specimen circumscription, can readily be compared on the basis of set-based 
relationships (such as those defined in the MoReTax/Berlin model [9]).  

The requirements for simple data discovery and exchange between database pro-
viders has favoured the development and implementation of simple generic data query 
and retrieval protocols, which use simple models for the underlying data structure (for 
example, the successful DIGIR [16] protocol with the underlying Darwin Core data 
representation [30]). Whilst such flat, unstructured representations of taxonomic in-
formation are certainly simple, they may not be adequate for representing semanti-
cally complex information. Species2000 (www.sp2000.org) has developed a Standard 
Dataset model for exchanging name-based species information according to a single 
aggregated view of taxonomy, derived from various database sources. Although there 
is no explicit statement on  what 'defines' a named species concept in this model, each 
species can be recognized as a 'concept' according to the originating source database, 
or a recorded taxonomic scrutinizer, and could therefore be represented in TCS as a 
(not well defined) Taxon Concept. The synonymy relationships captured in Spe-
cies2000 are purely nomenclatural, as the synonyms do not belong to any alternative 
conceptual hierarchy. Representing such synonymies in TCS would require that each 
name be represented by a nominal concept. 

Whilst the details captured in each of these theoretical and implementation models 
of taxonomy vary greatly, they tend to converge on a central representation of a po-
tential taxon or taxon concept. TCS can therefore accommodate the salient features of 
these models, as well as representing database models that use a more traditional 
representation of taxonomic names as the identifiers. 

7   Conclusion 

The computerized systems and databases used by biologists and the bioinformatics 
community are largely blind to the problems inherent in the (ambiguous) identifica-
tion of organisms by scientific name alone. As we have discussed, accurate integra-
tion of biological data sets is problematic due to many reasons including errors in 
documenting taxonomic names; the lack of standards for capturing the definition of 
taxonomic concepts; the inherent ambiguity the taxon definitions associated with 
taxonomic names; the lack of understanding of this ambiguity by users of biological 
names; and finally the lack of a global repository for taxonomic concepts with GUIDs 
which can be used to refer to and aid matching concepts for data annotation and inte-
gration. Solutions to these problems require ensuring that references to biological taxa 
in data sets cite the scientific name in the context of a particular classification, which 
we have modelled as the defining attributes of a Taxon Concept. Data integration can 
then be achieved either on Concept identity, or on individual components of a defined 
concept. Where it is not possible to ascribe defined concepts to datasets (such as with 
legacy data) poorly defined nominal concepts  can be used (i.e. concepts with a name 
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but no definition), thus making explicit the deficient quality of the taxon identifica-
tion. The schema has been used to map data from a variety of sources and is currently 
being used as the basis for a taxonomic name/concept resolution service in the SEEK 
project. 
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Abstract. BioMediator is a data integration system that provides a common 
interface to multiple Internet-accessible databases containing information about 
genetics and molecular biology. Ontologies play several important roles in the 
BioMediator system: First, ontologies of genetics and molecular biology can 
serve as data sources. In this role concepts from the ontologies are returned as 
results of queries. Second, queries are posed against a mediated schema, which 
is an ontology describing the domain of discourse. User queries are expressed 
using the concepts in the mediated schema to indicate which results to retrieve. 
Third, each data source is an instance of the system ontology. This ontology 
describes information about the data sources including how often the source is 
updated and by whom. Finally, we are exploring the use of ontologies as a 
mechanism for mapping data sources to the mediated schema. This will 
facilitate extending BioMediator from a centralized integration platform to a 
distributed network of peers. 

1   Introduction 

Biologists seeking to understand the molecular basis of human health and disease are 
struggling with large volumes of diverse data (mutation, expression array, proteomic) 
that need to be integrated and analyzed in order to develop and test hypotheses about 
disease mechanisms and normal physiology. These data reside in multiple public and 
private databases maintained by biologists in their laboratories. For example, a set of 
experiments may generate both gene and protein expression data, which are queried in 
aggregate to find a set of expression products of potential interest. Each of these 
products is, in turn, queried against public domain databases such as Entrez [1], 
SwissProt [2], and the Gene Ontology [3]. Given the dynamic nature of the datasets 
federated database approaches provide advantages over warehousing approaches in 
terms of data currency. Federated approaches with flexible mediated schemata 
representing the entities of interest and their mappings to particular sources are well-
suited to handle the diverse schemata necessary, particularly for the laboratory 
specific private data sets. The BioMediator data integration system [4, 5] takes an 
ontology driven federated approach to data integration for these reasons.  
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In this paper we present an overview of the BioMediator system emphasizing the 
various roles that ontologies (a term we use loosely to refer to vocabularies such as 
the Gene Ontology, a database schema, or a terminology expressed in a description 
logic such as OWL) play in the system. At the source level, the schemata of sources 
focused on data (e.g., Entrez) and those focused on concepts (e.g., the Gene 
Ontology) are treated identically by our system and knowledge about the structure 
and organization of both types of sources can be represented as ontologies (3.1). At 
mediated level, the schemata used to query across these sources are also represented 
as ontologies (3.2). We permit multiple mediated schemata customized to different 
users/query tasks, pieces of which can be shared and reused. At a meta-level the 
BioMediator system uses a system ontology (3.3) to describe meta-information about 
the sources (such as information about validation and curation). Finally, we are 
developing techniques for translating data from specific source schemata into a 
mediated schema using knowledge stored in a mapping ontology (3.4). 

 

Fig. 1. Sample data viewed as a network of resources and properties; solid lines indicate 
datatype properties (DTP) and dotted lines, object properties (OP) 

2   Background 

In BioMediator, the data contained in online public databases are viewed as a network 
of interconnected records. For example, Online Mendelian Inheritance in Man 
(OMIM) [6] contains records describing genes and genetic diseases. Entrez publishes 
records that describe proteins and nucleotide sequences. Entrez also cross-references 
its protein records with related OMIM records. 

2.1   Semantic Web Data Model 

The data sources thus constitute a semantic web for the life sciences. In this web, each 
record corresponds to a node with a collection of attribute/value pairs. This is 
illustrated in Figure 1. The Entrez node NM_010448 has two solid edges leading from 
it: the organism edge indicates it pertains to the house mouse, and the sequence edge 
indicates the nucleic acid sequence. Expressed using RDF [7] terminology, this record 
is a resource with two datatype properties that link the resource to values. 

LocusLink (LL) [8] provides other information related to this nucleotide sequence. 
LL resource 15384 describes the CDF-A gene. Also, LL publishes an object property 
that links the LL resource to the Entrez resource. This establishes that one possible 
sequence for the CDF-A gene is described by the indicated Entrez resource. 

We distinguish between datatype properties (DTP) and object properties (OP) for 
two reasons. First, DTPs indicate the actual content of a resource. DTPss capture what 
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can be thought of as the information represented by the resource. OP are 
correspondences between resources; they are typically displayed (in a web browser) 
as hyperlinks. The second distinction pertains to ownership. In BioMediator, each 
resource is owned by a single data source and only that source can provide DTPs for 
that resource. OPs, on the other hand, can be provided by any data source. For 
example, not only does LL provide a property linking CDF-A to a sample sequence 
(NM_010448), but LL also links this nucleotide sequence to a corresponding protein 
(Entrez record NP_034578) using RefSeq [9]. 

Viewing the data sources as a semantic network distinguishes BioMediator from 
other data integration projects (such as Kleisli [10] or OPM [11]). The semantic 
network paradigm facilitates organizing the resources with an ontology. This 
approach was pioneered (for biologic domains) by TAMBIS [12] and, as we describe 
in this paper, extended by BioMediator. In this context, the ontology organizes the 
resources (and properties) into a hierarchy of concepts, against which users can query. 

2.2   System Interface 

BioMediator allows client programs to interact with this semantic web in a number of 
ways. The most basic interaction, seed, retrieves a specific resource and its associated 
DTPs. The client program provides the resource’s accession number, and the database 
in which the resource can be found. For example, a program can request resource 
NM_010448 from Entrez, and BioMediator will retrieve the associated attribute/value 
pairs (e.g., organism/Mus musculus). Microarray researchers with chips annotated 
using accession numbers use this operation extensively [13]. 

Resources can also be retrieved using a query. In this case, the client program 
selects one of the classes in the mediated schema (see below) and one or more 
attribute/value restrictions. BioMediator retrieves all of the resources that are 
instances of the given class and that include all of the indicated attribute/value pairs. 
For example, a program can request all phenotype resources whose name is 
narcolepsy, or genes whose locus is 11 B1.3 and whose organism is the house mouse. 

These first two interactions produce DTPs only. OPs can be retrieved using 
expand. Given a resource (or set of resources), this operation retrieves all related OPs 
(either leading from or pointing to the indicated resource). Both the mediated schema 
and the system ontology (see below) can be used to restrict which OPs will be 
retrieved. For example, a client program might be interested in the ‘codes-for’ 
property for a sequence, but not the more general ‘related-to’ property. 

Finally, BioMediator can recursively grow the network, which expands each new 
resource it encounters. In this case, it is often useful to limit the OPs using the system 
ontology (e.g. limiting the growth to include only externally validated properties). 

2.3   Architectural Overview 

To support these operations, BioMediator relies on a series of components as 
illustrated in Figure 2. The system relies heavily on the source knowledge base 
(SKB), which is represented using Protégé-2000 [14], and accessed via the Protégé 
API. The SKB (Fig. 2A) contains the mediated schema and the system ontology, both 
of which are described in the following section. 
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The query processor (Fig. 2B) provides an API for launching and managing 
queries posed using the mediated schema. The metawrapper (Fig. 2C) translates these 
mediated schema queries into source specific queries [15]. Wrappers (Fig. 2E) pass 
the remapped queries through to the data sources (Fig. 2F). Data sources return 
results in native format (e.g., HTML, ASN1), which are converted to XML syntax 
with native semantics by the wrappers. The metawrapper applies mapping rules in 
translating the XML results from native semantics to mediated schema semantics.  

The query processor then retrieves data from the metawrapper, organizes that data 
and generates events that can be used to synthesize a navigable representation of the 
result set. Once a result set has been constructed, it may be repeatedly queried, 
expanded or grown using the query processor's API. 

3   Multiple Roles of Ontologies 

As described in the previous section, BioMediator uses ontologies in several roles. 
The SKB contains two ontologies: The mediated schema provides a hierarchical 
vocabulary for organizing resources published by the underlying data sources and the 
system ontology describes how the data sources are maintained. In addition, 
BioMediator can access external ontologies as data sources. 

 

Fig. 2. Architecture pipeline of the BioMediator system 

3.1   Data Source 

In many cases, an ontology can be represented in the semantic web data model. In this 
case, resources represent named concepts and properties represent relationships 
among the concepts. For example, the Gene Ontology (GO) [3] includes two inter-
concept properties (‘is-a’ and ‘part-of’) and one property relating external resources to 
concepts (‘classified-as’). 

Properties provided by an ontology are treated no differently than other properties. 
This means that, for better or worse, we do not attribute any meaning to these 
properties. For example, given that the nuclear membrane is part of the nucleus, and 
the nucleus is part of the cell, we should be able to infer that the nuclear membrane is 
part of the cell. Instead of making this inference, BioMediator returns only those 
properties explicitly present in the sources. 



100 P. Mork, R. Shaker, and P. Tarczy-Hornoch 

 

This simplicity is advantageous because properties relating data resources and 
properties relating concept resources are treated uniformly. For example, given a 
collection of nucleotide sequences up-regulated in an experimental group (relative to 
a control), BioMediator can first identify the corresponding proteins (using the 
expand operation) and then organize these proteins based on functional classification 
(using the expand operation a second time). This helps a researcher answer the 
question, “What do these experimental results mean?” 

When a simplistic view of the data is not sufficient (e.g., a user needs to answer a 
very precise question), more machinery is needed. In this case, the mediated schema 
provides a common vocabulary for expressing more precise interactions (such as “A 
mutation of what gene results in dysprothrombinemia, haemophilia caused by an 
inactive protein?”). 

3.2   Mediated Schema 

At the heart of a data integration system is a mediated schema. The simplest mediated 
schema is the union of the source schemata which has two key limitations. First, 
application developers are must understand all of the source schemata to author 
queries. Second, when a new source is added, each application needs to be modified 
to reference the new source. For example, both SwissProt [2] and Entrez [1] contain 
information about proteins. In the absence of a mediated schema, the only way to 
capture this similarity is by requiring all applications to query for the union of these 
sources. When another source containing information about proteins (e.g., GeneTests 
[16]) is identified, every application program must be updated. 

Given this limitation, database research has focused on formalisms for expressing 
the mediated schema in terms of the source schemata. In TAMBIS [12], the mediated 
schema is an ontology expressed using the GRAIL description logic [17]. The 
mediated schema is described independently of the underlying sources. The contents 
of the sources are then described in terms of the mediated schema, and an inference 
engine is used to determine how the source schemata relate to the mediated schema. 
For example, an OMIM record can be defined to be the union of genes and 
phenotypes for which the value of the organism attribute is human. 

When a new source is added to the system, neither the existing definitions need to 
be updated, nor do existing applications. As a result, new sources can more 
transparently be introduced into the system. However, if the mediated schema is 
changed, then it becomes necessary to revisit every definition. 

BioMediator uses a strategy similar to TAMBIS, but with greater emphasis placed 
on modularity. Instead of a single mediated schema, one of our goals is to support 
multiple mediated schemata simultaneously. In Figure 2, each user group can have its 
own SKB, independent of all other user groups. 

Thus, even though the users see the same sources, they may organize these sources 
differently. One sample mediated schema is shown in Figure 3. This schema was 
developed for a statistician performing analyses on microarray data (i.e., it is not 
intended to represent everything about microarray experiments, let alone all of 
molecular biology). Several concepts in Figure 3 are common to a variety of user 
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groups: Genes are an abstract unit of inheritance. Each gene can include a number of 
closely related sequences as examples of the gene. These sequences code for proteins, 
which produce (cause) the manifestation of a phenotype. 

Some additional concepts are needed to support microarray analyses. First, we 
added several classes that describe microarrays. An experiment is performed using a 
specific chip. That chip contains several spots. Each spot is associated with a specific 
sequence. The statistical analyses also required functional information (from GO), 
which was one of the motivations for treating ontologies as data sources. Here GO is 
modeled as a hierarchical vocabulary, which differs from a controlled vocabulary in 
that inter-concept properties are allowed (as described above). 

 

Fig. 3. Sample mediated schema for annotating microarray experiments.  The top half displays 
the inheritance hierarchy; the bottom half displays containment relationships (diamonds) and 
other object properties 

Once the mediated schema has been designed, rules must be written so that the 
metawrapper can transform source data into the mediated namespace. When multiple 
groups agree on portions of the mediated schema, they can also share these 
transformation rules. In the case of disagreement, transformation rules must be 
modified or removed. Finally, each source must be added into the system ontology. 

3.3   System Ontology 

Within the system ontology, each data source is represented as an instance of the 
database class. A database is a collection of resource tables and property tables. Of 
the resource tables, one is designated as the primary table (references into a database 
that do not specify a type are assumed to index into the primary table). 

A resource table stores the metadata needed to retrieve a collection of resources. 
Each resource table is associated with a class from the mediated schema; all resources 
in the table are instances of that class. Likewise, each property table is associated 
with a property from the mediated schema. The domain and range of each property 
table must also be specified (i.e., the resource tables connected by the property table). 
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Moreover, for each property table, we also record metadata describing how the 
property table is maintained. These metadata include descriptions of: a.) population, 
b.) validation, c.) update, and d.) causality (i.e., whether the correspondance indicates 
a causal mechanism, such as gene coding for protein vs. merely observed correlation). 

Metadata can be used to constrain the property tables that will be considered when 
using the expand or grow operations. For example, a clinician might be interested in 
browsing only those property tables ‘validated’ by an external review process, 
whereas a researcher might choose to browse only ‘causal’ relationships (even if the 
relationship has not yet been proven experimentally). 

Each table is also associated with rules used by the metawrapper to convert source 
data into the BioMediator data model. For example, a rule is used to indicate that 
when OMIM returns a disease record it should be converted to a resource that is an 
instance of the mediated class phenotype. The value of the title attribute is mapped to 
a name datatype property. 

3.4   Mappings 

We have begun exploring OWL [18] as an alternative to the current rule language for 
expressing relationships between the source schemata and the mediated schema. The 
hope is that OWL constructs will allow us greater flexibility. Not only will it be 
possible to translate from a source namespace to the mediated, but the inverse will 
also be possible. This will allow us to distribute our system in a peer-to-peer fashion. 

For example, we can declare that an OMIM record describes a gene or a 
phenotype, i.e., an OMIM record is defined to be the union of these two classes. A 
GeneTests record for a gene is equivalent to the class, Gene, in the mediated schema. 
A query requesting information about a specific gene can be rewritten as a query 
against GeneTests (because Gene ≡ GeneTests Gene Record). 

More sophisticated rewritings are also possible. At first, it does not seem that a 
gene query can use OMIM because an OMIM record is more general than gene 
(Phenotype ⊆ Gene ∪ Phenotype ≡ OMIM Record). However, assume the mediated 
schema asserts that the domain of the property, AssociatedWith, is 
NucleotideSequence ∪ Gene, we can rewrite the query to request OMIM records that 
participate in the AssociatedWith property (OMIM Record ∩ ≥1 AssociatedWith). 
We are exploring algorithms for efficiently generating all valid rewritings. 

4   Conclusions 

BioMediator is a data integration system that uses ontologies in several roles. The 
network-based data model allows us to use an ontology such as the Gene Ontology as 
a data source. This is particularly useful for organizing experimental results into 
functional groups. To support more precise interactions, users can formulate queries 
in terms of a mediated schema. The role of this mediated schema is to provide a 
common nomenclature applicable to multiple local or remote data sources. The 
mediated schema also defines the object properties that can link data instances. These 
properties are further annotated using the system ontology, which describes how the 
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underlying data sources are maintained. This approach provides several benefits. 
First, the results returned by BioMediator are as current as the underlying sources. 
Second, each user group can customize its mediated schema, and the mappings that 
relate the data sources to that common namespace. Finally, our architecture supports 
both precise queries (the database standard) and more generic browsing. These 
advantages make BioMediator an excellent platform for supporting a variety of 
biomedical data needs. 
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Abstract. Microarrays are one of the latest breakthroughs in experi-
mental molecular biology. Thousands of different research groups gen-
erate tens of thousands of microarray gene expression profiles based on
different tissues, species, and conditions. Combining such vast amount
of microarray data sets is an important and yet challenging problem.
In this paper, we introduce a “correlation signature” method that allows
the coherent interpretation and integration of microarray data across dis-
parate sources. The proposed algorithm first builds, for each gene (row)
in a table, a correlation signature that captures the system-wide depen-
dencies existing between the gene and the other genes within the table,
and then compares the signatures across the tables for further analysis.
We validate our framework with an experimental study using real mi-
croarray data sets, the result of which suggests that such an approach
can be a viable solution for the microarray data integration and analysis
problems.

1 Introduction

Microarrays are one of the latest breakthroughs in experimental molecular biol-
ogy. It provides a powerful tool by which the expression patterns of thousands of
genes can be monitored simultaneously and are already producing huge amount
of valuable data. Analysis of such data is becoming one of the major bottlenecks
in the utilization of the technology. The gene expression data are organized
as matrices — tables where rows represent genes, columns represent various
samples such as tissues or experimental conditions, and numbers in each cell
characterize the expression level of the particular gene in the particular sam-
ple. Application of microarray technology to biological problems, ranges from
understanding of metabolic responses of microbes, to cancer in humans. The
main challenge of analyzing microarray is the virtual explosion in the volume
and complexity of gene expression data. Thousands of different research groups
generate tens of thousands of microarray gene expression profiles. Different ex-
periments utilize different tissue types, examine different treatment strategies,
and consider different stages of disease development. This, along with differences
in microarray platform, technology and protocols used in different labs, leads to
difficulties in integrating microarray data across experiments.
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How to combine the data (gene expression levels) in different microarrays
is a challenging problem since these gene expression levels are not necessarily
directly comparable. The same gene may exhibit different bias at different data
sets. For instance, a gene in the liver tissue may have higher expression level
(higher values in a microarray) than that in the skin tissue (lower values in an-
other microarray) by the nature. As a result, directly integrating the microarrays
according to the gene ids would result in inconsistency. In addition, microarrays
may contain different (overlapping) sets of genes. This increases the difficulties
in the integration of the microarray data sets.

In this paper, we consider the problem of integrating heterogeneous gene
expression data sets. We try to tackle this problem by employing a novel corre-
lation signature method. The correlation signature captures the data set-wise
characteristics of a gene in terms of its correlations to a set of landmark genes.
Various methods can be used to choose the landmarks, e.g., genes from a par-
ticular pathway or deemed important by domain experts, etc. The expression
level of a gene at a microarray table can be converted into the similarity (or cor-
relation) to the set of landmark genes. For example, if there were 10 landmark
genes, then at each microarray table, a gene will have 10 correlation values each
of which corresponds to a landmark. We call these correlation values as the gene
signature vector. The signature vector removes the bias in the expression values
and can be used to compare genes across heterogeneous experiments.

The amount of data for all signature vectors could be very large, O(|G| ×
|L|× |S|) where |G|, |L|, and |S| are the average number of genes in a study, the
number of landmark genes, and the number of studies, respectively. This could
range to tens or hundreds of Gigabytes. How to organize and represent the entire
set of signature vectors is a challenging problem. A novel multi-dimensional data
model, gene signature cube, is proposed in this paper to represent the set of gene
signature vectors. The entire cube may not be fully instantiated because of its
size. We introduce two virtual signature cube organizations that materialize
parts of the cube on the fly upon request in the query time, and present the
result of the performance comparison of the two models. In summary, we make
the following contributions in this paper.

– We introduce a statistical model, correlation signature, that captures system-
wide dependency relations among data instances. The correlation signature
projects semantically non-conforming data instances from disparate sources
into common dimensions, allowing the coherent interpretation and integra-
tion of the data.

– The data set may be large. There are thousands of microarrays each con-
taining thousands of genes. As a result, the signature based integration will
also generate a large amount of data. We organize the set of transformed
data into a conceptual cube. In this paper, we present methods to store and
access the data in the cube.

– The proposed framework can also be applicable to other types of experimental
data. A typical scientific experiment involves a series of observations made
over a set of inter-related variables (e.g., in microarray, genes are variables and
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samples are observations.) Moreover, similar experiments typically share some
numbers of common variables (e.g., genes, proteins), and the variables are in
most cases not independent. The proposed model can exploit such properties.

The remainder of the paper is organized as follows: We first present the signa-
ture vector data model in Section 2. Then, in Section 3, we present the signature
cube data organization in detail. The related work is discussed in Section 4. Fi-
nally, Section 5 concludes the paper and outlines the future research directions.

2 Unified Data Model for Gene Expression Profiles

Figure 1 shows an overview of our signature calculation algorithm, SigCalc,
and Figure 2 illustrates the signature computation process through an example.
SigCalc takes as input a microarray table M and a set of k landmark genes.
The landmark genes can be selected either manually by the user or automatically
by the system. If user did not provide landmarks, the system can automatically
select candidate landmark genes. Different techniques can be used. For exam-
ple, depending on the application, the system may run a feature selection algo-
rithm [1,2] to choose a set of representative genes in the table, or simply choose
a random set of genes and use them as landmarks. With random landmarks, the
correlation signature model behaves similar to the random projection, a popular
dimensionality reduction method [3,4,5,6,7], except that the random projection

Input : Microarray table M (n × m, n genes and m conditions),
set of k landmark genes L = {l1, ..., lk}

Output: Set of gene signature vectors S ={−→sig(g1),...,
−→
sig(gn)}

for each gene gi in M do
for each gene lj in L do

dj ← dist(−→gi ,
−→
lj )

end−→
sig(gi) ← [d1, d2, ..., dk]

end

Fig. 1. SigCalc: signature computation algorithm
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1 2 1
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6
1
2
4
5
1
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c1     c2     c3      c4
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g2
g3
g4
g5
g6
g7

l1

l2

microarray M

0.00 0.07
0.91 0.76
0.07 0.00
0.19 0.15
0.26 0.22
0.50 0.27
0.91 0.94

sig(g1)
sig(g2)
sig(g3)
sig(g4)
sig(g5)
sig(g6)
sig(g7)

l1      l2

signature vectors

l1

l2
activated

repressed

unchanged

Fig. 2. Example of signature vector computation. Assume l1 and l2 are regulator genes
with similar functions
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projects the original high-dimensional space onto a random subspace while the
correlation signatures project the original space onto a subspace whose coor-
dinates correspond to the landmark genes. Despite the similarity, the random
projection cannot be the solution for the microarray integration problem be-
cause the random subspaces projected from different datasets are not generally
comparable as each projected subspace consists of random dimensions.

When users provide landmarks to the system, they can either explicitly pass
a hand-selected genes to the system, or they can just state what kinds of genes
they want the system to use. For the latter case, the system can guide users
to make their choices on the group of genes, by providing information about
gene annotations, functional groups, known regulator genes, or genes that are
involved in a certain pathway, retrieved from some external sources such as GO
ontology database (http://www.geneontology.org) and KEGG pathway database
(http://www.genome.jp/kegg/).

Once landmark genes are selected, system calculates signature vectors of all
genes in the table as shown in Figure 1. SigCalc uses a distance function, dist,
to measure similarities and dissimilarities between gene vectors (rows of M). Any
conventional distance metric can be used including standard metrics such as Eu-
clidean or cosine distance, or some variants that are popular in microarray anal-
ysis such as correlation distance or mean-expression distance, as defined below.

– Euclidean Distance: Given two gene vectors −→x and −→y , where −→x = [a1, ..., an]
and −→y = [b1, ..., bn], respectively, the Euclidean distance is : euc(−→x ,−→y ) =√

(a1 − b1)2 + ... + (an − bn)2.
– Cosine Correlation: Given two gene vectors −→x and −→y , the cosine correla-

tion is: cos(−→x ,−→y ) =
∑ n

i=1 aibi√∑ n
i=1 a2

i

√∑ n
i=1 b2i

. The cosine correlation measures

the similarity between gene vectors. For a dissimilarity measure, simply
1 − cos(−→x ,−→y ).

– Pearson Correlation: Given two gene vectors −→x and −→y , Pearson correla-
tion is: cor(−→x ,−→y ) = covariance(−→x ,−→y )√

covariance(−→x ,−→x )×covariance(−→y ,−→y )
. For a dissimilarity

measure, 1 − cor(−→x ,−→y ).
– Mean-Expression Distance: Given two gene vectors, the mean-expression

distance is defined as: dist(−→x ,−→y ) = mean(−→x ) − mean(−→y ).

Note that the correlation and mean-expression distances are not metrics in
a strict sense (e.g., do not satisfy triangular inequality) but introduced here
because they are commonly used in practice for microarray analysis. Although
Euclidean distance is a common method to represent the similarity or dissim-
ilarity between two vectors, it does not take into account the natural bias of
expression level of different types of genes. Some house-keeping genes may nat-
urally express highly while some other genes may always express at a low level.
Thus, the distance measure may appear larger for these two types of genes. If we
are interested in the fluctuation of the expression levels rather than the absolute
gene expression values, then the Euclidean distance measure may not be proper
to use. In this case, the correlation metrics could be used.
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The mean-expression distance is somewhat simplistic but popular in practice
because it gives a natural interpretation of the expression level differences, and
can be applicable to the gene vectors with different dimensions. In reality, gene
vectors (rows) from different microarray tables almost always have different di-
mensions (e.g., one table has columns of lymphoblastic leukemia samples and
the other has myeloid leukemia samples; number of columns also may differ.)
The first three metrics will not work for such comparison. In contrast, all four
distance metrics can be used with our model, after transforming the original
gene vectors into the corresponding signature vectors.

Now, consider the example in Figure 2. On the left, it shows an input microar-
ray data table M . Suppose the user selected g1 and g3 as the two landmarks, l1
and l2, respectively. SigCalc transforms the original table into a 7×2 table whose
rows represent the signature vectors of the corresponding genes in the original
table. In this example we used the correlation distance (0.5× (1− cor(−→x ,−→y )) to
calculate the signatures. For example, consider

−→
sig(g7) in the signature vector

table. It has two entries [0.91, 0.94] representing correlation distances of gene g7

to the two landmark genes, g1 and g3, respectively.
How do we interpret the distance to the landmarks from a gene? What does

it exactly mean that the distance is 0.91 or 0.19? The correlation distance ranges
from [0, 1], and a distance close to zero implies the two vectors are correlated
and a distance close to one implies the two vectors are inversely correlated.
If it is 0.5 it means there is no correlation. Now, let us assume that the two
landmark genes, l1 and l2, are known regulator genes with similar functions. In
this example, if a gene’s signature vector contains close-to-zero values, it may
mean that the gene is activated by the two regulator genes. The opposite also
holds. The third table from the left of Figure 2 shows the heat map visualizing
the activation/repression relations. In our example, g7 is repressed while g4 is
activated (

−→
sig(g1) and

−→
sig(g3) are also low but they are the landmark genes, and

thus ignored.)
A critical precondition that needs to hold to make the proposed approach

work is that some genome-wide dependency relations between genes exist and
that the relations are conserved across the different experiments, samples, organs,
or even across different organisms. In fact, this is a general belief in the biology
community. Genes do not act alone: one gene’s expression triggers another gene’s
expression. While most of the dependency relation will remain unchanged, some
statistically meaningful changes may be detected from a comparison like normal
cells vs. cancerous counterparts.

One of the main strengths of our approach is the flexibility in landmark
selection. The signatures can be further tuned for a specific analysis by choosing
landmarks from only the genes that are relevant to the current analysis. For
example, suppose one tries to identify how genes behave differently in two sets
of cancer samples (e.g., Leukemia and B-cell lymphoma), with respect to only the
genes of certain functions (e.g., cell cycle or metabolism). Using our approach,
such comparisons become straightforward; we just need to choose landmarks
from the genes with cell cycle or metabolism functions.
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Our approach also allows flexible cross-validation and analysis. Virtually any
expression data sets can be compared provided that the signatures are generated
over the common landmarks. One can compare the properties of genes across
different tissues (e.g., skin, liver, blood etc.), different clinical stages of cancers
(e.g., metastasis vs. primary, recurrent vs. non-recurrent etc.), or can compare
across even different organisms (e.g., mouse vs. human; mice and men share 99%
of genes [8]).

To demonstrate the efficacy of the proposed model, we conducted the fol-
lowing tests using the leukemia data set published by Golub et al. in [9]. The
following experiments were implemented using a statistics package, R [10], and
the Bioconductor library [11]. All experiments were performed on a machine
with P4 2.4GHz and 1 GB memory running Windows XP Professional.

2.1 Rejecting Null Hypothesis

One of the fundamental questions that we need to address is, will the gene
signature vectors really capture some information that is statistically meaningful?
To answer the question, we first split the leukemia table (1450× 47, where 1450
genes tested over 47 Acute Lymphoblastic Leukemia (ALL) patient samples;
1450 genes selected out of 7129 genes after filtering out under-expressed genes)
into two partitions with randomly selected disjoint sets of 20 samples (1450 ×
20). Then, we computed a separate set of signatures for each partition with
50 common landmark genes (selected by running k-means clustering, using the
correlation distance as a dissimilarity metric, with k = 50 over the original table,
and then choosing the medoids from each resulting cluster), and compared the
signatures across the two sets. If it really captures the information, at the very
least, the signature vectors of corresponding genes across the two sets should be
very similar because they are generated from the same type of samples (patients
with same type of cancer).
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Fig. 3. Correlation and p-value of matching signatures and non-matching signatures
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The preliminary test result is shown in Figure 3. Figure 3(a) compares the
correlation between matching pairs of signature vectors (for the same gene) and
the correlation between random pairs (different genes). The median correla-
tion between the matching pairs was 0.55 while the median correlation between
the non-matching pairs was 0.15. Figure 3(b) presents the p-values between the
matching and non-matching signature vectors. The median p-value of the match-
ing pairs was 0.000042 while that of the non-matching pairs was just over 0.064.
In our context, the p-value states the probability of observing a correlation be-
tween two signature vectors by chance at the level greater than or equal to the
observed correlation. The p-value is calculated by transforming the correlation
into t-statistics of N-2 degrees of freedom where N is the number of columns. If
a pair’s p-value is low we can assume that the correlation value between the pair
is statistically significant. On the other hand, a high p-value may suggest that
no statistically significant correlation exists between the two signature vectors.

The result shows clear differences in the correlation and the p-values be-
tween the pairs of matching and non-matching signature vectors, thereby reject-
ing null hypothesis of the signature vectors carrying no statistically meaningful
information.

2.2 Testing Convergence

Another important question to ask is, does the gene signature converge as more
columns (experiments) are added to the signature calculation? The signatures
would converge if it captures some genome-wide properties that are invariant
across the experiments. We tested this using the same Leukemia table. First, we
calculated the two sets of signature vectors by randomly selecting two disjoint
sets of five columns each. We then measured the correlation and p-value of
each pair of corresponding signatures across the two sets. We continued this
comparison while increasing the number of columns by five in each iteration.
The result of this test is shown in Figure 4.

Figure 4(a) shows the correlation between the two sets of signature vectors
while Figure 4(b) shows the p-values measured between the two sets. As ex-
pected, correlation improves as more numbers of columns were considered in the
signature calculation. Similarly, p-values were consistently decreasing as more
columns were added. This finding supports our hypothesis that gene signature
vector models can be used to combine multiple microarray experiment data and
summarize them into one coherent set of signature vectors for further analy-
sis and cross-validation. For example, we can calculate a set of signatures from
multiple ALL tables simply by juxtaposing the tables and calculate the signa-
tures from the combined table. Similarly, we can calculate a set of signatures
for Acute Myeloid Leukemia (AML) experiments, and compare the signatures
of corresponding genes between ALL and AML to identify those genes that
behave differently in the two cancers and genes that behave similarly across.
We can easily extend the analysis to virtually all other cancer types, tissues,
metastasis stages, etc.
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Fig. 4. Changes in correlation and p-value of matching pairs of signatures with the
increasing number of samples

2.3 Stability of the Model

Microarray data sets are noisy; individual expression levels are affected by many
factors such as different lab protocols (e.g., how long the samples will be hy-
bridized in what temperature), platforms (cDNA or Affymetrix), choice of sam-
ples, etc. How well a model generalizes the underlying data is an important
factor. In order to test the stability of the model, we examined clustering re-
sults from the different sets of signatures computed using different subsets of
columns, and measured how consistent the clustering results were across the
tests.

Figure 5 shows the results. Figure 5(a) shows the histogram depicting the
number of gene pairs falling into the same cluster greater than or equal to 15
times out of 20 total iterations. In each iteration, we randomly selected a 20
column subtable, MR, from the original table (47 columns), and computed the
signature table, MS , from MR. We then ran the k-means clustering (w/ k=20)
over the two tables, MR and MS , and tallied up the pairs that fell into the same
cluster. We iterated this 20 times over different sizes of landmarks from 10 to 50.
For example, bucket number 20 contains all gene pairs that co-occurred in the
same clusters for all 20 times, and similarly bucket number 19 contains the pairs
that co-occurred 19 times out of 20. With 10 landmarks, the signature model
produced 92 pairs that co-occurred ≥ 95% of time (sum of buckets 19 and 20),
and 175 pairs for ≥ 85% of time. We compared the tallies from MS and MR.
As shown in Figure 5(a), there were no significant differences between the two
results.

Figure 5(b) shows the same result with varying sample sizes (#of columns in
M) while fixing the landmark size to 50. Four different sample sizes were tested,
including m =10, 20, 30 and 40. Unlike the previous test, the increase of sample
size improved the clustering results significantly for both the raw and signature
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Fig. 5. Testing stability of the model

tables. The rate of improvement, however, was greater with the signature model
than with the raw data. For example, although their performance were similar
in the 10-sample test, in the 40-sample test, the signature model produced about
50% more numbers of pairs in all three cases of ≥ 75, 85, and 95%.

So far, we tested the stability of the model in terms of the consistency of
the clustering results, and showed that the result from the model is at least as
stable as that from the raw data. However, the previous tests did not show how
much the actual clustering results from the two tables are similar. If the model
properly reflects the signals from the original table, the clustering results of the
both tables should be similar at least for the genes that were highly agreed upon
in the both results. In order to show this, we examined the bucket 20 from the
two results. There were 217 gene pairs (105 unique genes) from the raw data and
383 pairs (118 unique genes) from the signatures. Intersecting the two sets of 105
and 118 genes resulted in 49 unique genes. We then selected the corresponding
49 rows from the raw data and from the signature table, and independently
ran a hierarchical clustering (w/ “average” agglomeration) over the two sets. As
shown in Figure 6, the results were strikingly similar. Each test clustered genes
into four main clusters that perfectly overlapped across the two sets.
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Fig. 6. Comparison of clustering dendrograms of top-49 genes computed using raw
data and signatures

3 Gene Signature Cube: A Novel Summary Data
Structure for the Global Study

In this section, we present a multi-dimensional data structure, the gene signa-
ture cube, in order to facilitate efficient storage and retrieval of multiple gene
signatures. Figure 7 shows an overview of the signature cube construction and
an example cube after the construction.
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Fig. 7. Overview of signature cube computation and an example gene signature cube

In essence, the gene signature cubes are constructed as follows. Suppose we
have k landmark genes in L. For each microarray data set M (∈ M) (repre-
senting a set of microarrays produced in a study, e.g., a drug response study
on colon cancer samples, etc.), we transform each gene gi ∈ M into its gene
signature vector

−→
sig(gi) of k values [di,1, di,2, . . . , di,k]. Let gene lj be the jth

landmark gene. We assume that the gene expression profile of gi and lj in M

is −→gi = [ei,1, ei,2, . . . , ei,n] and
−→
lj = [ej,1, ej,2, . . . , ej,n], respectively. Now di,j is

calculated based on the similarity (or dissimilarity) of −→gi and
−→
lj .

After computing gene signature vectors for each gene in every microarray, we
can organize them in a gene signature cube. An example of the gene signature
cube is shown in Figure 7. The cube consists of three dimensions: genes, land-
marks, and studies. Let G be the set of all distinct genes in all the microarray
studies. The gene dimension consists of all genes in G; the landmark dimension
consists of all landmark genes in L; and the study dimension consists of all mi-
croarray experiments in M. Each entry C(gi, lj , Mr) (with gene gi, landmark lj ,
and microarray set Mr) in the cube represents the gene signature value of gene
gi with respect to the landmark lj at microarray set Mr. It is possible that a mi-
croarray does not contain all genes in G. If gene g does not appear in microarray
M , then the entries associated with g in M will be set to a special value such as
NA. This gene signature cube can be considered as a conceptual representation
of the expression profiles of all gene in all heterogeneous microarrays. We can per-
form further (biological and computational) studies on the gene signature cube.

3.1 Evaluating Different Organizations for Cube Construction

We considered two possible approaches to construct a cube: (1) fully materialized
and (2) virtual (on the fly) cube. The fully materialized cube stores precomputed
signatures for all genes in all studies in a contiguous file layering values in each
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signature vectors in a predefined order. Users request signatures for particular
genes or set of genes across the studies. In order to correctly retrieve the cor-
responding vectors from the contiguous cube file, we maintain a separate meta
file that contains the information necessary for identifying the begin and end
location of each gene in each study.

Another possible way to construct the cube is not to store the precalculated
signature vectors but to calculate them on the fly upon request. We refer to
this organization as a virtual cube. In order to calculate the signatures on the
fly, unlike the materialized approach, we need to store the original microarray
tables instead. In our implementation, we used a relational database to store
the microarray data. There can be many different ways to organize the expres-
sion values in the database. We evaluated two different schemas: (1) multi-table
schema and (2) single table schema. With multi-table schema, we created one
table for each microarray experiments (e.g., one table for Golub et al.’s leukemia
experiments [9] and another for Pomeroy et al.’s brain tumor experiments [12])
while with single-table schema, we just created one big table for storing all
experiments. Each study typically consists of 1K-30K genes (rows) and about
5-100 samples (columns). Different studies have different numbers of genes and
samples. In order to store them in a single table, we employed a schema with
four columns, (study id, gene id, sample id, expression value), and stored each
expression value in a separate row. In the multiple table approach, each study
(genes × samples) is loaded into a separate table where each row contains all
expression values for a corresponding gene in a study.

While the three approaches (the materialized cube and the two virtual cubes)
employ different storage schemes, they all export the same API for the upper
layer, as follows:

cube[][][] SubCube(genes[], lmarks[], studies[])
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SubCube accepts three parameters: lists of gene IDs, landmarks, and study
IDs. This interface allows users to access any point, vector, matrix, or sub-cube
of the signature cube along any dimension.

In our experiment, we evaluated the three organizations with queries of dif-
ferent access patterns (e.g., vector, cube, etc.), on different dimensions (e.g.,
within or across the studies), and different sizes (e.g., 256 genes from 16 stud-
ies). Unlike the virtual cube approaches, the materialized cube can only return
values that are precomputed with the preselected landmarks. For fair compari-
son, we materialized a maximal cube using a complete set of landmarks for each
study to ensure that the results returned by SubCube are all same across the
three organizations. As a result, the performance of the materialized cube was
far worse than the two virtual cubes, both in the time and space complexity. It
requires approximately O(gene2 × study) space while the virtual cubes requires
O(gene × sample × study). As for the time complexity (in #of page I/O), the
materialized cube in the worst case reads |g| × |l| × |s| pages while the virtual
cubes read (|g|+|l|)×|s| pages, where |g|,|l|, and |s| are respectively the numbers
of genes, landmarks, and studies in the query.

The performance between the two virtual cubes were comparable as shown
in Figure 8 and 9. Figure 8 shows the execution time of SubCube(g[1], l[1..256],
s[1..16]) where the number of gene is fixed to one while the numbers of landmarks
and studies vary 1 to 256 and 1 to 16, respectively. Figure 9 shows the result
of SubCube(g[1..256], l[1..256], s[1..16]) where both the numbers of genes and
landmarks vary from 1 to 256. Overall, the single-table approach was about
100% faster than the multi-table counterpart. The number of page I/Os of the
two models are not significantly different because even with the single-table
approach, in most cases, all necessary records for one gene will be found within
one page. The performance difference is due to the number of queries issued. In
the single-table approach, only one query is issued for each SubCube call while
in the multi-table approach, one query is issued for each table (study) being
accessed in the call.

4 Background and Related Work

Microarray Analysis: In recent years, microarray gene expression profiles [13,
14] have become a common technique for inferring the relationship or regula-
tion among different genes. There exists a large body of work on microarray
data analysis [15,16,17,18,19,20,21]. Typical applications include identification
of differentially expressed genes and pathways under changing conditions (e.g.
disease related, tissue specific, developmental stage related, etc.) [18, 19], drug
development [20], and the functional annotation of genes [21]. Numerous public
databases have been created such as ArrayExpress (www.ebi.ac.uk/arrayexpress),
Gene Expression Omnibus (www.ncbi.nih.gov/geo), Stanford Microarray
Database (genome-www5.stanford.edu), etc.

While most of the previous work on microarray analysis focused on indi-
vidual microarray data sets, some global studies exploiting large numbers of
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microarrays have been presented recently. Stuart et al. [22] combined thousands
of microarrays to infer conserved genetic modules across the organisms. Segal
et al. in [18] exploited large numbers of microarray data to identify condition-
specific regulatory modules, and in [19], to discover a module map showing the
conditional activity of modules of genes in different types of cancers. Zhou et
al. [23] recently introduced a technique, 2nd-order correlation analysis, for inte-
grating heterogeneous microarray data. It works by first computing all pair-wise
correlations of genes from each data set (1st-order correlation analysis) and then
analyzing the correlation patterns across multiple data sets.

To the best of our knowledge, however, no previous work has ever attempted
to build a unified data model that projects large numbers of heterogeneous mi-
croarray data into a coherent subspace, offering uniform interpretation and ac-
cess to the data.

Correlation Signatures and Random Projection: The random projection
(RP) is a popular dimensionality reduction method proven to be useful in many
application areas including text retrieval [5,6], image processing [5], clustering [24,
25], motif discovery in bioinformatics [26], multimedia indexing [27], just to name
a few. Our signature projection method has strong similarity with RP-based ap-
proaches. In fact, the correlation signature method is reduced to an RP problem
in a cosine-similarity metric space (i.e., if the cosine similarity is used as the dis-
tance metric for both the signature and the global distortion computation), with
only difference being that RP projects the original high-dimensional space onto a
random subspace while the correlation signatures project the original space onto
a subspace whose coordinates correspond to the landmark genes. Although RP is
known to be generally effective in embedding high-dimensional data into a low-
dimensional subspace, it may not solve our problem because the projected random
subspaces (from different datasets) are not generally comparable.

5 Conclusion

We studied the problem of integrating and analyzing the heterogeneous microar-
ray data sets and proposed a unified model, gene signature vector, and storage
organizations, signature cube, for microarray data. In our model, a set of genes
are chosen as landmarks. The expression of each gene is transformed to a sig-
nature vector which represents the correlation between this gene and the set of
landmarks. To facilitate the efficient access and retrieval of the signature, we
organize the gene signature vectors into a signature cube. Real microarray data
sets are used to show the time and space efficiency of the gene signature cube.
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Abstract. The current knowledge about biochemical networks is largely
incomplete. Thus biologists constantly need to revise or extend existing
knowledge. These revision or extension are first formulated as theoret-
ical hypotheses, then verified experimentally. Recently, biological data
have been produced in great volumes and in diverse formats. It is a
major challenge for biologists to process these data to reason about hy-
potheses. Many computer-aided systems have been developed to assist
biologists in undertaking this challenge. The majority of the systems help
in finding “pattern” in data and leave the reasoning to biologists. Few
systems have tried to automate the reasoning process of hypothesis for-
mation. These systems generate hypotheses from a knowledge base and
given observations. A main drawback of these knowledge-based systems
is the knowledge representation formalism they use. These formalisms
are mostly monotonic and are now known to be not quite suitable for
knowledge representation, especially in dealing with incomplete knowl-
edge, which is often the case with respect to biochemical networks. We
present a knowledge based framework for the general problem of hy-
pothesis formation. The framework has been implemented by extending
BioSigNet-RR. BioSigNet-RR is a knowledge based system that supports
elaboration tolerant representation and non-monotonic reasoning. The
main features of the extended system include: (1) seamless integration
of hypothesis formation with knowledge representation and reasoning;
(2) use of various resources of biological data as well as human expertise
to intelligently generate hypotheses. The extended system can be con-
sidered as a prototype of an intelligent research assistant of molecular
biologists. The system is available at http://www.biosignet.org.

1 Introduction

Because of the complexity of living systems and the limitation of scientific meth-
ods available for the study of those systems, biological knowledge is inherently
incomplete. The incompleteness of knowledge constantly manifests itself in un-
explainable observations. To account for these novel observations, biologists need
to revise or extend the existing knowledge. The revision and extension are first
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formulated as hypotheses. After being verified experimentally, a hypothesis is
added to existing knowledge and becomes part of the accepted theory.

Recent advances in biological and computational sciences have produced di-
verse sources of biological data such as: research literature, high-throughput data
(e.g. microarray, mass spectrometry), and bioinformatic resources (e.g. interac-
tion databases, biological ontologies). It is a major challenge for biologists to
integrate these various data sets to generate hypotheses. Many computer-aided
systems have been developed to assist biologists in undertaking this challenge.
These systems differ in their goals, namely the automation of generating hy-
potheses either directly from data or based on knowledge. Although hypothesis
generation from data is an important first step, often use of high-level knowledge
is necessary to come of with more relevant hypothesis and to narrow down the
set of hypothesis. Our work in this paper aims at contributing towards this goal.

Knowledge-based hypothesis generation has been a focus of Artificial Intelli-
gence (AI) research in the past (1; 2). Regarding molecular biology and in par-
ticular biochemical networks, the related works in hypothesis generation include
HYPGENE (3), HinCyc (4), TRANSGENE (2), GENEPATH (5) and Patho-
Logic (6). These works are built upon knowledge representation languages that
are limited to “monotonic reasoning”. In monotonic reasoning, if a proposition
p can be concluded from a knowledge base K (denoted by K |= p), then p will
also be concluded after K is extended with H (i.e, K ∪ H |= p). However, the
contrary is a common phenomena in biology. In that case, p becomes false after
the extension of the knowledge base: K ∪ H �|= p. Moreover, with the exception
of PathoLogic, the related works do not address the integration of multiple data
sources (probably because many of the data sources were not been available at
that time).

As noted above, making hypotheses from data is important because it creates
the foundation to build high-level knowledge. Towards this task, a vast array of
computational techniques has been developed (7; 8; 9; 10; 11). The computa-
tional systems produce “first-level” knowledge, which should be exploited by
large-scale knowledge-based systems for hypothesis formation. It is an impor-
tant requirement that such large-scale systems should allow for easy updating
(referred to as “elaboration tolerance”) of the knowledge base when new knowl-
edge becomes available and avoid significant overhauling (or surgery) of the old
model or scrapping of the old model and making a new model from scratch. This
issue of elaboration tolerance in knowledge representation has been addressed
successfully by recent advances in AI research (12).

In this work, we propose a knowledge-based framework for hypothesis for-
mation which is based on non-monotonic reasoning and elaboration tolerant
representation. We select the domain of biochemical networks as the test bed,
because this domain suffers from largely incomplete knowledge and at the same
time, databases and knowledge bases of biochemical networks exist in a great
number. We have implemented the framework by extending the BioSigNet-RR
knowledge based system (13). We named the new system BioSigNet-RRH, which
stands for “Representing, Reasoning and Hypothesizing about Biological Signal
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Network”. Besides generating hypotheses, the new system also supports ranking
of hypotheses and proposes plans for experimental verification.

The rest of the paper is organized as follows. First we discuss representative re-
latedworks.Thenwe reviewbasics of knowledge representation and formally define
the hypothesis formation problem. We continue with the description of system and
methods. Finally, we conclude with a case study of the p53 signal network.

2 Related Works

HYPGENE (3) treated the general problem of hypothesis formation as a plan-
ning problem. The actions are operators that modify an existing knowledge
base and/or assumed initial conditions of an experiment. The goal is to re-
solve the mismatch between theoretical predictions computed by the knowledge
base and experimental observations, with respect to the same initial conditions.
The knowledge base was implemented in a frame-based representation language.
HYPGENE was proposed to be domain-independent and has been tested on a
problem of E.coli gene regulation.
HYPGENE and BioSigNet-RRHtackle the same hypothesis formation problem
that arises when an existing theory does not predict an experimental observation.
The limitations of HYPGENE lie in methods, which include

– The frame-based representation language is limited to monotonic reasoning.
Thus HYPGENE would have difficulty in dealing with incompleteness of
biological knowledge.

– Although the biological knowledge is always incomplete, it is currently avail-
able in a great volume and in diverse formats. It is unclear how the cur-
rent knowledge could have been exploited for hypothesis formation in HYP-
GENE.

– A hypothesis involves the modification of an existing knowledge base and/or
assumed initial conditions of an experiment. HYPGENE was restricted to
the modification of the initial conditions. This restricted problem amounts
to a form of reasoning called explanation and studied in (13).

TRANSGENE (2) considered hypothesis formation as diagnosis and redesign
of theories. According to this model, when a theory cannot predict an experi-
mental observation, the theory must contain some faulty components that can
be found and fixed. TRANSGENE used a “functional representation” language
for knowledge representation (14). This representation language was chosen to
overcome the limitations of rule based and frame based system. Nevertheless, the
language could not allow for non-monotonic reasoning. To sum up, TRANSGENE
showed that limitations of knowledge representation language can seriously hinder
hypothesis formation. On the other hand, it illustrates that hypothesis formation
is intuitive and straightforward in knowledge based framework.

GenePath (5) automated the inference of genetic networks from experimen-
tal data. A knowledge base is a genetic network that represents positive and
negative influences of a gene on another. Experiments are perturbations to the
network, performed by means of gene mutations. A fixed set of inferencing rules
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was formalized and implemented in GenePath using Prolog. These rules encode
heuristic reasoning that are routinely applied by geneticists, namely epistasis
analysis. Prior background knowledge are encoded in an initial network. Start-
ing with the initial network, GenePath applies the rules to construct a plausible
network as a hypothesis that explains experimental data. GenePath can also
propose new experiments for further verification and refinement of hypotheses.
Although the knowledge representation and reasoning are simple in GenePath,
it has illustrated the important role of expert reasoning in hypothesis formation,
and that logic programming provides a straightforward and intuitive represen-
tation of human reasoning.

Integrative computational protocols (6; 15; 16) have been proposed for
prediction of metabolic and regulatory pathways. They have the general scheme:
(1) construct an initial template pathway; (2) fill in missing links in the template,
expand the template with new elements, or refine it; (3) verify experimentally the
predicted pathway(s). These works integrated various techniques for prediction
of missing genes and molecular interactions into functional contexts of pathways.
They indicate that more powerful hypotheses can be found by incorporating
more background knowledge and reasoning into search.

Cytoscape (17) provided an integration of various resources of molecular in-
teraction data. By means of simulation and visualization, the system is very useful
for biologist to identify novel patterns in high-throughput data. Observing novel
patterns in data, biologists reason to formulate hypotheses that may explain the
patterns; for example as in (18). Cytoscape has alleviated the manual processing
of high-throughput information. Nevertheless, in a near future, even the number
of such patterns would also become so great that biologists would have difficult
to handle such reasoning in their head. Hence, tools such as Cytoscape make the
automation of reasoning to formulate hypotheses even more pressing.

HyBrow (19) was designed for computer-aided evaluation of user-defined hy-
potheses. A hypothesis in the HyBrow system is a set of biological events that are
related logically and/or temporally. The knowledge base in HyBrow is a database
integration of various data sources (e.g annotated genomic database, microarray
expression data). Given a hypothesis, HyBrow checks if the hypothesis conflicts
with the knowledge base. It then provides explanation for conflicts as well as sug-
gestions for necessary refinements of the hypothesis. We will discuss later how the
output of HyBrow can be useful in the hypothesis formation in BioSigNet-RRH.

Robot Scientist (20) uses machine learning techniques (active learning, de-
cision tree, inductive logic programming) to predict gene function in metabolic
networks. The knowledge representation language is a monotonic logical for-
malism implemented in Prolog. The system is an interesting demonstration of
state-of-the-art AI methods, especially machine learning and robotics. However,
it is unclear how the system can incorporate elaboration representation and
non-monotonic reasoning into hypothesis formation. It is also unclear how this
approach can be scaled up to take advantage of multiple sources of biological
knowledge.
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3 Problem Definition

Before we formally define the hypothesis formation problem, let us review some
basic notions of knowledge representation.

3.1 Background of Knowledge Representation

In a computer system, knowledge is represented in a symbolic language with a
precise syntax and semantics. For our discussion, we will use the language A0

T of
BioSigNet-RR (13; 21), but the general principles are applicable to any other
knowledge representation formalisms.

The language A0
T has an alphabet, and a restricted syntax. The alphabet of

A0
T consists of a set of Boolean symbols named fluent and a set of symbols named

action. Fluents represent properties of the world, and actions represent mecha-
nisms that cause the state of the world to change. For example, we can have a flu-
ent high(ligand) representing the property that the level of ligand is high. We can
have an action bind(ligand, receptor) representing the association of ligand with
receptor.

The language A0
T consists of three sub-languages: a language for knowledge

bases that describe the world, a language for our observations about the world,
and a language for queries about the world.

A knowledge base is a set of statements in the following syntax:

a causes f if f1, . . . , fk (1)
g1, . . . , gm triggers b (2)
h1, . . . , hn inhibits c (3)

where a, b, c are actions, and fi, gj, hk are fluents. Statements of the form (1)
are called causal rule, which state that if a occurs in the world state s where
f1, . . . fk are true, then f will become true in the world state s′ resulted from the
occurrence of a in s. Statements of the form (2) are called trigger, which state
that action b has to occur if the preconditions g1, . . . gm hold. Statements of the
form (3) are called inhibition, which state that action c cannot occur whenever
the preconditions h1, . . . hn hold.

Example 1. Let us consider the knowledge base:

bind(ligand, receptor) causes bound(ligand, receptor)
high(ligand) triggers bind(ligand, receptor)
bound(another, receptor) inhibits bind(ligand, receptor)

The knowledge base represents that the association of ligand and receptor results
in ligand being bound to receptor; that the association occurs when the level
of ligand is high and that the association is blocked when receptor is bound to
another molecule. �	

Observations about the world involve properties or action occurrences. To
record the observation that a property f is true at time t, we write

f at t.



126 N. Tran et al.

To record the observation that some action a occurs at time t′, we write

a occurs at t′.

The semantics of A0
T (21) defines when a set O of observations is entailed

from a knowledge base K and a set I of initial observations. The entailment
is usually written as (K, I) |= O. For example, let K be the knowledgebase of
ligand and receptor. Let I and O be the following sets of observations

I ={high(ligand) at 0,¬bound(another, receptor) at 0}
O ={bound(ligand, receptor) at 1}

then (K, I) |= O. We also say that the observation O is explained by K, given
the initial condition I.

We are now ready to discuss the general problem of hypothesis formation.

3.2 Hypothesis Formation

We take the view that hypothesis formation is a reasoning process to find expla-
nations for “novel” observations. Given a knowledge base K and initial condition
I, we call an observation O “novel” with respect to K and I if O is not entailed
(i.e. definitely concluded) by (K, I). For example, in the case of K and I as in
the previous section, a novel observation is

O′ ={¬bound(ligand, receptor) at 1}

With the assumption that O′ is correct, we need to find explanations for O′

by modifying K and I to become K ′ and I ′ such that (K ′, I ′) |= O′. The
modification involves expansion and/or revision of the existing knowledge (i.e.
K and I).

In this work, we focus on hypothesis formation as the expansion of an exist-
ing knowledge base to account for novel observations. This form of reasoning is
called abduction, which was introduced by (22; 23) and has been used in various
AI applications (24), including abductive logic programming (25; 26; 27; 28),
diagnosis (29), planning (30; 31), default reasoning (32; 33; 25), belief revision
and update (34). We formally define hypothesis formation as follows.

Definition 1. Let K be a knowledge base. Let O be some observation that cannot
be explained by K, given some initial condition I:

(K, I) �|= O.

A hypothesis space is a pair (SK ,SI), where SK is a set of rules and SI is a set
of observations. A hypothesis is a subset H ⊆ SK such that there exists I ′ ⊆ SI

satisfying: (K ∪ H, I ∪ I ′) |= O. �	

A hypothesis formation problem (K, I, O) is to find hypotheses as defined above.
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4 System and Methods

The main steps of hypothesis formation in BioSigNet-RRHare: (1) the con-
struction of the hypothesis space (SK ,SI); (2) generation of hypotheses,
which includes search for and ranking of hypotheses. The ranking of hy-
pothesis is based on the estimation of the preferences of hypotheses. Hy-
potheses generated by BioSigNet-RRHare theoretical and thus have to be
verified experimentally. Because there are usually many ways to verify a
hypothesis and biological experiments are cost sensitive, BioSigNet-RRH
provides means to evaluate costs of experiments before they are performed.

We now present these major features of BioSigNet-RRH.

4.1 Construction of Hypothesis Space (SK , SI)

In general, the rules and observations of the hypothesis space S = (SK ,SI)
include new fluent and action symbols, which form an additional alphabet. Let
us denote the existing alphabet by A and the new alphabet by A+. The addition
of A+ and the elements of S happen together, but we discuss them separately
as follows.

Addition of A+. The elements of the additional alphabet A+ come from various
resources. The representative resources are as follows.

– Biologists define new fluents or actions describing biological properties or
processes to be studied. There is also a wide range of techniques to infer the
association between biological properties and events, for example Cytoscape
(17). If some properties and events are found to be associated with com-
ponents of the knowledge base, then they would be included as fluents and
actions in A+ .

– Automated extraction of biological terms from literature has produced a
great resource of biological properties and molecular interactions (35).

– Many protein interaction maps have been constructed by computational and
high-throughput biological methods (10; 36). These interaction maps can be
used to define new actions.

– Biological ontologies and interaction databases (37; 38; 39) also contain bi-
ological properties and reactions as their alphabets.

Construction of SK . To distinguish the rules of the hypothesis space from the
rules of the knowledge base, we call the former possibilities.

To include a possibility r in the hypothesis space, we write

POSS[p] : r

where p is a non-negative number called the preference of r. If we do not want to
take into account the preference, or if it is not available, we set p = 0. In the next
section, we will describe how the preferences are used in ranking hypotheses.

Causal rules can be constructed from interaction databases and biological
ontologies (37; 38; 39; 40). There exists no database that contains explicit in-
formation regarding triggers and inhibitions. However, there exist datasets from
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which associations between properties and processes can be found. Presently, we
take a simple approach to generate triggers and inhibitions of the hypothesis
space: if a set of fluents f1, f2, . . . fn are found to be associated (or correlated)
with an action a, then there are the possibilities that

POSS[p] : f1, f2, . . . fn triggers a

f1, f2, . . . fn inhibits a

where the number p is either estimated from the data, or defined by biologists.
We can also to take advantage of data integration efforts such as HyBrow (19).

Recall that HyBrow aides in manual construction of sets of biological events that
are consistent with respect to an integrated database. Such as set of events can
be used as suggestions for possibilities.
Example 2. Consider a simple set of events output by HyBrow: “Gal2p trans-
ports galactose into the cell. In the cytoplasm, galactose activates Gal3p. Gal3p
binds to the promoter of the Gal1 gene” (19). Based on this set of events, there
can be the following possibilities:

high(Gal2p) triggers trans(Gal2p, galact)
trans(Gals2p, galact) causes in(galact, cyto)
in(galact, cyto) triggers activates(Gal3p)
activates(Gal3p) causes active(Gal3p)
active(Gal3p) triggers binds(Gal3p, Gal1 promoter)

Such rules are possible elements of SK . �	
Construction of SI . We declare possible unknown factors in the initial conditions
as follows

– f may be true or false initially: POSS initial f .
– a may occur initially: POSS initial a.

4.2 Generation of Theoretical Hypotheses

The reasoning in BioSigNet-RR is implemented using AnsProlog, a non-
monotonic logic programming language (12). The semantics of AnsProlog is
stable model semantics. For example, the AnsProlog program

a ← not b

b ← not a

has 3 models {a}, {b} and {a, b}. The models {a} are {b} stable, while {a, b} is
not. Stable models are minimal with respect to the ⊆ ordering on sets.

The hypothesis generation in BioSigNet-RRHis also implemented using Ans-
Prolog. A hypothesis - a set of rules - is extracted from a stable model of the
AnsProlog implementation. Intuitively, we want to find hypotheses as simple as
possible. The minimality of stable models has an important role towards this
goal.

The ranking of hypotheses is based on the following partial ordering.



Knowledge-Based Integrative Framework 129

Definition 2. Let γ be some scoring function for hypotheses. A hypothesis H
is more preferred than a hypothesis H ′, written as H ≺ H ′, if H ⊂ H ′ and
γ(H) ≥ γ(H ′).

A hypothesis H is maximally preferred, if there exists no hypothesis H ′ such
that H ′ ≺ H . We now explain how BioSigNet-RRHgenerates hypotheses that
are maximally preferred. To ensure the minimality of hypotheses with respect to
the ⊆ relation search heuristics are added in the form of AnsProlog rules. Some
examples of heuristics are:

– A trigger is added only if it is the only cause of some action occurrence that
is needed to explain the novel observations.

– An inhibition is added only if it is the only blocker of some triggered action
at some time.

The implementation of these heuristics is straightforward, and they can function
as a plug-in component of BioSigNet-RRH.

The γ scoring function is currently defined such that it can be maximized
using a built-in feature of the AnsProlog engine.

Let r be an element in the hypothesis space given by

POSS[p] : r

Let pref(r) = p. The function γ(H) is defined as the sum of the preferences of
the rules in H ; that is,

γ(H) =
∑

r∈H

pref(r)

4.3 Guidance for Experimental Verification

Because of the incompleteness of biological knowledge, hypotheses can only be
verified using some plausibility measure. In general, a hypothesis is accepted
as a theory when there are enough experimental evidences supporting it. Thus,
biologists would like to carry out as many experiments as possibile for the veri-
fication of a hypothesis. In reality, the set of possible experiments are seriously
constrained by resources such as time and available techniques. Hence, it is de-
sirable to perform only experiments that require a minimal available resource
but produce a maximal information.

In this section, we propose a model of guidance for experimental verification.
Let us represent a wet-lab experiment in the abstract form (I, O), where I

is the set of initial conditions of the experiment, and O is the set of observed
outcomes.

Definition 3. Let K be a knowledge base and H be a hypothesis. Let (I, O) be
a experiment. We say that (I, O) is an evidence for the hypothesis H, if O can
be explained by K ∪ H given I: (K ∪ H, I) |= O.

Example 3. Let K = {a causes g} and H = {f triggers a}. Let I1 =
{f at 0,¬g at 0}, O1 ={g at 1}. Let I2 = {¬f at 0,¬g at 0}, O2 = {¬g at 1}.
Then (I1, O1) and (I2, O2) are evidences for the hypothesis H , but only (I2, O2)
is an evidence for the hypothesis ∅. �	
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There are two important measures of an experiment, namely its cost and its
information content. Let us denote these measure as cost(I, O) and info(I, O).
Given a hypothesis H , the objective is to find a set E of evidences for H that
has minimal cost and maximal information content. Let us simply define:

cost(E) =
∑

(I,O)∈E

cost(I, O)

info(E) =
∑

(I,O)∈E

info(I, O)

An initial condition such as f at 0 can be achieved by some wet-lab operation
and can be associated with some cost. We then define

cost(I) =
∑

x∈I

cost(x)

Biological observations are achieved by means of measurements, which also
have associated costs. Hence, we define

cost(O) =
∑

y∈O

cost(y)

Finally, cost(I, O) = cost(I) + cost(O).
Let Ω(K, I) be the maximal observations that can be entailed from K, given

I. That is, (K, I) |= Ω(K, I) and for all ω, if (K, I) |= ω then ω ⊆ Ω(K, I). We
define the information content of (I, O) as the deviation (or distance) of O from
Ω(K, I). The distance between two sets of observations in turn is defined based
on the distance between their elements.

We now present the p53 signal network as a case study to illustrate our
theoretical methods to automate the process of hypothesis formation.

5 Case Study

First, we describe the biology the p53 network in parallel with its knowledge-
based representation.

5.1 p53 Signal Network

The p53 protein plays a central role as a tumor suppressor and is subjected to
tight control through a complex mechanism involving several proteins. The key
aspects of the p53 network are as follows.

Tumor suppression by p53: The p53 protein has three main functional do-
mains; the N terminal transactivator domain, the central DNA-binding domain
and a C terminal domain that recognizes DNA damage. The binding of the
transactivator domain to the the promoters of target genes activates pathways
to lead to a reversible arrest of the cell cycle, prevention of genomic instability
or apoptosis and thus protects the cell from cancer (41). The ability to sup-
press tumors is retained when the interacting partners of p53 do not inhibit the
functionality of the transactivator domain.
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fluent bound(dom(p53, N))

action grow(tumor)

high(p53) inhibits grow(tumor)

high([p53 : P ]), not bound(dom(p53, N)) inhibits grow(tumor)

(The keywords fluent and action are used to declare fluent and action symbols
in BioSigNet).

Interaction between Mdm2 and p53: Mdm2 binds to the transactivator do-
main of p53, thus inhibiting the p53 induced tumor suppression. The binding of
Mdm2 to p53 also causes changes in the protein concentration levels.

fluent high(p53), high(mdm2), high([p53 : mdm2])
action bind(p53, mdm2)
bind([p53 : mdm2]) causes bound(dom(p53, N))
high(p53), high(mdm2) triggers bind(p53, mdm2)
bind(p53, mdm2) causes high([p53 : mdm2]),
bind(p53, mdm2) causes ¬high(p53),¬high(mdm2)

Mdm2 induced degradation of p53: Under normal physiological conditions, p53
levels remain low due to rapid and constant turnover. The short half life of p53
is due to the formation of a complex with Mdm2 that gets targeted for ubiquitin
dependent proteosomal degradation.

action degrade(p53, mdm2)
high([p53 : mdm2]) triggers degrade(p53, mdm2)
degrade(p53, mdm2) causes ¬high([p53 : mdm2])

Upregulation of p53: The elevated levels of p53 may be a result of upregulation
of p53 gene expression, increased transcript stability, enhanced translation of p53
mRNA (42), or post-translational modifications of the p53 protein which favor
a prolonged half life and increased activity (43).
For the case study, we consider the upregulation of p53 expression, which is
represented as follows.

upregulate(mRNA(p53)) causes high(mRNA(p53))
high(mRNA(p53)) triggers translate(p53)
translate(p53) causes high(p53)

Stress: UV, ionizing radiation, and chemical carcinogens cause stress. Stress
can induce the upregulation of p53.

high(UV ) triggers upregulate(mRNA(p53))

Stress can induce changes in expression of tumor related genes, (e.g. cmyc),
which result in uncontrolled cell division (tumor).
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Fig. 1. A hypothesis in p53 interaction network. The → represents trigger. The �
represents inhibition. The solid and dash lines represent known and hypothetical in-
teractions, respectively

high(UV ) triggers alter(expr(cmyc))
alter(expr(tumorgenes)) causes altered(expr(cmyc))
altered(expr(cmyc)) triggers grow(tumor)
grow(tumor) causes tumorous

Given the theory of the p53 network, a hypothesis formation problem arises as
follows.

5.2 The Problem

X is a tumor-suppressor gene. Mutants of X are highly susceptible to cancer.
We would like to hypothesize on the various possible influences of X on the p53
pathway.

Thus, we have the hypothesis problem (K, I, O), where K is the knowledge
base of p53 biology, and I is the initial condition

I = {null(X) at 0}
and O is the observation

O ={eventually tumorous}
(Here, eventually F is a logical proposition denoting that some property F will
be true at some future time).

We need to extend K with H such that there exists I ′ satisfying: (K ∪H, I ∪
I ′) |= O.

5.3 Hypothesis Formation

Construction of the Hypothesis Space. First, we show how various possi-
bilities can be found and included in the hypothesis space. In the following, the
literature means (41; 42; 43).
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There may be functional similarities between X and p53: X is a tumor sup-
pressor, so we have a prior knowledge that X may play the same effects as p53
in stressed cells, which is captured by the following possibilities:

POSS : high(UV ) triggers upregulate(mRNA(X))
upregulate(mRN(X)) causes high(mRNA(X))
high(mRNA(X)) triggers translate(X)
translate(X) causes high(X)

Stress may induce high level of X: Data from the literature show that the levels
of protein X is found to be higher in cells subjected to stress. Consequently, it
is possible that stress induces the upregulation of X expression. That is,

POSS : high(UV ) triggers upregulate(mRNA(X))

X or p53 may induce upregulation of the other: There are observations from
the literature that high levels of X are concomitant with elevated levels of p53.
Thus, it is possible that a high level of X induces the upregulation of p53, or
vice versus.

POSS : high(X) triggers upregulate(mRNA(p53))
high(p53) triggers upregulate(mRNA(X))

X may interact with the known proteins in the network: The possible interactions
are bind(p53, X) and bind(mdm2, X). The possibile properties are the protein
levels and the domains of p53. By associating a possible action with possible
effects, we form possibilities such as

POSS : bind(p53, X) causes bound(dom(p53, N))
bind(p53, X) causes ¬bound(dom(p53, N))

That is, binding of X to p53 may or may not affecting the transactivator domain.
X may influence (trigger/inhibit) other interactions: We consider all the possi-
bilities of X’s influences on the interactions in the network, which results in

POSS : high(X) influences upreg(mRNA(p53))
high(X) influences translate(p53)
high(X) influences bind(p53, mdm2)

(where influences stands for either triggers or inhibits).

Hypotheses Generation. We present representative examples of the hypothe-
ses generated by BioSigNet-RRH.
– X is a negative regulator of Mdm2: Stress induces high expression of X. X

binds to Mdm2 and this complex is rapidly degraded by proteolysis. Scav-
enging of Mdm2 arrests the proteolyis p53 (Fig. 1). The important elements
of the hypothesis are:

high(UV ) triggers upregulate(mRNA(X))
high(X), high(mdm2) triggers bind(X, mdm2)
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– X directly influences p53 protein stability: X binds to p53 protein at a domain
different from the transactivator domain, so p53 is stabilized (formation of
Mdm2-p53 complex is prevented) and still functional as tumor suppressor.
The important elements of the hypothesis are:

high(X), high(p53) triggers bind(p53, X)
bind(p53, X) causes ¬bound(dom(p53, N))

The non-monotonicity of the framework manifests itself in the results. The knowl-
edge base in Section 5.1 predicts that cancer will finally occur due to high level of
UV (stress). After being extended with the hypothesis described in Fig. 1., the new
knowledge base predicts that cancer will not occur, given the presence of UV.

The presented study is incomplete in the sense that changes in the regulation of
p53 also occurs as a result of stress induced damage toDNA. Due to the elaboration
tolerance feature,we could startbyfirst constructing a small initial knowledgebase,
then incrementally adding more knowledge. We have also represented simple rules
with only one or two preconditions. More elaborated representation and the results
on experiments with ranking can be found at the system’s Website.

6 Conclusion

We have presented a general framework for the automation of hypothesis forma-
tion in systems biology. We considered the hypothesis formation problem in the
context of knowledge representation and reasoning. We implemented an initial
system by extending BioSigNet-RR. The advantages of our approach includes:
(1) hypothesis formation is defined as a form of reasoning and is implemented
using AnsProlog, which is an elaboration tolerant and non-monotonic repre-
sentation and reasoning language; (2) it provides a mean to integrate various
resources of biological knowledge; (3) it is a high-level approach to hypothesis
formation that is necessary for building an intelligent system to aid biologists.

Our work is a proof-of-concept and substantial works remain for the scaling-
up the system for real-world applications. An immediate task is to automate
the construction of the hypothesis space. Besides, we identify many important
future works. First, it is important to allow for declaration and instantiation of
“similarity” background knowledge; such as gene homology, or the similarity of
relationships between proteins or biological processes. Next, we want to explore
different models for ranking hypotheses. We will explore how AnsProlog with
preferences can be applied for ranking hypotheses. Finally, we have restricted to
the hypothesis formation as knowledge extension. Hypothesis formation based
on knowledge revision is an important next development.
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Abstract. For execution of complex biological queries, data integration systems 
often use several intermediate data sources because the domain coverage of 
individual sources is limited. Quality of intermediate sources differs greatly 
based on the method used for curation, frequency of updates and breadth of 
domain coverage, which affects the quality of the results. Therefore, integration 
systems should provide data provenance; i.e. information about the path used to 
obtain every record in the result. Furthermore, since query capabilities of web-
accessible sources are limited, integration systems need to support refinement 
queries of finer granularity issued over the integrated data. However, unlike the 
individual sources, integration systems have to handle the absence of data and 
conflicts in the integrated data caused by inconsistencies among the sources. 
This paper describes the solution proposed by BACIIS, the Biological and 
Chemical Information Integration System, for providing data provenance and 
for supporting refinement queries over integrated data. Semantic 
correspondence between records from different sources is defined based on the 
links connecting these data sources including cross-references. Two 
characteristics of semantic correspondence, namely degree and cardinality, are 
identified based on the closeness of the links that exist between data records and 
based on the mappings between domains of data records respectively. An 
algorithm based on semantic correspondence is presented to handle absence of 
data and conflicts in the integrated data.  

1   Introduction 

The rapid development of experimental biology has led to the emergence of a large 
number of web-accessible biological data sources [1]. Together, these data sources 
cover a wide range of subjects and data types. But each individual data source often 
focuses on a specific subject area; and thus represents only a fraction of all the 
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available data. Cross-references are provided between different data sources to 
connect data into a network. In addition of cross-references, integration systems [2, 3] 
use field values in records produced by one data source to connect to another data 
source to address complex queries. So a query plan can contain chains of links 
connecting several sources. One important issue is data quality control. Due to factors 
such as the method of annotation, update frequency and overall coverage of the 
subject area, not all of these sources are trusted equally. The quality of a data source 
will affect both the quality of data fields and the quality of cross-references. It is 
therefore important to specify the source of every piece of result data, and to 
aggregate records with cross-references to each other. 

Query capabilities of web-accessible data sources are limited and it is often not 
possible to use every characteristic of biological entities in the query predicate. 
Therefore, most initial queries are not specific enough and their results contain several 
unwanted records. In such cases, once the integrated result of an initial query is 
available, the integration system can allow scientists to issue refining queries. 
However, unlike the initial query, while processing a refining query, complex inter-
relationships among records from different sources must be considered. Most 
integration systems assume that different sources cover different characteristics of the 
biological entities and hence, do not deal with absence of data or contradictory data 
[4]. However, this does not represent the true nature of relationships among records 
and consequently, the results of such systems are not complete and reliable. In reality 
different sources have significant overlap of information and data inconsistencies are 
present in the overlapping portions due to different methods of curating the data. 
Therefore, to process refining queries in a comprehensive and correct manner, we 
must assume an overlapping coverage of the global schema by different sources and 
deal with the data absence and inconsistency. 

The objective of this paper is to describe the solution proposed by BACIIS, the 
Biological and Chemical Information Integration System [5-7], for providing data 
provenance for result records and for supporting queries over integrated results. 
Section 2 briefly introduces BACIIS system and its main data integration features. 
Section 3 defines the concept of semantic correspondence and its characteristics. In 
section 4, processing of refinement queries over the integrated data is discussed and 
an algorithm is presented to handle the conflicts in the integrated data.  

2   BACIIS: An Ontology Augmented Database Integration System 

BACIIS (Biological and Chemical Information Integration System) is a highly 
coupled federation of life science web-databases. It uses a mediator-wrapper 
approach, augmented with a knowledge base. The wrapper extracts information from 
a given remote data source. The mediator transforms data from its format in the 
source database to the internal format used by the integration system. The BACIIS 
knowledge base has two components: the ontology and data source schema. The 
ontology provides a method for mapping differences in terminology to a common 
term that is recognized throughout the domain. In addition to syntactic reconciliation, 
the ontology is used for semantic reconciliation as well as a global schema in 
BACIIS. Global queries are built by using concepts from the ontology. These global 
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queries are decomposed within BACIIS into database specific sub-queries. The query 
planner in BACIIS [7] identifies the data sources that can answer the sub-queries 
based on the description of the data sources that is included in database specific data 
source schema. The results of the graph planner is a graph where nodes represent data 
sources and an edge is present between two nodes if a link can be established between 
the corresponding data sources (see section 3.1). Finally, each database is associated 
with a specific wrapper and these wrappers are responsible for executing the sub-
queries on the web databases and retrieving the result.  

3   Semantic Correspondences Among Heterogeneous Data 

In section 3.1, the concept of semantic correspondence is explored in the context of 
integration of web-accessible life science data sources. Two characteristics of 
semantic correspondence, degree and cardinality, are then introduced in section 3.2 
and 3.3. Degree is a measure of how closely two data records from different databases 
correspond with each other. Cardinality is a measure of domain mapping between two 
real world objects with some semantic correspondence.  

3.1   Concept of Semantic Correspondence (SC) 

The issue of semantic correspondence between two objects that have significant 
representational differences was examined in [8]. It also provides a way to distinguish 
between different degrees of semantic correspondence using factors like the context, 
abstraction, domains and the state of objects. However, in the context of integrating 
domain specific data from autonomous, heterogeneous and semi-structured sources, 
we maintain that the SC is established between two records when field values of one 
record can be used to identify the other record. Sometimes, the link between records 
is explicitly given by the data sources. For example, SwissProt records provide 
hyperlinks to related records in PDB. This is similar to the concept of hyperlink 
authority explored in [9]. However hyperlinks are not the only way to establish SC. 
Consider the case of BIND [10], which does not have explicit hyperlinks to SwissProt 
records. However, BIND records contain attributes ‘protein-name’ and ‘organism-
name’, which can be combined to identify a protein sequence record from SwissProt. 
The roles of ‘protein-name’ and ‘organism-name’ here are similar to the role of 
foreign keys in relational databases.  

The idea of SC can be illustrated by an example query: “Which protein family does 
chaperonin hsp60 precursor in Arabidopsis thaliana belong to? What is its coding 
gene sequence? What are the 3D structures of proteins that belong to the same 
family?” The predicate of this query has two constraints (i.e., Protein Name = 
chaperonin HSP60 precursor and Organism Name = Arabidopsis thaliana), and the 
output requires four characteristics (protein family, coding gene sequence, and 3D 
structure). To the best of our knowledge, no individual life science data source can 
answer the above query directly due to limited query capabilities and domain 
coverage [7]. Information from multiple data sources has to be combined together for 
a complete answer. Figure 1 shows one possible query plan and some results for 
illustration purpose. The predicate criteria ‘protein-name’ and ‘organism-name’ are 
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combined and submitted to SwissProt, which provides the sequence-info part of the 
output. The SwissProt data record matching the protein name, also provide hyperlinks 
to related data records in GenBank and PROSITE. These sources provide the gene 
sequence information and the pattern description part of the output, respectively. 
Finally, PROSITE data records provide hyperlinks to the related PDB data records, 
which contain the 3-D structure part of the output. Thus, the result of this query 
consists of data records that are obtained from four different sources.  

Consider the SC between SwissProt record P29197 and the PROSITE record 
PS00296 in figure 1. This semantic correspondence is established because the 
SwissProt record has a hyperlink to the PROSITE record. In terms of domain 
knowledge, this SC denotes the fact that the protein represented by the sequence in 
SwissProt record belongs to the family represented by the PROSITE record. 
Similarly, the SC between SwissProt and GenBank records denotes the domain 
knowledge that the protein represented by the SwissProt record is a product of the 
gene represented by the GenBank record.  

 

Fig. 1. Partial result of a query 

3.2   Degree of Semantic Correspondence 

Now consider the PROSITE and GENBANK records in figure 1. Do they have SC 
among them? In terms of domain knowledge, the protein family represented by 
PROSITE record and the gene represented by the GENBANK record, both are 
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definitely related to the sequence represented by the SwissProt record, i.e., these 
records represent different characteristics of the same protein. Therefore, GENBANK 
and PROSITE records do have certain SC. However, this SC is not as strong as the 
one that links GENBANK and SwissProt records; because there are neither direct 
hyperlinks nor matching field values between the GENBANK and PROSITE records. 
Formelly, we define two degrees of SC: strong SC and weak SC.   

Strong SC (SSC): Two data records are said to have strong SC, if they are linked 
directly either by matching field values or by hyperlinks. These data records are 
immediate neighbors in the query plan. For example, the SwissProt and PROSITE 
records mentioned in the example above, have strong SC, as do SwissProt and 
GenBank records. 

Weak SC (WSC): Two data records are said to have weak SC, if they are 
connected using a chain of SSC that travels through at least one other data source. 
These data records are connected but not immediate neighbors in the query plan. 
Records connected by WSC may represent different characteristics of the same 
biological entity. However, WSC is just a possibility and its validity must be 
confirmed using some other means as explained in the next section. 

 

 

Fig. 2. Domain mapping and validity of WSC 

3.3   Cardinality of Semantic Correspondence 

According to the above definitions, SwissProt record P29197 and PDB record 1GRL 
in figure 1 are connected by WSC because both of them have SSC with PROSITE 
record PS00296. However it is misleading to connect them (P29197 and 1GRL) 
together because they represent two different proteins. On the other hand, the WSC 
between GenBank record Z11547 and PROSITE record PS00296 makes more sense 
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because the gene record and the protein family record are both characteristics of the 
protein represented by the connecting SwissProt record. In other words, the WSC 
between SwissProt and PDB records is invalid while the WSC between PROSITE and 
GENBANK is valid. The validity of WSC between two records thus depends on 
whether or not we can biologically pair them with each other. 

This can be determined from the mapping of domains of the biological entities 
involved. For example, each protein record will have a corresponding Gene record 
that it can be biologically paired with; however, each protein family record can be 
paired with several corresponding protein records. Figure 2 shows the possible cases 
of domain mappings and corresponding validity or invalidity of the WSC. The 
mapping between the domain of intermediate source and its neighbors is the most 
important factor in deciding validity of WSC. If the intermediate record maps to 
multiple records with both its neighbors, its SC has a plural cardinality; otherwise it 
has singular cardinality. When an intermediate record has plural cardinality, we 
cannot reliably pair its neighbors and the WSC between them is labeled invalid.  

4   Refinement Query Processing over Integrated Data 

Query processing capabilities of web-accessible data sources are limited and not 
every field in the record can be used in the predicate. For example, it is not possible to 
use the field ‘induction’ as predicate in the initial query. Therefore, there will be 
many records in the result of the initial query with values of ‘induction’ different than 
the desired value. However, since BACIIS now has all the data locally, it can apply 
the additional criterion to that data regardless of the sources’ capabilities. In general, 
BACIIS can provide refinement query capabilities of arbitrary granularity over the 
global schema and process those queries over the integrated data. For example, 
refinement query ‘induction=heat shock’ will only keep those records that contain 
‘heat shock’ in field ‘induction’, and their related records. 

Given the rich population of biological databases available online, it is not 
surprising that some portions of the domain be covered by multiple sources. For 
example, protein sequence information is available from several sources such as 
SwissProt, PIR, etc. Since BACIIS collects information from multiple data sources, it 
may get multiple values about the same data field from records of different sources. 
Those values may be inconsistent, but it is impossible to eliminate the wrong ones 
automatically.  So, BACIIS will present all the data to users by default. If a user wants 
to further refine the result based on the value of one data field, inconsistent field 
values may cause a problem. 

Consider the following query issued to BACIIS “What is the GENE ontology 
classification of protein featured for the protein phytochrome B in Arabidopsis 
thaliana?” Along with many others, the result for this query contains the following 
three records: At2g18790 from TIGR, NF00659007 from iProClass and 1005515 
from TAIR. Figure 5 shows the cross-references among these records and using those 
along with domain mapping information; we can state that there is a valid WSC 
between the iProClass record and the TAIR record. 

Now, consider the following refinement query issued on this result: “cellular 
component = membrane”. From the data source schema, BACIIS finds out that only 



 Semantic Correspondence in Federated Life Science Data Integration Systems 143 

 

TIGR and iProClass records can be directly evaluated for this predicate. Therefore, 
TAIR record’s selection is completely dependent on its having valid semantic 
correspondence with a record that can be evaluated. However, the value of this field is 
different in both of such records, where iProClass record satisfies the predicate and 
TIGR does not. This inconsistency of data can be attributed to the different methods 
of annotation employed by the two sources. Nevertheless, the TAIR record now 
corresponds to one record that satisfies the predicate and another that doesn’t. 
However, BACIIS has to take into account the relative degree of SC between these 
records and since the TAIR record has a SSC with the mismatching TIGR record, its 
WSC with iProClass record should be considered invalid and it should not be 
included in the result.  

TAIR 

 

Fig. 3. Invalid WSC due to Data Inconsistency 

To solve this problem, we propose an algorithm that first finds out all the records 
that can be directly evaluated for the predicate, and marks them as either valid or 
invalid. And then, the algorithm uses semantic correspondence to evaluate other 
records. For each record that has not been marked yet, if its predecessor is not marked 
invalid and if any of its neighbors are marked valid, then that record itself becomes 
valid. The rest of the records are invalid. Thus, the validity of a record for the 
refinement query is based on its being part of an unbroken chain of records in a path 
expression. Therefore, records with SSC to invalid records are eliminated.  

5   Conclusion 

In this paper two challenges were addressed; providing provenance for records in 
integrated data and processing queries over integrated data in a semantically 
meaningful way. The concept of semantic correspondence was introduced for 
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heterogeneous data obtained using several query paths. Two characteristics of 
semantic correspondence were also defined. First, the degree of semantic 
correspondence which represents the closeness of entities represented by different 
records and second, the cardinality which represents the mapping between domains of 
entities.  

Data quality in biological data sources varies greatly based on several factors. 
Therefore, integrating data from overlapping data sources may generate results with 
missing data items or results that contain inconsistencies. The algorithm provided in 
this paper deals with these conflicts based on the characteristics of semantic 
correspondence among the records. It makes no assumption about the correctness of 
any data source involved. Furthermore, by removing semantically distant records 
from the integrated data, it achieves a better consistency for the integrated results. 
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Abstract. Integrating data involving chemical structures is simplified
when unique identifiers (UIDs) can be associated with chemical struc-
tures. For example, these identifiers can be used as database keys. One
common approach is to use the Unique SMILES notation introduced
in [2]. The Unique SMILES views a chemical structure as a graph with
atoms as nodes and bonds as edges and uses a depth first traversal of the
graph to generate the SMILES strings. The algorithm establishes a node
ordering by using certain symmetry properties of the graphs. In this pa-
per, we present certain molecular graphs for which the algorithm fails to
generate UIDs. Indeed, we show that different graphs in the same sym-
metry class employed by the Unique SMILES algorithm have different
Unique SMILES IDs. We tested the algorithm on the National Cancer
Institute (NCI) database [7] and found several molecular structures for
which the algorithm also failed. We have also written a python script
that generates molecular graphs for which the algorithm fails.

1 Introduction

The volume of biological data, especially chemical structures, is increasing at
an unprecedented rate. There are numerous databases today that store chem-
ical substances and thousands of chemical structures are being added to these
databases each year. For example, the Chemical Abstracts Service (CAS) alone
has more than 71,285,000 records, while the NCI database has close to 250,251
chemical structures. In general, each database uses a different method of assign-
ing keys to the chemical compounds. For example, many databases assign keys
based upon the order the compound was added to the database. For this reason,
determining whether a compound has been entered into a database more than
once or comparing chemical structures across databases is difficult.

B. Ludäscher and L. Raschid (Eds.): DILS 2005, LNBI 3615, pp. 145–157, 2005.
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This paper is concerned with data integration techniques that use the struc-
tural features of chemical compounds to assign unique IDs (UIDs). Using UIDs
it is relatively simple to compare chemical structures across different databases,
something which facilitates the discovery of new drugs and therapeutic treatments.

In this paper, we consider two schemes for assigning UIDs: Unique SMILES [2]
and Universal Chemical Keys (UCKs) [20]. Although Unique SMILES are widely
deployed and very useful in practice, we show that the algorithm described in
[2] does not lead to unique IDs. We emphasize that the Unique SMILES as
deployed by the Daylight Chemical Information System is an enhanced version
of the algorithm described in [2], but, as far as we know, there is not a published
version of this algorithm.

We believe that our paper makes the following research contributions:

1. We show that the Unique SMILES IDs although extremely useful are not
unique.

2. We describe some common circumstances leading to the non-uniqueness of
Unique SMILES IDs.

This paper is organized as follows: Section 2 describes related work. Sections
3-4 described one popular technique of assigning IDs to chemical compounds
called Unique SMILES [2]. Sections 5-6 explain why Unique SMILES doesn’t al-
ways generated UIDs. Sections 7 provides some counter examples. The final sec-
tion summarizes the reason behind the failure of the unique SMILES algorithm
and suggests alternate techniques for data integration of chemical compound
databases using UIDs.

2 Related Work

The International Union of Pure and Applied Chemistry (IUPAC) rules [13]
have been use for several decades. However, these names are growing more com-
plicated and causing inconsistencies and mistakes as compounds become more
and more complex [14]. To deal with this problem, the IUPAC has initiated a
project [15] to assign unique keys known as IUPAC Chemical identifiers (INChI)
to chemical compounds. This approach is based in part on graph theory. The
chemical identifiers are alphanumeric text strings obtained from the molecular
graph of the compound and are designed so that the chemical structure can be
recovered from the UID. However, the details are not yet published.

The most common approach for integrating information about chemical com-
pounds across databases is to use a unique key assigned by one of the databases,
such as an acquisition-based or Chemical Abstracts Service (CAS) based registry
numbers, as the foreign key for the other databases. For example, the NCI database
stores the corresponding CAS registry number for its chemical compounds. Inte-
grating databases in this way is labor intensive and does not easily scale.

Another approach is to view the molecular structures as a graph and to
compare them directly using a graph isomorphism algorithm. There are several
algorithms [11,12,17] which test for graph isomorphism. The problem with this
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approach is the amount of computing required to compare two structures. A
more important problem is that just identifying two graphs as isomorphic does
not directly provide a UID.

Several graph based techniques to solve the problem of assigning unique keys
to chemical structures are known. For example, Randic and coworkers [16] de-
veloped a technique that canonically orders the adjacency matrix to produce an
ID. Another popular method to discriminate molecular graphs is by means of
graph invariants and vertex-in-graph invariants. One such method is the Morgan
algorithm [18] which uses extended sum connectivities to distinguish atoms in a
molecule. Another molecular graph canonizer is MOLGEN-CID [19].

In contrast, the Universal Chemical Key (UCK) algorithm [20] enumerates
all paths up to a specified depth d in the molecular graph, lexicographically
orders them, and concatenates them to produce an ID. These strings are long
and cannot be used to recover the graphs. On the other hand, it is easy to use
them to integrate distributed bioinformatics databases [20]. For databases of
chemical compounds examined to date, a depth of d = 3 or 4 produces UIDs.

3 The Unique SMILES Algorithm

SMILES [1] (Simplified Molecular Input Line Entry System) is a popular chem-
ical notation system used for computerized processing of chemical information.
SMILES is a string obtained by enumerating the atomic symbols and bond types
via a depth-first tree-traversal of a molecular graph, where, as usual, the nodes
represent atoms and the edges represent bonds.

The problem with all such approaches is that there is no natural order to nodes
in a molecular graph, and different depth-first traversals will result from different
starting points. This means that there may be more than one correct SMILES
string obtained from the same molecular graph. For this reason, SMILES strings,
which in general are not unique, cannot be used as database keys.

To overcome this disadvantage, the creators of SMILES came up with a 2-
stage algorithm called CANGEN [2] to generate a unique SMILES string for a
given molecular structure. The first stage, CANON, involves CANonicalization
of the structure represented as a molecular graph. The second stage, GENES,
GENerates the unique SMILES notation as a depth-first traversal of the canon-
icalized molecular graph.

For most chemical structures the CANGEN algorithm as described in [2]
generates UIDs. However, as we show below by counter examples, there are ex-
ceptions. These exceptions need not be complicated. See Section 7. The reason is
simple: if the graph is symmetric enough, it is possible for the CANON stage of
the Unique SMILES algorithm to generate different canonical labels for the nodes
of the molecular graph. This results in several different Unique SMILES strings.

The Unique SMILES algorithm consists of the following two stages [2]:

1. The CANON stage labels a molecular graph with canonical labels. Each
atom/node is given a numerical label on the basis of its topology.
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Fig. 1. Molecular graph of 3,5 di-ethyl toluene. NSC number 62141

2. The GENES stage generates unique SMILES notation as a tree representa-
tion of the graph. GENES selects the starting atom and makes branching
decisions by referring to the canonical labels as needed.

The algorithm and its non-uniqueness will be explained with the example
of chemical compound 3,5 di-ethyl toluene, It is stored in the NCI database
with NSC number 62141. The molecular graph of this compound is described
in Figure 1, where the number beside each atom is just assigned for brevity to
refer to the atom in describing the following steps of the algorithm.

4 The CANON Stage of Unique SMILES

Node ordering for the generation of unique SMILES is obtained by develop-
ing topological symmetry classes, using the product of corresponding primes as
illustrated below.

Graph Invariants. The algorithm claims that a set of six atomic invariants
is sufficient for the purpose of obtaining a unique notation for simple SMILES.
(More invariants are added for cases like Absolute SMILES to differentiate be-
tween structural and stereo-isomers).

The set is described below in descending order of priority :

1. number of connections
2. number of non-hydrogen bonds
3. atomic number
4. sign of charge
5. absolute charge
6. number of attached hydrogen

For the molecular graph in Figure 1, the initial atomic invariants for the atoms
is described in Table 1(a) row labeled ’A’.
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Rank Equivalence. The algorithm replaces the initial node invariant values by
smaller numbers based on their sorted order to avoid numerical overflow since
there is nothing intrinsically meaningful in their specific values. The row labeled
’B’ in Table 1(a) describes the initial ranks.

Products of Primes. To obtain a canonical ordering of the nodes, and to obtain
and identify all the symmetry classes of the nodes, an extended connectivity
method using the product of the corresponding primes is used. This method is
essentially used only to break ties between the initial node ordering to obtain a
canonical order of the nodes.

The corresponding primes for the atoms of the molecular graph are described
in the row labeled ’ B* ’ in Table 1(b). The product of the corresponding primes,
which is the product of the primes associated with the atoms adjacent to a given
atom, is displayed in the row labeled ’C’ of Table 1(b).

Notice that node ’10’ was initially ranked ’1’ and appeared to belong to the
same symmetry class as the other two nodes (1,7) with rank ’1’ when actually
it did not, but by using the product of the corresponding primes we have been
able to break the tie. (row ’D’ of Table 1(b)).

By further following the steps of the algorithm as described in the unique
SMILES algorithm [9], we obtain the final node partitioning as in Table 2: (the
details of the steps are described in Table 1).

Table 1. Perception of Topological Symmetry classes for 3,5 di-ethyl toluene

Node
id

1 2 3 4 5 6 7 8 9 10 11

(a) Initial atomic invariants

A 1,01, 2,02, 4,04, 3,03, 4,04, 2,02, 1,01, 3,03, 4,04, 1,01, 3,03,
06,0, 06,0, 06,0, 06,0, 06,0, 06,0, 06,0, 06,0, 06,0, 06,0, 06,0,
0,3 0,2 0,0 0,1 0,0 0,2 0,3 0,1 0,0 0,3 0,1

B 1 2 4 3 4 2 1 3 4 1 3
(b) Classification by product of primes

B* 2 3 7 5 7 3 2 5 7 2 5
C 3 14 75 49 75 14 3 49 50 7 49
D 1 3 6 4 6 3 1 4 5 2 4
D* 2 5 13 7 13 5 2 7 11 3 7
E 5 26 245 169 245 26 5 143 147 11 143
F 1 3 7 5 7 3 1 4 6 2 4
F* 2 5 17 11 17 5 2 7 13 3 7
G 5 34 385 289 385 34 5 221 147 13 221
H 1 3 7 5 7 3 1 4 6 2 4

Table 2. Invariant partitioning and symmetry classes of nodes

Canon-
ical label

1 2 3 4 5 6 7

Node ids 1,7 10 2,6 8,11 4 9 3,5
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5 Explanation of Non-uniqueness

Breaking Ties. We have observed that the extended connectivity method using
the product of corresponding primes was able to generate 7 different symmetry
classes. Since the highest rank/label (7) is smaller than the number of nodes
(11), there is more than one atom in certain symmetry classes. To avoid an
arbitrary decision among these atoms in a given symmetry class, the algorithm
proceeds to define a next step called ’breaking ties’. In this step, all the ranks
of the atoms are doubled and the value of the first (lowest valued) atom that is
tied is reduced by one. This set is then treated as a new invariant set and the
previous algorithm for generating an invariant partitioning is repeated until the
highest rank is equal to the number of nodes.

This concept of double-and-tie-break works for certain highly symmetric struc-
tures like cubane (consisting of eight carbon atoms at the vertices of a cube)
irrespective of the initial ordering of the nodes. However, for our example in
Figure 1, this ends up generating different canonical orderings of the graph re-
sulting in different unique SMILES strings.

In our example following the double-and-tie-break step, we detect the first tie
among the nodes with id’s 1,7. We need to reduce the first lowest valued atom
(out of nodes with id’s 1,7) that is tied by one. In our example since we can have
two starting nodes, and the notion of ’first’ in this case is ambiguous, we can
either choose node ’1’ or ’7’. The algorithm fails to establish a mechanism of pref-
erence within the nodes belonging to the same symmetry class. It assumes that
choosing any of the nodes within a symmetry class will result in the same unique
SMILES string. This assumption works for certain regular graphs, however for
graphs similar to our example, it does not work as desired.

For our example, by merely changing the input order of the nodes we can
choose either node with id ’1’ or ’7’ as the first lowest valued atom and reduce its
rank by ’1’, totally changing the start node for the depth-first traversal (DFT).
If the graph was entered as shown in Figure 2, we would have ended up choosing
the node with id ’7’ of Figure 1 as the first node and reduced its rank making it
the start node for DFT.

By choosing the node with id ’1’ of Figure 1 as the first lowest valued atom
to break the tie and continuing the algorithm, we obtain a canonical ordering as
in Table 3. (This is just one of the many canonical orderings we can obtain, and
is explained later).

However, if we had chosen the node with id ’7’ of Figure 1 as the first node,
and continuing the algorithm one of the many canonical orderings we would
obtain is shown in Table 4. This will be the case if we had input the graph as in
Figure 2.

The problem of establishing an order within a given symmetry class can
be solved for a limited enough collection of molecular graphs by considering
more chemical/topological characteristics to distinguish between these atoms
and establish a precedence order.
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Fig. 2. Alternate input graph of 3,5 di-ethyl toluene

Table 3. One of the final canonical orderings choosing node with id 1 of Figure 1

Node id 1 2 3 4 5 6 7 8 9 10 11

Canonical
label

1 4 10 8 11 5 2 7 9 3 6

Table 4. One of the final canonical orderings choosing node with id 7 of Figure 1

Node id 1 2 3 4 5 6 7 8 9 10 11

Canonical
label

2 4 10 8 11 5 1 7 9 3 6

Obtaining the Unique SMILES String via GENES. By following the
CANON process we have obtained a canonicalization of the graph. According
to the CANON process, the nodes with the same rank are supposed to belong
to the same symmetry class. The GENES process treats this structure as a tree
and generates a SMILES string by Depth-First Traversal.

1. Initial node selection: The lowest canonical numbered atom is chosen as the
starting point and it becomes the root of the Depth-First Traversal tree.

2. Branching decision: The following two rules apply :
(a) Branch to double or triple bond in the ring if one exists or
(b) Branch to the lower canonically numbered atom.

In this particular case, we observe that we can have two initial node selec-
tions, resulting in two different depth-first traversal trees from the two different
canonical orderings described in Table 3 and Table 4.
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Fig. 3. Depth-first traversal associated with the initial node ’1’ and the
canonical labeling described in Table 3. This gives the Unique SMILES
CCC1=CC(=CC(=C1)C)CC

Fig. 4. Depth-first traversal associated with the initial node ’7’ and the
canonical labeling described in Table 4. This gives the Unique SMILES
CCC1=CC(=CC(=C1)CC)C

– The USMILES with start node id ’1’ is CCC1=CC(=CC(=C1)C)CC. The
node IDs are described in Figure 1. The canonical labeling is described in
Table 3. The depth-first traversal is described in Figure 3.

– The USMILES with start node id ’7’ is CCC1=CC(=CC(=C1)CC)C. The
node IDs are described in Figure 1. The canonical labeling is described in
Table 4. The depth-first traversal is described in Figure 4.
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– The UCK algorithm generated using the web-service at [10], generates one
unique key for this molecular graph, which is 85C7DC186897FD83D8ECB6B
167D988BE.

6 Experimental Studies

We have written a Python program implementing the CANGEN algorithm. The
program takes as input an adjacency list of the molecular graph (described in [8])
and generates all possible unique SMILES strings for the graph. Once an invari-
ant partitioning is obtained and it is determined that there is more than one
node in any symmetry class, the script permutes the individual nodes within a
symmetry class and generates all possible node selections.

For the example above, since there are 4 symmetry classes, we will get 16 dif-
ferent final invariant partitionings. Once we obtain these different partitionings
we proceed to break ties in each of them and continue the remaining steps of the
algorithm. Not all of the 16 final canonical orderings obtained from these differ-
ent invariant partitionings generate different SMILES strings — only a subset of
these generate different unique SMILES strings. In our example only two of the
different final canonical orderings (Table 3 and Table 4) generate two different
unique SMILES strings.

A web interface to this program can be accessed at [6].

7 Examples from the NCI Database

Here are some counter examples found in the NCI Database [7]. A web interface
to these counter examples can be accessed at [6]. For each of the examples in
this section:

1. We verified that the two different unique SMILES strings obtained map onto
the same molecular graph via the on-line implementation [4] of the depict
algorithm [3] provided by Daylight software [4].

2. We also verified this using another on-line implementation [5] of the CAN-
GEN algorithm provided by the cactus service of the NCI chemical structure
database. Using this service, one can input a SMILES string and get the
unique SMILES for it.

NSC ID 4420. Here are two different Unique SMILES strings for N, N-Dially-
lmelamine with NSC id 4420:

– NC1=NC(=NC(=N1)N(CC=C)CC=C)N
– NC1=NC(=NC(=N1)N)N(CC=C)CC=C

See Figure 5 for the molecular graph. The unique key generated by UCK for this
compound is: 020A134950962096577666701295295E.

NSC ID 10392. Here are two different Unique SMILES strings for 2, 4-Mesity-
lenediamine with NSC ID 10392.
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Fig. 5. Structural formula of N, N-Diallylmelamine with NSC id 4420

Fig. 6. Structural formula of 2,4-Mesitylenediamine with NSC id 10392

– CC1=C(N)C(=C(N)C(=C1)C)C
– CC1=CC(=C(N)C(=C1(N))C)C

See Figure 6 for the molecular graph. The unique key generated by
UCK is F61473AE54FEC1737F7D15590650BBA2.

NSC ID 1889. Here are two different Unique SMILES strings for Pentamethyl-
benzene with NSC ID 1889.

– CC1=C(C)C(=C(C)C(=C1)C)C
– CC1=CC(=C(C)C(=C1(C))C)C
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Fig. 7. Structural formula of Pentamethylbenzene with NSC ID 1889

Fig. 8. Structural formula of 3-(3,5-dimethylphenoxy)-1,2-propanediol with NSC id
25239

See Figure 7 for the molecular graph. The unique UCK key generated by UCK:
1C5659F3ED5E10F02310455B56649849.

NSC ID 25239. Here are two different Unique SMILES strings for 3-(3,5-
dimethylphenoxy)-1,2-propanediol with NSC id 25239.

– CC1=CC(=CC(=C1)C)OCC(O)CO
– CC1=CC(=CC(=C1)OCC(O)CO)C

See Figure 8 for the molecular graph. The unique key generated by
UCK: AFD17D1BB28847F4FFAAD8C744A268AE.
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8 Summary and Conclusion

Data integration involving chemical compounds is greatly aided by attaching
unique IDs to chemical compounds. This is especially important when working
with distributed bioinformatics data.

It has been recognized for some time that common names for chemicals,
IUPAC names, CAS numbers, and general SMILES strings do not provide a
good infrastructure for data integration. In this paper, we show that Unique
SMILES strings [2] are also not a good foundation for data integration.

As the examples in the section above show, there are relatively simple chem-
ical compounds that do not have Unique SMILES IDs. We have computed ad-
ditional counter examples using our python script and these can be accessed
at [6].

The CANGEN component of the Unique SMILES algorithm starts with a
set of graph invariants and uses these to generate a canonical ordering of the
nodes. This is then used as a basis for a depth-first traversal of the graph to
generate the Unique SMILES string. Unfortunately, there is no set of invariants
known that can distinguish all possible graph asymmetries that arise with the
molecular graphs in common databases, such as the NCI database.

Although the Universal Chemical Key (UCK) algorithm [20] does not gener-
ate easy to interpret strings, it does generate unique keys for common databases
such as the NCI database.

This suggests a strategy of using UCK like strings as keys to integrate dis-
tributed bioinformatics data, supplemented by SMILES-like strings that are eas-
ier to interpret.
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Abstract. Researchers at the medical research institute Inserm U5221, special-
ized in the liver, use high throughput technologies to diagnose liver disease 
states. They seek to identify the set of dysregulated genes in different physiopa-
thological situations, along with the molecular regulation mechanisms involved 
in the occurrence of these diseases, leading at mid-term to new diagnostic and 
therapeutic tools. To be able to resolve such a complex question, one has to 
consider both data generated on the genes by in-house transcriptome experi-
ments and annotations extracted from the many publicly available heterogene-
ous resources in Biomedicine. This paper presents GEDAW, a gene expression 
data warehouse that has been developed to assist such discovery processes. The 
distinctive feature of GEDAW is that it systematically integrates gene informa-
tion from a multitude of structured data sources. Data sources include: i) XML 
records of GENBANK to annotate gene sequence features, integrated using a 
schema mapping approach, ii) an inhouse relational database that stores detailed 
experimental data on the liver genes and is a permanent source for providing 
expression levels to the warehouse without unnecessary details on the experi-
ments, and iii) a semi-structured data source called BioMeKE-XML that pro-
vides for each gene its nomenclature, its functional annotation according to 
Gene Ontology, and its medical annotation according to the UMLS. Because 
GEDAW is a liver gene expression data warehouse, we have paid more atten-
tion to the medical knowledge to be able to correlate biology mechanisms and 
medical knowledge with experimental data. The paper discusses the data 
sources and the transformation process that is applied to resolve syntactic and 
semantic conflicts between the source format and the GEDAW schema. 

1   Introduction 

In human health and life science, the rapid emergence of new biotechnological plat-
forms for high throughput investigations in genome, transcriptome and proteome, 
prompts further advances in information management techniques to take in charge the 

                                                           
1 Regulation of functional balances of normal and pathological liver. 
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data and knowledge generated by these technologies. A tremendous amount of bio-
medical data is continuously deposited by scientists in public Web resources, and is in 
return searched by other scientists to interpret results and generate and test hypothesis.  

The management of these data is challenging, mainly because : (i) data items are 
rich and heterogeneous: experiment details, raw data, scientific interpretations, im-
ages, literature, etc. ii) data items are distributed over many heterogeneous data 
sources rendering a complex integration, iii) data are speculative and subject to errors 
and omissions within these data sources, and bio-data quality is difficult to evaluate, 
and iv) bio-medical knowledge is constantly morphing and in progress.. 

This paper reports on our experience in building GEDAW: an object-oriented Gene 
Expression Data Warehouse to store and manage relevant information for analyzing 
gene expression measurements [12]. GEDAW (Gene Expression DAta Warehouse) 
aims on studying in silico liver pathologies by using expression levels of genes in dif-
ferent physiopathological situations enriched with annotations extracted from the va-
riety of the scientific sources and standards in life science and medicine. 

A comprehensive interpretation of a single gene expression measurement requires 
the consideration of the available knowledge about this gene, including its sequence 
and promoters, tissue-specific expression, chromosomal location, molecular func-
tion(s) and classification, biological processes, mechanisms of its regulation, expres-
sion in other pathological situations or other species, clinical follow-ups and, increas-
ingly important, bibliographic information. Beyond the process of data clustering, this 
knowledge provides representations that can help the scientist to address more com-
plex questions and suggest new hypothesis, leading in our context to a clearer identi-
fication of the molecular regulation mechanisms involved in the occurrence of liver 
diseases and at mid-term to new diagnostic and therapeutic tools.  

The required knowledge is spread world-wide and hosted on multiple heterogene-
ous resources. Manually navigating them to extract relevant information on a gene is 
highly time-comsuming and error-prone. Therefore, we have physically integrated 
into GEDAW a number of important sources in life science and medicine that are 
structured or semi-structured. Our final objective is to propose a more systematic ap-
proach to integrate data on liver genes and to organize and analyze them within a tar-
get question - which is in our case specific to an organ and a pathological state. This 
is a complex task, with the most challenging questions being: i) bio-knowledge repre-
sentation and modeling, ii) semantic integration issues and iii) integrated bio-data 
analysis. 

Building a scientific data warehouse to store microarray expression data is a well 
studied problem. Conceptual models for gene expression are for instance discussed in 
[18].The Genomic Unified Schema (GUS) integrates diverse life science data types 
including microarray data, and a support of data cleansing, data mining and complex 
queries analyses, thus making it quite generic [2]. The warehouse of [11] focuses on 
storing as possible details on the experiments and the technologies used. In GEDAW 
we only focus on the result of an experiment, i.e., expression measurements. No fur-
ther experimental details are stored within the warehouse. The Genome Information 
Management System (GIMS) in which one of the authors has been participating, al-
lows the storage and management of microarray data on the scale of a genome, mak-
ing GIMS, in contrast to GEDAW, a genome-centric rather than gene-centric data 
warehouse [9]. Finally, [10] describe the GeneMapper Warehouse for expression data 
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integrating a number of genomic data sources. In contrast, GEDAW has a focus on 
medical and “knowledge-rich” data sources. 

1.1   Architecture for BioData Integration  

GEDAW is a gene-centric data warehouse devoted to the study of liver pathologies 
using a transcriptome approach. New results from medical science on the gene being 
studied are extremely important to correlate gene expression patterns to liver pheno-
types. To connect to this information, we take advantage of the recent standards  
developed in the medical informatics domain, i.e., the UMLS knowledge base [3]. 

GEDAW schema includes three major divisions: (i) gene and gene features along 
with transcripts and gene products division, (ii) expression measurements of liver 
genes division generated by in-house experiments and (iii), universal vocabularies and 
ontologies division. As illustrated in Figure 1, to store the gene expression division a 
local relational database has been built, as a repository of array data storing as many 
details as possible on the methods used, the protocols and the results obtained. It is a 
MIAME (Minimum Information About Microarray Experiment) compliant source [6]. 
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Fig. 1. GEDAW System Architecture 

The sources currently integrated are spread world wide and hosted on different rep-
resentation systems, each having its own schema. XML records from the GENBANK 
[7] have been used to populate the gene sequence features division into GEDAW.  

Explicit relationships associating genes and their expression profiles with diseases 
are also extremely needed to understand the pathogenesis of the liver. For this  
purpose, we use the system BioMeKE [8,17] to curate the ontology division of each 
expressed gene with relative concepts in life science and medicine. The BioMEdical 
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Knowledge Extraction module (BioMeKE) includes the Unified Medical Language 
System® (UMLS) covering the whole biomedical domain, and the Gene Ontology™ 
(GO) that focuses on genomics. It includes additional terminologies, as that provided 
by the HUman Genome Organisation (HUGO) Gene Nomenclature Committee 
(HGNC) to resolve synonymy conflicts [19].  An XML document that annotates each 
gene by exploring these biomedical terminologies is derived from BioMeKE.  It is 
then parsed and integrated into the warehouse. 

1.2   Contribution 

The aim of this paper is to share our experience on designing and implementing an in-
tegration process for biomedical data in the presence of syntactic and semantic con-
flicts. Other aspects such as biological data quality controlling, mining and refreshing 
will be described elsewhere. 

1.3   Outline 

An overview on the biological background and the questions that motivate the design 
of GEDAW are given in the next section. In section 3, the provenance, content and 
the format of the structured resources used for integration in GEDAW are described. 
In section 4, the integration process along with a brief schema design is presented.  
The data mapping rules that have been defined for instances conciliation and clean-
sing during the integration process are also presented. The generic interface used for 
queries composition and execution is tackled in section 5. Section 6 concludes and 
presents the perspectives of our future works. 

2   Biological Background and Motivations 

Transcriptome is the study of the transcriptional response of the cell to different envi-
ronment conditions such as, growth factors, chemicals, foods treatments, genetic dis-
turbance, etc. The cell may response by an excessive expression or repression of cer-
tain genes in two different situations, for example normal vs. pathologic.  

2.1   Transcriptome Experiments 

In the liver framework, the objective of transcriptome experiments is to emphasize both 
co-expressed genes and gene networks in a specific pathology within the hepatocyte.  

To determine whether a single gene is expressed is a routine task for a biologist, 
but this process becomes more complicated because the data generated are massive. 
DNA-chips are indeed used and thousands of genes are deposited on a two dimen-
sional grid. The experiment generating thousands of data points requires an efficient 
processing of the storage and the management of data. The key question is: which of 
(and why?) the deposited genes are abnormally expressed in the injured tissues?  Each 
gene is represented by a spot, and its expression level is measured by means of the 
spot intensity. This same gene does have other multiple features, recorded in World 
Wide Web resources, and that must be considered to answer such questions.  
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2.2   Biomedical Issues Underlying Data Integration 

To study experimental data, the scientist expects an integrated environment that  
captures his own experimental data enriched with information and expertise on the 
expressed genes. Beyond the process of clustering expression measurements in gene 
clusters, such an integrated environment should allow him to better focus on the  
scientific interpretation derived from such a clustering that reveals such clusters.  

Together with the collected gene data, the integrated environment should be able to 
answer questions that need an integration of knowledge from the biological level to 
the pathological level. Below we give three types of questions that scientists  
frequently ask and that cannot be answered by simple SQL queries, but require the 
application of data mining techniques. 

1 The set of genes that have seen their expression modified in a given condition? 
2 Within this set, is there a subset of genes that are co-regulated? 
3 What are the elements that may explain a parallel (or opposite) modulation of 

certain genes: membership to a functional class, homologies occurring in their 
peptides sequences, or in their nucleic sequences particularly in the promoting 
region? 

Scientists may need to go thoroughly into sequences (question 3.) of the  
co-expressed genes for discovering common motifs, because genes sharing similar 
expression profiles must share transcription regulation mechanisms that include 
common transcription factors. They also need to go thoroughly into disease informa-
tion and clinical follows-up in order to find out correlations between particular  
mutants' phenotypes and expression patterns. The integrated environment should also 
be able to answer questions such as: 

1 Is there any correlation between gene expression levels and a certain pathologi-
cal phenotype?  

2 What is the set of genes for which a dysregulation characterizes a pathological 
sample by indicating a gravity level, a prognostic factor, a sensitivity level or on 
a contrary a resistance to a certain  treatment ? 

Respective genes annotations that comes from the UMLS knowledge-base and the 
Gene Ontology, along with gene expression profiles, are used to proceed such  
questions. Relative conceptual terms in both ontologies are extracted from the unified 
document-source, derived by BioMeKE. 

2.3   GEDAW: An Object-Oriented Environment for Integrating Liver Genes 
Data 

Considering the different integration issues previously described, an object oriented 
data warehouse called GEDAW (Gene Expression DAta Warehouse) has been  
designed for integrating and managing : i) data being produced on the expressed 
genes in public databanks and literature, ii) normalized experimental data produced 
by Microarray experiments and iii) complementary biological, genomic, and medical 
data.  
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3   Data Resources 

Searching across heterogeneous distributed biological resources is increasingly  
difficult and time-consuming for biomedical researchers. Bioinformatics is coming to 
the forefront to address the problem of drawing effectively and efficiently information 
from a growing collection of multiple and distributed databanks. Several resources 
can be used to instantiate the liver warehouse GEDAW. We describe here the ones 
that have been selected for having the most appropriate properties, enabling a system-
atic extraction of gene attributes: 1) experiment resources, 2) genomic databanks and 
3) ontological resources. We demonstrate for each selected resource, its provenance, 
content, structure and which gene attributes are being extracted.  

3.1   Experimental Resources 

To not burden the warehouse, a MIAME compliant relational database has been built 
independently (Figure2), in order to store and manage experimental microarray data 
[12]. This database stores as much as possible details on the microarray experiments,  
including the techniques used, protocols, samples and results obtained (ratios and  
images).  

We will not go in further details concerning this database, except saying that it acts 
as a permanent source of expression levels delivered by in-house transcriptome ex-
periments on injured liver tissues, and provides facilities to select and export data. 
Part of those data is exported to the data warehouse. 
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Fig. 2. An external source to manage liver transcriptome experiments 

3.2   Genomic Databanks Resources 

In order to perform consistent analyses on the expressed genes, the integration of the 
precise pre-existing annotations of their sequences is necessary. Sequence data to  
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consider include: 1) the DNA sequence and sequence components : known promoters, 
known transcription binding sites, introns, exons, known regulators, 2) the mRNA  
sequence, sequence components and alternative transcripts and 3) functional proteins.  
Being conscious that an exhaustive gene annotation is available for a limited number of 
genes, it is however helpful to infer new knowledge on yet unknown co-expressed 
genes. 

Data describing genomic sequences are available in several public databanks via 
Internet: banks for nucleic acids (DNA, RNA), banks for protein (polypeptides, pro-
teins) such as SWISS-PROT , generalist or specialized databanks such as GENBANK, 
EMBL (European Molecular Biology Laboratory), and DDBJ (DNA DataBank of  
Japan). Each databank record describes a sequence with its several annotations. 

As an example, the description of the Homosapiens Hemochromatosis gene HFE, 
which mutation causes a genetic liver disease having the same name is given in 
GENBANK. The description of this gene is available in both HTML2 and XML3  
formats. An XML format that focused on the sequence of HFE gene is also available4.   

Each record is also identified by a unique accession number and may be retrieved 
by key-words. Annotations include the description of the sequence: its function, its 
size, the species for which it has been determined, the related scientific publications 
(authors and references) and the description of the regions constituting the sequence 
(start codon, stop codon, introns, exons, ORF, etc.). GENBANK (with more than 20 
million records of different sequences) [7] is one of the first banks that propose XML 
format for its records with a well-defined DTD specifying the structure and the  
domain terminology for the records of genes and submitted sequences.  

3.3   Ontological Resources  

Relating genotype data on genes with their phenotype during the integration process 
is essential to be able to associate gene expression levels to a pathological phenotype.  

Tremendous web resources provide such information for a given gene. But their  
heterogeneity is a major obstacle for a consistent semantic integration. They are numer-
ous and continually evolving, the number of biomolecular entities is very large, the 
names of biological entities are associated with synonymy: a gene can have multiple  
aliases (synonyms) in addition to its official symbol, and genes that are functionally  
different across species may have the same name (ambiguity) [14,20], different data-
bases organize data according to different schemas and use different vocabularies. 
Shared ontologies are used to conciliate and to attain as much as possible data conflicts. 
Various standards in life science have been developed to provide domain knowledge to 
be used for semantically driven integration of information from different sources. 

3.3.1   Gene Ontology 
Gene Ontology™ (GO) is an ontology for molecular biology and genomics [13]. The 
three hierarchies of GO are molecular function (F), biological process (P) and cellular 
component (C). GO terms are used as attributes of gene products to provide informa-
tion about the molecular functions, the biological processes, and the cellular compo-
                                                           
2 www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&val=1890179 
3 www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&list_uids=1890179&dopt=xml 
4 www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&list_uids=1890179&dopt=gbx 
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nents related to the gene product. In our context of high throughput transcriptome  
experiments, we use GO to annotate the genes expressed in different situations in the 
liver. Furthermore, GO is broadly used by public databanks to annotate genes. There-
fore, it has become a standard and plays an important role in biomedical research, by 
making possible to draw together information from multiple resources. To illustrate 
with an example, to the ceruloplasmin concept (a gene involved in iron transport, having 
a central role in iron metabolism and is secreted in plasma by hepatocytes) is associated 
the set of concepts in each hierarchy of GO ontology (Table 1). 

Table 1. Ceruloplasmin annotations in Gene Ontology 

Molecular function

Multicopper
Feoxidase iron
Transport mediator

Biological process

Iron homeostasis

Cellular Component

Extracellular space

Molecular function

Multicopper
Feoxidase iron
Transport mediator

Biological process

Iron homeostasis

Cellular Component

Extracellular space

 

3.3.2   UMLS Knowledge Base  
The UMLS is developed by the US National Library of Medicine. It comprises two 
major inter-related components: the Metathesaurus®, a large repository of concepts 
(around 900,000 concepts), and the Semantic Network, a limited network of 135 Se-
mantic Types [3]. The Metathesaurus is built by merging existing vocabularies, in-
cluding Medical Subject Headings (MeSH), which is used to index biomedical litera-
ture in MEDLINE, and GO. In the Metathesaurus, synonymous terms are clustered 
under a same concept, each having a Concept Unique Identifier (CUI). To the ceru-
loplasmin concept is associated the CUI:C0007841 and a set of synonymous terms 
(Table 2a) (2003AC release of the UMLS). 

Although the UMLS was not specifically developed for bioinformaticists, it in-
cludes also terminologies such as the NCBI taxonomy, OMIM terminology and GO 
that are of great interest for biologists. It also includes the MeSH, which is used to in-
dex MEDLINE abstracts. Therefore, the UMLS is a means to integrate resources 
since it integrates (repetition) terminologies that are used to represent data in various 
resources. The second motivation is that the UMLS contains 12 million relations 
among the Metathesaurus concepts. The source vocabularies provide hierarchical re-
lations. RO (Other Relation) relations associate concepts from different kinds, such as 
diseases and tissues, or diseases and kinds of cells. In addition, co-occurrences in 
MEDLINE are also represented in the UMLS [3]. The last motivation is that the 
UMLS includes an upper level ontology of the biomedical domain (the UMLS Se-
mantic Network) made of 135 Semantic Types. Each Metathesaurus concept is as-
signed to one or more Semantic Types. Three major relations are then concerned and 
extracted for each concept from UMLS: 

• Parent concept (Table 2b): the parents of ceruloplasmin concept illustrate hier-
archical relations  in UMLS.  

• Related concepts in diseases (Table 2c), tissues or kind of cells. 
• Co-occurrences in Medline concepts (Table 2d), each with an additional nu-

meric frequency. 
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Table 2. Ceruloplasmin annotations extracted from UMLS 

Synonymous

Ceruloplasmin
alpha(2)-Ceruloplasmin
Ceruloplasmin Ferroxidase
Ceruloplasmin Oxidase
CP - Ceruloplasmin
Fe(II):oxygen oxidoreductase
ferroxidase <1>

Parents concepts

Alpha-Globulins
Acute-Phase Proteins
Carrier Proteins
Alpha-Globulins
Metalloproteins
Oxidoreductases
Enzyme

Copper
Menkes Kinky Hair  Syndrome
copper oxidase
Serum Ceruloplasmin Test
Ceruloplasmin Serum  

Decreased
Ceruloplasmin measurement

Copper
Iron
Antioxidants
Hepatolenticular

Degeneration
Ferritin
Brain
Liver
Superoxide

Dismutase

(a) (b) (c) (d)

Co-occurred 
Concepts in 

MEDLINE
Related conceptsSynonymous
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3.3.3   Other Resources: Terminologies 
At present, an additional terminology is mainly used to manage heterogeneity in nam-
ing genes, gene products or diseases, as well as in identifying items in different data-
banks. Given a term or a gene symbol, lexical knowledge is needed to deal with syno-
nyms and find the corresponding concept. Available resources in the biomedical 
domain include the Genew database developed by the Human Gene Nomenclature 
Committee to provide approved names and symbols for genes, as well as previous 
gene names and symbols [19]. 

3.3.4   Mapping Ontologies into GEDAW 
The use of ontologies and terminologies terms as attributes values for genes has been 
made possible by the joint application project BioMeKE [17]. A local consistent sup-
port into BioMeKE system of the terminologies described above enables the extrac-
tion of respective nomenclature and conceptual terms in biology and medicine, given 
a gene name, a symbol, or any gene relative identifier in biomedical databanks. To 
navigate through these resources, a set of JAVA functions have been developed to: 

• Find all the synonyms of a term and all the identifiers of a gene or gene product 
in Genew and the UMLS Metathesaurus, 

• Provide the cross-references between a gene and a protein (e.g. SWISS-PROT 
ID) from Genew. 

• Represent the different paths to reach the information about a gene or a gene 
product via all the available cross-references. 

• Search for information about a gene or a gene product, i.e. the set of concepts 
related to this gene in GO (molecular function, biological process and cellular 
component) and the set of concepts related to the gene in UMLS including 
chemicals and drugs, anatomy, and disorders. 

These annotations are then considered by the expert, filtered and stored within the 
warehouse for further classifications using gene expression profiles. Because the aim 
of this paper is not to describe BioMeKE but rather to introduce its general scope and 
outputs, we will not go in further details. We suggest the reader to get further details 
in another paper devoted to this application [8,17].  
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<biomeke_annotation> 
<biomeke_annotation_nomenclature>  
^<seq-id_locuslink>1356</seq-id_locuslink>
<seq-id_hgnc>2295</seq-id_hgnc> 
<seq-name_hgnc>ceruloplasmin (ferroxidase)</seq-name_hgnc> 
<seq-symbol_hgnc>CP</seq-symbol_hgnc> <seq-aliases_hgnc></seq-aliases_hgnc> 
<seq-id_omim>117700</seq-id_omim> 
<seq-id_refseq>NM_000096</seq-id_refseq> 
<seq-id_swissprot>P00450</seq-id_swissprot> 
<seq-id_pubmed></seq-id_pubmed>   
</biomeke_annotation_nomenclature> 
<biomeke_GO_annotation_list>
<biomeke_GO_annotation-type value="molecular function">
<biomeke_GO_annotation> 
<GO-accession>GO:0004322</GO-accession> 
<GO-name>ferroxidase activity</GO-name> 
<GO-evidence>TAS</GO-evidence> . . . etc 
</biomeke_GO_annotation>
<biomeke_UMLS_annotation_list> 
<biomeke_UMLS_annotation-name> 

<UMLS_name_search> Ceruloplasmin </UMLS_name_search> 
<UMLS_CUI_search>C0007841 </UMLS_CUI_search> 

</biomeke_UMLS_annotation-name>
<biomeke_UMLS_annotation-semantic-type value = " Amino Acid, Peptide, or Protein">

<biomeke_UMLS_annotation-relation value = "Parent">
<biomeke_UMLS_annotation> 
<UMLS-name>acute phase protein 2</UMLS-name> 
</biomeke_UMLS_annotation> . . . etc

<biomeke_UMLS_annotation-relation value = "other relations">
<biomeke_UMLS_annotation>  
<UMLS-name>Metalloproteins</UMLS-name> 
</biomeke_UMLS_annotation> . . . etc

<biomeke_UMLS_annotation-relation value = "Co-occurences">
<biomeke_UMLS_annotation> 
<UMLS-name>ATP phosphohydrolase</UMLS-name> 
<UMLS-freq>4</UMLS-freq> 
. . . etc

Gene 
nomenclature

GO 
annotations

UMLS 
annotations
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Fig. 3. BioMeKE-xml document to annotate the ceruloplasmin Gene 

To annotate each expressed gene, BioMeKE delivers an XML document (Figure 3) 
to be parsed, transformed and stored into GEDAW within the Ontology_annotation 
Class. This document-source standing as a structured data source derived by 
BioMeKE. 

4   Bio-data Integration 

Designing a single schema that integrates syntactically and semantically the whole 
heterogeneous life science data sources is still a challenging question. Integrating the 
source schemas is presently the most commonly used approach in literature [15]. By 
restricting ourselves to structured or semi-structured data sources, we have been able 
to use a schema mapping approach with the GAV paradigm [16]. In our context, 
schema mapping is the process of transforming data conforming to a source schema to 
the corresponding warehouse schema by the definition of a set of mapping rules. The 
data sources include : i) GENBANK for the genomic features of the genes recorded in 
XML format, ii) conceptual annotations derived from the biomedical ontologies and 
terminologies using BioMeKE outputs as XML documents, iii) and gene expression 
measurements selected from the in-house relational database.  
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By using a mapping approach from one source at a time, we have minimized as 
much as possible the problem of identification of equivalent attributes between 
sources, whereas the problem of duplicate detection is still important. Identifying 
identical objects in the biomedical domain is a complex problem, since in general the 
meaning of “identity” cannot be defined properly. In most applications, even the iden-
tical sequences of two genes in different organisms are not treated as a single object. 
In GENBANK, each sequence is treated as an entity in its own, since it was derived 
using a particular technique, has particular annotation, and could have individual er-
rors.  For example, there are more than 10 records for the same DNA segment of the 
HFE gene. Thus, classical duplicate detection methods [22] do not suffice. Duplicate 
detection and removal is usually performed either using a simple similarity threshold 
approach, as in the case of GEDAW, or based on manual intervention for each single 
object, such as in RefSeq. Data submission to public biological databanks is often a 
rather unformalized process that usually does not include name standardization or 
data quality controls. Erroneous data may be easily entered and cross-referenced. 
Even if a tool like LocusLink5proposes a cluster of records, across different biological 
databanks, as being semantically related, biologists still must validate the correctness 
of the clustering and resolve value differences among the records.  
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Fig. 4. GEDAW UML Conceptual schema 

In GEDAW, a unique schema (Figure 4) has been defined to describe different as-
pects of a gene, to which has been added an ontological annotation class associated to 
each gene transcript. The stored ontological annotations represent the more special-
ized concepts associated to the genes. The ontology annotation class used for storing 
the terms from both medical and biological terminologies includes attributes like: on-
tology and annotation type along with category, value and description attributes of a 
term. These attributes are extracted by parsing the XML files delivered by BioMeKE. 
At the schema-level, the problem of format heterogeneity makes necessary to trans 
 
                                                           
5  www.ncbi.nlm.nih.gov/LocusLink 
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form data, so that they conform to the data model used by our warehousing system. 
Information sources consist of sets of XML files, while the GEDAW target schema is 
object-oriented. This translation problem is inherent in almost all data integration ap-
proaches, but becomes much more complex in the biological domain because the po-
tentially different (and not formalized yet) biological interpretations of schema ele-
ments and the fact that, together with the current state of knowledge, schemas and 
interpretations tend to evolve quickly and independently in the different sources. 

In order to define an appropriate data aggregation of all the available information 
items, data conflicts have to be resolved using rules for mapping the source records 
and conciliating different values recorded for a same concept.  Mapping rules are de-
fined to allow the data exchange from the public databanks into GEDAW (Figure 5). 
Apart from experimental data, public information items are automatically extracted by 
scripts using the DTD (Document Type Definition) of the data source translated into 
the GEDAW conceptual data model.  

<!ELEMENT Bioseq ( 
Bioseq_id ,
Bioseq_descr? ,
Bioseq_inst ,
Bioseq_annot? )>

<!ELEMENT Bioseq_id ( Bioseq_id__E+ )>
<!ELEMENT Bioseq_descr ( Seqdescr )>-
<!ELEMENT Bioseq_inst ( Seq- inst )>
<!ELEMENT Bioseq_annot ( Seq- annot* )>
<!ELEMENT Seq-descr ( Seqdesc+ )>
<!ELEMENT Seqdesc ( 

Seqdesc_mol-type |
…
Seqdesc_title |
…
Seqdesc_molinfo)>

<!ELEMENT Seqdesc_title ( #PCDATA )>
<!ELEMENT MolInfo ( 

MolInfo_biomol? ,
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Fig. 5. Example of mapping rules between GENBANK DTD and GEDAW schema 

Three categories of mapping rules are proposed:  1) structural mapping rules, 2) 
semantic mapping rules and 3) cognitive mapping rules according to the different 
knowledge levels and perspectives for biological interpretation.  

The structural mapping rules are defined at the schema level according to the 
GEDAW model by identifying the existing correspondences with relevant DTD ele-
ments (e.g., the Seqdesc_title element in GENBANK DTD is used to extract the name 
"name" of the gene and the MolInfo_biomol value its type of molecule with respec-
tively structural mapping rules R1 and R2 in Figure 5). Then, the records of interest 
are selectively structured and data are extracted.  
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Semantic and cognitive mapping rules are used for data unification at the instance 
level: several rules may use available tools for determining analogies between ho-
mologous data (such as sequence alignment, for example): the result of the BLAST 
algorithm (implemented in a set of similarity search programs for Basic Local Align-
ment Search Tool) allows considering that two sequences match. The nomenclature 
section provided by BioMeKE (Figure 3) is also considerably used to conciliate du-
plicate records. More semantic mapping rules have been built using this information 
during the process of integration. For example, the Locus-ID is used to cluster submit-
ted sequences associated to a same gene (cross-referenced in LocusLink) and the offi-
cial gene name along with its aliases to relate different gene appearance with different 
names, in literature for example. 

Let us consider three distinct selectively structured records we may obtain from 
GENBANK databank by querying the DNA sequence for gene HFE. A first record 
identified by the accession number AF204869 describes a partial sequence (size = 
3043) of the HFE gene with no annotation but one relevant information item about the 
position of the promoter region. A second record identified by the accession number 
AF184234 describes a partial sequence (size = 772) of the protein precursor of HFE 
gene with a detailed but incomplete annotation. The third record identified by the ac-
cession number Z92910 describes the complete sequence (size = 12146) of the HFE 
gene with a complete annotation. In this example, BLAST(sequence(Z92910), se-
quence(AF184234))=100% indicates the sequence in both records are perfectly ho-
mologous and can be merged.  Cognitive mapping rules may be used in this example 
for conciliating data such as: 

R3 : Descriptive Inclusion: record(Z92910) contains record(AF184234) 
R4 : Position Offset: position(Z92910.exon)=6364+position(AF184234.exon) 

In our context a liver cDNA microarray corresponding to 2479 cDNA clones spot-
ted onto glass slides has been designed. The data unification process described above 
has lead to identify 612 distinct genes on the 2479 deposited clones. A complete inte-
gration of 10 hybridization experiments took around one day runtime, with around 11 
Mbytes charged database size. 

5   Integration Results Construction and User Interface  

Now to recapitulate, the integration process of transcriptomic data into GEDAW is 
operated in four steps. During the first step, to the probes (or clones) used by in-house 
experiments, is associated a set of gene names, in terms of accession numbers of simi-
lar sequences in GENBANK along with textual descriptions.  The second step is in 
charge of selecting the set of experiments for which the researcher wishes to integrate 
and analyse the experiments results, and then of loading expression levels measured 
for these genes. For each gene having its expression levels in different physiopa-
thological situations already stored in GEDAW, the full annotation of the sequence 
associated to this gene is loaded from GENBANK by XML transformation to Objects. 
BioMeKE is launched in Step 4 to bring for each integrated gene its nomenclature and 
its ontological annotations in life science from Gene Ontology and in medicine from 
UMLS. In step 5, the results are delivered to the expert, for a filtering phase using  
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either predefined mapping rules, output nomenclature, or simply his expertise, to 
eliminate duplicate records of genes. 

When the user poses a query, the whole integration results for each gene are 
brought in. Further refinements on these data can be operated, by selecting for exam-
ple genes having expression levels between a minimum value and a maximum value, 
those belonging to a given biological process or co-occurring in Medline with a given 
concept, or having a known motif in their mRNA sequences and co-located on a same 
chromosome. It could be also a conjunction of these criteria. In Figure 6, we show an 
example of a query composed in the generic java-based interface we have developed 
for GEDAW. Resulting sets are presently browsed using either FastObjects interface, 
or delivered as Textfiles to the expert for further analyses. 

 

Fig. 6. Example of Query Composition 

6   Conclusion 

The GEDAW system presented in this paper allows massive importation of biological 
and medical data into an object-oriented data warehouse that supports transcriptome 
analyses specific to the human liver. This paper focused on the relevant genomic, bio-
logical and medical resources that have been used to build GEDAW. The integration 
process of the full sequence annotations of the genes expressed is described. It is per-
formed by parsing and cleaning the corresponding XML description in GENBANK, 
transforming the recorded genomic items to persistent objects and storing them in the 
warehouse. This process is almost systematic because another aspect related to the 
conciliation of duplicate records has been added. Elements of  formalization of exper-
tise rules for mapping such data were given. This ongoing work is still a difficult 
problem in information integration in life science and has not yet satisfied answers by 
classical solutions proposed in existing mediation systems. 

In order to lead strong analysis on expressed genes and correlate expression pro-
files to liver biology and pathological phenotype, a second way of annotation has 
been added to the integration process. We chose to integrate Gene Ontology, due to 
its available biological annotations in the most used bio-computer resources, mainly 
Swissprot, GENBANK, Ensembl, TrEMBL and LocusLink databanks. It is also refer-
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enced in other relevant ontologies, like MGED [21]. More important is our considera-
tion during integration of the medical annotations of the genes from UMLS, a well 
considered knowledge base in Medical Informatics [3,4,5]. These ontological annota-
tions have been delivered by BioMeKE within the semi-structured document source 
BioMeKE-xml. Also, because a gene may have different appearances with different 
names in several bio-data banks and literature the approved nomenclature of the gene 
and its synonyms have been collected in BioMeKE-xml. This information is also a 
pre-requisite to resolve the problem of duplicate records. 

An exhaustive integrated tool that facilitates access to diverse data on the ex-
pressed genes is then provided to the researcher. Intensive querying of the integrated 
database using OQL queries has been conducted with multiple criteria on genes at-
tributes. Current investigations are focusing on the application of advanced data min-
ing techniques for a combined analysis of expression levels on genes with enriched 
annotations, and functional similarities are likely to reveal authentic clusters of genes. 

With regards to the limits of our warehousing approach, it is relevant as long as 
data integration from the heterogeneous sources in Biomedicine and their refreshment 
in the warehouse stay feasible automatically and with a reasonable performance. One 
argument in favor of actually storing data in GEDAW instead of dynamically linking 
to the corresponding sources concerns reproducibility purposes, i.e., being able to 
analyze several gene expression data in reference to the same domain knowledge at 
different times. BioMeKE system provides domain knowledge useful for acquiring in-
formation from diverse resources. It is intended to be an ontology-based mediation 
system that continuously supplies the gene expression warehouse with a homogene-
ous access to multiple data sources in Biomedicine. A filtering task is nevertheless 
performed by the expert on the delivered annotations before their storage in the ware-
house by using multiple criteria, like the frequency information of a concept co-
occurrences in Medline. 

The standard ontologies such as GO and UMLS continue to evolve. They are  
physically supported by BioMeKE system rather than accessed via the web, making 
possible their refinement to expert knowledge in specific sub-domains like the liver or 
the iron metabolism. An interesting point to quote is the acquisition of news concepts 
and relationships from the analyses operated on the transcriptome data. Expressive 
and formal representation of this new biomedical knowledge will then be gradually 
added to the domain, allowing the expansion of queries on transcriptomic data. 

Acknowledgements. This work was supported by grants from Region Bretagne 
(20046805) and inter-EPST. Emilie Guérin was supported by a MRT fellowship and 
grants from Region Bretagne. 

References 

[1] Achard, F., Vaysseix, G. and Barillot, E. (2001) XML, bioinformatics and data integra-
tion, Bioinformatics, 17(2), 115-125. 

[2] Babenko V, Brunk B, Crabtree J, Diskin S, Fischer S, Grant G, Kondrahkin Y, Li L, Liu 
J,  Mazzarelli J, Pinney D, Pizarro A, Manduchi E, McWeeney S, Schug J, Stoeckert 
C.(2003) GUS The Genomics Unified Schema A Platform for Genomics Databases. 
http://www.gusdb.org/  



 Integrating and Warehousing Liver Gene Expression Data 173 

 

[3] Bodenreider O. The Unified Medical Language System (UMLS): integrating biomedical 
terminology. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D267-70.  

[4] Bodenreider O, Burgun A. Aligning Knowledge Sources in the UMLS: Methods, Quan-
titative Results, and Applications. Medinfo. 2004;2004:327-31. 

[5] Bodenreider O, Mitchell JA, McCray AT. (2002) Evaluation of the UMLS as a termi-
nology and knowledge resource for biomedical informatics. Proc AMIA Symp. 2002; : 
61-5. 

[6] Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, 
Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FC, Kim IF, 
Markowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, 
Stewart J, Taylor R, Vilo J, Vingron M. Minimum information about a microarray ex-
periment (MIAME)-toward standards for microarray data. Nat Genet. 2001 Dec;29 
(4):365-71. 

[7] Benson D.A, Karsch-Mizrachi I, Lipman D.J, Ostell J, and Wheeler D.L. GENBANK: 
update, Nucleic Acids Res., Jan 2004; 32: 23 - 26. 

[8] Burgun A, Bodenreider O, Le Duff F, Moussouni F, Loréal O. Representation of roles in 
biomedical ontologies : a case study in functional genomics. JAMIA (supl), Proc. AMIA 
2002 Symp, 86-90 

[9] Cornell M, Paton NW, Wu S, Goble CA, Miller CJ, Kirby P, Eilbeck K, Brass A, Hayes 
A, Oliver SG (2001) GIMS - a data warehouse for storage and analysis of genome se-
quence and functional data. Proc. 2nd IEEE International Symposium on Bioinformatics 
and Bioengineering (BIBE) 15-22. 

[10] Do, H.-H. and Rahm, E. (2004). "Flexible Integration of Molecular-biological Annota-
tion Data: The GenMapper Approach". EDBT'04, Heraklion, Greece, Springer LNCS. 

[11] Fellenberg K, Hauser N.C, Brors B, Hoheisel J.D, and Vingron M. Microarray data 
warehouse allowing for inclusion of experiment annotations in statistical analysis, Bioin-
formatics, Mar 2002; 18: 423 - 433. 

[12] Guerin E., Marquet G.,  Moussouni F., Burgun A., Mougin F., Loréal O. Deployment of 
heterogeneous ressources of genomic, biological and medical knowledge on the liver to 
build a datawarehouse. Proc. ECCB 2003, pp. 59-60 

[13] Harris MA et. al. Gene Ontology Consortium. The Gene Ontology (GO) database and in-
formatics resource. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D258-61. 

[14] Kashyap V, Sheth A. (1996) Schematic and semantic similarities between database ob-
jects: a context –based approach. Int. J. Very Large Data Bases, 5(4): 276-304 

[15] Lakshmanan L, Sadri F, Subramanian I, : On the logical Foundation of Schema Integra-
tion and Evolution in Heterogeneous Database Systems. DOOD International Confer-
ence (1993) 81-100  

[16] Maurizio Lenzerini. Data integration: a theoretical perspective. In Proc. of PODS 2002. 
[17] Marquet G, Burgun A, Moussouni F, Guerin E, Le Duff F, Loreal O. BioMeKE: an on-

tology-based biomedical knowledge extraction system devoted to transcriptome analysis. 
Stud Health Technol Inform. 2003;95:80-5.  

[18] Paton N.W, Khan S.A, Hayes A, Moussouni F, Brass A, Eilbeck K, Goble C.A, Hubbard 
S.J, and Oliver S.G. Conceptual modelling of genomic information, Bioinformatics, Jun 
2000; 16: 548 - 557. 

[19] Povey S, Lovering R, Bruford E, Wright M, Lush M, Wain H. (2001) The HUGO Gene 
Nomenclature Committee (HGNC).Hum Genet.;109(6):678-80 

[20] Tuason O, Chen L, Liu H, Blake JA, Friedman C.(2004) Biological nomenclatures: a 
source of lexical knowledge and ambiguity. Pac Symp Biocomput. 2004;:238-49. 



174 E. Guérin et al. 

 

[21] MGED Microarray Gene Expression Data (MGED). A guide to microarray experiments 
– an open letter to the scientific journals. Lancet. 2002 Sep 28;360(9338):1019 

[22] Galhardas, H., Florescu, D., Sasha, D., Simon, E. and Saita, C.-A. (2001). "Declarative 
Data Cleaning: Model, Language, and Algorithms". 27th Conference on Very Large 
Database Systems, Rome, Italy. 



Information Integration and Knowledge
Acquisition from Semantically Heterogeneous

Biological Data Sources

Doina Caragea1,4, Jyotishman Pathak1,4, Jie Bao1,4, Adrian Silvescu1,4,
Carson Andorf1,3,4, Drena Dobbs2,3,4, and Vasant Honavar1,2,3,4

1 AI Research Laboratory, Department of Computer Science, 226 Atanasoff Hall
2 Department of Genetics, Development and Cell Biology, 1210 Molecular Biology

3 Bioinformatics and Computational Biology Program, 2014 Molecular Biology
4 Computational Intelligence, Learning and Discovery Program,

214 Atanasoff Hall Iowa State University, Ames, IA 50011
honavar@cs.iastate.edu

Abstract. We present INDUS (Intelligent Data Understanding Sys-
tem), a federated, query-centric system for knowledge acquisition from
autonomous, distributed, semantically heterogeneous data sources that
can be viewed (conceptually) as tables. INDUS employs ontologies and
inter-ontology mappings, to enable a user or an application to view a col-
lection of such data sources (regardless of location, internal structure and
query interfaces) as though they were a collection of tables structured
according to an ontology supplied by the user. This allows INDUS to an-
swer user queries against distributed, semantically heterogeneous data
sources without the need for a centralized data warehouse or a common
global ontology. We used INDUS framework to design algorithms for
learning probabilistic models (e.g., Naive Bayes models) for predicting
GO functional classification of a protein based on training sequences that
are distributed among SWISSPROT and MIPS data sources. Mappings
such as EC2GO and MIPS2GO were used to resolve the semantic differ-
ences between these data sources when answering queries posed by the
learning algorithms. Our results show that INDUS can be successfully
used for integrative analysis of data from multiple sources needed for
collaborative discovery in computational biology.

1 Introduction

Ongoing transformation of biology from a data-poor science into an increasingly
data-rich science has resulted in a large number of autonomous data sources
(e.g., protein sequences, structures, expression patterns, interactions). This has
led to unprecedented, and as yet, largely unrealized opportunities for large-scale
collaborative discovery in a number of areas: characterization of macromolecular
sequence-structure-function relationships, discovery of complex genetic regula-
tory networks, among others.
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Biological data sources developed by autonomous individuals or groups dif-
fer with respect to their ontological commitments. These include assumptions
concerning the objects that exist in the world, the properties or attributes of
the objects, relationships between objects, the possible values of attributes, and
their intended meaning, as well as the granularity or level of abstraction at which
objects and their properties are described [17]. Therefore, semantic differences
among autonomous data sources are simply unavoidable. Effective use of mul-
tiple sources of data in a given context requires reconciliation of such semantic
differences. This involves solving a data integration problem. Development of
sound approaches to solving the information integration problem is a prerequi-
site for realizing the goals of the Semantic Web as articulated by Berners-Lee et
al. [5]: seamless and flexible access, integration and manipulation of semantically
heterogeneous, networked data, knowledge and services.

Driven by the semantic Web vision, there have been significant community-
wide efforts aimed at the construction of ontologies in life sciences. Examples
include the Gene Ontology (www.geneontology.org) [2] in biology and Unified
Medical Language System (www.nlm.nih.gov/research/umls) in heath informat-
ics. Data sources that are created for use in one context often find use in other
contexts or applications (e.g., in collaborative scientific discovery applications in-
volving data-driven construction of classifiers from semantically disparate data
sources [9]). Furthermore, users often need to analyze data in different contexts
from different perspectives. Therefore, there is no single privileged ontology that

Fig. 1. INDUS: a system for information integration and knowledge acquisition from
semantically heterogeneous distributed data. Queries posed by the user are answered
by a query answering engine, which uses mappings between the user ontology and the
data source ontologies to resolve semantic differences. A user-friendly editor is used to
specify ontologies and mappings between ontologies
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can serve all users, or for that matter, even a single user, in every context. Effec-
tive use of multiple sources of data in a given context requires flexible approaches
to reconciling such semantic differences from the user’s point of view.

Against this background, we have investigated a federated, query-centric ap-
proach to information integration and knowledge acquisition from distributed,
semantically heterogeneous data sources, from a user’s perspective. The choice
of the federated, query-centric approach was influenced by the large number
and diversity of data repositories involved, together with the user-specific na-
ture of the integration tasks that need to be performed. Our work has led to
INDUS, a system for information integration and knowledge acquisition (see
Figure 1). INDUS relies on the observation that both the information integra-
tion and knowledge acquisition tasks can be reduced to the task of answering
queries from distributed, semantically heterogeneous data sources. We associate
ontologies with data sources and users and show how to define mappings between
them. We exploit the ontologies and the mappings to develop sound methods
for flexibly querying (from a user perspective) multiple semantically heteroge-
neous distributed data sources in a setting where each data source can be viewed
(conceptually) as a single table [10, 9].

The rest of the paper is organized as follows: Section 2 introduces the problem
we are addressing more precisely through an example. Section 3 describes the
design and the architecture of INDUS. Section 4 demonstrates how INDUS can
be used for knowledge acquisition tasks using as an example a simple machine
learning algorithm (Naive Bayes). We end with conclusions, discussion of related
work and directions for future work in Section 5.

2 Illustrative Example

The problem that we are wish to address is best illustrated by an example.
Consider several biological laboratories that independently collect information
about Protein Sequences in connection to their Structure and Function. Suppose
that the data D1 collected by a first laboratory contains human proteins and it is
described by the attributes Protein ID, Protein Name, Protein Sequence, Prosite
Motifs and EC Number (stored as in Table 1). The data D2 collected by a second
laboratory contains yeast proteins and it is described by the attributes Accession
Number AN, Gene, AA Sequence, Length, Pfam Domains, and MIPS Funcat
(stored as in Table 2). A data set D3 collected by a third laboratory contains
both human and yeast proteins and it is described by the attributes Entry ID,
Entry Name, Organism, CATH Domains and CATH Classes corresponding to
the domains (stored as in Table 3).

Consider a biologist (user) U who wants to assemble a data set based on
the data sources of interest D1, D2, D3, from his or her own perspective, where
the representative attributes are ID, Source, AA composition (a.k.a. amino acid
distribution, i.e. number of occurrences of each amino acid in the amino acid
sequence corresponding to the protein), Structural Classes and GO Function.
This requires the ability to manipulate the data sources of interest from the
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Table 1. Data D1 containing human proteins collected by a laboratory Lab1

Protein ID Protein Name Protein Sequence Prosite Motifs EC Number

Beta-adrenergic MADLEAVLAD RGS 2.7.1.126
P35626 receptor kinase 2 VSYLMAMEKS PROT KIN DOM Beta-adrenergic

· · · PH DOMAIN receptor kinase
Aspartyl/asparaginyl MAQRKNAKSS TPR 1.14.11.16

Q12797 beta-hydroxylase GNSSSSGSGS TPR REGION Peptide-aspartate
· · · TRP beta-dioxygenase

MRLWSWVLHL 3.4.24.79
Q13219 Pappalysin-1 GLLSAALGCG SUSHI Pappalysin-1

· · ·
· · · · · · · · · · · · · · ·

Table 2. Data D2 containing yeast proteins collected by a laboratory Lab2

AN Gene AA Sequence Length Pfam Domains MIPS Funcat

P32589 SSE1 STPFGLDLGN 692 HSP70 16.01 protein binding
NNSVLAVARN

· · ·
P07278 BCY1 VSSLPKESQA 415 cNMP binding 16.19.01 cyclic nucleotide

ELQLFQNEIN RIIa binding (cAMP, cGMP, etc.)
· · ·

· · · · · · · · · · · · · · · · · ·

Table 3. Data D3 containing human and yeast proteins collected by a laboratory Lab3

Entry ID Entry Name Organism CATH Domains CATH Classes

P35626 ARK2 HUMAN Human 1omwB0 Mainly beta
1omwG0 Few Sec. Struct.

Q12797 ASPH HUMAN Human not known not known
Q13219 PAPPA HUMAN Human 1jmaB1 Mainly beta

1jmaB2 Mainly beta
1dkgA1 Alpha beta

P32589 HS78 Y EAST Yeast 1dkgA2 Mainly alpha
1dkgB1 Alpha beta

P07278 KAPR Y EAST Yeast 1cx4A1 Alpha beta
1dkgA2 Alpha beta

· · · · · · · · · · · · · · ·

user’s perspective. However, the three data sources differ in terms of semantics
from the user’s perspective. In order to cope with this heterogeneity of semantics,
the user must observe that the attributes Protein ID, Accession Number and
Entry ID, in the three data sources of interest, are similar to the user attribute
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ID; the attribute Protein Sequence in the first data source and the attribute AA
Sequence in the second data source are also similar and they can be used to infer
the user attribute AA Composition (by counting the number of occurrences of
each amino acid in the corresponding AA sequence); similarly, the attributes EC
Number and MIPS Funcat are similar to the user attribute GO Function; finally,
the attributes Organism and CATH Classes in the third data source are similar
to the attributes Source and Structural Classes in the user view.

Therefore, to assemble the user data, one would need to project the data
in D1 (with respect to the attributes Protein ID, Protein Sequence and EC
Number) and the data in D2 (with respect to AN, AA Sequence, and MIPS
Funcat) and take the union D12 of the resulting sets; then the third data set
D3 needs to be projected with respect to the attributes Entry Name, Organism,
and CATH Classes. The cross-product with respect to the common attribute
ID, between D12 and D3 represents the data that the user is interested in.
Notice that all these operations can be written as a query whose result is DU =
(project(D1) ∪ project(D2)) × project(D3). However, before the query can be
executed, the semantic differences between values of similar attributes must be
resolved.

To establish the correspondence between values that two similar attributes
can take, we need to associate types with attributes and map the domain of the
type of an attribute to the domain of the type of the corresponding attribute
(e.g., AA Sequence to AA Composition or EC Number to GO Function). We
assume that the type of an attribute can be a standard type such as a collec-
tion of values (e.g., amino acids, Prosite motifs, etc.), or it can be given by a
simple hierarchical ontology (e.g., species taxonomy). Figure 2 shows examples
of (simplified) attribute value hierarchies for the attributes EC Numbers, MIPS
Funcat, and GO Function in the data sources D1, D2 and the user perspective.

Examples of semantic correspondences in this case could be: EC 2.7.1.126
in D1 is equivalent to GO 0047696 in DU , MIPS 16.01 in D2 is equivalent to
GO 0005515 in DU and MIPS 16.19.01 is equivalent to GO 0016208 in DU .
On the other hand, EC 2.7.1.126 in D1 is lower than (i.e., hierarchically below)
GO 0004672 in DU , or for that matter EC 2.7.1.126 is higher than GO0004672.
Similarly, MIPS 16.19.01 in D2 is lower than GO 0017076 in DU , and so on.
Therefore the integrated user data DU could look like in Table 4, where the
semantic correspondences have been applied.

In general, the user may want to answer queries such as the number of human
proteins that are involved in kinase activity from the integrated data or even
to infer models based on the data available in order to use them to predict
useful information about new unlabeled data (e.g., protein function for unlabeled
proteins). INDUS, the system that we have developed in our lab, can be used to
answer such queries against distributed, semantically heterogeneous data sources
without the need for a centralized data warehouse or a common global ontology.
We will describe INDUS in more detail in the next section.
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Fig. 2. Ontologies associated with the attributes EC Number, MIPS Funcat and GO
Function that appear in the data sources of interest D1, D2 and DU
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Table 4. Integrated user data DU

ID Source AA composition Struct. Classes GO Funct. Class

P35626 Human 7 3 9 14 · · · Mainly beta 0047696:beta-adrenergic-receptor
Few Sec. Struct. kinase activity

Q12797 Human 5 1 7 12 · · · not known 0004597: peptide-aspartate
beta-dioxygenase activity

Q13219 Human 10 8 6 15 · · · Mainly beta 0008237: metallopeptidase
Mainly beta activity
Alpha beta

P39708 Yeast 13 17 18 11 · · · Alpha beta 0005515: protein binding
Mainly alpha

Q01574 Yeast 23 16 8 1 · · · Mainly alpha 0016208: AMP binding
Mainly alpha

· · · · · · · · · · · · · · ·

3 INDUS Design and Architecture

A simplified version of INDUS architecture is shown in Figure 1. As can be
seen, several related distributed and semantically heterogeneous data sources
(servers) can be available to users (clients) who may want to query the data
sources through a query interface. Each user has his or her own view of the do-
main of interest reflected by a user ontology. The system provides default user
ontologies (e.g., GO Function) and mappings from the data source ontologies
to the user ontology (e.g., from AA Sequence to AA Composition or from EC
Number to GO Function) in a mapping repository. However, a user-friendly on-
tology and mapping editor is also available for users if they need to design or
modify their own ontologies or mappings (for example, if they need to explore
different mappings such as AA Sequence to AA composition or AA sequence to
hydrophobic versus hydrophilic AA Composition).

Once a query is posed by the user, it is sent to a query answering engine which
acts as a middleware between clients and servers. The query answering engine has
access to the data sources in the system and also to the set of mappings available.
Thus, when the query answering engine receives a user query, it decomposes this
query according to the distributed data sources, maps the individual queries to
the data source ontologies, then it composes the results to sub-queries into a
final result that is sent back to the user.

The main features of INDUS include:
(1) A clear distinction between data and the semantics of the data: this makes

it easy to define mappings from data source ontologies to user ontologies.
(2) User-specified ontologies: each user can specify his or her ontology and map-

pings from data source ontologies to the user ontology; there is no single
global ontology.

(3) A user-friendly ontology and mappings editor: this can be easily used to
specify ontologies and mappings; however, a predefined set of ontologies and
mappings are also available in a repository.
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(4) Knowledge acquisition capabilities: if the information requirements of an
algorithm for knowledge acquisition from data (e.g., learning algorithm) can
be formulated as statistical queries [10], then such an algorithm can be easily
linked to INDUS, making it an appropriate tool for information integration
as well as knowledge acquisition tasks.

Some of these features are shared by other systems developed independently,
e.g., BioMediator [25]. In the remaining of this section we describe the first
three features into more detail, while in the next section we show how INDUS
can be used to infer Naive Bayes models.

3.1 Ontology Extended Data Sources

Suppose that the data of interest are distributed over the data sources
D1, · · · , Dp, where each data source Di contains only a fragment of the whole
data D.

Let Di be a distributed data set described by the set of attributes
{Ai

1, · · · , Ai
n} and Oi = {Λi

1, · · · , Λi
n} an ontology associated with this data set.

The element Λi
j ∈ Oi corresponds to the attribute Ai

j and defines the type of
that particular attribute. The type of an attribute can be a standard type (e.g.,
types such as Integer or String; the enumeration of a set of values such as Prosite
motifs; etc.) or a hierarchical type, which is defined as an ordering of a set of
terms (e.g., the values of the attribute EC number) [6]. Of special interest to us
are isa hierarchies over the values of the attributes that describe a data source,
also called attribute value taxonomies (see Figure 2).

The schema Si of a data source Di is given by the set of attributes
{Ai

1, · · · , Ai
n} used to describe the data together with their respective types

{Λi
1, · · · , Λi

n} defined by the ontology Oi, i.e., S = {A1 : Λ1, · · · , An : Λn}.
We define an ontology-extended data source as a tuple Di =<Di, Si, Oi>, where
Di is the actual data in the data source, Si is the schema of the data source and
Oi is the ontology associated with the data source. In addition, the following
condition needs also to be satisfied: Di ⊆ Λi

1 × · · · × Λi
n, which means that each

attribute Ai
j can take values in the set Λi

j defined by the ontology Oi.

3.2 User Perspective

Let <D1,S1,O1>,· · ·, <Dp, Sp, Op> be an ordered set of p ontology-extended
data sources and U a user that poses queries against the heterogeneous data
sources D1, · · · , Dp. A user perspective is given by a user ontology OU and a
set of semantic correspondences SC between terms in O1, · · · , Op, respectively,
and terms in OU . The semantic correspondences can be at attribute level (or
schema level), e.g., Ai

j : Oi ≡ AU
l : OU , or at attribute value level (or attribute

type level), e.g., x:Oi ≤ y:OU (x is semantically subsumed by y), x:Oi ≥ y:OU

(x semantically subsumes y), x:Oi ≡ y:OU (x is semantically equivalent to y),
x:Oi �= y:OU (x is semantically incompatible with y), x:Oi ≈ y:OU (x is seman-
tically compatible with y) [7, 21].
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We say that a set of ontologies O1, · · · , Op are integrable according to a user
ontology OU in the presence of the semantic correspondences SC if there exist p
partial injective mappings ψ1, · · · , ψp from O1, · · · , Op, respectively, to OU with
the following two properties [9, 6]:

(a) For all x, y ∈ Oi, if x � y in Oi then ψi(x) � ψi(y) in OU (order preservation
property);

(b) For all x ∈ Oi and y ∈ OU , if (x : Oi op y : OU ) ∈ SC, then ψi(x) op y in
the ontology OU (semantic correspondence preservation property).

In general, the set of mappings can be (semi-automatically) inferred from the
set of semantic correspondences specified by the user [9].

3.3 Ontology-Extended Data Sources and Mappings Editor

In many practical data integration scenarios, the ontologies associated with data
sources are not explicitly specified in a form that can be manipulated by pro-
grams. In such cases, it is necessary to make explicit, the implicit ontologies
associated with the data sources before data integration can be performed. In
addition, users need to be able to specify the user ontology and the semantic
correspondences between user ontology and data source ontologies (used later to
generate a set of semantics preserving mappings). To address this need, we have
developed a user-friendly editor for editing data source descriptions (associated
with ontology extended data sources) and for specifying the relevant semantic
correspondences (a.k.a., interoperation constraints).

The current implementation of our data source editor provides interfaces for:

(a) Defining attribute types or isa hierarchies (attribute value taxonomies) or
modifying a predefined set of attribute types.

(b) Defining the schema of a data source by specifying the names of the at-
tributes and their corresponding types.

(c) Defining semantic correspondences between ontologies associated with the
data sources and the user ontology.

(d) Querying distributed, semantically heterogeneous data sources and retriev-
ing and manipulating the results according to the user-imposed semantic
relationships between different sources of data.

Figure 3 shows the interface that allows specification of semantic correspon-
dences between two data sources. The leftmost panel shows an ontology ex-
tended schema associated with a data source, which includes the hierarchical
type ontologies associated with attributes. The second panel shows the avail-
able semantic correspondences. The third panel shows the ontology extended
schema associated with the user data. The user can select a term in the first
schema, the desired semantic correspondence, and a term in the second schema.
The user-specified semantic correspondences that are used to infer consistent
mappings-specified are shown on the rightmost panel. The ontologies and map-
pings defined using the user-friendly editor in INDUS are stored in a repository
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Fig. 3. Editor for defining ontology-extended data sources and semantic correspon-
dences between two ontology-extended data sources

that is available to the query answering engine. INDUS contains a list of pre-
defined mappings (e.g., mappings from EC Number to GO Function or from
AA Sequence to AA Composition). Some of these functions are procedural (e.g.,
procedure that maps an AA Sequence to AA Composition), others represent
the enumeration of a list of mappings between values (e.g., EC Number to GO
Function). Furthermore, the user is given the freedom to define new mappings
or modify the existing ones according to his or her own needs. For example, if
the user wants to map AA Sequence to AA Composition and this mapping does
not exist in the repository, then the user can easily upload the corresponding
procedure through the editor interface. Also if a user decides to use a modified
version of a pre-defined mapping function, that particular function can be loaded
into the editor from the repository and edited according to the user needs.

4 Learning Classifiers for Assigning Protein Sequences
to Gene Ontology Functional Families

Caragea et al. [10] have shown that the problem of learning classifiers from
distributed data can be reduced to the problem of answering queries from dis-
tributed data by decomposing the learning task into an information integration
component in which the information needed for learning (i.e., sufficient statistics)
is identified and gathered from the distributed data and a hypothesis generation
component, which uses this information to generate a model.
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Assigning putative functions to novel proteins and the discovery of sequence
correlates of protein function are important challenges in bioinformatics. In what
follows, we will show how a biologist interested in learning models for predicting
the GO Function of unlabeled proteins based on data coming from SWISSPROT
and MIPS databases, can use the tools provided by INDUS to achieve this task.

4.1 Data and Problem Specification

We consider again the data sources described in our illustrative example. Because
the user is interested in learning to predict the GO Function of a protein based
on the information contained in the amino acid sequence, the data of interest
to the user can be seen as coming from two horizontal fragments as in Table 5
(where the data set D1 is assembled from SWISSPROT and the data set D2 is
assembled from MIPS).

Table 5. Horizontal data fragments that are of interest to a biologist

Protein ID Protein Sequence EC Number
P35626 MADLEAVLAD VSYLMAMEKS · · · 2.7.1.126 Beta-adrenergic...

D1 Q12797 MAQRKNAKSS GNSSSSGSGS · · · 1.14.11.16 Peptide-aspartate...
· · · · · · · · ·
AC AA Sequence MIPS Funcat

P32589 STPFGLDLGN NNSVLAVARN · · · 16.01 protein binding
D2 P07278 VSSLPKESQA ELQLFQNEIN · · · 16.19.01 cyclic nucleotide bind.

· · · · · · · · ·

Typically a user (e.g., a biologist) might want to infer probabilistic models
(e.g., Naive Bayes) from the available data. Using INDUS the user defines the
semantic correspondences between the data source attributes Protein ID in D1,
AC in D2 and the user attribute ID; Protein Sequence in D1, AA Sequence
in D2 and Sequence in OU ; and EC number in D1, MIPS catfun in D2 and
GO Function in the user perspective. Furthermore, the user can use predefined
mappings between the values of semantically similar attributes (e.g., mappings
from EC Number and MIPS Funcat to GO function) or modify existing mappings
according to the user’s view of the domain.

We will briefly review the Naive Bayes model, identify sufficient statistics
for learning Naive Bayes models from data and show how these sufficient statis-
tics can be computed from distributed, heterogeneous data using INDUS query
answering engine.

4.2 Classification Using a Probabilistic Model

Suppose we have a probabilistic model α for sequences defined over some al-
phabet Σ (which in our case is the 20-letter amino acid alphabet). The model
α specifies for any sequence S = s1, · · · , sn the probability Pα(S = s1, · · · , sn)
according to the probabilistic model α. We can construct such a probabilistic
model and explore it as a classifier using the following (standard) procedure:
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– For each class cj train a probabilistic model α(cj) using the sequences be-
longing to class cj .

– Predict the classification c(S) of a novel sequence S = s1, · · · , sn as given
by: c(S) = arg maxcj∈C Pα(S = s1, · · · , sn|cj)P (cj)

The Naive Bayes classifier assumes that each element of the sequence is in-
dependent of the other elements given the class label. Consequently, c(S) =
arg maxcj∈C Pα

∏n
i=1 Pα(s1|cj) · · ·Pα(sn|cj)P (cj). Note that the Naive Bayes

classifier for sequences treats each sequence as though it were simply a bag
of letters and it calculates the number of occurences σ(si|cj) of each letter in a
sequence given the class of the sequence as well as the number of sequences σ(cj)
belonging to a particular class cj . These frequency counts completely summarize
the information needed for constructing a Naive Bayes classifier, and thus, they
constitute sufficient statistics for Naive Bayes classifiers [10]. An algorithm for
learning probabilistic models from data can be described as follows:

(1) Compute the frequency counts σ(si|cj) and σ(cj).
(2) Generate the probabilistic model α given by these frequency counts.

The query answering engine receives queries such as q(σ(si|cj)) and q(σ(cj))
asking for frequency counts, it decomposes them into subqueries qk(σ(si|cj))
and qk(σ(cj)) according to the distributed data sources Dk (k = 1, p) and maps
them to the data source ontologies. Once the individual results are received back,
the query answering engine composes them into a final result by adding up the
counts returned by each data source. Thus, there is no need to bring all the data
to a central place. Instead queries are answered from distributed data sources
viewed from a user’s perspective.

Experimental results on learning probabilistic models for assigning protein se-
quences to gene ontology functional families are reported by our group in [1]. They
show that INDUS can be successfully used for integrative analysis of data from
multiple sources needed for collaborative discovery in computational biology.

5 Summary, Discussion and Further Work

5.1 Summary

We have presented INDUS, a federated, query-centric approach to answering
queries from distributed, semantically heterogeneous data sources. INDUS as-
sumes a clear separation between data and the semantics of the data (ontologies)
and allows users to specify ontologies and mappings between data source ontolo-
gies and user ontology. These mappings are stored in a mappings repository to
ensure their re-usability and are made available to a query answering engine.
The task of the query answering engine is to decompose a query posed by a
user into subqueries according to the distributed data sources and compose the
results into a final result to the intial user query.

In previous work [10] we have shown that learning algorithms can be decom-
posed into an information extraction component and a hypothesis generation
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component. This decomposition makes it possible to see learning algorithms as
pseudo-users that pose queries to the query answering engine in order to gather
the information that they need for generating the models that they output. Mod-
ular implementations of several learning algorithms have been linked to INDUS,
thus obtaining algorithms for learning classifiers from distributed, semantically
heterogeneous data sources. We have demonstrated how we can use INDUS to
obtain algorithms for learning Naive Bayes models for predicting the functional
classification of a protein based on training sequences that are distributed among
several distributed, semantically heterogeneous data sources.

An initial version of INDUS software and documentation are available at:
http://www.cild.iastate.edu/software/indus.html.

5.2 Discussion

There is a large body of literature on information integration and systems for in-
formation integration. Davidson et al. [12] and Eckman [13] survey alternative
approaches to data integration. Hull [19] summarizes theoretical work on data in-
tegration. Several systems have been designed specifically for the integration of bi-
ological data sources. It is worth mentioning SRS [15], K2 [29], Kleisli [11], IBM’s
DiscoveryLink [18], TAMBIS [28], OPM [22], BioMediator [25], among others.

Systems such as SRS and Kleisli do not assume any data model (or schema).
It is the user’s responsability to specify the integration details and the data
source locations, when posing queries. Discovery Link and OMP rely on schema
mappings and the definition of views to perform the integration task. TAMBIS
and BioMediator make a clear distinction between data and the semantics of
the data (i.e., ontologies) and take into account semantic correspondences be-
tween ontologies (both at schema level and attribute level) in the process of data
integration.

Most of the above mentioned systems assume a predefined global schema
(e.g., Discovery Link, OMP) or ontology (e.g., TAMBIS), with the notable ex-
ception of BioMediator, where users can easily tailor the integrating ontology to
their own needs. This is highly desirable in a scientific discovery setting where
users need the flexibility to specify their own ontologies.

While some of these systems can answer very complex queries (e.g., Bio-
Mediator), others have limited query capabilities (e.g, SRS which is mainly an
information retrieval system). Furthermore, for some systems it is very easy to
add new data sources to the system (e.g., SRS or Kleisli, where new data source
wrappers can be easily developed), while this is not easy for other biological in-
tegration systems (e.g., Discovery Link or OMP, where the global schema needs
to be reconstructed).

Finally, while some systems (e.g., SRS, BioMediator) provide support for
biological information retrieval tools (such as BLAST or FASTA), to the best of
our knowledge none of them are linked to machine learning algorithms that can
be used for data analysis, classification or prediction.

On a different note, there has been a great deal of work on ontology develop-
ment environments. Before developing INDUS editor, off-the-shelf alternatives
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such as IBM’s Clio [14] or Protege [24] were considered, but they proved in-
sufficient for our needs. Clio provides support only for schema mapping, but
not for hierarchical ontology mapping. Protege is a purely knowledge base con-
structing tool (including ontology mappings). It does not provide support for
the association of ontologies with data, data management or queries over the
data. Furthermore, neither of these systems allow procedural mappings (a.k.a.,
conversion functions), which are essential for data integration.

Of particular interest to ontology-based information integration is work on
modular ontolgies. Ontolingua [17, 16] and ONION [23] support manipulation of
modular ontologies. Calvanese et al. [8] proposed a view-based mechanism for
ontology integration. However, a global ontology is typically unavailable in infor-
mation integration from loosely linked, distributed, semantically heterogeneous
data. We have explored a description logic based approach to modular design and
reuse of ontologies, specification of inter-ontology semantic correspondences, and
mappings [4]. However, support for asserting and reasoning with partially spec-
ified semantic correspondences between local ontologies and localized reasoning
in distributed description logic is lacking.

In terms of learning from distributed, semantically heterogeneous data, while
there is a lot of work on distributed learning (see [20] for a survey), there has
been little work on learning classifiers from semantically heterogeneous, dis-
tributed data. Ontology extended relational algebra [6] provides a framework
within which users can specify semantic correspondences between names and
values of attributes and obtain answers to relational queries. This approach has
been extended in our work on INDUS to handle more general statistical queries
across semantically heterogeneous data sources [9].

5.3 Further Work

Our approach has been applied successfully to scenarios where the ontologies
associated with some attributes are given by tree structured isa hierarchies.
It is desirable to extend our work to the more general case where the hier-
archies are directed acyclic graphs, as this case is more often encountered in
practice.

As Protege [24] is the most popular tool for creating knowoledge bases, in
the future INDUS will allow users to import ontologies that are edited using
Protege.

In our current framework, we assume that each data source can be seen as
a single table. It is of interest to extend INDUS to scenarios where each data
sources can be conceptually viewed as a set of inter-related (possibly hierar-
chical) tables. This requires a framework for asserting semantic correspondences
between tables and relations across multiple ontologies (see [14]). In this context,
recent work on description logics for representing and reasoning with ontologies
[3, 27], distributed description logics [7] as well as ontology languages, e.g., web
ontology language (OWL) [26] are of interest. These developments, together with
our work on INDUS, set the stage for making progress on the problem of inte-
gration of a collection of semantically heterogeneous data sources where each
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data source can be conceptually viewed as a set of inter-related tables in its full
generality.
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Abstract. This paper presents an extensible architecture that can be
used to support the integration of heterogeneous biological data sets.
In our architecture, a clustering approach has been developed to sup-
port distributed biological data sources with inconsistent identification
of biological objects. The architecture uses the AutoMed data integra-
tion toolkit to store the schemas of the data sources and the semi-
automatically generated transformations from the source data into the
data of an integrated warehouse. AutoMed supports bi-directional, ex-
tensible transformations which can be used to update the warehouse
data as entities change, are added, or are deleted in the data sources.
The transformations can also be used to support the addition or removal
of entire data sources, or evolutions in the schemas of the data sources
or of the warehouse itself. The results of using the architecture for the
integration of existing genomic data sets are discussed.

1 Introduction

This paper presents work on an architecture for integrating biological data
sources, and reports our experience in applying it to an existing application
aimed at providing an integrated sequence/structure/function resource that sup-
ports analysis, mining and visualisation of functional genomics data (transcrip-
tomic and proteomic).

Biological data sources are characterised by a very high degree of hetero-
geneity in terms of the type of data model used, the schema design within a
given data model, as well as incompatible formats and nomenclature of values.
Further, such data sources frequently make use of large numbers of unstable,
inconsistent identifiers for biological entities. Our architecture addresses these
two issues by combining two data integration techniques supporting both data
heterogeneity and inconsistent identifiers.

The database community has done much work on integration of data from
heterogeneous data sources. Examples of significant applications to biological
data sources include DiscoveryLink [8], K2/Kleisli [12] and Tambis [5]. In prac-
tice, the most widely used system is Sequence Retrieval System (SRS) [30]. A
recent survey is provided by [17].
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SRS represents one approach to integration: it acts as a portal to data sources
exploiting indexes built by the system. It therefore has a more restricted aim
than DiscoveryLink, K2/Kleisli and Tambis which are all aimed at supporting
higher level query facilities across data sources. DiscoveryLink and Tambis aim
to achieve this without users needing to be aware of source data schemas: in our
own work we also aim to insulate users in this way.

The two traditional approaches to providing such transparent access are to
materialise the integrated data in a warehouse, or alternatively to provide virtual
integration with mediator software supporting access to data in the original data
sources. Materializing integrated data in a warehouse is usually done on perfor-
mance grounds: not only is distributed access to remote data sources avoided,
but also centralised database query optimisation techniques can be applied to
enable complex queries to be supported more efficiently. Maintaining a mate-
rialised warehouse to correctly reflect updates in data sources can be complex,
however. While access to a virtual warehouse is likely to be less efficient than
with a materialised warehouse, it may be the only option if it is not possible
to extract data from the underlying data sources, or if the storage overheads of
materialisation would be too high.

In our own work we have chosen to exploit the AutoMed data integration
toolkit1 to support the integration of heterogeneous biological data sources. The
particular strength of AutoMed for this application area is that it supports
bi-directional, extensible transformations from data source schemas to an inte-
grated schema enabling integration both through explicit materialisation in a
data warehouse as well as virtual integration of data remaining in the original
data resources. The extensibility of AutoMed transformations is also the basis for
update of schemas within both the data sources and any materialised warehouse.

AutoMed does not in itself provide a solution for transformations between
unstable, inconsistent identifiers. There are a number of significant initiatives
within the Life Sciences community to address the problem of inconsistent iden-
tifiers. For example, the Life Sciences Identifiers (LSID) initiative [25] is aimed
at a standardised scheme for assigning and recognising identifiers for biological
entities, while the International Protein Index (IPI) [10] is developing stable iden-
tifiers for human, mouse and rat proteomes. Meeting the needs of applications
that process and analyze transcriptomics and proteomics data is a particular
motivation for such work. Extensive work has also been done on standardisation
in more specialised areas, for example the work of the Microarray Gene Expres-
sion Data (MGED) Society on MAGE-ML for standardised recording of data
related to microarray gene expression experiments [11]. However, the legacy of
very large numbers of inconsistent non-standardised identifiers will remain.

Hence, in our work we have combined AutoMed with a clustering approach
to associate biological entities independently of their identifiers. In our applica-
tion of this approach so far, we have used gene sequence clustering to establish
associations, but the approach is not limited to sequence-based clustering.

1 See http://www.doc.ic.ac.uk/automed/
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The remainder of the paper is organised as follows. Section 2 introduces those
features of AutoMed which have been exploited in our work, together with the
basis for combining AutoMed with a clustering approach. Section 3 presents
our data integration framework. Section 4 reports on our experience applying
this framework to the integration of biological data sources in a warehouse being
constructed to support the mining and visualisation of functional genomics data.
Conclusions and a discussion of ongoing work are given in Section 5.

2 Background

2.1 The AutoMed Toolkit

AutoMed is a heterogeneous data transformation and integration system which
offers the capability to handle virtual, materialised and indeed hybrid data inte-
gration across multiple data models. AutoMed supports a low-level hypergraph-
based data model (HDM), and provides facilities for specifying higher-level mod-
elling languages in terms of this HDM. These specifications are stored within
AutoMed’s Metadata Repository [1]. In the specific application described in this
paper, the problem addressed has been the integration of relational data sources
into a relational data warehouse.

AutoMed provides a set of primitive schema transformations that can be
applied to schema constructs. In particular, for every construct of a modelling
language M there is an add and a delete primitive transformation which add
to/delete from a schema an instance of that construct. For those constructs of
M which have textual names, there is also a rename primitive transformation.
For example, in a simple relational model there may be four kinds of modelling
construct, Rel, Att, primaryKey and foreignKey.

Instances of modelling constructs within a particular schema are uniquely
identified by their scheme, enclosed within double chevrons 〈〈...〉〉. AutoMed
schemas can be incrementally transformed by applying to them a sequence of
primitive transformations, each adding, deleting or renaming just one schema
construct (thus, in general, AutoMed schemas may contain constructs of more
than one modelling language). Each add or delete transformation is accompa-
nied by a query specifying the extent of the new or deleted construct in terms
of the rest of the constructs in the schema. This query is expressed in a func-
tional query language, IQL2. AutoMed also provides contract and extend prim-
itive transformations which behave in the same way as add and delete except
that they indicate that their accompanying query may only partially specify the
extent of the new/removed schema construct. Their query may just be the con-
stant Void, indicating that the extent of the new/removed construct cannot be
specified even partially, in which case the query can be omitted.

2 IQL is a comprehensions-based functional query language, and we refer the reader to
[18] for details of its syntax, semantics and implementation. Such languages subsume
query languages such as SQL and OQL in expressiveness [2].
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A sequence of primitive transformations from one schema S1 to another
schema S2 is termed a transformation pathway from S1 to S2, denoted by
S1 → S2. All source, intermediate, and global schemas, and the pathways be-
tween them, are stored in AutoMed’s Metadata Repository.

AutoMed has its theoretical foundations in the schema transformation and
integration framework described in [22] where it was shown that this approach
generalises all the previous notions of ‘schema equivalence’. Intuitively, this is
because: (a) sequences of the primitive transformations are able to express syn-
tactically any transformation from one schema to another, with first a ‘growing’
phase which adds missing schema constructs and then a ‘shrinking’ phase which
removes redundant schema constructs; (b) IQL queries are able to express the
semantic relationships between a new schema construct and the existing con-
structs, or between a removed schema construct and the remaining constructs.

The IQL queries present within transformations that add or delete schema
constructs mean that each primitive transformation has an automatically deriv-
able reverse transformation. In particular, each add/extend transformation is re-
versed by a delete/contract transformation with the same arguments, while each
rename transformation is reversed by swapping its two arguments. [19] discusses
how the queries present within these reversible schema transformation pathways
can be used to generate view definitions for global schema constructs in terms of
source schema constructs. Essentially, this is by means of query unfolding using
the queries within delete, contract and rename transformations along the set of
reverse pathways from a global schema to a set of source schemas.

AutoMed pathways can be used to express the data cleansing, transformation
and integration processes involved in heterogeneous data integration. The queries
within transformations also allow the pathways to be used for materialising and
incrementally maintaining a materialised global database, and any materialised
databases derived from it, in the face of insertions/ deletions/ updates to the
data sources. The queries within transformations also allow the pathways to be
used for tracing the lineage of data in a materialised global database, or any
materialised databases derived from it, to the data sources. We refer the reader
to [13, 14] for details of these uses of AutoMed pathways.

In any heterogeneous data integration environment, it is possible for either a
data source schema or the global database schema to evolve. This schema evolu-
tion may be a change in the schema, or a change in the data model in which the
schema is expressed, or both. An AutoMed pathway can be used to express the
schema evolution in all of these cases. Once the current transformation network
has been extended in this way, the actions taken to evolve the rest of the trans-
formation network and schemas, and any materialised derived data, are localised
to just those schema constructs that are affected by the evolution. We refer the
reader to [23, 24, 15] for details of how this can be achieved in both virtual [23, 24]
and materialised [15] integration scenarios. The algorithms used are mainly au-
tomatic, except for input of domain or expert human knowledge regarding the
semantics of new schema constructs added to a local or global schema which are
not semantically equivalent to any existing constructs in the schema.
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For our particular application here, the task has been to support the trans-
formation of biological data source schemas into a global warehouse schema. The
data source and warehouse schemas were relational, while we have used an XML-
based unifying data model for the intermediate schemas. We made this choice
in order to allow the use of AutoMed’s facilities for automatically transforming
and integrating XML data, which are discussed in detail in [28, 29].

The standard schema definition languages for XML are DTD and XML
Schema. However, both of these provide grammars to which conforming doc-
uments adhere to, and do not summarise the tree structure of the data sources.
In our schema transformation setting, schemas of this type are preferable as
this facilitates schema traversal, structural comparison between a source and
a target schema, and restructuring the source schema(s) that are to be trans-
formed and/or integrated. Moreover, such a schema type means that the queries
supplied with AutoMed primitive transformations are essentially path queries,
which are easily generated.

The AutoMed toolkit therefore supports a modelling language XML Data-
Source Schema (XMLDSS) which summarises the tree structure of XML doc-
uments, much like DataGuides [16]. XMLDSS schemas consist of four kinds
of constructs (see [28] for details of their specification in terms of the HDM):
Element, Attribute, PCData and NestList. The last of these are parent-child re-
lationships between two elements ep and ec and are identified by a scheme of
the form 〈〈i, ep, ec〉〉, where i is the position of ec within the list of children of ep

in the XMLDSS schema. In an XML document there may be elements with the
same name occurring at different positions in the tree. To avoid ambiguity, in
XMLDSS schemas we use an identifier of the form elementName$count for each
element, where count is a counter incremented every time the same elementName
is encountered in a depth-first traversal of the schema. An XMLDSS schema can
be automatically derived from an XML document, as discussed in [28], and it
is also possible to automatically derive an XMLDSS schema from a DTD or an
XML Schema specification, if available.

2.2 Clustering for Supporting Multiple IDs

While AutoMed is well-suited to the task of supporting transformations of data
source schemas into a global warehouse schema, it provides no mechanisms for
supporting the equivalence of inconsistent identifiers. Integrating data sources
usually results in incomplete matching of related entities in the different data
sets, either due to identifier redundancy or due to the use of different reference
identifiers. In the case of some biological databases, the percentage of entities
that can be matched using a single identifier can be very low. When trying to
match proteins from KEGG Gene to the Gene Ontology Gene Products less than
40% match, despite the sources nominally describing the same entities.

Data-based entity clustering provides a general approach to integrating any
set of logically related entities and hence supporting multiple identifiers. Under
this approach, an appropriate relatedness measure is developed (for example se-
quence or structure similarity), allowing each entity in the data being integrated
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to be compared to each of the other entities and a similarity index derived. Once
the similarity measure values have been obtained they can be used to organise
the entities hierarchically into nested sets. Each level of nesting represents an
increasing degree of similarity between the entities contained in the set, allowing
each application built on the integrated data source to determine what is an
appropriate degree of clustering for that application. In the context of biological
data, for example, protein structure is conserved at low levels of sequence simi-
larity compared to function and therefore clusters with lower levels of similarity
can be used when structural annotation is desired rather than functional.

Having generated such sets of related entities, information applicable to each
set may be extracted and associated with that set. Moreover, an attribute which
is only defined for a subset of members may be inferred for remaining members
of a set if it is known that the attribute will be shared amongst similar entities.

Use of an appropriate similarity measure and clustering algorithm provides
sets of entities that represent the same ‘real world’ entity that may never have
been associated based purely on an identifier mapping. Sets of entities with a
lower level of similarity represent entities that are less closely related. While
this approach does not allow identification of identical entities, in biological
contexts it is often at least, if not more useful to identify similar entities, given
the incomplete knowledge about any individual entity.

This type of approach is applicable to many types of data. There is no in-
herent limitation on the type of clustering or the type or types of similarity
measures used to compare entities. For example given a measure of similarity
of scientific publications was available, the related articles could be organised
into clusters providing links between articles on similar topics. In the simplest
case this might be based on keyword matching, but other far more sophisticated
approaches are available.

3 Our Data Integration Framework

The architecture of our biological data integration framework is illustrated in
Figure 1. There are two principal sources of information for the Global Schema —
data sources and cluster data — which are processed in the same way but con-
tain different types of information. Each Data Source is an externally main-
tained resource that is to be integrated as part of the global database. A data
source could be a conventional relational or other structured database, or a
semi-structured data source, such as an XML file. Conceptually, a data source
describes facts about biological entities. Each Cluster Data resource is constructed
from one or more data sources and provides the basis for a generally applica-
ble approach to the integration of data lacking a common reference identifier as
discussed in Section 2.2 above. Conceptually, a cluster data resource provides
a data-dependent classification of the entities within data sources into related
sets.

Each data source is either a structured data source such as a relational
database (in which case its associated Schema is a relational schema) or a semi-
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Fig. 1. Architectural Overview of the Data Integration Framework

structured file (in which case it may or may not have an associated schema). In
the latter case a schema appropriate for the data source can be generated by the
appropriate AutoMed wrapper (see [28, 1] for details of extracting schemas from
semi-structured data). Cluster data resources are maintained as relational data
with an associated relational schema. The schemas of data source and cluster
data resources are processed in the same way, and an arbitrary number of data
sources and methods of clustering can be integrated.

Some data sources do not contain a primary key identifier that is persistent
between versions of the resource. The lack of a persistent primary key identi-
fier makes the identification of changes between each version difficult. For such
data sources a non-volatile, primary key identifier is generated for each entity
and added to the data source. Persistent primary key identifiers provide a sim-
ple, generic primary key for the higher level tools to use and enables synchro-
nisation of the warehouse with the changing content of the underlying data
source.

Wrappers provided by the AutoMed Toolkit automatically generate the Au-
toMed internal representations of the Schemas and the Global Schema, and store
these in the AutoMed Metadata Repository. The AutoMed toolkit is then used to
generate the transformation pathways from the Schemas to the Global Schema.
These are described in detail with illustration from the example application in
Section 4.3 below.

Virtual Integration. After the integration process has been completed, and the
transformation pathways from a set of data source schemas to a global schema
have been set up, queries formulated with respect to the global schema can be
evaluated. Such a query is submitted to AutoMed’s Global Query Processor (see
[18]) which first reformulates it into a query that can be evaluated over the data
sources. This is accomplished by following the reverse transformation pathways
from the global schema to the data source schemas in order to generate view
definitions of global schema constructs in terms of data source constructs. These
view definitions are substituted into the original query, which is then optimised.
The query evaluator then interacts with the data source wrappers in submitting
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to them IQL subqueries which they translate into the local query language for
evaluation, returning sub-query results back to the evaluator for any further
necessary post-processing and merging.

Materialised Integration. The current version of the BioMap warehouse (see
Section 4 below) was materialised using conventional SQL queries on relational
sources, before the AutoMed components of our architecture were in place. This
approach is labour intensive as the queries must all be manually designed. Up-
coming iterations of the warehouse will however be able to benefit from Au-
toMed’s facilities for incrementally maintaining the warehouse. In general, the
data sources may be updated by the insertion, deletion or modification of data.
Deltas on data sources may result in deltas on cluster data resources also. Both
kinds of deltas can be propagated through the AutoMed transformation path-
ways up to the materialised global database (and to any other materialised
databases derived from it). In particular, the queries within add and extend
transformation steps can be used to compute a new set of deltas from the cur-
rent set of deltas, all the way up to the target database (see [14]).

4 Application of the Framework to Gene Family Based
Integration

The above architecture has been applied to biological data sources integrated
within the BioMap data warehouse. In this section we describe how the archi-
tecture has been applied and the results of the work to date.

4.1 The BioMap Warehouse

BioMap is a collaborative project to develop a warehouse integrating protein
family, structure, function and pathway/process data with gene expression and
other experimental data. The aim is to provide an integrated sequence/structure/
function resource that supports analysis, mining and visualisation of functional
genomics data (transcriptomic and proteomic). The warehouse is implemented
within Oracle, extending techniques developed for the CATH-PFDB database
[26] and is designed to serve as a source for data marts which will themselves be
constructed using the AutoMed techniques presented in this paper.

Current data sources include the CATH protein structure family database
[6], KEGG pathway database [20], Gene3D annotated protein sequence database
[21], Gene Ontology [9], EBI Macromolecular structure database (MSD) [4] and
ten other resources. Thus far, we have taken CATH, Gene3D, KEGG Gene,
KEGG Genome, KEGG Orthology, and also a CLUSTER data source discussed
below, representing a significant subset of BioMap data sources describing struc-
tural, functional, sequence and ontological information. These contain a diverse
set of data structures, formatting conventions and sizes to use for evaluation of
our data integration framework.
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4.2 The Clustering Approach

There are a variety of methods for classifying biological entities into sets and
these methods can be used on the facts within the data warehouse. The facts
concerning individual entities within a set will not all derive from precisely the
same biological entity, but by choosing an appropriate algorithm to create the
sets, the set will contain valuable information about biological entities that are
similar (in some way) to each other. One such categorisation method is UniGene
[7]. Our categorisation method is based on the PFScape protocol [21] which is
in turn based on the TRIBE-MCL algorithm [3]. The PFScape protocol was
developed for Gene3D and has been adapted and improved for BioMap. In brief,
to construct Gene3D the peptide sequences of more than 120 completed genomes
were obtained from the NCBI and from ENSEMBL. An ‘all vs all’ BLAST
was performed using the blastpgp program from the NCBI. The BLAST was
performed using a cluster of 50 dual processor machines running GNU/Linux
using Sun Grid Engine. An e-value cut off of 0.001 was used. The results were
used to create a similarity matrix which was used by TRIBE-MCL to create
protein families.

Since then, many more completed genomes have become available, in partic-
ular the genome of the Rat. Other genomes have been revised. For the BioMap
project an extension of the PFScape protocol has been developed to update the
Gene3D families.

The complete genomes of more than 203 Archea, Prokaryotes and Eukaryotes
were downloaded from the EBI. For each sequence in Gene3D and the down-
loaded proteomes an md5 was calculated and an ‘all vs all’ BLAST performed.
The BLAST results were filtered using an 80 percent overlap cutoff to select only
the BLAST hits that represented whole chain matches. Each novel sequence was
assigned into the best hit family for each of the new sequences, or if no fam-
ily was identified then a new family was created. Within the protein families
multi-linkage clustering was performed based on sequence identity using clus-
ter thresholds of 0.3, 0.35, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1. The clustering was
performed using TCluster, a locally developed program.

To integrate the other data sources, a representative sequence was obtained
for each entity in the data source and a md5 calculated. The set of md5s that
were not present in the genomic sequences was then obtained. The sequences
corresponding to those md5s were then compared to the genomic sequences
using BLAST as described above. The entities were then classified in terms of
the genomic clusters based on their best hits.

4.3 The Integration Process

The integration process consists of the following steps, of which steps 3 to 6 are
explained in more detail below. Steps 1 and 2 are carried out automatically by
AutoMed’s relational wrapper, as mentioned in Section 3.

1. Automatic generation of the AutoMed relational schemas, LS1, . . . , LSn,
corresponding to the Data Source and Cluster Data Schemas.
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2. Similarly, automatic generation of the AutoMed relational schema, GS, cor-
responding to the Global schema.

3. Automatic translation of schemas LS1, . . . , LSn and GS into the correspond-
ing XMLDSS schemas X1, . . . , Xn and GX.

4. Partial conformance of each schema Xi to GX by means of appropriate
rename transformations, to ensure that only semantically equivalent schema
constructs share the same name, and that all equivalent schema constructs
do share the same name. This results in a set of new schemas X ′

1, . . . , X ′
n.

5. Completing the conformance of each schema X ′
i to GX by applying an au-

tomatic XMLDSS schema transformation algorithm to each pair of schemas
X ′

i, GX, creating a set of new schemas X ′′
1 , . . . , X ′′

n .
6. Application of any necessary data cleansing transformations on each X ′′

i ,
creating a set of schemas GX1, . . . , GXn. As the integration of the schemas
up to this point does not involve any reference to the actual data, the data
cleansing does not have to be performed prior to this step.

In Steps 4 - 6, the pathways LS1 → X1, . . . , LSn → Xn generated by
Step 3 are extended with further primitive transformations, leading finally to
the schemas GX1, . . . , GXn in Step 6.

Each GXi is identical to the global XMLDSS schema GX from Step 3. The
reverse of the pathway GS → GX generated in Step 3 can finally be appended
to each GXi to transform it into the relational global schema GS.

Step 3: Translating AutoMed relational to XMLDSS schemas. To trans-
late a relational schema into an XMLDSS schema we first generate a graph, G,
from the relational schema. There is a node in G corresponding to each table
in the relational schema. There is an edge from R1 to R2 in G if there is a for-
eign key in R2 referencing the primary key of R1. In the given relation schemas
there are no cycles in G — in a general setting, we would have to break any
cycles at this point. We create a set of trees, T , obtained by traversing G from
each node that has no incoming edges, and we convert T into a single tree by
adding a generic root. We finally use T to generate the pathway from the rela-
tional schema to its corresponding XMLDSS schema. This last phase consists of
traversing T and, for each node t encountered, doing the following:

(i) If t is the root, insert a PCData construct into the current schema, and then
insert the root itself as an Element construct.

(ii) else:
(a) insert t as an Element
(b) insert a NestList construct from the parent of t to t
(c) find the columns ci belonging to the table that corresponds to t, and

for each ci: insert ci as an Element construct; insert a NestList construct
from t to ci; and insert NestList constructs from ci to PCData.

(iii) For each child of t, t′i, treat t′i as t in step (i).
(iv) Remove the now redundant relational constructs from the schema.

To illustrate the translation, the top of Figure 2 illustrates a part of the
schema of the CLUSTER data source (where ASSIGNMENT TYPE ID in AS-
SIGNMENT TYPES is referenced by CLUSTER TYPE in CLUSTER DATA,
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Fig. 2. Top: part of the CLUSTER relational schema. Bottom: corresponding part of
the CLUSTER XMLDSS schema

and the rest of the foreign keys have the same name as the primary keys they
reference). At the bottom, the XMLDSS schema that corresponds to this rela-
tional schema is illustrated. Similarly, Figure 3 illustrates a part of the relational
global schema and the corresponding AutoMed XMLDSS schema.

Step 4: Schema Matching. The XMLDSS schema transformation algorithm
used in Step 5 of the integration process assumes that if two schema constructs
in a local schema and in the global schema, respectively, have the same name,
then they refer to the same real-world concept, and if they do not have the same
name, they do not. We do not currently support automatic schema matching
in our integration process. Thus, after the XMLDSS schemas are produced,
and before the application of the schema transformation algorithm in Step 5,
the necessary rename transformations must be manually issued on each source
XMLDSS schema. These rename transformations effectively simulate a schema
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Fig. 3. Left: part of the global relational schema. Right: corresponding part of the
XMLDSS schema

matching phase and in our case they have been produced by a domain expert.
However, the AutoMed toolkit also offers a tool for performing semi-automatic
schema matching and generating the corresponding AutoMed transformation
pathways [1]. We also note that this schema matching step does not have to
be performed on the XMLDSS schemas, but could instead be performed on the
source relational schemas. The only necessity is for this step to be performed
before the application of the schema transformation algorithm.

In our running example, the domain expert produced the following rename
transformations on the XMLDSS schema in Figure 2:

rename(<<CLUSTER$1>>,<<GLOBAL$1>>);

rename(<<DESCRIPTION$1>>,<<ASSIGNMENT_DESCRIPTION$1>>);

rename(<<SEQUENCE_SOURCE_ID$1>>,<<PSEQID>>);

rename(<<SEQUENCE_SOURCE_ID$2>>,<<SEQUENCE_SOURCE_ID$1>>);

rename(<<SEQUENCE_SOURCE_ID$3>>,<<SSEQID>>);

rename(<<SEQUENCE_SOURCE_ID$4>>,<<SEQUENCE_SOURCE_ID$2>>);

rename(<<ASSIGNMENT_TYPE_ID$2>>,<<PASSID>>);

rename(<<ASSIGNMENT_TYPE_ID$3>>,<<ASSIGNMENT_TYPE_ID$2>>)

and the following rename transformation on the XMLDSS schema in Figure 3:

rename(<<SEQUENCE_SOURCE_ID$2>>,<<SSEQID>>)

Step 5: Automatic XMLDSS-based integration. The algorithm for au-
tomatically transforming a source XMLDSS schema S into a target XMLDSS
schema T has three phases:

Growing phase: Traverse T in a depth-first fashion and for every schema con-
struct encountered that is not present in S, issue an add or extend transformation,
resulting in an intermediate schema S1.
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Shrinking phase: Traverse S1 in a depth-first fashion and for every schema
construct encountered that is not present in T , issue a delete or contract trans-
formation, resulting in an intermediate schema S2.

Renaming phase: Traverse S2 in a depth-first fashion and issue the necessary
rename transformations needed to rename the ordering labels of the NestList
constructs in order to create the correct ordering of these constructs, resulting
in a final schema ST syntactically identical to the target XMLDSS schema T .

For reasons of space, we refer the reader to [29] for a detailed description of
this algorithm. To illustrate the algorithm, we list below a part of the pathway
generated to transform the XMLDSS schema in Figure 2 to the XMLDSS schema
in Figure 3, after the earlier rename transformations of Step 4 have first been
applied. Here makelist is a built-in IQL function that takes a value v and a
number n and produces a list consisting of n copies of v:

add(<<0,GLOBAL$1,CLUSTER_DATA$1>>,

[{v0,v2}|{v0,v1}<-<<GLOBAL$1,SEQUENCE_SOURCES$1>>;

{v1,v2}<-<<SEQUENCE_SOURCES$1,CLUSTER_DATA$1>>]);

add(<<0,GLOBAL$1,SEQUENCES$1>>,

[{v0,v2}|{v0,v1}<-<<GLOBAL$1,SEQUENCE_SOURCES$1>>;

{v1,v2}<-<<SEQUENCE_SOURCES$1,SEQUENCES$1>>]);

extend(<<0,CLUSTER_DATA$1,ASSIGNMENT_DESCRIPTION$1>>,

[{v1,v2}|{v0,v1}<-<<ASSIGNMENT_TYPES$1,CLUSTER_DATA$2>>;

{v0,v2}<-<<ASSIGNMENT_TYPES$1,ASSIGNMENT_DESCRIPTION$1>>);

delete(<<1,GLOBAL$1,SEQUENCE_SOURCES$1>>,

makelist {’GLOBAL$1’,’SEQUENCE_SOURCES$1’}

(count <<SEQUENCE_SOURCES$1>>));

delete(<<1,SEQUENCE_SOURCES$1,PSEQID>>,

makelist {’SEQUENCE_SOURCES$1’,’PSEQID’}

(count <<PSEQID>>));

contract (<<1,PSEQID,PCData>>);

contract (<<PSEQID>>);

delete(<<2,SEQUENCE_SOURCES$1,CLUSTER_DATA$1>>,

makelist {’SEQUENCE_SOURCES$1’,’CLUSTER_DATA$1’}

(count <<CLUSTER_DATA$1>>));

delete(<<3,SEQUENCE_SOURCES$1,SEQUENCES$1>>,

makelist {’SEQUENCE_SOURCES$1’,’SEQUENCES$1’}

(count <<SEQUENCES$1>>));

contract(<<SEQUENCE_SOURCES$1>>);

The unwanted edges on the RHS of the XMLDSS schema of Figure 2 are
deleted/contracted similarly. A series of rename transformations then follows to
create a contiguous ordering of edges beneath a parent element.

Step 6: Data cleansing. After the local XMLDSS schemas have been con-
formed with the global XMLDSS schema, the domain expert can manually issue
any further necessary transformations to remove any representational hetero-
geneities at the data level. AutoMed transformations can express the transfor-
mation of data from one format to another in the same way as they can express
the transformation of schema structures. For example, consider in our running



204 M. Maibaum et al.

example attribute DESCRIPTION in relation ASSIGNMENT TYPES (see Figure 2).
The extent of this attribute in the data source consists of mixed case strings.
In the CLUSTER XMLDSS schema this attribute is called DESCRIPTION$1. Af-
ter the partial conformance step (Step 4 in Section 4.3), the attribute has been
renamed to ASSIGNMENT DESCRIPTION$1. To turn the extent of this attribute
to uppercase strings before merging with the other data sources in the global
schema, the following transformations can be appended to the transformation
pathway resulting from the conformance step (Step 5 in Section 4.3):

add(<<0,ASSIGNMENT_DESCRIPTION$1,PCData>>,

[{v0,stringUpper v1} |

{v0,v1}<-<<1,ASSIGNMENT_DESCRIPTION$1,PCData>>]);

contract(<<1,ASSIGNMENT_DESCRIPTION$1,PCData>>);

rename(<<0,ASSIGNMENT_DESCRIPTION$1,PCData>>,

<<1,ASSIGNMENT_DESCRIPTION$1,PCData>>)

Here stringUpper is a built-in IQL function that converts all the alphabetic
characters in a string to upper-case. Several other string-handling functions are
supported by IQL e.g. stringLower, stringConcat and stringSplit. The IQL
query processor is implemented in such a way that extending it with new built-in
functions is straightforward.

In general with AutoMed, these kinds of data cleansing transformations can
take place at any stage of the integration process. It is also possible to incorporate
materialised correspondences between data values in source and target schemas
into data cleansing transformations — this extensional information is treated as
another data source.

Implementation and Results. The above integration process was carried out
on a Pentium 4 2.8Ghz, with 1Gb RAM and Linux as the operating system. The
Gene3D, KEGG Gene, KEGG Genome, KEGG Orthology, CATH and CLUS-
TER data sources, and the global database are all Oracle databases. The Au-
toMed repository is stored in a PostgreSQL database, and the AutoMed toolkit
itself is written in Java. The integration of each data source took under 15 min-
utes, resulting in a total running time of about 85 minutes. Many of the algo-
rithms are not yet fully optimised and therefore we expect a major performance
improvement as more optimisations are built into the AutoMed toolkit.

5 Conclusions and Future Work

This paper has presented a data integration framework for biological data sources
that combines techniques to support the diversity of data models, schemas and
formats which are characteristic of biological data together with a clustering ap-
proach developed to support distributed biological data sources with inconsistent
identification of biological objects.

The work we have described is this paper is currently being extended in a
number of areas. First, the approach is being applied to the other data sources
noted in Section 4 with further detailed evaluation of the results obtained. The
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clustering approach is also being extended: while the use of sequence families
is described here, other methods of classification could be used including struc-
tural and many other approaches. We are currently working on a method that
integrates feature and domain recognition (hidden Markov model) approaches
to identify attributes of sequences. These attributes (i.e. a structural domain,
or a protein active site) can be used to form clades, within which the exist-
ing clustering information can be organised. This combination of two clustering
approaches will provide the best features of the extremely sensitive, but time
consuming scanning approaches with the less sensitive, but much faster simple
sequence comparisons.

In the BioMap warehouse we have so far successfully applied the AutoMed-
based techniques for the data cleansing, transformation and integration processes
as presented in Section 4. We are currently implementing AutoMed-based ma-
terialisation and maintenance of the global database, which have been manual
processes to date. Use of AutoMed will enable delta changes to be automati-
cally propagated to the global database as well as allowing schema changes to
accommodated.

The techniques presented on this paper have not so far been applied to inte-
grating textual data sources such as PubMed abstracts within BioMap. However,
work has already been done on extending AutoMed with facilities for integrating
unstructured text with structured data [27], and these techniques will be applied
to textual biological data sources.

A further collaborative project, ISPIDER, aims to develop Grid-based data
integration of biological data resources. The strengths of AutoMed for support-
ing bi-directional and incrementally constructed transformation pathways are of
particular value in a Grid environment, and work is being pursued on develop-
ing these techniques and integrating them with existing Web Service and Grid
middleware components for service discovery and metadata management.
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Abstract. We present a new approach to integrate annotation data from public 
sources for the expression analysis of genes and proteins. Expression data is 
materialized in a data warehouse supporting high performance for data-
intensive analysis tasks. On the other hand, annotation data is integrated virtu-
ally according to analysis needs. Our virtual integration utilizes the commercial 
product SRS (Sequence Retrieval System) of LION bioscience. To couple the 
data warehouse and SRS, we implemented a query mediator exploiting corre-
spondences between molecular-biological objects explicitly captured from pub-
lic data sources. This hybrid integration approach has been implemented for a 
large gene expression warehouse and supports functional analysis using annota-
tion data from GeneOntology, Locuslink and Ensembl. The paper motivates the 
chosen approach, details the integration concept and implementation, and pro-
vides results of preliminary performance tests.  

1   Introduction 

After the complete genomes of various organisms have been sequenced, the focus of 
genomic research has shifted to studying and comparing the functions of genes and 
their products. The knowledge about molecular-biological objects, such as genes, 
proteins, pathways etc., is continuously collected, curated and made available in hun-
dreds of publicly accessible data sources [Ga04]. The high number of the data sources 
and their heterogeneity renders the integration of molecular-biological annotation data 
for functional analysis a major challenge in the bioinformatics domain. 

To illustrate the data we have to deal with, Figure 1 shows a sample annotation for a 
gene uniquely identified by accession number 15 in the public source Locuslink 
[PM02]. The entry comprises different descriptions, which we group into annotation 
and mapping data. Annotation data consists of source-specific attributes, such as Prod-
uct and Alternate Symbols. In contrast, mapping data refers to inter-related objects in 
other sources and is typically represented by web links. The objects are identified by 
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their source-specific accession ids, for example, gene locus 15 in LocusLink, gene 
cluster Hs.431417 in UniGene [Wh03], or enzyme 2.3.1.87 in Enzyme [Ba00]. We 
denote the set of correspondences between objects of two data sources as a mapping. 
Inter-relating objects by mappings allows combining the annotation knowledge from 
multiple sources for analysis. In the example, the analysis of LocusLink genes can be 
enriched by annotations of the referenced GeneOntology [As00] or UniGene objects. 

Legend: Annotation Data
Mapping Data (incl. Data Source)

Enzyme

GeneOntology}

OMIM
UniGene
KEGG

Identifier

Descriptions,
Synonyms etc.}

 

Fig. 1. Annotation and Mapping Data in Locuslink 

Establishing and browsing web links represent a first step to integrating different 
sources, which, due to its simplicity, is widely used. Unfortunately, web links only 
support interactive analysis for single objects at a time, but not automatic analysis for 
large sets of objects. Such a set-oriented analysis capability is especially needed for 
high-throughput expression analysis. In this paper we present a new approach to  
integrate annotation data from public sources for expression analysis. Large amounts 
of expression data generated by microarray experiments are physically stored together 
with experimental descriptions in a data warehouse to support performance-critical 
analysis tasks. Annotation data, on the other hand, is virtually integrated by a query 
mediator which utilizes the commercial product SRS (Sequence Retrieval System) to 
access annotation data of public data sources. 

The key aspects of our approach are: 

• We combine a materialized and a virtual data integration to exploit their advantages 
in a new hybrid approach. On the one hand, the data warehouse offers high perform-
ance for complex analysis tasks on large amounts of expression data. On the other 
hand, up-to-date annotation data can be retrieved for analysis when needed. 

• Public data sources are uniformly integrated and accessed through the widely  
accepted SRS tool, which offers wrapper interfaces to a large number of molecular-
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biological data sources, including flat files and relational databases. Hence, we 
avoid the re-implementation of import functions and can easily add sources sup-
ported by SRS. 

• We explicitly extract mapping data from the data sources and store them in a sepa-
rate database, the so-called mapping database. This separation allows us to deter-
mine different join paths between two sources to relate their objects with each 
other and to pre-compute them for good query performance. 

• The approach has been implemented as an extension to the GeWare platform (gene 
expression warehouse) [KDR03, KDR04] and integrates several public data 
sources to support the expression analysis. The web interface is accessible under 
http://www.izbi.de/GEWARE. Performance tests have shown the practicability of 
our approach. 

The rest of the paper is organized as follows. Section 2 discusses related integration 
approaches. Section 3 describes two main analysis scenarios and their integration 
requirements. Section 4 gives an overview of our integration concept. Section 5 and 6 
describe the central components and their function in more detail, namely the map-
ping database and the query mediator, respectively. Section 7 presents the results of 
selected performance tests. Section 8 concludes the paper. 

2   Related Work 

An overview of representative approaches used for data integration in the bioinfor-
matics domain is given by [LC03], [HK04] and [St03]. Previous solutions mostly 
follow either a materialized or a virtual integration approach. The former approach 
physically stores the data in a central database or data warehouse, which can offer 
high performance for data-intensive analysis tasks. The latter approach typically uses 
a mediator to perform data access at run time and provide the most current data. In the 
following we discuss some of these approaches and how they differ from our  
approach. 

Similar to our approach the mediator-based systems DiscoveryLink [Ha01], Kleisli 
[CCW03, Wo98] and SRS [EHB03, ZD02] do not pursue a (laborious) semantic inte-
gration of all data sources by constructing an application-specific global schema. 
They use a simple schema comprising of the sources and their attributes, which makes 
it relatively easy to add new data sources. Currently, Kleisli offers interfaces to more 
than 60 public sources and SRS provides wrappers to more than 700 data sources. 
Typically, complete copies of data sources are maintained locally and periodically 
updated for availability and performance reasons. As the price for flexibility, Discov-
eryLink and Kleisli leave the task of semantically integration to the responsibility of 
the user. In particular, the user has to explicitly specify join conditions in queries to 
relate objects/data from different sources with each other. 

SRS and our approach address this problem by capturing and utilizing existing 
mappings, i.e. correspondences at instance level. SRS maintains indices on these 
mappings and thus can achieve high query performance. However, SRS only uses the 
shortest path between two sources as the join path to relate their objects with each 
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other. This represents a restriction as the user may have another preference. More-
over, alternate paths may yield better results than the shortest path [La04]. Therefore, 
our approach aims at a more flexible and efficient computation of join operations by 
a) supporting multiple alternative paths and b) pre-computing joins between the 
sources to a previously determined central source so that join paths with a maximal 
length of 2 are possible via the central source. 

COLUMBA [Ro04] physically integrates protein annotations from several sources 
into a local database. Source data is imported mainly in its original schema to reduce 
the effort required for schema integration and data import as much as possible. The 
source schemas are connected using a mapping to a previously selected central 
source, the Protein Data Bank (PDB). We also use this technique to construct our 
mapping database. In contrast to COLUMBA, which only allows a single mapping 
between a source and the central source, we support multiple mappings, each of 
which may be pre-computed using a different join path.  

ALADIN (Almost Automatic Data Integration) [LN05] generalizes the 
COLUMBA approach for integrating different kinds of annotation data. A main ex-
tension is in the automatic analysis of instance data to detect object associations and 
duplications. This work is orthogonal to ours and helps to establish new mappings. 
We are currently focusing on utilizing existing mappings and their compositions. 

Our GenMapper [DR04] tool also follows a physical integration of annotation data 
by using a generic schema called GAM (Generic Annotation Model). The GAM 
stores both (intra-) associations between objects of the same source and (inter-) asso-
ciation between objects of different sources. High-level operators are used to generate 
annotation views for different analysis purposes. However, GAM focuses specifically 
on mapping data and cannot handle data with complex structures, such as geometric 
data of protein folding structures and genomic sequences. Our hybrid approach uses 
GenMapper to pre-compute mappings for different join paths, which are then im-
ported into the mapping database. 

3   Integration Requirements for Analysis 

Figure 2Figure 2 shows two common analysis scenarios in the bioinformatics domain, 
namely expression and annotation analysis. Expression analysis detects and compares 
the gene and protein activity under different circumstances, such as in normal and 
diseased tissues. The main goal is to identify groups of genes or proteins, showing 
consistently similar or different expression patterns. For example, genes, which are 
highly active in tumor cells but not in normal cells, could be responsible for the un-
controlled proliferation of the tumor cells. Analyzing the annotations of those genes 
can reveal the similarities and differences in their currently known functions and infer 
new gene functions. On the other side, searching in annotation data allows to generally 
identify genes or proteins with similar functions. This gene / protein groups can be used 
as input for expression analysis to get insights about their expression behavior. 

The usage of annotation data in these scenarios, leads to the following require-
ments for the integration task. 
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• Flexibility and adaptability: Public data sources are constantly extended and modi-
fied at the instance level and also underlie changes at the schema level. Hence, it is 
important to access current data. Furthermore, the high number of relevant sources 
presupposes a flexible solution to easily "plug in" a new source when needed. Both 
observations motivate a virtual integration of annotation data and favor the utiliza-
tion of a powerful infrastructure such as SRS. 

• Inter-source mappings: Depending on the research focus of the user, different 
kinds of annotations may be required for different types of objects. This presup-
poses the ability to flexibly associate annotations with objects from different 
sources. For instance, it should be possible to determine functions, e.g. as ex-
pressed in GeneOntology terms, for genes in Locuslink, UniGene, NetAffx etc. In 
addition, filters, such as exact and pattern matching, and their combinations are 
necessary to identify interesting objects. Finally, alternative join paths should be 
supported due to the high degree of interconnectivity between sources. 

• Data quality: Annotations from different sources may largely vary in data quality, 
e.g. due to different update frequencies and algorithms to calculate object homol-
ogy. To support user acceptance it is necessary to document how the data has been 
integrated, e.g. from which source and using which join paths, so that the user can 
judge its quality.  

• Performance: Query performance is obviously of key importance for the user ac-
ceptance in interactive analysis. Therefore, the physical integration using a data 
warehouse is recommended for large amounts of expression data. Mediator-based 
query processing should also be optimized, especially the execution of resource-
intensive join operations to relate objects from different public sources. Hence, ad-
vanced techniques, such as indexing or pre-computation and materialization of 
common join paths should be applied to improve query time. 

Annotation AnalysisExpression Analysis
Identification of relevant genes / proteins 
with annotation data

Identification of relevant genes / proteins 
with expression data

Expression value
P-value
…

Expression value
P-value
…

Molecular Function
Gene location
Protein
Disease
…

Molecular Function
Gene location
Protein
Disease
…

DWH
Gene-/Protein

Groups

SRS

 

Fig. 2. Different Analysis Scenarios 

4   Integration Architecture 

4.1   Overview 

According to the integration requirements described in the last section, we have de-
signed and implemented a hybrid integration system. Its architecture is illustrated in 
Figure 3a comprising the following components: 
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• GeWare, a data warehouse supporting expression analysis, is used as integration 
and test platform for our approach.  

• SRS is used to query and retrieve annotations from the relevant public sources. 
Currently the following sources are integrated: the widely used GeneOntology as 
well as the gene sources Locuslink, Ensembl [Bi04, Po04], UniGene, and the ven-
dor-based source NetAffx [Ch04] providing annotations for the genes of Affy-
metrix microarrays. 

• Our query mediator acts as the interface between GeWare and SRS. It transforms 
user-specified queries into SRS-specific queries which are then forwarded to SRS 
for execution. Finally, the query mediator combines the results delivered by SRS, 
performs necessary transformations, and visualizes them on the user web interface. 

• The mapping database stores pre-computed mappings between the sources. For each 
source, the mapping database maintains a mapping table storing all correspondences 
between the source and a pre-selected central source. This star-like schema makes it 
possible to efficiently perform join operations through the central source. 

• The ADM database serves administration purposes and stores metadata about the 
integrated sources, such as their names, attributes and the information about the 
available mappings (mapping names, and join paths used to compute them). We util-
ize this metadata to automatically generate the web interface for query formulation. 
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GeneOntology Ensembl LocusLink

HTML
Client
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Fig. 3. Integration approach and corresponding components 

The next two subsections describe the interaction between the components in two 
main processes, the integration of data sources and query processing, respectively. In 
Section 5 and Section 6, we focus on the issues of metadata management within the 
mapping and ADM database, and of query processing in the query mediator,  
respectively.  
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4.2   Data Source Integration 

The comprehensive wrapper library provided by SRS supports numerous data sources 
available in the bioinformatics domain and allows us to easily add new sources. In 
particular, we use these wrappers to integrate the flat file-based source Locuslink and 
two relational databases, Ensembl and GeneOntology. To achieve good performance 
for interactive queries, we maintain local copies of these data sources for integration 
in SRS. The ADM database holds metadata about the sources, especially the names of 
the sources and their attributes. 

In our approach, the data sources are organized in a star-like schema supporting ef-
ficient join queries. For each object type, one of the sources is chosen as the central 
source, to which mappings from all other sources of this type are pre-computed. For 
example, Locuslink is a reference data source for gene annotations. Its identifier, the 
Locuslink accession, is linked in many other sources and often used for citations in 
scientific publications. Hence, we choose Locuslink as the central gene source in our 
current implementation to support gene expression analysis. To construct the mapping 
database, we import the mappings from Locuslink to all other sources, in particular to 
UniGene, Ensembl, NetAffx and GeneOntology, which are pre-computed and provided 
by GenMapper [DR04]. To link a source with the central source, alternative mappings 
can be computed using different join paths and imported. Each mapping is then regis-
tered in the mapping database with the path employed to compute them (see Section 5). 

4.3   Query Processing 

Figure 3b shows the general workflow of query processing in our system (see Section 
6 for more details). The workflow starts with querying metadata about the available 
sources, attributes and mappings from the ADM database (Step 1). Using this meta-
data, the web interface is automatically generated (Step 2). Then, the user can formu-
late the query by selecting the data sources and relevant attributes, and specifying 
filter conditions and join paths (Step 3). The query mediator interprets the user query 
and generates a query plan, which consists of one or multiple SRS-specific queries 
(Step 4). The query plan is passed to the SRS server for execution (Step 5 and 6). 
While subqueries for selection and projection are performed within the corresponding 
sources, SRS uses the mapping database to perform join operations. The query result 
is then returned as one or multiple XML stream (Step 7). The query mediator parses 
the streams to extract the relevant data (Step 8), which is then prepared in different 
formats, e.g. HTML for displaying on web browser, and CSV for download (Step 9). 

5   Metadata Management 

5.1   The Mapping Database 

Previous integration systems, such as SRS and GenMapper, determine corresponding 
objects between two sources using a multi-way join operation along the shortest, 
automatically determined path connecting them with each other. This approach leads 
to several problems. First, the shortest path may not always be the best one for joining 



Hybrid Integration of Molecular-Biological Annotation Data 215 

 

two particular sources. Other (probably longer) paths may deliver better data, e.g., if 
the involved sources are updated more frequently than those in the shortest path. Sec-
ond, the composition of many mappings can lead to performance problems, even for 
the shortest paths, if they are to be evaluated at run time. One solution to improve 
query time is to pre-compute and materialize all possible paths in the database. How-
ever, this would lead to an enormous amount of mappings and object correspondences 
(complexity O(n2) with n sources) which is fairly impractical to manage and update. 
We address these problems on the one hand by supporting several alternative paths, 
which can be selected by the users according to their preference or analysis needs. On 
the other hand, instead of pre-computing join paths between all sources, we identify a 
central source and pre-compute only the join paths between the remaining sources to 
the central source, through which the join operations are performed at run-time. 
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Fig. 4.  Metadata Management in ADM and Mapping Database 

Similarly to COLUMBA, the data sources are connected in a star-like (multidi-
mensional) schema in our approach. In contrast to COLUMBA, we maintain the map-
pings in a separate database for optimized join processing and support alternative 
mappings bet-ween a source and the central source. Figure 4a shows the database 
schema of the mapping database. There is a center table for the central source and a 
mapping table for each additional data source. All objects of the central source are 
uniquely identified by the key Center_ID. These ids are used as foreign keys in the 
mapping tables to represent the object relationships at the instance level. Note that a 
mapping table is used to maintain all mappings of different paths between the respec-
tive source and the central source. Each path is identified by a Path_Id identifier re-
ferring to a specific path which has been used to pre-compute the mappings. Every 
supported path is described in the ADM database including metadata such as its name 
and the involved intermediate sources (see Subsection 5.2).  

For example, assume we want to relate genes from UniGene with annotations from 
Ensembl. Neither UniGene nor Ensembl maintain a direct mapping to each other. 
Hence it is necessary to relate their objects through common objects in other sources.  
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By analyzing the set of available mappings, we could identify UniGene-Locuslink-
NetAffx-Ensembl as a possible join path. Without pre-computation, three mappings, 
each between two neighbor sources in the path, have to be retrieved and successively 
composed. In our implementation, the mapping table Center_UniGene provides a 
direct mapping Locuslink-UniGene. The mapping table Center_Ensembl contains the 
mapping Locuslink-Ensembl, which has been previously pre-computed using the path 
Locuslink-NetAffx-Ensembl. Hence, we need only to join these two mappings. 

The number of the mappings to be pre-computed and materialized in the mapping 
database is linear with the number of the sources to be integrated. The support for 
alternative join paths does not affect the linear complexity (k*n mappings with n 
sources with k alternative mappings on average per source). New annotation sources 
can easily be added by creating new mapping tables to hold the corresponding map-
ping data. This does not affect the run-time complexity because the join operations 
within the mapping database never involve more than 2 mappings (source-center-
source). Mapping tables for sources that are no longer required can be removed. Stor-
ing mapping data for each source in separate mapping tables simplifies the data up-
date task. In particular, a mapping can be easily updated by deleting it and inserting 
the new one. The local copies of annotation sources can be independently replaced in 
SRS by a new version. 

The prerequisite to integrate a new source is that there is at least one mapping path 
between it and the central source or that such a path can be constructed by joining 
existing paths. Therefore, the selection of the central source plays an important role in 
this integration approach. Quality criteria, such as update frequency and acceptance 
by the users, should be considered. Furthermore, if the source already provides direct 
mappings to many other sources, these mappings can be taken to quickly construct the 
mapping database. For example, Locuslink and SwissProt represent reference sources 
for gene and protein annotations, respectively, and maintain a large number of map-
pings to other (smaller) sources. Hence, they are good candidates for the central 
source to integrate annotations for gene and protein analysis. 

5.2   The ADM Database 

Figure 4b shows a portion of the ADM database schema holding metadata about the 
integrated data sources. The Source table records a unique source identifier (Db_Id) 
and the source names. The available attributes of a source are stored in the table At-
tribute, which also contains their SRS-specific names used to translate the user query 
into a SRS-specific query. All join paths, for which a mapping is materialized in the 
mapping database, are stored in the Path table. The path name concatenates all names 
of sources that have participated on the join path. Hence, the user can easily differen-
tiate between alternative mappings and identify one for her need. Currently, we im-
port this data partly manually and partly automatically by means of specific database 
scripts, which extract metadata from the corresponding sources. Subsection 6.2 dis-
cusses the process of using this metadata to automatically generate web interfaces for 
query specification. 



Hybrid Integration of Molecular-Biological Annotation Data 217 

 

6   Query Processing Within the Query Mediator 

6.1   Query Types 

The query mediator supports two kinds of queries, projection and selection queries, 
according to the specific requirements of expression and annotation analysis, respec-
tively (see Subsection 3.1): 

• Projection queries support expression analysis and return a uniform view with 
user-specified annotation attributes for a given gene group. In a query, the attrib-
utes may stem from different sources. 

• The goal of selection queries is to identify sets of genes showing some common 
properties. This can be done by applying filter conditions on the corresponding an-
notation attributes. The gene sets can then be used in expression analysis to com-
pare their expression behavior. 

These two query types differ from each other in their input and output data. Projec-
tion queries need a gene group as input while selection queries produce a gene group 
as output. However, they are processed in the same way by associating genes with 
annotation attributes from the selected sources. 

6.2   Query Formulation 

The query web interface is generated automatically using the source-specific metadata 
stored in the ADM database. The user formulates queries on the web interface by 
selecting relevant attributes (projection queries) and specifying filter conditions  
(selection queries). Figure 5 shows an example of a selection query to identify all 
genes, which are located on chromosome 4 and are associated with the biological 
process cell migration. 

2 14

5

3

 

Fig. 5. Query Formulation on the automatically generated web interface 

A query may consider attributes (1) stemming from different sources (2). For each 
attribute, a filter condition (3) can be specified allowing for exact or pattern matching 
queries. In our example of Figure 5, the asterisk in front of the filter value ''cell mi-
gration'' characterizes a similarity search; the other two values are used for exact 
search. Furthermore, the user has to specify the mapping to connect the source of the 
selected attribute to the central source by selecting a join path (4). Multiple conditions 
can be added and combined using the logical operators OR, AND and NOT whereby 



218 T. Kirsten et al. 

 

OR has the lowest and NOT the highest priority in the query evaluation process. Fi-
nally, according to the type of genes to be returned, a mapping between the central 
source and the target source is to be selected (5). 

While SRS only supports to filter attributes of the source from which the data is to 
be retrieved, our implementation supports the combination of attributes from different 
sources within a selection query. Moreover, our implementation provides the possibil-
ity to combine attributes of different sources (projection) within the same query, 
which is also currently not directly supported by SRS. 

6.3   Generation of Query Plans 

From the user specifications on the web interface (see Figure 5), the query mediator 
generates a SRS-specific query for later execution by the SRS server. This process is 
performed in three steps, Block formation to split the queries into blocks according to 
the logical operators, Grouping of source-specific attributes to determine and group 
subqueries on attributes belong to the same source to be executed together, and As-
sembling SRS query to generate the final query in SRS-specific syntax and terms. 
Figure 6 illustrates these steps using the example query from Section 6.2. We discuss 
the single steps in the following: 

1. Block formation: First, the filter conditions of a selection query are divided by the 
logical operator OR into single blocks. Each block contains either one or multiple 
filter conditions connected with each other by the AND operator. Our query exam-
ple from Section 6.1 does not contain the OR operator. Hence, there is only one 
block constructed (see Figure 6, Step 1) holding all three filter conditions. This 
step is not necessary for projection queries, which do not require filter conditions 
and build a view for all specified attributes. 

2. Grouping of source-specific attributes: Within each block obtained from Step 1, 
the attributes and filter conditions are grouped according to their data source and the 
mappings to the central source. Each group of attributes and filter conditions con-
cerning the same source and mapping will be valuated together in a subquery. Figure 
6, Step 2, shows two identified groups a and b for the attributes Category and Proc-
ess of GeneOntology, and the attribute Chromosome of Ensembl, respectively. 

3. Assembling SRS query: The source and attribute names are replaced by SRS-
internal names, which are previously captured and stored in the ADM database. 
The names of the selected mappings, i.e. the paths, are substituted by their identifi-
ers in the mapping database. For example, Figure 6, Step 3, shows in Line 3 the sec-
ond and third filter conditions specified on the web interface. The source GeneOntol-
ogy and the attributes Category and Process are replaced by the internal names 
GoTerm, typ and tna, respectively. SRS is then invoked by calling its interpreter 
''getz'' (Line 1). 

From the SRS-specific query in Figure 6, Step 3, we can see, that the objects of 
EnsemblGene and GoTerm are first identified by applying the corresponding filters 
(Lines 2 and 3) and then uniformly mapped to the central identifier Center_Id (Line 
2) using the mapping ids 1 and 2, respectively. The resulting central identifiers are in 
turn mapped to the target data source NetAffx using the mapping with id 5, (Line 1). 
The result of the query consists in a set of NetAffx accessions indicating the corre-
sponding genes. 
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1. Step: Block formation
Block    Path                                                   Sourcee              Attribute           Filter value

1       Ensembl>NetAffx(Set U95)>LocusLink   Ensembl       Chromosome    4
1       GeneOntology>LocusLink                        GeneOntology    Category           biological_process
1       GeneOntology>LocusLink                        GeneOntology    Process              *cell migration

2. Step: Grouping of source-specific attributes
Block  Group  Path                                              Source                 Attribute          Filter value

1         a      Ensembl>NetAffx(Set U95)>LocusLink   Ensembl             Chromosome   4
1         b      GeneOntology>LocusLink                    GeneOntology    Category          biological_process
1         b      GeneOntology>LocusLink                    GeneOntology    Process            *cell migration

3. Step: SRS-Query assembling
1 getz -vf "accession" "([Mapping-pid:5]

2 < (Center < ([Mapping-pid:2]<([EnsemblGene-cnm:4]))

3 < ([Mapping-pid:1]<([GoTerm-typ: biological_process] & [GoTerm-tna:*cell migration]))))  

Fig. 6. Steps for creating the Query Plan 

6.4   Extraction and Result Transformation 

According to the complexity of the user query specified on the web interface, one or 
multiple SRS-specific queries are generated and executed. For each such query (e.g. 
shown in Figure 6, Step 3), SRS returns the result as a XML stream. The stream is 
then parsed by the query mediator to extract the relevant data. The query mediator 
then assembles the extracted data of all streams into an internal data structure for later 
 

b) Result of a 
projection query

a) Result of a 
selection query

 

Fig. 7. Results of Projection and Selection Queries 
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visualization or export. It is also able to perform compensation routines for those 
functions, which are not yet supported in some DBMS, such as intersection in 
MySQL, and has not been considered in SRS. A gene group as the result of a selec-
tion query can be used as input for a projection query to obtain other annotations for 
the genes of interest. On the other side, from the result of a projection query, the user 
can also identify the relevant genes and save them as a new gene group for further 
queries. The exchange of gene groups between the queries allows us to perform suc-
cessive refinement for an initially large set of genes. 

Figure 7a shows a portion of the result for the example query in Section 6.2. In par-
ticular, it contains a set of NetAffx genes which are localized on chromosome 4 and 
known to have a function in the biological process cell migration. The genes are 
stored in a gene group, for which a projection query is performed to obtain an annota-
tion view as shown in Figure 7b. In particular, the UniGene accession, the Locuslink 
gene name, and the all functional annotations of GeneOntology are included in the 
view, based on which the user can further judge the relevance of the genes 

7   Performance Analysis 

For testing the integration approach and measuring the performance we used an Intel-
based platform with the following hard- and software configuration. 

Hardware: Software: 
CPU: 4 x Intel Xeon 2.5 GHz OS: Linux, Fedora 2.4.22 
RAM: 8 GB DBMS: IBM DB2 8.1.0 

MySQL, Version 4.0.17-max 
  SRS-

Server: 
SRS Relational 7.3.1 for Linux 

  Java: Java 2 SUN Platform, 
Standard Edition, Version 1.4.2 

The data warehouse GeWare and the ADM and mapping databases are managed by 
the relational database system DB2 of IBM. The query mediator and all GeWare 
functions are written in Java. SRS was installed on the same machine together with 
the locally replicated sources Locuslink (file-based), Ensembl (MySQL) and GeneOn-
tology (MySQL). 

We focus on two performance tests investigating the query execution times for dif-
ferent result set sizes. To determine the time overhead induced by SRS, we examine 
the difference in query time between using SRS to query a relational database and 
accessing the database directly, i.e. without SRS1. We measure the elapsed time of 15 
different queries only involving the Ensembl database in MySQL. Each query uses a 
different filter condition for the attribute des (gene description) to return result sets of 
different size. The queries are repeated 20 times in order to determine the average and 
standard deviation (shown as error bar) of the elapsed time. 
                                                           
1 To execute a query, SRS in turn creates a query plan consisting of SQL statements to access 

the corresponding relational database. We use these SQL statements to perform the test in the 
latter case, i.e. accessing the database directly. 
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a) Query Time of SRS Projection Queries b) Query Time SRS/MySQL Queries  

Fig. 8. Performance of projection and selection queries using SRS and MySQL 

Due to the large difference in query times, we first show the result for projection 
queries using SRS in Figure 8a and the remaining results, i.e. for selection queries 
using SRS and for both selection and projection queries directly accessing MySQL in 
Figure 8b. Please recall that selection queries only return the accessions of the identi-
fied objects, while projection queries return the objects together with the retrieved 
annotations. 

W.r.t to the increasing size of the result set, we observe a significant linear increase 
in query time for projection queries in SRS (Figure 8a). For selection queries, SRS 
also requires linear time w.r.t. to the size of the result set (Figure 8b). However, selec-
tion queries can be performed much faster than projection queries in SRS. On the 
other side, we observe almost negligible query time when directly accessing MySQL. 
For larger result sets, the query time remains almost constant. This leads to the con-
clusion that SRS produces much time overhead in processing the data obtained from a 
relational source. 

The second test determines the query time for the single steps in the execution of a 
query involving SRS. For this purpose, we define 11 different queries uniformly in-
volving Ensemble, NetAffx, and the center source Locuslink. They all employ the 
mappings Ensembl-Locuslink and Locuslink-NetAffx in order to identify NetAffx 
genes having a particular pattern in the attribute des (gene description) of Ensembl. 
Figure 9 shows the result of this test. Each query is again repeated 20 times in order to 
determine the average and standard deviation (shown as error bar) of the elapsed time. 

The measured values for each step subsume the elapsed time of all its previous 
steps. For example, Step 2 performing a mapping between Ensembl and LocusLink 
subsumes Step 1 to select relevant data from Ensembl. The time of the last step, i.e. 
Step 4 mapping of the identified Locuslink genes to the required NetAffx genes,  
represent the entire elapsed time of the query. Overall, the query time increase linear 
with the amount of the data to be retrieved and is acceptable for even large amount of 
result data. The first step, selection from Ensembl, performs fastest and the elapsed  
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Fig. 9. Query Time of Portions of Selection Queries to Ensemble 

time remains relatively constant for different size of the result set. As we can see in 
Figure 9, querying the mapping database (Step 2-4) to evaluate the specified map-
pings is more expensive than accessing other sources (Step 1) and thus exhibits high 
potential for performance optimization. Currently, the mapping database is com-
pletely managed and accessed by SRS like other sources. As an alternative, the query 
mediator may be implemented to directly access the mapping database, so that we 
obtain more opportunities for tuning. 

8   Conclusions 

We presented a hybrid approach for the integration of annotation data from public 
data sources to support expression analysis of genes and proteins. Expression data is 
physically stored together with diverse experimental descriptions in a data warehouse 
supporting high performance expression analysis. Up-to-date annotation data is virtu-
ally integrated using a mediator and is retrieved on demand according to the analysis 
needs. The data warehouse and mediator are coupled by means of a query mediator, 
which exploits existing mappings between the integrated sources for join processing. 
The mappings are explicitly computed to involve a common central source, through 
which join operations can be efficiently performed at run time. The use of the a pow-
erful commercial product, SRS of LION bioscience, for the mediator and the generic 
schema of the database to store the pre-computed mappings allows us to easily inte-
grate a new source or update an existing source. The integration approach has been 
implemented as an enhancement of our gene expression data warehouse, but is also 
applicable to other domains, e.g. for protein analysis. The performance evaluation has 
shown the practicability of our integration approach. 
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Abstract. Unbiased metabolomic surveys are used for physiological, clinical 
and genomic studies to infer genotype-phenotype relationships. Long term re-
usability of metabolomic data needs both correct metabolite annotations and 
consistent biological classifications. We have developed a system that combines 
mass spectrometric and biological metadata to achieve this goal. First, an XML-
based LIMS system enables entering biological metadata for steering laboratory 
workflows by generating ‘classes’ that reflect experimental designs. After data 
acquisition, a relational database system (BinBase) is employed for automated 
metabolite annotation. It consists of a manifold filtering algorithm for matching 
and generating database objects by utilizing mass spectral metadata such as 
‘retention index’, ‘purity’, ‘signal/noise’, and the biological information class. 
Once annotations and quantitations are complete for a specific larger 
experiment, this information is fed back into the LIMS system to notify 
supervisors and users. Eventually, qualitative and quantitative results are 
released to the public for downloads or complex queries. 

1   Introduction 

Technology advances during the last decade have opened new ways to approach 
cellular phenotypes. These advances are summarized today as ‘-omics’ platforms 
which generate quantitative and qualitative data on cellular components such as 
mRNA transcripts, proteins, or metabolite levels (metabolomics [1]). Metabolomics is 
a comparatively inexpensive though reliable and informative tool to monitor 
metabolic states in a variety of different genetic or environmental perturbations. Both 
for testing and for verifying biological hypotheses, a number of explanatory variables 
and background information is needed to assist the interpretation (or induction) 
process. Specifically, there is no way to use data from –omic databases without 
explaining which biological designs were underlying the experiments. With other 
words, data without metadata are junk. It is a general consensus that scientific 
experiments and conclusions must be at least explained in such a way that, in 
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principle, the experiments could be repeated. However, labeling experiments with 
(biological) metadata is clearly lagging behind descriptions of processes in the data 
generating technical platforms. It is just now that the metabolomics community has 
started to develop standards tracking the way from sample to sample processing, data 
acquisition, data export and normalization to statistics. The ArMet group [2] proposed 
a generalized framework including various modules to describe a metabolomics 
experiment. This framework does not detail which (biological or instrumental) 
metadata are essential to re-use metabolomic experiments for other queries or under 
other perspectives, and which ontologies need to be used. A related opinion statement 
on the minimal requirements for a metabolomic experiment (MIAMet) emphasizes 
the importance for traceable metabolic annotations [3] but does not further embark on 
biological metadata. A similar trend is seen in the more mature fields of proteomics 
(the PEDRo standard [4, 5]) and transcriptomics (the MIAME standard [6). For gene 
expression experiments, a study-annotator has been developed for describing 
experimental designs [7]. However, users need to fill 25 forms which relate to 68 
tables, and understand and follow pre-defined ontologies that are not authorized by a 
wide consensus in the biological community.  

For metabolomics, an extensive discussion forum is formed by the international 
working group on Standard Metabolic Reporting Structures (SMRS) led by the 
Imperial College, London, UK [8]. It was summarized in the 2.2 version of the draft 
document that ‘It should be clear from the previous discussion that the state of 
biological standardisation for metabonomics experiments is currently non-existent.’ 
[9] The very reason for this inadequacy may be the sheer difficulty to design a 
comprehensive yet simple schema (and user front end!) to capture the ingenuity of 
experimental designs in biology. We here present pragmatic solution that helps 
biological researchers defining their experimental design in a coherent and logical 
metadata structure, with a focus on user friendliness. Together with instrument-related 
metadata, this design information is used to generate the sample sequence schedule, to 
define the validity of detected metabolic peaks and to form the basis for statistical 
treatments of result data. However, we do not envision a direct comparability of the 
actual data readouts between different experiments: there are no two biological 
experiments that are totally identical. In fact, it is even difficult to achieve identical 
results from independent replica setups of experimental designs within a given 
biological laboratory. The reason for this difficulty in comparability is that there are 
many fuzzy factors contributing to the actual (metabolic) phenotype of a given 
individual organism that are hardly controllable in tight manners. Nevertheless, 
quantitative data outputs will be comparable with respect to trends and magnitudes of 
control of metabolism, even between laboratories or technology platforms used. In 
this respect, any information on biological metadata descriptions will enable 
researcher to (a) carry out own data interpretations and calculations to generate novel 
hypotheses or (b) combine and compare experiments that share similarities on higher 
abstraction levels such as ‘abiotic stress in plant’ which would comprise cold, heat, 
light or nutritional stress. 
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2   Hierarchical Metadata Defining Biological Experimental  
Classes 

We have adopted the general framework laid out by the ArMet group (Architecture 
for Metabolomics) which consists of nine generic modules [2]:  

1. Admin: Informal experiment description and contact details. 
2. BiologicalSource: Genotype and specification of biological source material (BS). 
3. Growth: Environments in which the biological material developed. 
4. Collection: Procedures followed for gathering samples BS material. 
5. SampleHandling: Handling and storage procedures following collection. 
6. SamplePreparation: Protocols sample preparation prior to data acquisition. 
7. AnalysisSpecificSamplePreparation: Protocols specific to data acquisition. 
8. InstrumentalAnalysis: Process description of data acquisition including quality 

control protocols. 
9. MetabolomeEstimate: The output of processed data including data processing 

protocols. 

In the implementation period of ArMet, it was found that the accurate description 
of the biological background of a given sample is the most difficult, but also most 

important part of the framework. 
Many steps of modules 4-9 can be 
easily standardized or described 
since these are technical procedures 
that are always performed in a 
defined manner, at least for a 
specific routine protocol in a given 
laboratory. However, the biology 
experimental part is highly flexible 
and depends solely on the 
hypothesis underlying the study. 
Therefore we decided to use a 
flexible XML data structure, in 
order to match a large variety of 
experimental designs. Given the 
flexibility and breadth of biological 
studies, capturing all biological 
descriptors is technically and 
intellectually demanding, if not 
impossible. It is equally difficult to 
prescribe which of the (potentially 
very complex) steps of the 
biological designs are required from 
the users, and which are just 
optional. Furthermore, a very in-
depth and comprehensive database 
structure implies that users face 
highly complex entry forms (and 
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Fig. 1. Description hierarchy for BioSource. Use 
of controlled vocabularies is ensured for specific 
entries for which authoritative external 
databases have been assigned (such as NCBI). 
Others are cross-checked by dictionaries 
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underlying ontologies) which increases the risk of dummy entries, missing entries or 
to abstention from populating the database. We have therefore opted for a 
compromise: we request users to enter the minimal information that would also be 
required for publishing data in a peer-reviewed scientific journal. In addition we have 
implemented a structured way to capture this metadata reflecting the underlying 
biological design. For example, for some relationships and ontologies there are 
authoritative resources supporting the description of BioSources (BS). Besides species 
names and synonyms, the NCBI database [10](figure 1) supports taxonomic 
relationships, ultimately up to the top levels ‘super kingdom’ (arachae, bacteria, 
eukaryota, viroids and viruses). The underlying taxonomy can be used to distinguish 
unicellular microorganisms and multicellular (higher) organisms: the latter always 
consist of distinct ‘organs’ which may further be specified by tissue type, cell type or 
subcellular compartment that is under study. Microorganisms lack these and can only 
be further specified by potential subcellular compartments. For setup of an 
experiment, users can enter more than one species or more than one organ, each of 
which then may further get specified by additional information. Further authoritative 
databases are added that help specifying subgroups of species. For example, for the 
model plant Arabidopsis thaliana 831 ecotypes are notified in the Arabidopsis 
information resource TAIR [11], and thousands of well-described Arabidopsis mutant 
lines, each with a specific ecotype genetic background. All these genetically different 
Arabidopsis lines are called ‘accessions’ and are assigned by a reference identifier in 
TAIR. As more and more biological communities establish such repositories, these 
are implemented in our experimental setup designs and made mandatory.  

However, even on the level of ‘organs’ there are not many such compulsory lists. 
For plants, a comprehensive list of organs is given by plantontology.org [12], 
however, we have not yet identified an accepted standard for naming all mammalian 
organs, tissues, cell types or eukarytic subcellular compartments: in fact, this is a huge 
gap in ontology work [13] and frameworks describing relationships between 
hierarchical levels in biology. In such cases we gradually extend controlled 
vocabularies by (a) using publicly available lists such as  tissue DB [14] that have not 
yet reached the level of a commonly accepted de facto standard and by (b) extending 
vocabularies used for experimental description in our own database after manual 
curation. All entries, include strings of flow text descriptions are automatically tested 
and corrected for spelling by dictionaries and synonym lists. 

For a given experiment, all these entities together describe the number of different 
biological specimen to be tested. It is important to note that each experimental setup 

necessarily requires description of both BioSource 
and Growth condi- tions. It can be expected that 
metabolic responses on perturbation of growth 
conditions have at least the same magnitude as 
effects that are due to genetic changes. This 
observation is so general that it must be implemented 
as independent and equally important metadata into a 
design structure. The resulting biological setup will 
therefore always span a matrix M = BioSource1…n    *  
Growth1….n. 

 

Fig. 2. A simple experimental 
design BioSource x Growth for 
testing biological hypotheses. 
Each box in the matrices defines a 
class with N 6 biological 
replicates as members 

growth history
BS1  N

BS2 N
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The simplest experimental design that can be devised may compare two different 
BioSources (figure 2), or, alternatively, the same type of BioSources under two 
different Growth conditions. There is no BioSource that has not been grown in a more 
or less defined manner. Therefore, the factor ‘Growth’ is a general property for all 
biological specimens, however, for some organisms like human patients there is no 
detailed experimental design. In such cases, generic terms like ‘western diet, age’ may 
be used apart from potential treatments (see below) like therapies. This design is 
equivalent to the well known matrix ‘Genotype x Environment’ that is used in 
classical crop breeding. It is important to recognize that each of the different 
perturbations (BioSource or Growth) may result in different metabolic states which 
may be separated into groups or classes for statistical analysis of the metabolic levels. 
For any given experiment, parts of the growth conditions are identical to all 
BioSources. Otherwise, any comparison between the classes would be impossible and 
senseless! These past growth conditions may be described as a growth history G1. For 
each species, a minimum set of growth metadata is required whereas other metadata 
are optional. In plant molecular biology, a single growth history may be defined for 
which details would be required on sowing and harvest date, harvest time, daylight 
period, light intensity, humidity, developmental stage, growth medium and type of 
growth location. Unfortunately, there is no consensus or ontology for this minimum 
set of ‘background Growth metadata’. For a given biological field, experimental 
descriptors may have been passed on as ‘necessary’ by journal editors, reviewers and 
university courses. For example, it is most common to give details on light fluxes in 
plant biology when explaining the experimental setup in environmental growth 
chambers. However, it is far less common to say which actual light source was used 
and the emission spectrum of this, although it is known that plants do react very 
sensitively on higher or lower levels of red and blue parts of the light spectrum.  

In the same way like molecular biologists will vary the genotype (or organ or cell 
type of a given genotype), physiologists and toxicologists will study variations of 
Growth conditions (including developmental stages) and external environmental 
impacts such as drugs (‘treatments’). Each of these growth conditions may again split 
into different attributes and properties. An example would be ‘variation of 
temperature’ in a cold stress experiment in plant physiology, which might utilize high, 
low, and control temperatures, extending the matrix of BS1 and BS2 (each with three 
organs) 6 x 3 = 18 biological groups or classes. It is important to note here that the 
generation of these classes as derived conceptual information from the biology 
metadata is fed into various other locations within the mass spectral annotation 
system, most importantly into the data acquisition schedule, the metabolite 
verification algorithm (see section 3.1) and the statistics workflow. It can easily be 
imagined that this treatment might be followed in a time dependent manner, which 
would further increase the matrix (and the complexity of the experimental design). If 
four time points were included, the overall sample matrix would then be of a 
dimension of 6 x 3 4 = 72 different biological classes. In order to perform statistical 
tests on the resulting metabolomic data, it is wise to use more than six samples per 
biological class, say 10 independent plants. Consequently, 720 samples would be 
delivered for metabolite analysis: an undertaking that can indeed be carried out in a 
reasonable time frame and budget in metabolomics, but which would be less feasible 
for more costly and slower transcriptomic or proteomic experiments (i.e. in case 



Setup and Annotation of Metabolomic Experiments 229 

 

global gene or protein expression levels were to be analyzed). In this respect, 
metabolomics is different to other –omics techniques because very detailed and 
structured experimental designs are more likely to be performed with sufficient 
replicate numbers to carry out statistical tests on the resulting experimental data. In 
principle, a hierarchical tree of ‘Growth’ may be drawn (figure 3).  

 spec

spec

specspec

spec

growth history

treatment A1 treatment An

spec spec

treatment B1…Bn treatment B1…Bn

spec

spec

specspec

spec

growth history

treatment A1 treatment An

spec spec

treatment B1…Bn treatment B1…Bn

 

Fig. 3. Flowchart for the description of ‘Growth’. Very complicated experimental designs may 
be performed, based on the physiological tests that biologists devise. Further specifications 
(spec) may be entered but are not required 
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Fig. 4. Pharmacological comparison of two rat strains, four organs, and treatment with two 
drugs with two different doses which is followed at four time points 

This Growth design hierarchy is obviously dependent on the underlying metadata 
from BioSource: it does not make sense to require ‘light conditions’ from a human 
blood plasma study, and it also is not reasonable to request ‘gender’ from a plant. 
However, for a given BioSource there is set of growth metadata that is always 
requested (such as age, sex and other parameters for human samples). The usability of 
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this flowchart for a variety of areas of biological research is exemplified by a 
pharmacological test setup. The flexible BioSource x Growth matrix allows an easy 
setup of this experiment which may consist of only two rat strains (control and mutant 
line), on which the effects of two drugs in two different doses is tested on four time 
points in the blood plasma, and (at end time point 4), also for liver, heart and kidney. 
Such a pharmacology design is depicted in figure 4. It is important to note that each 
individual biologist who defines an experiment also defines which metadata are 
mandatory: in this respect, this metadata layout does not prescribe the biologist what 
to do but helps scientists to describe the underlying idea behind the design. For both 
BioSource and Growth, users may want to add further specific attributes to tables. 
These cannot be restricted by ontology databases or dictionary comparisons. An 
example could be ‘patient ID codes’ for clinical samples.  

2.1   Technical Implementation of SetupX 

We call our system ‘SetupX’ which sets up experimental design classes and 
subsequently also manages laboratory workflows and user queries. Although 
developed for a certain purpose, SetupX’ architecture allows the system to be used in 
other environments after small adaptations and configurations. A modular structure of 
this system guarantees that it is reusable, easy to maintain and expandable [15]. All 
separate functions are offered and used by SetupX in different smaller modules. 
Communication and interaction between these modules is interceded by the mediator 
layer. Therefore, different modules can be placed into other environments in short 
time without requiring major modifications.  

Currently there are two access possibilities implemented that allow use of six core 
modules of SetupX. Any external access to the core modules is shielded by the 
mediator. One way of external access is the web service module which is based on 
SOAP (Simple Object Access Protocol) and which allows a platform independent 
administration and use via XML communication. The database is a native XML 
database that supports storage of metadata in true XML and that also supports the 
query language XQuery. Native XML databases support data that are not underlying a 
fixed schema, which is difficult or almost impossible using relational databases.  

A swing-user-interface is connected to the web service module for system 
administration. The second type of external access is the JSP/Servlet module, which 
generates the standard user-interface for external collaborators and laboratory staff. 
Part of this user interface is the dynamically generated form for defining biological 
experiments and classes. The six core functions of SetupX include user 
communication and management, interaction with BinBase, generating and writing 
schedules for the mass spectrometer (based on class information), and eventually the 
definition of the laboratory workflow itself (figure 5).  

1. User communication and management 
Information stored in BinBase and SetupX must be regarded as confidential. This 
policy is enforced by defining user authorisations for the different roles. UC Davis 
users will use their account granted by the campus’ Kerberos system. With this 
account, additional personalized information (e.g. affiliation, address, email, 
telephone etc) is referenced by SetupX through LDAP-directories (Lightweight 
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Directory Access Protocol). For non-campus 
users, SetupX needs to generate an internal 
authentication. Users need here state once 
their personal information. Users, and 
particularly metabolomics staff members, 
can check the status of laboratory workflows 
directly by logging in, or are notified by 
email when predefined workflow parts have 
been finished or when problems occurred.  

2. Interaction with BinBase 
Users can request BinBase annotation result 
files through SetupX which activates the 
BinBase export function by EJB (Enterprise 
Java Beans) and JMS (Java Messaging 
Service, a Java interface to Message-
Oriented Middleware). BinBase itself 
requests information about class labels of 
samples using EJBs. 

3. Generating and writing schedules for the mass spectrometer 
Through the user interfaces, classes and the number N of samples per class are 
entered. SetupX uses this information to generate a run sequence schedule for the 
mass spectrometer and to communicate this schedule to the instrument in an 
instrument-specific format. Once the sequence has been started by laboratory staff, an 
internal scanner is used to grab any information delivered by the mass spectrometer 
with regards to success or potential failure messages. This information is then fed 
back into SetupX using the same instrument-specific connector.  

4. Workflow definition and surveillance 
A workflow manager defines the execution sequence of the different modules in order 
to allow flexible adaptations to new laboratory requirements. In order to make the 
system independent from the current laboratory workflow definition, a workflow is 
compiled in a single configuration file. This allows easy update of workflows in case 
of changes of laboratory protocols or data processing modifications. 

5. Persistence and document module 
SetupX stores all documents such as experiment description, sample definition etc. as 
XML files. Consequentially a genuine XML database is used as repository for which 
XQuery [16] serves as powerful query language. We found XML structure an 
adequate choice given the fact that the definition of biological classes does not allow 
a unique structure. XML is known as a simple, very flexible text format, which allows 
the definition of the hierarchy used for the definition of the experiment in an excellent 
way. Storing this information in a relational database management system would be 
inappropriate because a large overhead would be generated for mapping this 
information from XML to the relational structure and back. Speed is not an important 
aspect for SetupX because no large computational queries are foreseen. Furthermore 

Fig. 5. Modular structure of SetupX and 
its connected components 
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both the input and export format is XML. Since the database stores the information as 
unmodified XML the data has never to be mapped.  

6. Graphical user interface 
One of the main requirements of the new developed LIMS system was that it had to 
be so user friendly that every user had to be able to use it without any introduction by 
the staff of the lab and even without reading manuals. The major request was 
technical – the user interface had to build and generate itself dynamically, because the 
structure which is represented by the graphical user interface will never, as mentioned 
above, be fixed to a final set of attributes. We have first explored using a Swing User 
Interface, similar to the PEDRo-approach. The experimental class structure was 
defined through an XML schema, and based on this schema the Client-Application 
created the graphical user interface. However, this schema driven client never 
matched the requirements of user friendliness and usability, because any fine tuning 
of class definitions and sample specifications were constrained by the technical 
limitations of the underlying XML schema. Instead we have implemented a server 
side dynamical created user interface based on Java Server Pages and Java Servlets. 
This solution is more independent from the experimental design than XML schema. It 
is therefore possible to add any functionality to this interface that can be implemented 
in code including functions like real time vocabulary checks or even the adoptions of 
the user interface to the selected items. 

2.2   Experimental Metadata Supporting Other ArMet Modules 

Some ArMet modules demand information that is usually stored in classic LIMS 
implementations such as user logins and user rights. For our case, slight adaptations 
were needed because many biological experiments are owned by more than one user: 
it is mandatory in our LIMS implementation to name the principal investigator 

(usually a faculty 
member), but also in 
addition to name the 
person who was 
responsible for performing 
the experiment (who may 
be research associate or 
staff). Other modules may 
be dependent on a given 
laboratory setup or a given 
BioSource: protocols to 
prepare samples from 
plants for metabolomic 
surveys may be totally 
inadequate for profiling of 
human blood plasma.  

In order to ensure and 
monitor long term data 
quality and reusability, it 
is good laboratory practice 
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Fig. 6. Schematic flow diagram of Standard Operating 
Procedures (SOPs) in an example for an experiment with 
BioSource: human blood plasma samples 
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to perform any work by so-called ‘Standard Operating Procedures’ (SOPs), both in 
industrial and semi-industrial analytical environments such as academic core 
laboratories. Such SOPs include all characteristics needed for direct implementation 
of sources of metadata into the BinBase system: they include authoritative codes, 
identifier numbers, clear descriptions of necessary steps and also allowed deviations 
from protocols. An SOP differs from an academic laboratory protocol in that it must 
clearly lay out all aspects of a procedure. If a single item of the procedure is changed, 
it is necessary to state the reason for change, acquire data proving the validity of the 
change, reinstate permission by the laboratory authority (e.g. the principal 
investigator) and generate a new SOP number.  

Once an SOP is laid out for e.g. sample preparation of a given BioSource or data 
acquisition procedure, it can be made mandatory in a LIMS workflow structure 
(figure 6). The validity area of SOPs is always clearly defined, but there may be 
features in the details of SOPs that are shared with external SOPs like the generalized 
type of the instrument (example in figure 6: a gas chromatography coupled to mass 
spectrometry) or the type of sample preparation (example in figure 6: cold protein 
precipitation, silylation). Such higher levels of metadata descriptions yet need to be 
developed and cannot be made mandatory at present. For example, it is an experience 
that some analytical instruments are affected by mid-term technical drifts (e.g. in 
sensititvity). Often, the factors underlying these technical drifts are not well 
understood and can only be partly controlled. The bottom line of metabolomic 
experiments is to derive structured information from the acquired data (e.g. by 
multivariate statistics) and to interpret resulting data clusters by biological metadata. 
It is obviously of utmost importance that this metabolomic data structure is not 
affected by non-biological factors such as machine drift. A means to ensure this (apart 
from instrument quality control) is a randomization of all samples in a sequence, so 
that each class is, on average, affected in the same magnitude as all other classes. The 
easiest way to ensure this is by a random number generator, however, in the 
laboratory this is almost impossible to put into practice. Therefore, SOP 007_2005a 
envisions a square root blocking schedule of all replicate samples of each class as 
compromise between total randomization and laboratory practicability:  

nblock = Nclass        (1) 

If a class contains a total N=6 biological replicates, these would be randomized in 
three blocks of n=2 duplicates over the total instrument run sequence; if a class 
contains 16 biological replicates, these would be blocked into four blocks of four 
replicates. In summary, the SetupX module generates classes via biological metadata 
and enforces with this information a certain run sequence in the analytical laboratory.  

3   Mass Spectral Annotation and Quantitation: BinBase 2.0 

All samples are subjected to metabolome data acquisition by automatic liner exchange 
for gas chromatography/time of flight mass spectrometry (alex-GCTOF). The general 
output of this instrument is a three dimensional raw data matrix of (time x mass x 
intensity), which results in 10.8 mio. raw data points for a single sample (415 
masses/spectrum x 1300 s x 20 mass spectra/s). 



234 O. Fiehn, G. Wohlgemuth, and M. Scholz 

 

However, biological researchers can only interpret such data matrices if these are 
transformed into two dimensional data matrices (metabolite x intensity), since 
metabolite references are found in chemical or biochemical databases like CAS and 
KEGG and can thus be linked to other important biological objects like proteins and 
genes. The objective here is therefore to turn (time x mass) information into 
‘metabolite’ annotations in a routine, but completely unbiased way, and to enable 
queries in experimental sets of such data matrices.  
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Fig. 7. Deconvolution of raw metabolomic data. Left panel: Overlay of 4 out of 415 measured 
mass elution profiles (10 s of a total run time 1350 s, profiles for ions m/z 129, 131, 133, 204). 
Mid panel: Deconvoluted mass spectra of two adjacent, co-eluting peaks with Δtime = 1.35 s. 
Right panel: instrumental metadata labelling these two peaks. Mass spectra and metadata serve 
as raw data input in Binbase 2.0 

It is beyond the scope of this paper to outline theory and concepts of analytical 
mass spectrometry. It is important to know, though, that in the instrument each 
metabolite will fragment into more than one mass which will be detected in a finite 
time frame with an approximately Gaussian intensity time course and identical mass 
intensity ratios across this ‘elution’ time course. This time course is called a ‘peak’ 
with a unique mass/intensity pattern (called ‘mass spectrum’). The peak intensity 
maxima define the first kind of instrumental metadata, called ‘retention time’ (fig. 7). 
It is unavoidable in metabolomics that peaks overlap (co-elute) since a metabolome of 
a given sample easily comprises over 1,000 different metabolites. Many mass 
fragments may be shared between co-eluting peaks. Therefore, the first step of the 
algorithm is to deconvolute [17] or purify mass spectra from co-eluting peaks, with 
appropriately assigning the intensity of shared masses to each peak. For this 
deconvolution we utilize the instrument vendor’s software ChromaTOF 2.25. This 
software detects peaks in an unbiased way and exports one deconvoluted spectrum 
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per peak. In subsequent sections ‘peaks’ and ‘spectra’ are therefore used as 
synonyms. After deconvolution, a chromatogram comprises some 400-800 spectra, or 
a daily output of some 20,000 spectra per day and instrument. BinBase 2.0 then 
imports these spectra with accompanying metadata such as the ‘unique (model) 
masses’ that best describe the presence of a peak in the local environment. Further 
instrumental metadata are ‘peak purity’ (an estimate of the number, proximity and 
similarity of co-eluting peaks), ‘signal/noise’ (an estimate of peak abundance), 
‘apexing masses’ (all masses that share maximum intensity with the peak maximum 
of the unique mass) and other.  

3.1   The Filtering Algorithms in BinBase 2.0 

Each sample will generate a different number of deconvoluted metadata-labelled 
spectra. Unfortunately, metabolomic mass spectrometry data sets contain numerous 
spurious and noisy spectra which need to be detected and deleted prior to annotating 
and aligning the remaining spectra, and this needs to be performed for multiple 
samples (n>1,000) and eventually, multiple of such large experiments. In addition, 
there may be deconvolution errors reported by ChromaTOF which need to be detected 
and eliminated. We therefore set out to develop a filtering algorithm that enables 
metabolite detection and quantification concurrently with automatic extension of 
metabolic libraries.  

The objective of BinBase 2.0 therefore is to three-fold: (a) to annotate all exported 
spectra to known metabolic peaks that are already compiled as BINs in the database, 
(b) to automatically add new spectra to the list of BINs and (c) to allow dynamic user 
queries to export quantitative and qualitative metabolomic information after spectra of 
all classes have been annotated. A BIN is defined as a valid entry in the BinBase that 
has matched all mass spectral, instrumental and class metadata thresholds. In addition 
to the instrumental metadata, each BIN consists of a set of properties: mass spectrum, 
retention index (RI), quantification mass, list of unique masses, and a unique 
identifier number. BINs can be further qualified by super users with 1…n properties 
that link further metadata such as ‘metabolite name’, ‘ID code referring to external 
metabolic databases’, ‘list of synonyms’ or else.  

The general algorithm from spectra import to user query export is depicted in 
figure 8. It starts with importing and storing the .csv data files from all samples of an 
experiment. The algorithm proceeds by validating all spectra of a sample: check for 
presence and relative abundance of the unique ion, for presence of all apexing masses 
in spectrum, for deconvolution error dips, and for the number of spectra per 
chromatogram that exceed apex intensity thresholds and for the total number of thus 
detected deconvolution errors. Chromatograms that do not fulfil the latter two criteria 
will only be used for peak matching, but not for BIN generation. The algorithms then 
searches spectra of marker compounds that were physically spiked into the samples 
before data were acquired by using parametrized identification thresholds. With these 
marker compounds, retention indices (RI) are calculated from retention times to allow 
retention alignment. This is needed to counteract sample-to-sample retention shifts in 
the data acquisition procedure. The RI calculation is performed by polynomial 
regression because absolute and relative retention time shifts markedly differ from 
linear regressions at early and at late retention times. RIs are never altered or 
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manually adapted for a given data acquisition method, however, they will differ if 
chromatographic methods are changed. The algorithm then continues by sequentially 
(seq.) selecting all spectra by decreasing intensity (s/n) and testing, whether spectra 
can be annotated as existing BINs or, if they fail this annotation, if spectra could 
become new BINs. These decisions work through various filters: first, spectra need to 
fit into a retention index window, then they need to be labelled with a unique mass 
that is included in the BIN list of unique masses, afterwards they need to pass a mass 
spectral similarity filter (sim) that has different thresholds based on the intensity (s/n) 
and purity of the spectra, and last, spectra need to pass the isomer filter (iso) that 
selects the best of potentially several matching spectra for a given BIN. The similarity 
filter currently uses the INCOS algorithm [18], but in principle also other rules could 
be applied. Spectra that are sorted out in the isomer filter might still be able to match 
other (neighbouring) BINs and are therefore fed back into the annotation algorithm. 
Spectra that fail annotation to any existent BIN may generate new BINs. For this, they 

first need to pass mass spectral quality 
thresholds (MS) that are based on purity and 
intensity. Thresholds for the MS filter are 
more draconic than for the similarity filter to 
ensure that only abundant and pure spectra 
potentially become new BINs.  

Ultimately, a potential new BIN must pass 
the class filter before being validated. This 
filter demands that a new BIN is detected in 
at least 80% of all samples of a class in order 
to ensure that this BIN can be supposed to be 
a genuine metabolic entity and not a spurious 
contamination. This is also the basic reason 
why at least N=6 replicates of a given class 
need to be analysed, in order to ensure some 
level of statistical significance. Once all 
spectra of all classes of a given biological 
experiment have been annotated, the list of 
BINs is complete. Then, all spectra are again 
matched against the BIN list (postmatching) 
in order to warrant that all BINs (including 
the new BINs that were generated later in the 
process) are searched in all samples. Another 
reason for the postmatching process is that 
for some samples, spectra may not have 
passed the (higher) MS thresholds in the BIN 
generation but would pass the (lower) 
similarity thresholds in BIN annotation. 
Therefore, only by final postmatching the 
eventual result file can be regarded as 
complete. During the export process, each 
spectrum is quantified based on intensity of 
the BIN quantifier mass which is either 

Fig. 8. Algorithm for peak annotation 
and BIN generation. For details, see 
text 
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manually set by a super user or (as default value) it uses the ‘unique mass’ metadata 
during BIN generation. Various formats can be used for the final data export, 
depending on the user’s needs. To our notion this is the first published attempt to 
align and annotate (biological) mass spectra by both instrument-related and biological 
metadata. 

3.2   Technical Implementation of BinBase 2.0 

Spectra filtering and BIN databasing is performed in separated modules: it is not 
advisable to calculate values within a database but use DBs exclusively for queries 
and data handling. We have employed an SQL 97 conforming database for an 
efficient data administration and query. The newer SQL 2003 specification was not 
yet supported by all open source databases. In order to be independent from a specific 
(supported) database type such as Oracle or SAPDB we have used Java database 
connectivity (JDBC). It was carefully avoided to program any functions that would be 
specific to a certain DB type.  

BinBase 2.0 predominately consists of 1…n table relationships. It is interesting to 
note that we have implemented the two modules, BinBase and SetupX, in two 
different database structures: for BinBase 2.0, an SQL structure was found to be 
advantageous due the faster access that is achieved by relational databases with fixed 
structure, compared to the more flexible but slower XML structure which was used 
for the (flexible) SetupX system. Furthermore are SQL based systems more mature, 
offering a wide variety of public or commercial products. For example it is 
unproblematic to use either Oracle or SAPdb because only minimal adaptations of 
SQL queries are needed (if programming was done conforming to standards, and if 
vendor-specific extensions were not used). The largest problems we have encountered 
were found in storing of all mass spectra. Spectra are imported into BinBase as strings 
which we first approached to be separated and stored in tables. However, we detected 
that query times exponentially slowed down with increasing numbers of rows. 
Therefore spectra are now stored as ‘character large objects’ (CLOB) which are 
dynamically transformed when needed. This procedure has also slowed down 
performance rates, however, it was found to be still faster than querying tables. The 
BinBase database itself is configured via XML files, which was found to be a simpler 
and more flexible solution compared to INI files. Furthermore this configuration 
offered the possibility to dynamically upload new implementations of the used 
interfaces via Class.forName(). 

Other components such as SetupX or web interfaces are linked via EJB (Enterprise 
Java Beans) and JMX (Java Management Extensions). The JMX components enable 
starting, stopping or querying the status of implemented servers. The EJBs allow 
querying which samples are being processed or exported during longer sequences. 
XDoclet was used for generating EJB/JMX configuration files and helper classes. 
Three servers are implemented: an import server (for importing, matching and BIN 
generation), a postmatching server (for regular postmatching over the complete 
database) and a transformation server (for exporting data and file formatting). 
Currently, plain text, MS Excel and XML is supported. These servers can run 
independently or together with the EJBs on the JBoss application server.  
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Finally, front ends have been implemented. A plugin based on Eclipse 3/SWT is 
used as administrative front end. It includes visualization based on JFreeChart and 
allows database queries via a Hibernate framework. The Hibernate framework 
supports mapping database documents to objects. Dynamic SWT-tables and 
visualizations are created from these objects via Java Reflection-API. Therefore, these 
tables visualize the database contents, for example, all BINs with corresponding 
metadata. BINs can be modified or manually erased by super users only. A 
persistence layer is used for user access and user defined queries.  

4   Conclusions  

This is the first description of a combined system which uses the description of 
biological experiments to validate metabolic peaks from mass spectra and 
corresponding mass spectral metadata. Earlier publications have not detailed 
algorithms how (processed) mass spectrometric peaks are automatically validated and 
added to a database, but rather focused on database query options [19] or on 
comparing chromatograms on the base of summing mass spectral intensities [20, 21], 
instead of alignments of deconvoluted mass spectra and annotation of individual 
metabolites. The implementation of BinBase 2.0 enables annotating up to 0.5 mio. 
spectra per day which is far higher than the current production rate of 20,000 
spectra/day at the UC Davis Genome Center metabolomics facility. A comparison of 
manual and automatic validation of such chromatograms will be presented in a 
bioanalytical journal for the comparison of 1,200 potato tubers from a field trial. 

Further improvements will work on parallelization of processes for peak 
detection and postmatching and on integration of further peak metadata (such as peak 
tailing factor or profile purity) for automatic flagging of problem cases. SetupX 
development will consist of further integration of ontologies with a focus on 
improvements in user friendliness and reducing the time needed for defining each 
experiment. Ideally, SetupX would parse the required biological metadata directly 
from strings that are pasted by users into a single web form, and would only ask for 
additional information if needed. To this end, however, the abilities of text mining 
approaches have not been developed far enough yet. 
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Abstract. Current solutions to integrating private data with public data have 
provided useful privacy metrics, such as relative information gain, that can be 
used to evaluate alternative approaches. Unfortunately, they have not addressed 
critical performance issues, especially when the public database is very large. 
The use of hashes and noise yields better performance than existing techniques, 
while still making it difficult for unauthorized entities to distinguish which data 
items truly exist in the private database. As we show here, the uncertainty intro-
duced by collisions caused by hashing and the injection of noise can be lever-
aged to perform a privacy-preserving relational join operation between a mas-
sive public table and a relatively smaller private one.  

1   Introduction 

Data is often generated or collected by multiple parties, and the need to integrate the 
resulting disparate data sources has been identified by the research community [1-6]. 
Although heterogeneity of the schemas is being addressed, most data integration ap-
proaches have not yet efficiently addressed privacy concerns.  

Legal and social circumstances have made data privacy a significant issue [7-8], 
resulting in the need for Hippocratic databases (i.e., database that include privacy as a 
central concern) [9], particularly in sharing scientific or medical data. Without strong 
privacy guarantees, scientists often refuse to share data with others for reasons such as 
subject/patient confidentiality, proprietary/sensitive data restrictions, competition, and 
potential conflict and disagreement [10]. An application where both data sharing and 
privacy are important is biomedical research. In this domain research facilities fre-
quently collaborate with each other, sharing experimental data and results. In particu-
lar, comparing genome sequences from different species has become an important 
tool for identifying functions of genes [11]. However, this necessitates integrating 
different databases. Unfortunately, while there is a significant amount of publicly 
available data, information provided by most companies, such as proprietary genome 
sequences, must be kept private.  

More concretely, imagine that a scientist wishes to perform a query across a table 
in his private database (e.g., proprietary genome sequences) and a table in a public 
data warehouse (e.g., GenBank [12]) in the most efficient manner possible (shown in 
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Figure 1). Ignoring privacy restrictions, the problem is reduced to a distributed data-
base problem that can be solved by shipping the scientist’s table to the warehouse and 
performing the join at the warehouse. However, if the scientist’s data set is proprie-
tary, it cannot be sent verbatim to the warehouse. The naive solution is for the scien-
tist to download the entire public table to his local machine and perform the query 
there. But to do so would be prohibitively expensive if the public table is very large or 
the communications link is limited. It would be impossible if the publicly available 
data cannot be duplicated, for example because of intellectual property constraints.  

Assuming that all data sources are abstracted as relational tables and schema recon-
ciliation has already been done, the problem can be formalized as the following: table 

),( BAR =  from a small private database db is to be joined with table ),( CBS =  from 

a large data warehouse dw on column B, yielding the desired table Goal = R BS. Table 
R is private and any party other than the owner of db cannot know the identity of the 
data items in R. Table S is publicly available and accessible. It is assumed that the 
system operates in a semi-honest model, where both parties will behave according to 
their prescribed role in any given protocol. However, there are no restrictions on the 
use of information that has been learned during the data exchange after the protocol is 
completed. Thus, from the privacy perspective, dw is treated as an adversary.  

Our solution to this problem augments the well-known semi-join framework [13], 
“hiding” the actual values of the join column of table R by hashing them and includ-
ing additional artificial values. The resulting collection is sent to the data warehouse 
to retrieve a subset of table S that includes data required to answer the original query 
along with some false positives. Although, this method will not provide for absolute 
privacy (i.e., the adversary can infer something about the contents of table R), the 
hash/noise method can guarantee an upper bound on the amount of privacy loss when 
data is exchanged. By sacrificing a small amount of privacy, this method significantly 
reduces transmission costs compared to techniques that provide absolute privacy.  

1.1   Challenges and Related Work 

There are several challenges in privacy-preserving data integration, including: defin-
ing privacy, correctness and efficiency. This section provides a short summary of the 
most relevant work being done by others to meet these challenges, as well as related 
work on general approaches to privacy preservation. Following this overview, Section 
2 describes our privacy metric; Section 3 presents our hash/noise approach; Section 4 
outlines a proof of concept implementation and initial experimental results, and; Sec-
tion 5 summarizes our work and explores future roads of research.  

First, a metric is needed to measure the amount of privacy loss that is incurred 
when data is exposed. In [14], variable privacy is proposed as a method in which 
some information can be revealed for some benefit. Privacy loss is likened to a com-
munications channel, in which the difference between a priori (i.e., before data has 
been revealed) and a posteriori (i.e., after data has been revealed) distributions of 
information measures privacy loss. In [15], the likelihood of what can be inferred 
about a query posed by the user is used as a measure of privacy loss. In [16] and [17], 
a metric for measuring the inherent uncertainty of a random variable based on its 
differential entropy is used as a measure for privacy. These proposed metrics are 
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related to relative information gain, which has also been used in many privacy-
preserving applications [18], making it a likely candidate for measuring privacy loss.  

 

Fig. 1. General problem 

The second challenge is producing exact and correct answers to queries posed by 
users. Work in privacy-preserving data mining [19-22] has focused on changing the 
actual values of data items so that the values of data items are hidden but the distribu-
tion of the perturbed data is similar to that of the original data distribution. However, 
the exact original data values cannot be accurately recovered. While this is acceptable 
in data mining applications, exact answers are required for data integration.  

The third challenge is to perform the private join operation efficiently. It has been 
shown that to completely guarantee the privacy of the queries, the entire contents of 
table S should be downloaded [23]. However, in some cases this is not practical and 
an alternative solution is needed. If the user is willing to sacrifice a small portion of 
his data privacy, the join operation can be done without retrieving all of table S.  

Commutative encryption-based approaches have been proposed to solve the private 
data integration problem [24-26]. These approaches take advantage of a family of 
encryption functions in which the order that data items are encrypted by two different 
keys does not matter. These techniques require the exchange of both parties’ en-
crypted data so that they can mutually encrypt each other’s data, making them very 
expensive. Similarly, oblivious transfer [27-29] allows the user to secretly pose a 
query and only receive the result of the query and nothing else, but the encryption and 
transmission of all data items held by dw to the user is required. 

There has also been work in private information retrieval schemes [23, 30], which 
allow a user to retrieve information from a database while maintaining the privacy of 
his query. In these schemes, table S would be replicated at multiple sites. Given a 
query, multiple queries are generated and sent to each of site such that no site can 
learn the actual original query by acting alone. However, users working with sensitive 
data would be unwilling to trust such a system if no guarantee of enforcement of non-
collusion among the sites. 

Our hash/noise method takes an approach similar to that of the one discussed in 
[15], which takes advantage of collisions caused by hashes to introduce uncertainty in 
the true contents of a private database’s table. A hash value is generated for each data 
item in both tables each time a query is posed. The size of the hash is varied to control 
the amount of privacy loss, so traditional indexing mechanisms cannot be used to 
accelerate querying time. A sequential scan of both tables involved in the join is nec-
essary to compute the hash values of all data items in both tables. As a result, the join 
operation becomes a very expensive operation. There has been work in using Bloom 
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filters to make joins in a distributed database system more efficient and private [31-
33]. Similar to the hashing approach, however, Bloom filters would require a sequen-
tial scan of both tables to apply a Bloom filter to each of the data items and would not 
allow the use of traditional indexing mechanism to speed up querying.  

 In contrast, to these two approaches, our hash/noise method approach uses a set of 
fixed hashing and artificial hash values (i.e., noise) to control the amount of uncer-
tainty in the identity of the join column values, thereby controlling the level of pri-
vacy loss incurred. Because the hashes are known in advance, we can store and index 
the resulting hash values in the database and would not need to recompute them for 
each query, enabling indexes to be used to speed up querying. Because the hash func-
tions are known in advance, a dictionary-attack is possible but is partially alleviated 
by using artificial hash values. 

Furthermore, privacy control by hash truncation alone as suggested by [15] is very 
coarse. For example, suppose that a 16-bit hash does not satisfy a given privacy con-
straint, so a 15-bit hash was selected instead. However, the 15-bit hash doubles the 
collision rate of the 16-bit hash, doubling the size of the candidate set for the join 
result. In contrast, the same 16-bit hash with additional artificial hash values could 
have satisfied the same privacy constraint and yield fewer records in the candidate set. 

2   Privacy Metric 

For our work, we use relative information gain [34] as a basis for a metric to measure 
privacy loss when data is exchanged. Relative information gain is closely related to 
entropy, which is the amount of uncertainty in a random variable X. If the random 
variable X can take on a set of finite values x1,x2,…xn, then its entropy is defined as: 
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The conditional entropy H(X|Y) is the amount of uncertainty in X after Y has been 
observed. Relative information gain, or the fraction of information revealed by Y 
about X, is defined as: 
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Privacy loss can be thought as the amount of information gained by an adversary 
about the contents of set of sensitive data items, which in this case are the contents of 
column B of table R. If dw (i.e., the adversary) has no knowledge about the distribu-
tion of column B of table R, then it can only assume that each value that belongs to 

the domain of B (i.e., U) are equally likely to occur. Let R
~

 be a random variable 
describing the column B values (the only information revealed in a semi-join by db), 
of a tuple in table R. Absolute privacy loss pabs is defined as the relative information 

gain on R
~

 when any data set N is revealed to dw by db. By doing a simple substitu-
tion with equation 2, absolute privacy loss is: 
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It is possible that an adversary will make use of any available information to infer 
the contents of table R, in particular the contents of table S, since it is publicly avail-
able. Thus, relative privacy loss is defined as: 
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In this case, the adversary uses the distribution of values in column B of table S as a 

hint to the possible distribution of values in column B of table R. )|
~

( SRH  (the un-

certainty of the join column values of a tuple in table R given the contents of table S) 
can be found by directly applying equation 2 on the distribution of values in column B 
of table S.  Because this metric captures the information gained by an adversary with 
respect to its current knowledge in contrast to absolute privacy loss, it is the metric we 
have chosen for evaluation of our approach. 

3   Privacy-Preserving Distributed Join 

Figure 2 outlines our approach to finding R BS when a privacy constraint exists. The 
first step projects column B from table R and applies a hashing function h to each 
value in column B, yielding table h(R) with column h(B). Step 2 generates artificial 
hash values, yielding table n. In step 3, table N is derived from the union of n and 
h(R). Table N is then shipped to the data warehouse in step 4. At the data warehouse 
in step 5, table S and N are joined on column h(B), yielding table F. Table F is a set of 
tuples from dw that contain the final result of the join operation and which is shipped 
to db in step 6. The final result, Goal, is found by filtering out the false positives in F 
by joining tables R and F. 

 

Fig. 2. Privacy-preserving distributed join 



 Performance-Oriented Privacy-Preserving Data Integration 245 

 

3.1   Privacy Constraint Satisfaction 

Different hash functions yield different collision rates. Hash functions with large 
ranges tend to yield low collision rates; whereas, hash functions with smaller ranges 
tend to yield high collision rates. A hash function h with a high collision rate intro-
duces large amounts of uncertainty about x when h(x) is known. This uncertainty is 
used to mask the true identity of a join column value in table R. Hash functions also 
hide clusters of data by hashing clustered values to uniformly-distributed hashed val-
ues. A hash function with a high collision rate has the side effect of “compressing” 
the values of column B from table R since a single hash value can be used to represent 
multiple actual values. However, if the collision rate is too high, many false positives 
will occur in F due to the high number of collisions, yielding unnecessary transmis-
sion costs. Thus, it is important to use a hashing function that provides an acceptable 
level of performance while providing enough uncertainty to meet the privacy  
constraint.  

It is computationally expensive to dynamically compute the hash values resulting 
from a new hash function with a different size each time a query is posed on a large 
data warehouse table. Furthermore, dynamic generation of values prevents indexing 
mechanism from being used to during the join operation in step 5. Our approach is to 
predefine a set of m hash functions h1,h2,…,hm of different sizes. The result of each of 
these hash functions to column B on table S are stored explicitly (in m different col-
umns) and indexed.  

When the user performs a join on his private table R and the public table S, the pri-
vacy loss incurred with respect to the contents of table S is constrained to not exceed 
prel. In other words: 

)|
~

(

)|
~

()|
~

(

SRH

NRHSRH
prel

−≥  (5) 

Assuming a uniformly-distributing hash function, the number of real values that 

hash to the same hash value is estimated to be 
||
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U
, where |U| is the size of the do-

main of possible values for column B (the universe) and |H| is the range size of hash 
function h. H is the set of possible values in the range of h. For any given hash value, 
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By combining equations 5 and 6, the constraint on |N| for a given prel is found to be: 
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Applying equation 7 to each hash function, the minimum number of hash values 
|r1|,|r2|,…,|rm| for all m available hash functions on dw can be found.  

We can estimate the number of unique hash values generated by hashing each tuple 
in R with hi analogously to [15] as:  
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Then the actual size of the hash value set Ni that db would send to dw, if hash function 
hi is selected, is: 

)|)(|,max(|| estiii RhrN =  (9) 

Note that |Ni|  |hi (R)|, so it may be necessary to add artificial hash values to the 
set N sent by db to dw in addition to hi(R). This can be done by randomly selecting 
|Ni| - |hi(R)| hash values that belong to the range of hi. The set of artificial hash values 
is denoted as ni, where iii nRhN ∪= )( . 

3.2   Cost Estimation 

To select the appropriate hash function for the data exchange, the transmission cost 
normalized with respect to the brute-force method (i.e., downloading table S from dw 
to db) costi can be estimated. It is assumed that transmissions costs will dominate the 
execution costs of the overall join operation since the system will be operating over a 
limited communications link and search time is kept low with the use of indices. 

If the brute-force method was used, ct|S| time units are required to transmit |S| re-
cords from dw to db where ct is the cost associated with transmitting a single record 
returned by dw in bytes. The cost of the hash/noise method can be estimated to be the 
sum of the cost of transmitting hash values from db to dw and the cost of transmitting 
the set of candidate tuples F returned by dw to db. The cost of sending the hash values 
is ch|Ni| time units for a hash function hi, where ch is the cost associated with transmit-
ting a single hash value. The cost of the tuples returned by dw to db after the hash 
values have been sent is ct|F|. Thus, the transmission cost normalized with respect to 
the brute-force method is summarized as: 
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Equation 10 shows that as the cost-ratio ch/ct approaches zero, the cost of sending 

hash values 
||

||

Sc

Nc

t

ih  becomes small. In other words, as the size of the tuples returned 

increases, the cost of sending the hash becomes insignificant. As |F| approaches |S|, 
the performance of the hash/noise method is similar to that of the brute-force method; 
whereas, when |F| << |S|, we see significant performance improvement over the 



 Performance-Oriented Privacy-Preserving Data Integration 247 

 

brute method. While |F| is not known until the query has been executed, it can be 
estimated to be the average number of tuples returned by dw given the characteristics 
of the hash function and the contents of dw. It is found that on average for a given 
hash value, the number of values in column B that will collide to the some hash value 

is 
||

||

iH

S
 for a hash function hi. Consequently, the average number of tuples returned 

by dw to db is ||
||

||
i

i
N

H

S
. Thus the normalized transmission cost costi for a hash 

function hi is estimated to be:   
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The hash function hi, with the appropriate Ni found with equation 9 that yields the 
lowest normalized transmission cost according to equation 11 is selected as the hash 
function for the data exchange. Clearly, if costi  1, it would be more advantageous to 
download S since the cost of doing so is either less than or equal to the cost of our 
hash-noise approach without any loss of privacy. 

4   Implementation and Results 

A prototype of this system was implemented in Java using MySQL [35]. Borrowing a 
technique from [15], eight hash functions were created by simply truncating the result 
of the MD5 hash [36]. Eight sets of hash values were generated for each B column 
value by truncating the result of the MD5 hash of a column B value to various bit 
sizes ranging from 8 to 16 bits. The hash value sets were stored and indexed in dw 
along with their respective S table. )|

~
( SRH  was computed offline and stored for 

each S table. 
Three sets of data were used for three instances of table S. The first two were each 

comprised of 2.5 million synthetically generated tuples. The values of column B for 
table S were generated with a uniform distribution of values from 0 to 99,999 for the 
first set. The second set’s column B values were generated with a Gaussian distribution 
of values from 0 to 99,999 with a mean of 50,000 and a standard deviation of 1000. 
The third set of data was the “alignment block in rat chain of chromosome 10” table, 
taken from the UCSC Genome Browser Project [37]. The genome data set contains 
approximately 2.4 million records and was biased towards low join column values. 

The size of the domain U for the uniformly and Gaussian-distributed join column 
values was 100,000. There were approximately 123,598 different values for the join 
column in the genome data set, so the size of domain U for join column values was 
approximated to be 217. Unless otherwise specified, the cost-ratio ch/ct was ½ (i.e., the 
cost of transmitting of a hash value is half the cost of transmitting a record from table S).  

For each experiment, the R tables were generated randomly. The R tables to be 
joined with a uniformly or a Gaussian-distributed table S were generated by randomly 
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selecting a value for column B from the range of 0 to 99,999. The R tables to be 
joined with the genome data were generated by randomly selecting tuples from the 
“summary information about chain of rat” table (also available from [37]). For each 
data point plotted, five R tables were randomly generated, each of which was joined 
with table S using the hash/noise method fives times. The maximum and minimum 
observed values of each studied parameter were ignored, and the rest were averaged. 
Timings were taken using a dual processor 1.3 GHz Dell workstation.  

4.1   Performance Analysis 

In this section, we will study the performance implications (i.e., the size of data sets 
transmitted and execution time) of different distributions of the private table and dif-
ferent privacy requirements.  

4.1.1   Effect of Private Table Distributions 
To begin the execution time analysis, we study the effect of different private table 
distributions on performance by varying the size of table R in relation to the size of 
the set of possible key values U (|R|/|U|) and fixing the required relative privacy loss 
to not exceed 0.01. Figure 3 shows how execution time varies as |R|/|U| changes. 
Figure 4 shows how the size of the transmitted sets |N| and |F| varies as |R|/|U| 
changes. For each of the execution time tests, the transmission cost of transmitting a 
hash value was equivalent to transmitting a 4-byte integer, and the cost of transmitting 
a tuple from S was equivalent to transmitting two 4-byte integers. 

For a Gaussian distribution and genome data distributions of table S, execution 
time increases linearly as |R|/|U| increases as do the sizes of N and F. Thus, as ex-
pected, the processing (i.e., transmission and computation time) of the two intermedi-
ate sets dominate the execution time for these two data distributions.  

For a uniform distribution of table S, the execution time behaves as a step function, 
transitioning when |R|/|U| = 0.6. Figure 4 shows that |N| increases along with the 
execution time curve; whereas, |F| remains relatively constant. While initially surpris-
ing, as shown in Figure 8, when |R|/|U| transitions from 0.6 to 0.7, the system  
 

 

Fig. 3. Execution times for variable |R|/|U|. Target prel = 0.01 and ch/ct = ½ 
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Fig. 4. Set sizes |N| and |F| for variable |R|/|U|. Target prel = 0.01 and ch/ct = ½ 

experiences the largest increase in hash size |H|, resulting in far fewer collisions; and, 
consequently many more hash values are sent to dw to meet the privacy constraint. 
Because, the largest hash size increase occurs at much lower |R|/|U| values for the 
Gaussian and genome distributions, any sharp increases in execution times are less 
apparent for those distributions. 

Comparing the behavior of the various distributions, the execution time of the dis-
tributed join operation is directly related to the size of tables R, N, and F for the Gaus-
sian and genome data distribution. However, for a uniform distribution, the execution 
time is generally independent of |R|/|U|, except when there is a large transition in hash 
values used, because the transmission of noise and false-positives dominate the cost. 
From this figure, it can also be seen that the execution times for join operations oper-
ating over the genome data distribution are lower than those of the Gaussian distribu-
tion, which are usually lower than those of uniform distribution. Less uniform distri-
butions will usually result in better execution times because they are more biased and 
thus will have less entropy. Uniform distributions have the most entropy of any distri-
bution, requiring either far more hash values or far more false positives to be returned 
by dw to satisfy the privacy constraint. 

4.1.2   Effect of Privacy Requirements 
In the second set of execution time analyses, we will study performance implications 
of different privacy requirements by fixing |R/|U| to 0.1 and by varying the maximum 
privacy loss, or the target relative privacy loss prel, from 0.01 to 0.96, in intervals of 
0.05.  Figure 5 shows how execution times vary as the target prel changes. Figure 6 
shows how |N| and |F| vary as the target prel changes in the second graph. Intuitively, 
as the privacy constraint is relaxed, execution times for both the Gaussian and uni-
form data distributions decrease since fewer hash values are needed to satisfy the 
privacy constraint. For any join operation whose target prel is greater than 0.21, the 
execution times, |N|, and |F| remain constant. In such cases, |h(R)| is large enough to 
satisfy the privacy constraint without any noise. Thus, there is very little performance 
gain by increasing the target relative privacy loss greater than 21% for private tables 
containing only 10% of the total possible keys. 
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Fig. 5. Execution times for variable target prel. |R|/|U| = 0.1 and ch/ct = ½ 

Figure 5 also shows that the execution time of the genome data set remains rela-
tively constant, with minor variations in execution times due to the randomness of 
data items in set R and consequently the high randomness of data items in set F. Fur-
thermore, |N| remains constant regardless of the target privacy; and consequently, 
only the varying sizes of table F contribute to the variation in execution times, which 
is determined by the random selection of tuples in table R. This is shown in the sec-
ond graph of Figure 6. The variance in execution times is more than that of the other 
distributions because the data in the genome data set is much less uniformly distrib-
uted than the other two distributions. 

In summary, when target prel is low, there is more variation in execution times for 
the Gaussian and uniform distributions. When the privacy constraint is relaxed, there 
is little or no change in execution times. 

 

Fig. 6. Set sizes |N| and |F| for variable target prel. |R|/|U| = 0.1 and ch/ct = ½ 

4.2   Absolute Privacy Loss Analysis 

Figure 7 shows how absolute privacy loss varies as |R| changes and the target prel is 
fixed at 0.01. For the uniform distribution, the absolute privacy loss is kept very low 
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and close to the target prel of 0.01 since satisfying the relative privacy loss constraint 
for a uniform distribution is almost identical to satisfying an absolute privacy con-
straint of the same magnitude. However, for the Gaussian and genome data distribu-
tions, the absolute privacy loss differs greatly from the target relative prel, because far 
less effort is required to satisfy the relative privacy loss constraint than that required 
to satisfy an absolute privacy loss constraint of equal magnitude due to less uniform-
ity in these distributions. For non-uniform distributions, achieving low absolute pri-
vacy loss would be much more expensive than achieving low relative absolute pri-
vacy loss; whereas, the cost for achieving both for a uniform distribution would be 
relatively the same.  

 

Fig. 7. Varying absolute privacy. Target prel = 0.01 and ch/ct = ½ 

Figure 7 also shows that as |R|/|U| increases, absolute privacy loss decreases. In 
general, as |R|/|U| increases, the data revealed by db to dw increases. As a result, the 
pool of possible values that an adversary can use to infer the actual values of column 
B in table R increases as well, resulting in far greater uncertainty about the actual 
value of a column B value in table R. 

4.3   Hash Selection Analysis 

In this analysis, we determined the size of the selected hash function that yields the 
lowest transmission cost increases as |R|/|U| increases, for all distributions. We ex-
perimented with hash sizes ranging from 8 to 16 bits because any larger hash sizes, 
such as 17 bits would yield almost no collisions. It was found that as the uniformity of 
table S increases, a wider range of hash values is required to account for any varia-
tions in sizes of table R provided by a user. Depending on the size of |R|/|U|, for the 
uniform distribution, hash sizes ranging from 10-bits to 16-bits are required. For the 
Gaussian distribution, hash sizes ranging from 12-bits to 16-bits are required. Finally, 
for the genome data set, hash sizes ranging from 14-bits to 16-bits are needed.  

4.4   Transmission Cost Analysis 

In this set of analyses, the transmission costs of the hash/noise method in relation to 
the brute-force are studied.  
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The observed normalized transmission cost based on equation 10 using the ob-
served |F| is compared to the estimated normalized transmission cost based on equa-
tion 11. The first graph of Figure 8 shows that the hash/noise method works well 
when |R|/|U| is very low, and especially well when the distribution of key values in 
table S is very biased. For uniform distributions of table S and a target prel of 0.01, the 
transmission costs of the hash/noise method was 90% or more of the transmission 
costs of the brute-force method, costing as much as the brute-force method. For a 
Gaussian-distributed data set, the transmission costs ranged from 35% to 95% of the 
brute-force method, depending on |R|/|U|. For the skewed genome data set, the trans-
mission cost also varied significantly depending on the size of |R|/|U|.   

 
 (a) (b) 

Fig. 8. Varying normalized transmission costs with respect to the brute-force method. (a) Tar-
get prel = 0.01 and ch/ct = ½. (b) |R|/|U| = 0.1 and ch/ct = ½ 

The second graph shows that the transmission cost steeply decreases as the target 
prel increases from 0.01 to 0.2 for both Gaussian and uniform distributions. For any 
target prel greater than 0.2, transmission costs are 25% of that of the brute-force 
method, for all distributions. The general behavior of steeply decreasing and flatten-
ing out was predicted by the estimated normalized transmission cost curves, but the 
actual transmission costs were not accurately estimated. For the less uniform genome 
data, the transmission costs remain relatively constant with an average of 25% of that 
of the brute-force method, for all target relative prel values and when |R|/|U| is 0.1. 
Like for the other distributions, the general behavior of the observed transmission cost 
curve was predicted by the estimated transmission cost curves, but the actual trans-
mission costs were poorly predicted. 

Figure 9 compares the attained normalized transmission cost of the hash/noise 
method with the cost of simple semi-joins (i.e., no privacy constraints enforced). The 
graph shows that |R|/|U| is directly proportional to what the cost of the semi-join 
would be. The graph summarizes how much more the hash/noise method costs to 
satisfy a maximum relative privacy loss of 0.01 in comparison to a semi-join, which 
provides for no privacy. Using the hash/noise method, it is very expensive to achieve 
a maximum relative privacy loss of 0.01 when the distribution of the column B values  
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Fig. 9. Attained normalized transmission costs of join with privacy constraints and join without 
privacy constraints. Target prel = 0.01 and ch/ct = ½. Cost of transmitting the key of a record 
from db is half the cost of transmitting a tuple from dw 

of the S table is uniform. In contrast, when the S table is non-uniform, there is much 
less additional cost for the added privacy that the hash/noise method provides. 

5   Conclusion and Future Work 

A practical solution to the private date integration problem must maintain privacy 
while remaining efficient. Based on the metric of relative information gain, we have 
presented an efficient approach to performing joins between a relatively small data-
base and a large, public data repository. By making use of predefined hash functions 
and noise injection to satisfy the privacy constraints, traditional indexing mechanisms 
can be used. Thus, the total cost of a distributed join is dominated by transmission 
costs rather than by search and computational costs.  

Based on our preliminary results, several future research directions can be pursued. 
Our current cost estimation uses the average number of collisions to estimate the 
number of tuples to be returned by dw, which works well for uniformly-distributed 
data but poorly for non-uniformly distributed data. In future work, additional features 
such as the distribution of table S could be incorporated into the estimate. This work 
can also be expanded to infinite domains (e.g., people’s names), specifically to de-
velop a privacy loss metric relevant to these domains. Additionally, our method only 
protects the privacy of data over a single query; and, it may be possible for adversar-
ies to make inferences over multiple queries. Perhaps, some caching can be used to 
avoid exposing the same private data set more than once. Finally, the presented 
hash/noise technique only works for the equijoin operation. There may be a need to 
develop methods to protect the privacy of data that are processed by general joins. 

Our promising initial results show the merit of using hashing and noise injection to 
solve the problem of efficiently integrating small amounts private data with large 
amounts of public data. In comparison to other related approaches, the hash/noise 
technique does not assume non-collusion, does not require downloading the entire 
data warehouse table, leverages existing indexing mechanisms, and provides for finer-
grain control of privacy than simple hashing.  
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Abstract. The German health care system increasingly encounters an enormous 
cost pressure. Preventive medicine opens the possibility to avoid cost for the 
treatment of chronically sick persons and, especially, for the highly expensive 
hospitalization. Since with screenings, a special discipline of preventive medi-
cine, a large number of persons are to be examined, information technology 
plays an important role to reduce cost and to increase treatment quality. We in-
troduce a generic process based platform for distributed screenings for the early 
detection and diagnosis of the glaucoma disease. Thereby, glaucoma is merely 
one disease pattern which can be covered with the generic process based plat-
form. Methods and concepts for the enactment of different screening processes 
and the integration of various modalities are in the center of our interest. 

1   Introduction 

Glaucoma is a prevalent disease of the eyes which is characterized by a damage of the 
head of the optic nerve. Besides diabetes mellitus it is the second most prevalent 
cause for blindness in the industrial countries. From an economic perspective glau-
coma causes – as a chronic disease – high expenses [1]. 

Since an early detection of glaucoma allows for better therapy, the aim is to detect 
the disease in the earliest possible state. To identify people with glaucoma in that 
early state, screening measures are performed to detect early signs of the glaucoma 
disease. To support the diagnosis for glaucoma with high specificity, multiple inde-
pendent indicators for the glaucoma disease have to be measured and assessed [2]. 

The screening process which we introduce here is divided into two parts. In the 
first phase, patient data (identification, medical history, etc.) and examination data 
(images, measures, etc.) are collected. Thereby, a semi-mobile screening setting is 
used to examine patients by assistant medical technicians on site, e.g. in companies, 
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public utilities, clinics. In a second phase, the data are analyzed telemedically by a 
specialized ophthalmologist, physically and timely separated from the first phase. 

1.1   Medical and Economical Requirements 

In the context of the “Sonderforschungsbereich 539”[1] at the ophthalmic clinic of the 
University of Erlangen-Nuremberg a process for the semi-automatic determination of 
glaucoma risk is developed in an interdisciplinary way by physicians, bio statisticians 
and computer scientists. A screening process is characterized by a set of modalities 
and a clinical algorithm which reflects the criteria of medical decisions. This algo-
rithm contains medical, evidence based knowledge which supports the physician by 
proposing a standardized diagnosis. The integration of modalities decisively deter-
mines the cost of the screening; it also influences the process itself and the clinical 
algorithm used. Flexibility is therefore one of the major issues for a basis platform for 
screening examinations. Depending on the medical problem to investigate two per-
spectives of flexibility can be identified: 

1. A certain set of modalities of examinations must be integrated into the 
screening process. 

2. The screening process has to implement specific medical, evidence based 
knowledge. Here, recommendations from medical guidelines and directives 
must be incorporated. 

When a basic platform for screening fulfills these requirements, it can be used easily 
for screening examinations of other diseases like diabetes mellitus, stroke, etc. [3]. 

1.2   Derived Technical Requirements 

The medical and economical requirements impose major challenges on the technical 
configuration of a semi-mobile screening setting. The desired simple re-configuration 
of the screening platform to support different medical questions requires the dynamic 
loading of different medical processes. This implies the following: 

1. Support for different screening processes requires a comprehensive concept 
to specify the used modalities and the data flow between all participating de-
vices. 

2. The generic screening platform must be able to visualize arbitrary multi me-
dia patient data. 

3. Decisions during an examination must be supported by collected medical 
knowledge (mostly formulated as medical rules). 

To optimize the deployment of medical personnel, the basic screening platform must 
separate the screening work place from the diagnosis work place. This implies data 
communication between the former and the latter (and vice versa). Security issues are 
to be considered here thoroughly: data has to be encrypted; the completeness and 
consistency of the transferred data must be guaranteed. The diagnosis finally must be 
made available to the patients, either by putting it into the patient’s electronic health 
record (EHR) or by sending it by mail. Hereby, security issues must be considered as 
well. 
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2   Model Based, Process Oriented Approach 

Our approach is built on two cornerstones: it is model based and process oriented. The 
model based aspect divides the specification of a screening process1 into three phases. 
In a first general phase, screening examinations are defined, modeled and documented 
in standardized process model templates (e.g. for glaucoma, diabetes mellitus). In a 
second phase, these templates are adjusted to the specific setting of modalities that are 
available for a certain screening project and to the concrete subject that has to be 
examined. This customization can be done through modification of the underlying 
screening process models by the medical personnel. In the third phase, the models 
will be executed. Thus, it is necessary that the models can automatically be trans-
formed into an executable form. 

Due to these requirements we decided to deploy the aspect oriented process model 
introduced in [3]. Its main advantage is its extensibility. This will be used in our ap-
plication to describe medical facts and issues in an adequate way, so that it is highly 
illustrative. As shown in [7], aspect orientation allows us to introduce new domain 
specific modeling constructs like the “evidence based decider”. These constructs 
make it easy for a medical user to understand the content of a process quickly. Further 
extensions of the basic aspect oriented process model support the integration of the 
modalities, whereby the complicated data provision task has to be considered. Special 
constructs for the so called data logistics (Section 3.2) facilitate the necessary data 
transport from and to the modalities. 

However, it has to be mentioned that the extensibility of the aspect oriented proc-
ess model also comes with some additional costs. Defining extensions, like e.g. the 
domain specific constructs, is time consuming and laborious. Nevertheless, these will 
be compensated widely through the benefits of easy readability and technical 
adequateness.  

The following sections discuss the conceptual foundations of our generic platform 
for screening applications (Section 3) and its enactment (Section 4). 

3   Specification of the Screening Platform 

This section exposes the conceptual foundation of our approach, i.e. the modeling part 
of screening applications is analyzed. At first, the essential requirements of our ap-
proach are discussed: 

• Correct and consistent enactment of screening applications:   
Its basis is the process model describing a screening application. At first, the 
order of process steps must be determined: decisions to be taken must be de-
scribed and alternative variants must be prepared. Aspects of quality man-
agement have to be considered. Decisions to be taken must be reproducible 
and connected to execution paths taken and data collected. All in all the 
process models must follow clinical algorithms [4]. Basing the screening 
processes on these matured algorithms increases their quality. 

                                                           
1 Although process orientation is the second cornerstone which is motivated next, we anticipate 

that screening applications are modeled as processes right now. 
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• Integration of modalities and multi media data:   
Most of the data involved in screening applications are multi media objects. 
They are in general produced by high-tech modalities. Thus, the connection 
of these modalities and the integration of created data is one major task. The 
data are often images; therefore the various standards for image data transfer 
must be considered [5]. Besides, alphanumerical data are to be integrated as 
well; these mostly describe the patients themselves and their patient history. 
Since most of the data are very sensitive, security issues must be taken into 
account. 

• Support of analytical and diagnostic steps:   
Besides the execution of work steps which mostly are connected to modali-
ties and produce data, a second major type exists: those steps which enforce 
the tight involvement of medical experts. In such work steps typically medi-
cal decisions have to be taken. To be able to diagnose a certain situation, the 
physician must be able to browse through – potentially – all data that are re-
lated to the patient. A suitable process model has to offer appropriate means 
to express the graphical presentation of relevant data. 

As explained before, we are pursuing a process oriented approach. In particular, we 
choose an aspect oriented process model [3], which is enacted by the modeling tool 
i>ProcessManager (i>PM) [6]. We use it to introduce a domain oriented model exten-
sion, i.e. to introduce new modeling constructs which most adequately realize the 
requirements discussed above. The main purpose of domain specific extensions is to 
break the tight corset of conventional process modeling elements. The domain spe-
cific constructs alleviate the use of a process model which coincides with an increas-
ing acceptance of the applied method. We show in the next sections how the domain 
specific extension of the i>PM process model facilitate the above requirements. 

3.1   Constructs for the Compact Specification of Medical Processes 

The first set of modeling constructs reflects special medical situations that have to be 
specified in a screening process. The constructs introduced are broadly introduced in 
[7]; in this paper we briefly describe their fundamental properties and discuss their 
valuable contribution to specify domain specific process models. 

 

Fig. 1. The Glaucoma screening process (text in German) 

Fig. 1 shows a small part of a glaucoma detection and diagnosis process which is 
taken as reference throughout this paper. The figure depicts a new domain specific 
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modeling construct (big step), the so called “Evidence Based Decider” (EBD). It is 
designed to automatically generate a proposal for a diagnosis. It works on a set of 
input data which is shown left from the construct. The principle rules used in the 
clinical algorithm described by the construct are depicted within the body of the con-
struct. The two alternative decisions proposed can be found at the right edge of the 
construct. However, finally the physician merely uses this proposal as the only argu-
ment, s(he) finally decides about the glaucoma suspicion independently. 

From the perspective of our approach, a modeling construct like the EBD bears the 
following advantages: 

• A physician can grasp the modeled situation very rapidly and the compact 
and customized notation provides him a comprehensive and transparent per-
spective at the patient’s condition. 

• All data and the algorithm used to assess the patient’s condition are trace-
able. This is of enormous importance for quality management. 

The algorithm used in the construct can be based on evidence, i.e. on published and 
well assessed clinical algorithms. 

Alternatively the depicted situation could be represented with conventional con-
structs like sequence or decision. This would drastically complicate the process pres-
entation with the consequence that a physician would presumably not accept it and 
would therefore not accept the whole approach. 

To summarize this subsection, the question after the benefit of domain specific ex-
tensions is asked. The answer is divided into three parts: firstly, the domain specific 
constructs allow incorporating domain specific (here medical) knowledge (for exam-
ple, how risk factors are assessed), and, secondly, guarantee high quality. Thirdly, 
these specialized constructs are able to represent that knowledge in an (adjusted) 
compact way. This is one decisive reason why users (here physicians and technical 
medical assistants) do accept the approach and are willing to cooperate. 

3.2   Constructs for the Specification of Data Logistics 

In the process model (Fig. 1) data from five modalities are included. As mentioned 
before, the data produced by these modalities, mostly multi media data like images, 
must be incorporated into the screening process, i.e. finally in the screening data base. 
In order to connect the modalities to the screening process, the so called “Data Logis-
tics” (DL) construct is used (broadly introduced in [8]). Again the DL is a domain 
specific extension of the basic process model of i>PM. However, while the extensions 
of Section 3.1 are content related, the DL construct is technically motivated. It pro-
vides an elegant concept to include modality data into a medical process. To incorpo-
rate a special modality with its data, a DL work step must be specified. The enactment 
of DL constructs is partially introduced in Section 4.3. 

3.3   Constructs for the Specification of Data Visualization 

Data visualization steps are used for work steps that are associated with diagnosis and 
related activities (cf. Section 3). The requirement is to enable the physician to browse 
all relevant data that are somehow related to the decision. Especially in the medical 
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applications that are investigated in this paper, these data are complex images or se-
quences of images mixed with tables of alphanumerical data. 

4   Enactment of a Semi Mobile Screening Platform 

This section presents the basic technical concepts for the enactment of the screening 
processes. Fig. 2 depicts the essential functional components of the screening plat-
form:  

• Modalities: Modalities are devices that are involved in the screening process.  
• Users: The medical personnel which are taking care of the screening process. 
• Data Management: All data are to be managed that is relevant throughout the 

screening process and which describes the patients.The necessary mapping be-
tween generated data and the underlying database is derived from the process 
model. The link to the electronic patient record (EPR) must be sustained. 

  

Fig. 2. Architecture of the Screening Platform 

• Domain specific process models: Extensions of the basic process model that 
are used to improve the readability of process (cf. Sections 3.1, 3.2, and 3.3). 

• Runtime Execution Environment: This provides the execution infrastructure 
for a screening process. 

• Data Logistics: This is the special data exchange mechanism that takes care of 
the data transport between the modalities and the other parts of the screening 
platform in the background (cf. Section 3.2). 

• Data Visualization: This component takes care of the appropriate presentation 
of the screening data. 

• Electronic Patient Record (EPR): All data collected in the context of the 
screening examinations must potentially be transferred to the patients’ EPR. 

The following sub-sections discuss the concept and the enactment of the fundamental 
components of the screening platform that are depicted in Fig. 2. However, technical 
features of modalities are not analyzed in detail. In Section 4.3, we merely look at 
these highly sophisticated devices from the viewpoint of data provision. 
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4.1   Data Management 

Data management is responsible to store all data and diagnosis that are produced 
during a screening process. Very similar to the process meta model, a generic data 
model is used in our screening platform. Therefore, a repository is taken as a founda-
tion on top of which arbitrary data structures can be defined [9]. This approach allows 
including screening specific data for a screening process. This is necessary since simi-
lar to the examination specific structuring of a screening process (cf. Section 1.1) 
specific data are to be considered. 

4.2   Data Logistics 

We refer to [8] and [10] for a detailed discussion of the enactment of DL. Here, we 
briefly summarize the main aspects of this technique. 

Two major tasks must be facilitated for DL: data transformation and data transpor-
tation. The latter takes care of moving data between applications and is defined by 
data access parameters and data quantification. The former is responsible for trans-
forming data in such a way that the sending and the receiving applications can under-
stand them. 

4.3   Data Visualization 

The data visualization (DV) component is a web based client server application build 
on the apache Cocoon [11] framework. Its main task is to perform the interaction with 
the user. The interaction workflow is organized according to the specification in the 
process model and implemented using Java and Cocoon flowscripts. The DV compo-
nent extracts and stores patient data (e.g. patient history) and measurements (e.g. 
images) from the data management component according to the specification de-
scribed by the data visualization constructs (cf. Section 3.3). 

5   Related Work 

Preventive screening applications are connected to several fields of medical data 
management. In this section we outline the intersections of hospital information sys-
tems (HIS), workflow management (WFM) and screening platforms. 

HIS [12] share some requirements with screening applications, e.g. they gather in-
formation from different modalities, organize and process data input or manage EPRs. 
But in contrary to screening applications which require a very lightweight and quickly 
adjustable solution, they offer a heavy weight installation that meets the requirements 
of clinical data management. In other words, the target application area of HIS is very 
different from the one of our flexible screening platform, whereas the tasks are similar. 

WFM [3] is a general concept to control the flow of arbitrary activities. It is based 
on the specification of a workflow model (i.e. process model) that can be mapped to 
an execution environment. In this respect WFM is closely related to our approach. 
HIS are also starting to use workflow technology in a conventional way. But our ge-
neric screening platform offers the advantage of application specific solutions, like 
domain specific modeling constructs, tight integration of modalities, specification of 
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medical scoring algorithms, adaptive data visualization and distributed screening 
process execution. 

6   Conclusion, First Experiences and Outlook 

The main objective of the methods presented in this paper is to support screening 
applications in the context of preventive medicine. Its medical and economical re-
quirements impose challenging requirements on an execution platform for screening 
processes. Our model based, process oriented approach can cope with these require-
ments. We have demonstrated how the extensibility of the i>PM process model en-
ables medical domain specific modeling constructs, which facilitate the compact and 
adequate specification and enactment of screening processes. We have already tested 
our screening platform in two large applications. In a first application, about 500 
employees of a big enterprise in Nuremberg were examined. The second test case was 
a public examination of about 400 citizens in Erlangen. In these applications, different 
sets of modalities were used. Diagnoses happened in both cases remotely and after the 
examinations. These two test applications have proven our concepts perfectly. Using 
the model based, process oriented specification and execution of the screening appli-
cations, the setup of the two applications could be done very efficiently. Minor modi-
fications of the screening processes – caused by experienced gathered through the 
examinations – could also be performed very well. Altogether, these two test cases 
were both proofs of concept. 
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Abstract. A Service Class Description (SCD) is an effective meta-data
based approach for discovering Deep Web sources whose data exhibit
some regular patterns. However, it is tedious and error prone to create
an SCD description manually. Moreover, a manually created SCD is not
adaptive to the frequent changes of Web sources. It requires its creator
to identify all the possible input and output types of a service a priori. In
many domains, it is impossible to exhaustively list all the possible input
and output data types of a source in advance. In this paper, we describe
machine learning approaches for automatic generation of the data types
of an SCD. We propose two different approaches for learning data types
of a class of Web sources. The Brute-Force Learner is able to generate
data types that can achieve high recall, but with low precision. The
Clustering-based Learner generates data types that have a high precision
rate, but with a lower recall rate. We demonstrate the feasibility of these
two learning-based solutions for automatic generation of data types for
citation Web sources and presented a quantitative evaluation of these
two solutions.

1 Introduction

One of the main impediments to large-scale integration of Deep Web sources
is the inability to reconcile the semantic heterogeneity of the sources in an au-
tomatic and consistent manner. The problem can be decomposed into homoge-
nization of the input, output, and interaction semantics of a Deep Web source.
While there is a large body of research work [4, 9, 5] on homogenizing semantics
of the input schema of Web sources, not much work is reported on homoge-
nizing the output and the interaction patterns of Web sources. We proposed a
practical, heuristic approach for reconciling the semantic of a class of life science
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Web sources using a Service Class Description (SCD) driven by users application
needs. This SCD describes the generic functionalities of services in a particular
domain, using example queries, the expected output, and a graph representation
(workflow) of how service class members are expected to operate. We are able
to classify two-thirds of BLAST sources with 100% accuracy using the manually
created SCD in our initial experiments [7].

However, the manual creation of SCD is tedious and error-prone. It requires
expert knowledge of both XML and regular expressions. Moreover, any change
that affects the input, output, or navigation pattern of the sites, which is not
already embedded in the SCD, will affect the accuracy of the classification. It is
impossible to be able to anticipate all the possible input and output data types
in a class of dynamic web sources. Instead, an adaptive approach where an SCD
can be incrementally created and updated is extremely valuable. The automatic
creation of SCD enables a scalable and adaptive approach to semantic reconcil-
iation of large numbers of sources in the presence of frequent re-organization,
variation in navigation styles and input and output format of underlying sources.
Based upon a few known Web sources of interest in a particular domain, a user
can interact with those sites by going to a query page, posting a query and re-
trieving the results. The actions and responses from these chosen sites are used
to construct a target SCD that can be fine-tuned with each successive example
site.

We propose two different approaches for learning a set of rules that can be
used to discover the data types of a class of Web sources. The Brute-Force
approach is able to generate regular expressions ranging from the most specific
to the most generic patterns for a given tagged example. The generated rules
have a high recall rate but low precision. The Clustering-based approach aims
to generate regular expressions that best fit the given set of training examples.
The generated rules have a high precision rate, but with a lower recall rate than
the Brute-Force approach. Both of these approaches allow new rules to be added
or revised incrementally with new training examples. Eventually our learner
will create a representative set of rules (data types) for a class of Web sources
that is tailored to that domain’s user information seeking behavior. The main
contribution of this paper is the demonstration of the feasibility of these two
learning-based solutions for automatic data types generation and a quantitative
evaluation of these two solutions.

2 Service Class Description

The service class description provides a mechanism for encapsulating the com-
ponents that are common to all members of the class and is the means for hiding
insignificant differences between individual sources in a particular domain. How-
ever, it must also provide enough information to differentiate members of the
class from a set of arbitrary Web sources. Service classes are specified by a service
class description, which uses an XML format and regular expression to define
the relevant functionality of a category of Web sources, from an application’s



268 A.H.H. Ngu, D. Buttler, and T. Critchlow

perspective. The service class description format supports three categories of
information used to define a Deep Web source: data types, example queries, and
control flow.

Data Types are used to describe the input and output of a service class and
any data elements that may be required during the course of interacting with a
service. The service class data type system is modeled after the XML Schema [3]
type system and includes constructs for building atomic and complex types.
The DNASequence type in Figure 1 is an example of an user-defined type in the
nucleotide BLAST service class description. Figure 1 also shows examples of user
defined types called AlignmentSequence which makes use of DNASequence type.

<type name="DNASequence" type="string" pattern="[GCATgcat-]+" />

<type name="AlignmentSequence" >

<element name="AlignmentName" type="string" pattern=".{1,100}:" />

<element type="whitespace" />

<element name="m" type="integer" />

<element type="whitespace" />

<element name="Sequence" type="DNASequence" />

<element type="whitespace" />

<element name="n" type="integer" />

</type>

Fig. 1. Sample BLAST service class data type definitions

Control flow graphs are used for enumerating the expected navigational paths
used by all members of the service class. A control flow graph consists of a set
of states connected by edges. Examples contain queries that can be executed
against an instance of the service class. Specifically, examples can be used to
determine if a site accepts input (data) as required by the service class. In the
context of this paper, we only examine the automatic generation of the data
types, which are used by both the example queries and the control flows. The
automatic generation of example queries and control flow for a specific web site
required in a service class description is beyond the scope of this paper.

3 Data Type Learner

The automatic generation of data types for a Service Class Description (SCD)
alleviates the tedious and error-prone approach of manual SCD creation. It in-
volves 1) locating the regions in the document that the system is interested in
generating the data types for, 2) partitioning the regions into tokens of suit-
able granularity for data types generation, 3)generating a regular expression
(regex) for each data type that balances specificity and generality from the set
of annotated examples. We assume that existing techniques such as PageDiff [7],
QA-pagelets [2] and Omini region identification [1] can be used to locate regions
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of interest. We use a simple tokenization mechanism based on whitespace and
punctuation marks in our current Data Type Learner for token generation. The
core of our Data Type Learner is the automatic generation of regexes (the fun-
damental data types that makes up SCD definition) based on a set of annotated
examples. Our approach to regex generation is similar to WHISK [8] which learns
rules in the form of regular expressions from human annotated examples.

The input to the Data Type Learner is a training document, a set of user-
annotated examples and a domain specific template type. The output is a set
of rules (regex) that can be used to identify the data types specified in the
template in an unseen document from the same class. There are two types of
atomic rules that can be generated by the Data Type Learner: Matrix rules and
Token Set rules. These two types of atomic rules are at the opposite extremes in
the spectrum of rule generation. Matrix rules match a fixed number of strictly
defined tokens, while Token Set rules match a statistical group of tokens from a
set. Tokens in a Matrix rule are strictly ordered, while tokens in a Token Set are
unordered. We can create Composite rules from a collection of other rules (such
as Matrix rules, Token set rules, and other Composite rules).

Users or domain experts must first describe the generic structure of data in
a specific domain that they are interested in before they can use the learner
to generate the data types for this domain. This high-level type information is
described in a domain specific template type. Figure 2 shows a template for a
type meant to describe a citation. The citation template states that a citation

<type name="citation" type="CompositeRule" >

<type name="author" type="MatrixRule"/>

<type name="title" type="MatrixRule"/>

<type name="venue" type="MatrixRule"/>

<type name="date" type="MatrixRule"/>

</type>

Fig. 2. Template Type for Citation

data type is a composition of author, title, venue and date. For each data type,
users can specify the type of rules that can be generated for it. For simplicity
in presentation, the example in Figure 2 specifies that Matrix rules need to be
generated for all the data types associated with a citation.

A Matrix rule is defined to be a list of rule tokens. Each rule token in a
Matrix rule can be a literal string, a semantic class, an user-defined regex type
or a regex pattern. The semantic class and user-defined regex type rule tokens
are techniques used to inject specific domain knowledge into the Data Type
Learner. This will improve the quality of the generated rules. For example, in
generating the Matrix rules for a date, knowledge about the valid years, months
and days can be incorporated via a semantic class or a regex type. A semantic
class is effectively an enumeration of all instances of a type in a specific domain,
while regex type is a predefined regular expression for a specific type common
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to a domain. An example of a predefined regex type for the BLAST domain is
DNASequence type shown in Figure 1. The other inputs to a Data Type Learner
are the training document and a set of annotated examples from that document.
A training document in our case is an html page showing a list of citations. The
annotated examples are data that users want to extract.

The Composite rule is defined as an ordered composition of atomic data
types or another Composite type. There is no limitation on the number of times
a particular atomic data type can appear in the citation. Thus, many matrix
rules can be generated for the author atomic type. Each matrix rule represents
a composition of regex patterns that can be used to identify one form of the
atomic type. Figure 3 shows an example of a generated matrix rule for a date
instance 2004 Jan. A generated matrix rule for the date instance states that
the given date can be identified by the regex pattern \d{4} followed by a blank
space and then by a valid month in the semantic class ”month.cls”. Being a
matrix rule, the ordering is important here.

<Rule>

<matrixRule>

<TokenList><Text>\d{4}</Text></Tokenlist>

<TokenList><Text>\p{Blank}</Text></TokenList>

<TokenList><Text>month.cls</Text></TokenList>

</matrixRule>

</Rule>

Fig. 3. Generated Date Matrix rule

4 Approaches for Learning Data Type Rules

The data type rules generation phase can be divided into three main steps. The
first step is the tokenization, the second step is the rule generation, and the
third step is the rule measurement. A specific data type example, such as a
date, is read in to the rule generator. The example is then broken up into a
list of text tokens. For example, the date May 23,2004 becomes [“May”, “ ”,
“23”, “,”, “2004”]. Then, for each token, a list of rule tokens in the form of
regular expression are generated using either the Brute-Force approach or the
Clustering-based approach. From the generated set of rule tokens, a filtering
mechanism is employed to eliminate rules that resulted in very low precision
and add rules with high precision to the final rule set.

4.1 Brute-Force Approach to Rules Generation

The Brute-Force rules generation generates all the candidate regular expressions
that can match a given piece of text token. In this approach, regular expression
rule tokens are generated from three sources. First, a simple regular expres-
sion (regex) that exactly matches the text token is generated. This is analogous
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Table 1. Rule Tokens for ”May 23,2004” date instance

May 23 , 2004

May \p{Blank} 23 , 2004
First Name number comma year
Month.cls
Capitalized

to creating a literal string for every text token. Second, a list of user-supplied
named regex type is searched for generating other regexs that can match the
given text token. Finally, a hierarchy of domain independent generic regex types
is searched for generating all other potential regexes for the text token. These
generic regex types match words in simple ways, such as ”Capitalized”, ”punc-
tuation”, or ”lower case”. Thus, in Brute-Force approach, our date example can
be transformed into the ragged matrix as shown in Table 1: Given a ragged ma-
trix, the Brute-Force algorithm creates a list of rules. Potentially, the list of rules
equal to Πn

i=1|ti|, or the total number of combinations of each possible match
for each text token in the example. The list of generated rules is then passed to
the rule measurement phase. The rule measurement phase removes equivalent
rules, consolidates rules when a general rule can be generated to replace two or
more specialized rules, and provides a ranking for the generated rules. From the
ranked list of rules, obviously bad rules are discarded. Bad rules are those rules
that match too many non-examples in the training document.

4.2 Clustering-Based Approach to Rules Generation

The main problem with the Brute-Force approach to rule generation is that an
exponential number of rules are being generated as the number of text tokens
in an example instance increase. This means the search space is very large when
using the generated rules for classification. The Clustering approach is based on
the observation that when similar examples are clustered together, the regularity
across all the examples can be captured by computing the intersection of the set
of regexs that match all the instances in that class. We call the resulting list
of regexs from the intersection computation the maximal regex for that specific
class of examples.

The algorithm for Clustering-based approach to rule generation is shown
in Figure 4. It consists of three main steps. The first step clusters the example
instances of a specific type with the same number of tokens together. The second
step generates the regex patterns for each text token of the example instance
of a specific class based on observed characteristics of the example instance as
contrasted to using a generic text hierarchy patterns, and the third step computes
the maximal regex pattern for all instances of a specific class. For each tagged
example of a specific type (such as date), we cluster it based on the number
of text tokens in that instance. For example, the various instances of dates are
clustered into Class3 (which has three text tokens), Class5 (which has five text
tokens) and Class7 (which has seven text tokens) in Figure 4. For each cluster
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Class3

Class 5

Class7

2004 Jan

03 Feb

1999 March

2004 Feb 19

2003 Dec 15

2000 Nov 17

1986 Nov-Dec 20

2001 Feb-March 03

Class3-token1

2004, \d{4}
03, \d{2}
1999, \d{4}

Class3-token2

Class3-token3
Jan, [A-Za-z]{3}, month.cls
Feb, [A-Za-z]{3}, month.cls

March, [A-Za-z]{5}, month.cls

For
each
class

2. Generate Regex1. Cluster examples

\d{2,4}

\p{Blank}, \s
\p{Blank}, \s
\p{Blank}, \s

\p{Blank}, \s

[A-Za-z]{3,5},
Month.cls

3. Find Most General

Final rule for Class3  date  = [\d{2,4}(\p{Blank}|\s)([A-Za-z]{3,5} |month.cls)]

Fig. 4. A Clustering-based algorithm for rules generation

of example instances of a specific type, we generate regex patterns for each text
token of each instance based on a set of rules as described in [6].

5 Experimental Evaluation

In this section, we evaluate the quality of rules generated and the computational
trade-off between the two approaches. We use the same training document, an-
notated examples and template type for both data type learners. The data types
that we are interested in generating and measuring are the author and date in
the citation example.

The experiment is conducted in two phases for both types of learners. The
first phase is the learning phase where rules for recognizing a citation are gener-
ated. The second phase is the classification phase where the generated rules are
applied to an unseen citation document. The number of rules generated for each
data type by each type of learners is recorded. The time taken to classify the un-
seen citation document using the generated rules is recorded for each data type
learner. These details are shown in Table 2. The larger the number of rules being
generated, the longer is the processing time. We use the standard precision and
recall to evaluate the effectiveness or the quality of the generated rules. True
positive in our results tables are instances that are correctly identified. False
negative instances are those that are relevant, but which the generated rules
failed to identify them (e.g. those author names which we missed). False positive
are instances that are wrongly identified as being relevant. Table 3 shows the
result of Cluster Learner while Table 4 shows the result of Brute-Force Learner.
A discussion on those results can be found in [6].
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Table 2. No of rules generated and processing time for each learner

Data Type Learner No of rules for Author No of Rules for Date Classification Time

Brute-Force Learner 928 126 586 secs
Cluster Learner 1 2 90 secs

Table 3. Results for Cluster Learner

True False False
Data Set (Cluster-Learner) Positive Positive Negative Recall Precision

Training document (author) 72 3 5 93% 96%
Unseen document(author) 192 7 26 88% 97%
Training document (date) 4 0 0 100% 100%
Unseen document(date) 40 12 1 88% 97%

Table 4. Results for Brute-Force Learner

True False False
Data Set (Brute-Force Learner)PositivePositiveNegativeRecallPrecision

Training document(author) 75 19 2 97% 79%
Unseen document (author) 208 101 10 95% 67%
Training document(date) 4 15 0 100% 21%
Unseen document (date) 40 70 1 97% 36%

6 Conclusion

We demonstrated in this paper the feasibility of automatically generating data
types for service class description. The minor variation in site specific data pat-
terns coupled with common regularity exhibited by the input and output across
a class of Web sources lend itself to supervised machine learning technique. We
discussed two different approaches to learning the data type rules. The Cluster-
ing based approach has a definite advantage over the Brute-Force approach from
our initial set of experiments conducted for recognizing citation data types.

The strategies that we employed for learning is fairly simple and prelimi-
nary at the moment. We have not yet exploited the ordering and the specific
alphabetic letter or digit that can occur in the text token. We have also not
explored the orthographic features such as capitalization and position of the
text token within an example instance. Incorporating these heuristics will in-
crease the quality of our generated rules. Our learner uses a very simple clus-
tering mechanism based on the number of tokens in the given text instance.
More effective clustering that exploits high-level token semantics needs to be
investigated.
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Abstract. In this paper we present the BioNavigation system that al-
lows scientists to express their queries using an ontology representing the
conceptual level of scientific classes and labeled relationships. We devel-
oped the ESearch algorithm that generates all possible evaluation paths
for a given ontological query and ranks them based on source metadata
metrics. BioNavigation thus helps the user visualize the resources at a
higher ontological level, build queries graphically, and provides valuable
guidance on selecting the optimum path through the maze of resources.

1 Introduction

Expressing a scientific protocol, identifying the resources that will be used to
implement each of its steps is a tedious task. To help the scientist in the pro-
cess, two challenges need to be addressed. First, the scientist needs to express a
protocol at a conceptual level, independently of any resources available to imple-
ment it. Only then, the scientist should identify the resources the most suitable
to implement the protocol. Alas, the scientist often expresses ones protocols
mixing its conceptual aim with its implementation. Indeed, there are multiple
resources (data sources and applications) where to retrieve information about
scientific objects and analyze them, and scientists cannot know them all. Each of
these resources has its specific data format, data organization, data access, user
interface, etc. In addition, although many available resources may look similar,
they are different: two similar data sources may offer different coverage, different
levels of curation, different characteristics of the scientific objects they provide
information about, while two similar applications may generate dramatically
different outputs[1]. The wealth of biological resources does not benefit com-
pletely the scientists as they typically exploit the few resources they know and
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trust, avoiding the time consuming process of exploring new resources for each
of their protocols. Furthermore, the protocols are often driven by the resources
known by the scientists to implement them. Instead of selecting the resources
best meeting the protocol’s needs, the protocol is expressed so that it can exploit
the known resources. This may affect significantly the quality and completeness
of the dataset collected by the protocol as different selections of resources in the
protocol evaluation may generate different datasets [1].

Scientific knowledge involves multiple scientific objects and scientific mean-
ingful relationships among them. This knowledge may be represented with on-
tologies [2] composed of concepts, relations, instances, and axioms. Each concept
represents a scientific object (e.g., a gene) that is an abstraction of a set of en-
tities within a domain. Relations represent the interactions between concepts or
the properties of a concept. Ontologies aim at modeling scientific information
with respect to the understanding of the scientist. This “scientist-friendly” rep-
resentation of scientific information has proved useful in the past with system
such as TAMBIS [3] that used an ontology as a user-interface to access and
query multiple integrated databases. In the BioNavigation approach, we aim
at exploiting ontologies to provide a scientifically meaningful view of biological
resources.

In this paper, we present an extension of the BioNavigation system intro-
duced in [4]. The system provides scientists with the ability to express sci-
entific queries at a conceptual level, and returns scientists evaluation paths
composed of physical resources to implement the queries. BioNavigation now
exploits an ontology defining a graph of concept classes and multiple labeled
edges. The query against the logical graph can be seen as the design of the pro-
tocol (e.g., “retrieve citations related to a genetic disease”), while the evaluation
paths returned by the BioNavigation system are as many possible implemen-
tations of the protocol (e.g., OMIM (http://www.ncbi.nlm.nih.gov/omim) to
PubMed (http://www.ncbi.nlm.nih.gov/entrez) using the Entrez PubMed
Links). Once the system has returned the paths, the scientist may explore the
meta-information related to the resources. To better match the scientists needs,
the user may select semantics that will guide the BioNavigation system in se-
lecting the evaluation path and return them ordered with respect to the seman-
tics. The three semantics are maximizing the relevance, maximizing the number
of entries, and efficiency. We use three metrics to compute the probability of
each path to validate the semantics.

2 Physical and Logical Map of Resources

Most data sources typically represent a particular type of scientific class. For
example, PubMed provides references to published literature, UniProt (http://
www.ebi.ac.uk/uniprot/) provides information about proteins, etc. There can
be several data sources for the same scientific class. For example, one can retrieve
‘DNA sequences’ from either NCBI Nucleotide or EMBL (http://www.ebi.ac.
uk/embl/). Data sources also provide links connecting a record to other records
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in the same data source as well as external data sources in order to provide
comprehensive and complete information about the scientific object they rep-
resent. Scientists use these links to navigate from one source to another and
in the process gathering useful information relevant to the scientific question
being studied. Depending on the data source used for obtaining information
about a given scientific class and the links followed, scientists may retrieve
significantly different information, both in terms of quantity and quality, for
the same scientific query [1]. Thus it is important that the scientist should be
able to identify and explore all possible paths that can be used to evaluate the
query.

We developed the BioNavigation system to allow the scientist to exploit the
numerous available data sources and the links between them [4]. It allows the
user to generate queries graphically and evaluate them with respect to the above
ranking criteria. The main requirement of the interface was to display graphs
of sources (nodes) and capabilities (edges) to users in order to interact with
and view properties of the sources and capabilities. The BioNavigation interface
serves two main purposes: browsing and querying.

The browsing mode allows the user to navigate the conceptual and the phys-
ical levels of the resources. The user can select any of the nodes representing
the resources in the graph and learn more about its properties including the
ontological concept it represents, and in the case of data sources, the URL of
the source, the schema of data records, etc. Similarly, the user can click on a
capability connecting two physical sources to view its properties. The metadata
of the physical resources stored in the physical graph are used to determine op-
timal paths to evaluate a user query. At the conceptual level, the user can see
what scientific class each node represents and their relationships.

We now provide the formal definitions for the two levels of representation, the
ontological and the physical, which significantly extends the framework defined in
[5]. We also define the mappings that relate the physical resources with concepts
and relationships in the ontology. In section 3, we define the query language to
formulate the scientists query and used by the ESearch algorithm to identify
paths in the physical graph. The logical and physical graphs are respectively
defined in definitions 1 and 2. We then introduce, in definition 3, the function φ
that maps each logical node to the set of its physical implementations.

Definition 1. The Logical Graph LG = (VL, E) is a directed graph, where:

– VL is a set of nodes, partitioned into two sets C and A, where, C represents
logical classes and A represents logical associations between classes.

– E is a set of directed edges E ⊆ (C × A) ∪ (A × C) that represents roles
played by logical classes in the associations.

Definition 2. The Physical Graph P G = (VP , L) is a directed graph, where:

– VP is a set of nodes, partitioned into three subsets, S, AP , and QC, such
that, S represents physical data sources, AP represents applications, and
QC represents query capabilities.
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Fig. 1. An Example Ontology of Concepts and Associations

– L is a set of directed edges L ⊆ VP ×VP that represents links between sources
and applications or query capabilities. If a pair (a, b) belongs to L then, a
is a source and b is an application or query capability, or a is an application
or query capability and b is a source.

Definition 3. φ is a one-to-many mapping from VL to 2VP such that it maps
(a) a logical class name in C to a set of physical data sources in S and (b) a
logical association in A to a set of applications or query capabilities in 2AP∪QC .
Elements in φ(v) represent the physical implementations of a logical node v.

Figure 1 provides a small example for a conceptual ontology involving the scien-
tific classes, disease, gene, citation, and protein, and their labeled associations or
relationships. The querying mode allows the user to graphically build a regular
expression. Consider a scientist interested to ‘retrieve citations related to a par-
ticular disease’. An evaluation path for this query could consist of initiating the
retrieval process from a particular source that provides information on diseases
and then through the links it offers, obtain related citations. One such path could
be exploiting the NCBI PubMed Link from OMIM to PubMed. Hence, at the
conceptual level the path would be ‘d in c’ formed from the class ‘disease’ or ‘d’,
the class ‘citation’ or ‘c’, and the association ‘discussed in’ or ‘in’. The user also
might want to include in his path any possible intermediate nodes in addition
to the direct path.

3 Query Language

We now formally define the language that will be used to express the queries
over the logical concepts in set VL. We use the following notations:

– v is either a class or a logical association in VL i.e., v ∈ VL

– v < AnnotList > is an annotated class or association where < AnnotList >
is a list of expressions of the form: OP < P hysicalImpName > where OP
is either �= or =, and < P hysicalImpName > corresponds to a data source,
application or query capability in VP such that < P hysicalImpName >
belongs to φ(v).
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– εc is a term representing any possible class in C, similarly, εa represents any
possible association in A, and ε represents the path εa εc.

Definition 4. The query language L(RE) over the logical concepts in VL is
defined by the regular expression, L(RE) = X (ε + Y X)∗, where,
X = εc | c | c < AnnotList > and Y = εa | a | a < AnnotList >

Thus any conceptual level query starts with a logical concept and ends with a
logical concept. Two concepts are always connected through a logical associa-
tion. The term ε allows users to express queries such as ‘c1 ε∗ εa c2’, which means
that the path between classes c1 and c2 could be of any length and consist of
any possible intermediate class and association. A BNF grammar generating the
regular expressions is shown in Figure 2. Given the regular expression RE, our

<RE>:= <cTerm><Y>
<cTerm>:= <EpsilonC> | <ClassName><SourceAnnotation>
<Y>:= <Epsilon><Y> | <aTerm><cTerm><Y> | empty
<aTerm>:= <EpsilonA> | <AssociationName><LinkAnnotation>
<SourceAnnotation>:= empty | "[" <SourceList>"]"
<SourceList>:=<AnnotatedSource> | <AnnotatedSource> "," <SourceList>
<AnnotatedSource>:=<OP><SourceName>
<LinkAnnotation>:= empty | "[" <LinksList>"]"
<LinkList>:=<AnnotatedLink> | <AnnotatedLink> "," <LinkList>
<AnnotatedLink>:=<OP><LinkName>
<LinkName>:= <ApplicationName> | <QueryCapName>
<OP>:="!=" | "="

Fig. 2. BNF grammar of regular expressions

optimization algorithm will identify the set of physical paths in P G that corre-
sponds to the physical implementations of expressions of the language induced
by RE, L(RE). The following definition formalizes the paths that are physical
implementations of an expression in L(RE).

Definition 5. α is a one-to-many mapping from an expression e ∈ L(RE) into
a set of paths in P G corresponding to the physical implementation of e.

– If e is εc, then α(e) = S.
– If e is εa, then α(e) = AP ∪ QC.
– If e is a logical concept l ∈ VL, then α(e)=φ(l).
– If e = l < AnnotList >, where l ∈ VL and < AnnotList > is partitioned into

< AnnotListInc > and < AnnotListExc >, where the former corresponds
to the list of sources that must be considered and the latter sources that must
be excluded, then, α(e) = φ(l)∩ < AnnotListInc > − < AnnotListExc >

– If e = e1e2 then,
α(e1e2) = {w1w2|w1 ∈ α(e1), w2 ∈ α(e2), edge(last(w1), first(w2)) ∈ L},
where last and first are functions that respectively map a path with its last
and first elements and L is the set of edges in P G (definition 2).
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4 Searching the Space of Paths

A path p = (s1, a1, s2, . . . , sn−1, an−1, sn) in P G is defined as a list of sources si

and applications ai ∈ VP . A regular expression r over the alphabet VL expresses
a retrieval query Qr. The result of Qr is the set of paths p in P G that interpret
r, i.e., the set of paths in P G that correspond to physical implementations of
the paths in LG that respect the regular expression Qr.

A naive method for evaluating a query Qr is to traverse all paths in P G, and
to determine if they interpret r. The time complexity of the naive evaluation is
exponential in the size of P G because P G has an exponential number of paths.
A similar problem was addressed in [6] where it was shown that for (any) graph
and regular expression, determining whether a particular edge occurs in a path
that satisfies the regular expression and is in the answer is NP complete.

4.1 Assigning Metrics to Physical Paths

The result of a query Qr is a list of paths that represents the different ways in
which the user can navigate through the data sources in order to evaluate Qr.
It becomes important to assign ranks to these paths so that the user can easily
select the most suitable one. We use three metrics for ranking the paths:

1. Path Cardinality is the number of instances of paths of the result. For a
path of length 1 between two sources S1 and S2, it is the number of pairs
(e1, e2) of entries e1 of S1 linked to an entry e2 of S2.

2. Target Object Cardinality is the number of distinct objects retrieved from
the final data source.

3. Evaluation Cost is the cost of the evaluation plan, which involves both the
local processing cost and remote network access delays.

These three metrics are meaningful to the scientists as the path cardinality com-
putes the probability there exists a path between two sources, the target object
cardinality estimates the number of retrieved entries, whereas the evaluation
cost guides the scientists to the selection of an efficient evaluation path. These
metrics for each path are estimated based on the properties, described in Defi-
nition 7, of the links that exist between the data sources in S using the methods
introduced in [5] and [7]. The following definitions describe the mappings from
the logical associations between two classes in LG to the links between two data
sources in P G and their properties.

Definition 6. γ is a one-to-many mapping from a pair of logical associations in
E×E to pairs of physical links in L×L. If a pair (pl1, pl2) belongs to γ((la1, la2)),
then the following holds:

– la1 = (c1, a) and la2 = (a, c2) are logical links, where c1 and c2 are logical
classes, and a is a logical association between c1 and c2.

– pl1 = (s1, ap) and pl2 = (ap, s2) are physical links where s1 and s2 are
sources and ap is an application or a query capability.

– s1 ∈ φ(c1), s2 ∈ φ(c2) and ap ∈ φ(a).
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Definition 7. The function δ maps a logical association between two logical
classes to the set of physical link implementations and the values of the proper-
ties link cardinality, domain participation and image participation for each link.
Thus, δ is a one-to-many mapping from a pair of edges in E × E to 5-tuples in
L × L × R × R × R. If a 5-tuple (pl1, pl2, lc, dp, ip) belongs to δ((la1, la2)), then
the following holds:

– la1 = (c1, a) and la2 = (a, c2) are logical links, c1 and c2 are logical classes
and, a is a logical association between c1 and c2.

– pl1 = (s1, ap) and pl2 = (ap, s2) are physical links and, s1 and s2 are sources
and ap is an application or a query capability.

– (pl1, pl2) ∈ γ((la1, la2)).
– lc: represents the link cardinality and corresponds to the number of links

from all data objects of source s1 pointing to data objects of s2.
– dp: represents the domain participation and corresponds the number of ob-

jects in s1 having at least one outgoing link to an object in s2.
– ip: represents the image participation and corresponds to the number of data

objects in s2 that have at least one incoming link from objects in s1.

4.2 The ESearch Algorithm

ESearch is an extension of the algorithm presented in [5], to evaluate queries
expressed as ontologies such as the one defined in Section 3. ESearch is based
on an annotated deterministic finite state automaton (DFA) that recognizes a
regular expression or query Qr and the physical implementations that must be
excluded from the final result. We refer these regular expressions as annotated
regular expressions. The algorithm performs an exhaustive breadth-first search
of all paths in P G that respect the regular expression.

Suppose DFA is the automaton that recognizes the annotated regular ex-
pression or query Qr. The annotated DFA is represented by a set of transitions,
where a transition is a triple t=(i,f,e,excImpl),where, i represents the initial state
of t,f represents the final state of t and, e corresponds to the label of t, note that e
∈ VL, i.e., e belongs to the set of logical classes and associations between classes.
The state i (resp. f) may be a start state (resp. end state) of DFA. Finally, ex-
cImpl is a set of physical implementations of e that will not be considered in the
physical paths.

The exhaustive algorithm ESearch , comprises two phases: (a) build path and
(b) print path. In phase build path, for each visited transition t=(i,f,e,excImpl),
the algorithm identifies all the physical implementations si ∈ φ(e) that do belong
to excImpl. If i is not a start state of the DFA, then, for each si, the algorithm
computes a set si.previousImp. To do so, it considers all the sources or appli-
cations that were selected in transition tp previous to t, and selects the subset
of implementations in VP that are adjacent to si in P G; these elements are in-
cluded in si.previousImp in conjunction with the transition used to traverse the
node. In phase print path, the algorithm starts from the set of implementations
corresponding to the final transition, whose final state is an end state of the
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DFA. For each si, it uses the set si.previousImp to construct a path. The path
terminates in one of the implementations visited by the start transition whose
initial state is a start state of the DFA. We note that print path may commence
as soon as ESearch visits the first transition for which f is a final state of DFA.
In our implementation, we do not consider such potential parallelism between
these two phases.

The ESearch Algorithm runs in polynomial time in the size of the graph,
if the graph is cycle free, all paths are cycle free and, every two nodes in PG
are connected by a unique path. Each node (source) in the graph implements
only one entity, so a node is visited at most once in each transition (each level
of the breadth-first search). Similarly, each node is visited at most once in each
iteration of print path. An annotated physical graph is produced during the build
path phase of ESearch. For each transition in the DFA, each implementation si

matching the transition is annotated with implementations in si.previousImp.
If d is the maximum number of nodes that can precede a node in the annotated
physical graph, i.e., the cardinality of previousImp, and b is the maximum length
of (cycle free) paths satisfying the annotated regular expression, then O(db) is
an upper bound for ESearch.

5 Conclusions

BioNavigation can enhance existing mediation approaches by providing scientists
with the ability to browse through available integrated resources and to access
their properties. The wildcard ε∗ allows users to identify alternate paths that
may be exploited to evaluate the queries while the annotations aid specifying
the resources they may require to be used (or not be used) in the process. The
ESearch algorithm designed and implemented for BioNavigation allows efficient
search in the space of all possible evaluation paths. Moreover three scientifically
meaningful metrics provide scientists the paths that best meet their needs. In
the future we will combine the BioNavigation system with SemanticBio [8] that
allows users to express and execute scientific workflows with an ontology and
Web Services.
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Abstract. The ability to perform genome-wide and cross-genome data
analyses can dramatically reduce the time required for new biological
discoveries. This raises important issues in bioinformatics database re-
search involving data representations and data integration. Essential bio-
datatypes (biological datatypes such as sequence locations) and tools
(such as the popular BLAST sequence alignment tools) are not supported
in traditional database systems, which has forced researchers to repre-
sent biological knowledge counterintuitively, and implement codes for
data operations. This paper introducesBLASTgres, an extension of the
PostgreSQL database system, that provides indexable biodatatypes
and joinable BLAST alignment.

1 Introduction

Today’s vast, distributed biological knowledge is interconnected through many
kinds of information about sequences. This information can be indexed, per-
mitting efficient navigational access through browser interfaces and automated
traversal of sequence annotations. We are developing BioIndexing as a concep-
tual infrastructure for representing and managing biological knowledge with in-
dexing constructs. This infrastructure has been realized in BLASTgres, an
extension of the PostgreSQL database system for bioinformatics.

This paper focuses on two aspects of BioIndexing that are implemented in
BLASTgres: indexable biodatatypes (biological datatypes) and the ability to
join information from external resources. A sequence location biodatatype can
relate these two aspects. Sequence locations pervade existing biological infor-
mation, and define a central biodatatype. They are essential to the sequence
alignments produced by tools like BLAST[1, 2], which today provides one of the
primary indexing mechanisms for this information. Furthermore, these aspects
of BioIndexing are naturally combined within a modern database system, giving
a flexible infrastructure for connecting and managing biological information.

BLASTgres is an implementation that provides these capabilities. We chose
to develop BLASTgres as an extension of the PostgreSQL [3] database sys-
tem for several reasons, including in particular that PostgreSQL: 1) is an open
source software package with high performance and stability; 2) facilitates the
introduction of user-defined biodatatypes; 3) provides GiST (Generalized Search
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Fig. 1. Much biological knowledge is described in terms of the features associated with
locations in sequences and relationships between locations in sequences. BLASTgres
supports indexable location biodatatype and BLAST joins between locations. These
two capabilities permit efficient large-scale management of sequence-related feature
knowledge

Tree) indexing [4]. GiST indexing is particularly important for the location bio-
datatype because BLASTgres needs to support query predicates other than
equality test.

2 BLAST Support in BLASTgres

Similarity search is one of the most heavily-used tools in computational and
comparative biology. Among available similarity searching tools, the BLAST
family is arguably the most popular. BLAST can be viewed as a kind of index;
given a sequence of interest, BLAST finds related sequences. Many biological
relationships can be represented and related by joining BLAST results.

The integration of BLAST into database management systems enjoys sev-
eral benefits: 1) today the application of BLAST results in relating biological
sequences is often ad hoc. Special codes are needed to interact with a BLAST
server, parse BLAST results and integrate the results with other biological data.
2) currently, BLAST provides only a limited set of controls over its result; ad-
vanced filtering and query mechanisms (such as sorted by E-values or grouping
by a set of attributes) are sometimes required. 3) additional annotational infor-
mation can be automatically integrated into BLAST results.

In BLASTgres, BLAST support is achieved by defining a set of user-defined
functions that return BLAST results as a table. Biodatatypes are also trans-
formed automatically in this process. Annotational information, such as species,
and description for a particular sequences can also be added automatically by
invoking the proper function calls. In this way, BLAST results can be easily in-
tegrated with other biological information in the system. Besides, annotational
data can be attached to BLAST results automatically in order to provide de-
tailed knowledge about these sequences.
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Here are some examples:

-- blast a given sequence with BLAST default parameters
SELECT * FROM blast(’ACTTGATGGTACGTAGTCCGTATAGGCTTAGEACTGGTATCGA’, ’blastn’, ’nr’);
-- blast sequence file against local database
SELECT * FROM local_blast(’unknown_proteins.fasta’, ’blastp’, ’nr’);

-- number of hits from different species
SELECT COUNT(*), species FROM annotated_blast( ’AF101044’, ’blastn’ )
GROUP BY species;

-- retrieve sequences that code for SNRPN proteins in species other than homo sapiens
SELECT * FROM annotated_blast( ’AF101044’, ’blastn’ )
WHERE descriptions LIKE ’%SNRPN%’ AND species <> ’Homo sapiens’;

-- blast a subsequence in the 2nd exon of Mus musculus H2-DMB1 gene with stricter condition
SELECT subject_location, length FROM blast(’NM_010387.2[265..546][30..60]’, ’blastn’)
WHERE evalue < 1E-5 AND bitscore > 800;

3 The Location Biodatatype and Indexing

Without proper database abstractions, users have to develop specialized codes
to handle location operations. Traditional relational databases are generally not
equipped to support locations as an abstraction, or permit more powerful query-
ing of locations. A variety of potential issues would arise. For instance, incon-
sistent representations and interpretations lead to difficulties in data sharing
and exchange. Moreover, traditional query processors are sometimes incapable
of generating efficient execution plans for complex conjunctive (or disjunctive)
normal forms and handling inequality relationship between inter-dependent at-
tributes. Severe performance penalties can result.

Internally, a location is represented as an identifier for the sequence, an integer
interval [lower, upper], and the strand in which this sequence resides (only for
DNA sequences). The interval range is represented as a closed interval with
positions starting at 1, following the convention of most biological databases.

Essential operations and functions for the location biodatatype are supported.
More than 30 interval operations are defined (such as Contains, Inside, Equal,
Overlaps, Left, Starts by, Finishes by, Over left, etc). Coordinate transformation
and slicing operations are also supported. New reference coordinates can be
specified by defining aliases to existing locations and slicing can be specified to
denote a sub-range within a location. Optimization information (e.g., regarding
ordering, commutativity or negation) is also provided to permit optimization of
important operations like merge-join, hash-join or general theta-join.

Here is an example of location representation and manipulation:

CREATE TABLE alt_splice_homology_map AS
SELECT o.*, d.location, range_start(d.query)+(o.location-range_start(d.hit))/3
FROM alt_splice_exon_obs o, alt_splice_homology d
WHERE o.location @ d.location -- contained

AND d.e_value < 0.01 GROUP BY o

SELECT o.*, f.type, f.location
FROM alt_splice_homology_map o, swiss_feature f
WHERE o.location &< f.location -- left overlap
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In addition, BLASTgres supports location indexing. Supports for indexing
schemes in traditional relational database systems is limited and inflexible. They
are only limited to a few well-known index structures and can be used only for
a limited set of native datatypes for (in)equality and range queries. In order to
support a wide variety of queries, we implemented location indexing under the
GiST architecture. GiST is extensible both in datatypes that it can index and
query predicates that it supports.

Each BLASTgres search key contains two ranges: (1) [id lower, id upper],
a pair of integers representing the range of identifiers present in the subtrees,
and (2) [key lower, key upper], a minimal bounding interval that covers the
range of location intervals in the subtrees. Common interval predicates, such as
Left, Right, Overlaps, Contains, Equal, etc, are supported in our GiST index
implementation. Tree search is handled by comparing the minimal bounding
intervals with the query according to the GiST search algorithms.

4 Conclusion

The location concept is fundamental to biological knowledge representation since
biological features are generally attached to locations and locations are also the
bases for maps, alignments and other complex relationships. Naive represen-
tation of the location concept, without formal development of a biodatatype,
is error-prone and easily leads to inconsistencies in operational definition and
poor query performance. In addition, advanced database queries and analysis
functions could be used for BLAST queries.

We implemented BLASTgres, an extension of PostgreSQL as an illus-
tration of the these concepts. High performance is achieved by bioindexing —
the combination of indexing and efficient implementation of the location bio-
datatype. For instance, in one of our sample databases which keeps track of
information for 420,251 genomic locations, it takes 825ms to retrieve a random
location without index support. With index support, it takes 17ms.

BLASTgres is freely available from http://www.blastgres.org/
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Abstract. Scientific workflows represent an attractive alternative to describe 
bioinformatics experiments. They give an adequate support to the "Execution 
and Analysis" cycle, relevant to the process of knowledge discovery. Work-
flows can create an independent and interoperable environment between the 
scientific applications and databases, when combined with the Web Services 
technology. Despite the successful use of these technologies in the business 
scenario, its use in bioinformatics is still incipient. This work presents an inte-
grated environment that aims at the definition and execution of in silico ex-
periments through scientific workflows using Web services. A real bioinformat-
ics experiment was implemented in this environment. 

1   Introduction 

Scientific workflows represent an attractive alternative to describe bioinformatics 
experiments. These in-silico experiments are usually built by manually composing 
third-party programs with their input and output data in an execution flow. Output 
data is analyzed and according to the experiment result, parameters are tuned, work-
flow is re-executed, programs are replaced on the workflow and partial re-executions 
are made. 

Perl script language has been used to help program invocations and composition, 
as well as data conversions. However Perl scripts lack flexibility and present diffi-
culty in coping with changes. Recently, the scientific community is moving towards 
Web services technology [2], [3], [8], [10], [11], [12]. Web services were specially 
conceived to provide interoperation between applications from different platforms. 
Thus, they are an appropriate solution to support program composition through geo-
graphically distributed programs and data exchange. The Web services technology 
provides the necessary mechanisms to define workflow processes through the compo-
sition of basic web services. Currently, there are a number of language proposals for 
composing web services. IBM, Microsoft and BEA released BPEL4WS - Business 
Process Execution Language for Web Services [7], which is becoming a de facto 
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standard. However, interoperability issues are only part of the problem. An important 
knowledge that can be extracted from the results of these experiments, such as data 
provenance, is lost. With the Web services approach, program composition definition 
can be registered, but results from these experiments, such as, successful parameter 
tuning, intermediary results and a log of experiments are not automatically registered. 
Specific scientific workflow languages [2] have been designed on top of Web services 
technology to support such experiments management.  

In [6] we present SRMW, a scientific metadata architecture that adds semantics to 
Web services. We evaluated a real bioinformatics workflow implemented through 
Web services. The flexibility of Web services technology was confirmed, particularly 
for this specific workflow definition, but no support for defining and managing work-
flows in SRMW.  

Based on this experience we have developed a prototype of an environment, named 
10+C, which is presented in this work. 10+C offers services for bioinformatics work-
flow management based on Web services technology, particularly BPEL [7] and its 
execution engines. We have built a Web portal that supports definition and execution 
of workflows using a graphic interface that hides technology specificities. In addition 
to flexibility, 10+C can register experiments executions, partial results and parame-
ters. Also, it provides partial execution and re-execution of workflows to allow fine 
tuning of parameters by the scientist. Data persistence services in 10+C represent a 
first step into data provenance. 10+C can work alone or it can be coupled to SRMW 
architecture [6], to add semantic support. By using metadata according to the SRMW 
[5] metamodel, we can identify related programs and experiments and help knowl-
edge extraction from stored experiments.  

2   The 10+C Environment 

The 10+C environment combines Web services technology with scientific workflow 
management tools aiming at bioinformatics applications. The main services of 10+C 
are workflow definition and execution. Workflow definition specifies the execution 
flow of the programs by defining: the involved activities, restrictions, execution order, 
input/output data acquisition, conversion and formatting, deviations on the main exe-
cution flow, and error handling with compensatory services. Workflow execution is 
responsible for executing all activities defined at the workflow specification, by fol-
lowing the flow sequence, data conversions and transformations. 

The name 10+C stands for ten characteristics available: (1) abstract workflow defi-
nition; (2) run time programs workflow definition; (3) automatic workflow language 
specification; (4) workflow execution; (5) workflow partial and complete re-
execution; (6) workflow exception handling; (7) program execution logging; (8) 
workflow execution logging; (9) remote program execution using open standards; and 
(10) Web portal interface.  

A prototype of 10+C was implemented using JSP/Servlet and MySQL on an 
Apache Tomcat server. The AXIS [4] package is responsible for providing Java 
classes as Web services and handling SOAP messages. We chose BPEL as the work-
flow definition language mainly for its tendency on becoming a standard. To execute 
BPEL we have used BPWS4J 1.0.1 execution engine, freely available by IBM [9]. 



290 R. Targino, M.C. Cavalcanti, and M. Mattoso 

 

Currently a new version BPWS4J has been released, but no longer free. We are evalu-
ating the several open source BPEL execution engines [1] for the next version of 
10+C. We can take advantage of BPEL and its execution engines while we concen-
trate in adding semantics and specific support for bioinformatics workflows. Next, we 
present the four main components of the 10+C architecture, discussing their support 
on the ten characteristics. 

Scientific Applications. This component contains bioinformatics programs published 
as Web services. These programs can be third-party code available through CGI, 
CORBA or any interface different from Web service. In this case, a Web service layer 
has to be built to invoke the program. Some examples are given in 10+C to help the 
publisher. 

Web service programs or workflows must be registered in 10+C through its WSDL 
document file. 10+C processes this file and stores invocation information, registering 
its name, and data types for all input/output of the service. This information is used to 
help workflow definition, and input/output mappings between program flow. 

Data Persistence. Data related to program and workflow execution are persisted 
using Web services. Examples of persistent data are: parameters, input/output data, 
results and metadata involved during execution. This persistence can be defined by 
the user, through the identification of the Web service responsible for this registry. 
Those Web services store data in flat files or in MySQL database.  

Workflow Definition. This component allows for the definition of a workflow. It is 
based on available Web services of bioinformatics applications. It is responsible for 
the definition of an execution sequence, based on BPEL constructs to connect pro-
grams. A simplified interface is available to view a graphic representation of the 
workflow. We intend to incorporate an open source workflow editor to improve flexi-
bility. To create a new workflow, the user must give a name and description for the 
workflow. Then a Web service must be chosen among previously published services 
and its execution flow is defined for each participant of the workflow. 

During workflow definition it is also necessary to map data output to the input of 
the next program. Finally, a workflow definition file is automatically generated (a 
BPEL document), which must be later deployed in a workflow engine. Once speci-
fied, the workflow is published as a Web service, registered at 10+C and can become 
part of other workflows. 

Workflow Execution. This component builds a visual HTML page for data input of 
the workflow first step and invokes the corresponding service through its interface. 
This initial page for data input is automatically built according to the mapping speci-
fication previously defined. With these input data, a generic proxy is invoked, which 
is a class that composes SOAP messages to send and receive output data. 

Workflows are executed at the workflow engine of the application server by invok-
ing each program along the flow with its corresponding input data. Currently we are 
using the execution engine BPWS4J, by IBM, but any other BPEL engine could be 
used, such as open source ActiveBPEL [1]. We have evaluated 10+C services using a 
real bioinformatics workflow, MHOLline [6] that aims at generating 3D models for 
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proteins. During execution, each program data is persisted using Web services to 
allow for future analysis or workflows re-executions. Alternative services can be 
executed along the workflow if a failure occurs and compensatory services are 
planned. 

3   Conclusions 

The 10+C environment implements an open platform to define and execute bioinfor-
matic workflows. It is based on Web services technology, which has become an in-
dustry tendency. Our approach is highly based on open source tools and standard 
proposals for Web services workflows, thus, taking advantage of open languages with 
interoperability and platform independence. Furthermore, wrapping legacy programs 
into Web services has turned bioinformatics workflow steps into public building 
blocks, which are available for any other application reuse. Finally, despite the limita-
tions of the Web services description language (WSDL), its extensibility allows to 
add semantics [6], according to the needs of bioinformatics users.   
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Abstract. In this paper, we propose a Web service mining approach to
automatically discover pathways from biological entities and processes
modeled as Web services. We present a preliminary experiment using
Web service models of entities such as COX and Aspirin to illustrate the
effectiveness of this mining approach.

1 Introduction

The distributed, diverse and complex nature of biological information that is cur-
rently available calls for automated tools to help discover biological pathways.
While query-based automated pathway discovery mechanisms such as natural
language processing (NLP) [2, 1] have been explored to target the free-text for-
mat used to annotate biological entities, these mechanisms are inherently limited
by the annotative text that is good at describing properties and functions of bi-
ological entities but cannot be used to enact these functions. The discovery of
biological pathways can be made more feasible if the dynamic functions can
be both described and enacted. The enactment of these functions or processes,
through the use of biological models, allows previously unknown pathways to be
identified and, more importantly, verified through simulations. In addition, the
effects caused by disturbances in these pathways that were previously difficult
to study via static function descriptions can be made easier to identify. In this
paper, we propose a Web service mining approach to mine for pathways from
biological entities and processes that are modeled as Web services. Query-based
discovery approaches mentioned earlier can work well if the user clearly knows
what to look for. As the amount of biological information continues to accumu-
late, it is unavoidable that there would be many pathways hidden in it. While
we may not sometimes have the specific queries needed to search for them, the
discovery of these pathways could turn out to be the key in unraveling many
of the mysteries of life. Our mining approach aims at proactively discovering
unexpected and potentially interesting pathways in a bottom up fashion when
we don’t know exactly what to look for.

2 Mining Web Service Models for Pathways

A Web service is an application whose operations can be described, published,
discovered, and invoked by other independently developed applications through
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Fig. 1. Operation, Operation Recognition and Pathway

an XML based Web interface. An operation may take several parameters as
input, carry out processing tasks using these input parameters, and generate end
products as a result of these processing tasks. We refer to the end products as
the operation’s out parameters. Web service operations can be used to represent
functions of a biological entity, such as a gene, a cell, an organ, or a ligand.
Fig. 1 depicts three Web services for Aspirin, COX1 and Stomach. An example
of a service operation would be cox1Expression of the COX1 Service. Its input
parameters include COX1, cell and dietary arachidonic acid, and its output
parameters include prostaglandin E2, prostaglandin I2 and thromboxane A2.

Operations from different Web services can recognize one another positively
or negatively. When operation A (e.g., cox1Expression) generates some input pa-
rameter(s) (e.g., prostaglandin I2) of operation B (e.g., produceMucus), we say that
B positively recognizes A. As a result, a positive bond is established between the
two operations. Similarly, when operation C (e.g., blockCOX1) blocks operation
A from consuming some of its input parameters (e.g., COX1), we say that A
negatively recognizes C. As a result, a negative bond is established between the
two operations. A pathway segment is established as a result of a positive or
negative bond. Fig. 1 shows an pathway example from blockCOX1 to cox1Expression

to produceMucus.
Each of the input and output parameters has a type. The type is defined by

a node in a biological ontology that specifies the biological entities and relation-
ships among them. There could be potentially a number of biological ontologies
involved in mining. We assume that these ontologies are managed by domain
experts. In addition, we assume that developers of biological Web services ad-
here to such ontologies when defining Web services. The bottom part of Fig. 1
provides an example of how such ontologies can be organized.
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We use screening algorithms [4] to screen Web services for potential path-
ways. When a Web service operation is introduced in our mining process, each
of the operation’s output parameters will publish to an ontology node it is an
instance of. Similarly, each of its input parameters will subscribe to an ontology
node it is an instance of. We extend the capability of a conventional ontology by
attaching a node agent to every node in the ontology that has been referenced by
at least one operation parameter. The node agent keeps track of subscribing and
publishing parameters on behalf of a corresponding node. This tracking enables
a subscribing parameter (e.g. input parameter prostaglandin I2 to produceMucus)
of the node to become essentially notified of the presence of a publishing pa-
rameter (e.g. output parameter prostaglandin I2 from cox1Expression). As a result,
the operation where the subscribing parameter belongs recognizes the operation
where the publishing parameter belongs, and a positive or negative bond is es-
tablished. As more Web services are introduced, new bonds are established and
some of these bonds may extend existing pathways.

3 Experimental Study

We have conducted experiments to assess the effectiveness of the screening al-
gorithms. WSDLs were created with the help of the Systinet Web service plugin
to Eclipse 3.0 and used as inputs to our mining process. For each of the Web
services discovered, we used the WSDL2Java utility provided by Systinet [3] to
generate one Java class from its WSDL. This class contains information about
operations that are provided by the Web service. Using Java introspection, oper-
ations within each of the Java classes can be automatically analyzed to determine
their name and information about the input and output parameters. Each oper-
ation extracted was first added to an operation library. Our screening algorithms
was then used to link these operations. Table 1 contains a list of simplified Web
services used in our experiments.

Fig. 2 shows that the mining process identified four pathway trees rooted
at inflammation, clot, excreteWater, and produceMucus. We only show details
of two of the pathway trees in Fig. 2 (a) and (b). Starting from leaf nodes,
Fig. 2 (a) shows that operation blockCOX1 from AspirinService blocks the con-

Table 1. Web Services

Web Service Operation(s) Input Params Out Params

COX1Service cox1Expression COX1, Cell, ProstaglandinE2,
DietaryArachidonicAcid ProstaglandinI2,

ThromboxaneA2
COX2Service cox2Expression COX2, DamagedCell, ProstaglandinE2,

DietaryArachidonicAcid ProstaglandinI2
BloodService clot BloodCell, LargePlatelet
AspirinService blockCOX1 Aspirin COX1

blockCOX2 Aspirin COX2
CelecoxibService blockCOX2 Celecoxib COX2
InflammationService inflammation ProstaglandinE2, DamagedCell Swelling, Pain
KidneyService excreteWater ProstaglandinE2, KidneyCell Urine
StomachService produceMucus ProstaglandinI2, StomachCell Mucus
PlateletService blockPlateletAggregation ProstaglandinI2, Platelet

platelet- Aggregation ThromboxaneA2, Platelet LargePlatelet
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Fig. 2. Pathways Identified via Screening

sumption of COX1 by operation cox1Expression from COX1Service. The same
cox1Expression, in turn, provides ProstaglandinI2, which is needed by opera-
tion blockPlateletAggregation from PlateletService. Operation blockPlateletAggre-
gation blocks the consumption of Platelet by operation plateletAggregation from
PlateletService, which needs both Platelet and ThromboxaneA2 to function. Fi-
nally, operation plateletAggregation creates LargePlatelet, which is needed by
operation clot from BloodService. Operation blockCOX2 from both AspirinSer-
vice and CelecoxibService also blocks the consumption of COX2 by operation
cox2Expression from COX2Service. Fig. 2 (b) shows the pathway tree that is
rooted at operation produceMucus from StomachService. We can also generate
an XML file containing the same content as in Fig. 2. The XML file can be input
to tools capable of generating pathway graphs.
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Abstract. We introduce here the SemanticBio system 1, which allows
expressing scientific protocols as workflows that manipulate scientific ob-
jects represented in an ontology. The different tasks are executed using
web services, which address many interoperability issues, and are avail-
able as interfaces to a variety of life science resources.

1 Introduction

Discovery, in biology as in any other science, is based on scientific reasoning [1].
The basis of this mechanism is that in order to decide whether a hypothesis
is valuable, experiments are carried out, and the comparison of the expected
results with the actual experimental results leads to supporting it or not. A
scientific protocol is the description of the coordinated execution of a set of
tasks representing the experimental process, and returning a reproduceable set
of results.

In the context of modern science, information is increasingly digitalized, as
well as experiments, consisting to a greater extent of the collection and analysis
of digital datasets. Life science is no exception, and the number of publicly
available data sources is growing at a very high rate. In 2005, no less than
719 databases relevant to molecular biology and available on the internet can be
listed [2]. This abundance in fact concerns every resource, including data sources
(e.g., GenBank) as well as applications (e.g., BLAST). However, scientists do
not have the time to learn using them all, and often limit the protocols they
express to the few resources they know, hence stating protocols driven by their
implementation instead of their scientific aim, with the risk of affecting the value
of their endeavour.

We present here the SemanticBio system, that allows scientists to express
scientific protocols as workflows at a conceptual level, using ontologies. These
conceptual workflows are then translated in a semi-automated process into ex-
ecutable workflows, composed of calls to coordinated web services. In our ap-
proach, the emphasis is on the clear separation of the conceptual level, which

1 This research is partially supported by NIH National Library of Medicine grant R03
LM008046-01.
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reflects the protocol design, from its implementation. The implementation of the
protocol, generated according to the user’s preferences, can then be executed to
get the results.

We first describe the requirements of a system aimed at biological data in-
tegration and querying. The third section of this paper presents a summary of
the SemanticBio architecture. The fourth section introducing an example of a
bioinformatics experiment, and a scenario using SemanticBio to carrying it out
is followed by the conclusion.

2 Requirements

– Express queries graphically as data flows - Scientific protocols are
represented as data-flow oriented workflows in a graphical user interface,
allowing scientists with few programming skills to design them.

– Design queries at a conceptual level, using scientific objects - Scien-
tists design queries using a conceptual model, i.e., an ontology representing
scientific objects and the relationships between them.

– Access a great variety of resources via web services - Accessing such
distributed resources raises many interoperability issues. We believe web ser-
vices 1 are a good solution to this issues (see also [3]), because they are based
on XML, benefiting from the ease of integration this technology provides,
and do not require complex firewall parameterization. Furthermore, they are
provided by many institutions, such as EBI 2, KEGG 3 or NCBI Entrez 4.

– Automate the selection and invocation of the required services for
each task - In order to achieve a selection of the resources as automatized
as possible, our system provides the user with the available services for each
task he defined during the design phase and let him decide which one to use.

3 Characteristics and Architecture of SemanticBio

The system architecture can be divided into different components that are
represented in Figure 1.

The user interface is composed of two parts :

– The web service editor allows the user to import web services definitions
(WSDL files), and describe them semantically, mainly by linking the inputs
and outputs of their operations to concepts described in an ontology edited
using an ontology editor, and the OWL-S [4] language.

1 http://www.w3.org/2002/ws/
2 http://www.ebi.ac.uk/Tools/webservices/index.html
3 http://www.genome.jp/kegg/soap/
4 http://www.ncbi.nlm.nih.gov/entrez/query/static/esoap help.html
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– The workflow editor allows users to design a conceptual workflow by drag-
ging components on a graph interface. Once this design phase is achieved,
an assistant suggests for each task of the workflow a list of corresponding
web services, before to submit and monitor it.

The repository database stores

Fig. 1. SemanticBio Architecture

all the information used by the sys-
tem in a native XML database sys-
tem, more convenient given the for-
mat of these data.

The adapters are software mod-
ules that handle data format trans-
formation between two steps of the
workflow.

The workflow planner handles
the execution of the workflows, coor-
dinating the web services or adapters
calls, managing their status, and in-
forming the user of their execution
status.

4 Illustrating Example

We consider the following protocol:“Return all citations that are related to the
disease diabetes type 1” [5]. Its implementation in SemanticBio is a three steps
process:

– Ontology description - This very simple protocol involves two types of
scientific objects: citation and disease. The protocol evokes a path between
those two concepts, that are represented in an ontology.

– Resources Integration - To solve this problem, the resources, i.e., the web
services implementing the concepts and their relationships, are described in
the system, using the web services editor. Here, we can use the NCBI EU-
tils web service. For instance, describing the semantics of the ELink operation
is done through mapping its input and output respectively to the correspond-
ing concepts in the source and destination database, in our case OMIM and
PubMed. This web service accesses all the scientific objects described in the
databases available at NCBI Entrez. Therefore, a single operation, such as
the EFetch operation, is described as retrieving the information about all
those objects, each time specifying a different value for the database input.

– Workflow construction - Once the resources are integrated in the system,
users can design the workflow using the workflow editor. This workflow
is composed of two tasks: one that retrieves the relationships between the
genetic disease and the citation object, and one that retrieves the citation
object associated to each relationship. The first step takes as input an iden-
tifier for the disease, and its output is a list of citation identifiers. The second



SemanticBio: Building Conceptual Scientific Workflows over Web Services 299

step’s input is an identifier for a citation, and its output is the citation itself.
Once the graph representing the workflow has been built, the invocation of
the implementation assistant offers the user a web service for each of the
steps he designed, such as the ones we described earlier.

– Execution - The invocation of the execution of this workflow triggers its
submission to the query planner, which handles the coordination of the
calls to web services, notifying the workflow editor of the execution status.
In case the output of a task is not be in the same format as the input of the
following, an adapter is called to handle this data transformation.

5 Conclusion

The SemanticBio system, currently under development at Arizona State Uni-
versity, addresses the complex issues raised by the integration of biological data
with a meta-data driven approach, based on conceptual information. It is aimed
at being scientist-friendly, making the expression of scientific protocols as easy
as possible. Finally, it is built using common formats in order to facilitate its
integration with existing resources and its interfacing with other systems. The
SemanticBio system relies on an ontology, a collection of available web servi-
ces, and their semantic description. The collection of this information allows to
make extensive reuse and sharing of this knowledge in the life sciences commu-
nity. The SemanticBio approach is evaluated with scientific protocols currently
designed by the Brain Tumor Unit at the Translational Genomics Research Insti-
tute (TGen). Future work includes the integration of the BioNavigation system
[6], that helps selecting evaluation paths to execute conceptual queries expressed
on an ontology, using available resources.
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Abstract. We have been developing a web-based system for comparing
multiple genomes, PLATCOM, where users can choose genomes of their
choice freely and perform analysis of the selected genomes with a suite of
computational tools. PLATCOM is built on internal databases such as
GenBank, COG, KEGG, and Pairwise Comparison Database (PCDB)
that contains all pairwise comparisons (97,034 entries) of protein se-
quence files (.faa) and whole genome sequence files (.fna) of 312 replicons.
Since combining multiple tools for sequence analysis requires a significant
amount of programming work and knowledge on each tool, we also de-
veloped and incorporated high performance sequence data mining tools
such as sequence clustering and neighborhood prediction. The next plan
includes defining several data types for genome analysis and integrat-
ing system modules using data mining tools that operate on the genome
data types. PLATCOM is available at http://platcom.informatics.

indiana.edu.

1 Introduction

The exponential accumulation of genomic sequence data demands systematic
analysis of genetic information and requires use of various computational ap-
proaches to handle such huge sets of genomic data. Comparative genomics, with
such organized data and diverse computational techniques, has become useful
not only for finding common features in different genomes, but also for under-
standing the evolutionary process and mechanism among multiple genomes.

Comparison of multiple genomes is a challenging task partially because com-
bining multiple tools for sequence analysis requires a significant amount of pro-
gramming work and knowledge on each tool and partially because it handles a
huge amount of data. Another problem is the subjectivity of how to select mul-
tiple genomes. For example, there are 1,313,400 (=

(
200
3

)
) possible selections of

three genomes out of 200 completely sequenced genomes. The inconsistency of
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input data from existing sources and the effective presentation of analysis results
also raise problems.

Considering all these issues, it is not possible to perform multiple genome
comparison on the web by simply using sequence analysis tools in an ad hoc
fashion. SEALS [1], The SEED [2], DAS [3] were developed to achieve such a
goal, but they are developed for service on the web.

2 PLATCOM: A Computational Environment for
Comparative Genomics on the Web

We have been developing a genome comparison system PLATCOM, which is
available at http://platcom.informatics.indiana.edu. PLATCOM is de-
signed to be a high performance genome analysis system on the web which
is easy to use and easy to maintain and update. These design principles may
conflict with other desirable system features such as information richness and a
sophisticated user interface. Instead, PLATCOM aims at a flexible, extensible,
scalable, and reconfigurable system with emphasis on high-performance data
mining. Although PLATCOM does not store or maintain any information on
sequences, information on sequences can be obtained via URLs or connectivity
tools to other information rich databases.

2.1 Overall System Architecture

PLATCOM consists of four main components; databases, sequence analysis
tools, genome analysis modules, and a user interface.

The whole system is built on internal databases, which consist of GenBank,
SwissProt, COG, KEGG, and Pairwise Comparison Database (PCDB). PCDB
is designed to incorporate new genomes automatically so that PLATCOM can
evolve as new genomes become available. FASTA and BLASTZ are used to com-
pute all pairwise comparisons (97,034 entries) of protein sequence files (.faa)
and whole genome sequence files (.fna) of 312 replicons. Multiple genome com-
parisons usually take too much time to compute, but the pre-computed PCDB
makes it possible to complete genome analysis very fast even on the web. In gen-
eral, PLATCOM runs several hundred times faster than a system without PCDB
when several genomes are compared. In addition to sequence data, PLATCOM
will include more data types such as gene expression data. More importantly,
PCDB makes it possible to achieve one of the most important design goals,
which is to allow users to select any subset of genomes to be compared freely.
We also designed PCDB in a way that the update, introduction of new genomes
to PLATCOM, can be performed almost automatically [6].

Sequence analysis tools include widely used high performance sequence anal-
ysis tools such as FASTA, BLAST, BLASTZ, HMMER, GIBBS, and MEME.
We have also developed high performance data mining tools of our own (see
Section 2.2). With the databases and sequence analysis tools, genomes can be
compared. There are currently six modules: genome plot, conserved gene neigh-
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borhood navigation, metabolic pathways, comparative sequence clustering anal-
ysis, putative gene fusion events detection, and multiple genome alignment. A
set of genomes selected by users is submitted with parameter settings via a web
interface.

2.2 Multi-step Sequence Analysis with Scalable Data Mining Tools

Data mining techniques are useful in combining many sequence analysis tools
and databases that can be utilized for genome annotation since data mining tools
encapsulate multiple sequence analysis tasks in a single step. Thus well-defined
data mining concept and tools can make genome comparison much easier. It
is also important that the data mining tools for genome comparison should be
scalable. We have been developing such scalable tools: a sequence clustering
algorithm BAG [5], a genome sequence alignment tool GAME [7], an algorithm
for mining correlated gene sets [9], and a multiple genome sequence alignment
algorithm by clustering local matches [8].

To summarize the analysis result, we have developed visualization tools for
genome plot, multi-domain, gene-genome matching table, and genome align-
ment. Since our ultimate goal is to make PLATCOM a flexible system in that
users can combine multiple computational tasks freely, it is also important to
make visualization modules independent of particular computational tasks. We
designed the interface of the visualization modules to use genomes as context so
that output from different computational tasks can use the same visualization
module.

3 Plan for the Next Stages

We have been using high performance sequence analysis tools to “simplify” se-
quence analysis tasks. For example, the BAG clustering tool can generate a set
of sequence clusters in a single operation, rather than performing many sequence
data searches using FASTA or BLAST and then combining the search results.
However, our goal is to provide a web-based environment for genome compari-
son. To achieve this goal, many sequence analysis and data mining tools should
be combined freely. Our approach is to introduce several data types for genome
analysis so that sequence analysis and data mining tools can be combined using
these data types. In this way, a series of sequence analysis tasks can be viewed as
a composition of mathematical functions. For example, F(H(x), y) can be seen
as a two step sequence analysis tasks, H followed by F , where the functional
composition is performed on the same data type for the co-domain of H and the
domain of F . To make the user interfaces easy to use, we introduce only a few
data types.

Almost all sequence analysis and data mining tools can be viewed as functions
on the domain of “a set of sequences” and “a set of genomes”. Thus we introduce
two data types, S for a set of sequences and G for a set of genomes. To allow users
to select sequences and genomes, we introduce selection functions, IS : S → S ′ to
select a set S ′ of sequences from S, and IG : G → G′ to select a set G′ of genomes
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from G. IS and IG are implemented as a web page where a set of sequences or
genomes are listed and then users select subsets by clicking checkboxes.

We briefly illustrate this concept using an example of combining two existing
modules in PLATCOM. GenomePlot(Gi, Gj) computes and plots gene matches
in Gi and Gj , and GeneClusterSearch(S,G) searches a set G of genomes for
matches of a given set S of sequences. These two modules can be combined as
follows:

1. GenomePlot( IG (all genomes in PLATCOM)) generates a set of gene matches
MG.

2. MCGS(MG) [9] computes a set of gene clusters, {GC1, . . . , GCk}.
3. For any GCi, users can perform GeneClusterSearch(IS(GCi),

IG(all genomes)) where users select a set of genes from GCi via IS(GCi) and
searches its occurrences in a set of selected genomes via IG(all genomes)).

We are currently working on a complete implementation of this concept in order
to provide a flexible genome comparison environment on the web.
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Abstract. This paper presents design and implementation of SOAP API with 
which bioinformaticians can integrate the biological interaction datbases. While 
designing a web service based integration framework, it is not easy but 
important to define API for biological SOAP servers. Therefore, we propose in 
this paper a web service API especially for the interaction databases: BIND, 
DIP and MINT. The three databases are mirrored in our local computers on 
which we have implemented a prototype of SOAP servers for the interaction 
databases. 

1   Introduction 

While interaction database is an emerging field of biological research, no database 
supports SOAP servers yet. Therefore, it is natural to focus on devising a data model to 
enable interaction databases to provide for web services. It is necessary to define objects 
and their methods for SOAP servers of the interaction databases. We define the objects 
by considering the characteristics of each database. Prior to designing the SOAP server 
objects for each database, this section describes and analyzes characteristics of three 
most popularly used interaction databases: BIND, DIP and MINT. 

BIND(Biomolecular Interaction Network Database) [1], a research project of 
Samuel Lunenfeld lab, in Mount Sinai hospital, handles the interaction and pathway 
information of biomolecules. DIP(Database of Interacting Proteins) [2] is a database 
that collects and provides the information which is experimentally determined about 
protein-protein interaction. MINT(Molecular INTeraction database) [3] is a RDBMS 
that stores the interaction formation between biomocules.  

2   Related Work 

Web services have been deployed in a few biological databases including 
myGRID[4], BioMoby[5], and KEGG[6]. myGRID is designed for data or service 
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providers who want to build applications for biologist. None of these databases, 
however, provide web services for interaction information.  

The DDBJ SOAP server provides services for the search and analysis of sequence 
databases. The myGrid is a middleware for in silico experiments in biology. It aims at 
a rather general purpose system by providing several web services including NCBI 
BLAST, WU BLAST, SRS, etc. The scope of BioMoby is service description, 
discovery, transaction and simple input/output object type.  

KEGG contains data useful for developing bioinformatics technologies such as 
comparison, reconstruction and design of the metabolic process targeting at the 
research of the functional genomics. Its data has been partially open through web 
service technologies since 2003.   

There are four objects for KEGG’s web service: SSDB(Sequence Similarity 
DataBase), PATHWAY, GENES and KEGG. SSDB, PATHWAY and GENES 
objects are the web service objects for SSDB, PATHWAY, GENES databases of 
KEGG, and KEGG object is the web service object that provides the information 
about KEGG database, such as version of KEGG database. 

3   The Design of the Web Service API for the Interaction 
Databases  

The BIND database has three API classes: BindInteractionIF, BindPathwayIF, and 
BindComplexIF. The DIP interaction database has defined a single class: 
DIPInteractionIF. The MINT interaction database provides one class: 
MINTInteractionIF.  

Fig. 1 illustrates the classes and their methods for the API of the BIND SOAP 
server. The SOAP servers of the MINT and the DIP databases also provide web 
service API with which application programmers may implement bioinformatics 
systems accessing interaction databases. The MINT database SOAP server supports 
the MintInteractionIF class and the DIP database SOAP server supports 
DipInteractionIF class respectively. Each class has a set of methods as listed in Fig. 2. 
MintInteractionIF object is used to provide the Interaction data. The meanings of the 
methods are defined in a similar way as the meaning is defined for the methods of the 
BIND database. 

The BindInteractionIF is a class that is used for accessing Interaction data. This has 
18 methods that support querying complex, compound, DNA, protein and RNA 
objects participating in a specified interaction. The BindInteractionIF class includes 
four types of methods: methods returning all objects participating in specified 
interactions, methods for finding information of specified interactions, methods 
finding interactions by id or names, and methods finding objects by gene ID or 
names. Bind_InteractionIF also allows querying the information for interaction nodes 
and edges. Users can query interaction information by gene name or gene ID’s.  

Bind_ComplexIF is a class for accessing the Complex data. This class allows users 
to query type, ID, PubMed Information, and interaction ID of complexes by name, ID 
or gene ID. This class has defined eight methods for supporting the above mentioned 
queries. 
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Fig. 1. API and its Methods for the BIND database 

 

Fig. 2. Methods of the Web Service API for the MINT and DIP databases 

Bind_PathwayIF is a class for accessing Pathway data. This class can access 
pathway data by specifying pathway ID. It also supports querying pathway data 
including a specified interaction. Finally, users can query PubMed information of a 
pathway. This class has eight methods. 
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We have developed a prototype of the SOAP servers and databases in our local 
systems. Since original sites of the above three interaction databases do not provide 
their own SOAP servers, we needed to build our own databases by copying the 
original data in non-relational database format and transforming these into relational 
database format. We have used three servers with Intel Pentium4 1.9 CPU, Memory 
512MB, and the software environment of Windows 2000 Professional, JWSDP 1.3, 
and Java 1.4. 

4   Conclusion 

This paper proposes a practically useful API for SOAP servers of interaction 
databases. Bioinformaticians may build their own client software that accesses data 
from those three interaction databases through these objects on the SOAP servers. 
Once the source databases implement the proposed API on their own databases and 
SOAP servers, worldwide users can access the interaction databases more easily. 
Users can use this system with the interaction of gene ontology for semantic 
integration of interaction databases. We are working on this issue. 
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Abstract. We propose an inexpensive and scalable approach for curation that 
takes advantage of automatic information extraction methods as a starting point, 
and is based on the premise that if there are a lot of articles, then there must be a 
lot of readers and authors of these articles. Thus we provide a mechanism by 
which the readers of the articles can participate and collaborate in the curation 
of information. 

1   Introduction 

Besides the data that exists in various public and private databases, there is a much 
larger and ever increasing amount of information buried in existing biomedical arti-
cles. It is beyond human ability to read the various relevant articles and recall relevant 
findings of these articles for further research. Therefore, it becomes clear that the 
findings in these articles have to be culled and stored in a database such that the data 
can be integrated with other existing databases. The sheer volume of the articles and 
their constant growth makes it prohibitively expensive to employ (and monetarily 
compensate) human curators to read through the articles and cull the necessary 
knowledge/data buried in them. Nevertheless, such human curation (see for example 
[1,3-7,21]) has been tried for specific domains. Due to the issue of cost, many of the 
curated databases are proprietary with limited coverage.  

In recent years an alternative approach of using automatic text extraction systems 
[2,8-20] has been proposed. Although good progress has been made in this area, the 
systems are not fool-proof. They at times infer incorrect information or miss out im-
portant information. Moreover, most existing systems focus on simpler data forms, 
such as identifying gene or protein names, simple interactions without context.  
Sometimes such simplicity may lead to inconsistency.  

In this paper we propose a solution to the problem of curating information from the 
large and growing body of biomedical texts and abstracts. We propose a methodology 
where the community collaboratively contributes to the curation process. We use 
automatic information extraction methods as a starting point, and promote mass col-
laboration with the premise that if there are a lot of articles, then there must be a lot of 
readers and authors of these articles. 
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2   CBioC System Architecture 

The two main components of our CBioC system are (i) the CBioC interface and (ii) 
the CBioC database.  The user interacts with the CBioC system through the CBioC 
interface. When a user views a PubMed article, the CBioC interface is automatically 
invoked to display all the extracted interaction data relevant to the article. The user 
curates the extracted interaction data through voting. Depending on the access level, 
an user can also enter or modify data.  

The CBioC interface has many subcomponents such as the automatic invocation 
component, the user and access management component, and the voting and other  
interactions component. Two auxiliary components of the system are (a) a suite of 
automated text extraction systems and (b) a data exchange system. The text extraction 
systems are used to automatically extract data from texts and abstracts and the data 
exchange system is used to download relevant data from existing databases (such as 
[7,9-13] ) and  convert them to our format. This is illustrated in Figure 1 below. 

  

Fig. 1. Functional architecture of the CBioC System 

We now illustrate the use of the CBioC system which also further illuminates on 
the architecture of the CBioC system. 

Installation and Invocation: An important goal of ours is to make it easier for a 
researcher to participate in the collaborative curation. For that a researcher has to 
download our system and install it in her computer. Once the system is installed it 
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watches the researcher's access of the web through Internet Explorer windows. When-
ever the researcher accesses a web page from where she can access an article or an 
abstract, the CBioC system is invoked and an interaction frame is created, as shown 
below in Figure 2.  

 

Fig. 2. Automatic triggering of CBioC interaction frame 

System Implementation: From the implementation angle, the CBioC system consists 
of three main parts: (i) Web forms and connection to database; (ii) WebBand and 
Browser Helper components, and (iii) Connector to Interaction Extractor, and is cur-
rently implemented for Internet Explorer in the client side and  Linux-MySQL-Php on 
the server side. This is illustrated in Figure 3 below. 

 

Fig. 3. Implementation Architecture of CBioC System 
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Abstract. This paper discusses an ontology based visual query system
of Ecosystem Services Database. A new visual query languge for OWL
is proposed.

1 Introduction

Large Data Integration projects such as TAMBIS [1], KIND [2], SEEK [3], SE-
WASIE [4] use ontologies to provide integrated logical views of heterogeneous
data bases, while the queries and the views of the data sources are defined and
executed at the level of ontologies. For such applications user friendly ontology–
based interfaces are essential. While several ontology editing and visualization
frameworks are available [5], few of them support the Semantic Web endorsed
ontology language OWL [6]. Visual tools that support query formulation are
also appearing [7], however no graphical query language for OWL ontologies has
been developed so far. This paper discusses an ontology based visual query sys-
tem and its application within a web-accessible database. A new graphical query
language for OWL is proposed.

2 Ecosystem Services Database and GrOWL

Ecosystem services are the benefits people derive from ecosystems. Quantifi-
cation of the economic value of ecosystem services has become an important
vehicle for assuring social recognition and acceptance of public management of
ecosystems [8]. The Ecosystem Services Database (ESD) [9],[10] allows users
to compare ecosystem service values across the geographic regions, for different
biomes and verify all the components that went into their formulation. Among
the novel features of the ESD are the use of knowledge maps and an ontology
based visual query system based on GrOWL software. Fig. 1 shows the usage
of a biome ontology in query formulation.

The GrOWL visualization model is an accurate mapping of the underlying
Description Logics (DL) semantics of OWL ontologies. We presume here that
the reader is familiar with DL notations and DL semantics of OWL [11]. Fig.2
describes the mapping of DL class constructors, mapping of ABox expressions

B. Ludäscher and L. Raschid (Eds.): DILS 2005, LNBI 3615, pp. 313–316, 2005.
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Fig. 1. GrOWL Applet is apart of ESD interface. The knowledge maps provides assis-
tance in formulating ESD queries

Fig. 2. Recursive mapping of DL class constructors

and the queries is illustrated by Fig. 3 . On Fig.2 the diagram G(C) represents
the definition of respective class C , while the base node BN(C) represents class
C itself.
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Fig. 3. A simple graphical query

3 Graphical Query Language for OWL

In the realm of DL a conjunctive query condition is a conjunction of query atoms
x: C and (x, y): R, where x and y are variables or individuals C is a concept
expression and R is a role. We introduce two types of variables: ”select” variables
prefixed by ”?” and ”ignore” variables prefixed by ”-”. With such notations the
set of select variables of a query ?x1, . . . , ?xm , is defined by the query condition.
GrOWL-Query is GrOWL with variables. Queries are GrOWL’s ABox diagrams
where the variables are allowed in place of individuals. GrOWL-Query diagram
in Fig. 3 represents the following query:

answer(?x, ?value, ?currency-unit) : −
?x : valuation-record,
∧?x : ∃ecosystem-service.food-production,
∧?x : ∃biome.(forest 	 arctic-tundra),
∧(?x, ?currency-unit) : original-unit
∧(?x, ?value) : original-value.

Complex class expressions allow users to effectively describe disjunctive
queries (as above) and queries with negations. Detailed description of GrOWL
and GrOWL- Query could be found online [12]. GrOWL-Query can be used as
a query interface to a DL reasoner. It can also be used as a part of a Data
Integration system.

Acknowledgements. This work has been supported by NSF grants 9982938/
0243957 and 0225676. GrOWL evolved through the discussions within SEEK
community and we owe a lot to every member of the seek-kr-sms discussion
group. We are especially grateful to Mark Schildhauer who motivated us to de-
velop a visual representation of OWL and to Rich Williams who made consid-
erable contributions to GrOWL design and implementation.
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Abstract. A goal of the Biomedical Informatics Research Network
(BIRN) project sponsored by NCRR/NIH is to develop a multi-
institution information management system for Neurosciences, where
each participating institution produces a database of their experimen-
tal or computationally derived data, and a mediator module performs
semantic integration over the databases to enable neuroscientists to per-
form analyses that could not be executed from any single institution’s
data. This demonstration paper briefly describes the current capabilities
of Metropolis-II, the information integration system for BIRN.

1 Introduction

The goal of the data integration system for the Biomedical Informatics Research
Network (BIRN) (www.nbirn.net) is to develop a general-purpose information
integration framework which diverse groups of neuroscientists can use for a va-
riety of application problems that arise from different scientific research needs.
This framework is designed to support a number of neuroscience research test
beds. In the setting of the mouse BIRN test bed, a large number of very differ-
ent information integration applications may need to be designed over a slowly
increasing set of very heterogeneous data sources. The data to be integrated
range from 3D volumetric data of nerve components, to image feature data of
protein distribution in the brain, to genomic data that characterize the anatom-
ical anomalies of different genetically engineered mouse strains and so forth, and
there are a number of integrated schemas over different combinations of these
sources designed for different study groups. In contrast, the integration require-
ment of the human morphometry BIRN and human functional imaging BIRN
test beds have a single virtual schema collectively developed by the participating
research groups, and an increasing number of research universities are contribut-
ing their data to this schema. The data provided by these test beds are mostly
deidentified patient records for patients with neurodegenerative diseases, con-
taining, for instance, demographic data, psychological evaluations and medical
imaging analyses.

� This work is supported by NIH BIRN-CC Award No. 8P41 RR08605-08S1, NIH
Human Brain Project Award No. 5RO1DC03192.
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Given this application context, the data integration framework of BIRN con-
sists of a global-as-view mediator called Metropolis-II, a number of specialized

Fig. 1. The general architecture of Metropolis-II

tools for schema registration,
view definition and query build-
ing, a number of domain-specific
clients, and a set of tree and
graph structured ontologies that
supply intermediate informa-
tion such that integrated views
can be defined over the sources.
Using the external ontologies to
integrate information is our way
of implementing semantic inte-
gration [1]. The overall architec-
ture of the system is given in
Figure 1.

2 Integration Framework

Data Sources. Metropolis-II makes the assumption that a data source is rela-
tional that may have a binding pattern for every exported relation. Every schema
element relations, attributes has a descriptor for keyword search, and a so-called
semantic-type that can be used to map the element to an ontology [2]. Further, a
data source may export a set of functions that are internally treated as relations
with the binding pattern (b̄, f) where b̄ represents a set of bound arguments
and the single f is the free output variable of the function. In Mouse BIRN, for
example, specialized functions are used to compare the distributions of proteins
in a set of user-specified regions in the brain. Using this model also enables us to
treat computational sources such as the R statistical package as a “data source”
that contributes only functions and no relations. Integrated views are written
using standard data sources as well as these functions. We have also designed
source-specific wrappers for sources such as Oracle, Oracle Spatial, and Postgres,
where a generic query can be translated into the appropriate flavor of SQL, and
functions supported by the specific systems.

Ontological Sources. We use the word ontology here to mean a term-graph whose
nodes represent terms from a domain-specific vocabulary, and edges represent
relations that also come from an interpreted vocabulary [3]. The nodes and edges
are typed according to a simple, commonly agreed upon set of type produced
by test bed scientists. The most common interpretation is given by rules like
the transitivity of is-a or part-of relations, which can be used, for example, to
implement inheritance. However, there are also domain specific rules for relation-
ships such as volumetric-subpart: brain-region → brain-region and measured-by:
psych-parameter → cognitive-test that need special rules of inference. For exam-
ple, if a brain-region participates-in a brain-function (like “working memory”),
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and the brain-function is measured-by a cognitive-test, then the cognitive-test
functionally-tests the brain-region. Currently, ontologies are represented as a set
of relations reflecting the set of nodes and their properties, a set of edges, and
a set of edge properties. Also other operations, including graph functions such
as path and descendant finding, and inference functions like finding transitive
edges are implemented using an API of functions, as described in the previous
paragraph.

View Definition and Query Languages. The query language for Metropolis-II is
the union of conjunctive queries, which may contain function terms, as well as the
standard aggregate functions. The syntax of the language, expressed in XML, is
essentially that of Datalog with aggregate functions [4]; essentially, a query has
the form q(X, F (Y )) : −r1(X, Z), r2(Z, Y ) where F (Y ) is the aggregate function
operated on sets of Y s and X is a (in reality, a set of) group-by variable. The
query planner and execution engine in Metropolis-II translates this expression to

q′(X, Y ) : −r1(X, Z), r2(Z, Y )

q(X, W ) : −F (gb(q′(X, Y ))

where the the group-by function gb followed by the aggregate function F is
pushed together to the data source whenever possible, and are otherwise eval-
uated at the mediator. The language also admits nested queries, where inner
queries are assigned to intermediate relation variables, that are used by the
main query. The view definition language for the system, on the other hand,
does not allow aggregates and nested queries at the present time. The language
allows only safe negations, where all variables in negated predicates are bound.

Mapping Relations. In the current GAV setting of the mediator, the burden of
creating proper integrated views over data sources is on the integration engineer
who works with the domain scientists to capture the requirements of the appli-
cation at hand. This often leads to the pragmatic problem that the relationships
between the attributes exported by different sources and those between the data
values are, quite often, not obvious. To accommodate for this, the recent version
of the system [5] has created additional mapping relations. Currently there are
three kinds of mapping relations. The ontology-map relation that maps data-
values from a source to an ontology term of a known ontology (like the Unified
Medical Language System from the National Library of Medicine). The joinable
relation pairs attributes from different relations if their data type and semantic
types match. The value-map relation maps a mediator-supported data value or a
mediator-supported attribute-value pair to the equivalent value (resp. attribute-
value pair) supported by the source. For example, the mediator may export a
demographic attribute called gender with possible values {male, female}, while
one source may refer to it as attribute sex with possible values {0, 1}, while
another may call it kcr s57 with the domain {m, f}. The Metropolis-II planner
uses a look-up function to make a substitution before dispatching the query plan
to the execution engine.
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Authentication and Authorization. Access control is a very important aspect of
a practical information integration system. For BIRN, this is accomplished in
two stages – defining authenticable users, and the implementation of authoriza-
tion that enables a user to perform only the tasks she is permitted to. The
authentication function is handled outside the mediator by a community au-
thorization service. The authorization is handled through an additional access
control database that is implemented inside the mediator.

3 The Demonstration

The demonstration will present to the user the information integration system
together with the different clients for tasks performed by the submitter of a
newly joining source, and integration engineer. These tasks include schema reg-
istration, integrated view design, ontology browsing and query design. A number
of different query clients are designed for different user groups, and walk through
the different stages of query execution in the system. This will include the XML-
encoded query language and the view-definition language of the mediator, the
plan generated by the system, the communication between the mediator and
the different wrappers. As part of this walkthrough, we would also demonstrate
how we have used the statistical package R as a computation resource accessed
through the mediator. In this process, we will also illustrate the different kinds
of data sources and different classes of queries the system can handle.

Acknowledgments.Acknowledgments.Acknowledgments. David Little, Maryann Martone, Robin Park, Xufei Qian,
Edward Ross, Joshua Tran, Yujun Wang, Wai-Ho Wong, Aylin Yilmaz, Ilya
Zaslavsky are the BIRN R&D team. Bertram Ludäscher contributed to the basic
research and first version of the system.
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1 SEEK: Introduction and Architecture

The Science Environment for Ecological Knowledge1 (SEEK) is designed to help ecol-
ogists overcome data integration and synthesis challenges. The SEEK environment en-
ables ecologists to efficiently capture, organize, and search for data and analytical pro-
cesses. We describe SEEK and discuss how it can benefit ecological niche modeling in
which biodiversity scientists require access and integration of regional and global data
as well as significant analytical resources.
SEEK is designed as a three-layer architecture. The EcoGrid forms the base layer

and provides a uniform and simple programming interface for access to distributed
resources such as data, metadata, and workflows. The KEPLER Scientific Workflow Sys-
tem2 forms the topmost layer and provides tools that allow scientists to create and com-
pose scientific workflows (e.g., analytical models), execute them, and archive the re-
sults. KEPLER makes extensive use of EcoGrid interfaces. For instance, through the
EcoGrid, KEPLER allows scientists to search for and retrieve data and workflows stored
across distributed repositories. The Semantic Mediation System (SMS) forms the middle
layer of the architecture and mediates between heterogeneous resources in the EcoGrid
and the analyses and models to be executed in KEPLER. SMS leverages ontologies to
facilitate data integration and workflow composition, thereby increasing the scale and
complexity of analyses that can be constructed and executed by scientists. Each of these
layers is described further below.
The EcoGrid [4] layer forms the underlying cyberinfrastructure within SEEK for

enabling remote data and service discovery, data sharing and access, and remote service
invocation. EcoGrid services and interfaces are being built using best practices currently
available in grid technology (e.g., OGSA/WSRF, SRB, and Condor). EcoGrid provides
resource discovery through a registration service. Many data sets accessible through the

� We thank the other members of SEEK, including: Chad Berkley, Dan Higgins, Jessie Kennedy,
Ricardo Pereira, Town Peterson, Aimee Stewart, Jing Tao, and Bing Zhu. This work is sup-
ported in part by NSF grants ITR 0225674, EF 0225665 and DBI 0129792, DARPA grant
N00014-03-1-0900, and the Andrew Mellon Foundation.

1 seek.ecoinformatics.org
2 www.kepler-project.org
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EcoGrid have Ecological Metadata Language3 (EML) descriptions that are also used
for data discovery, access, and integration.
KEPLER is used to design and execute scientific workflows [6] (see Figure 1). KE-

PLER includes components (called actors) to access data from the EcoGrid as well as
other generic scientific workflow components including R and Matlab modules for sta-
tistical analysis. From these components, customized scientific workflows can be built
such as the Genetic Algorithm for Ruleset Production (GARP) discussed below. Exist-
ing components and workflows can be linked within KEPLER to form a new scientific
workflow graph. The inputs and outputs of components are represented using ports,
which can have structural types describing the physical representation of data (e.g.,
double) as well as semantic types describing the conceptual meaning and scientific
context of data (e.g., BODYSIZE) [1, 3]. The SMS system uses structural and semantic
types to help scientists construct meaningful scientific workflows.
The SMS layer provides ontology-based services to KEPLER including support

for data integration, workflow composition, and concept-based searching. The SEEK
Knowledge Representation Team (KR) includes ecologists and knowledge engineers
who jointly develop and maintain formal ontologies to be used by the SMS. These on-
tologies cover a number of different areas including measurement, time and space, basic
ecological concepts, biodiversity, and unit systems. Also as part of KR/SMS, the SEEK
Taxonomic Object Service [5] is being developed to help resolve progressive changes of
taxonomic names to sets of taxonomic concepts, providing well defined, authoritative,
and (ideally) unambiguous information about the identification of organisms.

2 Use Case: Ecological Niche Modeling

A new and promising paradigm in ecology is the use of ecological niche modeling
(ENM) to extrapolate implications of global climate change for biological diversity [7].
Figure 1 shows the KEPLER implementation of an ENM workflow that assesses the
implications of climate change for mammals of the Western Hemisphere. Such broad-
scale comparative analyses of effects of different climate-change modeling scenarios
are difficult to implement due to their computational complexity, which includes data
discovery (> 3,000 mammal species), data integration (20 climate scenarios), and ana-
lytical complexity (> 180,000 model runs).
ENM incorporates both spatially explicit point data indicating where a species has

been found as well as spatially explicit environmental data such as descriptions of cli-
mate, hydrology, and soils. Within KEPLER, scientists can use EcoGrid-based search
interfaces to discover occurrence data (e.g., within the DiGIR network) as well as en-
vironmental data (e.g., located within Metacat or SRB collections)4. These searches
leverage metadata about objects to locate relevant items of interest and present them to
the user. For ENM, partitioning the relevant taxonomic data into species groupings may
be difficult as a result of changes in taxonomic names. The Taxonomic Object Service
can be used to help resolve these taxonomic clustering issues.

3 knb.ecoinformatics.org/software/eml/
4 digir.sourceforge.net/, knb.ecoinformatics.org/software/metacat/, www.sdsc.edu/srb/
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Fig. 1. The ENM workflow in KEPLER with components for: (A) accessing and pre-processing
DiGIR species occurrence data; (B) accessing and pre-processing SRB environmental data; (C)
integrating occurrence data and environmental layers; and (D) GARP modeling steps

Once relevant data sets are discovered they can be directly imported into KEPLER.
Data access components are provided by KEPLER that can use the detailed descriptions
of the physical data structure of EML to automate the process of importing data. Thus,
using EML-described data sets in a workflow simply involves dragging their associated
icons onto the workflow canvas (Figure 1, A and B). KEPLER parses the metadata and
exposes output ports that represent each attribute within the data. It also provides a
Query-By-Example extension for user-friendly SQL query construction.
SMS provides a generic set of ontology-based languages and tools for storing and

exploiting semantic annotations [1, 3], which explicitly link existing data sets and work-
flow components to ontologies. Through semantic annotations, the mediation layer pro-
vides knowledge-based data integration and workflow composition services [2], com-
ponent and data discovery via concept-based searching, as well as basic services used
in workflow modeling such as ensuring that workflows are “semantically” type-safe
(based on annotations). In the ENM case, each of the data types must undergo a se-
ries of transformations for integration, including re-projection to a common geographic
coordinate system, re-scaling to a common resolution, and re-orientation to center the
imagery on the same point on the globe. The locations of occurrence points are used to
sample the environmental data and create vectors containing many bands of information
associated with each occurrence point (Figure 1, C).
The ENM workflow analyzes native distributions of species using a genetic algo-

rithm (GARP; Figure 1, D) written in C++ [8]. The GARP algorithm generates a rule-
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based model from input data. The workflow is run a number of times to generate a set
of distinct models. The models are then used to construct a probabilistic prediction of
the full distribution range under current climate conditions, and potential distributions
under various climate change scenarios. The workflow consists of more than fifty com-
ponents in approximately ten nested workflows including the GARP algorithm, grid
access and query components, GIS components in GRASS and GDAL, statistical com-
ponents developed in R, and image processing and viewing components developed in
ImageJ. This workflow is reusable by multiple biodiversity scientists in many different
applications in its current form, and can readily be modified for additional applications.
Finally, data derived during the execution of the ENM workflow can be saved to the

EcoGrid. KEPLER workflows can be configured to allow any output from a component
to be written to the EcoGrid with appropriate metadata, completing the “analysis cycle”
by allowing future work to seamlessly use the results of an existing workflow.

3 Conclusion and Future Project Directions

SEEK encompasses many cyberinfrastructure tools needed to integrate complex eco-
logical data and enable rapid development and re-use of complex scientific analyses.
Nevertheless, many challenges remain. Future work includes: (1) exploration of new
ways to leverage and extend the Taxonomic Object Service; (2) use of the Geographi-
cal Markup Language to achieve greater interoperability of spatial/GIS data; (3) addi-
tional support for semantic annotations in workflow design and execution [3]; (4) native
support for scheduling of compute-intensive, distributed scientific workflows; (5) addi-
tional geospatial semantics for ontology-based ENM workflow compositions; and (6)
usability engineering to improve SEEK tools.
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Abstract. Resource managers often face significant information technology 
(IT) problems when integrating ecological or environmental information to 
make decisions.  At a workshop sponsored by the NSF and USGS in December 
2004, university researchers, natural resource managers, and information 
managers met to articulate IT problems facing ecology and environmental 
decision makers.  Decision making IT problems were identified in five areas: 1) 
policy, 2) data presentation, 3) data gaps, 4) tools, and 5) indicators.  To 
alleviate those problems, workshop participants recommended specific 
informatics research in modeling and simulation, data quality, information 
integration and ontologies, and social and human aspects.  This paper reports 
the workshop findings, and briefly compares these with research that 
traditionally falls under the emerging eco-informatics  rubric.   

1   Introduction 

Decision makers at all levels of government and at NGOs who manage natural 
resources or carry out ecological or environmental policy face significant information 
technology (IT) problems when integrating ecological or environmental information.  
Ecology and environmental decision makers work with information providers and 
data managers, and seek a wide variety of information sources, but little of the data 
used to produce these sources is collected specifically for the decision making at 
hand.  Thus, the decision maker is faced with data gaps, data presentation 
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mismatches, and finding appropriate indicators.  These IT issues suggest computer 
science research needs in information integration, modeling and simulation, data 
quality, and human-centered issues such as training, technology transfer, best 
practices for information provision and use, and human-friendly software. While a 
growing body of research has focused on information technology to help ecology 
researchers [pcast,bdei], solving IT problems in natural resource management  is not 
simply a matter of adopting the technology developed for other domains, or even 
applying research completed under the eco-informatics rubric to the decision-makers’ 
problem space. As suggested in discussions of eco-informatics at a Digital 
Government Conference, the problems are different, and the field of eco-informatics 
should be extended to include helping decision makers (e.g., policy makers and 
natural resource managers) utilize data and information more effectively. [dgo.04] 

Eco-informatics problems faced by natural resource decision makers require, in 
addition to new research, sustaining innovation in the public and NGO sectors just as 
in digital government research [dgo.05].    Researchers must find the right domain 
problem, distill research that will prove fruitful to a range of stakeholders, find the 
right agency collaborators, and manage everybody’s expectations. [hovy] Researchers 
in eco-informatics decision-making must also consider combining quantitative with 
qualitative information and have a basic understanding of decision making.  If 
computer scientists and social scientists in the academy are not prepared to take on 
these challenges in addition to demanding research, natural resource eco-informatics 
will lag behind informatics in other science and policy domains.  We base this 
assessment on the complexity introduced by public policy requirements added to 
already complex scientific eco-informatics issues.   

2   Eco-Informatics Problem Space for Natural Resource 
Management 

Eco-informatics is about both biodiversity-rich conservation managed systems and 
natural resource protection and human health impacts of environmental, 
anthropogenic pollutants, on the other.   Rather than sorting out different informatics 
needs for these two areas, we recognized that the latter presupposes a command of the 
former, and focused on non-human-health-centered ecological constituencies.  
Another perspective can be found in Europe, where the research is much broader in 
nature and includes health and security, as well as ecosystem function.  [jensen] 

To map the problem space for natural resource management eco-informatics, we 
note that many organizations have developed IT for natural resource decision makers, 
and we laid out the eco-informatics problem space collaboratively with personnel 
from the USGS, NASA, EPA, State Agencies and InterState Consortia. [e.g., guldin, 
sugarbaker]  Resource management informatics is hard, and data and tools form a 
demand cycle; the more successful one is, the more demand arises.  Exemplary 
projects, as at Ohio State and Oregon State universities show how researchers and 
coastal policy makers might collaborate, and exemplify the research complexity.  
Coasts are interaction zones of land, sea, and air, and although they occupy only 3% 
of sea surface area and 0.5% of ocean volume, about 70% of global fish resources 
spend time there. Further, about 60% of the world's human population resides close to 
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the coast zone, exploiting it for food, recreation, transport, waste disposal, etc. This 
brings materials discharge from land to coast, and causes environmental changes 
through physical, chemical, and biological processes.  Enhanced data handling 
capacity and cooperation among intergovernmental agencies are essential for 
integrating required multi-source data.  [li, wright]   Drawing on these and other 
experiences, we categorized the problem space for natural resource management eco-
informatics into:  policy, data presentation, data gaps, tools, and indicators. [context]. 

2.1   Policy Problems 

Policy issues related to ecological and environmental information and decision-
making include, but are not limited to, problems that organizations encounter because 
of policies related to: 1) the provision, production and maintenance of eco-informatics 
tools and information; 2) the use and possible abuse of tools and information; 3) the 
cross-organizational sharing (or lack thereof) of tools and information; and 4) the 
communication (or lack thereof) of environmental management decisions grounded 
upon eco-informatics-based analysis.  From here on, “BDEI” (biodiversity and eco-
system informatics) will be used interchangeably with eco-informatics. 

1.  Provision, production, and maintenance, e.g., data curation or archiving.  
BDEI tools and information must begin with user needs assessment, but in some cases 
developers are not doing this. We recommend research into why this is so, how the 
problem differs from other IT application areas, and how to solve the problem.  
Though costly and inefficient, data are sometimes collected but only used once, or 
even not at all.  Better systems of metadata and storage retrieval might ensure that 
what data are collected or generated are used and shared.   Whether BDEI tools and 
information should be treated as public, private or toll goods is another issue.  While 
the tools and information could be considered public goods, there might be important 
reasons to treat them as a private or toll good in order to collect revenue to absorb 
some costs.  

2.  Use and possible abuse of tools or information.    Issues here include 
translating from uncertain scientific models to policy decisions that require a legal 
burden of proof, and determining whether scientific evidence justifies a policy 
decision when there is uncertainty in the data.  Tools that might be useful for policy 
analysis  are not used in  decision making because they a) take too long compared to 
the political cycle;  b) cost too much; c) are based on unrealistic assumptions; or d) 
are too complex or technical.   

3.  Cross-organizational data and tool sharing, or lack thereof.  We note two 
levels of organizational cooperation: sharing tools or information, and co-production 
of tools or information.  Organizations generally avoid paying to develop tools if 
another organization is also involved – a classic free rider problem in collective action 
theory.  Further, organization policies can be barriers to co-production, if employees 
are not recognized for such efforts.  Where organizations are interested in sharing 
information or models, they may be hindered by  inadequate metadata or ontologies 
that would allow integration with their own data and models.   We see both carrot and 
stick approaches for encouraging data owners to produce and maintain metadata, e.g., 
employee performance rewards or positive recognition, or mandates with negative 
consequences for noncompliance.     
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4. Communication (or lack thereof) of environmental management decisions 
grounded in informatics-based analysis.  Organizations sometimes do a poor job 
communicating issues discovered through BDEI analysis – an information diffusion 
problem involving mass communication.  Organizations or policy-makers are 
sometimes caught off-guard by an environmental or ecological problem, and face 
difficulties addressing the problem because little or no data exist. Further the extant 
data might exhibit a linear trend when in fact the pattern is more complex. These 
problems are illustrative of decision-making or policy under circumstances involving 
uncertainty.  [policy] 

2.2   Data Presentation 

Data Presentation problems arise from complex interactions between user needs and 
data (e.g.,, metadata, raw data, information, accuracy specifications, methods, 
documentation, policy).  System limitations (e.g., software modalities, hardware 
availability or costs); and information format further complicate presentation.  Needed 
research includes determining what information is best on which medium, cross-
referencing and supporting data across presentations, representing time and change, 
new media (e.g., 3D, VR), and user task definitions.  This problem area can be 
distilled into two major components:  1) presentation as the mediator between users 
and their needs, and between task and data or metadata and their characteristics, and 
2) the set of research questions and themes that relate to the facilitation of that 
mediation role.  Presentation options must reflect the user experience as well as the 
nature of the data, with constraints.  Presentation types may need to reflect a number 
of user dimensions:  1) User needs, perhaps conceptualized as tasks or time available, 
or context, and 2) User characteristics, including preferences, (dis)abilities, and 
computing capabilities available.  On the data side, presentation could reflect the 
nature and amount of data, metadata available, data and metadata quality, data 
preparation activities, and policies such as privacy and confidentiality.  Presentation 
instantiations and approaches need to reflect the marriage of the user and the data.  In 
addition, presentation media add their own affordances and issues.  Different software 
modalities may have different suitabilities for different data types, and different 
hardware media have different costs, availability, and permanence.  These 
components will suggest a range of research questions that will help understand 
presentation for BDEI decision making. [presentation]  

 2.3   Data Gaps 

Geographic data gaps between biodiversity-rich and conservation-managed land areas 
adversely impact decision making.  These problems stem from lack of the needed data 
sets or access to them, disjoint data sets that require manipulation to compensate for 
temporal or spatial gaps, an emphasis on adaptive management which outpaces data 
reliability, or a paucity of database professionals upon which resource managers can 
call. Major issues include how to appropriately generalize fine-scale data that will 
necessarily contain gaps, and decision makers’ and policy makers’ sensitivity to 
uncertainty.  Next steps to refine this problem area would be to address the original 
data needs, and define review criteria, such as stable standards for data collection and 
documentation.   
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2.4   Tools 

Major BDEI tool problems apply across the board to scientific informatics research, 
namely, how one balances longer term research to advance functionality with 
supporting users in the short term.  Tool problems involve 1) a lack of a tool 
“clearing-house”, i.e., from the developer side getting a tool out to users, and from the 
user side finding and evaluating tools and determining if a given tool can be applied 
to other problems or with other data than what it was developed for.    2) new or 
different data types and data collection methods,  3) lack of user frameworks, product 
suites, and development standards, 3) lack of tools to support metadata issues,  and 4) 
social science issues of usage, sharing, and adoption. 

2.5   Indicators 

Indicator problems exist because indicator definition, relevance, and value are neither 
well-defined nor communicated.  Constituents may be uneasy with environmental 
measures, and data gaps effect reliability and trust that these stakeholders have in 
indicators.  Finally, the inherent complexity of the ecosystem further complicates this 
issue. Prime examples of the complexity that arises in using indicators include the 
Death Valley Pupfish and the Washington State Shellfish Bed Closures.  

3   Research Issues 

Teasing out research issues from the natural resource management problem space was 
a four-step process.  1) We examined three current research projects to see how 
interdisciplinary approaches and government partners were involved.  2) In breakout 
sessions, we articulated research issues, which were 3) in plenary sessions critiqued 
by a panel of resource managers and researchers.   4) Finally, breakout groups 
reconvened to refine and prioritize issues, identify strategies for sustaining research, 
and suggest resource management case histories that exemplified the need for 
research. [research]  

Three NSF Digital Government research case studies, the Forest Portal, 
UrbanSim, and Understanding Government Statistics. [blm, borning, hert], gave an 
initial set of research issues to consider.  The Forest Portal, an adaptive management 
tool that harvests information to sustain forests, highlighted the importance of 
collaboration between federal agencies and academic institutions, and demonstrated 
the capabilities of using metadata attachments.  UrbanSim demonstrated how 
ecological models and partnerships contribute to data collection, preparation, and 
assessment, which in turn would likely lead to realistic policy scenarios and major 
policy applications.  The GovStat project models user access to U.S. government 
statistical information to better integrate data across agencies.  The project 
emphasized deploying prototypes to identify research challenges and designing an 
interface that relies on metadata generated from the web sites. Research issues were 
categorized into four major areas:  1)  modeling and simulation, 2) data quality, 3) 
data integration and ontologies, and 4) social and human aspects.   
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3.1   Modeling and Simulation 

Modeling and simulation research issues included: coupling diverse models, 
addressing values in design for diverse stakeholders, incorporating new visualizations 
for results, representing error and uncertainty when presenting information to decision 
makers, challenges in handling large data sets, and open source modeling 
infrastructure.    This group emphasized proposed that an open-source, flexible, 
reusable modeling infrastructure, along with the social practices that sustain it would 
allow researchers and decision makers to experiment freely with new models or 
change existing ones. 

3.2   Data Quality 

Data quality research issues primarily involve how to determine and communicate 
uncertainty to decision-makers who use multiple data sources.   Methods are needed 
to mitigate introducing error when creating and combining data sets, and to associate 
error with alternative decisions. The question of whether metadata could become an 
obligatory part of the data set was raised.  The overarching research question invoked 
by this problem is the extent to which uncertainty associated with data quality and 
synthesis really has an influence on policymaking and plan implementation.  Research 
issues arise also in individual studies and data sharing where diverse data sources are 
combined.  Research is needed to develop methods for 1) reducing the introduction of 
error when datasets are created and combined, measuring and logging error at each 
stage of the study and 3) characterizing relationships among errors – additive, 
multiplicative, averaging.   

Where data are shared, for example in data harvesters such as the Long-term 
Ecological Research network’s Clim-DB and Hydro-DB, the major issue is the extent 
to which metadata can become an integral part of the dataset.  What happens to 
metadata when multiple sources are integrated?  How can metadata management be 
automated?  How can data standardization help in combining metadata from multiple 
sources? How could metadata become a part of the data set.  The research challenge is 
how general can the tools that manage data quality become, and whether they be 
applied to a wide range of ecological datasets. NSF could develop and publish 
metadata standards across all grants, instead of just for certain programs.  Successful 
metadata efforts include the Federal Geographic Data Committee within the USGS 
and the LTER information manager standards used in internal reviews of LTER 
projects.   

To determine the influence of uncertainty associated with data synthesis on 
policymaking and plan implementation, studies could be done of decision-makers 
perceptions of the value of science findings made from synthesized or integrated data.  
For example, data harvesters such as Clim-DB and Hydro-DB have generated 
publications from combined datasets, which are perhaps being used by land managers 
or decision makers in the Forest Service and NOAA.  How is the increase in power 
associated with data synthesis balanced by the increase in uncertainty associated with 
the ways in which the errors were combined?  How might synthetic studies stand up 
in courts of law in comparison with other forms of “expert testimony?”  
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3.3   Information Integration and Ontologies 

Information integration involves mechanisms for reliable, transparent and 
authoritative data combination.  Associated research issues include: defining the 
dimensions of integration, quantifying semantic distance, integrating multiple 
ontologies, promoting document modeling, evaluating utility of qualitative and 
quantitative data, tools to support data integration, and evaluating knowledge from 
non-traditional sources.   Ontologies are useful in providing metadata (semantics) 
over databases, making cross-disciplinary connections, and thesauri.  Ontologies on 
the Grid would help users find data and functionality.  Tools to build, verify and 
deliver ontologies still require considerable research.  Other phenomena that require 
research are understanding gaps and inconsistencies in ontologies, trust and 
verification of the content of ontologies, and understanding and handling change in 
the material represented by ontologies in ways that go beyond simple versioning.  The 
semantics of BDEI is critical, and includes defining and operationalizing meanings, 
data standardization, and semantic services.  Transferring knowledge from other 
domains to BDEI is itself research.  Quality control, data access, and collaborative 
decision making support are also critical.   

The reclassification of rainbow trout as salmon in the early 1990s and a 
subsequently implemented information system had broad-reaching effects; the moral 
being that no indicator is innocent, and IT systems have social consequences.  How 
can computer scientists and developers be sensitized to the value judgments inherent 
in data collection, ontology generation, and modeling? Future IT applications should 
warn scientists and policy makers of impending circumstances.  [ontology] 

3.4   Social and Human Aspects 

Research issues identified in this area included: eco-informatics tool development and 
information sharing among decision makers (e.g., measuring success, determining 
appropriate institutional designs and incentives or disincentives), human-computer 
interaction (human/tools interface), impact on management practices, education and 
training, and user requirements and system design.   Advancing the eco-informatics 
agenda hinges on both new technologies and new understandings of how information 
infrastructures inter-relate between individuals, organizations, communities, 
disciplines, information resources, and tools.  Consider State Agency Official “Jane 
Doe” prioritizing parcels for conservation.  She is interested in forecasting land use 
change over a region to identify habitat parcels most threatened by human 
encroachment.  Ideally, Jane would like policy-relevant modeling to identify the 
“development fringe”, but she cannot develop that on her own. Because others, whom 
Jane might not even know about, may be well on their way to doing this, tools to 
facilitate the investigation would include library management systems, and newer, 
innovative collaboration tools and computer-based land use change models.  We 
considered this scenario as it would play out now and in ten years if the recommended 
research were successful.  A second scenario involving the Death Valley National 
Park Devils Hole Pupfish illustrated an immediate need for tools to integrate 
information over time and across agencies, evaluate legacy data, identify indicators, 
visualize alternative actions, and model current ecological conditions.  [social]. 
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4   Conclusions, Broader Impacts, and Recommendations 

One metaphor useful in understanding our natural resource management vision is a 
fictitious, ideal decision making tool, dubbed Yoda.  Yoda sees decision makers as 
those who choose among alternatives, and what they do as integrating information – 
via sharable data structures, compatible software tools, human collaboration, and 
understanding outcomes.  Theirs is an awesome task that involves ontologies, 
semantic distances, data quality assessment, etc., and many complex steps. [tosta]. 

The sheer number, breadth, and complexity of problems and potential solutions 
suggested in this report dictate that it will take decades to solve the problems – all 
while species and ecosystems disappear at an increasing rate, and natural resources 
are depleted.  Thus, we need to prioritize the critical informatics problems – ask 
where problems intersect across agencies and environments to find the greatest 
synergies, which of those with the greatest intellectual merit could be solved with 
focused R&D, and where public and private funds could be leveraged.  A follow-on 
workshop of resource managers, eco-informatics professionals and computer 
scientists, itself followed by online surveys, auctions or futures markets could 
accomplish this.  Because problems are both technical and sociological, a few well-
chosen broad projects in those areas could serve other more focused research.  

Two unanticipated issues emerged as we followed our agenda:  1) feedback loops 
and 2) the nature of decision making.  If aresource managers become more effective, 
the effect on managed system is not negligible.   We also saw that understanding 
decision making is critical for doing the work. Environmental issues are complex with 
considerable uncertainties, but in the political and policy arena many decisions are 
placed in a “yes or no” context.  Thus, one workshop product is a decision making 
primer. [decision].  

 Communication enables collaboration (human centeredness), trustworthiness 
(ontologies), and data sharing (data integration).  Social science is characterized by 
indigenous local and community knowledge plus the ethics of decision making (data 
integration), and user needs (the futures market).  Ontologies, coupling diverse 
models and how second and third generation metadata can be used to define data 
quality are particularly important.  One real challenge of this area is the difficulty 
involved in pursuing research in one of these areas without at least some 
understanding of the others.   

Another challenge involves training computer scientists and social scientists to 
work in eco-informatics and natural resource management.  A graduate student team 
considered how researchers might articulate educational impacts, involve students in 
research, and use research as a teaching tool.  The students saw the ethical issues 
around large data repositories as a particularly fruitful area for teachable moments, 
and funding interdisciplinary mission-oriented tasks that force addressing local 
problems as a way to pursue these goals.  The students encourage NSF to partner with 
agencies that support applied student research.  [gradStudent]  We further encourage 
the early focus in eco-informatics and decision making to be on ecological and 
biodiversity issues, as environmental health decision making is even more complex 
and requires natural resource management as input.    

Funding agencies must work together and with principal investigators, 
information managers and decision makers to sustain and encourage innovation in this 
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area.  How would researchers funded by NSF find collaborators so they can best 
understand resource problems, extract the research issues, and test prototypes?  How 
might research results and prototypes make their way to resource managers deployed 
in field offices?  How might product evaluation be fed back to inform new research?  
Considerable attention should be paid to assuring a cycle of innovation from research 
to prototype, to development and commercialization, and finally to deployment and 
evaluation (and back to research).  The differing, non-overlapping missions and 
reward systems built into each agency make it easy to lose momentum at any of these 
stages. Longer funding cycles are needed to elicit requirements and integrate these 
into a research agenda, and then enter into an “agile” software cycle of develop, 
evaluate, and deploy.  One year is barely adequate for the first step (eliciting 
requirements, understanding the domain, and setting up a collaboration); three years is 
more adequate to developing and evaluating tools with decision maker collaborators, 
and we recommend special two-year supplements for deployment (given prior 
evaluation) would continue a cycle of innovation.    

Finally, considerable attention must be paid to constant re-prioritization of the 
research agenda, and assuring development of tools that promise, through 
extensibility, applicability to a wide range of problems, as they arise in important eco-
systems. We emphasize the importance of keeping a range of research projects in the 
pipeline – from highly theoretical and generalizable, to working prototypes developed 
by researchers and resource managers, to deployment experiments. 
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Abstract. Understanding protein families requires the bringing together
of many different kinds of data. These families are typically derived
from multiple sequence alignments. Directed mutagenesis is one of the
most common means of inferring which specific amino acid or set of
amino acids are important in the function of a protein. Although there
are a large number publicly available, protein specific repositories, e.g.,
PROSITE, UniProt, and Pfam, no tools exist for experimental biologists
that provide a means for managing and visualizing the curation data of
the protein families they study at the individual residue level. We present
the development of a novel system designed for experimental biologists,
called the Curation Alignment Tool for Protein Analysis (CATPA), that
allows for the efficient and effective creation, storage, management, and
querying of experimentally curated protein families.

1 Background and Motivation

In the life sciences both the amount of data and its pace of generation is
staggering NCBI(1), Pfam(2; 3), UniProt(4), Swiss-Prot(5), TrEMBL(5), and
PROSITE(6; 7). Thus, the challenge of integration becomes even greater, since
little attention is paid to how all the disparate types of data fit together. Cer-
tainly this problem of integration has a good deal to do with the various perspec-
tives of research, e.g., molecular, genomic, proteomic, cellular. Another part of
the problem has to do with how all these data are managed. Though integration
is a broad problem, some success can be achieved if the focus is sufficiently nar-
rowed. One area that has received virtually no attention is integrating curation
information at the individual residue level in protein families. By integration we
mean not only unstructured text, but also semi-structured text and images can
be associated with sets of residues in a protein of a particular family. Further,
this information can be easily managed and visualized.
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2 CATPA

We are in the process of creating a portal that provides a library of family cu-
rations together with an available application the Curation and Alignment Tool
for Protein Analysis (CATPA) that allows for the management and visualization
of curation data. In this paper we discuss some elements of CATPA. Figure 1
shows two screen captures. CATPA is designed to

1. used widely recognized formats, for example ClustalX(8);
2. have a GUI (graphical user interface)(9) that allows for most of the typical

tasks the biologists performs with respect to visualizing alignments, curated
residues, etc.;

3. with a rigorous data model and consequently a DBMS to handle the manage-
ment and security of the stored information; we have implemented CATPA
to store in a serialized mode as well.

4. include a querying capability that allows efficient and effective querying of
the curations, sequences, and so forth;

5. use the GO vocabulary so that biologists can more easily and correctly search
and share information;

6. run as a stand-alone entity which is better suited and can be tailored to the
biologists’ needs;

A cursory overview of CATPA will be presented here. CATPA recognizes a num-
ber of well-known and widely used formats both for importing to and exporting
from the system. CATPA utilizes a Java GUI front-end that allows biologists
to interact with information in an environment they are accustomed to. Protein
families are aligned, and conservation and curation are easily discernable via
colors that users can change according to their preferences. Additionally, other
kinds of information can be displayed, e.g., entropy, hydrophobicity.

CATPA provides two separate views of the protein family. One is the stan-
dard view of an aligned family. The other view is a facility to magnify (in-
creasing or decreasing) over the family called the Dataset View. In addition the
Dataset View is used to visualize the results of queries over the protein family.
CATPA has extensive query facilities including the ability to query alignments,
curations, sequences, and fixed vocabulary. Additionally, CATPA allows for the
visualization of query results making perusal easier. CATPA incorporates the
Gene ontology (GO) (10) in its curation vocabulary. GO is a collaborative effort
to help standardize biological words by providing generalization and component
relationships (“is-a” and “is-a-part-of”).

CATPA has a small footprint, comprising less than 10MB. The front-end
requires Java 1.4.2 and MySQL and can be run on most machines capable of
running both. Although not completed in the current release, CATPA is intended
as a means of collaboration–biologists wishing to share and query other CATPA
databases can do so transparently.

This is ongoing work with Andrew Albrecht, James Costello, Arijit Sen-
gupta, and Peter Cherbas. Sukamol Jakobsson has contributed significantly to
the project as well.
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Fig. 1. Two screen captures of CATPA. The top panel shows interaction with curation
data: text, URLs, and images. The bottom panel shows one of the querying facilities–
the “10K” ft. view of the alignment and the respective residues that it pertains to
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1 Introduction

Biological entities are strongly related and mutually dependent on each other.
Therefore, there is a growing need to corroborate and integrate data from dif-
ferent resources and aspects of biological systems in order to analyze them ef-
fectively.

To identify entities, existing databases use explicit references by accession
number or a mutual ontology. Some databases relate and cross link elements
from other databases based on these identifiers. However, this information is
very partial and is not readily available in some. Moreover, these links are not
established in coordination with the other linked databases. With the source
databases changing rapidly, this leads to problems of consistency and updatabil-
ity. Furthermore, it is hard to query this wealth of data in ways that can benefit
and exploit the mutual dependency between entities.

Biozon is a unified biological database that integrates heterogeneous data
types and the relationships between them, such as nucleic acid sequences, pro-
teins, structures, protein domains and protein families, protein-protein interac-
tions and cellular pathways, into a single extensive schema. This schema allows
one to see each data instance in its full biological context. More importantly it
allows for complex searches that span multiple data types from a heterogeneous
set of sources and for arbitrary computations on that data. Biozon can also
rank results, the same way Google ranks web documents, and uses similarity
relationships to extend query results to similar biological entities.

2 Data Model

The data in Biozon is composed of two main types: source data that are
gleaned from established online databases (such as SWISS-PROT, Genbank,
BIND, KEGG and others), and unique derived (computed) data that is
computed in house and includes similarity relationships between objects and
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predicted information about their functional role. The derived data introduces
another level of complexity to our model, but also allows for even more power-
ful methods of data querying, management and manipulation to the extent of
biological theorem verification and computation.

The information in Biozon is logically represented as graph in which nodes
represent some unit of data, and edges indicate a relationship between two nodes.
Each graph node or edge is given a classification as part of a hierarchy of data and
relation types. Each constituent data set (for example, from a source database
such as SwissProt) is mapped onto some subset of this graph.

A special class of nodes is the object class and its descendant subclasses.
These are the equivalent of physical objects (such as protein sequences and
DNA sequences) and sets thereof (such as interactions and pathways). Instances
of fundamental biological objects that are gleaned from source databases are
mapped to these object nodes and are required to be non-redundant. As such,
physical objects can be viewed as the actual identifiers of the biological entities
they represent.

The schemata for different data sets can and do share nodes that represent
the same fundamental biological type of object. As a result, our graph ends up
becoming highly connected and centered around hubs of such objects. This con-
nectivity allows for efficient formulation and execution of complex queries that
span multiple data types. The use of potentially unstable or inconsistent iden-
tifiers (such as accession numbers) to indicate relationships or cross-references
is eschewed in favor of materializing explicit relations between physical non-
redundant Biozon objects.

3 Maintenance

All data in Biozon is integrated and warehoused locally. This provides several
benefits over integration methods that rely on independent, distributed sources.
The two most critical benefits are speed and data consistency. Speed is obvi-
ous, as there are a wealth query plan optimizations and a minimum of network
availability and latency issues available over locally warehoused data. Out in the
wild, there is no enforced consistency between independent databases that may
reference one another. Changes are not coordinated, and one commonly observes
dead or misleading references between databases because of this constant, un-
coordinated flux. Having local control over the data in the fashion of Biozon
affords the ability to detect and mitigate changes that violate consistency.

An additional benefit to locally warehousing the Biozon graph is that the
data is readily accessible for large-scale computations, and any resulting derived
data can be integrated and maintained in situ. While derived data enriches the
understanding of the graph greatly, it comes at the cost of increased maintenance
in the face of updates. Indeed, updates on such a tightly integrated graph require
that consistency of the data be defined and upheld, especially given the non-
redundant model employed by Biozon and domains of knowledge by independent
sources overlap.
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As a solution, we enforce consistency and freshness of derived data using
a framework of rules and actions carried out by small independent subunits
that are implemented as graph triggers. We define protocols for the addition,
modification, and deletion of data that uphold consistency between Biozon and
external data sources as well as consistency of derived data

4 Search and Analysis

Given the non-redundant graph model centered around biological objects, mean-
ing can be inferred by the shapes or topologies observed therein. As a simple
example, consider graph nodes representing proteins, interactions, and nucleic
acid sequences. Along with the requisite edges, these three objects can form
topologies ranging from “nucleic acid sequence encodes for protein which is in-
volved in an interaction” to “protein and nucleic acid sequence are involved in
the same interaction”.

4.1 Complex Searches

Biozon exploits the graph structure in allowing for complex searches that span
multiple data types. In essence, the user initiates by specifying a specific topol-
ogy to search for, as well as any specific constraints on any documents that
should be present in matching topology instances. For example, a valid query
could be “Find all 3D structures of proteins that are involved in phosphorylation
interactions and are part of the Prostaglandin and leukotriene metabolism path-
way”. This particular search specifies a topology involving structures, proteins,
interactions, and pathways.1 The online user interface allows these queries to be
built in a series of simple steps. Upon execution, the Biozon graph is searched
for graph isomorphism in realtime.

4.2 Fuzzy Searches

Fuzzy searches extend complex queries to include similar or homologous objects
in the search space. Here Biozon exploits the computed data (such as similarity
relationships) that was integrated into the database. Queries may be extended
by incorporating materialized similarity data in any appropriate query step. For
example, querying for structures of proteins that are in enzyme family 1.1.1.1 and
are involved in an interaction returns no results. Incorporating similarity into
the search transforms the query into one that searches for structures of proteins
that are involved in interactions and similar to proteins that are members of the
1.1.1.1 family. This query does return significant results from a very large search
space in less than minute.

1 Currently, the specified topology for this search would involve ‘enzyme families’ as
well. Biozon incorporates pathways from KEGG, which defines them in terms of
enzyme families. Therefore, a path in the graph between proteins and pathways
would have to go through the enzyme family node.
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Currently, fuzzy searches use the results of BLAST, expression profile similar-
ity, and structural similarity of proteins. A user may choose which are incorpo-
rated into the results, as well as the similarity threshold (such as e-value), where
applicable. Because Biozon materializes all similarity data, none of the expensive
similarity computations need to be dome when executing such a search.

4.3 Ranking

The graph structure of the Biozon data model and the emergent shape result-
ing from integration of many sources lends itself well to analysis. Particularly
relevant to searches and result sets is the ability to assign ranks to Biozon ob-
jects based on the graph structure. Using a ranking system based on a spectral
analysis of the data graph (similar to PageRank by Google), search results may
be ordered by ranks that reflect the importance of the different entities and is
linked to the amount of information associated with them.

5 Current Status

The Biozon database currently stores extensive information about more than
37,000,000 protein and DNA sequences, integrating sequence, structure, protein-
protein interactions, pathways and expression data, totaling over 60 million doc-
uments from more than 20 different databases. It also stores information about
2.5 billion relations between documents, including explicit relations between ob-
jects, and derived or computed relations based on sequence similarities, struc-
tural similarities and more.

The Biozon database is accessible now at biozon.org, and serves as a useful
proof of concept that the ideas expressed in our approach are practical. Indeed,
the following functionality is provided as a direct result of our efforts:

– Browsing and navigating capability that shows the biological context of each
object in its own “profile page”.

– Interface for building complex and fuzzy queries. By using a step-by-step
procedure, users can add objects and relationships to create a search topol-
ogy, as well as define all search constraints. Results may be subsequently
ranked, if desired.

– User accounts system that allows one to attach comments to objects and to
materialize the results of complex queries. Queries can be saved, run in the
background, and their results may be downloaded as text.

– Online analysis tools for user-supplied data. Currently, Biozon offers BLAST
comparisons of submitted sequences with Biozon proteins, EST analysis,
expression profile similarity, and domain structure prediction.

All the above features may be used in real time by visiting biozon.org.
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