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Abstract. Based on Formal Concept Analysis, we introduce Tempo-
ral Concept Analysis as a temporal conceptual granularity theory for
movements of general objects in abstract or “real” space and time such
that the notions of states, situations, transitions and life tracks of ob-
jects in conceptual time systems are defined mathematically. The life
track lemma is a first approach to granularity reasoning. Applications
of Temporal Concept Analysis in medicine and in chemical industry are
demonstrated as well as recent developments of computer programs for
graphical representations of temporal systems. Basic relations between
Temporal Concept Analysis and other temporal theories, namely theoret-
ical physics, mathematical system theory, automata theory, and temporal
logic are discussed.

1 Introduction

The purpose of this paper is to present the actual state of Temporal Concept
Analysis (TCA), a conceptual granularity theory for the treatment of temporal
phenomena. In TCA, not only space and time but also objects and their move-
ments are represented conceptually, including a granularity description based on
the notion of formal concepts and conceptual scales. The classical point of view
on temporal phenomena is dominated by classical mechanics describing space
and time using the continuum of real numbers and by automata theory using
an abstract notion of discrete states and transitions without an explicit time de-
scription. Therefore, it is desirable to develop a general temporal theory covering
continuous as well as discrete temporal systems.

Clearly, such a unification demands a background theory based on general
basic concepts. Such a theory emerged from lattice theory, introduced by Garrett
Birkhoff [Bir67] as a common generalization of ordered structures in geometry
and logic. Rudolf Wille [Wil82] brought a vivid real world relevance into the the-
ory of abstract lattices by his introduction of formal contexts and their concept
lattices. His purpose was to restructure lattice theory in the sense of Hartmut
von Hentig’s claim to restructure sciences [vHe72]. Concept lattices are used to
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describe the conceptual structures inherent in data tables without loss of infor-
mation by means of line diagrams yielding valuable visualizations of real data.

The conceptual representation of temporal phenomena started with the usual
order representation of time as a chain; later on interordinal scales proved ex-
tremely useful for working with temporal (or spatial) intervals. Based on the
idea of an infinite interordinal scale Rudolf Wille introduced linear continuum
structures “making mathematically explicit the Aristotelian conception of a time
continuum” [Wil04].

Clearly, time has to be investigated in connection with a notion of space
to represent movements of objects. Based on experiences with real data from
psychological and industrial applications the author [Wol00a] combined the idea
of a time granule like “this morning” with the idea of a state by introducing the
mathematical notion of a Conceptual Time System. That led to a conceptual
investigation of the notion of an object in the sense of a spatio-temporal object.
Such an object is given by its actual objects which are connected by a time
relation yielding a life track which represents the object [Wol02a, Wol02b]. That
led to a purely conceptual understanding of movements of objects in continuous
or discrete space and time – without employing the classical algebraic, metric
and analytic structures. In the following sections we give a short overview over
the main ideas in Temporal Concept Analysis as it is developed now. For that
purpose we start with a simple example of a journey.

2 Contextual Description of a Journey

In this section we discuss some basic contextual descriptions of temporal and
spatial aspects of a journey. In the following we assume that the reader is familiar
with the basic definitions in Formal Concept Analysis, in particular with its
Conceptual Scaling Theory [GaWi89, GaWi99]. For a short introduction we refer
to [Wil97a, Wol94].

2.1 John’s Journey

In this subsection we start with an example of a typical spatio-temporal descrip-
tion, namely a story about a journey. This example will be used throughout the
paper to introduce the main ideas in Temporal Concept Analysis.

The Story of John’s Journey: John flies from Frankfurt to Napoli
leaving Frankfurt on Thursday, returning on Sunday. John takes a flight
on Thursday morning, arriving at Napoli in the afternoon. He visits a
conference on Friday morning and the conference dinner on Saturday
evening; he leaves Napoli on Sunday afternoon arriving at Frankfurt in
the evening.

The following representation of this story does not represent its full linguistic
structure. We only try to grasp the spatio-temporal structure and the granularity
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of the story. First we describe some basic temporal aspects. For that purpose we
focus on the days from Thursday to Sunday. To represent the natural ordering of
these days we employ a chain with four elements. The contextual representation
of such a chain is given in Table 1:

Table 1. A formal context for a chain with four elements

greater or equal 1 2 3 4

1 ×
2 × ×
3 × × ×
4 × × × ×

Replacing the four numbers by the four days of interest we get from the
abstract ordinal scale in Table 1 the concrete scale for a chain of the four days.
The line diagrams in Figure 1 represent the corresponding concept lattices.

Fig. 1. Concept lattices of an “abstract” and a corresponding “concrete” scale

Similarly, the day times “morning”, “afternoon”, “evening” are described
by a concept lattice which is a chain with three elements. The direct product
of these chains represents the “time schedule of John’s journey” (in Figure 2)
which is again described as a concept lattice.

We consider the corresponding formal context since it gives us a first hint to-
wards an understanding of the notion of time granules. The chosen granularity of
the temporal description yields 4× 3 = 12 “possible time granules”, for example
(Saturday, afternoon), which are the formal objects in Figure 2. Table 2 shows
three of the twelve rows of the mentioned context, namely the time granules of
Saturday:

The complete formal context of this simple and important combination of
two scales has as objects all pairs of objects of the two given formal contexts;
it has as attribute set the (disjoint) union of the two given attribute sets; and
its incidence relation is constructed by copying the given incidence relations, for
example: (Saturday, afternoon) gets a cross at all those attributes of the first
context where “Saturday” has a cross there, and a cross at all those attributes of
the second context where “afternoon” has a cross there. (The formal definition
of a semiproduct of two contexts is given in [GaWi99], p.46.)
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Fig. 2. A concept lattice representing the “time schedule of John’s journey”

Table 2. Three of twelve rows of the so-called semiproduct of the two time scales

Thursday Friday Saturday Sunday morning afternoon evening

(Saturday, morning) × × × ×
(Saturday, afternoon) × × × × ×
(Saturday, evening) × × × × × ×

To represent the spatial descriptions of the journey we construct a scale
for the mentioned places “Frankfurt” and “Napoli” . We want to say that the
town Napoli is situated south of Frankfurt. That is done in the following formal
context:

Table 3. An ordinal conceptual scale for the places

southern of or equal to Frankfurt Napoli

Frankfurt ×
Napoli × ×

Clearly, the concept lattice of this context is, as a chain with two elements,
a very simple map; a typical plane map with many towns can be represented
in the same way by a direct product of two chains with many elements. The
metric embedding into the usual plane can be made as fine as necessary; that is
not discussed here. In the next section, we continue our example, describing the
introduction of conceptual time systems, time granules, situations, and states.

3 Basic Notions in Temporal Concept Analysis

The author started the conceptual investigation of temporal phenomena with the
key-idea that the states of a temporal system should be described as the object
concepts of a suitable formal context. Since his search for useful descriptions
of states in Mathematical System Theory, in physics, in Automata Theory, and
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several other domains did not yield, up to now, a conceptually satisfactory result
[Zad64, Arb70, Eil74, Cast98, But99], the notion of a state in a conceptual time
system has been introduced [Wol00a, Wol00b, Wol02b].

3.1 Time Granules as Formal Objects, States as Object Concepts

Searching for a general notion of a state of a system, we introduce first the defi-
nition of a conceptual time system. A general system description has to contain
the elementary system descriptions that occur when we observe a real system
and write down a finite protocol, usually represented as a data table. Therefore,
we develop the main ideas in that framework. Indeed, we shall see that even
infinite temporal systems can be described in the same way.

Let us imagine that we observe a real system. For a single observation we
need some time, may be one minute or only one millisecond. Often we abstract
from the duration of an observation and use the notion of a point of time, usually
represented as a real number.

In the following, we do not assume any internal structure of such a point of
time, as for example the assumption that it is a real interval or a real number.
We just start from a set G; the elements of G are called time granules. For
describing the observations, we introduce a many-valued context with G as its
set of formal objects. In a data table of this many-valued context the row of a
time granule g shows in column m the value m(g) of the measurement m at time
granule g.

For clarifying our idea of a conceptual time system, we first consider the data
table for John’s journey in Table 4 where the integers 0,1,. . .,5 represent the six
time granules which “occurred in the story of John’s journey”. Their meaning
is described by the values in the two columns of the time part of the data table.
The place of John at each of these time granules is described in the event part
(or space part) of the data table. Together with the previously mentioned scales
for the time part and the scale for the event part, we obtain an initial example
of a conceptual time system.

Table 4. A data table of a conceptual time system

time part event part

time granules day day time place

0 Thursday morning Frankfurt

1 Thursday afternoon Napoli

2 Friday morning Napoli

3 Saturday evening Napoli

4 Sunday afternoon Napoli

5 Sunday evening Frankfurt

Definition [Wol00a]: “conceptual time system, situations, states”
Let T := ((G, M, W, IT ), (Sm | m ∈ M)) and C := ((G, E, V, I), (Se | e ∈ E ))
be scaled many-valued contexts on the same object set G. Then the pair (T, C)
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is called a conceptual time system on the set G of time granules. T is called the
time part and C the event part or the space part of (T, C). The derived context
of T ([GaWi89, GaWi99]) is denoted by KT , the derived context of C is denoted
by KC , and the apposition of KT and KC is denoted by KTC := KT |KC . It is
called the derived context of the conceptual time system (T, C).
The object concepts of KTC are called situations, the object concepts of KC are
called states, and the object concepts of KT are called time states. The sets of
situations, states, and time states are called the situation space, the state space,
and the time state space of (T, C), respectively. The object concept mappings
of KTC , KT , and KC are denoted by γ, γT , and γC , respectively.

For the conceptual time system of John’s journey the derived context KTC

is represented in the next table.

Table 5. The derived context of John’s journey
KTC time part KT event part KC

time gran. Thursday Friday Saturday Sunday morn. aftern. evening Frankfurt Napoli

0 × × ×
1 × × × × ×
2 × × × × ×
3 × × × × × × × ×
4 × × × × × × × ×
5 × × × × × × × ×

The subcontext KC given by the first column and the two last columns of
Table 5 is called the “the event part of KTC”. The concept lattice of KC is drawn
in Figure 3. Its object concepts represent quite well our usual understanding of
states, namely that each system is at each time granule in exactly one state.

Fig. 3. The concept lattice of the event part KC for John’s journey

To visualize the time states we embed the concept lattice of the time part
KT into the lattice in Figure 2. The black circles in Figure 4 represent the
concepts of the time part; the black ones which are numbered represent the six
time states. In the right part of Figure 4, we have drawn some arrows indicating
the temporal sequence in which John’s journey happens. That will be discussed
more extensively in the next subsection.
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Fig. 4. Embedding the concept lattice of the time part into the “time schedule”

3.2 The Time Relation, Transitions, and Life Tracks

For our approach it is important that the notion of a state is introduced in a
meaningful way without using an ordering of the time. What is the time in a
conceptual time system? We have introduced several temporal notions, namely
time granules and a time part, whose attributes are interpreted as time measure-
ments and their scales as time scales. Thence we have mathematically defined
situations, states, and time states. But for all that we did not need any notion
of an ordering. In the example, we have used the integers 0,1,. . .,5 to represent
time granules. We have written them down in the first column of Table 5 in their
natural ordering. But since the sequence of the names of the (formal) objects in
a data table of a (many-valued) context is not represented in the mathematical
definition of a (many-valued) context we have to make it explicit formally.

3.3 The Time Relation

In many temporal systems we wish to express the “natural temporal ordering”.
To investigate carefully the conceptual role of temporal orderings we have to
decide where we should introduce some ordinal structure; there are three main
possibilities: in the time scales, on the time values, or on the time granules. In
the following we describe a simple way to represent “the temporal ordering” by
introducing a relation R, called the time relation, on the set G of time granules
of a conceptual time system. Then we speak of a conceptual time system with a
time relation (CTST).

Definition [Wol02a]: “conceptual time system with a time relation”
Let (T, C) be a conceptual time system on G and R ⊆ G × G. Then the triple
(T, C, R) is called a conceptual time system (on G) with a time relation.

To distinguish clearly between some order theoretic and graph theoretic no-
tions we again look at the conceptual time system of John’s journey. On the set G
:= {0,1,2,3,4,5} of its time granules we introduce the relation
R := {(0,1),(1,2),(2,3),(3,4),(4,5)}, shortly described as 0 → 1 → 2 → 3 →
4 → 5. Clearly, in that example the directed graph (G,R) is a directed path. It
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is not yet an ordered set since it is neither reflexive nor transitive (but antisym-
metric). The reflexive and transitive closure of it is just the usual natural order
on the set G. The chosen time relation R is just the neighborhood relation of
that ordered set.

As in the example of John’s journey, in standard applications the set G of
time granules will be finite, say G := {0,. . .,n-1}; then the time relation usually
will be chosen as the neighborhood relation on these integers. If G is an interval
of the usual real order, we emphasize taking the real order relation as the time
relation since the neighborhood relation of the ordered set of the real numbers is
empty. Now we are ready to introduce transitions and life tracks in conceptual
time systems with a time relation.

3.4 Transitions

The basic idea of a transition is a “step from one point to another”. We shall use
transitions in several spaces, mainly in the situation space, the state space, and
the time state space. The idea is to generate these transitions by the R-transitions
(g,h) which are by definition the elements of the time relation R.

That is demonstrated for John’s journey in the right part of Figure 4. Each
arrow in Figure 4 represents a “transition of John” and is described by the R-
transition (g,h) and by the pair of points say (f(g), f(h)) to which g and h are
mapped. In this example the mapping f is the object concept mapping of the
time part, which maps a time granule onto its object concept in the time state
space.

In general, for any CTST and any mapping f from the set G of time granules
into some other set X we define an f-transition of the CTST in the set X as a
pair ((g,h), (f(g), f(h))) of two pairs, namely an R-transition and its image under
f. That allows for describing “multiple transitions” between two given states (or
situations or time states) at different time granules.

3.5 Life Tracks

The transitions in Figure 4 form a life track of John. To introduce life tracks
mathematically we shall define a life track as a set which is structured by the
induced time relation. In the three diagrams of Figure 5 John’s life track is
represented by the bold arrows. The thin arrows show the not yet told journey
of John’s wife, Mary. The formal representation of persons like John and Mary
as subsystems will be discussed in the next section.

Figure 5 shows three related diagrams labelled by the names “states”, “time
states”, and “situations”. The time granules of John are represented in bold;
those of Mary are thin; they are drawn only in the situation space; they can
be reconstructed in the state space and in the time state space by projection
from the situation space – which will be discussed later. The “state space” in the
upper left of Figure 5 tells us that John and Mary make a journey from Frankfurt
to Napoli and back. The time state space in the form of the schedule in Figure
2 tells us when they make their transitions. In the direct product of these two
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Fig. 5. John’s and Mary’s journey

spaces we see all “situations” as object concepts in the “situation space” of the
journey. To be clear, we just tell the story of Mary’s journey:

The Story of Mary’s Journey: Mary takes a flight from Frankfurt
to Napoli on Thursday afternoon arriving at Napoli in the evening. She
visits the conference dinner on Saturday evening and leaves Napoli on
Sunday afternoon arriving at Frankfurt in the evening.

To prepare the definition of a “life track of a CTST” we assume that we are
interested in some mapping f (for example the object concept mapping) from
the set G of time granules into some other set X (for example the set of states
or the set of situations).

Definition: “transitions and life tracks”
Let (T,C,R) be a conceptual time system on G with a time relation. Then any
pair (g,h) ∈ R is called an R-transition on G. Let X be a set and f: G → X,
then f induces the mapping fR : R → { (f(g), f(h)) | (g,h) ∈ R } where
fR((g,h)) := (f(g), f(h)). The element ( (g,h), (f(g),f(h)) ) ∈ fR is called the
f-induced R-transition on X leading from the start point (g, f(g)) to the endpoint
(h, f(h)). The set f = {(g,f(g))| g ∈ G} is called the life track of f in X.
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Now we are interested in some special choices of f. Let KTC := KT |KC be
the derived context of the CTS (T, C). For the object concept mapping γ: G →
γG of KTC the γ-induced R-transitions on the situation space γG are called the
R-transitions on γG. In the same way the R-transitions on the state space γCG
and on the time state space γT G are defined as induced by the corresponding
object concept mappings γC and γT .

In the following definition we introduce on the life track an isomorphic copy
of the time relation R:

Definition: “the life track digraph (f, Rf)”
Let (T, C, R) be a conceptual time system on G with a time relation. Let X be
a set and f: G → X, then the relation Rf is defined on the life track
f = {(g,f(g))| g ∈ G} by

(g,f(g)) Rf (h,f(h)) :⇔ g R h.

The directed graph (f, Rf ) is called the life track digraph of R.
The life track digraph (f, Rf ) is isomorphic to (G,R). Hence, if R is an order

relation on G, the relation Rf is an isomorphic order relation on the life track
f. If (G,R) is a chain, then (f, Rf ) is an isomorphic chain yielding the usual
trajectories in dynamical systems as defined for example in [Kr98], p.8. If (G,R)
represents a directed graph-theoretic path, then (f, Rf ) is an isomorphic path;
representing that path on the set X (for example the state space) using labels
(as in Figure 3) we get a directed graph with point labels and usually with loops
(x,x). In Figure 5 we have omitted the loops (in the state diagram).

In the next section, we introduce “objects” or “persons”, like John and Mary,
as subsystems.

4 Objects as Subsystems

In Figure 5 we have visualized the life tracks of two persons. Since we represented
John’s journey as a CTST we would like to do the same for Mary. Hence the
question arises of how to combine two CTST’s in a meaningful way; for example,
in such a way that the life tracks of these two systems appear in the same space;
then the systems should have the same many-valued attributes and the same
scales. In this case the tables are arranged in subposition, for example, the
table of Mary is just written under the table of John. The formal definition of
subposition of formal contexts can be found in [GaWi99], p.40. The subposition
of many-valued contexts is defined analogously.

The following Table 6 shows the many-valued context of “John’s and Mary’s
journey” where we introduced “actual objects”; for example, (John,5) describes
“John at time granule 5”. To obtain the life tracks of John and Mary as drawn
in Figure 5 we introduce the time relation on the set of actual objects by:

(J,0) → (J,1) →(J,2) → (J,3) → (J,4) → (J,5)
(M,0) → (M,1) → (M,2) → (M,3) → (M,4).
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Table 6. The data table of John’s and Mary’s journey

time part event part

time granules day day time place

(J,0) Thursday morning Frankfurt

(J,1) Thursday afternoon Napoli

(J,2) Friday morning Napoli

(J,3) Saturday evening Napoli

(J,4) Sunday afternoon Napoli

(J,5) Sunday evening Frankfurt

(M,0) Thursday afternoon Frankfurt

(M,1) Thursday evening Napoli

(M,2) Saturday evening Napoli

(M,3) Sunday afternoon Napoli

(M,4) Sunday evening Frankfurt

Together with the above mentioned scales and the previously mentioned time
relation Table 6 shows a first example of a “conceptual time system with actual
objects and a time relation” (CTSOT). Its derived context yields the concept
lattice indicated in Figure 5 with the two life tracks of John and Mary.

The following definition of a CTSOT was introduced by the author in [Wol02a].

Definition: “CTSOT”
“conceptual time systems with actual objects and a time relation”
Let P be a set (of “persons”, or “objects”) and G a set (of “time granules”) and
Π ⊆ P × G. Let (T, C) be a conceptual time system on Π and
R ⊆ Π × Π . Then the tuple (P, G, Π , T, C, R) is called a conceptual time system
(on Π ⊆ P × G) with actual objects and a time relation, in short a CTSOT. For
each object p ∈ P the set pΠ := {g ∈ G | (p,g) ∈ Π} is called the time of p in Π .
Then the set
Rp := {(g,h) | ((p,g), (p,h)) ∈ R } is called the set of R-transitions of p and the
relational structure (pΠ , Rp) is called the time structure of p.

The subsystem of the “rows of a single person p” can be described as a
CTST. The previously described definitions of situations, states, time states,
transitions, and life tracks can be used to describe the corresponding notions for
a CTSOT. The formal definitions are given in [Wol02a]. Here we mention the
definition of the life track of an object.

Definition: “life track of an object”
Let (P, G, Π , T, C, R) be a CTSOT, and p ∈ P. Then for any mapping f:
{p}× pΠ → X (into some set X) the set f = {((p,g),f(p,g))|g ∈ pΠ} is called the
f-life track of p.

The two most useful examples for such mappings are the object concept
mappings γ and γC of the derived contexts KT |KC and KC of the CTST (T, C,
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R) on Π , each of them restricted to the set {p} × pΠ of actual objects. They
are called the life track of p in the situation space and the life track of p in the
state space respectively.

Clearly, there are other possibilities for describing the subsystems of the
“persons”, for example by introducing a new many-valued attribute “PERSON”
with the names of the persons as values, more precisely PERSON(p,g):= p. Then
the scale for the many-valued attribute PERSON can be chosen to represent
hierarchies for persons, for example the membership hierarchy of a family, where
the family itself can be understood as a “general person” or “general object”.
That led the author recently to a conceptual understanding of particles, waves
and wave packets in “Conceptual Semantic Systems” [Wol04a]. The connection
between CTSOTs, Conceptual Semantic Systems, conceptual graphs and power
context families as introduced by Wille [Wil97b] will be discussed elsewhere.

5 Conceptual Granularity Reasoning

Now we are ready to discuss some basic aspects of “conceptual granularity rea-
soning”. First, we study an example. In colloquial speech we conclude from “John
took a flight on Sunday to Frankfurt” that “John took a flight at the weekend
to Germany”. For that kind of reasoning we use our “background knowledge”
that “Sunday belongs to the weekend” and “Frankfurt belongs to Germany”.
Clearly, we cannot conclude from any judgement by replacing some concepts by
superconcepts that the new statement is also valid, for example the judgement
that “the regions of two towns are disjoint” does not imply that “the regions of
the counties of these towns are disjoint”. Therefore, we take some first cautious
steps to investigate granularity reasoning.

With respect to CTSOTs, we are interested in statements about life tracks
and granularity. In the example of the life track of “John” in the situation space
in Figure 5 we see that we get the life track of “John” in the time scale “by
projection” from the life track of “John” in the situation space. This leads to
the conjecture that “the life track of a person can be mapped by a suitable pro-
jection onto the life track of that person in some factor space”. Indeed, there is
such a general projection which is called the “closure function” in [Ern82].

Definition: “closure function”
Let (V, ≤) be an ordered set and T ⊆ V such that each subset S ⊆ T has an
infimum in T, i.e. ∀S⊆T∃t∈T t = inf S. Then the mapping

π: V → T defined by π(x) := inf{y ∈ T |x ≤ y}
is called the closure function from (V, ≤) onto T.

Clearly, π is a projection from V onto T, i.e. π2 = π, since π(t) = t for all t
∈ T. Furthermore, π(x) ≥ x. In the special case that V is the power set P(X) of
a set X, and T is a closure system on X, then the corresponding closure function
is just the closure operator of the closure system T.
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Using the closure function we now prove the following Life Track Lemma:

Life Track Lemma:
Let (P, G, Π , T, C, R) be a CTSOT and p ∈ P.
Let KTC := KT |KC be the derived context of the given CTSOT. The object set of
KTC is Π , let M be its set of attributes, and I its incidence relation. Let B denote
the set of all formal concepts of KTC and for
N ⊆ M let BN denote the set of all formal concepts of the subcontext
KN := (Π , N, I∩(Π × N)) and γ, γN the object concept mappings of KTC

and KN respectively. Let ϕ: BN → B be the meet-preserving order embedding
satisfying ϕ(A,B):= (A,AI). Then the closure function π: B → ϕBN satisfies

πγ = ϕγN

and the extended closure function τ := ϕ−1π satisfies
τγ = γN

and maps each object concept γ(p,g) of the actual person (p,g) onto the object
concept γN (p,g) and therefore the γ-life track of p in the situation space onto the
γN -life track of p in the factor space BN obtained by restricting the attribute
set M to the subset N.

Clearly, if we restrict the situation space to the state space by omitting all
attributes of the time part, the corresponding extended closure function maps
the life track of a person in the situation space onto the life track of the same
person in the state space.

Proof of the Life Track Lemma:
First, we mention that ϕ: BN → B is a meet-preserving order embedding
([GaWi99], p.98), hence the set ϕBN has the property that each of its subsets
has an infimum in ϕBN . Therefore, the closure function π: B → ϕBN exists and
satisfies for any actual object (p,g) that the extent of π(γ(p,g)) can be described
by the following formula (where we use J:= I∩(Π × N))⋂{C | (p,g)II ⊆ C, (C,CJ )∈ BN } =

⋂{C | (p,g) ∈ C, (C,CJ )∈ BN } = (p,g)JJ

since (p,g) ∈ (p,g)II ⊆ (p,g)JJ . Using that ϕ(γN (p,g)) has the same extent as
γN (p,g), namely (p,g)JJ we get π(γ(p,g))=ϕ(γN (p,g)) and that proves the Life
Track Lemma.

6 Applications and Computer Programs

Temporal Concept Analysis was developed by the author motivated by many ap-
plications of Formal Concept Analysis in practice [SpWo91, WoSt93, Wol95a].
To improve process control the formal representation of the temporal structure
of processes was necessary. After having introduced the notions of conceptual
time systems, states, and situations many previously studied examples could
be represented much clearer. The introduction of transitions and life tracks led
to valuable computer animations of processes. We demonstrate two examples,
one from my long cooperation with the psychoanalyst Dr. Norbert Spangen-
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Fig. 6. The development of an anorectic young woman and her family over about two
years

berg (then at the Sigmund Freud Institute Frankfurt, Germany) who is working
in psychosomatic process research [Spa90]; the other example demonstrates an
application in the multi-dimensional visualization of processes in a chemical dis-
tillation column. Finally, we briefly mention the main computer programs for
TCA.

6.1 The Development of an Anorectic Young Woman

The following example in Figure 6 describes the development of an anorectic
young woman (SELF), her father, mother, and her self ideal (IDEAL) during a
period of about two years. The underlying formal context was constructed by the
psychoanalyst Spangenberg on the basis of four repertory grids taken about each
half year from the beginning (time granule 1) until the end (time granule 4) of
the psychoanalytic treatment of his patient. SELF1, the self at the beginning of
the treatment, has the attributes “distrust” and “reduced spontaneity”, SELF2
“pessimistic” and “self-accusation”, SELF3 is in the same state as SELF1, and
SELF4 reaches the state of IDEAL2,3,4. Indeed, the patient was healthy again at
this point in time. It is remarkable that the life tracks of FATHER and MOTHER
start from quite different states and end in similar states, the FATHER having
all negative attributes of that context. For further information the reader is
referred to [Spa90, SpWo91, SpWo93].

6.2 A Chemical Process in a Distillation Column

The diagram in Figure 7 demonstrates a visualization of a chemical process in
a distillation column over a period of 20 days.
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Fig. 7. A chemical process represented in a 4-dimensional state space

From such diagrams the process can be understood quite well taking the
attributes used by the experts. A short and coarse description of that process
might be:

Starting on the first day from a state of low input, low reflux and low
pressure, but high energy1, the system switched at low input between
low and high pressure; from day 9 to 12 it visited in a circular movement
states of middle and low energies; finally it came at middle resp. high
input to states of middle resp. low energy1, low pressure and low reflux.

Typically, in such applications the experts suggest first a coarse granularity
by a few ”cuts” like ”energy1≤600”. After having studied the concept lattice
with a coarse granularity it is usually refined, depending on the data and on
the interest of the experts. That leads in a few steps to valuable visualizations
of multidimensional processes. For further information the reader is referred to
[Wol95a, Wol00b].

6.3 Computer Programs

The state of the art in the graphical representation of concept lattices by com-
puter programs is mainly represented by two tools. The first one is the NaviCon
Decision Suite with the main programs Anaconda, Toscana, and Cernato
from NaviCon AG (Frankfurt). Its extended Java-version ToscanaJ contains
the program ELBA for the construction of conceptual scales, which are used in
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the main program ToscanaJ for the generation of nested line diagrams. For
drawing transition diagrams as in Figure 6 and 7 the temporal component of the
program Siena can be employed; Siena can also be used for the presentation
of animations of conceptual time systems. For further information the reader is
referred to [Bec95].

7 Connections to Other Temporal Theories

In this paper, it is impossible to mention all relevant connections to other tempo-
ral theories. Therefore, I describe here only the main relations between Temporal
Concept Analysis and some of the most important temporal theories.

In contrast to the following theories, TCA has a general granularity tool al-
lowing for a common conceptual notation for finite as well as for infinite temporal
systems. The introduction of actual objects and their time relation in CTSOTs
is a new approach to understand the relation between objects, space and time.

7.1 Classical Physics and Quantum Theory

In this subsection some basic aspects of classical physics and quantum theory
are related to Temporal Concept Analysis. First, we discuss the roles of scales
and objects.

The great success of classical physics is based on the Euclidean space to-
gether with its differentiable structure. The points in that space are used as
“places for objects” showing that the Euclidean space is employed as a scale for
the embedding of objects – but that is not made explicit by general theoretical
notions for objects and scales. Clearly, the classical scale types on the real num-
bers [LKST90, Wol95b] are well-known also to many physicists; but a general
investigation of not only infinite but also finite scales with the purpose of de-
veloping a physical granularity theory for combining the discrete measurements
with the continuous theory in a theoretical way is not known to the author.

The “space occupied by an object” is described as a subset of the Euclidean
space R

3 and the “time of an event” as a subset of the time axis R – but such a
granularity structure causes problems. Indeed, Einstein mentioned some of these
problems in his “granularity remark” in the 1905 – paper introducing the theory
of special relativity [Ein05], Footnote on page 893 (translated by the author):

The inaccuracy which lies in the concept of simultaneity of two events
at (about) the same place and which has to be bridged also by an ab-
straction, shall not be discussed here.

I believe that a theory (and not only a well-developed practice) of granular-
ity in physics could lead to a better understanding of many problems related
to the meaning of limits (like velocities and energies), and to the understand-
ing of inaccuracy and Heisenberg’s uncertainty relation. The problem of time as
discussed in [But99] and [ButIsh99], page 147, could be embedded into a gen-
eral granularity theory for objects in space and time. Recent investigations in
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TCA might be a starting point for such a development: the introduction of a
granularity not only for space and time but also for the objects, as for example,
persons as members of a family, led the author to a mathematical definition
of wave packets, yielding definitions of particles and waves as special examples
[Wol04a]. These definitions cover the continuous as well as the discrete waves,
as for example, electro-magnetic waves as well as waves of influenza represented
in discrete data.

7.2 Mathematical System Theory, Turing Machines,
and Automata Theory

The formalization of the ideas of Bertalanffy [Ber69] led to Mathematical System
Theory (cf. Kalman [KFA69], Mesarovic [MeTa75], Lin [Lin99]). As pointed out
by Zadeh [Zad64] Mathematical System Theory did not find a satisfactory notion
of state, and Lin [Lin99] writes that there is no generally accepted notion of a
system. The recent developments in TCA might be a first step towards a better
understanding of states and systems.

The introduction of computers was accompanied by the development of a
theory of computation initiated by Post [Pos36] and Turing [Tur36]. Their com-
puting machines are now known as Turing machines. It was shown recently by
Wolff and Yameogo [WoYa05] that any Turing machine can be represented by a
suitable “Turing CTSOT” such that for each possible input of the Turing ma-
chine the uniquely determined sequence of computation steps is represented as
the life track of the input word in the state space of that Turing CTSOT. The
conceptual role of the instructions of the Turing machine is understood as a set
of background implications of the derived context of the Turing CTSOT.

The investigation of computing machines led to the development of automata
theory which is mainly concerned with finite automata as described for example
by Arbib [Arb70] and Eilenberg [Eil74]. The continuous time of physics was
replaced by a discrete time, the set of states was introduced axiomatically as a
set of things without an explicit definition in terms of time, but these states can
be connected by labelled transitions. Finite paths from an initial state to some
final (or terminal) states are used to describe runs of the machine. Automata can
be described by CTSOTs such that the states, the transitions, and the successful
paths of an automaton are represented by the states, the transitions, and the
life tracks of a suitable CTSOT. For further information the reader is referred
to [Wol02b].

7.3 Temporal Logic and Conceptual Temporal Logic

Temporal Logic in the sense of Gabbay [GHR94] and van Benthem [vBe95] is
developed as a general logic for temporal phenomena. After having introduced
Temporal Concept Analysis as a theory for handling temporal phenomena on the
basis of mathematically defined conceptual time systems, time granules, states,
situations, and life tracks I could discuss at the 9th International Symposium on
Temporal Representation and Reasoning (TIME’02) in July 2002 in Manchester
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with Dov Gabbay the relations between Temporal Logic and Temporal Concept
Analysis. His central idea of a “branching time” is described in [GHR94], page
86:

We should, therefore, pay special attention to discrete future branching
past-linear flows of time.

This “tree structure” of time might be extended to a more general framework
as for example to the temporal scales in TCA (which may be chosen as trees in
their usual lattice representation). But the basic idea of a “branching time” is
independent of the time scale since it is based on the idea of branching possible
future life tracks; those life tracks can be easily represented in a CTSOT with
an arbitrarily given time scale.

The main difference between Temporal Logic and TCA seems to be that
Temporal Logic is designed as a “logic” for arbitrary temporal models while
TCA yields a general description of temporal models. It seems to be desirable
to combine the classical Temporal Logic with TCA towards a “Conceptual Tem-
poral Logic” which, for instance, could include a tool for the representation of
relational logic using for example power context families or relational conceptual
time systems. Then the CTSOTs (or more general temporal structures) could
be models in that Conceptual Temporal Logic having general logical tools for
spatio-temporal granularity reasoning in those conceptual structures.

8 Conclusion and Future Research

Temporal Concept Analysis is based on mathematically defined notions of con-
ceptual time systems, states, situations, transitions, and life tracks of objects
such that continuous and discrete temporal phenomena can be described in the
same conceptual framework.

Future research in TCA should develop not only the just mentioned Con-
ceptual Temporal Logic but also the temporal aspects of relational logic. Fur-
thermore, the connections to other temporal theories should be clarified. Espe-
cially, applications in physics might yield progress in understanding temporal
phenomena as for example further discussions about particles and waves includ-
ing interference of waves. The formal representation of granularity might be a
powerful tool for understanding Heisenberg’s uncertainty relation in a more gen-
eral framework. The problem of time in quantum theory might become better
understandable with the tools of TCA too.
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