

R.W.H. Lau et al. (Eds.): ICWL 2005, LNCS 3583, pp. 86 – 98, 2005.
© Springer-Verlag Berlin Heidelberg 2005

P2P Video Synchronization in a Collaborative
Virtual Environment

Suhit Gupta and Gail Kaiser

Columbia University, 500 W. 120th Street,
New York, NY 10027, United States

{suhit, kaiser}@cs.columbia.edu

Abstract. We previously developed a collaborative virtual environment (CVE)
for small-group virtual classrooms, intended for distance learning by
geographically dispersed students. The CVE employs a P2P approach to the
frequent real-time updates to the 3D virtual worlds required by avatar
movements (fellow students in the same room). This paper focuses on our
extensions to support group viewing of lecture videos, called VECTORS, for
Video Enhanced Collaboration for Team Oriented Remote Synchronization.
VECTORS supports synchronized viewing of lecture videos, so the students all
see “the same thing at the same time”, and can pause, rewind, etc. in synchrony
while discussing the lecture via “chat”. We are particularly concerned with the
needs of the technologically disenfranchised, e.g., whose only Internet access if
via dialup networking. Thus VECTORS employs semantically compressed
videos with meager bandwidth requirements.

1 Introduction

Learning is essentially a social activity and is of paramount importance in engineering
project-based courses, where a high degree of cooperation is required [8]. The
Columbia Hypermedia IMmersion Environment (CHIME) system [5] [6], created by
the Programming Systems Lab (PSL – http://www.psl.cs.columbia.edu) at Columbia
University, was designed as a framework for distributed software development
environments. CHIME’s users would be software project team members who might
be geographically dispersed, but could be virtually collocated within the same “room”
or adjoining “rooms” of a MUD-like 3D virtual world. The layout and contents of this
groupspace represent the software project artifacts and/or the on-going software
process. This model is similar to the one at MIT iLabs [14].

CHIME has more recently evolved into a general collaborative and information
management infrastructure. One example of the utilization of CHIME’s framework
architecture is the visualizing of segments of videos that are pre-taped lectures of
classes held here in the Computer Science Department at Columbia University.
Distance learning programs such as the Columbia Video Network and the Stanford
Center for Professional Development have evolved from mailing (via Fedex and the
like) lecture video tapes to their off-campus students to streaming the videos over the

 P2P Video Synchronization in a Collaborative Virtual Environment 87

Internet. The lectures might be delivered “live”, but are frequently post-processed and
packaged for students to watch (and re-watch) at their convenience. This introduces
the possibility of forming “study groups" among off-campus students who view the
lecture videos together, and pause the video for discussion when desired, thus
approximating the pedagogically valuable discussions of on-campus students.
Although the instructor is probably not available for these discussions, this may be an
advantage, since on-campus students are rarely afforded the opportunity to pause,
rewind and fast-forward their instructors' lectures.

However, collaborative video viewing by multiple geographically dispersed users
is not yet supported by conventional Internet-video technology. It is particularly
challenging to support WISIWYS (what I see is what you see) when some of the users
are relatively disadvantaged with respect to bandwidth (e.g., dial-up modems) and
local computer resources (e.g., archaic graphics cards, small disks). The VECTORS
(Video Enhanced Collaboration for Team Oriented Remote Synchronization) plug-in
was added to CHIME to allow users to synchronize on video based data. This was
done by combining techniques that extract key frames from a video stream to create a
semantically rich version of the video [13] and fast peer-to-peer UDP packet based
synchronization [7], we allow groups of users to watch videos in synchrony,
regardless of their bandwidth limitations. We have adopted technology (developed by
others, Liu and Kender [13]) for “semantically compressing" standard MPEG videos
into sequences of still JPEG images and utilized P2P techniques for synchronizing the
semantic content across various clients.

2 Related Work

There has been a rich amount of work done in the field of Collaborative Virtual
Environments (CVE) over the years. The key feature of research in CVE has been the
social engineering aspect and the attempt to improve the user interface over which
users communicate seamlessly with others [8] [15]. Prasolova-Forland discusses the
mechanisms employed to improve social awareness in education [8][9] and has found
that the traditional technical tools are not enough, and the mechanisms offered by
CVEs provide a more promising supplement to the mechanisms in use already.

The advantage the 3D CVEs, with a MUD like interface, gives over traditional
web-based collaborative environments is the ability for users to see what his/her peers
are doing. We discuss CVEs further in our paper further describing CHIME. [28] In
addition to the work that has gone into virtual environments that are geared towards
educational purposes, stream synchronization is a widely studied topic in multimedia.

Most intra-stream synchronization schemes are based on data buffering at the
sink(s) and on the introduction of a delay before the play-out of buffered data packets
(i.e., frames). Those synchronization schemes can be rigid or adaptive [26]. In rigid
schemes, such as [22], the play-out delay is chosen a priori in such a way that it
accounts for the maximum network transfer delay that can likely occur across the
sinks. Rigid schemes work under a worst-case scenario assumption and accept the

88 S. Gupta and G. Kaiser

introduction of delays that may be longer than necessary, in order to maximize the
synchronization guarantees they can over even in demanding situations.

Contrary to a rigid approach, adaptive schemes [17] [23] [24] re-compute the delay
parameter continuously while streaming: they try to “guess” the minimum delay that
can be introduced, which still ensuring synchronization under actual operating
conditions. In order to enhance quality of service in terms of minimized play-out
delay, those schemes must accept some temporary synchronization inconsistencies
and/or some data loss, in case the computed delay results are at times insufficient
(due, to variations in network conditions) and may need to be corrected on the fly.

Our approach to synchronization can be classified as a centralized adaptive scheme
that employs a local clock and operates in a reactive way. The most significant
difference compared to other approaches, such as the Adaptive Synchronization
Protocol [17], the work of Gonzalez et al. [21], or that of Liu et al. [20] (which can all
be used equally for inter- and intra-stream applications), is that our approach is not
based on the idea of play-out delay. Instead, we take advantage of layered semantic
compression coupled with buffering to “buy more time" for clients that might not
otherwise be able to remain in sync, by putting them on a less demanding level of the
compression hierarchy.

Liu et al. provide a comprehensive summary of the mechanisms used in video
multicast for quality and fairness adaptation as well as network and coding
requirements [19]. To frame our work in that context, our current design and
implementation models a single-rate server adaptation scheme to each of the clients
because the video quality we provide is tailored specifically to that client's network
resources. The focus in our work is directed towards the client-side end-user
perceived quality and synchrony, so we did not utilize the most efficient server model.
The authors believe that it would be trivial to substitute in a simulcast server
adaptation model [26]. Our design also fits into the category of layered adaptation.
Such an adaptation model defines a base quality level that users must achieve. Once
users have acquired that level, the algorithm attempts to incrementally acquire more
frames to present a higher quality video. In the work presented here, the definition of
quality translates to a higher frame rate.

With respect to the software architecture, our approach most resembles the
Lancaster Orchestration Service [26], since it is based on a central controller that
coordinates the behavior of remote controlled units placed within the clients via
appropriate directives (i.e., the VECTORS video buffer and manager). The Lancaster
approach employs the adaptive delay-based scheme described above; hence the
playback of video focuses on adapting to the lowest bandwidth client. That approach
would degrade the playback experience of the other participants to accommodate the
lowest bandwidth client. Our approach seems preferable, since it enables each client
to receive video quality commensurate with its bandwidth resources.

Cen et al. provide a distributed real-time MPEG player that uses a software
feedback loop between a single server and a single client to adjust frame rates [4].
Their architecture incorporates feedback logic within each video player and does not
support synchronization across a group of players, while the work presented here

 P2P Video Synchronization in a Collaborative Virtual Environment 89

explicitly supports the synchronization of semantically equivalent video frames across
a small group of clients.

3 Our Solution

The goal was two-fold – to create a robust and dynamic collaborative virtual
environment that would be a good enough framework for future plug-ins like video
synchronization; and to create a near real-time video synchronization plug-in that
would allow for students to participate in group based projects despite not being co-
located.

3.1 CHIME

Our solution employs multiple extensible techniques that incorporate the advantages
of the previous work on collaborative virtual environments. CHIME [5] [6] [28] is a
metadata based information management and visualization environment, created to
serve as a homogenous environment for heterogeneous applications and data for
internet and intranet-based distributed software development. User movement
however was the most interesting aspect with respect to the VECTORS plugin as it
employed a P2P model. Since user position synchronization is a high frequency
process, the publish/subscribe event system did not make for a good vehicle for this
job, especially since the event system would add a large parsing overhead to each
event that was as simple as coordinates in 3-space. We therefore do user
synchronization using UDP packets on a peer-to-peer basis.

3.2 VECTORS

One of our goals for CHIME was to integrate video synchronization for users.
Columbia University offers taped courses over the internet as part of their Columbia
Video Network (CVN) department. These courses work well when the class is simply
lecture based geared towards individuals with assignments that do not require group
work. However, for courses like Software Engineering and Operating Systems, where
team based software development is one of the critical pedagogical requirements,
CVN is unable to deliver a full experience, especially since the students registered for
these courses are geographically dispersed. Teams of students may need to watch
multiple class lectures together and collaborate on them as they are in progress.

Students are not required by CVN to have the same resources in terms of
bandwidth. In order to facilitate synchronized video feeds to diverse users, we had to
deliver pre-canned and pre-processed semantically structured videos over
heterogeneous Internet links to heterogeneous platforms in an efficient and adaptive
manner. Video thus becomes an additional legitimate resource for mutual exploration
in a distributed team’s workflow.

Liu et al. [12] describe a similar project, however they are simply concerned with
the QoS of the video and therefore their approach involves compression techniques

90 S. Gupta and G. Kaiser

Fig. 1. The VECTORS Workflow

working with Mpeg-7 video. Moreover, they do not have the added requirement of
embedding their video stream in a CVE. Our approach involves semantic structuring
of the video, using technology previously developed by Liu and Kender [13]. Given
this rich video stream consisting of the most representative frames, in terms of
content, of the video, our goal was to try and give each user the best possible set of
frames in order to enhance the video watching experience as much as possible while
staying synchronized. However, instead of following approaches like those employed
in commercial multimedia applications like Real Player (http://www.real.com/) or
QuickTime (http://www.quicktime.com/) that drop every nth frame upon encountering
network lag, which may have the negative side-effect of dropping important segments
of the video, we procure separate levels of key frame density, each targeted at
different bandwidth levels.

We still, however, have to give each client the correct video feed. In order to do
this, our approach was four fold

1. Pre-fetch as many of the key frames as possible at the highest possible quality to
the client before a pre-determined meeting time for the group. Meeting times
can be ascertained by probing the user’s schedule or by simply getting this
information from the student directly. Though, it turns out that most videos are
watched impromptu without any prior notice.

2. Probe the clients’ bandwidth and number of cached frames and report results to
the system periodically.

3. React to bandwidth changes in real time by lowering/raising the client to a lower
or higher quality feed.

4. Allow pause, rewind, etc. in synchrony while discussing the lecture material via
“chat”.

 P2P Video Synchronization in a Collaborative Virtual Environment 91

All the video streams are made available by the video server. Probing is done by
using software probes [10] [11], and reports of any changes are sent to the respective
clients. Each client receives data and based on how much video it has in cache, its
current position in the video and its bandwidth, the client determines what the highest
quality frame it can download next successfully before it has to view it; and
downloads it. This will continue until the end of the video.

3.2.1 The Server
VECTORS was proposed to analyze automatic methods for deriving semantic video
structure, by finding large-scale temporal and spatial patterns, by detecting
redundancies and semantic cross-correlations over long disjoint time intervals, and by
compressing, indexing, and highlighting video segments based on semantically tagged
visual sequences. We further explored user interaction in distributed environments in
both a three-dimensional virtual world as well as a local two-dimensional client. We
also analyzed various server cluster configurations, wire protocols, proxies, local
client caches, and video management schemes.

The pre-canned and pre-tagged semantically structured video (Figure 2), was
placed on the video server. Since the server simply provided the frames to each of the
clients, the decision-making responsibility regarding synchronization fell upon the
clients themselves; thus leading to a non-centralized decision-making system. The
ultimate goal of the server was to analyze classes of particular server cluster
configurations, wire protocols, proxies, local client caches, and video management
schemes; however, in experiments, we simply treated the server as a black-box that
would provide frames over an HTTP stream upon demand from a client. Example of a
video frame hierarchy is shown in Figure 2, where we see two example levels of the
same video stream. Level 1 has a sparse set of frames while Level 2 is denser, even

Fig. 2. Video Frame Hierarchy

92 S. Gupta and G. Kaiser

though they semantically and pedagogically contain the same content. We would like
to reiterate that audio was not semantically compressed and was therefore available as
a separate and single file for the clients to download and play synchronously with the
video stream.

Ultimately, the server consisted of two components, the semantically structured
videos provided by Liu and Kender, and the scalable, proxy based video server. Since
our goals lay in measuring the effectiveness the video synchronization in the 3D
virtual client, we set up a simple web-server that contained the structured video
content and simply served it to the clients.

3.2.2 The Client
The VECTORS Client Application, at the initial stage of development, focused on
implementing, or at least making significant efforts to implement several
functionalities which serve as the core of the VECTORS client side technology. The
client that we chose for video synchronization was the CHIME client as it provided
the perfect pluggable framework that allows users to see each other in a collaborative
world where they can interact with one another and objects that represent
heterogeneous back end data sources. The CHIME client is an authoring tool and
perfect for pedagogical environments.

Since CHIME had the ability to visualize heterogeneous data sources and was built
as a framework, VECTORS was built as a plug-in that visualized video with the
added component that synchronized the video. Some of the basic components added
to the VECTORS plug-in are –

GroupWare Synchronization – It provides a group-wide viewing session of a
given video, each client remaining in sync with an overall video timeline. This is
accomplished even if the various clients are at different network speeds (And thus are
downloading a variety of different frames from the structured hierarchy that exists on
the server).

Video Player in CHIME’s 3D Environment – The player is designed to work
inside the existing 3D environment offered by CHIME. CHIME utilizes a Crystal
Space graphics engine, and all aspects of the video player must comply with
constraints set forth by Crystal Space to ensure error free, 3D video display.

Downloadable Video Over HTTP – The video components after being processed
and placed on the server, consists of an audio stream (typically a highly compressed,
low quality sampled MP3 file, though it could be WAV or other popular audio
formats), and a set of JPEG images which correspond to frames of the video at
different points in time. These components are retrieved from the Web either before
the video is run (in which case they will be cached for use at runtime), or during
runtime, at which point they are cached for later use. Therefore, the server, upon
processing the video stream into these subcomponents, must publish them to a web
server, along with some meta data (such as the number of “compression levels” and
start/end times for each frame at each level)

Adjustable Based on Bandwidth- The client adjust its downloading strategy
based on the available bandwidth, to switch to different compression levels offered by
the server. A compression level is defined as a set of key video frames, a subset of the

 P2P Video Synchronization in a Collaborative Virtual Environment 93

overall sequential list of JPEG images from a broken-down MPEG video, where each
member of this subset is declared to persist over a specific time range.

Cache – Videos, or portions thereof, that were previously downloaded should be
stored locally for later use, in an effort to eliminate duplicate downloading. The cache
should ideally store all levels of compression for a given video, and provide the best
available compression level in response to any frame request. At the same time, the
cache should abstract all methods of storage from the player, and simply provide the
player with the location on disk of the JPEG frame file to play.

Cache Controller – The client intelligence that allows the users to stay
synchronized.

3.3 Implementation Details

In order to get the system to work, we created a small UI within CHIME (see section
4 for figures) that activated a hook that we added into the 3D client. When activated,
it would deploy a screen/portal on wall of the room that the client’s avatar was in so
as to display the downloaded frames within it. Each client was also gives a small
cache where they could store pre-fetched video, several probes to monitor the various
variables that would control synchronization as well as a cache controller.

The probes included a cache monitor, a bandwidth monitor and a monitor that
stated the exact location of the video a client was watching. These are software probes
[10] that gather simple metrics and send them back to the cache controller for
evaluation, over the publish-subscribe event notification system. As pointed out
before, each client sends position updates via a UDP stream to all fellow clients in
neighboring rooms so that fellow clients could render avatars in their respective
accurate positions. The CHIME servers as well as the Video server note all the clients
that start up any given video and assume that they are part of the same student group
that wishes to watch the video. Updates about time index of the video that a client is
watching is sent to all the other clients in the group.

Before the video even starts, the client tries to ascertain whether the user wishes to
watch a particular video by looking up the workgroup calendar and starts to pre-fetch
the highest density of frames from the video server so as to provide the best possible
video experience. The pre-fetching module is the same component activated when a
client pauses a video allowing the client to buffer the next few frames in the idle time.

The cache controller gets information about the contents of the cache, i.e. about the
availability of extra frames in the timeline, as well as the position in the video and the
current bandwidth (calculated by a simple ping to the server). The cache controller,
since having already parsed the hierarchy of frames available in every compression
level (gotten by downloading a pre-determined structured document about the
frames), makes a decision about which frame to download next in the available time
between current time and the time when that frame will be displayed based on
available download. The cache controller also knows the duration for which each
from will be displayed on the client’s screen and uses this information to try and
optimize on the level and density of frames to be downloaded. Any pauses by the
client are simply utilized to download the highest quality and density of frames
possible before the client restarts the video again.

94 S. Gupta and G. Kaiser

CHIME clients synchronize with one another (peer-to-peer) by sending a time
index in the UDP stream at least once every 0.33 seconds. Therefore, our aim was to
keep the client always synchronized within 0.33 seconds of one another. If any client
got out of sync with the others, the cache controller for that client would either
instruct the client to lower or raise the level of frames that were being downloaded.

All VCR functions like play/stop and pause events were sent on the event bus since
they were more major events that required action rather than just adjusting. They were
also events that needed guaranteed action, something that a UDP packet cannot
guarantee. All the clients play, stop or pause depending on the event sent out.

A workflow engine [18] is typically centralized and our workflow engine here had
to keep the client in synchrony. Since that was the cache controller’s job, the cache
controller served as the workflow engine for this project. We found that even though
the cache controller was decentralized, it provided us with good results because the
logic control for each cache controller was the same. Results of our tests are in
Section 4.

4 Testing and Results

We used a test bed of up to 10 clients ranging from 400MHz laptops on a 56Kbit
modem up to a 3GHz machine on a 100Mbit network. The resulting experiment kept
the videos synchronized between all 10 clients within an error of approximately 4.38
seconds (for the first 7 minutes of the video), i.e. at no point was any client more than
4.38 seconds apart from any other. However, at this point, the system started showing
more of a disparity especially on the laptops that do not have native 3D hardware
support built in and therefore have to render the virtual environment in Software
mode, thus slowing them down further. Figure 3 shows the extremely small variance
between the various clients through the entire video while Figure 4 shows that even
when we had a test bed of ten clients, they were essentially synchronized through the
entire video content.

Some points to note during our test –

1. We started all the client’s videos together. We did not attempt to have a client
start significantly after the others to that it could “catch up” with the rest.

2. Our tests did not include any handheld devices. However, as long as a CHIME
client would run on a handheld device and the PDA has internet connectivity,
the synchronization should work in the same way.

3. We noticed that there was tremendous network congestion during the test. After
investigation we found that the previously sparse traffic on account of the UDP
streams had gone up tremendously. We found that since the position update
events were relatively rare, when we used UDP streams for synchronization, the
O(n2) streams (where n is the number of clients) with updates sent every 0.33
seconds from each client to every other client caused a substantial amount of
traffic on the network.

4. We found the 3D client of CHIME to be an extremely heavy weight system that
took up a lot of system resources on even the fastest machines used in our test.

 P2P Video Synchronization in a Collaborative Virtual Environment 95

Therefore each system found it hard to cope with simple task like parsing of
synchronization data.

5. Related to the above point, we found that the system stopped working after 7
minutes of run time on account of running out of system resources.

The Variation

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94

Variance

T
im

e
(s

ec
o

n
d

s)

Fig. 3. Average variance of frames over time between clients

AI2TV statistics - 10 clients

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00

Time (seconds)

F
ra

m
es

Optimal setup

Client 1

Client 2

Client 3

Client 4

Client 5

Client 6

Client 7

Client 8

Client 9

Client 10

Fig. 4. Performance of 10 clients

96 S. Gupta and G. Kaiser

Fig. 5. VECTORS screenshot showing the video and team member

In Figure 3, we map the variance in frames vs. the amount of time taken to show
them across the various clients and notice that the variance between two clients did
not go over 4.5 seconds. Therefore, at no time were two clients more than 4.5 seconds
apart.

Overall, our results show that with the video synchronization works as well as the
collaborative tools available. VECTORS was extremely dependent on the stability of
CHIME. However, stability issues aside, the system made for an excellent
environment for enriching the educational experience. In small lab tests, simulated
groups could collaborate on videos well and since VECTORS operated on a highly
configurable pedagogical environment, the groups were able to access relevant
educational materials when necessary (or prompted by the video). VECTORS
successfully supported synchronized viewing of lecture videos, and allowed VCR
functions like pause, rewind, etc. to operate in synchrony while discussing the lecture
material via “chat”. VECTORS was successfully able to attend to the needs of the
technologically disenfranchised, i.e. those with dialup or other relatively low-
bandwidth networking.

5 Conclusion

We had presented a system, VECTORS, for the integration of lecture videos, with
video synchronization, into a low-bandwidth virtual environment specifically
designed for virtual classrooms for distance learning students.

This system has been designed as a plug-in to the previously developed
collaborative virtual environment (CVE), CHIME, for small-group virtual classrooms.

 P2P Video Synchronization in a Collaborative Virtual Environment 97

VECTORS uses a peer-to-peer synchronization approach to support group viewing of
lecture videos. By utilizing this approach, we have found that groups of co-located or
non-co-located students can work together on group based assignments. In order to
cater to group members with low bandwidths, instead of going with traditional
approaches that involve skipping every nth frame of a video, VECTORS employs
semantically compressed and pre-canned videos and adjusts the clients among various
compression levels so that they stay semantically synchronized. The videos are
displayed as a sequence of JPEGs on the walls of a 3D virtual room, requiring fewer
local multimedia resources than full motion MPEGs. As the results demonstrate, we
have achieved a high degree of synchrony and have thus created a robust and useful
pedagogical environment.

Acknowledgements

The Programming Systems Laboratory is funded in part by National Science
Foundation grants CNS-0426623, CCR-0203876, EIA-0202063, EIA-0071954 and
CCR-9970790, and in part by Microsoft Research.

 References

[1] C. Bouras, A. Philopoulos, Th. Tsiatsos, “e-Learning through Distributed Virtual
Environments”, J. of Network and Computer Applications, July 2001.

[2] Christos Bouras, Dimitrios Psaltoulis, C. Psaroudis, T. Tsiatsos “An Educational
Community Using Collaborative Virtual Environments”. ICWL 2002: 180-191

[3] Dan Phung, G Valetto, Gail Kaiser, “Autonomic Control for Quality Collaborative Video
Viewing”, Computer Science Dept., Columbia University TR# cucs-053-04

[4] J. Walpole, R. Koster, S. Cen, C. Cowan, D. Maier, D. McNamee, C. Pu, D. Steere, and
L. Yu. A Player for Adaptive MPEG Video Streaming Over The Internet. In 26th
Applied Imagery Pattern Recognition Workshop. SPIE, October 1997

[5] Stephen E. Dossic, Gail E. Kaiser, “CHIME: A Metadata-Based Distributed Software
Development Environment”, Joint 7th ESEC Conference and 7th International
Symposium on the Foundations of Software Engineering, Sept. 1999

[6] S. Dossick, “Groupspace Services for Information Management and Collaboration”, PhD
Thesis, Columbia University, November 2000

[7] Stefan Fiedler, Michael Wallner, Michael Weber, “A Communication Architecture for
Massive Multiplayer Games” Postion Paper, NetGames 2002

[8] Ekaterina Prasolova-Forland, “Supporting Social Awareness in Education in
Collaborative Virtual Environments”, Int. Conf. on Engineering Education, 2002

[9] Ekaterina Prasolova-Forland, “Supporting Awareness in Education: Overview and
Mechanisms”, In proceedings of ICEE, 2002

[10] Philip N. Gross, Suhit Gupta, Gail E. Kaiser, Gaurav S. Kc and Janak J. Parekh, “An
Active Events Model for Systems Monitoring”, Working Conference on Complex and
Dynamic Systems Architecture, December 2001

[11] Gail Kaiser, Giuseppe Valetto, “Ravages of Time: Synchronized Multimedia for Internet-
Wide Process-Centered Software Engineering Environments”, 3rd ICSE Workshop on
Software Engineering over the Internet, June 2000

[12] J. Liu, B. Li, and Y.-Q. Zhang, “Adaptive Video Multicast over the Internet”, IEEE
Multimedia, Vol. 10, No. 1, pp. 22-31, January/February 2003

98 S. Gupta and G. Kaiser

[13] T. Liu, J. Kender, “A Hidden Markov Model Approach to the Structure of
Documentaries”, Content-Based Access of Image and Video Libraries, 2000

[14] http://i-lab.mit.edu
[15] S. Benford, D. Snowdon, C. Greenhalgh, “VR-VIBE: A Virtual Environment for

Co-operative Information Retrieval”, Computer Graphics Forum, 1995
[16] Thanasis Daradoumis, Fatos Xhafa, Joan Manuel Marquès, “Evaluating Collaborative

Learning Practices in a Virtual Groupware Environment”, CATE 2003
[17] K. Rothermel, T. Helbig, “An Adaptive Protocol for Synchronizing Media Streams”,

Multimedia Systems, Volume 5, pages 324-336, 1997
[18] Jason Nieh, Monica S. Lam, “A SMART Scheduler for Multimedia Applications”, ACM

Transactions on Computer Systems (TOCS), 21(2), May 2003
[19] J. Liu, B. Li, Y.Q. Zhang, “Adaptive video multicast over the internet” IEEE Multimedia,

10(1):22-33, January/March 2003
[20] H. Liu, M. E. Zarki, “A synchronization control scheme for real-time streaming

multimedia applications”, In Packet Video, April 2003
[21] A. J. Gonzalez, H. Adbel-Wahab, “Lightweight stream synchronization framework for

multimedia collaborative apps”, Comp. and Communications 2000
[22] D. Ferrari, “Design and application of a delay jitter control scheme for packet-switching

internet works”, In 2nd International Conference on Network and Operating System
Support for Digital Audio and Video, pages 72-83, 1991

[23] J. Escobar, C. Partridge, and D. Deutsch, “Flow synchronization protocol”, IEEE
Transactions on Networking, 1994

[24] A. Campell, G. Coulson, F. Garcia, and D. Hutchison, “A continuous media transport and
orchestration service”, In SIGCOMM92: Communications Architectures and Protocols,
pages 99-110, 1992

[25] http://unreal.epicgames.com
[26] Suhit Gupta, Gail Kaiser, "A Virtual Environment for Collaborative Distance Learning

With Video Synchronization", CATE, March 2004

	Introduction
	Related Work
	Our Solution
	CHIME
	VECTORS
	Implementation Details

	Testing and Results
	Conclusion
	References

