

R.W.H. Lau et al. (Eds.): ICWL 2005, LNCS 3583, pp. 291 – 301, 2005.
© Springer-Verlag Berlin Heidelberg 2005

The Design and Implementation of Digital Signal
Processing Virtual Lab Based on Components*

Jianxin Wang1, Lijuan Liu1, and Weijia Jia2

1 School of Information Science and Engineering, Central South University,
ChangSha, 410083, China

jxwang@mail.csu.edu.cn
2 Department of Computer Engineering and Information Technology,

City University of Hong Kong, Kowloon, HongKong
itjia@cityu.edu.hk

Abstract. This paper proposed the design and implementation of digital signal
processing virtual lab (DSPVL) based on components. In the DSPVL, all the
virtual instruments are developed as components and implemented as Java
Beans, which improve the developing efficiency, the reuse of software and
make the system be maintained and expanded easily. This paper also introduces
the characters and architecture of user platform and illustrates the key design
and implementation technologies. In the DSPVL, we developed a lot of
components for the experiments in Digital Signal Processing (DSP) course. In
this paper, we also gives an example of designing components of Discrete
Fourier Transform (DFT) to show the process of designing, implementing and
using the components in the DSPVL.

Keywords: Virtual Laboratory, DSP, components, Java Beans.

1 Introduction

With the rapid development of Internet, modern long-distance education as a new
education mode has became an important problem for discussion. Virtual Laboratory
(VL) based on the Internet is a key on improving the quality of distance education
since experiments are significant for most engineering and application courses [1,3].

Digital Signal Processing (DSP) course is an important course in information
science. How to construct a security, powerful and easy-use Digital Signal Processing
Virtual Lab (DSPVL) platform is the key part of our research. In order to keep the
balance of high efficiency and correctness during developing the DSPVL, we propose
a new method that all the virtual instruments are encapsulated in the components
based on Java Beans which can keep the platform independent and make users
interact with each other well [2]. By choosing the required components to construct
an experiment, users can do DSP experiments and deeply understand and consolidate
the complex knowledge.

* This work is supported by the Major Research Plan of National Natural Science Foundation

of China, Grant No.90304010 and City University Strategic Grant No. 7001587.

292 J. Wang, L. Liu, and W. Jia

The rest of the paper is organized as follows. In section 2, we introduce the
architecture of DSPVL. Section 3 describes the design and implement of DSPVL
modules. Section 4 deals with the design and implementation of the components in
DSPVL. Conclusion is given in section 5.

2 The Architecture of DSPVL

The DSPVL is designed based on BS mode [2]. Its client is implemented with
components and object-oriented technologies that offer users with applet embed in
HTML files. The server side mainly includes Web Server to visit DSPVL through
browsers. The architecture of the DSPVL is shown in Fig.1.

Fig. 1. The architecture of the DSPVL

Its clients contain many components that have two types. The first is to invoke the
objects and methods in the server side and run, the second is to run directly in client
side. Besides using the components offered in DSPVL to do experiments, users can
also submit their self-develop components to the Web Server from the client side.
After the system administrator testing the self-develop components strictly, they can
be inserted to the system and all the following users can use them. By this way, the
DSPVL will be more applicable and scalable.

3 Design and Implementation of DSPVL

The DSPVL is constructed of three modules that are experiment designing,
experiment running and submitting components. In design module, users select and
connect the virtual instruments to construct an experiment. The default parameters of
components are set by the system, if necessary users can reset them. Then the DSPVL
will run the experiment and display the result in run module. When users want to use
and test their local components developed by themselves, they can add them into the
DSPVL in submission module.

3.1 Implementation of Design Module

Fig.2 shows the main modules in the DSPVL. Users connect Web Server through
browsers. After entering the DSPVL, browsers automatically download applets from
server to clients. There are several classes in the user interface in the DSPVL.

Browser

Java Applet

Internet
Web Server

Java Client Classes
Java Bean

components

 The Design and Implementation of Digital Signal Processing Virtual Lab 293

Fig. 2. Main modules in DSPVL

(1) MainWindow Class
This class realized the main frame of the platform. It contains design window, result
window, tool bar and menu bar. In menu bar, we set six buttons named file,
experiment, run, tools, window and help to do experiment work. All the buttons are
defined in MainMenu class by the method of setJMenuBar. In order to trigger and
perform the events by pushing the buttons, we set some listeners and actions. The
main code is showed as follows:

Public class MainWindow extends JFrame{
mainMenu=new MainMenu(this);
toolbar=new MainMenu(this);
designPanel=new DesignPanel(this);
resultPanel=new ResultPanel(this);
jTabbedPane=new JTabbedPane();
jTabbedPane.add(designPanel, "designPane");
jTabbedPane.add(resultPanel, "ResultPane");
this.getContentPane().add(StatusBar,BorderLayout.
SOUTH);
this.getContentPane().add(jTabbedPane,
BorderLayout.CENTER);
this.getContentPane().add(toolBar,
BorderLayout.NORTH);
this.setJMenuBar(mainMenu);
actionPerformed(ActionEvent e);
}

(2) RegisteredClassPanel Class
XML(Extensible Markup Language) is structural, scalable and self-definitional, so
that XML can be very useful to create, read, write and save a file. In

294 J. Wang, L. Liu, and W. Jia

RegisterClassPanel class, we define an XML file to register components to the
system. By reading this kind of files, we can easily get the parameters and methods of
components. The main code of reading components information from XML file is
showed as follows:

Public void readXML(){
URL url=null;
InputStream in=null;
url=new
URL((String)csuSystem.getObject("SP_SYSTEMCLASS");
in=url.openStream();
Document listXML;
listXML=XmlDocment.createXmlDocument(in,false);
NodeList classList;
classList=listXML.getElementsByTagName("class");
int classListLength=classList.getLength();
ClassNode[] classNodes=new
ClassNode[classListLength];
for(int loop_class=0;loop_class<classListLength;
loop_class++)

 {
 Element cur_class;

 cur_class=(Element)classList.item(loop_class);
 DefaultMutableTreeNode cls=null;
 String cls_name=cur_class.getChildNodes().item(1).

 getChildNodes().item(0).getNodeValue();
 String

cls_title=cur_class.getChildNodes().item(3).
 getChildNodes().item(0).getNodeValue();

 String
cls_label=cur_class.getChildNodes().item(5).
 getChildNodes().item(0).getNodeValue();

 String cls_desc=cur_class.getChildNodes().item(7).
 getChildNodes().item(0).getNodeValue();

 cls=new DefaultMutableTreeNode(new
 ClassNode(cls_name,cls_title,cls_label,cls_desc,

 classNode.CLASS));
 }

}

(3) PropertyEdit Class
PropertyEdit class is used for users to set the parameters of components and check
them whether they are appropriate. If not, the editor will catch the exception and
cancel the setting and then ask users to reset them. In addition, PropertyEdit class also
supplies methods for users to select that are applied by components.

(4) DesignPanel Class
DesignPanel class is the key class in design module. As a container, it lays an
instrument column on the left, operating window in the middle and property editor on
the right in the platform. The definition of DesignPanel class is as follows:

 The Design and Implementation of Digital Signal Processing Virtual Lab 295

public class DesignPanel extends JPanel implements
MouseListener, MouseMotionListener, KeyListener

It realizes the interfaces of MouseListener, MouseMotionListener and
KeyListener. So by listening to the interfaces, we can make components communicate
with each other synchronously. In DesignPanel class we also definite an inner class
named DrawCanvas to invoke the interface to link the selected components and
realize an experiment flow.

hotLeadArea is a property of DesignPanel class that stands for the component
legs of mouse current location. Modifer is the legs’ property that records the type of
transmission data. By comparing the Modifers between input and output
components, we can judge whether they can be connected. If they are the same type,
we can invoke method of repaint from an object of DrawCanvas class to connect the
legs of components. All the connecting lines are put into the object named
connectors inheriting from HashMap class. The main code of realization is showed
as follows:

set entries=carriers.entrySet();
Iterator iterator=entries.iterator();
DeviceCarrier car1;
Lead h1;
Map.Entry entry;
while(iterator.hasNext()){
 entry=(Map.Entry)iterator.next();
 car1=(DeviceCarrier)entry.getValue();
 h1=carl.getLead(e.getPoint());
 if(h1!=null){
 Point[] pa=tConnector.getHandler();
 String inModifer=
 this.selectedCarrier.getLead(new
 Point(pa[0].x,pa[0].y-3)).modifer;}
 if(!h1.modifer.equals(inModifer)){ break;}
 }

(5) DeviceCarrier Class and DeviceConnector Class

DeviceCarrier class stands for equipments and Deviceconnector class stands for
connecting lines between components. The most important property of DeviceCarrier
class is instance. When the equipments are selected and dragged into the operating
window, the system will use the instance to build an object of Java Bean and get its
information, and then use static method in Introspector class to return an object
defined by BeanInfo to save the parameters and methods of components. At last we
can build the legs of components based on the information in BeanInfo. This is the
application of reflection technology in Java. By using the technology, object is
introduced, loaded and created dynamically. The main code of self analyze for Java
Bean is showed as follows:

296 J. Wang, L. Liu, and W. Jia

if(newClassURL.toUpperCase().startswith("CSU:/")){
 className=newClassURL.substring(5);
 selfClass=Class.forName(className);
 instance=selfClass.newInstance(); }
 BeanInfo
 beanInfo=Introspector.getBeanInfo(selfClass,stopClass);
 PropertyDescriptor
 properties[]=beanInfo.getPropertyDescriptors();
 Method getter,setter;
 for(int i=0;i<properties.length;i++){
 setter=properties[i].getWriteMethod();
 if(setter!=null){
 inCount++;
 l=new lead();
 l.type=Lead.PROPERTY_IN;
 l.offsetX=inCount*10;
 l.name=properties[i].getName();
 l.modifer=properties[i].getPropertyType().getName();
 v.add(1); }
 }

3.2 Implementation of Run Module

Run module is the key part for the DSPVL to simulate the process of an experiment.
Users can freely choose the required virtual instruments and link them to assemble an
experiment flow. Output components can be connected with multiple input
components as long as their interfaces are matched. System will build a directed chart
with no ring based on the simulate process. The chart uses components as its nodes
and connecting lines as its sides [4]. Then analyze the data type between the
components and get its topology sequence. If the components can run concurrently,
the system will build a single thread for computation. At the same time the system
will actuate a management thread to make them work together and respond to users’
interrupt instruction. The simulation process is shown in Fig.3.

The key part of run module is ResultPanel class. Its method of queueFlow is used
to make the components to queue in a line. The main code is as follows:

private void queueFlow(){
 notReayCarriers=new Vector();
 notReadyConnectors=new Vector();
 runQueue=new Vector();
 initNotReadySet();
 while(true){
 String carName=getZeroInCarrier();
 if(carName!=null){
 runQueue.add(carName);
 notReadyCarriers.remove(carName);
 removeConnector(carName);
 }
 else {return;}
 }
 }

 The Design and Implementation of Digital Signal Processing Virtual Lab 297

begin

push connecting line into a sidequeue

whether the degree
of node is zero

push the node into a run queue

delete the node from the node queue

delete the sides of node
from the side queue

whether the run queue
is empty

run the first node in run queue

push components into a side queue

output the result to all the nodes
depend on the run node

display the result

end

no

no

yes

yes

Fig. 3. Flowchart of the simulation process

3.3 Implementation of Submitting Components

This module is used to submit components developed by users. The components must
be developed according to the regulations of Java Beans and their interfaces should be
matched. Then the users can add their new components into the DSPVL and do
experiments with other existent components together.

The process of submission is showed in Fig.4. URLClassLoader class loads the
Java Beans to the system and Introspector class gets their information and returns an
object defined by BeanInfo class. The object saves the parameters and methods of the
components and sent them to another object defined by RegisteredClassPanel class.
Then the object will register the new components into the component column. This is
the process of how to add the self-developed components by users to the DSPVL.
Users can do experiments to test and evaluate them. In order to enhance the function
of DSPVL, we use another method to submit components to Web Server by browsers.
The administrator checks the correctness and security of components and decides
which will be registered. All the qualified components will be added into the system
and be offered to all the users.

298 J. Wang, L. Liu, and W. Jia

 Fig. 4. Submitting components

4 Design and Implementation of DSPVL Components

4.1 General Principle of Designing DSPVL Components

In the DSPVL, we develop many components such as discrete signal generator, signal
adder, discrete random signal generator, oscillograph, DSP, discrete Z transform,
discrete hilbert transform, amplitude spectrum, angle spectrum, power spectrum and
various filters of finite impulse response and infinite impulse response [5]. All the
signals are discrete in DSP experiments, so we set the type of transform date among
components as a double array. The simulation process is shown in Fig.5. Furthermore,
we definite an attribution named sleepInterval to control the run frequency of threads
and display the result dynamically.

Fig. 5. Simulation process of DSP experiments

4.2 Example for Designing Components

There are many components in the DSPVL. Take the DFT experiment for example to
introduce the design and implementation of components.

：BeanInfo

2：newClass

1：loadClass()

3：getBeanInfo() 5：getPropertyDescriptors()
6：getMethodDescriptors()

：RegisteredClassPane

8：addNode()

：URLClassLoader

：Introspector
4：newBeanInfo

7：newProperties and
newMethods

interface interface

Signal

Generator

DSP

instruments

Result

Displayer

 The Design and Implementation of Digital Signal Processing Virtual Lab 299

The algorithm of DFT is Fast Fourier Transform (FFT). FFT algorithm first
rearranges the input signals in bit-reversed order and then builds the output to
transform based on base-2 select in time domain. The basic idea is to break up a
transform of length N into two transforms of length N/2.

The signal generator generates 32 discrete signals to keep the number of signals is
integrated power of 2 and saves them in a double array. There are 5 Java Beans shown
in Table.1 that is used in the DFT experiment.

Table 1. The Java Beans Classes in DFT

The 32 discrete signals will be sent to the component of sp_DFT from the signal
generator through the interface of a double array. The size of array is 33, which use
the last position as a flag to judge whether a group of signals has been transferred into
sp_DFT completely. Then in sp_DFT class, we define an object named DFT from
sp_DiscreteFourier class to invoke the FFT methods. First we reverse the order of the
signals. The result is saved in an array named data1 whose type is double.

data1 = DFT.reverse(value);

Then we invoke the method in sp_DFT class to transform the signals saved in
data1 based on base-2 select in time domain and save the result in an array named
data3. The type of data3 is complex which defined by sp_Complex class.

data3=DFT. transform (data1, data2);

The IDFT is the reverse process of DFT and both are based on FFT algorithm, so
we construct an all-purpose Java Bean named sp_DiscreteFourier to realize the two
transforms respectively in time domain and in frequency domain. In frequency
domain, we will reverse the order of signals whose type is complex. So in the
method of transform there are two formal parameters, which data1 stands for the real
part and data2 stands for the virtual part. In order to make the method of transform
be all-purpose, there are also two formal parameters in DFT, but the value of data2 is
zero.

Class name Function

sp_Complex define a type of complex and construct methods

 of getting amplitude and angle.

sp_DiscreteFourier realize FFT algorithm

sp_DFT realize DFT algorithm

sp_SpectrumAmplitude draw the amplitude of transformed signals

sp_SpectrumAngle draw the angle of transformed signals

300 J. Wang, L. Liu, and W. Jia

Fig. 6. The simulation process of DFT

Fig. 7. The result of DFT

Now we get the result of DFT, which the type of data is a complex saved in an
array named data3. In order to analyze the result, we send the result into
sp_SpectrumAmplitude and sp_SpectrumAngle components by the methods offered
in sp_Complex class to get their amplitudes and angles. At last, we’ll draw them and
see the dynamical result in result window.

buffer[i] = data3[i].mod();
buffer[i] = data3[i].arg();

 The Design and Implementation of Digital Signal Processing Virtual Lab 301

The experiment flow is showed in Fig.6 and the result is showed in Fig.7. In Fig.7,
from left to right, they are the pictures of angle spectrum of transformed signal,
original discrete signal of sine wave and amplitude spectrum of transformed signal.

5 Conclusions

This paper introduces the design and implementation of DSPVL based on components
in detail. All the components are developed by pure Java language, which make the
system be maintained and extended easily. With the reuse of software and general
structure of executing orderly, we can construct various kinds of virtual laboratories
(VLs) such as image processing, digital communication and computer network. We
still have a lot of work to do to consummate the system and make it more powerful.
The VLs will play an important role in the development of remote education,
especially for engineering and application courses.

References

1. Wang Jianxin, Peng Bei, Jia Weijia, Design and Implementation of Virtual Computer
Network Lab Based on NS2 in the Internet, Proceeding of ICWL 2004, Lecture Notes in
Computer Science 3143, 2004, 346-353

2. Wang Jianxin, Chen Songqiao, Jia Weijia, Pei Huiming, The Design and Implementation of
Virtual Laboratory Platform in Internet, Proceedings of ICWL 2002 , Hong Kong, 2002.8,
160-168.

3. Jiannong Cao, Alvin Chan, Weidong Cao, and Cassidy Yeung, Virtual Programming Lab
for Online Distance Learning, LNCS 2436, First International Conference, ICWL 2002
Hong Kong, China, 2002, P. 216-227.

4. Wang Jianxin, Lu Weini, Jia Weijia, A Web-Based Environment for Virtual Laboratory
with CORBA Technology, International Journal of Computer Processing of Oriental
Languages, 2003, 16(4):261-274.

5. Steven W. Smith, Ph.D. The Scientist and Engineer's Guide to Digital Signal Processing,
California Technical Publishing, 1997, P. 141-168.

	Introduction
	The Architecture of DSPVL
	Design and Implementation of DSPVL
	Implementation of Design Module
	Implementation of Run Module
	Implementation of Submitting Components

	Design and Implementation of DSPVL Components
	General Principle of Designing DSPVL Components
	Example for Designing Components

	Conclusions
	References

