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Abstract. This study investigates a new confidence criterion to improve fusion
via a linear combination of scores of several biometric authentication systems.
This confidence is based on the margin of making a decision, which answers the
question, “after observing the score of a given system, what is the confidence
(or risk) associated to that given access?”. In the context of multimodal and in-
tramodal fusion, such information proves valuable because the margin informa-
tion can determine which of the systems should be given higher weights. Finally,
we propose a linear discriminative framework to fuse the margin information
with an existing global fusion function. The results of 32 fusion experiments car-
ried out on the XM2VTS multimodal database show that fusion using margin
(product of margin and expert opinion) is superior over fusion without the mar-
gin information (i.e., the original expert opinion). Furthermore, combining both
sources of information increases fusion performance further.

1 Introduction
Biometric authentication (BA) is a process of verifying an identity claim using a per-
son’s behavioral and physiological characteristics. Compared to traditional authentica-
tion methods such as keys and PIN numbers, biometric authentication has the advan-
tages that it is not susceptible to misplacement or forgetfulness. Unfortunately, its accu-
racy and reliability still need to be improved to make the system practical in day-to-day
applications.

One way to increase its performance accuracy is to combine several biometric sys-
tems. In this paper, we show how multimodal or intramodal fusion BA system can be
improved by using a new confidence measure based on margin. This quantity can be
interpreted as “how confident we are that a given access is correct after observing the
score”. It is bounded between zero and one; when it is zero, a given access has 50%
chance of being correctly classified. The greater the confidence, the higher the chance
that the given access is correct. We show that this margin-derived confidence can be
used in fusion of multimodal biometric systems. The margin-derived confidence can
be used to modify the fixed decision boundary. This is done by a linear combination
between the confidence-derived function and the fixed discriminative function. The for-
mer function is adaptive, i.e., it changes after observing the access scores. In contrast,
the latter function is fixed once (hence non-adaptive) and applied to all accesses.

Improving fusion with quality has already been examined by several authors. Toh et
al. [1] fused fingerprint and speech systems using a modified multivariate polynomial
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regression function to take the quality information into account. Bigun et al. [2] also
fused fingerprint and speech systems but using a statistical model (that reconciles expert
opinions) modified to take the quality into account. Fierrez-Aguilar [3] fused fingerprint
and speech systems, with quality derived from fingerprint, using a modified Support
Vector Machine algorithm. Garcia-Romero et al. [4] considered quality in speaker au-
thentication task using the first formant. Fusion is done so as to favour speech frames
with high quality. Hence, instead of taking the average Log-Likelihood Ratio (LLR)
over the entire utterance frames, a weighted LLR (by quality) is used. All these studies
provide empirical evidences that quality information can improve the performance of
single-modal and multimodal biometric systems.

We propose to derive a quality index based on margin. This margin is a function
of False Acceptance and False Rejection Rates, which themselves are estimated from a
set of expert scores. The main advantage of margin-derived quality is that no additional
(and often independent) system is needed to estimate the quality, as compared to the
previously mentioned approaches1.

Section 2 presents the proposed idea of margin and compares it with existing margin
definitions in the literature. Section 3 presents how confidence can be integrated with
existing fusion functions. Section 4 presents briefly the 32 fusion problems based on the
XM2VTS database and Section 5 discusses a pooled EPC curve as a performance visu-
alisation tool. Experiments are reported in Section 6. This is followed by conclusions
in Section 7.

2 Margin as Confidence
Given an acquired biometric feature x, an opinion of a BA system y(x) as a function
of x and a preset threshold ∆, a biometric system makes its decision based on the
following decision function:

F (x) =
{

accept if y(x) > ∆
reject otherwise.

(1)

Since x is present in y(x) and variables derived from it, we simply write y instead of
y(x). The system may make two types of mistakes: false acceptance (FA) and false
rejection (FR) as a function of threshold ∆. By tracing this function empirically from
a development set, and normalising them using the total number of impostor and client
accesses, respectively, one obtains the false acceptance rate (FAR) and false rejection
rate (FRR) curve as a function of threshold ∆. FAR and FRR are defined as follows:

FAR(∆) =
number of FAs(∆)

number of impostor accesses
, (2)

FRR(∆) =
number of FRs(∆)

number of client accesses
. (3)

1 The additional measurement system may provide additional degree of freedom to describe the
biometric classes if the system output is independent of the original feature sets. However, in
most situations, the additional system derives the quality information from the same feature
sets as those used by the verification system, e.g., [1, 2]. Regardless of how the quality infor-
mation is derived (from the feature sets or from the scores as proposed here), we conjecture
that the quality information can provide better information regarding the separation decision
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Fig. 1. (a) FAR and FRR as a function of the threshold in the score space. (b) The derived margin
based on (a)

A commonly used point to examine the quality of performance is to evaluate the value
FAR = FRR. This is the Equal Error Rate (EER) point and it assumes that the costs
of FA and FR are equal, and that the class prior probabilities (of client and impostor
distributions) are also equal.

The empirical procedure to find ∆ that satisfies the EER criterion (on the training
set) is:

∆∗ = argmin
∆

|FAR(∆) − FRR(∆)| . (4)

We define the margin as:

M(∆) = |FAR(∆) − FRR(∆)|. (5)

By replacing ∆ by y, we effectively evaluate the margin of the output y. FAR, FRR
and margin are shown in Figure 1. The margin derived this way simply tells us how
much confident we are given an opinion y. The further it is from the decision boundary
∆∗, the more confident we are. Note that because FAR and FRR are cumulative density
functions, they are confined in the range [0, 1]. Hence, the margin defined here is also
confined in the range [0, 1]. The additional scores that are needed to derive the margin
function can either be obtained from additional biometric data or cross-validated data
(not used to train the underlying systems) in case the additional data is not available.

Note that the margin defined here is different from the concept of margin in the
boosting [5] or Vapnik’s margin slack variable [6]. Several definitions of margin are
defined in [7, Sect. 2]. Suppose that the target output is tp and the output of a system
is yp for the p-th example. tp takes on {−1, 1}, each representing a class (impostor or
client here). Using this notation, margin in boosting for a given example p is:

margin(yp) = (yp − ∆∗)︸ ︷︷ ︸ tp, (6)

whereas, Vapnik’s margin slack variable for a given example p is:

ξp = max(0, γ − (yp − ∆∗)︸ ︷︷ ︸ tp), (7)
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where γ > 0 is known as target margin and is fixed a priori. Note that in our nota-
tion, the subtraction in the underbraced term yp − ∆∗ is to make sure that the decision
boundary has a value of 0 (normally, the ∆∗ has already been absorbed by the output of
the system as a bias term; in our context, this bias term corresponds to −∆∗). Briefly,
margin(yp) measures how far an example is from the decision boundary. The further it
is, the better. Negative margin in this case implies wrong classification of example p. In
Vapnik’s margin, ξp measures how much example p fails to have a margin of γ from the
hyperplane. If ξp > γ then example p is misclassified by yp − ∆∗. The difference be-
tween Vapnik’s margin slack variable and margin in boosting is that the former takes the
target margin into account whereas the latter does not. Both of these margin definitions
can only be calculated supposing that the target output (class-label) is known. In fact,
they are used to select examples that are difficult to classify. They are only important
during the training phrase. Our proposed definition of margin does not require the target
output (although the margin function is constructed from a labeled training set). Fur-
thermore, it is used exclusively during testing, which differs from the rest of the margin
definitions. Perhaps the most remarkable difference is that this margin is based on FAR
and FRR, with minimum at EER. The aforementioned margins are also valid but they
do not optimise EER directly. Despite their different usages, one similarity among all
these margins is that they all have to be derived from labeled (training) data.

In the next section, we will propose a method to incorporate the margin-derived
confidence measure into an existing fusion function.

3 Combining a Priori Weights with Confidence
3.1 General Fusion Function

The most used form of fusion function in biometric authentication is perhaps a linear
combination of several expert opinions passed through an activation function. Suppose
y′

j is the j-th opinion and αj is the weight associated to y′
j , respecting the constraint

that
∑

j αj = 1. The combined opinion of M base experts, yCOM can be written as:

yCOM = f


 M∑

j=1

αjy
′
j


 (8)

where f is an activation function. Suppose that there are N biometric systems but there
are M ≥ N opinions. The number of opinions can be more than the number of systems
because we assume here that each system can give more than one opinion, derived in
one way or another. For instance, for the case of fusing two systems with output y1 and
y2, we could have:

y′
j ∈ {y1, y2, y

2
1 , y

2
2 , y1y2, 1}, (9)

where 1 is a bias term, and

f(z) =
1

1 + exp[−a(z − b)]
, (10)

which yields a polynomial logistic regression function (with a = 1, b = 0). The full
expansion of polynomial is exponential with respect to its degree. In [8], a reduced
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polynomial expansion is used to reduce the complexity (the degree of freedom of the
classifier) and to make it practical enough for fusion problems. When y′

j is defined as:

y′
j ∈ {yi|i = 1, . . . , N} (11)

and using Eqn. (10) with a = 1, b = 0, one obtains a logistic regression function [9] In
this study, we concentrate on the linear function f , i.e., f(z) = z (a linear function) and
establish a means to combine margin-derived confidence with a fixed discriminative
function. We will show how the form of fusion in Eqn. (8) occurs naturally.

3.2 Fusion Function with Quality

In the literature, to the best of our knowledge, there are two forms to integrate the
quality information with an a priori weight that modifies αi in Eqn. (8). Suppose that
wj is the a priori weight (found by optimising Equal Error Rate, for instance) and qj is
the quality associated to y′

j . The two forms that incorporate the quality information are
as follow:

αj ∝ wj + qj (12)

and
αj ∝ wj × qj (13)

Note that in the absence of the quality information, we have αj ∝ wj . The usage of
Eqn. (12) can be found in [1] using a reduced polynomial expansion of logistic regres-
sion function, i.e., using Eqn. (9) for the case of polynomial degree 2 and Eqn. (10).
In the mentioned work, only polynomial up to degree 3 was examined. Experiments
were conducted on fusion of fingerprint and speech biometrics with quality information
obtained only from the fingerprint.

The usage of Eqn. (13) was found in [10, 11]. In [10], a speech expert (j = 1) and a
lip expert (j = 2) were fused. Suppose that yk

j is the j-th opinion given that the access
is k = {C, I}, i.e., client or impostor. Suppose that yk

j is generated from a normal
distribution with mean µk

j and variance (σk
j )2, i.e., yk

j ∼ N (
µk

j , (σk
j )2

)
. In [10], w1 is

defined as:

w1 =
ζ2

ζ1 + ζ2
(14)

where,

ζj =

√
(σC

j )2

NC
+

(σI
j )2

NI
(15)

and NC is the total number of client accesses and NI is the total number of impostor
accesses. By the summation constraint, w2 = 1 − w1. ζj is called the standard error.
In [10], it was assumed that this error gives relative discrimination of an expert. High ζj

indicates that expert j has high class dependent variance and hence, lower performance.
As a result, its weight is lowered and the other expert’s weight is increased2. qj is
defined as:

qj ∝ |MC
j (yj) −MI

j(yj)|, (16)

2 Although this criterion is valid, examining class-dependent variance is not sufficient; the mean
difference is an important factor [12]
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where

Mk
j (yj) =

(yj − µk
j )2

(σk
j )2

(17)

for k = {C, I} and
∑

j qj = 1. Note that in this context, only the speech expert
(j = 1) can be corrupted by noise whereas the lip expert (j = 2) stays intact. It was
demonstrated experimentally [10] that under clean conditions, q1 is relatively large (as
compared to q2) whereas under noisy conditions, q1 is relatively small.

In [11], face and speech experts are fused and the speech expert is susceptible to
noise whereas the face expert remains intact. The quality of the speech signal is esti-
mated by using a statistical model (Gaussian Mixture Model) from the unvoiced part
of speech frames. The unvoiced part of speech was obtained from the speech features
right before an utterance begins. The output of the model (Log-Likelihood Ratio, LLR)
is normalised into the range [0, 1] by using a sigmoid function, as shown in Eqn. (10).
a and b were tuned by heuristics, such that qj is close to one for good quality speech
and close to 0 for bad quality speech. According to the authors, the likelihood normal-
isation step is necessary because the normalised LLR is used directly to influence the
a priori weight. wj |∀j are estimated using standard methods to minimise Equal Error
Rate (EER), to be discussed in the later section.

We will use the method in Eqn. (12) because, as will be shown, it can be used to
fuse different information sources. Furthermore, the multiplicative effect in Eqn. (13)
can adversely influence αj drastically as compared to Eqn. (12). To begin with, we
consider a linear function of f , i.e., f(z) = z. We wish to fuse existing weight wi with
quality qi for all i = 1, . . . , N . Hence, αi can be written as:

αi = β1,iwi + β2,iqi (18)

where βi control the contribution between the a priori weight wi and the quality infor-
mation qi. Using f(z) = z, Eqns. (8) and (18), we obtain:

yCOM =
∑

i

(β1,iwj + β2,iqi)yi

=
N∑

m=1

(
β1,mwm︸ ︷︷ ︸ ym︸︷︷︸

)
+

N∑
n=1

(
β2,n︸︷︷︸ qnyn︸︷︷︸

)
(19)

where the four under-braces in Eqn. (19) can be written in the form of Eqn. (8). with y′
j

defined by:
y′

j ∈ {yi, qiyi|i = 1, . . . , N}
Hence, fusion of a priori weight with the quality information can be performed by a
linear combination of yi and qiyi, for all i. The corresponding weights αj can be found
using standard methods such as Fisher-ratio or linear regression. The use of non-linear
solutions is direct. For instance, one can use a Multi-Layer Perceptron with y′

j |∀j as
an input vector. Standard Support Vector Machine (SVM) algorithm with a polynomial
kernel can also be used to classify the secondary features, thus, eliminating the need
to create a dedicated classifier to fuse the quality information, as in [1] or to apply
heuristics, as in [10, 11].
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4 Database

The XM2VTS database [13] contains synchronized video and speech data from 295
subjects, recorded during four sessions taken at one month intervals. On each session,
two recordings were made, each consisting of a speech shot and a head shot. The speech
shot consisted of frontal face and speech recordings of each subject during the recital
of a sentence. The database is divided into three sets: a training set, an evaluation set
and a test set. The training set was used to build client models, while the evaluation set
was used to compute the decision thresholds as well as other hyper-parameters used by
classifiers and normalisation. Finally, the test set was used to estimate the performance.
The 295 subjects were divided into a set of 200 clients, 25 evaluation impostors and 70
test impostors. There exists two configurations or two different partitioning approaches
of the training and evaluation sets. They are called Lausanne Protocol I and II (LP1
and LP2). The most important thing to note here is that there are only 3 samples in
LP1 and 2 samples in LP2 for client-dependent adaptation and fusion training. Instead
of reimplementing base experts and applying them on this database, we used scores
from [14]. The score files are made publicly available and are documented in [15]3.
There are altogether 7 face experts and 6 speech experts for LP1 and LP2, respectively.
By combining 2 baseline experts at a time according multimodal or intramodal fusion
problems, 32 fusion experiments are further identified. The 13 baseline experiments
have 400× 13 = 5,200 client accesses and 111,800× 13 = 1,453,400 impostor accesses.
The 32 fusion experiments have 400 × 32 = 12,800 client accesses and 111,800 × 32
= 3,577,600 impostor accesses.

5 Evaluation Using Pooled EPC Curves

Perhaps the most commonly used performance visualising tool in the literature is the
Decision Error Trade-off (DET) curve [16]. It has been pointed out [17] that two DET
curves resulting from two systems are not comparable because such comparison does
not take into account how the thresholds are selected. It was argued [17] that such
threshold should be chosen a priori as well, based on a given criterion. This is because
when a biometric system is operational, the threshold parameter has to be fixed a priori.
As a result, the Expected Performance Curve (EPC) [17] was proposed. We will adopt
this evaluation method, which is also in coherence with the original Lausanne Protocols
defined for the XM2VTS database. The criterion to choose an optimal threshold is
called weighted error rate (WER), defined as follows:

WER(α, ∆) = αFAR(∆∗) + (1 − α) FRR(∆∗), (20)

where FAR and FRR are False Acceptance Rate and False Rejection Rate, respectively.
Note that WER is optimised for a given α ∈ [0, 1]. Let ∆∗

α be the threshold that min-
imises WER on a development set. The performance measure tested on an evaluation
set at a given ∆∗

α is called Half Total Error Rate (HTER), which is defined as:

HTER(α) =
FAR(∆∗

α) + FRR(∆∗
α)

2
. (21)

3 Accessible at http://www.idiap.ch/∼norman/fusion
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The EPC curve simply plots HTER versus α, since different values of α give rise to
different values of HTERs. The EPC curve can be interpreted in the same manner as
the DET curve, i.e., the lower the curve is, the better the performance but for the EPC
curve, the comparison is done at a given cost (controlled by α). Furthermore, one can
plot a pooled EPC curve from several experiments. For instance, in order to compare
two methods over M experiments, only one pooled curve is necessary. This is done
by calculating HTER at a given α point by taking into account all the false acceptance
and false rejection accesses over all M experiments. The pooled FAR and FRR across
j = 1, . . . , M experiments for a given α ∈ [0, 1] is defined as follow:

FARpooled(α) =

∑M
j=1 FA(∆∗

α(j))
NI × M

, (22)

and

FRRpooled(α) =

∑M
j=1 FR(∆∗

α(j))
NC × M

, (23)

where ∆∗
α(j) is the optimised threshold at a given α, NI is the number of impostor

accesses and NC is the number of client accesses. FA and FR count the number of
false acceptance and the number of false rejection at a given threshold ∆∗

α(j). The
pooled HTER is defined similarly as in Eqn. (21).

6 Experimental Results

Figure 2 shows both pooled EPC and ROC curves calculated from all 32×3 fusion ex-
periments using original expert opinion (y′

j ∈ {yi|∀i}), margin (y′
j ∈ {M(yi)yi|∀i})

and both (y′
j ∈ {yi,M(yi)yi|∀i}). The ROC curves were plotted using FAR and FRR

defined in Eqns. (22 and 23), whose common threshold was adjusted on a development
(training) set. Note that for all these experiments, αj |∀j were set to be equal. This re-
duces the fusion into the mean operator4. As can be seen, fusion with margin is better
than the one using only the original expert opinions. Combining the two actually im-
proves the performance even further. In fact, this improvement is significantly better
than fusion using the original expert opinions across different α values according to
the HTER significant test [18] with 95% of confidence. As a control experiment, we
also performed fusion with y′

j ∈ {yi,M(yi)|∀i} using weighted sum. As expected,
this approach does not improve the performance because M(yi) does not contain any
discriminative information. As a result, this control experiment is worse than using
y′

j ∈ {yi|∀i} with EPC ranging between 1.5% and 3% of HTER (not shown here).

7 Conclusion

In this study, we proposed to use margin as a measure of confidence. When fusing two
system opinions, their derived margins provide a relative information to which system

4 In this database, weighted sum fusion with weights optimised using Fisher-ratio did not pro-
vide better performance than the mean operator
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Fig. 2. Pooled (a) EPC and (b) ROC curves of fusion experiments using original expert opinion
(labeled as “orig”), product of expert opinion with margin (labeled as “margin”), and combination
of both information (labeled as “margin+orig”), all using the mean operator. According to the
HTER significant test, the “margin+orig” curve is always better than the “orig” curve, at different
α, at 95% of confidence. These experiments were carried out on the XM2VTS database using 32
intramodal and multimodal fusion datasets, and each dataset contains the scores of two experts.
Note that both (a) EPC and (b) ROC curves are consistent in that “margin+orig” is the lowest
curve (for EPC) or closest to the origin (for ROC), implying the best generalisation performance
among the three curves

is more important. This margin definition has the property that it is confined in the range
[0, 1], because it is derived from the distance between two cumulative density functions.
Hence, margin can be used as a quality index. To the best of our knowledge, using mar-
gin to boost fusion has not been found in the literature yet. The second contribution
of this work is the analysis of fusion function and how the quality information can be
integrated with a priori weights of an existing fusion function. Suppose that yi is the
i-th opinion of an expert system and qi is the associated quality. The fusion problem
now can be treated as a fusion of {yi, qiyi|∀i}. This has the same effect as modifying
the a priori weight by adding qi directly. 32×3 intramodal and multimodal fusion ex-
periments were carried out on the XM2VTS multimodal database. Using pooled EPC
curves (which summarise over each of the 32 experiments), we show that fusion using
the confidence enhanced opinion yiqi is better than using the original opinion yi. Fur-
thermore, combining the two, i.e., {yi, yiqi} improves the performance even further,
and significantly, over different operating costs.
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