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Abstract. We consider classification problems in which the class labels
are organized into an abstraction hierarchy in the form of a class taxon-
omy. We define a structured label classification problem. We explore two
approaches for learning classifiers in such a setting. We also develop a
class of performance measures for evaluating the resulting classifiers. We
present preliminary results that demonstrate the promise of the proposed
approaches.

1 Introduction

Machine learning algorithms to design of pattern classifiers have been well stud-
ied in the literature. Most such algorithms operate under the assumption that
the the class labels are mutually exclusive. However, many real world problems
present more complex classification scenarios. For instance, in computer vision
application, natural scene containing multiple objects can be assigned to multiple
categories [3]; in a digital library application, a text document can be assigned
to multiple topics organized into a topic hierarchy; in bioinformatics, an ORF
may have several functions [5]. In each of these cases, the class labels are natu-
rally organized in the form of a hierarchically structured class taxonomy which
defines an abstraction over class labels. Such a classification scenario presents
two main challenges: (1) The large number of class label combinations make it
hard to reliably learn accurate classifiers from relatively sparse data sets. (2)
Standard metrics for evaluating classifiers in settings where class labels are mu-
tually exclusive are not suitable for evaluation of classifiers in settings where
the class labels are organized into a class hierarchy. Despite recent attempts to
address some of these problems, [1, 2, 3, 4, 5, 6, 7], at present, a general solution
is still lacking. Against this background, we explore approaches to learning clas-
sifiers in the presence of class taxonomies. The paper is organized as follows.
Section 2 presents a precise formulation of the single label, multi label and the
structured label classification problems; Section 3 describes two approaches to
learning classifiers from data in the presence of class taxonomies; Section 4 ex-
plores performance measures for evaluating the resulting classifiers; Section 5,
briefly describes results of experiments using the Reuters-21578 [8] data and
genotype data [5]; Section 6 concludes with a summary and discussion.
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2 Preliminaries

Many standard classifier learning algorithms normally make the basic assump-
tion of single label instances. That is, each instance that is represented by an
ordered set of attributes A = {A1, A2, ..., AN} can belong to one and only one
class from a set of classes C = {c1, c2, ....., cM}. Therefore, class labels in C are
mutually exclusive.

In multi label classification settings, class labels are not mutually exclusive.
Each instance can be labelled using a subset of labels cs ⊂ C, where C =
{c1, c2, ..., cM} is a finite set of possible classes. If instances can be labelled with
arbitrary subsets of C, the total number of possible multi label combinations
is 2M .

An even more complex classification scenario is one in which instances to
be classified are assigned labels from a hierarchically structured class taxonomy.
Here, we define class taxonomy first and then formalize the resulting structured
label classification problem.

Definition 1 (Class Taxonomy). A Class Taxonomy CT is a tree structured
regular concept hierarchy defined over a partially order set (CT ,≺), where CT

is a finite set that enumerates all class concepts in the application domain, and
relation ≺ represents the is-a relationship that is both anti-reflective and transi-
tive:

– The only one greatest element “ANY” is the root of the tree.
– ∀ci ∈ C, ci ≺ ci is false.
– ∀ci, cj , ck ∈ C, ci ≺ cj and cj ≺ ck imply ci ≺ ck.

A tree structured class taxonomy represents class memberships at different
levels of abstraction. The root of a class taxonomy is the most general label
(i.e., “ANY”) that is applicable to any instance. The leaves of class taxonomy
indicate the most specific labels. The tree structure imposes strict constraints
on these class memberships. Therefore, when an instance is assigned a label l
from a hierarchically structured class taxonomy, it is implicitly labelled with all
the ancestors of the label l in the class taxonomy.

Definition 2 (Structured label). Any structured label Cs is represented by
a subtree of CT . Cs is a partially order set (Cs,≺) that defines the same is-
a relationships as in CT . ∀ci ∈ Cs, ci is ANY or ci ≺ parent(ci), where
parent(ci) ∈ Cs is the immediate ancestor of ci in CT .

A class taxonomy imposes constraints on the integrity and validity of the
structured labels. The integrity constraint states that Cs is a subtree structure
of CT sharing the same root: Structured label is not an arbitrary fragment of the
class taxonomy. The validity constraint captures the is-a relationships among
class labels within a class taxonomy. A structured label is invalid if it contains
a label l but not the parents of l in a given class taxonomy.
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3 Methods

3.1 Binarized Structured Label Learning

One simple approach is to build a classifier consisting of a set of binary classifiers
(one for each class). However, the drawbacks of this approach are obvious: (1)
When making predictions for unlabelled instances, the classification results may
violate the integrity and validity constraints. (2) The set of binary classifiers fails
to exploit potentially useful constraints provided by the class taxonomy during
learning.

To overcome these disadvantages, we build a hierarchically organized collec-
tion of classifiers that mirrors the structure of the class taxonomy CT . The result-
ing classifiers form a partially ordered set (hCT ,≺), where hCT = {hC1 , · · · , hCM

}
is the set of classifiers, and ≺ represents partial orders among classifiers. If Cj

is a child of Ci in CT , then the respective classifiers satisfy the partial order
hCj

≺ hCi
. This partial order on classifiers guides the classification of an in-

stance. If hCj
≺ hCi

, an instance will not be classified using hCj
if it has been

classified as not belonging to Ci (i.e., output of hCj
is 0). We call our method

of building such hierarchically structured classifiers “Binarized Structured Label
Learning” (BSLL).

A B C

D E F G H

Fig. 1. Structure class taxonomy

3.2 Split-Based Structured Label Learning

A second approach to structured label learning is an adaptation of an approach
to multi-label learning. We digress briefly to outline approaches to multi-label
learning.

In real world applications it is very rare that each of the 2M multi label
combinations appear in the training data. The actual number of multi labels is
much smaller than the possible number 2M . Thus, we may set an upper limit
on the number of possible class label combinations. If the number of labels that
can occur in a multi-label is limited to 2, we will only consider the combina-
tions of 2 class labels instead of M class labels. Another option is to consider
only the multi labels that appear in the training data. In either case, we can
not apply standard learning algorithms directly to the multi-label classification
problem. This is because the multi label and the individual class labels are
not mutually exclusive and it is not uncommon for some instances to be la-
belled with a single class label and others with multi labels. Because most stan-
dard learning algorithms assume mutually exclusive class labels, we will need
to generate mutually exclusive classes. For example, consider C = {A,B,C}
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with instances set SA, SB , SC respectively. Suppose the only multi label ob-
served in the training data is {A,B}. Note that SA

⋂
SB �= ∅. So the ex-

tended class label set is C′ = {Â, B̂, Ĉ, A&B},which represents instance set
SA − SA

⋂
SB, SB − SA

⋂
SB , SC , SA

⋂
SB.

This approach to transforming class labels to obtain mutually exclusive class
labels can be applied to structured label learning problem by building split-based
classifiers. We will first define a split in a class taxonomy CT , and then for each
split we show how to learn a respective classifier by learning from instances with
extended label sets (as outlined above).

Definition 3 (Split). A split is a one level subtree within a class taxonomy,
which includes one parent node and all its children nodes, and the links between
the parent node and children nodes.

Obviously, the number of splits in the class taxonomy is smaller than the
number of nodes. We can build a set of classifiers on the splits to solve structured
label problem so to decrease the number of resulting classifiers. Within each
split, the structured label problem will be reduced to a multi label problem,
and we only need to consider the combinatorial extensions on class labels at
that particular level. Additionally, the split-based classifiers are also partially
ordered according to a given class taxonomy. Any instance to be classified will
follow this topological order of the split-based classifiers: start from the classifier
for the split at first position, continue to run a split-based classifier only when
predicted to be “1” by the parent split-based classifier.

4 Performance Measure for Structured Label
Classification

In single label classification, a loss function(like standard 0-1 loss function)
loss(cp, co) can be defined to evaluate the cost of misclassifying the instance
with observed class label co to the predictive class label cp. However, this ap-
proach is inadequate in a structured label problem in which there is a need to
take into account the relationships between labels assigned to an instance. Here
each label set corresponds to a subtree of the class taxonomy in structured label
problem. We define a misclassification cost associated with the label set pro-
duced by the classifier relative to the correct label set (the correct structured
label).

Definition 4 (Node Distance). Node distance is a value d(ci, cj) denoting
the difference of labels ci,cj. It has the following properties:

– d(ci, cj) ≥ 0
– d(ci, cj) = d(cj , ci)
– d(ci, ci) = 0
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Definition 5 (Dummy Label). Dummy label θ is an“add-on” label to the
class taxonomy which acts as a predicted value to the instance when a classifier
can not decide the class label and does nothing. Thus this is a “label by default”.
It has the following properties:

– d(θ, ci) = d(θ, cj)
– d(ci, cj) ≤ d(θ, ci)

Definition 6 (Non-Redundant Operation). A non-redundant operation
(with Φ as the operator) to a label set Ci is to keep the children labels when
both children labels and their parent labels are present, such that we eliminate
the label redundancies within a class taxonomy.

Definition 7 (Mapping). A mapping f between two label sets C1,C2 with the
same cardinality is a bijection f : C1 → C2.

We calculate the distance d(Cp,Co) between Cp and Co, the predicted and
actual label (respectively) for each classified instance as follows:

– If the cardinalities of Cp and Co are equal, find a mapping to minimize
the sum of node distances and divide by the cardinality of the label sets to
obtain the distance.

– If the cardinalities of the two label sets are not equal, add as many dummy
labels θ as needed to the label set with fewer elements to make the cardinal-
ities of the two label sets equal and then calculate the distance between the
two label sets as before.

The performance of the classifier on a test set is obtained by averaging the
distances between predicted and actual labels of instances in the test set T as

follows: d̄ =
∑

T
d(Cp,Co)

|T| . The lower the value of this measure, the better the
classifier (in terms of misclassification cost).

5 Experimental Results

Given a structured label data set, we need the pair-wise node distances between
class labels to compute the misclassification cost as described above. These dis-
tances can be specified by a domain expert. Alternatively, the distances may be
estimated from a training set based on cooccurence of class labels as follows:
For each level in the class taxonomy, we calculate the occurrence of classes in
the training set, divide it by the number of labels at that level of the class tax-
onomy. We calculate the distance between class labels as follows: We place the
”add-on” label θ in the root node of the class taxonomy tree and set the edge
distance as the level weight. For two nodes, if one is ancestor of the other, the
node distance will be the sum of the edge distances along the path that connects
them; if neither node is an ancestor of the other, the distance between them
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is defined as the average distance of the two nodes from their nearest common
ancestor. After normalization, we assign distance 1 to any two labels in the top
level together with the ”add-on” label θ, and the maximal node distance equals
to the summation of all the level weights as 1.268 in Reuters-21578 data and
1.254 in phenotype data set.

5.1 Results on Reuters-21578 Data Set

Reuters-21578 data, originally collected by Carnegie Group for text categoriza-
tion, does not have a predefined hierarchical class taxonomy. However, many
documents are labelled with multiple topic classes. We extracted 670 documents.
In this set, more than 72% of the documents have multiple class labels. We cre-
ated a two-level class taxonomy using current categories of the documents as
follows:

grain(barley,corn,wheat,oat,sorghum)
livestock(l-cattle,hog)

We used a Naive Bayes classifier as the base classifier and estimated the per-
formance of the resulting structured label classifier using 5 fold cross validation.
The results in tables 1, 2 suggest that binarized structured label learning per-
forms as well as split-based structured label learning in this case. Both have good
predictive accuracy for the classes that appear in the first level of the class taxon-
omy: grain, livestock. The overall performance of the two methods (as measured
by the estimated misclassification cost) is slightly different, while the average
recall and precision calculated over the entire class hierarchy are very close.

Table 1. Average distance: learning on Reuters-21578 data set

binarization learning split-based learning

d̄ 0.217 0.251

Table 2. Recall&precision: learning on Reuters-21578 data set

binarization learning split-based learning
recall precision recall precision

grain 0.993 0.964 0.993 0.968
livestock 0.766 0.893 0.752 0.917
barley 0.498 0.440 0.454 0.442
wheat 0.852 0.735 0.859 0.724
corn 0.839 0.721 0.818 0.726
oat 0.270 0.75 0.167 0.75

sorghum 0.408 0.560 0.324 0.591
l-cattle 0.146 0.417 0.167 0.339

hog 0.729 0.786 0.717 0.686
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5.2 Results on Phenotype Data Set

Our second experiment used the phenotype data set introduced by Clare and
King[5] whose class taxonomy is a hierarchical tree with 4 levels and 198 labels.

We choose the C4.5 decision tree as the base classifier to run the binarization
learning and split-based learning in 5-fold cross validation. Split-based structured
label learning shows better performance than binarized structured label learning
on this data set. The misclassification cost is 0.79. The split-based structured
label learning predicts 1 out of 4 class labels correctly in the 1st level branches.
Compared to the Reuters-21578 data set, the phenotype data set is much more
sparse which might explain the fact that the results are not as good as in the
case of the Reuters-21578 data set.

We also calculate accuracy, recall and precision of each class label. It turns out
that the accuracy of each class label is quite high(95%). This is due to the fact
that this data set is highly unbalanced and each classifier has a high true negative
rate.Owing to the sparseness of the data set, many class labels do not appear in
the test data set. This leads to undefined recall and precision estimates because of
division by 0. Hence, only those class labels with recall and precision estimates
available are listed in Figure 2. They show that split-based structured label
learning performs better in terms of recall and precision, which is consistent with
the relative performance of the two methods in terms of misclassification cost.

Table 3. Average distance: learning on phenotype data set

binarization learning split-based learning

d̄ 1.171 0.790

binarization and split-based learning with decision tree as meta-classifier
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Fig. 2. Recall&precision: learning on phenotype data set

6 Summary and Discussion

In this paper, we have:

– Precisely formulated of learning from data using abstractions over class la-
bels – the structured label learning problem – as a generalization of single
label and multi label problems.
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– Described two learning methods, binarized and split-based approaches to
learning structured labels both of which can be adapted to work with any
existing learning algorithm for single label learning task (e.g., Naive Bayes,
Decision tree, Support vector machine, etc.).

– Explored a performance measure for evaluation of the resulting structured
label classifiers.

Some directions for future work include:

– Development of algorithms to incorporate techniques for exploiting CT (class
taxonomies) to handle partially specified class labels.

– Development of more sophisticated metrics for evaluation of structured label
classifiers.
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