
Experiments with Multiple Abstraction
Heuristics in Symbolic Verification

Kairong Qian, Albert Nymeyer, and Steven Susanto

School of Computer Science & Engineering,
The University of New South Wales, Sydney Australia
{kairongq, anymeyer, ssus290}@cse.unsw.edu.au

Abstract. In this work we investigate a symbolic heuristic search al-
gorithm in a model checker. The symbolic search algorithm is built on
a system that manipulates binary decision diagrams (BDDs). We study
the performance of the search algorithm in terms of the number of BDD
operations, size of the BDDs, number of nodes they contain and run-
time. We study the heuristic distribution of the state space, we measure
effort by computing the mean heuristic value, and we compare single and
multiple heuristics. In the case of multiple heuristics, we consider admis-
sible and non-admissible merge strategies. We experiment on problems
from a variety of domains. We find that multiple heuristics can perform
significantly worse than single heuristics in symbolic search in at least
one domain. In general, the effect of the heuristics on the symbolic search
in the different domains varies markedly, and we conjecture that the dif-
ferent behaviour is caused by intrinsic differences in the characteristics
of the state space.

1 Introduction

Formal verification techniques such as model checking [3] have gained much at-
tention in the past decade. From the time Binary Decision Diagrams (BDDs)
were introduced [2], symbolic model checking [16] that uses BDDs have been very
successful in handling designs that have extremely large state spaces. While
BDDs can represent the state space compactly, symbolic model checking of
course still suffers the problem of “state space explosion” as it still must enu-
merate the full state space. This enumeration is typically done using a ‘blind’
breadth-first or depth-first search strategy. The blindness of the search is an
unnecessary handicap that results in many irrelevant states being visited.

Heuristic-search algorithms such as A∗ and IDA∗ have been employed in AI
research to solve many hard state-space search problems [13]. The big advantage
of using a heuristic search strategy is that only part of the state space needs to
be searched. Many verification of system design techniques, for example model
checking, involve searches for a defect in a model. Coupling symbolic model
checking with heuristic search techniques yields a more efficient technique to
detect defects.

J.-D. Zucker and L. Saitta (Eds.): SARA 2005, LNAI 3607, pp. 290–304, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Experiments with Multiple Abstraction Heuristics 291

In [7, 9, 12, 17] traditional explicit-based heuristic search algorithms have been
modified to use BDDs to represent the state space. These methods can enhance
the “bug-hunting” capabilities of symbolic model checkers because of the action
of the heuristics in guiding the search. In [6], heuristics are classified as property-
specific, structural and abstraction heuristics. Property-specific heuristics can
usually be derived from analysing the property that is being verified. Structural
heuristics guide the search algorithm by taking into account the structure of
the state space. These two heuristics often work well in explicit state model
checking. The third class of heuristics are developed from the abstractions of
the model that is being verified. In this class of heuristics, the abstraction is a
‘relaxation’ of the system, and is generated by removing complicating detail from
the concrete model. Abstractions here are called “patterns”, and the resulting
heuristics “pattern databases”.

A pattern database [4] stores the distance of a pattern to some sub-goal state.
Pattern databases were originally developed to solve many hard combinatorial
puzzles in AI, e.g. n2−1 puzzles. In [5, 19, 6] this notion is extended and combined
with data abstraction, which is another technique to reduce the size of the state
space. In earlier work [19, 20], we have seemlessly integrated symbolic pattern
databases and symbolic model-checking algorithms.

Research in pattern databases has been well studied in AI. Holte and
Hernádvölgyi [11] studied the trade-off between time and space for memory
based heuristics. Korf and Felner [14] used so-called disjoint pattern databases,
and solved very challenging search problems like Rubick’s cube. Multiple pat-
tern databases have been comprehensively investigated in [10], as well as the
relationship between the distribution of heuristic values and the search effort.
Felner et al in [8] studied the generation of admissible heuristics by partition-
ing the problem into disjoint sub-problems. They use both static and dynamic
schemes of partitioning. All this work only considered explicit-state search algo-
rithms of course, and were only concerned with admissible heuristics, and only
experimented on classical AI problems.

In this paper, we conduct experiments in heuristic- and BDD-based symbolic
search in model checking for models from various domains. We seek to under-
stand the effect that symbolic state enumeration brings to heuristic search, par-
ticularly with respect to each of the domains. We do this for both single-heuristic
and multiple-heuristic search strategies. In the next section we briefly describe
the framework we use for generating heuristics for a model checker. In Section 3
we lay the formal groundwork for the work. In Sections 4 to 8 we describe a series
of experiments. We do an overall evaluation and draw conclusions in Section 9.

2 Abstraction-Guided Symbolic Model Checking

The technique we use is called the abstraction-guided symbolic model checking
framework. In our previous work [19, 18, 20], we have used a single abstraction to
guide the BDD-based symbolic search. In this work we extend this approach and
consider multiple abstractions. We briefly describe the general approach here and

292 K. Qian, A. Nymeyer, and S. Susanto

Data Ab s trac tio n

OK

No

Yes

Heuristic Construction

Ab strac t Mo d el C hecking

Yes

Concrete Model

No

Abstract Model

Symbolic Abstraction Databases

G uid ed Mo d el C hecking

Abs tract M ode l

Concre te M ode l

OK

CX

pass?

pass?

Heuris tic S ynthes is

SA

M A

Fig. 1. The abstraction-guided model-checking framework

interested readers may refer to [19] or [20] for details. The abstraction-guided
framework is depicted in Figure 1.

The process starts with the design, which we refer to as the concrete model.
In the first step we generate a data abstraction of the concrete model. Note
that in this step, we can generate more than one abstraction for the concrete
model. We refer to a single abstraction as SA and multiple abstractions as MA in
Figure 1. The abstract model(s) are taken as input by a symbolic model checker.
If the model checker verifies the abstract model(s), we terminate as the data
abstraction guarantees the soundness of the properties we are interested in. If the
abstract model(s) fail the verification, we construct abstraction heuristic(s) using
the abstract model(s). The guided model-checking algorithm is then invoked to
check the concrete system using this heuristic as guide. The outcome of the
heuristic model checker is either that the concrete model is verified, or a counter-
example (CX in the figure) that will reveal the defect in the design (assuming
the algorithm terminates of course).

Note that unlike other research in model checking, we use the same abstrac-
tion to (1) reduce the size of the model and (2) to guide the heuristic search
algorithm. We have implemented this approach in a tool, called Golfer. This
tool is built on top of the well-known symbolic model checker NuSMV1.

1 http://nusmv.irst.itc.it/

Experiments with Multiple Abstraction Heuristics 293

The heuristics that we construct from abstractions extend the notion of “pat-
tern databases” developed in [4]. As our representation of the problem is based
on BDDs, following [5, 6], we refer to these heuristics as symbolic abstraction
databases (SADBs).

3 Symbolic Abstraction Databases

The terminology used in heuristic search in AI and in verification is quite dif-
ferent. In this section we define the notation we use, and explain our approach.
We model AI search problems and the verification of safety properties using a
finite-state model as follows.

Definition 1 (Finite Transition System). A finite state transition system
is a 4-tuple M = (S, S0, R,G), where

– S is a finite set of states
– S0 ⊆ S is a set of initial states
– R ⊆ S × S is a transition relation (or operator) that determines a set of

successors for a given state s ∈ S
– G ⊆ S is the set of goal states

Definition 2 (Solution Path). Apath inafinite transition system (S, S0, R,G),
denoted byπ, is a sequenceof states s0, s1, . . . , sn where sn ∈ Gand for all0 ≤ i < n,
si ∈ S ∧ (si, si+1) ∈ R. If a path is a solution path then s0 ∈ S0. The length of π,
written |π|, is just the number of states in the path.

In verification, a solution path is called a counter-example as it demonstrates
why the property that is being verified is not true.

Since we are only interested in symbolic heuristic search in this work, we en-
code M using Boolean expressions. Given a transition system M = (S, S0, R,G),
we use a set of Boolean variables X = {x1, x2, . . . , xk} to model the state space
of M . A state can be represented by a truth assignment vector of X and all
possible truth assignment vectors comprise the state space S. The Boolean func-
tions S0(x1, x2, . . . , xk) and G(x1, x2, . . . , xk) are characteristic functions that
represent the states in S0 and G (resp.). To encode R we need another set of
Boolean variables X ′ = (x′

1, x
′
2, . . . , x

′
k) to represent the next state of a state

s. Likewise, R(x1, x2, . . . , xk, x′
1, x

′
2, . . . , x

′
k) is the characteristic function for R.

In the discussion henceforth, we use M = (S,S0,R,G) to refer to the Boolean
encoding of a transition system M .

If a system is modelled using a set of Boolean variables X = {x1, x2, . . . , xk},
we call Xp ⊂ X a pattern set, and call those variables that are not in the
pattern set Xp. Given a pattern set and Boolean encoding of a transition system
M = (S,S0,R,G), we can abstract the transition system as follows.

Definition 3 (Abstraction). The abstraction of M = (S,S0,R,G) w.r.t a
pattern set Xp is also a transition system M̂ = (Ŝ, Ŝ0, R̂, Ĝ) represented by its
Boolean encodings, where

294 K. Qian, A. Nymeyer, and S. Susanto

– Ŝ is a disjunction of all minterms of variables in Xp

– Ŝ0 ≡ ∃XpS0(x1, x2, . . . , xk)
– R̂ ≡ ∃XpX

′
pR(x1, x2, . . . , xk, x′

1, x
′
2, . . . , x

′
k)

– Ĝ ≡ ∃XpG(x1, x2, . . . , xk)

Definition 4 (Symbolic Abstraction Databases). Given a Boolean encod-
ing M̂ = (Ŝ, Ŝ0, R̂, Ĝ) of a transition system, we call a set σ = {(B0, 0), (B1, 1),
. . . , (Bn, n)} symbolic abstraction database such that:

– (Bi, i), where Bi is a Boolean characteristic function and i ≥ 0
– B0 ≡ Ĝ and Bi ≡ ∃X ′

p(Bi−1[Xp/X ′
p] ∧ R̂) for all 0 < i ≤ n

– Bn ∧ Ŝ0 	≡ False and Bi ∧ Ŝ0 ≡ False for all 0 ≤ i < n
– Bi ∧ Bl = ∅ for all i 	= j

The length of a symbolic abstraction database is |σ|.
It is proved in [5, 19] if there is a solution path π in a concrete system M , there

must exist a corresponding abstract solution path π̂ in the abstraction M̂ and
|π̂| ≤ |π|. Note that the existence of π̂ corresponding to π provides the theoretical
justification for using π̂ to guide the search. The lower-bound characteristic of
the abstract solution path allows the symbolic abstraction database to be used
as an admissible heuristic to estimate the actual number of transitions (distance)
between the current and goal states in the concrete system.

Definition 5 (Disjoint SADBs). Two symbolic abstraction databases σ1 and
σ2 are disjoint if their corresponding pattern sets Xp1 and Xp2 are disjoint, i.e.
Xp1 ∩ Xp2 = φ.

Given a state s and characteristic function Fs in the concrete model and a
symbolic abstraction database σ = {(B0, 0), (B1, 1), . . . , (Bn, n)}, if Fs ∧ Bj 	=
False for some pair (Bj , j), then we call the value j an estimator and denote it
as σ(s). Given a symbolic abstraction database, this estimator is unique as all
Bi are disjoint.

Theorem 1 (Additiveness). Let |πs| be the path length of s in M , and σ1

and σ2 be two disjoint symbolic abstraction databases. Let σ1(s) and σ2(s) be the
estimator of s in each of them. Then σ1(s) + σ2(s) ≤ |πs|.

This theorem guarantees that disjoint SADBs can be “added” together and
the result will still be an admissible heuristic. In this work we in fact also consider
pattern sets that are not disjoint. In verification, admissibility is less of an issue
as we are more interested in finding just a good path to a defect in the system, not
necessarily the shortest path. Our formal discussion about the disjoint SADBs
actually shares many aspects with the disjoint pattern database heuristics in AI
research [5, 14, 8].

We not only treat the system symbolically in this work, we also encode the
guided heuristic search symbolically. In [19, 20] we describe how SADBs are

Experiments with Multiple Abstraction Heuristics 295

used by a symbolic model checker to detect safety violations. We further gen-
eralise the algorithm to use multiple SADBs. The search algorithm still works
as in [19]; the only difference being the way SADBs are queried. The essence
of the guided symbolic model checking algorithm is that each frontier BDD is
split into several smaller, so-called sub-BDDs (representing sub-frontiers), where
each of these sub-BDDs corresponds to a different heuristic value. Note that
this splitting in necessary in the A∗ algorithm as the heuristics help drive the
search. Edelkamp [7], who also studied the symbolic A∗ algorithm, used a dif-
ferent method however. In his method, the heuristic values are encoded into the
BDD directly. It is not clear whether this method has any advantages over our
method however. The heuristics in our research therefore fulfil two tasks: as a
search guide and as a mechanism to split BDDs. The splitting is carried by the
restrict operation (denoted as ↓) on BDDs [2].

Let D be a BDD representing a set of states of M and Φ = {σ1, . . . , σm} be a
set of SADBs. The algorithm below splits the BDD representing D and assigns
each sub-BDD an estimator according to the merge strategy of the SADBs.

Procedure Splitting (D, Φ,m strategy)
1 result ← {(D, 0)}
2 for i in 1..m do
3 temp ← result
4 result ← {}
5 for each (d, h) ∈ temp do
6 for each (Bj , j) ∈ σi do
7 I ← d ↓ Bj

8 d ← d ∧ I
9 if (I 	= φ & m strategy = add)
10 result ← result ∪ {(I, j + h)}
11 if (I 	= φ & m strategy = max)
12 result ← result ∪ {(I,max(j, h))}
13 if (d 	= φ)
14 result ← result ∪ {(d, |Φ|)}
15 return result

The input m strategy is the merge strategy used on the SADBs in the symbolic
heuristic search. The only possible values are add and max. Note that for disjoint
SADBs, both are admissible. If Φ is not disjoint, only max will be admissible.

While abstraction-based heuristics can reduce the search space in both the
AI and verification domains, the method used to derive abstractions in these
domains is very different. For example, puzzles and planning problems in the AI
domain can usually be physically modelled, so the abstraction of the problem
often involves the detection of physical patterns. In the n2−1 puzzle, for example,
we have corner and fringe patterns [4]. In verification, however, problems are
generally modelled by a large number of variables and the physical relationship
between the variables is neither physical nor obvious, often due to the high level
of concurrency of the model. Finding patterns in verification can be very difficult
indeed.

296 K. Qian, A. Nymeyer, and S. Susanto

In [20] we presented a procedure that automatically finds abstraction patterns
by using a data dependency analysis. The idea is based on the notion that
variables that are only indirectly related have a weaker influence on each other
than variables that are directly related. We build a variable dependency tree
rooted by the variables that occur in the goal state. The weakest variables,
which appear furtherest away from the root in the variable dependency graph,
are ignored. Note that this method does not always work well, particularly in
AI problems, where typically all variables are directly dependent on each other.

4 Experiment Set-Up

In explicit-state heuristic search, the number of states (or nodes) that are gen-
erated by the search algorithm can be used to evaluate the effectiveness of the
heuristic. In BDD-based heuristic search, however, we cannot use the number of
states that are generated by the algorithm as states are symbolically represented
by Boolean functions. We note that the number of nodes in a BDD is not related
to the number of states it represents. In fact, the effort that a symbolic search
algorithm must make to solve a problem is largely determined by the internal
operations of the BDD engine, not the number of states in the system.

The following attributes will be used to capture the search effort in our ex-
periments.

IM. The number of BDD image computations. These computations determine
the successor states of the search. It is called the relational product and involves
quantifier elimination, which is an expensive computation in symbolic model
checking. (IM is related to the size of the closed set in the explicit-state A∗

algorithm.)

SP. The number of splitting operations. The splitting operation involves the
‘restrict’ operation on BDDs. It is also expensive. (SP is related to the size of
the open set in explicit-state A∗ algorithm.)

ND. The total number of BDD nodes allocated. While the number of BDD
nodes is not directly related to the number of states, it still reflects the memory
usage of the algorithm and hence is the major memory measurement.

AS. The average size of all BDDs. Reducing the size of BDDs is important
because some BDD operations have exponential time complexity in terms of the
BDD size.

TM. The CPU time consumed by the search algorithm. In general the CPU
time is strongly related to the values of IM and SP.

We have used 5 models in our experiments: two of them are puzzles from the
AI heuristic search domain, and the other three are real-world design models
of concurrent systems. Note that all models have at least one goal state that is
reachable from the initial state set.

Experiments with Multiple Abstraction Heuristics 297

Name Description Type

puz n2 − 1 sliding tile puzzle (N = 8) puzzle
perm N-pancake puzzle (N = 10) puzzle
dme distributed mutual exclusive ring circuit
ns Needham-Schroeder public key protocol protocol
peter Peterson’s mutual exclusion algorithm protocol

To construct SADBs we need to define the pattern set that is to be used
for the abstraction. For each puzzle model we use 4 different pattern sets that
are commonly used in AI heuristic search literature. For each of the verification
models, we use our data dependency analysis to also generate 4 pattern sets.
The pattern sets for each model are not necessarily disjoint as the optimality of
the solution path is not a primary concern in our work.

We ran the model checker for each of the (single) SADBs generated by the
pattern sets. We also used multiple SADBs that were constructed by merging 3
of the 4 SADBs for each model. We in fact constructed multiple SADBs by all
of the C3

4 combinations of SADBs and reported the best performance. As well,
both the add and max merge strategies were studied.

Caveat: At this point, we should point out that symbolic search algorithms
are not really suitable for solving the puzzle-like problems that often occur in
AI heuristic search, where good heuristics are known. The advantage of the
BDDs in manipulating sets of states in single operations is often outweighed by
the computational complexity of these BDD operations [17]. In essence, only
when the BDDs represent large sets of states does their use pay off. In gen-
eral, for these types of problems, explicit-state searches are often faster and
require less memory. We use these models in this work, however, for comparison
purposes.

5 Heuristic Distribution Experiment

The aim of this experiment was to study the distribution of the heuristic over the
state space. In Figure 2, we show the number of states in the SADB for different
heuristic values. In our symbolic approach, all states with the same heuristic
value is represented by a single BDD. To compute these results, we needed to
calculate how many (abstract) states a BDD can represent (which is of course
different to the number of nodes in the BDD). Note the logarithm scale on the
axis for the number of states. The diagram on the left is taken from randomly
chosen SADBs for the 8-puzzle model, and on the right, for the DME circuit
model.

In the figure we observe that different abstraction show similar behaviour
for each model. Comparing AI and verification, however, we observe that the
number of states increases exponentially as the heuristic value increases in the
case of the 8-puzzle, but decreases exponentially for the DME model.

We conjecture that this phenomenon is caused by fundamental differences
in the nature of the state spaces in these domains. Puzzles, for example, often
have few goal states, whereas safety properties in verification can be violated

298 K. Qian, A. Nymeyer, and S. Susanto

 0 2 4 6 8 10 12 14

N
um

be
r

of
 S

ta
te

s
(lo

g)

Heuristic Values

abstraction 1
abstraction 2

 1 2 3 4 5 6

N
um

be
r

of
 S

ta
te

s
(lo

g)

Heuristic Values

abstraction 1
abstraction 2

Fig. 2. 8-puzzle (left) and DME (right)

in many states, and hence there are many goal states. Having many goal states
means that the value of the heuristic tends to remain small. When we construct
SADBs, we use a backward breath-first traversal of the abstract model’s state
space. In the case of puzzles, the resulting search tree grows exponentially. In
verification, the size of the search tree decreases as many states share the same
predecessor. A conclusion one could draw from the behaviour we observe is that
heuristic search using SADBs has less to gain in verification models than in
AI models (in other words, the improvement over blind search will be less in
verification).

6 Mean Heuristic Value Experiment

In this experiment we wished to study whether or not the mean heuristic value
[15, 5], is a good predictor of the effort needed by the symbolic heuristic search.
In explicit-state heuristic search, it is well known to be a good predictor of
the search effort. The intuition is that it may not be in a symbolic setting
because it does not factor in the added computational overhead that BDDs
have.

The mean heuristic value (MHV) h of a SADB σ determines the overall
distribution of heuristic values and is defined as follows.

h =
|σ|∑

i=1

i × (|{s ∈ σ|σ(s) = i}|/|{s|s ∈ σ}|) (1)

Equation 1 actually computes the weighted mean heuristic value of σ. A high
value for h indicates that a larger proportion of states have large heuristic values
than have low values, and therefore the level of “informedness” is high. Ideally,
the value of h for a SADB σ should be as close as possible to |σ|, and in that
case it is said to be “well-informed”.

We chose three models, and for each model we use 4 different SADBs. The
results are shown below.

Experiments with Multiple Abstraction Heuristics 299

SADBs MHV IM SP ND AS TM
puz-1 11.90 144 305 268421 361 1.050
puz-2 12.30 679 1581 547046 404 3.390
puz-3 9.03 495 1043 453495 455 2.970
puz-4 8.30 1353 2769 400189 429 6.900

dme-1 2.73 616 1121 193004 2921 74.110
dme-2 3.72 26 26 280683 3232 3.220
dme-3 3.68 26 26 289808 6268 11.090
dme-4 3.57 26 26 524103 12394 45.540

ns-1 8.13 28 106 92126 815 6.840
ns-2 5.37 421 1693 371040 964 122.420
ns-3 6.16 1110 6361 629380 1843 389.670
ns-4 5.34 475 2073 519868 1874 228.980

The statistics that concern the BDDs come from the BDD engine of the model
checker. Other statistics are generated from profilers. For each of the three mod-
els we give the results for each of the 4 SADBs. The value of MHV is calculated
using equation 1. For each model, we bold the row that has the shortest run-time
(TM).

For the puzzle model, the bolded row has the best performance in terms of
every attribute. While the MHV for puz-1 is not the highest one, the MHV is
nevertheless a good predictor of performance.

For the two verification models, the SADB with the shortest run-time has the
highest value of MHV. It is hence a very good predictor in the symbolic setting,
contrary to our intuition.

Unrelated to the MHV, we observe that dme-2, dme-3 and dme-4 use exactly
the same number of image computations and splitting operations (IM and SP).
However, in spite of the fact that dme-2 uses more BDD nodes (ND) than dme-1,
and will hence use more memory, it is still the best performer.

7 Multiple SADB Experiment

This experiment concerns the main focus of this work, and that is compare the
performance of single and multiple SADBs. Holte et al. [10] found that heuristic
search that is based on multiple SADBs out-performs search based on single
SADBs (for the same amount of memory). But Holte et al’s work is based on an
explicit-state search. So does it apply to a symbolic heuristic search as well?

We run each model with each of the 4 single SADBs. From these 4 SADBs,
we created 10 multiple SADBs (C2

4 from combinations of 2 SADBs plus C3
4 from

3 SADBs). We ran the symbolic search on each model with each of these 10
heuristics. We show the results for just two of the models in the following table.

SADB(s) IM SP ND AD TM

puz-sgl 144 305 268421 361 1.050
puz-mpl-1 133 284 353075 341 1.360
puz-mpl-2 203 440 409425 343 1.650
puz-mpl-3 160 349 299479 361 1.200

peter-sgl 40 97 109795 1332 4.414
peter-mpl-1 230 591 379365 816 14.273
peter-mpl-2 40 105 134202 822 16.442
peter-mpl-3 40 100 126754 716 16.357

300 K. Qian, A. Nymeyer, and S. Susanto

In the table, the results for the single SADB (denoted by the .sgl suffix) are the
ones that had the best performance. For the 10 multiple SADBs, we show just
the best performing 3, and these are indicated by the .mpl suffix. We used both
the add and max strategies to merge the SADBs.

Contrary to Holte et al’s findings, the results in the table above show that
multiple heuristics perform worse than single heuristics. The first two rows in
the table, puz-sgl and puz-mpl-1, are particularly interesting as they reveal that
even when the multiple SADB search uses less image computations and splitting
operations (which we noted earlier are the primary determinants of the compu-
tational complexity), it performs worse than the single SADB search. We note
the multiple SADB models use more BDDs nodes, and the average size of the
BDDs is smaller, in both models.

These results are quite surprising. Multiple pattern databases in explicit-
state heuristic search are effective because they improve the overall heuristic
distribution and hence result in smaller search trees. In symbolic heuristic search,
the heuristic is (also) used to split the frontier BDDs, and one conjectures, it is
this computation that causes the problem. Thus, much of the effort of symbolic
heuristic search is spent on splitting the BDDs, offsetting any gains that may be
had from the higher-quality, multiple heuristic.

8 Merge Strategy Experiment

In our final experiment we compared the performance of the add and max merge
strategies for multiple SADBs. We carried out this experiment by using both
strategies to merge both 3 and 4 single SADBs into a multiple SADB. We note
that the add strategy is not admissible so it can generate non-optimal paths.

Unlike our earlier experiments, this time we present tables for each of the
problem domains separately. The domains are AI puzzles, electronic circuits and
communication/security protocols. We do this because we found that the choice
of merge strategy effected the performance in a different way for each of these
domains. The only change in the table format to our earlier experiments is the
addition of the attribute LE, which indicates the solution length returned by the
search. You can see from this column when a search generated a non-optimal
path.

AI Puzzles. In the table below we see the results for the AI puzzles.

SADBs IM SP ND TM LE
puz-3-add 133 284 368552 1.450 24
puz-3-max 203 440 409425 1.650 24
puz-4-add 168 357 353075 1.360 24
puz-4-max 169 391 433784 1.880 24

perm-3-add 27 106 93224 5.720 13
perm-3-max 769 3446 1199309 294.340 11
perm-4-add 289 1833 237584 39.510 15
perm-4-max 2619 14427 859840 511.550 11

Experiments with Multiple Abstraction Heuristics 301

We observe that, while the add merge strategy can result in a non-optimal path,
the resulting search is faster than that produced by the (optimal) max merge
strategy. In fact, in the case of perm, it is one or two orders of magnitude faster.
Note that there is almost the same difference between the max and add strategies
in the number of image computations and partition operations, so the result is
not surprising. There is a trade-off here: speed comes at the cost of optimality.

Electronic Circuit. This model has been constructed from a real electronic
circuit design and has been a widely used benchmark for symbolic model checking.

SADBs IM SP ND TM LE
dme-3-add 169 232 142574 10.520 37
dme-3-max 616 1122 186500 77.380 27
dme-4-add 169 232 171070 10.260 41
dme-4-max 326 546 198282 16.220 27

We observe that the add strategy clearly results in a faster model checker than
max but at the cost of a much longer path to a goal state.

Communication/Security Protocols. The two communication protocol
models generate quite different results.

SADBs IM SP ND TM LE
ns-3-add 1452 11831 218287 187.460 19
ns-3-max 32 273 113118 7.040 14
ns-4-add 1954 14800 318377 228.680 19
ns-4-max 130 1054 130216 12.580 14

peter-3-add 230 591 379365 14.273 49
peter-3-max 40 100 130955 2.970 41
peter-4-add 79 199 151200 25.890 49
peter-4-max 40 105 134202 16.442 41

Quite the opposite of the previous results, the add strategy for these models
results in a model checker that takes a lot longer to find a longer, non-optimal
path to a goal state. Clearly an unsatisfactory heuristic for this class of model.

In summary, the inadmissibility of the add merge strategy may lead to (very)
sub-optimal paths, and a substantial speed-up in the search in some models, but
a worsening in others.

9 Evaluation and Conclusion

Predicting how and when BDD-based heuristic search algorithms will perform
better than explicit-state algorithms is extremely difficult. It is well known, for
example, that finding an optimal variable ordering for BDDs is an NP-hard prob-
lem [1]. We have not considered the variable ordering in this work yet (but have in
earlier work [20]). BDDs can be ‘exponentially’ efficient in representing very large
sets of states, and because of this, can be vastly superior to explicit-state search
algorithms. However, when the sizes of the sets they represent are not large, the

302 K. Qian, A. Nymeyer, and S. Susanto

computational overhead of manipulating BDDs can result in very poor perfor-
mance indeed. The problem of predicting performance is compounded when you
add heuristics, and compounded again when you allow multiple heuristics. So
the problem we are addressing is indeed very difficult.

In AI, finding the shortest path to the goal state is paramount. In verification,
finding a ‘reasonably short’ path is often sufficient. More important is the time
it takes to find this path. The reason for this is that the model checker is being
used as a debugger, and hence we need to know quickly whether there is an
error in the specification or not. In verification therefore, we are often prepared
to sacrifice optimality for speed.

While we have tried to be comprehensive in the experiments, we do of course:

– have only a small sample of models,
– have just a few abstractions (derived automatically for the verification mod-

els)
– have just 2 merge strategies: one admissible, one non-admissible.

On the positive side, we have attempted to bridge disparate fields, AI and ver-
ification, by understanding the behaviour of a technology, symbolic heuristic
search, that is common to both. We can summarise the results of our experi-
ments in the following way:

– The distribution of the heuristic over the state space is different for AI
models than verification models. This difference could be caused by different
characteristics of the state space: for example, there are typically more goal
states in verification than in AI problems, and verification state spaces are
less tree-like.

– The MHV still makes a good predictor of effort in symbolic heuristic search.
– Contrary to Holte et al. [10], we found that multiple symbolic heuristics

performed worse than single symbolic heuristics. We conjecture that this is
caused by the overhead of splitting the BDDs. Note that in some cases split-
ting a BDD results in larger BDDs than the original. This is an unfortunate
side-effect of this method that cannot easily be avoided.

– If you have a naturally good heuristic distribution, as AI problems tend to
have, then an ‘aggressive’, non-optimal merge strategy like add will result in
multiple SADBs that perform much better than single SADBs; albeit at the
possible cost of optimality.

– Verification problems that have poorly, or narrowly distributed heuristics
should not use non-optimal merge strategies.

AI puzzles and electronic circuits typically have very dense state spaces, while
protocol models have relatively sparse state spaces. Intuitively, dense state spaces
will contain a larger number of solution paths than sparse state spaces. This could
be the cause of the behaviour we observe in the merge-strategy experiment. A
non-optimal strategy like add enables heuristic search algorithms like A∗ and
IDA∗ to guide aggressively during the search because it increases the proportion
of states that have larger heuristic values, and penetrates deeply into the state

Experiments with Multiple Abstraction Heuristics 303

space. Consequently, however, the search may miss shallow solutions and fruit-
lessly pursue dead-end paths. Note that AI puzzles and circuits have relatively
fewer goal states than protocol models. We conjectured in Section 5 that this
was the cause of the behaviour that we observed in the heuristic-distribution ex-
periment. The topology of the state space is therefore potentially very important
in determining the performance of the symbolic search.

The future work we are planning is the following:

– Take the BDD variable ordering into account.
– More work needs to be done to determine how to abstract the system au-

tomatically. This is of course an open research question. Currently our ap-
proach using a data dependency analysis is simplistic.

– To restrict the sizes of BDDs, we need to consider more effective mechanisms
such as “high density” reachability analyses [21]. This is especially important
for splitting the frontier BDDs,

– We need to understand which characteristics of the state space are important
for the performance of the guided and symbolic approach. While we have
tried to do this by considering models from different domains, more focussed
experiments that shed light on this issue are needed. It would appear that
you need to know what the topology of the state space is before deciding
which search algorithm to apply.

References

1. B. Bollig and I. Wegener. Improving the variable ordering of obdds is np-complete.
IEEE Trans. Computers, 45(9):993–1002, 1996.

2. R. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE
Transaction, C-35(8):677–691, Aug 1986.

3. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

4. J. C. Culberson and J. Schaeffer. Searching with pattern databases. In Proc.
of the 11th Biennial Conf. of the Canadian Society for Computational Studies of
Intelligence, Toronto, Ontario, Canada, May 21-24, volume 1081 of LNCS, pages
402–416. Springer-Verlag, 1996.

5. S. Edelkamp. Symbolic pattern databases in heuristic search planning. In Proc.
of the Sixth Int. Conf. on Artificial Intelligence Planning Systems, April 23-27,
Toulouse, France, pages 274–283. AAAI, 2002.

6. S. Edelkamp and A. Lluch-Lafuente. Abstraction databases in theory and model
checking practice. In Proc. of Workshop on Connecting Planning Theory with
Practice, Int. Conf. on Automated Planning and Scheduling, ICAPS, Whistler,
Canada, 2004.

7. S. Edelkamp and F. Reffel. OBDDs in heuristic search. In KI-98: Advances in Ar-
tificial Intelligence, 22nd Annual German Conf. on Artificial Intelligence, Bremen,
Germany, September 15-17, Proc., volume 1504 of LNCS, pages 81–92. Springer-
Verlag, 1998.

8. A. Felner, R. E. Korf, and S. Hanan. Additive pattern database heuristics. J.
Artif. Intell. Res. (JAIR), 22:279–318, 2004.

304 K. Qian, A. Nymeyer, and S. Susanto

9. E. Hansen, R. Zhou, and Z. Feng. Symbolic heuristic search using decision dia-
grams. In Proc. of the Symp. on Abstraction, Reformulation and Approximation,
Alberta, Canada, volume 2371 of LNCS, pages 83–98. Springer-Verlag, 2002.

10. R. Holte, J. Newton, A. Felner, R. Meshulam, and D. Furcy. Multiple pattern
databases. In Proc. of 14th Intl. Conf. on Automated Planning & Scheduling
(ICAPS), pages 122–131. AAAI, 2004.

11. R. C. Holte and I. T. Hernádvölgyi. A space-time tradeoff for memory-based
heuristics. In AAAI/IAAI, pages 704–709, 1999.

12. R. M. Jensen, R. E. Bryant, and M. M. Veloso. Seta*: An efficient bdd-based
heuristic search algorithm. In Proc. of the Eighteenth National Conf. on Artificial
Intelligence and 14th Conf. on Innovative Applications of Artificial Intelligence,
Alberta, Canada, pages 668–673. AAAI Press, 2002.

13. R. Korf. Finding optimal solutions to to Rubik’s cube using pattern databases.
In Proc. of the 14th National Conf. on Artificial Intelligence and 9th Innovative
Applications of Artificial Intelligence Conf., July 27-31, Providence, Rhode Island,
pages 700–705. AAAI Press/The MIT Press, 1997.

14. R. E. Korf and A. Felner. Disjoint pattern database heuristics. Artif. Intell.,
134(1-2):9–22, 2002.

15. R. E. Korf, M. Reid, and S. Edelkamp. Time complexity of iterative-deepening-a*.
Artif. Intell., 129(1-2):199–218, 2001.

16. K. McMillan. Symbolic model checking. Kluwer Academic Publishers, Boston, MA,
1993.

17. A. Nymeyer and K. Qian. Heuristic search algorithm based on symbolic data
structures. In Proc. of the 16th Australian Joint Conf. in Artificial Intelligence,
Perth, Australia, 3-5 December, volume 2903 of LNAI, pages 966–979. Springer-
Verlag, 2003.

18. K. Qian and A. Nymeyer. Abstraction-based model checking using heuristical re-
finement. In Proc. of the 2nd Int. Symp. on Automated Technology for Verification
and Analysis, ATVA’04, pages 165–178. Springer-Verlag, 2004.

19. K. Qian and A. Nymeyer. Guided invariant model checking based on abstraction
and symbolic pattern databases. In Proc. of the 10th Int. Conf. on Tools and Al-
gorithms for the Construction and Analysis of Systems, Barcelona, Spain,, volume
2988 of LNCS, pages 497–511. Springer-Verlag, 2004.

20. K. Qian and A. Nymeyer. Abstraction-guided model checking using symbolic IDA∗

and heuristic synthesis. In Submitted to FORTE’05 for publication, 2005.
21. K. Ravi and F. Somenzi. High-density reachability analysis. In ICCAD ’95: Proc.

of the 1995 IEEE/ACM international conference on Computer-aided design, pages
154–158. IEEE Computer Society, 1995.

	Introduction
	Abstraction-Guided Symbolic Model Checking
	Symbolic Abstraction Databases
	Experiment Set-Up
	Heuristic Distribution Experiment
	Mean Heuristic Value Experiment
	Multiple SADB Experiment
	Merge Strategy Experiment
	Evaluation and Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

