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Abstract. In this paper we address the problem of detecting and break-
ing symmetries in combinatorial problems, following the approach of im-
posing additional symmetry-breaking constraints. Differently from other
works in the literature, we attack the problem at the specification level.
In fact, many symmetries depend on the structure of the problem, and
not on the particular input instance. Hence, they can be easily de-
tected by reasoning on the specification, and appropriate symmetry-
breaking formulae generated. We give formal definitions of symmetries
and symmetry-breaking formulae on specifications written in existential
second-order logic, clarifying the new definitions on some specifications:
Graph 3-coloring, Social golfer, and Protein folding problems. Finally,
we show experimentally that, applying this technique, even if in a naive
way, to specifications written in state-of-the-art languages, e.g., opl, may
greatly improve search efficiency.

1 Introduction

The presence of symmetries in constraint satisfaction problems (CSPs) has been
widely recognized to be one of the major obstacles for their efficient resolution.
Much work has been already done, and a wide literature is nowadays available
on how symmetries can be exploited, with the aim of greatly reducing the size
of the search space. There are four main approaches followed by the research
community to deal with symmetries:

1. Imposing additional constraints on the problem model, which are satisfied
only for one of the symmetrical points in the search space, cf., e.g., [21, 7, 9];

2. Introducing additional constraints during the search process, to avoid the
traversal of symmetrical points, cf., e.g., [3, 10];

3. Defining a search strategy able to break symmetries as soon as possible
(e.g., by first selecting variables involved in the greatest number of local
symmetries), cf., e.g., [18];

4. Isolating subclasses of CSPs for which particular search strategies can be
used in order to efficiently break their symmetries (cf., e.g., tractability of
symmetry breaking for CSPs with various form of interchangeability [25]).

However, all these approaches make the assumption that symmetries of the con-
straint problem at hand are known. Hence, the problem of the automatic de-
tection of symmetries arises. Currently, symmetry detection is either performed
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by hand (it is the modeller that states them, by analyzing the problem), or
recognized by reducing the CSP obtained after instantiation to an instance of
the graph automorphism problem (for which there are no polynomial time algo-
rithms, even if there is evidence that it is not NP-complete [13]).

On the other hand, many of the available systems and languages for the so-
lution of constraint problems (e.g., ampl [11], opl [24], Xpressmp1, dlv [15],
smodels [19], and np-spec [6]) clearly separate the specification of a problem
from its instances. Furthermore, symmetries often arise from the problem struc-
ture, and not from the particular instance considered. Hence, they often clearly
emerge at the compact, symbolic level of the specification. Nonetheless, many of
the existing approaches to automatic symmetry detection (cf., e.g., the package
Nauty [16]) try to infer all symmetries of a constraint problem after instantiation,
where many structural aspects have been irremediably hidden.

In our opinion, reasoning at the logical level of the problem specification may
be much effective in order to detect those structural properties that are suitable
for optimization and reformulation, as many symmetries are: problem specifica-
tions are usually much more compact, readable, and high-level modelled, hence
the recognition of, e.g., structural symmetries naturally fits at this stage. More-
over, convenient symmetry-breaking formulae (cf. approach 1 in the list above)
can be added to the specification itself in order to exploit them. Finally, since
specifications are logical formulae, computer tools can be used to automatically
or semiautomatically detect and break symmetries [5].

Such reasoning tasks have, in principle, at least two applications: (i) Discover
new properties of a specification, and (ii) Validate a specification confirming
the existence of some properties. In this paper, we mainly focus on the latter,
giving a formal characterization of symmetries and symmetry-breaking formulae
for a specification. This is a mandatory first step also to solve (i) (an heuristic,
and incomplete, approach for detecting some symmetries on specifications is
discussed in [26]).

Of course, detecting and breaking symmetries at the specification level does
not rule out the possibility to compositionally use symmetry-breaking techniques
at the instance level (e.g., [7, 9]), in order to deal with additional symmetries that
arise from the problem instance. As an example, since some systems generate a
SAT instance, e.g., [6], or an instance of integer linear programming, e.g., [24], it
is possible to do symmetry breaking on such instances, using existing techniques.

2 Existential Second-Order Logic as a Modelling
Language

When dealing with problem specifications, the first choice to be made is that of
the modelling language to be used. Current systems and languages for declar-
ative constraint modelling, as those listed in Section 1, have their own syn-
tax for describing problem specifications: ampl, opl, and Xpressmp allow the

1 cf. http://www.dashoptimization.com.
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representation of constraints by using algebraic expressions, while others, e.g.,
dlv, smodels, and np-spec are rule-based languages, more specifically exten-
sions of datalog. Anyway, from an abstract point of view, all such languages are
extensions of existential second-order logic (ESO) over finite databases, where
the existential second-order quantifiers and the first-order formula represent, re-
spectively, the guess and check phases of the constraint modelling paradigm. In
particular, even if all such languages have a richer syntax and more complex
constructs, in all of them it is possible to embed ESO queries, and the other way
around is also possible, as long as only finite domains are considered. Hence, as
we show in the remainder of this section, ESO can be considered as the formal
logical basis for virtually all available languages for constraint modelling, being
able to represent all search problems in the complexity class NP [20]. Moreover,
since checking and breaking symmetries on ESO specifications reduces to check
semantic properties of logical formulae, it is possible to use known results and
techniques in order to automate such tasks.

Formally, an ESO specification describing a search problem π is a formula
ψπ

.= ∃S φ(S,R), where R = {R1, . . . , Rk} is the input relational schema
(i.e., a fixed set of relations of given arities denoting the schema for all input
instances for π), and φ is a closed first-order formula on the relational vocabulary
S ∪ R ∪ {=} (“=” is always interpreted as identity). An instance I of the
problem is given, as it happens in current systems, as a relational database
over the schema R, i.e., as an extension for all relations in R. Predicates (of
given arities) in the set S = {S1, . . . , Sn} are called guessed, and their possible
extensions (with tuples on the domain given by constants occurring in I plus
those occurring in φ, i.e., the so called Herbrand universe) encode points in the
search space for problem π on instance I. Formula ψπ correctly encodes problem
π if, for every input instance I, a bijective mapping exists between solutions to
π and extensions of predicates in S which verify φ(S,I). More formally, the
following must hold:

For each instance I : Σ is a solution to π(I) ⇐⇒ {Σ, I} |= φ.

It is worthwhile to note that, when a specification is instantiated, a constraint
satisfaction problem (CSP) is obtained.

In order to facilitate the writing of specifications, several built-in constructs
are provided by current languages, in particular those for typed relations, func-
tions (cf., e.g., arrays), bounded integers and arithmetics over them. Hence, to
ease expressions, and to make specifications more compact and closer to their
counterparts in state-of-the-art languages, in this paper we consider an enriched
ESO. In particular, we assume that:
1. Guessed predicates may be typed: we write ∃S ∈ type1

S × · · · × typek
S , where

each typei
S is a monadic relation in R that represents the domain of the

i-th argument of S. (For simplicity of notation, given a relation S of arity k,
we denote with type(S) the domain of tuples that belong to S, i.e., the set
type1

S × · · · × typek
S .)

2. Guessed predicates that encode functions can be natively expressed in the
language (we write ∃S ∈ type1

S × · · · × typej
S → typej+1

S × · · · × typek
S for

some j ∈ [1, k − 1]. Total functions will be denoted by “(total)”).
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3. Bounded integers and arithmetics over them are available.

We note that such additions do not change the expressive power of the language.
Types and (total) functions can be simulated in ESO by means of monadic
predicates in R and first-order constraints, respectively. The same holds for
bounded integers and arithmetics (that can be pre-interpreted).

Formally, we denote the set of monadic relations that encode types as T
(with T ⊆ R). Hence, a specification in the enriched language is of the kind:

∃S1 ∈ type(S1), . . . ∃Sn ∈ type(Sn) φ(S , T , R) (1)

where type(Si) = type1
Si

× · · · × type
ar(Si)
Si

, with all typej
Si

∈ T .
Since T ⊆ R, we normally omit T as argument of φ, even if, in some cases,

in order to emphasize the occurrence of types relations in some formulae, we
state it explicitly.

Example 1 (Graph k-coloring). Given an undirected graph and a set of k colors
as input, this problem amounts to decide whether it is possible to give each of
its nodes one out of the colors, in such a way that adjacent nodes (not including
self-loops) are never colored the same way. The problem is well-known to be
NP-complete for k ≥ 3, and can be specified in ESO by, e.g., the following
formula over relations in R = {node(·), edge(·, ·), color(·)}, listing the graph
nodes, edges and the available colors, respectively. The set of types T is given
by {node, color}. In particular, relation color(·) will have exactly k tuples. We
also assume that node(·) and color(·) have no tuples in common.
∃Col ∈ node → color (total) (2)

∀X, Y, C, C′ edge(X, Y ) ∧ X �= Y ∧ Col(X, C) ∧ Col(Y, C′) → C �= C′. (3)

Part (2) of the above specification defines Col as a total function assigning a
color to each node, while (3) is the good coloring constraint. It is worth noting
that the specification above is very close to that written in available languages,
e.g., the following one in opl (initializations are omitted):

range node 1..n nodes; range color 1..n colors;
var color Col[node];

solve { forall (e in edges: e.start<>e.end) Col[e.start]<>Col[e.end]; };};

Another assumption that we make in this paper is that the set of guessed pred-
icates S is partitioned in two parts: output and auxiliary guessed predicates,
denoted, respectively, as O and A (with A possibly empty). Output guessed
predicates conceptually denote the search space, while auxiliary predicates are
used internally to maintain and/or compute additional information needed to
express and evaluate the constraints. This is a very common necessity in declar-
ative languages, as forthcoming Example 2 shows.

When such a partition is made, a solution is completely characterized by the
extensions of predicates in O and not by those of predicates in A. Hence, the
general form of a problem specification in ESO is as follows:

∃O, A φ(O, A, R) (4)

where predicates in O and A may have an associated type, that can (in general)
be represented with a first-order formula over T .
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Example 2 (HP 2D-Protein folding [14]). This specification models a simplified
version of one of the most important problems in computational biology. It
consists in finding the spatial conformation of a protein (i.e., a sequence of amino-
acids) with minimal energy. The simplifications are twofold: the amino-acids
alphabet is reduced to just H (hydrophobic) and P (polar), and the protein is
forced to fold in a 2D discrete space. However, the simplified problem is known
to be NP-complete [8]. Given the sequence of amino-acids of the protein, i.e., a
string over {H,P} of length n, the problem aims to find a connected shape for it
on a 2D grid (with coordinates in [−(n−1), (n−1)], starting at (0, 0)), non-crossing,
and such that the number of “contacts”, i.e., the number of non-sequential pairs
of Hs for which the Euclidean distance of the positions is 1 is maximized (the
overall energy is the opposite of the number of contacts). The figure below shows
a possible conformation of the protein “PHHPHPPHP”, with overall energy −2.

3

P H contact
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-1 0 1 2
Different alternatives for the search space obviously ex-
ist: as an example, we can guess the position on the grid
of each amino-acid, and then force the shape to be con-
nected, non-crossing, and with minimal energy. However,
a preferred approach that reduces the size of the search
space (4n points versus (2n)2n) is to guess the shape of
the protein as a connected path starting at (0, 0), by
guessing, for each index i ∈ [1, n − 1], the direction that
the (i + 1)-th amino-acid assumes wrt the i-th one (di-
rections can only be North, South, East, West).

The extension of Move for the shape in the figure is: {〈1, N〉, 〈2, N〉, 〈3, N〉,
〈4, E〉, . . .}. However, choosing the latter model is not completely satisfactory:
to express the non-crossing constraint, and to compute the number of contacts,
absolute coordinates of each amino-acid must be computed and maintained. An
ESO specification for this problem, where, for simplicity, we assume to deal with
its decisional version, and to have (pre-interpreted) bounded integers and arith-
metics in the range [−(n − 1), n − 1], is as follows (R = {index (·), elem(·, ·)},
with elem(i, a) stating that the i-th element of the protein is a ∈ {H,P}):

∃Move ∈ index → {N, S, E, W} (total), (5)

∃X ,Y ∈ index → [−n + 1, n − 1] (total) (6)

X (0, 0) ∧ Y (0, 0) ∧ (7)

∀I, I ′ index(I) ∧ index (I ′) ∧ I ′ = I − 1 →
∀D, X,Y, X ′, Y ′ Move(I ′, D) ∧ X (I, X) ∧ X (I ′, X ′) ∧ Y (I, Y ) ∧ Y (I ′, Y ′) →

D = N → X = X ′ ∧ Y = Y ′ + 1 ∧
D = S → X = X ′ ∧ Y = Y ′ − 1 ∧
D = E → X = X ′ + 1 ∧ Y = Y ′ ∧
D = W → X = X ′ − 1 ∧ Y = Y ′ ∧

(8)

∀I,I ′, X, X ′, Y, Y ′

I �= I ′ ∧ X(X, I) ∧ X(X ′, I ′) ∧ Y (Y, I) ∧ Y (Y ′, I ′) → X �=X ′ ∨ Y �=Y ′ ∧ (9)

∣
∣
∣
∣
∣
∣
∣

⎧

⎪⎨

⎪⎩

〈I, I ′〉 | index (I)∧index(I ′)∧(I+1<I ′)∧elem(I, H)∧elem(I ′, H)∧
∀X, X ′,Y, Y ′ X(X, I) ∧ X(X ′, I ′) ∧

[3pt]Y (Y, I) ∧ Y (Y ′, I ′) ∧ |X−X ′|+|Y −Y ′|=1

⎫

⎪⎬

⎪⎭

∣
∣
∣
∣
∣
∣
∣

≥ k (10)
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Constraints (5) and (6) declare guessed predicates Move, X and Y as total func-
tions assigning, respectively, a value in {N,S,E,W}, and a value in [−(n−1), n−
1] to each amino-acid.2 Furthermore, (7) forces the first amino-acid to be placed
in (0, 0), while (8) defines the absolute position of each amino-acid starting from
that of the previous one and the move. Finally, (9) is the non-crossing constraint,
and (10) forces the number of contacts to be at least k (integer k is assumed
to be fixed). The above specification is very similar to that given in available
languages, e.g., opl (cf. [4]).

From the problem description, Move is the output guessed predicate, while X
and Y are auxiliary: a solution is completely characterized by the sole extension
of Move. However, it is a matter of choice and responsibility of the modeler
to state which guessed predicates are output and which others are auxiliary,
and, of course, it is always possible to consider all guessed predicates as output
ones (hence, A can always be empty). Indeed, in the following we show that this
“conceptual” partition plays an important role in detecting structural properties,
e.g., symmetries, that may be exploited to improve efficiency. We also observe
that, in this example, X and Y are functionally dependent on Move (cf. [4]).

3 Symmetries on Problem Specifications

In this section we define the concepts of transformation and symmetry on a
specification, and investigate interesting specializations of them. In Section 2,
we presented some syntactic sugar that can be added to ESO in order to have
more compact and readable specifications. However, we also noticed that such
constructs can always be regarded as additional constraints. Hence, for what
concerns the reasoning tasks that we describe from this section on, we consider
the basic ESO framework. Hence, all such additional constraint will be considered
as integral part of the φ part of a specification having the general form (4).

Definition 1 (Transformation). Given a specification ∃O,A φ(O,A,R), a
transformation for O and A is a family of functions, one for each possible
finite Herbrand domain H, of the kind τH:{extH(O,A)}→{extH(O,A)}, where
{extH(O,A)} is the set of all possible extensions of predicates in O and A with
elements in H.

Intuitively, a transformation is a mapping from and to all points in the search
space defined by all the guessed predicates in the specification, for any H. For the
sake of simplicity, and with a little abuse of notation, in what follows we denote
a transformation as a single function τ: {ext(O,A)} → {ext(O,A)}, obtained by
collapsing all the τH, which is defined on all finite Herbrand domains H.

By focusing only on the set O, the following definition holds:

2 Actually, Move should be not defined for the last amino-acid. However, the proposed
simpler specification remains correct, with the last move having no meaning.
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Definition 2 (Symmetry). Given a problem specification ∃O,A φ(O,A,R)
as above, a symmetry is an invertible transformation for O, i.e., an invertible
function τ : {ext(O)} → {ext(O)} such that, for every input instance I, and
every extension Ω for relations in O, the following holds:

Ω, I |= ∃A φ(O, A, R) ⇐⇒ τ(Ω), I |= ∃A φ(O, A, R). (11)

The distinction between output and auxiliary guessed predicates here becomes
more clear: a symmetry is a transformation of the sole output predicates such
that, if an extension of O may lead to a solution (with appropriate extensions
for auxiliary predicates A), then its transformation must also lead to a solution
(even if the corresponding extensions for predicates in A change) and vice versa.
As an example, in the Protein folding problem, given a solution, i.e., a move
in {N,S,E,W} for each element of the sequence such that all constraints are
satisfied, we can uniformly change N with S, and/or E with W and obtain
another solution, even if the corresponding extensions for X and Y change.

Definition 1 is about transformations in general, but does not limit in any
way the kind of functions τ . By imposing some restrictions on τ , interesting
specializations arise. In this paper, we consider functions τ that focus on a sin-
gle output guessed predicate, being the identity function on the others (we call
them single-predicate transformations). They are of special interest, because of
the usual structure of constraint problems, in which transformations we are in-
terested in (i.e., candidate symmetries) often are internal to a guessed predicate.

Definition 3 (Single-predicate transformation). A transformation is
single-predicate if there exist O ∈ O and a function τO : {ext(O)} → {ext(O)}
such that, for all extensions Ω1, . . . , Ω, . . . Ωn for O1, . . . , O, . . . , On (for any
finite H), we have that τ(Ω1, . . . , Ω, . . . Ωn) = 〈Ω1, . . . , τO(Ω), . . . , Ωn〉.
A single-predicate transformation over O ∈ O is completely characterized by
giving τO. Further specializations of single-predicate transformations are column
(definition omitted) and uniform column transformations.

Definition 4 (Uniform column transformation (UCT)). A single-predi-
cate transformation τO is a UCT if there exists a partition of the indexes of
arguments of O in two (disjoint) sets, D and C, such that, for each extension
Ω of O, we have that τO(Ω) = Ω′, where:

∀δ δ ∈ Ω ↔ 〈δ[D], σ(δ[C])〉 ∈ Ω ′

where σ : type(π
C

(O)) → type(π
C

(O)) is a total invertible function on (i.e., a

permutation of) the domain values of arguments of O in set C.

A UCT that is a symmetry is called uniform column symmetry (UCS). Intu-
itively, UCTs and UCSs change only the C components of tuples in an extension
of O, leaving the others (i.e., D) unchanged. Hence, they are completely described
by a permutation σ from and to the type of the C columns of O. It is worth not-
ing that σ is uniform, i.e., its behavior on a tuple δ ∈ O depends only on δ[C],
and not on δ[D]. A (non-uniform) column transformation/symmetry, instead, is
described by a function which behavior on tuple δ depends also on δ[D].
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Example 3 (Graph k-coloring (Example 1 continued)). We have that O = {Col},
and A = ∅. By focusing on Col , with D = {1} and C = {2}, all permutations
σ : color → color (where color is type(π

C
(Col))) are UCSs.

These symmetries are uniform because their σs map a given color (e.g., red)
always to the same color, independently on the nodes (i.e., values in column 1).

If, after instantiation, we define the corresponding CSP with one variable for
each node, with domain [1, k], symmetries defined above become uniform value
symmetries (in the sense of [17]).

Example 4 (HP 2D-Protein folding (Example 2 continued)). Let us consider the
UCTs that focus on Move, with D = {1} and C = {2}, i.e., permutations σ of
{N,S,E,W}. As an example, the following ones are UCSs:

σ(N) = N, σ(S) = S, σ(E) = W, σ(W ) = E (flip horizontally)
σ(N) = S, σ(S) = N, σ(E) = E, σ(W ) = W (flip vertically)
σ(N) = S, σ(S) = N, σ(E) = W, σ(W ) = E (flip horizontally & vertically )
σ(N) = E, σ(S) = W, σ(E) = S, σ(W ) = N (rotation 90◦ clockwise)

while others are not, e.g., σ such that:

σ(N) = N, σ(S) = E, σ(E) = W, σ(W ) = S.

It is worth noting that, if we consider also X and Y as output guessed predicates,
the above transformations are no longer UCSs, moving to the more general class
of multiple-predicate symmetries (definition omitted). In fact, when permuting
directions in Move, extensions for X and Y must change accordingly.

4 Symmetry Checking

In the previous section, we considered transformations and symmetries as func-
tions from and to extensions of predicates in O. Nonetheless, in order to prac-
tically deal with transformations and symmetries, we are interested into finite
representations of such functions. To this end, in what follows we assume that
τ is finitely representable, e.g., in first-order logic, and, with a little abuse of
notation, we will denote with τ(O,Oτ ) a logical representation of it.3 Such a
representation will contain also occurrences of types in T . However, for simplic-
ity, we do not explicitly write such types as arguments of τ .

Theorem 1. Let ψ
.= ∃O,A φ(O,A,R) be a specification, and τ an invertible

transformation for O. τ is a symmetry for ψ if and only if the following formula
is valid:

τ(O, Oτ ) → [∃A φ(O, A, R) ↔ ∃A φ(Oτ , A, R)] . (12)

It is worth noting that the above formula is second-order, even if τ is first-
order. This is because of the presence of auxiliary guessed predicates A, which

3 Given extensions Ω and Ωτ for O and Oτ respectively, τ(Ω, Ωτ ) is true iff Ωτ is
the output of function τ when applied to Ω.
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extensions may not coincide when applying the transformation (cf., e.g., Exam-
ple 4). However, in the important case of A = ∅, the above formula reduces to
a first-order one.

The above theorem naturally specializes in case of single-predicate symme-
tries and UCSs. In the latter case, the following holds:

Theorem 2. Let ψ
.= ∃O,A φ(O,A,R) be a specification, and let τO be a UCT

on O ∈ O with σ the relative permutation of the domain values of arguments of
O in set C. τO is a symmetry for ψ if and only if the following formula is valid:

τ(O, Oτ ) → ∃A φ(O1,. . .,O,. . .,On,A,R) ↔ ∃A φ(O1,. . .,Oτ ,. . .,On,A,R) (13)

with τ being: ∀XD,XC ,Xσ
C O(XD,XC) ∧ σ(XC ,Xσ

C) ↔ Oτ (XD,Xσ
C),

and σ a finite representation of the permutation over type
(

π
C

(O)
)

.

However, the problem of checking symmetries is undecidable. To show this,
we focus on the most restricted case of first-order definable UCTs, when
A = ∅.

Theorem 3. Checking whether a first-order definable UCT τO is a symmetry
is undecidable, even if A = ∅.

Of course, decidable subcases for this problem may exist, and can be possibly
derived by decidability results already known in first-order and second-order
logic (cf., e.g., [2]). Additionally, decidable heuristic approaches, similar to those
already presented in [25, 26] can be used. However, these issues are left for future
research.

Often, constraint problems exhibit many symmetries. In order to make the
relevant checks, the procedure suggested above by Theorems 1 and 2 needs to
be invoked for all of them. However, when a set of symmetries can be finitely
characterized, Theorems 1 and 2 can be restated with τ being the finite represen-
tation of the whole set of symmetries. In the particular case of UCSs, Theorem 2
can be restated with σ being the finite representation of the whole set of permu-
tations over type

(

π
C

(O)
)

that are symmetries. In these cases, τ(O,Oτ ) holds iff

Oτ is the result of applying any symmetry in the set to O (hence, it models a
relation, and not a single function any more). The same holds for σ in case of
UCSs.

Example 5 (Social golfer (www. csplib. org , prob. 10) ). Given a set of play-
ers, a set of groups, and a set of weeks, encoded in relations R = {player(·),
group(·),week(·)} respectively, this problem amounts to decide whether there is
a way to arrange a scheduling for all weeks in week , such that (i) For every week,
players are divided into equally sized groups; (ii) Two different players don’t
play in the same group more than once. A specification for this problem (assum-
ing |player|/|group|, i.e., the group size, integral) is the following (Play(P,W,G)
states that player P plays in group G on week W ):

www.csplib.org
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∃Play ∈ player × week → group (total) (14)

∀P,P ′, W, W ′, G, G′

(P �= P ′ ∧ W �= W ′ ∧ PLAY (P ,W ,G) ∧ PLAY (P ′,W ,G)) →
¬ [Play(P, W ′, G′) ∧ Play(P ′, W ′, G′)] ∧

(15)

∀G,G′, W, W ′ group(G) ∧ group(G′) ∧ week(W ) ∧ week(W ′) →
|{P : Play(P, W, G)}| = |{P : Play(P, W ′, G′)}|. (16)

Relation Play is declared as a total function assigning a group to each player
on each week (14); moreover, (15) is the meet only once constraint, while (16)
forces groups to be equally sized. The last constraint can be written in ESO using
standard techniques, essentially by means of an auxiliary guessed predicate Aux
–hence A = {Aux} = ∅– forced to encode a set of bijective functions, one
between tuples of any pair of sets defined in the specification.

The following sets of UCTs that focus on Play are all UCSs:

1. With D = {1, 2}, C = {3}, all permutations σ : group → group of groups;
2. With D = {1, 3}, C = {2}, all permutations σ : week → week of weeks;
3. With D = {2, 3}, C = {1}, all permutations σ : player → player of players.

Let us consider the set of UCSs described in point 1. A finite representation for
them exists, in the form of τG(Play ,PlayτG

), defined as:

∀P, W, G, Gσ PlayτG
(P, W, Gσ) ↔ Play(P, W, G) ∧ perm(σ, group) ∧ σ(G, Gσ),

with perm(σ, group) being a first-order formula stating that σ is a permutation
of domain values in group, i.e., type(π

C
(O))). A formulation for perm is as follows:

perm(σ, R)
.
= ∀X , Xσ σ(X , Xσ) → R(X) ∧ R(Xσ) ∧ (17)

∀X R(X) → ∃Xσ σ(X , Xσ) ∧ (18)

∀X , Xσ , X ′σ σ(X , Xσ) ∧ σ(X , X ′σ) → Xσ = X ′σ ∧ (19)

∀Xσ R(Xσ) → ∃X σ(X , Xσ). (20)

In the important case of a set of UCSs, the following specialized result holds:

Corollary 1. Let ψ
.= ∃O,A φ(O,A,R) be a specification, O ∈ O, and D and

C a partition of its argument indexes. A set of permutations σ over type(π
C

(O)),

finitely characterized by the additional conditions encoded in a formula γ(σ,T ),
are all UCSs for ψ iff the following formula (open wrt O, Oτ ,R, σ)4 is valid:

τ(O, Oτ ) → ∃A φ(O1,. . .,O,. . .,On,A,R) ↔ ∃A φ(O1,. . .,Oτ ,. . .,On,A,R) (21)

with τ being:

perm(σ,type(π
C

(O))) ∧ γ(σ, T ) ∧
∀XD , XC , Xσ

C Oτ (XD , Xσ
C ) ↔ O(XD , XC ) ∧ σ(XC , Xσ

C )

4 With σ being a predicate of arity |type(π
C

(O))|.
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In general, formula (21) is second-order, because of the presence of “∃A”, and
because γ(σ,T ) can be second-order. Of course it reduces to a first-order formula
when A = ∅ and γ(σ,T ) is also first-order.

All the UCSs described in Examples 3 and 5 can be checked in one step by
using Corollary 1, with γ ≡ true. As another example, let us consider a variation
of Social golfer where the following constraint is added:

∀P, W, G P = p1 ∧ Play(P, W, G) → G = g1 (22)

forcing a particular player (denoted by the constant “p1”) to play always in the
same group (denoted by constant “g1”). In the new specification, not all UCTs
denoted with 1. in Example 5 are symmetries any more. In particular, only those
permutations of groups σ such that σ(g1) = g1 remain symmetries. The whole
set of such permutations is finitely representable as γ(σ,T ) .= σ(g1, g1), thus,
they can be all verified at once by using Corollary 1.

5 Symmetry Breaking

In Section 4, we showed how logically representable sets of “structural” symme-
tries can be checked by reasoning on the problem specification. Here we show
how such knowledge can be used in order to modify the specification, in order
to exclude from the search space (some of) the symmetrical points. Such modi-
fications can of course be made by working only on the specification, since they
will be valid whatever instance we will consider in a later stage.

Actually, several approaches to symmetry breaking have been described in
Section 1. In this paper, we focus on the first one (i.e., the addition of symmetry-
breaking constraints) but, differently from other works in the literature (e.g.,
[7, 9]), we attack this problem at the logical level of the specification.

Definition 5 (Symmetry-breaking formula). Given a specification
∃O,A φ(O,A,R), and a logical representation τ(O,Oτ ) of a set of symme-
tries, a symmetry-breaking formula for them is a closed (except for O and T )
formula β(O,T ) –in general in second-order logic– such that the new specifica-
tion

∃O, A φ(O, A, R) ∧ β(O, T )

satisfies the following two requirements (we call them Conditions 1 and 2):

1. The set of transformations τ is not a set of symmetries for the new problem
any more: hence, the following formula (negation of (12)), is satisfiable:

τ(O, Oτ ) ∧ [∃A φ(O, A, R) ∧ β(O, T ) �↔ ∃A φ(Oτ , A, R) ∧ β(Oτ , T )] .

2. Every model of ∃A φ(O,A,R) (i.e., every solution for any input instance)
can be obtained by those of ∃A φ(O,A,R)∧ β(O,T ) by applying transfor-
mations in τ an arbitrary number of times:

∃A φ(O, A, R) |= ∃Oβ ∃A φ(Oβ , A, R) ∧ β(Oβ , T ) ∧
∨

i≥0

τ i(Oβ , O)
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where τ0(Oβ ,O) is defined as Oβ ≡ O,5 and τ i(Oβ ,O) (i > 0) as
∃O′ τ(O′,O) ∧ τ i−1(Oβ ,O′), with O′ a fresh set of variables.

Lemma 1 (Alternative formulation for Conditions of Definition 5).
Formula β(O,T ) is symmetry-breaking for set of symmetries τ(O,Oτ ) iff it
satisfies the following two, alternative, conditions:

1. The following formula is satisfiable:

τ(O, Oτ ) ∧ ∃A φ(O, A, R) ∧ [β(O, T ) �↔ β(Oτ , T )] . (23)

2. It holds that:

∃A φ(O, A, R) |= ∃Oβ β(Oβ , T ) ∧
∨

i≥0

τ i(Oβ , O). (24)

If β(O,T ) respects the above conditions, we are entitled to solve the problem
∃O,A φ(O,A,R) ∧ β(O,T ) instead of the original one ∃O,A φ(O,A,R).
In fact, Condition 1 states that formula β(O,T ) actually breaks τ , since, by
Theorem 1, transformations in τ are not all symmetries of the rewritten prob-
lem. Furthermore, Condition 2 states that every solution of φ(O,A,R) can
be obtained by repeatedly applying transformations in τ to some solutions of
φ(O,A,R)∧ β(O,T ). Hence, all solutions are preserved in the rewritten prob-
lem, up to symmetric ones.

It can be observed that Condition 1, even if it behaves well when τ describes
a single symmetry, is quite weak when used with a set of symmetries. This is
because it is enough, for a formula β, to break just one of the symmetries in τ to
satisfy it. A stronger characterization of Condition 1 for the case of τ representing
a set of symmetries is currently under investigation.

As for Condition 2, it is worthwhile noting that in formula (24) i ranges
over the (infinite) set of positive integers. However, once the (always finite)
Herbrand universe H has been fixed, the number of consecutive applications of
τ that lead to different extensions for predicates in O is always finite (even if
this value actually depends on H). Furthermore, when dealing with UCSs on
guessed predicate O ∈ O, i is bound by n!, where n is

∣
∣
∣type(π

C
(O)))

∣
∣
∣, and C

the set of indexes where τ focuses on, since this is the maximum number of
successive applications of τ that can lead to all different permutations. However,
in the following we show that in many practical circumstances, either i is bound
to a known value because the value for n is known (cf., e.g., Example 2), or many
interesting symmetry-breaking formulae satisfy Condition 2 of Definition 5 by
design, with a very low i.

We observe that breaking a symmetry is sound, i.e., it preserves at least one
solution, as shown by the following theorem:

5 In general, given two vectors of variables X and Y of the same length n, by X ≡ Y
we denote the formula

∧n
i=1(Xi ↔ Yi).
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Theorem 4 (Symmetry-breaking formulae preserve satisfiability). Let
ψ, τ , and β as in Definition 5. For each input instance I, if ∃O,A φ(O,A,I)
has solutions, then also ∃O,A φ(O,A,I) ∧ β(O,T ) has solutions.

Example 6 (HP 2D-Protein folding (Example 4 continued)). Let us consider the
following UCS τ that focuses on the output guessed predicate Move, with D =
{1} and C = {2}, characterized by the following permutation σ of {N,S,E,W}:

σ(N) = N, σ(S) = S, σ(E) = W, σ(W ) = E (flip horizontally)

The following formula βE,W
least (Move, index ) is symmetry-breaking for it:

βE,W
least

.
= ∀I index(I) ∧ Move(I, W ) → ∃I ′ index(I ′) ∧ (I ′ ≤ I) ∧ Move(I ′, E) (25)

since it forces the protein shape to move East before moving West. Condition 1,
i.e., formula (23) is satisfied by, e.g., the instance [H,H], and the extension
{〈1,E〉} for Move. As for Condition 2, it holds even by limiting i to only 0
and 1.

A different symmetry-breaking formula for the same symmetry is:

βE,W
≤

.
= |{i : Move(i, E)}| ≤ |{i : Move(i, W )}|, (26)

that forces the protein “head” to move West at least the same number of times
it moves East.

Example 7 (Social golfer (Example 5 continued)). Let us consider all UCSs that
focus on the output guessed predicate Play , with D = {1, 2} and C = {3},
i.e., all permutations of groups. The following formula (where we assume that a
total ordering is given on tuples of relations in T , hence also on their Cartesian
product) is symmetry-breaking (according to Definition 5) for all of them:

βleast(Play , player ,week , group)
.
= ∀G, G′ group(G) ∧ group(G′)∧(G≤G′) →

∀P, W, P ′, W ′least((P, W ), G)∧least((P ′, W ′), G′) → (P, W )≤PW (P ′W ′)
(27)

with ≤PW the total order derived from ≤ on players and weeks. It forces the
group assignment to be such that, for all G,G′ such that G ≤ G′, the least pairs
P,W and P ′,W ′ such that Play(P,W,G) and Play(P ′,W ′, G′) are such that
(P,W ) ≤PW (P ′,W ′). 6 As a consequence, we have that the first player always
plays in the first group. We can break other symmetries (e.g., permutations of
weeks or players) in a similar way, and get the symmetry-breaking constraints
described in [23].

Social golfer is well known also because it is one of the prototypical examples of
problems having a 2D matrix model (where rows are players, columns are weeks,
and entries are groups) exhibiting all row and column symmetries. For these
problems, the lex2 symmetry-breaking constraint, that forces a lexicographic

6 least((P, W ), G) can be written in first-order logic as: Play(P, W, G) ∧
∀P , W Play(P , W, G) → (P, W ) ≤PW (P , W ).
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ordering on both rows and columns of the matrix has been proposed [9]. It is
possible to show that the lex2 symmetry-breaking constraint can be formulated
in ESO by, e.g., a formula βlex2(Play , player ,week , group) .= βP

lex ∧ βW
lex where

βP
lex(Play , player ,week , group) is given by:

∀P, P ′ player(P ) ∧ player(P ′) ∧ P < P ′ →
∃W week(W ) ∧ ∀W week(W ) ∧ W < W →

∀G, G′ (

Play(P, W, G) ∧ Play(P ′, W, G′)
) → G = G′ ∧

∀G, G′ (

Play(P, W, G) ∧ Play(P ′, W , G′)
) → G < G′ ∨

∀W, G, G′ (

Play(P, W, G) ∧ Play(P ′, W, G′)
) → G = G′

that forces a lexicographic ordering among the rows of the matrix, and βW
lex by

a similar formula, that forces a lexicographic ordering among the columns.
It is worth noting that from the above formulae, it is straightforwardly pos-

sible to derive general schemas, that can be used to break symmetries on many
different specifications. To this end, we note that formulae of the kind βleast, β≤,
and βlex2 make the right part of (24) a tautology (it is enough to consider, e.g.,
in the first two cases, i ∈ {0, 1}), and hence they are guaranteed to respect Con-
dition 2 of Definition 5, independently on the specification constraints. This kind
of schemas for βs can be used as a library, thus making a first step towards the
automatic generation of guaranteed correct symmetry-breaking formulae (cf.,
e.g., the nature of symmetry-breaking constraints added to CSPs in [7]).

6 Experiments

In this section we show that in many cases, even if applying the technique pro-
posed in Section 5 naively, impressive speed-ups in performances can be obtained
on different problems. To this end, we show the results of the following experi-
ments, performed with Ilog oplstudio, using state-of-the-art solvers Cplex (a
MP solver) and Solver (a general CP one):

– Graph k-coloring, on instances from the DIMACS repository; we broke UCSs
in Example 3 with βleast and β≤ (using Cplex and Solver);

– Social golfer, on several negative instances, with βlex2 (Solver);
– Protein folding, by using a composition of βE,W

least and βN,S
least, (Solver), on

several benchmark instances (some of them from [12]).

Results are often good: as for k-coloring using Cplex (cf. Table 1(a)), speed-ups
up to 90% have been observed for many instances (especially when using βleast),
even if for some others the overhead of adding such constraints leads to poorer
performances (cf. also [22]). As for Social golfer instead (cf. Table 1(b)), adding
βlex2 leads to impressive time savings on negative instances, usually around 99%.
A similar behavior has been observed for Protein folding (cf. Table 1(c)) –we
solved the optimization version– with savings up to 73% (often more than 50%).
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7 Conclusions

In this paper we dealt with symmetry checking and breaking at the logical level
of the specification. We observed that in many cases, symmetries arise from the
structure of the problem, and not from input data. Hence, from a methodological
point of view, it makes sense inferring such symmetries by reasoning on the prob-
lem model. Furthermore, since specifications can be regarded as logical formulae,
such tasks reduce to tautology or satisfiability checking, and hence they can be
automated by computer tools (even if the general problem is undecidable). To
this end, in [5] we show with several examples how first-order theorem provers
and finite model finders can be effectively and efficiently used in the important
case where formulae to be checked are first-order.

As for symmetry-breaking, adding constraints to the specification may, in
general, lead to some overhead, and we don’t exclude that, for some problems,

Table 1. Solving times (seconds) for k-coloring (Cplex) (a), Social golfer (Solver)
(b), and Protein folding (Solver) (c). ‘–’ means that the solver did not terminate in
one hour

Cplex
No s.b. βleast β≤

Instance k Sol? Time Time % sav. Time % sav.

DSJC1000.1 24 N – 368.46 >89.77 – –
DSJC125.5 8 N 15.32 13.21 13.77 10.51 31.40
DSJC125.5 25 Y – 2337.29 >35.08 2177.21 39.52
DSJC125.9 21 N 1408.23 2080.21 -47.72 1088.65 22.69
DSJC250.5 10 N – 2158.75 >40.03 2432.55 32.43
DSJC500.1 11 N 2.53 – −∞ – −∞
fpsol2.i.2 21 N 139.80 43.70 68.70 102.20 26.90
fpsol2.i.2 31 Y – 397.61 >88.96 – –
fpsol2.i.3 31 Y – 330.22 >90.83 – –
le450 25a 21 N 84.73 95.32 -12.50 46.51 45.11
le450 25a 25 Y 3536.41 – <-1.80 1783.23 49.58
miles500 19 N 2.31 – −∞ 1.67 27.71
mulsol.i.1 30 N – 10.61 >99.71 – –
mulsol.i.1 49 Y – 311.12 >91.36 – –
mulsol.i.2 30 N – 10.98 >99.70 – –
mulsol.i.2 31 Y 26.75 48.67 -81.94 – −∞
mulsol.i.3 30 N – 10.78 >99.70 – –
mulsol.i.3 31 Y 55.77 43.65 21.73 284.32 -409.81
mulsol.i.4 30 N – 10.99 >99.69 – –
mulsol.i.4 31 Y 47.46 14.25 69.97 – −∞
mulsol.i.5 30 N – 11.12 >99.69 – –
mulsol.i.5 31 Y 166.85 20.68 87.61 64.56 61.31
myciel4 4 N 5.22 0.87 83.33 8.46 -62.07

(a)

Instance Solver
Plrs Wks Grps Solv? No s.b. βlex2 % sav.

6 6 3 N 2267.35 2.12 99.91
6 7 3 N 273.53 4.23 98.45
6 8 3 N 96.67 10.31 89.33
9 5 3 N – 1.05 >99.97
9 6 3 N 342.24 3.86 98.87

Instance Solver

Length Contacts No s.b. βE,W
least ∧ βN,S

least % sav.

14 5 45.38 15.1 66.73
14 2 34.29 10.05 70.69
16 7 23.95 13.27 44.59
16 6 124.12 44.21 64.38
17 6 2788.05 746.97 73.21
17 6 311.78 117.68 62.26
18 8 – 1660.35 >53.88
18 4 547.84 370.38 32.39
18 9 – 1830.02 >49.17

(b) (c)
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this technique may be worse than making symmetry breaking after instanti-
ation (cf., e.g., [22]) or during search. However, in our approach, we make a
strong decoupling between symmetry detection and breaking: all techniques for
symmetry-breaking need to know the symmetries of the problem, and detect-
ing structural ones at the model level can be a common task for all of them.
In particular, detected symmetries can be broken, in principle, either by adding
symmetry-breaking constraints to the specification, or by instructing search algo-
rithms to break them during search (cf. Section 1 for references). Understanding
which technique is better for a given specification is topic for future work.

As for the experiments presented in Section 6, it is worth noting that our goal
is not to compare specification-level versus instance-level symmetry-breaking,
but to give evidence that even a naive implementation of the proposed symmetry-
breaking techniques may lead to consistent time savings. In our opinion, this is a
very interesting point, since the required reasoning can be effectively automated
in many practical circumstances. As an example, in [5] we present experimental
results on using first-order theorem provers for automating these tasks. More-
over, we recall –cf. the end of Section 5– that well-behaved symmetry-breaking
templates do exist, that satisfy Condition 2 of Definition 5 by design. Hence, in
many practical circumstances, only Condition 1 of Definition 5 should be checked
for a given specification, and this can be done very efficiently by using a finite
model finder (cf. [5]).
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