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Preface

This volume contains the proceedings of the 6th Symposium on Abstraction,
Reformulation and Approximation (SARA 2005). The symposium was held at
Airth Castle, Scotland, UK, from July 26th to 29th, 2005, just prior to the
IJCAI 2005 conference in Edinburgh. Previous SARA symposia took place at
Jackson Hole in Wyoming, USA (1994), Ville d’Estrel in Qubec, Canada (1995),
Asilomar in California, USA (1998), Horseshoe Bay, Texas, USA (2000), and
Kananaskis, Alberta, Canada (2002). This was then the first time that the sym-
posium was held in Europe. Continuing the tradition started with SARA 2000,
the proceedings have been published in the LNAT series of Springer.

Abstractions, reformulations and approximations (AR&A) have found appli-
cations in a variety of disciplines and problems, including constraint satisfaction,
design, diagnosis, machine learning, planning, qualitative reasoning, scheduling,
resource allocation and theorem proving, but are also deeply rooted in philoso-
phy and cognitive science. The papers in this volume capture a cross-section of
the various facets of the field and of its applications. One of the primary uses of
AR&A is oriented to overcome computational intractability. AR&A techniques,
however, have also proved useful for knowledge acquisition, explanation and
other applications, as papers in this volume also illustrate.

The aim of SARA is to provide a forum for intensive and friendly interaction
among researchers in all areas of Al in which an interest in the different aspects
of AR&A exist. The diverse backgrounds of participants at this and previous
meetings led to rich and lively exchanges of ideas, allowed the comparisons of
goals, techniques and paradigms, and helped identify important research issues
and engineering hurdles. SARA has always invited distinguished members of
the research community to present keynote talks. SARA 2005 was no exception
to this rule with invited talks from Rada Chirkova of the North Carolina State
University at Raleigh, USA Aristide Mingozzi of the University of Bologna, Italy,
and Robert Zimmer of Goldsmiths College, University of London and Goldsmiths
Digital Studios, London.

We would like to thank the authors of all the submitted papers and research
summaries, the referees, the invited speakers, the Program Committee members
for all their time and effort, and, of course, all the attendees. We also thank the
members of the Steering Committee for their advice along the way. In addition,
a great “merci” to the Local Chair Tan Miguel and to all those who contributed
to the organization of SARA 2005, in particular Mélanie Courtine.

Paris, May 19, 2005 Jean Daniel Zucker
Lorenza Saitta
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Verifying the Incorrectness of Programs
and Automata*

Scot Anderson and Peter Revesz

Department of Computer Science and Engineering,
University of Nebraska-Lincoln, Lincoln, NE 68588, USA
{scot, revesz}@cse.unl.edu

Abstract. Verification of the incorrectness of programs and automata
needs to be taken as seriously as the verification of correctness. However,
there are no good general methods that always terminate and prove in-
correctness. We propose one general method based on a lower bound ap-
proximation of the semantics of programs and automata. Based on the
lower-bound approximation, it becomes easy to check whether certain
error states are reached. This is in contrast to various abstract inter-
pretation techniques that make an upper bound approximation of the
semantics and test that the error states are not reached. The precision of
our lower bound approximation is controlled by a single parameter that
can be adjusted by the user of the MLPQ system in which the approxi-
mation method is implemented. As the value of the parameter decreases
the implementation results in a finer program semantics approximation
but requires a longer evaluation time. However, for all input parameter
values the program is guaranteed to terminate. We use the lower bound
approximation to verify the incorrectness of a subway train control au-
tomaton. We also use the lower bound approximation for a problem
regarding computer security via trust management programs. We pro-
pose a trust management policy language extending earlier work by Li
and Mitchell. Although, our trust management programming language
is Turing-complete, programs in this language have semantics that lend
themselves naturally to a lower-bound approximation. Namely, the lower
bound approximation is such that no unwarranted authorization is given
at any time, although some legitimate access may be denied.

1 Introduction

Testing the correctness of a program or an automaton can be done by finding
an upper approzimation of its semantics. If the upper approximation does not
contain the error states needed to be checked, then the automaton can be said to
be correct. However, if the upper approximation contains the error states, then
the actual program or automaton may still be correct.

* This research was supported in part by NSF grant EIA-0091530 and a NASA Space
and EPSCoR grant.

J.-D. Zucker and L. Saitta (Eds.): SARA 2005, LNAI 3607, pp. 1-13, 2005.
© Springer-Verlag Berlin Heidelberg 2005



2 S. Anderson and P. Revesz

Similarly, if the lower bound approximation of the semantics contains an error
state, then we know that it is incorrect. If it does not, then the program may
still be incorrect.

Hence an upper bound may be good to verify that a program is correct, while
a lower bound may be good to verify that it is incorrect. The wverification of
incorrectness is just as important in practice as the verification of correctness,
because many users are reluctant to change incorrect and expensive programs
unless those are proven incorrect. For example, if a banking system allows invalid
access to some bank accounts, then a lower bound approximation would be
needed to verify the incorrectness.

Until recently, in the verification area the focus was in verifying correctness
using abstract interpretation [8,16,22] or model checking [1,5,9,30,36]. In con-
trast, in this paper, we focus on verifying incorrectness.

Verifying incorrectness is needed when we suspect a program to be incorrect,
and we want to prove that it is indeed incorrect. For example, if there is an
accident with a space shuttle, then we need to find what caused it. Was it
caused by an incorrect program?

There are many reasons that a program may be suspected to be incorrect.
For example, a program that fails a verification for correctness using abstract
interpretation or model checking would be suspicious.

There are some problems that naturally lend themselves to a lower-bound
approximation. For example, the semantics of a computer security system would
contain the facts that describe who gets access to which resource at what time.
In this case a lower-bound approximation is meaningful, conservative, and safe to
use. That is, it never gives unwarranted authorizations, although some legitimate
access may be denied at certain time instances. For example, not being able
to access one’s own bank account at a particular time is frustrating, but it is
certainly less frustrating than if someone else, who should not, can access it.

We use the above idea in proposing a Turing-complete extension of the trust
management language RT [25,26,27], which is a recent approach to computer
security in a distributed environment. The latest version of the RT language uses
Datalog but with simpler constraints than we allow in this paper. We choose
the RT trust management family of languages as an erxample of how to use
constraint database approximation techniques in other areas beyond database
systems where lower-bound approximations are meaningful. (See the survey [15]
and the recent article [24] about trust management in general.)

The rest of this paper is organized as follows. Section 2 gives a brief review of
constraint database approximation theory and its implementation in the MLPQ
constraint database system [38]. Section 3 applies the approximation method to
verify the incorrectness of an automaton. Section 4 applies the approximation
method to find a safe evaluation of a trust management program. Section 5
discusses some related work. Finally, Section 6 gives some conclusions and future
work.
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2 Review of Constraint Database Approximation Theory

The constraint logic programming languages proposed by Jaffar and Lassez [17],
whose work led to CLP(R) [19], by Colmerauer [7] within Prolog III, and by
Dincbas et al. [10] within CHIP, were Turing-complete. Kanellakis, Kuper, and
Revesz [20,21] considered those to be impractical for use in database systems
and proposed less expressive constraint query languages that have nice properties
in terms of guaranteed and efficient evaluations. Many researchers advocated
extensions of those languages while trying to keep termination guaranteed. For
example, the least fixed point semantics of Datalog (Prolog without function
symbols and negation) with integer gap-order constraint programs can be always
evaluated in a finite constraint database representation [33].!

With gap-order constraints many NP-complete problems can be expressed
that cannot be expressed in Datalog without constraints. However, even Datalog
with addition constraints, which seems only a slight extension, is already Turing-
complete. Hence Revesz [35] introduced an approximate evaluation for Datalog
with addition constraints.

This approximation is different from abstract interpretation methods (for a
recent review see [8]). The main difference is that, at least in theory, in [35]
both a lower and an upper bound approximation of the least fixed point can
be arbitrarily close to the actual least fixed point with the decrease of a single
parameter towards —oo. The decrease indirectly increases the running time.

Below we focus on the definitions that are relevant to approximations. The
reader can find more details in the surveys [18,34] and the books [23,28, 37]
about constraint logic programming and constraint databases.

Definition 1. Addition constraints [37] have the form
+txtyfdb or +x0b

where x and y are integer variables and b is an integer constant, called a bound,
and 0 is either > or >.

In the following we will also use z = b as an abbreviation for the conjunction
of x > b and —x > —b. Similarly, we use x + y = b as an abbreviation for the
conjunction of x +y > b and —z —y > —b.

Each constraint database is a finite set of constraint tuples of the form:

R(Jil,...,l‘k) L= 01,...,Cm.

where R is a k-ary relation symbol, each x; for 1 < i < k is an integer variable or
constant, and each C; for 1 < 7 < m is an addition constraint over the variables.
The meaning of a constraint tuple is that each substitution of the variables by
integer constants that makes each C); on the right hand side of : — true is a
k-tuple that is in relation R.

L A gap-order is a constraint of the form z —y > ¢ or £2 > ¢ where z and y are
variables and c is a non-negative integer constant.
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A Datalog program consists of a finite set of constraint tuples and rules of the
form:

Ro(xl,...,xk) L= R1($171,...,$17k1),...,Rn(l‘n71,...,l‘n7kn), C’l,...,C’m.

where each R; is a relation name, and the xs are either integer variables or
constants, and each C; is an addition constraint over the xs. The meaning of the
rule is that if for some substitution of the variables by integer constants each R;
and C; on the right hand side of : — is true, then the left hand side is also true.

A model of a Datalog program is an assignment to each k-arity relation symbol
R within the program a subset of Z* where Z is the set of integers such that
each rule holds for each possible substitution. The least fized point semantics of
a Datalog program contains the intersection of all the models of the program.

It is easy to express in Datalog [37] with addition constraints a program that
will not terminate using a standard bottom-up evaluation [37]. Consider the
following Datalog with addition constraint program:

D(z,y,z) +— x—y=0, z=0.
D(',y,2") — D(z,y,2), ' —ax=1, Z/—z=1.

(1)

This expresses that the Difference of z and y is z. Further, based on (1) we
can also express a Multiplication relation as follows:

M(z,y,z) +— x=0, y=0, z=0.
M(x',y,2") — M(z,y,2), D(, zy), 2 —x=1 (2)
M(x’ y/’ Z/) T M(x7 y’ Z)7 D(Z/)Z7 x)’ y/ _y = 1'

Intuitively, a standard bottom-up evaluation derives additional constraint tu-
ples until a certain saturation is reached, and the saturation state represents in
a constraint database form the least fixed point. We omit the precise definition
of bottom-up evaluation of Datalog with constraint programs, because it is not
needed for the rest of this paper. It is enough to note that the simple Data-
log program that consists of the above two sets of rules never terminates in a
standard bottom-up evaluation.

In fact, with these two relations we can express any integer polynomial equa-
tion (see Example 3). Since integer polynomial equations are unsolvable in gen-
eral [29], no algorithm would be able to evaluate precisely the least fixed point
semantics of the Datalog program. Hence the situation we face is not just a par-
ticular problem with the standard bottom-up evaluation, but a problem that is
inherent to the least fixed point semantics of Datalog with addition constraints.

Revesz [35] introduced two methods for approximating the least fixed point
evaluation by modifying the standard bottom-up evaluation.

Definition 2. Let I < 0 be any fized integer constant. We change in the con-
straint tuples the value of any bound b to be max(b,l). Given a Datalog program
P the result of a bottom-up evaluation of P using this modification is denoted P;.
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Definition 3. Let | < 0 be any fized integer constant. We delete from each
constraint tuple any constraint with a bound that is less than l. Given a Datalog
program P the result of a bottom-up evaluation of P using this modification is
denoted P

These modifications lead to the following approximation theorem.

Theorem 1. [35] For any Datalog program P and constant | < 0 the following
18 true.
P C Ifp(P) C P!

where Ifp(P) is the least fived point of P. Further, P, and P' can be computed in
finite time.

We can also get better and better approximations using smaller and smaller
values of [. In particular, we have the following theorem.

Theorem 2. [85] For any Datalog with addition constraints program P and
constants Iy and ly such that Iy <l < 0, the following hold:

P, C P, and P C P&

2 =

Because we are interested in evaluations that are lower bounds of the least
fixed point Ifp(P), we implemented P, as defined in Definition 2. The imple-
mentation was done within the MLPQ constraint database system [38], which
is available from the website: cse.unl.edu/ "revesz. The implementation is a
new result that is not described in any other publication.

3 Verifying the Incorrectness of a Subway Automaton

We consider counter automata 4 which are tuples (S, X, 7, so,To) where S is a
finite set of states, X is a finite set of state counters x1, ..., x; which are integer
variables, 7 is a finite set of transitions from S to S, s¢ is an initial state, and T
is an initial assignment of the state variables. Each transition has two parts, a
guard constraint over the variables that needs to be satisfied before the transition
takes place and a set of assignments to the variables that update their values
as the automaton enters the new state. In this paper we allow only addition
constraints in the guard constraints and assignments that can be expressed by
addition constraints.

Counter machines are an example of such automata which allow only guard
constraints that are comparisons between variables and constants and assign-
ments that increment and decrement a variable by one or set a variable to a
constant. They were studied by Minsky [31, 32], who showed that they have the
same expressive power as Turing machines. Floyd and Beigel [11] is an introduc-
tion to automata theory that covers counter machines.

More complex guard constraints have been allowed in later extensions of
counter machines and applied to the design of control systems in Boigelot and
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b-s> 17 s++

STOPPED \

d<=97, bt

b-s<-17, b+

b-s=97, b4+, d:=0

b-s=-9?, s+

b-s> 105+ d<97, b+, dt+
b-s<9? b+t b-s>-97, s++

Fig. 1. The subway train control system

Wolper [4], Fribourg and Olson [12], Fribourg and Richardson [13], Halbwachs
[16], and Kerbrat [22]. Boigelot et al. [3], Cobham [6], and Wolper and Boigelot
[39] study automata and Presburger definability. For additional discussion and
examples of various types of counter (constraint) automata see [37].

Let us consider the following subway train speed regulation system described
by Halbwachs [16]. Each train detects beacons that are placed along the track
and receives a “second” signal from a central clock.

Let b and s be counter variables for the number of beacons and second signals
received. Further, let d be a counter variable that describes how long the train
is applying its brake. The goal of the speed regulation system is to keep | b— s |
small while the train is running.

The speed of the train is adjusted as follows. When s+ 10 < b, then the train
notices it is early and applies the brake as long as b > s. Continuously braking
causes the train to stop before encountering 10 beacons.

When b 4+ 10 < s the train is late and will be considered late as long as
b < s. As long as any train is late, the central clock will not emit the second
signal.
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The subway speed regulation system can be drawn as a constraint automaton
shown in Figure 3, where the guard constraints are followed by question marks,
and x + + and x — — are abbreviations for the assignments x := xz + 1 and
x := x — 1, respectively, for any variable x.

The set of reachable configurations (combinations of states and state vari-
able values) of the automaton shown in Figure 3 can be expressed in Datalog
with addition constraints by creating a new ternary relation for each state with
the order of variables (b,d,s) and writing the following Datalog with addition
constraints rules:

Brake(b, s, d)
Brake(b', s,d")
Brake(V', s,d")

Brake(b,s,d), b—s>1, s —s=1.
Brake(b,s,d), —d>-9, ¥—-b=1, d—-d=1.
Ontime(b,s,d), b—s=9, ¥ —-b=1, d =0.
Initial(b, s,d)

Late(b,s,d), —b+s>1, v —-b=1.

Ontime(b,s,d), b—s=-9, s —s=1.

Ontime(b,s’,d) :— Brake(b,s,d), b—s=1, s —s=1.
Ontime(b,s,d) :— Initial(b,s,d).

Ontime(b',s,d) :— Late(b,s,d), b—s=-1, b —=b=1.
Ontime(V',s,d) :— Ontime(b,s,d), —b+s>-9, vV —-b=1.
Ontime(b,s’,d) :— Ontime(b,s,d), b—s> -9, s —s=1.
Ontime(b,s',d) — Stopped(b.s.d), b—s=1, s —s=1.

Stopped(V', s, d)
Stopped(b, ', d)

Brake(b,d,s), —d>-9, v —b=1.
Stopped(b,s,d), b—s>1, s —s=1.

Error Condition: Suppose that this automaton is correct if |b — s| < 20 in
all states at all times. Then this automaton is incorrect if |b — s| > 20 at least
in one state at one time. The table below shows the result of the lower bound
approximation using the MLPQ constraint database system.

MLPQ Lower-Bound

Brake Late Ontime Stopped
1<b—-5<19|-10<b—5s<-1|-9<b—-5<9| 1<b—-s<20
10<b<19 10<s<19 0<b<9 11<b6<20
0<s<18 0<d<9 0<s<18 0<s<9
0<d<9 0<d<9 0<d<9

The above was obtained by using [ = —30 as in Definition 2. If [ is decreased,

then the upper bounds of b and s increase in the above table. Therefore, in the
limit those upper bounds can be dropped.

Further, for any value of u, since the above is a lower bound, any possible
integer solution of the constraints below the state names must occur at some



8 S. Anderson and P. Revesz

time. For example, the Stopped state must contain the case b — s = 20 at some
time. Therefore, this automaton is incorrect by our earlier assumption.

3.1 Comparison with Verimag

The Verimag laboratory has software for testing program correctness using ab-
stract interpretation. Halbwachs [16] gave the following upper bound derived
using Verimag’s software for the subway automaton.

Verimag Upper-Bound

Brake Late Ontime Stopped
1<b—s<d+10|-10<b—s<-1]-9<b—5<9|1<b—5<19
d+10<b s>10 b>0 19<9s+0

0<d<9 >0 b>10

Surprisingly, this result does not match our result. In particular, the upper
bound for the Stopped state contains the constraint b — s < 19, which says that
the value of b — s cannot be 20, but our lower bound says that 20 must be
one of the cases. To resolve this apparent contradiction, we need to look more
closely at the automaton. We can see that the following is a valid sequence
of transitions, where S(b, s,d) represents the values of b, s, and d is each state
S € {Brake, Initial, Late, Ontime, Stopped}.

Initial(0,0,0) — Ontime(0,0,0) — Ontime(1,0,0). — Ontime(2,0,0) —
Ontime(3,0,0) — Ontime(4,0,0) — Ontime(5,0,0) — Ontime(6,0,0) —
Ontime(7,0,0) — Ontime(8,0,0) — Ontime(9,0,0) — Brake(10,0,0) —
Brake(11,0,1) — Brake(12,0,2) — Brake(13,0,3) — Brake(14,0,4) —
Brake(15,0,5) — Brake(16,0,6) — Brake(17,0,7) — Brake(18,0,8) —
Brake(19,0,9) — Stopped(20,0,9)

Note that Stopped(20,0,9) contradicts the first constraint in the Verimag
upper bound for the Stopped state. Hence we suspect that the Verimag software
contains some bug or there was some problem in data entry. We suggest that its
incorrectness be tested using other examples and our lower-bound method.

4 Approximating Trust Management Program Semantics

Trust management languages allow the expression of high-level rules about which
principal can get access to which resource at what time in a distributed environ-
ment. The Keynote trust management system [2, 25] allowed integer polynomial
constraints. However, later trust management systems do not allow such con-
straints, because allowing them leads to undecidability [29].

We argue that this restriction unnecessarily limits the expressibility of trust
management languages. Our lower bound method can be used in most cases to
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verify the correctness of an access even when the rules contain integer polynomial
constraints.

Note that an upper bound approximation may allow some access which is not
specified by the trust management rules. Hence it is not appropriate for trust
management, while a lower bound technique can be safely used. In a computer
security system it leads to much less harm if a legitimate access request is denied
(which can happen with a lower bound approximation) than if an illegitimate
access is allowed (which can happen with an upper bound approximation).

Integer polynomial constraints arise naturally in security applications, as
shown by the following example.

Example 1. Suppose an e-mail sender or server organization C' needs to assign a
level of trust to an individual based on the trust levels assigned by organizations
A and B. Suppose C considers B’s information much more valuable. Then C'
may use the following integer polynomial constraint to assign a trust level of its
own:

3Levelc > 4(Levela)? + 2Levelp (3)

4.1 Extended RT Syntax

RT is a trust management policy language introduced by Li et al. [27]. The
parameters in each of the different kinds of policy statements in RT define the
relationships between principal owners, the roles they own and the members of
the roles.

The following simple member rule defines the principal Kp to be a member
of role R owned by K 4:

KA~R(p1’-~-’pn) — KD (4)

where the role takes the form R(pi,...,pn), and R is a role name and each p; is
a variable in an order constraint.

Extended RT: We extend the RT language by allowing each p; to be an integer
variable within an integer polynomial constraint. The extended simple member
rules have the syntax:

KA.R(p({Ijl,...,(El)) — KD (5)

where K4 defines a role R to contain member Kp, if the integer polynomial
constraint p(z1,...,2;) holds.

Example 2. The extended RT statement
Email.Permit(3Levelc — 4(Level4)? — 2Levelg > 0) « "Charlie”  (6)

allows Charlie access to e-mail, if the ratings obtained satisfy constraint (3).
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4.2 Extended RT Semantics

The semantics of an extended RT program can be found by translating the
extended RT rules into logically equivalent Datalog with addition constraints
rules and then taking the least fixed point semantics of the resulting Datalog
program.

Extended simple member rules of form (4) are translated into the following
Datalog rule:

R(KA,KD,l'l,--.,IEm,) P P15+ Pn- (7)

where x1, ..., x,, are the integer constants and variables that may be used within
the polynomial constraints pq, ..., py.

We can translate integer polynomial constraints with £ number of + and X
operations into a conjunction of at most 2k difference D and multiplication M
relations defined in Section 2.

Ezample 3. The extended RT statement (6) can be translated into the following
Datalog with addition constraints rule:

where Level 4, Levelp and Levelc are either integer variables or constants and
are the important parameters in this problem, while each t; and e; and e are
additional integer variables that are introduced only for the sake of expressing
the polynomial equation. Finally, Email and Charlie are integer constants that
represent the strings “Email” and “Charlie” in the RT statement (6).

Since the difference D and multiplication M relations have already been de-
fined in Section 2 using Datalog with addition constraints, the entire Datalog
program can be evaluated using the lower-bound approximation of its least fixed
point by a modified bottom-up evaluation. By Theorem 1 this evaluation termi-
nates, giving a lower bound of the semantics of the extended RT program.

5 Related Work

There are few papers on lower bounds for automata and programs. Godefroid et
al. [14] gives a lower-bound approximation of the automaton by simplifying its
states according to some predicates that hold in each state. The state transitions
considered in the simplification are must-transitions, that is, if the condition in
the previous state holds, then only one subsequent state can be reached. Unfor-
tunately, this is very limited, because in fact most transitions among states are
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not must-transitions. In general, predicate abstraction methods, such as [14], can
yield more precise approximations with the introduction of additional predicates,
making the automata structures increasingly more complex.

In contrast, our approximation is radically different and does not change at
all the automata structure, rather it indirectly changes the algebra in which
(polynomial) constraints are interpreted and solved. Essentially, the simplified
algebra relies on modified addition and multiplication relations. These relations
are smoothly and naturally extended as [ decreases. Hence our method may yield
more precise approximations without increasing the size of the automaton.

6 Conclusions and Future Work

We have seen that in general decreasing the bound [ toward —oo leads to tighter
lower and upper bound approximations, P, and P', respectively. If the lower
and upper bound approximations agree (i.e, P, = P'), then we know that we
have found the precise least fixed point. However, even if they do not agree,
but seem to converge to the same value —and that may be apparent from only
a few examples of [ values, then we still can give the limit of convergence as
the precise least fixed point. The subtle point is that the series of lower (upper)
bound approximations themselves show a convergence and hence their limits
can be approximated. It is an approximation of approximations, but it may
work beautifully in many cases.

Open Problem: Determine the precise conditions under which the least fixed
point can be predicted as described above.

We have to be cautious not to overclaim the potential of the above approach,
for it is easy to see that the above method may fail sometimes. For example,
consider any query that requires a polynomial integer equation that is build using
the Diff and Mult relations. Clearly, the solutions of the polynomial equation
can be found using the Diff and Mult relations built using lower or upper
bound approximation. However, decreasing [ does not guarantee finding tighter
lower and upper bound approximations for the polynomial equation. It may be
impossible to tell when all the solutions will be found. Since integer polynomial
equations are undecidable in general, there always will be some cases when the
convergence is unpredictable.

Considering a general difference constraint, if the upper bound approxima-
tion is infinite, then it may not be possible to predict how the two bounds
approach one another. In fact the lower bound may grow without bound as [
approaches —oo.

Hence in general we conclude by the examples above that there exists a class
of queries that are not stable. We also conjecture that when |P'\P;| = co and
the expected solution is finite the query is not stable.

In the future, we would like to determine which classes of queries are stable
and implement routines that predict an accurate solution to improve the approx-
imation process when enough evidence is collected to make a precise prediction
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of convergence. That would result in a kind of approximation that is neither a
simple lower nor a simple upper bound approximation but is something much
more sophisticated.

In conclusion,
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Abstract. Search in abstract spaces has been shown to produce useful admissi-
ble heuristic estimates in deterministic domains. We show in this paper how to
generalize these results to search in stochastic domains. Solving stochastic opti-
mization problems is significantly harder than solving their deterministic counter-
parts. Designing admissible heuristics for stochastic domains is also much harder.
Therefore, deriving such heuristics automatically using abstraction is particularly
beneficial. We analyze this approach both theoretically and empirically and show
that it produces significant computational savings when used in conjunction with
the heuristic search algorithm LAO*.

1 Introduction

The Markov decision process (MDP) is widely used in artificial intelligence to solve
problems of planning and learning under uncertainty. The most common way to solve
an MDP is by using a dynamic programming algorithm such as value iteration or policy
iteration. The major drawback of this approach is that the entire state space has to be
evaluated. More recently, heuristic search algorithms have been developed for solving
MDPs [6]. These algorithms can avoid evaluating states that are not reachable from the
start state by an optimal policy. The effectiveness of heuristic search mostly depends
on the heuristic function being used to guide the search process. One way to generate
an admissible heuristic is to use search in abstract spaces [7, 11]. Abstraction works by
replacing an original state space by an abstract space, which is easier to search. This
idea is not new. It has been previously applied to creating admissible heuristics for A*
search [8]. More recently, there has been growing interest in developing heuristics us-
ing a form of abstraction called pattern database (3,9, 10]. The goal of this paper is
to extend the use of abstraction as a means of creating admissible heuristics for search
in stochastic domains. Heuristic estimates generated by abstraction are then used to
guide LAO*, which is a heuristic search algorithm that can be used to solve stochastic
planning problems. To test whether heuristics generated by abstraction produce any sav-
ings as compared to uninformed search, LAO* algorithm is applied to a task planning
problem that involves uncertainty regarding the use of resources. The structure of this
problem facilitates the creation of an abstract space very easily by varying the resolution
of resource usage, always rounding up the amount of resources left for future activity.
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We show that heuristic estimates obtained by search in such abstract space are always
admissible. That is, the heuristic value is an optimistic estimate (overestimate) of the
actual value of a state. We also show that the effectiveness of such heuristic estimates
depends on the problem and that they could result in significant savings compared to
blind search.

The rest of the paper is organized as follows. In Section 2, we review some re-
lated work on search in abstract spaces and alternative approximation techniques for
MDPs. Section 3 describes the general methodology used in the current research. Sec-
tion 4 describes the specific model used in the paper. Section 5 analyzes experimental
results. Section 6 concludes the paper with a summary of contributions and further
work.

2 Related Work

We describe briefly related work in two research areas. First, we examine previous work
on the problem of creating heuristics by abstraction in deterministic settings. This paper
extends this body of research to stochastic domains. We then describe existing exact
and approximate techniques for solving MDPs; heuristic search presents an alternative
approach to these techniques.

2.1  Creating Heuristic by Abstraction for Search in Deterministic Domains

Several researchers have looked at the problem of creating heuristic by abstraction for
search in deterministic domains (for example, [7, 8, 11, 12]). The most relevant work to
the current study is Holte ez al. [8]. This paper focuses on one type of abstraction called
homomorphism (grouping together states of the original state space to create a single
abstract state). The heuristic created by abstraction is then used to guide A* search.
The goal of the paper was to develop a technique that would break Valtorta’s barrier. To
achieve this goal the number of states expanded by a heuristic search has to be less than
the number of states expanded by uninformed search. The authors use an abstraction-
based search algorithm called hierarchical A*. To create an abstraction they use the
STAR abstraction technique, which groups together neighboring states within a certain
radius. Once one level of abstraction is created, the procedure is repeated recursively
until a trivial abstract level is created. The implementation of hierarchical A* is stan-
dard except for the way heuristic values are estimated. Every time A* needs a heuristic
estimate, it is computed by searching at the next level of abstraction. It was found that a
naive version of the algorithm ends up expanding many more states as compared to un-
informed search, i.e. Valtorta’s barrier is not broken. This could be explained by the fact
that although A* never expands the same state twice in a single search, it has to expand
the same state many times while performing multiple searches of the abstract levels.
To overcome this problem the authors implemented two types of cashing techniques
and as a result the Valtorta’s barrier was broken in every domain. The authors have also
discovered that as the radius of abstraction increases, the number of nodes expanded by
hierarchical A* decreases until it reaches some minimum value. Increasing the abstrac-
tion radius further caused the number of expanded nodes to increase. In every case the
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best abstraction radius represented a large fraction of the search space and as a result
the abstraction hierarchy contained only one non-trivial level. In this paper we examine
the applicability of these same ideas in stochastic search and evaluate the effectiveness
of the approach.

More recently, an effective approach to exploit abstraction in the form of a pattern
database has been developed. The idea was introduced by Culberson and Schaeffer [3]
who applied it to permutation problems, like the 15-puzzle. To form a pattern database,
a search space is projected into an abstract space, which is small enough to allow an
efficient computation of the value function for each abstract state. The computed values
are stored in a look-up table. Each abstract state is called a pattern and the table that
stores the optimal values is called a pattern database. These precomputed values are then
used as heuristic estimates for the search in the original state space. Usually more than
one pattern database is defined for the same problem. Heuristic estimates for the states
of the original space are computed as maximum of several pattern database heuristics.
For example, Korf defined three pattern databases to solve the Rubik’s cube problem
[10]. Similarly, Korf and Felner used eight pattern databases to solve the 24-puzzle [9].

2.2 Approximate Solutions to MDPs

A common way to solve MDPs is by using dynamic programming techniques such as
value iteration or policy iteration. The problem with this approach is that the entire state
space—which grows exponentially with the number of state variables—has to be evalu-
ated. This makes it hard to find exact solutions, leading to a vast literature on techniques
that can approximate the optimal solution. Both planning and learning techniques for
approximation of MDP solutions have been developed. The goal of both planning and
learning under uncertainty is to discover an optimal or near-optimal policy of action,
represented as a mapping from states to actions. The main difference is that planning
problems assume that the action model and the reward function are known, whereas
learning problems assume both of these to be initially unknown and attempt to learn
them. While planning is typically performed off-line, learning algorithms are frequently
designed for on-line operation.

A large body of research that attempts to find an approximate solution to an MDP in
the context of planning deals with reducing the level of detail in the problem representa-
tion by aggregating states with similar or identical values and/or action choices. These
aggregate states are then treated as a group by the dynamic programming algorithm
(see [5]). Another way to reduce the complexity of the problem is by pruning the tree
representation of value functions by removing such nodes in the tree that induce small
differences in value (see [2]) or by substituting the values at the terminals with ranges
of values (see [13]). Another class of approximation procedures used in planning under
uncertainty involves searching local regions or so called envelopes of the state space
(see [4, 14]).

Solving MDPs has also been a focus area in reinforcement learning (RL). Most RL
algorithms adapt dynamic programming algorithms so that they could be used on-line.
To avoid the curse of dimensionality, many methods have been proposed to approximate
MDP solutions. Barto and Mahadevan, for example, identify the following three meth-
ods for finding approximate solutions using RL algorithms [1]: (1) Restricting com-
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putation to states along sample trajectories to avoid the exhaustive sweeps of dynamic
programming; (2) Sampling from the appropriate distribution to simplify the basic dy-
namic programming backup; and (3) Representing the value function and/or policies
more compactly by using function approximation methods, such as linear combinations
of basic functions or neural networks.

The technique we present in this paper is an exact algorithm, but it can be easily
transformed into an approximation technique. In previous work, we have shown how to
convert any exact heuristic search algorithm into a “well-behaved” anytime algorithm
that could produce approximate solutions with error-bounds that improve with compu-
tation time. However, examining the anytime characteristics of hierarchical LAO* is
beyond the scope of this paper.

3  Methodology

3.1 The LAO* Algorithm

The LAO* algorithm was developed by Hansen and Zilberstein [6] as a heuristic ap-
proach to finding optimal solutions to MDPs. What distinguishes LAO* from other
classical heuristic search algorithms, such as AO¥*, is the fact that it allows to find so-
lutions that contain loops. Since LAO* is a heuristic search algorithm, it can avoid
evaluating the entire search space which makes it a good alternative to dynamic pro-
gramming algorithms that are commonly used to solve MDPs. Since LAO* does not
evaluate every state of the problem, it is not necessary to supply the entire graph to
the algorithm. Instead, a graph is specified implicitly by a start state and a successor
function.

For complete details of the implementation of LAO* see Hansen, Zilberstein [6].
Generally, the algorithm has two main steps: a forward search step and a dynamic pro-
gramming step. The forward step identifies and expands the best partial solution graph.
The dynamic programming step updates the evaluation function and marks best action
for each state that belongs to the current best solution. Although LAO* works correctly
independently of which state of the best partial solution is expanded next, the perfor-
mance of the algorithm can be improved by a good heuristic function. One way to
construct a heuristic is by search in abstract spaces.

3.2  Heuristic Construction by Abstraction

Heuristics are designed to speed up search. However, construction of a good heuristic
usually comes at a cost. The goal is to come up with a heuristic such that the cost of
computing it is less than the savings from using it. The use of heuristic # is said to be
beneficial if the total number of states expanded by search with heuristic A is less than
the number of states expanded by “blind” or uninformed search. In a stochastic setting
“blind” search is also equivalent to reachability analysis.

There are two types of abstraction that can be used to construct a heuristic:

1. Embedding — relaxing a problem by “adding edges” to a state space (for exam-
ple, by dropping preconditions from, or adding macro-operators to the state-space
definition).
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2. Homomorphism — grouping together several states in the original state space to
create a single state in the abstract space.

It was proven by Valtorta (see [15]) that A* search using heuristic constructed by
embedding transformation cannot be beneficial. Holte er al. [8] have generalized Val-
torta’s theorem to any abstraction transformation. They have shown that if the abstrac-
tion used to direct A* is a homomorphism, then it can be beneficial. The potential
savings are due to the fact that expansion of many states in the original space can be
replaced by an expansion of a single state in the abstract space. The goal of this research
is to see whether the same idea holds in a stochastic setting, i.e. whether an admissible
heuristic can be constructed by homomorphism and whether it can be beneficial if used
to direct LAO* search. The next section generalizes Holte ef al. version of Valtorta’s
theorem to stochastic search spaces.

3.3 Valtorta’s Theorem Generalized to Stochastic Search

Let SP be the original state space, SP’ the abstraction of SP. Let S be any state nec-
essarily expanded when the given problem (Sy, G) is solved by reachability analysis
directly in space SP. Let f be any abstraction mapping from SP to SP’ and hs(S) be
computed by reachability analysis in SP’ from f(S) to f(G). If the problem is solved
in SP by LAO* search using h(-) as heuristic estimate, then either:

1. S itself will be expanded, or
2. f(S) will be expanded

Proof. When LAO¥* terminates, every state will either be

1. expanded,
2. visited, or
3. or unvisited.

Fig. 1. State S, is expanded and action ay, is chosen as the best action. State .S is visited but not
expanded
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Fig. 2. State S™ is visited but not expanded. State S is unvisited

We examine each one of these cases below:

1. In the first case, the state S itself is expanded.

2. In the second case, the parent node S, of state S, is expanded and the best action
for S, is computed (see Fig. 1). Because .S is not expanded, the action a; which
leads to state S with a certain probability is suboptimal. However, to pick an op-
timal action for state S, hy(S) must have been computed. To compute h(.S), it
is necessary to solve a problem (f(S), f(G)) in the abstract space by reachability
analysis. Therefore, f(S) has to be expanded at the first step.

3. In the third case, the state S is unvisited (see Fig. 2). It means that on every path
from Sy to S there must be a state which was visited but not expanded. Let S™*
be such state on any shortest path from Sy to S. As in the previous case, hy(S*)
must have been computed. To compute hy(S*), it is necessary to solve a problem
(f(S*), f(G)) in the abstract space by reachability analysis. Since state .S is reach-
able in the original state space, the corresponding state, f(.5). in the abstract space
has to be reachable as well. Therefore, while solving the problem (f(S*), f(G))
by reachability analysis, the state f(.5) has to be expanded.

3.4  General Problem Description

One type of problems that can be solved using LAO* with heuristics created by ab-
straction is executing multiple tasks that involve uncertainty about resources. In such
problems, an agent has to perform a series of tasks. Every task is associated with a set of
actions that an agent can undertake to complete the task. Each action uses an uncertain
amount of one or several resources (for example, time, energy, etc.) and compensates
the agent with a certain reward. The process stops once the agent either performs all
tasks or runs out of at least one of the resources. The goal is to maximize the collected
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reward while performing a sequence of tasks. The structure of such problems allows
creating an abstract space very easily by grouping states by resources.
Each state is defined by the amount of resources left:

R;={0,1,2,...,N;}, i=1,...,n
and by values of the variables:
Vi={1,2,...,M;}, i=1,....,m
Formally, S = {R1,..., Rn; Vi,..., Vi }. The start state can be defined as
So={MN1,...,Ny; 1,...,1}
There are many possible terminal states. One example of a terminal state is

G={0,....,Ry; V1,...,Vin}

3.5  Creating an Abstract Space

To create the abstract space, it is first necessary to choose the desired granularity of
abstraction or abstraction step. Selecting larger steps for grouping resources will result
in a smaller total number of states in an abstract space and therefore fewer states to
expand while performing a “blind” search. On the other hand, the generated heuristic
estimates will be coarser and subsequently more states will need to be expanded in the
original space. If smaller abstraction steps are used, then there will be more work in the
abstract space, and less in the original. Therefore, it is important to use such abstraction
steps that result in an optimal trade-off between the number of states expanded in the
abstract and the original spaces.

When an abstract space is created, states of the original space are grouped by re-
sources with each resource rounded up. Only states with the same variable values can
be grouped. Since we are representing the amount of remaining resources (as opposed
to the amount of used resources), rounding resources up ensures admissibility of the
heuristic as it will always be overestimating the reward. Given that the amount of re-
sources available in each state is overestimated, it might be possible to do more work
(i.e. take more actions) and subsequently collect a larger reward.

4 The Model

4.1 Problem Specification

To test whether heuristic estimates generated by abstraction produce any savings as
compared to uninformed search, the LAO* algorithm was used to solve the following
problem that involves uncertainty regarding the use of resources. An agent operates
autonomously for a period of time. Its goal is to perform a sequence of M tasks (see
Fig. 3). A terminal state is reached when the agent either performs all tasks or runs out
of at least one resource.

Each task can be executed either by taking an action A, or by taking an action B. In
addition, some tasks may be skipped altogether. When a problem instance is created,
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Fig. 3. An illustration of a problem instance

the skip action is added to a task with probability p and omitted with probability 1 — p.
(This probability only applies to the process of generating a random problem instance.)
Action A, on average, uses less resources than action B. An agent’s goal is to maximize
the reward obtained during the time period. The attractiveness of the task can be defined
as a ratio of expected reward to expected resources used to execute an action. When a
sample task is generated, its expected reward is computed as follows. First, an average
amount of each resource i used to execute an action is generated. Then the expected
reward for performing the task is computed as:

ER = Z k; x E[Res_used;] . 1)

i=1
where,

k; is a random number in the range [0.1, 1]
n is the number of resources

Each state is defined by the remaining resources, R; = {0, 1,..., N;}, and by the
current task number, I = {1, 2,..., M}. Formally, S = {Ry,..., R,; I}. The start
state is So = { N1, ..., N,; 1}. An example of a terminal state is G = {0,...,0; I}.

4.2  Original and Abstract State Space Construction

State spaces are represented as AND/OR graphs with all unique tree nodes stored in
hash tables. To construct the original and abstract state space, first, the average resource
use and the reward for action one and two are precomputed. Then whether the task can
be skipped is determined according to probability p. Construction of the original tree
starts with the root. The root node is assigned the maximum values for each resource
and variable value of 1. After that the whole graph is generated as follows. The number
of successors for the first two actions is determined at random from the range [5, 15]. In
case of multiple resources, it is assumed that resources are correlated, i.e. if an action
requires the minimum amount of resource 1, it will also require the minimum amount
of all other resources. Under this assumption, the resource values for successor states
are determined as follows. The first successor always gets assigned the resource values
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of the previous resource levels less some predetermined minimum resource use. The
middle successor gets assigned the resource values of the previous resource levels less
the precomputed average resource use. The resource levels for the rest of the successors
are linearly projected from these two states. The variable value for each of the succes-
sors is determined as a previous variable value plus 1. Successor states are assigned
probability values according to the linear probability model. The middle state which is
associated with the average resources use has the highest probability of occurrence. The
first and last states which are associated with the lowest and highest resources use have
the smallest probability of occurrence. The probability values associated with all other
states are linearly interpolated.

An abstract state space is constructed using the same data and assumptions as the
original state space. First, the abstract root node is constructed. For example, if the
initial resource is 50 and the abstraction step is 20, the initial level of resource is rounded
up and the abstract root state gets assigned the resource value of 60. For the purpose of
construction of abstract successors the number of successors in the original state space
is assumed to be the maximum. The resource value for each successor is generated in
the same way as in the original space. Then, each resource is rounded up according
to the abstraction step and identical states are grouped. The probability value for each
abstract successor is assigned according to the linear probability model.

4.3  Heuristic Construction and Its Application to the LAO* Algorithm

Once an abstract space is constructed, the next step is to perform a “blind” search of
this abstract space. During this process, all reachable abstract states get expanded and
assigned a value. These values are then used as heuristic estimates for the states in the
original state space. Every time an algorithm needs to estimate a heuristic value for a
state in the original space, it creates an abstract state that corresponds to the original
state by rounding the resources up according to the abstraction steps and looks up the
abstract state value in the hash table. The abstract state space constructed using the
procedure outlined in the previous section is not guaranteed to give the exact represen-
tation of the original state space. As a result, some of the original states might not have
a counterpart in the abstract state space. In case the corresponding abstract state can-
not be found in the hash table, the value of the state with the same variable but higher
level of the resource is used. This way the heuristic value is always overestimated and
it remains admissible.

The procedure for constructing the heuristic by abstraction can be taken one step
further by using multiple abstract spaces, i.e. by creating an abstraction hierarchy. The
first abstract space is created in exactly the same way as before. The next abstract space
is created by grouping states of the previous abstract space. This process is repeated un-
til the top abstract space becomes trivial. The algorithm starts by performing a complete
“blind” search of the top abstract level. After that at each iteration of LAO* whenever
it is necessary to estimate the value of the heuristic, the next higher level of abstraction
is searched. The search of the abstract space starts with the abstract state that corre-
sponds to the state in the level below. When the second to last abstract level is searched,
the heuristic estimates are simply looked up in the hash table for the top abstract level.
Once an abstract space is searched at least once, the values are known for all states that
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belong to the solution graph. These states can be cashed and their values can be used as
heuristic estimates for the lower level in all subsequent searches.

It is worth noting that some difficulties could arise with this approach. Since abstract
states are created by rounding the resources up, there could be no change in the level
of resources after executing a series of actions. Therefore, in certain situations an agent
can come back to the same state. In general, this is not a problem since LAO* can easily
handle solutions with loops. However, it becomes a problem if an agent comes back to
the same state with probability 1 because it leads to an infinite loop. Fortunately, this
difficulty does not arise in the problem considered here because each state is defined
by the amount of resources left and the number of the task to be performed. Even if
no resources have been used while executing a task, the task number will increase.
Therefore, an agent cannot come back to the same state once an action is executed.
Although this problem does not contain loops and therefore could be handled by AO*
algorithm, the procedure described here is general enough to handle problems with
loops.

S Experimental Results

5.1 One Resource, One Level of Abstraction

This section analyzes problems with one resource. The heuristic estimates are based on
one level of abstraction. Fig. 4 shows the average number of states expanded at the base
and abstract levels over 20 problems with 15 tasks and the starting level of resource
of 200 units. The first bar corresponds to the average number of states expanded by
“blind” search. On average, the use of abstraction step 5 is not beneficial since the
algorithm expands more states than the “blind” search. All other abstraction steps can
be considered beneficial since they result in some savings as compared to the “blind”
search. The smallest number of states gets expanded when the abstraction step of 40 or
above is used.

Fig. 5 shows the average amount of work as compared to the “blind” search (the
chart on the left) and the average savings (or loss) that occur due to the use of abstraction
(the chart on the right). The probability of “skip” action is 1, i.e. each task can be
performed by taking an action A or an action B or the task can be skipped. The three
lines on the charts on the left represent the average amount of work over 20 problems
with one standard deviation band around it. The average amount of work is determined
as a ratio of the total number of states expanded at both base and abstract levels over
the total number of states expanded by “blind” search. The left chart shows that as the
abstraction step increases, the average amount of work decreases. Similarly, the chart
on the right shows that the average savings due to the use of heuristic constructed by
abstraction go up as the abstraction step size increases. The maximum savings achieved
are 18.1%.

The size of the problem determined by the number of unique states in a hash table
can be increased by either increasing the starting level of resource or by increasing the
number of tasks the agent needs to perform or by increasing both. Fig. 6 explores the
relationship between the average savings due to abstraction and the size of the problem
when the size of the problem increases due to increase in the starting level of resource.
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Fig. 4. Average number of states expanded both at the base and abstract level as a function of the
abstraction step
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Fig. 5. Left: average amount of work as compared to blind search as a function of the abstraction
step. Right: average savings in % as compared to blind search as a function of the abstraction
step. An average over 20 problems with initial level of resource of 200, 15 tasks, and probability
of skip action of 1

The chart on the right shows the average number of states in a hash table for each level
of resource. The hash table keeps growing until initial level of resource reaches 350.
After that the increase in the starting level of resource does not result in additional
states being added to the hash table. When initial resource level is set at 50, it is enough
to perform only a few tasks. In this case, the algorithm tries to determine which tasks
should be skipped and which tasks should be performed. On the other hand, when initial
level of resource is set at 500, the resource is plentiful to perform all tasks, so at each
step it will be necessary to determine whether an action A or B should be preferred
since the skip action will always be suboptimal (because of zero reward). The chart on
the left shows the average savings due to abstraction as a function of the initial level of
resource. When the level of resource is low, the savings from abstraction are the lowest
(less than 15%). The savings are the highest (above 20%) when resource is abundant.
A lot of the savings will occur because brunches corresponding to the skip action are
suboptimal and therefore will be ignored in a heuristic search but expanded in a “blind”
search. In general, the most savings occur when the problem tree has a lot of clearly
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Fig. 6. Left: average savings in % as compared to blind search as a function of the initial level
of resource. Right: average size of the hash table as a function of the initial level of resource.
Averages are over 50 problems with 15 tasks, and probability of skip action of 1
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Fig.7. Left: average savings in % as compared to blind search as a function of the number of
tasks. Right: average size of the hash table as a function of the number of tasks. Averages are
over 50 problems with initial level of resource set at 200, and probability of skip action of 1

suboptimal branches. Heuristics constructed by abstraction will easily identify those
branches and save a lot of work at the base level.

Fig. 7 explores the relationship between the average savings due to abstraction and
the size of the problem when the size of the problem increases due to increase in the
number of tasks an agent has to perform. The chart on the right shows the average
number of states in a hash table as a function of the number of tasks in a problem. As
the number of tasks to be performed increases, so does the size of the hash table. On
average, addition of 5 tasks to the problem adds roughly 1000 states to the hash table.
The chart on the left shows the average savings due to abstraction as a function of the
number of tasks to be performed. As in Fig. 6, the most savings occur when the initial
level of resource is high relative to the number of tasks to be performed. As the number
of tasks to be performed goes up, the average savings go down. The largest savings of
24.2% occur when there are only 5 tasks to be performed. In this case there is enough of
the resource to perform all tasks. Savings occur largely due to the possibility to ignore
those branches that correspond to the skip action while performing the heuristic search.
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5.2  One Resource, Two Levels of Abstraction

In this section, an identical set of 20 problems with 15 tasks, initial level of resource
of 200 and probability of skip action of 1 was solved by LAO*, first, using heuristic
constructed with one level of abstraction, second, using heuristic constructed with two
levels of abstraction. Fig. 8 shows graphs for one level of abstraction. Fig. 9 shows
graphs for two levels of abstraction. In this case X axis values correspond to the ab-
straction step at the first level, s1. Abstraction step at the second level was assumed to
be so = 2 x s;. Comparison of the two figures shows that heuristic constructed by ab-
straction with one level of abstraction produces higher savings as compared to heuristic
constructed by abstraction with two levels. For example, the highest possible savings
with one level of abstraction are 18.1%, whereas the highest possible savings with two
levels of abstraction are 17.1%.
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Fig. 8. One level of abstraction. Left: average amount of work as compared to blind search as
a function of the abstraction step. Right: average savings in % as compared to blind search as
a function of the abstraction step. An average over 20 problems with initial level of resource of
200, 15 tasks, and probability of skip action of 1

115 20
1.05 &

0.95 10
0.85 SNe——, |—||_|

075 1T T T T T T
5 10 1520 25 30 3540 45 50 -10

[

10 1520 25 30 35 40 45 50

Fig. 9. Two levels of abstraction. Left: average amount of work as compared to blind search as
a function of the abstraction step. Right: average savings in % as compared to blind search as
a function of the abstraction step. An average over 20 problems with initial level of resource of
200, 15 tasks, and probability of skip action of 1
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5.3 Two Resources, One Level of Abstraction

This section analyzes problems with two resources. The heuristic estimates are based on
one level of abstraction. Fig. 10 shows the total number of states expanded at both base
and abstract levels. The first bar corresponds to the average number of states expanded
by “blind” search (about 3500). On average, the use of any abstraction step is beneficial.
Unlike in the case with one resource, the smallest number of states (around 1960) gets
expanded when the abstraction step of 10 is used.

Fig. 11 shows the average amount of work as compared to the “blind” search (the
chart on the left) and the average savings that occur due to the use of abstraction (the
chart on the right). On average, savings that occur due to abstraction are significantly
higher than in the case with one resource for any abstraction step. The highest savings
occur when abstraction step of 10 is used. In contrast, in the case of one resource the
highest savings occur when the abstraction step of 40 is used.

6 Conclusions

We have shown that admissible heuristics can be generated using abstraction in stochas-
tic domains. The results are very similar to those obtained by Holte et al. in determin-
istic settings [8]. In general, the use of abstraction in both stochastic and deterministic
settings is beneficial. The actual amount of savings depends on the abstraction step.
Holte et al. have found the abstraction radius to be large as compared to the size of
the search space. As a result, only one level of abstraction is necessary. A similar con-
clusion can be made for the type of problems considered here. The experiments with
two levels of abstraction and one resource show that the use of one level of abstraction
results in higher savings as compared to two levels. In case of one level of abstraction
and one resource, an abstraction step of 40 turns out to be the most beneficial; in case
of two resources, an abstraction step of 10 is the most beneficial. In general, the amount
of savings depends on the difficulty of the problem. Problems with two resources result
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Fig. 10. Average number of states expanded both at the base and abstract level as a function of
the abstraction step
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Fig. 11. Left: average amount of work as compared to blind search as a function of the abstraction
step. Right: average savings in % as compared to blind search as a function of the abstraction step.
An average over 20 problems with initial level of resource 1 of 50, resource 2 of 50, 7 tasks, and
probability of skip action of 1

in much higher savings as compared to the problems with one resource. We expect the
savings to grow with the number of resources.

One benefit of our approach is that it is designed to avoid visiting the entire state
space either during search or any preprocessing stage. Although the abstract space is
created in advance, it is generated independently of the original space. Moreover, there
is no need to go through the entire base-level state space in order to search the abstract
space. Another source of savings is the fact that the search in the abstract space is only
through reachable states, not all states.

Because it is generally much harder and less intuitive to design admissible heuristics
for stochastic domains, it is beneficial to design automated techniques based on abstrac-
tion such as the one we present in this paper. Moreover, because it is relatively easy to
transform LAO* into an approximation anytime algorithm, the result of this work facil-
itate the development of both exact and approximate algorithms for search in stochastic
domains.
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Abstract. Intelligent agents acting in real world environments need to
synthesize their course of action based on multiple sources of knowledge.
They also need to generate plans that smoothly integrate actions from
different domains. In this paper we present a generic approach to synthe-
size plans for solving planning problems involving multiple domains. The
proposed approach performs search hierarchically by starting planning
in one domain and considering subgoals related to the other domains as
abstract tasks to be planned for later when their respective domains are
considered. To plan in each domain, a domain-dependent planner can
be used, making it possible to integrate different planners, possibly with
different specializations. We outline the algorithm, and the assumptions
underlying its functionality. We also demonstrate through a detailed ex-
ample, how the proposed framework compares to planning in one global
domain.

1 Introduction

A considerable amount of work in Al planning focuses on the use of abstraction
to reduce the search space, where planning takes place at successive levels of more
details. Hierarchical planning is such a paradigm that relies on abstraction and
goal decoupling to produce effective plans [14],[17],[12],[5]. The planning problem
is specified as a set of abstract tasks to achieve with ordering constraints over
them. The planning process, repeatedly, refines the abstract tasks into more
detailed tasks until the plan is composed only of executable tasks. Abstractions
have mainly been supplied by the user as part of the knowledge bases used by the
planner. However different approaches have been proposed to learn abstractions
from the description of the planning problems [8],[4].

Decomposition of the planning problem into subproblems is also an approach
aiming at reducing search complexity [16],[1]. The partitioning of the initial plan-
ning problem focuses on producing subproblems with minimum interaction in
order to be able to find an efficient solution. It is worth noting that problem
partitioning is generally combined with abstraction techniques to control the in-
teraction between the different sub-components of the planning problem [10],[11].
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In this paper we propose a framework to synthesize plans to solve planning
problems involving multiple domains through the use of abstraction and goal
ordering. In fact, goal and subgoal ordering approaches have been demonstrated
to be effective ways in solving planning problems [13]. As demonstrated in [9], a
total order relation between increasing sets of goals allows incremental planning
by focusing search on the goals that appear earlier, leading to improved planning
performances.

To solve problems involving multiple domains, one can envisage to solve in
each domain the portion of the problem related to it and then glue all the
results in a global plan, but doing so might result in degraded execution of the
overall plan, because of the localized reasoning. Our work on plan execution on
board mobile robots has motivated us to find a general approach that can utilize
reasoning over different domains using different planners for problem solving so
the resulting plan would execute smoothly and efficiently. Therefore the proposed
approach guarantees to find a plan in an incremental way that interleaves actions
from the different domains when only it is needed.

The general idea of our approach is to act on a set of domains ordered ac-
cording to which domain gets its goals achieved earlier. The planning problem
is solved incrementally starting with the leftmost domain, and going all the way
to the last one. If a domain D, ordered before another domain D’, needs to
accomplish a subgoal involving the actions of D’, then D places a request in the
plan for D’ to accomplish the desired subgoal. At a later stage, when planning
to solve in D’ the algorithm can use the actions of D’ to solve the request.
The planner used to plan in a particular domain can be a domain-(in)dependent
planner, meaning that it is possible to integrate different efficient specialized
planners to solve the global planning problem.

In the next section we detail the assumptions used to find a plan in multiple
domains as well as operator transformation to reflect the interaction between
the involved domains. Next we give a global overview of the approach and how
planning in one domain introduces ordered abstract tasks to be solved in the
subsequent domains. Section 4 outlines the hierarchical algorithms used to solve
the multiple-domain planning problem. Before concluding we demonstrate the
performance of the approach on two domains.

2 Domains Interaction

In this section we discuss the assumptions underlying the interactions between
the planning domains, as well as the extensions to be made to the syntax of
planning operators in order to be able to use the proposed framework. As stated
before, the approach supposes that the agent has access to a planning system
employing a domain-independent planner or a set of domain-dependent planners.

Domains are defined in the usual way as consisting of a set of operators and
a set of fluents, where the operators of one domain can use literals from other
domains in their preconditions and effects. We use an incremental approach to
plan in the different domains i.e. when trying to solve a planning problem in a
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particular domain, the achieved goals, of solved problems of the other domains,
have to be maintained. This incremental approach makes it possible to reduce
search complexity, because goals do not have to be established, then destroyed,
then established again [9]. This restriction leads us to the following consideration:

— Consideration 1. If an operator in a domain D7 uses in its preconditions a
literal [ from another domain D5, then finding a plan to achieve goals in Dy
would violate achieved goals in Do, because the literal [ might be sub-goaled
in D; by the corresponding plan. Therefore the framework has to make sure
that all the goals of D; are planned for first before planning for the goals
of Dy. Note that this is coherent with the ordered monotonic refinement

property [8].

Ezample 1. Suppose that the planning system has two domains: navigation, and
blocks. The navigation domain is used to move a mobile robot equipped with an
arm between rooms and corridors. The blocks domain is used to rearrange blocks
in towers in different rooms. To manipulate blocks in a room 71, the robot has to
be in room r; too. Therefore the blocks domain operators (pick-up, put-down,
stack, and unstack) use a literal in their preconditions to impose such restriction.
Now, suppose that the agent wants to achieve the two goals g; = (on b a), and
g2 = (robot-at = r5) (where both blocks a and b are in room r3). If the agent
achieves go first then solving g; will violate go; because the robot has to move to
room r3 to be able to stack b on a. Consequently, g; has to be achieved before go.

We also want to keep the effects involving fluents from a domain D under the
control of D. The aim of this restriction is to localize planning within the do-
mains. This leads us to the second consideration:

— Consideration 2. If an operator o in domain D; achieves as a side effect
a literal [ from another domain D5, then an abstract version of o is created
in Dy where only the preconditions related to Dy are maintained, and the
effects related to Dy are posted as a task to be achieved in D;.

Ezample 2. Considering the previous example. In the navigation domain, mov-
ing the robot from one room to another while holding a block will also move the
block as a side effect. Therefore an abstract version of this operator is created
in the blocks domain to reflect this change to the state of the block.

2.1 Domains Representation

Let 2 = {D1,Ds,---, Dy, } be the set of the domains used by the planning sys-
tem. A domain D; is defined as a set of fluents F; and a set of operators O;. An
operator o € O; is a couple (Pre(0),Eff(0)), where Pre(o) are the preconditions
of the operator, and Eff(o) are the effects (positive and negative) of the opera-
tor. Following the consideration 1, the preconditions Pre(o) component has the
following syntax:
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Pre(o) :: ((local : ¢;)
(foreign : (Dj : v;)t)*)

where ¢; is a formula written only over the (local) fluents of the domain D,
and ; is a formula written only over the fluents of domain D; (i # j). This
syntax reflects that the preconditions of the operator o might have a local pre-
condition expressed as a formula over the fluents F; of the current domain,
and a list of foreign preconditions defined over the fluents of the other
domains.

If 0 is an abstract version of another operator in another domain D; (j # )
(consideration 2), then the effects of o have the following form:

Eff(o) :: ((local : eff;)
(foreign : (Dj : eff;)™)*)

where eff; are effects over the fluents of the local domain D; and eff; are effects
over the fluents of domain D; (j # 7).

Example 3. The following is an operator from the blocks domain to pick up a
block on the table at a location specified by the variable ?loc.

(pick-up ?b ?loc):

param: 7b - BLOCK, ?loc - LOCATION

Pre: ((local: (and (clear ?b)(on-table ?b)(arm-free)(object-at b = ?loc)))
(foreign: (navigation: (robot-at = 7loc)))

Efy: ((local: (and (holding ?b)(clear ?b = f)(arm-free = f) (on-table ?b = f))))

The foreign part of the precondition specifies that the fluent (robot-at = ?loc)
from the navigation domain has to be satisfied before executing the operator i.e.
the robot must be at the same location as the block.

Ezample 4. The operator (move ?l; ?ls) from the navigation domain is used to
move a robot from location ?l; to another location ?l. If the robot is holding
a block 7b, then the block changes location too (i.e. (object-at ?b =?l;)). So an
abstract operator has to be created in the blocks domain to reflect this value
change to the fluent object-at. When planning in the blocks domain, the abstract
operator is used the same way as the other operators to cause state change,
except that it does not appear in the plan as its real effects are achieved by
the operator (move ?l; ?l3) of the navigation domain (it is for this reason it is
qualified as abstract).

(move-block ?b 711 712): ABSTRACT
param: b BLOCK, 711 712 - LOCATION
Pre:  ((local: (and (holding ?b)(object-at ?b = 711)))
Eff:  ((local: (object-at 7b = 712))
(foreign: (navigation: (robot-at = 712))))
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2.2  Ordering Domains

Consideration 1 imposes on the multi-domain plan synthesizer to find a total
order on the set of domains 2 = {D;,Ds,--+, Dy, }. A domain D; is ordered
before another domain D; (noted: D; < Dj) if at least one of the operators of
D; uses in its preconditions a fluent from D;:

3f; € Fj,30 € O, : f; appears in Pre(o) = D; < D;.

The total order can be directly given by the user, or it can be extracted au-
tomatically as the result of a topological sort applied on a graph whose nodes
represent the domains and arcs represent the constraint <.

3 Multiple-Domain Planning Overview

To be able to synthesize a plan to solve a planning problem involving the achieve-
ment of goals related to more than one domain, we need first to find a total order
on the involved domains, and create abstract operators to fulfill the second re-
quirement as described in the previous section. Once this is done, we can solve
the planning problem in an incremental way: starting in the left-most domain
we solve its planning problem, then the resulting plan is passed to the next
domain (according to their order) where the abstract tasks related to the new
domain are solved in the order they appear in the plan. This process contin-
ues until reaching the right-most domain where the plan would be completely
refined.

3.1 Planning in One Domain

A planning problem in a domain D; is specified by the initial state expressed
as a conjunct of fluents from F;, a goal state expressed as a first order logic
formula, and the set of operators O;. To solve a planning problem to achieve
goals in domain D;, the planner associated with D; selects an instantiated op-
erator o € O; to insert in the plan, if its local preconditions are satisfied in the
current state s defined over F;. Since the foreign preconditions of the operator o
have also to be satisfied in their respective domains, the planner prepends to o
requests to achieve the foreign preconditions in their respective domains. If an
operator has more than one foreign component, the planner has to make sure
to order the requests according to the order of their domains. i.e. if the foreign
components of the preconditions Pre(o) of o are (foreign : (Dy : ¢1)(Da : 12))
such that D; < Ds, then as a result of selecting o, the planner inserts the fol-
lowing in the plan:

(achieve (D; : 1)) ;(achieve (D3 : 2)) ;0

where (achieve (D; : ¢;)) formulates a request to achieve the conditions ; in
domain D;.
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If 0 is an abstract operator with foreign effects i.e. (foreign : (D; : eff;)) €
Eff(0), then the planner inserts those foreign effects as requests to be achieved
in their respective domains i.e. (achieve (D, : eff;)). Note that in this case,
only the foreign effects of o are inserted in the plan as abstract tasks, but not o
itself.

Each request, posted on a foreign component defines an abstract task to
be achieved in its domain. This means that a plan might encompass unsolved
abstract tasks inserted by the planners of the antecedent domains. The unsolved
tasks are further refined when planning in the subsequent domains.

Ezample 5. The instantiated blocks domain operator (pick-up by r1) is applica-
ble in a state s if the local formula (and (clear by)(on-table by )(arm-free) (block-at
by=r1)) holds in s. If it is selected by the planner then, the planner prepends it
with the abstract task “(achieve (Navigation: (robot-at = r1))” which is solved
later when planning in the navigation domain.

3.2 Planning in Multiple Domains

Figure 1 gives an overview of how to synthesize a plan involving three do-
mains ¥ = {Di, Dy, D3} such that Dy < Dy < Ds. The goals involving
one domain are considered as an abstract task to achieve. Therefore, a task
is created on the final goals of each domain, giving us three initial abstract
tasks: Tinit(D1), Tinit(D2), Tinit(D3) where each Tipnit(D;)j=1,2,3 is formulated
as (achieve (D; : goals of D;)). The initial version of the global abstract plan
is created by ordering the three initial abstract tasks according to the order
defined over their respective domains i.e. Tt (D1) < Tinit(D2) < Tinit(Ds).

initial global (abstract) plan

Tinit (DV)| > [ Tinit (D2) | > | Tinit (D3)

= = Planning
Pinir (D) = Tu(D2) | ;a1(D); ax(D1):[ Tu(Dy) ] } inD,

:a1(D1); ax(DV;i[Ty(D3)] 5 [T (02) | [ T (03) |

\d
—_— A .
Pi(D) = DD ToD)]02D) P, () = DaD2):baD2) }Plﬁj‘,‘;‘jg
biP[ LD |i2(2) s D030 {0 bs(Da)ibuo);
r'd r'd }

——t
c1(D3);c2(D3) ¢3(D3);c4(D3);c5(D3) c6(D3);c7(D3)

Planning
in Ds

&DZ);CI (D3);02(D3);b2(D2);a1(D1);a2(D1);¢3(D3)s¢4(D3);¢5(D3)3b3(D2);b4(D2) ;%(&);ﬁ%

—
final global (refined) plan

Fig. 1. Global view of planning in three domains
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The plan synthesizing process proceeds top-down. It starts by planning in
D1 to solve T’init(Dl) which ylelds a plan Pinit(Dl) = Tl(Dg), al(D1)7 CLQ(DI),
T1(Ds3) that contains two abstract tasks T4 (Ds)(resp. T1(D3)) to be achieved
in Dy (resp. D3 ) and two instantiated operators of domain Di: ai(D1) and
asz(D1). Tynit(D1) is then replaced by Pj,it(D1) to produce a global plan which
is subsequently refined in Ds. When planning in Ds, the planner plans to solve
the abstract tasks related to Ds in the same order they appear i.e. it plans
to solve T1(D3) before planning to solve Tj,;(D2). The next step replaces the
abstract tasks just planned for by their corresponding plans (77 (D2) is replaced
by Pi(Ds), and T;,;:(D2) is replaced by Pyni:(D2)). The resulting plan is next
refined in the last domain D3 where abstract tasks related to D3 are solved and
replaced by plans that contain only instantiated operators from Ds. At this stage
the resulting plan is composed only of instantiated operators and it solves all the
goals related to the three domains. Please note that there might be backtracking
to the previous domain or just within a domain itself if a task can not be solved.

4 The Planning Algorithm

The multi-domain planning algorithm shown in Fig. 2. is a forward chaining
algorithm. It takes as input a set of initial states Sy, a set of goals to achieve G,
and a list of all the domains Domains given in the order defined in section 2.
The elements of Sy are the initial states of the domains involved in planning. G
comprises goal sets, each of which is related to one domain in Domains.

The algorithm builds for every domain D; € Domains a task which is simply
expressed as “(achieve (D; : gp,))”, where gp, € G is the goal set related to
domain D;. An abstract version of the global plan Global P is created by ordering
the tasks of the different domains according to the order of their respective
domains (the Init phase). After the initialization phase, the algorithm retrieves
the first domain D from Domains (step 2), and extracts all the abstract tasks
Drgsps from Global P related to D keeping them in the same order as they
appear in GlobalP (step 4). The procedure “Find-Plan” is called to compute
a plan Dpiqn to solve the ordered list of abstract tasks Drgsks in D (step 6).
Dpian is actually a list of sub-plans each solving one task in Dygsis. If all the
tasks in Dpgsis are solvable in D (i.e Dpjen # fail), then GlobalP is refined by
substituting every abstract task that appears in Dp,es by the portion of the
sub-plan that solves it (step 8) (this is a refinement step that iterates over the
elements of Global P to replace an abstract task related to D by a sub-plan from
Dyjan if it solves it).

The same process repeats with the rest of the domains until finishing all of
them. When all the domains are planned in, the global plan GlobalP is com-
pletely refined. GlobalP is returned as a solution for the multiple-domain plan-
ning problem (step 1). In case, there is no plan to solve the tasks in Dpgsks (step
7), The multiple-domain planner returns fail (step 13).

Since we might have backtracking when planning in the subsequent domains
(steps 9 and 10 ), “next(Find-Plan(sog € So, Drasks, D))" (step 6) is supposed
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Input:

So = {s0; : initial state of domain D;}

G = {gp; : goal set of domain D, }

Domains: the ordered list of domains to use
Output:

A plan that achieves G starting from Sp
Init:

Global P = build-and-order-abstract-tasks(G)

Algorithm MD-Plan(Sy, Global P, Domains)
1. if Domains is empty then return Global P endif

2. D = first of Domains

3. RD = rest of Domains

4. Drgsks = extract-tasks(Global P, D)

5. do

6. Dplan = next(Find-Plan(SOd € So, Drasks, D))
7. if Dpian # fail then

8. Global P = substitute-plan(Global P, Dpiqar)
9. RDypian = MD-Plan(So, Global P, RD)

10. if RDpian # fail return RDpqy endif

11. endif

12. until Dyian = fail
13. return fail
END

Fig. 2. The multi-domain planning algorithm

to give the next valid plan D4y, solving the abstract tasks Drpggks in domain D
i.e. a plan that has not been considered yet (the call to the function “next” can
be considered as iterating over a set of valid plans that solve Drggxs in D).
The algorithm used to solve an ordered list of tasks in one domain is outlined
in Fig. 3. It gets as input the initial state related to the domain sy, an ordered
list of tasks to solve T'asks, and the relevant domain D. The algorithm retrieves
the first task g from Tasks (step 2) and calls a planner to solve it starting in the
initial state so (step 5). If the task is solvable, the planner returns a plan P, that
solves it along with the goal state s, where the task g is satisfied. As mentioned
before, the planner can be specialized to solve planning problems related to the
current domain, or a generic planner (domain-independent). In the next recursive
call (step 7), the algorithm tries to solve the rest of the tasks starting from s,
this time i.e. the initial state for the next task is s;. The algorithm continues
recursively doing so until solving all the tasks where it returns success (step 1).
If success is returned then the plan that solves all the ordered tasks specified in
Tasks is the concatenation of the plans solving each task apart (step 9). Please
note that as in the previous algorithm, the use of next (in step 5) returns the
next valid pair (plan, goal-state). This means that next iterates over a set of
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Input:

So : initial state

Tasks : a list of ordered tasks to achieve

D : domain to use

Output:

A plan that achieves Tasks starting from s

Algorithm Find-Plan(so, Tasks, D)
1. if Tasks is empty then return success endif

2. g = the first task in Tasks

3. R = the rest of Tasks

4. do

5. (Py, sg) = next(PLANNER(so, g, D))
6. if Py # fail then

7. Pr = Find-Plan(sy, R, D)

8. if Pr # fail then

9. return Py; Pr

10. endif

11. endif

12. until Py = fail
13. return fail
END

Fig. 3. The Find-Plan planning algorithm

plans that can be generated by the planner to solve one planning problem. A
failure is returned (step 12) if the current task can not be solved, or if all the
plans that solve the current task make the subsequent tasks unsolvable.

5 Detailed Example

This section demonstrates the performance of the proposed approach in the two
domains navigation and blocks, shown in Fig. 4. A planning problem in the
navigation domain consists in moving a mobile robot, equipped with an arm,
from one location to another. The different locations are connected by doors that
can be open or closed. The blocks domain is the standard Al planning bench
mark domain used to form towers of blocks according to a set of constraints
over the positions of the blocks. In our experiment, it is the mobile robot that is
responsible of forming the towers of blocks. Furthermore, a block is constrained
to be at a specific location. Consequently, in order to execute an action in the
blocks domain, the mobile robot has to be at the same location as the relevant
blocks (the blocks that undergo the action). As a result of consideration 1, the
blocks domain is augmented with the abstract operator “move-block” derived
from the navigation domain operator “move-in”. In this scenario the blocks
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Domain: Blocks

(pickup 7b 71)
param: ?b - BLOCK, 71 - LOCATION
Pre: ((1ocal: (and (clear 7b) (on-table ?7b)
(arm-free) (object-at 7b = 71)))
(foreign: (mavigation: (robot-at = 71)) ))
Eff: ((local:(and (holding 7b)(clear 7b = f)
(on-table ?b = f) (arm-free = £))))

(putdown ?b 71)
param: ?b - BLOCK, 71 - LOCATION
Pre: ((1ocal: (and (holding ?b) (object-at 7b = 71)))
(foreign: (navigation: (robot-at = ?71) )))
Eff: ((Local:(and (holding ?b = f)(clear 7b = t)
(on-table ?b = t) (arm-free = t))))

(unstack ?a ?b 71)
param: 7a ?b - BLOCK, 71 - LOCATION
Pre: ((1ocal: (and (clear 7a)(on 7a 7b) (object-at 7b = 71)
(object-at ?7a = 71) (arm-free)))
(foreign: (mavigation: (robot-at = 71) )))
Eff: ((local: (and (holding 7a)(clear 7b)(clear ?7a = f)
(on 7a 7?b = f)(arm-free = £)))))

(stack 7a ?b ?1)
param: 7a 7?b - BLOCK, 7?1 - LOCATION
Pre: ((ocal: (and (holding 7a) (clear 7b)
(object-at 7b = 71)(object-at 7a = 71)))
(foreign: (navigation: (robot-at = 71))))
Eff: ((local: (and (holding ?7a = f)(clear ?b = f)
(clear 7a) (on 7a 7b) (arm-free))))

(move-block ?b 711 712): ABSTRACT
param: 7b BLOCK, 711 712 - LOCATION
Pre: ((local: (and (holding ?b) (object-at 7b = 711)))
Eff: ((Local: (object-at ?b = 712))
(foreign: (navigation: (robot-at = 712))))

Domain: Navigation

(move-in 71 72)
param: 7?11 712 - LOCATION
Pre: ((local: (and (robot-at = ?711)
(exists (?d - DOOR) (and (part-of ?7d 711)
(part-of ?d ?712)(closed 7d = £))))))
Eff: ((local: (robot-at = 712)))

(open-door 7d)
param: 7?d - DOOR
Pre: ((local: (and (closed 7d) (exists (71 -LOCATION)

(and (part-of ?7d ?71) (robot-at = ?71))))))

Eff: ((1ocal:(closed ?d = F))

Fig. 4. The blocks and navigation domains

39
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Fig. 5. Execution times for navigation and blocks domains

domain is ordered before the navigation domain as a result of considerations 1
& 2 stated in section 2.

To evaluate the generation of plans to solve planning problems involving both
domains (blocks and navigation), we compared execution times taken by our
approach against the execution times taken by the domain-independent planner
PTLPLAN [6]. In order to use PTLPLAN, both domains were collapsed in one
global domain. We used two versions of the multiple domain planning approach.
In the first version called MD-PLANT, the planner used to plan in the navigation
domain as well as the blocks domain is PTLPLAN. In the second version, called
MD-PLANZ2, we used a specialized planner to plan in the navigation domain,
and PTLPLAN to plan in the blocks domain. The navigation specialized planner
is a graph-based search algorithm that returns all the different plans that can
lead from one location to another one.

The tests were run on 10 problems, with different numbers of blocks and
rooms. The different problems involved forming towers of blocks in different
rooms which involved moving the blocks from their initial location to their goal
location. Figure 5 shows a bar chart diagram (where the values of the y axis
are logarithmic) as well as a table of the executions times in seconds taken by
PTLPLAN, MD-PLANT1, and MD-PLAN2 to solve the ten problems.

The diagram shows that the two versions of the proposed approach outper-
form PTLPLAN applied to the two domains as one global domain. It is also
worth noting that the second version MD-PLAN?2 is slightly faster than the first
version MD-PLAN1, which is clearly an advantage of using specialized domain-
dependent planners. The performance of the proposed approach against planning
in one global domain can be attributed to localized planning in the respective
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domains and solving interactions through the use of abstract tasks and their
orderings. We believe that many real world scenarios involve domains that have
little interaction such as the blocks and navigation domains, therefore defining
an ordered structure over them and solving problems local to each domain within
the domain itself would greatly reduce the complexity of search.

6 Related Work

In this section we review some of the systems close to the proposed approach.
Alpine [7,8] is one of the first systems proposed to automate the generation
of abstraction hierarchies for a specific planning problem by grouping literals
appearing in the preconditions and effects of operators according to predefined
constraints over operators conflicts. The partitions are then topologically ordered
forming a directed graph of abstraction levels. Alpine solves the planning prob-
lem in the simpler abstract space, then refines the abstract solution at successive
levels of detail by inserting operators to achieve the conditions that were ignored
in the higher levels of abstraction. Alpine relies on the “Ordered Monotonicity
Property” to refine abstract plans: the refinements of the abstract plans main-
tain the literals established in the higher levels of abstraction i.e. make sure not
to violate what it has been achieved at higher levels. But as mentioned in [15]
Alpine does not guarantee the construction of good hierarchies, because it ig-
nores variable binding conflicts. Our approach differs from planning with alpine
in different ways. First, Alpine plans with abstract spaces specific to planning
problems, ours on the other hand uses abstraction on the domain level. Second,
in Alpine each intermediate state in an abstract plan forms an intermediate goal
(task to achieve) at the next level of detail; in our approach an abstract plan
can have tasks to be achieved at all the next levels of detail.

Collage [10] partitions the overall planning problem into regions of actions
and constraints over them. The localized partitioning relies on building a DAG
of abstract partitions from constraints over actions and their scope i.e. their
relevance to actions of the plan associated with their region and its subregions.
The planning algorithm has to maintain the consistency between the different
search regions involving a considerable amount of jumping between them to cope
with their interactions.

STRPLAN [11] is also a planning system that decomposes the original plan-
ning problem into sub-regions. The system uses a language that allows it to
specify domain sub-regions and specify local planners to them. To find a global
plan, a centralized control module coordinates the local planners by solving con-
straints over their sub-regions plans.

Perhaps the most related approach to ours is the one reported in [1] where
the planning domain is partitioned into sub-domains and organized in a tree
structure. The planning process works in two stages: first, abstracted actions
coded as complex messages are computed at each sub-domain. Starting with
the leaf sub-domains, the abstract action are added to the parent sub-domain
until reaching the root sub-domain which contains the global planning problem
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goal. The root sub-domain uses all its actions and the abstract actions from
its descendant nodes to find an abstract plan that solves the original planning
problem. The second stage consists in refining the plan found at the root node by
replacing all the abstract actions in the root plan by a sub-plan from the actions
of the sub-domains. The main difference with our approach is the construction of
the abstract actions at every sub-domain to represent all plans the sub-domain
can find to affect the fluents it shares with its parents. In our approach, only
one plan is constructed at a domain level, this plan solves the goals of the
corresponding domain and introduces new order constraints on the subgoals to
be solved in the subsequent domains.

The proposed approach is also comparable to Hierarchical Task Networks
“HTN” Planners such as SHOP [2], SHOP2 [12] and UMCP [3]. However HTN
planning relies on an expert to hand-code the procedures that are used to refine
abstract tasks which is error-prone and not easy for certain domains. Our ap-
proach relies on first principles planning to build abstract tasks automatically
during planning.

7 Conclusion

We have presented in this paper an approach to synthesize plans involving mul-
tiple domains. The approach assumes that a total order of the domains exists to
perform plan synthesizing by hierarchically refining abstract tasks defined as sub-
goals in their respective domains. The main advantages of using such approach,
besides search complexity reduction, are its simplicity, and the possibility to use
specialized planners when planning in the different domains. It can also be seen
as an alternative to using one big global planning domain making it possible to
write sub-domains by different experts. The use of abstraction to solve subgoals
seems to be a natural way that humans use in their daily life when performing
tasks implying different fields of knowledge. The assumption of a total order
between domains limits the applicability of the proposed approach to domains
with the kind of interactions discussed in section 2. In our future work, we will
investigate how to extend the planning algorithms to domains that can not be
totally ordered, i.e when there are cycles between the domains in terms of the
relation <. We also envisage to integrate the presented framework with the plan
executor implemented on board our mobile robots.
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Abstract. This paper describes a method for constructing and evaluat-
ing teleo-reactive policies for one or more agents, based upon discounted-
reward evaluation of policy-restricted subgraphs of complete situation-
graphs. The combinatorial burden that would potentially ensue from
state-perception associations can be ameliorated by suitable use of ab-
stractions and empirical simulation results indicate that the method af-
fords a good degree of scalability and predictive power. The paper for-
mally analyses the predictive quality of two different abstractions, one for
applications involving several agents and one for applications with large
numbers of perceptions. Sufficient conditions for reasonable predictive
quality are given.

1 Introduction

Teleo-reactive (TR)-agents were introduced in [16] and further developed in [1]
and [18]. Such agents act in response to stimuli received from their environment
in such a way to predispose them towards achieving known goals. Their simplest
program structure is a set (called a policy) of mutually-exclusive production
rules of the form perception — action, usually intended to control durative be-
haviour: given a current perception the agent performs the corresponding action
until acquiring a new perception, whereupon it reacts likewise. We make two
key assumptions about TR-agents: they have (i) little or no access to cognitive
resources, such as beliefs or reasoning systems, and (ii) only partial observational
capability, in that their perceptions may not capture the whole environmental
state. A policy identified on this basis is implicitly goal-oriented. A significant
advantage is the relatively low resources a TR-agent needs for its internal logic;
unlike a deliberative agent [13] it does not need computational facilities capable
of executing complicated software. Moreover, since the agent’s policy is designed
to be effective whatever the state in which it finds itself, unexpected exogenous
changes in the environment do not cause difficulties. A framework for evaluating
policies was proposed in [3] and extended in [4, 5] to use abstraction to deal with
scalability, especially in multi-agent contexts. This paper investigates in Theo-
rems 1 and 2 the level of approximation entailed in using abstractions by giving
some sufficient conditions for reasonable predictive quality.

Our work is similar to, but different in approach from, those who seek to
optimize simple agents, comparable to our own, by the use of Markov Decision
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Processes (MDPs) or — when the agents cannot perceive the state’s entirety —
Partially Observable MDPs (POMDPs) [7,10,15]. The key assumption made
in these design methods is that beliefs about the agent’s current state can be
inferred on the basis of its previous action and/or current perception together
with beliefs about its previous state, thence enabling a suitable next action to
be chosen. This assumption yields algorithms capable of identifying policies that
are optimal or near-optimal relative to one’s ability to estimate probabilities
given the agent’s assumed powers of state observation. These methods are very
successful when the above key assumption holds, but are more complicated to
apply in the multi-agent context where the updating of each agent’s beliefs
has to consider the combinatorial impact of the other agents’ actions upon the
state. Our species of TR-agents are also different from those envisaged by [16],
where the design of a good policy rests on the assumption that the goal state
is totally observable. The content and ordering of the rules constituting the
desired policy are inferred by a reductive planning process that constructs and
orders rules so that the operation of each one may suitably enable the operation
of others, the whole intended to ensure that the goal state eventually becomes
achievable. We would also contrast our approach with those methods [9,12,
14,19, 21] that rely upon learning. Here the evolving experience of the agent
is effectively translated into merit-oriented weightings of the alternative actions
available to each perception. The outcome is typically a non-deterministic policy
allowing the agent to choose, for its current perception, between alternative
actions according to the weightings, which may be interpreted as the relative
probabilities of those actions being the best to perform.

The next section describes our framework and presents two abstractions.
Subsequent sections detail each kind of abstraction and analyse the approxima-
tions imposed on policy evaluation. The paper concludes with a discussion of
the ramifications of our results.

2 Overview of Framework

Any world in which our agents operate is capable of assuming various states.
An agent has three main features: a set P of perceptions it may have of its
environment, a set A of actions it may take and a policy relating actions to
perceptions. We here restrict the language of states, perceptions and actions to
be propositional. In any state o € O, the agent’s possible perceptions form some
subset P(o) C P. A situation is any pair (o,p) for which o € O and p € P(o).
We call the tuple (O, P, A) a TR-application. A perception does not, in general,
capture the entire world state and the agent normally perceives only limited
information about that state. The problem is therefore how to find an optimal
policy for a given goal for an agent that (generally) cannot recognize it.

2.1  Situation Graphs

Our framework is based upon a structure called the unrestricted situation graph
G, which shows the situations that a representative agent called self may be
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in and the possible actions it may take. Each directed arc in G is labelled by
some action. When the agent is in a situation (o, p) its possible actions depend
only upon p and form a set denoted by A(p). A key feature of our framework
is the process of pruning selected arcs from G according to some policy f, to
leave the f-restricted graph, denoted by Gy. This graph commits the agent to
take, in any situation, the action determined by policy f, and shows what will
actually happen. We assume that every node in Gy other than a goal situa-
tion has a successor, possibly itself. Goal situations are not given a successor,
as we are primarily interested in the effectiveness of policies to reach a par-
ticular goal and not necessarily in what happens afterwards. These things are
summarised in Definition 1 and illustrated in Example 1 using Blocks World.
(Of course, BlocksWorld is just an exemplar of a wide range of state transition
systems.)

Definition 1. Let (O, P, A) be a TR-application. The unrestricted situation
graph, denoted by G, is a directed graph whose nodes are all the acceptable sit-
uations admitted by the given application. A policy f is a total function from P
to A and the restricted situation graph, denoted by Gy, is the result of pruning
all arcs from G except those sanctioned by policy f.

Example 1. There are 2 blocks on a table and an agent may see either the table
(s0), or a block (s1), or a 2-tower (s2) if it exists, and may be holding (h), or not
holding (nh), a block. The state is a list of the heights of towers present on the
table. (Situations 4a, 3d and 3e are possible only if there are several agents and
are used in Example 2.) An agent may take one of the actions: wander (w), pick
(k) or put (t). See Figure 1. The goal for this example is that at least one agent
shall reach state 2 and see the 2-tower (i.e. be in situation 2¢). There is no action
prescribed for perception ¢, since it occurs only in the goal situation. In what
follows we will consider the policies Policy 1 and Policy 2, where Policy 1 always
takes the wander action and Policy 2 is givenbya —w, b—t, d—w, e—w.
Figure 2 shows restricted graphs for these two policies, in which all actions are
wander except as indicated. The wander action is special in that it permits an
agent to change its perception without a state change. Depending on the level
of abstraction of the model the result of wander taken from situation s may, or
may not, include s. In this example we assume it cannot be s.

s prves p | O() |A(p)
18[3 tu 3 St[lt] al 0.1 (3, sl gty {?(%)} ﬁf%
) bl s1, h| {3} |{t.u} ’ ) ’
of 12 |4 [ ooz bl 123 [ (| lelso,nbl{1, 2, 3}] ()

Fig. 1. States, Situations and Actions for Example 1
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Fig. 2. Policies 1 and 2 ( Example 1)

2.2  Measuring Policy Values
We measure the value of a policy f by the method of discounted rewards [10].

Definition 2. Let f be a policy for a TR-application (O, P, A), let s = (0,p)
be a situation in Gy and SS be the successor set of s. The discounted reward
V(s, f), effectively measuring the benefit of the agent proceeding from s, is given
by the formula V (s, f) = Xuess(Xsu X Lsu +7 X V(u, f))).

In the above, Ty, is the immediate reward for the action that takes s to u, xsu
is the probability that from s the agent proceeds next to u and the factor -~y
discounts the benefit of taking that action at s. We choose 0 < v < 1 to reflect
the diminishing returns to the agent of performing successive actions. Since we
are interested in policies that perform well, on average, from whatever state an
agent may find itself, these values of V' are used to compute the overall value
of f, denoted by Vyre(f), given by the average of V (s, f) taken over all nodes s
in G¢. We distinguish two reward values: R for an arc leading immediately to a
goal situation and 7 for all other arcs in G¢. The situations’ values are related
by a set of linear equations which, since v < 1, have unique finite solutions.
There are two issues of scalability for which we propose abstractions. The first
occurs when there are several agents. If every combination of agents were to be
represented, then each situation would need to include each agent’s perception.
For applications with up to m perceptions and n agents this could potentially
expand the number of situations and policies by a factor of n"™. We choose to
approximate the restricted graph by focusing on the actions of a single agent
called self (see[5]). Ramifications of the behaviour of other agents, necessarily
in the same state as self but possibly having different perceptions, are reflected
in Gy by the use of exogenous arcs (denoted by x-arcs). The second issue of
scalability arises when the environment’s size is increased — for example if there
are many blocks. The increase in the number of states is usually accompanied
by a gain in the number of perceptions and if every possible perception were to
be represented even a small increase in G leads to a large increase in the number
of policies. For example, having 10 blocks and allowing a single agent to have
the 11 distinct perceptors s0,...,s10 would give the agent 21 perceptions in
all and one million policies to consider. Results presented in [6] show that both
approximations still give reasonable predictions of relative policy values.
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3 Formulation for Several Agents

If one were to use our framework to explicitly represent all situations for a group
of n agents, the situations would necessarily consist of a state and an n-tuple
of perceptions. This is the approach taken in [15], for example. Even for the
simple case of BlocksWorld with 2 agents and 2 blocks, this gives 17 situations
as opposed to 6 situations for a single agent. Nevertheless, we could imagine (but
not actually construct) such an unrestricted situation graph; we call it the group
graph denoted GY. In [5] for several agents of the same kind ( i.e. having the same
policy and called clones), we introduced the self graph, denoted g;z, which focuses
on a single agent. This graph is a projection of the group graph over the first (or
any other) agent for a given policy and we showed it could be used to predict
a good joint policy. Here, we do not require agents to be clones and instead
call the various self graphs viewpoint graphs, denoted GV. It is desirable that
the joint policy value should be approximated well by the policy value obtained
for any single agent viewpoint. We illustrate for two small examples and in the
following section consider under what restrictions the values of policies might
be invariant when taken from the viewpoint any individual agent. The notion of
TR-~application is extended to allow for more than one kind of agent. We use the
notation (O, P, A, R), where R is a set of one or more policies and each agent
follows one of them (not necessarily uniquely). We assume here that all agents
possess similar perceptive capabilities, although that need not always be so.

Definition 3. Let (O,P, A,R) be a TR-application with n agents. The list
[(0,p1)y .-, (0,pn)] is a valid group if in state o it is simultaneously possible
for each agent i to have perception p;. The set Sy of possible situations is given
by Sy = {(0,p1,---,pn)l[P1,---,Dn] is a valid group for the n agents }. The set S,
forms the nodes of the group graph G9 and its transitions T, are derived from the
possible transitions any agent could make from each situation: s = (0,p1,...,Pn)
is connected to s’ = (o', p},...,pl) by action a® if some agent i in the group can
take the action a’ in s to bring about s'. In particular, agent i, when in the in-
dividual situation (o,p;) and taking action a®, causes itself to make a transition
to (0',p;) and other agents to their perceptions given by s'.

That is, each valid group of simultaneous perceptions gives rise to a situation in
the group graph and each valid transition of a single agent gives rise to a transi-
tion in the group graph. The probabilities on each transition are proportional to
those of the individual transitions; e.g. if Agent 1 has a non-deterministic action
from some situation (o,p;) with two equi-probable outcomes, then if there are
3 agents these transitions would each have probability 1/6 from any group situ-
ation (o,p1,p2,ps3). When there are several agents it is possible that selfs best
policy is to wait for some other agent to change the state, whence it continues.
We introduce the x action for this purpose. To obtain a viewpoint graph from
a group graph, first a particular policy is fixed for each agent and a restricted
group graph formed by omitting all arcs except those of the policy given for each
agent. Then a projection of the restricted group graph is taken from the point
of view of a particular agent ¢. It is also possible that, from the view of self, the
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state is exogenously changed by another agent. We call this passive updating of
self and label such transitions (in the viewpoint graph) also by x.

Definition 4. Let (O, P, A, R) be a TR-application with n agents and G9 be a
restricted group graph based on the set Sy of situations of the form (o,p1,...,Pn)
and having set of transitions T,. Then G} is the viewpoint graph for agent i
obtained from GY9 as follows. The situations of G are projections of those in GI
and have either the form (a) (0,p;), in case (0,p1,...,pn) is not a goal situation
of G9, or the form (b) (o,p;) in case it is, where agent j is responsible for
(0,p1,...,pn) being a goal situation. The set T, of transitions in G is given by
T, = {((0,p:), (o', 05))}, where (0,p1,...,Diy..,pn) to (0,01, o Dhy. . D)) 1S
a transition in G9 and the action for a transition not due to the action of agent
1 1s x, and otherwise is the action taken by agent i.

A situation in a viewpoint graph may correspond to several situations in the
group graph from which it is derived. The abstraction function ab, a mapping
from situations in GY to situations in Gv, records the correspondences and induces
an equivalence relation F, on the situations in G9. The E, equivalence class of
a situation s in G9, denoted [s], is {s'|ab(s) = ab(s')} = ab~'(ab(s)). In other
words, the inverse images of situations in G are the F, equivalence classes of
the situations in G9. The transition probabilities for GV (for Agent i) are derived
in proportion to those in G9 as follows: for a transition between sl and s2 in GY
due to an action a® of Agent i, the sum of probabilities between each situation in
ab~*(s1) and a situation in ab=!(s2) in GY due to action a’ of Agent i is computed
and divided by |ab=1(s1)|. If there are x-arcs between s1 and s2 due to actions
of some other Agent j, j # ¢ the sum of probabilities over all corresponding arcs
between ab~!(s1) and ab=!(s2) is divided by |ab~!(s1)| to give the probability of
an x-transition between sl and s2. The sum of all resulting probabilities of arcs
from sl will be 1, since in GY9 the probabilities summed to 1 for each situation
in ab=t(s1).

Example 2 (extends Example 1). The group graph G9 is shown in Figure 3,
including the various situations, in which the leftmost arrow indicates the status
(either seeing the table or a block, and holding (H) or not) of Agent 1 using
Policy 1 and the rightmost the status of Agent 2 using Policy 2. All probabilities
are 0.5 unless shown otherwise and all actions are w except as indicated. There
are 17 nodes; nodes 5, 6 and 17 are designated goal situations, when at least
one agent is seeing the 2-tower (situation 2c¢). The joint policy, obtained using
GY9, has the following approximate node values: v(1) = v(2) = v(3) = v(4) =
v(8) = v(9) = v(10) = v(16) = v(11) = —10; v(5) = v(6) = v(17) = 0;
v(7) = v(12) = v(14) = 90; v(13) = v(15) = 59 and total value of 298/14.

To form the viewpoint graphs we use abstraction maps ab; and aby between
situations in GY9 and G”1 and G"2, which are shown together with the viewpoint
graphs for the two agents in Figure 4. All probabilities are 0.5 unless indicated
otherwise. From the view of Agent 2 there would initially appear to be no possible
exogenous transitions to passively update Agent 2, for since Agent 1 can only
wander it cannot alter the state. However, GY2 has a reflexive x-arc from 3b to
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Fig. 3. Group Graph for two Agents using Policies 1 and 2 ( Example 2)
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Fig. 4. Viewpoint Graphs G"1 and G2 for Example 2

itself arising from the transitions in GY between situations 12 and 14 due to the
actions of Agent 1. We illustrate the computation for situation 3b in G¥2. The
arcs between situations 12 and 14 and the respective arcs on these nodes all
arise from the wander action of Agent 1 and summing these probabilities in GY
gives 1. Similarly, the result of summing the probabilities on transitions in GY
between 12 or 14 and any of the goal situations, corresponding to a transition
in G¥2 between 3b and 2c, is 1. The size of ab=1(3b) is 2, giving probabilities of
0.5 on both arcs from 3b in GY2. The correspondence between situation 6 and 2¢
for Agent 2 is obtained by case (b) of Definition 4. On the other hand, from the
view of Agent 1, there are some obvious exogenous behaviours. When Agent 1
is in situation 3d or 3e, then Agent 2 would necessarily be in 3a or 3b and, if in
3b, Agent 2’s action would be put, so constructing a 2-tower.
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If the joint policy is now evaluated from G2, the node values obtained are:
v(3b) = v(2e) = 90, v(3a) = 59, v(2¢) = 0 and other node values = —10.
The total value is 189/8, quite close to the value obtained for G9. However,
if a weighted average of the node values is taken, according to the number of
elements in ab~1(s), for each s, the average is (9x —10+2x90+1x90+2x 59 =
298/14. If the joint policy is now evaluated from G"1, the node values obtained
are: v(2e) = 90, v(3d) = v(3e) = 74.6, v(2¢) = 0 and —10 for the remainder.
The weighted average is also 298/14, again exactly the value of the joint policy
obtained from the group graph. This desirable circumstance does not always
prevail, as the next Example shows.

Example 3. This example is from PlanksWorld, in which two identical agents
aim to dispose of a plank, for which each must be holding a (different) end. This
time the joint policy values for the group graph and viewpoint graphs differ.
The states and situations are given in Figure 5. Each agent is capable of the
actions wander, drop, lift, x and dispose. The situation (0,a) is the goal
and the states 1-3 are given by describing whether the single plank is (f)lat,
(t)ilted or (r)aised. The agents can perceive whether they are holding an end
(h) or not (nh), seeing a held or unheld end (sh or su) and, if holding, whether
the plank is raised (r) or not raised (nr). It is assumed that an agent can see
a held end if it is holding. Policy 3 specifies the following actions for each per-
ception: ¢ - w, ¢ —1li, e —w, f —x, g — di and the viewpoint
graph (projected over Agent 1) and a fragment of the group graph are given
in Figure 6, in which all actions are wander unless shown otherwise and unla-
belled transition probabilities are 0.5. If the joint policy value is computed from
the group graph, the approximate node values obtained are: v(la,la) = 35;
v(le,la) = v(la,1le) = 42; v(le,1c) = 55; v(0a,0a) = 0; v(3g,3g9) = 100;
v(2f,2¢) = v(2¢,2f) = 80; v(2f,2a) = v(2f,2¢e)) = v(2a,2f) = v(2¢,2f) = 44
with total policy value of 610. If instead the joint policy value is computed from
the viewpoint graph G, the node values obtained are: v(la) = 36, v(1lc) = 50,
v(2a) = v(2e) = 44, v(2f) = 56, v(2¢) = 80, v(3g) = 100 and v(0a) = 0 with
approximate total weighted value of 608. (e.g. the probabilities of the two arcs
incident to situation 2f are derived from the single transition to (3¢, 3¢g) (the one
to 3g) and the 9 transitions between situations (2f,2¢c), (2f, 2e) and (2f, 2a) (the
reflexive arc). In fact, the wander arcs contribute 1/3 and the x-arcs contribute
0.5 to the reflexive arc.) Although the two values obtained for the joint policy
are very close, they are not equal. In the next section we give criteria which are
sufficient to force the two computations to give identical values. These criteria
are satisfied for Example 2, but not for Example 3.

States States P O(p) A(p) p O(p) A(p)
g ol als0, nh|{0, 1, 2}| {w, x} fish, h, nr| {2} | {dr, x}
1 [[f]] 2 H clsw, nh| {1, 2} {11, w, x}| |g|sh, b, r|{3}|{di, dr, x}

)

sh, nh| {2} {w, x}

Fig. 5. States, Situations and Actions for Example 3
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4 Relationship Between Group and Viewpoint Graphs

Examples 2 and 3 above have shown that the policy values of a group graph and
viewpoint graphs derived from it need not be equal. In Example 3, the value of
node 2f (56) was exactly one-third of the sum of the values of the three nodes in
the equivalence class ab=1(2f) (80+44+44). This isn’t a coincidence, but does
not always obtain; for instance, also in Example 3, the value of node 1c¢ (50) is not
one-half the sum of the values of the two nodes in ab~!(1c) (55+42). Theorem 1
states some sufficient conditions for the above property to hold.

Theorem 1. Let G9 be a group graph and G° be the viewpoint graph for one of
the Agents. Let s be a situation in G¥ and N be the set of situations in GY9 that
are mapped to s by ab. Assume also that the rewards on arcs directed to nodes
in the same equivalence class of G9 are equal. Then the quantity v(s) x |N| is
equal to Xpenv(n) if either of the following two circumstances holds.

(i) For each m in G9 not in N and not of type (ii), and for which there is an arc
to m from some node in N, there is an arc from every node in N to every
node in [m], the E, equivalence class of m, all with the same probability, and
either the probabilities on all those kind of arcs are equal for every node in
[m] or every node in [m] has equal value.

(i1) For each m in G9 not in N such that the E, equivalence class of m is a
singleton, exactly one node n in N has an arc leading to m, which is n’s only
non-reflexive arc, all other arcs from situations in N lead to other nodes in
N and the probabilities on these are in certain proportions: for eachn’ € N,
n' # n the probability of the reflexive arc must be pr + p,., where pr is the
same for all n and the probability of transitions between other nodes in N
and n' is pyr.
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Proof. If N is the set of situations in G9 that are mapped by ab to s in G¥, we
shall write ab(N) = s. We shall also write v(s) for the value of a situation as
computed by the discounted reward formula. The conditions on (i) imply that if
any node in NV satisfies them, then each node in N satisfies them and except in
the trivial case, when N and [m] are both singletons, the two cases are disjoint.
Let the size of N be k and each node in N have a bundle of arcs to nodes m
belonging to some set DM. We shall denote the value of ab([m]) in G¥ by vM
and the reward for reaching a node in N or ab(N) by rN and for reaching a
node in [m] or ab([m]) by rm.

Case (i). Each node in DM is of the type described in (i), hence for each node
m € DM the probability p,,, of the arc directed to m from n € N is the same.
The sum of the probabilities of arcs from a node n € N to other nodes in NV is
1— X epm(Prm) and in the viewpoint graph G the probability from ab(N) to
itself is 1 — K, where K = X,,c par(Prm)- There are two sub-cases:

(a) In GV the probability of the transition from ab(N) to ab([m]) is K,,, where
K, 18 #[m] X prm, where pp, is the same probability for the transition in
GY from each node in N to each node in [m] and #[m] is the size of [m]. The
values of the nodes in [m] may be different, but their mean is Vm.

(b) In G the probability of the transition from ab(N) to ab([m]) is Xy, cppm) K =
K,,, where K,  is the same probability for the transition in G9 from each
node in N to m/. The values of the nodes in [m] are equal and denoted by
Vm.

Case (a). Using the discounted reward formula on ab(N) (= s) in GV gives
v(s) = v(1 = K)v(s) + v meav(prr)(Km.Vm) + (1 — K)rN 4+ K.rm, and hence
v(s) = (YZmeav(pi) (Km.Vm) + (1 = K)rN 4+ K.rm)/1 —~v(1 - K)) = C/(1 —
Y(1 = K)), where C = v X, cap(par) (Im-Vm) + (1 = K)rN + K.rm.

The values in G9 of nodes in N can be computed as the sum of the con-
tributions derived from transitions to nodes in N, denoted by rest,, and other
transitions (to nodes in DM ). The probability from a node in N to each node
in [m] is K, /#[m]. The second contribution is the same for all nodes in N and
is given by v X c pa (K /#[m]) X epmyv(m’)) + Krm + (1 — K)rN = C.

It is required to show that X,enyv(n) = k X v(s). For each n € N, rest, =
Y eN (Pan' - v(0) = YEnenN (Pan (C + resty)) = YOXnen(Pan) + Y E0en
(pnn/ -TeStn/) = 70(1 - K) + Vzn/eN(pnn/ -T65tn/)'

Now, Y,env(n) = kC + Xpenrest,, where X, cnyrest, = ky.C(1 — K) +
v(1 — K)X,enrest,. This follows since the full expression for X, ¢ yrest, has a
unique solution (and one solution is to set all rest, equal). Hence X,cnyv(n) =
kC+ (-C(1 = K)/(1 =71 = K)) = kC/(1 =~(1 - K)).

Case (b). This time the value of v(s) is v(1 — K)v(s) + (1 — K)rN + K.rm +
Y mean(pm) (K. Vm) and hence v(s) = C/(1 — v(1 — K)).

In the group graph GY9 the probabilities of transitions from nodes n € N to
each node m’ € [m] are the same, denoted by K, , although they may be differ-
ent for each m’. Then, for anoden € N, v(n) = vZm1c pm (X em) (Km . Vm) )+



54 K. Broda and C.J. Hogger

K.orm+(1-K)rN +rest, = vXpcpm (Km . Vm) + Korm4(1—K)rN +resty,
where again rest,, is the sum of contributions to v(n) derived from arcs to nodes
in N. The first three parts are the same for every n and their sum is C. It is
again required to show that X,ecnyv(n) = k x vN and similar computations for
rest, can be made as before, giving the result.

The proof of Case (ii) is simpler and makes similar sorts of calculations. O

Example 2 meets the criteria of Theorem 1 whereas Example 3 does not. For
instance, consider G1 of Example 2. For s = 3a and N = {1,2}, [m] = {3,4}
and case (ia) is satisfied. For s = 3d and N = {14, 15}, [m] can be either {12,13},
and case (ia) is satisfied, or {5} and case (ib) is satisfied. On the other hand, in
Example 3 criteria (ii) is satisfied for 2f: pr = 0.5 and p,, = 1/6 for both (2f, 2a)
and (2f,2e). For 1a it is not satisfied, as the reader can easily check.

Although seemingly restrictive, in practice the restrictions on probabilities
are often nearly satisfied. Even when not, the proof method shows that, unless
the relevant probabilities are wildly variant, the two quantities will still be fairly
close since the viewpoint policy averages the various probabilities as if they were
equal. This result gives some foundation to our empirical results, obtained in [6],
which show that the ranks of the viewpoint policy values, computed using G,
are a good guide to the ranks of the group policy values, computed using G9.

If the criteria are not met some variation should be expected between the
joint policy value as computed by the group and viewpoint graphs. In particular,
paths may exist in the viewpoint graph that are not realizable. The viewpoint
graph of Example 3 contains the path {la,le,2e,2¢,3g,0a}, which abstracts
the real path {(1a, 1l¢), (1¢, 1c), (2¢,2f), (2¢,2f), (39, 39), (0a, 0a)}, but also im-
plicitly includes impossible paths. For instance, after starting from the possible
transition {(la,la),(1lc,1a)} Agent 1 cannot move to 2e. In this example ev-
ery path in the viewpoint graph corresponds to at least one path in the group
graph, but if there are 2 planks and 2 agents, then paths can be found in the
viewpoint graph that do not correspond to any realizable path. The viewpoint
graph has abstracted away details of the groups, and although there may be arcs
leading through situations {s1, s2,s3} the group that occurs as a result of the
first transition may not be a correct one from which to make the second. We
call this the group incoherence problem. In extreme cases, the valuation of nodes
that apparently, but incorrectly, lead to a goal situation can inflate the policy
value, so that a bad policy appears better than it really is. On the other hand,
the extreme case appears to be fairly rare, so the benefit of viewpoint graphs for
scalability outweighs the disadvantages due to the group incoherence problem.

5 Policy Abstraction

There is another way to obtain abstractions. Consider an agent operating in a
BlocksWorld with many (e.g. 10) blocks; assuming just the actions wander, pick
and put there are 21 perceptions and over a million policies to evaluate. The
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number of policies can be reduced by generalising the perceptions. For example,
it could be that an agent can, and only needs to, detect a tower of height = 0, < 5
or = 5 or > 5. This generalisation can be seen either to be an enhancement of the
capabilities of the agent, for example by allowing it to perceive disjunctions, as
in seeing a tower of height 1, 2, 3 or 4 (the perception < 5), or by giving it more
power to sense the height of a tower; or to be an increase in expressiveness of the
policy language, for instance by using first order logic and allowing perceptions
of the form {size(z),x < 5,z > 0}. Either way, not only do the perceptions need
to be abstracted, but also several states may need to be combined in order for
situations of the form (o, p) to be meaningful. In [4] we investigated this kind of
abstraction, and our simulation studies showed it still gave good ranking charts
for policies in cases where the number of policies was too large for individual
computation. The discrepancies are again due to a coherence problem and to
explain it we consider what approximations are involved in calculating policy
values for such abstractions.

5.1 Generic Situations

From any TR-application (O, P, A), we can form a generic TR-application, in
which the actions remain unchanged, but the states and perceptions are gener-
alised, which means to introduce, respectively on P and O, equivalence relations
E, and E,. The E,(FE,) equivalence classes are called generic perceptions(states)
and if perceptions p; and py are E, equivalent they will always specify the same
action. We could require that an agent is capable of taking the same actions for
all perceptions in each F, equivalence class, or that the policy specifies such an
action, but it is not necessary, since if, for some generic perception P, the action
specified is not possible for an actual perception in P it could be modelled by a
failed action. For each generic state O and generic perception P the generic sit-
uation S = O x P is disjoint from all others, which is important since it ensures
that no policy can specify two different actions for any real situations.

Example 4. This can be illustrated straightaway for Blocks World by using a
generalisation with just two generic states [e3] and [ne3], denoted by 1 and 2,
and three seeing perceptors, sO, s3 and sx, the latter denoting “seeing nei-
ther the surface nor a 3-tower”. This yields the 6 perceptions a — f given
by {(s0, k), (sz, h), (s3,h), (s0,nh), (sz,nh), (s3,nh)}. This abstraction suits the
goal of building a 3-tower from an arbitrary but sufficient number of blocks. The
situations and transitions for the policy whereby the agent, if seeing a tower of
height neither 0 nor 3 (sx), can pick if not-holding (nh) or put if holding (h),
but in all other cases wanders, is shown for 3 blocks in Figure 7 (perception c is
impossible). The intended goal is the situation 1f (i.e. ([e3], (s3,nh)).

A comparison with any standard restricted graph G for 3 or more blocks
shows a second incoherence problem called piecewise incoherence. In the generic
restricted graph there is a path through situations {2e, 2b, 1f}. However, this
path could never actually occur — both parts of the path from 2e to 1f are
possible, but not in succession. The situation 2e corresponds to an agent seeing
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Fig. 7. Using generic situations (Example 4)
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a tower of height 1, 2 or >4 and no 3-tower in existence. The policy specifies
the pick action causing the agent to move to 2b. In fact, that means the agent
could not have been seeing a tower of height 1 or of 4 when in situation 2e and
the agent must now be seeing a tower of height 1 or >4, for which the policy
specifies a put action. The outcome of this action in this particular circumstance
could never be 1f. In G there would be nodes from which a 3-tower cannot be
built due to pick and put actions between situations where the agent sees a
tower of height 2 or >5 and is not holding. For 3 blocks and the above pol-
icy G has a value of 51.6, whereas the graph in Figure 7 has a value of 71.5
( where node values are weighted by the number of concrete situations repre-
sented by each generic situation and assuming equi-probable transitions in both
cases).

The reader may think the problem could be overcome by enhancing the
agent with an extra sense, e.g. allow it to recall its previous action, so dis-
tinguishing between having arrived at 2b via 2e or via 2a. This splits the b
perception into two, one in which the agent remembers its previous action was
wander, and one in which it remembers it was pick, but it results in non-disjoint
generic situations unless a similar perceptive capability obtains in the standard
graph G and illustrates the care that must be taken when constructing generic
graphs.

5.2  Evaluating Generic Policies

This section discusses the relation between the policy value of a generic graph,
and the policy value of the non-abstracted graph for the corresponding policy.
The analysis made in the proof of Theorem 2 will also yield a criterion that
guarantees no piecewise incoherence in a generic graph.

Definition 5. Let (O, P, A) be a TR-application and E, and E, be equiva-
lence relations on the sets O and P respectively. Then (E,, E,, O,P,A) is the
generic TR-application based on (O, P, A) and the set of generic situations is
{S|S = O x P}, where O and P are, respectively, E, and E, equivalence classes.
(O, P, A) is called the parent application.

The elements of a generic situation that also exist in its parent application
are called concrete situations. The probability of a transition from S1 to S2
in a restricted generic graph G, is computed as the mean of the probabilities
of transitions from a concrete situation in S1 to a concrete situation in S2
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and is denoted by x*. We also make two assumptions: (a) the rewards on any
transition leading to an element of a generic situation S1 are the same, and (b) if
generic policy F specifies P — a, then the corresponding policy f for the parent
application specifies the rules p — a for every p € P. Assumption (a) imposes
the restriction on the equivalence classes E, and E, that goal situations and
non-goal situations cannot be equivalent.

Theorem 2. Let G, be a restricted graph for a generic TR-application and G
be the restricted graph for the parent application using corresponding policy f.
Then, for each generic situation S in G,, k X Vg = Xicsv; if the probabilities
on each transition between S and U in G, are the average of the transition
probabilities between eachi € S and j € U. (Vs and v; are the values of situations
S and i in G, and Gy and k is the number of concrete situations in S.)

Proof. For simplicity, zero probabilities are assigned to non-existent transitions.
Let S be a generic situation in G,. Then the sum of values of concrete situations
in S'is given by iegvi = vXies(X o peq, (Xij i)+ Zies(Xicp veq, Xii Tii):
where r;; is the reward on the transition between ¢ and j if it exists (and is
irrelevant otherwise). By the assumption (a) each of r;; is the same for and
j €U and all i € S, so the contribution due to reward values can be simplified
to Xy, (rsuLies jeuXis)-

The quantity k x Vg is given by k’yEUGGa (X% Vo) + kZUEGa(XgU.rSU),
The contributions due to reward values are the same in both cases for each U
since k X x%, = k(Xies,jevxij)/k. The other contribution to X;cgv; can be
written as kv, ;g (xs;v;), where xg; is the mean of the transition proba-
bilities between each concrete situation in S and each concrete situation j € U.
If the xg; are further averaged over each j, each to be equal to xsy, then the
contribution becomes k(X GGGXSUEjerj)' By comparing the expressions for
k x Vg and X;csv;, it can be seen they would be equal if Vg were the average
of v;, 1€ 8. |

In other words, the policy value using generic situations is obtained by assum-
ing that the transition probabilities between generic situations are an average
of the actual transition probabilities and that the node values are an average of
the concrete situation values. Therefore, in the case that some transitions do not
exist, piecewise incoherence is a possibility. In cases where the transition prob-
abilities between the concrete situations making up two generic situations vary
widely and/or the values of the concrete situations also vary widely, the generic
policy will not be a good reflection of the policy using concrete situations.

In Example 3, notice that if there are many blocks then the probability
of situation 2b occurring when the agent is seeing a tower of height > 4 is
much increased. Thus the probability of the arc between 2b and 1c¢ would, in
practice (i.e. if measured by simulation), be quite small compared with that
of the arc between 2b and 2e. This would cause a corresponding reduction in
the policy value and improve the approximation, since the generic policy value
over-estimates the contribution to the value of 2b made by the arc to lc. The
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absolute policy values are not as crucial as their relative ranking — even if the
policy values computed using G, are higher than those computed using the full
graph Gy, if the values are ranked in the same order in both cases this will
still allow for the best policies to be found. In experiments conducted so far
(see [4,6]) this has been the case. This abstraction has some similarities with
that introduced in [11], where a theorem similar to Theorem 2 is quoted. In
the circumstances when a transition in G, between (O, P) and (O’, P’) implies
there is a transition between every (o,p) € (O, P) and (¢',p’) € (O, P") generic
policies always give reasonable approximations. Piecewise coherence cannot then
occur, since the destination in (O’, P’) of a concrete transition from (O, P) would
always be a source for the next transition from (O’, P") to some other generic
situation. Abstractions satisfying this criterion were considered in [17] and arise
naturally when the goal situation is also changed to reflect the changes in the
environment due to scaling; e.g. in BlocksWorld this kind of goal might be to
build a tower of all available blocks, or in PlanksWorld it might be to dispose of
all planks however many there were initially.

6 Conclusions and Future Work

We have analysed the approximations involved in using abstractions to evaluate
policies for TR~agents, in order to test the predictive quality of such abstractions
in contexts involving several agents and/or many situations. In the case of sev-
eral agents we approximated the group behaviour by focusing on a single agent
and Theorem 1 shows that the policy values are generally affected and may be
subject to group incoherence. This phenomenon is more likely in case there are
few states and many perceptions for each state; however, as we assume fairly
simple agents, this circumstance appears to be relatively uncommon, which is
borne out by our empirical studies in [5,6]. Moreover, it is less likely in case
of a large number of agents, since all perceptions of a given state will be more
common, in turn making exogenous transitions in G¥ more likely to occur in
practice.

We are investigating the benefits obtainable when agents possessing differ-
ent perceptive capabilities operate in the same environment. For example, some
agents may be endowed with global perceptions, and be capable of few ac-
tions, whereas other agents may be capable of more specific actions and per-
ceptions. The former kind of agent could act as an information source for other
agents.

We also analysed the approximations due to perceptual abstractions and
we found they could give rise to piecewise incoherence and that this was a more
common phenomenon than group incoherence. However, empirical results in [4, 6]
show that in case the transition probabilities are well estimated, the abstract
policy values give fair relative predictions for exact policy values. The results
depend on the particular generic situations chosen and this is a topic for our
future investigation, together with a comparison of our work with that of [11].
well under changing environmental conditions.
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Abstract. Soft constraints are flexible schemes for modeling a wide
spectrum of problems. A model based on a hierarchy of abstractions
of soft constraint problems has been proposed before. We describe an ef-
ficient implementation of this scheme aimed at solving real life problems.
Our system is integrated into the Mozart language in such a way that
user control of the abstraction mechanism is straightforward. We explain
how we adapted the theoretical results for our purposes and describe
the experiences in this adaptation. We give comparative analysis of our
system with respect to an implementation using soft constraints without
the abstraction mechanism. Our tests show good performance results for
over-constrained problems in real settings.

1 Introduction

A wide variety of problems can be conveniently represented as constraint sat-
isfaction problems (CSP). However, when criteria such as preferences, costs or
priorities are involved, more flexible models are needed. In many real world ap-
plications criteria of these kind arise naturally, so a good deal of research has
been going on for at least one decade in extending CSP to account for them.
Researchers have mainly focused on devising a solid theoretical basis for includ-
ing so-called “softness” in constraint models. Less attention, however, has been
payed to the practical side of this line of research.

A mechanism based on problem abstractions for handling “softness” within
the concurrent constraint paradigm has been proposed recently ([2, 3]). The idea
is to take the concrete (usually hard to solve) CSP and modify it in such a
way that an abstract easier problem is obtained. From the solution of the latter
valuable clues are obtained for guiding the search of a solution to the former.

To our knowledge, no programming tool has yet been proposed to effectively
use the abstraction scheme in real world problems.

We describe a tool written in Mozart ([16]) for abstracting semiring-based
constraints. Our abstraction procedures are fully integrated into the Mozart pro-
gramming language. This approach gives us a number of advantages, including
efficiency, correctness (derived from theoretical results), the ability of tackling
real-life problems and the possibility of distributing these tools to a large commu-
nity of users. Our main contribution is thus a tool that supports the abstraction
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(© Springer-Verlag Berlin Heidelberg 2005
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scheme and is fully compatible with Mozart’s search model. The tool provides
two procedures: one for abstracting a fuzzy CSP into a classical one and another
one to bring information from the abstract domain back to the concrete one.
This information is very useful to enhance the pruning action of soft constraint
propagators, such as those proposed in [6]. We present experimental results on
real problems that show the significance of our abstraction procedures for im-
proving efficiency. These results exhibit a good performance of the abstraction
procedure, and provide clues about the incidence procedure parameter values
have on global performance.

Structure of this Document. The document is organized as follows. In the next
section we give a concise account of the theoretical results on semiring-based
constraints, including its abstraction scheme. The Mozart model and features are
also introduced there. In section 3, our procedures for abstracting soft constraints
in Mozart are presented. Analysis and results are described in section 4. In
section 5 a revision of related work is given. Finally, a set of concluding remarks
as well as some ideas of future work are discussed in section 6.

2 Preliminaries

2.1 Semiring-Based Constraints and Its Abstraction Scheme

Here we briefly summarize the most important definitions and properties of the
semiring framework for soft constraints. Theoretical results for abstraction are
also outlined. A more complete description of these topics can be found in [1,2].

A semiring is a tuple (A, 4+, x,0,1) where A is a set and 0,1 € A. +, the
additive operator is closed, commutative and associative. Moreover, its unit ele-
ment is 0. X, the multiplicative operator, is a closed, associative operation, such
that 1 is its unit element and a X 0 = 0 = 0 X a holds. In addition, x distributes
over +. A c-semiring is a semiring with some additional properties: x is com-
mutative, + is idempotent, and 1 is its absorbing element. The idempotency of
+ is needed in order to define a partial ordering <g over the set A, which serves
to compare different elements of the semiring. Such a partial order is defined as
follows: a <g b iff a + b =D.

A constraint system is a tuple C'S = (S, D, V), where S is a semiring, D is a
finite set and V is an ordered set of variables. Given a constraint system CS =
(S,D, V), where S = (A,+, x,0,1), a constraint over CS is a pair (def, con),
where con C V is called the type of the constraint, and def : Dlc"l — A is
called the value of the constraint. In this way, a soft constraint problem (SCSP)
P over CS is defined as a pair P = (C, con), where C' is a set of constraints over
CS and con is a subset of V.

Consider any tuple of values ¢ and two sets of variables I and I', with
I' CI.t Lf, denotes the tuple projection of ¢ w.r.t. the variables in I’. Let
c1 = (defi1,cony) and ca = (defa,cony) be two constraints over C'S. Then, its
combination ¢1 ® ca, is the constraint ¢’ = (def’, con’), where con’ = cony U cons
and def'(t) = defi(t 197) x defo(t 1™ ). Moreover, given the constraint

coni cong
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¢ = (def,con) and a subset w of con, the projection of w over ¢, written ¢ |, is
the constraint (def*, w), where def*(t*) = Z{tmgyn:t*} def(t).

Given an SCSP P = (C, con) over a constraint system CS, the solution of
P is a constraint defined as Sol(P) = (Q C) {con where Q) C' is the extension
of x to a set of constraints C. Moreover, an optimal solution is a pair (t,v)
such that def(t) = v, and there is no ¢’ such that v < def(t'). Sometimes
it is enough to know the best value associated with the tuples of a solution.
This is called the best level of consistency: Given an SCSP P = (C,con), the
best level of consistency for P is defined as blevel(P) = (Q C) |p. P is said
to be consistent if 0 <g blevel. In the case where blevel = a, P is said to be
a-consistent.

By using the ordering <g over the semiring, we can also define a correspond-
ing ordering on constraints with the same type. Consider two constraints cy,co
over a constraint system C'S, and assume that con; = cong and |con;| = k. Then
¢1 Cg ¢ if and only if, for all k-tuples ¢ of values from D, def(t) <g defa(t).
This notion, and the fact that the solution is a constraint. is also useful to define
an ordering on problems. Consider two SCSPs P; = (Cy, con) and P, = (Cs, con)
over C'S. Then P Cp Py if Sol(P) Eg Sol(Ps).

C-semirings that cast most known variants of CSPs are listed below:

— Classic CSP: ({false,true},V, A, false, true)
— Fuzzy CSP: ({z | € [0, 1]}, maz, min,0,1)
— Weighted CSP: (RT, min, +, +00, 0)

Abstraction for Semiring-Based Constraints. The idea of abstraction has been
adapted for semiring-based constraints in order to relate two versions of an SCSP.
This relationship is formally given by a Galois connection.

Let (C,C) and (A, <) be two posets (the concrete and the abstract domain).
A Galois connection {(o,7) : (C,C) = (A, <) is a pair of maps a: C — A and
v : A — C such that 1) o and + are monotonic, 2) for each x € C, = C v(a(z))
and 3) for each y € A, a(y(y)) < y. Moreover, a Galois insertion (of A in C)
(a,7) : (C,E) = (A, <) is a Galois connection where v -« = Id 4. It is possible
to establish a relationship between operators in abstract and concrete domains.
This relationship is called local correctness. Let f : C™ — C be an operator over
the concrete domain with an abstract counterpart f. Then f is locally correct
wort. fif 3z, .. 2, €C, f(21,.. . 20) Ey(f(a(zr),. .. alz,))).

Using this definitions, an abstraction from an SCSP P over a certain semiring
S to another SCSP P over the semiring S can be defined, in such a way that
lattices associated to S and S are related by a Galois insertion. Specifically, we
wish to define an abstraction that preserves the structure of the SCSP. Consider
the following concrete SCSP P = (C, con) over the semiring S, where

- S=(A,+,%,0,1) and
— C ={co,...,cn} with ¢; = (con;,def;) and def; : DIo™il — A.

Its abstract counterpart is defined by an SCSP P = (C, con) over the semiring
S where:
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- §=(A,+,%,0,1);
— C={a,...,¢,} with & = (con;,def;) and def; : DIo"| — A4,
— if L = (A, <) is the lattice associated to S and L = (A, <) the lattice
associated to S, then there is a Galois insertion (a,~) such that a : L — L;
X is locally correct w.r.t. x.

Next we list some interesting properties of this abstraction scheme. We will
heavily use them on the rest of this paper. In the following we will consider a

Galois insertion (a,v) : (4,<g) = (4, <3)

1. The abstraction of P is the problem P = a(P). Applying the concretization
function to this abstraction, we obtain the problem ~(«(P)). These two
problems are related by a precise property:

P Cs y(a(P)).

This guarantees that when passing from P to v(a(P)) no new inconsistencies
are introduced.

2. If applying the abstraction function and then combining gives elements which
are in the same ordering as the elements obtained by just combining, the
abstraction is said to be order-preserving. This fact ensures that an optimal
solution in the original problem is also an optimal solution of the abstract
one.

3. For any abstraction, it is possible to compute approximate bounds for the
valuation of an optimal solution in the concrete domain using an optimal
solution of the abstract problem. This is, given an optimal solution of the
abstract problem (say ¢) with valuation 7, we can find an upper and lower
bound of an optimal solution for the concrete problem P. Such bounds will
be v(v) and the value of ¢ in P.

For the abstraction that maps fuzzy to classical CSP there are also other in-
teresting results. In this case, the abstraction function is defined by choosing
a threshold # within the interval [0, 1], and mapping all elements in [0,6] to 0
and all elements in (6, 1] to 1. This abstraction is order-preserving, so we can
ensure that the set of optimal solutions of the concrete problem is a subset of
the optimal solutions of the abstract one.

1. if a(P) has no solution, problem P has an optimal solution with associated
semiring fuzzy value worse than or equal than 6.

2. if P has a solution tuple ¢ with associated semiring level 6, and «(P) has no
solution, tuple t is an optimal solution for P.

2.2  Constraint Programming in Mozart

Mozart [16] is a concurrent constraint programming language that provides sev-
eral functionalities, including support for distributed programming, constraint
solving, as well as supporting tools for programming. Many real-life problems
have been successfully solved with Mozart (see for instance [7, 8]). It also provides
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efficient built in constraints over finite domains of integers as well as convenient
mechanisms for creating suitable propagators and new constraint systems [11].
Next we provide a concise introduction to Mozart [13, 10, 15].

Mozart considers basic and non-basic constraints. A basic constraint is a
logic formula interpreted in some first-order structure. These are chosen so that
entailment can be efficiently decided. Non-basic constraints are relations built
from combination of basic constraints. Basic constraints are kept in a monotonic
store. Non-basic constraints are enforced by propagators [15]. A propagator is a
computational agent encapsulating a filter function that deduces consequences
(i.e. new basic constraints) of the non-basic constraint. A propagator for a con-
straint ¢ ceases to exist if ¢ is entailed by the current store or if the conjunction
of the current store and c is unsatisfiable. In that case, the propagator for c is
said to be disentailed, since —c is entailed by the current store [10]. Typically,
propagators share variables. This causes propagators to trigger each other by
writing new basic constraints to the store. This continues until a propagation
fixed-point is reached [10]. The order in which the propagators add information
to the store does not matter.

Computations in Mozart take place in computation spaces. A computation
space consists of a set of propagators connected to a store. A space S is said to
be stable, if no further propagation in S is possible. A stable space S is said to be
failed, if S contains a propagator that disentails some constraint. A stable space
S is solved, if S contains no propagators [13]. Moreover, a variable assignment
is called a solution of a space if it satisfies the constraints in the store and all
constraints enforced by propagators.

Constraint propagation is not a complete solution method. To achieve com-
pleteness, the space must be distributed. Given a stable space S (not failed nor
solved), a new constraint ¢ is chosen, and two new spaces must be solved: S A ¢
and S A—ec. It is important to choose ¢ such that both new spaces trigger further
constraint propagation. By proceeding in this way we obtain a search tree, where
each node corresponds to a space and each leaf corresponds to a space that is
either solved or failed. Since the alternatives depend on variables of the problem,
a finite search tree can be assumed [15].

A distributor is an agent implementing a distribution strategy on a sequence
T1,...xT, of variables. When a distribution step is necessary, the strategy selects
a yet to be determined variable in the sequence and distributes on this variable
(i.e. imposes a new constraint over the selected variable). There are several
possibilities for distributing over a variable x. For instance, a naive distribution
strategy will select the leftmost undetermined variable in the sequence, and adds
constraints of the form z = v and = # v as alternatives, for some value v.

A Semiring-Based Constraints Solver for Mozart. A soft constraints solver based
in fuzzy CSPs has been recently implemented for Mozart (an initial implementa-
tion is described in [6]). Although its low-level implementation is fully orthogonal
w.r.t. Mozart propagation model, the fuzzy CSP solver constitutes an indepen-
dent module.

The main feature of the solver is the replacement of the concept of constraint
definition given in the framework above (which explicitly associates a semiring
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value with each tuple) by a notion that is suitable for an inexpensive implemen-
tation. Such a notion is defined by three components: a distance function wired
to each constraint, giving an idea of how wrong a tuple is; a penalization factor
associated to each constraint, representing the cost that must be payed in the
overall valuation when such a constraint is violated, and a cut level representing
the minimum level of consistency the whole constraint problem must have. The
last two notions are user parameters. By the interaction of these notions it is pos-
sible to express soft problems in an straightforward way. Valuations associated
with each tuple of variables are then computed using the mentioned penalization
factor and the distance function. In this way, a small amount of valuation data is
stored for a constraint problem while providing propagation algorithms (tailored
for each constraint) that discard all tuples valued under the cut level. This is
how the cut level influences solving processes for soft constraints.

Currently, the module provides soft versions of several kinds of constraints, in-
cluding relational operators and arithmetic constraints, using a syntax very simi-
lar to the one provided by Mozart’s finite domain constraints. Search procedures
handling valuations of the solutions are also included in the module. Extending
the module (either with constraints and/or search procedures) is straightforward
given the constraint propagation interface provided by Mozart [11].

3 Abstracting an SCSP Using Mozart

Finding solutions to a soft constraint problem using conventional constraint pro-
gramming techniques (i.e. backtracking based ones) turns out to be expensive for
several reasons, including the larger search space associated with such a prob-
lem, the need of storing and calculating over valuation data and the reduced
value pruning action that soft propagation algorithms provide. Clearly, these
aspects prevent users from using soft constraints in large or medium size prob-
lems. Therefore, finding efficient mechanisms for solving soft constraint problems
is crucial for tackling real life problems.

In this scenario, abstraction frameworks constitute a feasible alternative to
solve and/or to approximate soft constraint problems in a reasonable amount of
time. In particular, the abstraction scheme outlined in section 2.1 provides strong
theoretical elements for performing this task. The idea is to process the abstract
problem and to extract information from that process, in such a way that the
solving process for the concrete problem can be accelerated using information
about solutions and/or its approximations. The abstraction scheme can relate
several instances of the semiring-based framework such as classical CSP, fuzzy
CSP and others. This means that an efficient solver for one of the instances could
be used to solve one of the others, under certain assumptions.

In this section we present a Mozart implementation of the abstraction from
fuzzy to classical CSPs. This particular abstraction has many interesting prop-
erties that can be exploited in an implementation. Moreover, it is possible to
take advantage of the efficient classical mechanisms provided by Mozart to im-
plement an expressive soft constraints instance like fuzzy CSPs. Under this idea,
there is no need of implementing an additional module or library for including
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soft constraints in Mozart programs. Using theoretical results outlined before,
we implement procedures to:

— abstract a fuzzy CSP into a classical one (the alpha function in a Galois
insertion),

— process an abstract problem using an iterative procedure and,

— bring information from the abstract domain to the concrete one (the gamma
function in a Galois insertion).

In the following we provide a complete description of these procedures, re-
lating the theoretical results described before with the particular features of our
Mozart implementation.

3.1 Alpha Function

Alpha function converts a fuzzy CSP into a classical one without affecting the
structure of the original problem. By doing so, a mapping between semiring
values of the fuzzy CSP (real numbers between 0 and 1) into the two possibles
values for the classical CSP (0 or 1) is performed. Those values over a threshold
are mapped to 1, while the other values are mapped to 0. In our case, such a
threshold is the cut-level of the given problem.

In the semiring formalism every tuple has a semiring valuation associated
with it. In our implementation, however, those valuations are computed during
execution time using the cut-level of the given problem and the penalization value
of each constraint. Consequently, to convert a fuzzy CSP into a classical CSP
we modeled it using classical constraints, in such a way that those tuples with
valuation over the cut level (of the fuzzy problem) are accepted and all other
tuples are rejected. To make this conversion in an automatic way, we defined
a classic constraint with a special feature for every fuzzy constraint. Such a
feature, so-called slack value, is an extra parameter that is computed with the
penalization value of every constraint, the cut-level of the whole problem and
the maximum valuation possible in the fuzzy semiring (i.e. 1). These constraints
with slack values are called classical counterparts. In this way, the objective of
the alpha function is to compute the slack values for every classical counterpart
and to ensure that they accept (and reject) the same values than the fuzzy CSP
does.

The intended semantics of the fuzzy constraint must guide the definition
of a classical counterpart. In the case of arithmetic/mathematical constraints,
a general rule for classical counterparts consists in relaxing the (in)equalities
included in them. This can be done by replacing equalities with inequalities
and by carefully including slack values in expressions containing inequalities.
Note that this unified relaxing criteria is valid for a wide range of constraints,
from simple ones like X <Y to complicated polynomial constraints. For other
types of constraints, e.g. the all-different constraint, the relaxation criteria
may differ, since several factors may induce or suggest different definitions of
classical counterparts for a single constraint. The following example illustrate
these ideas.
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Example 1. Consider the fuzzy constraints Exp; < Exps and Exp, + Exps =
FExps, where each Exp; is an arithmetic expression. The alpha function computes
the slack value which, along with the classical counterpart, is used to convert a
fuzzy CSP into an equivalent classic CSP. For instance, the classical counterparts
for the less than constraint are as follows:

Exzpy < Exps+S1 N Expy —S1 < Exps

All tuples accepted by the less than constraint are also accepted by its associated
classical counterpart. For instance, let X,Y be two finite domain variables and
FExpy = X and Expy =Y, assuming a cut level of 0.8 and a penalization level
of 0.05. The slack value (S1) is then equal to 4 (obtained by (1.0 — 0.8)/0.05).
The tuple (X = 3,Y = 2), valued with 0.9 in the concrete domain, is accepted
in the abstract one as both 3 < 2+ 4 and 3 —4 < 2 hold. On the contrary,
(X =1,Y = 1) is rejected as both inequalities do not hold (i.e. 7 < 1+ 4 and
T—4 & 1). All tuples accepted by the classical counterpart of a fuzzy constraint
are valued with 1. On the other hand, the counterpart for the plus constraint is:

abs((Exp; — Expy) — Exps) < Ss.

where a possible case could be Exps = Z (another finite domain variable), and
So depends on the penalization factor associated with the constraint.

3.2 Gamma Function

Given a solution to the abstract problem, the gamma function returns its val-
uation in the concrete domain. This function is used in certain stages of the
iterative procedure where the concrete valuation of a solution may improve its
performance.

Example 2. Consider the constraints in the previous example and the tuple
(X =4,Y = 3,Z = 5) (inconsistent with both of them), assuming a penaliza-
tion factor of 0.07 for the plus constraint. For this tuple, the gamma function
will return an overall fuzzy valuation of 0.86 = 1.0 — 0.14. This penalization
is obtained by considering the maximum between the violation cost induced by
the plus constraint (0.07 x 2 = 0.14) and the induced by the less than constraint
(0.05x2=0.1).

3.3 An Abstraction Procedure for Soft Constraints in Mozart

Here we describe the implementation of the abstraction scheme proposed in [2].
We explain how alpha and gamma functions fit in our implementation. We use
the fact that by finding solutions to the abstracted problem we are finding some
possible optimal solutions for the fuzzy problem.

The iterative procedure aims at finding the smallest interval containing the
valuation of the best solution to the fuzzy problem. The size of the interval
is reduced during the procedure until a desired size is obtained. The interval’s
bound to be modified depends on the outcome of a search process over the



68 A. Delgado, J.A. Pérez, and C. Rueda

Algorithm 1. Iterative Algorithm for Abstracting Soft Constraints
IterativeSolving := proc (P, Delta, Inter, t, BCut, Option)
if Validatelnterval(Delta, Inter) == true then
return BCut
else
Spc = StartSpace(P, Inter.low)
Answ = SearchOneAbstract(Spc)
if Option == Eager then
NewlInter = EagerMode(Inter, t, Answ, Gamma(Answ))
else if Option == Binary then
NewlInter = BinaryMode(Inter, t, Answ)
else if Option == Pessimistic then
Newlnter = PessimisticMode(Inter, t, Answ)
if Answ == nil then
IterativeSolving(P, Delta, Newlnter, Option, BCut)
else
IterativeSolving(P, Delta, Newlnter, Option, Inter.low)

abstracted problem. A very important feature here is that the cut level used in
this search process is given by the lower bound of the current interval. Therefore,
the value of this bound is fundamental for overall performance of the iterative
procedure. There are three ways of defining the lower bound of the interval (¢
represents the lowest cut level accepted by the user).

1. Binary Mode. If there is a solution in the abstract domain for the interval
[l,u], then such an interval becomes [(I + u)/2,u]. Otherwise, the interval
becomes [max(t, 2] — u),].

2. Eager Mode. This mode takes into account information from the Gamma
function to define the lower bound of the interval. When there is a solution,
the new lower bound will be the maximum between the concrete valuation
of the found solution (obtained by using Gamma function) and the lower
bound given by the Binary mode. Therefore, a lower bound at least as good
as the one obtained with the Binary mode is guaranteed.

3. Pessimistic Mode. This mode is tailored to those difficult cases when there
is no solution or when a solution is very close to 0. Given an interval [I, u], if
there is no solution then the interval becomes [v, ] where v is the highest cut
level of a solution obtained so far. If such a cut level does not exists, then
v = t. This mode allows rapidly finding whether there is no solution for the
given problem.

Algorithm 1 sketches the iterative procedure described before. It assumes the
following input data.

— P, a Mozart procedure asserting a set of soft constraints.

— Delta, a real number representing the desired precision.

— Inter, a tuple representing an interval. In the first iteration, this interval is
defined as (low : init,upp : 1.0), where init is an initial cut level given by
the user.
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— t, the lowest cut level acceptable for the user.

— BCut, a real number representing the best cut level found so far.

— Option, a string representing the mode of defining the lower bound of the
interval.

A single invocation of the algorithm can be explained as follows.
Validatelnterval checks the possibility of reducing the input interval given by
the precision Delta. If the size of the interval is less than Delta, then the best
cut level found so far is returned. Otherwise, a computational space is created
(function StartSpace). The abstract version of constraints in P is asserted in this
space, which takes also the lower bound of the interval as cut level. A search pro-
cess (function SearchOneAbstract) is then performed over this abstracted prob-
lem. The result of this search as well as the lower bound reduction mode are
used for determining the new interval. The answer of the search process is used
in choosing the recursive call of the algorithm.

Note that the variant of the algorithm is the size of the interval. As this size
decreases in each iteration (this is guaranteed by functions Eager and Binary),
termination of the algorithm is guaranteed by Validatelnterval. When no solution
is found, nil is returned.

The iterative procedure provides safe information about the best cut level
in the concrete domain. Using that information, a search procedure over the
concrete domain is invoked.

Using the Abstraction Procedure in Mozart Programs. The internals of the ab-
straction procedures are transparent to the user. Constraints are written in the
same way as in the concrete (fuzzy CSP) solver. Invocation of the usual search
procedures must be replaced by a call to the abstraction procedures.
Abstraction procedures are fully parameterizable. The desired interval size,
the initial cut level as well as the mode for defining the lower bound of the interval
can be easily provided by the user. Moreover, both abstract and concrete solvers
can use graphical Mozart facilities like the Browser [12] and the Explorer [14].

Example 3. Let us recall the soft constraint problem discussed in examples 1
and 2. Procedure Test sets up the corresponding abstraction scheme.

proc{Test Sol}

XY Z in % Declaration of variables

X::1#6 Y::1#5 Z::3#10 % Domain specification

{Soft.plus X Y Z 0.07} % Constraint declaration

{Soft.less X Y 0.05}

Sol = sol(x:X y:Y z:Z) % Defining a Solution Variable
{FD.distribute ff Sol} % Distribution strategy (first fail)

end
% Abstraction procedure invokation:
{Soft.abstract Test 0.01 0.6 ’Eager’}

In this case, the abstraction procedures use a precision of 0.01, with an initial
cut level of 0.6 and using the Eager mode for selecting the lower bound.
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Note that since the abstraction procedures are completely written in Mozart
including them in constraint programs is straightforward. The proposed abstrac-
tion scheme could also be implemented in any other constraint programming
language.

4 Experimental Results

In this section we illustrate the functionality and features of our abstraction pro-
cedures. We study one of the instances of the Radio Link Frequency Assignment
Problem (RLFAP) provided by CELAR (the French “Centre d’Electronique de
I’Armement”) [4]. This problem fits well in our study for several reasons. First,
it gives us the opportunity of testing our programming technique with a real
life situation. The instance we are dealing with is over-constrained and com-
plex (in terms of the number of variables and constraints). On the other hand,
it is a well known benchmark, accessible to anyone interested in solving over-
constrained situations in constraint programming and artificial intelligence. The
purpose of the presented examples is to illustrate the behavior of the abstraction
procedures in over-constrained problems, but not to find their optimal solutions.
Tests in this section were performed on a machine with a 2.4 GHz Xeon
Processor running Mozart 1.3.1. All results are the average of 25 runs.

Description of the Problem. The Radio Link Frequency Assignment Problem is
a finite domain problem consisting in assign communication channels to radio
links from limited spectral resources. In the model, there is a variable for each
radio link, and its domain is composed of the available frequencies. Some soft
and hard constraints are asserted:

— x; = fj, asserting that a radio link x; has a pre-assigned frequency f;. When
the pre-assignation cannot hold, a cost a; must be payed.

— |x; — xj| > d;; . This constraint must be imposed when radio links z; and
x; may interfere together. In case this constraint cannot be satisfied, a cost
b; must be assumed.

— |z; — x| = 0;;. It defines a duplex link. This is a hard constraint asserting
that the difference between the distance of the frequency assigned to x; and
the frequency assigned to x; must be equal to d;;.

We are interested in studying the behavior and performance of our abstrac-
tion procedures in the sixth instance provided by CELAR (simply known as
CELAR 6). This instance tries to minimize the sum of violation costs. This
optimization criteria is not considered in our tests, although it is possible to
include it by giving an additional parameter to the distributor. According to
[4], during the process of finding lower bounds for CELAR 6, a set of hard but
small sub-instances were extracted. These instances are ideal for benchmarking
as they are reasonably hard to solve and can be tackled by current algorithms.
They are described in Figure 1 (Left).
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Instance | No.of | No. of Graph Starting Time | Valuation
Vars. | Const. | Density Level (s)
6-0 32 | 223 (16) | 0.4697 0.6 2.38 nil
6-1 28 314 (14) | 0.8306 0.5 173.20 nil
6-2 32 369 (16) | 0.7439 0.4 180.73 nil
6-3 36 439 (18) | 0.6968 0.3 156.81 0.31
6-4 44 499 (22) | 0.5274 | Total time [ 513.12 s. ‘

Fig. 1. Left: Instances taken from CELAR 6. The number of hard constraints in each
instance is given in brackets. Right: Finding a good cut level with a fuzzy (concrete)
solver for instance 6-2

Comparing Abstract and Concrete Solvers. In our first test we compare our ab-
straction procedures and a soft constraints solver in terms of the required exe-
cution time for finding an acceptable cut level. That is, using the soft constraint
solver we simulate the abstraction procedures by guessing some values for a cut
level and running the soft constraint solver with this level. The purpose is to
find the greatest cut level for the problem in the smallest amount of time. In
this test, we consider instance 6-2 assuming violation costs of 0.015 for all soft
constraints in the problem. Hard constraints were modeled using efficient FD
constraints provided by Mozart. Both systems start with a tentative cut level
of 0.6. The abstraction procedure considers a precision value of 0.001 using the
Eager mode to select the lower bound.

Results are displayed in Figure 1 (Right) and 2. For the soft constraint solver,
we picked four different values as tentative cut levels and only found a solution
in the last one. Around eight minutes were needed for this. Note that this value
is not necessarily optimal.

The results of the abstraction procedures are quite different. Besides the
significant time improvements, the abstraction procedure is able to find a lower
bound for an optimal solution. This bound is higher than the valuation obtained
by the soft constraint solver. The procedure needed nine iterations to achieve a
very precise interval. It is interesting to observe that in only one iteration (the
eighth one) the value of the best solution found so far was better than the lower
bound given by the binary mode.

Choosing Appropriate Initial Cut Levels. Our second test compares the perfor-
mance of the abstraction procedures for instances 6-0 and 6-4. There is a justifi-
cation behind this decision. According to [5], with the exception of instance 6-0,
every instance 6-¢ is a sub-instance of 6-¢ + 1 and therefore presumably simpler
to solve. That is, 6-0 and 6-4 are the only two disjoint instances, and we can
consider instance 6-4 as the harder one.

The purpose of this test is threefold. First, a valid concern about our pro-
cedures is to determine to what extent a given initial cut level influences the
performance of the system. We studied initial cut levels ranging from 0.3 to 0.9.
The influence is shown in terms of the number of iterations needed to reach the
interval. Second, a particular question regarding RLFAP is the effect of violation
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Fig. 2. First test: Evolution of the abstraction process for the instance 6-2. Lower
when the concrete valuation of the found solution
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l Iteration [ Lower Bound [ Upper Bound [ Solution?

1 0.6 1.0 No
2 0.4 0.6 No
3 0.3 0.4 Yes
4 0.35 0.4 Yes
5 0.375 0.4 No
6 0.3625 0.375 No
7 0.35625 0.3625 No
8 0.353125 * 0.35625 Yes
9 0.355 0.35625 Yes
Total time 5.11 (s)

bounds are decorated with an
was higher than the binary criteria

ko

Inst. | Best Interval Found | Viol. Starting Cut Level
(starting with | Cost 0.3 0.5 0.7 0.9
0.1)
6-0 [ [0.579883, 0.581641] | 0.02 268.82 (7) 276.47 (7) 254.99 (8) [ 307.90 (8)
[0.685, 0.690625] [0.015|] 270.29 (7) 229.89 (5) 252.37 (8) [ 268.79 (9)
[0.789062, 0.803125] [ 0.01 275.05 (8) 243.01 (7) 280.41 (6) | 243.10 (8)
6-4 [0.14, 0.142188] 0.02 || 59715.67 (6) | 59216.90 (7) [117335.54 (8)| 50697.48 (8)
[0.353125, 0.38125] |0.015 || 84727.96 (3) |120690.90 (8)| 55923.91 (8) | 108410.14 (9)
[0.57, 0.571094] 0.01 |[ 85533.80 (8) | 83780.74 (7) | 81762.58 (8) | 49214.30 (8)

Fig. 3. Second Test: Each cell contains the execution time (in milliseconds) and the
number of iterations required for finding the optimal cut level. Precision was set to
0.005 for all executions

costs on system performance. We tested three violation costs: 0.01, 0.015 and
0.02. Finally, we wish to obtain a concrete measure of the time performance of
our system. In particular, we are interested in studying execution time when
both violation costs and the starting cut level vary as described before.

Results for this test are displayed in Figure 3. The second column contains a
reference interval obtained by running each one of the instances with an initial
cut level of 0.1. This shows the effect of violation costs over the interval bounds.
Note that the actual interval obtained using the cut levels in Figure 3 can be
slightly different from this reference interval.

Our first observation is that instance 6-0 is significantly simpler to solve than
instance 6-4, as conjectured in [5]. With respect to the first purpose of the test,
by using the reference interval it is possible to infer that underestimating the
cut level when choosing a starting cut level is a good strategy. This fact is more
evident in instance 6-0 with violation costs equal to 0.015. Although in practice
the cut level is unknown, it could be an appropriate strategy. Another issue is
the interaction between both the number of iterations and the starting cut level
with the valuation costs. For executions having high violation cost (e.g. 0.02),
as the value of the staring cut level increases, the number of iterations increases
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too. This tendency is not very clear in other instances using different valuation
costs.

On the relationship between violation costs and time performance, it is not
possible to establish a defined behavior from our results. In only one instance (i.e.
instance 6-4, with violation cost of 0.01) a clear tendency can be observed. This
is a very significant fact, as this is the (theoretically) most expensive instance.

From the results it can be inferred that there is no clear relationship between
the number of iterations and time performance. This phenomenon can be ex-
plained by the unique features of each problem and by the strong influence slack
values have in search processes over the abstracted problem. This also applies
for the relationship between violation costs and time performance over problems
using the same starting cut level. Although there are cases where the behavior
is as expected (e.g. instances 6-4 and 6-0 with starting cut level 0.3), where
the average execution time increases as violation costs decrease, most executed
problems does not exhibit a defined global behavior.

5 Related Work

The relationship between constraint satisfaction and abstraction formalisms has
been previously studied. Most related to ours is [3]. There, an iterative procedure
is proposed for solving fuzzy CSPs having a classical solver. Several differences
and similarities between our work and [3] can be appreciated:

1. Our implementation and the system reported in [3] are completely different.
Our scheme stores just a value for each constraint (the penalization factor), a
very inexpensive mechanism compared with the costs of storing and handling
valuations associated with each tuple in a soft constraint problem, as done
in [3]. In contrast with [3], our proposal considers abstraction as a complete
programming technique that extends a constraint programming language.
Using our procedures, a soft constraint problem can be solved with the same
Mozart program, using either the abstract or the concrete solver. Finally,
our abstraction procedures are flexible as standard means for extending the
classical counterparts are provided. To our knowledge, these capabilities are
not available for the system described in [3].

2. With respect to the iterative procedures, options provided by our algorithm
are similar to the three versions presented in the algorithm given in [3] (i.e.
A1, A2 and A3). However, our modes offer additional features that may
improve solution processes. First of all, in our procedures the user is allowed
to give both a desired precision for the working interval and a value of the
lowest cut level accepted. None of these options is supported in [3], where
only a fixed precision of 1/10 is available in the Al algorithm. As the A2
algorithm in [3], our eager mode also takes into account the valuation of
the best solution found to calculate the new lower bound. Nevertheless, we
also consider the value of the lower bound given by the binary mode in
this calculation, since such a value could be better than the value given by
the best solution so far (see the first test in previous section). Finally, our
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pessimistic mode improves algorithm A3, since when there is no solution the
algorithm continues looking for the best cut level until reaching the lowest
cut level given by the user. In contrast, algorithm A3 in [3] stops as soon as
no solution is found.

3. Time performance is very similar in both systems. Two important issues
should be considered here. First, as said before, the level of precision used in
[3] is small compared to ours. Clearly, such a precision influences the number
of iterations needed for a problem and thus influences overall performance.
Second, the fact that we are dealing with a real-life problem (instead of
solving randomly generated problems as in [3]) gives more significance to
the time performance of our system.

Another related work ([5]) focuses on finding intervals framing optimum so-
lutions. This work is done in the context of the Valued CSPs and studies how
to find upper bounds on the optimum by computing the distance between the
value of the best solution found so far and the best lower bound produced so far.
In some sense, our work and [5] shares a similar philosophy regarding the role
of an optimum, as we intend to approximate it in a very precise way instead of
trying to find it.

Finally, in [9] AbsCon, an object-oriented tool for solving CSPs using abstrac-
tion principles is presented. In that work, the objective is to solve CSP using a
classical constraint solver (based on backtracking) possibly in cooperation with a
hybrid solver. It considers abstraction as an approximation relation, as opposed
to abstraction mappings or Galois connections.

6 Conclusions

In this paper we have used a recently proposed theoretical CSP abstraction
framework to construct a complete and robust programming tool for the Mozart
programming language. This framework, based on a Galois insertion, is imple-
mented in Mozart in a very clean way, providing straightforward user control.
We analyzed the implementation of alpha and gamma functions in the Mozart
search model. Implemented abstraction procedures are highly compatible with
an existing module for solving semiring-based constraints in Mozart [6]. This
provides a clean interaction between, on the one hand, soft and hard constraints
(provided by Mozart), and, on the other hand, our abstraction procedures. In
this way, we solve fuzzy problems without implementing a whole new solver.
More important, the ideas behind implementation of alpha and gamma functions
proposed here for handling soft constraints can be easily applied, without loss
of generality, into any programming language providing classical constraints.
Our experimental results show that our abstraction procedures have a very
competitive performance for real problems. Abstraction procedures significantly
outperformed a fuzzy solver in the search for a good cut level. We have studied
the influence of the initial cut level (an input to the abstraction procedure) in the
overall process of finding bounds for the best solution in soft constraint problems.
By empirical observations, we found that a good strategy is to underestimate the
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initial cut level. We also have shown how the number of iterations performed by
the abstraction procedure has no direct relationship on overall time performance.

In the near future, we plan to provide dynamic slack values inside a unique
search tree. This should be more efficient since multiple executions of the ab-
stract solver could be avoided. We also plan to distribute our soft constraints
mechanisms (the soft constraints module and the presented abstraction proce-
dures) as a Mozart contribution. This would make our implementations available
to anyone interested in this field.
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Abstract. To use constraint technology to solve a problem, the solu-
tions to the problem must first be characterised, or modelled, by a set
of constraints that they must satisfy. A significant part of the modelling
process can be characterised as refinement, the process of generating a
concrete model from an abstract specification of the problem. Expert
modellers also identify and perform transformations that can dramati-
cally reduce the effort needed to solve the problem by systematic search.
Through a case study of modelling a simplified version of the SONET
fibre-optic communication problem, this paper examines the processes
of refinement and transformation, and especially the interaction between
the two.

1 Introduction

Constraint programming is a successful technology for tackling a wide variety
of combinatorial problems. To use constraint technology to solve a problem, the
solutions to the problem must first be characterised, or modelled, by a set of
constraints on a set of decision variables that they must satisfy. A significant
part of the modelling process can be characterised as refinement, the process of
generating a concrete model from an abstract problem specification. Following
[16], and the convention in formal methods, by an abstract specification of a
constraint problem, we mean simply a representation in which the details (the
modelling decisions) have been abstracted away. Refinement adds these details to
produce the concrete model (the modelling decisions are made). There are usu-
ally many possible refinements of an abstract problem specification; identifying
the effective ones often requires considerable expertise.

Expert modellers also identify and perform transformations, which are some-
times complex, that can dramatically reduce the effort needed to solve the prob-
lem by systematic search (see, for example, [25]). We use the term transformation
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© Springer-Verlag Berlin Heidelberg 2005
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to refer particularly to operations that change a model or specification but, unlike
refinement, do not alter the level of abstraction. Such transformations include
adding constraints that are implied by other constraints in the problem, adding
constraints that eliminate symmetrical solutions to the problem, removing re-
dundant constraints (i.e., those that yield no extra pruning but add overhead)
and replacing constraints with their logical equivalents.

Through a case study of modelling a simplified version of the SONET fibre-
optic communication problem [23], this paper examines the processes of refine-
ment and transformation, and especially the interaction between the two. Start-
ing with an abstract specification of the problem, we perform refinements and
transformations to produce seven alternative models. These models are concrete
in that they are similar to the kind that are supported by existing constraint
toolkits. We generate the models in an explicit and somewhat systematic way;
a sytematic manual exploration of the possible models has proved to be an im-
portant first step in our ongoing work towards formalising and automating the
modelling process [12].

This case study illustrates the fundamental observation that some transfor-
mations operate on a particular (concrete) model of a problem whereas others
are model independent. We refer to these two kinds of transformations as model
transformations and problem transformations. Though a problem transforma-
tion corresponds to some transformation on a particular model, an advantage of
transforming a problem specification is that the benefits of the transformation
are inherited by all models. Some transformations can also be performed more
easily at the more abstract level of the problem specification.

The case study also shows how a refinement operation can trigger a useful
transformation, thus saving the work of searching for it. In particular, we will
see a case where a refinement operation that introduces a matrix into a model
can easily recognise that the matrix has column symmetry.

Given the ability to generate alternative models, heuristics are needed to
guide refinement and transformation towards good models. Towards this goal,
we perform an empirical analysis of the generated models to begin to form gen-
eralisations about the expected utility of alternative modelling decisions.

2  Specifying the SONET Problem

For illustration, consider the SONET fibre-optic communications problem [22].

A communications network has client nodes and known levels of demand be-
tween pairs of nodes. Traffic can only be routed between two nodes if they are
installed, via an add-drop multiplexer (ADM), on the same SONET ring. Each
node may be installed on multiple rings and demand between two nodes may
be split over several rings. The maximum number of rings available is known.
Each ring has a capacity in terms of the volume of traffic and the number of
nodes that can be installed on it. Objective: minimise the number of ADMs.

It suffices here to consider a simplified version of the SONET problem, pre-
viously considered by Smith [23], in which it is known which node pairs must
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4 5

Fig. 1. Demand pairs for and optimal solution of example Simplified SONET instance

communicate, but demand levels are ignored. Consider an instance of the SONET
problem with 5 nodes and 2 rings, where each ring is able to accommodate 4
nodes. Figure 1 depicts both the demands between nodes and an optimal solution
using only 6 ADMs.

2.1 S4: An Abstract Problem Specification

This section presents an abstract specification of the Simplified SONET problem,
which, in subsequent sections, is refined and transformed to produce concrete
models. The problem must be specified at a level of abstraction above that at
which modelling decisions are made. We use ESSENCE [12], an abstract constraint
language whose key feature is that, in addition to the usual atomic variables
(variables whose domains comprise atomic elements), it allows non-atomic vari-
ables. In doing so, it builds on the facilities available in constraint toolkits such
as Ilog Solver and Eclipse, which have supported set variables for several years,
ESRA [10], which supports relation variables, F [17], which supports function
variables, and NP-SpPEC [7], which supports a variety of variable types, includ-
ing partitions. However, ESSENCE is unique in that it supports arbitrarily-nested
variable types, such as set of sets and set of set of tuples.

An instance of Simplified SONET is identified by four parameters: nnodes,
nrings the number of nodes and rings; ¢, the uniform node capacity per ring;
and D, the demand. D is a set of unordered node pairs, {n,n’} where n and
n' are nodes that must communicate. The decision variable must represent an
assignment of nodes to rings; since a node can be assigned to multiple rings, we
treat this as a relation, which we call rings-nodes, between rings and nodes.

Figure 2 gives Sy, an ESSENCE specification of the Simplified SONET prob-
lem!. Here the nodes are represented by N, a range of natural numbers. The
rings are represented by R, a set comprising nrings unnamed elements. The pro-
vision of sets of unnamed objects is a unique and important feature of ESSENCE.
It facilitates abstraction in specifications by not forcing the elements of a set
to be given arbitrary names that are never used. There is no need to name the
rings, since individual rings are not mentioned in the specification.

The objective, (1), is to minimise the number of ADMs, represented by the
cardinality of rings-nodes. The capacity constraint is imposed by (2) and the

! Space precludes a full description of ESSENCE. See [12] for details. The simple spec-
ification given should be clear from the description.
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given nrings: integer, nnodes: integer, c¢: integer

where nrings > 0, nnodes > 0, ¢ > 0

letting N be integer (1..nnodes), R be new type (size nrings)

given D: set of set (size 2) of N

find rings-nodes: R x N

minimising |rings-nodes| (1)

such that VreR. |rings-nodes(r,.)}| <c (2)
V{n,n'} € D. rings-nodes(_,n) N rings-nodes(-,n’) # 0 3)

Fig. 2. Specification of the simplified SONET problem

communication constraint is imposed by (3). To clarify, the expression {n,n’} €
D means that two distinct elements are drawn from D and, without loss of
generality, one is called n and the other is called n’. Note also that rings-
nodes(_,n) is the projection of the rings-nodes relation onto n € N, that is
{r|rings-nodes(r,n)}.

3 Transforming the Abstract Problem Specification

This section presents transformations on the abstract specification of the Sim-
plified SONET problem, S4. We begin by deriving and adding two implied con-
straints to the specification.

The first imposes a lower bound on the number of ADMs required for each
node. We define the partner set of a node n to be {n'|{n,n'} € D}, each element
of which must be related to at least one common ring with n by rings-nodes. Once
n is installed, the remaining capacity of a ring is c—1. Hence, the minimum num-
ber of installations of n required to satisfy the communication demand between it

and each member of its partner set is [W—‘ , to which we refer hence-
forth as ADMMin.(n). Observe that all the terms contained in ADMMin.(n) are

parameters; hence, for any given problem instance, it is constant. The implied
constraint follows:

Vn € N.ADMMin.(n) < |rings-nodes(-,n)| (4)

The second implied constraint imposes a lower bound on the number of ‘open’
rings, i.e. those rings with at least one node installed. From (4), it is simple to
derive a minimum total number of ADMs. Division by the ring capacity ¢ gives

> ADMMin,(n)
the bound nel

c

—‘, to which we refer henceforth as RingMin,.
This is also a constant for any given instance. The implied constraint is:
RingMin. < |{r € R|rings-nodes(r,_) # 0}| (5)

We now exploit dominances. Given an optimisation problem, a partial assign-
ment a dominates another a’ if the utility of the best extension of a is at least as
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good as the best extension of a’. We exploit dominances by adding constraints
to preclude dominated partial assignments.

First, an assignment where a node n has more installations than the cardi-
nality k of its partner set is dominated by an assignment where n has at most k
installations:

Vn € N.|{n'|{n,n'} € D}| > |rings-nodes(_,n)| (6)

Henceforth, we refer to |[{n'|{n,n'} € D}| as ADMMaax(n). It is also constant for
any given instance.

Second, an assignment where a node n is installed on a ring that contains
no elements of its partner set is dominated by an assignment where n is only
installed on rings containing at least one element of its partner set:

VYneN, reR. (7)
rings-nodes(r,n)—{n'eNKn,n'} € D Arings-nodes(r,n’)}| >0

Finally, an assignment where the sum of the installations on two non-empty
rings is less than or equal to ¢ is dominated by an assignment where the contents
of the two rings are merged:

V{r,r'} C R.(rings-nodes(r, ) # 0) A (rings-nodes(r’, _) # 0) —
|rings-nodes(r, -)| + |rings-nodes(r’, -)| > ¢ (8)

4 Refining the Simplified SONET Problem

Refining the transformed Simplified SONET specification principally involves
replacing the rings-nodes relation variable with a structured collection of atomic
variables and set variables. If the target language into which we are refining does
not support set variables, these could be refined into atomic variables; doing so
is not addressed in this paper. We consider three possibilities for refining an
arbitrary relation variable, R : A x B:

1. A two-dimensional 0/1 matrix, R,,, indexed by A x B, where R,,[a,b]=1
indicates R(a,b), when a € A,b € B.

2. A one-dimensional matrix of set variables, BtoA,,s indexed by A. For each
a € A, BtoAnsla] is {b € B|R(a,b)}.

3. A one-dimensional matrix of set variables, AtoB,,s indexed by B. For each
b€ B, AtoBns[b] is {a € A|R(a,b)}.

In the following subsections, we use combinations of these three representa-
tions to refine S4 to seven different CSP models, as summarised in Table 1. Spg,
Sc and Sp each use one of the three, above-listed representations of a relation
variable; the other models each use multiple representations channelled together.
Two models, Sp and Sy, closely resemble basic models created by experts in
Operations Research [22] and Constraint Programming [23].
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Table 1. Simplified SONET: Specification and models

lModel‘ Characteristics
Sa Sets and Relations
SB Matrix
Sc Ring Set Variables
Sp Node Set Variables
SE Matrix + Ring Set Variables
S Matrix + Node Set Variables
Sa Ring Set + Node Set Variables
Su |Matrix + Ring Set Variables + Node Set Variables

4.1 Sp: A Matrix Model

Using rule (1), the rings-nodes relation is refined into a two-dimensional matrix
of 0/1 variables, rings-nodes,,, where rings-nodes,,[r,n] denotes the element in
column r and row n. The matrix needs to be indexed by N and R. Since N is
the set {1,...,nnodes} it can serve as an index. However, R is an unnamed set,
so it cannot serve as an index. We therefore refine R to the set {1,...,nrings}.

In the ESSENCE statement of the problem there is no way to refer to partic-
ular rings, from which it follows that the rings are constrained identically. By
naming the rings in Sp we introduced into the model symmetry among rings. In
particular, if an assignment is a solution to a Simplified SONET instance, then
it is still a solution after we exchange all the nodes installed on any two rings.
For example, if installing nodes {1,2} and {3,4} on rings 1 and 2, respectively,
is a solution, then so is installing nodes {3,4} and {1,2} on nodes 1 and 2,
respectively. Intuitively, the rings are interchangeable. In Sp the rings are the
values of the column index of rings-nodes,,, so the columns of an assignment can
be interchanged without affecting whether the assignment is a solution. This is
called column symmetry and, in the general case, index symmetry [9].

This discussion illustrates an important observation: refinement can (and
often does) introduce symmetry into the model it generates—and it does so in a
systematic way that can be characterised formally. Indeed, the formal refinement
rules presented by Frisch et. al. [12] identify the symmetries that they introduce.
The significance of this is that we can avoid the (potentially expensive) process
of trying to detect these symmetries in each generated model.

Once symmetries are identified, there are several alternative methods that can
be used to break them, and thus reduce solution time. One class of methods,
called dynamic symmetry breaking (e.g. SBDS [15]), are the symmetry-aware
search methods. These search methods take a description of the symmetries and
use it to dynamically prune symmetric parts of the search space. Alternatively,
the model can be transformed by adding symmetry-breaking constraints that
prune some symmetrical assignments from the search space. This is the approach
we take here, the advantage of which will become apparent later.

Column symmetry can be dealt with effectively by treating each column as a
vector and constraining the columns to be in non-increasing lexicographic order
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as the column index increases [9]. Thus, to Sp we add the symmetry breaking
constraint:

V1 <r < nrings. rings-nodesy,[r, .| >]ayx Tings-nodesmy[r+ 1, ] (9)

where rings-nodes,,[r, ] is column r of rings-nodes,,, and >1ex denotes lexico-
graphically greater than or equal to, enforceable by the GACLex algorithm [11].

The nodes N in the Simplified SONET problem are not, in general, inter-
changeable because they have different demands, as specified by D. However, in
certain instances some, or all, of the nodes have identical demands. If a set of
nodes has identical demands then the corresponding rows are interchangeable. In
Figure 1 ny and ny have identical demands, so the first two rows of an assignment
to rings-nodes,, can be interchanged without affecting whether the assignment
is a solution. Given such a set of interchangeable rows, the symmetry can be
broken by constraining them to be in non-increasing lexicographic order as the
row index increases. This has been shown to be consistent with the lexicographic
ordering constraints that we imposed on the columns [9]. If there are multiple
sets of interchangeable rows, each such set can be handled in this way.

The previous paragraph shows how certain symmetries in a model of a par-
ticular instance can be handled by adding symmetry-breaking constraints to the
model. Our main focus is on building models of problems not instances, so we do
not discuss this in detail. However, to handle instance-specific symmetries in a
model of a problem, preconditions must be placed on the methods used to break
symmetry. As a problem is instantiated into an instance, the preconditions are
tested and symmetry is broken among the objects that are symmetrical in the
instance.

Now that we have discussed the refinement of rings-nodes to a matrix, and
the symmetries involved, we continue by refining the constraints and objective
function. This requires replacing constraints on rings-nodes with constraints on
rings-nodesy,. Each column r of rings-nodes,, corresponds to the characteristic
function for the set of nodes installed on ring r (i.e. rings-nodes(r, _)), and
similarly for each row n, so refining (1) and (2) is straightforward:

Minimise(z Z rings-nodesy, [r,n]) (10)
rceRneN
Vr € R. Z rings-nodesy,[r,n] < c (11)
neN

The demand constraint requires the intersection of subsets of N to be non-
empty. When using characteristic functions, (3) is easily represented via scalar
products, which are the cardinality of the intersection:

V{n,n’} € D.scalar-product(rings-nodes,,|-, n], rings-nodes,,[-,n']) # 0  (12)

where rings-nodes;,[-,n] denotes the nth row of the rings-nodes,, matrix. Sp
is a basic version of that used in [22]. Indeed, matrix models in general are a
common pattern in constraint programming [8].
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As noted above, each row (or column) of rings-nodes,, is equivalent to the
characteristic function for the projection of rings-nodes onto an element of N
(or R). A bound on the cardinality of such a projection is easily enforced using
a summation on a row or column. Hence (4) and (7) are refined to:

Vn € N.ADMMin.(n) < Z rings-nodesy, [r, n] (13)
reR

YV neN,re€ R.rings-nodes,,[r,n] =1 — Zm’ngs—nodesm [r,n'] >0 (14)
n’|{n,n'}€D

Constraint (5) places a lower bound on the number of open rings. A ring, r
is open if it has at least one ADM installed on it, which in this model means
that column r of rings-nodes,, has a non-zero sum. So, constraint (5) could be
implemented by introducing a 0/1 variable for each ring to indicate if it is open.
This is cumbersome to impose and it is a weak constraint because it does not
force any particular ring to be open.

A much better way of dealing with constraint (5) is obtained by noticing
that symmetry-breaking constraint (9) implies that all the open rings are less
than? the unopen rings. Thus we can impose the constraint that each of the first
RingMin,. columns of ringnodes,, has a non-zero sum:

V1 <r < RingMin.. Z ringnodesq,[r,n] # 0 (15)
neN
Observe that this constraint, which is much stronger than merely saying that
at least RingMin, rings are open, can be imposed only because of the symmetry-
breaking constraint. In general, the choice between alternative symmetry-break-
ing constraints should consider the inferred constraints they enable [13]. Also
note that this is often a significant advantage to using symmetry-breaking con-
straints over dynamic symmetry-breaking methods.
Finally, (8) is refined into model Sp straightforwardly, as follows:

V{r,r'} C R. (16)
Y onen Tings-nodesy, [r,n] > 0A Y\ rings-nodesy[r',n] >0
— Y nen(rings-nodesy, [r, n] 4 rings-nodes,, [, n]) > ¢

4.2  Sc: A Set Variable (Rings) Model

Using rule (2), the rings-nodes relation is refined into a one-dimensional matrix
of set variables, nodesOnRing,,s, indexed by R such that nodesOnRing,s[r] con-
tains the set of nodes installed on r. As in the previous sub-section, to serve as
an index R is refined to the set {1, .., nrings}.

The objective and ring capacity constraint are easily stated:

Minimise(z |nodesOnRingms[r]|) (17)
reER
Vr € R.|nodesOnRingms[r]| < c (18)

2 Since each ring is identified by an integer, some rings are “less than” others.
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The demand constraint is more difficult to specify. It constrains at least one
of the set variables to contain particular pairs of nodes:

V{n,n'} € D.Z (n€nodesOnRing,, . [r] An' € nodesOnRing,, [r]) >0 (19)
reR

In the above we have reified each conjunction to a 0/1 value and used summation
to express the disjunction.

The symmetry among the indices of nodesOnRing,,s can be broken cheaply
(but only partially) by ordering the cardinalities of the sets:

V1 < r < nrings. |nodesOnRing,,  [r]| > |nodesOnRing,, [r + 1]| (20)

Having broken the symmetry in this way, the implied constraint on the minimum
number of open rings can be refined simply by disallowing the first RingMin,
elements of nodesOnRing,,s from being empty:

V1 < r < RingMin..|nodesOnRing[r]| # 0 (21)

The remaining implied constraint (4) on the minimum number of installa-
tions for any node is more awkward since it requires that we check each of the
individual rings. Again we use a summation of reified element constraints:

Vn € N. Z n € nodesOnRing,, [r] > ADMMin.(n) (22)
reR

The ADMMaz constraint to exploit dominance (6) can be stated similarly.
Of the remaining constraints to exploit dominance, nodesOnRing,, facilitates
the expression of the content merging constraint (8) most easily:

V{r,r"} C R.|nodesOnRingms[r]| > 0 A |nodesOnRings[r']| > 0 —
|nodesOnRings[r]| + |nodesOnRingms[r']| > ¢ (23)

Finally, we refine the constraint that specifies a node should only be installed
on a ring that contains at least one element of its partner set (7):

Vn € N,r € R.n € nodesOnRing|r] — Z (n’ € nodesOnRing[r]) >0 (24)
n'[{n,n’}€D

4.3 Sp: A Set Variable (Nodes) Model

Using rule (3), the rings-nodes relation is refined into a one-dimensional matrix
of set variables rings WithNodes,,s, indexed by N such that rings WithNodes,,s[n]
contains the set of rings on which n is installed. Since R is an unnamed set it
cannot provide the domain elements for the set variables. Once again, therefore,
it is refined to the set {1, .., nrings}.

Given rings WithNode,, s, the objective is refined as follows:

Minimise( Z |rings WithNode,,s[n]|) (25)
neN
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The demand constraints are also easily stated:
V{n,n'} € D.|ringsWithNode,,s[n] N rings WithNode,,s[n']| > 1 (26)

However, since the ring capacity constraints involve all the node constraints we
again make use of reification:

Vr € R. Z r € ringsWithNode,, ,[n] > 0 (27)
neN

The symmetry among the values of rings WithNode,,s can be broken partially
by insisting that the first node, n, with a non-empty partner set is installed on
the first ring:

1 € ringsWithNode,, ,[n] (28)

Hence, the implied constraint on the minimum number of open rings (5) is refined
by ensuring that the first RingMin,. rings appear in at least one of the sets in
rings WithNode,, s

V1 <r < RingMin,. Z r € ringsWithNode[n] # 0 (29)
neN

The implied constraint on the minimum number of installations per node (4)
is easily stated on the node set variables:

VYn € N.ADMMin.(n) < Z |rings WithNodey, s[n]| (30)
neN

Again, the ADMMax constraint (6) is specified similarly.

The remaining constraints to exploit dominances, i.e. that a node should only
be installed on a ring that contains at least one element of its partner set (7)
and the content merging constraint (8), are refined as follows:

Vn € N,r € Rr € ringsWithNode[n] —>Z(r€ rings WithNode[n']) >0 (31)
n’|{n,n'}eD

VAr, r’}QR(Z rerings WithNode[n] > O)/\(Z r’'€rings WithNode[n] > ()
neN nenN

— Z (r € ringsWithNode[n] + r’" € ringsWithNode[n]) > ¢ (32)
neN

4.4 Sg: A Matrix and Set Variable (Rings) Model

To maintain consistency between rings-nodes,, and nodesOnRing,s, the follow-
ing channelling constraint is used:

Vr € R. n € nodesOnRing,,s[r] < rings-nodesy,[r,n] =1 (33)

The objective can be stated on either rings-nodes,, (10) or nodesOnRingms
(17). We will explore both alternatives. Symmetry breaking is performed on
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rings-nodes,, as in model Sp (9), since this scheme breaks all symmetry whereas
the ordering on the cardinalities used in model S¢ (20) does not. Also from
model Sp we take the demand constraint (12), the ADMMin (13) and ADMMazx
constraints, and the constraint that specifies that a node should only be installed
on a ring with at least one of its partners (14). From model S¢ we take the ring
capacity constraints (18), the constraint on the minimum number of open rings
(21), and the content merging constraint (23).

4.5 Sp: A Matrix and Set Variable (Nodes) Model

To maintain consistency between rings-nodes,, and rings WithNode,,s, the fol-
lowing channelling constraint is used:

Vn € N. r € ringsWithNode,,s[n] < rings-nodes,,[r,n] =1 (34)

The objective can be stated on either rings-nodes,, (10) or rings WithNode,,
(25). Again, we will explore both alternatives. As in models, Sg and Sg, we
perform complete symmetry breaking via rings-nodes,, (9). From model Sg we
take the ring capacity constraint (11), the constraint on the minimum number
of open rings (15), the constraint that a node should only be installed on a ring
containing at least one of its partners (14), and the content merging constraint
(16). From model Sp we take the demand constraint (26), and the ADMMin
(30) and ADMMazx constraints.

4.6 Sc: A Dual Set Variable Model

To maintain consistency between nodesOnRing.,s and rings WithNode,,s, the
following channelling constraint is used:

Vn € N,r € R.n € nodesOnRingnms[r] < r € rings WithNode,s[n] (35)

The objective can be stated on either nodesOnRing,,s (17) or rings With-
Node,,s (25). Again, we will explore both alternatives. Symmetry breaking is
performed on nodesOnRing, s, as in model S¢ (20). Also from model S we take
the ring capacity constraint (18), the constraint on the minimum number of open
rings (21), the constraint that specifies that a node should only be installed on
a ring with at least one of its partners (24), and the content merging constraint
(23). From model Sp we take the demand constraint (26), and the ADMMin
(30) and ADMMazx constraints.

4.7  Sp: A Matrix and Set Variable (Both Rings and Nodes) Model

Although only two channelling constraints are sufficient to maintain consistency
among the 0/1 matrix and the two matrices of set variables, we use the three
channelling constraints from models Sg (33), SF (34) and S¢ (35). The objective
can be stated easily on any of the three models. We will explore all three alter-
natives. Symmetry is broken completely on rings-nodes,,s as described in model
Sp (9). Also from model Sp we take the constraint that a node should only be
installed on a ring containing at least one of its partners (24). From model S¢ we
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take the ring capacity constraint (18), the minimum number of open rings (21),
and the content merging constraint (23). From model Sp we take the demand
constraint (26), and the ADMMin (30) and ADMMaz constraints.

5 Model Selection

As we have shown in introducing each of the models S to Sg, constraints
may be more or less difficult to express, depending on the variables included in
the model. However, which model is best in solving time, given some standard
constraint solver, is hard to determine. In some cases, it is possible to show
that one model is stronger than another, irrespective of certain aspects of the
solution procedure. Recently, for example, alternative models of permutation
and injection problems have been studied in the context of a range of constraint
propagation algorithms [18]. In many cases, however, empirical tests are needed
to develop guidelines for making informed model choices. In this section, we
contribute to this goal of pattern elicitation by performing an empirical analysis
of our models of the Simplified SONET problem. Despite the small scale of this
study, the trends are strong and immediately apparent.

There are a number of issues to consider in designing our experiment. First,
introducing new variables can introduce a choice of search variables. For in-
stance, in model Sg, we can search either on the matrix variables rings-nodes,,
or on the ring set variables nodesOnRing,,s. Second, having chosen the search
variables, we need to decide the order in which to assign the variables (either
statically or dynamically). It is well known that the choice of variable ordering
can dramatically affect the search effort required to solve a CSP. However, we
can only compare the performance of the models presented to a limited extent.
For instance, we could compare models Sg, Sg and Spr using the matrix vari-
ables as search variables and the same variable ordering in each case. This would
show whether being able to express some of the constraints more easily using
set variables has any effect on performance. The results would not, however,
necessarily reflect the best known performance for these models, still less what
the best performance for each model might be with the ideal ordering heuristic.

Each of our models is described by a triple (BasicM odel, BranchingStrategy,
ObjectiveExpression). BasicModel € {B,C, D, E, F,G,H} corresponds to the
models Sp - Sy. We considered BranchingStrategy € {M, N, R} where M
stands for using the matrix variables as search variables, N for using the node
set variables, and R for the using the ring set variables. Finally, we considered
ObjectiveExpression € {M, N, R}, where M stands for expressing the objec-
tive function using the matrix variables (10), N stands for using the node set
variables (17), and R for the ring set variables (25). We tested the 24 consistent
combinations of these three choices on 10 instances (from [23]) using a 750Mhz
128Mb Pentium III and Ilog Solver 5.3 (Windows version).

Tables 2 and 3 present the number of choice points and time taken within a
160 seconds time limit. For brevity, given a subset of models that are identical
apart from the objective function, we only show the results for the model with
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Table 2. Experimental results on 10 instances of Simplified SONET (choices)

Model [s2ringl|s2ring2|s2ring3|s2ring4|s2ring5|s2ring6|s2ring7[s2ring8|s2ring9[s2ringl10
(B,M,M)| 25411 27063| 20032| 7938 24097| 9625| 8460 10001| 41849 9428
(C, R, R) [ >514K|>514K| >468K]| >492K| >518K| >495K| 441K]|>512K[>506K| >513K
(D,N, N)| 12744[374983| 63892| 16771 48955[400641| 25311| 78181239662 15680
(E, M, R) 7971 5421| 4765 1583| 8601 2491 1394| 2597| 15912 3761
(E,R,R) | 68395/199656| 87765| 36343|134385|140771| 15301|103778|225852| 41991
(F, M, N) 112 165 73 21 356 193 39 188| 1136 70
(F, N, N) 1407| 17303 3804| 2525| 2758| 27920 2702| 6218 4329 1387
(G,R,N) | 378K|>675K|>636K]|>634K|>663K|>614K| 256K|>688K|>668K| >461K
(G, N, N)| 20629 >546K| 67994| 56995 98936 >642K| 51673| 78982|229565| 41031
(H, M, N) 112 165 73 21 356 193 39 188 1136 70
(H,R,N)| 12876|217440| 23569| 20472| 84782 87275| 10559]145915| 52622 7572
(H,N, N) 1407| 17303| 3804| 2525| 2758| 27920 2702| 6218 4329 1387

Table 3. Experimental results on 10 instances of Simplified SONET (time)

Model [s2ringl|s2ring2|s2ring3|s2ring4|s2ring5|s2ring6 [s2ring7|s2ring8[s2ring9|s2ring10

(B, M, M)|2.49 2.78 2.29 0.86 2.41 1.03 0.97 1.08 4.2 1.05
(C,R,R) |[>160 [>160 [>160 [>160 [>160 |[>160 [132.44 [>160 [>160 [>160
(D, N,N) (6.7 158.37 |32.44 |7.64 24.32 [160.02 [13.5 33.26 [115.96 |8

(E, M, R) [1.22 0.88 0.79 0.26 1.44 0.42 0.25 0.47 2.7 0.65
(E,R,R) [14.76 [39.43 [18.74 |7.47 27.05 [29.11 [3.22 18.95 |44.76 (9.47
(F,M,N)|0.03 [0.04 [0.03 [0.02 [0.08 [0.04 [0.02 [0.04 [0.19 [0.03
(F, N, N) [0.25 2.29 0.6 0.39 0.43 3.45 0.44 0.82 0.71 0.24
(G,R,N)[92.13 [>160 [>160 [>160 [>160 |>160 [60.95 |[>160 [>160 [>160
(G, N, N) [6.47 >160 [22.37 |15.86 [24.34 |[>160 ([15.3 18.03 [79.66 |[11.75
(H, M, N)|[0.05 0.07 0.05 0.03 0.13 0.07 0.03 0.07 0.38 0.04
(H, R, N) |3.06 46.86 [5.81 4.29 16.43 [18.6 2.33 27.54 [11.87 [1.94
(H, N, N) [0.47 4.32 1.23 0.75 0.73 6.2 0.87 1.45 1.37 0.41

the most effective expression of the objective. For instance, we do not show the
results for model (E, M, M), since (E, M, R) is consistently more effective.

This filter immediately reveals a general observation: in these tests it was
always more effective to express the objective via the cardinality of the set vari-
ables. This is because of an interaction with the RingMin constraint (5) in the
case of the ring set variables, and with the ADMMin constraint (4) in the case
of the node set variables. Consider rings-nodes,, for a small instance:

ring; rings Trings
node; ( 0/1  0/1  0/1
nodey | 0/1 0/1  0/1
nodes \ 0/1 0/1  0/1

Assume that all nodes need to be installed at least once, and that all three
rings must be open. These constraints can be imposed as sums on the rows and
columns of rings-nodes,,. Propagating these constraints results in no domain
pruning initially. Consider the search for a solution with less than 3 installations.
Since all elements of rings-nodes,, can still be set to 0, search is necessary to
determine that this is not possible.

Consider now expressing the RingMin constraint and the objective on the
nodesOnRing,,s matrix. The lower bound on the cardinality of each ring is one.
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Hence, the sum of the cardinalities is at least 3 and the search fails immediately.
Expressing the A DMMin constraint and the objective on rings WithNode,, s gives
a similar result. The key observation is that the bounds directly tighten the
domain of a variable (the hidden cardinality variable associated with each set
variable). Since these same variables are used to express the objective, any tight-
ening of the bounds has a direct effect on the bound on the objective. This is
not the case for the sum constraints on rings-nodes,,. Since the ADMMin con-
straint gives a tighter bound on the cardinality variables than RingMin, this also
explains why expressing the objective on rings WithNode,,s is the most effective
choice in these experiments.

A second observation is that it is most effective to branch on rings-nodes,,.
This is probably due to the fact that assigning a single 0/1 variable is less
of a commitment than assigning a whole set at once. Hence, the culprit at a
dead end is more readily apparent. These two observations together explain the
performance of (F, M, N) as the best model. Model (H, M, N) explores the same
search tree, but incurs an overhead for maintaining nodesOnRing,s.

6 Related Work in Modelling and Transformation

Several recent efforts focus on automating refinement. Hnich [17] shows how to
automatically refine specifications in F and Frisch et. al. [12] show how to refine
specifications in ESSENCE. Both of these refinement systems generate a set of
alternative models, including models with multiple, channelled representations,
but neither provides a mechanism for choosing among the alternatives. The
initial implementation of Relational ESRA, which is under development, will
refine specifications to a single constraint model in which relation variables are
always refined to 0/1 matrices (as in Sg) [10].

Our work is also motivated by experience with the CGRAss (Constraint
Generation And Symmetry-breaking [14]) system. CGRASS automatically trans-
forms constraint models of problem instances in order to make them easier to
solve. However, since CGRASS transforms individual instances, much effort is
repeated if one wants to solve multiple instances of a problem. Furthermore,
the instance specifications that CGRASS transforms are non-schematic; instead
of using universal quantifiers to implicitly state a set of constraints, the set is
explicitly stated. For some problem instances this results in very large specifica-
tions, which, in turn, require many applications of the transforation rules. This
is why we focus on schematic problem specifications in this paper.

There are several other methods to aid in constraint modelling, which we
briefly survey. Lauriére [19] introduced a modelling language called ALICE to
formally state a problem. The language is characterised by the use of sets, set op-
erators, Cartesian product of sets, vectors, matrices, graphs and paths, constants,
and functions. The language NP-SPEC is a logic-based executable specification
language [7, 6], which allows the user to specify problems by using metapredicates
(subset, partition, permutation, and intfunc). REFINE is a functional language
for specifying global search problems for a program synthesizer [24]. The RE-



90 A .M. Frisch et al.

FINE language augments a functional programming language with three type
constructors, namely set, sequence, and map, as well as their operations.

Tsang et al. had two projects related to ours. The adaptive constraint satis-
faction project [1,2, 3] aimed at systematically mapping problems, in a dynamic
manner, to algorithms and heuristics. The computer-aided constraint program-
ming project [4,21] aimed at building a system that encapsulates the entire
process of applying CP technology to problems.

7 Conclusions

We have considered the transformation of constraint satisfaction problems and
shown that we can and should transform problems at various levels of abstrac-
tion. Refinement is a process of progressively moving to more concrete models;
mechanisms for dealing with some common modelling problems, such as sym-
metry, can be embedded into refinement rules.

The Simplified SONET problem illustrates how integrating transformation
and refinement could work in general: an abstract problem specification in the
ESSENCE language was transformed by adding implied and other constraints.
The result was refined into seven alternative models. In addition, we showed
how the refinement process could trigger further useful transformations: in this
case, breaking the symmetries that it introduces into the model.

Our immediate goal is to formalise fully the transformations we use. Fur-
thermore, we wish to combine theoretical analysis with the lessons learnt from
empirical analyses, like the one performed on the Simplified SONET problem
herein, to evaluate models statically, and therefore be more selective about the
models produced during refinement.
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Abstract. The presence of long gaps dramatically increases the diffi-
culty of detecting and characterizing complex events hidden in long se-
quences. In order to cope with this problem, a learning algorithm based
on an abstraction mechanism is proposed: it can infer the general model
of complex events from a set of learning sequences. Events are described
by means of regular expressions, and the abstraction mechanism is based
on the substitution property of regular languages. The induction algo-
rithm proceeds bottom-up, progressively coarsening the sequence granu-
larity, letting correlations between subsequences, separated by long gaps,
naturally emerge. Two abstraction operators are defined. The first one
detects, and abstracts into non-terminal symbols, regular expressions not
containing iterative constructs. The second one detects and abstracts it-
erated subsequences. By interleaving the two operators, regular expres-
sions in general form may be inferred. Both operators are based on string
alignment algorithms taken from bio-informatics. A restricted form of the
algorithm has already been outlined in previous papers, where the em-
phasis was on applications. Here, the algorithm, in an extended version,
is described and analyzed into details.

1 Introduction

Very long discrete sequences are found in many challenging applications of data
mining, ranging from DNA analysis to user profiling, and anti-intrusion systems.
In most cases this kind of sequences are characterized by sparseness, i.e., short
consecutive chains of atomic events (episodes) are interleaved with gaps, where
irrelevant facts, or facts related to spurious activities, may occur. We define a
partially ordered group of interrelated episodes a complezx event (CE).

This paper addresses the task of discovering CEs in discrete sequences. The
task is made more difficult by assuming the presence of noise, making CEs harder
to recognize. Episodes are represented as strings of symbols, being a symbol the
label assigned to an atomic event. Moreover, it is assumed that noise can be
modeled as insertion, deletion and substitution errors, according to a common
practice followed in Pattern Recognition.

Here, regular expressions, extended with attributes [9], are proposed to de-
scribe the structure of CEs. Attributes are used to set constraints on atomic
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© Springer-Verlag Berlin Heidelberg 2005
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events. Therefore, the problem of discovering CE’s structure is turned into the
problem of learning regular expressions from sequences containing gaps and
noise. The problem of inferring regular grammars from data has been previ-
ously investigated by many authors with approaches ranging from computa-
tional learning theory [1,19,16,17,4] to neural networks [6], syntactic pattern
recognition [10, 18], and probabilistic automata [8]. Nevertheless, the problem
considered here does not match immediately any one of the problems solved by
the mentioned approaches. In fact, the task is more complex, because the sen-
tences of the language to learn are hidden inside sequences containing a possibly
large amount of irrelevant knowledge, which must be discarded.

In a previous approach [2] a Hierarchical Hidden Markov Model [7,22, 14, 21]
has been proposed to describe CEs. Here, we prefer to distinguish the problem of
learning structural properties of a CE from the problem of detecting it in pres-
ence of noise and other irrelevant facts. Therefore, an extension of the algorithm
by Botta et al. [2] is presented, which is more powerful and is no more bound to
HHMMs.

By exploiting properties inherent to regular expressions, an abstraction mech-
anism has been defined: it allows an event to be seen at different levels of gran-
ularity depending on the needs. Such a mechanism is exploited by the learning
algorithm, which automatically infers the event descriptions from a database of
sequences. An important novelty, with respect to previous works, is a method for
detecting and learning recurrent structures inside an event, in presence of noise.

In this paper, the learning algorithm is described in details and an evaluation
on artificial data is provided.

2 Learning by Abstraction

The main difficulty in discovering and modeling CEs hidden inside long sequences
is due to the presence of long gaps, filled by irrelevant facts, between episodes be-
longing to a CE. On the one hand, statistical correlations among distant episodes
are difficult to detect. On the other hand, the complexity of the mining algo-
rithm increases with the length of the portion of sequence to be searched to
detect such kind of correlations. The strategy proposed here to cope with such
kind of problems is based on an abstraction mechanism.

In AI, abstraction has been proposed by several authors with different accep-
tions (see [20] for an introduction). The acception, adopted here, relays on the
property of regular expressions of being closed under substitution [13]: by re-
placing a subexpression with a new symbol, an abstract expression is obtained.
As previously mentioned, CEs are described by means of regular expressions
extended with attributes. By applying the substitution property, a CE can be
abstracted, or de-abstracted.

The idea will be further clarified describing the scheme of the algorithm used
for discovering CEs hidden in a set, LS, of learning sequences. The algorithm
starts bottom-up to construct an abstraction hierarchy, layer after layer. The ba-
sic activity at each step consists in identifying episodes occurring with a relevant
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frequency in LS: every episode is characterized by a regular expression R. Then,
the detected episodes are named by associating a new symbol to each one of them,
and episode names become the alphabet for describing LS at the next abstrac-
tion level. Afterwards, every sequence in LS is abstracted (rewritten) by replac-
ing every episode instance occurring in it with the corresponding episode name.
Subsequences of consecutive atomic events, which have not been included in any
episode, are replaced with a symbol denoting a gap. As it will be described in the
next sections, gaps between episodes are considered as a special kind of episode.

In the new sequences obtained from the abstraction step, episodes, previously
separated by subsequences of irrelevant facts, may become consecutive, only
separated by one gap symbol. Then, at the next abstraction step, correlations
at a wider range can be detected by repeating the same procedure described so
far, while the complexity of the algorithm remains affordable.

Important aspects to consider, in order to correctly detect statistical correla-
tions between consecutive atomic events, are the event duration and the distance
from one another, which could be required to satisfy specific constraints. As an
example, one may be willing to accept a correlation between two events A and
B, when B frequently occurs few days after A, but one may want to reject a cor-
relation if the distance of B from A randomly ranges from one day to one year.

The attributes extending regular expressions have principally the function of
preserving the information about duration and distance between events through
the abstraction process. Every atomic event E is denoted by a name (symbol)
and by an attribute g reporting the length (duration) of E on the unabstracted
sequence. When an episode is abstracted into a new atomic event at the higher
level, the length of this last is set to the length of the episode. In the same way,
gaps are denoted by a symbol, and have a length set to the distance between
the two neighbouring episodes. As it will be described in the following, the event
description language allows constraints on duration of an event to be specified.
Therefore, to set constraints on the distance between two events is sufficient to
set constraints on the gap in between.

This solution, of using gap symbols to fill spaces between non adjacent atomic
events, allows for any discrete sequence to be transformed into a string of sym-
bols. The important benefit is that a large set of string processing algorithms
can be immediately exploited.

3 Regular Expressions

The standard formalism for regular expressions [13] is adopted for describing
episodes and CEs. Regular language syntax contains meta-symbols for denoting
disjunction and iteration. Disjunction is denoted by the symbol ”|”. For instance,
the construct a(c|d)a denotes a sequence of three symbols, where the first and the
third are ”a”, and the second may be ”c¢” or ”d”. Parentheses are used to enclose
subexpressions. The special symbol € denotes the null event and is used to model
omission. For instance, expression a(c|d|e)a entails that also the sentence aa, is

a possible event instance. Repetition is denoted by a superscript on a symbol, or
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on a subexpression, which indicates how many consecutive times it occurs. As an
example, expression a3b? is a compact form for denoting the sequence ”aaabb”.

In principle, regular expressions can also describe infinite sentences. The clas-
sical notation for handling infinity consists in using symbol ”x” as a superscript
to expressions. Here, infinity is not allowed. Instead, the regular language nota-
tion is slightly extended to allow for nondeterminate iterations, where the num-
ber of repetitions may range inside a bounded interval. For instance, expression
ab®? denotes a sequence whose first element is "a” followed by a number of ”b”
ranging between 3 to 9.

Constraints on the event/gap length may be set by annotating symbols in
regular expressions. Annotation must be included inside square brackets, fol-
lowing the symbol denoting an atomic event. For instance a[n] means that the
length I, of a must be n (I, = n), whereas a[n, m] means that the length of a
must range between n and m (n <1, < m). A legal example of annotation can
be as in the following:

a[3,5]°b[4, 8] (1)

Informally, expression (1) specifies that the duration of any event of type a must
be in the interval [3,5] and the duration of any event of type b must be in
the interval [4,8]. Gaps are named and annotated as atomic events. However,
given the semantics of gaps, iteration has no meaning for them; then, gap names
cannot have an exponent.

4 String Alignment and Flexible Matching

A key role in the abstraction process is played by the approximate matching
of strings and of regular expressions, which, in turn, is based on string align-
ment. String alignment has been deeply investigated in Bio-informatics and a
wide collection of effective algorithms are available for doing it[5,12]. Here some
basic concepts, necessary to make the paper self-consistent, will be recalled; the
interested reader can find in[5,12] an exhaustive introduction to the topic.

Definition 1. Given two strings s; and sq, let 8§ and s be two strings obtained
from s1 and so, respectively, by inserting an arbitrary number of spaces such that
the atomic events in the two strings can be put in a one-to-one correspondence.
The pair A(s1, s2) = (s}, sh), is said a global alignment between s; and ss.

From global alignment, local alignment and multi-alignment can be defined.

Definition 2. Any global alignment between a pair of substrings r1 and ro
extracted from two strings s1 and S, respectively, is said a local alignment
LA(sy, s2), between s1 and ss.

Definition 3. Given a set S of strings, a multi-alignment M A(S) on S is a set
S’ of strings, where every string s € S generates a corresponding string s’ € S’
by inserting a proper number of spaces, and every pair of strings (s§,sh) is a
global alignment A(s1,$2) of the corresponding strings s1, s in set the S.
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Fig. 1. Profile HMM obtained from the string ”PARIS”. Square nodes represent match
states, circles represent null emission states and diamonds represents insertion states.
Transitions, from one state to another, and emissions are governed by probability
distributions not shown in the figure. States labeled by s and e are the initial and
final state, respectively

It is immediate to verify that, for a pair of strings s; and sy, many alignments
exist 1. However, the interest is for alignments maximizing (or minimizing) an
assigned scoring function?. A typical scoring function is string similarity [12],
which can be stated in the following general form:

n

[(s1,82) = Y [(s1(3), s5(0)) (2)

i=1

being n the length of the alignment (sf, s4), and [(.,.) a scoring function, which
depends upon the symbol pairs, which have been aligned.

An alternative to (2) for aligning strings and estimating similarity is based
on a special kind of Hidden Markov Model (HMM) called profile HMM (see [5]
for an introduction). The fundamental difference between profile HMM and (2)
is that for the former the scoring function is stated in terms of a mixture model
defining a probability distribution. Then the similarity between two strings s;
and ss, or between a string and a template, is defined as the probability that s,
be obtained from s; as the result of a stochastic sequence of insertions, deletions
and substitutions. The structure of a profile HMM is described in Figure 1. It
contains three types of states: match states where the emission corresponds to
the expected nominal symbol, null emission states modeling deletion errors, and
insertion states modeling insertion errors, where the emission is chosen among
a set of possible symbols. Such a structure can be obtained by compilation from
a string, as well as from a regular expression. In the case of Figure 1 the HMM
has been obtained from the string "PARIS”.

In the framework of Dynamic Programming, the problem of finding an align-
ment maximizing a similarity function is solvable with complexity of O(nm)
being n and m the length of s; and so, respectively. Nevertheless, approximate
solutions can be found in linear time[12]. On the contrary, the problem of find-

L If no restriction is set on the possible number of inserted spaces, the number of
possible alignments is infinite.

2 As approzimate/flexible matching between two strings, or between a string and a
regular expression, is intended the problem of finding the optimal alignment with
respect to an assigned scoring function.
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ing an optimal multi-alignment is exponential in the cardinality |S| of set S.
Therefore, only approximate solutions can be used when S is large.

The concept of similarity and alignment between strings is easy to extend
to the concept of alignment between a string and a regular expression. A reg-
ular expression R is equivalent to a set of strings that can be derived from it.
Therefore the optimal alignment between R and a string s, with respect to an
assigned similarity function, is the best alignment among all possible alignments
between s and anyone of the strings derivable from R. In the general case, the
complexity for finding such an alignment is O(nm) being m the length of R and
n the length of s [15].

A similar extension holds in the HMM framework, where regular expressions
can be translated into HMMs. However, such translation requires the target
HMM to be augmented in two ways: (a) in order to deal with the presence of
insertion and deletion errors, extra states must be explicitly added; (b) in order
to model specific probability distributions, cycles in regular expressions need
to be unrolled into a feed-forward graph, where only self-loops are allowed. A
description of the problem and of the related methodologies can be found in
[5,2, 11].

A last point to discuss is how constraints, set in regular expressions on event
lengths, intervene in the matching procedure. Dealing with such kind of con-
straints requires only minor changes in the algorithms searching for an optimal
alignment: symbols in the input string not matching the constraints will be con-
sidered as insertion errors that do not match any symbols. Consequently, the
impact on the final alignment will depend upon the specific scoring function. In
a similar way, considering iterated subexpressions, iterations in excess (defect),
with respect to the bounds set in the exponent, will be considered as insertion
(deletion) errors.

5 The Learning Algorithm

The main learning algorithm includes a basic cycle, activated bottom-up, in
which a new abstraction layer is constructed, and a refinement cycle, which can
be called top-down one or more times in order to refine the episode descrip-
tions (see Figure 2). Both cycles are based on two abstraction operators, wg and
wr, which are used to infer the structure of regular expressions. Operator wg
constructs regular expressions non containing iterative constructs, whereas wy
explicitly aims at discovering and abstracting iterative constructs. By interleav-
ing the two operators, an abstraction hierarchy is obtained, from which regular
expressions in general form are obtained.

5.1 wg Operator

The wg operator takes in input a set S of similar substrings, detected using a
local alignment algorithm, and constructs an abstract atomic event defined as
a pair (R, E) being R a regular expression generalizing the episode instances
contained in S, and F is the abstract event associated to R. The restriction is
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Fig. 2. The main learning algorithm structure. Every layer produces a more abstract
description of the input sequences

that items in R may be only symbols, or disjunction of symbols. Therefore, no
iterative constructs are considered.

The core of wg is the construction of the multi-alignment of all strings in
the set S; the similarity measure and the alignment procedure are parameters,
which can be assigned according to the needs. The semantics of wg consists in
the following three step algorithm:

Algorithm wg

1. Construct the multi-alignment M A(S) for strings in S.
2. Construct the match graph MG(S).
3. Transform MG(S) into an equivalent regular expression.

The multi-alignment M A(S) is a table whose columns contain the symbols put in
correspondence by the alignment algorithm. Therefore, the second step aims at
eliminating noise from episode descriptions preserving possible multi-modalities.
Symbols, occurring in a same column more frequently than expected if they
would be due to random noise, are considered match symbols and will be in-
cluded in the regular expression generated in the third step. Match symbols are
associated to the nodes of a directed graph MG(S). The edges of MG(S) are
defined according to the following rule: if there is at least one row in M A(S)
where a match symbol z follows a match symbol y, immediately or after one or
more spaces, a link from z to y is set in MG(S).

Graph MG(S) is transformed into a regular expression in Step 3. As there
are many possible way for doing it, it is not relevant to describe the algorithm
into details. In this phase, constraints on the event length (see Section 3) are
also learned. We remember that an atomic event F, in a regular expression, can
be annotated as E[n,m], being n and m the extremes of the interval in which
the event length [ is accepted. The values for n and m are estimated from
the lengths of the instances of E aligned in a same column in M A(S). In this
phase, constraints, given a-priori as background knowledge, can also be taken
into account.
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Fig. 3. Example of non-iterative expression obtained from the string set {london, lon-
dra, lomdra, lontra, londro, londron, rondon, lindon, london, lomdon, landra, londra,
londla}. (a) Corresponding multi-alignment. (b) Retained alternatives. (c) Final regular
expression

The algorithm is illustrated through an example in Figure 3, where a regular
expression describing a dimorphic occurrence of the word london? in the Italian
language is extracted from a set of words affected by typos.

5.2 wy Operator

Operator w; is complementary to wg, and explicitly searches for contiguous
repetitions of a same substring inside a given string s. This is done by computing
the self-correlation of the string similarity function. In fact, repeated substring
instances are expected to be very similar each other (identical in absence of
noise). Then, periods in self-similarity function locate where repetitions of a
same substring occur. Let W; and w; denote a reference window and a sliding
window (of equal size) on s beginning in position ¢ and j, respectively. Let n
be the length of s minus the length of W;. Let, moreover, SC be a triangular
matrix of size n?/2; the notation SC(i, j) will indicate the 4, j element of SC.
The basic self-correlation algorithm is the following:

Similarity self-correlation

1. Seti=1

2. For j ranging from i to n evaluate SC(i, j) = [(W;,w;) between the
substrings selected by W; and wj, respectively.

3. Set i =i+1

4. If i is smaller than n goto step 2, otherwise continue.

3 Names of foreign towns may occur in an Italian text both in their original or-
thographic form, or in Italian translation. In this case London is translated into
“Londra”.
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5. Detect chains of maxima on SC, where the maximum value is close
to the maximum possible similarity value between two substrings W;,
wj. A substring r of s, laying in between two consecutive maxima,
is an iterated substring.

6. For every different iterated substring r construct a new hypothesis
for an iterated episode.

The complexity of the algorithm is O(n?/2). However, it is easy to make the
algorithm more efficient: when string similarity is close to zero, the windows can
slide much faster than one position at-a-time. The contour plot of the SC matrix
of two different strings is reported in Figure 4 (for the sake of clarity, the entire
square matrix has been computed).

...00ioonoilgg....nmnlltgtgmnvrabababababa virgtnogtaaabbaaaaabbawaaabbawaaabbaaaaab

babababababababababababababamovne..... baaaaaaaaaabb...... enotitlelvemnigrirom...
T T T T 7z 100 5---
e P

rrrrrrrrrrrrrrrrrrrrrrr <1 90 3———

80 T

(a) (b)

Fig. 4. Examples of similarity self-correlation patterns. (a) The repeated subsequence
is “ab”. (b) The repeated subsequence is “aaaaabb”. In both sequences noise has been
added. The rectangular patterns clearly indicate the region where the iterated subse-
quences are located

5.3 Basic Learning Cycle
The basic learning cycle consists of four major steps:

1. Non-iterative episode detection. Episodes consisting of non-iterated sub-
strings are detected and abstracted by applying operator wg.

2. Iterative episode detection. Episodes consisting of an iterated substring are
detected and abstracted by applying operator wy.

3. Model construction. When necessary, an HMM is constructed for every ab-
stracted episode.

4. Sequence abstraction. The input sequences are rewritten using as new al-
phabet the names of the abstract episodes.

Non-iterative Episode Detection. The core mechanism is represented by
the abstraction operators wg. However, some preprocessing is required before
applying the operator. In fact, wg takes in input a set S of strings that is con-
structed by applying a local alignment algorithm LA (see Section 4) followed
by a clustering algorithm. More specifically, LA is repeatedly applied to a set
of sequence pairs randomly sampled from the learning set £S and produces in
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output pairs of subsequences that exhibit strong similarity. It is expected that a
frequent episode occurs in many pairs of sequences with minor differences from
one instance to another. Then, episodes deriving from a same regular expression
are easy to detect by using a clustering algorithm, which groups together most
similar subsequences. The specific algorithm used for this step is not very much
critical, because the refinement cycle allows possible errors to be recovered, as
it will be explained later on. The currently used algorithm is an incremental
variant of classical k-Means.

Finally, wg is applied to every cluster S obtained in this way, constructing a
corresponding abstract event.

Iterative Episode Detection. In principle, the procedure described above
is able to discover an iterated episode when the number of iterations is very
similar in all sequences where the episode occurs. On the contrary, it does not
work properly when the number of iterations is significantly different from one
sequence to another, because the multi-alignment step fails. This problem is
solved by operator wy, which is applied to a set of sequences sampled from LS.
All iterated episodes found in this way are collected into a set I. Afterwards,
episodes characterized by an identical (or very similar) iterated substring are
generalized to a unique abstract episode description: a common iterated subse-
quence is chosen, and the iteration limits are set in order to include all found
instances. The abstract events constructed in this way are then added to the
ones generated by operator wg.

Model Construction. This step is accomplished only if an approximate match-
ing based on HMM has been required and consists in constructing an HMM for
every abstract event F characterized in the previous steps. Every expression Rg
is converted into a HMM Ag, and the sets of substrings, used to learn the regular
expression describing the abstract events, are used to estimated the parameters
of Ag. The details of the algorithm can be found in [2, 11].

Sequence Abstraction. Every sequence s in LS is rewritten into an abstracted
sequence s’ according to the following algorithm: s is scanned left-to-right search-
ing for instances of episodes detected and abstracted in the previous steps. The
presence of an episode F is decided by matching the corresponding regular ex-
pression Rg to s. Every time an instance is found, the name of E is appended to
s’. However, conflicting interpretations of a same subsequence may exist. Con-
flict resolution is delayed to a second swept and, initially, a lattice is generated,
containing all plausible hypotheses for episode instances. Afterward, lattices are
processed extracting from each one the maximum scoring sequence, which in-
cludes the best scored hypotheses compatible with the given constraints. The
default constraint is that hypotheses must not overlap. In the case a string
similarity function of type (2) is used to match regular expressions, the score
assigned to episode hypotheses is the value computed by the similarity function.
Otherwise, if a matching based on HMM is used, the score of an event E is the
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Fig. 5. Basic learning cycle example. (a) Iterated symbols are detected and replaced
with the name of the corresponding regular expression. (b) Local alignments are de-
tected and similar substrings are clustered together. (¢) From the multiple alignment
of elements in a same cluster a regular expression is obtained
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Fig. 6. The refinement step. (a) Episode lattice. (b) Some hypothesized events in (a)
are not considered for a new episode. (¢) Only the retained instances are used to re-train
the episode model

probability assigned by the model Ag. Portions of the string s not abstracted by
any episode are abstracted as gaps and represented by a gap symbol.

The major steps of the basic cycle are illustrated through an example in
Figure 5.

5.4 Refinement Cycle

The refinement cycle may be activated at the abstraction layer L; every time new
episodes are detected and modeled at a level higher than i. The reason for doing
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it is illustrated in Figure 6. When an episode E is hypothesized and characterized
at an abstraction level L;, the context, i.e, the presence of other episodes before or
after F/, is not considered. Nevertheless, the context is considered later on when
the episodes of layer L; are linked together into an episode at level L;y;. This
means that some instances of £ may be not included in any higher level episode
and will be considered spurious. Nevertheless, such instances were included in the
cluster used to build up the regular expression describing F. In the refinement
step, the regular expression describing E are re-learned using only the instances
that have been retained.

As episode instances are detected using one of the approximate matching
algorithms described in in Section 4, the outcome of the refining cycle heavily
depends on it. Therefore, using a similarity function or an HMM can produce
quite different results.

6 Discussion and Evaluation

The learning algorithm described in previous sections has been implemented in
two different versions, where the major difference is in the flexible matching
algorithm. In the first version, which is an extension of the work described in
[3], matching is based on a string similarity function. In the second version [2],
string similarity is still used in the basic learning cycle, whereas, in the refine-
ment cycle, regular expressions are translated into HMMs. More specifically, the
cascade of regular expressions generated by the abstraction mechanism leads to
a Hierarchical HMM [7], which is trained using the classical EM algorithm. The
two different versions have been tested both on artificial data and on real world
problems. Artificial data are a suitable tool to evaluate learning algorithms, be-
cause they can be constructed on purpose to put in evidence both strong and
weak points. A first benchmark between the two algorithm versions has been run
using a suite of datasets consisting of artificially generated sequences of symbols.
The structure for all datasets is similar, and consists of sequences of words se-
lected from natural language and interleaved with gaps filled by randomly chosen
characters. Moreover, noise is added by randomly replacing an assigned percent-
age of characters with other characters randomly extracted from the alphabet.
The challenge for the algorithms is to reconstruct the regular expression corre-
sponding to the sequence of words hidden in the data. Every dataset contains
100 sequences and the global length of the sequences ranges from 60 to 140
characters.

The difficulty of the task has been controlled by varying three parameters:
(a) the number of words (5 < w < 8) in the regular expression; (b) the word
length (5 < L < 8); (c) the noise level (N € {0%,5%,10%,15%}. For every
triple < w, L, N >, 10 different datasets have been generated for a total of 640
learning problems.

The results comparing the two algorithms are summarized in Table 1. The
error rate (averaged on 10 problems) is evaluated as the edit distance (i.e., the
minimum number of corrections) between the regular expression learned by the
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Table 1. Performances of the two algorithm versions obtained on artificial datasets.
The sequence length ranges from 60 to 140 characters. The CPU time for solving a
problem ranges from 42 to 83 seconds on a Pentium IV 2.4 Ghz

Similarity function HMM
Noise Level Noise Level
0% 5% 10 % 15% | 0% 5% 10 % 15%
0.00 0.00 0.00 0.00|0.04 0.04 0.04 0.04
0.01 0.01 0.02 0.01|0.03 0.03 0.03 0.03
0.00 0.03 0.02 0.02|0.00 0.00 0.02 0.00
0.01 0.03 0.03 0.04|0.00 0.00 0.00 0.00
0.00 0.02 0.03 0.02|0.10 0.06 0.00 0.03
0.02 0.04 0.01 0.010.05 0.00 0.00 0.00
0.03 0.02 0.02 0.04|0.02 0.00 0.00 0.00
0.05 0.06 0.04 0.04|0.00 0.00 0.04 0.00
0.02 0.01 0.01 0.010.02 0.05 0.01 0.10
0.02 0.00 0.01 0.01|0.04 0.02 0.05 0.04
0.04 0.02 0.02 0.04|0.00 0.00 0.02 0.05
0.04 0.02 0.02 0.04|0.01 0.00 0.09 0.09
0.03 0.01 0.01 0.01|0.00 0.00 0.01 0.00
0.01 0.00 0.01 0.01|0.03 0.06 0.06 0.14
0.07 0.03 0.04 0.05|0.00 0.00 0.00 0.00
0.12 0.06 0.05 0.07|0.01 0.00 0.00 0.00
0.026 0.022 0.021 0.026[0.021 0.016 0.023 0.026
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algorithms and the original one hidden in the data. When an entire word is
missed, the corresponding error is set equal to its length. Experiments in Ta-
ble 1, reporting an error rate much higher than the others, have missed words.
In all cases, the learning cycle has been iterated twice, as explained in Section 5.
Cells in the last row reports the average of the error rates in the corresponding
column.

From the results of Table 1 the two algorithm versions show performances
substantially similar, and show good robustness with respect to the presence
of noise. However, from a more detailed analysis of the table, some differences
emerge. Flexible matching based on HMM is slightly superior to similarity based
one when the word length increases. Moreover, it shows a less stable behavior:
either the performances are very good, with a zero error rate, or the error rate
is quite high, because one or more words have been missed in some learning
problem.

It is worth noting that both versions exhibit better performances when epi-
sodes to detect are longer. This is easy to explain, because long-range regularities
are easier to distinguish from noise than short-range ones. Then, in general,
longer CEs are expected to be easier to learn than shorter ones.

As previously mentioned, the learning algorithm has been applied also to a
real world problem where the goal was to learn the profile of a user typing on
a keyboard. The description of the task and the obtained results are described
in [11]. In this case, the algorithm version based on HMM clearly dominated
the other version. The reasons are to be searched in the greater complexity of
the data set and on the nature of the data, which better fit an HMM. In fact,
the similarity function (2) does not take into account the location of the errors
in the episodes whereas HMM does. Therefore, it is not possible to establish
a-priori which version would perform better, if the nature of the data is not
known.
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7 Conclusion

An algorithm for discovering complex events in noisy sequences has been pre-
sented, where complex events are described as regular expressions. The main
contribution of the paper consists in organizing and generalizing in a unique
framework different methods developed in the past. Moreover, for the first time
the learning algorithm architecture, which is based on an abstraction mechanism,
is described into details.

Currently, two versions of the algorithm exist, which have been developed
by integrating large part of previous work: one makes use of string similarity in
order to match regular expressions on noisy data; the other one translates regular
expressions into a hierarchical Hidden Markov Model [7]. Both versions exhibit
good performances on artificial data, whereas the second one was superior in
solving a non trivial user profiling problem, where it was required to learn the
model for a user editing a text.

In both versions, the algorithm has been easy to apply and didn’t require
special tuning on the problem. This means that the method is robust and suitable
for applications in real domains.

However, the evaluation is not yet complete. On the one hand, the ability
of the algorithm at learning regular expressions where iteration is deeply in-
volved has been only partially tested, and the results obtained up to now are
not yet conclusive. On the other hand, a theoretical analysis of the convergency
properties of the algorithm is in progress.

Acknowledgments

The present work has been supported by the FIRB Project: WebMinds.

References

1. D. Angluin. Queries and concept learning. Machine Learning, 2(4):319-342, 1988.

2. M. Botta, U. Galassi, and A.Giordana. Learning complex and sparse events in long
sequences. In Proceedings of the European Conference on Artificial Intelligence,
ECAI-04, Valencia, Spain, August 2004.

3. M. Botta, A. Giordana, and P. Terenziani. Discovering complex events in long
sequences. In Proceedings of the “Workshop on learning in temporal sequences”,
Machine Learning Conference, Sidney, Australia, July 2002.

4. F. Denis. Learning regular languages from simple positive examples. Machine
Learning, 44(1/2):37-66, 2001.

5. R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological sequence analysis.
Cambridge University Press, 1998.

6. J. L. Elman. Distributed representations, simple recurrent networks, and gram-
matical structure. Machine Learning, 7:195-225, 1991.

7. S. Fine, Y Singer, and N. Tishby. The hierarchical hidden markov model: Analysis
and applications. Machine Learning, 32:41-62, 1998.



106

8.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

U. Galassi and A. Giordana

P. Frasconi and Y. Bengio. An em approach to grammatical inference: iputo/output
hmms. In Proceedings of International Conference on Pattern Recognition, ICPR-
94, 1994.

K. S. Fu. Syntactic pattern recognition and applications. Prentice Hall, 1982.

. K.S. FU and T.L. Booth. Grammatical inference: Introduction and survey (part

1). IEEE Transaction on System, Men and Cybernetics, 5:85-111, 1975.

U. Galassi, A. Giordana, and D. Mendola. Learning user profiles from traces.
Technical report TR-INF-2005-04-02-UNIPMN, 2005.

D. Gussfield. Algorithms on Strings, Trees, and Sequences. Cambridge University
Press, 1997.

J.E. Hopcroft and J.D. Ullman. Formal languages and their relation to automata.
Addison-Wesley, 1969.

K. Murphy and M. Paskin. Linear time inference in hierarchical hmms. In Advances
in Neural Information Processing Systems (NIPS-01), volume 14, 2001.

E.W. Myers and W. Miller. Approximate matching of regular expressions. Bulletin
of Mathematical Biology, 51(2):5 — 37, 1989.

R. G. Parekh and V. G. Honavar. Learning DFA from simple examples. In
Proceedings of the 8th International Workshop on Algorithmic Learning Theory
(ALT’97), Lecture Notes in Artificial Intelligence, volume 1316, pages 116 131,
Sendai, Japan, 1997. Springer.

Rajesh Parekh, Codrin Nichitiu, and Vasant Honavar. A polynomial time incre-
mental algorithm for learning DFA. Lecture Notes in Computer Science, 1433:
37-50, 1998.

P. Garca and E. Vidal. Inference of k-testable languages in the strict sense and ap-
plications to syntactic pattern recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 12(9):920-925, 1990.

S. Porat and J. Feldman. Learning automata from ordered examples. Machine
Learning, 7:109-138, 1991.

L. Saitta, editor. The abstraction paths, Special issue of the Philosophical Trans-
actions of Royal Society, Series B. 2003.

M. Skounakis, M. Craven, and S. Ray. Hierarchical hidden markov models for
information extraction. In Proceedings of the 18th International Joint Conference
on Artificial Intelligence 1JCAI-03, pages x—x. Morgan Kaufmann, 2003.

L. Xie, S. Chang, A. Divakaran, and H. Sun. Learning hierarchical hidden Markov
models for video structure discovery, volume Tech. Rep. 2002-006. ADVENT
Group, Columbia University, December 2002.



From Factorial and Hierarchical HMM to
Bayesian Network: A Representation
Change Algorithm

Sylvain Gelly, Nicolas Bredeche, and Michele Sebag

Equipe Inference & Apprentissage - Projet TAO (INRIA futurs),
Laboratoire de Recherche en Informatique,
Université Paris-Sud, 91405 Orsay Cedex, France
{gelly, bredeche, sebag}@lri.fr
http://tao.lri.fr

Abstract. Factorial Hierarchical Hidden Markov Models (FHHMM)
provides a powerful way to endow an autonomous mobile robot with
efficient map-building and map-navigation behaviors. However, the in-
ference mechanism in FHHMM has seldom been studied. In this paper,
we suggest an algorithm that transforms a FHHMM into a Bayesian
Network in order to be able to perform inference. As a matter of fact,
inference in Bayesian Network is a well-known mechanism and this rep-
resentation formalism provides a well grounded theoretical background
that may help us to achieve our goal. The algorithm we present can han-
dle two problems arising in such a representation change: (1) the cost
due to taking into account multiple dependencies between variables (e.g.
compute P(Y|X1, X2, ..., X»)), and (2) the removal of the directed cy-
cles that may be present in the source graph. Finally, we show that our
model is able to learn faster than a classical Bayesian network based
representation when few (or unreliable) data is available, which is a key
feature when it comes to mobile robotics.

1 Introduction

Many works in mobile robotics rely on probabilistic models such as POMDP or
HMM!, etc.) to build a map of an environment [2, 1,7, 4, 5]. Indeed, the proper-
ties of these models are particularly relevant in the context of robotics, as well
as extensions of these models. Firstly, the problem of knowledge generalization
can partly be solved if we consider a hierarchical model (encode a given place at
sereral granularities) [6]. Secondly, taking into account the invariants can also be
achieved if we consider a model that implements a factorization operator (e.g.
a given place location should be perceived with no considerations for the actual

! In the following of the article, we deal with HMM rather than with POMDP. The
particularity of the latter being that they explicitly take into account action, which
is not a key issue for the inference problem at hand.

J.-D. Zucker and L. Saitta (Eds.): SARA 2005, LNAI 3607, pp. 107-120, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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orientation of the robot) [4]. However these two extensions have been well stud-
ied separately, it is quite difficult to endow a HMM-based model with these two
simultaneously. As far as we know, there exists no efficient inference algorithm
that can deal with such a model.

In this paper, we present an approach to perform inference within a Factorial
and Hierarchical HMM (i.e. FHHMM?). Our approach relies on an algorithm
that performs a representation change from FHHMM to the Bayesian Network
representation formalism. The choice of the Bayesian Network formalism is moti-
vated by the strong theoritical fundations and the efficient algorithms that exists
in it.

However, several difficulties arise with such a representation change because
of the structural differences between the two formalisms and their intrinsic prop-
erties. In particular, we identify two main problems that must be taken into
account during this process:

— There exists multiple dependencies in the FHHMM. These implies an expo-
nential growth of the number of parameters to learn, which is a challenging
problem when dealing with a small set of example (this is an intrinsic prop-
erty in mobile robotics) ;

— There exists directed cycles in the conditional dependencies between the
variables of a FHHMM. It is well known that directed cycles are not allowed
within a Bayesian network (we should note however that these dependencies
are a problem only between variables at a same time step (see section 2)).

In the following section, we present the HMM formalism and the factorial and
hierarchical extensions. Then, we describe the inference problem in the case of
FHHMM. Section 3 and 4 presents our approach along with the representation
change algorithm. Lastly, section 5 presents two experiments which confront the
resulting model and classical Bayesian networks for a learning task. We conclude
this paper with a discussion about the interesting properties shown by our model
as well as the compromise we made so as to be able to learn from few data, which
is often the case of a mobile robot building a map of its environment.

2 Problem Setting

2.1 Hierarchical and Factorial HMM

Known limitations with HMM, and more generaly with markov models, are
concerned with scaling, taking into account independent phenomena and the
difficulty to generalize. However, there exists several extensions to solve this
problem. In the following, we focus our attention on hierarchical HMM [7, 5] and
factorial HMM [3]3.

2 We use this abrevation in the following of the article.
3 These extensions have been used separately (with POMDPs) for map-building by a
robot [5,4].
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On the one hand, the hierarchical extension allows to reduce the number
of links between the states of an HMM, and then reduce the algorithmic com-
plexity of learning as well as improving the acurracy. On the other hand, the
factorial extension makes it possible to explain observations with several causes
rather than only one. In this case, the goal is to turn the P(Y|X) of HMM
into P(Y|X!, X2 ..., X"). The X* are hidden variables and can be dealt with
separatly. Thus, the P(X/ ,|X}) are different for each 1.

2.2 Conditional Dependencies and Sparse Data
Let’s begin by introducing the following definitions:

— A static dependency denotes the conditional dependency between two vari-
ables at the same time step. It is important to notice that the problem of
directed cycles arise only from this kind of dependencies.

— A dynamic dependency is defined as a conditional dependency for two (e.g.

classical HMM) or several variables between two time steps (e.g. factorial

Classic and hierarchical HMM contain only dynamic dependencies. However,
static dependencies can be found in the case of factorial HMM when conditional
dependencies are to be created between some variables.

In the scope of this paper, we consider a special kind of HMM, where the
dependencies type may be a priori undefined. As a matter of fact, dynamic and
static dependencies are both expressed as conditional dependencies within the
Bayesian network formalism.

2.3 Problem Issues

Since we consider an HMM that implements both the factorial and hierarchical
extensions along with undefined dependencies, we face the problem of finding
a fitted inference algorithm. As a matter of fact, there do not exists any such
algorithms for this kind of model. This is the first issue: how to perform inference
in such a model.

Another important issue is that due to the original motivation (i.e. mobile
robotics), we have to consider the case where there is few data to learn from.
Indeed, the sample process is supposed to be controlled by the robot’s behavior
and the environment, which usually gives few and biaised examples. Hence, we
state that a good property of our model would be to favor the learning speed
even at the cost of a (reasonable) loss in accuracy.

3 Representation Change: From FHHMM to Bayesian
Networks

3.1 Constrained Representation Change

Taking into Account Multiple Dependencies: we suggest to reformulate
a directed (and potentially cyclic) graph into a Bayesian network. Indeed, the
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Fig. 1. Example of representation change (BN => FBN)

Bayesian network formalism is a well known and grounded theoritical and prac-
tical framework.

However, two problems arise with such a representation change: (1) the cost
of taking into account the multiple dependencies which exist for a variable (i.e.
computing P(Y|X1, Xo, ..., X,,), resulting in 2™ parameters when dealing with
binary variables) and (2) reformulating a directed cycle within a Bayesian net-
work.

Our solution rely on simplifying the constrains due to multiple dependen-
cies. Indeed, multiple dependencies are decomposed by dealing with them two
by two (i.e. taking separately P(Y|X1), P(Y|X2),..., P(Y|X,,) (resulting in 2n
parameters for binary variables) as well as introducing constraints during the
transformation process).

3.2 Taking into Account Multiple Dependencies Two by Two

Let V1, Vo, ..., V,,, with n discrete random variables, of modality mq, ..., m,,.

We assume that p; = P(V;) are known (vector of size m;), for all 4, and some
pi,; = P(V;|\Vi), j € I; C{L,...,n} (p;; is a matrix of size (m;, m;)).

This model can be represented by a graph where nodes are random variables
Vi and edges a; ; that represents the p; ;. The conditional probabilities induce
a structure that is not constrained (for instance, there may exist directed cy-
cles). In order to simplify the notation, we introduce the notion of Flattened
Bayesian Network (or FBN) to designate the networks that are described in
the following of the paper. Figure 1 shows an example of representation change
from a graph into a Flattened Bayesian Network.

Reformulating into Bayesian Network Formalism: Additional
Variables and Axioms: For each pair of dependent variables (V;,V}), we add
an additional variable which parents are V; and Vj. This provides two advantages:
(1) limiting the complexity of multiple dependencies (at the cost of approxi-
mation), (2) avoiding directed cycles (in the new formalism, all edges target
additional variables). Once this reformulation is completed, inference is made
possible thanks to one of the several inference algorithm of Bayesian network.

Each variable V; from the original graph is mapped into a variable of the
Bayesian network, with the same modality, noted V; (as before).
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Each edge a; ; is mapped into an additional boolean variable in the Bayesian
network, noted 4, ;. The A; ; have exactly two parents in the Bayesian network,
namely V; and V; (i.e. a V-structure). These variables are artificially observed
in order to induce a dependency between the variables V; and V; (observation
values are assigned to “true”).

Once the additional variables are added, conditional probabilities must be
computed as a last step to the transformation process, that is to compute the
P(A; ;|Vi, V;). Let’s introduce the following notations:

— Let Kj = Ul{AhJ},
— Let K = U;K;. Let L C K. We note L = true the event VA € L, A = true.

Now, we shall define an axiomatic system to satisfy. The goal is to make
the probabilities P(A; ;|V;,V;) reach a fixed point (i.e. stable). This fixed point
is reached thanks to an EM-inspired iterative algorithm which is described in
the following. Satisfying this axiomatic system garantees a coherent network
behavior with respect to the dependencies taken two by two (compared to the
behavior of a classic network).

The first axiom named “behavior axiom” determines the influence of a vari-
able onto another. This axiom specifies a property defined from K = true, i.e.
Vi,j Aij = true. Then, this implies a coupled equation system. The behavior
axiom is defined as follow:

Vi,j P(V;|V;, K = true) = p; ; (1)

Secondly, the information contained in a probability distribution is linked to
the difference between this distribution and the a priori distribution. We then
introduce a second axiom named “not adding information” which states that
adding additional variables do not bring information to the network. Then, this
axiom implies local constrains on the P(A;;|V;,V;), i.e. independently taking
into account the A; ;. The not adding information axiom is defined as follow:

Vi, P(V;| K = true) = p, (2)

Let’s now describe the iterative process that satisfies the axioms. For more
details on the equation system induced by the axioms, the reader can refer to
the appendix at the end of this paper.

Satisfaction Mechanism of the Axiomatic System: For each iteration,
there is an inter-dependency problem when computing the probabilities
P(A; ;|Vi,V;)* Indeed, if an element of the matrix P(A4;;|V;,V;) is modified,
then the axioms may be invalidated for another dependency. In pratical, we
check that the system satisfy the axioms once all the matrices are calculated.
We iterate the process (updating the matrix) until it converges. This is achieved
thanks to an EM-inspired iterative algorithm which is concerned with the axioms
and is defined as follow:

4 This is even more true with directed cycles.
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— step E: Vi, j q;,; = P(V;|Vi, K\ {A4; ;} = true);
— step M: compute P(A4; ;|V;, V;) wrt. ¢; ;.

At this point, this algorithm is not sufficient to make P(4; ;|V;,V;) converge.
Thus, we have to limit the influence between variables through “limited update”
constraints. In the following, we present the mechanisms which are necessary to
the algorithm that will be described in the next section.

Convergence Parameter: Link “Strength”. For each arc between two variables,
we introduce a new term, namely “strength”, which determines the influence
of one variable upon another. A zero strength means that the variable has no
direct influence (i.e. same as removing the additional variable). The strength is
expressed by f, function defined on the set of additional variables A; ;. f(A; ;) =
(f1(Ai )5 fm; (Aij)) is a vector of size m; (number of modality for the vari-
able ‘/Z)a and fk(Aj,,j) =1- Hk(P(Al,j“/u‘/])) where Hk(P(A%]“/Z,‘/])) is the
entropy of line k (P(A;;|V;, V) is a matrix).

Updating Criterion Used to Converge: Limiting the Direct Influence of Variables
Thanks to the Strength Term. In order to compute the influence of a variable
i on another variable j, we have to take into account both the direct influence
(i.e. through an additional variable A;;) and indirect influence (i.e. through the
other variables of which ¢ and j both depend).

For some configurations however, influences will compensate each other so
that they will both tend to a limit state (probability will tend to 0 or 1), making
it difficult to take them into account any further. As a matter of fact, we shall
then face (1) possibly infinite convergence towards 0 or 1 and (2) computational
problem related the computer accuracy (the latter being the most important in
practical).

In order to solve this problem, we compute a maximum threshold for the
strength which is defined for every pairs of variables and for every modality of
the source variable such as:

Let f0(i,7) = fr(Ai;) when Vi, j ¢; j = p;.

This threshold is meant to be used as the link strength if there is no indirect
influence. Hence, the iterative algorithm we present in the next section must
satisfy for each step: Vi,j fx(A;;) < f2(i,7) (refer to algorithm 2 in the next
section).

4 Representation Change Algorithm

In this section, we present two complementary algorithms that perform the de-
sired representation change. The first algorithm makes the system converge (i.e.
N iterations until convergence) while the second algorithm makes sure that the
representation change is performed with respect to the axioms for any pair of
variables (i.e. a single iteration which may or may not lead to convergence).
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4.1  Algorithm 1: Do N Iterations Until Convergence

while P(A; ;|V;,V;) haven’t converged (distance from the term before is more
than a given threshold) or while the number of iterations have not reached a
maximum do

call algorithm 2

compute the distance between new and old probabilities
end while

4.2  Algorithm 2: Do an Iteration for All the Variables Pairs

1: for all pairs of variables V;, V; such that there exists a dependency V;— > V;
do
if first iteration then
Set all the additional variables as unobserved.
Affect the ¢; ; = P(V}).
else
Set the variable A; ; unobserved and the other additional variables ob-
served to true
7 Calculate the ¢; ; = P(V;|Vi, K\{A,; ;} = true) using an inference in the
Bayesian network. These conditional probabilities represents the direct
influence(without the link through variable A; ;) of V; on Vj.
8: end if
9:  Apply the equations of the first axiom in order to determine the P(A4; ;|V;,
V;) with a multiply constant for each line ¢
10:  for all The lines k of the matrix P(A4, ;|V;,V;), calculate the “strength”
fk = fk(Al,j) =1- Hk(P(Az,j“/;a V})) of the link i— > 7. do

11: if First iteration then

12: fRG.5) = fu(Aiy)

13: else

14: if fi > fY then

15: Calculate by dichotomy the 0 < y < 1 such as fk(Azj))f,g,(i.e. all

the coefficients of the matrix are powered by y). This is done in
order to “smooth” the parameters to increase the entropy and then
decrease the “strength”.

16: end if

17: end if

18:  end for

19:  Apply the equations of the second axiom to determine the multiply con-
stants

20:  Compute the matrix P(A4; ;|V;, V)

21: end for

In the next section, we show some experiments that rely on this algorithms.
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5 Experiments

5.1 Experimental Setup

In order to experimentally validate our approach, we conducted some exper-
iments on the learnability of the networks after a representation change (i.e.
flattened Bayesian networks). Our experimental setup is defined as follow:

— a generator network which can either be a flattened Bayesian network (exp.
1) or a classic Bayesian network (exp. 2). In both experiments, the number
of nodes in the generator and learnable networks is fixed (in the case of
flattened Bayesian network, we do not count the additional nodes built by
our representation change algorithm).

— a set of learning networks that covers both all the possible classic Bayesian
networks and flattened Bayesian networks structures with the same number
of nodes than the generator (i.e. learning is exhaustive for all structures with
a given size).

So as to get a good approximation of the results, we compute N data sequence
from M random initializations for the generator network. As a consequence, we
perform N x M learning sessions for each target network (20 < N x M < 50).
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Mean BN ————-—
1 Best FBN --------
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Fig. 2. Results using a Flattened Bayesian Network generator. The X-axis shows the
number of examples used for learning. The Y-axis shows the Kullback-Leibler distance
between the learned joint distribution and the one that was used to generate the
learning data. The generator network is shown on the figure (lower-left). The best
performing Bayesian and flattened Bayesian networks for 50 examples are also shown
on the figure (up)
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Fig. 3. Results using a Bayesian Network generator. The X-axis shows the number of
examples used for learning. The Y-axis shows the Kullback-Leibler distance between
the learned joint distribution and the one that was used to generate the learning data.
The generator network is shown on the figure (lower-left). The best performing Bayesian
and flattened Bayesian networks for 50 examples are also shown on the figure (up)

The error is defined as the Kullback-Leibler distance between the joint distri-
bution of a given target network and the distribution of the generator network.
In the scope of this paper, the network size for all experiments is limited to 4 so
that it is possible to evaluate the performance for all possible structures. As a
matter of fact, the number of possible structures grows more than exponentially
in function of the network size, which makes computation quickly prohibitive.

5.2 Experiment 1: Learning from Data Generated by a Flattened
Bayesian Network

Firstly, we study the behavior of flattened Bayesian networks in the most favor-
able setup, i.e. when learning on data generated by a flattened Bayesian network.
In this experiment, the generator is a 4-node cyclic flattened Bayesian network.
Figure 2 shows this generator as well as the results obtained with both all the
flattened Bayesian networks and classic Bayesian network that contains 4 nodes.

This figure shows that the flattened Bayesian networks always perform better
for average and best performances. However, learning performance tends to be
the same as the number of examples increases (> 250). Flattened Bayesian
networks are thus relevant when learning from such data. Moreover it should
be noted that the best performing flattened Bayesian network is structuraly
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different from the generator, meaning that the more reliable structure when few
examples are available is not the very structure of the generator.

5.3 Experiment 2: Learning from Few Examples

Secondly, we choose a 4-node classic Bayesian network as data generator (cf. fig.
3). As a consequence, learning with flattened Bayesian networks faces the worst
case since the generator’s joint probability can be anything. As a matter of fact,
flattened Bayesian network are supposed to be better for some distributions
(unknown at this stage of our research).

Figure 3 shows the results with respect to the experimental setup described
earlier. The important result is that the flattened Bayesian networks show the
best results both in average and for the best when there are few examples to
learn from. However, classic Bayesian networks become better as the number of
examples grow. These results show clearly that flattened Bayesian network pay
for the advantage of learning speed with a loss in accuracy in the long term (i.e.
compromise between a fast learning curve againt non-accurate learning in the
long term).

02F

nif ]

0,15 0,2 0,25 0.2 0,25 0.4 0,45 0.5 0,55

Fig. 4. Distribution (y-axis) wrt. the learning error (x-axis) for both classical (white
bars) and flattened (grey bars) Bayesian networks. Learning performance for the
flattened Bayesian networks are much more structuraly-independent than for classic
Bayesian networks
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5.4 Discussion

According to the results obtained earlier, it appears that the best networks are
also the simplest ones. Thus, it seems more relevant to learn with a simple yet
inadequate structure rather than with a more complex structure that is closer
to the generator: this can be seen as an explanation for the good learning capa-
bilities of flattened Bayesian networks. Figure 4 tends to confirm this assertion
by showing the distribution of classic and flattened Bayesian networks accord-
ing the learning performance for a given number of examples (here arbitrarily
fixed to 50) in experiment 2. Indeed this figure shows that flattened Bayesian
network are much less sensitive to structural variations than classic Bayesian
networks.

6 Conclusions

In the scope of this paper, we were interested in the transformation of a graph
(in practical, a hierarchical and factorial HMM) into a Bayesian network accord-
ing to some given constraints in order to reformulate the multiple dependencies
and cycles inherent to such a representation. We presented an algorithm that
performs a representation change in order to build a flattened Bayesian net-
work. We also presented the axioms that are used to provide a relevant model of
reformulated multiple dependencies. This model is based on a compromise be-
tween accurateness and learning speed which is achieved by taking into account
multiple dependencies by modeling variables only by pairs.

In order to study the behavior of flattened Bayesian networks, we performed
two experiments that successively showed (1) the learning behavior with a cyclic
flattened Bayesian network generator and (2) the learning behavior with few
examples. Thanks to these experiments, we have shown that flattened Bayesian
networks are especially good when learning from few examples, compared to
classic Bayesian networks.

Given our original motivation, i.e. map representation in mobile robotics, the
results we obtained are very promising since it has been observed that flattened
Bayesian network have the following properties:

— it is possible to modelize cycles one may encountered when dealing with
factorial and hierarchical HMM,;

— learning is performed more quickly with fewer examples. Of course, this
results from a compromise that implies a loss of accuracy in the long term.
However, in the scope of mobile robotics, this compromise is worthwhile since
a robot often deals with few or biased examples to build a representation of
the environment.

In the scope of this paper, we presented some experiments that compare
classic and flattened Bayesian networks. However, the representation formalism
remains the one of the Bayesian network, eventhough the representation change
algorithm adds additional variables. Thus, it is possible to build some hybrid
representations that combine both flattened and classical Bayesian sub-networks
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depending on the availability of data to learn from. As a consequence, this would
make it possible to get the best of both worlds: learning from few examples
with flattened Bayesian networks and precision learning with classic Bayesian
networks when many examples are available.

Some issues remain to be explored. From the model viewpoint, the conver-
gence mechanism describe in section 3.2 is based on experimental validation and
may require some further theoretical investigations. From the robotic viewpoint,
it is crucial to evaluate the learning behavior of flattened Bayesian networks
using real-world data, i.e. such as those a robot could gather in its environment.
Then, we should investigate the learning mechanism that may be used to find a
relevant structure for a flattened Bayesian network, eventhough those netwoks
have been shown to be less sensitive to an ill-chosen structure than classical
Bayesian networks actually are.
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Appendix: Property of the Model and Conditional
Probabilities

This section details the equations obtains from the axioms.
We add to the notations above, for ¢, j fixed: K/ = K\ {4, ,}.
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First Axiom

The first axiom, named “behavior” determines the influence of a variable on
another. This axiom specify a property defined from K = true, that is to say
from Vi,j A; ; = true. It can be expressed as: Behavior axiom:

Vi, j P(V;|V;, K = true) = p; j

(axiom 1)
From Bayes formulae,

P(Az,J = trueﬂ/; = ]{/’7 ‘/j = l’K/ — true)

_ P(V; =1|V; =k, K =true)P(A; ; = true|V; = k, K' = true) 3)
N P(V; =1V, =k, K' = true)

Finally:

pij(k,1)
Yk, I, P(A; ;|Vi=k,V; =1) =
( 7J| J ) ’}/kP(‘/j:l|V;:]€7K/:t’f‘ue)
The proportionality coefficients 5, which do not have influence on the satis-
faction of this property allow us to obtain the following property.

Second Axiom

The information contained in a probability distribution is linked to the differ-
ence between this distribution and the a priori distribution. We then introduce
a second axiom named “not adding information” which states that adding ad-
ditional variables will not bring information in the network. Then, this axiom
implies local constraints on the P(A; ;|V;,V;), that is to say taking into account
the A; ; independently. More precisely:

not adding information axiom:

Vi, Yk, P(V; = k| K = true) = p;(k)
Again from the Bayes formulae:

P(V; = k|K = true)
P(A;; =truelV; = k, K’ = true) P(V; = k|K' = true)
P(A;; = true|K' = true)
P(V; = k|K' = true)
> P(Aij=true|V; =1, Vi=k)p(V; =1|Vi =k, K' =true) "
P(A;,; = true| K’ =true)

Futhermore, we have from above:

o U — ) — pi,; (k1)
Py = truelVy =LVi = k) =W gm0 — 0 K7 = trae)
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Hence:

P(V; = k|K = true)

P(V; = k|K' = true) Zl Vi P(‘G:l‘%;(:”g,:tme)p(v} =1|V; = k,K' = true)
P(A; ; = true|K' = true)
P(Vi = k|K" = true) >, vkpi j(k,1)
P(A; ; = true|K’ = true)
P(V; = k|K' = true)y
B P(A; ; = true|K' = true)

Finally:
Vk, v, = P(A; ; = true|K' = true) (5)

All the ~; are equals. This constant does not have influence on the wanted
properties and is then chosen in order to have all the probabilities between 0

and 1, and secondly for numerical considerations. More precisly it is chosen such
as

max; i P(A;; =true|lV; =k, V; =1) =1 [ |
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Abstract. Pattern databases enable difficult search problems to be
solved very quickly, but are large and time-consuming to build. They
are therefore best suited to situations where many problem instances are
to be solved, and less than ideal when only a few instances are to be
solved. This paper examines a technique - hierarchical heuristic search -
especially designed for the latter situation. The key idea is to compute,
on demand, only those pattern database entries needed to solve a given
problem instance. Our experiments show that Hierarchical IDA* can
solve individual problems very quickly, up to two orders of magnitude
faster than the time required to build an entire high-performance pattern
database.

1 Introduction

Pattern databases were introduced [3,4] as a method for defining a heuristic
function to be used by heuristic search algorithms such as A* [9] and IDA* [14].
They have proved very valuable. For example, they are the key breakthrough
enabling Rubik’s Cube to be solved optimally [15], they have advanced the state
of the art of solving the sequential ordering problem [11], and have enabled
the length of solutions constructed using a macro-table to be very significantly
reduced [10]. They have also proven useful in heuristic-guided planning [6].

A pattern database is defined by a goal state and an abstraction, ¢, that
maps the given state space, S, to an abstract state space ¢(S). The states in
¢(S) are called abstract states or patterns. A pattern database is a lookup table
with an entry for each pattern — the entry for pattern P is the distance in ¢(S)
from P to the goal pattern, ¢(goal). Given a pattern database, the heuristic
value, h(s), for a state s € S is computed by looking up the entry for ¢(s) in
the pattern database. Because ¢ is an abstraction, h(s) is guaranteed to be an
admissible, monotone heuristic [12].

A pattern database is built by finding a shortest path to the goal pattern for
every pattern in ¢(S). Typically this is done by running a breadth-first search
backwards from the goal pattern until ¢(S) is fully enumerated.

Building an entire pattern database as a preprocessing step has two disadvan-
tages. The first is the time it takes to build the pattern database. For example,
the “7-8” additive pattern database for the 15-puzzle in [7] takes approximately
3 hours to build and the high-performance pattern database for (17,4)-TopSpin
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in [8] takes approximately 1 hour to build. The second disadvantage is the size
of the pattern database. In solving a single problem, only a tiny fraction of the
pattern database is needed, and therefore most of the memory allocated for the
pattern database, and the time needed to build it, is wasted.

Both disadvantages disappear, to some extent, if the same pattern database
is used to solve many problem instances. For example, if 3 million 15-puzzle
instances are solved using the “7-8” pattern database, the majority of its entries
would be needed and the time to build the pattern database would amount to
less than 10% of the total solution time.

On the other hand, there are circumstances in which the cost of building an
entire pattern database cannot reasonably be amortized over a large number of
problem instances. The obvious such circumstance is when only one or a few
problem instances need to be solved, such as when building a macro-table [10],
or when solving multiple sequence alignment problems [17]. In this case the time
to build the pattern database will dominate the time to solve the problems.

Another circumstance in which the cost of building a pattern database cannot
be amortized is when there are many instances to solve but it is impossible to use
the same pattern database to solve them because they have different goals (and
no simple transformation is possible), or because the operators or their costs
have changed. As will be shown below it can also happen that, even though it
is possible to use the same pattern database for all the problem instances, it is
advantageous, time-wise, to use a different, custom-selected pattern database to
solve different instances.

In this paper we examine a technique - hierarchical heuristic search - that
aims to minimize the time and space overhead of using a pattern database by
computing only those entries of the pattern database that are actually needed
to solve a given problem instance. The idea of on-demand calculation of pattern
database entries by hierarchical heuristic search was introduced in [12]. The
abstraction technique there was so costly, in terms of both time and space, that
it needed to be amortized over a large number of problem instances and therefore
offered little or no advantage over pattern databases. The starting point for the
present paper is the observation that the abstraction technique used for pattern
databases requires negligible space and time, and therefore raises the possibility
of realizing the great potential advantages of hierarchical heuristic search over
pattern databases for solving individual problem instances. In addition to using
a different abstraction technique, the present work also uses IDA* as its basic
search procedure, whereas [12] used A*.

This paper reports several experiments with Hierarchical IDA* (HIDA*). The
first shows that even if one abstraction, somewhat arbitrarily chosen, is used to
solve all problem instances for a given state space, an average instance can be
individually solved from scratch by HIDA* in minutes, compared to the one or
more hours it takes to build a high-performance pattern database. Subsequent
experiments show that in some state spaces a substantial additional speedup can
be obtained by using multiple or customized abstractions.
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2 The Hierarchical IDA* Algorithm

Pseudocode for Hierarchical IDA* (HIDA*) is given in Figure 1. The lines high-
lighted in bold font indicate the differences from normal IDA*. To improve per-
formance our actual implementation is somewhat more complex, but this figure
captures the central ideas.

The defining characteristic of hierarchical heuristic search is seen in the
h(s, goal) function in Figure 1. To compute a heuristic for state s, a recursive
call to the search algorithm is made to compute the exact distance between the
abstraction of s, ¢(s), and the abstraction of the goal state, ¢(goal). Search at
an abstract level is guided by distances computed at an even more abstract level
(in the figure the symbol ¢ is used to indicate the function that moves from the
current level to the next more abstract level; an alternative notation would have
had a different symbol, ¢;, for each level).

HIDAx (start, goal)
bound «— h(start, goal)
Repeat until goal is found:
bound «— DFS(start, goal, 0, bound)
For all states s on the solution path:
cache([s] < distance from s to goal
mark cache[s] as an exact distance

DFS(s,goal, g, bound)

If s == goal: exit with success

g—g+1

newbound «— oo

Iterate over x € successors(s):

// P-g caching
cache[x] < max(cache[x],bound-g,h(x,goal))
f — g + cache[x]

// Optimal path caching
If (f == bound) and (cache[x] is an exact distance):

exit with success

If f < bound: f — DFS(z,goal,g,bound)
If f < newbound : newbound «— f

Return newbound

h(s, goal)
If at the top abstraction level, return 0
If cache[¢(s)] is not an exact distance:

HIDA*(¢(s),p(goal))
Return cache[¢(s)]

Fig. 1. Pseudocode for Hierarchical IDA*
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Whenever the exact distance from a state to the goal is determined at any
level other than the base level (the original search space), it is stored in a cache
so that it need not be recomputed if it is required again. This is done by the
bold lines of pseudocode in the HIDA* function in Figure 1.

Exact distances to the goal stored in cache[z] for abstract state, x, are ac-
tually used for two different purposes. First, cachelz] is used as the value for
h(s, goal) for any less abstract state, s, for which ¢(s) = x. Second, cache|x] is
used in the optimal path caching method that was introduced, for A*, in [12].
If z is reached by a path of length g during a search within z’s abstract level
and cache[z] is an exact distance to goal, it is treated as if the goal had been
reached by a path of length g + cache[z]. See the bold lines after the “Optimal
path caching” comment in the DF'S function in Figure 1.

In addition to storing exact distances to the goal, the cache is also used to
store estimated distances to the goal generated by the “P-g” caching technique
that was introduced, for A*, in [12]. “P-g” caching improves (increases) the
heuristic values for abstract states that are expanded during a search, thereby
improving the efficiency of subsequent searches that happen to reach these
states. One possible implementation of “P-g” caching for HIDA* is shown by
the bold lines after the “P-g caching” comment in the DFS function in
Figure 1.

In all experiments the memory used for the cache was limited to 1 Gigabyte.
The implementation of the cache in hierarchical search is less efficient than the
hash table used to implement pattern databases because it is not known ahead
of time which entries, or even how many entries, will be put into the hierarchical
search cache!. By contrast, the exact set of patterns that will index a pattern
database is known ahead of time. This is enormously beneficial in terms of space
because a perfect hash function (collision free, no gaps) can be used, meaning
that nothing identifying the pattern needs to be stored as part of an entry.
Pattern database entries therefore only contain distances, typically needing only
one byte per entry. It is not possible to develop a perfect hash function for
the hierarchical search cache, so the cache must store a unique identifier for
each pattern along with its distance, which increases the size of an entry very
substantially (e.g. from one byte to eight for our 15-puzzle implementation). Not
having a perfect hash function also slows down access, since collisions can occur
and must be detected and resolved.

On a modern PC (AMD Athlon, 2.1GHz) our code generates approximately
4.5 million nodes per second at the base level and 1.5 million nodes per second
at the abstract levels. The difference in speed is because the cache operations
are done at each abstract level but not at the base level.

! This is true only of the lower levels in the abstraction hierarchy. For the upper levels
it is virtually certain that almost all possible entries will be generated. For example,
in the 15-puzzle experiment in the next section over 90% of the possible entries were
generated at each of levels 4-8 in Table 1.
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3 State Spaces Used in the Experiments

Four state spaces are used in these experiments: the 15-puzzle, a novel variant
called the Macro-15 puzzle, (17,4)-Topspin, and the 14-Pancake puzzle. For each
state space 100 randomly generated solvable instances were used for testing.

The 15-puzzle is included in our experiments because it is a standard bench-
mark for heuristic search methods. It is not actually a good example of the
circumstances in which to use HIDA* because a very good, efficiently computed
heuristic (Manhattan Distance) is known for it, and with modern search methods
individual problems can be solved from scratch very quickly [1].

The Macro-15 puzzle is a novel variation on the 15-puzzle inspired by the
fact that in the physical puzzle it takes the same effort to slide any partial row
or partial column of tiles one position towards the blank as it takes to slide a
single tile. Thus, in the 4x4 Macro puzzle used here there are 6 possible moves
in every state (because there are 3 tiles in the same row as the blank and 3 tiles
in the same column as the blank, and any tile in the same row or column as
the blank can be the endpoint of the group that is moved). We call this state
space the Macro-15 puzzle because its additional moves are “macro” moves in
the 15-puzzle. Solution lengths in the Macro-15 state space for the 100 standard
test problems used for the 15-puzzle [14] range from 27 to 38 with the median
and average solution length being 32. By contrast in the normal 15-puzzle these
problems’ solution lengths range from 41 to 66, with a median and average length
of 53. Note that Manhattan Distance is not an admissible heuristic in this space,
and additive pattern databases [7] cannot be used for it.

The (N,K)-TopSpin puzzle has N tokens arranged in a ring. The tokens can
be shifted cyclically clockwise or counterclockwise. The ring of tokens intersects
a region K tokens in length which can be rotated to reverse the order of the
tokens currently in the region. In our encoding we ignore the cyclic shifts and
only count reversals. Therefore the only moves are to reverse any K adjacent
tokens, where adjacency is defined cyclically. We used N = 17 and K = 4, but
the effective number of tokens is only 16 because one of the tokens is used as
a fixed reference point and therefore is effectively stationary. [2] shows that all
16! states are reachable. In order to reduce the number of transpositions, if two
moves act on non-intersecting sets of positions we force them to be done in a
particular order. This reduces the branching factor to 8.

In the N-Pancake puzzle [5] a state is a permutation of N tokens (0,1,...N —
1). A state has N — 1 successors, with the k*" successor formed by reversing
the order of the first k + 1 positions of the permutation (1 < k < N). We used
N=14, which has 14! states. Although this space is smaller than the others its
much larger branching factor makes it roughly the same difficulty to search.

4 Using One Abstraction Hierarchy for All Problems

Hierarchical search requires an abstraction hierarchy — a sequence of abstractions
defining the mappings from one level of abstraction to the next. In our state
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Table 1. “Default” Abstraction Hierarchy for the 15-puzzle and the Macro-15 puzzle
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°
°
°
°
°
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spaces an abstraction is defined by mapping some of the tiles/tokens to a “don’t
care” symbol. If the tokens mapped to “don’t care” by ¢; are a superset of
the tokens mapped to “don’t care” by ¢ then the space defined by ¢, is an
abstraction of the space defined by ¢2. Therefore a sequence of successively
more abstract spaces can be defined by partitioning the tokens into groups,
G1,Go,...,G, and defining ¢; as the abstraction in which all tokens in groups
G1,Go,...,G; are mapped to “don’t care”.

In the experiment in this section the same abstraction hierarchy is used for
all problem instances of each state space. These “default” abstraction hierar-
chies were not carefully chosen, they were among our initial thoughts for each
state space. The abstraction hierarchy used for the 15-puzzle and the Macro-15
puzzle is shown in Table 1, which is read from bottom to top, because the higher
rows represent the higher levels of abstraction. The bottom row (“base” level)
indicates which tile(s) each column is referring to. Each other row indicates how
the tiles are mapped at a certain level of abstraction, the level being indicated
by the number in the first column. For example the row with 1 in the first col-
umn shows that the first level of abstraction is defined by mapping tiles 1-7 to
“don’t care” (indicated by e in the table). The patterns at this abstract level
are the possible ways of placing the blank and the 8 remaining tiles (tiles 8-15)
in the 16 positions of the 15-puzzle. At the most abstract level (level 8) all the
tiles except 15 are mapped to “don’t care”. The patterns at this abstract level
are the possible ways of placing the blank and tile 15 in the 16 positions of the
15-puzzle.

The abstraction hierarchy used for the 14-Pancake puzzle is identical except
that it has only 14 tokens and therefore only seven abstract levels. Note that
“token 1”7 has the most volatile home position — the token in that position is
changed by every operation. This abstraction therefore abstracts the tokens in
volatile positions and retains the identity of tokens that can be placed in their
home positions and then left unmoved by a judicious choice of operators.

The abstraction hierarchy for (17,4)-TopSpin starts by abstracting tokens 1-9
to define the first abstraction level and abstracts one token per level thereafter
in increasing order (10, then 11, then 12 etc.). Token 0 is the token that is used
as a reference and never moves - it is never abstracted.



Hierarchical Heuristic Search Revisited 127

Table 2. CPU times (in seconds) using the default abstraction hierarchy. “all” means
clear every cache between every problem instance. “1-3” means clear levels 1-3 between
every instance, never clear the higher levels. “none” means never clear any cache - this
is possible only if all entries at all levels fit within the 1 Gigabyte memory limit.

State Space Clear Avg Max Median
all 642 20,227 93

1-3 596 17,827 71
all 132 910 84

1-3 101 959 58
all 766 3,068 680
(17,4)-TopSpin | o 162 1875 89
all 88 405 54
none 31 326 4

15-puzzle

Macro-15

14-Pancake

Table 3. Comparison of the average number of cache entries (in thousands) stored
by HIDA* to the number of entries (in thousands) in the full pattern database (PDB
size) for the first level of abstraction. The last column expresses the average number
of Level 1 cache entries as a percentage of the pattern database size.

State Space  Total Level 1 PDB size %
15-puzzle 10,931 2,657 4,151,347 0.06
Macro-15 7,402 787 4,151,347 0.02

(17,4)-TopSpin 8,143 3,423 57,657 5.9

14-Pancake 1,208 229 17,297 1.3

Table 2 shows the average, maximum, and median CPU times over the 100
test problems for each state space. “All” in the “Clear” column indicates that
all caches are cleared completely between each problem instance. This simulates
solving a single problem instance in isolation with no preprocessing or prior
problem-solving experience with the abstraction. The “median” column in the
“all” rows shows that the majority of individual problems can be solved in a
few minutes, compared to the hour or more it takes to build high-performance
pattern databases. Across the entire experiment only three problem instances,
all for the 15-puzzle, take more than an hour to solve.

Table 3 shows the number of cache entries created by HIDA*, on average.
“Total” is the total number of cache entries at all levels. “Level 1”7 is the number
of cache entries for the first level of abstraction. The rightmost column shows
that this is a small fraction of what would be stored in the pattern database
for this abstraction — well under one-tenth of one percent for the 15-puzzle and
Macro-15 puzzle.

If a small batch of problem instances with the same goal is to be solved using
the same abstraction, HIDA*’s caches need not be cleared between instances: the
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cache entries created for one instance will be correct for others. The abstractions
being used for (17,4)-TopSpin and 14-Pancake are sufficiently coarse-grained that
1 Gigabyte allows all caches at all levels to be made large enough to hold all
possible entries. Therefore, it is never necessary to clear any cache. The “none”
rows in Table 2 show the CPU times for these puzzles if the 100 test problems
are solved as a batch in the random order in which they were generated with no
clearing of the caches. Batch-solving substantially reduces the average, median,
and the maximum solution times. A batch of 18 average problems can be solved
in the time it takes to build a high-performance pattern database for (17,4)-
TopSpin.

For the 15-puzzle and Macro-15 puzzle abstractions levels 1, 2, and 3 are
sufficiently fine-grained that they must be cleared at some point in order to solve
the 100 test problems. The “1-3” rows in Table 2 show the CPU times that result
if only the caches at levels 1, 2, and 3 are cleared between each problem instance.
This produces a modest reduction in the time to solve problems. Batches of
approximately 17 15-puzzle problems and batches of 97 Macro-15 problems can
be solved in the time it takes to build a high-performance pattern database for
these puzzles.

The fact that HIDA* solves tens of problem instances, on average, in the
time required to build a high-performance pattern database does not rule out
the possibility that HIDA* would be outperformed by a smaller pattern database
when only one or a few problem instances are to be solved. To see why this will
not happen, in general, consider the Macro-15 puzzle. To build the complete
pattern database for the first level abstraction in Table 2 takes 2.73 hours. The
pattern database based on the second level abstraction is much smaller and takes
only 452 seconds to build. This is still substantially more than the time it takes
HIDA* to solve a single Macro-15 problem on average. A pattern database based
on an even coarser abstraction would take fewer than 100 seconds to build but
would provide such poor heuristic guidance for the base level search that the
time to solve a problem would far exceed HIDA*’s. As a general rule, a pattern
database that can be fully computed in a time less than HIDA*’s will offer much
weaker guidance than HIDA*’s first level of abstraction and therefore have higher
problem-solving runtimes.

5 Multiple Abstractions

[13] shows that for a fixed amount of memory, taking the maximum of several
smaller pattern databases outperforms using a single large pattern database.
This technique can be applied to hierarchical heuristic search by using multiple
abstractions instead of just one at one or more of the abstraction levels. However,
it is not obvious if this will lead to improved performance for hierarchical heuris-
tic search because, unlike in the pattern database studies, the time required to
calculate the entries for the additional abstractions is now counted as part of
the execution time.
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Table 4. CPU times (in seconds) using multiple abstractions

State Space Clear Avg Max Median
all 131 1,047 78

15-puzzle none 31 364 7
all 88 392 65
Macro-15 - e 17 162 5

all 9822394 919
(17:4)-TopSpin | o 88 ogo7 50

all 95 329 72

W-Pancake = 10 197 2

In this section we define multiple abstractions only at the first level of ab-
straction. Each of those abstractions then has only one abstraction above it,
created by abstracting one additional tile/token, and those abstractions each
have only one above them, etc. As in [13], in computing h(s) the calculation of
the maximum value given by the different abstractions is aborted if a value is
returned that is large enough to ensure that f(s) = h(s) + g(s) exceeds IDA*’s
current depth bound.

For (17,4)-TopSpin and the 14-Pancake puzzle, two first-level abstractions are
used: the default abstraction from the previous section and a complementary one.
For (17,4)-TopSpin the complementary abstraction abstracts tokens 8-16 at the
first level (the default abstraction abstracts tokens 1-9) and then abstracts one
additional token per level in decreasing order (7, then 6, then 5 etc.). Similarly,
the complementary abstraction for the 14-Pancake puzzle abstracts tokens 7-
13 (the default abstracts tokens 0-6) and then abstracts one additional token
per level in decreasing order. The results are shown in Table 4. The “all” and
“none” rows in Table 4 have the same meaning and can be directly compared to
the corresponding rows in Table 2. The multiple abstractions in this experiment
increase the CPU time for solving individual problems in isolation (the “all”
rows) but significantly decrease the time for solving small batches of problems
(the “none” rows).

For the 15-puzzle and the Macro-15 puzzle, the default abstractions fill avail-
able memory, so there is no room available for additional abstractions. Instead,
we use four first-level abstractions that are each considerably smaller than the
default. One of them abstracts 8 tiles, the others abstract 9 tiles (the default
abstracts only 7 tiles). Comparing the “all” rows in Table 4 to the corresponding
rows in Table 2 we see that individual problems are solved much more quickly
using multiple abstractions. The average time for solving individual problems,
131 seconds for the 15-puzzle and 88 seconds for Macro-15, is two orders of mag-
nitude less than the time required to build a high-performance pattern database
for these puzzles. The multiple abstractions used here are sufficiently coarse-
grained that 1 Gigabyte is enough to create perfect hash tables for all caches at
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all levels. This enables batches of problems to be solved without ever clearing
any caches, producing the results shown in the “none” rows in Table 4. In both
spaces the entire batch of 100 test problems is solved in well under an hour.

6 Customized Abstractions

The first experiment showed that individual problem instances can be solved
quickly using a default abstraction hierarchy. This section shows that this per-
formance can be significantly improved, in some state spaces, by tailoring the
abstraction hierarchy to each instance. In this experiment all caches are cleared
between each instance.

For the 15-puzzle and Macro-15 puzzle we use a simple method for creating
the customized abstraction hierarchy. The key idea is to choose a good order in
which the tiles will be abstracted. The first level abstracts the first seven tiles
according to the order, and each level after that abstracts the next tile in the
ordering. The tile ordering we used is based on each tile’s Manhattan distance,
i.e. the number of moves required to get the tile from its position in the start
state to its goal position. The tiles are sorted in increasing order of this distance,
with ties broken arbitrarily.

78 of the 15-puzzle problems are solved more quickly with the customized
abstraction than with the default abstraction. The 22 that are slower are all
“easy” problem instances. The hardest problem instances have all been sped up
substantially by using a customized abstraction; some now run almost 50 times
faster than before. The longest-running instance now takes 1,517 seconds. The
average time to solve a problem instance is reduced from 642 to 99 seconds,
and the median time drops from 93 to 42 seconds. These results are signifi-
cantly better than the results with generic multiple abstractions (row “all” in
Table 4).

The Macro-15 puzzle also benefits significantly from custom abstractions,
although not as much as the 15-puzzle. Average solution time is reduced to 99
seconds from 132, and the median drops to 64 seconds from 84.

For (17,4)-TopSpin and the 14-Pancake puzzle numerous methods of custom
abstraction were explored. For the 14-Pancake puzzle none outperformed the
default abstraction. For (17,4)-TopSpin we identified an abstraction? that was
significantly better than the default for certain problems. However, there was
no obvious rule to decide which abstraction to use on a given problem instance.
Our solution was to compute h(start) using each of the abstractions and then
use the abstraction that gave the higher value to solve the instance. This is a
rather expensive selection rule, because the cache entries created when comput-
ing h(start) using the first abstraction have to be cleared in order to compute
h(start) using the second abstraction, and then have to be recomputed if the
first abstraction is chosen for solving the problem. This overhead must be in-

2 The first level abstracts tokens 8-16, subsequent levels eliminate one additional token
in decreasing order (7 then 6 then 5 etc).
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cluded in the total time to solve a problem, and doing so leaves the average and
median solution times virtually the same as always using the default abstraction.
However, this method does reduce the time to solve the most difficult problem
from 3068 to 2304 seconds.

7 Related Work
[17] observes that the pattern database entry for ¢(s) is not needed if

d((s), d(goal)) + d'(¢(start), (s)) > U

where d(z,y) is the true distance from « to y, U > d(start, goal), and d'(z,y) <
d(z,y). Given an upper bound, U, on the solution cost in the original space
and a function, d'(x,y), that never overestimates distance in the abstract space,
[17] runs Ax backwards from the abstract goal state until it has enumerated
all abstract states ¢(s) with d(¢(s), p(goal)) + d'(¢(start), #(s)) < U. The re-
sulting table of abstract distances is called a space-efficient pattern database
(SEPDB).

If the abstraction used for the SEPDB is used to define HIDA*’s first abstract
level and search at this level is guided by the same heuristic in both systems,
HIDA*’s first-level cache will always contain a subset of the SEPDB entries.
The SEPDB hash table, like HIDA*’s caches, must store pattern identification
information along with the distance information when there is not sufficient
memory to store all possible entries for the full pattern database. Thus, SEPDB’s
memory needs cannot be less than HIDA*’s.

To see precisely how SEPDB’s memory requirements compare to HIDA*’s
we ran SEPDB using the default abstractions for our state spaces. The second
abstract level was used as the heuristic to guide SEPDB’s A*. The resulting
SEPDB is therefore the counterpart of HIDA*’s first level cache. To make the
comparison as favourable to SEPDB as possible the upper bound it was given
was the actual solution length for each problem instance. The results are shown
in Table 5. SEPDB has at least 32% more entries than HIDA*’s first level cache,
even when given a perfect upper bound. If this upper bound is increased to be just
one larger than the optimal value, the size ratios for Macro-15, (17,4)-Topspin
and 14-Pancake increase to 3.52, 1.75, and 4.05 respectively. For the 15-puzzle
the next larger meaningful upper bound is two larger than the optimal value. In
this case, the average size of the SEPDB rises to 13,515,134, which is 5.08 times
larger than HIDA*’s first-level cache.

The CPU times for SEPDB and HIDA* cannot be compared in this experi-
ment because the second level of abstraction is computed by HIDA* but assumed
to be given, without computation, by SEPDB. To make a fair time comparison,
a hierarchical version of SEPDB would be needed. Hierarchical SEPDB might
possibly run faster than HIDA*, but, as this experiment has shown, it would
require more memory.

“Reverse Resumable A*” [16], like SEPDB, computes pattern database en-
tries by backwards A* search at the abstract level. Unlike SEPDB, it stops when



132 R.C. Holte, J. Grajkowski, and B. Tanner

Table 5. Comparison of the sizes of HIDA*’s first-level cache and the corresponding
SEPDB

Space HIDA* SEPDB Ratio
15-puzzle 2,657,511 6,430,269 2.42
Macro-15 787,664 1,309,100 1.66

(17,4)-TopSpin 3,423,746 4,534,162 1.32
14-Pancake 339,328 467,237 1.38

it closes the abstract start state. If an entry is needed during the base level search
that has not been generated, A* search at the abstract level is resumed until
the entry is generated. This produces a subset of the SEPDB, and avoids the
need for an upper bound on solution length, but requires additional memory for
preserving A*’s Open list so that A* can be resumed.

8 Conclusion

This paper has shown that hierarchical heuristic search can solve individual
problems very quickly, up to two orders of magnitude faster than building a
high-performance pattern database. Hierarchical heuristic search is therefore
preferable to pattern databases when only one or a few problem instances with
the same goal are to be solved. On the other hand, pattern databases are prefer-
able when many problem instances with the same goal are to be solved. In cases
where it is unclear which method to use, the two can be used in parallel. While
the pattern database is being built, hierarchical heuristic search can be applied
to the problem instances, perhaps with a time limit for each problem instance.
Sometimes all the instances will be solved before the pattern database is com-
plete. If this does not happen, the remaining problems can be solved quickly
using the pattern database.
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Abstract. In many machine learning applications that deal with se-
quences, there is a need for learning algorithms that can effectively utilize
the hierarchical grouping of words. We introduce Word Taxonomy guided
Naive Bayes Learner for the Multinomial Event Model (WTNBL-MN)
that exploits word taxonomy to generate compact classifiers, and Word
Taxonomy Learner (WTL) for automated construction of word taxon-
omy from sequence data. WTNBL-MN is a generalization of the Naive
Bayes learner for the Multinomial Event Model for learning classifiers
from data using word taxonomy. WTL uses hierarchical agglomerative
clustering to cluster words based on the distribution of class labels that
co-occur with the words. Our experimental results on protein localiza-
tion sequences and Reuters text show that the proposed algorithms can
generate Naive Bayes classifiers that are more compact and often more
accurate than those produced by standard Naive Bayes learner for the
Multinomial Model.

1 Introduction

In machine learning, one of the important goals is to induce comprehensible, yet
accurate and robust classifiers [1]. In classical inductive learning for text classi-
fication, each document is represented as a bag of words. That is, one instance
is an ordered tuple of word frequencies or binary values to denote the presence
of words. However, these words can be grouped together to reflect assumed or
actual similarities among the words in the domain or in the context of a specific
application. Such a hierarchical grouping of words yields word taxonomy (WT).
Figure 1 is an example of word taxonomy of “Science” made by human.
Taxonomies are very common and useful in many applications. For example,
Gene Ontology Consortium has developed hierarchical taxonomies for describing
various aspects of macromolecular sequences, structures, and functions [2]. For
intrusion detection, Undercoffer et al.[3] established a hierarchical taxonomy of
features observable by the target of an attack. Various ontologies have been
developed in several fields as part of Semantic Web related efforts [4].

J.-D. Zucker and L. Saitta (Eds.): SARA 2005, LNAI 3607, pp. 134-148, 2005.
(© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. Illustrative taxonomy of ‘Science’ by human

Word taxonomies present the possibility of learning classification rules that
are simpler and easier-to-understand when the terms in the rules are expressed
in terms of abstract values. Kohavi and Provost [5] pointed the need of incorpo-
rating hierarchically structured background knowledge. Abstraction of similar
concepts by the means of attribute value taxonomy (AVT) has been shown
to be useful in generating concise and accurate classifiers [6,7,8]. Zhang and
Honavar [8] presented AVT-NBL, an algorithm that exploits AVTSs to generate
Naive Bayes Classifiers that are more compact and often more accurate than
classifiers that do not use AVTs. The algorithm potentially performs regulariza-
tion to minimize over-fitting from learning with relatively small data sets.

Against this background, we introduce word taxonomy guided Naive Bayes
learner for the multinomial event model (WTNBL-MN). WTNBL-MN is a word
taxonomy based generalization of the standard Naive Bayes learning algorithm
for the multinomial model.

Because word taxonomy is not available in many domains, there is a need for
automated construction of word taxonomy. Hence, we describe a word taxonomy
learner (WTL) that automatically generates word taxonomy from sequence data
by clustering of words based on their class conditional distribution.

To evaluate our algorithms, we conducted experiments using two classifica-
tion tasks: (a) assigning Reuters newswire articles to categories, (b) and classi-
fying protein sequences in terms of their localization. We used Word Taxonomy
Learner (WTL) to generate word taxonomy from the training data. The gener-
ated word taxonomy was provided to WTNBL-MN to learn concise Naive Bayes
classifiers that used abstract words of word taxonomy.

The rest of this paper is organized as follows: Section 2 introduces the
WTNBL-MN algorithm; Section 3 presents WTL algorithm; Section 4 describes
our experimental results and Section 5 concludes with summary and discussion.

2  Word Taxonomy Guided Naive Bayes Learner for the
Multinomial Event Model (WTNBL-MN)

We start with definitions of preliminary concepts necessary to describe our al-
gorithms. We then precisely define the problem as learning classifier from word
taxonomy and sequence data.
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2.1  Word Taxonomy

Let ¥ = {wy,ws,...,wy} be a dictionary of words, C' = {¢1,ca,...,cp} a finite
set of mutually disjoint class labels, and f; ; denote an integer frequency of
word w; in a sequence d;. Then, sequence d; is represented as an instance I,
a frequency vector < f; ; > of w;, and each sequence belongs to a class label
in C. Finally, a data set D is represented as a collection of instance and their
associated class label {(I;,¢;)}.

Let Tx be a word taxonomy defined over the possible words of Y. Let
Nodes(Tx) denote the set of all values in T, and Root(Tx) denote the root
of Tx;. We represent the set of leaves of Ts; as Leaves(Tsx) C Y. The internal
nodes of the tree correspond to abstract values of X.

After Haussler [9], we define a cut v through a word taxonomy T’ as follows.

Definition 1 (Cut). A cut vy is a subset of nodes in word tazonomy T satis-
fying the following two properties:

1. For any leaf | € Leaves(Ty;), either l € v or | is a descendant of a node in
Ts.
2. For any two nodes f,g € 7y, f is neither a descendant not an ancestor of g.

A cut v induces a partition of words in T;. For example, in figure 1, a cut
{ComputerScience, Physics, Mathematics} defines a partition over the values
of an abstract word ‘Science’.

Definition 2 (Refinement). We say that a cut ¥ is a refinement of a cut v if
4 is obtained by replacing at least one node v € v by its descendants. Conversely,
v is an abstract of v

Figure 2 illustrates a refinement process in word taxonomy T’x;. The cut
v = {A, B} is been refined to 4 = {A4;, Az, B} by replacing A with A; and As.
Thus, corresponding hypothesis hs is a refinement of h.,.
Definition 3 (Instance Space). Any choice of v defines an input space .7.,.

If there is a node € v and ¢ Leaves(Ty), the induced input space &, is an
abstraction of the original input space & .

Fig. 2. Illustration of Cut Refinement: The cut v = {4, B} is been refined to 4 =
{A1, Az, B} by replacing A with A; and A,
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With a data set D, word taxonomy T’s; and corresponding valid cuts, we can
extend our definition of instance space to include instance spaces induced from
different levels of abstraction of the original input space. Thus, word taxonomy
guided learning algorithm work on this induced input space.

2.2 Event Models for Naive Bayes Sequence Classification

WTNBL-MN algorithm generates a Naive Bayes Classifier for the multinomial
model. Before we describe WTNBL-MN algorithm, we briefly summarize event
models for Naive Bayes classification of sequence data [10, 11].

Multi-variate Bernoulli Model. In a multi-variate Bernoulli model, a se-
quence d; is represented as an instance I; by a vector of binary values b; ; € {0,1}
where b; ; denotes the presence or absence of a word w; in the sequence. The
number of occurrence of word is not preserved in the vector. The probability of
sequence d; given its class c; is as follows:

|Z

P(djle;) = [ (igpig + (1 =bij)(1 = piy)) (1)

i=1

Multinomial Model. In a multinomial model, a sequence is represented as
a vector of word occurrence frequencies f; ;. The probability of an instance I;
given its class ¢; is defined as follows:

(Elz‘ fm)l |z

[Ty (2)

P(dj|cj) = Hlx‘(fz,j l

POl fw‘)!

17 (i)
words for the instance I;.
In equation 2, p; ; is basically calculated as follows:

The term { } represents the number of possible combinations of

Count(c;, w;)

Pui = Count(c;)

Count(cj, w;) is the number of times word w; appears in all the instances that
have a class label ¢;, and Count(c;) is the total number of words in a particular
class label c;. With Laplacian smoothlng7 p;; will be as follows:

1+ Count(cj, w;)
| 2| + Count(c;)

bij =

2.3 WTNBL-MN Algorithm

The problem of learning classifiers from a word taxonomy and sequence data is
a natural generalization of the problem of learning classifiers from the sequence
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data. Original data set D is a collection of labeled instances < I}, c; > where I €
#. A classifier is a hypothesis in the form of function h : ¢ — C, whose domain
is the instance space .# and whose range is the set of class C'. A hypothesis space
€ is a set of hypotheses that can be represented in some hypothesis language
or by a parameterized family of functions. Then, the task of learning classifiers
from the data set D is induce a hypothesis h € .7 that satisfies given criteria.

Hence, the problem of learning classifiers from word taxonomy and data can
be described as follows: Given word taxonomy T’z over words X' and a data set
D, the aim is induce a classifier h» : &, — C where v* is a cut that maximizes
given criteria. Of interest in this paper is that the resulting hypothesis space J%
of a chosen cut 7 is efficient in searching for both concise and accurate hypothesis.

Word taxonomy guided Naive Bayes Learner is composed of two major com-
ponents: (a) estimation of parameters of Naive Bayes classifiers based on a cut,
(b) and a criterion for refining a cut.

Aggregation of Class Conditional Frequency Counts. We can estimate
the relevant parameters of a Naive Bayes classifier efficiently by aggregating class
conditional frequency counts. For a particular node of a given cut, parameters
of the node can be estimated by summing up the class conditional frequency
counts of its children [8].

Given word taxonomy T’s;, we can define a tree of class conditional frequency
counts Ty such that there is one-to-one correspondence between the nodes of
word taxonomy T’z and the nodes of the corresponding T'. The class conditional
frequency counts associated with a non leaf node of T is the aggregation of the
corresponding class conditional frequency counts associated with its children.
Because a cut through word taxonomy corresponds a partition of the set of words,
the corresponding cut through T} specifies a valid class conditional probability
table for words. Therefore, to estimate each nodes of T, we simply estimate the
class conditional frequency counts of primitive words in X', which corresponds
to the leaves of Ty. Then we aggregate them recursively to calculate the class
conditional frequency counts associated with their parent node.

Conditional Minimum Description Length of Naive Bayes Classifier.
We use conditional minimum description length (CMDL) [12] score to grade the
refinement of Naive Bayes classifier for the multinomial model.

Let v} be the i*" attribute value of j instance d; € D, and ¢; € C a class
label associated with d;. Then, the conditional log likelihood of the hypothesis
B given data D is

|D| |D|
Pp(c;)Pp(dj|c;)
C’LLBD:DEIO Pg(c;|d; =D§10

e =1pl j s (G} = 1D J g{ZICPB(Ck)PB(djlck)}

(3)

For Naive Bayes classifier, this score can be efficiently calculated [8].

|D|
P(cj) [TA{PWle;)}
CLL(B|D) = |D| Zk’g{ T P(cy,) Hi{P(fok)}}




Multinomial Event Model Based Abstraction for Sequence 139

And the corresponding conditional minimum description length (CMDL)
score is defined as follows:

CMDL(B|D) = —~CLL(B|D) + {10g2| |}szze(B)

where, size(B) is a size of the hypothesis B which corresponds to the number
of entries in conditional probability tables (CPT) of B.
In case of a Naive Bayes classifier with multi-variate Bernoulli model, size(B)

is defined as ol

size(B) = |C| +|C| ) _ |vil
i=1

where |C] is the number of class labels, |v| is the number of attributes, and |v;]
is the number of attribute values for an attribute v;.

Conditional Minimum Description Length of a Naive Bayes Classifier
for the Multinomial Model. Combining the equations 2 and 3, we can obtain
the conditional log likelihood of the classifier B given data D under the Naive
Bayes multinomial model.

[ 2]
D Pley {2l oy
CLL(B|D) = |D| ) log

. sl {P(Ck){(l_i;ﬁ)'}nzl{ }

where, |D| is the number of instances, ¢; € C is a class label for instance d; € D,
fi,; 1s a integer frequency of word w; € X' in instance d;, and p; ; is the estimated
probability that word w; occurred in the instances associated to class label j.

Conditional Minimum Description Length (CMDL) of a Naive Bayes Classi-
fier for the multinomial model is defined as follows:

(4)

CMDL(B|D) = —~CLL(B|D) + {logl |}szze(B)

where, size(B) is a size of the hypothesis B which corresponds to the number
of entries in conditional probability tables (CPT) of B.
Therefore, size(B) is estimated as

size(B) = |C| +[C|| %] (5)
where |C] is the number of class labels, | X| is the number of words.

Computation of CMDL Score. Because each word is assumed to be inde-
pendent of others given the class, the search for the word taxonomy guided Naive
Bayes classifier can be performed efficiently by optimizing the CMDL criterion
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WTNBL-MN:
begin

1. Input : data set D and word taxonomy T’

2. Initialize cut v to the root of T's

3. Estimate probabilities that specify the hypothesis h

4. Repeat until no change in cut y

5. Ay

6. For each node v € v :

7 Generate a refinement v* of v by replacing v with its children.
8 Construct corresponding hypothesis hv.

9 If CMDL(hy»|D) < CMDL(hs|D), then replace 7 with v*.
0. If~ #4 then v« %

1. Output : h,

end.

Fig. 3. Pseudo-code of Word Taxonomy Guided Naive Bayes Learner for the Multino-
mial Model( WTNBL-MN)

independently for each word. Thus, the resulting hypothesis h intuitively trades
off the complexity in terms of the number of parameters against the accuracy
of classification. The algorithm terminates when none of candidate refinements
of the classifier yield statistically significant improvement in the CMDL score.
Figure 3 outlines the algorithm.

3 Learning a Word Taxonomy from Sequence Data

We describe word taxonomy learner (WTL), a simple algorithm for automated
construction of word taxonomy from sequence data.

3.1 Problem Definition

The problem of learning a word taxonomy from sequence data can be stated
as follows: Given a data set represented as a set of instances where an instance
is a frequency vector < f;,c > of a word w; € X and associated class label c,
and a similarity measure among the words, output word taxonomy T'sx; such that
it corresponds to a hierarchical grouping of words in X based on the specified
similarity measure.

3.2 Algorithm

We use hierarchical agglomerative clustering (HAC) of words based on the dis-
tribution of class labels that co-occur with them. Let DM (P(z)||Q(x)) denote a
measure of pairwise divergence between two probability distributions P and @
of the random variable .
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WTL:
begin

1. Input : data set D
2. For each word w; € X :
3. For eachclass ¢, € C :
4 Estimate the probability distribution p (cx|w;)
5 Let P (Clw;) = {p(c1|w;),...,p (cx|wi)} be the class distribution associ-
ated with the word w;.
v
Initialize T’s; with nodes in 7.
Iterate until |y| = 1:
9. Inw, find (z,y) = argmin {DM (P (C|z)||P (Cly))}
10.  Merge =z and y (z # y) to create a new value z.
11.  Calculate probability distribution P (C|z).
12, 5y ULz} {21},
13.  Update T'x by adding nodes z as a parent of x and y.
14.  ~ 4.
15. Output : T’y

®© N

end.

Fig. 4. Pseudo-code of Word Taxonomy Learner (WTL)

We use a pairwise measure of divergence between the distribution of the
class labels associated with the corresponding words as a measure of dissim-
ilarity between the words. The lower the divergence between the class distri-
bution between two words, the greater is their similarity. The choice of this
measure of dissimilarity is motivated by the intended use of word taxonomy
for WI'NBL-MN algorithm to generate concise and accurate classifiers. If two
words are indistinguishable from each other with respect to their class distri-
bution, they will provide statistically similar information for classification of
instance.

The pseudocode for the Word Taxonomy Learner (WTL) is shown in figure 4.
The basic idea is to construct a taxonomy T by starting with the primitive
words in X' as the leaves of T's; and recursively add nodes to T's; one at a time by
merging two existing nodes. To aid this process, the algorithm maintains a cut
7 through the taxonomy T, updating the cut v as new nodes are added to T's.
At each step, the two words to be grouped together to obtain an abstract word
to be added to Tx; are selected from 7 based on the divergence between the class
distributions associated with the corresponding words. That is, a pair of words
in y are merged if they have more similar class distributions than any other pair
of words in . This process terminates when the cut v contains a single word
which corresponds to the root of T's;. The resulting T's; will have (2| | — 1) nodes
when the algorithm terminates.
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3.3 Dissimilarity Measure

Several ways of measuring dissimilarity between two probability distributions
have been studied in the literature [13]. We have experimented with thirteen dif-
ferent divergence measures. In our experiments, most of them resulted in similar
performance on classification tasks. Hence, we focus on the results obtained by
Jensen-Shannon divergence measure in the discussion that follows [14].

Jensen Shannon Divergence. is a weighted information gain that is reflexive,
symmetric and bounded. Pairwise version of Jensen-Shannon divergence is given

by
)]
+ ;Lo
> Zq g<pi+Qi

I(P|Q) = [szl g(

4 Experiments

The results of experiments described in this section provide evidence that
WTNBL-MN coupled with WTL usually generate more concise and often more
accurate classifiers than those of the Naive Bayes classifiers for the multinomial
model. We conducted experiments with two sequence classification tasks; text
(word sequence) classification and proteins (amino acid sequence) classification.
In each case, a word taxonomy is generated using WTL and a classifier is con-
structed using WTNBL-MN on the resulting WT and sequence data.

4.1 Text Classification

Reuters 21587 distribution 1.0 data set! consists of 12902 newswire articles in
135 overlapping topic categories.

We build binary classifiers for top ten most populous categories on text clas-
sification [15,16,10]. In our experiment, stop words were not eliminated, and
title words were not distinguished with body words. We selected top 300 fea-
tures based on mutual information with class labels. The mutual information
M1 (x,c) between a feature x and a category c is defined as:

T c Pz, c
MI(z,¢) = Z{Z{ (, c)logp(()P())}}

We followed the ModApte split [17] in which 9603 stories are used for building
classifiers and 3299 stories to test the accuracy of the resulting model. We report
the break even points, the average of precision and recall when the difference
between the two is minimum. Precision and recall of text categorization are

defined as:

! This collection is publicly available at
http://www.daviddlewis.com/resources/testcollections/reuters21578/.
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Precision =

|detected documents in the category (true positives)|

143

|documents in the category (true positives + false negatives)|

Recall =

|detected documents in the category (true positives)|

|detected documents (true positives + false positives)|

Table 1 shows the break even point of precision and recall as well as the
size of the classifier (from the equation 5) for the ten most frequent categories.
WTNBL-MN usually shows similar performance in terms of break even perfor-
mance except in the case of “corn” category, while the classifiers generated by
WTNBL-MN have smaller size than those generated by the Naive Bayes Learner

(NBL).

Table 1. Break even point of 10 Largest Categories

Data NBL-MN | WTNBL-MN |# of documents
breakeven[size breakeven[size train[ test
earn 94.94 [602| 94.57 |348|2877 1087
acq 89.43 [602| 89.43 |472|1650 719
money-fx| 64.80 [602| 65.36 |346| 538 179
grain 74.50 602 77.85 [198| 433 149
crude 79.89 602 76.72 |182| 389 189
trade 59.83 602 47.01 [208]| 369 118
interest 61.07 [602| 59.54 |366| 347 131
ship 82.02 [602| 82.02 [348| 197 89
wheat 57.75 [602] 53.52 (226|212 71
corn 57.14 [602| 21.43 [106| 182 56

Grain

0.8 |

Precision

04 |

02 |

Naive Bayes I\;Iultinomial """"
WTI

NBL-MN ——

0.2

0.4

Recall

0.6

Fig. 5. Precision-Recall Curves of “Grain”

0.8

Category
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Figure 5 shows Precision-Recall curve [18] for the “grain” category. It can be
seen that WINBL-MN generates a Naive Bayes classifier that is more compact
than, but has performance comparable to that of the classifier generated from
Naive Bayes learner.

WTNBL-MN did not show good performance for the “corn” category. This
may be explained by the fact that conditional minimum description length trades
off the accuracy of the model against its complexity, which may not necessarily
optimize precision & recall for a particular class As a consequence, WTNBL-MN
may terminate refinement of the classifier prematurely for class labels with low
support, i.e. when the data set is imbalanced.

4.2  Protein Sequence Classification

We applied WTNBL-MN algorithm on two protein data sets with a view to
identifying their localization [19].

The first data set is 997 prokaryotic protein sequences derived from SWISS-
PROT data base [20]. This data set includes proteins from three different sub-
cellular locations: cytoplasmic (688 proteins), periplasmic (202 proteins), and
extracellular (107 proteins).

The second data set is 2427 eukaryotic protein sequences derived from SWISS-
PROT data base [20]. This data set includes proteins from the following four
different subcellular locations: nuclear (1097 proteins), cytoplasmic (684 pro-
teins), mitochondrial (321 proteins), extracellular (325 proteins).

For these data sets?, we conducted ten-fold cross validation. To measure the
performance of the following performance measures [21] are applied and the
results for the data set are reported:

TP x TN — FP x FN

Correlation coefficient =
V/(TP+FN)(TP+FP)(TN+FP)(TN+FN)

N _ TP+1IN
Ay = TP I TN+ FP+FN
TP
.t. .t + —_
Sensitivity TPLFN
TP
Specificity = ———
PECRALY = Tp1Fp

where, TP is the number of true positives, FP is the number of false positives,
TN is the number of true negatives, and FN is the number of false negatives.

Figure 6 is amino acid taxonomy constructed for the prokaryotic protein
sequences. Table 2 shows the results in terms of the performance measures for the
two protein sequences. For both data sets, the classifier generated by WTNBL is
more concise and shows more accurate performance than the classifier generated
by the Naive Bayes Learner (NBL) in terms of the measures reported.

2 These datasets are available to download at
http://www.doe-mbi.ucla.edu/~astrid /astrid.html.
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subcell2prodata

attribute-of attribute-of

subcell2prodata.txt.bag_of_words @

isa lisa isa isa isa

w ((K+PYH(A+QIHD+V))H(GHT)+(W+(Y+(N+8))))) ‘ i ‘

isa isa

isa isa

isa isa isa |isa isa \isa

isa fisa isa |isa isa |isa isa \isa isa \isa

ﬂ----- [ o] o ][] ] @

isa \isa

Fig. 6. Taxonomy from Prokaryotic Protein Localization Sequences constructed by
WTL

Table 2. Results on Protein Localization Sequences (abbrev.: C - cytoplasmic, E -
extracellular, P - peripalsmic, N - nuclear, M - mitochondrial)

Method Prokaryotic Eukaryotic
CIE[P[N[E|MJ[C

NBL-MN

correlation |71.96{70.57|51.3161.00{36.83|25.13|44.05

coefficient

accuracy |88.26]93.58|81.85(80.72(83.11(71.69|71.41
specificity ™ [89.60[65.93[53.85(82.06]40.23(25.85[49.55
sensitivity ™ [93.90(83.18]72.77(73.38(53.85]61.06|81.29

size 42 42 42 46 46 46 46
WTNBL-MN
correlation |72.43(69.31(51.53|60.82|38.21|25.48(43.46
coefficient

accuracy |88.47/93.18(81.85(80.63|84.01|72.35(71.24

specificity T [89.63[64.03]53.82(81.70[42.30(26.29[49.37

sensitivity T [94.19(83.18(73.27|73.66]53.23[60.44[80.56
size 20 | 20 | 40 | 24 | 36 | 34 | 32

5 Summary and Related Work

5.1  Summary

We have presented word taxonomy guided Naive Bayes Learning algorithm for
the multinomial event model (WTNBL-MN). We also described WTL, an algo-
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rithm for automated generation of word taxonomy for sequence data. WTNBL-
MN is a generalization of the Naive Bayes learner for the multinomial event
model for learning classifiers from data using word taxonomy. WTL is a hierarchi-
cal agglomerative clustering algorithm to cluster words into taxonomy based on
the distribution of class labels that co-occur with the words. Experimental results
on protein sequence and Reuters text show that the proposed algorithms can gen-
erate Naive Bayes classifiers that are more compact and often more accurate than
those produced by standard Naive Bayes learner for the Multinomial Model.

5.2 Related Work

Several groups have explored the problem of learning classifiers from attribute
value taxonomies (AVT) or tree structured attributes: Zhang and Honavar [6, 8]
developed decision tree learner and Naive Bayes learner regularized over at-
tribute value taxonomy. These works were primarily focused on attribute value
taxonomy for multi-variate data sets. Taylor et al. [22] and Hendler et al. [23] de-
scribed the use of taxonomy in rule learning. Han and Fu [24] proposed a method
for exploiting hierarchically structured background knowledge for learning asso-
ciation rules. desJardins et al. [25] suggested the use of Abstraction-Based-Search
(ABS) to learning Bayesian networks with compact structure.

Gibson and Kleinberg [26] introduced STIRR, an iterative algorithm based
on non-linear dynamic systems for clustering categorical attributes. Ganti et.
al. [27] designed CACTUS, an algorithm that uses intra-attribute summaries to
cluster attribute values. Both of them did not make taxonomies and use the
generated for improving classification tasks.

Pereira et. al. [28] described distributional clustering for grouping words based
on class distributions associated with the words in text classification. Slonim
and Tishby [14] described a technique (called the agglomerative information
bottleneck method) which extended the distributional clustering approach de-
scribed by Pereira et al. [28], using Jensen-Shannon divergence for measuring
distance between document class distributions associated with words and ap-
plied it to a text classification task. Baker and McCallum [29] reported im-
proved performance on text classification using a distributional clustering with
a Jensen-Shannon divergence measure.

To the best of our knowledge, the results presented in this paper are the first
of these kinds with regards to exploitation of word taxonomies in the generation
of compact yet accurate classifiers for sequence classification.

5.3 Future Work

Some promising directions for future work include the following;:

— Application of the WITNBL-MN algorithm to up-to-date text corpora [30,
31].

— Enhancement of the WTNBL-MN and WTL algorithms for learning and
exploiting hierarchical ontologies based on part-whole and other relations as
opposed to ISA relations.
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— Development of other measures for model selection rather than CMDL for

cut refinement to accommodate the various application-specific needs.
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Abstract. The Petri net model is a powerful state transition oriented
model to analyse, model and evaluate asynchronous and concurrent sys-
tems. However, like other state transition models, it encounters the state
explosion problem. The size of the state space increases exponentially
with the system complexity.

This paper is concerned with a method of abstracting automatically
Petri nets to simpler representations, which are ordered with respect to
their size. Thus it becomes possible to check Petri net reachability incre-
mentally. With incremental approach we can overcome the exponential
nature of Petri net reachability checking. We show that by using the
incremental approach, the upper computational complexity bound for
Petri net reachability checking with optimal abstraction hierarchies is
polynomial.

The method we propose considers structural properties of a Petri net
as well an initial and a final marking. In addition to Petri net abstraction
irrelevant transitions for a given reachability problem are determined.
By removing these transitions from a net, impact of the state explosion
problem is reduced even more.

1 Introduction

Petri nets and related graph models have been proposed for a wide variety of
applications. These models are particularly suitable for representing concurrent
hardware and software systems. A fundamental basis for studying the dynamic
properties of systems described with Petri nets is the reachability property [11].
Unfortunately the complexity of Petri net reachability checking has been
proven to be EXPSPACE-hard [10] in the general case. Although several less
complex classes of nets have been determined [4], there still are problems, which
can be presented only with “unconstrained” Petri nets. Therefore tools and algo-
rithms for coping with that EXPSPACE-hard complexity are urgently needed.
One possible way to reduce the state space is to apply net abstraction tech-
niques in conjunction with Petri net reachability checking. Abstraction tech-
niques have been used extensively in Artificial Intelligence (AI) planning [1, 3, 9]
(especially in case-based and analogical reasoning), human problem solving and
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(automated) theorem proving [12]. Korf [8] has shown that while using abstrac-
tion it is possible to reduce the expected search space from O(n) to O(log n).
This improvement makes combinatorial problems tractable. For instance, if n is
an exponential function of problem size, then log n is just linear (according to [8]).

The essential reason why abstraction reduces complexity is that the total
complexity is the sum of complexities of multiple searches, not their product.
Thus with abstraction techniques we may cut solution search space from b% to
kb®* where b is the branching factor and d is the depth of the search space
while k is the ratio of abstraction space to base space.

Although abstraction of Petri nets has been already explored for instance
in [14, 13, 15], the proposed approaches are based on analysing merely structural
properties of nets though in some cases also initial markings have been taken
into account.

The methodology we propose, on the contrary, considers structural properties
as well the initial and the final marking of a Petri net. While preparing the
net for reachability checking we use the final marking to determine transitions
not relevant for the given reachability problem. Thereby it becomes possible to
remove some transitions from a net, without changing the reachability result for
the given final marking. In that way more efficient reachability checking could
be implemented.

The initial marking helps us to recognise the negative answer to a reachabil-
ity problem. Thus, in some cases we can determine whether the final marking
is reachable from the initial one even before we start with reachability checking.
Additionally we present a methodology for abstraction-based reachability check-
ing and prove that if a Petri net has an optimal abstraction hierarchy, then the
computational complexity of its reachability checking is polynomial.

The remainder of the paper is as follows. In Section 2 we present the main
definitions used in the rest of the paper. Section 3 introduces the abstraction
algorithm and analyses its influence to Petri nets and their properties. In Sec-
tion 4 reachability checking with abstraction is described. This methodology is
evaluated in Section 5, where experimental results are presented and analysed.
Section 6 gives an overview of related work and finally in Section 7 everything
is summed up.

2 Definitions

In this section we define the Petri net concept and give the main notation and
definitions to be used in the sequel.

A (marked) Petri net is a 5-tuple N = (P, T, Pre, Post, M), where P =
{p1,p2,...,pn} is a finite set of places, T = {t1,t2,...,tm} is a finite set of
transitions, Pre : P x T — N is the input incidence function, Post : T x P — N
is the output incidence function and My : P — N is the initial marking. The
number of places and transitions in a Petri net are represented with |P| and
|T| respectively. The size S of a Petri net is the number of places it involves—
S(N) =|P|.
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In the graphical representation, circles denote places and vertical bars denote
transitions, tokens are represented with dots inside places. The Pre incidence
function describes the oriented arcs connecting places to transitions. It represents
for each transition ¢ the fragment of the state in which the system has to be
before the state change corresponding to ¢t occurs. Pre(p,t) is the weight of the
arc (p,t), Pre(p,t) = 0 denotes that the place p is not connected to transition ¢.

The Post incidence function describes arcs from transitions to places. Analo-
gously to Pre, Post(t,p) is the weight of the arc (¢,p). The vectors Pre(.,t) and
Post(t,.) denote respectively all input and output arcs of transition ¢ with their
weights.

The Petri net dynamics is given by firing enabled transitions, whose occur-
rence corresponds to a state change of the system modeled by the net. A tran-
sition ¢ is enabled for a marking M, if M > Pre(.,t). This enabling condition is
equivalent to Vp € P, M (p) > Pre(p,t). Only enabled transitions can be fired.

If M is a marking of N enabling a transition ¢, and M’ is the marking derived
by the firing of a transition ¢ from M, then M’ = (M — Pre(.,t))+ Post(t,.). The
firing is denoted as M LM Firing of a sequence of transitions s = (¢ ...¢,)
is defined as My > M,, = Moy 5 My 3 ... % M, where M;,i=0...n—1lisa
marking of N enabling a transition ¢;4; and M, is a result of firing ¢;11 from
marking M;.

In a Petri net NV it is said that a marking M, is reachable from a marking
M iff there exists a sequence of transitions s such that M = My. We call
the reachability problem for Petri nets the problem of finding a firing sequence
s to reach a given marking M, from the initial marking My. The coverability
problem (sometimes also called the submarking reachability problem), given two
markings My and My, is defined as the problem of finding a firing sequence s to
reach a marking M from the initial marking My such that M, < M,. To simplify
representing a marking M, we use symbolic representation M (M), defined in
the following way: M(M) = {pM®) | p € P, M(p) > 1}. We shall write p instead
of pl.

Abstraction hierarchy H for a Petri net IV is a total order of abstractions
such that VA;, A; € H,i # j, (S(Ai(N)) < S(A;(N))) = A;(N) < A;(N). Due
to the way we construct abstraction levels, it is not possible that S(A;(N)) =
S(A;(N)), if i # j.

If p is a Petri net place, then Level(p) is the highest abstraction level where p
may appear. To explain this notion let us consider Figure 4. There Level(X) = 2,
meaning that place X occurs in all abstracted versions of a net starting from
level 2. Similarily Level(F) = 1 and Level(M) = 0 on the same figure.

The function E(M) = {p | p € P,M(p) > 0} returns a set consisting of
nonempty places according to a marking M. A Petri net marking M at abstrac-
tion level ¢ is denoted by A;(M), where

agan) = {10 Lo =1
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Abstracted Petri net N at abstraction level 7 is defined as
A;(N) = (P',T', Pre, Post, M{),
where:

— P'={p|pe€ P, Level(p) > i}
— T ={t|teT,EAi(Pre(.,t))) UE(A;(Post(t,.))) # 0}
— My = A;(Mo)

At abstraction level 0 an original Petri net is presented—Ag(N) = N. We
write T; and P; to denote respectively a set of transitions and places of a Petri
net .Al(N>

Abstracted sequence of Petri net transitions s = (t1,t2,...,t,),t; € T,j =
1...n at abstraction level 7 is defined as A;(s) = (s; | 0 < j < [s],s; € T}).
Basically it means that at abstraction level 7 in a sequence s only these transitions
are allowed, which exist in the abstracted Petri net at abstraction level 7. Other
transitions are just discarded.

Opposite operation to abstration of firing sequences is refinement. Refine-
ment RY,k > [ of a firing sequence s = (t1,ta,...,tn)t; € T,j = 1...n
from abstraction level k to abstraction level [ is defined as a sequence Rl (s) =
(g, t1, 01, .. Qp—1,tn, p), where a;,7 = 0...n is a sequence of transitions from

1

t € |J T;. This means that during refinement only transitions from lower ab-
i=k—1
straction levels may be inserted to firing sequences. We write R’ instead of
J
RJ+1 . .
We define a nulltransition as a transition ¢ such that &(Pre(.,t)) = 0 A
E(Post(t,.)) = (. Source transition is a transition ¢ such that £(Pre(.,t)) =
OAE(Post(t,.)) # 0. In the following we shall write level to denote an abstraction

level and by net we mean a Petri net.

3 Automatic Abstraction of Petri Nets

In this section we describe how to construct abstraction hierarchies for Petri nets.
These hierarchies are later used to gradually refine an abstract solution during
reachability checking. The abstraction method, we propose here for Petri nets,
has been inspired from an abstraction method [7] from the field of AI planning.

The significant difference of our method from previous Petri net abstraction
methods is that net fragments are not replaced with more abstract nets. Instead
we simplify nets by removing places which are not so relevant at particular
abstraction levels and nulltransitions, which were formed by removing specific
places from a net representation.

3.1 The Abstraction Algorithm

Given a problem space, which consists of a Petri net and a reachability problem
(finding a sequence s so that My = M,), our algorithm reformulates the original



Petri Net Reachability Checking Is Polynomial 153

problem into more abstract ones. These more abstract ones are organised into an
ordered hierarchy H with respect to their size. Thus the smallest representation
is presented at the highest abstraction level and the largest respectively at the
lowest (0) level. The original problem is mentioned in the further text also as
the base problem, because all other representations are based on it.

The ordered monotonicity property is used as the basis for generating abstrac-
tion hierarchies. This property captures the idea that if an abstract solution is
refined, the structure of the abstract solution should be maintained. Hence el-
ements in a transition firing sequence s;, such that A;(Mp) = A;(M,), would
not be reordered while extending this sequence at abstraction level ¢ — 1. The
process of refining an abstract solution requires inserting additional transitions
to achieve the tokens ignored at more abstract level.

Definition 1. Ordered monotonic refinement R is a refinement of an abstract
solution s so that A;(R](s)) = s,j < i, where s is a sequence of transitions,
i denotes the abstraction level, where solution s was found and j is the target
abstraction level.

Definition 2. Ordered monotonic hierarchy is an abstraction hierarchy with the
property that for every solvable problem there exists an abstract solution that has
a sequence of ordered monotonic refinements into the base space.

Definition 3. Let A and B be arbitrary vertices in a directed graph. Then we
say that they are strongly connected, if there exists a cycle with A as its initial
and final vertice such that this cycle includes vertice B.

An ordered monotonic abstraction hierarchy is constructed by dividing places
P in a Petri net N between abstraction levels such that the places at level ¢ do
not interact with any places at level ¢ + 1. We say that places A and B do not
interact with each other, if they are not strongly connected in the dependency
graph of the particular Petri net.

Our abstraction algorithm first generates a graph representing dependencies
(see Figure 1) between places in a Petri net, and then, using that graph, finally
generates abstraction hierarchies (see Figure 2). The algorithm in Figure 1 con-
siders every non-empty place, which has not yet been considered, from a given
marking. Then all transitions, which increase the number of tokens in that place,
are selected. Connections from the place under consideration to places affected
by these transitions are created and search follows recursively, using Pre(., t)
as a new marking, until all reachable places have been processes. It has to be
noted that although the algorithm starts from the goal marking M, weights of
transition input arcs are considered when it proceeds recursively.

After the dependency graph has been constructed, additional connections
are created from places p € £(M,) to places E(Pre(.,t)) of transitions ¢, if
E(Post(t,.)) = (). The latter is due to the fact that the dependency graph is
extended by observing arcs (t,.) and, if £(Post(t,.)) = 0, transition ¢ is ignored.
Anyway, these transitions may be needed during reachability checking.
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Algorithm DetermineConstraints(graph, net, marking)

inputs: a Petri net and a final marking
output: constraints, which guarantee ordered monotonicity for a given marking

begin
for Vplace € £(marking)//a nonempty place is selected
if not(ConstraintsDetermined(place, graph)) then
ConstraintsDetermined(place, graph) — true
for Vt € net.T//for all transitions
if place € E(net.Post(t,.)) then
for Vp € E(net.Post(t,.))
AddDirectedEdge(place, p, graph)
end for
for Vp € E(net.Pre(.,t))
AddDirectedEdge(place, p, graph)
end for
DetermineConstraints(graph, net, net.Pre(., t))
end if
end for
end if
end for
return graph
end DetermineConstraints

Fig. 1. Building a dependency graph

Algorithm CreateHierarchy(net, marking)

inputs: a Petri net and a final marking
output: an ordered monotonic abstraction hierarchy

begin

graph «— DetermineConstraints({}, net, marking)
components < FindStronglyConnectedComponents(graph)
partialOrder «— ConstructReducedGraph(graph, components)
absHierarchy «— TopologicalSort(partialOrder)

return absHierarchy

end CreateHierarchy

Fig. 2. Creating an abstraction hierarchy

To demonstrate the construction of abstraction hierarchies, let us consider
the Petri net in Figure 4(a), where the reachability of marking My, M (M) =
{E, M, X?} is considered. The algorithm in Figure 1 starts with place E and
sets it to be determined. The only transition having E in its outputs is H_EIM.
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4!

(a) (b)

Fig. 3. A dependency graph (a) and strongly connected component groups (b) for a
Petri net in Figure 4(a)

IMNEH<—— F~— XY

Thus edges £ — I, E — M and F — H are constructed. Then the algorithm
proceeds with new marking { H} at recursion level 2. H is set to be determined.
The only transition having H in its output is EN _H and thus edges H — E and
H — N are constructed.

The algorithm proceeds at recursion level 3 with marking { ¥, N'}. Since E was
already set to be determined, it is not considered anymore. Thus N is selected.
Transition M _N has N in its outputs and thus edge N — M is constructed. The
algorithm proceeds recursively at level 4 with {M} as its marking. M is set to
be determined, transition H_FEIM is the only transition having M in its output
and therefore edges M — I, M — E and M — H are constructed.

The algorithm proceeds with marking {H} at recursion level 5. However, H
has already been processed and is not considered anymore. Since there is nothing
to do in previous recursion levels, the algorithm returns to level 1 and chooses
X for its next target. X is set to be determined, transition X2Y2_X2 is chosen
and edge X — Y is inserted. The algorithm proceeds at recursion level 2 with
{X,Y} as an input marking. Y is chosen, transition FX_Y2 is found and edges
Y - Fand Y — X are inserted.

Then the algorithm proceeds at recursion level 3 witn {F, X} as its input
marking. Since F' is selected, transition I7_F' is found and edge F' — I is inserted.
Now the algorithm proceeds with marking {I} at recursion level 4. Transition
H_EIM is selected and edges I — E, I — M plus I — H are generated.
Finally the algorithm proceeds at recursion level 5 with { H} as its input marking.
However, since there are no nondetermined places left, the algorithm returns to
its initial recursion level and returns a graph containing all the edges pointed
out so far.

After applying the algorithm in Figure 1, first a dependency graph in Fig-
ure 3(a) is generated. In that figure for the sake of simplicity we presented every
two unidirectional edges in opposite directions between the same pair of elements
as a bidirectional edge. A directed edge from node A to node B in the graph
indicates that A cannot occur lower in the abstraction hierarchy than B. Hence
a bidirectional edge between two nodes tells us that these nodes should appear
at the same abstraction level.

Given the algorithm in Figure 2 we find as a second step strongly con-
nected components. In that way we end up with 3 sets of strongly connected
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X2Y2 X2
2

FX_Y2
2

(b) A1 (N). (c) Az(N).

Fig. 4. Representation of the Petri net N at different abstraction levels with M(M,) =
{E,M,X?} and M(Mo) = {E, M, X?}

Fig. 5. The general structure of abstracted nets

components—{I, M, N, E, H}, {F} and {X,Y}. By representing every group of
strongly connected components as a separate node, we end up with a partial
ordering in Figure 3(b). In the current example it is also a total order and would
represent an achieved abstraction hierarchy. Otherwise we would have to apply
topological sort to generate all possible total orderings and then select between
those a suitable one.

The abstraction hierarchy in Figure 3(b) determines that at the lowest ab-
straction level all places are presented, at the first level all except I, M, N, E, H
(thus F, X, Y) are presented. And at the second abstraction level there are only
X and Y. Given this abstraction hierarchy, two new Petri nets in Figure 4(b)
and Figure 4(c) are constructed for abstraction levels 1 and 2, respectively. At
abstraction level 0 the original Petri net is represented.

Basically, the abstraction algorithm in Figure 2 divides Petri nets into subnets
to fit the general tree structure presented in Figure 5. Each subnet N; there
consists of new transitions at abstraction level i. Every leaf subnet of that tree
involves at least one place p € £(M,). There can be several transitions between
different subnets—every ¢; in Figure 5 represents a number (at least one) of
transitions between two subnets. However, the direction of transitions in set ¢;
is the same—from lower level to higher level net. Transitions t; are abstracted
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to source transitions at level ¢, but at abstraction level ¢ — 1 they are not source
transitions anymore.

This structure is formed because all places p € E(Post(t,.)) of a transition
t are presented at the same abstraction level. Elements in E(Pre(.,t)) belong
to the same and/or to an lower abstraction level than elements in £(Post(t,.)).
Ordered monotonic refinement assures us that if a marking A;(My),7 > 0 is not
reachable at abstraction level ¢, M, would not be reachable in the original Petri
net N either. Therefore we do not need to explore the entire search space to get
acknowledged about it.

Every abstracted net at level i includes either at least one token from the
initial marking (£(A;(N)) # 0) or at least one source transition. Every source
transition represents a transition wherefrom tokens may enter the subnet. There-
fore, if the marking A;(M,) is not reachable under these relaxing conditions, the
marking A;(M,) would not be reachable without particular relaxing conditions
either.

3.2 The Role of the Initial Marking

While building a dependency graph for abstraction, dependencies between Petri
net places are detected. If it should happen that at least one place p € £(My)
is not included in the dependency graph and it does not occur in £(M,) either,
then there is no sequence of transitions s that My - M. This applies iff there
are no sink transitions, which could consume tokens in p.

Theorem 1. Given a Petri net N and a set of edges D, of dependency graph
D, which was constructed using N and Mgy, then if it is satisfied that Ip.(p €
E(Mo) Np & E(My) Np & D A —3t.E(Post(t,.)) = 0), then goal marking Mg is
not reachable from marking My of Petri net N.

Proof. While finding dependencies between Petri net places through dependency
graph construction, roughly a way for token propagation is estimated for reaching
the marking M, and places on the way are inserted to the graph. Therefore, if
not all places p € £(Mp) are included in the dependency graph, then there is no
way to reach from the marking My the marking M.

Anyway, some tokens in the initial marking may be not fired during reacha-
bility checking and thus they exist both in markings My and M,. In that case
the missing place from a dependency graph does not indicate that the marking
M, is not reachable. Similarily, sink transitions have to be considered, since they
only consume tokens and therefore are rejected, when generating a dependency
graph.

This case is illustrated in Figure 6, where a dependency graph is generated
for the marking M (M) = {F'}. As it can be seen in Figure 6(b) the Petri net
place B, although having a token in the marking My, is not included in the
dependency graph in Figure 6(b). The same applies for place A. Therefore the
marking M, is not reachable.
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Fig.6. A Petri net (a) with the initial marking Mo, M(My) = {4, B,C} and the
marking My, M(My) = {F} plus the corresponding dependency graph (b)

3.3 Removing Redundant Transitions

After the places, where tokens are possibly propagated through, have been de-
termined, we can throw away all transitions, which are connected at least to
one place which is not included in the dependency graph. In that way the search
space would be pruned and search made more efficient. Reachability result would
not be affected by removing these transitions.

Theorem 2. Given a Petri net N and a set of edges D, of dependency graph
D, which was constructed using N and Mg, we can discard all transitions t € T,
which satisfy condition Ip.((p € E(Pre(.,t)) Vp € E(Post(t,.))) ANp & D, A
E(Post(t,.)) # 0) without affecting reachability result for My = M,,.

Proof. If there is a transition ¢ € T of a Petri net N such that Ip.((p €
E(Pre(.,t)) Vp € E(Post(t,.)) Np & D.), then it means that the transition
t was not considered during construction of dependency graph D. Therefore

the transition is not considered relevant for achieving marking M, and can be
discarded.

Transition reduction is illustrated in Figure 7, where a dependency graph
is generated for the marking M,, M(M,) = {F, E?}. Since B and D are not
present in the dependency graph, they are considered irrelevant for the current

Fig. 7. A Petri net (a) including redundant transitions for My, M(M,) = {F, E*} plus
the corresponding dependency graph (b)
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reachability problem. Therefore all transitions ¢ such that Pre(B,t) € Pre or
Pre(D,t) € Pre or Post(t, B) € Post or Post(t, D) € Post can be removed with-
out affecting the reachability result of the original problem. Hence the transition
BC_D can be removed.

3.4 The Computational Complexity of Abstraction

According to [7] the complexity of building the dependency graph is O(n * o * [),
where n is the number of different places in a Petri net, o is the maximum number
of transitions ¢ such that for any place p Pre(p,t) > 0 or Post(t,p) > 0, and !
is the maximum number of different places p such that Post(t,p) > 0 with any
transition ¢. The complexity of building an hierarchy is also O(n * o x [), since
the complexity of the graph algorithms is bounded by the number of edges, which
is bounded in our case by n % o * [.

4 Reachability Checking with Abstraction

After an abstraction hierarchy has been generated, we start hierarchical reacha-
bility checking from the highest abstraction level by mapping the original Petri
net N to Ay(N), where h denotes the highest abstraction level. First we find a
sequence sy, of transitions ¢ € Tj, so that Ay (M) 2% Ap(M,). Then we gradu-
ally refine this sequence while moving lower in the abstraction hierarchy until
we reach the lowest level of the abstraction hierarchy. If it should turn out that
from a certain abstraction level there is no refinement to a lower abstraction level
for a sequence, then the marking M, is considered not reachable and search is
halted.

Definition 4. New transitions t € Tpey, at abstraction level i are defined as
Thew;, = Ti \ (T; N T41),i = 0...n, with exception Tpew, = T, where n is the
highest abstraction level, T; is a set of transitions in a Petri net A;(N) and N
is the original Petri net.

It is crucial to note that at every abstraction level i only transitions t €
Thew;, may be used during refinement. This is the basic search space reduction
mechanism, supported by abstraction, which divides the initial search space into
subspaces.

A sequence of transitions, which shows the reachability of a marking M,,
found at an abstraction level higher than 0 may be viewed as a sequence including
“gaps”, which have to be filled at a lower level of abstraction. It has to be
emphasised that at one abstraction level several solutions may be found and not
all of these, if any, lead to a solution at less abstract level. Thus several abstract
solutions may have to be tried before a solution for less abstract problem is
found.

The ordered monotonicity determines that while extending a firing sequence
s at a lower abstraction level with transitions, we can insert only new transi-
tions, whereas the transitions which are already in s, after enriching their rep-
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resentation with places permitted at that abstraction level (if needed), possibly
determine new submarking reachability problems we have to solve in order to
solve the general reachability problem. Thus in that way we reduce one single
reachability problem into several reachability problems and reduce distance be-
tween submarkings. By dividing transitions between different abstraction levels
the branching factor of search space is decreased.

Following the former idea we define the optimal abstraction hierarchy as
an abstraction hierarchy, where at each level exactly one new transition is in-
troduced and a Petri net at the highest abstraction level includes exactly one
transition.

Definition 5. An optimal abstraction hierarchy H, of a Petri net N is an ab-
straction hierarchy with n = |T'| abstraction levels starting from level 0. There-
fore, in Ho, |Ti\ (T; NTi41)| =1,i=0...n—2 and |T,,—1| = 1.

Theorem 3. Given that an optimal abstraction hierarchy H, is used, computa-
tional complexity of solving a reachability problem My > Mg, of a Petri net N
with our algorithm is O(|T|*|s|), where |T'| is the number of transitions in a net
and |s| is the expected length of the firing sequence s.

Proof. We define the exponential complexity of Petri net reachability checking
as li‘*‘, where [; is the number of transitions in a Petri net N and [, = |s| is the
length of a transition firing sequence s such that My = M. Since at the base
abstraction level (level 0) of H, we have [, transitions in the sequence s, there
are at every abstraction level maximally [; gaps, which have to be filled. By
assuming that there are [;, abstraction levels in H,, the resulting complexity is
O(lp *1s % (I /1n)'). Since we assumed usage of an optimal abstraction hierarchy
(It =13,), the exponential complexity of Petri net reachability checking is reduced
to O(ly, * s x 1%) = O(ly, * ), which is polynomial.

5 Experimental Results for Abstraction-Based
Reachability Checking

All experiments were performed with the RAPS tool!, where we applied basically
on-the-fly depth-first search over a reachability graph. The maximum search
depth was 30. The results are summarised in Table 1.

Columns covered by labels “Collapsing” (state space collapsing with Karp-
Miller algorithm [6]) and “No collapsing” include numbers, which represent how
many Petri net transitions were fired before reachability was detected. “—" in
fields of the table indicates that reachability was not detected. This illustrates
that, if we apply Karp-Miller algorithm together with abstraction, we may not
discover that a marking is reachable.

! Downloadable from http://www.idi.ntnu.no/~peep/RAPS.
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Table 1. Reachability checking with and without abstraction

Collapsing [No collapsing
Problem [Abs|No abs|Abs| No abs |Sol length|Abs levels||T'|||P]| M (My)

Figure 4(a)| 8 | 179 | 26 81 24 3 6|8 [{F,M X7}
Figure 8(a)| — | 181 |28 69 26 6 8 [11[{E, M, X?}
Figure 8(b)| 4 | 17 [10| 99 10 2 46 [{E,M,F}
Figure 8(c)| 6 8 6 8 6 3 4|6 {F,M}
Figure 8(d)| 2 5 2 5 2 4 5|8 [({F}
Figure 8(e)| — | 22 | 9 22 9 3 8 [11[{E, I*}

Fig. 8. Sample nets used in experiments

Columns “Problem”, “Sol length” and “Abs levels” represent information
respectively about net descriptions, firing sequence lengths and the number of
abstraction levels per problem, if abstraction was used. “Abs” and “No abs”
distinguish whether abstraction was used or not. “Collapsing” and “No collaps-
ing” in turn determine whether state space collapsing [6] was applied or not. |T|
and |P|, as defined in Section 2, in column headers denote to the numbers of
transitions and places in a sample net.

Dashed lines in figures of Figure 8 separate different abstraction levels. Thus
it is easy to follow how abstraction levels were formed for different nets and
reachability problems. If a fragment of a net is not encircled with a dashed line,
then this part is discarded as irrelevant for a given reachability problem. The
letter L followed by a number indicates there the abstraction level of a particular
subnet.

Although one may argue that only toy examples were considered while per-
foming experiments, these examples still illustrate advantages of abstraction-
based reachability checking over ordinary reachability checking. One can see that
the difference between “ordinary” and abstraction-based reachability checking
may be up to 22 times in the current case. These experimental results encourage
us to apply abstraction-based reachability checking for larger problems.
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While experimenting with abstraction and Petri nets we experienced cases,
where with abstraction, although more Petri net transitions were fired, less over-
all time was spent on it than with ordinary reachability checking. This “anomaly”
arises from the way we probe whether a transition is enabled or not. In the case
of ordinary reachability analysis one vector is subtracted from another and then
it is checked whether the result is not negative.

Anyway, if we use abstraction, then transitions indicate to a specific ab-
straction level where they may be applied only. In that case a lot of transitions
are disqualified just by comparing the integer indicating the abstraction level
where the transition may be fired. And comparing two integers is computa-
tionally cheaper than comparing two state vectors. Therefore, by using abstrac-
tion, we do not search blindly anymore, but use instead abstraction as search
heuristics.

6 Related Work

Abstraction of Petri nets has been explored previously by several researchers [14,
13,15]. These approaches are based on analysing structural properties of a net.
Abstraction is performed by substituting subnets with single transitions or places.

Berthelot [2] considers Petri net reduction by applying a set of transforma-
tion rules. Although this work does not consider abstraction itself, some of the
transformation rules may be viewed as abstraction operators.

Several abstraction techniques have been proposed in Al planning and the-
orem proving disciplines. The first explicit use of abstraction in automated de-
duction was in the planning version of GPS [12]. Other approaches to automatic
generation of abstraction spaces in the Al planning field include [1, 3, 9].

In [5] another abstraction technique, STAR, for AI planning is proposed.
Unfortunately it abstracts the generated state space and not the initial problem
representation. The main idea there is to collapse a state and its adjacent states
into a single one thereby reducing the state space. Although this methodolody
may turn out to be useful for applications, where a Petri net state space is
first generated and then analysed, we are interested in on-the-fly reachability
checking.

7 Conclusions

In this paper we presented an algorithm for automatically abstracting Petri nets.
While other approaches of abstracting Petri nets are based merely on the struc-
tural properties of nets, we considered also the initial and the final marking,
whose reachability has to be checked. Our algorithm first generates an abstrac-
tion hierarchy, which divides an original Petri net into several abstracted repre-
sentations. These abstracted nets are ordered into an abstraction hierarchy by
their size.

Abstraction hierarchies are generated by observing connections between tran-
sitions and places of nets. Given a net and the final marking, first a dependency
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graph is generated, which determines transitions, possibly to be fired in order
to reach the final marking. Then this graph is transformed into abstraction
hierarchies.

The greatest benefits of our abstraction and reachability checking algorithms
are achieved on tree-like Petri net structures like the one depictured in Figure 5.
If a whole Petri net represents a tree, optimal abstraction hierarchies are con-
structed. By using optimal abstraction hierarchies the computational complexity
of reachability checking is reduced to polynomial.

It turns out that the dependency graph, which is a byproduct of the ab-
straction algorithm, can be used also to determine these transitions in a net,
which are not relevant for solving a given reachability problem. In some cases
the dependency graph also helps to determine the lack of a solution even before
starting with reachability checking.

Additionally we sketched an algorithm for using generated abstraction hier-
archies for reachability checking. Reachability checking starts from the highest
abstraction level. Then a firing sequence of transitions reaching a particular
marking is gradually extended until the lowest abstraction level is reached.

Finally experimental results were presented, which show that while using our
abstraction methodology roughly up to 20 times less Petri net transitions are
fired during reachability checking. These results motivate us to proceed with
research on abstraction-based reachability checking.
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Abstract. In this paper we address the problem of detecting and break-
ing symmetries in combinatorial problems, following the approach of im-
posing additional symmetry-breaking constraints. Differently from other
works in the literature, we attack the problem at the specification level.
In fact, many symmetries depend on the structure of the problem, and
not on the particular input instance. Hence, they can be easily de-
tected by reasoning on the specification, and appropriate symmetry-
breaking formulae generated. We give formal definitions of symmetries
and symmetry-breaking formulae on specifications written in existential
second-order logic, clarifying the new definitions on some specifications:
Graph 3-coloring, Social golfer, and Protein folding problems. Finally,
we show experimentally that, applying this technique, even if in a naive
way, to specifications written in state-of-the-art languages, e.g., OPL, may
greatly improve search efficiency.

1 Introduction

The presence of symmetries in constraint satisfaction problems (CSPs) has been
widely recognized to be one of the major obstacles for their efficient resolution.
Much work has been already done, and a wide literature is nowadays available
on how symmetries can be exploited, with the aim of greatly reducing the size
of the search space. There are four main approaches followed by the research
community to deal with symmetries:

1. Imposing additional constraints on the problem model, which are satisfied
only for one of the symmetrical points in the search space, cf., e.g., [21,7,9];

2. Introducing additional constraints during the search process, to avoid the
traversal of symmetrical points, cf., e.g., [3,10];

3. Defining a search strategy able to break symmetries as soon as possible
(e.g., by first selecting variables involved in the greatest number of local
symmetries), cf., e.g., [18];

4. Isolating subclasses of CSPs for which particular search strategies can be
used in order to efficiently break their symmetries (cf., e.g., tractability of
symmetry breaking for CSPs with various form of interchangeability [25]).

However, all these approaches make the assumption that symmetries of the con-
straint problem at hand are known. Hence, the problem of the automatic de-
tection of symmetries arises. Currently, symmetry detection is either performed

J.-D. Zucker and L. Saitta (Eds.): SARA 2005, LNAI 3607, pp. 165-181, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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by hand (it is the modeller that states them, by analyzing the problem), or
recognized by reducing the CSP obtained after instantiation to an instance of
the graph automorphism problem (for which there are no polynomial time algo-
rithms, even if there is evidence that it is not NP-complete [13]).

On the other hand, many of the available systems and languages for the so-
lution of constraint problems (e.g., AMPL [11], OPL [24], XPRESS""!, DLV [15],
SMODELS [19], and NP-SPEC [6]) clearly separate the specification of a problem
from its instances. Furthermore, symmetries often arise from the problem struc-
ture, and not from the particular instance considered. Hence, they often clearly
emerge at the compact, symbolic level of the specification. Nonetheless, many of
the existing approaches to automatic symmetry detection (cf., e.g., the package
Nauty [16]) try to infer all symmetries of a constraint problem after instantiation,
where many structural aspects have been irremediably hidden.

In our opinion, reasoning at the logical level of the problem specification may
be much effective in order to detect those structural properties that are suitable
for optimization and reformulation, as many symmetries are: problem specifica-
tions are usually much more compact, readable, and high-level modelled, hence
the recognition of, e.g., structural symmetries naturally fits at this stage. More-
over, convenient symmetry-breaking formulae (cf. approach 1 in the list above)
can be added to the specification itself in order to exploit them. Finally, since
specifications are logical formulae, computer tools can be used to automatically
or semiautomatically detect and break symmetries [5].

Such reasoning tasks have, in principle, at least two applications: (3) Discover
new properties of a specification, and (%) Validate a specification confirming
the existence of some properties. In this paper, we mainly focus on the latter,
giving a formal characterization of symmetries and symmetry-breaking formulae
for a specification. This is a mandatory first step also to solve (i) (an heuristic,
and incomplete, approach for detecting some symmetries on specifications is
discussed in [26]).

Of course, detecting and breaking symmetries at the specification level does
not rule out the possibility to compositionally use symmetry-breaking techniques
at the instance level (e.g., [7,9]), in order to deal with additional symmetries that
arise from the problem instance. As an example, since some systems generate a
SAT instance, e.g., [6], or an instance of integer linear programming, e.g., [24], it
is possible to do symmetry breaking on such instances, using existing techniques.

2 Existential Second-Order Logic as a Modelling
Language

When dealing with problem specifications, the first choice to be made is that of
the modelling language to be used. Current systems and languages for declar-
ative constraint modelling, as those listed in Section 1, have their own syn-
tax for describing problem specifications: AMPL, OPL, and XPRESS™" allow the

! cf. http://www.dashoptimization.com.



Detecting and Breaking Symmetries by Reasoning on Problem Specifications 167

representation of constraints by using algebraic expressions, while others, e.g.,
DLV, SMODELS, and NP-SPEC are rule-based languages, more specifically exten-
sions of datalog. Anyway, from an abstract point of view, all such languages are
extensions of ezistential second-order logic (ESO) over finite databases, where
the existential second-order quantifiers and the first-order formula represent, re-
spectively, the guess and check phases of the constraint modelling paradigm. In
particular, even if all such languages have a richer syntax and more complex
constructs, in all of them it is possible to embed ESO queries, and the other way
around is also possible, as long as only finite domains are considered. Hence, as
we show in the remainder of this section, ESO can be considered as the formal
logical basis for virtually all available languages for constraint modelling, being
able to represent all search problems in the complexity class NP [20]. Moreover,
since checking and breaking symmetries on ESO specifications reduces to check
semantic properties of logical formulae, it is possible to use known results and
techniques in order to automate such tasks.

Formally, an ESO specification describing a search problem 7 is a formula
Yy = 38 ¢(S,R), where R = {Ry,...,Ri} is the input relational schema
(i.e., a fixed set of relations of given arities denoting the schema for all input
instances for 7), and ¢ is a closed first-order formula on the relational vocabulary
SURU{=} (“=" is always interpreted as identity). An instance Z of the
problem is given, as it happens in current systems, as a relational database
over the schema R, i.e., as an extension for all relations in R. Predicates (of
given arities) in the set & = {57,...,5,} are called guessed, and their possible
extensions (with tuples on the domain given by constants occurring in Z plus
those occurring in ¢, i.e., the so called Herbrand universe) encode points in the
search space for problem 7 on instance Z. Formula v),; correctly encodes problem
m if, for every input instance Z, a bijective mapping exists between solutions to
7 and extensions of predicates in 8 which verify ¢(S,Z). More formally, the
following must hold:

For each instance Z: X is a solution to n(T) <= {X,T}E¢.

It is worthwhile to note that, when a specification is instantiated, a constraint
satisfaction problem (CSP) is obtained.

In order to facilitate the writing of specifications, several built-in constructs
are provided by current languages, in particular those for typed relations, func-
tions (cf., e.g., arrays), bounded integers and arithmetics over them. Hence, to
ease expressions, and to make specifications more compact and closer to their
counterparts in state-of-the-art languages, in this paper we consider an enriched
ESO. In particular, we assume that:

1. Guessed predicates may be typed: we write 35 € typels X oo X type’g, where
each typey is a monadic relation in R that represents the domain of the
i-th argument of S. (For simplicity of notation, given a relation S of arity k,
we denote with type(S) the domain of tuples that belong to S, i.e., the set
typek x - -+ x typek.)

2. Guessed predicates that encode functions can be natively expressed in the
language (we write 35 € typek x --- x typel, — typejs+1 X -+ x typek for
some j € [1,k — 1]. Total functions will be denoted by “(total)”).
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3. Bounded integers and arithmetics over them are available.

We note that such additions do not change the expressive power of the language.
Types and (total) functions can be simulated in ESO by means of monadic
predicates in R and first-order constraints, respectively. The same holds for
bounded integers and arithmetics (that can be pre-interpreted).

Formally, we denote the set of monadic relations that encode types as T
(with 7~ C R). Hence, a specification in the enriched language is of the kind:

351 € type(S1),...3Sn € type(Sn) (S, T,R) (1)

where type(S;) = typeg X - X typeg:(si), with all typefgi eT.

Since 7 C R, we normally omit 7~ as argument of ¢, even if, in some cases,
in order to emphasize the occurrence of types relations in some formulae, we
state it explicitly.

Ezample 1 (Graph k-coloring). Given an undirected graph and a set of k colors
as input, this problem amounts to decide whether it is possible to give each of
its nodes one out of the colors, in such a way that adjacent nodes (not including
self-loops) are never colored the same way. The problem is well-known to be
NP-complete for £ > 3, and can be specified in ESO by, e.g., the following
formula over relations in R = {node(-), edge(-,-), color()}, listing the graph
nodes, edges and the available colors, respectively. The set of types 7 is given
by {node, color}. In particular, relation color(-) will have exactly k tuples. We
also assume that node(-) and color(-) have no tuples in common.

3Col € node — color (total) (2)
VX,Y,C,C" edge(X,Y)AX #Y ACol(X,C) ACol(Y,C") — C#C'. (3)

Part (2) of the above specification defines Col as a total function assigning a
color to each node, while (3) is the good coloring constraint. It is worth noting
that the specification above is very close to that written in available languages,
e.g., the following one in OPL (initializations are omitted):

range node 1..nnodes; range color 1..n colors;
var color Col[node];

solve { forall (e in edges: e.start<>e.end) Col[e.start]<>Col[e.end]; };};

Another assumption that we make in this paper is that the set of guessed pred-
icates § is partitioned in two parts: output and auxiliary guessed predicates,
denoted, respectively, as O and A (with A possibly empty). Output guessed
predicates conceptually denote the search space, while auxiliary predicates are
used internally to maintain and/or compute additional information needed to
express and evaluate the constraints. This is a very common necessity in declar-
ative languages, as forthcoming Example 2 shows.

When such a partition is made, a solution is completely characterized by the
extensions of predicates in O and not by those of predicates in .A. Hence, the
general form of a problem specification in ESO is as follows:

3O, A ¢(0,AR) (4)

where predicates in O and A may have an associated type, that can (in general)
be represented with a first-order formula over 7.
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Ezample 2 (HP 2D-Protein folding [14]). This specification models a simplified
version of one of the most important problems in computational biology. It
consists in finding the spatial conformation of a protein (i.e., a sequence of amino-
acids) with minimal energy. The simplifications are twofold: the amino-acids
alphabet is reduced to just H (hydrophobic) and P (polar), and the protein is
forced to fold in a 2D discrete space. However, the simplified problem is known
to be NP-complete [8]. Given the sequence of amino-acids of the protein, i.e., a
string over {H,P} of length n, the problem aims to find a connected shape for it
on a 2D grid (with coordinates in [«(n—1), (n—1)], starting at (0, 0)), non-crossing,
and such that the number of “contacts”, i.e., the number of non-sequential pairs
of Hs for which the Euclidean distance of the positions is 1 is maximized (the
overall energy is the opposite of the number of contacts). The figure below shows

a possible conformation of the protein “PHHPHPPHP”, with overall energy —2.
Different alternatives for the search space obviously ex-

L 0 L2 5 istrasan example, we can guess the position on the grid
3 CP__,__(P of each amino-acid, and then force the shape to be con-
2 + *——(J) nected, non-crossing, and with minimal energy. However,
L + B a preferred approach that regiuces the size of the search
S space (4™ points versus (2n)~") is to guess the shape of

0

the protein as a connected path starting at (0,0), by
1 guessing, for each index i € [1,n — 1], the direction that
the (¢ + 1)-th amino-acid assumes wrt the i-th one (di-
rections can only be North, South, East, West).

The extension of Move for the shape in the figure is: {(1, N}, (2, N), (3, N),
(4, E), ...}. However, choosing the latter model is not completely satisfactory:
to express the non-crossing constraint, and to compute the number of contacts,
absolute coordinates of each amino-acid must be computed and maintained. An
ESO specification for this problem, where, for simplicity, we assume to deal with
its decisional version, and to have (pre-interpreted) bounded integers and arith-
metics in the range [—(n — 1),n — 1], is as follows (R = {index(-), elem(-,-)},
with elem(i,a) stating that the i-th element of the protein is a € {H, P}):

OP @H - - contact

dMove € index — {N, S, E, W} (total), (5)
3X,Y € index — [-n+1,n — 1] (total) (6)
X(0,0) A Y(0,0) A (7)

VI, I' index(I) A index(I'YANT'=T—-1 —
VD, XY, X")Y' Move(I', DYANX(I,X)ANXI', XYANY(LLY)ANY (', Y'") —
D=N -X=X'AY=Y'+1A (8)
D=S - X=X'AY=Y 1A
D=FE - X=X'+1AY =Y'A
D=W X=X —1AY =Y'A
vILI', X, X', Y,Y’
T#TANXX,DAXX , IYANYY,DAYY',I') - X#£X'VY#Y' A
(I, 1') | index(I)Nindex (I'YA(I+1<I")Aelem(I, H)Aelem(I', H)A
VX, XYY X(X, D) AX(X, T A >k (10)
BptlY (Y, )AY (Y, I') A X-X'|+]Y-Y'|=1

9)
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Constraints (5) and (6) declare guessed predicates Move, X and Y as total func-
tions assigning, respectively, a value in {N, S, E, W}, and a value in [—(n—1),n—
1] to each amino-acid.? Furthermore, (7) forces the first amino-acid to be placed
in (0,0), while (8) defines the absolute position of each amino-acid starting from
that of the previous one and the move. Finally, (9) is the non-crossing constraint,
and (10) forces the number of contacts to be at least k (integer k is assumed
to be fixed). The above specification is very similar to that given in available
languages, e.g., OPL (cf. [4]).

From the problem description, Mowve is the output guessed predicate, while X
and Y are auxiliary: a solution is completely characterized by the sole extension
of Move. However, it is a matter of choice and responsibility of the modeler
to state which guessed predicates are output and which others are auxiliary,
and, of course, it is always possible to consider all guessed predicates as output
ones (hence, A can always be empty). Indeed, in the following we show that this
“conceptual” partition plays an important role in detecting structural properties,
e.g., symmetries, that may be exploited to improve efficiency. We also observe
that, in this example, X and Y are functionally dependent on Move (cf. [4]).

3 Symmetries on Problem Specifications

In this section we define the concepts of transformation and symmetry on a
specification, and investigate interesting specializations of them. In Section 2,
we presented some syntactic sugar that can be added to ESO in order to have
more compact and readable specifications. However, we also noticed that such
constructs can always be regarded as additional constraints. Hence, for what
concerns the reasoning tasks that we describe from this section on, we consider
the basic ESO framework. Hence, all such additional constraint will be considered
as integral part of the ¢ part of a specification having the general form (4).

Definition 1 (Transformation). Given a specification 30, A ¢(O, A, R), a
transformation for O and A is a family of functions, one for each possible
finite Herbrand domain H, of the kind 11 {exty (O,A)} — {exty (O, A)}, where
{exty (O,A)} is the set of all possible extensions of predicates in O and A with
elements in 'H.

Intuitively, a transformation is a mapping from and to all points in the search
space defined by all the guessed predicates in the specification, for any H. For the
sake of simplicity, and with a little abuse of notation, in what follows we denote
a transformation as a single function 7: {ezt(O,A)} — {ext(O,A)}, obtained by
collapsing all the 77y, which is defined on all finite Herbrand domains H.

By focusing only on the set O, the following definition holds:

2 Actually, Move should be not defined for the last amino-acid. However, the proposed
simpler specification remains correct, with the last move having no meaning.
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Definition 2 (Symmetry). Given a problem specification 30, A ¢(O, A, R)
as above, a symmetry is an invertible transformation for O, i.e., an invertible
function 7 : {ext(O)} — {ext(O)} such that, for every input instance I, and
every extension §2 for relations in O, the following holds:

N.TEIAHO,AR) «— 7(2),T=3AHO,AR). (11)

The distinction between output and auxiliary guessed predicates here becomes
more clear: a symmetry is a transformation of the sole output predicates such
that, if an extension of @ may lead to a solution (with appropriate extensions
for auxiliary predicates \A), then its transformation must also lead to a solution
(even if the corresponding extensions for predicates in A change) and vice versa.
As an example, in the Protein folding problem, given a solution, i.e., a move
in {N,S,E,W} for each element of the sequence such that all constraints are
satisfied, we can uniformly change N with S, and/or F with W and obtain
another solution, even if the corresponding extensions for X and Y change.
Definition 1 is about transformations in general, but does not limit in any
way the kind of functions 7. By imposing some restrictions on 7, interesting
specializations arise. In this paper, we consider functions 7 that focus on a sin-
gle output guessed predicate, being the identity function on the others (we call
them single-predicate transformations). They are of special interest, because of
the usual structure of constraint problems, in which transformations we are in-
terested in (i.e., candidate symmetries) often are internal to a guessed predicate.

Definition 3 (Single-predicate transformation). A transformation is
single-predicate if there exist O € O and a function 7o : {ext(0)} — {ext(O)}
such that, for all extensions (21,...,92,...82, for O1,...,0,...,0, (for any
finite H ), we have that T(£1,...,802,...02,) = {1,...,70(2),..., ).

A single-predicate transformation over O € O is completely characterized by
giving 7o. Further specializations of single-predicate transformations are column
(definition omitted) and uniform column transformations.

Definition 4 (Uniform column transformation (UCT)). A single-predi-
cate transformation 7o is a UCT if there exists a partition of the indexes of
arguments of O in two (disjoint) sets, D and C, such that, for each extension
2 of O, we have that 70(£2) = ', where:

V6 e < (3[D],0(8[C)) € 2

where o : type(g (0)) — type(g (0)) is a total invertible function on (i.e., a
permutation of) the domain values of arguments of O in set C.

A UCT that is a symmetry is called uniform column symmetry (UCS). Intu-
itively, UCTs and UCSs change only the C' components of tuples in an extension
of O, leaving the others (i.e., D) unchanged. Hence, they are completely described
by a permutation ¢ from and to the type of the C columns of O. It is worth not-
ing that o is uniform, i.e., its behavior on a tuple § € O depends only on §[C],
and not on §[D]. A (non-uniform) column transformation/symmetry, instead, is
described by a function which behavior on tuple § depends also on §[D].
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Ezample 3 (Graph k-coloring (Example 1 continued)). We have that O = {Col},
and A = (). By focusing on Col, with D = {1} and C = {2}, all permutations
o : color — color (where color is type(g (Col))) are UCSs.

These symmetries are uniform because their os map a given color (e.g., red)
always to the same color, independently on the nodes (i.e., values in column 1).

If, after instantiation, we define the corresponding CSP with one variable for
each node, with domain [1, k], symmetries defined above become uniform value
symmetries (in the sense of [17]).

Ezample 4 (HP 2D-Protein folding (Example 2 continued)). Let us consider the
UCTs that focus on Move, with D = {1} and C' = {2}, i.e., permutations o of
{N,S,E,W}. As an example, the following ones are UCSs:

o(N)=N, o(S)=S, o(E) =W, o(W) = E (flip horizontally)

)=
o(N)=S5, 0(S)=N, o(E)=E, c(W) =W (flip vertically)
o(N)=S, 0(S)= N, o(E) =W, o(W)=FE (flip horizontally & vertically )
o(N)=FE,o(S)=W, o(E) =S, (W) =N (rotation 90° clockwise)

while others are not, e.g., o such that:

o(N)=N, o(S)=E, oE)=W, oW)=S-5.

It is worth noting that, if we consider also X and Y as output guessed predicates,
the above transformations are no longer UCSs, moving to the more general class
of multiple-predicate symmetries (definition omitted). In fact, when permuting
directions in Mowve, extensions for X and Y must change accordingly.

4 Symmetry Checking

In the previous section, we considered transformations and symmetries as func-
tions from and to extensions of predicates in O. Nonetheless, in order to prac-
tically deal with transformations and symmetries, we are interested into finite
representations of such functions. To this end, in what follows we assume that
7 is finitely representable, e.g., in first-order logic, and, with a little abuse of
notation, we will denote with 7(O, O, ) a logical representation of it.> Such a
representation will contain also occurrences of types in 7. However, for simplic-
ity, we do not explicitly write such types as arguments of 7.

Theorem 1. Let ¢ =30, A ¢(O, A, R) be a specification, and T an invertible
transformation for O. T is a symmetry for ¥ if and only if the following formula

is valid:

It is worth noting that the above formula is second-order, even if 7 is first-
order. This is because of the presence of auxiliary guessed predicates A, which

3 Given extensions §2 and §2, for @ and O- respectively, 7(§2, £2,) is true iff £2; is
the output of function 7 when applied to £2.
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extensions may not coincide when applying the transformation (cf., e.g., Exam-
ple 4). However, in the important case of A = (), the above formula reduces to
a first-order one.

The above theorem naturally specializes in case of single-predicate symme-
tries and UCSs. In the latter case, the following holds:

Theorem 2. Lety =30, A ¢(O, A, R) be a specification, and let 7o be a UCT
on O € O with o the relative permutation of the domain values of arguments of
O in set C. 1o is a symmetry for 1 if and only if the following formula is valid:

7(0,0,) — 3A $(Os,....0,....0n, AR) = 3IA $(Os,....0-,.. .On, AR)  (13)

with 7 being: VXp, Xc, Xg O(Xp,Xc) No(Xe,XE) < O.(Xp,XZ),
and o a finite representation of the permutation over type(g (O))

However, the problem of checking symmetries is undecidable. To show this,
we focus on the most restricted case of first-order definable UCTs, when

A=0.

Theorem 3. Checking whether a first-order definable UCT 1o is a symmetry
is undecidable, even if A= 0.

Of course, decidable subcases for this problem may exist, and can be possibly
derived by decidability results already known in first-order and second-order
logic (cf., e.g., [2]). Additionally, decidable heuristic approaches, similar to those
already presented in [25, 26] can be used. However, these issues are left for future
research.

Often, constraint problems exhibit many symmetries. In order to make the
relevant checks, the procedure suggested above by Theorems 1 and 2 needs to
be invoked for all of them. However, when a set of symmetries can be finitely
characterized, Theorems 1 and 2 can be restated with 7 being the finite represen-
tation of the whole set of symmetries. In the particular case of UCSs, Theorem 2
can be restated with o being the finite representation of the whole set of permu-

tations over type(g (O)) that are symmetries. In these cases, 7(O, O,) holds iff

O is the result of applying any symmetry in the set to O (hence, it models a
relation, and not a single function any more). The same holds for ¢ in case of
UCSs.

Ezample 5 (Social golfer (www. csplidb. org, prob. 10) ).  Given a set of play-
ers, a set of groups, and a set of weeks, encoded in relations R = {player(-),
group(-), week(-)} respectively, this problem amounts to decide whether there is
a way to arrange a scheduling for all weeks in week, such that (i) For every week,
players are divided into equally sized groups; (i) Two different players don’t
play in the same group more than once. A specification for this problem (assum-
ing |player|/|group|, i.e., the group size, integral) is the following (Play(P, W, G)
states that player P plays in group G on week W):
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IPlay € player x week — group (total) (14)
vP,P WW' GG
(P#P AW # W' APLAY (P, W,G) A PLAY (P, W,G)) —  (15)
= [Play(P,W',G") A Play(P',W',G")] A
VGG, W, W' group(G) A group(G’) A week(W) A week(W') —

{P: Play(P,W,G)} = |{P : Play(P,W’,G")}|. (16)

Relation Play is declared as a total function assigning a group to each player
on each week (14); moreover, (15) is the meet only once constraint, while (16)
forces groups to be equally sized. The last constraint can be written in ESO using
standard techniques, essentially by means of an auxiliary guessed predicate Aux
~hence A = {Auz} # (- forced to encode a set of bijective functions, one
between tuples of any pair of sets defined in the specification.

The following sets of UCT's that focus on Play are all UCSs:

1. With D = {1,2}, C = {3}, all permutations o : group — group of groups;
2. With D ={1,3}, C = {2}, all permutations o : week — week of weeks;
3. With D = {2,3}, C = {1}, all permutations o : player — player of players.

Let us consider the set of UCSs described in point 1. A finite representation for
them exists, in the form of 7¢(Play, Play, ), defined as:

VP,W,G,G° Play, (P,W,G") < Play(P,W,G) A perm(o, group) A o(G,G"),

with perm(o, group) being a first-order formula stating that o is a permutation
of domain values in group, i.e., type(g (0))). A formulation for perm is as follows:

perm(o, R) = VX,X% o(X,X°) — R(X) A R(X?) A (17)
VX R(X) — 3X° o(X,X%) A (18)
VX, X% X7 ¢(X, X )Ao(X,X"7) > X" =X"" A (19)
VX% R(X°) — 3X o(X,X7). (20)

In the important case of a set of UCSs, the following specialized result holds:

Corollary 1. Lety =30, A $(O, A, R) be a specification, O € O, and D and
C a partition of its argument indexes. A set of permutations o over type(g (0)),

finitely characterized by the additional conditions encoded in a formula (o, T),

are all UCSs for v iff the following formula (open wrt O, 0., R, o )* is valid:
7(0,0,) — A ¢0Ox,...,0,...,0,,AR) < JA O3, ..,0r,...,.0n,AR) (21)
with T being:
perm(o,type(z (0))) Ay(o, T) A
VXD7XCan' OT(XD7XE') - O(XD7XC)/\U(X07XE)

* With o being a predicate of arity \type(g (0))].
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In general, formula (21) is second-order, because of the presence of “3.A”, and
because (o, T) can be second-order. Of course it reduces to a first-order formula
when A = () and (o, T) is also first-order.

All the UCSs described in Examples 3 and 5 can be checked in one step by
using Corollary 1, with v = true. As another example, let us consider a variation
of Social golfer where the following constraint is added:

VP, W,G P =p, A Play(P,W,G) — G=gq (22)

forcing a particular player (denoted by the constant “p;”) to play always in the
same group (denoted by constant “g;”). In the new specification, not all UCTs
denoted with 7. in Example 5 are symmetnes any more. In particular, only those
permutations of groups o such that o(g;) = ¢1 remain symmetries. The whole
set of such permutations is finitely representable as y(o,7) = o(g1,91), thus,
they can be all verified at once by using Corollary 1.

5 Symmetry Breaking

In Section 4, we showed how logically representable sets of “structural” symme-
tries can be checked by reasoning on the problem specification. Here we show
how such knowledge can be used in order to modify the specification, in order
to exclude from the search space (some of) the symmetrical points. Such modi-
fications can of course be made by working only on the specification, since they
will be valid whatever instance we will consider in a later stage.

Actually, several approaches to symmetry breaking have been described in
Section 1. In this paper, we focus on the first one (i.e., the addition of symmetry-
breaking constraints) but, differently from other works in the literature (e.g.,
[7,9]), we attack this problem at the logical level of the specification.

Definition 5 (Symmetry-breaking formula). Given a specification
30, A ¢(O,A,R), and a logical representation 7(O,O;) of a set of symme-
tries, a symmetry-breaking formula for them is a closed (except for © and T )
formula B(O,T) —in general in second-order logic— such that the new specifica-
tion

30, A ¢$(0,A,R) A B(O,T)

satisfies the following two requirements (we call them Conditions 1 and 2):

1. The set of transformations T is not a set of symmetries for the new problem
any more: hence, the following formula (negation of (12)), is satisfiable:

7(0,0,) A [BA (O, AR)ABO,T) 4 IAHO., A,R)ABO.,T).

2. Every model of 3A ¢(O, A, R) (i.e., every solution for any input instance)
can be obtained by those of 3A ¢(O, A, R) A B(O,T) by applying transfor-
mations in T an arbitrary number of times:

3A $(0, A R) | 305 3A ¢(Op, A, R)AB(Os,T) A\ 7'(05,0

>0
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where 79(0g,0) is defined as Og = O, and 7 (0p,0) (i > 0) as
3O’ 7(O,0) AT Op, 0", with O a fresh set of variables.

Lemma 1 (Alternative formulation for Conditions of Definition 5).
Formula (O, T) is symmetry-breaking for set of symmetries 7(O,O.) iff it
satisfies the following two, alternative, conditions:

1. The following formula is satisfiable:
T(0,0,) A A GO, AR) A [B(O,T) & B(O-,T)]. (23)

2. It holds that:
JA (0, AR) [ 305 B(0s,T) A\ 7(05,0). (24)

i>0

If 8(O,T) respects the above conditions, we are entitled to solve the problem
30, A ¢(O, A R) A B(O,T) instead of the original one 30, A ¢(O, A, R).
In fact, Condition 1 states that formula 5(O,7T) actually breaks 7, since, by
Theorem 1, transformations in 7 are not all symmetries of the rewritten prob-
lem. Furthermore, Condition 2 states that every solution of ¢(O,.4,R) can
be obtained by repeatedly applying transformations in 7 to some solutions of
?(0, A, R)AB(O,T). Hence, all solutions are preserved in the rewritten prob-
lem, up to symmetric ones.

It can be observed that Condition 1, even if it behaves well when 7 describes
a single symmetry, is quite weak when used with a set of symmetries. This is
because it is enough, for a formula 3, to break just one of the symmetries in 7 to
satisfy it. A stronger characterization of Condition 1 for the case of T representing
a set of symmetries is currently under investigation.

As for Condition 2, it is worthwhile noting that in formula (24) ¢ ranges
over the (infinite) set of positive integers. However, once the (always finite)
Herbrand universe H has been fixed, the number of consecutive applications of
7 that lead to different extensions for predicates in © is always finite (even if
this value actually depends on H). Furthermore, when dealing with UCSs on

guessed predicate O € O, ¢ is bound by n!, where n is type(g (0)))|, and C
the set of indexes where 7 focuses on, since this is the maximum number of
successive applications of 7 that can lead to all different permutations. However,
in the following we show that in many practical circumstances, either ¢ is bound
to a known value because the value for n is known (cf., e.g., Example 2), or many
interesting symmetry-breaking formulae satisfy Condition 2 of Definition 5 by
design, with a very low 1.

We observe that breaking a symmetry is sound, i.e., it preserves at least one
solution, as shown by the following theorem:

5 In general, given two vectors of variables X and Y of the same length n, by X =Y
we denote the formula A7, (X; < Y;).
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Theorem 4 (Symmetry-breaking formulae preserve satisfiability). Let
Y, 7, and B as in Definition 5. For each input instance I, if 30, A ¢(O, A, T)
has solutions, then also 30, A (O, A, T) A B(O,T) has solutions.

Ezample 6 (HP 2D-Protein folding (Example 4 continued)). Let us consider the
following UCS 7 that focuses on the output guessed predicate Move, with D =
{1} and C = {2}, characterized by the following permutation o of {N, S, E, W }:

o(N)= N, o(S) =S5, o(E) =W, o(W) = E (flip horizontally)
The following formula ﬁlfé‘;/(Move, index) is symmetry-breaking for it:

BEW = VI index(I) A Move(I, W) — 3I' index(I') A (I' < I) A Move(I', E) (25)

since it forces the protein shape to move East before moving West. Condition 1,
e., formula (23) is satisfied by, e.g., the instance [H, H], and the extension
{{,E)} for Move. As for Condition 2, it holds even by limiting ¢ to only 0
and 1.
A different symmetry-breaking formula for the same symmetry is:

BE™ = |{i : Move(i, E)}| < |{i : Move(i, W)}, (26)

that forces the protein “head” to move West at least the same number of times
it moves East.

Ezample 7 (Social golfer (Example 5 continued)). Let us consider all UCSs that
focus on the output guessed predicate Play, with D = {1,2} and C' = {3},
i.e., all permutations of groups. The following formula (where we assume that a
total ordering is given on tuples of relations in 7", hence also on their Cartesian
product) is symmetry-breaking (according to Definition 5) for all of them:

Bieast (Play, player, week, group) = VG, G’ group(G) A group(GYANGLG') —

27
VP, W, P W' least((P,W),G)Aleast(P,W'),G") — (P,W)<pw (P'W") @7

with <pyw the total order derived from < on players and weeks. It forces the
group assignment to be such that, for all G, G’ such that G < G, the least pairs
P, W and P’,W’ such that Play(P,W,G) and Play(P’,W’' G') are such that
(P,W) <pw (P',W'). 5 As a consequence, we have that the first player always
plays in the first group. We can break other symmetries (e.g., permutations of
weeks or players) in a similar way, and get the symmetry-breaking constraints
described in [23].

Social golfer is well known also because it is one of the prototypical examples of
problems having a 2D matriz model (where rows are players, columns are weeks,
and entries are groups) exhibiting all row and column symmetries. For these
problems, the lex? symmetry-breaking constraint, that forces a lexicographic

6 least((P, W)

,G) can be written in first-order logic as: Play(P,W,G) A
VP, W Play(P,

W,G@) — (P,W) <pw (P,W).
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ordering on both rows and columns of the matrix has been proposed [9]. It is
possible to show that the lez? symmetry-breaking constraint can be formulated
in ESO by, e.g., a formula [j..2 (Play, player, week, group) = ﬂllzx A 522; where
BE_(Play, player, week, group) is given by:

VP, P' player(P) A player(P') AP < P' —
IW week(W) A YW week(W) AW <W —
VG,G (Play(P,W,G) A Play(P',\W,G")) — G=G" A
\eNed (Play(P,W, G) A Play(P', W, G/)) - G<G Vv
YW, G,G" (Play(P,W,G) A Play(P',\W,G")) — G=C

that forces a lexicographic ordering among the rows of the matrix, and ﬂl‘fw by
a similar formula, that forces a lexicographic ordering among the columns.

It is worth noting that from the above formulae, it is straightforwardly pos-
sible to derive general schemas, that can be used to break symmetries on many
different specifications. To this end, we note that formulae of the kind Bicast, O<,
and [j.,2 make the right part of (24) a tautology (it is enough to consider, e.g.,
in the first two cases, ¢ € {0,1}), and hence they are guaranteed to respect Con-
dition 2 of Definition 5, independently on the specification constraints. This kind
of schemas for s can be used as a library, thus making a first step towards the
automatic generation of guaranteed correct symmetry-breaking formulae (cf.,
e.g., the nature of symmetry-breaking constraints added to CSPs in [7]).

6 Experiments

In this section we show that in many cases, even if applying the technique pro-
posed in Section 5 naively, impressive speed-ups in performances can be obtained
on different problems. To this end, we show the results of the following experi-
ments, performed with Ilog OPLSTUDIO, using state-of-the-art solvers CPLEX (a
MP solver) and SOLVER (a general CP one):

— Graph k-coloring, on instances from the DIMACS repository; we broke UCSs
in Example 3 with Bjeast and < (using CPLEX and SOLVER);

— Social golfer, on several negative instances, with Ge,2 (SOLVER);

— Protein folding, by using a composition of lfagtv and ﬁf:;ft, (SOLVER), on
several benchmark instances (some of them from [12]).

Results are often good: as for k-coloring using CPLEX (cf. Table 1(a)), speed-ups
up to 90% have been observed for many instances (especially when using Sieast ),
even if for some others the overhead of adding such constraints leads to poorer
performances (cf. also [22]). As for Social golfer instead (cf. Table 1(b)), adding
Biez2 leads to impressive time savings on negative instances, usually around 99%.
A similar behavior has been observed for Protein folding (cf. Table 1(c)) —we
solved the optimization version— with savings up to 73% (often more than 50%).
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7 Conclusions

In this paper we dealt with symmetry checking and breaking at the logical level
of the specification. We observed that in many cases, symmetries arise from the
structure of the problem, and not from input data. Hence, from a methodological
point of view, it makes sense inferring such symmetries by reasoning on the prob-
lem model. Furthermore, since specifications can be regarded as logical formulae,
such tasks reduce to tautology or satisfiability checking, and hence they can be
automated by computer tools (even if the general problem is undecidable). To
this end, in [5] we show with several examples how first-order theorem provers
and finite model finders can be effectively and efficiently used in the important
case where formulae to be checked are first-order.

As for symmetry-breaking, adding constraints to the specification may, in
general, lead to some overhead, and we don’t exclude that, for some problems,

Table 1. Solving times (seconds) for k-coloring (CPLEX) (a), Social golfer (SOLVER)
(b), and Protein folding (SOLVER) (c). ‘~’ means that the solver did not terminate in
one hour

CPLEX
No s.b.] Bleast <
Instance | k |Sol?|[ Time | Time [% sav.| Time [% sav.

DSJC1000.1[24 — 368.46 [>89.77 - -
DSJC125.5 | 8 15.32 | 13.21 | 13.77 | 10.51 | 31.40
DSJC125.5 |25 - 2337.29|>35.08|2177.21| 39.52
DSJC125.9 (21 1408.23|2080.21| -47.72 |1088.65| 22.69
DSJC250.5 |10 2158.75|>40.03|2432.55| 32.43
DSJC500.1 |11
fpsol2.i.2 |21
fpsol2.i.2 |31
fpsol2.i.3 |31

2.53 - —00 - —o0
139.80 | 43.70 | 68.70 | 102.20 | 26.90
397.61 | >88.96
- 330.22 [>90.83
84.73

le450-25a |21 95.32 | -12.50 | 46.51 | 45.11
le450-25a |25 3536.41 - <-1.80(1783.23| 49.58
miles500 |19 2.31 - —00 1.67 | 27.71
mulsol.i.1 |30 10.61 |>99.71

mulsol.i.1 |49 - 311.12 |>91.36 - -
mulsol.i.2 |30 - 10.98 |>99.70 - -
mulsol.i.2 |31 26.75 | 48.67 |-81.94 - —oo

mulsol.i.3 |30
mulsol.i.3 |31
mulsol.i.4 [30
mulsol.i.4 |31
mulsol.i.5 [30
mulsol.i.5 |31

- 10.78 |>99.70 - -
55.77 | 43.65 | 21.73 | 284.32 |-409.81
— 10.99 |>99.69 - -
47.46 | 14.25 | 69.97 - —0o0
- 11.12 |>99.69 - -
166.85 | 20.68 | 87.61 | 64.56 | 61.31

ZHKZRKZHKZKZK 22 ZK<'2222<22

mycield 4 5.22 0.87 83.33 8.46 |-62.07
(a)
Instance SOLVER
Length[Contacts No s.b. [Bgav‘g A ﬂl]:a _t[ % sav.
Instance SOLVER B s
14 5 45.38 15.1 66.73
[Plrs[Wks[Grps|[Solv?[No s.b. 5, 2% sav.| 14 2 34.29 10.05 70.69
6 6 3 N [2267.35| 2.12 | 99.91 16 7 23.95 13.27 44.59
6 7 3 N |273.53 |4.23 | 98.45 16 6 124.12 44.21 64.38
6 8 3 N 96.67 [10.31| 89.33 17 6 2788.05 746.97 73.21
9 5 3 N - 1.05 |>99.97 17 6 311.78 117.68 62.26
9 6 3 N | 342.24 | 3.86 | 98.87 18 8 - 1660.35 >53.88
18 4 547.84 370.38 32.39
18 9 — 1830.02 >49.17

(b) (c)
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this technique may be worse than making symmetry breaking after instanti-
ation (cf., e.g., [22]) or during search. However, in our approach, we make a
strong decoupling between symmetry detection and breaking: all techniques for
symmetry-breaking need to know the symmetries of the problem, and detect-
ing structural ones at the model level can be a common task for all of them.
In particular, detected symmetries can be broken, in principle, either by adding
symmetry-breaking constraints to the specification, or by instructing search algo-
rithms to break them during search (cf. Section 1 for references). Understanding
which technique is better for a given specification is topic for future work.

As for the experiments presented in Section 6, it is worth noting that our goal
is not to compare specification-level versus instance-level symmetry-breaking,
but to give evidence that even a naive implementation of the proposed symmetry-
breaking techniques may lead to consistent time savings. In our opinion, this is a
very interesting point, since the required reasoning can be effectively automated
in many practical circumstances. As an example, in [5] we present experimental
results on using first-order theorem provers for automating these tasks. More-
over, we recall —cf. the end of Section 5- that well-behaved symmetry-breaking
templates do exist, that satisfy Condition 2 of Definition 5 by design. Hence, in
many practical circumstances, only Condition 1 of Definition 5 should be checked
for a given specification, and this can be done very efficiently by using a finite
model finder (cf. [5]).
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Gregory Provan
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Abstract. This article introduces a technique for improving the efficiency of di-
agnosis through approximate compilation. We extend the approach of compiling a
diagnostic model, as is done by, for example, an ATMS, to compiling an approxi-
mate model. Approximate compilation overcomes the problem of space required
for the compilation being worst-case exponential in particular model parame-
ters, such as the path-width of a model represented as a Constraint Satisfaction
Problem. To address this problem, we compile the subset of most “preferred” (or
most likely) diagnoses. For appropriate compilations, we show that significant
reductions in space (and hence on-line inference speed) can be achieved, while
retaining the ability to solve the majority of most preferred diagnostic queries.
We experimentally demonstrate that such results can be obtained in real-world
problems.

1 Objective

One of the most influential approaches to model-based diagnosis (MBD) consists of
compiling the diagnostic model into a representation, ©, from which diagnoses can
be more efficiently computed. This approach has been adopted within a number of
approaches, e.g., [1,2,3]. The advantage of this approach is that the computational
task is linear in the size of the compiled representation. However, the disadvantage
with compiling a large model is the space required for the compilation; for example,
for a model represented as a Constraint Satisfaction Problem (CSP), e.g., as a causal
network [4], this space is worst-case exponential in the path-width of the CSP [5]. For
real-world problems (which have large path-width or thousands of variables), the size
of the compiled representation is typically too large for practical inference.

To address the large size of a compiled diagnostic model ©, we compile a subset of
the space of diagnoses, namely the most preferred subset of diagnoses, using a valuation
function to specify the most preferred diagnoses. The most common valuation function
is the likelihood of a fault, which can be specified in terms of a probability (e.g., [6])
or order-of-magnitude probability (e.g., [4]) assigned to failure modes. We address two
well-known diagnostic compilation approaches for which valuations can be assigned
to each compiled diagnosis, prime implicants [1] and consequences in d-NNF [2]. We
are interested in the tradeoff between the proportion of the most-preferred diagnoses
represented in a partial compilation ©,, versus the space saved by ©,,, relative to that
of ©. We use two measures to analyse this tradeoff for a partial compilation: (1) x

J.-D. Zucker and L. Saitta (Eds.): SARA 2005, LNAI 3607, pp. 182-193, 2005.
(© Springer-Verlag Berlin Heidelberg 2005
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measures the relative fraction of important diagnoses that are generated by the partial
compilation @, relative to the space of the full compilation; and (2) A\ measures the
proportion of the space that a partial compilation ©,, requires, relative to the space of
©.! We provide a theoretical bound that can be used to predict the tradeoff parameters
(x, M) for a partial compilation, and show experimental results that such bounds are
relevant for real-world problems.

We frame our analysis using the general diagnostic framework of constraint optimi-
sation using CSPs [7]. This framework describes the diagnostic model using the CSP
framework, with valuations over the CSP described using a c-semiring. For the class
of CSPs we have addressed, our partial compilation results are encouraging. For par-
tial compilations in which all failure modes are unlikely or in which some failure modes
are much more likely (preferred) than others, we can produce order-of-magnitude space
savings, with little loss of deductive coverage; in other words, we can have compilations
with x close to 1 and R < 1. Under these scenarios, the most likely diagnoses com-
prise a small fraction of the number of total diagnoses, with the majority of remaining
diagnoses being significantly less likely.

This article makes two main contributions. First, it describes a general framework
for MBD in which a variety of valuations and compilation techniques can be adopted.
Second, it describes the conditions under which approximate preference-based com-
pilation can significantly speed up diagnostic inference with little loss of diagnostics
coverage.

2  Notation and Representation

This section introduces our notation for CSPs, for compilation, and for valuations of
solutions to CSPs.

2.1 CSP Problem Formulation

We assume the CSP diagnostic formulation of [7]:

Definition 1 (Constraint Satisfaction Problem (CSP)). A Constraint Satisfaction
Problem (CSP) II = (X,D,C, H) over {T, L} consists of:

— a set of variables X = {x1,...,x, };
— for each variable x;, a finite set D; of possible values (its domain);
— and a set C of constraints restricting the values that the variables can simultane-

ously take. A constraint c; is a relation defined on a subset X' of the variables, that
is, c; C Xj{l‘j 1T S X/}.

The constraints c; can be considered as functions defined over the variables in c;,
V (¢;), where allowed tuples have value T and disallowed tuples have value 1.

'\ provides a measure of the relative complexity of approximate compiled inference versus
using the full model.
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Diagnostic applications typically consider the case where (1) we assume a subset
of distinguished unary constraints H C C referred to as assumptions, and (2) we can
measure a set O C X of variables, called observables. Given this framework, we can
specify a diagnosis as follows:

Definition 2 (Diagnosis). Let II = (X, D,C, H) be a CSP and O an observation, i.e.,
a constraint on variables in X. A diagnosis of O on II is a subset of constraints E C 'H
such that CUO U E £ L, or equivalently, there exists an assignment of values in D to
X consistent with C and O.

2.2  Valuation

In this article, we assign a valuation to unary constraints (i.e., assumptions), and then
use this valuation to compute most preferred diagnoses. A valuation denotes the im-
portance of a constraint. We represent a valuation of a constraint ¢ using v(c). Hence,
we have a weighted-pair (c;, v;) for each constraint and valuation. We formalise this
general notion of valuation in terms of c-semiring operations [8]. Note that this formal-
ism covers, among others, the probabilistic valuation of [6] and the order-of-magnitude
probabilistic valuation of [4].

Definition 3 (c-semiring). A c-semiring is a tuple (A, +, X, 0, 1) such that

- Aisasetand{0,1} € A;

— -+ is a commutative, associative and idempotent operation with unit element 0 and
absorbing element 1;

— X is a commutative, associative and idempotent operation with unit element 1 and
absorbing element 0;

— X distributes over +.

Definition 4 (c-semiring constraint system). A constraint system over a c-semiring
is a constraint system where the constraints c; € C are functions defined over the
variables in c; assigning to each tuple a value in A.

Definition 5. An objective function v maps tuples Z C X to a set A with a partial
order =< 4 that forms a complete lattice.

In the probabilistic case [6] (see Section 3.2), A is the interval [0, 1] with total order <,
and v associates a probability with each failure mode assignment.

We can define an optimization task over a constraint system in terms of c-semiring
operations provided that the objective function is x-separable.

2.3  Compilation

Diagnosis can be formalised as a type of Consistency Maintenance Algorithm, and
a number of techniques have been developed for compiling this type of task. These
techniques include prime implicates [1], d-NNF [2], OBDD [9], and cluster-trees [10].

Given a set C of constraints, we compile the constraints after partitioning them into
a constant part C. and a varying part C,,. The constant part is then replaced by an equiv-
alent, but computationally more efficient, compiled representation C... Thus given an
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entailment problem for determining consequences « of C, i.e., C. UC, = «a, we can
compile C. into C, and express this as

ClEavVv \/ —£.

§€Cy

Prior approximate compilation techniques typically weaken the problem represen-
tation. For example, papers by Selman and Kautz [11] and by del Val [12] have stud-
ied approximating propositional and First-Order formulae by Horn lowest upper bound
(LUB) representations, as well as their generalisations.

In contrast to this approach, we are interested in using the prior valuations on as-
sumptions to compile a subset of most preferred potential diagnoses. This is similar to
the penalty logic framework introduced in [13], except that in this case we compile only
a subset of the most preferred diagnoses, rather than the full set of ranked diagnoses.
We compile the least-cost diagnoses to C U H up to a threshold ¢. In other words, we
compile all diagnoses such that v(E) < . This approach is a general one, and can be
applied to any compilation method. For example, with regard to the prime implicants
(or labels) computed by an ATMS [1] or consequence generation [2], we ensure that no
label (consequence) will have cost more than a bound .

3  Valuation-Based Diagnosis

We now introduce some well-known methods for valuations, and in later sections we
will see the types of results that are possible given those valuations. We derive some
theoretical results about such partial compilations, and then present experimental results
for real-world models.

3.1  Valuation 1: Unary Integral Valuation

We first examine the valuation addressed in [4]. The valuation corresponds to a semiring
S given by (NU {oo}, min, +, 00, 0). This valuation, v : H — N7, is assigned to the
assumptions, and is a totally ordered mapping over an diagnosis £ C ‘H such that the
valuation for any diagnosis E is given by

HeH

In other words, the valuation is a measure assigned to the assumptions (constraints)
contained in F; i.e., it represents the likelihood of occurrence of the diagnosis E. Un-
der this valuation, a 0-cost represents a normal system and increasing costs (greater
than zero) correspond to increasingly unlikely (less-preferred) diagnoses. Hence, our
inference objective is to compute minimum-cost diagnoses.

3.2 Valuation 2: Probabilistic Valuation

We now outline a valuation widely used in diagnosis [3, 6] and other areas of cost-based
abduction. In this valuation we assign a probability p to each assumption: Pr : H —
[0, 1]. The valuation of a diagnosis E C H is given by
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pr(E) = [] Pr(#),

HeH

where we assume that all assumptions are independent, such that we can compute the
joint probability Pr(F) by the products of the probabilities for H € H. The valuation
corresponds to a semiring Sp, given by ([0, 1], max, -, 0, 1).

The semantics of this valuation are slightly different than those of Valuation 1. Start-
ing from a maximum valuation of 1 (which represents a normal system), all valuations
less than 1 correspond to solutions which are increasingly less likely (preferred). Hence,
our objective is to compute maximum-probability diagnoses.

4  Valuations for Compilations

This section examines the valuations for compilations, and in particular looks at the trade-
offs of relative size of the compilation versus the total relative value of the compilation.

We pose an optimisation task for Valuation 1, that of computing the least-cost diag-
noses, and then the compile the least-cost diagnoses up to a threshold ¢ € N*. In other
words, we compile all diagnoses E € £* such that v(E) < ¢.

4.1 Relative Value of a Partial Compilation

The objective of our approximate compilation is to provide coverage for a fixed per-
centage of possible diagnosis queries. We use the following notation for specifying the
relative value of a partial compilation:

Definition 6 (Constraint Set Valuation). The valuation associated with a constraint
set H (or equivalently, with a complete compilation © of H), is given by the sum over
all valuations:

Ee2™

Definition 7 (Partial Constraint Set Valuation). The valuation of a partial compila-
tion O, with valuation threshold ¢ is given by

v(O,) = Y {u(E)u(E) < o}

Ee2H

We use these notions to define a key parameter for our experimental analysis, the
valuation coverage ratio.

Definition 8 (Valuation Coverage Ratio). We define the valuation coverage ratio x of
a partial compilation ©,, with valuation threshold ¢, as the fraction of the complete
system valuation provided by ©:

ey
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Our approach cannot use a valuation with an unbounded maximum value, e.g., 00
for Valuation 1, as we are interested in computing ratios of cumulative valuations. For
such valuations we must construct an inverse valuation, which we call a loss function, in
order to compute an appropriate measure for x. We adopt a standard decision-theoretic
loss function £, defined for constraint c as £ : v(c) — [0, 1].2 Using a loss function, we
can modify Equation 1 into: y = l:ﬁ((%’)). We say that a partial compilation is effective
if it has a high coverage ratio.

There are a variety of methods that we can use to map valuations with unbounded
maximum values into a loss function. For example, we can define two classes of loss
function for Valuation 1 as follows. First, we could adopt an appropriate log transfor-
mation of the form: v(e) — logc (( —v(e)),? for a set of diagnoses with maximum valu-
ation (. A second method of representing a loss function uses a parameterised equation
of the form: £(c) = v¢"(), for constant y and parameter ¢.*

4.2  Relative Memory of a Partial Compilation

The second key parameter in which we are interested is the relative memory of a partial
compilation, which we can define as follows. Let |©| be a measure for the size of the
original compiled CSP, and |©,,| be a measure for the size of the CSP compiled based
on valuation threshold . For simplicity, we assume that all diagnoses (solutions) take
up equal memory, and define a ratio based only on the relative number of solutions.

Definition 9 (Memory Reduction Factor). The memory reduction of partial compila-

tion, with respect to compiling the full CSP, is given by A = ||@@“”|‘ .

4.3  Analysis of Different Valuations

This section analyses the impact of two parameters on the size and effectiveness of a
partial compilation: (1) valuation distribution, the relative proportion of different pref-
erences; and (2) valuation differential, the difference in degree of preference between
any two different valuations. A model may specify a preference ordering in which some
assumptions are very strongly preferred, and others are not preferred; in that case the
distribution specifies the relative proportions of highly preferred to not preferred as-
sumptions, and the differential indicates the difference in degree of preference among
the assumption valuations.

Example 1. Consider a simple example with a lattice defined over assumptions
{a,b, c,d} and semiring Sp,. In this case we assign probabilities describing the fail-
ure likelihoods of the variables. If we have a valuation distribution given by Pr(a) =
Pr(b) = 0.09, and Pr(c) = Pr(d) = 0.01,° then assume that we have a model in

2 Note that Valuation 2 automatically satisfies this requirement, but Valuation 1 does not.

3 Note that a complete mapping is more complicated than this example.

* This mapping corresponds to the semiring Sz given by ([0, 1], maz, -, 0, 1), and is very close
to the calculus proposed in [14].

3 Note that there is roughly an order-of-magnitude differential between a strong preference, e.g.,
Pr(a), and a weak preference, e.g., Pr(c).
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Fig.1. Lattice for simple example, showing the probabilistic valuations to lattice elements, and
the lattice elements (in lower left corner) with probability greater than 0.2, 0.1 and 0.05

which a full compilation would generate a lattice containing the 13 diagnoses shown in
Figure 1.° The lattice elements represent all possible consistent diagnoses for potential
observations; the valuations on the diagnoses can be used to rank-order the diagnoses
in terms of likelihood; for example, if we have diagnosis set {cd \ abd} for an observa-
tion O, the most-likely diagnosis will be {cd}.

Consider the effect of introducing partial compilations with bound . If we introduce
a bound of ¢ = 0.02, then we would compile only 2 diagnoses ({a,b}) out of 13 total
diagnoses; note that this would give valuation coverage ratio x of 0.849, and relative
memory X\ of 0.15. In this case, we have used only 15% of the memory of the total
compilation, and can answer roughly 85% of the diagnosis queries. Decreasing ¢ to
0.01 and 0.005 results in (x, A) pairs of (.943, .308) and (.999, .769) respectively. These
results show that we obtain diminishing increases in x as we compile more diagnoses.

If we increase the differential in this valuation to roughly two orders of magnitude,
i.e., Pr(a) = Pr(b) = 0.09, and Pr(c) = Pr(d) = 0.001, then the relative coverage
of an equivalent partial compilation increases significantly. For ¢ = 0.02 we obtain
a (x, A) pair of (0.992, 0.15), in which 15% of the memory covers over 99% of the
most-preferred diagnosis queries. O

We can study the impact of valuation differential on partial compilation tradeoffs for
Valuation 1 using the loss function £(c) = v€¥(¢), for € < 1. Figure 2 shows the impact
of the value of € on the types of tradeoff curves that are possible. At one extreme, the
value e = 1 produces an equi-loss situation where we generate a flat lattice that does
not even respect subset inclusion; hence, there is no value to compilation. The benefit
of compilation improves as € grows smaller, i.e., as the gap between different valuations
increases.

In our analysis, we have found that the relative efficiency of a partial compilation,
i.e., having a high query coverage with large reduction in memory, is directly related

6 The lattice elements {abc} and {bcd} have been ruled inconsistent by the constraints.
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Fig.2. Curves depicting the influence of the value of € on the tradeoff curves

to the type of valuation. If a valuation is skewed, in the sense that some diagnoses
are highly preferred and others are not at all preferred, then we can compute a very
efficient partial compilation. If most diagnoses are relatively equally preferred, then
little is gained by partial compilations.

Although it is too complicated to derive closed-form representations for the valua-
tion tradeoff space in the general case, we can derive results for simple cases. For ex-
ample, we can use the following result as a bound on the impact of partial compilation:’

Lemma 1. Consider a model with n variables, where each diagnosis has identical loss
of 1 € (0,1]. We generate a partial compilation, based on the maximum number q of
variables in any diagnosis, with parameters given by:

1+)r -1’ 2n —1

Equation 2 predicts a series of curves similar to those shown in Figure 2 for e < 1.
Each predicted curve defines an upper bound for the expected (x, A) results of a partial
compilation, i.e., it specifies the effectiveness of the compilation in the best case. We
now present experimental results for real-world examples that show that the predictions
of Equation 2 are relevant to real-world application problems.

S Experimental Analysis

We have performed a set of empirical studies of compilation coverage. We represented
the diagnostic models as causal networks [2], which is a CSP representation with propo-

" If we start with valuation (as in Valuation 1) that generates an inverse , then we must map
this into a loss function using an approach such as that described in Section 4.1.
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sitional constraints and non-negative integer weights similar to Valuation 1. We then
generated complete DNNF-compilations of all models, and used various thresholds ¢
to compute partial compilations from these. For each pair comprising a full and partial
compilation, we posed identical queries, and compared the statistics of correct query-
responses for the partial and full compilations. This section describes these studies,
focusing first on the structural parameters, and then on the weights.

51 Structural Parameters

We have performed experiments on a collection of real-world models, including models
of hydraulic, electrical and mechanical systems. Table 1 shows the basic parameters of
the models we used for experimentation. The model classes are as follows: (a) the AC-
vl through AC-v4 models are for multiple aircraft subsystems; (b) the MCP models
are for a control system. Each model class has multiple models, denoted by version
numbers (e.g., v2), which denote the increased size and complexity over the basic model
vl).

Table 1 shows data for a variety of models. One of the key factors to note is the
memory required for the compiled model, displayed in the last column. In particular,
the models cover memory values ranging from small (20.1KB) to large (52.4MB). As
noted earlier, the memory of the compiled model is our metric for evaluation complex-
ity, since evaluating a model is linear in the size of the compiled data. As a consequence,
it is important to note that models with compiled data in excess of 20-30MB are com-
putationally expensive to evaluate.

Model Size Parameters. We have performed experiments to study the dependence of
compiled-model performance on the parameters C and H. Figure 3 shows the cover-
age versus relative memory for four different aircraft sub-system models of increasing
size, AC-vl through AC-v4. All models have identical failure-mode probabilities of
0.05. Note that every such coverage/memory curve has a similar shape, with the cov-
erage asymptotically approaching 1 as memory increases. This particular graph shows
how the curves are displaced downwards (meaning reduced coverage for any relative
memory value) as the models grow in size and complexity.

Table 1. Model Statistics for Real-world Models. We report data for the total number V' of vari-
ables, number H of assumables, number O of observables, and memory for the full compiled
model

| Name [V[H]O[Memory (KB)]
AC-vl 12158 1439
AC-v2 41(9 (13 37,626
AC-v3 64(17(12 52,376
AC-v4 70(19|13 52,447
MCP 40(20| 5 20.1

MCP-extended-v1{66|32| 5 22.5

MCP-extended-v2||66(32| 8 359.9
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Fig.3. Graph showing tradeoff of coverage versus relative memory for four different aircraft
sub-system models, AC-v1 through AC-v4

5.2 Valuations

We have performed a variety of experiments to study the influence of assumption prob-
ability on coverage. In these experiments, we assigned different probability values to
the assumptions, and report our results using the mean probability, averaged over all
probabilities assigned to failure-states in H.

Figure 4 shows the effect of mean assumption probability values on the coverage for
two control models, a basic model and an extension of that model. These figures show
how the mean probability value reduces the coverage values. For example, Figure 4(b)
shows that for small probability values, the coverage asymptotes very quickly to cover-
age values near 1 at relatively small relative memory values, but as the mean probability
gets larger, greater memory is needed to achieve high coverage values. These experi-
mental results concur relatively well with predictions made by equation 2.

This experimental analysis has shown that Equation 2 provides bounds that can
predict results such as:

— For a given CSP size, it tells you the type of skewed loss function that guarantees
an efficient partial compilation.

— Given an appropriate loss function, it can tell you the coverage value y that is
achievable.
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Fig. 4. Graph showing tradeoff of coverage versus relative memory for control sub-system model,
for various mean loss values

— Given an appropriate loss function and required coverage value x*, it can predict
the size of the partial compilation.

6 Summary

The article described a partial-compilation technique for improving the efficiency of
model-based diagnosis, and more generally for any compilation-based inference with
preferences. For DNNF-compilations, we showed that significant reductions in space
(and hence on-line inference speed) can be achieved, while retaining the ability to solve
the majority of diagnosis queries. We experimentally demonstrated that such results can
be obtained in real-world problems. For example, under skewed preference structures,
we have found that extremely good coverage can be provided by relatively small partial
compilations. Given the general c-semiring CSP framework for compilation, we argue
that this partial compilation approach will work for a variety of c-semiring CSPs, and
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for compilation methods in which valuations can be assigned to compiled diagnoses
(e.g., ATMS labels).

These results imply that high-reliability systems need only a relatively small com-
piled model to guarantee high diagnostic coverage. In contrast, low-reliability systems
need a relatively large compiled model, e.g., containing up to 10 simultaneous faults
(depending on the system), to guarantee high diagnostic coverage.

This analysis needs to be extended to cover failure consequences, i.e., incorporate
utility functions. For many applications, e.g., commercial aircraft and space shuttle mis-
sions, one is interested in the low-probability/high-consequence failures. Our future
work plans to analyse such situations.
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Abstract. Reinforcement learning (RL) is a powerful abstraction of sequential
decision making that has an established theoretical foundation and has proven
effective in a variety of small, simulated domains. The success of RL on real-
world problems with large, often continuous state and action spaces hinges on
effective function approximation. Of the many function approximation schemes
proposed, tile coding strikes an empirically successful balance among represen-
tational power, computational cost, and ease of use and has been widely adopted
in recent RL work. This paper demonstrates that the performance of tile coding
is quite sensitive to parameterization. We present detailed experiments that iso-
late the effects of parameter choices and provide guidance to their setting. We
further illustrate that no single parameterization achieves the best performance
throughout the learning curve, and contribute an automated technique for adjust-
ing tile-coding parameters online. Our experimental findings confirm the superi-
ority of adaptive parameterization to fixed settings. This work aims to automate
the choice of approximation scheme not only on a problem basis but also through-
out the learning process, eliminating the need for a substantial tuning effort.

1 Introduction

Temporal-difference reinforcement learning (RL) is a powerful machine-learning
methodology that has an established theoretical foundation and has proven effective
in a variety of small, simulated domains. The application of RL to practical problems,
however, is problematic due to their large, often continuous state-action spaces. Re-
cently RL has been successfully applied to larger problems, including domains with
continuous state-action spaces. The success of RL in such cases critically depends on
effective function approximation, a facility for representing the value function concisely
at infinitely many points and generalizing value estimates to unseen regions of the state-
action space.

A variety of function approximation methods for RL have been proposed, including
simple discretization, radial basis functions, instance- and case-based approximators,
and neural networks [1]. These methods trade off representational power, computational
cost, and ease of use. Tile coding [2] is a linear function-approximation method that
strikes an empirically successful balance along these dimensions and has been widely
adopted in recent work [3, 1,4, 5, 6]. The success of tile coding in practice depends in
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large part on parameter choices. We are not aware of any detailed studies of the effects
of parameters in tile coding, an omission we set out to address.

This paper makes two chief contributions. First, we present a controlled empirical
study of the effects of parameters in tile coding. While it is natural to expect the right
parameterization to depend on the problem at hand, we additionally demonstrate that no
single parameterization achieves the best performance on the same problem throughout
the learning curve. Our analysis isolates the causes of these phenomena. Second, this
paper contributes an automated scheme for adjusting tile-coding parameters online. We
demonstrate the superiority of online parameter adjustment to any fixed setting.

Our work on adaptive parameterization in tile coding automates the choice of an
appropriate approximation scheme for any given RL problem and learning stage. The
designer need only specify a parameter range, leaving it up to the algorithm to de-
termine the right settings throughout execution. Viewed differently, our work unifies
fixed approximation schemes into a more powerful and generic scheme. We validate
our insights empirically in the context of RL, arguably the most realistic and successful
abstraction of sequential decision making to date.

The remainder of this paper is organized as follows. Section 2 provides a brief
overview of RL and describes tile coding and our testbed domain. Experimental re-
sults in multiple learning settings and an accompanying analysis are presented in Sec-
tions 3 and 4, respectively. Section 5 builds on those findings to propose an automated
parameter-adjustment scheme and demonstrates its effectiveness empirically. Section 6
concludes with a summary.

2  Preliminaries

This section introduces reinforcement learning (RL) and tile coding and describes the
testbed domain used in our experiments.

2.1 Reinforcement Learning

In RL [2], a learner is placed in a poorly understood, possibly stochastic and non-
stationary environment. The learner interacts with the environment at discrete time
steps. At every time step, the learner can observe and change the environment’s state
through its actions. In addition to state changes, the environment responds to the
learner’s actions with a reward, a scalar quantity that represents the immediate utility
of taking a given action in a given state. The learner’s objective is to develop a policy (a
mapping from states to actions) that maximizes its long-term return.

Formally, an RL problem is given by the quadruple (S, A, ¢, r), where S is a finite
set of states; A is a finite set of actions; t : S x A — Pr(S) is a transition function
that specifies the probability of observing a certain state after taking a given action in a
given state; and r : S x A — R is a reward function that specifies the expected reward
upon taking a given action in a given state. Given a stream of rewards rg, 1,72, . . . , the
associated return is defined as Zfio 7%, where 0 < v < 1 is the discount factor. The
learner experiences the world as a sequence of states, actions, and rewards, with no prior
knowledge of the functions ¢ and r. A practical vehicle for learning in this setting is the
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value function Q™ : S x A — R that yields the expected long-term return obtained
by taking a certain action in a given state and following policy 7 thereafter. The widely
used Q-learning algorithm [7] maintains and iteratively updates an approximation to the
Q-value function of the optimal policy.

2.2  Tile Coding

In practical applications of RL, states and actions are defined by continuous parameters
such as distances and voltages. As a result, the sets S and 4 are typically large or
infinite, and learning the value function requires some form of function approximation.
In tile coding, the variable space is partitioned into tiles. Any such partition is called
a tiling. The method uses several overlapping tilings and for each tiling, maintains the
weights of its tiles. The approximate value of a given point is found by summing the
weights of the tiles, one per tiling, in which it is contained. Given a training example,
the method adjusts the weights of the involved tiles by the same amount to reduce the
error on the example.

Figure 1 illustrates tile coding as it is used in this paper. The variable space consists
of a single continuous variable x. The tiles are all the same width and adjacent tilings
are offset by the same amount, the type of tiling organization we refer to as canonical.
Figure 1 also illustrates the computation of value estimates. A tiling organization such
as those in Figure 1 is given by tile width w and the number of tilings ¢. The ratio w/t
is the resolution of a tiling organization. Speaking of tiling organizations that provide
the same resolution, we refer to the number of tilings as the breadth of generalization
since tiling organizations with more tilings generalize more broadly. This happens be-
cause the span of the tiles activated by an update grows with the number of tilings. A
degenerate form of tile coding is straight discretization (the organization with a single
tiling in Figure 1), which does not generalize across tile boundaries.

Note that tile coding is a piecewise constant approximation scheme: for any assign-
ment of the tile weights, there will be actions within resolution r of each other that map
to the same set of tiles and share the same value estimate. When pondering an action
choice in this setting, our RL algorithm picks the middle action. While tile coding does
not support fruly continuous learning, its generalization capability makes it far supe-
rior to straight discretization. Finer distinctions can always be learned by increasing the
resolution 7. An initial result regarding tiling organizations is (a proof sketch is in the
appendix):

Theorem 1. For every m,n > 1, the sets of functions representable by m- and n-tiling
canonical univariate organizations with the same resolution are identical.

et f—————+ t - t
B e e S e } } -
r=1, w=1/3 X t=2, w=2/3 X t=3, w=1 X

Fig. 1. One-, two-, and three-tiling canonical organizations with the same resolution r = 1/3.
The number of tilings ¢ and tile width w are specified for each organization. In each case, the
weights of the highlighted tiles are summed to obtain the value estimate for the indicated point
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For example, the three organizations in Figure 1 are functionally equivalent. Despite
this representational equivalence and identical asymptotic performance, tiling organiza-
tions with more tilings generalize more broadly and perform differently on RL tasks.
This paper assumes a fixed resolution r and studies the role of generalization breadth ¢
as a parameter. Our work seeks to identify how varying the breadth of generalization—
while preserving representational equivalence—affects performance.

2.3 Testbed Domain

Our testbed domain is a grid world, shown along with an optimal policy in Figure 2.
Two locations of the grid world are designated as “start” and “goal,” with the learner’s
objective being to navigate from the start cell to the goal cell. Another type of cell is
a wall that the learner cannot pass through. Finally, certain cells are designated as an
abyss. This grid world task is episodic, ending with the learner falling into the abyss
(“stepping off the cliff”’) or successfully entering the goal state. The state variables are
the cell coordinates x and y (the start state is at the origin).

The learner’s actions are of the form (d,p), where d € {NORTH, SOUTH, EAST,
WEST} is an intended direction of travel and p is a real-valued number between 0 and
1. The learner moves in the requested direction with probability F'(x,y, p), and in one
of the three other directions with probability (1 — F(z,y,p))/3. Moves into walls and
off the edge of the grid world result in no change of cell. F'is a cell-dependent function
that maps p to [0.5, 1]. The two “extreme” F’ functions are shown in Figure 3, and the
F functions for all other cells are successive interpolations between these two.! This
design of F' was intended to ensure continuity as well as multiple local maxima and
minima. To illustrate, consider choosing an action in a cell governed by the solid F
curve in Figure 3. A choice of p ~ 0.78 guarantees a successful move in the requested
direction. A choice of p ~ 0.93 moves the learner in the requested direction with prob-
ability 0.5 and in each of the other three directions with probability ~ 0.17.

1 T LR
18]l8||-8)\.8| < || 8||8||8)|8|\8 ol
L7hzzlz =0l 7)) N E
BRI BB B EEE

0.6 -
T.S abyss s . . .
start goal 0 02 04 06

Fig. 2. The grid world map and optimal policy Fig. 3. The two extreme F'(p) functions

Our experiments use two different reward functions to guide the learner to the goal,
an “informative” one with —1 assigned on every nonterminal transition, —100 on step-

" The exact functional form is F'(z,y,p) = sw(p,z,y) sin(4rw(z,y,p)) + 33, where w(-)
is a warping function that applies a different monotonic transformation of the p range for each
cell. As a result, the optimum p value is different for every cell. As the cells are traversed in

row-major order, the F' curve gradually transforms from one extreme in Figure 3 to the other.
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ping off the cliff, and 4100 on reaching the goal cell; and another, “uninformative”
reward function with zero reward assigned on all transitions except the one to the goal
cell (+100). Because of the discount parameter v = 0.99 < 1, the optimal policy is the
same under both functions.

The learner initially has no information regarding ¢, r, or any of the F"’s. Thus,
the challenge is to identify, in each cell, the right direction of travel and the p value
that maximizes the probability of this move. We use tile coding in the p variable to
approximate the value function for every distinct setting of (z,y,d). Every (z,vy,d)
triple enjoys a dedicated set of tiles, so there is no generalization across cell boundaries
or directions of travel.

3 Initial Empirical Results

This section presents empirical results in three scenarios illustrating the effects of the
breadth of generalization on performance. The settings of generalization breadth com-
pared are 1, 3, and 6 tilings, all reasonable choices given the target function curves in
Figure 3. The resolution was fixed at 0.04, corresponding to 26, 10, and 6 tiles per tiling
in the 1, 3, and 6 tiling cases, respectively.

All experiments in this paper used Q-learning with e-greedy action selection. The
parameter settings were: o = 0.1,y = 0.99, and ¢ = 0.05, except where indicated
otherwise. The Q-value estimates were initialized to 0 on all runs. The metric in all
experiments was the value of the start state under the best policy discovered so far
(as a percentage of optimal), as determined by an external policy-evaluation module.
This model-based evaluation module (value iteration) was unrelated to the model-free
algorithm used to learn the policies. Every performance curve in the graphs represents
the point-wise average of at least 100 independent runs with all identical settings.

We categorize our empirical findings in three groups:

Experiment A: Initial performance boost due to generalization (regular «). Fig-
ure 4 plots early performance obtained using the uninformative reward function (a) and
the informative one (b). The step size « is 0.1, a typical value. The graphs show a per-
formance boost due to generalization when the informative reward function is used, but
no observable differences with the uninformative reward function.

Experiment B: Initial performance boost due to generalization (small «). Figure 5
plots performance over the first 50000 episodes, a substantial allotment of learning time.
The reward function used is the uninformative one, chosen to control for the apparent
advantage enjoyed by broad-generalizing learners in experiment A. (As the analysis in
Section 4 will show, the results observed in experiments A and B are due to different
causes which this experimental setup serves to isolate.) Decreasing the step size de-
grades performance for any fixed setting of generalization breadth; however, the extent
of this deterioration diminishes as generalization breadth increases. Viewed differently,
a = 0.5 reveals no observed benefit to generalization. But as a decreases to 0.10 and
then to 0.05, generalization becomes increasingly beneficial.

Experiment C: Eventual degradation of performance due to generalization. Ex-
periments A and B demonstrate that generalization can improve performance while the
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policy is undergoing initial development or early refinement. Figure 6, on the other
hand, shows that in the final count generalization proves detrimental. Figure 6 was ob-
tained using the uninformative (@) and informative (b) reward functions. In the former
case, the more challenging nature of the task favors the use of generalization for a longer

time.

Note that the graphs in Figures 4-6 have vastly different z-axis scales. Moreover,
the y-axis scales in Figures 4 and 5 are different from those in Figure 6.
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4 Interpretation of Empirical Results

As observed in Section 3, generalization tends to help initial performance but hurts in
the long run. This section analyzes the causes of these phenomena. We start by intro-
ducing an abstraction of the problem. We categorize state-action pairs as overestimated,
underestimated, and correctly estimated with respect to the backup procedure used and
the approximate value function Q(s, a) for states and actions. In Q-learning, an overes-
timated state-action pair is characterized by

Q(s,a) > r(s,a) +7 flr,lg;;{é?(s’, a)},

where s’ is the successor state. Underestimated and correctly estimated state-action
pairs are defined by replacing the “greater than” sign in the above equation with “less
than” and “equals” signs, respectively. Note that this terminology is unrelated to the
true values of state-action pairs under the current policy; state-action pairs are “un-
derestimated,” “overestimated,” or “correctly estimated” solely with respect to one-step
updates. Finally, we define a state-action pair (s, a) to be desirable if a is a near-optimal
action in state s, i.e.,

Q" (s,0) — max @ (s,0')| <

where Q* is the optimal value function and § > 0 is a small constant. Undesirable
state-action pairs are defined symmetrically.

The effect of generalization on correctly estimated state-action pairs is nonexis-
tent or negligible since backups in such cases generate zero expected error. The ef-
fect of generalization on overestimated and underestimated state-action pairs, on the
other hand, is significant. In what follows, we analyze these two cases separately. We
assume the exploration/exploitation trade-off is addressed using Boltzmann (softmax)
action selection, an e-greedy policy, or any other method in which the greedy action
a* = argmaxgeg Q(s, a) is selected in state s with the greatest probability and the
probabilities of selection of the other actions are nondecreasing in their value estimates.
We refer to the region to which a value update of a state-action pair (s, a) is generalized
as the vicinity of (s, a).

4.1 Generalization on Overestimated vs. Underestimated State-Actions Pairs

Generalizing the value update of an overestimated state-action pair (s, a) to nearby
state-action pairs will decrease their value estimates and thus reduce the likelihood of
selection of the corresponding actions in their respective states. If (s, a) and state-action
pairs in its vicinity are undesirable, this generalized update is beneficial regardless of
whether these state-action pairs are also overestimated. If, on the other hand, some state-
action pairs in the vicinity of (s, a) are desirable, generalization is harmful if they are
not overestimated. In this latter case, generalization will excessively lower the proba-
bility of selection of certain good actions.

Similarly, generalization on an underestimated state-action pair (s, a) is helpful if
the state-action pairs in its vicinity are desirable, and may be harmful if there are unde-
sirable pairs with correct or excessive estimates. However, there is an additional benefit
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to generalizing on desirable underestimated state-action pairs. Typical domains have
continuous value functions. In this case, generalization ensures that the nearby state-
action pairs also have favorable estimates even if they are rarely tried. Generalization
thus accelerates the adoption of better actions in the vicinity of (s, a) as greedy choices,
which is increasingly helpful with small step sizes. By contrast, a non-generalizing
learner will require more exploratory visits to the vicinity of (s, a) to build up these
actions’ value estimates.

4.2  Application to the Empirical Results

Generalization improves early performance in experiment A when used with the more
informative reward function because the algorithm can more rapidly learn clusters of
actions that lead to a fall off the cliff. When such a catastrophic event occurs and a
heavy penalty is received (—100), the learner generalizes the outcome to neighboring
p values, thus requiring less time to identify directions of travel to avoid for any value
of p. A non-generalizing learner, on the other hand, needs to visit every p value within
resolution to rule out a poor choice of direction. This is an example of the beneficial
effects of generalization on overestimated state-action pairs. The uninformative reward
function, on the other hand, does not communicate the undesirability of falling off the
cliff and leads to no performance improvement with generalization.

The small step sizes in experiment B require a substantial amount of exploratory ac-
tivity to build up value estimates for better p choices in the vicinity of an already estab-
lished one—unless generalization across tiles is used, yielding elevated value estimates
for those p choices even if they are rarely tried. As a result, generalization improves
performance for small step sizes, a benefit of generalization on underestimated state-
action pairs. Underestimated state-action pairs are common in experiment B as positive
reward propagates from the faraway goal state (the only source of nonzero reward) to
the rest of the grid world, one state at a time. Thus, the use of the uninformative reward
function ensures that the performance differences are not due to the expedited mastery
of cliff avoidance with generalization, as in experiment A.

Once the value estimates become sufficiently accurate (with the optimum actions
adopted as greedy choices and the catastrophic actions assigned low values), general-
ization cannot further improve performance. The negative effects of generalization are,
on the other hand, still at work. The empirical results in experiment C confirm that
generalization is detrimental at the final stages. As expected, the observed performance
degradation is monotonic in the breadth of generalization.

5 Adaptive Generalization

We have confirmed that our empirical findings in Section 3 scale with map size. As an
example, Figure 7 shows the early and late performance curves using the informative
reward function and a 32 x 8 grid world. This new map is 6.4 times larger than that of
Figure 2 but structurally similar to it.

The empirical results indicate that broad generalization is helpful at the early stages
of learning but detrimental in the final count, suggesting that online adjustment of gen-
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Fig.7. Performance in a 32 x 8 grid world: episodes 0—10000 (a) and 10000-100000 (b). The
ordering of the curves is statistically significant at a 0.005 confidence level between episodes
2000 and 5600 (a) and starting at episode 40000 (b)

eralization breadth would yield the optimal approach. To this end, we implemented an
adaptive algorithm as follows. For every state-action pair (s, a), the method maintains
a reliability index p(s,a) that expresses the learner’s confidence in Q(s,a), ranging
from O (unreliable) to 1 (reliable). The reliability indices (initialized to 0) are stored in a
tiling organization with the same resolution as the organization for the Q-values them-
selves. Backups of Q(s, a) that yield a large error lower the reliability indices for (s, a)
and nearby state-action pairs; backups that result in a small error increase those relia-
bility indices. When performing a backup, the algorithm selects the largest allowable
breadth of generalization such that the state-action space covered has an average reli-
ability index of less that 1/2. This heuristic encourages broad generalization when the
value estimates are rapidly changing and discourages generalization when they are near
convergence. Note that no actual conversion from one tiling organization to another is
necessary when changing generalization breadth: with an appropriate update scheme, a
single flat tiling organization can efficiently simulate any number of tilings.

In this framework, one needs to specify only the range of minimum and maximum
generalization breadth to be used, leaving the parameter adjustment to the algorithm.
Observe that the adaptive-generalization method varies generalization as needed based
not only on the learning stage (time-variant generalization), but also on the state-space
region (space-variant generalization). This facility is valuable because some regions of
the state-action space are visited very frequently and favor an early cutback on general-
ization; other state-action regions are visited only occasionally and would benefit from
generalization for a longer time.

To complete the description of the adaptive-generalization algorithm, it remains to
specify how a backup error of a certain magnitude affects the reliability index of the
corresponding state-action pair. Various update schemes can be proposed here. Our ap-
proach increases the reliability by 1/2 on zero error and decreases it by 1/2 on a very
large error (50 was an appropriate setting in our domain); the intermediate cases are
linear interpolations between these extremes. We generalize each reliability update to
its immediate vicinity. In stochastic environments, it may be additionally useful to de-
cay the reliabilities periodically. Figure 8 presents the finalized adaptive-generalization
algorithm in pseudocode, embedded in ()-learning.

We did not attempt to optimize the above reliability-update rule and used it as an
informed first guess. Figure 9a illustrates the progress of generalization breadth on a
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num-tilings < max{t > 1 : avg p(s”,a’) at most 1/2}

Update Q(s,a) by « - error using generalization breadth num-tilings
9 p(s.a) o [p(s.a) + (3 - el
10 7 « e-greedy w.r.t. Q ’
1 Tuntil converged

Fig. 8. Adaptive generalization method in pseudocode. The left arrow “«—”" denotes assignment;
[z]; = max{min{z,a}, b} denotes the bounding operation
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Fig.9. Adaptive method in the 10 x 4 grid world: per-episode average generalization breadth,
smoothed (a); and comparative performance, episodes 0-1000 (@) and 1000-100000 (b). At a
0.005 confidence level, the adaptive method is superior between episodes 450 and 49000

typical run in this scheme. Figures 9b and 9¢ demonstrate that even this “first guess”
approach to varying generalization is superior to fixed settings of generalization breadth
between episode numbers 450-49000, which arguably covers any reasonable allotment
of training time in this domain.

To see why the 1-tiling (no generalization) learner eventually overtakes the adap-
tive learner, observe that in online RL the learner typically discovers the optimal pol-
icy much sooner than its exact value function. Indeed, to obtain the optimal policy the
learner need only get the relative values of the states right; the actual estimates can be ar-
bitrarily far from the true values. Even after a near-optimal policy has been discovered,
the adaptive learner thus continues to see a steady drift of the values as positive reward
propagates from the goal state to the rest of the grid world, one state at a time. Faced
with this continual change, the above adaptive rule is too slow to cut generalization. This
minor drift is easy to detect and correct for with a more informed reliability-update rule.
At the same time, even our relatively simple update rule results in good performance.
We conclude that even unsophisticated schemes for varying generalization breadth are
generally preferable to any fixed setting.
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6 Conclusions

This paper explores parameterization issues in tile coding, a widely adopted function-
approximation method for reinforcement learning. In particular, we present a precise
empirical study of the effect of generalization breadth on the performance of a tile-
coding approximator. Our findings demonstrate that generalization helps at the early
stages of learning but invariably hurts past a certain point. As a result, no single set-
ting achieves the best performance throughout the learning curve. We pinpoint the
causes of this phenomenon and build on our analysis to propose a novel technique
for automatically adjusting generalization breadth as needed in different regions of the
state-action space (space-variant generalization) and at different learning stages (time-
variant generalization). We experimentally show the superiority of varying the gener-
alization breadth in this way to any fixed parameterization. Our adaptive-generalization
method is generic and can be advantageously applied in any setting in which tile coding
is used.
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Appendix: Proof of Theorem 1

Proof. (Sketch.) The theorem can be proven by establishing that any function repre-
sentable with a ¢-tiling organization is also representable with a single-tiling organiza-
tion, and vice versa. The former claim is shown by projecting the ¢-tiling organization
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onto the single-tiling organization and weighting the tiles of the single-tiling organiza-
tion by the sum of the corresponding tile weights of the ¢-tiling organization. The latter
claim is shown by assigning random weights to the leftmost ¢ — 1 tiles of the ¢-tiling
organization (one in each of the first ¢ — 1 tilings) and weighting the leftmost tile in the
remaining tiling such that the sum of the ¢ tile weights equals the weight of the first tile
in the single-tiling organization; the latter weighting operation is repeated iteratively,
moving at each step one tile to the right in the ¢-tiling organization.
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Abstract. Using abstract operators for least commitment in planning
has been shown to potentially reduce the search space by an exponential
factor. However a naive application of these operators can result in an
unbounded growth in search space for the worst case. In this paper we
investigate another important aspect of abstract operators - that of their
construction. Similar to their application, naive construction of an ab-
stract operator may leave you with little search space reduction even in
the best case, and significant penalties in the worst. We explain what it
means to be a good abstract operator and describe a method of creating
good abstract operators.

1 Introduction

The concept of an abstract operator is a natural extension of the least commit-
ment principle of partial order planning (POP). It has been shown that the use
of abstract operators can potentially reduce the search space by an exponential
factor [1]. If used naively they can produce a worst case increase by an expo-
nential or even unbounded factor [2]. In particular, while abstract operators are
designed to reduce the cost of dealing with open precondition flaws, the effect
on threats is indeterminate. In this paper we consider the representation and
construction of abstract operators with the effect of threats in mind. As we shall
see, the representation of an operator itself affects the branching factor of the
planning search space.

Section 2 briefly outlines where this work fits in the areas of abstracting
operators and least commitment planning. Section 3 begins by describing the role
of abstract operators in POP planners. Necessary and contingent preconditions
of abstract operators are then defined, and the distinction between them made.
Next, abstract operators are looked at as a continuation of the abstraction that
operators make over actions and a simple example is given. Section 4 considers
the construction of an abstract operator. It is shown that the method by which
variables are partitioned can greatly affect the utility of an abstract operator in
relation to the branching factor of the search space. This section concludes by
giving a method creating valid partitionings of variables and a criteria by which
to select a good partitioning from these.

J.-D. Zucker and L. Saitta (Eds.): SARA 2005, LNAI 3607, pp. 206—217, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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2 Related Research

Figure 1 shows a brief taxonomy of the related areas of research. The taxon-
omy spans two major areas of automated planning: those of least commitment
planning and hierarchical planning. Under the umbrella of least commitment we
have planners that apply the least commitment approach to step ordering (this
includes all POP planners), to support or causal links (such as DESCARTES [3],
which takes a pure constraint satisfaction approach to planning) and to operator
selection (such as FABIAN [1]). The application of the least commitment principle
to operator selection produces abstract operators, thus forging a link with the
area of hierarchical planning.

In classic hierarchical planners, such as ALPINE [4] and SHAPER [5], literals
are ranked according to their criticality. The more “critical” a literal, the sooner
we should plan for it. The most critical literals are planned for first and the
least critical literals are planned for last. Intuitively, criticality corresponds to
importance. The importance of a literal is measured, to some extent, by how
easy it is to achieve that literal. If it is trivial to achieve a literal then it is not
considered very critical or important. If it is very difficult to achieve then it
is considered very critical or important. These criticality rankings are used to
construct levels of abstraction. On a given level of abstraction, all the literals
of lower criticality are removed. This creates abstract operators because the
operator description at a given level of abstraction does not retain the less critical
literals. At a given level of abstraction, if two or more operator schemas only
differ in their less critical literals then they are fused into a single operator
schema at that abstraction level.

In Hierarchical Task Network (HTN) planners (NOAH [6], NONLIN [7], SHOP2
[8]), instead of trying to achieve goals, they try to perform tasks. Tasks are ei-
ther primitive (i.e., they can be performed by a single action) or non-primitive.
HTN planners use methods to break non-primitive tasks into subtasks. Methods
are HTN equivalents of operator schemas. Methods are similar to abstract in
that they represent an abstraction actions. However, unlike least-commitment
abstract operators and classic hierarchical abstract actions they represent net-
works of actions.

In this paper we are focusing on the “least commitment” abstract operators
that were initially introduced in the FABIAN planner. Least commitment abstract

Least Commitment Hierarchical

I

Ordering Support [Operators  "Classical” HTN

UCPOP DESCARTES| FABIAN ALPINE NONLIN
Abstract Operators

Fig. 1. A taxonomy of related research
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operators do not represent suppression of an operator’s less critical literals, nor
do they represent decomposition of tasks into subtasks. Instead they form a dis-
junction of operators, any one of which is guaranteed to be applicable if used
in place of the abstract operator in a plan. The label “least commitment” has
been applied to these abstract operators as they represent a decision (choice
between applicable operators) that does not need to be taken immediately. It
is entirely possible for a resulting plan to include abstract operators as well
as concrete actions, where each refinement of an abstract operator to a con-
crete action gives a valid solution plan. The following section elaborates on this
concept.

3 Abstract Operators

A standard POP algorithm (such as UCPOP [9]) solves planning problems through
a simple decision cycle: (1) pick an open condition; (2) support this condition
with a causal link (this link can be from either an existing or a new step);
and (3) resolve all threats. When a new step is chosen in part (2), the al-
gorithm makes a non-deterministic choice of a single applicable operator. If
this decision later is found to be inconsistent with the rest of the plan, the
POP algorithm backtracks over this decision trying all possible choices of
operator.

An abstract operator takes this operator selection decision and collapses it
to a single deterministic point. Rather than choose any one of the applicable
operators, a single abstract operator is chosen that represents the set of all these
possible operators. As the plan becomes more constrained this set is refined to
remove inconsistent choices of operator.

3.1 Effects and Preconditions

Just as standard operators, abstract operators have a set of effects and a set
of preconditions. In an abstract operator these effects and preconditions sum-
marise those of its component operators and can be defined as either necessary
or contingent.

Definition 1 (Necessary Effects). A necessary effect is an effect that is in
the intersection of the effects of the component operators.

Definition 2 (Contingent Effects). A contingent threat is an effect that is
in the union of effects of the component operators, but not in the intersection.

Similar definitions hold for preconditions.

While these definitions of effects and preconditions are quite straightforward
there are a number of difficulties involved. For example, what it does it actually
mean for an effect to be in the intersection of the effects of its component op-
erators? As we look in more detail at abstract operators these difficulties shall
come to light and be dealt with.
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3.2  Abstract Operators as Name Variablisation

In planning, an action is defined as a 3-tuple of operator name, effects and
preconditions. For example, in the BlocksWorld [10] domain an action to move
a block a from a block b to a block ¢ is given by

Name: mowve
Preconditions: on(a,b), clear(b), clear(c)
Effects: on(a,c), clear(b), —on(a,b), ~clear(c)

Often operators are used to represent sets of these actions. Note that sometimes
operators are referred to as operator schema, and actions as operators. An example
of an operator for moving a block a from block b to any other block is given by

Name: move
Preconditions: on(a,b), clear(b), clear(X)
Effects: on(a, X), clear(b), ~on(a,b), ~clear(X)

This operator is a lifted[11] version of the previous one where X represents the
set of all blocks in the domain i.e. X = {a,b,¢,...}. Thus the operator actually
represents the set o