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Preface

This volume contains the proceedings of the 6th Symposium on Abstraction,
Reformulation and Approximation (SARA 2005). The symposium was held at
Airth Castle, Scotland, UK, from July 26th to 29th, 2005, just prior to the
IJCAI 2005 conference in Edinburgh. Previous SARA symposia took place at
Jackson Hole in Wyoming, USA (1994), Ville d’Estrel in Qubec, Canada (1995),
Asilomar in California, USA (1998), Horseshoe Bay, Texas, USA (2000), and
Kananaskis, Alberta, Canada (2002). This was then the first time that the sym-
posium was held in Europe. Continuing the tradition started with SARA 2000,
the proceedings have been published in the LNAI series of Springer.

Abstractions, reformulations and approximations (AR&A) have found appli-
cations in a variety of disciplines and problems, including constraint satisfaction,
design, diagnosis, machine learning, planning, qualitative reasoning, scheduling,
resource allocation and theorem proving, but are also deeply rooted in philoso-
phy and cognitive science. The papers in this volume capture a cross-section of
the various facets of the field and of its applications. One of the primary uses of
AR&A is oriented to overcome computational intractability. AR&A techniques,
however, have also proved useful for knowledge acquisition, explanation and
other applications, as papers in this volume also illustrate.

The aim of SARA is to provide a forum for intensive and friendly interaction
among researchers in all areas of AI in which an interest in the different aspects
of AR&A exist. The diverse backgrounds of participants at this and previous
meetings led to rich and lively exchanges of ideas, allowed the comparisons of
goals, techniques and paradigms, and helped identify important research issues
and engineering hurdles. SARA has always invited distinguished members of
the research community to present keynote talks. SARA 2005 was no exception
to this rule with invited talks from Rada Chirkova of the North Carolina State
University at Raleigh, USA Aristide Mingozzi of the University of Bologna, Italy,
and Robert Zimmer of Goldsmiths College, University of London and Goldsmiths
Digital Studios, London.

We would like to thank the authors of all the submitted papers and research
summaries, the referees, the invited speakers, the Program Committee members
for all their time and effort, and, of course, all the attendees. We also thank the
members of the Steering Committee for their advice along the way. In addition,
a great “merci” to the Local Chair Ian Miguel and to all those who contributed
to the organization of SARA 2005, in particular Mélanie Courtine.

Paris, May 19, 2005 Jean Daniel Zucker
Lorenza Saitta
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Verifying the Incorrectness of Programs
and Automata�

Scot Anderson and Peter Revesz

Department of Computer Science and Engineering,
University of Nebraska-Lincoln, Lincoln, NE 68588, USA

{scot, revesz}@cse.unl.edu

Abstract. Verification of the incorrectness of programs and automata
needs to be taken as seriously as the verification of correctness. However,
there are no good general methods that always terminate and prove in-
correctness. We propose one general method based on a lower bound ap-
proximation of the semantics of programs and automata. Based on the
lower-bound approximation, it becomes easy to check whether certain
error states are reached. This is in contrast to various abstract inter-
pretation techniques that make an upper bound approximation of the
semantics and test that the error states are not reached. The precision of
our lower bound approximation is controlled by a single parameter that
can be adjusted by the user of the MLPQ system in which the approxi-
mation method is implemented. As the value of the parameter decreases
the implementation results in a finer program semantics approximation
but requires a longer evaluation time. However, for all input parameter
values the program is guaranteed to terminate. We use the lower bound
approximation to verify the incorrectness of a subway train control au-
tomaton. We also use the lower bound approximation for a problem
regarding computer security via trust management programs. We pro-
pose a trust management policy language extending earlier work by Li
and Mitchell. Although, our trust management programming language
is Turing-complete, programs in this language have semantics that lend
themselves naturally to a lower-bound approximation. Namely, the lower
bound approximation is such that no unwarranted authorization is given
at any time, although some legitimate access may be denied.

1 Introduction

Testing the correctness of a program or an automaton can be done by finding
an upper approximation of its semantics. If the upper approximation does not
contain the error states needed to be checked, then the automaton can be said to
be correct. However, if the upper approximation contains the error states, then
the actual program or automaton may still be correct.

� This research was supported in part by NSF grant EIA-0091530 and a NASA Space
and EPSCoR grant.

J.-D. Zucker and L. Saitta (Eds.): SARA 2005, LNAI 3607, pp. 1–13, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 S. Anderson and P. Revesz

Similarly, if the lower bound approximation of the semantics contains an error
state, then we know that it is incorrect. If it does not, then the program may
still be incorrect.

Hence an upper bound may be good to verify that a program is correct, while
a lower bound may be good to verify that it is incorrect. The verification of
incorrectness is just as important in practice as the verification of correctness,
because many users are reluctant to change incorrect and expensive programs
unless those are proven incorrect. For example, if a banking system allows invalid
access to some bank accounts, then a lower bound approximation would be
needed to verify the incorrectness.

Until recently, in the verification area the focus was in verifying correctness
using abstract interpretation [8, 16, 22] or model checking [1, 5, 9, 30, 36]. In con-
trast, in this paper, we focus on verifying incorrectness.

Verifying incorrectness is needed when we suspect a program to be incorrect,
and we want to prove that it is indeed incorrect. For example, if there is an
accident with a space shuttle, then we need to find what caused it. Was it
caused by an incorrect program?

There are many reasons that a program may be suspected to be incorrect.
For example, a program that fails a verification for correctness using abstract
interpretation or model checking would be suspicious.

There are some problems that naturally lend themselves to a lower-bound
approximation. For example, the semantics of a computer security system would
contain the facts that describe who gets access to which resource at what time.
In this case a lower-bound approximation is meaningful, conservative, and safe to
use. That is, it never gives unwarranted authorizations, although some legitimate
access may be denied at certain time instances. For example, not being able
to access one’s own bank account at a particular time is frustrating, but it is
certainly less frustrating than if someone else, who should not, can access it.

We use the above idea in proposing a Turing-complete extension of the trust
management language RT [25, 26, 27], which is a recent approach to computer
security in a distributed environment. The latest version of the RT language uses
Datalog but with simpler constraints than we allow in this paper. We choose
the RT trust management family of languages as an example of how to use
constraint database approximation techniques in other areas beyond database
systems where lower-bound approximations are meaningful. (See the survey [15]
and the recent article [24] about trust management in general.)

The rest of this paper is organized as follows. Section 2 gives a brief review of
constraint database approximation theory and its implementation in the MLPQ
constraint database system [38]. Section 3 applies the approximation method to
verify the incorrectness of an automaton. Section 4 applies the approximation
method to find a safe evaluation of a trust management program. Section 5
discusses some related work. Finally, Section 6 gives some conclusions and future
work.
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2 Review of Constraint Database Approximation Theory

The constraint logic programming languages proposed by Jaffar and Lassez [17],
whose work led to CLP(R) [19], by Colmerauer [7] within Prolog III, and by
Dincbas et al. [10] within CHIP, were Turing-complete. Kanellakis, Kuper, and
Revesz [20, 21] considered those to be impractical for use in database systems
and proposed less expressive constraint query languages that have nice properties
in terms of guaranteed and efficient evaluations. Many researchers advocated
extensions of those languages while trying to keep termination guaranteed. For
example, the least fixed point semantics of Datalog (Prolog without function
symbols and negation) with integer gap-order constraint programs can be always
evaluated in a finite constraint database representation [33].1

With gap-order constraints many NP-complete problems can be expressed
that cannot be expressed in Datalog without constraints. However, even Datalog
with addition constraints, which seems only a slight extension, is already Turing-
complete. Hence Revesz [35] introduced an approximate evaluation for Datalog
with addition constraints.

This approximation is different from abstract interpretation methods (for a
recent review see [8]). The main difference is that, at least in theory, in [35]
both a lower and an upper bound approximation of the least fixed point can
be arbitrarily close to the actual least fixed point with the decrease of a single
parameter towards −∞. The decrease indirectly increases the running time.

Below we focus on the definitions that are relevant to approximations. The
reader can find more details in the surveys [18, 34] and the books [23, 28, 37]
about constraint logic programming and constraint databases.

Definition 1. Addition constraints [37] have the form

±x± y θ b or ± x θ b

where x and y are integer variables and b is an integer constant, called a bound,
and θ is either ≥ or >.

In the following we will also use x = b as an abbreviation for the conjunction
of x ≥ b and −x ≥ −b. Similarly, we use x + y = b as an abbreviation for the
conjunction of x + y ≥ b and −x− y ≥ −b.

Each constraint database is a finite set of constraint tuples of the form:

R(x1, . . . , xk) : − C1, . . . , Cm.

where R is a k-ary relation symbol, each xi for 1 ≤ i ≤ k is an integer variable or
constant, and each Cj for 1 ≤ j ≤ m is an addition constraint over the variables.
The meaning of a constraint tuple is that each substitution of the variables by
integer constants that makes each Cj on the right hand side of : − true is a
k-tuple that is in relation R.

1 A gap-order is a constraint of the form x − y ≥ c or ±x ≥ c where x and y are
variables and c is a non-negative integer constant.
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A Datalog program consists of a finite set of constraint tuples and rules of the
form:

R0(x1, . . . , xk) : − R1(x1,1, . . . , x1,k1), . . . , Rn(xn,1, . . . , xn,kn
), C1, . . . , Cm.

where each Ri is a relation name, and the xs are either integer variables or
constants, and each Cj is an addition constraint over the xs. The meaning of the
rule is that if for some substitution of the variables by integer constants each Ri

and Cj on the right hand side of : − is true, then the left hand side is also true.
A model of a Datalog program is an assignment to each k-arity relation symbol

R within the program a subset of Z
k where Z is the set of integers such that

each rule holds for each possible substitution. The least fixed point semantics of
a Datalog program contains the intersection of all the models of the program.

It is easy to express in Datalog [37] with addition constraints a program that
will not terminate using a standard bottom-up evaluation [37]. Consider the
following Datalog with addition constraint program:

D(x, y, z) :— x− y = 0, z = 0.
D(x′, y, z′) :— D(x, y, z), x′ − x = 1, z′ − z = 1. (1)

This expresses that the Difference of x and y is z. Further, based on (1) we
can also express a Multiplication relation as follows:

M(x, y, z) :— x = 0, y = 0, z = 0.
M(x′, y, z′) :— M(x, y, z), D(z′, z, y), x′ − x = 1.
M(x, y′, z′) :— M(x, y, z), D(z′, z, x), y′ − y = 1.

(2)

Intuitively, a standard bottom-up evaluation derives additional constraint tu-
ples until a certain saturation is reached, and the saturation state represents in
a constraint database form the least fixed point. We omit the precise definition
of bottom-up evaluation of Datalog with constraint programs, because it is not
needed for the rest of this paper. It is enough to note that the simple Data-
log program that consists of the above two sets of rules never terminates in a
standard bottom-up evaluation.

In fact, with these two relations we can express any integer polynomial equa-
tion (see Example 3). Since integer polynomial equations are unsolvable in gen-
eral [29], no algorithm would be able to evaluate precisely the least fixed point
semantics of the Datalog program. Hence the situation we face is not just a par-
ticular problem with the standard bottom-up evaluation, but a problem that is
inherent to the least fixed point semantics of Datalog with addition constraints.

Revesz [35] introduced two methods for approximating the least fixed point
evaluation by modifying the standard bottom-up evaluation.

Definition 2. Let l < 0 be any fixed integer constant. We change in the con-
straint tuples the value of any bound b to be max(b, l). Given a Datalog program
P the result of a bottom-up evaluation of P using this modification is denoted Pl.
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Definition 3. Let l < 0 be any fixed integer constant. We delete from each
constraint tuple any constraint with a bound that is less than l. Given a Datalog
program P the result of a bottom-up evaluation of P using this modification is
denoted P l.

These modifications lead to the following approximation theorem.

Theorem 1. [35] For any Datalog program P and constant l < 0 the following
is true.

Pl ⊆ lfp(P ) ⊆ P l

where lfp(P ) is the least fixed point of P . Further, Pl and P l can be computed in
finite time.

We can also get better and better approximations using smaller and smaller
values of l. In particular, we have the following theorem.

Theorem 2. [35] For any Datalog with addition constraints program P and
constants l1 and l2 such that l1 ≤ l2 < 0, the following hold:

Pl2 ⊆ Pl1 and P l1 ⊆ P l2

Because we are interested in evaluations that are lower bounds of the least
fixed point lfp(P ), we implemented Pl as defined in Definition 2. The imple-
mentation was done within the MLPQ constraint database system [38], which
is available from the website: cse.unl.edu/~revesz. The implementation is a
new result that is not described in any other publication.

3 Verifying the Incorrectness of a Subway Automaton

We consider counter automata A which are tuples (S,X, τ, s0, x0) where S is a
finite set of states, X is a finite set of state counters x1, . . . , xk which are integer
variables, τ is a finite set of transitions from S to S, s0 is an initial state, and x0

is an initial assignment of the state variables. Each transition has two parts, a
guard constraint over the variables that needs to be satisfied before the transition
takes place and a set of assignments to the variables that update their values
as the automaton enters the new state. In this paper we allow only addition
constraints in the guard constraints and assignments that can be expressed by
addition constraints.

Counter machines are an example of such automata which allow only guard
constraints that are comparisons between variables and constants and assign-
ments that increment and decrement a variable by one or set a variable to a
constant. They were studied by Minsky [31, 32], who showed that they have the
same expressive power as Turing machines. Floyd and Beigel [11] is an introduc-
tion to automata theory that covers counter machines.

More complex guard constraints have been allowed in later extensions of
counter machines and applied to the design of control systems in Boigelot and
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      L A T  E

    I N I T I A L S T O P P E D

 B R A K E
b−s = −9?, s++

b := s := d := 0

b−s<−1?,  b++

b−s = 1 ?, s++ d  <= 9 ?,  b++

b−s= −1?, b++

b−s> −9?, s++b−s < 9?, b++

b−s= 1?, s++

b−s = 9?, b++, d := 0

b−s > 1?, s++

b−s > 1?, s++

O N   T I M E

d < 9?, b++, d++

Fig. 1. The subway train control system

Wolper [4], Fribourg and Olson [12], Fribourg and Richardson [13], Halbwachs
[16], and Kerbrat [22]. Boigelot et al. [3], Cobham [6], and Wolper and Boigelot
[39] study automata and Presburger definability. For additional discussion and
examples of various types of counter (constraint) automata see [37].

Let us consider the following subway train speed regulation system described
by Halbwachs [16]. Each train detects beacons that are placed along the track
and receives a “second” signal from a central clock.

Let b and s be counter variables for the number of beacons and second signals
received. Further, let d be a counter variable that describes how long the train
is applying its brake. The goal of the speed regulation system is to keep | b− s |
small while the train is running.

The speed of the train is adjusted as follows. When s+10 ≤ b, then the train
notices it is early and applies the brake as long as b > s. Continuously braking
causes the train to stop before encountering 10 beacons.

When b + 10 ≤ s the train is late and will be considered late as long as
b < s. As long as any train is late, the central clock will not emit the second
signal.
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The subway speed regulation system can be drawn as a constraint automaton
shown in Figure 3, where the guard constraints are followed by question marks,
and x + + and x − − are abbreviations for the assignments x := x + 1 and
x := x− 1, respectively, for any variable x.

The set of reachable configurations (combinations of states and state vari-
able values) of the automaton shown in Figure 3 can be expressed in Datalog
with addition constraints by creating a new ternary relation for each state with
the order of variables (b, d, s) and writing the following Datalog with addition
constraints rules:

Brake(b, s′, d) :— Brake(b, s, d), b− s > 1, s′ − s = 1.
Brake(b′, s, d′) :— Brake(b, s, d), − d > −9, b′ − b = 1, d′ − d = 1.
Brake(b′, s, d′) :— Ontime(b, s, d), b− s = 9, b′ − b = 1, d′ = 0.

Initial(b, s, d) :— b = 0, s = 0, d = 0.

Late(b′, s, d) :— Late(b, s, d), − b + s > 1, b′ − b = 1.
Late(b, s′, d) :— Ontime(b, s, d), b− s = −9, s′ − s = 1.

Ontime(b, s′, d) :— Brake(b, s, d), b− s = 1, s′ − s = 1.
Ontime(b, s, d) :— Initial(b, s, d).
Ontime(b′, s, d) :— Late(b, s, d), b− s = −1, b′ − b = 1.
Ontime(b′, s, d) :— Ontime(b, s, d), − b + s > −9, b′ − b = 1.
Ontime(b, s′, d) :— Ontime(b, s, d), b− s > −9, s′ − s = 1.
Ontime(b, s′, d) :— Stopped(b.s.d), b− s = 1, s′ − s = 1.

Stopped(b′, s, d) :— Brake(b, d, s), − d ≥ −9, b′ − b = 1.
Stopped(b, s′, d) :— Stopped(b, s, d), b− s > 1, s′ − s = 1.

Error Condition: Suppose that this automaton is correct if |b − s| < 20 in
all states at all times. Then this automaton is incorrect if |b − s| ≥ 20 at least
in one state at one time. The table below shows the result of the lower bound
approximation using the MLPQ constraint database system.

MLPQ Lower-Bound

Brake Late Ontime Stopped
1 ≤ b− s ≤ 19 −10 ≤ b− s ≤ −1 −9 ≤ b− s ≤ 9 1 ≤ b− s ≤ 20
10 ≤ b ≤ 19 10 ≤ s ≤ 19 0 ≤ b ≤ 9 11 ≤ b ≤ 20
0 ≤ s ≤ 18 0 ≤ d ≤ 9 0 ≤ s ≤ 18 0 ≤ s ≤ 9
0 ≤ d ≤ 9 0 ≤ d ≤ 9 0 ≤ d ≤ 9

The above was obtained by using l = −30 as in Definition 2. If l is decreased,
then the upper bounds of b and s increase in the above table. Therefore, in the
limit those upper bounds can be dropped.

Further, for any value of u, since the above is a lower bound, any possible
integer solution of the constraints below the state names must occur at some
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time. For example, the Stopped state must contain the case b − s = 20 at some
time. Therefore, this automaton is incorrect by our earlier assumption.

3.1 Comparison with Verimag

The Verimag laboratory has software for testing program correctness using ab-
stract interpretation. Halbwachs [16] gave the following upper bound derived
using Verimag’s software for the subway automaton.

Verimag Upper-Bound

Brake Late Ontime Stopped
1 ≤ b− s ≤ d + 10 −10 ≤ b− s ≤ −1 −9 ≤ b− s ≤ 9 1 ≤ b− s ≤ 19

d + 10 ≤ b s ≥ 10 b ≥ 0 19 ≤ 9s + b
0 ≤ d ≤ 9 s ≥ 0 b ≥ 10

Surprisingly, this result does not match our result. In particular, the upper
bound for the Stopped state contains the constraint b− s ≤ 19, which says that
the value of b − s cannot be 20, but our lower bound says that 20 must be
one of the cases. To resolve this apparent contradiction, we need to look more
closely at the automaton. We can see that the following is a valid sequence
of transitions, where S(b, s, d) represents the values of b, s, and d is each state
S ∈ {Brake, Initial, Late,Ontime, Stopped}.

Initial(0, 0, 0) −→ Ontime(0, 0, 0) −→ Ontime(1, 0, 0). −→ Ontime(2, 0, 0) −→
Ontime(3, 0, 0) −→ Ontime(4, 0, 0)−→ Ontime(5, 0, 0) −→ Ontime(6, 0, 0) −→
Ontime(7, 0, 0) −→ Ontime(8, 0, 0) −→ Ontime(9, 0, 0) −→ Brake(10, 0, 0) −→
Brake(11, 0, 1) −→ Brake(12, 0, 2) −→ Brake(13, 0, 3) −→ Brake(14, 0, 4) −→
Brake(15, 0, 5) −→ Brake(16, 0, 6) −→ Brake(17, 0, 7) −→ Brake(18, 0, 8) −→
Brake(19, 0, 9) −→ Stopped(20, 0, 9)

Note that Stopped(20, 0, 9) contradicts the first constraint in the Verimag
upper bound for the Stopped state. Hence we suspect that the Verimag software
contains some bug or there was some problem in data entry. We suggest that its
incorrectness be tested using other examples and our lower-bound method.

4 Approximating Trust Management Program Semantics

Trust management languages allow the expression of high-level rules about which
principal can get access to which resource at what time in a distributed environ-
ment. The Keynote trust management system [2, 25] allowed integer polynomial
constraints. However, later trust management systems do not allow such con-
straints, because allowing them leads to undecidability [29].

We argue that this restriction unnecessarily limits the expressibility of trust
management languages. Our lower bound method can be used in most cases to
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verify the correctness of an access even when the rules contain integer polynomial
constraints.

Note that an upper bound approximation may allow some access which is not
specified by the trust management rules. Hence it is not appropriate for trust
management, while a lower bound technique can be safely used. In a computer
security system it leads to much less harm if a legitimate access request is denied
(which can happen with a lower bound approximation) than if an illegitimate
access is allowed (which can happen with an upper bound approximation).

Integer polynomial constraints arise naturally in security applications, as
shown by the following example.

Example 1. Suppose an e-mail sender or server organization C needs to assign a
level of trust to an individual based on the trust levels assigned by organizations
A and B. Suppose C considers B’s information much more valuable. Then C
may use the following integer polynomial constraint to assign a trust level of its
own:

3LevelC ≥ 4(LevelA)2 + 2LevelB (3)

4.1 Extended RT Syntax

RT is a trust management policy language introduced by Li et al. [27]. The
parameters in each of the different kinds of policy statements in RT define the
relationships between principal owners, the roles they own and the members of
the roles.

The following simple member rule defines the principal KD to be a member
of role R owned by KA:

KA.R(p1, ..., pn) ← KD (4)

where the role takes the form R(p1, ..., pn), and R is a role name and each pj is
a variable in an order constraint.

Extended RT: We extend the RT language by allowing each pj to be an integer
variable within an integer polynomial constraint. The extended simple member
rules have the syntax:

KA.R(p(x1, ..., xl)) ← KD (5)

where KA defines a role R to contain member KD, if the integer polynomial
constraint p(x1, ..., xl) holds.

Example 2. The extended RT statement

Email.Permit(3LevelC − 4(LevelA)2 − 2LevelB ≥ 0) ← ”Charlie” (6)

allows Charlie access to e-mail, if the ratings obtained satisfy constraint (3).
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4.2 Extended RT Semantics

The semantics of an extended RT program can be found by translating the
extended RT rules into logically equivalent Datalog with addition constraints
rules and then taking the least fixed point semantics of the resulting Datalog
program.

Extended simple member rules of form (4) are translated into the following
Datalog rule:

R(KA,KD, x1, ..., xm) : − p1, ..., pn. (7)

where x1, ..., xm are the integer constants and variables that may be used within
the polynomial constraints p1, ..., pn.

We can translate integer polynomial constraints with k number of + and ×
operations into a conjunction of at most 2k difference D and multiplication M
relations defined in Section 2.

Example 3. The extended RT statement (6) can be translated into the following
Datalog with addition constraints rule:

Permit(Email, Charlie, LevelA, LevelB , LevelC) : −M(t1, 3, LevelC),
M(t2, LevelA, LevelA),
M(t3, 4, t2),
M(t4, 2, LevelB),
D(e1, t1, t3),
D(e2, e1, t4),
e2 ≥ 0

where LevelA, LevelB and LevelC are either integer variables or constants and
are the important parameters in this problem, while each ti and e1 and e2 are
additional integer variables that are introduced only for the sake of expressing
the polynomial equation. Finally, Email and Charlie are integer constants that
represent the strings “Email” and “Charlie” in the RT statement (6).

Since the difference D and multiplication M relations have already been de-
fined in Section 2 using Datalog with addition constraints, the entire Datalog
program can be evaluated using the lower-bound approximation of its least fixed
point by a modified bottom-up evaluation. By Theorem 1 this evaluation termi-
nates, giving a lower bound of the semantics of the extended RT program.

5 Related Work

There are few papers on lower bounds for automata and programs. Godefroid et
al. [14] gives a lower-bound approximation of the automaton by simplifying its
states according to some predicates that hold in each state. The state transitions
considered in the simplification are must-transitions, that is, if the condition in
the previous state holds, then only one subsequent state can be reached. Unfor-
tunately, this is very limited, because in fact most transitions among states are



Verifying the Incorrectness of Programs and Automata 11

not must-transitions. In general, predicate abstraction methods, such as [14], can
yield more precise approximations with the introduction of additional predicates,
making the automata structures increasingly more complex.

In contrast, our approximation is radically different and does not change at
all the automata structure, rather it indirectly changes the algebra in which
(polynomial) constraints are interpreted and solved. Essentially, the simplified
algebra relies on modified addition and multiplication relations. These relations
are smoothly and naturally extended as l decreases. Hence our method may yield
more precise approximations without increasing the size of the automaton.

6 Conclusions and Future Work

We have seen that in general decreasing the bound l toward −∞ leads to tighter
lower and upper bound approximations, Pl and P l, respectively. If the lower
and upper bound approximations agree (i.e, Pl = P l), then we know that we
have found the precise least fixed point. However, even if they do not agree,
but seem to converge to the same value –and that may be apparent from only
a few examples of l values, then we still can give the limit of convergence as
the precise least fixed point. The subtle point is that the series of lower (upper)
bound approximations themselves show a convergence and hence their limits
can be approximated. It is an approximation of approximations, but it may
work beautifully in many cases.

Open Problem: Determine the precise conditions under which the least fixed
point can be predicted as described above.

We have to be cautious not to overclaim the potential of the above approach,
for it is easy to see that the above method may fail sometimes. For example,
consider any query that requires a polynomial integer equation that is build using
the Diff and Mult relations. Clearly, the solutions of the polynomial equation
can be found using the Diff and Mult relations built using lower or upper
bound approximation. However, decreasing l does not guarantee finding tighter
lower and upper bound approximations for the polynomial equation. It may be
impossible to tell when all the solutions will be found. Since integer polynomial
equations are undecidable in general, there always will be some cases when the
convergence is unpredictable.

Considering a general difference constraint, if the upper bound approxima-
tion is infinite, then it may not be possible to predict how the two bounds
approach one another. In fact the lower bound may grow without bound as l
approaches −∞.

Hence in general we conclude by the examples above that there exists a class
of queries that are not stable. We also conjecture that when |P l\Pl| = ∞ and
the expected solution is finite the query is not stable.

In the future, we would like to determine which classes of queries are stable
and implement routines that predict an accurate solution to improve the approx-
imation process when enough evidence is collected to make a precise prediction
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of convergence. That would result in a kind of approximation that is neither a
simple lower nor a simple upper bound approximation but is something much
more sophisticated.

In conclusion,
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Abstract. Search in abstract spaces has been shown to produce useful admissi-
ble heuristic estimates in deterministic domains. We show in this paper how to
generalize these results to search in stochastic domains. Solving stochastic opti-
mization problems is significantly harder than solving their deterministic counter-
parts. Designing admissible heuristics for stochastic domains is also much harder.
Therefore, deriving such heuristics automatically using abstraction is particularly
beneficial. We analyze this approach both theoretically and empirically and show
that it produces significant computational savings when used in conjunction with
the heuristic search algorithm LAO*.

1 Introduction

The Markov decision process (MDP) is widely used in artificial intelligence to solve
problems of planning and learning under uncertainty. The most common way to solve
an MDP is by using a dynamic programming algorithm such as value iteration or policy
iteration. The major drawback of this approach is that the entire state space has to be
evaluated. More recently, heuristic search algorithms have been developed for solving
MDPs [6]. These algorithms can avoid evaluating states that are not reachable from the
start state by an optimal policy. The effectiveness of heuristic search mostly depends
on the heuristic function being used to guide the search process. One way to generate
an admissible heuristic is to use search in abstract spaces [7, 11]. Abstraction works by
replacing an original state space by an abstract space, which is easier to search. This
idea is not new. It has been previously applied to creating admissible heuristics for A*
search [8]. More recently, there has been growing interest in developing heuristics us-
ing a form of abstraction called pattern database [3, 9, 10]. The goal of this paper is
to extend the use of abstraction as a means of creating admissible heuristics for search
in stochastic domains. Heuristic estimates generated by abstraction are then used to
guide LAO*, which is a heuristic search algorithm that can be used to solve stochastic
planning problems. To test whether heuristics generated by abstraction produce any sav-
ings as compared to uninformed search, LAO* algorithm is applied to a task planning
problem that involves uncertainty regarding the use of resources. The structure of this
problem facilitates the creation of an abstract space very easily by varying the resolution
of resource usage, always rounding up the amount of resources left for future activity.
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We show that heuristic estimates obtained by search in such abstract space are always
admissible. That is, the heuristic value is an optimistic estimate (overestimate) of the
actual value of a state. We also show that the effectiveness of such heuristic estimates
depends on the problem and that they could result in significant savings compared to
blind search.

The rest of the paper is organized as follows. In Section 2, we review some re-
lated work on search in abstract spaces and alternative approximation techniques for
MDPs. Section 3 describes the general methodology used in the current research. Sec-
tion 4 describes the specific model used in the paper. Section 5 analyzes experimental
results. Section 6 concludes the paper with a summary of contributions and further
work.

2 Related Work

We describe briefly related work in two research areas. First, we examine previous work
on the problem of creating heuristics by abstraction in deterministic settings. This paper
extends this body of research to stochastic domains. We then describe existing exact
and approximate techniques for solving MDPs; heuristic search presents an alternative
approach to these techniques.

2.1 Creating Heuristic by Abstraction for Search in Deterministic Domains

Several researchers have looked at the problem of creating heuristic by abstraction for
search in deterministic domains (for example, [7, 8, 11, 12]). The most relevant work to
the current study is Holte et al. [8]. This paper focuses on one type of abstraction called
homomorphism (grouping together states of the original state space to create a single
abstract state). The heuristic created by abstraction is then used to guide A* search.
The goal of the paper was to develop a technique that would break Valtorta’s barrier. To
achieve this goal the number of states expanded by a heuristic search has to be less than
the number of states expanded by uninformed search. The authors use an abstraction-
based search algorithm called hierarchical A*. To create an abstraction they use the
STAR abstraction technique, which groups together neighboring states within a certain
radius. Once one level of abstraction is created, the procedure is repeated recursively
until a trivial abstract level is created. The implementation of hierarchical A* is stan-
dard except for the way heuristic values are estimated. Every time A* needs a heuristic
estimate, it is computed by searching at the next level of abstraction. It was found that a
naive version of the algorithm ends up expanding many more states as compared to un-
informed search, i.e. Valtorta’s barrier is not broken. This could be explained by the fact
that although A* never expands the same state twice in a single search, it has to expand
the same state many times while performing multiple searches of the abstract levels.
To overcome this problem the authors implemented two types of cashing techniques
and as a result the Valtorta’s barrier was broken in every domain. The authors have also
discovered that as the radius of abstraction increases, the number of nodes expanded by
hierarchical A* decreases until it reaches some minimum value. Increasing the abstrac-
tion radius further caused the number of expanded nodes to increase. In every case the
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best abstraction radius represented a large fraction of the search space and as a result
the abstraction hierarchy contained only one non-trivial level. In this paper we examine
the applicability of these same ideas in stochastic search and evaluate the effectiveness
of the approach.

More recently, an effective approach to exploit abstraction in the form of a pattern
database has been developed. The idea was introduced by Culberson and Schaeffer [3]
who applied it to permutation problems, like the 15-puzzle. To form a pattern database,
a search space is projected into an abstract space, which is small enough to allow an
efficient computation of the value function for each abstract state. The computed values
are stored in a look-up table. Each abstract state is called a pattern and the table that
stores the optimal values is called a pattern database. These precomputed values are then
used as heuristic estimates for the search in the original state space. Usually more than
one pattern database is defined for the same problem. Heuristic estimates for the states
of the original space are computed as maximum of several pattern database heuristics.
For example, Korf defined three pattern databases to solve the Rubik’s cube problem
[10]. Similarly, Korf and Felner used eight pattern databases to solve the 24-puzzle [9].

2.2 Approximate Solutions to MDPs

A common way to solve MDPs is by using dynamic programming techniques such as
value iteration or policy iteration. The problem with this approach is that the entire state
space–which grows exponentially with the number of state variables–has to be evalu-
ated. This makes it hard to find exact solutions, leading to a vast literature on techniques
that can approximate the optimal solution. Both planning and learning techniques for
approximation of MDP solutions have been developed. The goal of both planning and
learning under uncertainty is to discover an optimal or near-optimal policy of action,
represented as a mapping from states to actions. The main difference is that planning
problems assume that the action model and the reward function are known, whereas
learning problems assume both of these to be initially unknown and attempt to learn
them. While planning is typically performed off-line, learning algorithms are frequently
designed for on-line operation.

A large body of research that attempts to find an approximate solution to an MDP in
the context of planning deals with reducing the level of detail in the problem representa-
tion by aggregating states with similar or identical values and/or action choices. These
aggregate states are then treated as a group by the dynamic programming algorithm
(see [5]). Another way to reduce the complexity of the problem is by pruning the tree
representation of value functions by removing such nodes in the tree that induce small
differences in value (see [2]) or by substituting the values at the terminals with ranges
of values (see [13]). Another class of approximation procedures used in planning under
uncertainty involves searching local regions or so called envelopes of the state space
(see [4, 14]).

Solving MDPs has also been a focus area in reinforcement learning (RL). Most RL
algorithms adapt dynamic programming algorithms so that they could be used on-line.
To avoid the curse of dimensionality, many methods have been proposed to approximate
MDP solutions. Barto and Mahadevan, for example, identify the following three meth-
ods for finding approximate solutions using RL algorithms [1]: (1) Restricting com-
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putation to states along sample trajectories to avoid the exhaustive sweeps of dynamic
programming; (2) Sampling from the appropriate distribution to simplify the basic dy-
namic programming backup; and (3) Representing the value function and/or policies
more compactly by using function approximation methods, such as linear combinations
of basic functions or neural networks.

The technique we present in this paper is an exact algorithm, but it can be easily
transformed into an approximation technique. In previous work, we have shown how to
convert any exact heuristic search algorithm into a “well-behaved” anytime algorithm
that could produce approximate solutions with error-bounds that improve with compu-
tation time. However, examining the anytime characteristics of hierarchical LAO* is
beyond the scope of this paper.

3 Methodology

3.1 The LAO* Algorithm

The LAO* algorithm was developed by Hansen and Zilberstein [6] as a heuristic ap-
proach to finding optimal solutions to MDPs. What distinguishes LAO* from other
classical heuristic search algorithms, such as AO*, is the fact that it allows to find so-
lutions that contain loops. Since LAO* is a heuristic search algorithm, it can avoid
evaluating the entire search space which makes it a good alternative to dynamic pro-
gramming algorithms that are commonly used to solve MDPs. Since LAO* does not
evaluate every state of the problem, it is not necessary to supply the entire graph to
the algorithm. Instead, a graph is specified implicitly by a start state and a successor
function.

For complete details of the implementation of LAO* see Hansen, Zilberstein [6].
Generally, the algorithm has two main steps: a forward search step and a dynamic pro-
gramming step. The forward step identifies and expands the best partial solution graph.
The dynamic programming step updates the evaluation function and marks best action
for each state that belongs to the current best solution. Although LAO* works correctly
independently of which state of the best partial solution is expanded next, the perfor-
mance of the algorithm can be improved by a good heuristic function. One way to
construct a heuristic is by search in abstract spaces.

3.2 Heuristic Construction by Abstraction

Heuristics are designed to speed up search. However, construction of a good heuristic
usually comes at a cost. The goal is to come up with a heuristic such that the cost of
computing it is less than the savings from using it. The use of heuristic h is said to be
beneficial if the total number of states expanded by search with heuristic h is less than
the number of states expanded by “blind” or uninformed search. In a stochastic setting
“blind” search is also equivalent to reachability analysis.

There are two types of abstraction that can be used to construct a heuristic:

1. Embedding – relaxing a problem by “adding edges” to a state space (for exam-
ple, by dropping preconditions from, or adding macro-operators to the state-space
definition).
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2. Homomorphism – grouping together several states in the original state space to
create a single state in the abstract space.

It was proven by Valtorta (see [15]) that A* search using heuristic constructed by
embedding transformation cannot be beneficial. Holte et al. [8] have generalized Val-
torta’s theorem to any abstraction transformation. They have shown that if the abstrac-
tion used to direct A* is a homomorphism, then it can be beneficial. The potential
savings are due to the fact that expansion of many states in the original space can be
replaced by an expansion of a single state in the abstract space. The goal of this research
is to see whether the same idea holds in a stochastic setting, i.e. whether an admissible
heuristic can be constructed by homomorphism and whether it can be beneficial if used
to direct LAO* search. The next section generalizes Holte et al. version of Valtorta’s
theorem to stochastic search spaces.

3.3 Valtorta’s Theorem Generalized to Stochastic Search

Let SP be the original state space, SP ′ the abstraction of SP. Let S be any state nec-
essarily expanded when the given problem (S0, G) is solved by reachability analysis
directly in space SP. Let f be any abstraction mapping from SP to SP ′ and hf (S) be
computed by reachability analysis in SP ′ from f(S) to f(G). If the problem is solved
in SP by LAO* search using hf (·) as heuristic estimate, then either:

1. S itself will be expanded, or
2. f(S) will be expanded

Proof. When LAO* terminates, every state will either be

1. expanded,
2. visited, or
3. or unvisited.

Sp

S

aj ak

Fig. 1. State Sp is expanded and action ak is chosen as the best action. State S is visited but not
expanded
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S0

S*

Sp
*

aj ak

S

Fig. 2. State S∗ is visited but not expanded. State S is unvisited

We examine each one of these cases below:

1. In the first case, the state S itself is expanded.
2. In the second case, the parent node Sp of state S, is expanded and the best action

for Sp is computed (see Fig. 1). Because S is not expanded, the action aj which
leads to state S with a certain probability is suboptimal. However, to pick an op-
timal action for state Sp, hf (S) must have been computed. To compute hf (S), it
is necessary to solve a problem (f(S), f(G)) in the abstract space by reachability
analysis. Therefore, f(S) has to be expanded at the first step.

3. In the third case, the state S is unvisited (see Fig. 2). It means that on every path
from S0 to S there must be a state which was visited but not expanded. Let S∗

be such state on any shortest path from S0 to S. As in the previous case, hf (S∗)
must have been computed. To compute hf (S∗), it is necessary to solve a problem
(f(S∗), f(G)) in the abstract space by reachability analysis. Since state S is reach-
able in the original state space, the corresponding state, f(S). in the abstract space
has to be reachable as well. Therefore, while solving the problem (f(S∗), f(G))
by reachability analysis, the state f(S) has to be expanded.

3.4 General Problem Description

One type of problems that can be solved using LAO* with heuristics created by ab-
straction is executing multiple tasks that involve uncertainty about resources. In such
problems, an agent has to perform a series of tasks. Every task is associated with a set of
actions that an agent can undertake to complete the task. Each action uses an uncertain
amount of one or several resources (for example, time, energy, etc.) and compensates
the agent with a certain reward. The process stops once the agent either performs all
tasks or runs out of at least one of the resources. The goal is to maximize the collected
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reward while performing a sequence of tasks. The structure of such problems allows
creating an abstract space very easily by grouping states by resources.

Each state is defined by the amount of resources left:

Ri = {0, 1, 2, . . . ,Ni} , i = 1, . . . ,n

and by values of the variables:

Vi = {1, 2, . . . ,Mi} , i = 1, . . . ,m

Formally, S = {R1, . . . ,Rn ; V1, . . . , Vm}. The start state can be defined as

S0 = {N1, . . . ,Nn ; 1, . . . , 1}

There are many possible terminal states. One example of a terminal state is

G = {0, . . . ,Rn ; V1, . . . , Vm}

3.5 Creating an Abstract Space

To create the abstract space, it is first necessary to choose the desired granularity of
abstraction or abstraction step. Selecting larger steps for grouping resources will result
in a smaller total number of states in an abstract space and therefore fewer states to
expand while performing a “blind” search. On the other hand, the generated heuristic
estimates will be coarser and subsequently more states will need to be expanded in the
original space. If smaller abstraction steps are used, then there will be more work in the
abstract space, and less in the original. Therefore, it is important to use such abstraction
steps that result in an optimal trade-off between the number of states expanded in the
abstract and the original spaces.

When an abstract space is created, states of the original space are grouped by re-
sources with each resource rounded up. Only states with the same variable values can
be grouped. Since we are representing the amount of remaining resources (as opposed
to the amount of used resources), rounding resources up ensures admissibility of the
heuristic as it will always be overestimating the reward. Given that the amount of re-
sources available in each state is overestimated, it might be possible to do more work
(i.e. take more actions) and subsequently collect a larger reward.

4 The Model

4.1 Problem Specification

To test whether heuristic estimates generated by abstraction produce any savings as
compared to uninformed search, the LAO* algorithm was used to solve the following
problem that involves uncertainty regarding the use of resources. An agent operates
autonomously for a period of time. Its goal is to perform a sequence of M tasks (see
Fig. 3). A terminal state is reached when the agent either performs all tasks or runs out
of at least one resource.

Each task can be executed either by taking an action A, or by taking an action B. In
addition, some tasks may be skipped altogether. When a problem instance is created,
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M21

Start

B
A

skip B

A

Goal

B
A

skip

Fig. 3. An illustration of a problem instance

the skip action is added to a task with probability p and omitted with probability 1− p.
(This probability only applies to the process of generating a random problem instance.)
Action A, on average, uses less resources than action B. An agent’s goal is to maximize
the reward obtained during the time period. The attractiveness of the task can be defined
as a ratio of expected reward to expected resources used to execute an action. When a
sample task is generated, its expected reward is computed as follows. First, an average
amount of each resource i used to execute an action is generated. Then the expected
reward for performing the task is computed as:

ER =
n∑

i=1

ki × E[Res usedi] . (1)

where,

ki is a random number in the range [0.1, 1]
n is the number of resources

Each state is defined by the remaining resources, Ri = {0, 1, . . . ,Ni}, and by the
current task number, I = {1, 2, . . . ,M }. Formally, S = {R1, . . . ,Rn ; I }. The start
state is S0 = {N1, . . . ,Nn ; 1}. An example of a terminal state is G = {0, . . . , 0; I }.

4.2 Original and Abstract State Space Construction

State spaces are represented as AND/OR graphs with all unique tree nodes stored in
hash tables. To construct the original and abstract state space, first, the average resource
use and the reward for action one and two are precomputed. Then whether the task can
be skipped is determined according to probability p. Construction of the original tree
starts with the root. The root node is assigned the maximum values for each resource
and variable value of 1. After that the whole graph is generated as follows. The number
of successors for the first two actions is determined at random from the range [5, 15]. In
case of multiple resources, it is assumed that resources are correlated, i.e. if an action
requires the minimum amount of resource 1, it will also require the minimum amount
of all other resources. Under this assumption, the resource values for successor states
are determined as follows. The first successor always gets assigned the resource values
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of the previous resource levels less some predetermined minimum resource use. The
middle successor gets assigned the resource values of the previous resource levels less
the precomputed average resource use. The resource levels for the rest of the successors
are linearly projected from these two states. The variable value for each of the succes-
sors is determined as a previous variable value plus 1. Successor states are assigned
probability values according to the linear probability model. The middle state which is
associated with the average resources use has the highest probability of occurrence. The
first and last states which are associated with the lowest and highest resources use have
the smallest probability of occurrence. The probability values associated with all other
states are linearly interpolated.

An abstract state space is constructed using the same data and assumptions as the
original state space. First, the abstract root node is constructed. For example, if the
initial resource is 50 and the abstraction step is 20, the initial level of resource is rounded
up and the abstract root state gets assigned the resource value of 60. For the purpose of
construction of abstract successors the number of successors in the original state space
is assumed to be the maximum. The resource value for each successor is generated in
the same way as in the original space. Then, each resource is rounded up according
to the abstraction step and identical states are grouped. The probability value for each
abstract successor is assigned according to the linear probability model.

4.3 Heuristic Construction and Its Application to the LAO* Algorithm

Once an abstract space is constructed, the next step is to perform a “blind” search of
this abstract space. During this process, all reachable abstract states get expanded and
assigned a value. These values are then used as heuristic estimates for the states in the
original state space. Every time an algorithm needs to estimate a heuristic value for a
state in the original space, it creates an abstract state that corresponds to the original
state by rounding the resources up according to the abstraction steps and looks up the
abstract state value in the hash table. The abstract state space constructed using the
procedure outlined in the previous section is not guaranteed to give the exact represen-
tation of the original state space. As a result, some of the original states might not have
a counterpart in the abstract state space. In case the corresponding abstract state can-
not be found in the hash table, the value of the state with the same variable but higher
level of the resource is used. This way the heuristic value is always overestimated and
it remains admissible.

The procedure for constructing the heuristic by abstraction can be taken one step
further by using multiple abstract spaces, i.e. by creating an abstraction hierarchy. The
first abstract space is created in exactly the same way as before. The next abstract space
is created by grouping states of the previous abstract space. This process is repeated un-
til the top abstract space becomes trivial. The algorithm starts by performing a complete
“blind” search of the top abstract level. After that at each iteration of LAO* whenever
it is necessary to estimate the value of the heuristic, the next higher level of abstraction
is searched. The search of the abstract space starts with the abstract state that corre-
sponds to the state in the level below. When the second to last abstract level is searched,
the heuristic estimates are simply looked up in the hash table for the top abstract level.
Once an abstract space is searched at least once, the values are known for all states that
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belong to the solution graph. These states can be cashed and their values can be used as
heuristic estimates for the lower level in all subsequent searches.

It is worth noting that some difficulties could arise with this approach. Since abstract
states are created by rounding the resources up, there could be no change in the level
of resources after executing a series of actions. Therefore, in certain situations an agent
can come back to the same state. In general, this is not a problem since LAO* can easily
handle solutions with loops. However, it becomes a problem if an agent comes back to
the same state with probability 1 because it leads to an infinite loop. Fortunately, this
difficulty does not arise in the problem considered here because each state is defined
by the amount of resources left and the number of the task to be performed. Even if
no resources have been used while executing a task, the task number will increase.
Therefore, an agent cannot come back to the same state once an action is executed.
Although this problem does not contain loops and therefore could be handled by AO*
algorithm, the procedure described here is general enough to handle problems with
loops.

5 Experimental Results

5.1 One Resource, One Level of Abstraction

This section analyzes problems with one resource. The heuristic estimates are based on
one level of abstraction. Fig. 4 shows the average number of states expanded at the base
and abstract levels over 20 problems with 15 tasks and the starting level of resource
of 200 units. The first bar corresponds to the average number of states expanded by
“blind” search. On average, the use of abstraction step 5 is not beneficial since the
algorithm expands more states than the “blind” search. All other abstraction steps can
be considered beneficial since they result in some savings as compared to the “blind”
search. The smallest number of states gets expanded when the abstraction step of 40 or
above is used.

Fig. 5 shows the average amount of work as compared to the “blind” search (the
chart on the left) and the average savings (or loss) that occur due to the use of abstraction
(the chart on the right). The probability of “skip” action is 1, i.e. each task can be
performed by taking an action A or an action B or the task can be skipped. The three
lines on the charts on the left represent the average amount of work over 20 problems
with one standard deviation band around it. The average amount of work is determined
as a ratio of the total number of states expanded at both base and abstract levels over
the total number of states expanded by “blind” search. The left chart shows that as the
abstraction step increases, the average amount of work decreases. Similarly, the chart
on the right shows that the average savings due to the use of heuristic constructed by
abstraction go up as the abstraction step size increases. The maximum savings achieved
are 18.1%.

The size of the problem determined by the number of unique states in a hash table
can be increased by either increasing the starting level of resource or by increasing the
number of tasks the agent needs to perform or by increasing both. Fig. 6 explores the
relationship between the average savings due to abstraction and the size of the problem
when the size of the problem increases due to increase in the starting level of resource.
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Fig. 4. Average number of states expanded both at the base and abstract level as a function of the
abstraction step
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Fig. 5. Left: average amount of work as compared to blind search as a function of the abstraction
step. Right: average savings in % as compared to blind search as a function of the abstraction
step. An average over 20 problems with initial level of resource of 200, 15 tasks, and probability
of skip action of 1

The chart on the right shows the average number of states in a hash table for each level
of resource. The hash table keeps growing until initial level of resource reaches 350.
After that the increase in the starting level of resource does not result in additional
states being added to the hash table. When initial resource level is set at 50, it is enough
to perform only a few tasks. In this case, the algorithm tries to determine which tasks
should be skipped and which tasks should be performed. On the other hand, when initial
level of resource is set at 500, the resource is plentiful to perform all tasks, so at each
step it will be necessary to determine whether an action A or B should be preferred
since the skip action will always be suboptimal (because of zero reward). The chart on
the left shows the average savings due to abstraction as a function of the initial level of
resource. When the level of resource is low, the savings from abstraction are the lowest
(less than 15%). The savings are the highest (above 20%) when resource is abundant.
A lot of the savings will occur because brunches corresponding to the skip action are
suboptimal and therefore will be ignored in a heuristic search but expanded in a “blind”
search. In general, the most savings occur when the problem tree has a lot of clearly
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Fig. 6. Left: average savings in % as compared to blind search as a function of the initial level
of resource. Right: average size of the hash table as a function of the initial level of resource.
Averages are over 50 problems with 15 tasks, and probability of skip action of 1
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Fig. 7. Left: average savings in % as compared to blind search as a function of the number of
tasks. Right: average size of the hash table as a function of the number of tasks. Averages are
over 50 problems with initial level of resource set at 200, and probability of skip action of 1

suboptimal branches. Heuristics constructed by abstraction will easily identify those
branches and save a lot of work at the base level.

Fig. 7 explores the relationship between the average savings due to abstraction and
the size of the problem when the size of the problem increases due to increase in the
number of tasks an agent has to perform. The chart on the right shows the average
number of states in a hash table as a function of the number of tasks in a problem. As
the number of tasks to be performed increases, so does the size of the hash table. On
average, addition of 5 tasks to the problem adds roughly 1000 states to the hash table.
The chart on the left shows the average savings due to abstraction as a function of the
number of tasks to be performed. As in Fig. 6, the most savings occur when the initial
level of resource is high relative to the number of tasks to be performed. As the number
of tasks to be performed goes up, the average savings go down. The largest savings of
24.2% occur when there are only 5 tasks to be performed. In this case there is enough of
the resource to perform all tasks. Savings occur largely due to the possibility to ignore
those branches that correspond to the skip action while performing the heuristic search.
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5.2 One Resource, Two Levels of Abstraction

In this section, an identical set of 20 problems with 15 tasks, initial level of resource
of 200 and probability of skip action of 1 was solved by LAO*, first, using heuristic
constructed with one level of abstraction, second, using heuristic constructed with two
levels of abstraction. Fig. 8 shows graphs for one level of abstraction. Fig. 9 shows
graphs for two levels of abstraction. In this case X axis values correspond to the ab-
straction step at the first level, s1. Abstraction step at the second level was assumed to
be s2 = 2 × s1. Comparison of the two figures shows that heuristic constructed by ab-
straction with one level of abstraction produces higher savings as compared to heuristic
constructed by abstraction with two levels. For example, the highest possible savings
with one level of abstraction are 18.1%, whereas the highest possible savings with two
levels of abstraction are 17.1%.
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Fig. 8. One level of abstraction. Left: average amount of work as compared to blind search as
a function of the abstraction step. Right: average savings in % as compared to blind search as
a function of the abstraction step. An average over 20 problems with initial level of resource of
200, 15 tasks, and probability of skip action of 1
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Fig. 9. Two levels of abstraction. Left: average amount of work as compared to blind search as
a function of the abstraction step. Right: average savings in % as compared to blind search as
a function of the abstraction step. An average over 20 problems with initial level of resource of
200, 15 tasks, and probability of skip action of 1
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5.3 Two Resources, One Level of Abstraction

This section analyzes problems with two resources. The heuristic estimates are based on
one level of abstraction. Fig. 10 shows the total number of states expanded at both base
and abstract levels. The first bar corresponds to the average number of states expanded
by “blind” search (about 3500). On average, the use of any abstraction step is beneficial.
Unlike in the case with one resource, the smallest number of states (around 1960) gets
expanded when the abstraction step of 10 is used.

Fig. 11 shows the average amount of work as compared to the “blind” search (the
chart on the left) and the average savings that occur due to the use of abstraction (the
chart on the right). On average, savings that occur due to abstraction are significantly
higher than in the case with one resource for any abstraction step. The highest savings
occur when abstraction step of 10 is used. In contrast, in the case of one resource the
highest savings occur when the abstraction step of 40 is used.

6 Conclusions

We have shown that admissible heuristics can be generated using abstraction in stochas-
tic domains. The results are very similar to those obtained by Holte et al. in determin-
istic settings [8]. In general, the use of abstraction in both stochastic and deterministic
settings is beneficial. The actual amount of savings depends on the abstraction step.
Holte et al. have found the abstraction radius to be large as compared to the size of
the search space. As a result, only one level of abstraction is necessary. A similar con-
clusion can be made for the type of problems considered here. The experiments with
two levels of abstraction and one resource show that the use of one level of abstraction
results in higher savings as compared to two levels. In case of one level of abstraction
and one resource, an abstraction step of 40 turns out to be the most beneficial; in case
of two resources, an abstraction step of 10 is the most beneficial. In general, the amount
of savings depends on the difficulty of the problem. Problems with two resources result
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Fig. 10. Average number of states expanded both at the base and abstract level as a function of
the abstraction step
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Fig. 11. Left: average amount of work as compared to blind search as a function of the abstraction
step. Right: average savings in % as compared to blind search as a function of the abstraction step.
An average over 20 problems with initial level of resource 1 of 50, resource 2 of 50, 7 tasks, and
probability of skip action of 1

in much higher savings as compared to the problems with one resource. We expect the
savings to grow with the number of resources.

One benefit of our approach is that it is designed to avoid visiting the entire state
space either during search or any preprocessing stage. Although the abstract space is
created in advance, it is generated independently of the original space. Moreover, there
is no need to go through the entire base-level state space in order to search the abstract
space. Another source of savings is the fact that the search in the abstract space is only
through reachable states, not all states.

Because it is generally much harder and less intuitive to design admissible heuristics
for stochastic domains, it is beneficial to design automated techniques based on abstrac-
tion such as the one we present in this paper. Moreover, because it is relatively easy to
transform LAO* into an approximation anytime algorithm, the result of this work facil-
itate the development of both exact and approximate algorithms for search in stochastic
domains.
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Abstract. Intelligent agents acting in real world environments need to
synthesize their course of action based on multiple sources of knowledge.
They also need to generate plans that smoothly integrate actions from
different domains. In this paper we present a generic approach to synthe-
size plans for solving planning problems involving multiple domains. The
proposed approach performs search hierarchically by starting planning
in one domain and considering subgoals related to the other domains as
abstract tasks to be planned for later when their respective domains are
considered. To plan in each domain, a domain-dependent planner can
be used, making it possible to integrate different planners, possibly with
different specializations. We outline the algorithm, and the assumptions
underlying its functionality. We also demonstrate through a detailed ex-
ample, how the proposed framework compares to planning in one global
domain.

1 Introduction

A considerable amount of work in AI planning focuses on the use of abstraction
to reduce the search space, where planning takes place at successive levels of more
details. Hierarchical planning is such a paradigm that relies on abstraction and
goal decoupling to produce effective plans [14],[17],[12],[5]. The planning problem
is specified as a set of abstract tasks to achieve with ordering constraints over
them. The planning process, repeatedly, refines the abstract tasks into more
detailed tasks until the plan is composed only of executable tasks. Abstractions
have mainly been supplied by the user as part of the knowledge bases used by the
planner. However different approaches have been proposed to learn abstractions
from the description of the planning problems [8],[4].

Decomposition of the planning problem into subproblems is also an approach
aiming at reducing search complexity [16],[1]. The partitioning of the initial plan-
ning problem focuses on producing subproblems with minimum interaction in
order to be able to find an efficient solution. It is worth noting that problem
partitioning is generally combined with abstraction techniques to control the in-
teraction between the different sub-components of the planning problem [10],[11].
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In this paper we propose a framework to synthesize plans to solve planning
problems involving multiple domains through the use of abstraction and goal
ordering. In fact, goal and subgoal ordering approaches have been demonstrated
to be effective ways in solving planning problems [13]. As demonstrated in [9], a
total order relation between increasing sets of goals allows incremental planning
by focusing search on the goals that appear earlier, leading to improved planning
performances.

To solve problems involving multiple domains, one can envisage to solve in
each domain the portion of the problem related to it and then glue all the
results in a global plan, but doing so might result in degraded execution of the
overall plan, because of the localized reasoning. Our work on plan execution on
board mobile robots has motivated us to find a general approach that can utilize
reasoning over different domains using different planners for problem solving so
the resulting plan would execute smoothly and efficiently. Therefore the proposed
approach guarantees to find a plan in an incremental way that interleaves actions
from the different domains when only it is needed.

The general idea of our approach is to act on a set of domains ordered ac-
cording to which domain gets its goals achieved earlier. The planning problem
is solved incrementally starting with the leftmost domain, and going all the way
to the last one. If a domain D, ordered before another domain D′, needs to
accomplish a subgoal involving the actions of D′, then D places a request in the
plan for D′ to accomplish the desired subgoal. At a later stage, when planning
to solve in D′, the algorithm can use the actions of D′ to solve the request.
The planner used to plan in a particular domain can be a domain-(in)dependent
planner, meaning that it is possible to integrate different efficient specialized
planners to solve the global planning problem.

In the next section we detail the assumptions used to find a plan in multiple
domains as well as operator transformation to reflect the interaction between
the involved domains. Next we give a global overview of the approach and how
planning in one domain introduces ordered abstract tasks to be solved in the
subsequent domains. Section 4 outlines the hierarchical algorithms used to solve
the multiple-domain planning problem. Before concluding we demonstrate the
performance of the approach on two domains.

2 Domains Interaction

In this section we discuss the assumptions underlying the interactions between
the planning domains, as well as the extensions to be made to the syntax of
planning operators in order to be able to use the proposed framework. As stated
before, the approach supposes that the agent has access to a planning system
employing a domain-independent planner or a set of domain-dependent planners.

Domains are defined in the usual way as consisting of a set of operators and
a set of fluents, where the operators of one domain can use literals from other
domains in their preconditions and effects. We use an incremental approach to
plan in the different domains i.e. when trying to solve a planning problem in a
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particular domain, the achieved goals, of solved problems of the other domains,
have to be maintained. This incremental approach makes it possible to reduce
search complexity, because goals do not have to be established, then destroyed,
then established again [9]. This restriction leads us to the following consideration:

– Consideration 1. If an operator in a domain D1 uses in its preconditions a
literal l from another domain D2, then finding a plan to achieve goals in D1

would violate achieved goals in D2, because the literal l might be sub-goaled
in D1 by the corresponding plan. Therefore the framework has to make sure
that all the goals of D1 are planned for first before planning for the goals
of D2. Note that this is coherent with the ordered monotonic refinement
property [8].

Example 1. Suppose that the planning system has two domains: navigation, and
blocks. The navigation domain is used to move a mobile robot equipped with an
arm between rooms and corridors. The blocks domain is used to rearrange blocks
in towers in different rooms. To manipulate blocks in a room r1, the robot has to
be in room r1 too. Therefore the blocks domain operators (pick-up, put-down,
stack, and unstack) use a literal in their preconditions to impose such restriction.
Now, suppose that the agent wants to achieve the two goals g1 = (on b a), and
g2 = (robot-at = r2) (where both blocks a and b are in room r3). If the agent
achieves g2 first then solving g1 will violate g2; because the robot has to move to
room r3 to be able to stack b on a. Consequently, g1 has to be achieved before g2.

We also want to keep the effects involving fluents from a domain D under the
control of D. The aim of this restriction is to localize planning within the do-
mains. This leads us to the second consideration:

– Consideration 2. If an operator o in domain D1 achieves as a side effect
a literal l from another domain D2, then an abstract version of o is created
in D2 where only the preconditions related to D2 are maintained, and the
effects related to D1 are posted as a task to be achieved in D1.

Example 2. Considering the previous example. In the navigation domain, mov-
ing the robot from one room to another while holding a block will also move the
block as a side effect. Therefore an abstract version of this operator is created
in the blocks domain to reflect this change to the state of the block.

2.1 Domains Representation

Let D = {D1, D2, · · · , Dm} be the set of the domains used by the planning sys-
tem. A domain Di is defined as a set of fluents Fi and a set of operators Oi. An
operator o ∈ Oi is a couple 〈Pre(o),Eff(o)〉, where Pre(o) are the preconditions
of the operator, and Eff(o) are the effects (positive and negative) of the opera-
tor. Following the consideration 1, the preconditions Pre(o) component has the
following syntax:
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Pre(o) :: ((local : φi)
(foreign : (Dj : ψj)+)∗)

where φi is a formula written only over the (local) fluents of the domain Di,
and ψj is a formula written only over the fluents of domain Dj (i �= j). This
syntax reflects that the preconditions of the operator o might have a local pre-
condition expressed as a formula over the fluents Fi of the current domain,
and a list of foreign preconditions defined over the fluents of the other
domains.

If o is an abstract version of another operator in another domain Dj (j �= i)
(consideration 2), then the effects of o have the following form:

Eff(o) :: ((local : effi)
(foreign : (Dj : effj)+)∗)

where effi are effects over the fluents of the local domain Di and effj are effects
over the fluents of domain Dj (j �= i).

Example 3. The following is an operator from the blocks domain to pick up a
block on the table at a location specified by the variable ?loc.

(pick-up ?b ?loc):
param: ?b - BLOCK, ?loc - LOCATION

Pre: ((local: (and (clear ?b)(on-table ?b)(arm-free)(object-at ?b = ?loc)))
(foreign: (navigation: (robot-at = ?loc)))

Eff: ((local: (and (holding ?b)(clear ?b = f)(arm-free = f) (on-table ?b = f))))

The foreign part of the precondition specifies that the fluent (robot-at = ?loc)
from the navigation domain has to be satisfied before executing the operator i.e.
the robot must be at the same location as the block.

Example 4. The operator (move ?l1 ?l2) from the navigation domain is used to
move a robot from location ?l1 to another location ?l2. If the robot is holding
a block ?b, then the block changes location too (i.e. (object-at ?b =?l1)). So an
abstract operator has to be created in the blocks domain to reflect this value
change to the fluent object-at. When planning in the blocks domain, the abstract
operator is used the same way as the other operators to cause state change,
except that it does not appear in the plan as its real effects are achieved by
the operator (move ?l1 ?l2) of the navigation domain (it is for this reason it is
qualified as abstract).

(move-block ?b ?l1 ?l2): ABSTRACT
param: ?b BLOCK, ?l1 ?l2 - LOCATION
Pre: ((local: (and (holding ?b)(object-at ?b = ?l1)))
Eff : ((local: (object-at ?b = ?l2))

(foreign: (navigation: (robot-at = ?l2))))



34 A. Bouguerra and L. Karlsson

2.2 Ordering Domains

Consideration 1 imposes on the multi-domain plan synthesizer to find a total
order on the set of domains D = {D1, D2, · · · , Dm}. A domain Di is ordered
before another domain Dj (noted: Di ≺ Dj) if at least one of the operators of
Di uses in its preconditions a fluent from Dj :

∃fj ∈ Fj ,∃o ∈ Oi : fj appears in Pre(o) ⇒ Di ≺ Dj .

The total order can be directly given by the user, or it can be extracted au-
tomatically as the result of a topological sort applied on a graph whose nodes
represent the domains and arcs represent the constraint ≺.

3 Multiple-Domain Planning Overview

To be able to synthesize a plan to solve a planning problem involving the achieve-
ment of goals related to more than one domain, we need first to find a total order
on the involved domains, and create abstract operators to fulfill the second re-
quirement as described in the previous section. Once this is done, we can solve
the planning problem in an incremental way: starting in the left-most domain
we solve its planning problem, then the resulting plan is passed to the next
domain (according to their order) where the abstract tasks related to the new
domain are solved in the order they appear in the plan. This process contin-
ues until reaching the right-most domain where the plan would be completely
refined.

3.1 Planning in One Domain

A planning problem in a domain Di is specified by the initial state expressed
as a conjunct of fluents from Fi, a goal state expressed as a first order logic
formula, and the set of operators Oi. To solve a planning problem to achieve
goals in domain Di, the planner associated with Di selects an instantiated op-
erator o ∈ Oi to insert in the plan, if its local preconditions are satisfied in the
current state s defined over Fi. Since the foreign preconditions of the operator o
have also to be satisfied in their respective domains, the planner prepends to o
requests to achieve the foreign preconditions in their respective domains. If an
operator has more than one foreign component, the planner has to make sure
to order the requests according to the order of their domains. i.e. if the foreign
components of the preconditions Pre(o) of o are (foreign : (D1 : ψ1)(D2 : ψ2))
such that D1 ≺ D2, then as a result of selecting o, the planner inserts the fol-
lowing in the plan:

(achieve (D1 : ψ1));(achieve (D2 : ψ2)) ;o

where (achieve (Di : ψi)) formulates a request to achieve the conditions ψi in
domain Di.
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If o is an abstract operator with foreign effects i.e. (foreign : (Dj : effj)) ∈
Eff(o), then the planner inserts those foreign effects as requests to be achieved
in their respective domains i.e. (achieve (Dj : effj)). Note that in this case,
only the foreign effects of o are inserted in the plan as abstract tasks, but not o
itself.

Each request, posted on a foreign component defines an abstract task to
be achieved in its domain. This means that a plan might encompass unsolved
abstract tasks inserted by the planners of the antecedent domains. The unsolved
tasks are further refined when planning in the subsequent domains.

Example 5. The instantiated blocks domain operator (pick-up b1 r1) is applica-
ble in a state s if the local formula (and (clear b1)(on-table b1)(arm-free)(block-at
b1= r1)) holds in s. If it is selected by the planner then, the planner prepends it
with the abstract task “(achieve (Navigation: (robot-at = r1))” which is solved
later when planning in the navigation domain.

3.2 Planning in Multiple Domains

Figure 1 gives an overview of how to synthesize a plan involving three do-
mains D = {D1, D2, D3} such that D1 ≺ D2 ≺ D3. The goals involving
one domain are considered as an abstract task to achieve. Therefore, a task
is created on the final goals of each domain, giving us three initial abstract
tasks: Tinit(D1), Tinit(D2), Tinit(D3) where each Tinit(Dj)j=1,2,3 is formulated
as (achieve (Dj : goals of Dj)). The initial version of the global abstract plan
is created by ordering the three initial abstract tasks according to the order
defined over their respective domains i.e. Tinit(D1) ≺ Tinit(D2) ≺ Tinit(D3).

                               ;                         ;Tinit (D1) Tinit (D2) Tinit (D3)

T1(D2) T1(D3);a1(D1); a2(D1);

T2(D3)b1(D2);             ;b2(D2) b3(D2);b4(D2)

c1(D3);c2(D3) c3(D3);c4(D3);c5(D3) c6(D3);c7(D3)

T1(D2) T1(D3);a1(D1); a2(D1);

a1(D1);a2(D1) ; T1(D3) ;b3(D2);b4(D2);

b1(D2);c1(D3);c2(D3);b2(D2);a1(D1);a2(D1);c3(D3);c4(D3);c5(D3);b3(D2);b4(D2);c6(D3);c7(D3)

final global (refined) plan

Planning
in D1

Planning
in D2

Planning
in D3

Pinit (D1) =

P1(D2) = Pinit (D2) =

 b1(D2);             ;b2(D2) ;T2(D3)

Tinit (D3)Tinit (D2)

Tinit (D3)

; ;

initial global (abstract) plan

Fig. 1. Global view of planning in three domains
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The plan synthesizing process proceeds top-down. It starts by planning in
D1 to solve Tinit(D1) which yields a plan Pinit(D1) = T1(D2); a1(D1); a2(D1);
T1(D3) that contains two abstract tasks T1(D2)(resp. T1(D3)) to be achieved
in D2 (resp. D3 ) and two instantiated operators of domain D1: a1(D1) and
a2(D1). Tinit(D1) is then replaced by Pinit(D1) to produce a global plan which
is subsequently refined in D2. When planning in D2, the planner plans to solve
the abstract tasks related to D2 in the same order they appear i.e. it plans
to solve T1(D2) before planning to solve Tinit(D2). The next step replaces the
abstract tasks just planned for by their corresponding plans (T1(D2) is replaced
by P1(D2), and Tinit(D2) is replaced by Pinit(D2)). The resulting plan is next
refined in the last domain D3 where abstract tasks related to D3 are solved and
replaced by plans that contain only instantiated operators from D3. At this stage
the resulting plan is composed only of instantiated operators and it solves all the
goals related to the three domains. Please note that there might be backtracking
to the previous domain or just within a domain itself if a task can not be solved.

4 The Planning Algorithm

The multi-domain planning algorithm shown in Fig. 2. is a forward chaining
algorithm. It takes as input a set of initial states S0, a set of goals to achieve G,
and a list of all the domains Domains given in the order defined in section 2.
The elements of S0 are the initial states of the domains involved in planning. G
comprises goal sets, each of which is related to one domain in Domains.

The algorithm builds for every domain Di ∈ Domains a task which is simply
expressed as “(achieve (Di : gDi

))”, where gDi
∈ G is the goal set related to

domain Di. An abstract version of the global plan GlobalP is created by ordering
the tasks of the different domains according to the order of their respective
domains (the Init phase). After the initialization phase, the algorithm retrieves
the first domain D from Domains (step 2), and extracts all the abstract tasks
DTasks from GlobalP related to D keeping them in the same order as they
appear in GlobalP (step 4). The procedure “Find-Plan” is called to compute
a plan Dplan to solve the ordered list of abstract tasks DTasks in D (step 6).
Dplan is actually a list of sub-plans each solving one task in DTasks. If all the
tasks in DTasks are solvable in D (i.e Dplan �= fail), then GlobalP is refined by
substituting every abstract task that appears in DTasks by the portion of the
sub-plan that solves it (step 8) (this is a refinement step that iterates over the
elements of GlobalP to replace an abstract task related to D by a sub-plan from
Dplan if it solves it).

The same process repeats with the rest of the domains until finishing all of
them. When all the domains are planned in, the global plan GlobalP is com-
pletely refined. GlobalP is returned as a solution for the multiple-domain plan-
ning problem (step 1). In case, there is no plan to solve the tasks in DTasks (step
7), The multiple-domain planner returns fail (step 13).

Since we might have backtracking when planning in the subsequent domains
(steps 9 and 10 ), “next(Find-Plan(s0d ∈ S0, DTasks, D))” (step 6) is supposed
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Input:
S0 = {s0i : initial state of domain Di}
G = {gDi : goal set of domain Di}
Domains: the ordered list of domains to use
Output:
A plan that achieves G starting from S0

Init:
GlobalP = build-and-order-abstract-tasks(G)

Algorithm MD-Plan(S0, GlobalP, Domains)
1. if Domains is empty then return GlobalP endif
2. D = first of Domains
3. RD = rest of Domains
4. DTasks = extract-tasks(GlobalP, D)
5. do
6. Dplan = next(Find-Plan(s0d ∈ S0, DTasks, D))
7. if Dplan �= fail then
8. GlobalP = substitute-plan(GlobalP, Dplan)
9. RDplan = MD-Plan(S0, GlobalP, RD)
10. if RDplan �= fail return RDplan endif
11. endif
12. until Dplan = fail
13. return fail

END

Fig. 2. The multi-domain planning algorithm

to give the next valid plan Dplan solving the abstract tasks DTasks in domain D
i.e. a plan that has not been considered yet (the call to the function “next” can
be considered as iterating over a set of valid plans that solve DTasks in D).

The algorithm used to solve an ordered list of tasks in one domain is outlined
in Fig. 3. It gets as input the initial state related to the domain s0, an ordered
list of tasks to solve Tasks, and the relevant domain D. The algorithm retrieves
the first task g from Tasks (step 2) and calls a planner to solve it starting in the
initial state s0 (step 5). If the task is solvable, the planner returns a plan Pg that
solves it along with the goal state sg where the task g is satisfied. As mentioned
before, the planner can be specialized to solve planning problems related to the
current domain, or a generic planner (domain-independent). In the next recursive
call (step 7), the algorithm tries to solve the rest of the tasks starting from sg

this time i.e. the initial state for the next task is sg. The algorithm continues
recursively doing so until solving all the tasks where it returns success (step 1).
If success is returned then the plan that solves all the ordered tasks specified in
Tasks is the concatenation of the plans solving each task apart (step 9). Please
note that as in the previous algorithm, the use of next (in step 5) returns the
next valid pair (plan, goal-state). This means that next iterates over a set of
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Input:
s0 : initial state
Tasks : a list of ordered tasks to achieve
D : domain to use
Output:
A plan that achieves Tasks starting from s0

Algorithm Find-Plan(s0, Tasks, D)
1. if Tasks is empty then return success endif
2. g = the first task in Tasks
3. R = the rest of Tasks
4. do
5. (Pg, sg) = next(PLANNER(s0, g, D))
6. if Pg �= fail then
7. PR = Find-Plan(sg, R, D)
8. if PR �= fail then
9. return Pg; PR

10. endif
11. endif
12. until Pg = fail
13. return fail

END

Fig. 3. The Find-Plan planning algorithm

plans that can be generated by the planner to solve one planning problem. A
failure is returned (step 12) if the current task can not be solved, or if all the
plans that solve the current task make the subsequent tasks unsolvable.

5 Detailed Example

This section demonstrates the performance of the proposed approach in the two
domains navigation and blocks, shown in Fig. 4. A planning problem in the
navigation domain consists in moving a mobile robot, equipped with an arm,
from one location to another. The different locations are connected by doors that
can be open or closed. The blocks domain is the standard AI planning bench
mark domain used to form towers of blocks according to a set of constraints
over the positions of the blocks. In our experiment, it is the mobile robot that is
responsible of forming the towers of blocks. Furthermore, a block is constrained
to be at a specific location. Consequently, in order to execute an action in the
blocks domain, the mobile robot has to be at the same location as the relevant
blocks (the blocks that undergo the action). As a result of consideration 1, the
blocks domain is augmented with the abstract operator “move-block” derived
from the navigation domain operator “move-in”. In this scenario the blocks
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Domain: Blocks

(pickup ?b ?l)
param: ?b - BLOCK, ?l - LOCATION

Pre: ((local: (and (clear ?b)(on-table ?b)

(arm-free) (object-at ?b = ?l)))

(foreign: (navigation: (robot-at = ?l)) ))

Eff: ((local:(and (holding ?b)(clear ?b = f)

(on-table ?b = f)(arm-free = f))))

(putdown ?b ?l)
param: ?b - BLOCK, ?l - LOCATION

Pre: ((local: (and (holding ?b)(object-at ?b = ?l)))

(foreign: (navigation: (robot-at = ?l) )))

Eff: ((local:(and (holding ?b = f)(clear ?b = t)

(on-table ?b = t)(arm-free = t))))

(unstack ?a ?b ?l)
param: ?a ?b - BLOCK, ?l - LOCATION

Pre: ((local: (and (clear ?a)(on ?a ?b)(object-at ?b = ?l)

(object-at ?a = ?l) (arm-free)))

(foreign: (navigation: (robot-at = ?l) )))

Eff: ((local:(and (holding ?a)(clear ?b)(clear ?a = f)

(on ?a ?b = f)(arm-free = f)))))

(stack ?a ?b ?l)
param: ?a ?b - BLOCK, ?l - LOCATION

Pre: ((local: (and (holding ?a)(clear ?b)

(object-at ?b = ?l)(object-at ?a = ?l)))

(foreign: (navigation: (robot-at = ?l))))

Eff: ((local: (and (holding ?a = f)(clear ?b = f)

(clear ?a) (on ?a ?b)(arm-free))))

(move-block ?b ?l1 ?l2): ABSTRACT
param: ?b BLOCK, ?l1 ?l2 - LOCATION

Pre: ((local: (and (holding ?b)(object-at ?b = ?l1)))

Eff: ((local: (object-at ?b = ?l2))

(foreign: (navigation: (robot-at = ?l2))))

Domain: Navigation

(move-in ?l ?2)
param: ?l1 ?l2 - LOCATION

Pre: ((local: (and (robot-at = ?l1)

(exists (?d - DOOR)(and (part-of ?d ?l1)

(part-of ?d ?l2)(closed ?d = f))))))

Eff: ((local: (robot-at = ?l2)))

(open-door ?d)
param: ?d - DOOR

Pre: ((local: (and (closed ?d)(exists (?l -LOCATION)

(and (part-of ?d ?l)(robot-at = ?l))))))

Eff: ((local:(closed ?d = F))

Fig. 4. The blocks and navigation domains
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Fig. 5. Execution times for navigation and blocks domains

domain is ordered before the navigation domain as a result of considerations 1
& 2 stated in section 2.

To evaluate the generation of plans to solve planning problems involving both
domains (blocks and navigation), we compared execution times taken by our
approach against the execution times taken by the domain-independent planner
PTLPLAN [6]. In order to use PTLPLAN, both domains were collapsed in one
global domain. We used two versions of the multiple domain planning approach.
In the first version called MD-PLAN1, the planner used to plan in the navigation
domain as well as the blocks domain is PTLPLAN. In the second version, called
MD-PLAN2, we used a specialized planner to plan in the navigation domain,
and PTLPLAN to plan in the blocks domain. The navigation specialized planner
is a graph-based search algorithm that returns all the different plans that can
lead from one location to another one.

The tests were run on 10 problems, with different numbers of blocks and
rooms. The different problems involved forming towers of blocks in different
rooms which involved moving the blocks from their initial location to their goal
location. Figure 5 shows a bar chart diagram (where the values of the y axis
are logarithmic) as well as a table of the executions times in seconds taken by
PTLPLAN, MD-PLAN1, and MD-PLAN2 to solve the ten problems.

The diagram shows that the two versions of the proposed approach outper-
form PTLPLAN applied to the two domains as one global domain. It is also
worth noting that the second version MD-PLAN2 is slightly faster than the first
version MD-PLAN1, which is clearly an advantage of using specialized domain-
dependent planners. The performance of the proposed approach against planning
in one global domain can be attributed to localized planning in the respective
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domains and solving interactions through the use of abstract tasks and their
orderings. We believe that many real world scenarios involve domains that have
little interaction such as the blocks and navigation domains, therefore defining
an ordered structure over them and solving problems local to each domain within
the domain itself would greatly reduce the complexity of search.

6 Related Work

In this section we review some of the systems close to the proposed approach.
Alpine [7, 8] is one of the first systems proposed to automate the generation
of abstraction hierarchies for a specific planning problem by grouping literals
appearing in the preconditions and effects of operators according to predefined
constraints over operators conflicts. The partitions are then topologically ordered
forming a directed graph of abstraction levels. Alpine solves the planning prob-
lem in the simpler abstract space, then refines the abstract solution at successive
levels of detail by inserting operators to achieve the conditions that were ignored
in the higher levels of abstraction. Alpine relies on the “Ordered Monotonicity
Property” to refine abstract plans: the refinements of the abstract plans main-
tain the literals established in the higher levels of abstraction i.e. make sure not
to violate what it has been achieved at higher levels. But as mentioned in [15]
Alpine does not guarantee the construction of good hierarchies, because it ig-
nores variable binding conflicts. Our approach differs from planning with alpine
in different ways. First, Alpine plans with abstract spaces specific to planning
problems, ours on the other hand uses abstraction on the domain level. Second,
in Alpine each intermediate state in an abstract plan forms an intermediate goal
(task to achieve) at the next level of detail; in our approach an abstract plan
can have tasks to be achieved at all the next levels of detail.

Collage [10] partitions the overall planning problem into regions of actions
and constraints over them. The localized partitioning relies on building a DAG
of abstract partitions from constraints over actions and their scope i.e. their
relevance to actions of the plan associated with their region and its subregions.
The planning algorithm has to maintain the consistency between the different
search regions involving a considerable amount of jumping between them to cope
with their interactions.

STRPLAN [11] is also a planning system that decomposes the original plan-
ning problem into sub-regions. The system uses a language that allows it to
specify domain sub-regions and specify local planners to them. To find a global
plan, a centralized control module coordinates the local planners by solving con-
straints over their sub-regions plans.

Perhaps the most related approach to ours is the one reported in [1] where
the planning domain is partitioned into sub-domains and organized in a tree
structure. The planning process works in two stages: first, abstracted actions
coded as complex messages are computed at each sub-domain. Starting with
the leaf sub-domains, the abstract action are added to the parent sub-domain
until reaching the root sub-domain which contains the global planning problem
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goal. The root sub-domain uses all its actions and the abstract actions from
its descendant nodes to find an abstract plan that solves the original planning
problem. The second stage consists in refining the plan found at the root node by
replacing all the abstract actions in the root plan by a sub-plan from the actions
of the sub-domains. The main difference with our approach is the construction of
the abstract actions at every sub-domain to represent all plans the sub-domain
can find to affect the fluents it shares with its parents. In our approach, only
one plan is constructed at a domain level, this plan solves the goals of the
corresponding domain and introduces new order constraints on the subgoals to
be solved in the subsequent domains.

The proposed approach is also comparable to Hierarchical Task Networks
“HTN” Planners such as SHOP [2], SHOP2 [12] and UMCP [3]. However HTN
planning relies on an expert to hand-code the procedures that are used to refine
abstract tasks which is error-prone and not easy for certain domains. Our ap-
proach relies on first principles planning to build abstract tasks automatically
during planning.

7 Conclusion

We have presented in this paper an approach to synthesize plans involving mul-
tiple domains. The approach assumes that a total order of the domains exists to
perform plan synthesizing by hierarchically refining abstract tasks defined as sub-
goals in their respective domains. The main advantages of using such approach,
besides search complexity reduction, are its simplicity, and the possibility to use
specialized planners when planning in the different domains. It can also be seen
as an alternative to using one big global planning domain making it possible to
write sub-domains by different experts. The use of abstraction to solve subgoals
seems to be a natural way that humans use in their daily life when performing
tasks implying different fields of knowledge. The assumption of a total order
between domains limits the applicability of the proposed approach to domains
with the kind of interactions discussed in section 2. In our future work, we will
investigate how to extend the planning algorithms to domains that can not be
totally ordered, i.e when there are cycles between the domains in terms of the
relation ≺. We also envisage to integrate the presented framework with the plan
executor implemented on board our mobile robots.
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Abstract. This paper describes a method for constructing and evaluat-
ing teleo-reactive policies for one or more agents, based upon discounted-
reward evaluation of policy-restricted subgraphs of complete situation-
graphs. The combinatorial burden that would potentially ensue from
state-perception associations can be ameliorated by suitable use of ab-
stractions and empirical simulation results indicate that the method af-
fords a good degree of scalability and predictive power. The paper for-
mally analyses the predictive quality of two different abstractions, one for
applications involving several agents and one for applications with large
numbers of perceptions. Sufficient conditions for reasonable predictive
quality are given.

1 Introduction

Teleo-reactive (TR)-agents were introduced in [16] and further developed in [1]
and [18]. Such agents act in response to stimuli received from their environment
in such a way to predispose them towards achieving known goals. Their simplest
program structure is a set (called a policy) of mutually-exclusive production
rules of the form perception→ action, usually intended to control durative be-
haviour: given a current perception the agent performs the corresponding action
until acquiring a new perception, whereupon it reacts likewise. We make two
key assumptions about TR-agents: they have (i) little or no access to cognitive
resources, such as beliefs or reasoning systems, and (ii) only partial observational
capability, in that their perceptions may not capture the whole environmental
state. A policy identified on this basis is implicitly goal-oriented. A significant
advantage is the relatively low resources a TR-agent needs for its internal logic;
unlike a deliberative agent [13] it does not need computational facilities capable
of executing complicated software. Moreover, since the agent’s policy is designed
to be effective whatever the state in which it finds itself, unexpected exogenous
changes in the environment do not cause difficulties. A framework for evaluating
policies was proposed in [3] and extended in [4, 5] to use abstraction to deal with
scalability, especially in multi-agent contexts. This paper investigates in Theo-
rems 1 and 2 the level of approximation entailed in using abstractions by giving
some sufficient conditions for reasonable predictive quality.

Our work is similar to, but different in approach from, those who seek to
optimize simple agents, comparable to our own, by the use of Markov Decision
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Processes (MDPs) or – when the agents cannot perceive the state’s entirety –
Partially Observable MDPs (POMDPs) [7, 10, 15]. The key assumption made
in these design methods is that beliefs about the agent’s current state can be
inferred on the basis of its previous action and/or current perception together
with beliefs about its previous state, thence enabling a suitable next action to
be chosen. This assumption yields algorithms capable of identifying policies that
are optimal or near-optimal relative to one’s ability to estimate probabilities
given the agent’s assumed powers of state observation. These methods are very
successful when the above key assumption holds, but are more complicated to
apply in the multi-agent context where the updating of each agent’s beliefs
has to consider the combinatorial impact of the other agents’ actions upon the
state. Our species of TR-agents are also different from those envisaged by [16],
where the design of a good policy rests on the assumption that the goal state
is totally observable. The content and ordering of the rules constituting the
desired policy are inferred by a reductive planning process that constructs and
orders rules so that the operation of each one may suitably enable the operation
of others, the whole intended to ensure that the goal state eventually becomes
achievable. We would also contrast our approach with those methods [9, 12,
14, 19, 21] that rely upon learning. Here the evolving experience of the agent
is effectively translated into merit-oriented weightings of the alternative actions
available to each perception. The outcome is typically a non-deterministic policy
allowing the agent to choose, for its current perception, between alternative
actions according to the weightings, which may be interpreted as the relative
probabilities of those actions being the best to perform.

The next section describes our framework and presents two abstractions.
Subsequent sections detail each kind of abstraction and analyse the approxima-
tions imposed on policy evaluation. The paper concludes with a discussion of
the ramifications of our results.

2 Overview of Framework

Any world in which our agents operate is capable of assuming various states.
An agent has three main features: a set P of perceptions it may have of its
environment, a set A of actions it may take and a policy relating actions to
perceptions. We here restrict the language of states, perceptions and actions to
be propositional. In any state o ∈ O, the agent’s possible perceptions form some
subset P (o) ⊆ P. A situation is any pair (o, p) for which o ∈ O and p ∈ P (o).
We call the tuple 〈O,P,A〉 a TR-application. A perception does not, in general,
capture the entire world state and the agent normally perceives only limited
information about that state. The problem is therefore how to find an optimal
policy for a given goal for an agent that (generally) cannot recognize it.

2.1 Situation Graphs

Our framework is based upon a structure called the unrestricted situation graph
G, which shows the situations that a representative agent called self may be
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in and the possible actions it may take. Each directed arc in G is labelled by
some action. When the agent is in a situation (o, p) its possible actions depend
only upon p and form a set denoted by A(p). A key feature of our framework
is the process of pruning selected arcs from G according to some policy f , to
leave the f-restricted graph, denoted by Gf . This graph commits the agent to
take, in any situation, the action determined by policy f , and shows what will
actually happen. We assume that every node in Gf other than a goal situa-
tion has a successor, possibly itself. Goal situations are not given a successor,
as we are primarily interested in the effectiveness of policies to reach a par-
ticular goal and not necessarily in what happens afterwards. These things are
summarised in Definition 1 and illustrated in Example 1 using BlocksWorld.
(Of course, BlocksWorld is just an exemplar of a wide range of state transition
systems.)

Definition 1. Let 〈O,P,A〉 be a TR-application. The unrestricted situation
graph, denoted by G, is a directed graph whose nodes are all the acceptable sit-
uations admitted by the given application. A policy f is a total function from P
to A and the restricted situation graph, denoted by Gf , is the result of pruning
all arcs from G except those sanctioned by policy f .

Example 1. There are 2 blocks on a table and an agent may see either the table
(s0), or a block (s1), or a 2-tower (s2) if it exists, and may be holding (h), or not
holding (nh), a block. The state is a list of the heights of towers present on the
table. (Situations 4a, 3d and 3e are possible only if there are several agents and
are used in Example 2.) An agent may take one of the actions: wander (w), pick
(k) or put (t). See Figure 1. The goal for this example is that at least one agent
shall reach state 2 and see the 2-tower (i.e. be in situation 2c). There is no action
prescribed for perception c, since it occurs only in the goal situation. In what
follows we will consider the policies Policy 1 and Policy 2, where Policy 1 always
takes the wander action and Policy 2 is given by a→ w, b→ t, d→ w, e→ w.
Figure 2 shows restricted graphs for these two policies, in which all actions are
wander except as indicated. The wander action is special in that it permits an
agent to change its perception without a state change. Depending on the level
of abstraction of the model the result of wander taken from situation s may, or
may not, include s. In this example we assume it cannot be s.

States
1 [1, 1]
2 [2]

States
3 [1]
4 [ ]

p O(p) A(p)
a s0, h {3, 4} {t,w}
b s1, h {3} {t,w}
c s2, nh {2} { }

p O(p) A(p)
d s1, nh {1, 3} {k,w}
e s0, nh {1, 2, 3} {w}

Fig. 1. States, Situations and Actions for Example 1
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1d 2c 2e

Policy 2

t

Fig. 2. Policies 1 and 2 ( Example 1)

2.2 Measuring Policy Values

We measure the value of a policy f by the method of discounted rewards [10].

Definition 2. Let f be a policy for a TR-application 〈O,P,A〉, let s = (o, p)
be a situation in Gf and SS be the successor set of s. The discounted reward
V (s, f), effectively measuring the benefit of the agent proceeding from s, is given
by the formula V (s, f) = Σu∈SS(χsu × (Υsu + γ × V (u, f))).

In the above, Υsu is the immediate reward for the action that takes s to u, χsu

is the probability that from s the agent proceeds next to u and the factor γ
discounts the benefit of taking that action at s. We choose 0 < γ < 1 to reflect
the diminishing returns to the agent of performing successive actions. Since we
are interested in policies that perform well, on average, from whatever state an
agent may find itself, these values of V are used to compute the overall value
of f , denoted by Vpre(f), given by the average of V (s, f) taken over all nodes s
in Gf . We distinguish two reward values: R for an arc leading immediately to a
goal situation and r for all other arcs in Gf . The situations’ values are related
by a set of linear equations which, since γ < 1, have unique finite solutions.

There are two issues of scalability for which we propose abstractions. The first
occurs when there are several agents. If every combination of agents were to be
represented, then each situation would need to include each agent’s perception.
For applications with up to m perceptions and n agents this could potentially
expand the number of situations and policies by a factor of nm. We choose to
approximate the restricted graph by focusing on the actions of a single agent
called self (see[5]). Ramifications of the behaviour of other agents, necessarily
in the same state as self but possibly having different perceptions, are reflected
in Gf by the use of exogenous arcs (denoted by x-arcs). The second issue of
scalability arises when the environment’s size is increased – for example if there
are many blocks. The increase in the number of states is usually accompanied
by a gain in the number of perceptions and if every possible perception were to
be represented even a small increase in G leads to a large increase in the number
of policies. For example, having 10 blocks and allowing a single agent to have
the 11 distinct perceptors s0, . . . , s10 would give the agent 21 perceptions in
all and one million policies to consider. Results presented in [6] show that both
approximations still give reasonable predictions of relative policy values.
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3 Formulation for Several Agents

If one were to use our framework to explicitly represent all situations for a group
of n agents, the situations would necessarily consist of a state and an n-tuple
of perceptions. This is the approach taken in [15], for example. Even for the
simple case of BlocksWorld with 2 agents and 2 blocks, this gives 17 situations
as opposed to 6 situations for a single agent. Nevertheless, we could imagine (but
not actually construct) such an unrestricted situation graph; we call it the group
graph denoted Gg. In [5] for several agents of the same kind ( i.e. having the same
policy and called clones), we introduced the self graph, denoted Gs

f , which focuses
on a single agent. This graph is a projection of the group graph over the first (or
any other) agent for a given policy and we showed it could be used to predict
a good joint policy. Here, we do not require agents to be clones and instead
call the various self graphs viewpoint graphs, denoted Gv. It is desirable that
the joint policy value should be approximated well by the policy value obtained
for any single agent viewpoint. We illustrate for two small examples and in the
following section consider under what restrictions the values of policies might
be invariant when taken from the viewpoint any individual agent. The notion of
TR-application is extended to allow for more than one kind of agent. We use the
notation 〈O,P,A,R〉, where R is a set of one or more policies and each agent
follows one of them (not necessarily uniquely). We assume here that all agents
possess similar perceptive capabilities, although that need not always be so.

Definition 3. Let 〈O,P,A,R〉 be a TR-application with n agents. The list
[(o, p1), . . . , (o, pn)] is a valid group if in state o it is simultaneously possible
for each agent i to have perception pi. The set Sg of possible situations is given
by Sg = {(o, p1, . . . , pn)|[p1, . . . , pn] is a valid group for the n agents }. The set Sg

forms the nodes of the group graph Gg and its transitions Tg are derived from the
possible transitions any agent could make from each situation: s = (o, p1, . . . , pn)
is connected to s′ = (o′, p′1, . . . , p

′
n) by action ai if some agent i in the group can

take the action ai in s to bring about s′. In particular, agent i, when in the in-
dividual situation (o, pi) and taking action ai, causes itself to make a transition
to (o′, p′i) and other agents to their perceptions given by s′.

That is, each valid group of simultaneous perceptions gives rise to a situation in
the group graph and each valid transition of a single agent gives rise to a transi-
tion in the group graph. The probabilities on each transition are proportional to
those of the individual transitions; e.g. if Agent 1 has a non-deterministic action
from some situation (o, p1) with two equi-probable outcomes, then if there are
3 agents these transitions would each have probability 1/6 from any group situ-
ation (o, p1, p2, p3). When there are several agents it is possible that self’s best
policy is to wait for some other agent to change the state, whence it continues.
We introduce the x action for this purpose. To obtain a viewpoint graph from
a group graph, first a particular policy is fixed for each agent and a restricted
group graph formed by omitting all arcs except those of the policy given for each
agent. Then a projection of the restricted group graph is taken from the point
of view of a particular agent i. It is also possible that, from the view of self, the



Abstract Policy Evaluation for Reactive Agents 49

state is exogenously changed by another agent. We call this passive updating of
self and label such transitions (in the viewpoint graph) also by x.

Definition 4. Let 〈O,P,A,R〉 be a TR-application with n agents and Gg be a
restricted group graph based on the set Sg of situations of the form (o, p1, . . . , pn)
and having set of transitions Tg. Then Gv

i is the viewpoint graph for agent i
obtained from Gg as follows. The situations of Gv

i are projections of those in Gg

and have either the form (a) (o, pi), in case (o, p1, . . . , pn) is not a goal situation
of Gg, or the form (b) (o, pj) in case it is, where agent j is responsible for
(o, p1, . . . , pn) being a goal situation. The set Tv of transitions in Gv

i is given by
Tv = {((o, pi), (o′, p′i))}, where (o, p1, . . . , pi, . . . , pn) to (o′, p′1, . . . , p

′
i, . . . , p

′
n) is

a transition in Gg and the action for a transition not due to the action of agent
i is x, and otherwise is the action taken by agent i.

A situation in a viewpoint graph may correspond to several situations in the
group graph from which it is derived. The abstraction function ab, a mapping
from situations in Gg to situations in Gv, records the correspondences and induces
an equivalence relation Ea on the situations in Gg. The Ea equivalence class of
a situation s in Gg, denoted [s], is {s′|ab(s) = ab(s′)} = ab−1(ab(s)). In other
words, the inverse images of situations in Gv are the Ea equivalence classes of
the situations in Gg. The transition probabilities for Gv (for Agent i) are derived
in proportion to those in Gg as follows: for a transition between s1 and s2 in Gv

due to an action ai of Agent i, the sum of probabilities between each situation in
ab−1(s1) and a situation in ab−1(s2) in Gg due to action ai of Agent i is computed
and divided by |ab−1(s1)|. If there are x-arcs between s1 and s2 due to actions
of some other Agent j, j �= i the sum of probabilities over all corresponding arcs
between ab−1(s1) and ab−1(s2) is divided by |ab−1(s1)| to give the probability of
an x-transition between s1 and s2. The sum of all resulting probabilities of arcs
from s1 will be 1, since in Gg the probabilities summed to 1 for each situation
in ab−1(s1).

Example 2 (extends Example 1). The group graph Gg is shown in Figure 3,
including the various situations, in which the leftmost arrow indicates the status
(either seeing the table or a block, and holding (H) or not) of Agent 1 using
Policy 1 and the rightmost the status of Agent 2 using Policy 2. All probabilities
are 0.5 unless shown otherwise and all actions are w except as indicated. There
are 17 nodes; nodes 5, 6 and 17 are designated goal situations, when at least
one agent is seeing the 2-tower (situation 2c). The joint policy, obtained using
Gg, has the following approximate node values: v(1) = v(2) = v(3) = v(4) =
v(8) = v(9) = v(10) = v(16) = v(11) = −10; v(5) = v(6) = v(17) = 0;
v(7) = v(12) = v(14) = 90; v(13) = v(15) = 59 and total value of 298/14.

To form the viewpoint graphs we use abstraction maps ab1 and ab2 between
situations in Gg and Gv1 and Gv2, which are shown together with the viewpoint
graphs for the two agents in Figure 4. All probabilities are 0.5 unless indicated
otherwise. From the view of Agent 2 there would initially appear to be no possible
exogenous transitions to passively update Agent 2, for since Agent 1 can only
wander it cannot alter the state. However, Gv2 has a reflexive x-arc from 3b to
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Fig. 3. Group Graph for two Agents using Policies 1 and 2 ( Example 2)

s in Gg s in Gv1 s in Gv 2

1
2
3
4
8
10
16
11
5
6
17
7
12
13
14
15

3a
3a
3b
3b
1d
1e
1e
4a
2c
2c
2c
2e
3e
3e
3d
3d

3d
3e
3d
3e
1d
1e
1d
4a
2c
2c
2c
2e
3b
3a
3b
3a

Viewpoint Policy 1

3a 3b

1d

1e

2c

2e
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3e.25
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.25

x

x
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1

Viewpoint Policy 2

x
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x
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Fig. 4. Viewpoint Graphs Gv1 and Gv2 for Example 2

itself arising from the transitions in Gg between situations 12 and 14 due to the
actions of Agent 1. We illustrate the computation for situation 3b in Gv2. The
arcs between situations 12 and 14 and the respective arcs on these nodes all
arise from the wander action of Agent 1 and summing these probabilities in Gg

gives 1. Similarly, the result of summing the probabilities on transitions in Gg

between 12 or 14 and any of the goal situations, corresponding to a transition
in Gv2 between 3b and 2c, is 1. The size of ab−1(3b) is 2, giving probabilities of
0.5 on both arcs from 3b in Gv2. The correspondence between situation 6 and 2c
for Agent 2 is obtained by case (b) of Definition 4. On the other hand, from the
view of Agent 1, there are some obvious exogenous behaviours. When Agent 1
is in situation 3d or 3e, then Agent 2 would necessarily be in 3a or 3b and, if in
3b, Agent 2’s action would be put, so constructing a 2-tower.
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If the joint policy is now evaluated from Gv2, the node values obtained are:
v(3b) = v(2e) = 90, v(3a) = 59, v(2c) = 0 and other node values = −10.
The total value is 189/8, quite close to the value obtained for Gg. However,
if a weighted average of the node values is taken, according to the number of
elements in ab−1(s), for each s, the average is (9×−10+2×90+1×90+2×59 =
298/14. If the joint policy is now evaluated from Gv1, the node values obtained
are: v(2e) = 90, v(3d) = v(3e) = 74.6, v(2c) = 0 and −10 for the remainder.
The weighted average is also 298/14, again exactly the value of the joint policy
obtained from the group graph. This desirable circumstance does not always
prevail, as the next Example shows.

Example 3. This example is from PlanksWorld, in which two identical agents
aim to dispose of a plank, for which each must be holding a (different) end. This
time the joint policy values for the group graph and viewpoint graphs differ.
The states and situations are given in Figure 5. Each agent is capable of the
actions wander, drop, lift, x and dispose. The situation (0, a) is the goal
and the states 1-3 are given by describing whether the single plank is (f)lat,
(t)ilted or (r)aised. The agents can perceive whether they are holding an end
(h) or not (nh), seeing a held or unheld end (sh or su) and, if holding, whether
the plank is raised (r) or not raised (nr). It is assumed that an agent can see
a held end if it is holding. Policy 3 specifies the following actions for each per-
ception: a → w, c → li, e → w, f → x, g → di and the viewpoint
graph (projected over Agent 1) and a fragment of the group graph are given
in Figure 6, in which all actions are wander unless shown otherwise and unla-
belled transition probabilities are 0.5. If the joint policy value is computed from
the group graph, the approximate node values obtained are: v(1a, 1a) = 35;
v(1c, 1a) = v(1a, 1c) = 42; v(1c, 1c) = 55; v(0a, 0a) = 0; v(3g, 3g) = 100;
v(2f, 2c) = v(2c, 2f) = 80; v(2f, 2a) = v(2f, 2e)) = v(2a, 2f) = v(2e, 2f) = 44
with total policy value of 610. If instead the joint policy value is computed from
the viewpoint graph Gv, the node values obtained are: v(1a) = 36, v(1c) = 50,
v(2a) = v(2e) = 44, v(2f) = 56, v(2c) = 80, v(3g) = 100 and v(0a) = 0 with
approximate total weighted value of 608. (e.g. the probabilities of the two arcs
incident to situation 2f are derived from the single transition to (3g, 3g) (the one
to 3g) and the 9 transitions between situations (2f, 2c), (2f, 2e) and (2f, 2a) (the
reflexive arc). In fact, the wander arcs contribute 1/3 and the x-arcs contribute
0.5 to the reflexive arc.) Although the two values obtained for the joint policy
are very close, they are not equal. In the next section we give criteria which are
sufficient to force the two computations to give identical values. These criteria
are satisfied for Example 2, but not for Example 3.

States
0 [ ]
1 [ f]

States
2 [t]
3 [r]

p O(p) A(p)
a s0, nh {0, 1, 2} {w, x}
c su, nh {1, 2} {li, w, x}
e sh, nh {2} {w, x}

p O(p) A(p)
f sh, h, nr {2} {dr, x}
g sh, h, r { 3} { di, dr, x}

Fig. 5. States, Situations and Actions for Example 3
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Fig. 6. Graphs for Example 3

4 Relationship Between Group and Viewpoint Graphs

Examples 2 and 3 above have shown that the policy values of a group graph and
viewpoint graphs derived from it need not be equal. In Example 3, the value of
node 2f (56) was exactly one-third of the sum of the values of the three nodes in
the equivalence class ab−1(2f) (80+44+44). This isn’t a coincidence, but does
not always obtain; for instance, also in Example 3, the value of node 1c (50) is not
one-half the sum of the values of the two nodes in ab−1(1c) (55+42). Theorem 1
states some sufficient conditions for the above property to hold.

Theorem 1. Let Gg be a group graph and Gv be the viewpoint graph for one of
the Agents. Let s be a situation in Gv and N be the set of situations in Gg that
are mapped to s by ab. Assume also that the rewards on arcs directed to nodes
in the same equivalence class of Gg are equal. Then the quantity v(s) × |N | is
equal to Σn∈Nv(n) if either of the following two circumstances holds.

(i) For each m in Gg not in N and not of type (ii), and for which there is an arc
to m from some node in N , there is an arc from every node in N to every
node in [m], the Ea equivalence class of m, all with the same probability, and
either the probabilities on all those kind of arcs are equal for every node in
[m] or every node in [m] has equal value.

(ii) For each m in Gg not in N such that the Ea equivalence class of m is a
singleton, exactly one node n in N has an arc leading to m, which is n’s only
non-reflexive arc, all other arcs from situations in N lead to other nodes in
N and the probabilities on these are in certain proportions: for each n′ ∈ N ,
n′ �= n the probability of the reflexive arc must be pr + pn′ , where pr is the
same for all n and the probability of transitions between other nodes in N
and n′ is pn′ .
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Proof. If N is the set of situations in Gg that are mapped by ab to s in Gv, we
shall write ab(N) = s. We shall also write v(s) for the value of a situation as
computed by the discounted reward formula. The conditions on (i) imply that if
any node in N satisfies them, then each node in N satisfies them and except in
the trivial case, when N and [m] are both singletons, the two cases are disjoint.
Let the size of N be k and each node in N have a bundle of arcs to nodes m
belonging to some set DM . We shall denote the value of ab([m]) in Gv by vM
and the reward for reaching a node in N or ab(N) by rN and for reaching a
node in [m] or ab([m]) by rm.

Case (i). Each node in DM is of the type described in (i), hence for each node
m ∈ DM the probability pnm of the arc directed to m from n ∈ N is the same.
The sum of the probabilities of arcs from a node n ∈ N to other nodes in N is
1−Σm∈DM (pnm) and in the viewpoint graph Gv the probability from ab(N) to
itself is 1−K, where K = Σm∈DM (pnm). There are two sub-cases:

(a) In Gv the probability of the transition from ab(N) to ab([m]) is Km, where
Km is #[m] × pnm, where pnm is the same probability for the transition in
Gg from each node in N to each node in [m] and #[m] is the size of [m]. The
values of the nodes in [m] may be different, but their mean is V m.

(b) In Gv the probability of the transition from ab(N) to ab([m]) is Σm′∈[m]Km′ =
Km, where Km′ is the same probability for the transition in Gg from each
node in N to m′. The values of the nodes in [m] are equal and denoted by
V m.

Case (a). Using the discounted reward formula on ab(N) (= s) in Gv gives
v(s) = γ(1−K)v(s) + γΣm∈ab(DM)(Km.V m) + (1−K)rN + K.rm, and hence
v(s) = (γΣm∈ab(DM)(Km.V m) + (1−K)rN + K.rm)/1− γ(1−K)) = C/(1−
γ(1−K)), where C = γΣm∈ab(DM)(Km.V m) + (1−K)rN + K.rm.

The values in Gg of nodes in N can be computed as the sum of the con-
tributions derived from transitions to nodes in N , denoted by restn, and other
transitions (to nodes in DM). The probability from a node in N to each node
in [m] is Km/#[m]. The second contribution is the same for all nodes in N and
is given by γΣ[m]⊆DM ((Km/#[m])Σm′∈[m]v(m′)) + K.rm + (1−K)rN = C.

It is required to show that Σn∈Nv(n) = k × v(s). For each n ∈ N , restn =
γΣn′∈N (pnn′ .v(n′)) = γΣn′∈N (pnn′(C + restn′)) = γCΣn′∈N (pnn′) + γΣn′∈N

(pnn′ .restn′) = γC(1−K) + γΣn′∈N (pnn′ .restn′).
Now, Σn∈Nv(n) = kC + Σn∈Nrestn, where Σn∈Nrestn = kγ.C(1 − K) +

γ(1−K)Σn∈Nrestn. This follows since the full expression for Σn∈Nrestn has a
unique solution (and one solution is to set all restn equal). Hence Σn∈Nv(n) =
kC + (kγC(1−K)/(1− γ(1−K)) = kC/(1− γ(1−K)).

Case (b). This time the value of v(s) is γ(1−K)v(s) + (1−K)rN + K.rm +
γΣm∈ab(DM)(Km.V m) and hence v(s) = C/(1− γ(1−K)).

In the group graph Gg the probabilities of transitions from nodes n ∈ N to
each node m′ ∈ [m] are the same, denoted by Km′ , although they may be differ-
ent for each m′. Then, for a node n ∈ N , v(n) = γΣ[m]⊆DM (Σm′∈[m](Km′ .V m))+
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K.rm+(1−K)rN +restn = γΣ[m]⊆DM (Km.V m)+K.rm+(1−K)rN +restn,
where again restn is the sum of contributions to v(n) derived from arcs to nodes
in N . The first three parts are the same for every n and their sum is C. It is
again required to show that Σn∈Nv(n) = k × vN and similar computations for
restn can be made as before, giving the result.

The proof of Case (ii) is simpler and makes similar sorts of calculations. �

Example 2 meets the criteria of Theorem 1 whereas Example 3 does not. For
instance, consider Gv1 of Example 2. For s = 3a and N = {1, 2}, [m] = {3, 4}
and case (ia) is satisfied. For s = 3d and N = {14, 15}, [m] can be either {12, 13},
and case (ia) is satisfied, or {5} and case (ib) is satisfied. On the other hand, in
Example 3 criteria (ii) is satisfied for 2f : pr = 0.5 and pn = 1/6 for both (2f, 2a)
and (2f, 2e). For 1a it is not satisfied, as the reader can easily check.

Although seemingly restrictive, in practice the restrictions on probabilities
are often nearly satisfied. Even when not, the proof method shows that, unless
the relevant probabilities are wildly variant, the two quantities will still be fairly
close since the viewpoint policy averages the various probabilities as if they were
equal. This result gives some foundation to our empirical results, obtained in [6],
which show that the ranks of the viewpoint policy values, computed using Gv,
are a good guide to the ranks of the group policy values, computed using Gg.

If the criteria are not met some variation should be expected between the
joint policy value as computed by the group and viewpoint graphs. In particular,
paths may exist in the viewpoint graph that are not realizable. The viewpoint
graph of Example 3 contains the path {1a, 1c, 2e, 2c, 3g, 0a}, which abstracts
the real path {(1a, 1c), (1c, 1c), (2e, 2f), (2c, 2f), (3g, 3g), (0a, 0a)}, but also im-
plicitly includes impossible paths. For instance, after starting from the possible
transition {(1a, 1a), (1c, 1a)} Agent 1 cannot move to 2e. In this example ev-
ery path in the viewpoint graph corresponds to at least one path in the group
graph, but if there are 2 planks and 2 agents, then paths can be found in the
viewpoint graph that do not correspond to any realizable path. The viewpoint
graph has abstracted away details of the groups, and although there may be arcs
leading through situations {s1, s2, s3} the group that occurs as a result of the
first transition may not be a correct one from which to make the second. We
call this the group incoherence problem. In extreme cases, the valuation of nodes
that apparently, but incorrectly, lead to a goal situation can inflate the policy
value, so that a bad policy appears better than it really is. On the other hand,
the extreme case appears to be fairly rare, so the benefit of viewpoint graphs for
scalability outweighs the disadvantages due to the group incoherence problem.

5 Policy Abstraction

There is another way to obtain abstractions. Consider an agent operating in a
BlocksWorld with many (e.g. 10) blocks; assuming just the actions wander, pick
and put there are 21 perceptions and over a million policies to evaluate. The
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number of policies can be reduced by generalising the perceptions. For example,
it could be that an agent can, and only needs to, detect a tower of height = 0, < 5
or = 5 or > 5. This generalisation can be seen either to be an enhancement of the
capabilities of the agent, for example by allowing it to perceive disjunctions, as
in seeing a tower of height 1, 2, 3 or 4 (the perception < 5), or by giving it more
power to sense the height of a tower; or to be an increase in expressiveness of the
policy language, for instance by using first order logic and allowing perceptions
of the form {size(x), x < 5, x > 0}. Either way, not only do the perceptions need
to be abstracted, but also several states may need to be combined in order for
situations of the form (o, p) to be meaningful. In [4] we investigated this kind of
abstraction, and our simulation studies showed it still gave good ranking charts
for policies in cases where the number of policies was too large for individual
computation. The discrepancies are again due to a coherence problem and to
explain it we consider what approximations are involved in calculating policy
values for such abstractions.

5.1 Generic Situations

From any TR-application 〈O,P,A〉, we can form a generic TR-application, in
which the actions remain unchanged, but the states and perceptions are gener-
alised, which means to introduce, respectively on P and O, equivalence relations
Ep and Eo. The Ep(Eo) equivalence classes are called generic perceptions(states)
and if perceptions p1 and p2 are Ep equivalent they will always specify the same
action. We could require that an agent is capable of taking the same actions for
all perceptions in each Ep equivalence class, or that the policy specifies such an
action, but it is not necessary, since if, for some generic perception P , the action
specified is not possible for an actual perception in P it could be modelled by a
failed action. For each generic state O and generic perception P the generic sit-
uation S = O×P is disjoint from all others, which is important since it ensures
that no policy can specify two different actions for any real situations.

Example 4. This can be illustrated straightaway for BlocksWorld by using a
generalisation with just two generic states [e3] and [ne3], denoted by 1 and 2,
and three seeing perceptors, s0, s3 and sx, the latter denoting “seeing nei-
ther the surface nor a 3-tower”. This yields the 6 perceptions a − f given
by {(s0, h), (sx, h), (s3, h), (s0, nh), (sx, nh), (s3, nh)}. This abstraction suits the
goal of building a 3-tower from an arbitrary but sufficient number of blocks. The
situations and transitions for the policy whereby the agent, if seeing a tower of
height neither 0 nor 3 (sx), can pick if not-holding (nh) or put if holding (h),
but in all other cases wanders, is shown for 3 blocks in Figure 7 (perception c is
impossible). The intended goal is the situation 1f (i.e. ([e3], (s3, nh)).

A comparison with any standard restricted graph G for 3 or more blocks
shows a second incoherence problem called piecewise incoherence. In the generic
restricted graph there is a path through situations {2e, 2b, 1f}. However, this
path could never actually occur – both parts of the path from 2e to 1f are
possible, but not in succession. The situation 2e corresponds to an agent seeing
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Fig. 7. Using generic situations (Example 4)

a tower of height 1, 2 or ≥4 and no 3-tower in existence. The policy specifies
the pick action causing the agent to move to 2b. In fact, that means the agent
could not have been seeing a tower of height 1 or of 4 when in situation 2e and
the agent must now be seeing a tower of height 1 or ≥4, for which the policy
specifies a put action. The outcome of this action in this particular circumstance
could never be 1f . In G there would be nodes from which a 3-tower cannot be
built due to pick and put actions between situations where the agent sees a
tower of height 2 or ≥5 and is not holding. For 3 blocks and the above pol-
icy G has a value of 51.6, whereas the graph in Figure 7 has a value of 71.5
( where node values are weighted by the number of concrete situations repre-
sented by each generic situation and assuming equi-probable transitions in both
cases).

The reader may think the problem could be overcome by enhancing the
agent with an extra sense, e.g. allow it to recall its previous action, so dis-
tinguishing between having arrived at 2b via 2e or via 2a. This splits the b
perception into two, one in which the agent remembers its previous action was
wander, and one in which it remembers it was pick, but it results in non-disjoint
generic situations unless a similar perceptive capability obtains in the standard
graph G and illustrates the care that must be taken when constructing generic
graphs.

5.2 Evaluating Generic Policies

This section discusses the relation between the policy value of a generic graph,
and the policy value of the non-abstracted graph for the corresponding policy.
The analysis made in the proof of Theorem 2 will also yield a criterion that
guarantees no piecewise incoherence in a generic graph.

Definition 5. Let 〈O,P,A〉 be a TR-application and Ep and Eo be equiva-
lence relations on the sets O and P respectively. Then 〈Eo, Ep,O,P,A〉 is the
generic TR-application based on 〈O,P,A〉 and the set of generic situations is
{S|S = O×P}, where O and P are, respectively, Eo and Ep equivalence classes.
〈O,P,A〉 is called the parent application.

The elements of a generic situation that also exist in its parent application
are called concrete situations. The probability of a transition from S1 to S2
in a restricted generic graph Ga is computed as the mean of the probabilities
of transitions from a concrete situation in S1 to a concrete situation in S2
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and is denoted by χa. We also make two assumptions: (a) the rewards on any
transition leading to an element of a generic situation S1 are the same, and (b) if
generic policy F specifies P → a, then the corresponding policy f for the parent
application specifies the rules p → a for every p ∈ P . Assumption (a) imposes
the restriction on the equivalence classes Ep and Eo that goal situations and
non-goal situations cannot be equivalent.

Theorem 2. Let Ga be a restricted graph for a generic TR-application and Gf

be the restricted graph for the parent application using corresponding policy f .
Then, for each generic situation S in Ga, k × VS = Σi∈Svi if the probabilities
on each transition between S and U in Ga are the average of the transition
probabilities between each i ∈ S and j ∈ U . (VS and vi are the values of situations
S and i in Ga and Gf and k is the number of concrete situations in S.)

Proof. For simplicity, zero probabilities are assigned to non-existent transitions.
Let S be a generic situation in Ga. Then the sum of values of concrete situations
in S is given by Σi∈Svi = γΣi∈S(Σj∈U,U∈Ga

(χij .vj))+Σi∈S(Σj∈U,U∈Ga
χij .rij),

where rij is the reward on the transition between i and j if it exists (and is
irrelevant otherwise). By the assumption (a) each of rij is the same for and
j ∈ U and all i ∈ S, so the contribution due to reward values can be simplified
to ΣU∈Ga

(rSUΣi∈S,j∈Uχij).
The quantity k × VS is given by kγΣU∈Ga

(χa
SU .VU ) + kΣU∈Ga

(χa
SU .rSU ),

The contributions due to reward values are the same in both cases for each U
since k × χa

SU = k(Σi∈S,j∈Uχij)/k. The other contribution to Σi∈Svi can be
written as kγΣj∈U∈Ga

(χSjvj), where χSj is the mean of the transition proba-
bilities between each concrete situation in S and each concrete situation j ∈ U .
If the χSj are further averaged over each j, each to be equal to χSU , then the
contribution becomes kγ(ΣU∈Ga

χSUΣj∈Uvj). By comparing the expressions for
k × VS and Σi∈Svi, it can be seen they would be equal if VS were the average
of vi, i ∈ S. �

In other words, the policy value using generic situations is obtained by assum-
ing that the transition probabilities between generic situations are an average
of the actual transition probabilities and that the node values are an average of
the concrete situation values. Therefore, in the case that some transitions do not
exist, piecewise incoherence is a possibility. In cases where the transition prob-
abilities between the concrete situations making up two generic situations vary
widely and/or the values of the concrete situations also vary widely, the generic
policy will not be a good reflection of the policy using concrete situations.

In Example 3, notice that if there are many blocks then the probability
of situation 2b occurring when the agent is seeing a tower of height > 4 is
much increased. Thus the probability of the arc between 2b and 1c would, in
practice (i.e. if measured by simulation), be quite small compared with that
of the arc between 2b and 2e. This would cause a corresponding reduction in
the policy value and improve the approximation, since the generic policy value
over-estimates the contribution to the value of 2b made by the arc to 1c. The
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absolute policy values are not as crucial as their relative ranking – even if the
policy values computed using Ga are higher than those computed using the full
graph Gf , if the values are ranked in the same order in both cases this will
still allow for the best policies to be found. In experiments conducted so far
(see [4, 6]) this has been the case. This abstraction has some similarities with
that introduced in [11], where a theorem similar to Theorem 2 is quoted. In
the circumstances when a transition in Ga between (O,P ) and (O′, P ′) implies
there is a transition between every (o, p) ∈ (O,P ) and (o′, p′) ∈ (O′, P ′) generic
policies always give reasonable approximations. Piecewise coherence cannot then
occur, since the destination in (O′, P ′) of a concrete transition from (O,P ) would
always be a source for the next transition from (O′, P ′) to some other generic
situation. Abstractions satisfying this criterion were considered in [17] and arise
naturally when the goal situation is also changed to reflect the changes in the
environment due to scaling; e.g. in BlocksWorld this kind of goal might be to
build a tower of all available blocks, or in PlanksWorld it might be to dispose of
all planks however many there were initially.

6 Conclusions and Future Work

We have analysed the approximations involved in using abstractions to evaluate
policies for TR-agents, in order to test the predictive quality of such abstractions
in contexts involving several agents and/or many situations. In the case of sev-
eral agents we approximated the group behaviour by focusing on a single agent
and Theorem 1 shows that the policy values are generally affected and may be
subject to group incoherence. This phenomenon is more likely in case there are
few states and many perceptions for each state; however, as we assume fairly
simple agents, this circumstance appears to be relatively uncommon, which is
borne out by our empirical studies in [5, 6]. Moreover, it is less likely in case
of a large number of agents, since all perceptions of a given state will be more
common, in turn making exogenous transitions in Gv more likely to occur in
practice.

We are investigating the benefits obtainable when agents possessing differ-
ent perceptive capabilities operate in the same environment. For example, some
agents may be endowed with global perceptions, and be capable of few ac-
tions, whereas other agents may be capable of more specific actions and per-
ceptions. The former kind of agent could act as an information source for other
agents.

We also analysed the approximations due to perceptual abstractions and
we found they could give rise to piecewise incoherence and that this was a more
common phenomenon than group incoherence. However, empirical results in [4, 6]
show that in case the transition probabilities are well estimated, the abstract
policy values give fair relative predictions for exact policy values. The results
depend on the particular generic situations chosen and this is a topic for our
future investigation, together with a comparison of our work with that of [11].
well under changing environmental conditions.
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Abstract. Soft constraints are flexible schemes for modeling a wide
spectrum of problems. A model based on a hierarchy of abstractions
of soft constraint problems has been proposed before. We describe an ef-
ficient implementation of this scheme aimed at solving real life problems.
Our system is integrated into the Mozart language in such a way that
user control of the abstraction mechanism is straightforward.We explain
how we adapted the theoretical results for our purposes and describe
the experiences in this adaptation. We give comparative analysis of our
system with respect to an implementation using soft constraints without
the abstraction mechanism. Our tests show good performance results for
over-constrained problems in real settings.

1 Introduction

A wide variety of problems can be conveniently represented as constraint sat-
isfaction problems (CSP). However, when criteria such as preferences, costs or
priorities are involved, more flexible models are needed. In many real world ap-
plications criteria of these kind arise naturally, so a good deal of research has
been going on for at least one decade in extending CSP to account for them.
Researchers have mainly focused on devising a solid theoretical basis for includ-
ing so-called “softness” in constraint models. Less attention, however, has been
payed to the practical side of this line of research.

A mechanism based on problem abstractions for handling “softness” within
the concurrent constraint paradigm has been proposed recently ([2, 3]). The idea
is to take the concrete (usually hard to solve) CSP and modify it in such a
way that an abstract easier problem is obtained. From the solution of the latter
valuable clues are obtained for guiding the search of a solution to the former.

To our knowledge, no programming tool has yet been proposed to effectively
use the abstraction scheme in real world problems.

We describe a tool written in Mozart ([16]) for abstracting semiring-based
constraints. Our abstraction procedures are fully integrated into the Mozart pro-
gramming language. This approach gives us a number of advantages, including
efficiency, correctness (derived from theoretical results), the ability of tackling
real-life problems and the possibility of distributing these tools to a large commu-
nity of users. Our main contribution is thus a tool that supports the abstraction

J.-D. Zucker and L. Saitta (Eds.): SARA 2005, LNAI 3607, pp. 60–75, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Implementing an Abstraction Framework for Soft Constraints 61

scheme and is fully compatible with Mozart’s search model. The tool provides
two procedures: one for abstracting a fuzzy CSP into a classical one and another
one to bring information from the abstract domain back to the concrete one.
This information is very useful to enhance the pruning action of soft constraint
propagators, such as those proposed in [6]. We present experimental results on
real problems that show the significance of our abstraction procedures for im-
proving efficiency. These results exhibit a good performance of the abstraction
procedure, and provide clues about the incidence procedure parameter values
have on global performance.

Structure of this Document. The document is organized as follows. In the next
section we give a concise account of the theoretical results on semiring-based
constraints, including its abstraction scheme. The Mozart model and features are
also introduced there. In section 3, our procedures for abstracting soft constraints
in Mozart are presented. Analysis and results are described in section 4. In
section 5 a revision of related work is given. Finally, a set of concluding remarks
as well as some ideas of future work are discussed in section 6.

2 Preliminaries

2.1 Semiring-Based Constraints and Its Abstraction Scheme

Here we briefly summarize the most important definitions and properties of the
semiring framework for soft constraints. Theoretical results for abstraction are
also outlined. A more complete description of these topics can be found in [1, 2].

A semiring is a tuple (A,+,×,0,1) where A is a set and 0,1 ∈ A. +, the
additive operator is closed, commutative and associative. Moreover, its unit ele-
ment is 0. ×, the multiplicative operator, is a closed, associative operation, such
that 1 is its unit element and a×0 = 0 = 0×a holds. In addition, × distributes
over +. A c-semiring is a semiring with some additional properties: × is com-
mutative, + is idempotent, and 1 is its absorbing element. The idempotency of
+ is needed in order to define a partial ordering ≤S over the set A, which serves
to compare different elements of the semiring. Such a partial order is defined as
follows: a ≤S b iff a + b = b.

A constraint system is a tuple CS = 〈S,D, V 〉, where S is a semiring, D is a
finite set and V is an ordered set of variables. Given a constraint system CS =
〈S,D, V 〉, where S = (A,+,×, 0, 1), a constraint over CS is a pair 〈def, con〉,
where con ⊆ V is called the type of the constraint, and def : D|con| → A is
called the value of the constraint. In this way, a soft constraint problem (SCSP)
P over CS is defined as a pair P = 〈C, con〉, where C is a set of constraints over
CS and con is a subset of V .

Consider any tuple of values t and two sets of variables I and I ′, with
I ′ ⊆ I. t ↓I

I′ denotes the tuple projection of t w.r.t. the variables in I ′. Let
c1 = 〈def1, con1〉 and c2 = 〈def2, con2〉 be two constraints over CS. Then, its
combination c1⊗ c2, is the constraint c′ = 〈def ′, con′〉, where con′ = con1∪ con2

and def ′(t) = def1(t ↓con′
con1

) × def2(t ↓con′
con2

). Moreover, given the constraint
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c = 〈def, con〉 and a subset w of con, the projection of w over c, written c ⇓w is
the constraint 〈def∗, w〉, where def∗(t∗) =

∑
{t|t↓con

w =t∗} def(t).
Given an SCSP P = 〈C, con〉 over a constraint system CS, the solution of

P is a constraint defined as Sol(P ) = (
⊗

C) ⇓con where
⊗

C is the extension
of × to a set of constraints C. Moreover, an optimal solution is a pair 〈t, v〉
such that def(t) = v, and there is no t′ such that v < def(t′). Sometimes
it is enough to know the best value associated with the tuples of a solution.
This is called the best level of consistency: Given an SCSP P = 〈C, con〉, the
best level of consistency for P is defined as blevel(P ) = (

⊗
C) ⇓∅. P is said

to be consistent if 0 <S blevel. In the case where blevel = α, P is said to be
α-consistent.

By using the ordering ≤S over the semiring, we can also define a correspond-
ing ordering on constraints with the same type. Consider two constraints c1,c2
over a constraint system CS, and assume that con1 = con2 and |con1| = k. Then
c1 �S c2 if and only if, for all k-tuples t of values from D, def1(t) ≤S def2(t).
This notion, and the fact that the solution is a constraint. is also useful to define
an ordering on problems. Consider two SCSPs P1 = 〈C1, con〉 and P2 = 〈C2, con〉
over CS. Then P1 �P P2 if Sol(P1) �S Sol(P2).

C-semirings that cast most known variants of CSPs are listed below:

– Classic CSP: 〈{false, true},∨,∧, false, true〉
– Fuzzy CSP: 〈{x | x ∈ [0, 1]},max,min, 0, 1〉
– Weighted CSP: 〈�+,min,+,+∞, 0〉

Abstraction for Semiring-Based Constraints. The idea of abstraction has been
adapted for semiring-based constraints in order to relate two versions of an SCSP.
This relationship is formally given by a Galois connection.

Let (C,�) and (A,≤) be two posets (the concrete and the abstract domain).
A Galois connection 〈α, γ〉 : (C,�) ⇀↽ (A,≤) is a pair of maps α : C → A and
γ : A → C such that 1) α and γ are monotonic, 2) for each x ∈ C, x � γ(α(x))
and 3) for each y ∈ A, α(γ(y)) ≤ y. Moreover, a Galois insertion (of A in C)
〈α, γ〉 : (C,�) ⇀↽ (A,≤) is a Galois connection where γ · α = IdA. It is possible
to establish a relationship between operators in abstract and concrete domains.
This relationship is called local correctness. Let f : Cn → C be an operator over
the concrete domain with an abstract counterpart f̄ . Then f̄ is locally correct
w.r.t. f if ∃x1, . . . , xn ∈ C, f(x1, . . . , xn) � γ(f̄(α(x1), . . . , α(xn))).

Using this definitions, an abstraction from an SCSP P over a certain semiring
S to another SCSP P̄ over the semiring S̄ can be defined, in such a way that
lattices associated to S and S̄ are related by a Galois insertion. Specifically, we
wish to define an abstraction that preserves the structure of the SCSP. Consider
the following concrete SCSP P = 〈C, con〉 over the semiring S, where

– S = 〈A,+,×,0,1〉 and
– C = {c0, . . . , cn} with ci = 〈coni, defi〉 and defi : D|coni| → A.

Its abstract counterpart is defined by an SCSP P = 〈C, con〉 over the semiring
S where:
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– S = 〈A,+,×,0,1〉;
– C = {c0, . . . , cn} with ci = 〈coni, defi〉 and defi : D|coni| → A;
– if L = 〈A,≤〉 is the lattice associated to S and L = 〈A,≤〉 the lattice

associated to S, then there is a Galois insertion 〈α, γ〉 such that α : L→ L;
– × is locally correct w.r.t. ×.

Next we list some interesting properties of this abstraction scheme. We will
heavily use them on the rest of this paper. In the following we will consider a
Galois insertion 〈α, γ〉 : 〈A,≤S〉⇀↽ 〈A,≤S〉

1. The abstraction of P is the problem P = α(P ). Applying the concretization
function to this abstraction, we obtain the problem γ(α(P )). These two
problems are related by a precise property:

P �S γ(α(P )).

This guarantees that when passing from P to γ(α(P )) no new inconsistencies
are introduced.

2. If applying the abstraction function and then combining gives elements which
are in the same ordering as the elements obtained by just combining, the
abstraction is said to be order-preserving. This fact ensures that an optimal
solution in the original problem is also an optimal solution of the abstract
one.

3. For any abstraction, it is possible to compute approximate bounds for the
valuation of an optimal solution in the concrete domain using an optimal
solution of the abstract problem. This is, given an optimal solution of the
abstract problem (say t) with valuation v, we can find an upper and lower
bound of an optimal solution for the concrete problem P . Such bounds will
be γ(v) and the value of t in P .

For the abstraction that maps fuzzy to classical CSP there are also other in-
teresting results. In this case, the abstraction function is defined by choosing
a threshold θ within the interval [0, 1], and mapping all elements in [0, θ] to 0
and all elements in (θ, 1] to 1. This abstraction is order-preserving, so we can
ensure that the set of optimal solutions of the concrete problem is a subset of
the optimal solutions of the abstract one.

1. if α(P ) has no solution, problem P has an optimal solution with associated
semiring fuzzy value worse than or equal than θ.

2. if P has a solution tuple t with associated semiring level θ, and α(P ) has no
solution, tuple t is an optimal solution for P .

2.2 Constraint Programming in Mozart

Mozart [16] is a concurrent constraint programming language that provides sev-
eral functionalities, including support for distributed programming, constraint
solving, as well as supporting tools for programming. Many real-life problems
have been successfully solved with Mozart (see for instance [7, 8]). It also provides
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efficient built in constraints over finite domains of integers as well as convenient
mechanisms for creating suitable propagators and new constraint systems [11].
Next we provide a concise introduction to Mozart [13, 10, 15].

Mozart considers basic and non-basic constraints. A basic constraint is a
logic formula interpreted in some first-order structure. These are chosen so that
entailment can be efficiently decided. Non-basic constraints are relations built
from combination of basic constraints. Basic constraints are kept in a monotonic
store. Non-basic constraints are enforced by propagators [15]. A propagator is a
computational agent encapsulating a filter function that deduces consequences
(i.e. new basic constraints) of the non-basic constraint. A propagator for a con-
straint c ceases to exist if c is entailed by the current store or if the conjunction
of the current store and c is unsatisfiable. In that case, the propagator for c is
said to be disentailed, since ¬c is entailed by the current store [10]. Typically,
propagators share variables. This causes propagators to trigger each other by
writing new basic constraints to the store. This continues until a propagation
fixed-point is reached [10]. The order in which the propagators add information
to the store does not matter.

Computations in Mozart take place in computation spaces. A computation
space consists of a set of propagators connected to a store. A space S is said to
be stable, if no further propagation in S is possible. A stable space S is said to be
failed, if S contains a propagator that disentails some constraint. A stable space
S is solved, if S contains no propagators [13]. Moreover, a variable assignment
is called a solution of a space if it satisfies the constraints in the store and all
constraints enforced by propagators.

Constraint propagation is not a complete solution method. To achieve com-
pleteness, the space must be distributed. Given a stable space S (not failed nor
solved), a new constraint c is chosen, and two new spaces must be solved: S ∧ c
and S∧¬c. It is important to choose c such that both new spaces trigger further
constraint propagation. By proceeding in this way we obtain a search tree, where
each node corresponds to a space and each leaf corresponds to a space that is
either solved or failed. Since the alternatives depend on variables of the problem,
a finite search tree can be assumed [15].

A distributor is an agent implementing a distribution strategy on a sequence
x1, . . . xn of variables. When a distribution step is necessary, the strategy selects
a yet to be determined variable in the sequence and distributes on this variable
(i.e. imposes a new constraint over the selected variable). There are several
possibilities for distributing over a variable x. For instance, a naive distribution
strategy will select the leftmost undetermined variable in the sequence, and adds
constraints of the form x = v and x �= v as alternatives, for some value v.

A Semiring-Based Constraints Solver for Mozart. A soft constraints solver based
in fuzzy CSPs has been recently implemented for Mozart (an initial implementa-
tion is described in [6]). Although its low-level implementation is fully orthogonal
w.r.t. Mozart propagation model, the fuzzy CSP solver constitutes an indepen-
dent module.

The main feature of the solver is the replacement of the concept of constraint
definition given in the framework above (which explicitly associates a semiring
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value with each tuple) by a notion that is suitable for an inexpensive implemen-
tation. Such a notion is defined by three components: a distance function wired
to each constraint, giving an idea of how wrong a tuple is; a penalization factor
associated to each constraint, representing the cost that must be payed in the
overall valuation when such a constraint is violated, and a cut level representing
the minimum level of consistency the whole constraint problem must have. The
last two notions are user parameters. By the interaction of these notions it is pos-
sible to express soft problems in an straightforward way. Valuations associated
with each tuple of variables are then computed using the mentioned penalization
factor and the distance function. In this way, a small amount of valuation data is
stored for a constraint problem while providing propagation algorithms (tailored
for each constraint) that discard all tuples valued under the cut level. This is
how the cut level influences solving processes for soft constraints.

Currently, the module provides soft versions of several kinds of constraints, in-
cluding relational operators and arithmetic constraints, using a syntax very simi-
lar to the one provided by Mozart’s finite domain constraints. Search procedures
handling valuations of the solutions are also included in the module. Extending
the module (either with constraints and/or search procedures) is straightforward
given the constraint propagation interface provided by Mozart [11].

3 Abstracting an SCSP Using Mozart

Finding solutions to a soft constraint problem using conventional constraint pro-
gramming techniques (i.e. backtracking based ones) turns out to be expensive for
several reasons, including the larger search space associated with such a prob-
lem, the need of storing and calculating over valuation data and the reduced
value pruning action that soft propagation algorithms provide. Clearly, these
aspects prevent users from using soft constraints in large or medium size prob-
lems. Therefore, finding efficient mechanisms for solving soft constraint problems
is crucial for tackling real life problems.

In this scenario, abstraction frameworks constitute a feasible alternative to
solve and/or to approximate soft constraint problems in a reasonable amount of
time. In particular, the abstraction scheme outlined in section 2.1 provides strong
theoretical elements for performing this task. The idea is to process the abstract
problem and to extract information from that process, in such a way that the
solving process for the concrete problem can be accelerated using information
about solutions and/or its approximations. The abstraction scheme can relate
several instances of the semiring-based framework such as classical CSP, fuzzy
CSP and others. This means that an efficient solver for one of the instances could
be used to solve one of the others, under certain assumptions.

In this section we present a Mozart implementation of the abstraction from
fuzzy to classical CSPs. This particular abstraction has many interesting prop-
erties that can be exploited in an implementation. Moreover, it is possible to
take advantage of the efficient classical mechanisms provided by Mozart to im-
plement an expressive soft constraints instance like fuzzy CSPs. Under this idea,
there is no need of implementing an additional module or library for including
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soft constraints in Mozart programs. Using theoretical results outlined before,
we implement procedures to:

– abstract a fuzzy CSP into a classical one (the alpha function in a Galois
insertion),

– process an abstract problem using an iterative procedure and,
– bring information from the abstract domain to the concrete one (the gamma

function in a Galois insertion).

In the following we provide a complete description of these procedures, re-
lating the theoretical results described before with the particular features of our
Mozart implementation.

3.1 Alpha Function

Alpha function converts a fuzzy CSP into a classical one without affecting the
structure of the original problem. By doing so, a mapping between semiring
values of the fuzzy CSP (real numbers between 0 and 1) into the two possibles
values for the classical CSP (0 or 1) is performed. Those values over a threshold
are mapped to 1, while the other values are mapped to 0. In our case, such a
threshold is the cut-level of the given problem.

In the semiring formalism every tuple has a semiring valuation associated
with it. In our implementation, however, those valuations are computed during
execution time using the cut-level of the given problem and the penalization value
of each constraint. Consequently, to convert a fuzzy CSP into a classical CSP
we modeled it using classical constraints, in such a way that those tuples with
valuation over the cut level (of the fuzzy problem) are accepted and all other
tuples are rejected. To make this conversion in an automatic way, we defined
a classic constraint with a special feature for every fuzzy constraint. Such a
feature, so-called slack value, is an extra parameter that is computed with the
penalization value of every constraint, the cut-level of the whole problem and
the maximum valuation possible in the fuzzy semiring (i.e. 1). These constraints
with slack values are called classical counterparts. In this way, the objective of
the alpha function is to compute the slack values for every classical counterpart
and to ensure that they accept (and reject) the same values than the fuzzy CSP
does.

The intended semantics of the fuzzy constraint must guide the definition
of a classical counterpart. In the case of arithmetic/mathematical constraints,
a general rule for classical counterparts consists in relaxing the (in)equalities
included in them. This can be done by replacing equalities with inequalities
and by carefully including slack values in expressions containing inequalities.
Note that this unified relaxing criteria is valid for a wide range of constraints,
from simple ones like X ≤ Y to complicated polynomial constraints. For other
types of constraints, e.g. the all-different constraint, the relaxation criteria
may differ, since several factors may induce or suggest different definitions of
classical counterparts for a single constraint. The following example illustrate
these ideas.
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Example 1. Consider the fuzzy constraints Exp1 < Exp2 and Exp1 +Exp2 =
Exp3, where each Expi is an arithmetic expression. The alpha function computes
the slack value which, along with the classical counterpart, is used to convert a
fuzzy CSP into an equivalent classic CSP. For instance, the classical counterparts
for the less than constraint are as follows:

Exp1 < Exp2 + S1 ∧ Exp1 − S1 < Exp2

All tuples accepted by the less than constraint are also accepted by its associated
classical counterpart. For instance, let X,Y be two finite domain variables and
Exp1 = X and Exp2 = Y , assuming a cut level of 0.8 and a penalization level
of 0.05. The slack value (S1) is then equal to 4 (obtained by (1.0 − 0.8)/0.05).
The tuple 〈X = 3, Y = 2〉, valued with 0.9 in the concrete domain, is accepted
in the abstract one as both 3 < 2 + 4 and 3 − 4 < 2 hold. On the contrary,
〈X = 7, Y = 1〉 is rejected as both inequalities do not hold (i.e. 7 �< 1 + 4 and
7− 4 �< 1). All tuples accepted by the classical counterpart of a fuzzy constraint
are valued with 1. On the other hand, the counterpart for the plus constraint is:

abs((Exp1 − Exp2)− Exp3) ≤ S2.

where a possible case could be Exp3 = Z (another finite domain variable), and
S2 depends on the penalization factor associated with the constraint.

3.2 Gamma Function

Given a solution to the abstract problem, the gamma function returns its val-
uation in the concrete domain. This function is used in certain stages of the
iterative procedure where the concrete valuation of a solution may improve its
performance.

Example 2. Consider the constraints in the previous example and the tuple
〈X = 4, Y = 3, Z = 5〉 (inconsistent with both of them), assuming a penaliza-
tion factor of 0.07 for the plus constraint. For this tuple, the gamma function
will return an overall fuzzy valuation of 0.86 = 1.0 − 0.14. This penalization
is obtained by considering the maximum between the violation cost induced by
the plus constraint (0.07 ∗ 2 = 0.14) and the induced by the less than constraint
(0.05 ∗ 2 = 0.1).

3.3 An Abstraction Procedure for Soft Constraints in Mozart

Here we describe the implementation of the abstraction scheme proposed in [2].
We explain how alpha and gamma functions fit in our implementation. We use
the fact that by finding solutions to the abstracted problem we are finding some
possible optimal solutions for the fuzzy problem.

The iterative procedure aims at finding the smallest interval containing the
valuation of the best solution to the fuzzy problem. The size of the interval
is reduced during the procedure until a desired size is obtained. The interval’s
bound to be modified depends on the outcome of a search process over the
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Algorithm 1. Iterative Algorithm for Abstracting Soft Constraints
IterativeSolving := proc (P , Delta, Inter, t, BCut, Option)

if ValidateInterval(Delta, Inter) == true then
return BCut

else
Spc = StartSpace(P , Inter.low)
Answ = SearchOneAbstract(Spc)
if Option == Eager then

NewInter = EagerMode(Inter, t, Answ, Gamma(Answ))
else if Option == Binary then

NewInter = BinaryMode(Inter, t, Answ)
else if Option == Pessimistic then

NewInter = PessimisticMode(Inter, t, Answ)
if Answ == nil then

IterativeSolving(P , Delta, NewInter, Option, BCut)
else

IterativeSolving(P , Delta, NewInter, Option, Inter.low)

abstracted problem. A very important feature here is that the cut level used in
this search process is given by the lower bound of the current interval. Therefore,
the value of this bound is fundamental for overall performance of the iterative
procedure. There are three ways of defining the lower bound of the interval (t
represents the lowest cut level accepted by the user).

1. Binary Mode. If there is a solution in the abstract domain for the interval
[l, u], then such an interval becomes [(l + u)/2, u]. Otherwise, the interval
becomes [max(t, 2l − u), l].

2. Eager Mode. This mode takes into account information from the Gamma
function to define the lower bound of the interval. When there is a solution,
the new lower bound will be the maximum between the concrete valuation
of the found solution (obtained by using Gamma function) and the lower
bound given by the Binary mode. Therefore, a lower bound at least as good
as the one obtained with the Binary mode is guaranteed.

3. Pessimistic Mode. This mode is tailored to those difficult cases when there
is no solution or when a solution is very close to 0. Given an interval [l, u], if
there is no solution then the interval becomes [v, l] where v is the highest cut
level of a solution obtained so far. If such a cut level does not exists, then
v = t. This mode allows rapidly finding whether there is no solution for the
given problem.

Algorithm 1 sketches the iterative procedure described before. It assumes the
following input data.

– P , a Mozart procedure asserting a set of soft constraints.
– Delta, a real number representing the desired precision.
– Inter, a tuple representing an interval. In the first iteration, this interval is

defined as (low : init, upp : 1.0), where init is an initial cut level given by
the user.
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– t, the lowest cut level acceptable for the user.
– BCut, a real number representing the best cut level found so far.
– Option, a string representing the mode of defining the lower bound of the

interval.

A single invocation of the algorithm can be explained as follows.
ValidateInterval checks the possibility of reducing the input interval given by
the precision Delta. If the size of the interval is less than Delta, then the best
cut level found so far is returned. Otherwise, a computational space is created
(function StartSpace). The abstract version of constraints in P is asserted in this
space, which takes also the lower bound of the interval as cut level. A search pro-
cess (function SearchOneAbstract) is then performed over this abstracted prob-
lem. The result of this search as well as the lower bound reduction mode are
used for determining the new interval. The answer of the search process is used
in choosing the recursive call of the algorithm.

Note that the variant of the algorithm is the size of the interval. As this size
decreases in each iteration (this is guaranteed by functions Eager and Binary),
termination of the algorithm is guaranteed by ValidateInterval. When no solution
is found, nil is returned.

The iterative procedure provides safe information about the best cut level
in the concrete domain. Using that information, a search procedure over the
concrete domain is invoked.

Using the Abstraction Procedure in Mozart Programs. The internals of the ab-
straction procedures are transparent to the user. Constraints are written in the
same way as in the concrete (fuzzy CSP) solver. Invocation of the usual search
procedures must be replaced by a call to the abstraction procedures.

Abstraction procedures are fully parameterizable. The desired interval size,
the initial cut level as well as the mode for defining the lower bound of the interval
can be easily provided by the user. Moreover, both abstract and concrete solvers
can use graphical Mozart facilities like the Browser [12] and the Explorer [14].

Example 3. Let us recall the soft constraint problem discussed in examples 1
and 2. Procedure Test sets up the corresponding abstraction scheme.

proc{Test Sol}

X Y Z in % Declaration of variables

X::1#6 Y::1#5 Z::3#10 % Domain specification

{Soft.plus X Y Z 0.07} % Constraint declaration

{Soft.less X Y 0.05}

Sol = sol(x:X y:Y z:Z) % Defining a Solution Variable

{FD.distribute ff Sol} % Distribution strategy (first fail)

end

% Abstraction procedure invokation:

{Soft.abstract Test 0.01 0.6 ’Eager’}

In this case, the abstraction procedures use a precision of 0.01, with an initial
cut level of 0.6 and using the Eager mode for selecting the lower bound.
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Note that since the abstraction procedures are completely written in Mozart
including them in constraint programs is straightforward. The proposed abstrac-
tion scheme could also be implemented in any other constraint programming
language.

4 Experimental Results

In this section we illustrate the functionality and features of our abstraction pro-
cedures. We study one of the instances of the Radio Link Frequency Assignment
Problem (RLFAP) provided by CELAR (the French “Centre d’Electronique de
l’Armement”) [4]. This problem fits well in our study for several reasons. First,
it gives us the opportunity of testing our programming technique with a real
life situation. The instance we are dealing with is over-constrained and com-
plex (in terms of the number of variables and constraints). On the other hand,
it is a well known benchmark, accessible to anyone interested in solving over-
constrained situations in constraint programming and artificial intelligence. The
purpose of the presented examples is to illustrate the behavior of the abstraction
procedures in over-constrained problems, but not to find their optimal solutions.

Tests in this section were performed on a machine with a 2.4 GHz Xeon
Processor running Mozart 1.3.1. All results are the average of 25 runs.

Description of the Problem. The Radio Link Frequency Assignment Problem is
a finite domain problem consisting in assign communication channels to radio
links from limited spectral resources. In the model, there is a variable for each
radio link, and its domain is composed of the available frequencies. Some soft
and hard constraints are asserted:

– xi = fj , asserting that a radio link xi has a pre-assigned frequency fj . When
the pre-assignation cannot hold, a cost ai must be payed.

– |xi − xj | > dij . This constraint must be imposed when radio links xi and
xj may interfere together. In case this constraint cannot be satisfied, a cost
bi must be assumed.

– |xi − xj | = δij . It defines a duplex link. This is a hard constraint asserting
that the difference between the distance of the frequency assigned to xi and
the frequency assigned to xj must be equal to δij .

We are interested in studying the behavior and performance of our abstrac-
tion procedures in the sixth instance provided by CELAR (simply known as
CELAR 6). This instance tries to minimize the sum of violation costs. This
optimization criteria is not considered in our tests, although it is possible to
include it by giving an additional parameter to the distributor. According to
[4], during the process of finding lower bounds for CELAR 6, a set of hard but
small sub-instances were extracted. These instances are ideal for benchmarking
as they are reasonably hard to solve and can be tackled by current algorithms.
They are described in Figure 1 (Left).
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Instance No.of No. of Graph
Vars. Const. Density

6-0 32 223 (16) 0.4697
6-1 28 314 (14) 0.8306
6-2 32 369 (16) 0.7439
6-3 36 439 (18) 0.6968
6-4 44 499 (22) 0.5274

Starting Time Valuation
Level (s)
0.6 2.38 nil

0.5 173.20 nil

0.4 180.73 nil

0.3 156.81 0.31
Total time 513.12 s.

Fig. 1. Left: Instances taken from CELAR 6. The number of hard constraints in each
instance is given in brackets. Right: Finding a good cut level with a fuzzy (concrete)
solver for instance 6-2

Comparing Abstract and Concrete Solvers. In our first test we compare our ab-
straction procedures and a soft constraints solver in terms of the required exe-
cution time for finding an acceptable cut level. That is, using the soft constraint
solver we simulate the abstraction procedures by guessing some values for a cut
level and running the soft constraint solver with this level. The purpose is to
find the greatest cut level for the problem in the smallest amount of time. In
this test, we consider instance 6-2 assuming violation costs of 0.015 for all soft
constraints in the problem. Hard constraints were modeled using efficient FD
constraints provided by Mozart. Both systems start with a tentative cut level
of 0.6. The abstraction procedure considers a precision value of 0.001 using the
Eager mode to select the lower bound.

Results are displayed in Figure 1 (Right) and 2. For the soft constraint solver,
we picked four different values as tentative cut levels and only found a solution
in the last one. Around eight minutes were needed for this. Note that this value
is not necessarily optimal.

The results of the abstraction procedures are quite different. Besides the
significant time improvements, the abstraction procedure is able to find a lower
bound for an optimal solution. This bound is higher than the valuation obtained
by the soft constraint solver. The procedure needed nine iterations to achieve a
very precise interval. It is interesting to observe that in only one iteration (the
eighth one) the value of the best solution found so far was better than the lower
bound given by the binary mode.

Choosing Appropriate Initial Cut Levels. Our second test compares the perfor-
mance of the abstraction procedures for instances 6-0 and 6-4. There is a justifi-
cation behind this decision. According to [5], with the exception of instance 6-0,
every instance 6-i is a sub-instance of 6-i + 1 and therefore presumably simpler
to solve. That is, 6-0 and 6-4 are the only two disjoint instances, and we can
consider instance 6-4 as the harder one.

The purpose of this test is threefold. First, a valid concern about our pro-
cedures is to determine to what extent a given initial cut level influences the
performance of the system. We studied initial cut levels ranging from 0.3 to 0.9.
The influence is shown in terms of the number of iterations needed to reach the
interval. Second, a particular question regarding RLFAP is the effect of violation
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Iteration Lower Bound Upper Bound Solution?
1 0.6 1.0 No
2 0.4 0.6 No
3 0.3 0.4 Yes
4 0.35 0.4 Yes
5 0.375 0.4 No
6 0.3625 0.375 No
7 0.35625 0.3625 No
8 0.353125 * 0.35625 Yes
9 0.355 0.35625 Yes

Total time 5.11 (s)

Fig. 2. First test: Evolution of the abstraction process for the instance 6-2. Lower
bounds are decorated with an ‘*’ when the concrete valuation of the found solution
was higher than the binary criteria

Inst. Best Interval Found Viol. Starting Cut Level

(starting with
0.1)

Cost 0.3 0.5 0.7 0.9

6-0 [0.579883, 0.581641] 0.02 268.82 (7) 276.47 (7) 254.99 (8) 307.90 (8)
[0.685, 0.690625] 0.015 270.29 (7) 229.89 (5) 252.37 (8) 268.79 (9)

[0.789062, 0.803125] 0.01 275.05 (8) 243.01 (7) 280.41 (6) 243.10 (8)
6-4 [0.14, 0.142188] 0.02 59715.67 (6) 59216.90 (7) 117335.54 (8) 50697.48 (8)

[0.353125, 0.38125] 0.015 84727.96 (8) 120690.90 (8) 55923.91 (8) 108410.14 (9)
[0.57, 0.571094] 0.01 85533.80 (8) 83780.74 (7) 81762.58 (8) 49214.30 (8)

Fig. 3. Second Test: Each cell contains the execution time (in milliseconds) and the
number of iterations required for finding the optimal cut level. Precision was set to
0.005 for all executions

costs on system performance. We tested three violation costs: 0.01, 0.015 and
0.02. Finally, we wish to obtain a concrete measure of the time performance of
our system. In particular, we are interested in studying execution time when
both violation costs and the starting cut level vary as described before.

Results for this test are displayed in Figure 3. The second column contains a
reference interval obtained by running each one of the instances with an initial
cut level of 0.1. This shows the effect of violation costs over the interval bounds.
Note that the actual interval obtained using the cut levels in Figure 3 can be
slightly different from this reference interval.

Our first observation is that instance 6-0 is significantly simpler to solve than
instance 6-4, as conjectured in [5]. With respect to the first purpose of the test,
by using the reference interval it is possible to infer that underestimating the
cut level when choosing a starting cut level is a good strategy. This fact is more
evident in instance 6-0 with violation costs equal to 0.015. Although in practice
the cut level is unknown, it could be an appropriate strategy. Another issue is
the interaction between both the number of iterations and the starting cut level
with the valuation costs. For executions having high violation cost (e.g. 0.02),
as the value of the staring cut level increases, the number of iterations increases
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too. This tendency is not very clear in other instances using different valuation
costs.

On the relationship between violation costs and time performance, it is not
possible to establish a defined behavior from our results. In only one instance (i.e.
instance 6-4, with violation cost of 0.01) a clear tendency can be observed. This
is a very significant fact, as this is the (theoretically) most expensive instance.

From the results it can be inferred that there is no clear relationship between
the number of iterations and time performance. This phenomenon can be ex-
plained by the unique features of each problem and by the strong influence slack
values have in search processes over the abstracted problem. This also applies
for the relationship between violation costs and time performance over problems
using the same starting cut level. Although there are cases where the behavior
is as expected (e.g. instances 6-4 and 6-0 with starting cut level 0.3), where
the average execution time increases as violation costs decrease, most executed
problems does not exhibit a defined global behavior.

5 Related Work

The relationship between constraint satisfaction and abstraction formalisms has
been previously studied. Most related to ours is [3]. There, an iterative procedure
is proposed for solving fuzzy CSPs having a classical solver. Several differences
and similarities between our work and [3] can be appreciated:

1. Our implementation and the system reported in [3] are completely different.
Our scheme stores just a value for each constraint (the penalization factor), a
very inexpensive mechanism compared with the costs of storing and handling
valuations associated with each tuple in a soft constraint problem, as done
in [3]. In contrast with [3], our proposal considers abstraction as a complete
programming technique that extends a constraint programming language.
Using our procedures, a soft constraint problem can be solved with the same
Mozart program, using either the abstract or the concrete solver. Finally,
our abstraction procedures are flexible as standard means for extending the
classical counterparts are provided. To our knowledge, these capabilities are
not available for the system described in [3].

2. With respect to the iterative procedures, options provided by our algorithm
are similar to the three versions presented in the algorithm given in [3] (i.e.
A1, A2 and A3). However, our modes offer additional features that may
improve solution processes. First of all, in our procedures the user is allowed
to give both a desired precision for the working interval and a value of the
lowest cut level accepted. None of these options is supported in [3], where
only a fixed precision of 1/10 is available in the A1 algorithm. As the A2
algorithm in [3], our eager mode also takes into account the valuation of
the best solution found to calculate the new lower bound. Nevertheless, we
also consider the value of the lower bound given by the binary mode in
this calculation, since such a value could be better than the value given by
the best solution so far (see the first test in previous section). Finally, our
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pessimistic mode improves algorithm A3, since when there is no solution the
algorithm continues looking for the best cut level until reaching the lowest
cut level given by the user. In contrast, algorithm A3 in [3] stops as soon as
no solution is found.

3. Time performance is very similar in both systems. Two important issues
should be considered here. First, as said before, the level of precision used in
[3] is small compared to ours. Clearly, such a precision influences the number
of iterations needed for a problem and thus influences overall performance.
Second, the fact that we are dealing with a real-life problem (instead of
solving randomly generated problems as in [3]) gives more significance to
the time performance of our system.

Another related work ([5]) focuses on finding intervals framing optimum so-
lutions. This work is done in the context of the Valued CSPs and studies how
to find upper bounds on the optimum by computing the distance between the
value of the best solution found so far and the best lower bound produced so far.
In some sense, our work and [5] shares a similar philosophy regarding the role
of an optimum, as we intend to approximate it in a very precise way instead of
trying to find it.

Finally, in [9] AbsCon, an object-oriented tool for solving CSPs using abstrac-
tion principles is presented. In that work, the objective is to solve CSP using a
classical constraint solver (based on backtracking) possibly in cooperation with a
hybrid solver. It considers abstraction as an approximation relation, as opposed
to abstraction mappings or Galois connections.

6 Conclusions

In this paper we have used a recently proposed theoretical CSP abstraction
framework to construct a complete and robust programming tool for the Mozart
programming language. This framework, based on a Galois insertion, is imple-
mented in Mozart in a very clean way, providing straightforward user control.

We analyzed the implementation of alpha and gamma functions in the Mozart
search model. Implemented abstraction procedures are highly compatible with
an existing module for solving semiring-based constraints in Mozart [6]. This
provides a clean interaction between, on the one hand, soft and hard constraints
(provided by Mozart), and, on the other hand, our abstraction procedures. In
this way, we solve fuzzy problems without implementing a whole new solver.
More important, the ideas behind implementation of alpha and gamma functions
proposed here for handling soft constraints can be easily applied, without loss
of generality, into any programming language providing classical constraints.

Our experimental results show that our abstraction procedures have a very
competitive performance for real problems. Abstraction procedures significantly
outperformed a fuzzy solver in the search for a good cut level. We have studied
the influence of the initial cut level (an input to the abstraction procedure) in the
overall process of finding bounds for the best solution in soft constraint problems.
By empirical observations, we found that a good strategy is to underestimate the
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initial cut level. We also have shown how the number of iterations performed by
the abstraction procedure has no direct relationship on overall time performance.

In the near future, we plan to provide dynamic slack values inside a unique
search tree. This should be more efficient since multiple executions of the ab-
stract solver could be avoided. We also plan to distribute our soft constraints
mechanisms (the soft constraints module and the presented abstraction proce-
dures) as a Mozart contribution. This would make our implementations available
to anyone interested in this field.

Acknowledgements. We are grateful to Gustavo Gutierrez for useful com-
ments and suggestions on this work. We also would like to thank the anonymous
reviewers for their valuable comments for improving this paper.
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Abstract. To use constraint technology to solve a problem, the solu-
tions to the problem must first be characterised, or modelled, by a set
of constraints that they must satisfy. A significant part of the modelling
process can be characterised as refinement, the process of generating a
concrete model from an abstract specification of the problem. Expert
modellers also identify and perform transformations that can dramati-
cally reduce the effort needed to solve the problem by systematic search.
Through a case study of modelling a simplified version of the SONET
fibre-optic communication problem, this paper examines the processes
of refinement and transformation, and especially the interaction between
the two.

1 Introduction

Constraint programming is a successful technology for tackling a wide variety
of combinatorial problems. To use constraint technology to solve a problem, the
solutions to the problem must first be characterised, or modelled, by a set of
constraints on a set of decision variables that they must satisfy. A significant
part of the modelling process can be characterised as refinement, the process of
generating a concrete model from an abstract problem specification. Following
[16], and the convention in formal methods, by an abstract specification of a
constraint problem, we mean simply a representation in which the details (the
modelling decisions) have been abstracted away. Refinement adds these details to
produce the concrete model (the modelling decisions are made). There are usu-
ally many possible refinements of an abstract problem specification; identifying
the effective ones often requires considerable expertise.

Expert modellers also identify and perform transformations, which are some-
times complex, that can dramatically reduce the effort needed to solve the prob-
lem by systematic search (see, for example, [25]). We use the term transformation
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to refer particularly to operations that change a model or specification but, unlike
refinement, do not alter the level of abstraction. Such transformations include
adding constraints that are implied by other constraints in the problem, adding
constraints that eliminate symmetrical solutions to the problem, removing re-
dundant constraints (i.e., those that yield no extra pruning but add overhead)
and replacing constraints with their logical equivalents.

Through a case study of modelling a simplified version of the SONET fibre-
optic communication problem [23], this paper examines the processes of refine-
ment and transformation, and especially the interaction between the two. Start-
ing with an abstract specification of the problem, we perform refinements and
transformations to produce seven alternative models. These models are concrete
in that they are similar to the kind that are supported by existing constraint
toolkits. We generate the models in an explicit and somewhat systematic way;
a sytematic manual exploration of the possible models has proved to be an im-
portant first step in our ongoing work towards formalising and automating the
modelling process [12].

This case study illustrates the fundamental observation that some transfor-
mations operate on a particular (concrete) model of a problem whereas others
are model independent. We refer to these two kinds of transformations as model
transformations and problem transformations. Though a problem transforma-
tion corresponds to some transformation on a particular model, an advantage of
transforming a problem specification is that the benefits of the transformation
are inherited by all models. Some transformations can also be performed more
easily at the more abstract level of the problem specification.

The case study also shows how a refinement operation can trigger a useful
transformation, thus saving the work of searching for it. In particular, we will
see a case where a refinement operation that introduces a matrix into a model
can easily recognise that the matrix has column symmetry.

Given the ability to generate alternative models, heuristics are needed to
guide refinement and transformation towards good models. Towards this goal,
we perform an empirical analysis of the generated models to begin to form gen-
eralisations about the expected utility of alternative modelling decisions.

2 Specifying the SONET Problem

For illustration, consider the SONET fibre-optic communications problem [22].

A communications network has client nodes and known levels of demand be-
tween pairs of nodes. Traffic can only be routed between two nodes if they are
installed, via an add-drop multiplexer (ADM), on the same SONET ring. Each
node may be installed on multiple rings and demand between two nodes may
be split over several rings. The maximum number of rings available is known.
Each ring has a capacity in terms of the volume of traffic and the number of
nodes that can be installed on it. Objective: minimise the number of ADMs.

It suffices here to consider a simplified version of the SONET problem, pre-
viously considered by Smith [23], in which it is known which node pairs must
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Fig. 1. Demand pairs for and optimal solution of example Simplified SONET instance

communicate, but demand levels are ignored. Consider an instance of the SONET
problem with 5 nodes and 2 rings, where each ring is able to accommodate 4
nodes. Figure 1 depicts both the demands between nodes and an optimal solution
using only 6 ADMs.

2.1 SA: An Abstract Problem Specification

This section presents an abstract specification of the Simplified SONET problem,
which, in subsequent sections, is refined and transformed to produce concrete
models. The problem must be specified at a level of abstraction above that at
which modelling decisions are made. We use Essence [12], an abstract constraint
language whose key feature is that, in addition to the usual atomic variables
(variables whose domains comprise atomic elements), it allows non-atomic vari-
ables. In doing so, it builds on the facilities available in constraint toolkits such
as Ilog Solver and Eclipse, which have supported set variables for several years,
ESRA [10], which supports relation variables, F [17], which supports function
variables, and NP-Spec [7], which supports a variety of variable types, includ-
ing partitions. However, Essence is unique in that it supports arbitrarily-nested
variable types, such as set of sets and set of set of tuples.

An instance of Simplified SONET is identified by four parameters: nnodes,
nrings the number of nodes and rings; c, the uniform node capacity per ring;
and D, the demand. D is a set of unordered node pairs, {n, n′} where n and
n′ are nodes that must communicate. The decision variable must represent an
assignment of nodes to rings; since a node can be assigned to multiple rings, we
treat this as a relation, which we call rings-nodes, between rings and nodes.

Figure 2 gives SA, an Essence specification of the Simplified SONET prob-
lem1. Here the nodes are represented by N , a range of natural numbers. The
rings are represented by R, a set comprising nrings unnamed elements. The pro-
vision of sets of unnamed objects is a unique and important feature of Essence.
It facilitates abstraction in specifications by not forcing the elements of a set
to be given arbitrary names that are never used. There is no need to name the
rings, since individual rings are not mentioned in the specification.

The objective, (1), is to minimise the number of ADMs, represented by the
cardinality of rings-nodes. The capacity constraint is imposed by (2) and the

1 Space precludes a full description of Essence. See [12] for details. The simple spec-
ification given should be clear from the description.
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given nrings: integer, nnodes: integer, c: integer
where nrings ≥ 0, nnodes ≥ 0, c ≥ 0
letting N be integer (1..nnodes), R be new type (size nrings)
given D: set of set (size 2) of N
find rings-nodes: R × N

minimising |rings-nodes| (1)

such that ∀ r∈R. |rings-nodes(r, )}| ≤ c (2)

∀{n, n′}∈D. rings-nodes( , n) ∩ rings-nodes( , n′) �= ∅ (3)

Fig. 2. Specification of the simplified SONET problem

communication constraint is imposed by (3). To clarify, the expression {n, n′} ∈
D means that two distinct elements are drawn from D and, without loss of
generality, one is called n and the other is called n′. Note also that rings-
nodes( , n) is the projection of the rings-nodes relation onto n ∈ N , that is
{r|rings-nodes(r, n)}.

3 Transforming the Abstract Problem Specification

This section presents transformations on the abstract specification of the Sim-
plified SONET problem, SA. We begin by deriving and adding two implied con-
straints to the specification.

The first imposes a lower bound on the number of ADMs required for each
node. We define the partner set of a node n to be {n′|{n, n′} ∈ D}, each element
of which must be related to at least one common ring with n by rings-nodes. Once
n is installed, the remaining capacity of a ring is c−1. Hence, the minimum num-
ber of installations of n required to satisfy the communication demand between it
and each member of its partner set is

⌈
|{n′|{n,n′}∈D}|

c−1

⌉
, to which we refer hence-

forth as ADMMinc(n). Observe that all the terms contained in ADMMinc(n) are
parameters; hence, for any given problem instance, it is constant. The implied
constraint follows:

∀n ∈ N.ADMMinc(n) ≤ |rings-nodes( , n)| (4)

The second implied constraint imposes a lower bound on the number of ‘open’
rings, i.e. those rings with at least one node installed. From (4), it is simple to
derive a minimum total number of ADMs. Division by the ring capacity c gives

the bound
⌈∑

n∈N
ADMMinc(n)

c

⌉
, to which we refer henceforth as RingMinc.

This is also a constant for any given instance. The implied constraint is:

RingMinc ≤ |{r ∈ R|rings-nodes(r, ) �= ∅}| (5)

We now exploit dominances. Given an optimisation problem, a partial assign-
ment a dominates another a′ if the utility of the best extension of a is at least as
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good as the best extension of a′. We exploit dominances by adding constraints
to preclude dominated partial assignments.

First, an assignment where a node n has more installations than the cardi-
nality k of its partner set is dominated by an assignment where n has at most k
installations:

∀n ∈ N.|{n′|{n, n′} ∈ D}| ≥ |rings-nodes( , n)| (6)

Henceforth, we refer to |{n′|{n, n′} ∈ D}| as ADMMax(n). It is also constant for
any given instance.

Second, an assignment where a node n is installed on a ring that contains
no elements of its partner set is dominated by an assignment where n is only
installed on rings containing at least one element of its partner set:

∀n∈N, r∈R.
rings-nodes(r, n)→|{n′∈N|{n, n′}∈D∧rings-nodes(r, n′)}|>0

(7)

Finally, an assignment where the sum of the installations on two non-empty
rings is less than or equal to c is dominated by an assignment where the contents
of the two rings are merged:

∀{r, r′} ⊆ R.(rings-nodes(r, ) �= ∅) ∧ (rings-nodes(r′, ) �= ∅) →
|rings-nodes(r, )|+ |rings-nodes(r′, )| > c (8)

4 Refining the Simplified SONET Problem

Refining the transformed Simplified SONET specification principally involves
replacing the rings-nodes relation variable with a structured collection of atomic
variables and set variables. If the target language into which we are refining does
not support set variables, these could be refined into atomic variables; doing so
is not addressed in this paper. We consider three possibilities for refining an
arbitrary relation variable, R : A×B:

1. A two-dimensional 0/1 matrix, Rm, indexed by A × B, where Rm[a, b]=1
indicates R(a, b), when a ∈ A, b ∈ B.

2. A one-dimensional matrix of set variables, BtoAms indexed by A. For each
a ∈ A, BtoAms[a] is {b ∈ B|R(a, b)}.

3. A one-dimensional matrix of set variables, AtoBms indexed by B. For each
b ∈ B, AtoBms[b] is {a ∈ A|R(a, b)}.

In the following subsections, we use combinations of these three representa-
tions to refine SA to seven different CSP models, as summarised in Table 1. SB,
SC and SD each use one of the three, above-listed representations of a relation
variable; the other models each use multiple representations channelled together.
Two models, SB and SH , closely resemble basic models created by experts in
Operations Research [22] and Constraint Programming [23].
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Table 1. Simplified SONET: Specification and models

Model Characteristics
SA Sets and Relations
SB Matrix
SC Ring Set Variables
SD Node Set Variables
SE Matrix + Ring Set Variables
SF Matrix + Node Set Variables
SG Ring Set + Node Set Variables
SH Matrix + Ring Set Variables + Node Set Variables

4.1 SB: A Matrix Model

Using rule (1), the rings-nodes relation is refined into a two-dimensional matrix
of 0/1 variables, rings-nodesm, where rings-nodesm[r, n] denotes the element in
column r and row n. The matrix needs to be indexed by N and R. Since N is
the set {1, . . . , nnodes} it can serve as an index. However, R is an unnamed set,
so it cannot serve as an index. We therefore refine R to the set {1, . . . , nrings}.

In the Essence statement of the problem there is no way to refer to partic-
ular rings, from which it follows that the rings are constrained identically. By
naming the rings in SB we introduced into the model symmetry among rings. In
particular, if an assignment is a solution to a Simplified SONET instance, then
it is still a solution after we exchange all the nodes installed on any two rings.
For example, if installing nodes {1, 2} and {3, 4} on rings 1 and 2, respectively,
is a solution, then so is installing nodes {3, 4} and {1, 2} on nodes 1 and 2,
respectively. Intuitively, the rings are interchangeable. In SB the rings are the
values of the column index of rings-nodesm, so the columns of an assignment can
be interchanged without affecting whether the assignment is a solution. This is
called column symmetry and, in the general case, index symmetry [9].

This discussion illustrates an important observation: refinement can (and
often does) introduce symmetry into the model it generates—and it does so in a
systematic way that can be characterised formally. Indeed, the formal refinement
rules presented by Frisch et. al. [12] identify the symmetries that they introduce.
The significance of this is that we can avoid the (potentially expensive) process
of trying to detect these symmetries in each generated model.

Once symmetries are identified, there are several alternative methods that can
be used to break them, and thus reduce solution time. One class of methods,
called dynamic symmetry breaking (e.g. SBDS [15]), are the symmetry-aware
search methods. These search methods take a description of the symmetries and
use it to dynamically prune symmetric parts of the search space. Alternatively,
the model can be transformed by adding symmetry-breaking constraints that
prune some symmetrical assignments from the search space. This is the approach
we take here, the advantage of which will become apparent later.

Column symmetry can be dealt with effectively by treating each column as a
vector and constraining the columns to be in non-increasing lexicographic order
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as the column index increases [9]. Thus, to SB we add the symmetry breaking
constraint:

∀ 1 ≤ r < nrings. rings-nodesm[r, ] ≥lex rings-nodesm[r + 1, ] (9)

where rings-nodesm[r, ] is column r of rings-nodesm, and ≥lex denotes lexico-
graphically greater than or equal to, enforceable by the GACLex algorithm [11].

The nodes N in the Simplified SONET problem are not, in general, inter-
changeable because they have different demands, as specified by D. However, in
certain instances some, or all, of the nodes have identical demands. If a set of
nodes has identical demands then the corresponding rows are interchangeable. In
Figure 1 n1 and n2 have identical demands, so the first two rows of an assignment
to rings-nodesm can be interchanged without affecting whether the assignment
is a solution. Given such a set of interchangeable rows, the symmetry can be
broken by constraining them to be in non-increasing lexicographic order as the
row index increases. This has been shown to be consistent with the lexicographic
ordering constraints that we imposed on the columns [9]. If there are multiple
sets of interchangeable rows, each such set can be handled in this way.

The previous paragraph shows how certain symmetries in a model of a par-
ticular instance can be handled by adding symmetry-breaking constraints to the
model. Our main focus is on building models of problems not instances, so we do
not discuss this in detail. However, to handle instance-specific symmetries in a
model of a problem, preconditions must be placed on the methods used to break
symmetry. As a problem is instantiated into an instance, the preconditions are
tested and symmetry is broken among the objects that are symmetrical in the
instance.

Now that we have discussed the refinement of rings-nodes to a matrix, and
the symmetries involved, we continue by refining the constraints and objective
function. This requires replacing constraints on rings-nodes with constraints on
rings-nodesm. Each column r of rings-nodesm corresponds to the characteristic
function for the set of nodes installed on ring r (i.e. rings-nodes(r, )), and
similarly for each row n, so refining (1) and (2) is straightforward:

Minimise(
∑
r∈R

∑
n∈N

rings-nodesm[r, n]) (10)

∀r ∈ R.
∑
n∈N

rings-nodesm[r, n] ≤ c (11)

The demand constraint requires the intersection of subsets of N to be non-
empty. When using characteristic functions, (3) is easily represented via scalar
products, which are the cardinality of the intersection:

∀{n, n′}∈D.scalar-product(rings-nodesm[ , n], rings-nodesm[ , n′]) �= 0 (12)

where rings-nodesm[ , n] denotes the nth row of the rings-nodesm matrix. SB

is a basic version of that used in [22]. Indeed, matrix models in general are a
common pattern in constraint programming [8].
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As noted above, each row (or column) of rings-nodesm is equivalent to the
characteristic function for the projection of rings-nodes onto an element of N
(or R). A bound on the cardinality of such a projection is easily enforced using
a summation on a row or column. Hence (4) and (7) are refined to:

∀n ∈ N.ADMMinc(n) ≤
∑
r∈R

rings-nodesm[r, n] (13)

∀ n∈N, r∈R.rings-nodesm[r, n] = 1→
∑

n′|{n,n′}∈D

rings-nodesm[r, n′] > 0 (14)

Constraint (5) places a lower bound on the number of open rings. A ring, r
is open if it has at least one ADM installed on it, which in this model means
that column r of rings-nodesm has a non-zero sum. So, constraint (5) could be
implemented by introducing a 0/1 variable for each ring to indicate if it is open.
This is cumbersome to impose and it is a weak constraint because it does not
force any particular ring to be open.

A much better way of dealing with constraint (5) is obtained by noticing
that symmetry-breaking constraint (9) implies that all the open rings are less
than2 the unopen rings. Thus we can impose the constraint that each of the first
RingMinc columns of ringnodesm has a non-zero sum:

∀ 1 ≤ r ≤ RingMinc.
∑
n∈N

ringnodesm[r, n] �= 0 (15)

Observe that this constraint, which is much stronger than merely saying that
at least RingMinc rings are open, can be imposed only because of the symmetry-
breaking constraint. In general, the choice between alternative symmetry-break-
ing constraints should consider the inferred constraints they enable [13]. Also
note that this is often a significant advantage to using symmetry-breaking con-
straints over dynamic symmetry-breaking methods.

Finally, (8) is refined into model SB straightforwardly, as follows:

∀{r, r′} ⊆ R.∑
n∈N rings-nodesm[r, n] > 0 ∧

∑
n∈N rings-nodesm[r′, n] > 0

→
∑

n∈N (rings-nodesm[r, n] + rings-nodesm[r′, n]) > c

(16)

4.2 SC : A Set Variable (Rings) Model

Using rule (2), the rings-nodes relation is refined into a one-dimensional matrix
of set variables, nodesOnRingms, indexed by R such that nodesOnRingms[r] con-
tains the set of nodes installed on r. As in the previous sub-section, to serve as
an index R is refined to the set {1, .., nrings}.

The objective and ring capacity constraint are easily stated:

Minimise(
∑
r∈R

|nodesOnRingms[r]|) (17)

∀r ∈ R.|nodesOnRingms[r]| ≤ c (18)

2 Since each ring is identified by an integer, some rings are “less than” others.
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The demand constraint is more difficult to specify. It constrains at least one
of the set variables to contain particular pairs of nodes:

∀{n, n′} ∈ D.
∑
r∈R

(n∈nodesOnRingms[r] ∧ n′∈nodesOnRingms[r]) > 0 (19)

In the above we have reified each conjunction to a 0/1 value and used summation
to express the disjunction.

The symmetry among the indices of nodesOnRingms can be broken cheaply
(but only partially) by ordering the cardinalities of the sets:

∀1 ≤ r < nrings. |nodesOnRingms[r]| ≥ |nodesOnRingms[r + 1]| (20)

Having broken the symmetry in this way, the implied constraint on the minimum
number of open rings can be refined simply by disallowing the first RingMinc

elements of nodesOnRingms from being empty:

∀1 ≤ r ≤ RingMinc.|nodesOnRing[r]| �= 0 (21)

The remaining implied constraint (4) on the minimum number of installa-
tions for any node is more awkward since it requires that we check each of the
individual rings. Again we use a summation of reified element constraints:

∀n ∈ N.
∑
r∈R

n ∈ nodesOnRingms[r] ≥ ADMMinc(n) (22)

The ADMMax constraint to exploit dominance (6) can be stated similarly.
Of the remaining constraints to exploit dominance, nodesOnRingms facilitates

the expression of the content merging constraint (8) most easily:

∀{r, r′} ⊆ R.|nodesOnRingms[r]| > 0 ∧ |nodesOnRingms[r′]| > 0 →
|nodesOnRingms[r]|+ |nodesOnRingms[r′]| > c (23)

Finally, we refine the constraint that specifies a node should only be installed
on a ring that contains at least one element of its partner set (7):

∀n ∈ N, r ∈ R.n ∈ nodesOnRing[r] →
∑

n′|{n,n′}∈D

(n′∈nodesOnRing[r])>0 (24)

4.3 SD: A Set Variable (Nodes) Model

Using rule (3), the rings-nodes relation is refined into a one-dimensional matrix
of set variables ringsWithNodesms, indexed by N such that ringsWithNodesms[n]
contains the set of rings on which n is installed. Since R is an unnamed set it
cannot provide the domain elements for the set variables. Once again, therefore,
it is refined to the set {1, .., nrings}.

Given ringsWithNodems, the objective is refined as follows:

Minimise(
∑
n∈N

|ringsWithNodems[n]|) (25)
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The demand constraints are also easily stated:

∀{n, n′} ∈ D.|ringsWithNodems[n] ∩ ringsWithNodems[n′]| ≥ 1 (26)

However, since the ring capacity constraints involve all the node constraints we
again make use of reification:

∀r ∈ R.
∑
n∈N

r ∈ ringsWithNodems[n] > 0 (27)

The symmetry among the values of ringsWithNodems can be broken partially
by insisting that the first node, n, with a non-empty partner set is installed on
the first ring:

1 ∈ ringsWithNodems[n] (28)

Hence, the implied constraint on the minimum number of open rings (5) is refined
by ensuring that the first RingMinc rings appear in at least one of the sets in
ringsWithNodems:

∀1 ≤ r ≤ RingMinc.
∑
n∈N

r ∈ ringsWithNode[n] �= 0 (29)

The implied constraint on the minimum number of installations per node (4)
is easily stated on the node set variables:

∀n ∈ N.ADMMinc(n) ≤
∑
n∈N

|ringsWithNodems[n]| (30)

Again, the ADMMax constraint (6) is specified similarly.
The remaining constraints to exploit dominances, i.e. that a node should only

be installed on a ring that contains at least one element of its partner set (7)
and the content merging constraint (8), are refined as follows:

∀n ∈ N, r ∈ R.r ∈ ringsWithNode[n] →
∑

n′|{n,n′}∈D

(r∈ringsWithNode[n′])>0 (31)

∀{r, r′}⊆R.(
∑
n∈N

r∈ringsWithNode[n]>0)∧(
∑
n∈N

r′∈ringsWithNode[n]>0)

→
∑
n∈N

(r ∈ ringsWithNode[n] + r′ ∈ ringsWithNode[n]) > c (32)

4.4 SE: A Matrix and Set Variable (Rings) Model

To maintain consistency between rings-nodesm and nodesOnRingms, the follow-
ing channelling constraint is used:

∀r ∈ R. n ∈ nodesOnRingms[r] ↔ rings-nodesm[r, n] = 1 (33)

The objective can be stated on either rings-nodesm (10) or nodesOnRingms

(17). We will explore both alternatives. Symmetry breaking is performed on
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rings-nodesm as in model SB (9), since this scheme breaks all symmetry whereas
the ordering on the cardinalities used in model SC (20) does not. Also from
model SB we take the demand constraint (12), the ADMMin (13) and ADMMax
constraints, and the constraint that specifies that a node should only be installed
on a ring with at least one of its partners (14). From model SC we take the ring
capacity constraints (18), the constraint on the minimum number of open rings
(21), and the content merging constraint (23).

4.5 SF : A Matrix and Set Variable (Nodes) Model

To maintain consistency between rings-nodesm and ringsWithNodems, the fol-
lowing channelling constraint is used:

∀n ∈ N. r ∈ ringsWithNodems[n] ↔ rings-nodesm[r, n] = 1 (34)

The objective can be stated on either rings-nodesm (10) or ringsWithNodems

(25). Again, we will explore both alternatives. As in models, SB and SE , we
perform complete symmetry breaking via rings-nodesm (9). From model SB we
take the ring capacity constraint (11), the constraint on the minimum number
of open rings (15), the constraint that a node should only be installed on a ring
containing at least one of its partners (14), and the content merging constraint
(16). From model SD we take the demand constraint (26), and the ADMMin
(30) and ADMMax constraints.

4.6 SG: A Dual Set Variable Model

To maintain consistency between nodesOnRingms and ringsWithNodems, the
following channelling constraint is used:

∀n ∈ N, r ∈ R.n ∈ nodesOnRingms[r] ↔ r ∈ ringsWithNodems[n] (35)

The objective can be stated on either nodesOnRingms (17) or ringsWith-
Nodems (25). Again, we will explore both alternatives. Symmetry breaking is
performed on nodesOnRingms, as in model SC (20). Also from model SC we take
the ring capacity constraint (18), the constraint on the minimum number of open
rings (21), the constraint that specifies that a node should only be installed on
a ring with at least one of its partners (24), and the content merging constraint
(23). From model SD we take the demand constraint (26), and the ADMMin
(30) and ADMMax constraints.

4.7 SH : A Matrix and Set Variable (Both Rings and Nodes) Model

Although only two channelling constraints are sufficient to maintain consistency
among the 0/1 matrix and the two matrices of set variables, we use the three
channelling constraints from models SE (33), SF (34) and SG (35). The objective
can be stated easily on any of the three models. We will explore all three alter-
natives. Symmetry is broken completely on rings-nodesms as described in model
SB (9). Also from model SB we take the constraint that a node should only be
installed on a ring containing at least one of its partners (24). From model SC we
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take the ring capacity constraint (18), the minimum number of open rings (21),
and the content merging constraint (23). From model SD we take the demand
constraint (26), and the ADMMin (30) and ADMMax constraints.

5 Model Selection

As we have shown in introducing each of the models SB to SH , constraints
may be more or less difficult to express, depending on the variables included in
the model. However, which model is best in solving time, given some standard
constraint solver, is hard to determine. In some cases, it is possible to show
that one model is stronger than another, irrespective of certain aspects of the
solution procedure. Recently, for example, alternative models of permutation
and injection problems have been studied in the context of a range of constraint
propagation algorithms [18]. In many cases, however, empirical tests are needed
to develop guidelines for making informed model choices. In this section, we
contribute to this goal of pattern elicitation by performing an empirical analysis
of our models of the Simplified SONET problem. Despite the small scale of this
study, the trends are strong and immediately apparent.

There are a number of issues to consider in designing our experiment. First,
introducing new variables can introduce a choice of search variables. For in-
stance, in model SE , we can search either on the matrix variables rings-nodesm

or on the ring set variables nodesOnRingms. Second, having chosen the search
variables, we need to decide the order in which to assign the variables (either
statically or dynamically). It is well known that the choice of variable ordering
can dramatically affect the search effort required to solve a CSP. However, we
can only compare the performance of the models presented to a limited extent.
For instance, we could compare models SB , SE and SF using the matrix vari-
ables as search variables and the same variable ordering in each case. This would
show whether being able to express some of the constraints more easily using
set variables has any effect on performance. The results would not, however,
necessarily reflect the best known performance for these models, still less what
the best performance for each model might be with the ideal ordering heuristic.

Each of our models is described by a triple 〈BasicModel, BranchingStrategy,
ObjectiveExpression〉. BasicModel ∈ {B,C,D,E, F,G,H} corresponds to the
models SB - SH . We considered BranchingStrategy ∈ {M,N,R} where M
stands for using the matrix variables as search variables, N for using the node
set variables, and R for the using the ring set variables. Finally, we considered
ObjectiveExpression ∈ {M,N,R}, where M stands for expressing the objec-
tive function using the matrix variables (10), N stands for using the node set
variables (17), and R for the ring set variables (25). We tested the 24 consistent
combinations of these three choices on 10 instances (from [23]) using a 750Mhz
128Mb Pentium III and Ilog Solver 5.3 (Windows version).

Tables 2 and 3 present the number of choice points and time taken within a
160 seconds time limit. For brevity, given a subset of models that are identical
apart from the objective function, we only show the results for the model with
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Table 2. Experimental results on 10 instances of Simplified SONET (choices)

Model s2ring1 s2ring2 s2ring3 s2ring4 s2ring5 s2ring6 s2ring7 s2ring8 s2ring9 s2ring10
〈B, M, M〉 25411 27063 20032 7938 24097 9625 8460 10001 41849 9428
〈C, R, R〉 >514K >514K >468K >492K >518K >495K 441K >512K >506K >513K
〈D, N, N〉 12744 374983 63892 16771 48955 400641 25311 78181 239662 15680
〈E, M, R〉 7971 5421 4765 1583 8601 2491 1394 2597 15912 3761
〈E, R, R〉 68395 199656 87765 36343 134385 140771 15301 103778 225852 41991
〈F, M, N〉 112 165 73 21 356 193 39 188 1136 70
〈F, N, N〉 1407 17303 3804 2525 2758 27920 2702 6218 4329 1387
〈G, R, N〉 378K >675K >636K >634K >663K >614K 256K >688K >668K >461K
〈G, N, N〉 20629 >546K 67994 56995 98936 >642K 51673 78982 229565 41031
〈H, M, N〉 112 165 73 21 356 193 39 188 1136 70
〈H, R, N〉 12876 217440 23569 20472 84782 87275 10559 145915 52622 7572
〈H, N, N〉 1407 17303 3804 2525 2758 27920 2702 6218 4329 1387

Table 3. Experimental results on 10 instances of Simplified SONET (time)

Model s2ring1 s2ring2 s2ring3 s2ring4 s2ring5 s2ring6 s2ring7 s2ring8 s2ring9 s2ring10
〈B, M, M〉 2.49 2.78 2.29 0.86 2.41 1.03 0.97 1.08 4.2 1.05
〈C, R, R〉 >160 >160 >160 >160 >160 >160 132.44 >160 >160 >160
〈D, N, N〉 6.7 158.37 32.44 7.64 24.32 160.02 13.5 33.26 115.96 8
〈E, M, R〉 1.22 0.88 0.79 0.26 1.44 0.42 0.25 0.47 2.7 0.65
〈E, R, R〉 14.76 39.43 18.74 7.47 27.05 29.11 3.22 18.95 44.76 9.47
〈F, M, N〉 0.03 0.04 0.03 0.02 0.08 0.04 0.02 0.04 0.19 0.03
〈F, N, N〉 0.25 2.29 0.6 0.39 0.43 3.45 0.44 0.82 0.71 0.24
〈G, R, N〉 92.13 >160 >160 >160 >160 >160 60.95 >160 >160 >160
〈G, N, N〉 6.47 >160 22.37 15.86 24.34 >160 15.3 18.03 79.66 11.75
〈H, M, N〉 0.05 0.07 0.05 0.03 0.13 0.07 0.03 0.07 0.38 0.04
〈H, R, N〉 3.06 46.86 5.81 4.29 16.43 18.6 2.33 27.54 11.87 1.94
〈H, N, N〉 0.47 4.32 1.23 0.75 0.73 6.2 0.87 1.45 1.37 0.41

the most effective expression of the objective. For instance, we do not show the
results for model 〈E,M,M〉, since 〈E,M,R〉 is consistently more effective.

This filter immediately reveals a general observation: in these tests it was
always more effective to express the objective via the cardinality of the set vari-
ables. This is because of an interaction with the RingMin constraint (5) in the
case of the ring set variables, and with the ADMMin constraint (4) in the case
of the node set variables. Consider rings-nodesm for a small instance:

⎛
⎝

ring1 ring2 ring3

node1 0/1 0/1 0/1
node2 0/1 0/1 0/1
node3 0/1 0/1 0/1

⎞
⎠

Assume that all nodes need to be installed at least once, and that all three
rings must be open. These constraints can be imposed as sums on the rows and
columns of rings-nodesm. Propagating these constraints results in no domain
pruning initially. Consider the search for a solution with less than 3 installations.
Since all elements of rings-nodesm can still be set to 0, search is necessary to
determine that this is not possible.

Consider now expressing the RingMin constraint and the objective on the
nodesOnRingms matrix. The lower bound on the cardinality of each ring is one.
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Hence, the sum of the cardinalities is at least 3 and the search fails immediately.
Expressing the ADMMin constraint and the objective on ringsWithNodems gives
a similar result. The key observation is that the bounds directly tighten the
domain of a variable (the hidden cardinality variable associated with each set
variable). Since these same variables are used to express the objective, any tight-
ening of the bounds has a direct effect on the bound on the objective. This is
not the case for the sum constraints on rings-nodesm. Since the ADMMin con-
straint gives a tighter bound on the cardinality variables than RingMin, this also
explains why expressing the objective on ringsWithNodems is the most effective
choice in these experiments.

A second observation is that it is most effective to branch on rings-nodesm.
This is probably due to the fact that assigning a single 0/1 variable is less
of a commitment than assigning a whole set at once. Hence, the culprit at a
dead end is more readily apparent. These two observations together explain the
performance of 〈F,M,N〉 as the best model. Model 〈H,M,N〉 explores the same
search tree, but incurs an overhead for maintaining nodesOnRingms.

6 Related Work in Modelling and Transformation

Several recent efforts focus on automating refinement. Hnich [17] shows how to
automatically refine specifications in F and Frisch et. al. [12] show how to refine
specifications in Essence. Both of these refinement systems generate a set of
alternative models, including models with multiple, channelled representations,
but neither provides a mechanism for choosing among the alternatives. The
initial implementation of Relational ESRA, which is under development, will
refine specifications to a single constraint model in which relation variables are
always refined to 0/1 matrices (as in SB) [10].

Our work is also motivated by experience with the CGrass (Constraint
Generation And Symmetry-breaking [14]) system. CGrass automatically trans-
forms constraint models of problem instances in order to make them easier to
solve. However, since CGrass transforms individual instances, much effort is
repeated if one wants to solve multiple instances of a problem. Furthermore,
the instance specifications that CGrass transforms are non-schematic; instead
of using universal quantifiers to implicitly state a set of constraints, the set is
explicitly stated. For some problem instances this results in very large specifica-
tions, which, in turn, require many applications of the transforation rules. This
is why we focus on schematic problem specifications in this paper.

There are several other methods to aid in constraint modelling, which we
briefly survey. Laurière [19] introduced a modelling language called ALICE to
formally state a problem. The language is characterised by the use of sets, set op-
erators, Cartesian product of sets, vectors, matrices, graphs and paths, constants,
and functions. The language NP-SPEC is a logic-based executable specification
language [7, 6], which allows the user to specify problems by using metapredicates
(subset, partition, permutation, and intfunc). REFINE is a functional language
for specifying global search problems for a program synthesizer [24]. The RE-
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FINE language augments a functional programming language with three type
constructors, namely set, sequence, and map, as well as their operations.

Tsang et al. had two projects related to ours. The adaptive constraint satis-
faction project [1, 2, 3] aimed at systematically mapping problems, in a dynamic
manner, to algorithms and heuristics. The computer-aided constraint program-
ming project [4, 21] aimed at building a system that encapsulates the entire
process of applying CP technology to problems.

7 Conclusions

We have considered the transformation of constraint satisfaction problems and
shown that we can and should transform problems at various levels of abstrac-
tion. Refinement is a process of progressively moving to more concrete models;
mechanisms for dealing with some common modelling problems, such as sym-
metry, can be embedded into refinement rules.

The Simplified SONET problem illustrates how integrating transformation
and refinement could work in general: an abstract problem specification in the
Essence language was transformed by adding implied and other constraints.
The result was refined into seven alternative models. In addition, we showed
how the refinement process could trigger further useful transformations: in this
case, breaking the symmetries that it introduces into the model.

Our immediate goal is to formalise fully the transformations we use. Fur-
thermore, we wish to combine theoretical analysis with the lessons learnt from
empirical analyses, like the one performed on the Simplified SONET problem
herein, to evaluate models statically, and therefore be more selective about the
models produced during refinement.
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Abstract. The presence of long gaps dramatically increases the diffi-
culty of detecting and characterizing complex events hidden in long se-
quences. In order to cope with this problem, a learning algorithm based
on an abstraction mechanism is proposed: it can infer the general model
of complex events from a set of learning sequences. Events are described
by means of regular expressions, and the abstraction mechanism is based
on the substitution property of regular languages. The induction algo-
rithm proceeds bottom-up, progressively coarsening the sequence granu-
larity, letting correlations between subsequences, separated by long gaps,
naturally emerge. Two abstraction operators are defined. The first one
detects, and abstracts into non-terminal symbols, regular expressions not
containing iterative constructs. The second one detects and abstracts it-
erated subsequences. By interleaving the two operators, regular expres-
sions in general form may be inferred. Both operators are based on string
alignment algorithms taken from bio-informatics. A restricted form of the
algorithm has already been outlined in previous papers, where the em-
phasis was on applications. Here, the algorithm, in an extended version,
is described and analyzed into details.

1 Introduction

Very long discrete sequences are found in many challenging applications of data
mining, ranging from DNA analysis to user profiling, and anti-intrusion systems.
In most cases this kind of sequences are characterized by sparseness, i.e., short
consecutive chains of atomic events (episodes) are interleaved with gaps, where
irrelevant facts, or facts related to spurious activities, may occur. We define a
partially ordered group of interrelated episodes a complex event (CE).

This paper addresses the task of discovering CEs in discrete sequences. The
task is made more difficult by assuming the presence of noise, making CEs harder
to recognize. Episodes are represented as strings of symbols, being a symbol the
label assigned to an atomic event. Moreover, it is assumed that noise can be
modeled as insertion, deletion and substitution errors, according to a common
practice followed in Pattern Recognition.

Here, regular expressions, extended with attributes [9], are proposed to de-
scribe the structure of CEs. Attributes are used to set constraints on atomic
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events. Therefore, the problem of discovering CE’s structure is turned into the
problem of learning regular expressions from sequences containing gaps and
noise. The problem of inferring regular grammars from data has been previ-
ously investigated by many authors with approaches ranging from computa-
tional learning theory [1, 19, 16, 17, 4] to neural networks [6], syntactic pattern
recognition [10, 18], and probabilistic automata [8]. Nevertheless, the problem
considered here does not match immediately any one of the problems solved by
the mentioned approaches. In fact, the task is more complex, because the sen-
tences of the language to learn are hidden inside sequences containing a possibly
large amount of irrelevant knowledge, which must be discarded.

In a previous approach [2] a Hierarchical Hidden Markov Model [7, 22, 14, 21]
has been proposed to describe CEs. Here, we prefer to distinguish the problem of
learning structural properties of a CE from the problem of detecting it in pres-
ence of noise and other irrelevant facts. Therefore, an extension of the algorithm
by Botta et al. [2] is presented, which is more powerful and is no more bound to
HHMMs.

By exploiting properties inherent to regular expressions, an abstraction mech-
anism has been defined: it allows an event to be seen at different levels of gran-
ularity depending on the needs. Such a mechanism is exploited by the learning
algorithm, which automatically infers the event descriptions from a database of
sequences. An important novelty, with respect to previous works, is a method for
detecting and learning recurrent structures inside an event, in presence of noise.

In this paper, the learning algorithm is described in details and an evaluation
on artificial data is provided.

2 Learning by Abstraction

The main difficulty in discovering and modeling CEs hidden inside long sequences
is due to the presence of long gaps, filled by irrelevant facts, between episodes be-
longing to a CE. On the one hand, statistical correlations among distant episodes
are difficult to detect. On the other hand, the complexity of the mining algo-
rithm increases with the length of the portion of sequence to be searched to
detect such kind of correlations. The strategy proposed here to cope with such
kind of problems is based on an abstraction mechanism.

In AI, abstraction has been proposed by several authors with different accep-
tions (see [20] for an introduction). The acception, adopted here, relays on the
property of regular expressions of being closed under substitution [13]: by re-
placing a subexpression with a new symbol, an abstract expression is obtained.
As previously mentioned, CEs are described by means of regular expressions
extended with attributes. By applying the substitution property, a CE can be
abstracted, or de-abstracted.

The idea will be further clarified describing the scheme of the algorithm used
for discovering CEs hidden in a set, LS, of learning sequences. The algorithm
starts bottom-up to construct an abstraction hierarchy, layer after layer. The ba-
sic activity at each step consists in identifying episodes occurring with a relevant
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frequency in LS: every episode is characterized by a regular expression R. Then,
the detected episodes are named by associating a new symbol to each one of them,
and episode names become the alphabet for describing LS at the next abstrac-
tion level. Afterwards, every sequence in LS is abstracted (rewritten) by replac-
ing every episode instance occurring in it with the corresponding episode name.
Subsequences of consecutive atomic events, which have not been included in any
episode, are replaced with a symbol denoting a gap. As it will be described in the
next sections, gaps between episodes are considered as a special kind of episode.

In the new sequences obtained from the abstraction step, episodes, previously
separated by subsequences of irrelevant facts, may become consecutive, only
separated by one gap symbol. Then, at the next abstraction step, correlations
at a wider range can be detected by repeating the same procedure described so
far, while the complexity of the algorithm remains affordable.

Important aspects to consider, in order to correctly detect statistical correla-
tions between consecutive atomic events, are the event duration and the distance
from one another, which could be required to satisfy specific constraints. As an
example, one may be willing to accept a correlation between two events A and
B, when B frequently occurs few days after A, but one may want to reject a cor-
relation if the distance of B from A randomly ranges from one day to one year.

The attributes extending regular expressions have principally the function of
preserving the information about duration and distance between events through
the abstraction process. Every atomic event E is denoted by a name (symbol)
and by an attribute lE reporting the length (duration) of E on the unabstracted
sequence. When an episode is abstracted into a new atomic event at the higher
level, the length of this last is set to the length of the episode. In the same way,
gaps are denoted by a symbol, and have a length set to the distance between
the two neighbouring episodes. As it will be described in the following, the event
description language allows constraints on duration of an event to be specified.
Therefore, to set constraints on the distance between two events is sufficient to
set constraints on the gap in between.

This solution, of using gap symbols to fill spaces between non adjacent atomic
events, allows for any discrete sequence to be transformed into a string of sym-
bols. The important benefit is that a large set of string processing algorithms
can be immediately exploited.

3 Regular Expressions

The standard formalism for regular expressions [13] is adopted for describing
episodes and CEs. Regular language syntax contains meta-symbols for denoting
disjunction and iteration. Disjunction is denoted by the symbol ”|”. For instance,
the construct a(c|d)a denotes a sequence of three symbols, where the first and the
third are ”a”, and the second may be ”c” or ”d”. Parentheses are used to enclose
subexpressions. The special symbol ε denotes the null event and is used to model
omission. For instance, expression a(c|d|ε)a entails that also the sentence aa, is
a possible event instance. Repetition is denoted by a superscript on a symbol, or
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on a subexpression, which indicates how many consecutive times it occurs. As an
example, expression a3b2 is a compact form for denoting the sequence ”aaabb”.

In principle, regular expressions can also describe infinite sentences. The clas-
sical notation for handling infinity consists in using symbol ”�” as a superscript
to expressions. Here, infinity is not allowed. Instead, the regular language nota-
tion is slightly extended to allow for nondeterminate iterations, where the num-
ber of repetitions may range inside a bounded interval. For instance, expression
ab3,9 denotes a sequence whose first element is ”a” followed by a number of ”b”
ranging between 3 to 9.

Constraints on the event/gap length may be set by annotating symbols in
regular expressions. Annotation must be included inside square brackets, fol-
lowing the symbol denoting an atomic event. For instance a[n] means that the
length la of a must be n (la = n), whereas a[n,m] means that the length of a
must range between n and m (n ≤ la ≤ m). A legal example of annotation can
be as in the following:

a[3, 5]3b[4, 8]2 (1)

Informally, expression (1) specifies that the duration of any event of type a must
be in the interval [3, 5] and the duration of any event of type b must be in
the interval [4, 8]. Gaps are named and annotated as atomic events. However,
given the semantics of gaps, iteration has no meaning for them; then, gap names
cannot have an exponent.

4 String Alignment and Flexible Matching

A key role in the abstraction process is played by the approximate matching
of strings and of regular expressions, which, in turn, is based on string align-
ment. String alignment has been deeply investigated in Bio-informatics and a
wide collection of effective algorithms are available for doing it[5, 12]. Here some
basic concepts, necessary to make the paper self-consistent, will be recalled; the
interested reader can find in[5, 12] an exhaustive introduction to the topic.

Definition 1. Given two strings s1 and s2, let s′1 and s′2 be two strings obtained
from s1 and s2, respectively, by inserting an arbitrary number of spaces such that
the atomic events in the two strings can be put in a one-to-one correspondence.
The pair A(s1, s2) = 〈s′1, s′2〉, is said a global alignment between s1 and s2.

From global alignment, local alignment and multi-alignment can be defined.

Definition 2. Any global alignment between a pair of substrings r1 and r2
extracted from two strings s1 and s2, respectively, is said a local alignment
LA(s1, s2), between s1 and s2.

Definition 3. Given a set S of strings, a multi-alignment MA(S) on S is a set
S′ of strings, where every string s ∈ S generates a corresponding string s′ ∈ S′

by inserting a proper number of spaces, and every pair of strings 〈s′1, s′2〉 is a
global alignment A(s1, s2) of the corresponding strings s1, s2 in set the S.
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P A R I Ss e

Fig. 1. Profile HMM obtained from the string ”PARIS”. Square nodes represent match
states, circles represent null emission states and diamonds represents insertion states.
Transitions, from one state to another, and emissions are governed by probability
distributions not shown in the figure. States labeled by s and e are the initial and
final state, respectively

It is immediate to verify that, for a pair of strings s1 and s2, many alignments
exist 1. However, the interest is for alignments maximizing (or minimizing) an
assigned scoring function2. A typical scoring function is string similarity [12],
which can be stated in the following general form:

∫(s1, s2) =
n∑

i=1

∫(s′1(i), s′2(i)) (2)

being n the length of the alignment 〈s′1, s′2〉, and ∫(., .) a scoring function, which
depends upon the symbol pairs, which have been aligned.

An alternative to (2) for aligning strings and estimating similarity is based
on a special kind of Hidden Markov Model (HMM) called profile HMM (see [5]
for an introduction). The fundamental difference between profile HMM and (2)
is that for the former the scoring function is stated in terms of a mixture model
defining a probability distribution. Then the similarity between two strings s1

and s2, or between a string and a template, is defined as the probability that s2

be obtained from s1 as the result of a stochastic sequence of insertions, deletions
and substitutions. The structure of a profile HMM is described in Figure 1. It
contains three types of states: match states where the emission corresponds to
the expected nominal symbol, null emission states modeling deletion errors, and
insertion states modeling insertion errors, where the emission is chosen among
a set of possible symbols. Such a structure can be obtained by compilation from
a string, as well as from a regular expression. In the case of Figure 1 the HMM
has been obtained from the string ”PARIS”.

In the framework of Dynamic Programming, the problem of finding an align-
ment maximizing a similarity function is solvable with complexity of O(nm)
being n and m the length of s1 and s2, respectively. Nevertheless, approximate
solutions can be found in linear time[12]. On the contrary, the problem of find-

1 If no restriction is set on the possible number of inserted spaces, the number of
possible alignments is infinite.

2 As approximate/flexible matching between two strings, or between a string and a
regular expression, is intended the problem of finding the optimal alignment with
respect to an assigned scoring function.
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ing an optimal multi-alignment is exponential in the cardinality |S| of set S.
Therefore, only approximate solutions can be used when S is large.

The concept of similarity and alignment between strings is easy to extend
to the concept of alignment between a string and a regular expression. A reg-
ular expression R is equivalent to a set of strings that can be derived from it.
Therefore the optimal alignment between R and a string s, with respect to an
assigned similarity function, is the best alignment among all possible alignments
between s and anyone of the strings derivable from R. In the general case, the
complexity for finding such an alignment is O(nm) being m the length of R and
n the length of s [15].

A similar extension holds in the HMM framework, where regular expressions
can be translated into HMMs. However, such translation requires the target
HMM to be augmented in two ways: (a) in order to deal with the presence of
insertion and deletion errors, extra states must be explicitly added; (b) in order
to model specific probability distributions, cycles in regular expressions need
to be unrolled into a feed-forward graph, where only self-loops are allowed. A
description of the problem and of the related methodologies can be found in
[5, 2, 11].

A last point to discuss is how constraints, set in regular expressions on event
lengths, intervene in the matching procedure. Dealing with such kind of con-
straints requires only minor changes in the algorithms searching for an optimal
alignment: symbols in the input string not matching the constraints will be con-
sidered as insertion errors that do not match any symbols. Consequently, the
impact on the final alignment will depend upon the specific scoring function. In
a similar way, considering iterated subexpressions, iterations in excess (defect),
with respect to the bounds set in the exponent, will be considered as insertion
(deletion) errors.

5 The Learning Algorithm

The main learning algorithm includes a basic cycle, activated bottom-up, in
which a new abstraction layer is constructed, and a refinement cycle, which can
be called top-down one or more times in order to refine the episode descrip-
tions (see Figure 2). Both cycles are based on two abstraction operators, ωS and
ωI , which are used to infer the structure of regular expressions. Operator ωS

constructs regular expressions non containing iterative constructs, whereas ωI

explicitly aims at discovering and abstracting iterative constructs. By interleav-
ing the two operators, an abstraction hierarchy is obtained, from which regular
expressions in general form are obtained.

5.1 ωS Operator

The ωS operator takes in input a set S of similar substrings, detected using a
local alignment algorithm, and constructs an abstract atomic event defined as
a pair 〈R, E〉 being R a regular expression generalizing the episode instances
contained in S, and E is the abstract event associated to R. The restriction is
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Fig. 2. The main learning algorithm structure. Every layer produces a more abstract
description of the input sequences

that items in R may be only symbols, or disjunction of symbols. Therefore, no
iterative constructs are considered.

The core of ωS is the construction of the multi-alignment of all strings in
the set S; the similarity measure and the alignment procedure are parameters,
which can be assigned according to the needs. The semantics of ωS consists in
the following three step algorithm:

Algorithm ωS

1. Construct the multi-alignment MA(S) for strings in S.
2. Construct the match graph MG(S).
3. Transform MG(S) into an equivalent regular expression.

The multi-alignment MA(S) is a table whose columns contain the symbols put in
correspondence by the alignment algorithm. Therefore, the second step aims at
eliminating noise from episode descriptions preserving possible multi-modalities.
Symbols, occurring in a same column more frequently than expected if they
would be due to random noise, are considered match symbols and will be in-
cluded in the regular expression generated in the third step. Match symbols are
associated to the nodes of a directed graph MG(S). The edges of MG(S) are
defined according to the following rule: if there is at least one row in MA(S)
where a match symbol x follows a match symbol y, immediately or after one or
more spaces, a link from x to y is set in MG(S).

Graph MG(S) is transformed into a regular expression in Step 3. As there
are many possible way for doing it, it is not relevant to describe the algorithm
into details. In this phase, constraints on the event length (see Section 3) are
also learned. We remember that an atomic event E, in a regular expression, can
be annotated as E[n,m], being n and m the extremes of the interval in which
the event length lE is accepted. The values for n and m are estimated from
the lengths of the instances of E aligned in a same column in MA(S). In this
phase, constraints, given a-priori as background knowledge, can also be taken
into account.
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lond(on|ra)

Fig. 3. Example of non-iterative expression obtained from the string set {london, lon-
dra, lomdra, lontra, londro, londron, rondon, lindon, london, lomdon, landra, londra,
londla}. (a) Corresponding multi-alignment. (b) Retained alternatives. (c) Final regular
expression

The algorithm is illustrated through an example in Figure 3, where a regular
expression describing a dimorphic occurrence of the word london3 in the Italian
language is extracted from a set of words affected by typos.

5.2 ωI Operator

Operator ωI is complementary to ωS , and explicitly searches for contiguous
repetitions of a same substring inside a given string s. This is done by computing
the self-correlation of the string similarity function. In fact, repeated substring
instances are expected to be very similar each other (identical in absence of
noise). Then, periods in self-similarity function locate where repetitions of a
same substring occur. Let Wi and wj denote a reference window and a sliding
window (of equal size) on s beginning in position i and j, respectively. Let n
be the length of s minus the length of Wi. Let, moreover, SC be a triangular
matrix of size n2/2; the notation SC(i, j) will indicate the i, j element of SC.
The basic self-correlation algorithm is the following:

Similarity self-correlation

1. Set i = 1
2. For j ranging from i to n evaluate SC(i, j) = ∫(Wi, wj) between the

substrings selected by Wi and wj , respectively.
3. Set i = i+1
4. If i is smaller than n goto step 2, otherwise continue.

3 Names of foreign towns may occur in an Italian text both in their original or-
thographic form, or in Italian translation. In this case London is translated into
“Londra”.
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5. Detect chains of maxima on SC, where the maximum value is close
to the maximum possible similarity value between two substrings Wi,
wj . A substring r of s, laying in between two consecutive maxima,
is an iterated substring.

6. For every different iterated substring r construct a new hypothesis
for an iterated episode.

The complexity of the algorithm is O(n2/2). However, it is easy to make the
algorithm more efficient: when string similarity is close to zero, the windows can
slide much faster than one position at-a-time. The contour plot of the SC matrix
of two different strings is reported in Figure 4 (for the sake of clarity, the entire
square matrix has been computed).

...ooioonoilgg....nmnlltgtgmnvrabababababa vlrgtnogtaaabbaaaaabbawaaabbawaaabbaaaaab

babababababababababababababamovne..... baaaaaaaaaabb......enotitlelvemnigrirom...
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Fig. 4. Examples of similarity self-correlation patterns. (a) The repeated subsequence
is “ab”. (b) The repeated subsequence is “aaaaabb”. In both sequences noise has been
added. The rectangular patterns clearly indicate the region where the iterated subse-
quences are located

5.3 Basic Learning Cycle

The basic learning cycle consists of four major steps:

1. Non-iterative episode detection. Episodes consisting of non-iterated sub-
strings are detected and abstracted by applying operator ωS .

2. Iterative episode detection. Episodes consisting of an iterated substring are
detected and abstracted by applying operator ωI .

3. Model construction. When necessary, an HMM is constructed for every ab-
stracted episode.

4. Sequence abstraction. The input sequences are rewritten using as new al-
phabet the names of the abstract episodes.

Non-iterative Episode Detection. The core mechanism is represented by
the abstraction operators ωS . However, some preprocessing is required before
applying the operator. In fact, ωS takes in input a set S of strings that is con-
structed by applying a local alignment algorithm LA (see Section 4) followed
by a clustering algorithm. More specifically, LA is repeatedly applied to a set
of sequence pairs randomly sampled from the learning set LS and produces in
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output pairs of subsequences that exhibit strong similarity. It is expected that a
frequent episode occurs in many pairs of sequences with minor differences from
one instance to another. Then, episodes deriving from a same regular expression
are easy to detect by using a clustering algorithm, which groups together most
similar subsequences. The specific algorithm used for this step is not very much
critical, because the refinement cycle allows possible errors to be recovered, as
it will be explained later on. The currently used algorithm is an incremental
variant of classical k-Means.

Finally, ωS is applied to every cluster S obtained in this way, constructing a
corresponding abstract event.

Iterative Episode Detection. In principle, the procedure described above
is able to discover an iterated episode when the number of iterations is very
similar in all sequences where the episode occurs. On the contrary, it does not
work properly when the number of iterations is significantly different from one
sequence to another, because the multi-alignment step fails. This problem is
solved by operator ωI , which is applied to a set of sequences sampled from LS.
All iterated episodes found in this way are collected into a set I. Afterwards,
episodes characterized by an identical (or very similar) iterated substring are
generalized to a unique abstract episode description: a common iterated subse-
quence is chosen, and the iteration limits are set in order to include all found
instances. The abstract events constructed in this way are then added to the
ones generated by operator ωS .

Model Construction. This step is accomplished only if an approximate match-
ing based on HMM has been required and consists in constructing an HMM for
every abstract event E characterized in the previous steps. Every expression RE

is converted into a HMM λE , and the sets of substrings, used to learn the regular
expression describing the abstract events, are used to estimated the parameters
of λE . The details of the algorithm can be found in [2, 11].

Sequence Abstraction. Every sequence s in LS is rewritten into an abstracted
sequence s′ according to the following algorithm: s is scanned left-to-right search-
ing for instances of episodes detected and abstracted in the previous steps. The
presence of an episode E is decided by matching the corresponding regular ex-
pression RE to s. Every time an instance is found, the name of E is appended to
s′. However, conflicting interpretations of a same subsequence may exist. Con-
flict resolution is delayed to a second swept and, initially, a lattice is generated,
containing all plausible hypotheses for episode instances. Afterward, lattices are
processed extracting from each one the maximum scoring sequence, which in-
cludes the best scored hypotheses compatible with the given constraints. The
default constraint is that hypotheses must not overlap. In the case a string
similarity function of type (2) is used to match regular expressions, the score
assigned to episode hypotheses is the value computed by the similarity function.
Otherwise, if a matching based on HMM is used, the score of an event E is the
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...zacacbbbbbbbststuhbn..

....accacbbbbsthsturlm..

....acacbbbbbbstfstubkku..

B::=(b)4,7
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(b)
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Fig. 5. Basic learning cycle example. (a) Iterated symbols are detected and replaced
with the name of the corresponding regular expression. (b) Local alignments are de-
tected and similar substrings are clustered together. (c) From the multiple alignment
of elements in a same cluster a regular expression is obtained

a b a b e b a a d a d f c a c c a f

A

A

C

B

E

E

(a)

a b a b e b a a d a d f c a c c a f

A

A

C

B

E

E

α

(b)

a b a b e b a a d a d f c a c c a f

A

A

C

B

E

E

α

(c)

Fig. 6. The refinement step. (a) Episode lattice. (b) Some hypothesized events in (a)
are not considered for a new episode. (c) Only the retained instances are used to re-train
the episode model

probability assigned by the model λE . Portions of the string s not abstracted by
any episode are abstracted as gaps and represented by a gap symbol.

The major steps of the basic cycle are illustrated through an example in
Figure 5.

5.4 Refinement Cycle

The refinement cycle may be activated at the abstraction layer Li every time new
episodes are detected and modeled at a level higher than i. The reason for doing
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it is illustrated in Figure 6. When an episode E is hypothesized and characterized
at an abstraction level Li, the context, i.e, the presence of other episodes before or
after E, is not considered. Nevertheless, the context is considered later on when
the episodes of layer Li are linked together into an episode at level Li+1. This
means that some instances of E may be not included in any higher level episode
and will be considered spurious. Nevertheless, such instances were included in the
cluster used to build up the regular expression describing E. In the refinement
step, the regular expression describing E are re-learned using only the instances
that have been retained.

As episode instances are detected using one of the approximate matching
algorithms described in in Section 4, the outcome of the refining cycle heavily
depends on it. Therefore, using a similarity function or an HMM can produce
quite different results.

6 Discussion and Evaluation

The learning algorithm described in previous sections has been implemented in
two different versions, where the major difference is in the flexible matching
algorithm. In the first version, which is an extension of the work described in
[3], matching is based on a string similarity function. In the second version [2],
string similarity is still used in the basic learning cycle, whereas, in the refine-
ment cycle, regular expressions are translated into HMMs. More specifically, the
cascade of regular expressions generated by the abstraction mechanism leads to
a Hierarchical HMM [7], which is trained using the classical EM algorithm. The
two different versions have been tested both on artificial data and on real world
problems. Artificial data are a suitable tool to evaluate learning algorithms, be-
cause they can be constructed on purpose to put in evidence both strong and
weak points. A first benchmark between the two algorithm versions has been run
using a suite of datasets consisting of artificially generated sequences of symbols.
The structure for all datasets is similar, and consists of sequences of words se-
lected from natural language and interleaved with gaps filled by randomly chosen
characters. Moreover, noise is added by randomly replacing an assigned percent-
age of characters with other characters randomly extracted from the alphabet.
The challenge for the algorithms is to reconstruct the regular expression corre-
sponding to the sequence of words hidden in the data. Every dataset contains
100 sequences and the global length of the sequences ranges from 60 to 140
characters.

The difficulty of the task has been controlled by varying three parameters:
(a) the number of words (5 ≤ w ≤ 8) in the regular expression; (b) the word
length (5 ≤ L ≤ 8); (c) the noise level (N ∈ {0%, 5%, 10%, 15%}. For every
triple < w,L,N >, 10 different datasets have been generated for a total of 640
learning problems.

The results comparing the two algorithms are summarized in Table 1. The
error rate (averaged on 10 problems) is evaluated as the edit distance (i.e., the
minimum number of corrections) between the regular expression learned by the
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Table 1. Performances of the two algorithm versions obtained on artificial datasets.
The sequence length ranges from 60 to 140 characters. The CPU time for solving a
problem ranges from 42 to 83 seconds on a Pentium IV 2.4 Ghz

Similarity function HMM
Noise Level Noise Level

w L 0% 5% 10 % 15% 0% 5% 10 % 15%
5 5 0.00 0.00 0.00 0.00 0.04 0.04 0.04 0.04
5 6 0.01 0.01 0.02 0.01 0.03 0.03 0.03 0.03
5 7 0.00 0.03 0.02 0.02 0.00 0.00 0.02 0.00
5 8 0.01 0.03 0.03 0.04 0.00 0.00 0.00 0.00
6 5 0.00 0.02 0.03 0.02 0.10 0.06 0.00 0.03
6 6 0.02 0.04 0.01 0.01 0.05 0.00 0.00 0.00
6 7 0.03 0.02 0.02 0.04 0.02 0.00 0.00 0.00
6 8 0.05 0.06 0.04 0.04 0.00 0.00 0.04 0.00
7 5 0.02 0.01 0.01 0.01 0.02 0.05 0.01 0.10
7 6 0.02 0.00 0.01 0.01 0.04 0.02 0.05 0.04
7 7 0.04 0.02 0.02 0.04 0.00 0.00 0.02 0.05
7 8 0.04 0.02 0.02 0.04 0.01 0.00 0.09 0.09
8 5 0.03 0.01 0.01 0.01 0.00 0.00 0.01 0.00
8 6 0.01 0.00 0.01 0.01 0.03 0.06 0.06 0.14
8 7 0.07 0.03 0.04 0.05 0.00 0.00 0.00 0.00
8 8 0.12 0.06 0.05 0.07 0.01 0.00 0.00 0.00
Avg. 0.026 0.022 0.021 0.026 0.021 0.016 0.023 0.026

algorithms and the original one hidden in the data. When an entire word is
missed, the corresponding error is set equal to its length. Experiments in Ta-
ble 1, reporting an error rate much higher than the others, have missed words.
In all cases, the learning cycle has been iterated twice, as explained in Section 5.
Cells in the last row reports the average of the error rates in the corresponding
column.

From the results of Table 1 the two algorithm versions show performances
substantially similar, and show good robustness with respect to the presence
of noise. However, from a more detailed analysis of the table, some differences
emerge. Flexible matching based on HMM is slightly superior to similarity based
one when the word length increases. Moreover, it shows a less stable behavior:
either the performances are very good, with a zero error rate, or the error rate
is quite high, because one or more words have been missed in some learning
problem.

It is worth noting that both versions exhibit better performances when epi-
sodes to detect are longer. This is easy to explain, because long-range regularities
are easier to distinguish from noise than short-range ones. Then, in general,
longer CEs are expected to be easier to learn than shorter ones.

As previously mentioned, the learning algorithm has been applied also to a
real world problem where the goal was to learn the profile of a user typing on
a keyboard. The description of the task and the obtained results are described
in [11]. In this case, the algorithm version based on HMM clearly dominated
the other version. The reasons are to be searched in the greater complexity of
the data set and on the nature of the data, which better fit an HMM. In fact,
the similarity function (2) does not take into account the location of the errors
in the episodes whereas HMM does. Therefore, it is not possible to establish
a-priori which version would perform better, if the nature of the data is not
known.
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7 Conclusion

An algorithm for discovering complex events in noisy sequences has been pre-
sented, where complex events are described as regular expressions. The main
contribution of the paper consists in organizing and generalizing in a unique
framework different methods developed in the past. Moreover, for the first time
the learning algorithm architecture, which is based on an abstraction mechanism,
is described into details.

Currently, two versions of the algorithm exist, which have been developed
by integrating large part of previous work: one makes use of string similarity in
order to match regular expressions on noisy data; the other one translates regular
expressions into a hierarchical Hidden Markov Model [7]. Both versions exhibit
good performances on artificial data, whereas the second one was superior in
solving a non trivial user profiling problem, where it was required to learn the
model for a user editing a text.

In both versions, the algorithm has been easy to apply and didn’t require
special tuning on the problem. This means that the method is robust and suitable
for applications in real domains.

However, the evaluation is not yet complete. On the one hand, the ability
of the algorithm at learning regular expressions where iteration is deeply in-
volved has been only partially tested, and the results obtained up to now are
not yet conclusive. On the other hand, a theoretical analysis of the convergency
properties of the algorithm is in progress.

Acknowledgments

The present work has been supported by the FIRB Project: WebMinds.

References

1. D. Angluin. Queries and concept learning. Machine Learning, 2(4):319–342, 1988.
2. M. Botta, U. Galassi, and A.Giordana. Learning complex and sparse events in long

sequences. In Proceedings of the European Conference on Artificial Intelligence,
ECAI-04, Valencia, Spain, August 2004.

3. M. Botta, A. Giordana, and P. Terenziani. Discovering complex events in long
sequences. In Proceedings of the “Workshop on learning in temporal sequences”,
Machine Learning Conference, Sidney, Australia, July 2002.

4. F. Denis. Learning regular languages from simple positive examples. Machine
Learning, 44(1/2):37–66, 2001.

5. R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological sequence analysis.
Cambridge University Press, 1998.

6. J. L. Elman. Distributed representations, simple recurrent networks, and gram-
matical structure. Machine Learning, 7:195–225, 1991.

7. S. Fine, Y Singer, and N. Tishby. The hierarchical hidden markov model: Analysis
and applications. Machine Learning, 32:41–62, 1998.



106 U. Galassi and A. Giordana

8. P. Frasconi and Y. Bengio. An em approach to grammatical inference: iputo/output
hmms. In Proceedings of International Conference on Pattern Recognition, ICPR-
94, 1994.

9. K. S. Fu. Syntactic pattern recognition and applications. Prentice Hall, 1982.
10. K.S. FU and T.L. Booth. Grammatical inference: Introduction and survey (part

1). IEEE Transaction on System, Men and Cybernetics, 5:85–111, 1975.
11. U. Galassi, A. Giordana, and D. Mendola. Learning user profiles from traces.

Technical report TR-INF-2005-04-02-UNIPMN, 2005.
12. D. Gussfield. Algorithms on Strings, Trees, and Sequences. Cambridge University

Press, 1997.
13. J.E. Hopcroft and J.D. Ullman. Formal languages and their relation to automata.

Addison-Wesley, 1969.
14. K. Murphy and M. Paskin. Linear time inference in hierarchical hmms. In Advances

in Neural Information Processing Systems (NIPS-01), volume 14, 2001.
15. E.W. Myers and W. Miller. Approximate matching of regular expressions. Bulletin

of Mathematical Biology, 51(2):5 – 37, 1989.
16. R. G. Parekh and V. G. Honavar. Learning DFA from simple examples. In

Proceedings of the 8th International Workshop on Algorithmic Learning Theory
(ALT’97), Lecture Notes in Artificial Intelligence, volume 1316, pages 116 –131,
Sendai, Japan, 1997. Springer.

17. Rajesh Parekh, Codrin Nichitiu, and Vasant Honavar. A polynomial time incre-
mental algorithm for learning DFA. Lecture Notes in Computer Science, 1433:
37–50, 1998.

18. P. Garca and E. Vidal. Inference of k-testable languages in the strict sense and ap-
plications to syntactic pattern recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 12(9):920–925, 1990.

19. S. Porat and J. Feldman. Learning automata from ordered examples. Machine
Learning, 7:109–138, 1991.

20. L. Saitta, editor. The abstraction paths, Special issue of the Philosophical Trans-
actions of Royal Society, Series B. 2003.

21. M. Skounakis, M. Craven, and S. Ray. Hierarchical hidden markov models for
information extraction. In Proceedings of the 18th International Joint Conference
on Artificial Intelligence IJCAI-03, pages x–x. Morgan Kaufmann, 2003.

22. L. Xie, S. Chang, A. Divakaran, and H. Sun. Learning hierarchical hidden Markov
models for video structure discovery, volume Tech. Rep. 2002-006. ADVENT
Group, Columbia University, December 2002.



From Factorial and Hierarchical HMM to
Bayesian Network: A Representation

Change Algorithm

Sylvain Gelly, Nicolas Bredeche, and Michèle Sebag
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Abstract. Factorial Hierarchical Hidden Markov Models (FHHMM)
provides a powerful way to endow an autonomous mobile robot with
efficient map-building and map-navigation behaviors. However, the in-
ference mechanism in FHHMM has seldom been studied. In this paper,
we suggest an algorithm that transforms a FHHMM into a Bayesian
Network in order to be able to perform inference. As a matter of fact,
inference in Bayesian Network is a well-known mechanism and this rep-
resentation formalism provides a well grounded theoretical background
that may help us to achieve our goal. The algorithm we present can han-
dle two problems arising in such a representation change: (1) the cost
due to taking into account multiple dependencies between variables (e.g.
compute P (Y |X1, X2, ..., Xn)), and (2) the removal of the directed cy-
cles that may be present in the source graph. Finally, we show that our
model is able to learn faster than a classical Bayesian network based
representation when few (or unreliable) data is available, which is a key
feature when it comes to mobile robotics.

1 Introduction

Many works in mobile robotics rely on probabilistic models such as POMDP or
HMM1, etc.) to build a map of an environment [2, 1, 7, 4, 5]. Indeed, the proper-
ties of these models are particularly relevant in the context of robotics, as well
as extensions of these models. Firstly, the problem of knowledge generalization
can partly be solved if we consider a hierarchical model (encode a given place at
sereral granularities) [6]. Secondly, taking into account the invariants can also be
achieved if we consider a model that implements a factorization operator (e.g.
a given place location should be perceived with no considerations for the actual

1 In the following of the article, we deal with HMM rather than with POMDP. The
particularity of the latter being that they explicitly take into account action, which
is not a key issue for the inference problem at hand.

J.-D. Zucker and L. Saitta (Eds.): SARA 2005, LNAI 3607, pp. 107–120, 2005.
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orientation of the robot) [4]. However these two extensions have been well stud-
ied separately, it is quite difficult to endow a HMM-based model with these two
simultaneously. As far as we know, there exists no efficient inference algorithm
that can deal with such a model.

In this paper, we present an approach to perform inference within a Factorial
and Hierarchical HMM (i.e. FHHMM2). Our approach relies on an algorithm
that performs a representation change from FHHMM to the Bayesian Network
representation formalism. The choice of the Bayesian Network formalism is moti-
vated by the strong theoritical fundations and the efficient algorithms that exists
in it.

However, several difficulties arise with such a representation change because
of the structural differences between the two formalisms and their intrinsic prop-
erties. In particular, we identify two main problems that must be taken into
account during this process:

– There exists multiple dependencies in the FHHMM. These implies an expo-
nential growth of the number of parameters to learn, which is a challenging
problem when dealing with a small set of example (this is an intrinsic prop-
erty in mobile robotics) ;

– There exists directed cycles in the conditional dependencies between the
variables of a FHHMM. It is well known that directed cycles are not allowed
within a Bayesian network (we should note however that these dependencies
are a problem only between variables at a same time step (see section 2)).

In the following section, we present the HMM formalism and the factorial and
hierarchical extensions. Then, we describe the inference problem in the case of
FHHMM. Section 3 and 4 presents our approach along with the representation
change algorithm. Lastly, section 5 presents two experiments which confront the
resulting model and classical Bayesian networks for a learning task. We conclude
this paper with a discussion about the interesting properties shown by our model
as well as the compromise we made so as to be able to learn from few data, which
is often the case of a mobile robot building a map of its environment.

2 Problem Setting

2.1 Hierarchical and Factorial HMM

Known limitations with HMM, and more generaly with markov models, are
concerned with scaling, taking into account independent phenomena and the
difficulty to generalize. However, there exists several extensions to solve this
problem. In the following, we focus our attention on hierarchical HMM [7, 5] and
factorial HMM [3]3.

2 We use this abrevation in the following of the article.
3 These extensions have been used separately (with POMDPs) for map-building by a

robot [5, 4].
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On the one hand, the hierarchical extension allows to reduce the number
of links between the states of an HMM, and then reduce the algorithmic com-
plexity of learning as well as improving the acurracy. On the other hand, the
factorial extension makes it possible to explain observations with several causes
rather than only one. In this case, the goal is to turn the P (Y |X) of HMM
into P (Y |X1, X2, ...,Xn). The Xi are hidden variables and can be dealt with
separatly. Thus, the P (Xi

t+1|Xi
t) are different for each i.

2.2 Conditional Dependencies and Sparse Data

Let’s begin by introducing the following definitions:

– A static dependency denotes the conditional dependency between two vari-
ables at the same time step. It is important to notice that the problem of
directed cycles arise only from this kind of dependencies.

– A dynamic dependency is defined as a conditional dependency for two (e.g.
classical HMM) or several variables between two time steps (e.g. factorial
HMM).

Classic and hierarchical HMM contain only dynamic dependencies. However,
static dependencies can be found in the case of factorial HMM when conditional
dependencies are to be created between some variables.

In the scope of this paper, we consider a special kind of HMM, where the
dependencies type may be a priori undefined. As a matter of fact, dynamic and
static dependencies are both expressed as conditional dependencies within the
Bayesian network formalism.

2.3 Problem Issues

Since we consider an HMM that implements both the factorial and hierarchical
extensions along with undefined dependencies, we face the problem of finding
a fitted inference algorithm. As a matter of fact, there do not exists any such
algorithms for this kind of model. This is the first issue: how to perform inference
in such a model.

Another important issue is that due to the original motivation (i.e. mobile
robotics), we have to consider the case where there is few data to learn from.
Indeed, the sample process is supposed to be controlled by the robot’s behavior
and the environment, which usually gives few and biaised examples. Hence, we
state that a good property of our model would be to favor the learning speed
even at the cost of a (reasonable) loss in accuracy.

3 Representation Change: From FHHMM to Bayesian
Networks

3.1 Constrained Representation Change

Taking into Account Multiple Dependencies: we suggest to reformulate
a directed (and potentially cyclic) graph into a Bayesian network. Indeed, the
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Fig. 1. Example of representation change (BN => FBN)

Bayesian network formalism is a well known and grounded theoritical and prac-
tical framework.

However, two problems arise with such a representation change: (1) the cost
of taking into account the multiple dependencies which exist for a variable (i.e.
computing P (Y |X1, X2, ...,Xn), resulting in 2n parameters when dealing with
binary variables) and (2) reformulating a directed cycle within a Bayesian net-
work.

Our solution rely on simplifying the constrains due to multiple dependen-
cies. Indeed, multiple dependencies are decomposed by dealing with them two
by two (i.e. taking separately P (Y |X1), P (Y |X2), ..., P (Y |Xn) (resulting in 2n
parameters for binary variables) as well as introducing constraints during the
transformation process).

3.2 Taking into Account Multiple Dependencies Two by Two

Let V1, V2, ..., Vn, with n discrete random variables, of modality m1, ..., mn.
We assume that pi = P (Vi) are known (vector of size mi), for all i, and some

pi,j = P (Vj |Vi), j ∈ Ii ⊂ {1, ..., n} (pi,j is a matrix of size (mi,mj)).
This model can be represented by a graph where nodes are random variables

Vi and edges ai,j that represents the pi,j . The conditional probabilities induce
a structure that is not constrained (for instance, there may exist directed cy-
cles). In order to simplify the notation, we introduce the notion of Flattened
Bayesian Network (or FBN) to designate the networks that are described in
the following of the paper. Figure 1 shows an example of representation change
from a graph into a Flattened Bayesian Network.

Reformulating into Bayesian Network Formalism: Additional
Variables and Axioms: For each pair of dependent variables (Vi, Vj), we add
an additional variable which parents are Vi and Vj . This provides two advantages:
(1) limiting the complexity of multiple dependencies (at the cost of approxi-
mation), (2) avoiding directed cycles (in the new formalism, all edges target
additional variables). Once this reformulation is completed, inference is made
possible thanks to one of the several inference algorithm of Bayesian network.

Each variable Vi from the original graph is mapped into a variable of the
Bayesian network, with the same modality, noted Vi (as before).
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Each edge ai,j is mapped into an additional boolean variable in the Bayesian
network, noted Ai,j . The Ai,j have exactly two parents in the Bayesian network,
namely Vi and Vj (i.e. a V-structure). These variables are artificially observed
in order to induce a dependency between the variables Vi and Vj (observation
values are assigned to “true”).

Once the additional variables are added, conditional probabilities must be
computed as a last step to the transformation process, that is to compute the
P (Ai,j |Vi, Vj). Let’s introduce the following notations:

– Let Kj = ∪i{Ai,j};
– Let K = ∪jKj . Let L ⊂ K. We note L = true the event ∀A ∈ L,A = true.

Now, we shall define an axiomatic system to satisfy. The goal is to make
the probabilities P (Ai,j |Vi, Vj) reach a fixed point (i.e. stable). This fixed point
is reached thanks to an EM-inspired iterative algorithm which is described in
the following. Satisfying this axiomatic system garantees a coherent network
behavior with respect to the dependencies taken two by two (compared to the
behavior of a classic network).

The first axiom named “behavior axiom” determines the influence of a vari-
able onto another. This axiom specifies a property defined from K = true, i.e.
∀i, j Ai,j = true. Then, this implies a coupled equation system. The behavior
axiom is defined as follow:

∀i, j P (Vj |Vi,K = true) = pi,j (1)

Secondly, the information contained in a probability distribution is linked to
the difference between this distribution and the a priori distribution. We then
introduce a second axiom named “not adding information” which states that
adding additional variables do not bring information to the network. Then, this
axiom implies local constrains on the P (Ai,j |Vi, Vj), i.e. independently taking
into account the Ai,j . The not adding information axiom is defined as follow:

∀j, P (Vj |K = true) = pj (2)

Let’s now describe the iterative process that satisfies the axioms. For more
details on the equation system induced by the axioms, the reader can refer to
the appendix at the end of this paper.

Satisfaction Mechanism of the Axiomatic System: For each iteration,
there is an inter-dependency problem when computing the probabilities
P (Ai,j |Vi, Vj)4 Indeed, if an element of the matrix P (Ai,j |Vi, Vj) is modified,
then the axioms may be invalidated for another dependency. In pratical, we
check that the system satisfy the axioms once all the matrices are calculated.
We iterate the process (updating the matrix) until it converges. This is achieved
thanks to an EM-inspired iterative algorithm which is concerned with the axioms
and is defined as follow:

4 This is even more true with directed cycles.
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– step E: ∀i, j qi,j = P (Vj |Vi,K \ {Ai,j} = true);
– step M: compute P (Ai,j |Vi, Vj) wrt. qi,j .

At this point, this algorithm is not sufficient to make P (Ai,j |Vi, Vj) converge.
Thus, we have to limit the influence between variables through “limited update”
constraints. In the following, we present the mechanisms which are necessary to
the algorithm that will be described in the next section.

Convergence Parameter: Link “Strength”. For each arc between two variables,
we introduce a new term, namely “strength”, which determines the influence
of one variable upon another. A zero strength means that the variable has no
direct influence (i.e. same as removing the additional variable). The strength is
expressed by f , function defined on the set of additional variables Ai,j . f(Ai,j) =
(f1(Ai,j), ..., fmi

(Ai,j)) is a vector of size mi (number of modality for the vari-
able Vi), and fk(Ai,j) = 1 −Hk(P (Ai,j |Vi, Vj)) where Hk(P (Ai,j |Vi, Vj)) is the
entropy of line k (P (Ai,j |Vi, Vj) is a matrix).

Updating Criterion Used to Converge: Limiting the Direct Influence of Variables
Thanks to the Strength Term. In order to compute the influence of a variable
i on another variable j, we have to take into account both the direct influence
(i.e. through an additional variable Aij) and indirect influence (i.e. through the
other variables of which i and j both depend).

For some configurations however, influences will compensate each other so
that they will both tend to a limit state (probability will tend to 0 or 1), making
it difficult to take them into account any further. As a matter of fact, we shall
then face (1) possibly infinite convergence towards 0 or 1 and (2) computational
problem related the computer accuracy (the latter being the most important in
practical).

In order to solve this problem, we compute a maximum threshold for the
strength which is defined for every pairs of variables and for every modality of
the source variable such as:

Let f0
k (i, j) = fk(Ai,j) when ∀i, j qi,j = pj .

This threshold is meant to be used as the link strength if there is no indirect
influence. Hence, the iterative algorithm we present in the next section must
satisfy for each step: ∀i, j fk(Ai,j) ≤ f0

k (i, j) (refer to algorithm 2 in the next
section).

4 Representation Change Algorithm

In this section, we present two complementary algorithms that perform the de-
sired representation change. The first algorithm makes the system converge (i.e.
N iterations until convergence) while the second algorithm makes sure that the
representation change is performed with respect to the axioms for any pair of
variables (i.e. a single iteration which may or may not lead to convergence).
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4.1 Algorithm 1: Do N Iterations Until Convergence

while P (Ai,j |Vi, Vj) haven’t converged (distance from the term before is more
than a given threshold) or while the number of iterations have not reached a
maximum do

call algorithm 2
compute the distance between new and old probabilities

end while

4.2 Algorithm 2: Do an Iteration for All the Variables Pairs

1: for all pairs of variables Vi, Vj such that there exists a dependency Vi− > Vj

do
2: if first iteration then
3: Set all the additional variables as unobserved.
4: Affect the qi,j = P (Vj).
5: else
6: Set the variable Ai,j unobserved and the other additional variables ob-

served to true
7: Calculate the qi,j = P (Vj |Vi,K\{Ai,j} = true) using an inference in the

Bayesian network. These conditional probabilities represents the direct
influence(without the link through variable Ai,j) of Vi on Vj .

8: end if
9: Apply the equations of the first axiom in order to determine the P (Ai,j |Vi,

Vj) with a multiply constant for each line i
10: for all The lines k of the matrix P (Ai,j |Vi, Vj), calculate the “strength”

fk = fk(Ai,j) = 1−Hk(P (Ai,j |Vi, Vj)) of the link i− > j. do
11: if First iteration then
12: f0

k (i, j) = fk(Ai,j)
13: else
14: if fk > f0

k then
15: Calculate by dichotomy the 0 ≤ y ≤ 1 such as fk(Ay

i,j))f
0
k ,(i.e. all

the coefficients of the matrix are powered by y). This is done in
order to “smooth” the parameters to increase the entropy and then
decrease the “strength”.

16: end if
17: end if
18: end for
19: Apply the equations of the second axiom to determine the multiply con-

stants
20: Compute the matrix P (Ai,j |Vi, Vj)
21: end for

In the next section, we show some experiments that rely on this algorithms.
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5 Experiments

5.1 Experimental Setup

In order to experimentally validate our approach, we conducted some exper-
iments on the learnability of the networks after a representation change (i.e.
flattened Bayesian networks). Our experimental setup is defined as follow:

– a generator network which can either be a flattened Bayesian network (exp.
1) or a classic Bayesian network (exp. 2). In both experiments, the number
of nodes in the generator and learnable networks is fixed (in the case of
flattened Bayesian network, we do not count the additional nodes built by
our representation change algorithm).

– a set of learning networks that covers both all the possible classic Bayesian
networks and flattened Bayesian networks structures with the same number
of nodes than the generator (i.e. learning is exhaustive for all structures with
a given size).

So as to get a good approximation of the results, we compute N data sequence
from M random initializations for the generator network. As a consequence, we
perform N ∗M learning sessions for each target network (20 ≤ N ∗M ≤ 50).

Fig. 2. Results using a Flattened Bayesian Network generator. The X-axis shows the
number of examples used for learning. The Y-axis shows the Kullback-Leibler distance
between the learned joint distribution and the one that was used to generate the
learning data. The generator network is shown on the figure (lower-left). The best
performing Bayesian and flattened Bayesian networks for 50 examples are also shown
on the figure (up)
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Fig. 3. Results using a Bayesian Network generator. The X-axis shows the number of
examples used for learning. The Y-axis shows the Kullback-Leibler distance between
the learned joint distribution and the one that was used to generate the learning data.
The generator network is shown on the figure (lower-left). The best performing Bayesian
and flattened Bayesian networks for 50 examples are also shown on the figure (up)

The error is defined as the Kullback-Leibler distance between the joint distri-
bution of a given target network and the distribution of the generator network.
In the scope of this paper, the network size for all experiments is limited to 4 so
that it is possible to evaluate the performance for all possible structures. As a
matter of fact, the number of possible structures grows more than exponentially
in function of the network size, which makes computation quickly prohibitive.

5.2 Experiment 1: Learning from Data Generated by a Flattened
Bayesian Network

Firstly, we study the behavior of flattened Bayesian networks in the most favor-
able setup, i.e. when learning on data generated by a flattened Bayesian network.
In this experiment, the generator is a 4-node cyclic flattened Bayesian network.
Figure 2 shows this generator as well as the results obtained with both all the
flattened Bayesian networks and classic Bayesian network that contains 4 nodes.

This figure shows that the flattened Bayesian networks always perform better
for average and best performances. However, learning performance tends to be
the same as the number of examples increases (≥ 250). Flattened Bayesian
networks are thus relevant when learning from such data. Moreover it should
be noted that the best performing flattened Bayesian network is structuraly
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different from the generator, meaning that the more reliable structure when few
examples are available is not the very structure of the generator.

5.3 Experiment 2: Learning from Few Examples

Secondly, we choose a 4-node classic Bayesian network as data generator (cf. fig.
3). As a consequence, learning with flattened Bayesian networks faces the worst
case since the generator’s joint probability can be anything. As a matter of fact,
flattened Bayesian network are supposed to be better for some distributions
(unknown at this stage of our research).

Figure 3 shows the results with respect to the experimental setup described
earlier. The important result is that the flattened Bayesian networks show the
best results both in average and for the best when there are few examples to
learn from. However, classic Bayesian networks become better as the number of
examples grow. These results show clearly that flattened Bayesian network pay
for the advantage of learning speed with a loss in accuracy in the long term (i.e.
compromise between a fast learning curve againt non-accurate learning in the
long term).

Fig. 4. Distribution (y-axis) wrt. the learning error (x-axis) for both classical (white
bars) and flattened (grey bars) Bayesian networks. Learning performance for the
flattened Bayesian networks are much more structuraly-independent than for classic
Bayesian networks



From Factorial and Hierarchical HMM to Bayesian Network 117

5.4 Discussion

According to the results obtained earlier, it appears that the best networks are
also the simplest ones. Thus, it seems more relevant to learn with a simple yet
inadequate structure rather than with a more complex structure that is closer
to the generator: this can be seen as an explanation for the good learning capa-
bilities of flattened Bayesian networks. Figure 4 tends to confirm this assertion
by showing the distribution of classic and flattened Bayesian networks accord-
ing the learning performance for a given number of examples (here arbitrarily
fixed to 50) in experiment 2. Indeed this figure shows that flattened Bayesian
network are much less sensitive to structural variations than classic Bayesian
networks.

6 Conclusions

In the scope of this paper, we were interested in the transformation of a graph
(in practical, a hierarchical and factorial HMM) into a Bayesian network accord-
ing to some given constraints in order to reformulate the multiple dependencies
and cycles inherent to such a representation. We presented an algorithm that
performs a representation change in order to build a flattened Bayesian net-
work. We also presented the axioms that are used to provide a relevant model of
reformulated multiple dependencies. This model is based on a compromise be-
tween accurateness and learning speed which is achieved by taking into account
multiple dependencies by modeling variables only by pairs.

In order to study the behavior of flattened Bayesian networks, we performed
two experiments that successively showed (1) the learning behavior with a cyclic
flattened Bayesian network generator and (2) the learning behavior with few
examples. Thanks to these experiments, we have shown that flattened Bayesian
networks are especially good when learning from few examples, compared to
classic Bayesian networks.

Given our original motivation, i.e. map representation in mobile robotics, the
results we obtained are very promising since it has been observed that flattened
Bayesian network have the following properties:

– it is possible to modelize cycles one may encountered when dealing with
factorial and hierarchical HMM;

– learning is performed more quickly with fewer examples. Of course, this
results from a compromise that implies a loss of accuracy in the long term.
However, in the scope of mobile robotics, this compromise is worthwhile since
a robot often deals with few or biased examples to build a representation of
the environment.

In the scope of this paper, we presented some experiments that compare
classic and flattened Bayesian networks. However, the representation formalism
remains the one of the Bayesian network, eventhough the representation change
algorithm adds additional variables. Thus, it is possible to build some hybrid
representations that combine both flattened and classical Bayesian sub-networks
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depending on the availability of data to learn from. As a consequence, this would
make it possible to get the best of both worlds: learning from few examples
with flattened Bayesian networks and precision learning with classic Bayesian
networks when many examples are available.

Some issues remain to be explored. From the model viewpoint, the conver-
gence mechanism describe in section 3.2 is based on experimental validation and
may require some further theoretical investigations. From the robotic viewpoint,
it is crucial to evaluate the learning behavior of flattened Bayesian networks
using real-world data, i.e. such as those a robot could gather in its environment.
Then, we should investigate the learning mechanism that may be used to find a
relevant structure for a flattened Bayesian network, eventhough those netwoks
have been shown to be less sensitive to an ill-chosen structure than classical
Bayesian networks actually are.
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Appendix: Property of the Model and Conditional
Probabilities

This section details the equations obtains from the axioms.
We add to the notations above, for i, j fixed: K ′ = K \ {Ai,j}.
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First Axiom

The first axiom, named “behavior” determines the influence of a variable on
another. This axiom specify a property defined from K = true, that is to say
from ∀i, j Ai,j = true. It can be expressed as: Behavior axiom:

∀i, j P (Vj |Vi,K = true) = pi,j

(axiom 1)
From Bayes formulae,

P (Ai,j = true|Vi = k, Vj = l,K ′ = true)

=
P (Vj = l|Vi = k,K = true)P (Ai,j = true|Vi = k,K ′ = true)

P (Vj = l|Vi = k,K ′ = true)
(3)

Finally:

∀k, l, P (Ai,j |Vi = k, Vj = l) = γk
pi,j(k, l)

P (Vj = l|Vi = k,K ′ = true)

The proportionality coefficients γk, which do not have influence on the satis-
faction of this property allow us to obtain the following property.

Second Axiom

The information contained in a probability distribution is linked to the differ-
ence between this distribution and the a priori distribution. We then introduce
a second axiom named “not adding information” which states that adding ad-
ditional variables will not bring information in the network. Then, this axiom
implies local constraints on the P (Ai,j |Vi, Vj), that is to say taking into account
the Ai,j independently. More precisely:

not adding information axiom:

∀i,∀k, P (Vi = k|K = true) = pi(k)

Again from the Bayes formulae:

P (Vi = k|K = true)

=
P (Ai,j = true|Vi = k, K′ = true)P (Vi = k|K′ = true)

P (Ai,j = true|K′ = true)

= P (Vi = k|K′ = true)∑
l P (Ai,j = true|Vj = l, Vi =k)p(Vj = l|Vi =k, K′ = true)

P (Ai,j = true|K′ = true)
(4)

Futhermore, we have from above:

P (Ai,j = true|Vj = l, Vi = k) = γk
pi,j(k, l)

P (Vj = l|Vi = k,K ′ = true)
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Hence:

P (Vi = k|K = true)

=
P (Vi = k|K ′ = true)

∑
l γk

pi,j(k,l)
P (Vj=l|Vi=k,K′=true)p(Vj = l|Vi = k,K ′ = true)

P (Ai,j = true|K ′ = true)

=
P (Vi = k|K ′ = true)

∑
l γkpi,j(k, l)

P (Ai,j = true|K ′ = true)

=
P (Vi = k|K ′ = true)γk

P (Ai,j = true|K ′ = true)

Finally:

∀k, γk = P (Ai,j = true|K ′ = true) (5)

All the γk are equals. This constant does not have influence on the wanted
properties and is then chosen in order to have all the probabilities between 0
and 1, and secondly for numerical considerations. More precisly it is chosen such
as

maxj,lP (Ai,j = true|Vi = k, Vj = l) = 1 �
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Abstract. Pattern databases enable difficult search problems to be
solved very quickly, but are large and time-consuming to build. They
are therefore best suited to situations where many problem instances are
to be solved, and less than ideal when only a few instances are to be
solved. This paper examines a technique - hierarchical heuristic search -
especially designed for the latter situation. The key idea is to compute,
on demand, only those pattern database entries needed to solve a given
problem instance. Our experiments show that Hierarchical IDA* can
solve individual problems very quickly, up to two orders of magnitude
faster than the time required to build an entire high-performance pattern
database.

1 Introduction

Pattern databases were introduced [3, 4] as a method for defining a heuristic
function to be used by heuristic search algorithms such as A* [9] and IDA* [14].
They have proved very valuable. For example, they are the key breakthrough
enabling Rubik’s Cube to be solved optimally [15], they have advanced the state
of the art of solving the sequential ordering problem [11], and have enabled
the length of solutions constructed using a macro-table to be very significantly
reduced [10]. They have also proven useful in heuristic-guided planning [6].

A pattern database is defined by a goal state and an abstraction, φ, that
maps the given state space, S, to an abstract state space φ(S). The states in
φ(S) are called abstract states or patterns. A pattern database is a lookup table
with an entry for each pattern – the entry for pattern P is the distance in φ(S)
from P to the goal pattern, φ(goal). Given a pattern database, the heuristic
value, h(s), for a state s ∈ S is computed by looking up the entry for φ(s) in
the pattern database. Because φ is an abstraction, h(s) is guaranteed to be an
admissible, monotone heuristic [12].

A pattern database is built by finding a shortest path to the goal pattern for
every pattern in φ(S). Typically this is done by running a breadth-first search
backwards from the goal pattern until φ(S) is fully enumerated.

Building an entire pattern database as a preprocessing step has two disadvan-
tages. The first is the time it takes to build the pattern database. For example,
the “7-8” additive pattern database for the 15-puzzle in [7] takes approximately
3 hours to build and the high-performance pattern database for (17,4)-TopSpin
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in [8] takes approximately 1 hour to build. The second disadvantage is the size
of the pattern database. In solving a single problem, only a tiny fraction of the
pattern database is needed, and therefore most of the memory allocated for the
pattern database, and the time needed to build it, is wasted.

Both disadvantages disappear, to some extent, if the same pattern database
is used to solve many problem instances. For example, if 3 million 15-puzzle
instances are solved using the “7-8” pattern database, the majority of its entries
would be needed and the time to build the pattern database would amount to
less than 10% of the total solution time.

On the other hand, there are circumstances in which the cost of building an
entire pattern database cannot reasonably be amortized over a large number of
problem instances. The obvious such circumstance is when only one or a few
problem instances need to be solved, such as when building a macro-table [10],
or when solving multiple sequence alignment problems [17]. In this case the time
to build the pattern database will dominate the time to solve the problems.

Another circumstance in which the cost of building a pattern database cannot
be amortized is when there are many instances to solve but it is impossible to use
the same pattern database to solve them because they have different goals (and
no simple transformation is possible), or because the operators or their costs
have changed. As will be shown below it can also happen that, even though it
is possible to use the same pattern database for all the problem instances, it is
advantageous, time-wise, to use a different, custom-selected pattern database to
solve different instances.

In this paper we examine a technique - hierarchical heuristic search - that
aims to minimize the time and space overhead of using a pattern database by
computing only those entries of the pattern database that are actually needed
to solve a given problem instance. The idea of on-demand calculation of pattern
database entries by hierarchical heuristic search was introduced in [12]. The
abstraction technique there was so costly, in terms of both time and space, that
it needed to be amortized over a large number of problem instances and therefore
offered little or no advantage over pattern databases. The starting point for the
present paper is the observation that the abstraction technique used for pattern
databases requires negligible space and time, and therefore raises the possibility
of realizing the great potential advantages of hierarchical heuristic search over
pattern databases for solving individual problem instances. In addition to using
a different abstraction technique, the present work also uses IDA* as its basic
search procedure, whereas [12] used A*.

This paper reports several experiments with Hierarchical IDA* (HIDA*). The
first shows that even if one abstraction, somewhat arbitrarily chosen, is used to
solve all problem instances for a given state space, an average instance can be
individually solved from scratch by HIDA* in minutes, compared to the one or
more hours it takes to build a high-performance pattern database. Subsequent
experiments show that in some state spaces a substantial additional speedup can
be obtained by using multiple or customized abstractions.
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2 The Hierarchical IDA* Algorithm

Pseudocode for Hierarchical IDA* (HIDA*) is given in Figure 1. The lines high-
lighted in bold font indicate the differences from normal IDA*. To improve per-
formance our actual implementation is somewhat more complex, but this figure
captures the central ideas.

The defining characteristic of hierarchical heuristic search is seen in the
h(s, goal) function in Figure 1. To compute a heuristic for state s, a recursive
call to the search algorithm is made to compute the exact distance between the
abstraction of s, φ(s), and the abstraction of the goal state, φ(goal). Search at
an abstract level is guided by distances computed at an even more abstract level
(in the figure the symbol φ is used to indicate the function that moves from the
current level to the next more abstract level; an alternative notation would have
had a different symbol, φi, for each level).

HIDA∗ (start, goal)
bound ← h(start, goal)
Repeat until goal is found:

bound ← DFS(start, goal, 0, bound)
For all states s on the solution path:

cache[s] ← distance from s to goal
mark cache[s] as an exact distance

———————————————————————-
DFS(s, goal, g, bound)

If s == goal: exit with success
g ← g + 1
newbound ← ∞
Iterate over x ∈ successors(s):
// P-g caching

cache[x] ← max(cache[x],bound-g,h(x,goal))
f ← g + cache[x]

// Optimal path caching
If (f == bound) and (cache[x] is an exact distance):

exit with success
If f ≤ bound: f ← DFS(x, goal, g, bound)
If f < newbound : newbound ← f

Return newbound
———————————————————————-
h(s, goal)

If at the top abstraction level, return 0
If cache[φ(s)] is not an exact distance:

HIDA*(φ(s),φ(goal))
Return cache[φ(s)]

Fig. 1. Pseudocode for Hierarchical IDA*
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Whenever the exact distance from a state to the goal is determined at any
level other than the base level (the original search space), it is stored in a cache
so that it need not be recomputed if it is required again. This is done by the
bold lines of pseudocode in the HIDA* function in Figure 1.

Exact distances to the goal stored in cache[x] for abstract state, x, are ac-
tually used for two different purposes. First, cache[x] is used as the value for
h(s, goal) for any less abstract state, s, for which φ(s) = x. Second, cache[x] is
used in the optimal path caching method that was introduced, for A*, in [12].
If x is reached by a path of length g during a search within x’s abstract level
and cache[x] is an exact distance to goal, it is treated as if the goal had been
reached by a path of length g + cache[x]. See the bold lines after the “Optimal
path caching” comment in the DFS function in Figure 1.

In addition to storing exact distances to the goal, the cache is also used to
store estimated distances to the goal generated by the “P-g” caching technique
that was introduced, for A*, in [12]. “P-g” caching improves (increases) the
heuristic values for abstract states that are expanded during a search, thereby
improving the efficiency of subsequent searches that happen to reach these
states. One possible implementation of “P-g” caching for HIDA* is shown by
the bold lines after the “P-g caching” comment in the DFS function in
Figure 1.

In all experiments the memory used for the cache was limited to 1 Gigabyte.
The implementation of the cache in hierarchical search is less efficient than the
hash table used to implement pattern databases because it is not known ahead
of time which entries, or even how many entries, will be put into the hierarchical
search cache1. By contrast, the exact set of patterns that will index a pattern
database is known ahead of time. This is enormously beneficial in terms of space
because a perfect hash function (collision free, no gaps) can be used, meaning
that nothing identifying the pattern needs to be stored as part of an entry.
Pattern database entries therefore only contain distances, typically needing only
one byte per entry. It is not possible to develop a perfect hash function for
the hierarchical search cache, so the cache must store a unique identifier for
each pattern along with its distance, which increases the size of an entry very
substantially (e.g. from one byte to eight for our 15-puzzle implementation). Not
having a perfect hash function also slows down access, since collisions can occur
and must be detected and resolved.

On a modern PC (AMD Athlon, 2.1GHz) our code generates approximately
4.5 million nodes per second at the base level and 1.5 million nodes per second
at the abstract levels. The difference in speed is because the cache operations
are done at each abstract level but not at the base level.

1 This is true only of the lower levels in the abstraction hierarchy. For the upper levels
it is virtually certain that almost all possible entries will be generated. For example,
in the 15-puzzle experiment in the next section over 90% of the possible entries were
generated at each of levels 4-8 in Table 1.



Hierarchical Heuristic Search Revisited 125

3 State Spaces Used in the Experiments

Four state spaces are used in these experiments: the 15-puzzle, a novel variant
called the Macro-15 puzzle, (17,4)-Topspin, and the 14-Pancake puzzle. For each
state space 100 randomly generated solvable instances were used for testing.

The 15-puzzle is included in our experiments because it is a standard bench-
mark for heuristic search methods. It is not actually a good example of the
circumstances in which to use HIDA* because a very good, efficiently computed
heuristic (Manhattan Distance) is known for it, and with modern search methods
individual problems can be solved from scratch very quickly [1].

The Macro-15 puzzle is a novel variation on the 15-puzzle inspired by the
fact that in the physical puzzle it takes the same effort to slide any partial row
or partial column of tiles one position towards the blank as it takes to slide a
single tile. Thus, in the 4x4 Macro puzzle used here there are 6 possible moves
in every state (because there are 3 tiles in the same row as the blank and 3 tiles
in the same column as the blank, and any tile in the same row or column as
the blank can be the endpoint of the group that is moved). We call this state
space the Macro-15 puzzle because its additional moves are “macro” moves in
the 15-puzzle. Solution lengths in the Macro-15 state space for the 100 standard
test problems used for the 15-puzzle [14] range from 27 to 38 with the median
and average solution length being 32. By contrast in the normal 15-puzzle these
problems’ solution lengths range from 41 to 66, with a median and average length
of 53. Note that Manhattan Distance is not an admissible heuristic in this space,
and additive pattern databases [7] cannot be used for it.

The (N ,K)-TopSpin puzzle has N tokens arranged in a ring. The tokens can
be shifted cyclically clockwise or counterclockwise. The ring of tokens intersects
a region K tokens in length which can be rotated to reverse the order of the
tokens currently in the region. In our encoding we ignore the cyclic shifts and
only count reversals. Therefore the only moves are to reverse any K adjacent
tokens, where adjacency is defined cyclically. We used N = 17 and K = 4, but
the effective number of tokens is only 16 because one of the tokens is used as
a fixed reference point and therefore is effectively stationary. [2] shows that all
16! states are reachable. In order to reduce the number of transpositions, if two
moves act on non-intersecting sets of positions we force them to be done in a
particular order. This reduces the branching factor to 8.

In the N -Pancake puzzle [5] a state is a permutation of N tokens (0, 1, ...N−
1). A state has N − 1 successors, with the kth successor formed by reversing
the order of the first k + 1 positions of the permutation (1 ≤ k < N). We used
N=14, which has 14! states. Although this space is smaller than the others its
much larger branching factor makes it roughly the same difficulty to search.

4 Using One Abstraction Hierarchy for All Problems

Hierarchical search requires an abstraction hierarchy – a sequence of abstractions
defining the mappings from one level of abstraction to the next. In our state
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Table 1. “Default” Abstraction Hierarchy for the 15-puzzle and the Macro-15 puzzle

8 • • • • • • • • 15
7 • • • • • • • 14 15
6 • • • • • • 13 14 15
5 • • • • • 12 13 14 15
4 • • • • 11 12 13 14 15
3 • • • 10 11 12 13 14 15
2 • • 9 10 11 12 13 14 15
1 • 8 9 10 11 12 13 14 15

base 1-7 8 9 10 11 12 13 14 15

spaces an abstraction is defined by mapping some of the tiles/tokens to a “don’t
care” symbol. If the tokens mapped to “don’t care” by φ1 are a superset of
the tokens mapped to “don’t care” by φ2 then the space defined by φ1 is an
abstraction of the space defined by φ2. Therefore a sequence of successively
more abstract spaces can be defined by partitioning the tokens into groups,
G1, G2, ..., Gn and defining φi as the abstraction in which all tokens in groups
G1, G2, ..., Gi are mapped to “don’t care”.

In the experiment in this section the same abstraction hierarchy is used for
all problem instances of each state space. These “default” abstraction hierar-
chies were not carefully chosen, they were among our initial thoughts for each
state space. The abstraction hierarchy used for the 15-puzzle and the Macro-15
puzzle is shown in Table 1, which is read from bottom to top, because the higher
rows represent the higher levels of abstraction. The bottom row (“base” level)
indicates which tile(s) each column is referring to. Each other row indicates how
the tiles are mapped at a certain level of abstraction, the level being indicated
by the number in the first column. For example the row with 1 in the first col-
umn shows that the first level of abstraction is defined by mapping tiles 1-7 to
“don’t care” (indicated by • in the table). The patterns at this abstract level
are the possible ways of placing the blank and the 8 remaining tiles (tiles 8-15)
in the 16 positions of the 15-puzzle. At the most abstract level (level 8) all the
tiles except 15 are mapped to “don’t care”. The patterns at this abstract level
are the possible ways of placing the blank and tile 15 in the 16 positions of the
15-puzzle.

The abstraction hierarchy used for the 14-Pancake puzzle is identical except
that it has only 14 tokens and therefore only seven abstract levels. Note that
“token 1” has the most volatile home position – the token in that position is
changed by every operation. This abstraction therefore abstracts the tokens in
volatile positions and retains the identity of tokens that can be placed in their
home positions and then left unmoved by a judicious choice of operators.

The abstraction hierarchy for (17,4)-TopSpin starts by abstracting tokens 1-9
to define the first abstraction level and abstracts one token per level thereafter
in increasing order (10, then 11, then 12 etc.). Token 0 is the token that is used
as a reference and never moves - it is never abstracted.
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Table 2. CPU times (in seconds) using the default abstraction hierarchy. “all” means
clear every cache between every problem instance. “1-3” means clear levels 1-3 between
every instance, never clear the higher levels. “none” means never clear any cache - this
is possible only if all entries at all levels fit within the 1 Gigabyte memory limit.

State Space Clear Avg Max Median
all 642 20,227 93

15-puzzle
1-3 596 17,827 71
all 132 910 84

Macro-15
1-3 101 959 58
all 766 3,068 680

(17,4)-TopSpin
none 162 1,875 89
all 88 405 54

14-Pancake
none 31 326 4

Table 3. Comparison of the average number of cache entries (in thousands) stored
by HIDA* to the number of entries (in thousands) in the full pattern database (PDB
size) for the first level of abstraction. The last column expresses the average number
of Level 1 cache entries as a percentage of the pattern database size.

State Space Total Level 1 PDB size %
15-puzzle 10,931 2,657 4,151,347 0.06
Macro-15 7,402 787 4,151,347 0.02

(17,4)-TopSpin 8,143 3,423 57,657 5.9
14-Pancake 1,208 229 17,297 1.3

Table 2 shows the average, maximum, and median CPU times over the 100
test problems for each state space. “All” in the “Clear” column indicates that
all caches are cleared completely between each problem instance. This simulates
solving a single problem instance in isolation with no preprocessing or prior
problem-solving experience with the abstraction. The “median” column in the
“all” rows shows that the majority of individual problems can be solved in a
few minutes, compared to the hour or more it takes to build high-performance
pattern databases. Across the entire experiment only three problem instances,
all for the 15-puzzle, take more than an hour to solve.

Table 3 shows the number of cache entries created by HIDA*, on average.
“Total” is the total number of cache entries at all levels. “Level 1” is the number
of cache entries for the first level of abstraction. The rightmost column shows
that this is a small fraction of what would be stored in the pattern database
for this abstraction – well under one-tenth of one percent for the 15-puzzle and
Macro-15 puzzle.

If a small batch of problem instances with the same goal is to be solved using
the same abstraction, HIDA*’s caches need not be cleared between instances: the
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cache entries created for one instance will be correct for others. The abstractions
being used for (17,4)-TopSpin and 14-Pancake are sufficiently coarse-grained that
1 Gigabyte allows all caches at all levels to be made large enough to hold all
possible entries. Therefore, it is never necessary to clear any cache. The “none”
rows in Table 2 show the CPU times for these puzzles if the 100 test problems
are solved as a batch in the random order in which they were generated with no
clearing of the caches. Batch-solving substantially reduces the average, median,
and the maximum solution times. A batch of 18 average problems can be solved
in the time it takes to build a high-performance pattern database for (17,4)-
TopSpin.

For the 15-puzzle and Macro-15 puzzle abstractions levels 1, 2, and 3 are
sufficiently fine-grained that they must be cleared at some point in order to solve
the 100 test problems. The “1-3” rows in Table 2 show the CPU times that result
if only the caches at levels 1, 2, and 3 are cleared between each problem instance.
This produces a modest reduction in the time to solve problems. Batches of
approximately 17 15-puzzle problems and batches of 97 Macro-15 problems can
be solved in the time it takes to build a high-performance pattern database for
these puzzles.

The fact that HIDA* solves tens of problem instances, on average, in the
time required to build a high-performance pattern database does not rule out
the possibility that HIDA* would be outperformed by a smaller pattern database
when only one or a few problem instances are to be solved. To see why this will
not happen, in general, consider the Macro-15 puzzle. To build the complete
pattern database for the first level abstraction in Table 2 takes 2.73 hours. The
pattern database based on the second level abstraction is much smaller and takes
only 452 seconds to build. This is still substantially more than the time it takes
HIDA* to solve a single Macro-15 problem on average. A pattern database based
on an even coarser abstraction would take fewer than 100 seconds to build but
would provide such poor heuristic guidance for the base level search that the
time to solve a problem would far exceed HIDA*’s. As a general rule, a pattern
database that can be fully computed in a time less than HIDA*’s will offer much
weaker guidance than HIDA*’s first level of abstraction and therefore have higher
problem-solving runtimes.

5 Multiple Abstractions

[13] shows that for a fixed amount of memory, taking the maximum of several
smaller pattern databases outperforms using a single large pattern database.
This technique can be applied to hierarchical heuristic search by using multiple
abstractions instead of just one at one or more of the abstraction levels. However,
it is not obvious if this will lead to improved performance for hierarchical heuris-
tic search because, unlike in the pattern database studies, the time required to
calculate the entries for the additional abstractions is now counted as part of
the execution time.
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Table 4. CPU times (in seconds) using multiple abstractions

State Space Clear Avg Max Median
all 131 1,047 78

15-puzzle
none 31 364 7
all 88 392 65

Macro-15
none 17 162 5
all 982 2,394 919

(17,4)-TopSpin
none 88 927 50
all 95 329 72

14-Pancake
none 10 197 2

In this section we define multiple abstractions only at the first level of ab-
straction. Each of those abstractions then has only one abstraction above it,
created by abstracting one additional tile/token, and those abstractions each
have only one above them, etc. As in [13], in computing h(s) the calculation of
the maximum value given by the different abstractions is aborted if a value is
returned that is large enough to ensure that f(s) = h(s) + g(s) exceeds IDA*’s
current depth bound.

For (17,4)-TopSpin and the 14-Pancake puzzle, two first-level abstractions are
used: the default abstraction from the previous section and a complementary one.
For (17,4)-TopSpin the complementary abstraction abstracts tokens 8-16 at the
first level (the default abstraction abstracts tokens 1-9) and then abstracts one
additional token per level in decreasing order (7, then 6, then 5 etc.). Similarly,
the complementary abstraction for the 14-Pancake puzzle abstracts tokens 7-
13 (the default abstracts tokens 0-6) and then abstracts one additional token
per level in decreasing order. The results are shown in Table 4. The “all” and
“none” rows in Table 4 have the same meaning and can be directly compared to
the corresponding rows in Table 2. The multiple abstractions in this experiment
increase the CPU time for solving individual problems in isolation (the “all”
rows) but significantly decrease the time for solving small batches of problems
(the “none” rows).

For the 15-puzzle and the Macro-15 puzzle, the default abstractions fill avail-
able memory, so there is no room available for additional abstractions. Instead,
we use four first-level abstractions that are each considerably smaller than the
default. One of them abstracts 8 tiles, the others abstract 9 tiles (the default
abstracts only 7 tiles). Comparing the “all” rows in Table 4 to the corresponding
rows in Table 2 we see that individual problems are solved much more quickly
using multiple abstractions. The average time for solving individual problems,
131 seconds for the 15-puzzle and 88 seconds for Macro-15, is two orders of mag-
nitude less than the time required to build a high-performance pattern database
for these puzzles. The multiple abstractions used here are sufficiently coarse-
grained that 1 Gigabyte is enough to create perfect hash tables for all caches at
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all levels. This enables batches of problems to be solved without ever clearing
any caches, producing the results shown in the “none” rows in Table 4. In both
spaces the entire batch of 100 test problems is solved in well under an hour.

6 Customized Abstractions

The first experiment showed that individual problem instances can be solved
quickly using a default abstraction hierarchy. This section shows that this per-
formance can be significantly improved, in some state spaces, by tailoring the
abstraction hierarchy to each instance. In this experiment all caches are cleared
between each instance.

For the 15-puzzle and Macro-15 puzzle we use a simple method for creating
the customized abstraction hierarchy. The key idea is to choose a good order in
which the tiles will be abstracted. The first level abstracts the first seven tiles
according to the order, and each level after that abstracts the next tile in the
ordering. The tile ordering we used is based on each tile’s Manhattan distance,
i.e. the number of moves required to get the tile from its position in the start
state to its goal position. The tiles are sorted in increasing order of this distance,
with ties broken arbitrarily.

78 of the 15-puzzle problems are solved more quickly with the customized
abstraction than with the default abstraction. The 22 that are slower are all
“easy” problem instances. The hardest problem instances have all been sped up
substantially by using a customized abstraction; some now run almost 50 times
faster than before. The longest-running instance now takes 1,517 seconds. The
average time to solve a problem instance is reduced from 642 to 99 seconds,
and the median time drops from 93 to 42 seconds. These results are signifi-
cantly better than the results with generic multiple abstractions (row “all” in
Table 4).

The Macro-15 puzzle also benefits significantly from custom abstractions,
although not as much as the 15-puzzle. Average solution time is reduced to 99
seconds from 132, and the median drops to 64 seconds from 84.

For (17,4)-TopSpin and the 14-Pancake puzzle numerous methods of custom
abstraction were explored. For the 14-Pancake puzzle none outperformed the
default abstraction. For (17,4)-TopSpin we identified an abstraction2 that was
significantly better than the default for certain problems. However, there was
no obvious rule to decide which abstraction to use on a given problem instance.
Our solution was to compute h(start) using each of the abstractions and then
use the abstraction that gave the higher value to solve the instance. This is a
rather expensive selection rule, because the cache entries created when comput-
ing h(start) using the first abstraction have to be cleared in order to compute
h(start) using the second abstraction, and then have to be recomputed if the
first abstraction is chosen for solving the problem. This overhead must be in-

2 The first level abstracts tokens 8-16, subsequent levels eliminate one additional token
in decreasing order (7 then 6 then 5 etc).
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cluded in the total time to solve a problem, and doing so leaves the average and
median solution times virtually the same as always using the default abstraction.
However, this method does reduce the time to solve the most difficult problem
from 3068 to 2304 seconds.

7 Related Work

[17] observes that the pattern database entry for φ(s) is not needed if

d(φ(s), φ(goal)) + d′(φ(start), φ(s)) > U

where d(x, y) is the true distance from x to y, U ≥ d(start, goal), and d′(x, y) ≤
d(x, y). Given an upper bound, U , on the solution cost in the original space
and a function, d′(x, y), that never overestimates distance in the abstract space,
[17] runs A∗ backwards from the abstract goal state until it has enumerated
all abstract states φ(s) with d(φ(s), φ(goal)) + d′(φ(start), φ(s)) ≤ U . The re-
sulting table of abstract distances is called a space-efficient pattern database
(SEPDB).

If the abstraction used for the SEPDB is used to define HIDA*’s first abstract
level and search at this level is guided by the same heuristic in both systems,
HIDA*’s first-level cache will always contain a subset of the SEPDB entries.
The SEPDB hash table, like HIDA*’s caches, must store pattern identification
information along with the distance information when there is not sufficient
memory to store all possible entries for the full pattern database. Thus, SEPDB’s
memory needs cannot be less than HIDA*’s.

To see precisely how SEPDB’s memory requirements compare to HIDA*’s
we ran SEPDB using the default abstractions for our state spaces. The second
abstract level was used as the heuristic to guide SEPDB’s A*. The resulting
SEPDB is therefore the counterpart of HIDA*’s first level cache. To make the
comparison as favourable to SEPDB as possible the upper bound it was given
was the actual solution length for each problem instance. The results are shown
in Table 5. SEPDB has at least 32% more entries than HIDA*’s first level cache,
even when given a perfect upper bound. If this upper bound is increased to be just
one larger than the optimal value, the size ratios for Macro-15, (17,4)-Topspin
and 14-Pancake increase to 3.52, 1.75, and 4.05 respectively. For the 15-puzzle
the next larger meaningful upper bound is two larger than the optimal value. In
this case, the average size of the SEPDB rises to 13,515,134, which is 5.08 times
larger than HIDA*’s first-level cache.

The CPU times for SEPDB and HIDA* cannot be compared in this experi-
ment because the second level of abstraction is computed by HIDA* but assumed
to be given, without computation, by SEPDB. To make a fair time comparison,
a hierarchical version of SEPDB would be needed. Hierarchical SEPDB might
possibly run faster than HIDA*, but, as this experiment has shown, it would
require more memory.

“Reverse Resumable A*” [16], like SEPDB, computes pattern database en-
tries by backwards A* search at the abstract level. Unlike SEPDB, it stops when
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Table 5. Comparison of the sizes of HIDA*’s first-level cache and the corresponding
SEPDB

Space HIDA* SEPDB Ratio
15-puzzle 2,657,511 6,430,269 2.42
Macro-15 787,664 1,309,100 1.66

(17,4)-TopSpin 3,423,746 4,534,162 1.32
14-Pancake 339,328 467,237 1.38

it closes the abstract start state. If an entry is needed during the base level search
that has not been generated, A* search at the abstract level is resumed until
the entry is generated. This produces a subset of the SEPDB, and avoids the
need for an upper bound on solution length, but requires additional memory for
preserving A*’s Open list so that A* can be resumed.

8 Conclusion

This paper has shown that hierarchical heuristic search can solve individual
problems very quickly, up to two orders of magnitude faster than building a
high-performance pattern database. Hierarchical heuristic search is therefore
preferable to pattern databases when only one or a few problem instances with
the same goal are to be solved. On the other hand, pattern databases are prefer-
able when many problem instances with the same goal are to be solved. In cases
where it is unclear which method to use, the two can be used in parallel. While
the pattern database is being built, hierarchical heuristic search can be applied
to the problem instances, perhaps with a time limit for each problem instance.
Sometimes all the instances will be solved before the pattern database is com-
plete. If this does not happen, the remaining problems can be solved quickly
using the pattern database.
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Abstract. In many machine learning applications that deal with se-
quences, there is a need for learning algorithms that can effectively utilize
the hierarchical grouping of words. We introduce Word Taxonomy guided
Naive Bayes Learner for the Multinomial Event Model (WTNBL-MN)
that exploits word taxonomy to generate compact classifiers, and Word
Taxonomy Learner (WTL) for automated construction of word taxon-
omy from sequence data. WTNBL-MN is a generalization of the Naive
Bayes learner for the Multinomial Event Model for learning classifiers
from data using word taxonomy. WTL uses hierarchical agglomerative
clustering to cluster words based on the distribution of class labels that
co-occur with the words. Our experimental results on protein localiza-
tion sequences and Reuters text show that the proposed algorithms can
generate Naive Bayes classifiers that are more compact and often more
accurate than those produced by standard Naive Bayes learner for the
Multinomial Model.

1 Introduction

In machine learning, one of the important goals is to induce comprehensible, yet
accurate and robust classifiers [1]. In classical inductive learning for text classi-
fication, each document is represented as a bag of words. That is, one instance
is an ordered tuple of word frequencies or binary values to denote the presence
of words. However, these words can be grouped together to reflect assumed or
actual similarities among the words in the domain or in the context of a specific
application. Such a hierarchical grouping of words yields word taxonomy (WT).
Figure 1 is an example of word taxonomy of “Science” made by human.

Taxonomies are very common and useful in many applications. For example,
Gene Ontology Consortium has developed hierarchical taxonomies for describing
various aspects of macromolecular sequences, structures, and functions [2]. For
intrusion detection, Undercoffer et al.[3] established a hierarchical taxonomy of
features observable by the target of an attack. Various ontologies have been
developed in several fields as part of Semantic Web related efforts [4].

J.-D. Zucker and L. Saitta (Eds.): SARA 2005, LNAI 3607, pp. 134–148, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



Multinomial Event Model Based Abstraction for Sequence 135
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isa

...

isa
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isa
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...

isa

Quantum Physics

isa

String Theory

isa

...

isa

Elliptic Curves

isa

Modular Functions

isa

...

isa

Fig. 1. Illustrative taxonomy of ‘Science’ by human

Word taxonomies present the possibility of learning classification rules that
are simpler and easier-to-understand when the terms in the rules are expressed
in terms of abstract values. Kohavi and Provost [5] pointed the need of incorpo-
rating hierarchically structured background knowledge. Abstraction of similar
concepts by the means of attribute value taxonomy (AVT) has been shown
to be useful in generating concise and accurate classifiers [6, 7, 8]. Zhang and
Honavar [8] presented AVT-NBL, an algorithm that exploits AVTs to generate
Naive Bayes Classifiers that are more compact and often more accurate than
classifiers that do not use AVTs. The algorithm potentially performs regulariza-
tion to minimize over-fitting from learning with relatively small data sets.

Against this background, we introduce word taxonomy guided Naive Bayes
learner for the multinomial event model (WTNBL-MN). WTNBL-MN is a word
taxonomy based generalization of the standard Naive Bayes learning algorithm
for the multinomial model.

Because word taxonomy is not available in many domains, there is a need for
automated construction of word taxonomy. Hence, we describe a word taxonomy
learner (WTL) that automatically generates word taxonomy from sequence data
by clustering of words based on their class conditional distribution.

To evaluate our algorithms, we conducted experiments using two classifica-
tion tasks: (a) assigning Reuters newswire articles to categories, (b) and classi-
fying protein sequences in terms of their localization. We used Word Taxonomy
Learner (WTL) to generate word taxonomy from the training data. The gener-
ated word taxonomy was provided to WTNBL-MN to learn concise Naive Bayes
classifiers that used abstract words of word taxonomy.

The rest of this paper is organized as follows: Section 2 introduces the
WTNBL-MN algorithm; Section 3 presents WTL algorithm; Section 4 describes
our experimental results and Section 5 concludes with summary and discussion.

2 Word Taxonomy Guided Naive Bayes Learner for the
Multinomial Event Model (WTNBL-MN)

We start with definitions of preliminary concepts necessary to describe our al-
gorithms. We then precisely define the problem as learning classifier from word
taxonomy and sequence data.
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2.1 Word Taxonomy

Let Σ = {w1, w2, . . ., wN} be a dictionary of words, C = {c1, c2, . . ., cM} a finite
set of mutually disjoint class labels, and fi,j denote an integer frequency of
word wi in a sequence dj . Then, sequence dj is represented as an instance Ij ,
a frequency vector < fi,j > of wi, and each sequence belongs to a class label
in C. Finally, a data set D is represented as a collection of instance and their
associated class label {(Ij , cj)}.

Let TΣ be a word taxonomy defined over the possible words of Σ. Let
Nodes(TΣ) denote the set of all values in TΣ and Root(TΣ) denote the root
of TΣ . We represent the set of leaves of TΣ as Leaves(TΣ) ⊆ Σ. The internal
nodes of the tree correspond to abstract values of Σ.

After Haussler [9], we define a cut γ through a word taxonomy TΣ as follows.

Definition 1 (Cut). A cut γ is a subset of nodes in word taxonomy TΣ satis-
fying the following two properties:

1. For any leaf l ∈ Leaves(TΣ), either l ∈ γ or l is a descendant of a node in
TΣ.

2. For any two nodes f,g ∈ γ, f is neither a descendant not an ancestor of g.

A cut γ induces a partition of words in TΣ . For example, in figure 1, a cut
{ComputerScience, Physics, Mathematics} defines a partition over the values
of an abstract word ‘Science’.

Definition 2 (Refinement). We say that a cut γ̂ is a refinement of a cut γ if
γ̂ is obtained by replacing at least one node v ∈ γ by its descendants. Conversely,
γ is an abstract of γ̂

Figure 2 illustrates a refinement process in word taxonomy TΣ . The cut
γ = {A,B} is been refined to γ̂ = {A1, A2, B} by replacing A with A1 and A2.
Thus, corresponding hypothesis hγ̂ is a refinement of hγ .

Definition 3 (Instance Space). Any choice of γ defines an input space Iγ .
If there is a node ∈ γ and /∈ Leaves(TΣ), the induced input space Iγ is an
abstraction of the original input space I .

γ

γ̂

T

Fig. 2. Illustration of Cut Refinement: The cut γ = {A, B} is been refined to γ̂ =
{A1, A2, B} by replacing A with A1 and A2
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With a data set D, word taxonomy TΣ and corresponding valid cuts, we can
extend our definition of instance space to include instance spaces induced from
different levels of abstraction of the original input space. Thus, word taxonomy
guided learning algorithm work on this induced input space.

2.2 Event Models for Naive Bayes Sequence Classification

WTNBL-MN algorithm generates a Naive Bayes Classifier for the multinomial
model. Before we describe WTNBL-MN algorithm, we briefly summarize event
models for Naive Bayes classification of sequence data [10, 11].

Multi-variate Bernoulli Model. In a multi-variate Bernoulli model, a se-
quence dj is represented as an instance Ij by a vector of binary values bi,j ∈ {0, 1}
where bi,j denotes the presence or absence of a word wi in the sequence. The
number of occurrence of word is not preserved in the vector. The probability of
sequence dj given its class cj is as follows:

P (dj |cj) =
|Σ|∏
i=1

(bi,jpi,j + (1− bi,j)(1− pi,j)) (1)

Multinomial Model. In a multinomial model, a sequence is represented as
a vector of word occurrence frequencies fi,j . The probability of an instance Ij

given its class cj is defined as follows:

P (dj |cj) =

⎧⎨
⎩
(∑|Σ|

i fi,j

)
!∏|Σ|

i (fi,j)!

⎫⎬
⎭

|Σ|∏
i

{pfi,j

i,j } (2)

The term
{ |Σ|

i fi,j !

|Σ|
i (fi,j)!

}
represents the number of possible combinations of

words for the instance Ij .
In equation 2, pi,j is basically calculated as follows:

pi,j =
Count(cj , wi)

Count(cj)

Count(cj , wi) is the number of times word wi appears in all the instances that
have a class label cj , and Count(cj) is the total number of words in a particular
class label cj . With Laplacian smoothing, pi,j will be as follows:

pi,j =
1 + Count(cj , wi)
|Σ|+ Count(cj)

2.3 WTNBL-MN Algorithm

The problem of learning classifiers from a word taxonomy and sequence data is
a natural generalization of the problem of learning classifiers from the sequence
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data. Original data set D is a collection of labeled instances < Ij , cj > where I ∈
I . A classifier is a hypothesis in the form of function h : I → C, whose domain
is the instance space I and whose range is the set of class C. A hypothesis space
H is a set of hypotheses that can be represented in some hypothesis language
or by a parameterized family of functions. Then, the task of learning classifiers
from the data set D is induce a hypothesis h ∈H that satisfies given criteria.

Hence, the problem of learning classifiers from word taxonomy and data can
be described as follows: Given word taxonomy TΣ over words Σ and a data set
D, the aim is induce a classifier hγ∗ : Iγ∗ → C where γ∗ is a cut that maximizes
given criteria. Of interest in this paper is that the resulting hypothesis space Hγ̂

of a chosen cut γ̂ is efficient in searching for both concise and accurate hypothesis.
Word taxonomy guided Naive Bayes Learner is composed of two major com-

ponents: (a) estimation of parameters of Naive Bayes classifiers based on a cut,
(b) and a criterion for refining a cut.

Aggregation of Class Conditional Frequency Counts. We can estimate
the relevant parameters of a Naive Bayes classifier efficiently by aggregating class
conditional frequency counts. For a particular node of a given cut, parameters
of the node can be estimated by summing up the class conditional frequency
counts of its children [8].

Given word taxonomy TΣ , we can define a tree of class conditional frequency
counts Tf such that there is one-to-one correspondence between the nodes of
word taxonomy TΣ and the nodes of the corresponding Tf . The class conditional
frequency counts associated with a non leaf node of Tf is the aggregation of the
corresponding class conditional frequency counts associated with its children.
Because a cut through word taxonomy corresponds a partition of the set of words,
the corresponding cut through Tf specifies a valid class conditional probability
table for words. Therefore, to estimate each nodes of Tf , we simply estimate the
class conditional frequency counts of primitive words in Σ, which corresponds
to the leaves of Tf . Then we aggregate them recursively to calculate the class
conditional frequency counts associated with their parent node.
Conditional Minimum Description Length of Naive Bayes Classifier.
We use conditional minimum description length (CMDL) [12] score to grade the
refinement of Naive Bayes classifier for the multinomial model.

Let vj
i be the ith attribute value of jth instance dj ∈ D, and cj ∈ C a class

label associated with dj . Then, the conditional log likelihood of the hypothesis
B given data D is

CLL(B|D) = |D|
|D|∑
j

log{PB(cj |dj)} = |D|
|D|∑
j

log

{
PB(cj)PB(dj |cj)∑|C|
ck

PB(ck)PB(dj |ck)

}

(3)
For Naive Bayes classifier, this score can be efficiently calculated [8].

CLL(B|D) = |D|
|D|∑
j

log

{
P (cj)

∏
i{P (vj

i |cj)}∑|C|
ck

P (ck)
∏

i{P (vj
i |ck)}

}
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And the corresponding conditional minimum description length (CMDL)
score is defined as follows:

CMDL(B|D) = −CLL(B|D) +
{

log |D|
2

}
size(B)

where, size(B) is a size of the hypothesis B which corresponds to the number
of entries in conditional probability tables (CPT) of B.

In case of a Naive Bayes classifier with multi-variate Bernoulli model, size(B)
is defined as

size(B) = |C|+ |C|
|v|∑
i=1

|vi|

where |C| is the number of class labels, |v| is the number of attributes, and |vi|
is the number of attribute values for an attribute vi.

Conditional Minimum Description Length of a Naive Bayes Classifier
for the Multinomial Model. Combining the equations 2 and 3, we can obtain
the conditional log likelihood of the classifier B given data D under the Naive
Bayes multinomial model.

CLL(B|D) = |D|
|D|∑
j

log

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P (cj)
{ |Σ|

i fi,j !

|Σ|
i (fi,j)!

}∏|Σ|
i {pfi,j

i,j }

∑|C|
k

{
P (ck)

{ |Σ|
i fi,k !

|Σ|
i (fi,k)!

}∏|Σ|
i {pfi,k

i,k }
}
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4)

where, |D| is the number of instances, cj ∈ C is a class label for instance dj ∈ D,
fi,j is a integer frequency of word wi ∈ Σ in instance dj , and pi,j is the estimated
probability that word wi occurred in the instances associated to class label j.

Conditional Minimum Description Length (CMDL) of a Naive Bayes Classi-
fier for the multinomial model is defined as follows:

CMDL(B|D) = −CLL(B|D) +
{

log |D|
2

}
size(B)

where, size(B) is a size of the hypothesis B which corresponds to the number
of entries in conditional probability tables (CPT) of B.

Therefore, size(B) is estimated as

size(B) = |C|+ |C||Σ| (5)

where |C| is the number of class labels, |Σ| is the number of words.

Computation of CMDL Score. Because each word is assumed to be inde-
pendent of others given the class, the search for the word taxonomy guided Naive
Bayes classifier can be performed efficiently by optimizing the CMDL criterion
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WTNBL-MN:
begin

1. Input : data set D and word taxonomy TΣ

2. Initialize cut γ to the root of TΣ

3. Estimate probabilities that specify the hypothesis hγ

4. Repeat until no change in cut γ
5. γ̄ ← γ
6. For each node v ∈ γ :
7. Generate a refinement γv of γ by replacing v with its children.
8. Construct corresponding hypothesis hγv .
9. If CMDL(hγv |D) < CMDL(hγ̄ |D), then replace γ̄ with γv.

10. If γ �= γ̄ then γ ← γ̄
11. Output : hγ

end.

Fig. 3. Pseudo-code of Word Taxonomy Guided Naive Bayes Learner for the Multino-
mial Model(WTNBL-MN)

independently for each word. Thus, the resulting hypothesis h intuitively trades
off the complexity in terms of the number of parameters against the accuracy
of classification. The algorithm terminates when none of candidate refinements
of the classifier yield statistically significant improvement in the CMDL score.
Figure 3 outlines the algorithm.

3 Learning a Word Taxonomy from Sequence Data

We describe word taxonomy learner (WTL), a simple algorithm for automated
construction of word taxonomy from sequence data.

3.1 Problem Definition

The problem of learning a word taxonomy from sequence data can be stated
as follows: Given a data set represented as a set of instances where an instance
is a frequency vector < fi, c > of a word wi ∈ Σ and associated class label c,
and a similarity measure among the words, output word taxonomy TΣ such that
it corresponds to a hierarchical grouping of words in Σ based on the specified
similarity measure.

3.2 Algorithm

We use hierarchical agglomerative clustering (HAC) of words based on the dis-
tribution of class labels that co-occur with them. Let DM(P (x)||Q(x)) denote a
measure of pairwise divergence between two probability distributions P and Q
of the random variable x.
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WTL:
begin

1. Input : data set D
2. For each word wi ∈ Σ :
3. For each class ck ∈ C :
4. Estimate the probability distribution p (ck|wi)
5. Let P (C|wi) = {p (c1|wi) , . . ., p (ck|wi)} be the class distribution associ-

ated with the word wi.
6. γ ← Σ;
7. Initialize TΣ with nodes in γ.
8. Iterate until |γ| = 1:
9. In γ, find (x, y) = argmin {DM (P (C|x) ||P (C|y))}

10. Merge x and y (x �= y) to create a new value z.
11. Calculate probability distribution P (C|z).
12. γ̂ ← γ ∪ {z} \ {x, y}.
13. Update TΣ by adding nodes z as a parent of x and y.
14. γ ← γ̂.
15. Output : TΣ

end.

Fig. 4. Pseudo-code of Word Taxonomy Learner (WTL)

We use a pairwise measure of divergence between the distribution of the
class labels associated with the corresponding words as a measure of dissim-
ilarity between the words. The lower the divergence between the class distri-
bution between two words, the greater is their similarity. The choice of this
measure of dissimilarity is motivated by the intended use of word taxonomy
for WTNBL-MN algorithm to generate concise and accurate classifiers. If two
words are indistinguishable from each other with respect to their class distri-
bution, they will provide statistically similar information for classification of
instance.

The pseudocode for the Word Taxonomy Learner (WTL) is shown in figure 4.
The basic idea is to construct a taxonomy TΣ by starting with the primitive
words in Σ as the leaves of TΣ and recursively add nodes to TΣ one at a time by
merging two existing nodes. To aid this process, the algorithm maintains a cut
γ through the taxonomy TΣ , updating the cut γ as new nodes are added to TΣ .
At each step, the two words to be grouped together to obtain an abstract word
to be added to TΣ are selected from γ based on the divergence between the class
distributions associated with the corresponding words. That is, a pair of words
in γ are merged if they have more similar class distributions than any other pair
of words in γ. This process terminates when the cut γ contains a single word
which corresponds to the root of TΣ . The resulting TΣ will have (2|Σ| − 1) nodes
when the algorithm terminates.
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3.3 Dissimilarity Measure

Several ways of measuring dissimilarity between two probability distributions
have been studied in the literature [13]. We have experimented with thirteen dif-
ferent divergence measures. In our experiments, most of them resulted in similar
performance on classification tasks. Hence, we focus on the results obtained by
Jensen-Shannon divergence measure in the discussion that follows [14].

Jensen Shannon Divergence. is a weighted information gain that is reflexive,
symmetric and bounded. Pairwise version of Jensen-Shannon divergence is given
by

I (P ||Q) =
1
2

[∑
pilog

(
2pi

pi + qi

)
+
∑

qilog

(
2qi

pi + qi

)]

4 Experiments

The results of experiments described in this section provide evidence that
WTNBL-MN coupled with WTL usually generate more concise and often more
accurate classifiers than those of the Naive Bayes classifiers for the multinomial
model. We conducted experiments with two sequence classification tasks; text
(word sequence) classification and proteins (amino acid sequence) classification.
In each case, a word taxonomy is generated using WTL and a classifier is con-
structed using WTNBL-MN on the resulting WT and sequence data.

4.1 Text Classification

Reuters 21587 distribution 1.0 data set1 consists of 12902 newswire articles in
135 overlapping topic categories.

We build binary classifiers for top ten most populous categories on text clas-
sification [15, 16, 10]. In our experiment, stop words were not eliminated, and
title words were not distinguished with body words. We selected top 300 fea-
tures based on mutual information with class labels. The mutual information
MI(x, c) between a feature x and a category c is defined as:

MI(x, c) =
x∑{

c∑{
P (x, c)log

P (x, c)
P (x)P (c)

}}

We followed the ModApte split [17] in which 9603 stories are used for building
classifiers and 3299 stories to test the accuracy of the resulting model. We report
the break even points, the average of precision and recall when the difference
between the two is minimum. Precision and recall of text categorization are
defined as:

1 This collection is publicly available at
http://www.daviddlewis.com/resources/testcollections/reuters21578/.
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Precision =
|detected documents in the category (true positives)|

|documents in the category (true positives + false negatives)|

Recall =
|detected documents in the category (true positives)|
|detected documents (true positives + false positives)|

Table 1 shows the break even point of precision and recall as well as the
size of the classifier (from the equation 5) for the ten most frequent categories.
WTNBL-MN usually shows similar performance in terms of break even perfor-
mance except in the case of “corn” category, while the classifiers generated by
WTNBL-MN have smaller size than those generated by the Naive Bayes Learner
(NBL).

Table 1. Break even point of 10 Largest Categories

Data NBL-MN WTNBL-MN # of documents
breakeven size breakeven size train test

earn 94.94 602 94.57 348 2877 1087
acq 89.43 602 89.43 472 1650 719

money-fx 64.80 602 65.36 346 538 179
grain 74.50 602 77.85 198 433 149
crude 79.89 602 76.72 182 389 189
trade 59.83 602 47.01 208 369 118

interest 61.07 602 59.54 366 347 131
ship 82.02 602 82.02 348 197 89

wheat 57.75 602 53.52 226 212 71
corn 57.14 602 21.43 106 182 56
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Figure 5 shows Precision-Recall curve [18] for the “grain” category. It can be
seen that WTNBL-MN generates a Naive Bayes classifier that is more compact
than, but has performance comparable to that of the classifier generated from
Naive Bayes learner.

WTNBL-MN did not show good performance for the “corn” category. This
may be explained by the fact that conditional minimum description length trades
off the accuracy of the model against its complexity, which may not necessarily
optimize precision & recall for a particular class As a consequence, WTNBL-MN
may terminate refinement of the classifier prematurely for class labels with low
support, i.e. when the data set is imbalanced.

4.2 Protein Sequence Classification

We applied WTNBL-MN algorithm on two protein data sets with a view to
identifying their localization [19].

The first data set is 997 prokaryotic protein sequences derived from SWISS-
PROT data base [20]. This data set includes proteins from three different sub-
cellular locations: cytoplasmic (688 proteins), periplasmic (202 proteins), and
extracellular (107 proteins).

The second data set is 2427 eukaryotic protein sequences derived from SWISS-
PROT data base [20]. This data set includes proteins from the following four
different subcellular locations: nuclear (1097 proteins), cytoplasmic (684 pro-
teins), mitochondrial (321 proteins), extracellular (325 proteins).

For these data sets2, we conducted ten-fold cross validation. To measure the
performance of the following performance measures [21] are applied and the
results for the data set are reported:

Correlation coefficient =
TP× TN− FP× FN√

(TP+FN)(TP+FP)(TN+FP)(TN+FN)

Accuracy =
TP + TN

TP+TN+FP+FN

Sensitivity+ =
TP

TP+FN

Specificity+ =
TP

TP+FP
where, TP is the number of true positives, FP is the number of false positives,
TN is the number of true negatives, and FN is the number of false negatives.

Figure 6 is amino acid taxonomy constructed for the prokaryotic protein
sequences. Table 2 shows the results in terms of the performance measures for the
two protein sequences. For both data sets, the classifier generated by WTNBL is
more concise and shows more accurate performance than the classifier generated
by the Naive Bayes Learner (NBL) in terms of the measures reported.

2 These datasets are available to download at
http://www.doe-mbi.ucla.edu/˜astrid/astrid.html.
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Fig. 6. Taxonomy from Prokaryotic Protein Localization Sequences constructed by
WTL

Table 2. Results on Protein Localization Sequences (abbrev.: C - cytoplasmic, E -
extracellular, P - peripalsmic, N - nuclear, M - mitochondrial)

Method Prokaryotic Eukaryotic
C E P N E M C

NBL-MN
correlation 71.96 70.57 51.31 61.00 36.83 25.13 44.05
coefficient
accuracy 88.26 93.58 81.85 80.72 83.11 71.69 71.41

specificity+ 89.60 65.93 53.85 82.06 40.23 25.85 49.55
sensitivity+ 93.90 83.18 72.77 73.38 53.85 61.06 81.29

size 42 42 42 46 46 46 46
WTNBL-MN
correlation 72.43 69.31 51.53 60.82 38.21 25.48 43.46
coefficient
accuracy 88.47 93.18 81.85 80.63 84.01 72.35 71.24

specificity+ 89.63 64.03 53.82 81.70 42.30 26.29 49.37
sensitivity+ 94.19 83.18 73.27 73.66 53.23 60.44 80.56

size 20 20 40 24 36 34 32

5 Summary and Related Work

5.1 Summary

We have presented word taxonomy guided Naive Bayes Learning algorithm for
the multinomial event model (WTNBL-MN). We also described WTL, an algo-
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rithm for automated generation of word taxonomy for sequence data. WTNBL-
MN is a generalization of the Naive Bayes learner for the multinomial event
model for learning classifiers from data using word taxonomy. WTL is a hierarchi-
cal agglomerative clustering algorithm to cluster words into taxonomy based on
the distribution of class labels that co-occur with the words. Experimental results
on protein sequence and Reuters text show that the proposed algorithms can gen-
erate Naive Bayes classifiers that are more compact and often more accurate than
those produced by standard Naive Bayes learner for the Multinomial Model.

5.2 Related Work

Several groups have explored the problem of learning classifiers from attribute
value taxonomies (AVT) or tree structured attributes: Zhang and Honavar [6, 8]
developed decision tree learner and Naive Bayes learner regularized over at-
tribute value taxonomy. These works were primarily focused on attribute value
taxonomy for multi-variate data sets. Taylor et al. [22] and Hendler et al. [23] de-
scribed the use of taxonomy in rule learning. Han and Fu [24] proposed a method
for exploiting hierarchically structured background knowledge for learning asso-
ciation rules. desJardins et al. [25] suggested the use of Abstraction-Based-Search
(ABS) to learning Bayesian networks with compact structure.

Gibson and Kleinberg [26] introduced STIRR, an iterative algorithm based
on non-linear dynamic systems for clustering categorical attributes. Ganti et.
al. [27] designed CACTUS, an algorithm that uses intra-attribute summaries to
cluster attribute values. Both of them did not make taxonomies and use the
generated for improving classification tasks.

Pereira et. al. [28] described distributional clustering for grouping words based
on class distributions associated with the words in text classification. Slonim
and Tishby [14] described a technique (called the agglomerative information
bottleneck method) which extended the distributional clustering approach de-
scribed by Pereira et al. [28], using Jensen-Shannon divergence for measuring
distance between document class distributions associated with words and ap-
plied it to a text classification task. Baker and McCallum [29] reported im-
proved performance on text classification using a distributional clustering with
a Jensen-Shannon divergence measure.

To the best of our knowledge, the results presented in this paper are the first
of these kinds with regards to exploitation of word taxonomies in the generation
of compact yet accurate classifiers for sequence classification.

5.3 Future Work

Some promising directions for future work include the following:

– Application of the WTNBL-MN algorithm to up-to-date text corpora [30,
31].

– Enhancement of the WTNBL-MN and WTL algorithms for learning and
exploiting hierarchical ontologies based on part-whole and other relations as
opposed to ISA relations.
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– Development of other measures for model selection rather than CMDL for
cut refinement to accommodate the various application-specific needs.
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Abstract. The Petri net model is a powerful state transition oriented
model to analyse, model and evaluate asynchronous and concurrent sys-
tems. However, like other state transition models, it encounters the state
explosion problem. The size of the state space increases exponentially
with the system complexity.

This paper is concerned with a method of abstracting automatically
Petri nets to simpler representations, which are ordered with respect to
their size. Thus it becomes possible to check Petri net reachability incre-
mentally. With incremental approach we can overcome the exponential
nature of Petri net reachability checking. We show that by using the
incremental approach, the upper computational complexity bound for
Petri net reachability checking with optimal abstraction hierarchies is
polynomial.

The method we propose considers structural properties of a Petri net
as well an initial and a final marking. In addition to Petri net abstraction
irrelevant transitions for a given reachability problem are determined.
By removing these transitions from a net, impact of the state explosion
problem is reduced even more.

1 Introduction

Petri nets and related graph models have been proposed for a wide variety of
applications. These models are particularly suitable for representing concurrent
hardware and software systems. A fundamental basis for studying the dynamic
properties of systems described with Petri nets is the reachability property [11].

Unfortunately the complexity of Petri net reachability checking has been
proven to be EXPSPACE-hard [10] in the general case. Although several less
complex classes of nets have been determined [4], there still are problems, which
can be presented only with “unconstrained” Petri nets. Therefore tools and algo-
rithms for coping with that EXPSPACE-hard complexity are urgently needed.

One possible way to reduce the state space is to apply net abstraction tech-
niques in conjunction with Petri net reachability checking. Abstraction tech-
niques have been used extensively in Artificial Intelligence (AI) planning [1, 3, 9]
(especially in case-based and analogical reasoning), human problem solving and
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(automated) theorem proving [12]. Korf [8] has shown that while using abstrac-
tion it is possible to reduce the expected search space from O(n) to O(log n).
This improvement makes combinatorial problems tractable. For instance, if n is
an exponential function of problem size, then log n is just linear (according to [8]).

The essential reason why abstraction reduces complexity is that the total
complexity is the sum of complexities of multiple searches, not their product.
Thus with abstraction techniques we may cut solution search space from bd to
kbd/k, where b is the branching factor and d is the depth of the search space
while k is the ratio of abstraction space to base space.

Although abstraction of Petri nets has been already explored for instance
in [14, 13, 15], the proposed approaches are based on analysing merely structural
properties of nets though in some cases also initial markings have been taken
into account.

The methodology we propose, on the contrary, considers structural properties
as well the initial and the final marking of a Petri net. While preparing the
net for reachability checking we use the final marking to determine transitions
not relevant for the given reachability problem. Thereby it becomes possible to
remove some transitions from a net, without changing the reachability result for
the given final marking. In that way more efficient reachability checking could
be implemented.

The initial marking helps us to recognise the negative answer to a reachabil-
ity problem. Thus, in some cases we can determine whether the final marking
is reachable from the initial one even before we start with reachability checking.
Additionally we present a methodology for abstraction-based reachability check-
ing and prove that if a Petri net has an optimal abstraction hierarchy, then the
computational complexity of its reachability checking is polynomial.

The remainder of the paper is as follows. In Section 2 we present the main
definitions used in the rest of the paper. Section 3 introduces the abstraction
algorithm and analyses its influence to Petri nets and their properties. In Sec-
tion 4 reachability checking with abstraction is described. This methodology is
evaluated in Section 5, where experimental results are presented and analysed.
Section 6 gives an overview of related work and finally in Section 7 everything
is summed up.

2 Definitions

In this section we define the Petri net concept and give the main notation and
definitions to be used in the sequel.

A (marked) Petri net is a 5-tuple N = (P, T,Pre,Post ,M0), where P =
{p1, p2, . . . , pn} is a finite set of places, T = {t1, t2, . . . , tm} is a finite set of
transitions, Pre : P ×T → N is the input incidence function, Post : T ×P → N
is the output incidence function and M0 : P → N is the initial marking. The
number of places and transitions in a Petri net are represented with |P | and
|T | respectively. The size S of a Petri net is the number of places it involves—
S(N) = |P |.
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In the graphical representation, circles denote places and vertical bars denote
transitions, tokens are represented with dots inside places. The Pre incidence
function describes the oriented arcs connecting places to transitions. It represents
for each transition t the fragment of the state in which the system has to be
before the state change corresponding to t occurs. Pre(p, t) is the weight of the
arc (p, t), Pre(p, t) = 0 denotes that the place p is not connected to transition t.

The Post incidence function describes arcs from transitions to places. Analo-
gously to Pre, Post(t, p) is the weight of the arc (t, p). The vectors Pre(., t) and
Post(t, .) denote respectively all input and output arcs of transition t with their
weights.

The Petri net dynamics is given by firing enabled transitions, whose occur-
rence corresponds to a state change of the system modeled by the net. A tran-
sition t is enabled for a marking M , if M ≥ Pre(., t). This enabling condition is
equivalent to ∀p ∈ P,M(p) ≥ Pre(p, t). Only enabled transitions can be fired.

If M is a marking of N enabling a transition t, and M ′ is the marking derived
by the firing of a transition t from M , then M ′ = (M−Pre(., t))+Post(t, .). The
firing is denoted as M

t→ M ′. Firing of a sequence of transitions s = 〈t1 . . . tn〉
is defined as M0

s→Mn = M0
t1→M1

t2→ . . .
tn→Mn, where Mi, i = 0 . . . n− 1 is a

marking of N enabling a transition ti+1 and Mi+1 is a result of firing ti+1 from
marking Mi.

In a Petri net N it is said that a marking Mg is reachable from a marking
M iff there exists a sequence of transitions s such that M

s→ Mg. We call
the reachability problem for Petri nets the problem of finding a firing sequence
s to reach a given marking Mg from the initial marking M0. The coverability
problem (sometimes also called the submarking reachability problem), given two
markings M0 and Mg, is defined as the problem of finding a firing sequence s to
reach a marking Ms from the initial marking M0 such that Mg ≤Ms. To simplify
representing a marking M , we use symbolic representation M(M), defined in
the following way: M(M) = {pM(p) | p ∈ P,M(p) ≥ 1}. We shall write p instead
of p1.

Abstraction hierarchy H for a Petri net N is a total order of abstractions
such that ∀Ai,Aj ∈ H, i �= j, (S(Ai(N)) < S(Aj(N))) ⇒ Aj(N) ≺ Ai(N). Due
to the way we construct abstraction levels, it is not possible that S(Ai(N)) ≡
S(Aj(N)), if i �= j.

If p is a Petri net place, then Level(p) is the highest abstraction level where p
may appear. To explain this notion let us consider Figure 4. There Level(X) ≡ 2,
meaning that place X occurs in all abstracted versions of a net starting from
level 2. Similarily Level(F ) ≡ 1 and Level(M) ≡ 0 on the same figure.

The function E(M) = {p | p ∈ P,M(p) > 0} returns a set consisting of
nonempty places according to a marking M . A Petri net marking M at abstrac-
tion level i is denoted by Ai(M), where

Ai(M)(p) =
{
M(p) if Level(p) ≥ i
0 otherwise
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Abstracted Petri net N at abstraction level i is defined as

Ai(N) = (P ′, T ′,Pre,Post ,M ′
0),

where:

– P ′ = {p | p ∈ P,Level(p) ≥ i}
– T ′ = {t | t ∈ T, E(Ai(Pre(., t))) ∪ E(Ai(Post(t, .))) �= ∅}
– M ′

0 = Ai(M0)

At abstraction level 0 an original Petri net is presented—A0(N) ≡ N . We
write Ti and Pi to denote respectively a set of transitions and places of a Petri
net Ai(N).

Abstracted sequence of Petri net transitions s = 〈t1, t2, . . . , tn〉, tj ∈ T, j =
1 . . . n at abstraction level i is defined as Ai(s) = 〈sj | 0 < j ≤ |s|, sj ∈ Ti〉.
Basically it means that at abstraction level i in a sequence s only these transitions
are allowed, which exist in the abstracted Petri net at abstraction level i. Other
transitions are just discarded.

Opposite operation to abstration of firing sequences is refinement. Refine-
ment Rl

k, k > l of a firing sequence s = 〈t1, t2, . . . , tn〉, tj ∈ T, j = 1 . . . n
from abstraction level k to abstraction level l is defined as a sequence Rl

k(s) =
〈α0, t1, α1, . . . αn−1, tn, αn〉, where αi, i = 0 . . . n is a sequence of transitions from

t ∈
l⋃

i=k−1

Ti. This means that during refinement only transitions from lower ab-

straction levels may be inserted to firing sequences. We write Rj instead of
Rj

j+1.
We define a nulltransition as a transition t such that E(Pre(., t)) ≡ ∅ ∧

E(Post(t, .)) ≡ ∅. Source transition is a transition t such that E(Pre(., t)) ≡
∅∧E(Post(t, .)) �≡ ∅. In the following we shall write level to denote an abstraction
level and by net we mean a Petri net.

3 Automatic Abstraction of Petri Nets

In this section we describe how to construct abstraction hierarchies for Petri nets.
These hierarchies are later used to gradually refine an abstract solution during
reachability checking. The abstraction method, we propose here for Petri nets,
has been inspired from an abstraction method [7] from the field of AI planning.

The significant difference of our method from previous Petri net abstraction
methods is that net fragments are not replaced with more abstract nets. Instead
we simplify nets by removing places which are not so relevant at particular
abstraction levels and nulltransitions, which were formed by removing specific
places from a net representation.

3.1 The Abstraction Algorithm

Given a problem space, which consists of a Petri net and a reachability problem
(finding a sequence s so that M0

s→Mg), our algorithm reformulates the original
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problem into more abstract ones. These more abstract ones are organised into an
ordered hierarchy H with respect to their size. Thus the smallest representation
is presented at the highest abstraction level and the largest respectively at the
lowest (0) level. The original problem is mentioned in the further text also as
the base problem, because all other representations are based on it.

The ordered monotonicity property is used as the basis for generating abstrac-
tion hierarchies. This property captures the idea that if an abstract solution is
refined, the structure of the abstract solution should be maintained. Hence el-
ements in a transition firing sequence si, such that Ai(M0)

si→ Ai(Mg), would
not be reordered while extending this sequence at abstraction level i − 1. The
process of refining an abstract solution requires inserting additional transitions
to achieve the tokens ignored at more abstract level.

Definition 1. Ordered monotonic refinement R is a refinement of an abstract
solution s so that Ai(Rj

i (s)) = s, j ≤ i, where s is a sequence of transitions,
i denotes the abstraction level, where solution s was found and j is the target
abstraction level.

Definition 2. Ordered monotonic hierarchy is an abstraction hierarchy with the
property that for every solvable problem there exists an abstract solution that has
a sequence of ordered monotonic refinements into the base space.

Definition 3. Let A and B be arbitrary vertices in a directed graph. Then we
say that they are strongly connected, if there exists a cycle with A as its initial
and final vertice such that this cycle includes vertice B.

An ordered monotonic abstraction hierarchy is constructed by dividing places
P in a Petri net N between abstraction levels such that the places at level i do
not interact with any places at level i + 1. We say that places A and B do not
interact with each other, if they are not strongly connected in the dependency
graph of the particular Petri net.

Our abstraction algorithm first generates a graph representing dependencies
(see Figure 1) between places in a Petri net, and then, using that graph, finally
generates abstraction hierarchies (see Figure 2). The algorithm in Figure 1 con-
siders every non-empty place, which has not yet been considered, from a given
marking. Then all transitions, which increase the number of tokens in that place,
are selected. Connections from the place under consideration to places affected
by these transitions are created and search follows recursively, using Pre(., t)
as a new marking, until all reachable places have been processes. It has to be
noted that although the algorithm starts from the goal marking Mg, weights of
transition input arcs are considered when it proceeds recursively.

After the dependency graph has been constructed, additional connections
are created from places p ∈ E(Mg) to places E(Pre(., t)) of transitions t, if
E(Post(t , .)) ≡ ∅. The latter is due to the fact that the dependency graph is
extended by observing arcs (t , .) and, if E(Post(t , .)) ≡ ∅, transition t is ignored.
Anyway, these transitions may be needed during reachability checking.
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Algorithm DetermineConstraints(graph,net ,marking)

inputs: a Petri net and a final marking

output: constraints, which guarantee ordered monotonicity for a given marking

begin

for ∀place ∈ E(marking)//a nonempty place is selected

if not(ConstraintsDetermined(place, graph)) then

ConstraintsDetermined(place, graph) ← true
for ∀t ∈ net .T//for all transitions

if place ∈ E(net .Post(t , .)) then

for ∀p ∈ E(net .Post(t , .))
AddDirectedEdge(place, p, graph)

end for

for ∀p ∈ E(net .Pre(., t))
AddDirectedEdge(place, p, graph)

end for

DetermineConstraints(graph,net ,net .Pre(., t))
end if

end for

end if

end for

return graph
end DetermineConstraints

Fig. 1. Building a dependency graph

Algorithm CreateHierarchy(net ,marking)

inputs: a Petri net and a final marking

output: an ordered monotonic abstraction hierarchy

begin

graph ← DetermineConstraints({},net ,marking)
components ← FindStronglyConnectedComponents(graph)
partialOrder ← ConstructReducedGraph(graph, components)
absHierarchy ← TopologicalSort(partialOrder)
return absHierarchy
end CreateHierarchy

Fig. 2. Creating an abstraction hierarchy

To demonstrate the construction of abstraction hierarchies, let us consider
the Petri net in Figure 4(a), where the reachability of marking Mg, M(Mg) =
{E,M,X2} is considered. The algorithm in Figure 1 starts with place E and
sets it to be determined. The only transition having E in its outputs is H EIM .
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Fig. 3. A dependency graph (a) and strongly connected component groups (b) for a
Petri net in Figure 4(a)

Thus edges E → I, E → M and E → H are constructed. Then the algorithm
proceeds with new marking {H} at recursion level 2. H is set to be determined.
The only transition having H in its output is EN H and thus edges H → E and
H → N are constructed.

The algorithm proceeds at recursion level 3 with marking {E,N}. Since E was
already set to be determined, it is not considered anymore. Thus N is selected.
Transition M N has N in its outputs and thus edge N →M is constructed. The
algorithm proceeds recursively at level 4 with {M} as its marking. M is set to
be determined, transition H EIM is the only transition having M in its output
and therefore edges M → I, M → E and M → H are constructed.

The algorithm proceeds with marking {H} at recursion level 5. However, H
has already been processed and is not considered anymore. Since there is nothing
to do in previous recursion levels, the algorithm returns to level 1 and chooses
X for its next target. X is set to be determined, transition X2Y2 X2 is chosen
and edge X → Y is inserted. The algorithm proceeds at recursion level 2 with
{X,Y } as an input marking. Y is chosen, transition FX Y2 is found and edges
Y → F and Y → X are inserted.

Then the algorithm proceeds at recursion level 3 witn {F,X} as its input
marking. Since F is selected, transition I7 F is found and edge F → I is inserted.
Now the algorithm proceeds with marking {I} at recursion level 4. Transition
H EIM is selected and edges I → E, I → M plus I → H are generated.
Finally the algorithm proceeds at recursion level 5 with {H} as its input marking.
However, since there are no nondetermined places left, the algorithm returns to
its initial recursion level and returns a graph containing all the edges pointed
out so far.

After applying the algorithm in Figure 1, first a dependency graph in Fig-
ure 3(a) is generated. In that figure for the sake of simplicity we presented every
two unidirectional edges in opposite directions between the same pair of elements
as a bidirectional edge. A directed edge from node A to node B in the graph
indicates that A cannot occur lower in the abstraction hierarchy than B. Hence
a bidirectional edge between two nodes tells us that these nodes should appear
at the same abstraction level.

Given the algorithm in Figure 2 we find as a second step strongly con-
nected components. In that way we end up with 3 sets of strongly connected
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Fig. 4. Representation of the Petri net N at different abstraction levels with M(Mg) =
{E, M, X2} and M(M0) = {E, M, X3}
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Fig. 5. The general structure of abstracted nets

components—{I,M,N,E,H}, {F} and {X,Y }. By representing every group of
strongly connected components as a separate node, we end up with a partial
ordering in Figure 3(b). In the current example it is also a total order and would
represent an achieved abstraction hierarchy. Otherwise we would have to apply
topological sort to generate all possible total orderings and then select between
those a suitable one.

The abstraction hierarchy in Figure 3(b) determines that at the lowest ab-
straction level all places are presented, at the first level all except I, M , N , E, H
(thus F , X, Y ) are presented. And at the second abstraction level there are only
X and Y . Given this abstraction hierarchy, two new Petri nets in Figure 4(b)
and Figure 4(c) are constructed for abstraction levels 1 and 2, respectively. At
abstraction level 0 the original Petri net is represented.

Basically, the abstraction algorithm in Figure 2 divides Petri nets into subnets
to fit the general tree structure presented in Figure 5. Each subnet Ni there
consists of new transitions at abstraction level i. Every leaf subnet of that tree
involves at least one place p ∈ E(Mg). There can be several transitions between
different subnets—every ti in Figure 5 represents a number (at least one) of
transitions between two subnets. However, the direction of transitions in set ti
is the same—from lower level to higher level net. Transitions ti are abstracted



Petri Net Reachability Checking Is Polynomial 157

to source transitions at level i, but at abstraction level i− 1 they are not source
transitions anymore.

This structure is formed because all places p ∈ E(Post(t, .)) of a transition
t are presented at the same abstraction level. Elements in E(Pre(., t)) belong
to the same and/or to an lower abstraction level than elements in E(Post(t, .)).
Ordered monotonic refinement assures us that if a marking Ai(Mg), i > 0 is not
reachable at abstraction level i, Mg would not be reachable in the original Petri
net N either. Therefore we do not need to explore the entire search space to get
acknowledged about it.

Every abstracted net at level i includes either at least one token from the
initial marking (E(Ai(N)) �≡ ∅) or at least one source transition. Every source
transition represents a transition wherefrom tokens may enter the subnet. There-
fore, if the marking Ai(Mg) is not reachable under these relaxing conditions, the
marking Ai(Mg) would not be reachable without particular relaxing conditions
either.

3.2 The Role of the Initial Marking

While building a dependency graph for abstraction, dependencies between Petri
net places are detected. If it should happen that at least one place p ∈ E(M0)
is not included in the dependency graph and it does not occur in E(Mg) either,
then there is no sequence of transitions s that M0

s→ Mg. This applies iff there
are no sink transitions, which could consume tokens in p.

Theorem 1. Given a Petri net N and a set of edges De of dependency graph
D, which was constructed using N and Mg, then if it is satisfied that ∃p.(p ∈
E(M0) ∧ p �∈ E(Mg) ∧ p �∈ De ∧ ¬∃t.E(Post(t, .)) ≡ ∅), then goal marking Mg is
not reachable from marking M0 of Petri net N .

Proof. While finding dependencies between Petri net places through dependency
graph construction, roughly a way for token propagation is estimated for reaching
the marking Mg and places on the way are inserted to the graph. Therefore, if
not all places p ∈ E(M0) are included in the dependency graph, then there is no
way to reach from the marking M0 the marking Mg.

Anyway, some tokens in the initial marking may be not fired during reacha-
bility checking and thus they exist both in markings M0 and Mg. In that case
the missing place from a dependency graph does not indicate that the marking
Mg is not reachable. Similarily, sink transitions have to be considered, since they
only consume tokens and therefore are rejected, when generating a dependency
graph.

This case is illustrated in Figure 6, where a dependency graph is generated
for the marking M(Mg) = {F}. As it can be seen in Figure 6(b) the Petri net
place B, although having a token in the marking M0, is not included in the
dependency graph in Figure 6(b). The same applies for place A. Therefore the
marking Mg is not reachable.
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Fig. 6. A Petri net (a) with the initial marking M0, M(M0) = {A, B, C} and the
marking Mg, M(Mg) = {F} plus the corresponding dependency graph (b)

3.3 Removing Redundant Transitions

After the places, where tokens are possibly propagated through, have been de-
termined, we can throw away all transitions, which are connected at least to
one place which is not included in the dependency graph. In that way the search
space would be pruned and search made more efficient. Reachability result would
not be affected by removing these transitions.

Theorem 2. Given a Petri net N and a set of edges De of dependency graph
D, which was constructed using N and Mg, we can discard all transitions t ∈ T ,
which satisfy condition ∃p.((p ∈ E(Pre(., t)) ∨ p ∈ E(Post(t, .))) ∧ p �∈ De ∧
E(Post(t, .)) �≡ ∅) without affecting reachability result for M0

s→Mg.

Proof. If there is a transition t ∈ T of a Petri net N such that ∃p.((p ∈
E(Pre(., t)) ∨ p ∈ E(Post(t, .))) ∧ p �∈ De), then it means that the transition
t was not considered during construction of dependency graph D. Therefore
the transition is not considered relevant for achieving marking Mg and can be
discarded.

Transition reduction is illustrated in Figure 7, where a dependency graph
is generated for the marking Mg,M(Mg) = {F,E2}. Since B and D are not
present in the dependency graph, they are considered irrelevant for the current
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E A

C

F

(b)

Fig. 7. A Petri net (a) including redundant transitions for Mg,M(Mg) = {F, E2} plus
the corresponding dependency graph (b)
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reachability problem. Therefore all transitions t such that Pre(B, t) ∈ Pre or
Pre(D, t) ∈ Pre or Post(t, B) ∈ Post or Post(t,D) ∈ Post can be removed with-
out affecting the reachability result of the original problem. Hence the transition
BC D can be removed.

3.4 The Computational Complexity of Abstraction

According to [7] the complexity of building the dependency graph is O(n ∗ o ∗ l),
where n is the number of different places in a Petri net, o is the maximum number
of transitions t such that for any place p Pre(p, t) > 0 or Post(t, p) > 0, and l
is the maximum number of different places p such that Post(t, p) > 0 with any
transition t. The complexity of building an hierarchy is also O(n ∗ o ∗ l), since
the complexity of the graph algorithms is bounded by the number of edges, which
is bounded in our case by n ∗ o ∗ l.

4 Reachability Checking with Abstraction

After an abstraction hierarchy has been generated, we start hierarchical reacha-
bility checking from the highest abstraction level by mapping the original Petri
net N to Ah(N), where h denotes the highest abstraction level. First we find a
sequence sh of transitions t ∈ Th so that Ah(M0)

sh→ Ah(Mg). Then we gradu-
ally refine this sequence while moving lower in the abstraction hierarchy until
we reach the lowest level of the abstraction hierarchy. If it should turn out that
from a certain abstraction level there is no refinement to a lower abstraction level
for a sequence, then the marking Mg is considered not reachable and search is
halted.

Definition 4. New transitions t ∈ Tnewi
at abstraction level i are defined as

Tnewi = Ti \ (Ti ∩ Ti+1), i = 0 . . . n, with exception Tnewn = Tn, where n is the
highest abstraction level, Ti is a set of transitions in a Petri net Ai(N) and N
is the original Petri net.

It is crucial to note that at every abstraction level i only transitions t ∈
Tnewi may be used during refinement. This is the basic search space reduction
mechanism, supported by abstraction, which divides the initial search space into
subspaces.

A sequence of transitions, which shows the reachability of a marking Mg,
found at an abstraction level higher than 0 may be viewed as a sequence including
“gaps”, which have to be filled at a lower level of abstraction. It has to be
emphasised that at one abstraction level several solutions may be found and not
all of these, if any, lead to a solution at less abstract level. Thus several abstract
solutions may have to be tried before a solution for less abstract problem is
found.

The ordered monotonicity determines that while extending a firing sequence
s at a lower abstraction level with transitions, we can insert only new transi-
tions, whereas the transitions which are already in s, after enriching their rep-
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resentation with places permitted at that abstraction level (if needed), possibly
determine new submarking reachability problems we have to solve in order to
solve the general reachability problem. Thus in that way we reduce one single
reachability problem into several reachability problems and reduce distance be-
tween submarkings. By dividing transitions between different abstraction levels
the branching factor of search space is decreased.

Following the former idea we define the optimal abstraction hierarchy as
an abstraction hierarchy, where at each level exactly one new transition is in-
troduced and a Petri net at the highest abstraction level includes exactly one
transition.

Definition 5. An optimal abstraction hierarchy Ho of a Petri net N is an ab-
straction hierarchy with n = |T | abstraction levels starting from level 0. There-
fore, in Ho, |Ti \ (Ti ∩ Ti+1)| = 1, i = 0 . . . n− 2 and |Tn−1| = 1.

Theorem 3. Given that an optimal abstraction hierarchy Ho is used, computa-
tional complexity of solving a reachability problem M0

s→ Mg of a Petri net N
with our algorithm is O(|T | ∗ |s|), where |T | is the number of transitions in a net
and |s| is the expected length of the firing sequence s.

Proof. We define the exponential complexity of Petri net reachability checking
as llst , where lt is the number of transitions in a Petri net N and ls = |s| is the
length of a transition firing sequence s such that M0

s→ Mg. Since at the base
abstraction level (level 0) of Ho we have ls transitions in the sequence s, there
are at every abstraction level maximally ls gaps, which have to be filled. By
assuming that there are lh abstraction levels in Ho, the resulting complexity is
O(lh ∗ ls ∗ (lt/lh)ls). Since we assumed usage of an optimal abstraction hierarchy
(lt ≡ lh), the exponential complexity of Petri net reachability checking is reduced
to O(lh ∗ ls ∗ 1ls) = O(lh ∗ ls), which is polynomial.

5 Experimental Results for Abstraction-Based
Reachability Checking

All experiments were performed with the RAPS tool1, where we applied basically
on-the-fly depth-first search over a reachability graph. The maximum search
depth was 30. The results are summarised in Table 1.

Columns covered by labels “Collapsing” (state space collapsing with Karp-
Miller algorithm [6]) and “No collapsing” include numbers, which represent how
many Petri net transitions were fired before reachability was detected. “—” in
fields of the table indicates that reachability was not detected. This illustrates
that, if we apply Karp-Miller algorithm together with abstraction, we may not
discover that a marking is reachable.

1 Downloadable from http://www.idi.ntnu.no/~peep/RAPS.
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Table 1. Reachability checking with and without abstraction

Collapsing No collapsing
Problem Abs No abs Abs No abs Sol length Abs levels |T | |P | M(Mg)

Figure 4(a) 8 179 26 81 24 3 6 8 {E, M, X2}
Figure 8(a) — 181 28 69 26 6 8 11 {E, M, X2}
Figure 8(b) 4 17 10 99 10 2 4 6 {E, M, F}
Figure 8(c) 6 8 6 8 6 3 4 6 {F, M}
Figure 8(d) 2 5 2 5 2 4 5 8 {F}
Figure 8(e) — 22 9 22 9 3 8 11 {E, I2}
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Fig. 8. Sample nets used in experiments

Columns “Problem”, “Sol length” and “Abs levels” represent information
respectively about net descriptions, firing sequence lengths and the number of
abstraction levels per problem, if abstraction was used. “Abs” and “No abs”
distinguish whether abstraction was used or not. “Collapsing” and “No collaps-
ing” in turn determine whether state space collapsing [6] was applied or not. |T |
and |P |, as defined in Section 2, in column headers denote to the numbers of
transitions and places in a sample net.

Dashed lines in figures of Figure 8 separate different abstraction levels. Thus
it is easy to follow how abstraction levels were formed for different nets and
reachability problems. If a fragment of a net is not encircled with a dashed line,
then this part is discarded as irrelevant for a given reachability problem. The
letter L followed by a number indicates there the abstraction level of a particular
subnet.

Although one may argue that only toy examples were considered while per-
foming experiments, these examples still illustrate advantages of abstraction-
based reachability checking over ordinary reachability checking. One can see that
the difference between “ordinary” and abstraction-based reachability checking
may be up to 22 times in the current case. These experimental results encourage
us to apply abstraction-based reachability checking for larger problems.



162 P. Küngas

While experimenting with abstraction and Petri nets we experienced cases,
where with abstraction, although more Petri net transitions were fired, less over-
all time was spent on it than with ordinary reachability checking. This “anomaly”
arises from the way we probe whether a transition is enabled or not. In the case
of ordinary reachability analysis one vector is subtracted from another and then
it is checked whether the result is not negative.

Anyway, if we use abstraction, then transitions indicate to a specific ab-
straction level where they may be applied only. In that case a lot of transitions
are disqualified just by comparing the integer indicating the abstraction level
where the transition may be fired. And comparing two integers is computa-
tionally cheaper than comparing two state vectors. Therefore, by using abstrac-
tion, we do not search blindly anymore, but use instead abstraction as search
heuristics.

6 Related Work

Abstraction of Petri nets has been explored previously by several researchers [14,
13, 15]. These approaches are based on analysing structural properties of a net.
Abstraction is performed by substituting subnets with single transitions or places.

Berthelot [2] considers Petri net reduction by applying a set of transforma-
tion rules. Although this work does not consider abstraction itself, some of the
transformation rules may be viewed as abstraction operators.

Several abstraction techniques have been proposed in AI planning and the-
orem proving disciplines. The first explicit use of abstraction in automated de-
duction was in the planning version of GPS [12]. Other approaches to automatic
generation of abstraction spaces in the AI planning field include [1, 3, 9].

In [5] another abstraction technique, STAR, for AI planning is proposed.
Unfortunately it abstracts the generated state space and not the initial problem
representation. The main idea there is to collapse a state and its adjacent states
into a single one thereby reducing the state space. Although this methodolody
may turn out to be useful for applications, where a Petri net state space is
first generated and then analysed, we are interested in on-the-fly reachability
checking.

7 Conclusions

In this paper we presented an algorithm for automatically abstracting Petri nets.
While other approaches of abstracting Petri nets are based merely on the struc-
tural properties of nets, we considered also the initial and the final marking,
whose reachability has to be checked. Our algorithm first generates an abstrac-
tion hierarchy, which divides an original Petri net into several abstracted repre-
sentations. These abstracted nets are ordered into an abstraction hierarchy by
their size.

Abstraction hierarchies are generated by observing connections between tran-
sitions and places of nets. Given a net and the final marking, first a dependency
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graph is generated, which determines transitions, possibly to be fired in order
to reach the final marking. Then this graph is transformed into abstraction
hierarchies.

The greatest benefits of our abstraction and reachability checking algorithms
are achieved on tree-like Petri net structures like the one depictured in Figure 5.
If a whole Petri net represents a tree, optimal abstraction hierarchies are con-
structed. By using optimal abstraction hierarchies the computational complexity
of reachability checking is reduced to polynomial.

It turns out that the dependency graph, which is a byproduct of the ab-
straction algorithm, can be used also to determine these transitions in a net,
which are not relevant for solving a given reachability problem. In some cases
the dependency graph also helps to determine the lack of a solution even before
starting with reachability checking.

Additionally we sketched an algorithm for using generated abstraction hier-
archies for reachability checking. Reachability checking starts from the highest
abstraction level. Then a firing sequence of transitions reaching a particular
marking is gradually extended until the lowest abstraction level is reached.

Finally experimental results were presented, which show that while using our
abstraction methodology roughly up to 20 times less Petri net transitions are
fired during reachability checking. These results motivate us to proceed with
research on abstraction-based reachability checking.
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Abstract. In this paper we address the problem of detecting and break-
ing symmetries in combinatorial problems, following the approach of im-
posing additional symmetry-breaking constraints. Differently from other
works in the literature, we attack the problem at the specification level.
In fact, many symmetries depend on the structure of the problem, and
not on the particular input instance. Hence, they can be easily de-
tected by reasoning on the specification, and appropriate symmetry-
breaking formulae generated. We give formal definitions of symmetries
and symmetry-breaking formulae on specifications written in existential
second-order logic, clarifying the new definitions on some specifications:
Graph 3-coloring, Social golfer, and Protein folding problems. Finally,
we show experimentally that, applying this technique, even if in a naive
way, to specifications written in state-of-the-art languages, e.g., opl, may
greatly improve search efficiency.

1 Introduction

The presence of symmetries in constraint satisfaction problems (CSPs) has been
widely recognized to be one of the major obstacles for their efficient resolution.
Much work has been already done, and a wide literature is nowadays available
on how symmetries can be exploited, with the aim of greatly reducing the size
of the search space. There are four main approaches followed by the research
community to deal with symmetries:

1. Imposing additional constraints on the problem model, which are satisfied
only for one of the symmetrical points in the search space, cf., e.g., [21, 7, 9];

2. Introducing additional constraints during the search process, to avoid the
traversal of symmetrical points, cf., e.g., [3, 10];

3. Defining a search strategy able to break symmetries as soon as possible
(e.g., by first selecting variables involved in the greatest number of local
symmetries), cf., e.g., [18];

4. Isolating subclasses of CSPs for which particular search strategies can be
used in order to efficiently break their symmetries (cf., e.g., tractability of
symmetry breaking for CSPs with various form of interchangeability [25]).

However, all these approaches make the assumption that symmetries of the con-
straint problem at hand are known. Hence, the problem of the automatic de-
tection of symmetries arises. Currently, symmetry detection is either performed

J.-D. Zucker and L. Saitta (Eds.): SARA 2005, LNAI 3607, pp. 165–181, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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by hand (it is the modeller that states them, by analyzing the problem), or
recognized by reducing the CSP obtained after instantiation to an instance of
the graph automorphism problem (for which there are no polynomial time algo-
rithms, even if there is evidence that it is not NP-complete [13]).

On the other hand, many of the available systems and languages for the so-
lution of constraint problems (e.g., ampl [11], opl [24], Xpressmp1, dlv [15],
smodels [19], and np-spec [6]) clearly separate the specification of a problem
from its instances. Furthermore, symmetries often arise from the problem struc-
ture, and not from the particular instance considered. Hence, they often clearly
emerge at the compact, symbolic level of the specification. Nonetheless, many of
the existing approaches to automatic symmetry detection (cf., e.g., the package
Nauty [16]) try to infer all symmetries of a constraint problem after instantiation,
where many structural aspects have been irremediably hidden.

In our opinion, reasoning at the logical level of the problem specification may
be much effective in order to detect those structural properties that are suitable
for optimization and reformulation, as many symmetries are: problem specifica-
tions are usually much more compact, readable, and high-level modelled, hence
the recognition of, e.g., structural symmetries naturally fits at this stage. More-
over, convenient symmetry-breaking formulae (cf. approach 1 in the list above)
can be added to the specification itself in order to exploit them. Finally, since
specifications are logical formulae, computer tools can be used to automatically
or semiautomatically detect and break symmetries [5].

Such reasoning tasks have, in principle, at least two applications: (i) Discover
new properties of a specification, and (ii) Validate a specification confirming
the existence of some properties. In this paper, we mainly focus on the latter,
giving a formal characterization of symmetries and symmetry-breaking formulae
for a specification. This is a mandatory first step also to solve (i) (an heuristic,
and incomplete, approach for detecting some symmetries on specifications is
discussed in [26]).

Of course, detecting and breaking symmetries at the specification level does
not rule out the possibility to compositionally use symmetry-breaking techniques
at the instance level (e.g., [7, 9]), in order to deal with additional symmetries that
arise from the problem instance. As an example, since some systems generate a
SAT instance, e.g., [6], or an instance of integer linear programming, e.g., [24], it
is possible to do symmetry breaking on such instances, using existing techniques.

2 Existential Second-Order Logic as a Modelling
Language

When dealing with problem specifications, the first choice to be made is that of
the modelling language to be used. Current systems and languages for declar-
ative constraint modelling, as those listed in Section 1, have their own syn-
tax for describing problem specifications: ampl, opl, and Xpressmp allow the

1 cf. http://www.dashoptimization.com.
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representation of constraints by using algebraic expressions, while others, e.g.,
dlv, smodels, and np-spec are rule-based languages, more specifically exten-
sions of datalog. Anyway, from an abstract point of view, all such languages are
extensions of existential second-order logic (ESO) over finite databases, where
the existential second-order quantifiers and the first-order formula represent, re-
spectively, the guess and check phases of the constraint modelling paradigm. In
particular, even if all such languages have a richer syntax and more complex
constructs, in all of them it is possible to embed ESO queries, and the other way
around is also possible, as long as only finite domains are considered. Hence, as
we show in the remainder of this section, ESO can be considered as the formal
logical basis for virtually all available languages for constraint modelling, being
able to represent all search problems in the complexity class NP [20]. Moreover,
since checking and breaking symmetries on ESO specifications reduces to check
semantic properties of logical formulae, it is possible to use known results and
techniques in order to automate such tasks.

Formally, an ESO specification describing a search problem π is a formula
ψπ

.= ∃S φ(S,R), where R = {R1, . . . , Rk} is the input relational schema
(i.e., a fixed set of relations of given arities denoting the schema for all input
instances for π), and φ is a closed first-order formula on the relational vocabulary
S ∪ R ∪ {=} (“=” is always interpreted as identity). An instance I of the
problem is given, as it happens in current systems, as a relational database
over the schema R, i.e., as an extension for all relations in R. Predicates (of
given arities) in the set S = {S1, . . . , Sn} are called guessed, and their possible
extensions (with tuples on the domain given by constants occurring in I plus
those occurring in φ, i.e., the so called Herbrand universe) encode points in the
search space for problem π on instance I. Formula ψπ correctly encodes problem
π if, for every input instance I, a bijective mapping exists between solutions to
π and extensions of predicates in S which verify φ(S,I). More formally, the
following must hold:

For each instance I : Σ is a solution to π(I) ⇐⇒ {Σ, I} |= φ.

It is worthwhile to note that, when a specification is instantiated, a constraint
satisfaction problem (CSP) is obtained.

In order to facilitate the writing of specifications, several built-in constructs
are provided by current languages, in particular those for typed relations, func-
tions (cf., e.g., arrays), bounded integers and arithmetics over them. Hence, to
ease expressions, and to make specifications more compact and closer to their
counterparts in state-of-the-art languages, in this paper we consider an enriched
ESO. In particular, we assume that:
1. Guessed predicates may be typed: we write ∃S ∈ type1

S × · · · × typek
S , where

each typei
S is a monadic relation in R that represents the domain of the

i-th argument of S. (For simplicity of notation, given a relation S of arity k,
we denote with type(S) the domain of tuples that belong to S, i.e., the set
type1

S × · · · × typek
S .)

2. Guessed predicates that encode functions can be natively expressed in the
language (we write ∃S ∈ type1

S × · · · × typej
S → typej+1

S × · · · × typek
S for

some j ∈ [1, k − 1]. Total functions will be denoted by “(total)”).
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3. Bounded integers and arithmetics over them are available.

We note that such additions do not change the expressive power of the language.
Types and (total) functions can be simulated in ESO by means of monadic
predicates in R and first-order constraints, respectively. The same holds for
bounded integers and arithmetics (that can be pre-interpreted).

Formally, we denote the set of monadic relations that encode types as T
(with T ⊆R). Hence, a specification in the enriched language is of the kind:

∃S1 ∈ type(S1), . . . ∃Sn ∈ type(Sn) φ(S , T , R) (1)

where type(Si) = type1
Si
× · · · × type

ar(Si)
Si

, with all typej
Si
∈ T .

Since T ⊆ R, we normally omit T as argument of φ, even if, in some cases,
in order to emphasize the occurrence of types relations in some formulae, we
state it explicitly.

Example 1 (Graph k-coloring). Given an undirected graph and a set of k colors
as input, this problem amounts to decide whether it is possible to give each of
its nodes one out of the colors, in such a way that adjacent nodes (not including
self-loops) are never colored the same way. The problem is well-known to be
NP-complete for k ≥ 3, and can be specified in ESO by, e.g., the following
formula over relations in R = {node(·), edge(·, ·), color(·)}, listing the graph
nodes, edges and the available colors, respectively. The set of types T is given
by {node, color}. In particular, relation color(·) will have exactly k tuples. We
also assume that node(·) and color(·) have no tuples in common.
∃Col ∈ node → color (total) (2)

∀X, Y, C, C′ edge(X, Y ) ∧ X �= Y ∧ Col(X, C) ∧ Col(Y, C′) → C �= C′. (3)

Part (2) of the above specification defines Col as a total function assigning a
color to each node, while (3) is the good coloring constraint. It is worth noting
that the specification above is very close to that written in available languages,
e.g., the following one in opl (initializations are omitted):

range node 1..n nodes; range color 1..n colors;
var color Col[node];

solve { forall (e in edges: e.start<>e.end) Col[e.start]<>Col[e.end]; };};

Another assumption that we make in this paper is that the set of guessed pred-
icates S is partitioned in two parts: output and auxiliary guessed predicates,
denoted, respectively, as O and A (with A possibly empty). Output guessed
predicates conceptually denote the search space, while auxiliary predicates are
used internally to maintain and/or compute additional information needed to
express and evaluate the constraints. This is a very common necessity in declar-
ative languages, as forthcoming Example 2 shows.

When such a partition is made, a solution is completely characterized by the
extensions of predicates in O and not by those of predicates in A. Hence, the
general form of a problem specification in ESO is as follows:

∃O, A φ(O, A, R) (4)

where predicates in O and A may have an associated type, that can (in general)
be represented with a first-order formula over T .
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Example 2 (HP 2D-Protein folding [14]). This specification models a simplified
version of one of the most important problems in computational biology. It
consists in finding the spatial conformation of a protein (i.e., a sequence of amino-
acids) with minimal energy. The simplifications are twofold: the amino-acids
alphabet is reduced to just H (hydrophobic) and P (polar), and the protein is
forced to fold in a 2D discrete space. However, the simplified problem is known
to be NP-complete [8]. Given the sequence of amino-acids of the protein, i.e., a
string over {H,P} of length n, the problem aims to find a connected shape for it
on a 2D grid (with coordinates in [−(n−1), (n−1)], starting at (0, 0)), non-crossing,
and such that the number of “contacts”, i.e., the number of non-sequential pairs
of Hs for which the Euclidean distance of the positions is 1 is maximized (the
overall energy is the opposite of the number of contacts). The figure below shows
a possible conformation of the protein “PHHPHPPHP”, with overall energy −2.

3

P H contact

-1

0

2

1

3

-1 0 1 2
Different alternatives for the search space obviously ex-
ist: as an example, we can guess the position on the grid
of each amino-acid, and then force the shape to be con-
nected, non-crossing, and with minimal energy. However,
a preferred approach that reduces the size of the search
space (4n points versus (2n)2n) is to guess the shape of
the protein as a connected path starting at (0, 0), by
guessing, for each index i ∈ [1, n − 1], the direction that
the (i + 1)-th amino-acid assumes wrt the i-th one (di-
rections can only be North, South, East, West).

The extension of Move for the shape in the figure is: {〈1, N〉, 〈2, N〉, 〈3, N〉,
〈4, E〉, . . .}. However, choosing the latter model is not completely satisfactory:
to express the non-crossing constraint, and to compute the number of contacts,
absolute coordinates of each amino-acid must be computed and maintained. An
ESO specification for this problem, where, for simplicity, we assume to deal with
its decisional version, and to have (pre-interpreted) bounded integers and arith-
metics in the range [−(n − 1), n − 1], is as follows (R = {index (·), elem(·, ·)},
with elem(i, a) stating that the i-th element of the protein is a ∈ {H,P}):

∃Move ∈ index → {N, S, E, W} (total), (5)

∃X ,Y ∈ index → [−n + 1, n − 1] (total) (6)

X (0, 0) ∧ Y (0, 0) ∧ (7)

∀I, I ′ index(I) ∧ index (I ′) ∧ I ′ = I − 1 →
∀D, X,Y, X ′, Y ′ Move(I ′, D) ∧ X (I, X) ∧ X (I ′, X ′) ∧ Y (I, Y ) ∧ Y (I ′, Y ′) →

D = N → X = X ′ ∧ Y = Y ′ + 1 ∧
D = S → X = X ′ ∧ Y = Y ′ − 1 ∧
D = E → X = X ′ + 1 ∧ Y = Y ′ ∧
D = W → X = X ′ − 1 ∧ Y = Y ′ ∧

(8)

∀I,I ′, X, X ′, Y, Y ′

I �= I ′ ∧ X(X, I) ∧ X(X ′, I ′) ∧ Y (Y, I) ∧ Y (Y ′, I ′) → X �=X ′ ∨ Y �=Y ′ ∧ (9)

∣∣∣∣∣∣∣
⎧⎪⎨
⎪⎩
〈I, I ′〉 | index (I)∧index(I ′)∧(I+1<I ′)∧elem(I, H)∧elem(I ′, H)∧

∀X, X ′,Y, Y ′ X(X, I) ∧ X(X ′, I ′) ∧
[3pt]Y (Y, I) ∧ Y (Y ′, I ′) ∧ |X−X ′|+|Y −Y ′|=1

⎫⎪⎬
⎪⎭
∣∣∣∣∣∣∣ ≥ k (10)
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Constraints (5) and (6) declare guessed predicates Move, X and Y as total func-
tions assigning, respectively, a value in {N,S,E,W}, and a value in [−(n−1), n−
1] to each amino-acid.2 Furthermore, (7) forces the first amino-acid to be placed
in (0, 0), while (8) defines the absolute position of each amino-acid starting from
that of the previous one and the move. Finally, (9) is the non-crossing constraint,
and (10) forces the number of contacts to be at least k (integer k is assumed
to be fixed). The above specification is very similar to that given in available
languages, e.g., opl (cf. [4]).

From the problem description, Move is the output guessed predicate, while X
and Y are auxiliary: a solution is completely characterized by the sole extension
of Move. However, it is a matter of choice and responsibility of the modeler
to state which guessed predicates are output and which others are auxiliary,
and, of course, it is always possible to consider all guessed predicates as output
ones (hence, A can always be empty). Indeed, in the following we show that this
“conceptual” partition plays an important role in detecting structural properties,
e.g., symmetries, that may be exploited to improve efficiency. We also observe
that, in this example, X and Y are functionally dependent on Move (cf. [4]).

3 Symmetries on Problem Specifications

In this section we define the concepts of transformation and symmetry on a
specification, and investigate interesting specializations of them. In Section 2,
we presented some syntactic sugar that can be added to ESO in order to have
more compact and readable specifications. However, we also noticed that such
constructs can always be regarded as additional constraints. Hence, for what
concerns the reasoning tasks that we describe from this section on, we consider
the basic ESO framework. Hence, all such additional constraint will be considered
as integral part of the φ part of a specification having the general form (4).

Definition 1 (Transformation). Given a specification ∃O,A φ(O,A,R), a
transformation for O and A is a family of functions, one for each possible
finite Herbrand domain H, of the kind τH:{extH(O,A)}→{extH(O,A)}, where
{extH(O,A)} is the set of all possible extensions of predicates in O and A with
elements in H.

Intuitively, a transformation is a mapping from and to all points in the search
space defined by all the guessed predicates in the specification, for anyH. For the
sake of simplicity, and with a little abuse of notation, in what follows we denote
a transformation as a single function τ: {ext(O,A)} → {ext(O,A)}, obtained by
collapsing all the τH, which is defined on all finite Herbrand domains H.

By focusing only on the set O, the following definition holds:

2 Actually, Move should be not defined for the last amino-acid. However, the proposed
simpler specification remains correct, with the last move having no meaning.
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Definition 2 (Symmetry). Given a problem specification ∃O,A φ(O,A,R)
as above, a symmetry is an invertible transformation for O, i.e., an invertible
function τ : {ext(O)} → {ext(O)} such that, for every input instance I, and
every extension Ω for relations in O, the following holds:

Ω, I |= ∃A φ(O, A, R) ⇐⇒ τ(Ω), I |= ∃A φ(O, A, R). (11)

The distinction between output and auxiliary guessed predicates here becomes
more clear: a symmetry is a transformation of the sole output predicates such
that, if an extension of O may lead to a solution (with appropriate extensions
for auxiliary predicates A), then its transformation must also lead to a solution
(even if the corresponding extensions for predicates in A change) and vice versa.
As an example, in the Protein folding problem, given a solution, i.e., a move
in {N,S,E,W} for each element of the sequence such that all constraints are
satisfied, we can uniformly change N with S, and/or E with W and obtain
another solution, even if the corresponding extensions for X and Y change.

Definition 1 is about transformations in general, but does not limit in any
way the kind of functions τ . By imposing some restrictions on τ , interesting
specializations arise. In this paper, we consider functions τ that focus on a sin-
gle output guessed predicate, being the identity function on the others (we call
them single-predicate transformations). They are of special interest, because of
the usual structure of constraint problems, in which transformations we are in-
terested in (i.e., candidate symmetries) often are internal to a guessed predicate.

Definition 3 (Single-predicate transformation). A transformation is
single-predicate if there exist O ∈ O and a function τO : {ext(O)} → {ext(O)}
such that, for all extensions Ω1, . . . , Ω, . . . Ωn for O1, . . . , O, . . . , On (for any
finite H), we have that τ(Ω1, . . . , Ω, . . . Ωn) = 〈Ω1, . . . , τO(Ω), . . . , Ωn〉.
A single-predicate transformation over O ∈ O is completely characterized by
giving τO. Further specializations of single-predicate transformations are column
(definition omitted) and uniform column transformations.

Definition 4 (Uniform column transformation (UCT)). A single-predi-
cate transformation τO is a UCT if there exists a partition of the indexes of
arguments of O in two (disjoint) sets, D and C, such that, for each extension
Ω of O, we have that τO(Ω) = Ω′, where:

∀δ δ ∈ Ω ↔ 〈δ[D], σ(δ[C])〉 ∈ Ω ′

where σ : type(π
C

(O)) → type(π
C

(O)) is a total invertible function on (i.e., a

permutation of) the domain values of arguments of O in set C.

A UCT that is a symmetry is called uniform column symmetry (UCS). Intu-
itively, UCTs and UCSs change only the C components of tuples in an extension
of O, leaving the others (i.e., D) unchanged. Hence, they are completely described
by a permutation σ from and to the type of the C columns of O. It is worth not-
ing that σ is uniform, i.e., its behavior on a tuple δ ∈ O depends only on δ[C],
and not on δ[D]. A (non-uniform) column transformation/symmetry, instead, is
described by a function which behavior on tuple δ depends also on δ[D].
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Example 3 (Graph k-coloring (Example 1 continued)). We have that O = {Col},
and A = ∅. By focusing on Col , with D = {1} and C = {2}, all permutations
σ : color → color (where color is type(π

C
(Col))) are UCSs.

These symmetries are uniform because their σs map a given color (e.g., red)
always to the same color, independently on the nodes (i.e., values in column 1).

If, after instantiation, we define the corresponding CSP with one variable for
each node, with domain [1, k], symmetries defined above become uniform value
symmetries (in the sense of [17]).

Example 4 (HP 2D-Protein folding (Example 2 continued)). Let us consider the
UCTs that focus on Move, with D = {1} and C = {2}, i.e., permutations σ of
{N,S,E,W}. As an example, the following ones are UCSs:

σ(N) = N, σ(S) = S, σ(E) = W, σ(W ) = E (flip horizontally)
σ(N) = S, σ(S) = N, σ(E) = E, σ(W ) = W (flip vertically)
σ(N) = S, σ(S) = N, σ(E) = W, σ(W ) = E (flip horizontally & vertically )
σ(N) = E, σ(S) = W, σ(E) = S, σ(W ) = N (rotation 90◦ clockwise)

while others are not, e.g., σ such that:

σ(N) = N, σ(S) = E, σ(E) = W, σ(W ) = S.

It is worth noting that, if we consider also X and Y as output guessed predicates,
the above transformations are no longer UCSs, moving to the more general class
of multiple-predicate symmetries (definition omitted). In fact, when permuting
directions in Move, extensions for X and Y must change accordingly.

4 Symmetry Checking

In the previous section, we considered transformations and symmetries as func-
tions from and to extensions of predicates in O. Nonetheless, in order to prac-
tically deal with transformations and symmetries, we are interested into finite
representations of such functions. To this end, in what follows we assume that
τ is finitely representable, e.g., in first-order logic, and, with a little abuse of
notation, we will denote with τ(O,Oτ ) a logical representation of it.3 Such a
representation will contain also occurrences of types in T . However, for simplic-
ity, we do not explicitly write such types as arguments of τ .

Theorem 1. Let ψ .= ∃O,A φ(O,A,R) be a specification, and τ an invertible
transformation for O. τ is a symmetry for ψ if and only if the following formula
is valid:

τ(O, Oτ ) → [∃A φ(O, A, R) ↔ ∃A φ(Oτ , A, R)] . (12)

It is worth noting that the above formula is second-order, even if τ is first-
order. This is because of the presence of auxiliary guessed predicates A, which

3 Given extensions Ω and Ωτ for O and Oτ respectively, τ(Ω, Ωτ ) is true iff Ωτ is
the output of function τ when applied to Ω.
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extensions may not coincide when applying the transformation (cf., e.g., Exam-
ple 4). However, in the important case of A = ∅, the above formula reduces to
a first-order one.

The above theorem naturally specializes in case of single-predicate symme-
tries and UCSs. In the latter case, the following holds:

Theorem 2. Let ψ .= ∃O,A φ(O,A,R) be a specification, and let τO be a UCT
on O ∈ O with σ the relative permutation of the domain values of arguments of
O in set C. τO is a symmetry for ψ if and only if the following formula is valid:

τ(O, Oτ ) → ∃A φ(O1,. . .,O,. . .,On,A,R) ↔ ∃A φ(O1,. . .,Oτ ,. . .,On,A,R) (13)

with τ being: ∀XD,XC ,Xσ
C O(XD,XC) ∧ σ(XC ,Xσ

C) ↔ Oτ (XD,Xσ
C),

and σ a finite representation of the permutation over type
(
π
C

(O)
)
.

However, the problem of checking symmetries is undecidable. To show this,
we focus on the most restricted case of first-order definable UCTs, when
A = ∅.

Theorem 3. Checking whether a first-order definable UCT τO is a symmetry
is undecidable, even if A = ∅.

Of course, decidable subcases for this problem may exist, and can be possibly
derived by decidability results already known in first-order and second-order
logic (cf., e.g., [2]). Additionally, decidable heuristic approaches, similar to those
already presented in [25, 26] can be used. However, these issues are left for future
research.

Often, constraint problems exhibit many symmetries. In order to make the
relevant checks, the procedure suggested above by Theorems 1 and 2 needs to
be invoked for all of them. However, when a set of symmetries can be finitely
characterized, Theorems 1 and 2 can be restated with τ being the finite represen-
tation of the whole set of symmetries. In the particular case of UCSs, Theorem 2
can be restated with σ being the finite representation of the whole set of permu-
tations over type

(
π
C

(O)
)

that are symmetries. In these cases, τ(O,Oτ ) holds iff

Oτ is the result of applying any symmetry in the set to O (hence, it models a
relation, and not a single function any more). The same holds for σ in case of
UCSs.

Example 5 (Social golfer (www. csplib. org , prob. 10) ). Given a set of play-
ers, a set of groups, and a set of weeks, encoded in relations R = {player(·),
group(·),week(·)} respectively, this problem amounts to decide whether there is
a way to arrange a scheduling for all weeks in week , such that (i) For every week,
players are divided into equally sized groups; (ii) Two different players don’t
play in the same group more than once. A specification for this problem (assum-
ing |player|/|group|, i.e., the group size, integral) is the following (Play(P,W,G)
states that player P plays in group G on week W ):
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∃Play ∈ player × week → group (total) (14)

∀P,P ′, W, W ′, G, G′

(P �= P ′ ∧ W �= W ′ ∧ PLAY (P ,W ,G) ∧ PLAY (P ′,W ,G)) →
¬ [Play(P, W ′, G′) ∧ Play(P ′, W ′, G′)] ∧

(15)

∀G,G′, W, W ′ group(G) ∧ group(G′) ∧ week(W ) ∧ week(W ′) →
|{P : Play(P, W, G)}| = |{P : Play(P, W ′, G′)}|. (16)

Relation Play is declared as a total function assigning a group to each player
on each week (14); moreover, (15) is the meet only once constraint, while (16)
forces groups to be equally sized. The last constraint can be written in ESO using
standard techniques, essentially by means of an auxiliary guessed predicate Aux
–hence A = {Aux} �= ∅– forced to encode a set of bijective functions, one
between tuples of any pair of sets defined in the specification.

The following sets of UCTs that focus on Play are all UCSs:

1. With D = {1, 2}, C = {3}, all permutations σ : group → group of groups;
2. With D = {1, 3}, C = {2}, all permutations σ : week → week of weeks;
3. With D = {2, 3}, C = {1}, all permutations σ : player → player of players.

Let us consider the set of UCSs described in point 1. A finite representation for
them exists, in the form of τG(Play ,PlayτG

), defined as:

∀P, W, G, Gσ PlayτG
(P, W, Gσ) ↔ Play(P, W, G) ∧ perm(σ, group) ∧ σ(G, Gσ),

with perm(σ, group) being a first-order formula stating that σ is a permutation
of domain values in group, i.e., type(π

C
(O))). A formulation for perm is as follows:

perm(σ, R) .= ∀X , Xσ σ(X , Xσ) → R(X) ∧ R(Xσ) ∧ (17)

∀X R(X) → ∃Xσ σ(X , Xσ) ∧ (18)

∀X , Xσ , X ′σ σ(X , Xσ) ∧ σ(X , X ′σ) → Xσ = X ′σ ∧ (19)

∀Xσ R(Xσ) → ∃X σ(X , Xσ). (20)

In the important case of a set of UCSs, the following specialized result holds:

Corollary 1. Let ψ .= ∃O,A φ(O,A,R) be a specification, O ∈ O, and D and
C a partition of its argument indexes. A set of permutations σ over type(π

C
(O)),

finitely characterized by the additional conditions encoded in a formula γ(σ,T ),
are all UCSs for ψ iff the following formula (open wrt O, Oτ ,R, σ)4 is valid:

τ(O, Oτ ) → ∃A φ(O1,. . .,O,. . .,On,A,R) ↔ ∃A φ(O1,. . .,Oτ ,. . .,On,A,R) (21)

with τ being:

perm(σ,type(π
C

(O))) ∧ γ(σ, T ) ∧
∀XD , XC , Xσ

C Oτ (XD , Xσ
C ) ↔ O(XD , XC ) ∧ σ(XC , Xσ

C )

4 With σ being a predicate of arity |type(π
C

(O))|.
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In general, formula (21) is second-order, because of the presence of “∃A”, and
because γ(σ,T ) can be second-order. Of course it reduces to a first-order formula
when A = ∅ and γ(σ,T ) is also first-order.

All the UCSs described in Examples 3 and 5 can be checked in one step by
using Corollary 1, with γ ≡ true. As another example, let us consider a variation
of Social golfer where the following constraint is added:

∀P, W, G P = p1 ∧ Play(P, W, G) → G = g1 (22)

forcing a particular player (denoted by the constant “p1”) to play always in the
same group (denoted by constant “g1”). In the new specification, not all UCTs
denoted with 1. in Example 5 are symmetries any more. In particular, only those
permutations of groups σ such that σ(g1) = g1 remain symmetries. The whole
set of such permutations is finitely representable as γ(σ,T ) .= σ(g1, g1), thus,
they can be all verified at once by using Corollary 1.

5 Symmetry Breaking

In Section 4, we showed how logically representable sets of “structural” symme-
tries can be checked by reasoning on the problem specification. Here we show
how such knowledge can be used in order to modify the specification, in order
to exclude from the search space (some of) the symmetrical points. Such modi-
fications can of course be made by working only on the specification, since they
will be valid whatever instance we will consider in a later stage.

Actually, several approaches to symmetry breaking have been described in
Section 1. In this paper, we focus on the first one (i.e., the addition of symmetry-
breaking constraints) but, differently from other works in the literature (e.g.,
[7, 9]), we attack this problem at the logical level of the specification.

Definition 5 (Symmetry-breaking formula). Given a specification
∃O,A φ(O,A,R), and a logical representation τ(O,Oτ ) of a set of symme-
tries, a symmetry-breaking formula for them is a closed (except for O and T )
formula β(O,T ) –in general in second-order logic– such that the new specifica-
tion

∃O, A φ(O, A, R) ∧ β(O, T )

satisfies the following two requirements (we call them Conditions 1 and 2):

1. The set of transformations τ is not a set of symmetries for the new problem
any more: hence, the following formula (negation of (12)), is satisfiable:

τ(O, Oτ ) ∧ [∃A φ(O, A, R) ∧ β(O, T ) �↔ ∃A φ(Oτ , A, R) ∧ β(Oτ , T )] .

2. Every model of ∃A φ(O,A,R) (i.e., every solution for any input instance)
can be obtained by those of ∃A φ(O,A,R)∧ β(O,T ) by applying transfor-
mations in τ an arbitrary number of times:

∃A φ(O, A, R) |= ∃Oβ ∃A φ(Oβ , A, R) ∧ β(Oβ , T ) ∧
∨
i≥0

τ i(Oβ , O)
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where τ0(Oβ ,O) is defined as Oβ ≡ O,5 and τ i(Oβ ,O) (i > 0) as
∃O′ τ(O′,O) ∧ τ i−1(Oβ ,O′), with O′ a fresh set of variables.

Lemma 1 (Alternative formulation for Conditions of Definition 5).
Formula β(O,T ) is symmetry-breaking for set of symmetries τ(O,Oτ ) iff it
satisfies the following two, alternative, conditions:

1. The following formula is satisfiable:

τ(O, Oτ ) ∧ ∃A φ(O, A, R) ∧ [β(O, T ) �↔ β(Oτ , T )] . (23)

2. It holds that:

∃A φ(O, A, R) |= ∃Oβ β(Oβ , T ) ∧
∨
i≥0

τ i(Oβ , O). (24)

If β(O,T ) respects the above conditions, we are entitled to solve the problem
∃O,A φ(O,A,R) ∧ β(O,T ) instead of the original one ∃O,A φ(O,A,R).
In fact, Condition 1 states that formula β(O,T ) actually breaks τ , since, by
Theorem 1, transformations in τ are not all symmetries of the rewritten prob-
lem. Furthermore, Condition 2 states that every solution of φ(O,A,R) can
be obtained by repeatedly applying transformations in τ to some solutions of
φ(O,A,R)∧ β(O,T ). Hence, all solutions are preserved in the rewritten prob-
lem, up to symmetric ones.

It can be observed that Condition 1, even if it behaves well when τ describes
a single symmetry, is quite weak when used with a set of symmetries. This is
because it is enough, for a formula β, to break just one of the symmetries in τ to
satisfy it. A stronger characterization of Condition 1 for the case of τ representing
a set of symmetries is currently under investigation.

As for Condition 2, it is worthwhile noting that in formula (24) i ranges
over the (infinite) set of positive integers. However, once the (always finite)
Herbrand universe H has been fixed, the number of consecutive applications of
τ that lead to different extensions for predicates in O is always finite (even if
this value actually depends on H). Furthermore, when dealing with UCSs on
guessed predicate O ∈ O, i is bound by n!, where n is

∣∣∣type(π
C

(O)))
∣∣∣, and C

the set of indexes where τ focuses on, since this is the maximum number of
successive applications of τ that can lead to all different permutations. However,
in the following we show that in many practical circumstances, either i is bound
to a known value because the value for n is known (cf., e.g., Example 2), or many
interesting symmetry-breaking formulae satisfy Condition 2 of Definition 5 by
design, with a very low i.

We observe that breaking a symmetry is sound, i.e., it preserves at least one
solution, as shown by the following theorem:

5 In general, given two vectors of variables X and Y of the same length n, by X ≡ Y
we denote the formula

∧n
i=1(Xi ↔ Yi).
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Theorem 4 (Symmetry-breaking formulae preserve satisfiability). Let
ψ, τ , and β as in Definition 5. For each input instance I, if ∃O,A φ(O,A,I)
has solutions, then also ∃O,A φ(O,A,I) ∧ β(O,T ) has solutions.

Example 6 (HP 2D-Protein folding (Example 4 continued)). Let us consider the
following UCS τ that focuses on the output guessed predicate Move, with D =
{1} and C = {2}, characterized by the following permutation σ of {N,S,E,W}:

σ(N) = N, σ(S) = S, σ(E) = W, σ(W ) = E (flip horizontally)

The following formula βE,W
least (Move, index ) is symmetry-breaking for it:

βE,W
least

.= ∀I index(I) ∧ Move(I, W ) → ∃I ′ index(I ′) ∧ (I ′ ≤ I) ∧ Move(I ′, E) (25)

since it forces the protein shape to move East before moving West. Condition 1,
i.e., formula (23) is satisfied by, e.g., the instance [H,H], and the extension
{〈1,E〉} for Move. As for Condition 2, it holds even by limiting i to only 0
and 1.

A different symmetry-breaking formula for the same symmetry is:

βE,W
≤

.= |{i : Move(i, E)}| ≤ |{i : Move(i, W )}|, (26)

that forces the protein “head” to move West at least the same number of times
it moves East.

Example 7 (Social golfer (Example 5 continued)). Let us consider all UCSs that
focus on the output guessed predicate Play , with D = {1, 2} and C = {3},
i.e., all permutations of groups. The following formula (where we assume that a
total ordering is given on tuples of relations in T , hence also on their Cartesian
product) is symmetry-breaking (according to Definition 5) for all of them:

βleast(Play , player ,week , group) .= ∀G, G′ group(G) ∧ group(G′)∧(G≤G′) →
∀P, W, P ′, W ′least((P, W ), G)∧least((P ′, W ′), G′) → (P, W )≤PW (P ′W ′)

(27)

with ≤PW the total order derived from ≤ on players and weeks. It forces the
group assignment to be such that, for all G,G′ such that G ≤ G′, the least pairs
P,W and P ′,W ′ such that Play(P,W,G) and Play(P ′,W ′, G′) are such that
(P,W ) ≤PW (P ′,W ′). 6 As a consequence, we have that the first player always
plays in the first group. We can break other symmetries (e.g., permutations of
weeks or players) in a similar way, and get the symmetry-breaking constraints
described in [23].

Social golfer is well known also because it is one of the prototypical examples of
problems having a 2D matrix model (where rows are players, columns are weeks,
and entries are groups) exhibiting all row and column symmetries. For these
problems, the lex2 symmetry-breaking constraint, that forces a lexicographic

6 least((P, W ), G) can be written in first-order logic as: Play(P, W, G) ∧
∀P , W Play(P , W, G) → (P, W ) ≤PW (P , W ).
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ordering on both rows and columns of the matrix has been proposed [9]. It is
possible to show that the lex2 symmetry-breaking constraint can be formulated
in ESO by, e.g., a formula βlex2(Play , player ,week , group) .= βP

lex ∧ βW
lex where

βP
lex(Play , player ,week , group) is given by:

∀P, P ′ player(P ) ∧ player(P ′) ∧ P < P ′ →
∃W week(W ) ∧ ∀W week(W ) ∧ W < W →

∀G, G′ (Play(P, W, G) ∧ Play(P ′, W, G′)
) → G = G′ ∧

∀G, G′ (Play(P, W, G) ∧ Play(P ′, W , G′)
) → G < G′ ∨

∀W, G, G′ (Play(P, W, G) ∧ Play(P ′, W, G′)
) → G = G′

that forces a lexicographic ordering among the rows of the matrix, and βW
lex by

a similar formula, that forces a lexicographic ordering among the columns.
It is worth noting that from the above formulae, it is straightforwardly pos-

sible to derive general schemas, that can be used to break symmetries on many
different specifications. To this end, we note that formulae of the kind βleast, β≤,
and βlex2 make the right part of (24) a tautology (it is enough to consider, e.g.,
in the first two cases, i ∈ {0, 1}), and hence they are guaranteed to respect Con-
dition 2 of Definition 5, independently on the specification constraints. This kind
of schemas for βs can be used as a library, thus making a first step towards the
automatic generation of guaranteed correct symmetry-breaking formulae (cf.,
e.g., the nature of symmetry-breaking constraints added to CSPs in [7]).

6 Experiments

In this section we show that in many cases, even if applying the technique pro-
posed in Section 5 naively, impressive speed-ups in performances can be obtained
on different problems. To this end, we show the results of the following experi-
ments, performed with Ilog oplstudio, using state-of-the-art solvers Cplex (a
MP solver) and Solver (a general CP one):

– Graph k-coloring, on instances from the DIMACS repository; we broke UCSs
in Example 3 with βleast and β≤ (using Cplex and Solver);

– Social golfer, on several negative instances, with βlex2 (Solver);
– Protein folding, by using a composition of βE,W

least and βN,S
least, (Solver), on

several benchmark instances (some of them from [12]).

Results are often good: as for k-coloring using Cplex (cf. Table 1(a)), speed-ups
up to 90% have been observed for many instances (especially when using βleast),
even if for some others the overhead of adding such constraints leads to poorer
performances (cf. also [22]). As for Social golfer instead (cf. Table 1(b)), adding
βlex2 leads to impressive time savings on negative instances, usually around 99%.
A similar behavior has been observed for Protein folding (cf. Table 1(c)) –we
solved the optimization version– with savings up to 73% (often more than 50%).
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7 Conclusions

In this paper we dealt with symmetry checking and breaking at the logical level
of the specification. We observed that in many cases, symmetries arise from the
structure of the problem, and not from input data. Hence, from a methodological
point of view, it makes sense inferring such symmetries by reasoning on the prob-
lem model. Furthermore, since specifications can be regarded as logical formulae,
such tasks reduce to tautology or satisfiability checking, and hence they can be
automated by computer tools (even if the general problem is undecidable). To
this end, in [5] we show with several examples how first-order theorem provers
and finite model finders can be effectively and efficiently used in the important
case where formulae to be checked are first-order.

As for symmetry-breaking, adding constraints to the specification may, in
general, lead to some overhead, and we don’t exclude that, for some problems,

Table 1. Solving times (seconds) for k-coloring (Cplex) (a), Social golfer (Solver)
(b), and Protein folding (Solver) (c). ‘–’ means that the solver did not terminate in
one hour

Cplex
No s.b. βleast β≤

Instance k Sol? Time Time % sav. Time % sav.

DSJC1000.1 24 N – 368.46 >89.77 – –
DSJC125.5 8 N 15.32 13.21 13.77 10.51 31.40
DSJC125.5 25 Y – 2337.29 >35.08 2177.21 39.52
DSJC125.9 21 N 1408.23 2080.21 -47.72 1088.65 22.69
DSJC250.5 10 N – 2158.75 >40.03 2432.55 32.43
DSJC500.1 11 N 2.53 – −∞ – −∞
fpsol2.i.2 21 N 139.80 43.70 68.70 102.20 26.90
fpsol2.i.2 31 Y – 397.61 >88.96 – –
fpsol2.i.3 31 Y – 330.22 >90.83 – –
le450 25a 21 N 84.73 95.32 -12.50 46.51 45.11
le450 25a 25 Y 3536.41 – <-1.80 1783.23 49.58
miles500 19 N 2.31 – −∞ 1.67 27.71
mulsol.i.1 30 N – 10.61 >99.71 – –
mulsol.i.1 49 Y – 311.12 >91.36 – –
mulsol.i.2 30 N – 10.98 >99.70 – –
mulsol.i.2 31 Y 26.75 48.67 -81.94 – −∞
mulsol.i.3 30 N – 10.78 >99.70 – –
mulsol.i.3 31 Y 55.77 43.65 21.73 284.32 -409.81
mulsol.i.4 30 N – 10.99 >99.69 – –
mulsol.i.4 31 Y 47.46 14.25 69.97 – −∞
mulsol.i.5 30 N – 11.12 >99.69 – –
mulsol.i.5 31 Y 166.85 20.68 87.61 64.56 61.31
myciel4 4 N 5.22 0.87 83.33 8.46 -62.07

(a)

Instance Solver
Plrs Wks Grps Solv? No s.b. βlex2 % sav.

6 6 3 N 2267.35 2.12 99.91
6 7 3 N 273.53 4.23 98.45
6 8 3 N 96.67 10.31 89.33
9 5 3 N – 1.05 >99.97
9 6 3 N 342.24 3.86 98.87

Instance Solver

Length Contacts No s.b. βE,W
least ∧ βN,S

least % sav.

14 5 45.38 15.1 66.73
14 2 34.29 10.05 70.69
16 7 23.95 13.27 44.59
16 6 124.12 44.21 64.38
17 6 2788.05 746.97 73.21
17 6 311.78 117.68 62.26
18 8 – 1660.35 >53.88
18 4 547.84 370.38 32.39
18 9 – 1830.02 >49.17

(b) (c)
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this technique may be worse than making symmetry breaking after instanti-
ation (cf., e.g., [22]) or during search. However, in our approach, we make a
strong decoupling between symmetry detection and breaking: all techniques for
symmetry-breaking need to know the symmetries of the problem, and detect-
ing structural ones at the model level can be a common task for all of them.
In particular, detected symmetries can be broken, in principle, either by adding
symmetry-breaking constraints to the specification, or by instructing search algo-
rithms to break them during search (cf. Section 1 for references). Understanding
which technique is better for a given specification is topic for future work.

As for the experiments presented in Section 6, it is worth noting that our goal
is not to compare specification-level versus instance-level symmetry-breaking,
but to give evidence that even a naive implementation of the proposed symmetry-
breaking techniques may lead to consistent time savings. In our opinion, this is a
very interesting point, since the required reasoning can be effectively automated
in many practical circumstances. As an example, in [5] we present experimental
results on using first-order theorem provers for automating these tasks. More-
over, we recall –cf. the end of Section 5– that well-behaved symmetry-breaking
templates do exist, that satisfy Condition 2 of Definition 5 by design. Hence, in
many practical circumstances, only Condition 1 of Definition 5 should be checked
for a given specification, and this can be done very efficiently by using a finite
model finder (cf. [5]).
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Abstract. This article introduces a technique for improving the efficiency of di-
agnosis through approximate compilation. We extend the approach of compiling a
diagnostic model, as is done by, for example, an ATMS, to compiling an approxi-
mate model. Approximate compilation overcomes the problem of space required
for the compilation being worst-case exponential in particular model parame-
ters, such as the path-width of a model represented as a Constraint Satisfaction
Problem. To address this problem, we compile the subset of most “preferred” (or
most likely) diagnoses. For appropriate compilations, we show that significant
reductions in space (and hence on-line inference speed) can be achieved, while
retaining the ability to solve the majority of most preferred diagnostic queries.
We experimentally demonstrate that such results can be obtained in real-world
problems.

1 Objective

One of the most influential approaches to model-based diagnosis (MBD) consists of
compiling the diagnostic model into a representation, Θ, from which diagnoses can
be more efficiently computed. This approach has been adopted within a number of
approaches, e.g., [1, 2, 3]. The advantage of this approach is that the computational
task is linear in the size of the compiled representation. However, the disadvantage
with compiling a large model is the space required for the compilation; for example,
for a model represented as a Constraint Satisfaction Problem (CSP), e.g., as a causal
network [4], this space is worst-case exponential in the path-width of the CSP [5]. For
real-world problems (which have large path-width or thousands of variables), the size
of the compiled representation is typically too large for practical inference.

To address the large size of a compiled diagnostic model Θ, we compile a subset of
the space of diagnoses, namely the most preferred subset of diagnoses, using a valuation
function to specify the most preferred diagnoses. The most common valuation function
is the likelihood of a fault, which can be specified in terms of a probability (e.g., [6])
or order-of-magnitude probability (e.g., [4]) assigned to failure modes. We address two
well-known diagnostic compilation approaches for which valuations can be assigned
to each compiled diagnosis, prime implicants [1] and consequences in d-NNF [2]. We
are interested in the tradeoff between the proportion of the most-preferred diagnoses
represented in a partial compilation Θϕ versus the space saved by Θϕ, relative to that
of Θ. We use two measures to analyse this tradeoff for a partial compilation: (1) χ

J.-D. Zucker and L. Saitta (Eds.): SARA 2005, LNAI 3607, pp. 182–193, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



Approximate Model-Based Diagnosis Using Preference-Based Compilation 183

measures the relative fraction of important diagnoses that are generated by the partial
compilation Θϕ, relative to the space of the full compilation; and (2) λ measures the
proportion of the space that a partial compilation Θϕ requires, relative to the space of
Θ.1 We provide a theoretical bound that can be used to predict the tradeoff parameters
(χ, λ) for a partial compilation, and show experimental results that such bounds are
relevant for real-world problems.

We frame our analysis using the general diagnostic framework of constraint optimi-
sation using CSPs [7]. This framework describes the diagnostic model using the CSP
framework, with valuations over the CSP described using a c-semiring. For the class
of CSPs we have addressed, our partial compilation results are encouraging. For par-
tial compilations in which all failure modes are unlikely or in which some failure modes
are much more likely (preferred) than others, we can produce order-of-magnitude space
savings, with little loss of deductive coverage; in other words, we can have compilations
with χ close to 1 and R � 1. Under these scenarios, the most likely diagnoses com-
prise a small fraction of the number of total diagnoses, with the majority of remaining
diagnoses being significantly less likely.

This article makes two main contributions. First, it describes a general framework
for MBD in which a variety of valuations and compilation techniques can be adopted.
Second, it describes the conditions under which approximate preference-based com-
pilation can significantly speed up diagnostic inference with little loss of diagnostics
coverage.

2 Notation and Representation

This section introduces our notation for CSPs, for compilation, and for valuations of
solutions to CSPs.

2.1 CSP Problem Formulation

We assume the CSP diagnostic formulation of [7]:

Definition 1 (Constraint Satisfaction Problem (CSP)). A Constraint Satisfaction
Problem (CSP) Π = 〈X ,D, C,H〉 over { ,⊥} consists of:

– a set of variables X = {x1, ..., xn};
– for each variable xi, a finite set Di of possible values (its domain);
– and a set C of constraints restricting the values that the variables can simultane-

ously take. A constraint ci is a relation defined on a subset X ′ of the variables, that
is, ci ⊆ ×j{xj : xj ∈ X ′}.

The constraints cj can be considered as functions defined over the variables in cj ,
V (cj), where allowed tuples have value  and disallowed tuples have value ⊥.

1 λ provides a measure of the relative complexity of approximate compiled inference versus
using the full model.



184 G. Provan

Diagnostic applications typically consider the case where (1) we assume a subset
of distinguished unary constraints H ⊆ C referred to as assumptions, and (2) we can
measure a set O ⊆ X of variables, called observables. Given this framework, we can
specify a diagnosis as follows:

Definition 2 (Diagnosis). Let Π = 〈X ,D, C,H〉 be a CSP and O an observation, i.e.,
a constraint on variables in X . A diagnosis of O on Π is a subset of constraints E ⊂ H
such that C ∪O ∪E �|= ⊥, or equivalently, there exists an assignment of values in D to
X consistent with C and O.

2.2 Valuation

In this article, we assign a valuation to unary constraints (i.e., assumptions), and then
use this valuation to compute most preferred diagnoses. A valuation denotes the im-
portance of a constraint. We represent a valuation of a constraint c using υ(c). Hence,
we have a weighted-pair (ci, υi) for each constraint and valuation. We formalise this
general notion of valuation in terms of c-semiring operations [8]. Note that this formal-
ism covers, among others, the probabilistic valuation of [6] and the order-of-magnitude
probabilistic valuation of [4].

Definition 3 (c-semiring). A c-semiring is a tuple (A,+,×, 0, 1) such that

– A is a set and {0, 1} ∈ A;
– + is a commutative, associative and idempotent operation with unit element 0 and

absorbing element 1;
– × is a commutative, associative and idempotent operation with unit element 1 and

absorbing element 0;
– × distributes over +.

Definition 4 (c-semiring constraint system). A constraint system over a c-semiring
is a constraint system where the constraints cj ∈ C are functions defined over the
variables in cj assigning to each tuple a value in A.

Definition 5. An objective function υ maps tuples Z ⊆ X to a set A with a partial
order "A that forms a complete lattice.

In the probabilistic case [6] (see Section 3.2), A is the interval [0, 1] with total order ≤,
and υ associates a probability with each failure mode assignment.

We can define an optimization task over a constraint system in terms of c-semiring
operations provided that the objective function is ×-separable.

2.3 Compilation

Diagnosis can be formalised as a type of Consistency Maintenance Algorithm, and
a number of techniques have been developed for compiling this type of task. These
techniques include prime implicates [1], d-NNF [2], OBDD [9], and cluster-trees [10].

Given a set C of constraints, we compile the constraints after partitioning them into
a constant part Cc and a varying part Cv . The constant part is then replaced by an equiv-
alent, but computationally more efficient, compiled representation C′c. Thus given an



Approximate Model-Based Diagnosis Using Preference-Based Compilation 185

entailment problem for determining consequences α of C, i.e., Cc ∪ Cv |= α, we can
compile Cc into C ′

c and express this as

C′c |= α ∨
∨

ξ∈Cv

¬ξ.

Prior approximate compilation techniques typically weaken the problem represen-
tation. For example, papers by Selman and Kautz [11] and by del Val [12] have stud-
ied approximating propositional and First-Order formulae by Horn lowest upper bound
(LUB) representations, as well as their generalisations.

In contrast to this approach, we are interested in using the prior valuations on as-
sumptions to compile a subset of most preferred potential diagnoses. This is similar to
the penalty logic framework introduced in [13], except that in this case we compile only
a subset of the most preferred diagnoses, rather than the full set of ranked diagnoses.
We compile the least-cost diagnoses to C ∪ H up to a threshold ϕ. In other words, we
compile all diagnoses such that υ(E) ≤ ϕ. This approach is a general one, and can be
applied to any compilation method. For example, with regard to the prime implicants
(or labels) computed by an ATMS [1] or consequence generation [2], we ensure that no
label (consequence) will have cost more than a bound ϕ.

3 Valuation-Based Diagnosis

We now introduce some well-known methods for valuations, and in later sections we
will see the types of results that are possible given those valuations. We derive some
theoretical results about such partial compilations, and then present experimental results
for real-world models.

3.1 Valuation 1: Unary Integral Valuation

We first examine the valuation addressed in [4]. The valuation corresponds to a semiring
SN given by 〈N∪ {∞},min,+,∞, 0〉. This valuation, υ : H → N

+, is assigned to the
assumptions, and is a totally ordered mapping over an diagnosis E ⊆ H such that the
valuation for any diagnosis E is given by

υ(E) =
∑

H∈H
υ(H).

In other words, the valuation is a measure assigned to the assumptions (constraints)
contained in E; i.e., it represents the likelihood of occurrence of the diagnosis E. Un-
der this valuation, a 0-cost represents a normal system and increasing costs (greater
than zero) correspond to increasingly unlikely (less-preferred) diagnoses. Hence, our
inference objective is to compute minimum-cost diagnoses.

3.2 Valuation 2: Probabilistic Valuation

We now outline a valuation widely used in diagnosis [3, 6] and other areas of cost-based
abduction. In this valuation we assign a probability p to each assumption: Pr : H →
[0, 1]. The valuation of a diagnosis E ⊆ H is given by
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Pr(E) =
∏

H∈H
Pr(H),

where we assume that all assumptions are independent, such that we can compute the
joint probability Pr(E) by the products of the probabilities for H ∈ H. The valuation
corresponds to a semiring SPr given by 〈[0, 1],max, ·, 0, 1〉.

The semantics of this valuation are slightly different than those of Valuation 1. Start-
ing from a maximum valuation of 1 (which represents a normal system), all valuations
less than 1 correspond to solutions which are increasingly less likely (preferred). Hence,
our objective is to compute maximum-probability diagnoses.

4 Valuations for Compilations

This section examines the valuations for compilations, and in particular looks at the trade-
offs of relative size of the compilation versus the total relative value of the compilation.

We pose an optimisation task for Valuation 1, that of computing the least-cost diag-
noses, and then the compile the least-cost diagnoses up to a threshold ϕ ∈ N

+. In other
words, we compile all diagnoses E ∈ E∗ such that υ(E) ≤ ϕ.

4.1 Relative Value of a Partial Compilation

The objective of our approximate compilation is to provide coverage for a fixed per-
centage of possible diagnosis queries. We use the following notation for specifying the
relative value of a partial compilation:

Definition 6 (Constraint Set Valuation). The valuation associated with a constraint
set H (or equivalently, with a complete compilation Θ of H), is given by the sum over
all valuations:

υ(Θ) =
∑

E∈2H
υ(E).

Definition 7 (Partial Constraint Set Valuation). The valuation of a partial compila-
tion Θϕ with valuation threshold ϕ is given by

υ(Θϕ) =
∑

E∈2H
{υ(E)|υ(E) ≤ ϕ}.

We use these notions to define a key parameter for our experimental analysis, the
valuation coverage ratio.

Definition 8 (Valuation Coverage Ratio). We define the valuation coverage ratio χ of
a partial compilation Θϕ, with valuation threshold ϕ, as the fraction of the complete
system valuation provided by Θ:

χ =
υ(Θϕ)
υ(Θ)

. (1)
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Our approach cannot use a valuation with an unbounded maximum value, e.g., ∞
for Valuation 1, as we are interested in computing ratios of cumulative valuations. For
such valuations we must construct an inverse valuation, which we call a loss function, in
order to compute an appropriate measure for χ. We adopt a standard decision-theoretic
loss function L, defined for constraint c as L : v(c) → [0, 1].2 Using a loss function, we
can modify Equation 1 into: χ = L(Θϕ)

L(Θ) . We say that a partial compilation is effective
if it has a high coverage ratio.

There are a variety of methods that we can use to map valuations with unbounded
maximum values into a loss function. For example, we can define two classes of loss
function for Valuation 1 as follows. First, we could adopt an appropriate log transfor-
mation of the form: υ(e) → logζ(ζ−υ(e)),3 for a set of diagnoses with maximum valu-
ation ζ. A second method of representing a loss function uses a parameterised equation
of the form: L(c) = γευ(c), for constant γ and parameter ε.4

4.2 Relative Memory of a Partial Compilation

The second key parameter in which we are interested is the relative memory of a partial
compilation, which we can define as follows. Let |Θ| be a measure for the size of the
original compiled CSP, and |Θϕ| be a measure for the size of the CSP compiled based
on valuation threshold ϕ. For simplicity, we assume that all diagnoses (solutions) take
up equal memory, and define a ratio based only on the relative number of solutions.

Definition 9 (Memory Reduction Factor). The memory reduction of partial compila-
tion, with respect to compiling the full CSP, is given by λ = |Θϕ|

|Θ| .

4.3 Analysis of Different Valuations

This section analyses the impact of two parameters on the size and effectiveness of a
partial compilation: (1) valuation distribution, the relative proportion of different pref-
erences; and (2) valuation differential, the difference in degree of preference between
any two different valuations. A model may specify a preference ordering in which some
assumptions are very strongly preferred, and others are not preferred; in that case the
distribution specifies the relative proportions of highly preferred to not preferred as-
sumptions, and the differential indicates the difference in degree of preference among
the assumption valuations.

Example 1. Consider a simple example with a lattice defined over assumptions
{a, b, c, d} and semiring SPr. In this case we assign probabilities describing the fail-
ure likelihoods of the variables. If we have a valuation distribution given by Pr(a) =
Pr(b) = 0.09, and Pr(c) = Pr(d) = 0.01,5 then assume that we have a model in

2 Note that Valuation 2 automatically satisfies this requirement, but Valuation 1 does not.
3 Note that a complete mapping is more complicated than this example.
4 This mapping corresponds to the semiring SL given by 〈[0, 1], max, ·, 0, 1〉, and is very close

to the calculus proposed in [14].
5 Note that there is roughly an order-of-magnitude differential between a strong preference, e.g.,
Pr(a), and a weak preference, e.g., Pr(c).
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Fig. 1. Lattice for simple example, showing the probabilistic valuations to lattice elements, and
the lattice elements (in lower left corner) with probability greater than 0.2, 0.1 and 0.05

which a full compilation would generate a lattice containing the 13 diagnoses shown in
Figure 1.6 The lattice elements represent all possible consistent diagnoses for potential
observations; the valuations on the diagnoses can be used to rank-order the diagnoses
in terms of likelihood; for example, if we have diagnosis set {cd∨ abd} for an observa-
tion O, the most-likely diagnosis will be {cd}.

Consider the effect of introducing partial compilations with bound ϕ. If we introduce
a bound of ϕ = 0.02, then we would compile only 2 diagnoses ({a, b}) out of 13 total
diagnoses; note that this would give valuation coverage ratio χ of 0.849, and relative
memory λ of 0.15. In this case, we have used only 15% of the memory of the total
compilation, and can answer roughly 85% of the diagnosis queries. Decreasing ϕ to
0.01 and 0.005 results in (χ, λ) pairs of (.943, .308) and (.999, .769) respectively. These
results show that we obtain diminishing increases in χ as we compile more diagnoses.

If we increase the differential in this valuation to roughly two orders of magnitude,
i.e., Pr(a) = Pr(b) = 0.09, and Pr(c) = Pr(d) = 0.001, then the relative coverage
of an equivalent partial compilation increases significantly. For ϕ = 0.02 we obtain
a (χ, λ) pair of (0.992, 0.15), in which 15% of the memory covers over 99% of the
most-preferred diagnosis queries. �

We can study the impact of valuation differential on partial compilation tradeoffs for
Valuation 1 using the loss function L(c) = γευ(c), for ε ≤ 1. Figure 2 shows the impact
of the value of ε on the types of tradeoff curves that are possible. At one extreme, the
value ε = 1 produces an equi-loss situation where we generate a flat lattice that does
not even respect subset inclusion; hence, there is no value to compilation. The benefit
of compilation improves as ε grows smaller, i.e., as the gap between different valuations
increases.

In our analysis, we have found that the relative efficiency of a partial compilation,
i.e., having a high query coverage with large reduction in memory, is directly related

6 The lattice elements {abc} and {bcd} have been ruled inconsistent by the constraints.
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Fig. 2. Curves depicting the influence of the value of ε on the tradeoff curves

to the type of valuation. If a valuation is skewed, in the sense that some diagnoses
are highly preferred and others are not at all preferred, then we can compute a very
efficient partial compilation. If most diagnoses are relatively equally preferred, then
little is gained by partial compilations.

Although it is too complicated to derive closed-form representations for the valua-
tion tradeoff space in the general case, we can derive results for simple cases. For ex-
ample, we can use the following result as a bound on the impact of partial compilation:7

Lemma 1. Consider a model with n variables, where each diagnosis has identical loss
of l ∈ (0, 1]. We generate a partial compilation, based on the maximum number q of
variables in any diagnosis, with parameters given by:

χ =
∑q

i=1

(
n
i

)
li

(1 + l)n − 1
; λ =

∑q
i=1

(
n
i

)
2n − 1

. (2)

Equation 2 predicts a series of curves similar to those shown in Figure 2 for ε < 1.
Each predicted curve defines an upper bound for the expected (χ, λ) results of a partial
compilation, i.e., it specifies the effectiveness of the compilation in the best case. We
now present experimental results for real-world examples that show that the predictions
of Equation 2 are relevant to real-world application problems.

5 Experimental Analysis

We have performed a set of empirical studies of compilation coverage. We represented
the diagnostic models as causal networks [2], which is a CSP representation with propo-

7 If we start with valuation (as in Valuation 1) that generates an inverse χ, then we must map
this into a loss function using an approach such as that described in Section 4.1.
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sitional constraints and non-negative integer weights similar to Valuation 1. We then
generated complete DNNF-compilations of all models, and used various thresholds ϕ
to compute partial compilations from these. For each pair comprising a full and partial
compilation, we posed identical queries, and compared the statistics of correct query-
responses for the partial and full compilations. This section describes these studies,
focusing first on the structural parameters, and then on the weights.

5.1 Structural Parameters

We have performed experiments on a collection of real-world models, including models
of hydraulic, electrical and mechanical systems. Table 1 shows the basic parameters of
the models we used for experimentation. The model classes are as follows: (a) the AC-
v1 through AC-v4 models are for multiple aircraft subsystems; (b) the MCP models
are for a control system. Each model class has multiple models, denoted by version
numbers (e.g., v2), which denote the increased size and complexity over the basic model
(v1).

Table 1 shows data for a variety of models. One of the key factors to note is the
memory required for the compiled model, displayed in the last column. In particular,
the models cover memory values ranging from small (20.1KB) to large (52.4MB). As
noted earlier, the memory of the compiled model is our metric for evaluation complex-
ity, since evaluating a model is linear in the size of the compiled data. As a consequence,
it is important to note that models with compiled data in excess of 20-30MB are com-
putationally expensive to evaluate.

Model Size Parameters. We have performed experiments to study the dependence of
compiled-model performance on the parameters C and H. Figure 3 shows the cover-
age versus relative memory for four different aircraft sub-system models of increasing
size, AC-v1 through AC-v4. All models have identical failure-mode probabilities of
0.05. Note that every such coverage/memory curve has a similar shape, with the cov-
erage asymptotically approaching 1 as memory increases. This particular graph shows
how the curves are displaced downwards (meaning reduced coverage for any relative
memory value) as the models grow in size and complexity.

Table 1. Model Statistics for Real-world Models. We report data for the total number V of vari-
ables, number H of assumables, number O of observables, and memory for the full compiled
model

Name V H O Memory (KB)

AC-v1 12 5 8 1439
AC-v2 41 9 13 37,626
AC-v3 64 17 12 52,376
AC-v4 70 19 13 52,447
MCP 40 20 5 20.1

MCP-extended-v1 66 32 5 22.5
MCP-extended-v2 66 32 8 359.9
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Fig. 3. Graph showing tradeoff of coverage versus relative memory for four different aircraft
sub-system models, AC-v1 through AC-v4

5.2 Valuations

We have performed a variety of experiments to study the influence of assumption prob-
ability on coverage. In these experiments, we assigned different probability values to
the assumptions, and report our results using the mean probability, averaged over all
probabilities assigned to failure-states inH.

Figure 4 shows the effect of mean assumption probability values on the coverage for
two control models, a basic model and an extension of that model. These figures show
how the mean probability value reduces the coverage values. For example, Figure 4(b)
shows that for small probability values, the coverage asymptotes very quickly to cover-
age values near 1 at relatively small relative memory values, but as the mean probability
gets larger, greater memory is needed to achieve high coverage values. These experi-
mental results concur relatively well with predictions made by equation 2.

This experimental analysis has shown that Equation 2 provides bounds that can
predict results such as:

– For a given CSP size, it tells you the type of skewed loss function that guarantees
an efficient partial compilation.

– Given an appropriate loss function, it can tell you the coverage value χ that is
achievable.
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Fig. 4. Graph showing tradeoff of coverage versus relative memory for control sub-system model,
for various mean loss values

– Given an appropriate loss function and required coverage value χ∗, it can predict
the size of the partial compilation.

6 Summary

The article described a partial-compilation technique for improving the efficiency of
model-based diagnosis, and more generally for any compilation-based inference with
preferences. For DNNF-compilations, we showed that significant reductions in space
(and hence on-line inference speed) can be achieved, while retaining the ability to solve
the majority of diagnosis queries. We experimentally demonstrated that such results can
be obtained in real-world problems. For example, under skewed preference structures,
we have found that extremely good coverage can be provided by relatively small partial
compilations. Given the general c-semiring CSP framework for compilation, we argue
that this partial compilation approach will work for a variety of c-semiring CSPs, and
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for compilation methods in which valuations can be assigned to compiled diagnoses
(e.g., ATMS labels).

These results imply that high-reliability systems need only a relatively small com-
piled model to guarantee high diagnostic coverage. In contrast, low-reliability systems
need a relatively large compiled model, e.g., containing up to 10 simultaneous faults
(depending on the system), to guarantee high diagnostic coverage.

This analysis needs to be extended to cover failure consequences, i.e., incorporate
utility functions. For many applications, e.g., commercial aircraft and space shuttle mis-
sions, one is interested in the low-probability/high-consequence failures. Our future
work plans to analyse such situations.
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Abstract. Reinforcement learning (RL) is a powerful abstraction of sequential
decision making that has an established theoretical foundation and has proven
effective in a variety of small, simulated domains. The success of RL on real-
world problems with large, often continuous state and action spaces hinges on
effective function approximation. Of the many function approximation schemes
proposed, tile coding strikes an empirically successful balance among represen-
tational power, computational cost, and ease of use and has been widely adopted
in recent RL work. This paper demonstrates that the performance of tile coding
is quite sensitive to parameterization. We present detailed experiments that iso-
late the effects of parameter choices and provide guidance to their setting. We
further illustrate that no single parameterization achieves the best performance
throughout the learning curve, and contribute an automated technique for adjust-
ing tile-coding parameters online. Our experimental findings confirm the superi-
ority of adaptive parameterization to fixed settings. This work aims to automate
the choice of approximation scheme not only on a problem basis but also through-
out the learning process, eliminating the need for a substantial tuning effort.

1 Introduction

Temporal-difference reinforcement learning (RL) is a powerful machine-learning
methodology that has an established theoretical foundation and has proven effective
in a variety of small, simulated domains. The application of RL to practical problems,
however, is problematic due to their large, often continuous state-action spaces. Re-
cently RL has been successfully applied to larger problems, including domains with
continuous state-action spaces. The success of RL in such cases critically depends on
effective function approximation, a facility for representing the value function concisely
at infinitely many points and generalizing value estimates to unseen regions of the state-
action space.

A variety of function approximation methods for RL have been proposed, including
simple discretization, radial basis functions, instance- and case-based approximators,
and neural networks [1]. These methods trade off representational power, computational
cost, and ease of use. Tile coding [2] is a linear function-approximation method that
strikes an empirically successful balance along these dimensions and has been widely
adopted in recent work [3, 1, 4, 5, 6]. The success of tile coding in practice depends in
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large part on parameter choices. We are not aware of any detailed studies of the effects
of parameters in tile coding, an omission we set out to address.

This paper makes two chief contributions. First, we present a controlled empirical
study of the effects of parameters in tile coding. While it is natural to expect the right
parameterization to depend on the problem at hand, we additionally demonstrate that no
single parameterization achieves the best performance on the same problem throughout
the learning curve. Our analysis isolates the causes of these phenomena. Second, this
paper contributes an automated scheme for adjusting tile-coding parameters online. We
demonstrate the superiority of online parameter adjustment to any fixed setting.

Our work on adaptive parameterization in tile coding automates the choice of an
appropriate approximation scheme for any given RL problem and learning stage. The
designer need only specify a parameter range, leaving it up to the algorithm to de-
termine the right settings throughout execution. Viewed differently, our work unifies
fixed approximation schemes into a more powerful and generic scheme. We validate
our insights empirically in the context of RL, arguably the most realistic and successful
abstraction of sequential decision making to date.

The remainder of this paper is organized as follows. Section 2 provides a brief
overview of RL and describes tile coding and our testbed domain. Experimental re-
sults in multiple learning settings and an accompanying analysis are presented in Sec-
tions 3 and 4, respectively. Section 5 builds on those findings to propose an automated
parameter-adjustment scheme and demonstrates its effectiveness empirically. Section 6
concludes with a summary.

2 Preliminaries

This section introduces reinforcement learning (RL) and tile coding and describes the
testbed domain used in our experiments.

2.1 Reinforcement Learning

In RL [2], a learner is placed in a poorly understood, possibly stochastic and non-
stationary environment. The learner interacts with the environment at discrete time
steps. At every time step, the learner can observe and change the environment’s state
through its actions. In addition to state changes, the environment responds to the
learner’s actions with a reward, a scalar quantity that represents the immediate utility
of taking a given action in a given state. The learner’s objective is to develop a policy (a
mapping from states to actions) that maximizes its long-term return.

Formally, an RL problem is given by the quadruple 〈S,A, t, r〉, where S is a finite
set of states; A is a finite set of actions; t : S × A → Pr(S) is a transition function
that specifies the probability of observing a certain state after taking a given action in a
given state; and r : S × A → R is a reward function that specifies the expected reward
upon taking a given action in a given state. Given a stream of rewards r0, r1, r2, . . . , the
associated return is defined as

∑∞
i=0 γ

iri, where 0 ≤ γ ≤ 1 is the discount factor. The
learner experiences the world as a sequence of states, actions, and rewards, with no prior
knowledge of the functions t and r. A practical vehicle for learning in this setting is the
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value function Qπ : S × A → R that yields the expected long-term return obtained
by taking a certain action in a given state and following policy π thereafter. The widely
used Q-learning algorithm [7] maintains and iteratively updates an approximation to the
Q-value function of the optimal policy.

2.2 Tile Coding

In practical applications of RL, states and actions are defined by continuous parameters
such as distances and voltages. As a result, the sets S and A are typically large or
infinite, and learning the value function requires some form of function approximation.
In tile coding, the variable space is partitioned into tiles. Any such partition is called
a tiling. The method uses several overlapping tilings and for each tiling, maintains the
weights of its tiles. The approximate value of a given point is found by summing the
weights of the tiles, one per tiling, in which it is contained. Given a training example,
the method adjusts the weights of the involved tiles by the same amount to reduce the
error on the example.

Figure 1 illustrates tile coding as it is used in this paper. The variable space consists
of a single continuous variable x. The tiles are all the same width and adjacent tilings
are offset by the same amount, the type of tiling organization we refer to as canonical.
Figure 1 also illustrates the computation of value estimates. A tiling organization such
as those in Figure 1 is given by tile width w and the number of tilings t. The ratio w/t
is the resolution of a tiling organization. Speaking of tiling organizations that provide
the same resolution, we refer to the number of tilings as the breadth of generalization
since tiling organizations with more tilings generalize more broadly. This happens be-
cause the span of the tiles activated by an update grows with the number of tilings. A
degenerate form of tile coding is straight discretization (the organization with a single
tiling in Figure 1), which does not generalize across tile boundaries.

Note that tile coding is a piecewise constant approximation scheme: for any assign-
ment of the tile weights, there will be actions within resolution r of each other that map
to the same set of tiles and share the same value estimate. When pondering an action
choice in this setting, our RL algorithm picks the middle action. While tile coding does
not support truly continuous learning, its generalization capability makes it far supe-
rior to straight discretization. Finer distinctions can always be learned by increasing the
resolution r. An initial result regarding tiling organizations is (a proof sketch is in the
appendix):

Theorem 1. For every m,n ≥ 1, the sets of functions representable by m- and n-tiling
canonical univariate organizations with the same resolution are identical.

xt =         w =2, 2/3 1t =         w = x3,x1/31t =         w =,

Fig. 1. One-, two-, and three-tiling canonical organizations with the same resolution r = 1/3.
The number of tilings t and tile width w are specified for each organization. In each case, the
weights of the highlighted tiles are summed to obtain the value estimate for the indicated point
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For example, the three organizations in Figure 1 are functionally equivalent. Despite
this representational equivalence and identical asymptotic performance, tiling organiza-
tions with more tilings generalize more broadly and perform differently on RL tasks.
This paper assumes a fixed resolution r and studies the role of generalization breadth t
as a parameter. Our work seeks to identify how varying the breadth of generalization—
while preserving representational equivalence—affects performance.

2.3 Testbed Domain

Our testbed domain is a grid world, shown along with an optimal policy in Figure 2.
Two locations of the grid world are designated as “start” and “goal,” with the learner’s
objective being to navigate from the start cell to the goal cell. Another type of cell is
a wall that the learner cannot pass through. Finally, certain cells are designated as an
abyss. This grid world task is episodic, ending with the learner falling into the abyss
(“stepping off the cliff”) or successfully entering the goal state. The state variables are
the cell coordinates x and y (the start state is at the origin).

The learner’s actions are of the form (d, p), where d ∈ {NORTH, SOUTH, EAST,
WEST} is an intended direction of travel and p is a real-valued number between 0 and
1. The learner moves in the requested direction with probability F (x, y, p), and in one
of the three other directions with probability (1− F (x, y, p))/3. Moves into walls and
off the edge of the grid world result in no change of cell. F is a cell-dependent function
that maps p to [0.5, 1]. The two “extreme” F functions are shown in Figure 3, and the
F functions for all other cells are successive interpolations between these two.1 This
design of F was intended to ensure continuity as well as multiple local maxima and
minima. To illustrate, consider choosing an action in a cell governed by the solid F
curve in Figure 3. A choice of p ≈ 0.78 guarantees a successful move in the requested
direction. A choice of p ≈ 0.93 moves the learner in the requested direction with prob-
ability 0.5 and in each of the other three directions with probability ≈ 0.17.

.8 .8 .8

start goal

.7 .7 .7 .7

.7 .7 .7 .7.7.7.7.7

.6 .6 .6 .6 .6 .5

.5 abyss

w
all .7

.8.8.8.8.8.8

Fig. 2. The grid world map and optimal policy
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Fig. 3. The two extreme F (p) functions

Our experiments use two different reward functions to guide the learner to the goal,
an “informative” one with −1 assigned on every nonterminal transition, −100 on step-

1 The exact functional form is F (x, y, p) = 1
3
w(p, x, y) sin(4πw(x, y, p)) + 19

24
, where w(·)

is a warping function that applies a different monotonic transformation of the p range for each
cell. As a result, the optimum p value is different for every cell. As the cells are traversed in
row-major order, the F curve gradually transforms from one extreme in Figure 3 to the other.
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ping off the cliff, and +100 on reaching the goal cell; and another, “uninformative”
reward function with zero reward assigned on all transitions except the one to the goal
cell (+100). Because of the discount parameter γ = 0.99 < 1, the optimal policy is the
same under both functions.

The learner initially has no information regarding t, r, or any of the F ’s. Thus,
the challenge is to identify, in each cell, the right direction of travel and the p value
that maximizes the probability of this move. We use tile coding in the p variable to
approximate the value function for every distinct setting of (x, y, d). Every (x, y, d)
triple enjoys a dedicated set of tiles, so there is no generalization across cell boundaries
or directions of travel.

3 Initial Empirical Results

This section presents empirical results in three scenarios illustrating the effects of the
breadth of generalization on performance. The settings of generalization breadth com-
pared are 1, 3, and 6 tilings, all reasonable choices given the target function curves in
Figure 3. The resolution was fixed at 0.04, corresponding to 26, 10, and 6 tiles per tiling
in the 1, 3, and 6 tiling cases, respectively.

All experiments in this paper used Q-learning with ε-greedy action selection. The
parameter settings were: α = 0.1, γ = 0.99, and ε = 0.05, except where indicated
otherwise. The Q-value estimates were initialized to 0 on all runs. The metric in all
experiments was the value of the start state under the best policy discovered so far
(as a percentage of optimal), as determined by an external policy-evaluation module.
This model-based evaluation module (value iteration) was unrelated to the model-free
algorithm used to learn the policies. Every performance curve in the graphs represents
the point-wise average of at least 100 independent runs with all identical settings.

We categorize our empirical findings in three groups:

Experiment A: Initial performance boost due to generalization (regular α). Fig-
ure 4 plots early performance obtained using the uninformative reward function (a) and
the informative one (b). The step size α is 0.1, a typical value. The graphs show a per-
formance boost due to generalization when the informative reward function is used, but
no observable differences with the uninformative reward function.

Experiment B: Initial performance boost due to generalization (small α). Figure 5
plots performance over the first 50000 episodes, a substantial allotment of learning time.
The reward function used is the uninformative one, chosen to control for the apparent
advantage enjoyed by broad-generalizing learners in experiment A. (As the analysis in
Section 4 will show, the results observed in experiments A and B are due to different
causes which this experimental setup serves to isolate.) Decreasing the step size de-
grades performance for any fixed setting of generalization breadth; however, the extent
of this deterioration diminishes as generalization breadth increases. Viewed differently,
α = 0.5 reveals no observed benefit to generalization. But as α decreases to 0.10 and
then to 0.05, generalization becomes increasingly beneficial.

Experiment C: Eventual degradation of performance due to generalization. Ex-
periments A and B demonstrate that generalization can improve performance while the
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Fig. 4. Early performance with the uninformative (a) and informative (b) reward functions. The
ordering of the curves in b is statistically significant at a 0.005 confidence level between episodes
92 and 280

 0

 20

 40

 60

 80

 100

 0  10000  20000  30000  40000  50000

%
 O

P
T

IM
A

L

EPISODES COMPLETED

1 TILING 
3 TILINGS
6 TILINGS

 0

 20

 40

 60

 80

 100

 0  10000  20000  30000  40000  50000

%
 O

P
T

IM
A

L

EPISODES COMPLETED

1 TILING 
3 TILINGS
6 TILINGS

 0

 20

 40

 60

 80

 100

 0  10000  20000  30000  40000  50000
%

 O
P

T
IM

A
L

EPISODES COMPLETED

1 TILING 
3 TILINGS
6 TILINGS

a b c

Fig. 5. Performance with the uninformative reward function and three settings of step size: α =
0.5 (a), α = 0.1 (b), and α = 0.05 (c). The ordering of the curves is statistically significant at a
0.005 confidence level between episodes 6100 and 22100 (b), and 10000 and 40000 (c)
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Fig. 6. Long-term performance (episodes 50000–100000) with the uninformative (a) and infor-
mative (b) reward functions. The ordering of the curves in b is statistically significant at a 0.005
confidence level staring at episode 55000

policy is undergoing initial development or early refinement. Figure 6, on the other
hand, shows that in the final count generalization proves detrimental. Figure 6 was ob-
tained using the uninformative (a) and informative (b) reward functions. In the former
case, the more challenging nature of the task favors the use of generalization for a longer
time.

Note that the graphs in Figures 4–6 have vastly different x-axis scales. Moreover,
the y-axis scales in Figures 4 and 5 are different from those in Figure 6.
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4 Interpretation of Empirical Results

As observed in Section 3, generalization tends to help initial performance but hurts in
the long run. This section analyzes the causes of these phenomena. We start by intro-
ducing an abstraction of the problem. We categorize state-action pairs as overestimated,
underestimated, and correctly estimated with respect to the backup procedure used and
the approximate value function Q̂(s, a) for states and actions. In Q-learning, an overes-
timated state-action pair is characterized by

Q̂(s, a) > r(s, a) + γ max
a′∈A

{Q̂(s′, a′)},

where s′ is the successor state. Underestimated and correctly estimated state-action
pairs are defined by replacing the “greater than” sign in the above equation with “less
than” and “equals” signs, respectively. Note that this terminology is unrelated to the
true values of state-action pairs under the current policy; state-action pairs are “un-
derestimated,” “overestimated,” or “correctly estimated” solely with respect to one-step
updates. Finally, we define a state-action pair (s, a) to be desirable if a is a near-optimal
action in state s, i.e.,

|Q∗(s, a)−max
a′∈A

Q∗(s, a′)| < δ,

where Q∗ is the optimal value function and δ > 0 is a small constant. Undesirable
state-action pairs are defined symmetrically.

The effect of generalization on correctly estimated state-action pairs is nonexis-
tent or negligible since backups in such cases generate zero expected error. The ef-
fect of generalization on overestimated and underestimated state-action pairs, on the
other hand, is significant. In what follows, we analyze these two cases separately. We
assume the exploration/exploitation trade-off is addressed using Boltzmann (softmax)
action selection, an ε-greedy policy, or any other method in which the greedy action
â∗ = arg maxa∈A Q̂(s, a) is selected in state s with the greatest probability and the
probabilities of selection of the other actions are nondecreasing in their value estimates.
We refer to the region to which a value update of a state-action pair (s, a) is generalized
as the vicinity of (s, a).

4.1 Generalization on Overestimated vs. Underestimated State-Actions Pairs

Generalizing the value update of an overestimated state-action pair (s, a) to nearby
state-action pairs will decrease their value estimates and thus reduce the likelihood of
selection of the corresponding actions in their respective states. If (s, a) and state-action
pairs in its vicinity are undesirable, this generalized update is beneficial regardless of
whether these state-action pairs are also overestimated. If, on the other hand, some state-
action pairs in the vicinity of (s, a) are desirable, generalization is harmful if they are
not overestimated. In this latter case, generalization will excessively lower the proba-
bility of selection of certain good actions.

Similarly, generalization on an underestimated state-action pair (s, a) is helpful if
the state-action pairs in its vicinity are desirable, and may be harmful if there are unde-
sirable pairs with correct or excessive estimates. However, there is an additional benefit
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to generalizing on desirable underestimated state-action pairs. Typical domains have
continuous value functions. In this case, generalization ensures that the nearby state-
action pairs also have favorable estimates even if they are rarely tried. Generalization
thus accelerates the adoption of better actions in the vicinity of (s, a) as greedy choices,
which is increasingly helpful with small step sizes. By contrast, a non-generalizing
learner will require more exploratory visits to the vicinity of (s, a) to build up these
actions’ value estimates.

4.2 Application to the Empirical Results

Generalization improves early performance in experiment A when used with the more
informative reward function because the algorithm can more rapidly learn clusters of
actions that lead to a fall off the cliff. When such a catastrophic event occurs and a
heavy penalty is received (−100), the learner generalizes the outcome to neighboring
p values, thus requiring less time to identify directions of travel to avoid for any value
of p. A non-generalizing learner, on the other hand, needs to visit every p value within
resolution to rule out a poor choice of direction. This is an example of the beneficial
effects of generalization on overestimated state-action pairs. The uninformative reward
function, on the other hand, does not communicate the undesirability of falling off the
cliff and leads to no performance improvement with generalization.

The small step sizes in experiment B require a substantial amount of exploratory ac-
tivity to build up value estimates for better p choices in the vicinity of an already estab-
lished one—unless generalization across tiles is used, yielding elevated value estimates
for those p choices even if they are rarely tried. As a result, generalization improves
performance for small step sizes, a benefit of generalization on underestimated state-
action pairs. Underestimated state-action pairs are common in experiment B as positive
reward propagates from the faraway goal state (the only source of nonzero reward) to
the rest of the grid world, one state at a time. Thus, the use of the uninformative reward
function ensures that the performance differences are not due to the expedited mastery
of cliff avoidance with generalization, as in experiment A.

Once the value estimates become sufficiently accurate (with the optimum actions
adopted as greedy choices and the catastrophic actions assigned low values), general-
ization cannot further improve performance. The negative effects of generalization are,
on the other hand, still at work. The empirical results in experiment C confirm that
generalization is detrimental at the final stages. As expected, the observed performance
degradation is monotonic in the breadth of generalization.

5 Adaptive Generalization

We have confirmed that our empirical findings in Section 3 scale with map size. As an
example, Figure 7 shows the early and late performance curves using the informative
reward function and a 32× 8 grid world. This new map is 6.4 times larger than that of
Figure 2 but structurally similar to it.

The empirical results indicate that broad generalization is helpful at the early stages
of learning but detrimental in the final count, suggesting that online adjustment of gen-
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Fig. 7. Performance in a 32 × 8 grid world: episodes 0–10000 (a) and 10000–100000 (b). The
ordering of the curves is statistically significant at a 0.005 confidence level between episodes
2000 and 5600 (a) and starting at episode 40000 (b)

eralization breadth would yield the optimal approach. To this end, we implemented an
adaptive algorithm as follows. For every state-action pair (s, a), the method maintains
a reliability index ρ(s, a) that expresses the learner’s confidence in Q̂(s, a), ranging
from 0 (unreliable) to 1 (reliable). The reliability indices (initialized to 0) are stored in a
tiling organization with the same resolution as the organization for the Q-values them-
selves. Backups of Q̂(s, a) that yield a large error lower the reliability indices for (s, a)
and nearby state-action pairs; backups that result in a small error increase those relia-
bility indices. When performing a backup, the algorithm selects the largest allowable
breadth of generalization such that the state-action space covered has an average reli-
ability index of less that 1/2. This heuristic encourages broad generalization when the
value estimates are rapidly changing and discourages generalization when they are near
convergence. Note that no actual conversion from one tiling organization to another is
necessary when changing generalization breadth: with an appropriate update scheme, a
single flat tiling organization can efficiently simulate any number of tilings.

In this framework, one needs to specify only the range of minimum and maximum
generalization breadth to be used, leaving the parameter adjustment to the algorithm.
Observe that the adaptive-generalization method varies generalization as needed based
not only on the learning stage (time-variant generalization), but also on the state-space
region (space-variant generalization). This facility is valuable because some regions of
the state-action space are visited very frequently and favor an early cutback on general-
ization; other state-action regions are visited only occasionally and would benefit from
generalization for a longer time.

To complete the description of the adaptive-generalization algorithm, it remains to
specify how a backup error of a certain magnitude affects the reliability index of the
corresponding state-action pair. Various update schemes can be proposed here. Our ap-
proach increases the reliability by 1/2 on zero error and decreases it by 1/2 on a very
large error (50 was an appropriate setting in our domain); the intermediate cases are
linear interpolations between these extremes. We generalize each reliability update to
its immediate vicinity. In stochastic environments, it may be additionally useful to de-
cay the reliabilities periodically. Figure 8 presents the finalized adaptive-generalization
algorithm in pseudocode, embedded in Q-learning.

We did not attempt to optimize the above reliability-update rule and used it as an
informed first guess. Figure 9a illustrates the progress of generalization breadth on a
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ADAPTIVE-GENERALIZATION(max -error)

1 Initialize Q(s, a) arbitrarily for all s ∈ S, a ∈ A
2 ρ(s, a) ← 0 for all s ∈ S, a ∈ A
3 repeats ← current state
4 a ← π(s)
5 Take action a, observe reward r, new state s′

6 error ← [r + γ maxa′∈A Q(s′, a′)] − Q(s, a)
7 num-tilings ← max{t ≥ 1 : avg ρ(s′′, a′′) at most 1/2}
8 Update Q(s, a) by α · error using generalization breadth num-tilings

9 ρ(s, a) ←
[
ρ(s, a) +

(
1
2
− | error |

max-error

)]1
0

10 π ← ε-greedy w.r.t. Q
11until converged

Fig. 8. Adaptive generalization method in pseudocode. The left arrow “←” denotes assignment;
[x]ab = max{min{x, a}, b} denotes the bounding operation
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Fig. 9. Adaptive method in the 10 × 4 grid world: per-episode average generalization breadth,
smoothed (a); and comparative performance, episodes 0–1000 (a) and 1000–100000 (b). At a
0.005 confidence level, the adaptive method is superior between episodes 450 and 49000

typical run in this scheme. Figures 9b and 9c demonstrate that even this “first guess”
approach to varying generalization is superior to fixed settings of generalization breadth
between episode numbers 450–49000, which arguably covers any reasonable allotment
of training time in this domain.

To see why the 1-tiling (no generalization) learner eventually overtakes the adap-
tive learner, observe that in online RL the learner typically discovers the optimal pol-
icy much sooner than its exact value function. Indeed, to obtain the optimal policy the
learner need only get the relative values of the states right; the actual estimates can be ar-
bitrarily far from the true values. Even after a near-optimal policy has been discovered,
the adaptive learner thus continues to see a steady drift of the values as positive reward
propagates from the goal state to the rest of the grid world, one state at a time. Faced
with this continual change, the above adaptive rule is too slow to cut generalization. This
minor drift is easy to detect and correct for with a more informed reliability-update rule.
At the same time, even our relatively simple update rule results in good performance.
We conclude that even unsophisticated schemes for varying generalization breadth are
generally preferable to any fixed setting.
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6 Conclusions

This paper explores parameterization issues in tile coding, a widely adopted function-
approximation method for reinforcement learning. In particular, we present a precise
empirical study of the effect of generalization breadth on the performance of a tile-
coding approximator. Our findings demonstrate that generalization helps at the early
stages of learning but invariably hurts past a certain point. As a result, no single set-
ting achieves the best performance throughout the learning curve. We pinpoint the
causes of this phenomenon and build on our analysis to propose a novel technique
for automatically adjusting generalization breadth as needed in different regions of the
state-action space (space-variant generalization) and at different learning stages (time-
variant generalization). We experimentally show the superiority of varying the gener-
alization breadth in this way to any fixed parameterization. Our adaptive-generalization
method is generic and can be advantageously applied in any setting in which tile coding
is used.
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Appendix: Proof of Theorem 1

Proof. (Sketch.) The theorem can be proven by establishing that any function repre-
sentable with a t-tiling organization is also representable with a single-tiling organiza-
tion, and vice versa. The former claim is shown by projecting the t-tiling organization
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onto the single-tiling organization and weighting the tiles of the single-tiling organiza-
tion by the sum of the corresponding tile weights of the t-tiling organization. The latter
claim is shown by assigning random weights to the leftmost t − 1 tiles of the t-tiling
organization (one in each of the first t− 1 tilings) and weighting the leftmost tile in the
remaining tiling such that the sum of the t tile weights equals the weight of the first tile
in the single-tiling organization; the latter weighting operation is repeated iteratively,
moving at each step one tile to the right in the t-tiling organization.
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Abstract. Using abstract operators for least commitment in planning
has been shown to potentially reduce the search space by an exponential
factor. However a naive application of these operators can result in an
unbounded growth in search space for the worst case. In this paper we
investigate another important aspect of abstract operators - that of their
construction. Similar to their application, naive construction of an ab-
stract operator may leave you with little search space reduction even in
the best case, and significant penalties in the worst. We explain what it
means to be a good abstract operator and describe a method of creating
good abstract operators.

1 Introduction

The concept of an abstract operator is a natural extension of the least commit-
ment principle of partial order planning (POP). It has been shown that the use
of abstract operators can potentially reduce the search space by an exponential
factor [1]. If used naively they can produce a worst case increase by an expo-
nential or even unbounded factor [2]. In particular, while abstract operators are
designed to reduce the cost of dealing with open precondition flaws, the effect
on threats is indeterminate. In this paper we consider the representation and
construction of abstract operators with the effect of threats in mind. As we shall
see, the representation of an operator itself affects the branching factor of the
planning search space.

Section 2 briefly outlines where this work fits in the areas of abstracting
operators and least commitment planning. Section 3 begins by describing the role
of abstract operators in POP planners. Necessary and contingent preconditions
of abstract operators are then defined, and the distinction between them made.
Next, abstract operators are looked at as a continuation of the abstraction that
operators make over actions and a simple example is given. Section 4 considers
the construction of an abstract operator. It is shown that the method by which
variables are partitioned can greatly affect the utility of an abstract operator in
relation to the branching factor of the search space. This section concludes by
giving a method creating valid partitionings of variables and a criteria by which
to select a good partitioning from these.

J.-D. Zucker and L. Saitta (Eds.): SARA 2005, LNAI 3607, pp. 206–217, 2005.
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2 Related Research

Figure 1 shows a brief taxonomy of the related areas of research. The taxon-
omy spans two major areas of automated planning: those of least commitment
planning and hierarchical planning. Under the umbrella of least commitment we
have planners that apply the least commitment approach to step ordering (this
includes all POP planners), to support or causal links (such as descartes [3],
which takes a pure constraint satisfaction approach to planning) and to operator
selection (such as fabian [1]). The application of the least commitment principle
to operator selection produces abstract operators, thus forging a link with the
area of hierarchical planning.

In classic hierarchical planners, such as alpine [4] and shaper [5], literals
are ranked according to their criticality. The more “critical” a literal, the sooner
we should plan for it. The most critical literals are planned for first and the
least critical literals are planned for last. Intuitively, criticality corresponds to
importance. The importance of a literal is measured, to some extent, by how
easy it is to achieve that literal. If it is trivial to achieve a literal then it is not
considered very critical or important. If it is very difficult to achieve then it
is considered very critical or important. These criticality rankings are used to
construct levels of abstraction. On a given level of abstraction, all the literals
of lower criticality are removed. This creates abstract operators because the
operator description at a given level of abstraction does not retain the less critical
literals. At a given level of abstraction, if two or more operator schemas only
differ in their less critical literals then they are fused into a single operator
schema at that abstraction level.

In Hierarchical Task Network (HTN) planners (noah [6], nonlin [7], SHOP2
[8]), instead of trying to achieve goals, they try to perform tasks. Tasks are ei-
ther primitive (i.e., they can be performed by a single action) or non-primitive.
HTN planners use methods to break non-primitive tasks into subtasks. Methods
are HTN equivalents of operator schemas. Methods are similar to abstract in
that they represent an abstraction actions. However, unlike least-commitment
abstract operators and classic hierarchical abstract actions they represent net-
works of actions.

In this paper we are focusing on the “least commitment” abstract operators
that were initially introduced in the fabian planner. Least commitment abstract

Fig. 1. A taxonomy of related research
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operators do not represent suppression of an operator’s less critical literals, nor
do they represent decomposition of tasks into subtasks. Instead they form a dis-
junction of operators, any one of which is guaranteed to be applicable if used
in place of the abstract operator in a plan. The label “least commitment” has
been applied to these abstract operators as they represent a decision (choice
between applicable operators) that does not need to be taken immediately. It
is entirely possible for a resulting plan to include abstract operators as well
as concrete actions, where each refinement of an abstract operator to a con-
crete action gives a valid solution plan. The following section elaborates on this
concept.

3 Abstract Operators

A standard POP algorithm (such as ucpop [9]) solves planning problems through
a simple decision cycle: (1) pick an open condition; (2) support this condition
with a causal link (this link can be from either an existing or a new step);
and (3) resolve all threats. When a new step is chosen in part (2), the al-
gorithm makes a non-deterministic choice of a single applicable operator. If
this decision later is found to be inconsistent with the rest of the plan, the
POP algorithm backtracks over this decision trying all possible choices of
operator.

An abstract operator takes this operator selection decision and collapses it
to a single deterministic point. Rather than choose any one of the applicable
operators, a single abstract operator is chosen that represents the set of all these
possible operators. As the plan becomes more constrained this set is refined to
remove inconsistent choices of operator.

3.1 Effects and Preconditions

Just as standard operators, abstract operators have a set of effects and a set
of preconditions. In an abstract operator these effects and preconditions sum-
marise those of its component operators and can be defined as either necessary
or contingent.

Definition 1 (Necessary Effects). A necessary effect is an effect that is in
the intersection of the effects of the component operators.

Definition 2 (Contingent Effects). A contingent threat is an effect that is
in the union of effects of the component operators, but not in the intersection.

Similar definitions hold for preconditions.
While these definitions of effects and preconditions are quite straightforward

there are a number of difficulties involved. For example, what it does it actually
mean for an effect to be in the intersection of the effects of its component op-
erators? As we look in more detail at abstract operators these difficulties shall
come to light and be dealt with.
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3.2 Abstract Operators as Name Variablisation

In planning, an action is defined as a 3-tuple of operator name, effects and
preconditions. For example, in the BlocksWorld [10] domain an action to move
a block a from a block b to a block c is given by

Name: move
Preconditions: on(a, b), clear(b), clear(c)
Effects: on(a, c), clear(b),¬on(a, b),¬clear(c)

Often operators are used to represent sets of these actions. Note that sometimes
operators are referred to as operator schema, and actions as operators. An example
of an operator for moving a block a from block b to any other block is given by

Name: move
Preconditions: on(a, b), clear(b), clear(X)
Effects: on(a,X), clear(b),¬on(a, b),¬clear(X)

This operator is a lifted[11] version of the previous one where X represents the
set of all blocks in the domain i.e. X = {a, b, c, ...}. Thus the operator actually
represents the set of actions given by each substitution of a literal block for X.

In this context abstract operators allow a variablisation of the name of an
action in addition to variablising literals in the effects and preconditions. Before
we show an example of this we must describe the remaining two operators of
the BlocksWorld domain. These are the stack operator which makes a new stack
of blocks by moving a block to the table from another block, and the unstack
operator which removes a stack of blocks by moving a block from the table
onto another block. Completely uninstantiated versions of all three operators
are shown below

Name: move
Preconditions: on(X,Y ), clear(Y ), clear(Z)
Effects: on(X,Z), clear(Y ),¬on(X,Y ),¬clear(Z)

Name: stack
Preconditions: on(X,Y ), clear(X)
Effects: on(X, table), clear(Y ),¬on(X,Y )

Name: unstack
Preconditions: on(X, table), clear(X), clear(Y )
Effects: on(X,Y ),¬clear(Y ),¬on(X, table)

Example 1 (Abstract operator for achieving clear(a)). First we take those opera-
tors with clear(a) as an effect. The stack and move operators fit this description
so these two are combined to make an abstract operator. In the standard oper-
ator notation we have

Name: N
Preconditions: on(X,a), clear(X), clear(Y )
Effects: on(X,Y), clear(a),¬on(X,a),¬clear(Y )
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Here N represents the set {move, stack}. The variable Y can be any block or the
table. Those effects and preconditions in bold are necessary and those not in bold
are contingent. This is just one of many possible abstract operators for achieving
clear(a). For example it is possible that one does not wish for the variable Y to
represent both the table and blocks, and instead have separate contingent effects
on(X,Y ) and on(X, table). These are important aspects in the construction of
abstract operators and will be discussed further in the remaining sections.

4 Partitioning Variables

Let us return to Example 1 and step through the construction of this abstract
operator. The first step is to find all operators that are able to achieve the desired
precondition clear(a). We have two possible operators:

Name: move
Preconditions: on(X, a), clear(X), clear(Y )
Effects: on(X,Y ), clear(a),¬on(X, a),¬clear(Y )

Name: stack
Preconditions: on(Z, a), clear(Z)
Effects: on(Z, table), clear(a),¬on(Z, a)

If these were combined directly to create an abstract operator we would have

Name: N
Preconditions: on(X, a), on(Z, a), clear(X), clear(Z), clear(Y )
Effects: on(X,Y ), on(Z, table), clear(a),¬on(X, a),¬on(Z, a),¬clear(Y )

Clearly this is a poor abstraction. We now have an operator with almost twice
as many preconditions and effects as the operators it is abstracting. This means
there are more open precondition flaws and this operator may cause more threats
than would be caused by a better abstraction.

4.1 Unification Through Partitioning

An obvious approach is to combine variables from the component operators so
that the intersection of effects or preconditions is greater. In the same way that an
abstract operator represents a set of operators, a variable in an abstract operator
represents a set of variables from the component operators. In constructing an
abstract operator we partition the variables from the component operators into
sets that make up the new variables. This is very similar to performing unification
on those variables that are members of the same set.

Formally, a variable partition is a set of equivalence classes of variables from
the component operators of an abstract operator. Each of these equivalence
classes is referred to as a variable equivalence class. The number of variable
equivalence classes of a variable partition P is written |P |. The choice of partition
is an integral part of the construction of abstract operators. Poor partitioning
can lead to an inefficient operator, while a better choice can greatly improve
planning efficiency.
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Fig. 2. Two incomplete plans showing an abstract operator with two different variable
partitions

To construct the operator given in Example 1 we add the variables X and
Z to a single partition, with Y remaining in a second partition. In this case the
lteral table was included in the same partition as the variable Y , but we shall
ignore this fact for now. I must be noted that this is just one possible partitioning
of the variables.

Example 2 (An alternative abstract operator). When constructing the abstract
operator in Example 1 we could equally have chosen to add Y and Z to the same
variable equivalence class and leave X separate. In this case the operator would
look like

Name: N
Preconditions: on(X, a), on(Y, a), clear(X), clear(Y)
Effects: on(X,Y ), on(Y, table), clear(a),¬on(X, a),¬on(Y, a),¬clear(Y )

This example’s abstract operator is also perfectly valid. So how can we choose
between them? One way is to consider their effect on the search space. Figure
2 shows a simple partial plan. An abstract operator A was added to achieve
the goal clear(a) with the upper diagram using the partition from Example 1
and the lower diagram using the partition from Example 2. The planner then
chose to achieve the goal on(b, c) using a new step. Only a move operator is ap-
plicable here. This new step is labelled move(b, a, c) in the diagram. Finally an
open precondition of move(b, a, c) was chosen, indicated by a surrounding box,
which has been unified with the initial predicate that will provide its causal link.
Up to this point both abstract operators appear equal. However, once the new
causal link is added (not shown in the diagram) the operator from Example 1
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Fig. 3. Branching factor over an open precondition decision point with two different
variable partitions

will cause a single non-contingent threat (a threat from a necessary effect), but
the operator from Example 2 will cause two contingent threats. Dealing with
contingent threats creates additional internal nodes in comparison to necessary
effects [2]. Furthermore, there are two of these threats instead of just one neces-
sary. Figure 3 shows the extent of the difference. The diagrams show the overall
branching factor over the open precondition decision point for the situations
shown in Figure 2. The split node in the tree splits the abstract operator into
two new operators, one with only those component operators that cause the
threat and one with only those operators that do not. This has been shown to
be necessary to avoid exponential increases in branching factor in the worst case
[2]. The diagram on the left corresponds to the abstract operator of Example 1
and the right on the right corresponds to that of Example 2. This clearly shows
that not only are more internal nodes generated because of the need to split the
abstract operator when dealing with contingent threats, but also the number of
plans generated is twice as large. In fact, the standard POP algorithm would
generate the same four plans at this decision point, so using the operator from
Example 2 makes no reduction at all!

4.2 Creating Variable Partitions

Our next step is to generate all valid variable partitions for an abstract operator.
Once this is done it is a matter of making a comparison between them and
selecting the most promising. Other than the basic restriction that each variable
is an element of exactly one variable equivalence class, the only constraint is
that no two variables from the same component operator may be in the same
equivalence class.

Definition 3 (Minimal Partition). A minimal partition of an abstract oper-
ator is any valid variable partition resulting in the minimal number of variable
equivalence classes for that operator.

Since a minimal partition must be valid, the number of equivalence classes
in a minimal partitioning is always equal to the number of variables in the
component operator with most variables. It should also be noted that any valid



Creating Better Abstract Operators 213

Fig. 4. Two variable partitions for the abstract operator for achieving clear(a)

variable partition can be turned into a minimal partition by simply merging
equivalence classes. Figure 4 shows the two variable partitions for Example 1(left)
and example 2 (right). The grey areas indicate a variable equivalence class of
which there are three in the left-hand case and four in the right. Only the left-
hand case is considered a minimal partition as for now we are treating the literal
table as a variable.

Proposition 1. Take an abstract operator A and a valid non-minimal variable
partition P . Then there exists a variable partition P ′ with |P ′| < |P | such that
using A with P ′ will cause a number of threats less than or equal to the number
of threats caused by using A with P .

Proof (of Proposition). Let A be an abstract operator with a non-minimal vari-
able partition P . Then there must exist two variable equivalence classes p1, p2

in P s.t merging p1 and p2 gives a valid variable partition. Let P ′ be the variable
partition that results from the merging of p1 and p2 in P . Let p3 be the equiva-
lence class in P ′ that is the union of p1 and p2. |P ′| = |P | − 1 so |P ′| < |P |
Suppose that A using P ′ causes some threat with an effect x(X), where X =
px1, px2..., pxn are the variables in x. Note that the effect x(X) belongs to an
abstract operator, so its variables are actually variable equivalence classes.

If p3 /∈ X then x(X) existed in A when using P , so no new threat was made.
If p3 ∈ X then in A using P there existed either an effect x(Y ), an effect

x(Z), or both. Here Y is equal to X with p3 replaced by p1 and Z is equal to X
with p3 replaced by p2. If only one of x(Y ) and x(Z) existed in A using P then
no new threats were made. If both existed then a threat was removed.

Thus for any non-minimal partition of variables for an abstract operator,
there always exists a smaller variable partition that cause the same number or
fewer threats.

A simple corollory of Proposition 1 is that any use of variable partition is bet-
ter than combining no variables (the maximal partition). A further consequence
is that we need only consider minimal partitions when constructing abstract
operators.

Let the component operators of an abstract operator A be {O1, O2, ..., On},
and let the number of variables of a component operator be written |Ok|. Let
the component operators be ordered such that |Oi| ≤ |Oj | ⇐⇒ i ≤ j. The
exact number of valid minimal variable partitions for A is given by

#partitions = 1×|O1| P|O2| ×|O1| P|O3| × ...×|O1| P|On|
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=
|O1|n−1

(|O1| − |O2|)× (|O1| − |O3|)× ...× (|O1| − |On|)
(1)

The time taken to produce all valid variable partitions is a constant in the
number of partitions given by Equation 1. While this is an expensive operation,
it need only be performed once for each possible precondition in a domain. For
example, once a variable partition has been chosen for both the on(X,Y ) and the
clear(X) predicates, no more partitions will need to be computed irrespective
of the initial or goal states of a BlocksWorld problem.

4.3 Choosing a Variable Partition

The branching factor, and thus the size, of the search space in planning is deter-
mined by the number of open precondition flaws and the number of threat flaws.
In addition, backtracking only occurs when a threat is caused that is inconsistant
with the constraints of a plan. Abstract operators have been conceived to min-
imise the effect of branching due to open preconditions, leaving only the effect
of threats to worry us. Thus our primary concern is the minimising of threats
caused by abstract operators - this is the characteristic by which we must select
a variable partition for an abstract operator.

Conjecture 1. Take an abstract operator A with two variable partitions P1, P2.
Suppose that A using P2 has fewer effects and preconditions than A using P1,
then, on average, using P2 causes fewer threats than using P1.

Conjecture 1 implies that the best way to minimise threats is to minimise
the number of effects and preconditions of the operators. An almost equivalent
proposal is to maximise the necessary preconditions and necessary effects of an
operator. Both views are consistent with what we have seen in Figure 3.

The difficulty with proving this conjecture is that it concerns the average
case. By average we mean the total number of threats occuring in the entire
search space over all possible problem instances. There exist partial plans in
which abstract operators constructed using the heuristic implied by Conjecture
1 perform worse than some alternatives.

4.4 Invalidating Variable Partitions

A further problem with the selection of a variable partition is that there is no
guarantee that two abstract operators resulting from the splitting of an abstract
operator will retain a good variable partition. Consider an abstract operator,
AbOp1, representing three operators that can achieve a predicate p1(X):

Name: op1 Name: op2

Preconditions: p2(V ), p4(V ) Preconditions: p2(W ), p3(W )
Effects: p1(X), p5(R), p7(R) Effects: p1(X), p5(S), p6(T )

Name: op3

Preconditions: p3(Y ), p4(Z)
Effects: p1(X), p6(U), p7(Q)
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Fig. 5. Three minimal partitionings that produce the minimal number of preconditions

Figure 5 shows the three minimal variable partitions that are considered
“best” according to Conjecture 1. The rows refer to each of the three component
operators, and the columns to the preconditions. An entry in a table signifies that
the precondition exists for the given component operator with the given vari-
able as argument. A dashed line between entries signifies that the same variable
is used in both precondition predicates. A solid line between variables signifies
that they are both in the same equivalence class, thus each connected component
represents a single variable equivalence class. Each connected component that
is within a single column results in a single precondition in the resulting ab-
stract operator. It can be easily seen that for all three partitionings the abstract
operator has two variables in its four preconditions. Underneath each table its
variable partitions are written as sets. Note that such diagrams are appropriate
for this example but may not be appropriate in the general case.

The point of interest is the quality of the variable partitions of the operators
that result from a split in this abstract operator. For example, suppose that
using the left-most variable partition in Figure 5 the effect p6(E) was found to
cause a threat in the plan. The first act of the planner is to split the search
space into those plans where p6(E) is a necessary effect of the abstract operator
and those where it is no longer an effect. The later gives rise to plans with the
following abstract operator (equivalent to AbOp1 with op1 removed):

Name: AbOp2

Preconditions: p2(B), p3(B), p3(C), p4(B)
Effects: p1(A),p6(E), p7(D)

However after this split the number of preconditions is no longer minimal. If
we had originally used the variable partition in the centre of Figure 5 the abstract
operator resulting from the split would have had only three preconditions, of
which only two would be contingent.

Of course if the centre variable partition were used instead, it is possible
that the planner would encounter a threat caused by the effect p7(D) which
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would result in op2 being removed and another sub-optimal partition emerging.
Similarly for the right-most partition and the effect p5(D). Thus this is a case
in which no partition is able to guarantee the retention of an optimal variable
partition throughout the planning process.

Should we not wish to have sub-optimal variable partitions later in planning,
there are at least two methods for addressing this problem. It is possible to
recompute the variable partition after splitting by searching all possible reas-
signments of variables in contingent effects and preconditions. However for any
reasonable sized abstract operator this is unacceptably expensive computation-
ally. In practice it may be best to precompute the entire forest of abstract oper-
ators, with the most general operators as roots, and single operators as leaves.

5 Future Work

Methods of handling literals in operators (such as the occurance of table in stack
and unstack) need to be investigated. A simple workaround for partitioning is to
wrap each instance of the literal in a pseudo-variable. This has not been proven
to give optimal results in all cases, and it is possible that better methods exist.

The case where variables are typed can cause issues during partitioning.
Should partitions only contain variables with exactly the same type? Should
partitions create a super-type when adding variables with differing domains?
How does this impact on the notion of a best partition? All these issues need to
be explored.

Another interesting avenue is to move to degrees of contingency. Rather than
letting all contingent effects or preconditions be equal, the effect that belongs
to one of ten component operators can be seen to be much more contingent
than an effect that belongs to nine of ten. This may lead to possible heuristics
for ordering threat resolutions during planning, or better partitionings during
operator construction.

Finally, empirical evaluations of the different combinations of application,
representation and heuristics need to be made.
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Abstract. We present a specialised binary constraint for the stable mar-
riage problem. This constraint acts between a pair of integer variables
where the domains of those variables represent preferences. Our con-
straint enforces stability and disallows bigamy. For a stable marriage
instance with n men and women we require n2 of these constraints, and
the complexity of enforcing arc-consistency is O(n3). Although this is
non-optimal, empirical evidence suggests that in practical terms our en-
coding significantly outperforms the optimal encoding given in [7] in both
space and time.

1 Introduction

In the Stable Marriage problem (SM) [6, 10] we have n men and n women.
Each man ranks the n women into a preference list. So also do the women. The
problem is then to produce a matching of men to women such that it is stable. By
a matching we mean that there is a bijection from men to women, and by stable
we mean that there is no incentive for partners to divorce and elope. A matching
is unstable if there are two couples (mi, wj) and (mk, wl) such that mi prefers wl

to his current partner wj , and wl prefers mi to her current partner mk. Stable
matching problems occur naturally while matching people to posts [18], such as
the allocation of residents to hospitals in the US [17], Canada [5], and Scotland
[11]. Variants of the problem occur such as the allocation of groups of students
to university accommodation [12], and hard variants have been identified and
studied by Irving and Manlove [16]. The problem has also attracted the interest
of the constraint programming community [4, 7, 9, 8, 14].

Figure 1 is an instance of the stable marriage problem, and has 6 men and
6 women. Figure 1(a) shows the problem initially, with each man and woman’s
preference list. Figure 1(b) shows the intersection of the male and female-oriented
Gale-Shapley lists (GS-lists) [10], where the GS-lists are reduced preference lists.
A man-optimal (woman-pessimal) stable matching can now be found by mar-
rying men (women) to their most (least) preferred choices in there GS-lists.
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Men’s lists Women’s lists
1: 1 3 6 2 4 5 1: 1 5 6 3 2 4
2: 4 6 1 2 5 3 2: 2 4 6 1 3 5
3: 1 4 5 3 6 2 3: 4 3 6 2 5 1
4: 6 5 3 4 2 1 4: 1 3 5 4 2 6
5: 2 3 1 4 5 6 5: 3 2 6 1 4 5
6: 3 1 2 6 5 4 6: 5 1 3 6 4 2

(a)

Men’s lists Women’s lists
1: 1 1: 1
2: 2 2: 2
3: 4 3: 4 6
4: 6 5 3 4: 3
5: 5 6 5: 6 4 5
6: 3 6 5 6: 5 6 4

(b)

Fig. 1. (a) An SM instance with 6 men and 6 women; (b) the corresponding GS-lists

Conversely, we can produce a woman-optimal (man-pessimal) matching by mar-
rying women (men) to their most (least) preferred choice in their GS-lists. An
instance of SM admits at least one stable matching and this can be found via
the Extended Gale-Shapley algorithm in time O(n2), where there are n men and
n women.

We present a remarkably simple constraint encoding for the stable marriage
problem. We introduce a specialised binary constraint with only three methods,
where each method is no more than two lines of code. We prove that enforcing
arc-consistency in this encoding results in the male-oriented Gale-Shapley lists.
We then go on to show how we can extend this encoding by introducing a modest
amount of additional code, such that the encoding can be embedded in richer
impure problems where the stability of marriages is only part of a larger problem,
and the male and female oriented GS-lists are produced. Our empirical results
suggest, that although our encodings has O(n3) time complexity, it significantly
outperforms the optimal encoding proposed in [7] in both space and time. In
the presentation that follows we will take a one sided, male-oriented, view of
the problem. Everything that is presented also has an equivalent and symmetric
female-orientation.

2 The Extended Gale-Shapley Algorithm (EGS)

We now describe the male-oriented Extended Gale-Shapley (EGS) algorithm
(shown in Figure 2). In particular, we explain what is meant by a proposal, an
engagement, and for a man to become free. We will use this later to show that
this algorithm and our constraint encoding are equivalent.

The EGS algorithm [10] produces a stable matching between men m1 to
mn and women w1 to wn, where each man (woman) ranks each of the women
(men) into preference order. Via a process of proposals from men to women the
algorithm delivers reduced preference lists, called GS-lists (Gale-Shapley lists),
such that if each man (woman) is paired with his (her) best (worst) partner in
their GS-list the marriages will be stable.1

1 Strictly speaking, the given algorithm produces MGS-lists, the male GS-lists. But
for the sake of brevity we will refer to them as GS-lists.
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1 assign each person to be free

2 WHILE (some man m is free)

3 DO BEGIN

4 w := first woman on m’s list

5 IF (some man p is engaged to w)

6 THEN assign p to be free

7 assign m and w to be engaged to each other

8 FOR (each successor p of m on w’s list)

9 DO BEGIN

10 delete p from w’s list

11 delete w from p’s list

12 END

13 END

Fig. 2. The male-oriented Extended Gale/Shapley algorithm

We will assume that we have an instance I of the stable marriage problem,
and that for any person q in I, PL(q) is the ordered list of persons in the original
preference list of q and GS(q) is the ordered list of people in the GS-list for q,
and initially GS(q) equals PL(q). In a proposal from man m to woman w, w
will be at the head of the man’s GS-list GS(m). This leads to an engagement
where m is no longer free and all men that w prefers less than m are removed
from her GS-list, i.e. the last entry in GS(w) becomes m. Further, when a man
p is removed from GS(w) that woman is also removed from his GS-list, i.e. w is
removed from GS(p), consequently bigamy is disallowed. Therefore m and w are
engaged when m is no longer free, w is head of GS(m), and m is at the tail of
GS(w). A man p becomes free when p was engaged to w (i.e. the head of GS(p)
is w) and w receives a proposal from man m that she prefers to p. On becoming
free, p is added to the list of free men and w is removed from GS(p).

The algorithm starts with all men free and placed on a list (line 1). The
algorithm then performs a sequence of proposals (lines 2 to 13). A man m is
selected from the free list (line 2), and his most preferred woman w is selected
(line 4). If w is engaged, then her partner p becomes free. The pair m and w
then become engaged (lines 7 to 12).

3 Preliminaries

We assume that each man and woman’s preference list has been read into two
dimensional integer arrays mpl and wpl respectively. mpl[i] is the preference list
for the ith man where mpl[i][j] is the ith man’s jth preference, and similarly wpl[j]
is the preference list for the jth woman. Using our problem in Figure 1(a), if we
consider our third man he will have a preference list mpl[3] = (1, 4, 5, 3, 6, 2).

We also assume we have the inverse of the preference lists, i.e. mPw and
wPm, where mPw[i][j] is the ith man’s preference for the jth woman and
wPm[j][i] is the jth woman’s preference for the ith man. Again, considering the
third man in Figure 1, his inverse preference list will be mPw[3] = (1, 6, 4, 2, 3, 5),
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mPw[3][2] is his preference for the second woman, and that is 6, i.e. woman 2 is
in the sixth position of man 3’s preference list.2

We associate a constrained integer variable with each man and each woman,
such that x[i] is a constrained integer variable representing the ith man mi

in stable marriage instance I and has a domain dom(x[i]) initially of 1 to n.
Similarly, we have an array of constrained integer variables for women, such
that y[j] represents the jth woman wj in I. The values in the domain of a
variable correspond to preferences, such that if variable x[i] is assigned the value
j this corresponds to mi being married to his jth choice of woman, and this
will be woman mpl[i][j]. For example, if x[2] (in Figure 1) is set to 3 then this
corresponds to m2 marrying his third choice, w1 (and conversely y[1] would
then have to be assigned the value 5). Again referring to Figure 1(a) our sixth
man’s domain is dom(x[6]) = (1, 2, 3, 4, 5, 6), as is everyone else’s, and in 1(b)
dom(x[6]) = (1, 4, 5). We also assume that we have the following functions, each
being of O(1) complexity, that operate over constrained integer variables:

– getMin(v) delivers the smallest value in dom(v).
– getMax(v) delivers the largest value in dom(v).
– setMax(v, a) sets the maximum value in dom(v) to be min(getMax(v), a).
– removeV alue(v, a) removes the value a from dom(v).

We assume that constraints are processed by an arc-consistency algorithm
such as AC5 [19] or AC3 [15]. That is, the algorithm has a stack of constraints
that are awaiting revision and if a variable loses values then all the constraints
that the variable is involved in are added to the stack along with the method
that must be applied to those constraints, i.e. the stack contains methods and
their arguments. Furthermore, we also assume that a call to a method, with its
arguments, is only added to the stack if it is not already on the stack. We’ll refer
to this stack as the call stack.

4 A Binary Stable Marriage Constraint (SM2)

We now give a description of our binary stable marriage constraint, where arc-
consistency on such an encoding is equivalent to an application of the male-
oriented EGS algorithm. Note that the constraint as described (minimally) can-
not be used within a search process, however we will later show how this can
be done. Our constraint is binary in that it constrains a man and a woman,
such that stability is maintained and bigamy is disallowed. In a stable marriage
problem with n men and n women we will then require n2 of these constraints.
We now start by describing the attributes of the constraint, how to construct the
constraint, and then the three methods that act upon it. We will use a java-like
pseudo-code such that the . (dot) operator is an attribute selector, such that a.b
delivers the b attribute of a.

2 The inverse of the preference lists can be created when reading in the preference
lists such that mPw[i][mpl[i][j]] = j, and this does not affect the overall complexity
of constructing our model.
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4.1 The Attributes

A binary stable marriage constraint (SM2) is an object that acts between a man
and a woman, and has the following attributes:

– x and y are constrained integer variables representing the man and the
woman that are constrained.

– xPy is x’s preference for y. That is, if x corresponds to the ith man and y
corresponds to the jth woman then xPy = mPw[i][j].

– yPx is y’s preference for x. If y corresponds to the jth woman and x to the
ith man then yPx = wPm[j][i].

Therefore a constraint between the ith man and jth woman is constructed via
a call to the function SM2(x[i],mPw[i][j], y[j], wPm[j][i]). This will construct
a constraint object c such that c.x = x[i], c.y = y[j], c.xPy = mPw[i][j], and
c.yPx = wPm[j][i]. To construct our constraint encoding we would then make
a call to SM2, as shown, with i and j varying from 1 to n creating the n2

constraints.

4.2 The Propagation Methods

We now describe three methods that achieve male-oriented arc-consistency be-
tween a man x and woman y across a constraint c.

deltaMin(c). This method is called across the constraint c between x and y
when the lower bound of the domain of x increases. If the lower bound increases
such that the lowest value in the domain of x corresponds to that man’s prefer-
ence for woman y (line 2) then that woman need not consider any man she prefers
less than man x. Consequently we can remove from her domain all preferences
greater than her preference for man x (line 3).

1. deltaMin(c)

2. IF getMin(c.x) = c.xPy

3. THEN setMax(c.y,c.yPx)

deltaMax(c). We now describe the method that deals with the situation when
the upper bound of a woman c.y is reduced. If woman y′s least preferred choice
is better than her preference for man x (line 2) then man x is no longer in
y′s preference list. Therefore we remove woman y from man x′s preference list
(line 3).

1. deltaMax(c)

2. IF getMax(c.y) < c.yPx

3. THEN removeValue(c.x,c.xPy)

init(c). The init method is called when the constraint is created, and is simply
a call to deltaMin.

1. init(c)

2. deltaMin(c)
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5 Comparison to EGS

We now compare the behaviour of our binary constraint model (SM2) to the
male-oriented EGS algorithm. In our comparison we will describe steps in the
EGS algorithm in italics and the SM2 constraint encoding in normal font. For
ease of exposition we may refer to a constraint acting between man m and
woman w as Cx,y, where m and w are people in the SM instance, and x and y
are the corresponding variables in our constraint encoding. Sometimes we will
use m and w as a particular person (rather than mi and wj), and x and y as
particular variables (rather than x[i] and y[j]) for sake of brevity. Additionally,
we assume we have the function fiance(y[j]) and that it delivers the constrained
integer variable z = x[i] where i = wpl[j][max(dom(y[j])], i.e. the least preferred
partner of y[j].

– Initially the EGS algorithm sets all men to be free by adding them to the
free list (line 1). Equivalently, before propagation starts the set of calls
{init(Cx[i],y[j])|1 ≤ i, j ≤ n} is added to the empty call stack.

– EGS picks a man m from the free list and he then proposes to his first choice
woman w (lines 4 to 7). Initially, the constraints on the stack will be revised
using the deltaMin method, called directly via init. When executing the call
deltaMin(Cx,y), if y is not x′s current favourite (i.e. min(dom(x)) �= xPy)
then no action is taken. However, if y is x′s favourite the equivalent of a
proposal will be made (as described next).

– When m makes a proposal to w all values that appear in GS(w) after the
proposing man are removed (lines 8 to 10), i.e. they become engaged. With
the call deltaMin(Cx,y), when y is x′s favourite, the maximum of dom(y) is
set to y′s preference for x, therefore removing all less preferred men. Effec-
tively, x and y become engaged.

– To maintain monogamy EGS removes the newly engaged woman from the
GS-lists of all men that have just been removed from her preference list (line
11). From the action above, the maximum of dom(y) has been lowered,
consequently the set of calls {deltaMax(Cx[i],y)|1 ≤ i ≤ n} are added to the
call stack. For a call to deltaMax(Cx,y), if y′s preference for x is greater
than the maximum value in dom(y) then y′s preference for x has already
been removed from dom(y), consequently x′s preference for y is removed
from dom(x). Therefore, x and y can never be married.

– In EGS, if m makes a proposal to w, who is already engaged to p, then w′s
previous fiance p is assigned to be free and added to the free list (lines 5
and 6.) On initiating the call deltaMin(Cx,y), y′s fiance corresponds to the
maximum value in dom(y), because all less preferred men will have been
removed (as above). Therefore if y receives a proposal from x via the call
deltaMin(Cx,y), and y prefers x to her current fiance z = fiance(y), the
maximum of dom(y) will be set lower than her preference for z and therefore
the preference for z will be removed from dom(y). Consequently, the set of
calls {deltaMax(Cx[i],y)|1 ≤ i ≤ n} will be stacked, one of which will be
the call deltaMax(Cz,y), and the preference for y will then be removed from
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dom(z). And because y was z′s previous favourite the preference for y would
have been min(dom(z)). Therefore removing that value will increase z′s
domain minimum, and the set of calls {deltaMin(z, y[j])|1 ≤ j ≤ n} are
then added to the stack. And this effectively assigns man z to be free.

6 Proof That GS-Lists Are Produced by the SM2
Encoding

In order to prove that EGS and our SM2 constraint encoding are equivalent we
will first show that if EGS removes a value then so does SM2. Conversely, we
then prove that if SM2 removes a value then so does EGS. To help make these
proofs more readable we will first give some definitions of terms and phrases that
will be used.

– x[i] proposes to y[j] when the method deltaMin(Cx[i],y[j]) is called, where
y[j] is x[i]’s favourite potential partner, i.e. j = mpl[i][k] where
k = min(dom(x[i])).

– x[i] is said to be removed from the domain of y[j] when k is removed from
dom(y[j]) where k = wPm[j][i]. Conversely y[j] is said to be removed from
the domain of x[i] when l is removed from dom(x[i]) where l = mPw[i][j].

– x[i] is free when there is a call deltaMin(Cx[i],y[j]) on the call stack, where
y[j] is x[i]’s favourite potential partner. Therefore, to make x[i] free the set
of calls {deltaMin(Cx[i],y[j])|1 ≤ j ≤ n} is added to the call stack, although
only one of these calls will have an effect, and that is when y[j] is x[i]’s most
preferred partner.

– x[i] is engaged to y[j] if and only if x[i] is not free and j = mpl[i][k] and
i = wpl[j][l], where k = min(dom(x[i])) and l = max(dom(y[j]).

– x[i] is rejected by y[j] if k has been removed from dom(y[j]), where k =
wPm[j][i].

Proof that if EGS removes a person from a GS-list then SM2 will
remove the corresponding value from the corresponding variable. We
use a proof by cases, considering the situations where EGS can remove people
from GS-lists, and the situation where men can become free. There are 3 cases
to consider. First we prove that if a proposal in EGS causes people to be re-
moved from GS-lists, then the corresponding proposal in SM2 will result in the
same corresponding values being removed from the relevant constrained integer
variables. We then prove that if an event in EGS causes a man to be placed on
the free list then a similar event in SM2 will add calls to deltaMin to the call
stack. Finally we prove that because the order in which the proposals are made
does not effect the resulting domains, if EGS removes a person from a GS-list
then SM2 will have a corresponding effect.

Lemma 1. In EGS, when a man proposes to a woman and removes values from
her GS-list, the constraint encoding will remove the corresponding set of values
from the domain of the corresponding variable.
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Proof. In EGS a proposal is made from mi to wj when mi is free and wj is
the first entry in GS(mi), i.e. wj is mi’s favourite potential partner. All men in
GS(wj) that wj prefers less than mi are then removed from GS(wj), and for
each removed man p, wj is removed from GS(p) thus preventing bigamy.

The proposal is made in SM2 via a call to deltaMin(Cx[i],y[j]), where x[i]
and y[j] correspond to mi and wj , and the smallest value in dom(x[i]) is x[i]’s
preference for y[j] (see line 2 of deltaMin), i.e. y[j] is x[i]’s favourite potential
partner. All values greater than wPm[j][i] will be removed from dom(y[j]) (line
3 of deltaMin). Consequently all values in dom(y[j]) corresponding to men she
likes less than x[i] will be removed. Since the maximum value in dom(y[j]) has
decreased the set of calls {deltaMax(x[k], w[j])|1 ≤ k ≤ n} are added to the call
stack. When a call to deltaMax(x[k], y[j]) is executed and wPm[j][k] is greater
than the maximum value in dom(w[j]), mPw[k][j] will then be deleted from
dom(x[k]). �

Lemma 2. If circumstances occur that cause EGS to assign mi to be free then
the same circumstances will cause SM2 to assign x[i] to be free

Proof. The EGS algorithm adds men to the free list under two conditions. The
first is when the algorithm is initiated and all men are set to be free. The second
is when mi is rejected by a woman he was previously engaged to, wj .
When SM2 is initialised the set of calls {init(Cx[i],y[j])|1 ≤ i, j ≤ n} will be
added to the empty call stack. This will in turn make a call to each method in
the set {deltaMin(Cx[i],y[j])|1 ≤ i, j ≤ n}. This effectively assigns all men to be
free.

If man x[i] is rejected by woman y[j], then the value mPw[i][j] will be re-
moved from dom(x[i]). Because x[i] previously proposed to y[j], the minimum
value in dom(x[i]) must have been mPw[i][j]. Therefore when mPw[i][j] was
removed from dom(x[i]), the minimum value in dom(x[i]) must have increased
and thus caused the set of calls {deltaMin(Cx[i],y[k])|1 ≤ k ≤ n} to be put on
the call stack, thus effectively assigning x[i] to be free. �

Lemma 3. If EGS removes a person from a GS-list then SM2 will remove the
corresponding value from the relevant variable’s domain.

Proof. EGS only removes people from a GS-list as a direct result of a proposal
(the WHILE loop in Figure 2). From lemma 1 when EGS removes a person from
a GS-list SM2 removes the corresponding values from the domain of the relevant
variable. From lemma 2, when EGS causes a man to be free so too does SM2.
Consequently when EGS removes a person from a GS-list then SM2 will remove
the corresponding value from the relevant variable’s domain. �

Proof that if SM2 removes a value from a variable then EGS will
remove the corresponding person from the relevant GS-List. As above
this proof will be split into three parts. First, if in SM2 a value is removed from
a variable’s domain as a result of a proposal then the same proposal in EGS will
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cause the corresponding person to be removed from the relevant GS-List (i.e.
the converse of lemma 1). Second, if SM2 assigns a man to be free then EGS in
the same circumstances will also assign the same man to be free (the converse of
lemma 2). The third combines the previous two to say if SM2 removes a value
from the domain of a variable then EGS will remove the corresponding person
from the relevant GS-List (similar to lemma 3).

Lemma 4. If in SM2 a value is removed from a variable’s domain as a result of
a proposal then the same proposal in EGS will cause the corresponding person
to be removed from the relevant GS-List.

Proof. In SM2 only two types of domain reductions can occur. The maximum
value of dom(y[j]) can be set to wPm[j][i] in a call to deltaMin(Cx[i],y[j]) or
mPw[i][j] could be removed from dom(x[i]) in a call to deltaMax(Cx[i],y[j]).
Therefore all values removed by SM2 as the result of a proposal must be one of
these two types. Because deltaMin only alters the domains of y variables it can
only cause calls to deltaMax, and likewise deltaMax only removes values from
the domains of x variables so can only cause calls to deltaMin. And because
a call to deltaMin is classed as a proposal the only propagation effect from
deltaMax is further proposals.

When a proposal is made in SM2 by a call to deltaMin(Cx[i],y[j]) The maxi-
mum value of dom(y[j]) will be set to wPm[j][i], thus removing all men y[j] likes
less than x[i]. The resulting set of calls {deltaMax(Cx[k],y[j])|1 ≤ k ≤ n} will
then remove mPw[k][j] from dom(x[k]) for all x[k], where wPm[j][k] is greater
than the maximum value in dom(y[j]), thus removing y[j] from the domains of
all men she likes less than x[i].

In EGS when a proposal is made from man mi to woman wj all men in
GS(wj) corresponding to men she likes less than mi are removed. Then wj is
removed from GS(mk) for all mk where mk was removed from GS(wj). �

Lemma 5. If circumstances occur that cause SM2 to assign man x[i] to be free
then the same circumstances will cause EGS to assign the same man mi to be
free.

Proof. In SM2 there are only two events that will cause man x[i] to be placed
on the free list. The first is when the set of calls {init(Cx[i],y[j])|1 ≤ i, j ≤ n}
is placed on the stack. This will in turn call {deltaMin(Cx[i],y[j])|1 ≤ i, j ≤ n}.
This effectively assigns all men to be free.

The other is when the minimum value of dom(x[i]) is increased and thus
causes the set of calls {deltaMin(Cx[i],y[j])|1 ≤ j ≤ n} to be placed on the stack.
This can only be due to a call to deltaMax(Cx[i],y[j]) where mPw[i][j] is the min-
imum value in dom(x[i]). If mPw[i][j] was not the minimum value in dom(x[i])
when the call to deltaMax(Cx[i],y[j]) was made then removing mPw[i][j] from
dom(x[i]) won’t cause any further propagation. If mPw[i][j] is the minimum
value in dom(x[i]) then x[i] will either be engaged to y[j] or will have not yet
proposed and thus be already assigned free. Because y[j] can only be engaged to
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one man at a time, however many values are removed from dom(y[j]) as a result
of a call to deltaMin(Cx[k],y[j]) (a proposal from some other man x[k]) only one
man x[i] can be placed on the free list that was not already there, where x[i]
was previously engaged to y[j].

The EGS algorithm adds men to the free list under two conditions. The first
is when the algorithm is first started and all men are set to be free. The second
is man mi is placed on the free list if he is rejected by a woman wj , where mi

and wj were previously engaged. �

Lemma 6. If SM2 removes a value from a domain then EGS will also remove
the corresponding person from the relevant GS-List.

Proof. SM2 only removes values as a direct result of a proposal. From lemma 4 if
in SM2 a value is removed from a variable’s domain as a result of a proposal then
the same proposal in EGS will cause the corresponding person to be removed
from the relevant GS-List. From lemma 5 if circumstances occur that cause SM2
to assign x[i] to be free then the same circumstances will cause EGS to assign
mi to be free. Consequently, if SM2 removes a value from a domain then EGS
will remove the corresponding person from the relevant GS-List. �

Proof that GS-Lists are produced. This section simply pulls together the
previously presented lemmas to prove that the GS-Lists are produced.

Theorem. When a SM instance is made arc consistent using SM2, the resulting
domain values will be the equivalent of the GS-Lists produced by EGS from the
same SMP.

Proof. From lemma 6 if SM2 removes a value from a domain then EGS will also
remove the corresponding person from the relevant GS-List, therefore the values
removed by SM2 must be a subset of the values removed by EGS. From lemma 3
if EGS removes a person from a GS-list then SM2 will remove the corresponding
value from the relevant variable’s domain, therefore the values removed by EGS
must be a subset of the values removed by SM2. Therefore the set of values
removed by SM2 must be the equivalent of the set of people removed by EGS,
and thus the remaining values will be equivalent. Therefore SM2 produces the
equivalent of the GS-Lists. �

7 Complexity of the Model

In [10] section 1.2.3 it is shown in the worst case there is at most n(n − 1) + 1
proposals that can be made by the EGS algorithm, and that the complexity
is then O(n2). We argue that the complexity of our SM2 encoding is O(n3).
First we claim that the call to our methods deltaMin() and deltaMax() is of
complexity O(1).

When the lower bound of a man m′s domain is increased (or is initially given)
this will result in the n calls {deltaMin(m,woman[i])|1 ≤ i ≤ n}. Only one of
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these will result in the reduction of a woman w’s domain, and this single event
will result in the n additional calls {deltaMax(man[i], w|1 ≤ i ≤ n}. This then
amounts to O(n) steps. We assume that a lower bound can change at most n−1
times, and that this can happen to all n men. Therefore in total we have at most
O(n3) steps performed.

8 Enhancing the Model

The full GS-Lists are the union of the male and female Gale-Shapley lists re-
maining after executing male and female oriented versions of EGS. It has been
proven that the same lists can be produced by running the female orientated ver-
sion of EGS on the male-oriented GS-lists [10]. Because SM2 produces the same
results as EGS the full GS-Lists can be produced in the same way. But because
of the structure of this specialised constraint it is also possible to combine the
male and female orientated versions of SM2 into one constraint. This combined
gender free version of SM2 will then produce the full GS-List with only one run
of the arc-consistency algorithm.

The SM2 constraint as presented so far has only considered domain values
being removed by the constraint’s own methods. If we were to use the constraint
to find all possible stable matchings, unless arc consistency reduces all variable
domains to a singleton, it will be necessary to assign and remove values from
variable domains as part of a search process. Therefore, we need to add code
to SM2 to maintain consistency and stability in the event that domain values
are removed by methods other than those within SM2. It is important to note
that these external domain reductions could also be caused by side constraints
as well as a search process.

There are four types of domain reduction that external events could cause:
a variable is instantiated; a variable’s minimum domain value is increased; a
variable’s maximum domain value is reduced; one or more values are removed
from the interior of a variable’s domain. We now describe two new methods, inst
and removeV alue, and the enhancements required for deltaMin. We note that
deltaMax does not need to change, and describe the required enhancements for
incomplete preference lists.

inst(c). The method inst(c) is called when a x variable is instantiated.

1. inst(c)

2. IF getValue(c.x) = c.xPy

3. THEN setValue(c.y,c.yPx)

4. ELSE IF getValue(c.x) > xPy

5. THEN setMax(c.y,c.yPx - 1)

6. ELSE removeValue(c.y,c.yPx)

If x prefers to be matched to y (line 2) then y must be instantiated to her
preference for x to maintain consistency (line 3). However, if x is matched to
someone that he prefers less than y (line 4) then in order to maintain stability
y can only marry people that she prefers to x (otherwise x and y will elope).
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Consequently we delete all less preferred men, including x, from her domain (line
5). Finally, if x would not prefer to be matched to y than his current partner then
we simply deny y the opportunity of marrying x (line 6). Note that getV alue(v)
delivers the integer value that has been assigned to variable v, setV alue(v, a)
instantiates v to the integer value a, and these methods are of O(1) complexity.

removeValue(c,a). This method is called when the integer value a is removed
from dom(x), and this value is neither the largest nor smallest in dom(x).

1. removeValue(c,a)

2. IF a = c.xPy

3. THEN removeValue(c.y,c.yPx)

If the value a corresponds to x’s preference for y (line 2) then the corresponding
value must be removed from dom(y), and that is yPx (line 3), and this must be
done to prevent bigamy.

Enhancements to deltaMin(c). Up till now we have assumed that all values
removed from the head of dom(x) are as a result of x being rejected by some
y variables. We now drop this assumption. We add a new conditional (line 4
below) to address the situation where x would prefer to be matched to y than
to his current best preference, consequently y must only consider partners she
prefers to x (line 5), and this is done to avoid instability.

1. deltaMin(c)

2. IF getMin(c.x) = c.xPy

3. THEN setMax(c.y,c.yPx)

4. ELSE IF getMin(c.x) > c.xPy

5. THEN setMax(c.y,c.yPx - 1)

No enhancements to deltaMax(c). We now consider the situation where
some process, other than a proposal, removes values from the tail of a woman’s
preference list, i.e. when the maximum value of dom(y) changes. The deltaMax
method will be called, and the instance continues to be stable as y can still
marry partners. However, we need to prevent bigamy, by removing y from the
domains of the corresponding x variables removed from the tail of dom(y), and
this is just what deltaMax does. Therefore, no enhancement is required.

Incomplete Lists (SMI). The encoding can also deal with incomplete pref-
erence lists, i.e. instances of the stable marriage problems with incomplete lists
(SMI). For a SM instance of size n we introduce the value n+1. The value n+1
must appear in the preference lists mpl[i] and wpl[j] as a punctuation mark, such
that any people after n+ 1 are considered unacceptable. For example, if we had
an instance of size 3 and a preference list PL(mi) = (3,2) we would construct
mpl[i] = (3, 2, 4, 1) and this would result in the inverse mPw[i] = (4, 2, 1, 3). Con-
sequently x[i] would always prefer to be unmatched (assigned the value 4) than
to be married to y[1]. We now need to modify the init method such that it sets
the maximum value in dom(x[i]) to be mPw[i][n + 1]. These modifications will
only work in the full implementation (i.e. it requires the above enhancements).
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9 Computational Experience

We implemented our encodings using the JSolver toolkit [1], i.e. the Java version
of ILOG Solver, and also the Koalog [3] and JChoco [2] toolkits. All three imple-
mentations performed similarly, therefore we present only our JSolver results. We
implemented four constraint encodings for SM. The first two are those presented
in [7], namely the O(n4) forbidden tuples model (FT) and the optimal O(n2)
boolean encoding (Bool). In the FT model there are n2 binary table constraints
and 2.n variables with domains 1 to n. The constraints explicitly list the disal-
lowed tuples that correspond to unstable or bigamous assignments. In the Bool
encoding there are 2.n2 0/1 variables, where a variable corresponds to a specific
man or woman being matched with a given preference. Implication constraints
act between 0/1 variables to simulate the topping and tailing of preference lists.
The minimal encoding from section 4 (and referred to as SM-lite) produces the
intersection of the male and female GS-lists, but cannot be used in search. The
full encoding, referred to as SM2, is the full implementation that can be used
in search and allows us to enumerate all solutions in a failure-free manner as
in the [7] encodings. Our experiments were run on a Pentium 4 2.8Ghz proces-
sor with 512 Mbytes of random access memory, running Microsoft Windows XP
Professional and Java2 SDK 1.4.2.6 with an increased heap size of 512 Mbytes.

Our first experiment measures the time taken to generate a model of a given
SM instance and make that model arc-consistent, i.e. to produce the GS-lists.
Figure 3 shows the average time taken to produce the GS-lists for ten randomly
generated instances of size 45 up to 1000. Time is measured in seconds, and
an entry − means that an out of memory error occurred. We can see that the
SM2-lite and SM2 versions perform much the same, and dominate the other
models.

This second experiment measures the time taken to generate a model and find
all possible stable matchings. Figure 4 shows the average time taken to find all
solutions on the same randomly generated instances used in the first experiment.
Again it can be seen that the SM2 model dominates the other models.

Figures 3 and 4 raise the following question, if the Bool encoding is optimal
then why is it dominated by the SM2 encoding? The main reason for this is
that there is no significant difference in the space required to represent variables
with significant differences in domain size, because domains are represented as

size n

model 45 100 200 300 400 500 600 700 800 900 1000
FT 8.94 - - - - - - - - - -
Bool 0.25 1.2 4.4 - - - - - - - -

SM2lite 0.16 0.22 0.45 0.89 1.72 2.79 3.96 5.62 7.48 9.46 11.94
SM2 0.16 0.23 0.5 0.94 1.82 2.95 4.21 5.95 8.02 9.82 12.47

Fig. 3. Average computation times in seconds to produce the GS-lists, from 10 ran-
domly generated stable marriage problems each of size n
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size n

model 45 100 200 300 400 500 600 700 800 900 1000
FT 9.32 - - - - - - - - - -
Bool 0.36 2.02 6.73 - - - - - - - -
SM2 0.21 0.47 1.97 5.43 10.13 19.22 27.27 43.04 54.98 77.89 124.68

Fig. 4. Average computation times in seconds to find all solutions to 10 randomly
generated stable marriage problems each of size n

FT bool SM2
time O(n4) O(n2) O(n3)

constraints O(n4) O(n2) O(n2)
variables O(n) O(n2) O(n)

Fig. 5. A summary of the complexities of the three constraint models

size n

model 100 200 300 400 500 600 700 800 900 1000
Bool 1.9 6.95 - - - - - - - -
SM2 0.4 1.2 2.87 5 9.15 14.49 20.86 28.65 38.25 52.64

Fig. 6. Average computation times in seconds to find a sex equal solution to 100
randomly generated stable marriage problems each of size n

intervals when values are consecutive. Considering only the variables, the Bool
encoding uses O(n2) space whereas the SM2 model uses O(n) space. For example,
with n = 1300 the Bool encoding runs out of memory just by creating the 2.13002

variables whereas the SM2 model takes less than 0.25 seconds to generate the
required 2600 variables each with a domain of 1 to 1300. As can be seen in Figure
5 theoretically the space complexity of the constraints used by SM2 and Bool are
the same. In practise this is not the case as SM2 requires exactly n2 constraints
to solve a problem of size n whereas Bool requires 2n+6n2 constraints. Therefore
the Bool encoding requires more variables and more constraints, resulting in a
prohibitively large model.

We now investigate the unweighted sex equal optimisation problem. In the
(NP-Hard) sex equal stable marriage problem (SESMP) [10, 13] both men and
women are to be equally well matched. In an unweighted SESMP scores are the
same as preferences, therefore we find the matching that minimises the abso-
lute difference between the sum of the men’s preferences and the sum of the
women’s preferences. In the SM2 model the values in the domains of variables
are preferences, consequently it is straight forward to model the SESMP. All that
is required is to add a search goal to minimise the absolute difference between
the sum of all x variables and the sum of all y variables. However it is difficult
to model the same problem using the Bool constraints. This is because we now
have to introduce 2.n additional variables with domains 1 to n and an additional
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O(n2) channelling constraints to set those variables. Figure 6 gives the average
run time to find the unweighted sex equal matchings to 100 random problems
using the SM2 and Bool models.

As can be seen, again the SM2 encoding solves problems faster and can extend
to larger instances. The Bool encoding fails to model problems of size 300 and
above, whereas the SM2 encoding can solve problems of size 1000 in less than a
minute.

10 Conclusion

We have presented a specialised binary constraint for the stable marriage prob-
lem. We have demonstrated that the constraint can be used when stable mar-
riage is just a part of a larger, richer problem. Our experience has shown that
the constraint is simple to implement in a constraint programming toolkit, such
as JSolver, JChoco, and Koalog. The complexity of the constraint is O(n3),
and does not compare well to the theoretically optimal O(n2) complexity of the
boolean encoding in [7]. However, our constraint is more practical than those in
[7], typically being able to solve larger problems faster. For example, we have
been able to enumerate all solutions to instance of size 1000 in minutes, whereas
in [8] the largest problems investigated were of size 60. It is obvious that our
model wastes considerable effort. The arc-consistency algorithm typically adds
n − 1 redundant calls to the revision stack whenever a change takes place, and
it is trivial to detect those redundancies. This suggests that it would be easy to
design a space efficient n-ary SM constraint that is of complexity O(n2).
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1 Department of Computer Science,
Brown University, Box 1910, Providence, RI 02912, USA

pvh@cs.brown.edu
2 Department of Information Technology,

Uppsala University, Box 337, SE - 751 05 Uppsala, Sweden
{pierref, justin, agren}@it.uu.se

Abstract. This paper reconsiders the problems of discovering symmetries in
constraint satisfaction problems (CSPs). It proposes a compositional approach
which derives symmetries of the applications from primitive constraints. The key
insight is the recognition of the special role of global constraints in symmetry
detection. Once the symmetries of global constraints are available, it often be-
comes much easier to derive symmetries compositionally and efficiently. The pa-
per demonstrates the potential of this approach by studying several classes of
value and variable symmetries and applying the resulting techniques to two non-
trivial applications. The paper also discusses the potential of reformulations and
high-level modeling abstractions to strengthen symmetry discovery.

1 Introduction

Many applications in constraint satisfaction exhibit natural symmetries which may sig-
nificantly increase the difficulty of solving. It is thus not surprising that increased atten-
tion has been devoted to symmetry breaking in the last decade.

Recent research has mostly focused on breaking symmetries, including general
symmetry-breaking schemes (e.g., SBDS [1, 14] and SBDD [8, 10]), their efficient im-
plementations (e.g., [21]), and their specialisations for specific applications (e.g., [3,
20]). There has also been a tendency to abstract some of the techniques from particu-
lar applications to classes of CSPs [25] or models [9]. However, this line of research
assumes that symmetries are given and ignores the tedious and error-prone task of dis-
covering them.

The detection of symmetries is a research avenue pioneered by Freuder [13] and
subsequently investigated by many others. Freuder introduced various forms of value
interchangeability and his goal was to discover and remove symmetries. Unfortunately,
it is not tractable to discover many, apparently simple, classes of symmetries in CSPs
arising in practical applications. However, see [5] for results on neighbourhood inter-
changeability, which is a much weaker form of symmetry than considered in this paper.

This research reconsiders the problem of discovering symmetries from a funda-
mentally different angle. The key insight is to recognise [24] that global (optimisation)
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constraints [4, 22, 11] offer significant benefits for deriving symmetries composition-
ally and efficiently. Global constraints are a fundamental aspect of constraint program-
ming: They capture common combinatorial substructures of practical applications and
exploit the substructure semantics to obtain more effective filtering algorithms, linear
relaxations, and cooperation schemes between solvers. The main contribution of this
research is to show that, once the symmetries of global constraints are specified, it be-
comes much simpler to derive the symmetries of an application. This research can also
be seen as shifting the burden of discovering symmetries from users to solver designers
who are experts in the underlying combinatorics.

The purpose of this paper is to demonstrate the potential of this research direction.
The paper makes the following technical contributions:

1. It considers various classes of symmetries and shows how to derive symmetries
compositionally and efficiently, starting from global constraints. They include value
and variable symmetries, and symmetries in matrix models.

2. It shows how to apply these results to derive the symmetries of two non-trivial
applications: scene allocation and progressive party.

3. It shows how various problem reformulations can improve the accuracy of the
derivations and suggests a variety of modeling practices to improve symmetry de-
tection.

These technical results should be viewed as a first (small) step towards a comprehensive
automated tool for discovering symmetries. What is particularly interesting however is
their ability to handle non-trivial applications already, as well as the various research
directions they suggest for modeling languages and reformulation tools.

The rest of the paper is organised as follows. After some preliminaries, the paper
shows how constraint and function symmetries can be composed for various forms
of interchangeability. The techniques are then illustrated on two applications: scene
allocation and the progressive party problem. The next section discusses how problem
reformulations improve symmetry detection. Finally, symmetries in matrix models are
presented and illustrated.

2 Preliminaries

This section defines the main concepts used in this paper. The definitions are borrowed
from [25], which uses them for different purposes. The basic idea is to abstract the
set of constraints by a Boolean function which holds if all the constraints are satisfied.
Solutions are also represented as functions (assignments), namely from variables to the
set of values.

Definition 1. A CSP is a triple 〈V,D,C〉, where V denotes the set of variables, D
denotes the set of possible values for these variables, and C : (V → D) → Bool is a
constraint that specifies which assignments of values to the variables are solutions. A
solution to a CSP P = 〈V,D,C〉 is a function σ : V → D such that C(σ) = true. The
set of solutions to a CSP P is denoted by Sol(P).
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Many practical problems involve the optimisation of objective functions and much
research in recent years has focused on applying filtering algorithms to prune the re-
sulting “optimisation” constraints (e.g., [23, 11]). In general, in existing languages and
systems, these optimisation constraints are expressed using auxiliary variables. How-
ever, it is more elegant from a modeling standpoint, and more effective when deriving
symmetries, to capture these functions directly.

Definition 2. A global function over variables V and values D is a function f : (V →
D) → N .

A constraint optimisation problem (COP) consists of minimising an objective func-
tion subject to a set of constraints.

Definition 3. A COP is a quadruple O = 〈V,D,C, f〉, where P = 〈V,D,C〉 is a CSP
and f is a global function over V and D. The optimal value f∗ of O is the minimal
value of f taken by any solution to P , i.e.,

f∗ = min
σ∈Sol(P)

f(σ).

An optimal solution of O is a solution σ of P whose objective value is optimal, i.e.,
f(σ) = f∗. We use Sol(O) to denote Sol(P) in the following.

The key idea behind this paper is that symmetries can be systematically derived
through composition of CSPs (or COPs). The next definition captures compositions of
CSPs formally.

Definition 4. Let P1 = 〈V,D,C1〉 and P2 = 〈V,D,C2〉 be two CSPs. The compo-
sition of P1 and P2, denoted by P1 ∧ P2, is the CSP P = 〈V,D,C1 ∧ C2〉, whose
solutions satisfy Sol(P) = Sol(P1) ∩ Sol(P2).

3 Value and Variable Interchangeability

There are many applications in resource allocation and scheduling where the exact val-
ues taken by the variables are not important. What is significant is which variables take
the same values or, in other terms, how the variables are clustered. Other applications
exhibit weaker notions of value interchangeability, such as the concept of piecewise
value interchangeability where only subsets of values are interchangeable. As shown in
[25], these symmetries can be broken efficiently during search and it is thus particularly
important to discover them automatically.

Definition 5. Let P = 〈V,D,C〉 be a CSP. P is value-interchangeable if, for each
solution σ ∈ Sol(P) and each bijection b : D → D, the function b ◦ σ ∈ Sol(P).

Example 1. Let V ⊇ {v1, v2, v3}. The CSP P = 〈V,D, allDifferent(v1, v2, v3)〉 is
value-interchangeable.

We now define piecewise value-interchangeability.
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Definition 6. Let D = {D1, . . . , Dn} be a partition of D. A bijection b : D → D is
piecewise interchangeable over D if ∀v ∈ Di : b(v) ∈ Di (1 ≤ i ≤ n).

Definition 7. Let P = 〈V,D,C〉 be a CSP and D be a partition of D. P is piecewise-
value-interchangeable (PVI) over D if, for each solution σ ∈ Sol(P) and each piece-
wise-interchangeable bijection b over D, b ◦ σ ∈ Sol(P).

Note that, if P = 〈V,D,C〉 is value-interchangeable, then it is piecewise-value-
interchangeable over {D}. As a consequence, it is easy to compose these two forms of
symmetries.

Example 2. Let V ⊇ {v1, v2, v3}, D ' 1, and consider a constraint atmost(o, d,
〈v1, . . . , vk〉) which holds for an assignment σ if there are at most o occurrences of d in
〈σ(v1), . . . , σ(vk)〉. The CSP 〈V,D, atmost(2, 1, 〈v1, v2, v3〉)〉 is PVI over
{{1}, D \ {1}}.

Value-interchangeability also applies to global functions, in which case the value of
a function must not change under various forms of bijection.

Definition 8. A global function f : (V → D) → N is value-interchangeable if, for
each assignment σ : V → D and each bijection b : D → D, f(σ) = f(b ◦ σ).

Example 3. LetV ⊇ {v1, . . . , v5} and consider global functions of the form nbDistinct
(v1, . . . , vk) which, given an assignment σ, return the number of distinct values in
〈σ(v1), . . . , σ(vk)〉.Theglobal functionnbDistinct(v1, . . . , v5) isvalue-interchangeable.

Definition 9. Let D be a partition of D. A global function f : (V → D) → N
is piecewise-value-interchangeable over D if, for each assignment σ : V → D and
piecewise-interchangeable bijection b over D, f(σ) = f(b ◦ σ).

These concepts can be generalised to COPs.

Definition 10. Let O = 〈V,D,C, f〉 be a COP. O is value-interchangeable if, for each
solution σ ∈ Sol(O) and each bijection b : D → D, b ◦ σ ∈ Sol(O) and f(σ) =
f(b ◦ σ).

Definition 11. Let O = 〈V,D,C, f〉 be a COP and D be a partition of D. O is
piecewise-value-interchangeable over D if, for each solution σ ∈ Sol(O) and each
piecewise-interchangeable bijection b over D, b ◦ σ ∈ Sol(O) and f(σ) = f(b ◦ σ).

In the following, we often assume fixed sets V and D in examples for simplicity
and talk directly about the composition and interchangeability of constraints, since they
are essentially equivalent to their CSP counterparts.

It is also important to emphasise that all results presented in the next sections have
direct counterparts for variable interchangeability. This is due to the fact that the def-
inition of variable interchangeability is essentially similar to value interchangeability.
Consider the simplest definition of variable interchangeability.

Definition 12. Let P = 〈V,D,C〉 be a CSP. P is variable-interchangeable if, for each
solution σ ∈ Sol(P) and each bijection b : V → V , the function σ ◦ b ∈ Sol(P).

The difference is the composition order of σ and the bijection (which also has a
different signature).
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4 Composition of Constraint Symmetries

Value symmetries arise in many applications and can be broken efficiently during
search. Unfortunately, there is no general efficient algorithm for computing interchange-
able values in CSPs [13]. The key insight is that symmetries can be compositionally in-
ferred from global constraints. More precisely, given two constraints (or CSPs) C1 and
C2, the symmetries of their composition C1 ∧ C2 can be inferred automatically from
the symmetries of C1 and C2. The following result is immediate.

Proposition 1. Let P1 =〈V,D,C1〉 and P2 =〈V,D,C2〉 be two value-interchangeable
CSPs. Then, their composition P1 ∧ P2 is value-interchangeable.

The following example illustrates the result.

Example 4. Let V ⊇ {v1, . . . , v6} and let C1 and C2 be the constraints allDifferent
(v1, v2, v3) and allDifferent(v4, v5, v6). Then C1 ∧ C2 is value-interchangeable.

Note that constraints in practice only “constrain” a subset of the variables, although
they are formally defined over all variables. The next result specifies how to compose
piecewise-value-interchangeable CSPs.

Proposition 2. Let P1 = 〈V,D,C1〉 and P2 = 〈V,D,C2〉 be two CSPs. Assume that
Pi is piecewise-value-interchangeable over partition Di of D (1 ≤ i ≤ 2). Then the
composition P1 ∧ P2 is piecewise-value-interchangeable over

D = {D1 ∩D2 | D1 ∈ D1 & D2 ∈ D2 & D1 ∩D2 �= ∅}.

Proof. First observe thatD is a partition of D. Now let b be a piecewise-interchangeable
bijection over D. We show that b is piecewise-interchangeable over D1. Indeed, con-
sider a set D1 ∈ D1 and a value d ∈ D1. By definition of D, there exists D2 ∈ D2

such that I = D1 ∩ D2 and d ∈ I . Since b is piecewise-interchangeable over D,
b(d) ∈ I ⊆ D1 and b is piecewise-interchangeable over D1. Similarly, we can show
that b is piecewise-interchangeable over D2. As a consequence, if σ ∈ Sol(P1 ∧ P2),
then b ◦ σ ∈ Sol(P1) and b ◦ σ ∈ Sol(P2). Hence, b ◦ σ ∈ Sol(P1 ∧ P2).

Example 5. Let D = {1, . . . , 10} and let C1 and C2 be the constraints atmost(1, 1,
〈v1, . . . , v5〉) and atmost(2, 2, 〈v1, . . . , v5〉) which are PVI overD1 ={{1}, {2, . . . , 10}}
and D2 = {{2}, {1, 3, . . . , 10}} respectively. The composition C1 ∧ C2 is PVI over

D = {{1}, {2}, {3, . . . , 10}}.

It is important to emphasise that the derivation of symmetries using propositions 1
and 2 is polynomial in |D|. As a consequence, the compositional symmetry analysis of
a CSP is polynomial in |D| and the number of constraints. Of course, it is not guaran-
teed to be precise, i.e., it may not report all symmetries in the application. However,
whenever global constraints are used to model an application, the symmetries appear
naturally and the loss of precision is often avoided. Furthermore, we discuss this later
in the paper how reformulations may help in addressing this issue.
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5 Composition of Function Symmetries

This section shows how to compose function symmetries from global functions. It also
shows how to infer symmetries in COPs and how function symmetries can be used to
infer symmetries on numerical constraints.

Proposition 3. Let f1 and f2 be two global functions of signature (V → D) → N . If
f1 and f2 are value-interchangeable, then so are f1 � f2, where � ∈ {+,−,×}.

Of course, the result can be generalised to other operators.

Example 6. Let V ⊇ {v1, . . . , v6} and let f1 and f2 be the global functions nbDistinct
(v1, v2, v3) and nbDistinct(v4, v5, v6). Then, the global function 3f1 + 4f2 is value-
interchangeable.

Proposition 4. Let f1 : (V → D) → N and f2 : (V → D) → N be two global func-
tions. If f1 and f2 are piecewise-value-interchangeable over D1 and D2 respectively,
then f1 � f2, where � ∈ {+,−,×}, is piecewise-value-interchangeable over

D = {D1 ∩D2 | D1 ∈ D1 & D2 ∈ D2 & D1 ∩D2 �= ∅}.

We now show how to derive symmetries for COPs by considering both the constraint
and the objective function.

Proposition 5. Let O = 〈V,D,C, f〉 be a COP and P = 〈V,D,C〉. If P and f
are value-interchangeable, then O is value-interchangeable. If P is piecewise-value-
interchangeable over partition D1 of D and f is piecewise-value-interchangeable over
partition D2 of D, then O is piecewise-value-interchangeable over

D = {D1 ∩D2 | D1 ∈ D1 & D2 ∈ D2 & D1 ∩D2 �= ∅}.

In many applications, constraints are built from global functions and arithmetic op-
erators. The next proposition shows how to derive symmetries for such constraints.

Proposition 6. Let f : (V → D) → N be a global function and D be a partition
of D. If f is piecewise-value-interchangeable over D, then the CSP 〈V,D, f ≈ 0〉 is
piecewise-value-interchangeable over D as well, where ≈ ∈ {>,≥,=, �=,≤, <}.

6 Scene Allocation

We now illustrate how these results can be used to detect value symmetries on the scene-
allocation problem, which consists of producing a movie at minimal cost by deciding
when to shoot scenes. Each scene involves a number of actors and at most 5 scenes a
day can be filmed. All actors of a scene must be present on the day the scene is shot. The
actors have fees representing the amount to be paid per day they spend in the studio.
The goal of the application is to minimise the production costs and an optimal solu-
tion is an assignment of scenes to days which minimises the production costs. On some
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reasonably small instances, a state-of-the-art MIP solver took about 2 minutes and a CP
solver took about 8 minutes for solving the problem. By removing value symmetries
during search, the execution time of the CP solver fell to below 10 seconds [26].

It is also interesting to quote [25] here: “It should be apparent that the exact days
assigned to the scenes have no importance in this application and are fully interchange-
able. What is important is how the scenes are clustered together. Our approach does not
aim at discovering this fact; rather it focuses on how to exploit it to eliminate the sym-
metries it induces.” The main contribution of this paper is entirely orthogonal: it shows
how the value interchangeability of the scene allocation problem can be automatically
derived from the properties of the constraints.

Consider Figure 1 which depicts an OPL-like model for scene allocation, where
the instance data is given in a separate file as typical. The first three lines specify
the various ranges for scenes, days, and actors. The next two lines specify the fee of
each actor and the set of scenes S[a] which actor a plays in. The next line specifies
the variables and shoot[s] represents the day assigned to scene s. The constraint
atmost(5,Days,shoot) is a global cardinality constraint which specifies that at
most 5 scenes can be shot every day. The objective function sums the fees of each actor,
each actor being paid her fee for each different day in which one of her scenes is shot.
Indeed, the expression all(s in S[a]) shoot[s] collects the variables associ-
ated with the scenes of actor a in an array of variables, which is used in the function
nbDistinct. Observe now that constraint atmost(5,Days,shoot) is value-
interchangeable. The global function nbDistinct is also value-interchangeable (see
Example 3). By Proposition 3, the objective function is value-interchangeable. Hence,
by Proposition 5, the scene-allocation model in Figure 1 is value-interchangeable. In
summary, as mentioned earlier, once the value symmetries of the global objects are
known, it is possible to derive value symmetries of the entire model using the results of
this paper.

It is also useful to stress the benefits of global constraints. The value symmetries
derived on the model above are dramatically more complicated to detect on the MIP
model. Indeed, the values are not even explicit in that model, which encodes the scene
assignment in terms of 0/1 variables.

range Scenes = ...;
range Days = ...;
range Actors = ...;
int fee[Actors] = ...;
{Scenes} S[Actors] = ...;
var Days shoot[Scenes];

minimise
sum(a in Actors)

fee[a]*nbDistinct(all(s in S[a]) shoot[s])
subject to
atmost(5,Days,shoot);

Fig. 1. The Scene Allocation Model
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7 Progressive Party Problem

The progressive party problem is a traditional benchmark which is often used to com-
pare constraint programming, mathematical programming, and local search. Figure 2
depicts an OPL-like model for this problem, which is a direct translation of the Comet
model in [18]. The first three lines specify the ranges, i.e., the boats, the parties, and
the periods. The next two lines specify the size of the parties and the capacities of the
boats. The variables are declared next and assign a boat b[g,p] to party g at period
p. The first set of constraints specifies that a party never visits the same boat twice.
The second set of constraints are weighted cardinality constraints which specify that
the sizes of the parties visiting a boat during a period cannot exceed the boat capacity.
The final set of constraints are again cardinality constraints specifying that two parties
meet at most once: a constraint meetAtmost(〈v1, . . . , vp〉, 〈w1, . . . , wp〉, k) holds for
an assignment σ if #{i ∈ 1..p | σ(vi) = σ(wi)} ≤ k. Observe that the allDiffer-
ent constraints are value-interchangeable. The meetAtmost constraints are also value-
interchangeable. The interesting part in this model are the weightedAtmost constraints.
A constraint

weightedAtmost(〈s1, . . . , sn〉, 〈v1, . . . , vn〉, 〈c1, . . . , cm〉)

holds for an assignment σ if ∀k ∈ 1..m :
∑

i∈Sk
si ≤ ck where Sk ={i ∈ 1..n | σ(vi)=

k}. This constraint is piecewise-value-interchangeable overD = {D1, . . . , Dm}, where
Dk = {i ∈ 1..m | ci = ck}. As a consequence, our compositional derivation auto-
matically infers that boats with the same capacity are piecewise-value-interchangeable.
Note that a similar derivation for the variables infers that parties with the same sizes
are piecewise-variable-interchangeable.

range Boats = ...;
range Parties = ...;
range Periods = ...;
int size[Parties] = ...;
int cap[Boats] = ...;
var Boats b[Parties,Periods];
solve {
forall(g in Parties)

allDifferent(all(p in Periods) b[g,p]);
forall(p in Periods)

weightedAtmost(size,
all(g in Parties) b[g,p],
cap);

forall(i in Parties, j in Parties: j>i)
meetAtmost(all(p in Periods) b[i,p],

all(p in Periods) b[j,p],
1);

};
Fig. 2. The Progressive Party Model
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8 Reformulations

The symmetry derivations presented earlier can often be strengthened by model refor-
mulations which can be seen as adaptations to constraint satisfaction of “presolve” tech-
niques used in mixed-integer programming [16]. We present two first reformulations,
aggregation and projection.

8.1 Aggregation

The symmetry derivations presented earlier may be suboptimal as the following exam-
ple indicates.

Example 7. Let V ⊇ {v1, . . . , v3} and D ⊇ {1, 2}. Constraint C1 = atmost(2, 1,
〈v1, v2, v3〉) is PVI overD = {{1}, D\{1}}. Constraint C2 =atmost(2, 2, 〈v1, v2, v3〉)
is PVI over D = {{2}, D \ {2}}. By Proposition 2, C1 ∧ C2 is PVI over D =
{{1}, {2}, D \ {1, 2}}. However, C1 ∧ C2 is also PVI over D = {{1, 2}, D \ {1, 2}},
which is stronger.

This precision loss can be remedied by modeling the problem more globally using,
say, a global cardinality constraint [23]. Again, the observation is that global constraints
are fundamental tools to derive stronger symmetries.

Example 8. Consider a global cardinality constraint atmost(〈o1, . . . , ok〉, 〈d1, . . . , dk〉,
〈v1, . . . , vn〉) which holds for an assignment σ if there exist at most oi occurrences of di

in 〈σ(v1), . . . , σ(vn)〉 (1 ≤ i ≤ k). It is PVI over {D1, . . . , Dk, D \ (D1 ∪ · · · ∪Dk)}
where Di = {dj | oj = oi & 1 ≤ j ≤ k} (1 ≤ i ≤ k). For instance,
atmost(〈1, 2, 1〉, 〈1, 2, 3〉, 〈v1, . . . , vn〉) is PVI over {{1, 3}, {2}, D \ {1, 2, 3}} since
D1 = D3 = {1, 3}.

Of course, a more global modeling of the problem will likely also lead to better prop-
agation. As a consequence, automated tools for symmetry detection (and modeling in
general) should provide aggregation operators exploiting the semantics of constraints.
They can be specified as follows.

Definition 13. Let C1 and C2 be two constraints of signature C = (V → D) → Bool.
A compositional aggregator is a binary operator ⊗ of signature (C × C)→ C such that
C1 ⊗ C2 is a single global constraint equivalent to C1 ∧ C2.

Example 9. Let V ⊇ {v1, v2, v3}, D ⊇ {1, 2} and constraints C1 = atmost(2, 1,
〈v1, v2, v3〉) and C2 = atmost(2, 2, 〈v1, v2, v3〉). A compositional aggregator of C1

and C2 may return the constraint atmost(〈2, 2〉, 〈1, 2〉, 〈v1, . . . , v3〉).

8.2 Projection

Projections, the second class of reformulations considered in this paper, are important
in many applications. On the one hand, they are often useful when a general model
(e.g., a round-robin sport-scheduling model) is specialised to a specific problem (e.g.,
the ACC basketball schedule for the 2004 season) by introducing, among others, some
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fixed decisions. On the other hand, they are useful in deriving dynamic symmetries, i.e.,
symmetries not present in the original problem but arising after a number of variable
assignments. The following example illustrates the significance of projections when
deriving symmetries.

Example 10. Let V = {v1, . . . , v5}, let C1 be the constraint atmost(〈3, 2〉, 〈1, 2〉,
〈v1, . . . , v5〉) and C2 be v1 = 1. The CSP 〈V,D,C1 ∧ C2〉 is derived to be PVI over
D = {{1}, {2}, D \ {1, 2}} since C1 is PVI over {{1}, {2}, D \ {1, 2}} and C2 is PVI
over {{1}, D \ {1}}, which is as strong as possible. However, consider V ′ = V \ {v1}
and the constraint C defined as atmost(〈2, 2〉, 〈1, 2〉, 〈v2, . . . , v5〉). The CSP 〈V ′, D,C〉
is PVI over D = {{1, 2}, D \ {1, 2}}.

This example indicates that more symmetries may be available on subproblems
when some variables are projected out. Moreover, since the assignment of values to
variables is the fundamental operation of many search procedures, projections are an
important tool to derive symmetries dynamically. As a consequence, symmetry detection
tools should ideally include projection operators exploiting the semantics of primitive
constraints.

Definition 14. Let C be a constraint of signature C = (V → D) → Bool, and V ′ =
V \ {v}. A projection operator for C wrt v = d is a function ↑v=d of signature C → C′,
where C′ = (V ′ → D) → Bool, satisfying

Sol(〈V,D,C ∧ v = d〉) = Sol(〈V,D,C ↑v=d ∧v = d〉.

The key intuition here is that constraint C ↑v=d is only expressed in terms of vari-
ables in V ′ and does not add or remove any solution to the original problem.

9 Symmetries in Matrix Models

This section considers the derivation of variable symmetries in matrix models, which
have been found useful in a variety of applications involving symmetries. In particular,
we show how the techniques presented earlier apply to the detection of column symme-
tries in matrix models. (The derivation of row symmetries is similar.) Figure 3 presents
a specification of the progressive party problem using matrix modeling. It is essentially
similar to the model presented earlier but uses matrices and rows of matrices directly in
constraints. We now show how to systematically derive column-interchangeability on
this model.

Formally, a matrix M of variables can be modelled as a bijection X × Y → V ,
where X are the row indices of M , Y its column indices, and V its set of variables. For
clarity, we use traditional notations: M [i, j] denotes the variable in row i and in column
j, M [i] row i, and M [∗, j] column j. We assume that all matrices are defined over row
indices X and column indices Y .

Definition 15. A matrix-CSP (MCSP) is a triple 〈M,D,C〉, where M is a matrix of
variables, D denotes the set of values for these variables, and C : (M → D) → Bool
specifies which assignments of values to the variables are solutions. A solution to an
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range Boats = ...;
range Parties = ...;
range Periods = ...;
int size[Parties] = ...;
int cap[Boats] = ...;
var Boats b[Parties,Periods];
solve {
forall(g in Parties)

allDifferent(b[g]);
weightedAtmost(size,b,cap);
forall(i in Parties, j in Parties: j>i)

meetAtmost(b[i],b[j],1);
};

Fig. 3. The Progressive Party Matrix Model

MCSP P = 〈M,D,C〉 is a function σ : M → D such that C(σ) = true. The set of
solutions to P is denoted by Sol(P).

The next definitions specify column interchangeability, a “global” form of variable
interchangeability.

Definition 16. A column permutation for a matrix M is a function ρ : M → M such
that

M [i, j] = ρ(M)[i, b(j)] (i ∈ X & j ∈ Y )

for some bijection b : Y → Y .

Definition 17. An MCSP P = 〈M,D,C〉 is column-interchangeable if, for each so-
lution σ ∈ Sol(P) and each column permutation ρ : M → M , the function σ ◦ ρ ∈
Sol(P).

Proposition 7. Let P1 = 〈M,D,C1〉 and P2 = 〈M,D,C2〉 be two column-
interchangeable MCSPs. Then, their composition P1 ∧ P2 is column-interchangeable.

Example 11. Consider the matrix model in Figure 3. The constraints allDifferent and
meetAtmost are column-interchangeable. Indeed, the variable (resp. pair) order is not
significant in allDifferent (resp. meetAtmost) and both are applied on rows of the matrix.
The global weightedAtmost constraint is column-interchangeable, since it applies the
same constraint to all columns. It is an aggregation of

forall(p in Periods)
weightedAtmost(size,b[*,p],cap);

which cannot be shown column-interchangeable compositionally.

We conclude this section by generalising the results to piecewise interchangeability.
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Definition 18. Let Y be a partition over Y . A piecewise column permutation over Y
for a matrix M is a function ρ : M →M such that

M [i, j] = ρ(M)[i, b(j)] (i ∈ X & j ∈ Y )

for some piecewise-interchangeable bijection b over Y .

Definition 19. Let Y be a partition over Y . An MCSP P = 〈M,D,C〉 is piecewise-
column-interchangeable over Y if, for each solution σ ∈ Sol(P) and each piecewise
column permutation ρ over Y , the function σ ◦ ρ ∈ Sol(P).

Proposition 8. Let P1 = 〈M,D,C1〉 and P2 = 〈M,D,C2〉 be two piecewise-column-
interchangeable MCSPs over Y1 and Y2 respectively. Then, their composition P1 ∧P2

is piecewise-column-interchangeable over

Y = {Y1 ∩ Y2 | Y1 ∈ Y1 & Y2 ∈ Y2 & Y1 ∩ Y2 �= ∅}.

These results naturally generalise to matrix-COPS.

10 Conclusion

This paper reconsidered the problem of discovering symmetries in constraint satisfac-
tion problems by exploiting one of the fundamental aspects of constraint program-
ming: the ability of global constraints to capture combinatorial substructures. The paper
showed that, once the symmetries of global constraints are specified, various classes of
symmetries can be derived precisely and efficiently in a compositional fashion. The
paper studied value and variable interchangeability, as well as column and row inter-
changeability in matrix models. It also stressed the benefits of traditional reformulations
such as aggregation and projection to strengthen symmetry detection. The potential of
this approach was demonstrated on two non-trivial applications.

It is important to stress that symmetries can be discovered fully automatically in this
way. While a human modeller is usually aware of some symmetries in a model, such as
full column- or row-interchangeability of a matrix CSP, the discovery of more, if not
all, symmetries can be tedious and error-prone, especially for piecewise interchange-
abilities. The latter usually change from one problem instance to the next, so it is safer
and faster to let the system discover symmetries. Another strong motivation for the au-
tomatic discovery of symmetries is that dynamic symmetries can be discovered as well,
using projection operators, as outlined in Section 8.2.

In practice, an implementation of the ideas in this paper would feature a database
with the value and variable interchangeability results of each global constraint and
global function. In fact, there is not even a need to consider only global constraints and
global functions. For example, the CSP P = 〈V,D, v1 < v2〉, where V ⊃ {v1, v2},
is piecewise variable-interchangeable over the partition {{v1}, {v2}, V \ {v1, v2}} of
V , by application of the variable-interchangeability counterparts of Definition 9 and
Propositions 4 and 6. Another example is the piecewise value-interchangeability of
constraint C2 in Example 10. Work in these directions has begun [7]. Such a system
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will only be limited by the strength of its reformulation operators, as too weak such
operators prevent all the (static or dynamic) symmetries from being discovered or lead
to insufficiently strong partitions upon piecewise interchangeabilities.

The work of [24] is closely related to ours: (piecewise) variable interchangeabilities
are discovered compositionally from the model, using the intrinsic interchangeabilities
of the constraints rather than their extensional definitions. It is observed that this method
works particularly well in the presence of global constraints, as the sets of a variable
partition are then likely to have more than two elements, unlike with binary constraints.
Our work extends this work by also considering (piecewise) value interchangeabili-
ties, (global) functions, and constraint optimisation problems, as well as by making
the composition results more precise and by presenting reformulation operators. The
notion of symmetrical constraint [19] corresponds to our notion of a constraint with
(non-piecewise) variable interchangeability. Dynamic symmetries have been consid-
ered in the context of neighbourhood interchangeability [6, 17]; further investigations
have been within the planning domain [12] and in [15].

It is also interesting to relate this research to the automatic modeling project of [2],
which uses compositional refinement to transform abstract specifications into constraint
programs. Since these transformations may introduce symmetries, [2] proposes to an-
notate the refinement rules with the symmetries so that they can be broken subsequently.
Our bottom-up derivation approach is entirely orthogonal to their top-down refinement
approach: It could in fact be applied as a first step to deduce properties of models before
refinement. Both works also address the need for more automation for non-experts, a
feature which is currently lacking in constraint programming when compared to MIP
technology.
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23. Régin, J.-C. Arc consistency for global cardinality constraints with costs. In Proceedings of
CP’99. LNCS. Springer-Verlag, 1999.

24. Roy, P., and Pachet, F. Using symmetry of global constraints to speed up the resolution of
constraint satisfaction problems. In Proceedings of the ECAI’98 Workshop on Non-Binary
Constraints, pages 27–33, 1998.

25. Van Hentenryck, P.; Flener, P.; Pearson, J.; and Ågren, M. Tractable symmetry breaking
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Abstract. A pattern database (PDB) is a heuristic function in a form of a lookup
table which stores the cost of optimal solutions for instances of subproblems.
These subproblems are generated by abstracting the entire search space into a
smaller space called the pattern space. Traditionally, the entire pattern space is
generated and each distinct pattern has an entry in the pattern database. Recently,
[10] described a method for reducing pattern database memory requirements by
storing only pattern database values for a specific instant of start and goal state
thus enabling larger PDBs to be used and achieving speedup in the search. We
enhance their method by dynamically growing the pattern database until memory
is full, thereby allowing using any size of memory. We also show that memory
could be saved by storing hierarchy of PDBs. Experimental results on the large
24 sliding tile puzzle show improvements of up to a factor of 40 over previous
benchmark results [8].

1 Introduction

Heuristic search algorithms such as A* and IDA* find optimal solutions to state-space
search problems. They visit states in a best-first manner according to the cost function
f(n) = g(n) + h(n), where g(n) is the actual distance from the initial state to state
n and h(n) is a heuristic function estimating the cost from n to a goal state. If h(s) is
“admissible” (i.e., is always a lower bound) then these algorithms are guaranteed to find
optimal paths.

The domain of a search space is the set of constants used in representing states.
A subproblem is an abstraction of the original problem defined by only considering
some of these constants and mapping the rest to a “don’t care” symbol. A pattern is
a state of the subproblem. The abstracted pattern space for a given subproblem is a
state space containing all the different patterns connected to one another using the same
operators that connect states in the original problem. A pattern database (PDB) stores
the distance of each pattern to the goal pattern. These distances are used as admissible
heuristics for states of the original problem by mapping (abstracting) each state to the
relevant pattern in the pattern database.

Typically, a pattern database is built in a preprocessing phase by searching back-
wards, breadth-first, from the goal pattern until the whole abstracted pattern space is
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Fig. 1. The 15 and 24 Puzzles in their Goal States

Fig. 2. Partitionings and reflections of the tile puzzles

spanned. Given a state S in the original space, an admissible heuristic value for S,
h(S), is computed using a pattern database in two steps. First, S is mapped to a pattern
S′ by ignoring details in the state description that are not preserved in the subproblem.
Then, this pattern is looked up in the PDB and the corresponding distance is returned as
the value for h(S). The value stored in the PDB for S′ is a lower bound (and thus serves
as an admissible heuristic) on the distance of S to the goal state in the original space
since the pattern space is an abstraction of the original space. PDBs have proven very
useful in optimally solving combinatorial puzzles and other problems [1, 7, 8, 3, 6, 2].

The 15 and 24 tile puzzles are common search domains. They consist of 15 (24)
numbered tiles in a 4 × 4 (5 × 5) square frame, with one empty position - the blank.
A legal move swaps the blank with an adjacent tile. The number of states in these
domains is around 1013 and 1024 respectively. Figure 1 shows these puzzles in their
goal configurations.

The best existing optimal solver for the tile puzzles uses disjoint PDBs [8]. The
tiles are partitioned into disjoint sets (subproblems) and a PDB is built for each set.
Each PDB stores the cost of moving only the tiles in the given set from any given
arrangement to their goal positions and thus values from different disjoint PDBs can be
added and are still admissible. An x − y − z partitioning is a partition of the tiles into
disjoint sets with cardinalities of x, y and z. [8] used a 7-8 partitioning for the 15 puzzle
and a 6-6-6-6 partitioning for the 24 puzzle. These partitionings were reflected about
the main diagonal (as shown in figure 2) and the maximum between the regular and the
reflected PDB was taken as the heuristic.

The speed of search is inversely related to the size of the PDB used, i.e., the number
of patterns it contains[5]. Larger PDBs take longer to compute but the main problem
is the memory requirements. With a given size of memory only PDBs of up to a fixed
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size can be stored. Ordinary PDBs are built such that they are randomly accessed. Thus,
storing larger PDB on the disk is impractical and would significantly increase the access
time for a random PDB entry unless a sophisticated disk storage mechanism is used. For
example a mechanism built on the idea of [11] can be used for storing PDBs on disk.
Note, however, that even if the PDBs are stored on disk, disk space is also limited.

A possible solution for this was suggested by [4]. They showed that instead of hav-
ing a unique PDB entry for each pattern, several adjacent patterns can be mapped to
only one entry. In order to preserve admissibility, the compressed entry stores the mini-
mum value among all these entries. They showed that since values in PDBs are locally
correlated most of the data is preserved. Thus, we can build large PDBs and compress
them into smaller sizes. A significant speedup was achieved using this method for the
15 puzzle and the 4-peg Towers of Hanoi problems.

There are, however, a number limitations to this technique. First, the entire pattern
space needs to be generated. Second, only a limited degree of compressing turned out
to be effective. For the tile puzzles, it was only beneficial to compress pairs of patterns
achieving a memory fold of a factor of two. The largest PDBs that could be built using
this technique for the 24 puzzle with one gigabyte of main memory was a 5− 5− 7− 7
partitioning where the 7-tile PDBs were compressed by a factor of two. This did not
gain a speedup over the 6− 6− 6− 6 partitioning of figure 2 which is probably the best
4-way partitioning of the 24 puzzle.

The motivation for this paper is to use larger PDBs for the 24 puzzle. We want at
least an 8−8−8 partitioning of this domain. A pattern space for 8 tiles has 25×24 . . .×
18 = 4.36×1010 different patterns. Storing three different complete 8-tile PDBs would
need 130 gigabytes of memory!!! Using the compressing idea of [4] would not help
much and alternative idea should be used.

Another way of achieving reduction in memory requirements is to build a PDB for a
specific instance of a start and goal states. Some recent works used this idea for solving
the multiple sequence alignment problem, e.g., [9] where the PDB was stored as an
Octree. A general formal way for doing this was developed by [10]. They showed that
for solving a specific problem instance only a small part of the pattern space needs to be
generated. In this paper, we call this idea Instant dependent pattern databases (IDPDB).
We suggest a number of general enhancements and simplifications to this method and
apply them to the 24 puzzle. Experimental results show a reduction of up to a factor of
40 in the number of generated nodes for random instances of this puzzle.

2 Instant Dependent Pattern Databases

We first want to distinguish between the original search space where the actual search
is performed from the pattern space which is a projection of the original search space
according to the specification of the patterns (see figure 3). Solving a problem involves
two phases. The first phase builds the PDB by performing a breadth-first search back-
wards from the goal pattern until the entire pattern space is spanned. The second phase
performs the actual search in the original search space.

Traditionally, a PDB has a unique entry for each possible pattern. [10] observed
that for a given instance of start and goal states only nodes generated by A* (or IDA*)
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Fig. 3. The projection/abstraction into the pattern space

require a projected pattern entry in the PDB since only these nodes are queried for a
heuristic value during the search. In this paper we call these nodes the A* nodes and
their projections the A* patterns (see figure 3). Ideally, we would like to identify and
only generate the exact set of the A* patterns but this is impossible. They defined a
focused memory-based heuristic as a memory based-heuristic (PDB) that is computed
only for patterns that are projections of states in the original search space that could be
explored by A* in solving the original search problem.

For building the PDB they also search backwards from the goal pattern but are
focused on the specific start and goal states. Instead of the usual breadth-first search
which searches in all possible directions they activate A* from the goal pattern to the
start pattern. In this paper, we call it the secondary A* in order to distinguish this search
from the primary search in the original problem which could be performed by any
admissible search algorithm (e.g., IDA*). For each pattern expanded by the secondary
A*, its g-cost represents the cost of a shortest path from this pattern to the goal pattern in
the pattern space and can serve as an admissible h-cost for the original search problem.

After the start pattern is reached by the secondary A* search only a small number of
patterns were generated and there is no guarantee that the entire set of the A* patterns
was reached. They noted that we can continue to expand nodes after the secondary A*
finds an optimal path from the goal pattern to the start pattern to determine optimal
g-costs (and thus admissible heuristics) for additional states. We call this the extended
secondary A* phase. We would like to halt the extended secondary A* phase when
all the A* patterns are reached but this is a difficult task. They provide a method for
identifying a special set of patterns which is a superset of the A* patterns set. We call
this set the ZH set (after Zhou and Hansen). They halt the extended secondary A* phase
after the complete ZH set is generated and are guaranteed that the entire set of the A*
patterns is generated.

The definition of the ZH set is as follows. Let U be an upper bound on the cost of
the optimal solution to the original problem. The ZH set includes all patterns pi which
have f(pi) < U in the secondary A* search. It is obvious that all the A* patterns have
f -value in the secondary search smaller than U and thus are all included in the ZH
set. They also provide a formula for computing and generating the ZH set for a set
of disjoint additive PDBs. Let U again be an upper bound on the solution. Let L =∑

j(hj(S)) be the additive heuristic of the initial state S. Let Δ = U − L. They prove
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that a disjoint PDB, PDBj only needs to be calculated for projected patterns pi having
f(pi) < hj(S) + Δ. See [10] for more details and proofs.

Figure 4 shows the relations between different sets of patterns. The innermost set
includes the patterns generated during the first stage of secondary A* (until the optimal
path from the goal pattern to the start pattern is found). The next set includes the A*-
patterns, i.e., the patterns queried during the search in the original problem. The next
set includes the ZH set which [10] stored in their PDB. The outmost set is the complete
pattern space.

They recognized that continuing the extended-A* until the complete ZH set is gen-
erated is not always possible due to time/memory limitations. Thus, they introduced
their γ factor where 0 < γ ≤ 1. They stopped the extended-A* when its f-cost exceeds
γ × U . With γ < 1 generating all the A* patterns is not guaranteed. Therefore, when
a state on the original space is reached whose projected pattern is not in the PDB due
to the γ cutoff, they suggest using a simple quickly computed admissible heuristic in-
stead. They implemented their idea with different values for γ on the multiple-sequence
alignment and obtained impressive results.

Note that ordinary PDBs are usually stored in a multi-dimensional array with an
entry for each possible pattern. For IDPDB, we need a more sophisticated data structure
e.g., a hash table, as only a subset of the patterns is stored.

2.1 Weaknesses of the ZH Method

There are a number of weaknesses in the ZH set approach.

1) Their method needs a fixed amount of memory. Once γ is chosen all the nodes with
f ≤ γ × U are stored. This is problematic as it is difficult to determine the exact
value for γ so that the available memory would be fully used and not be exhausted.
Identifying the ZH set and then simplifying it by γ seems not natural and ad hoc.
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2) An upper bound, U , for an optimal solution to the original search problem cannot
always be found. Furthermore, we need a strict upper bound so as to reduce the ZH
set as much as possible.

3) [10] tried out their method only on multiple sequence alignment. The search space
of this domain (and also the projected pattern space) has the property that the num-
ber of nodes in a given depth d is polynomial in d. This is because the problem
is formalized as an n-dimensional lattice with ln nodes where n is the number of
sequence to be aligned and l is the length of the sequences. Even with relatively
mediocre U bounds, their ZH set might be significantly smaller than the entire pat-
tern space. This is not true in domains such as the tile puzzles where the number
of nodes at depth d is exponential in d. Given any U the ZH set might include the
entire domain.

To support these claims experimentally we applied the formula they provide for cre-
ating the ZH set for disjoint PDBs on the 15 puzzle. This formula uses an upper bound
on the optimal solution. We used the best upper bound possible - the exact optimal so-
lution. We calculated the ZH set with this strict upper bound for a 5-5-5 and a 6-6-3
partitionings of the 15 puzzle on the same 1000 random instances from [8]. The entire
5-5-5 PDB includes 1,572,480 entries, half of them were queried during the search. The
average ZH set over the 1000 instances has 1,227,134 pattern - 78% of the entire pat-
tern space. For many difficult instances of this domain, the ZH set actually included the
entire pattern space. On those instances the ZH method is useless. Note again that this
is when we used a strict upper bound of the actual optimal solution length. For more
realistic larger upper bounds the ZH will be even larger. Similar results were obtained
for a 6-6-3 partitioning.

3 Dynamically Growing the PDBs

We suggest the following enhancement to Zhou and Hansen’s idea. Our enhancement is
at least as strong as their method but is simpler to implement and easier to understand.
In addition, our idea can fit any size of available memory.

The main point of our idea is to dynamically grow the PDB until main memory
is exhausted. Our idea is much more flexible than the method of [10] as it can work
with any size of memory and we do not need to decide when to halt the secondary A*
extension in advance. Furthermore, we do not need to calculate any upper bounds nor
have to build the ZH set. In the preprocessing phase, we continue generating patterns
in the extended secondary A* until memory is exhausted. We then start the primary
search phase and for each pattern not in the PDB, we use a simple quickly computed
admissible heuristic instead.

The following enhancement can better utilize main memory after it was exhausted.
There are two data structures in memory. The first is the PDB which is identical to the
closed list of the extended secondary A*. The second is the open-list of the extended
secondary A*. However, at this point we can remove the open-list from main memory
thus freeing a large amount of memory for other purposes such as other PDBs. In fact,
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if x is the f -value of the best node in the open list and is also the value of the last node
expanded, then all nodes in the open-list with values of x can be added to the PDB
before freeing the memory. This is actually expanding these nodes without actually
generating their children.

Another way of saving memory is to use IDA* for the secondary search. Here, each
new pattern generated is matched against the PDB and if it is missing a new PDB entry
is created. However, in the pattern space of eight tiles presented below there are many
small cycles since all the other tiles can be treated as blanks. This causes IDA* to be
ineffective in this specific pattern space because it cannot prune duplicate nodes due to
its depth-first behavior.

3.1 On Demand Pattern Databases

A version of the above idea is called on-demand pattern database. Here, we add pat-
terns to the PDB only when they are required during the search. This prevents us from
generating large PDBs with patterns that will not be queried.

First, we run the secondary A* from the goal pattern to the start pattern until the
start pattern is chosen for expansion. Each pattern expanded by this search is inserted
into the PDB. At this point, the preprocessing phase ends and the primary search can
begin because the start pattern is already in the PDB. We continue the primary search
as long as projected patterns of new nodes are in the PDB (i.e., were expanded by the
secondary A* search). When we reach a pattern p not in the PDB and still have free
memory, we continue to extend the secondary A* phase until this pattern p is reached
and we can return to the primary A* phase.

When memory is exhausted the PDB has reached its final size and the secondary A*
is terminated. From this point, each time a heuristic is needed and the relevant pattern
is not in the PDB, we consult the quickly computed heuristic.

4 Implementation on the 24 Puzzle

While the above idea is a general one we made some domain dependent enhancements
and took special steps to best fit the IDPDB idea to the 24 puzzle.

Generating a PDB consumes time. However, the time overhead of preprocessing
the PDBs is traditionally omitted as it is claimed that it can be amortized over
the solving of many problem instances. For example, it takes a couple of hours to
generate the 7-8 disjoint PDB which was used to solve the 15 puzzle [8]. Yet, the
authors ignored this time and only reported the time of the actual search which is
a fraction of a second.

We cannot simply omit the time overhead of generating IDPDBs as a new PDB has
to be built for each new instance. Therefore, it is irrelevant to apply this idea to small
domains such as the 15 puzzle where the running time of the actual search is much
smaller than the time overhead of generating the PDB. We cannot see how this method
will improve previous running times for such domains. The 24 puzzle is a different story
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since it is 1011 times larger. Generating the 6-6-6-6 PDB also takes a number of hours.
However, a number of weeks were required to solve many of the instances of [8]. Here,
the time overhead of generating the PDB can also be omitted when compared to the
overall time needed to solve the entire problem.

The above general method is for generating one PDB. When we use disjoint data-
bases, such as the 8-8-8 partitionings for the 24 puzzle (see below), values from the
different PDBs are added and therefore three values for each state of the original search
space are required. Thus, the on-demand version of IDPDB activates three secondary
A* searches in parallel, one for each PDB1. Note, that since each move in the tile puzzle
domain moves only one tile then at each step we only need to consult the one PDB that
includes the tile that has just been moved. Values from the other PDBs can be inherited
from the parent and remain identical.

4.1 On Demand Versus Preprocessing

The weakness of the on-demand approach for the 24 puzzle is that three open-lists
are maintained at all times but this is wasteful since the open-list can be deleted after
memory is exhausted. In the special case of the tile puzzles an open list might have 10
times more nodes than the closed list.

A better way to utilize memory for this domain is to perform the complete secondary
A* in the preprocessing phase until memory is exhausted. At this point the closed list
which includes all the patterns with valid heuristics is stored in a file on the disk and the
entire memory is released. This mechanism is repeated for each PDB until a relevant
file with heuristic values is stored on the disk. Memory is better utilized as only one
open-list is maintained in memory at any point of time. Furthermore, during the course
of the primary search there are no open lists of the secondary searches in main memory.
Now, we can load values from the disk files into memory and have a PDB for each of
them.

In both the on-demand and the preprocessing variations when an entry was missing
from the PDB we took the Manhattan distance (MD) as an alternative simple heuris-
tic for the tiles of the missing entry. In addition, for most variations reported below
we also stored the benchmark 6-6-6-6 PDBs (which needed 244 megabytes). We then
compared the heuristic obtained from the 8-8-8 PDB to the 6-6-6-6 heuristic and took
the maximum between them.

4.2 Improvement 1: Internally Partition the PDB

Note that each of the 8-tile sets of figure 5 can be internally partitioned into a 6-2
partitioning where the 6-tile partition is one of the 6-6-6-6 partitions of figure 2. For
example, the 6-2 partitioning is shaded in gray for partition a of figure 5. Instead of
taking the MD for the eight tiles of a missing entry, we can use the 6-2 partition of these
tiles. For those eight tiles we added the value of the corresponding 6-tile pattern from

1 Furthermore, this is true for using other combinations of multiple PDBs such as taking the
maximum over different PDB values.
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Fig. 5. Different Partitioning to 8-8-8

the 6-6-6-6 PDB to a value of the 2 tiles from a new 2-tile PDB which was also
generated.

4.3 Improvement 2: Hierarchical PDBs

Note that once there is a simple heuristic in hand, the new PDB heuristic only requires
storing entries for patterns which their PDB values are larger than the simple heuristic.
This suggests an hierarchy of PDBs. First, you store a small weak PDB. Then, for the
stronger PDB you store only those entries having values larger than the weaker PDB.
We used this idea as follows. For any 8-tile PDB we only need values which are larger
than the 2-6 partitioning described above. Values of the 8-tile PDB which are not larger
can be omitted and retrieved from the 6-2 PDBs. This was very effective as only 18%
of the values of an 8-tile PDB were larger than the corresponding 6-2 PDB and had to
be stored. The overhead for this was the need to generate and store the relevant 6-tile
and 2-tile PDBs but we stored the 6-6-6-6 PDBs anyway as described above and the
overhead of generating and storing a number of 2-tile PDBs is very low.

Here we only stored two levels using this hierarchical approach. Future work can
take this further by building an hierarchy of PDB heuristics where each PDB is built on
top of the previous one in the hierarchy. Note that the basics of this approach were used
in [8] for the 15 puzzle where the weaker heuristic was MD and only additions above
MD were stored in the PDB. Thus, values for patterns equal to MD were stored as 0.
Here we further improve on this approach and omit values of 0.

4.4 Improvement 3: Multiple Partitioning

The bottleneck for the IDPDB method is the memory requirements of the secondary A*
search. This phase terminates when memory is exhausted. The memory requirements
for the primary search phase is much smaller especially after applying all the improve-
ments above. It is well known that PDBs are better utilize by having multiple PDBs
and taking the maximum value among them as the heuristic [6, 7]. Since so much mem-
ory was released we were able to use the extra memory for storing six different 8-8-8
partitionings illustrated in figure 5 and taking their maximum as the heuristic.
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Table 1. ISPDB with 8-8-8 and 9-9-6 partitionings

Method Nodes Entries Mem Hits
1 6-6-6-6 4,756,891,097 255,024,000 244 100
2 6-6-6-6 1,107,142,063 255,024,000 244 100

1 Gigabyte
OD 1,434,852,411 7,178,143 125 27.7
OD+6 938,256,516 7,178,143 369 28.9
PP 856,917,588 25,071,429 656 66.4
Imp1 714,722,200 25,071,429 656 68.5
Imp2 714,722,200 4,538,015 327 16.6
6 8-8-8 198,851,450 15,638,294 505 -
8 9-9-6 175,100,719 31,199,159 754 -

2 Gigabytes
PP 713,536,979 66,690,152 1,322 80.6
Imp1 613,844,599 66,690,152 1,322 83.3
Imp2 613,844,599 13,565,100 472 21.2
6 8-8-8 130,890,131 48,907,720 1,037 -
8 9-9-6 100,964,443 82,143,861 1,569 -

5 Experimental Results

We implemented all the above variations and improvements on the same random in-
stances of the 24 puzzle used by [8]. We experimented with the 8-8-8 partitionings of
figure 5 and also with a set of 9-9-6 partitionings. We used a 1.7 MHz Pentium 4 PC
with one gigabyte of main memory and also with two gigabytes. The primary search
was performed with IDA*.

We sorted the 50 instances from [8] in increasing order of solution length. Table 1
presents the average results on the ten ”easiest” instances. The first column indicates the
variation used and the second column counts the number of generated nodes. The third
column, Entries, is the total number of 8-8-8 (or 9-9-6) PDBs entries that were finally
stored. The Mem, gives the total amount of memory in megabytes used for all the PDBs
consulted by this variation (including the 6-6-6-6 PDB when applicable). Finally, the
last column indicates the percentage of times where the 8-8-8 (9-9-6) PDB had a hit.
We define a hit as a case where a PDB is consulted and actually had an entry for the
specific pattern. This is opposed to a miss where that entry was not available and the
simpler heuristics were consulted.

Often, a stronger heuristic consumes more time per node. Thus, the overall time
improvement to solve the problem with a stronger heuristic is less than the reduction
in the number of generated nodes. Nevertheless, the actual time is influenced by the
effectiveness and effort devoted to the current implementation. For example, using a
better hash function or sophisticated data structures for storing entries in the PDB might
further improve the running time. A number of methods for reducing the constant time
per node when using multiple PDBs lookups were provided by [6]. Using as many
of these methods further reduces the overall time. The actual time also depends on the
hardware and memory abilities of the machine used. We noted that the number of nodes
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per second in all our variations was always between one to two Million. Since the nodes
improvement reported below is significantly greater we decided to omit the time reports
and concentrate only on the number of generated nodes. As discussed above, we can
also omit the time of generating the PDBs which took between 30 to 80 minutes for our
different variations. This is negligible when compared to the actual search time which
was a around 18 hours on average for the random 50 instances.

The first row of table 1 uses one 6-6-6-6 partitioning. The second row is the bench-
mark results taken from [8] where the 6-6-6-6 partitioning was also reflected about the
main diagonal and the maximum between the two was used. This reduces the search
effort by a factor of 4.

In the next bunch of rows we had one gigabyte of main memory for the secondary
A*. The first row (OD) is the simple case where only a single 8-8-8 partitioning (of
figure 5.a) was used and the extended secondary A* search was performed on demand.
In a case of a miss in a PDB, we calculated the Manhattan distance (MD) for the tiles in
this particular PDB. Here, only 7,178,143 entries were generated since the open lists of
the different 8-tile PDBs were stored in memory during the primary search. Note that
the hit ratio here is low (27.7) as the size of the PDB is comparably small. Even this
simple variation of one 8-8-8 partitioning reduced the number of generated nodes by
more than a factor of three when compared to the one 6-6-6-6 partitioning.

The second row (OD+6) also generated the PDBs on demand. However, here, (and
in all the successive rows) we took the maximum between the 8-8-8 and the 6-6-6-6
PDBs. This variation outperformed the one 6-6-6-6 version (line 1) by a factor of 5 and
the benchmark two 6-6-6-6 version (line 2) by 18%. The next line (PP) is the prepro-
cessing variation where the entire secondary search for each 8-tile PDB was performed
a priori until memory was exhausted. Here more patterns were expanded by the sec-
ondary A* search and therefore we could load 25,071,429 values to the PDBs. This
reduced the number of generated nodes to 856,917,588. Note that the hit ratio was in-
creased to 66%. While the total number of patterns for three 8-tile sets is 129 Billion
entries we stored only 25 Million (a fold factor of 4,600) and yet had the relevant value
in 66% of the times.

The fourth line (Improvemnet 1) used the 6-2 partitioning instead of MD when a
miss occurred. The fifth line (Improvement 2) only loaded the 8-tile values that are
larger than the corresponding 6-2 partitioning. Here we can see a reduction of a factor
of four in the number of stored entries. In both variations the number of generated nodes
was reduced to 714,722,200. With improvement 2, the hit ratio dropped to 16.6 since
many of the entries were removed as they were no larger than the 6-2 partitionings.
Note that improvement 2 squeezed the PDB to a small size which enabled us to store
multiple PDBs below.

In the next line full advantage of main memory was taken and six different 8-8-
8 partitionings were stored. This reduced the number of nodes to 198,851,450. In the
last line we used 8 9-9-6 PDBs. Here the number of nodes is 175,100,719, eight times
smaller then benchmark results of two 6-6-6-6 partitionings. Here we did not report the
hit ratio as it was difficult to define it for multiple lookups.

We then report similar experiments performed when we had two gigabytes of main
memory for generating the PDBs. Here, more patterns were generated and the final
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Table 2. Results over 25 and 50 instances

Method Mem Nodes Ratio1 Ratio2
The 25 easiest instances

2 6-6-6-6 - 16,413,254,279 1 1
8 9-9-6 1GB 3,788,144,197 4.33 7.37
6 8-8-8 1GB 2,897,728,901 5.66 6.59
8 9-9-6 2GB 2,339,671,729 7.01 12.85
6 8-8-8 2GB 2,037,614,978 8.05 10.25

All 50 instances
2 6-6-6-6 - 360,892,479,671 1 1
6 8-8-8 2GB 65,135,068,005 5.54 8.85

PDBs were larger. Note that the hit ratio here increased to 83.3%. The number of gen-
erated nodes here was 130,890,131 for the multiple 8-8-8 PDBs and 100,964,443 for
the 9-9-6 PDBs. This is approximately one order of magnitude better than the previous
benchmark results for these 10 instances.

Our most successful method used six 8-8-8 and eight 9-9-6 partitionings. With this
method we solved the ”easiest” 25 instances (the first 25 from the sorted list of in-
stances) with 1GB and 2GB of memory. Results are presented in Table 2. Since the
number of generated nodes in the tile puzzle is exponentially distributed it is prob-
lematic to report average results. Therefore, we report two different numbers for the
improvement factor over the 6-6-6-6 benchmark. The first number (Ratio1) is the ra-
tio of the total number of nodes for the 25 instances. For the second number (Ratio 2)
we calculated the improvement factor for each instance alone and report the average
over all the 25 factors. When considering the total number of generated nodes over all
instances, the 8-8-8 partitioning improved the benchmark results by a factor of 8 and
when considering each instance alone the 9-9-6 reduced the number of nodes by a factor
of almost 13.

Finally, we solved the entire set of 50 instances from [8] with 6 8-8-8 PDBs. It seems
that the effectiveness of IDPDB drops a little for the more difficult instances. This is
because there are more A* patterns but the PDB has the same size and therefore the
chance for missing a pattern from the PDB increases. Still, even in difficult instances,
IDPDB managed to focus on the relevant patterns and the total number of nodes over
all 50 instances was 65,135,068,005 - 5.54 smaller than pervious benchmark results.
On a single instance basis the improvement factor ranged from 3.5 to 40 and averaged
8.85. It took us about a month to solve all 50 instances. To the best of our knowledge
we have the best published optimal solver for this problem.

6 Summary and Conclusions

We presented simplifications and enhancements to the instance dependent PDB method
suggested by [10]. We showed that instead of the fixed mathematical set they computed,
we can dynamically grow the PDB until memory is exhausted. With our method we
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optimally solved random instances of the 24 puzzle by using 8-8-8 (9-9-6) disjoint
partitionings. A single complete 8-tile PDB needs 43 Billion entries. We reduced the
number of entries by a factor of 1000 and yet produced the state of the art performance
for this problem.

For future work we intend to combine partitionings of different sizes e.g. an 8-8-8
with a 9-9-6 etc. We would also intend to build a larger hierarchy of different pattern
databases each adds only relevant values to its predecessor. For example, given a 5-tile
pattern database, we can use it for adding a sixth tile by only storing the contribution of
this new tile to the 5-tile pattern databases. Also, a deeper mathematical analysis and a
theory that unifies this work with the work of [10] should be introduced.
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Abstract. This paper describes and experimentally analyses a new di-
mension reduction method for microarray data. Microarrays, which al-
low simultaneous measurement of the level of expression of thousands
of genes in a given situation (tissue, cell or time), produce data which
poses particular machine-learning problems. The disproportion between
the number of attributes (tens of thousands) and the number of examples
(hundreds) requires a reduction in dimension. While gene/class mutual
information is often used to filter the genes we propose an approach
which takes into account gene-pair/class information. A gene selection
heuristic based on this principle is proposed as well as an automatic
feature-construction procedure forcing the learning algorithms to make
use of these gene pairs. We report significant improvements in accuracy
on several public microarray databases.

1 Introduction

Transcriptomics is the description and analysis of data related to the study
of gene profiles and expression. This area has made great progress in recent
years particularly thanks to DNA chips (or microarrays). A growing number of
bioscientific projects now include studies based on this technology because it
allows simultaneous measurement of the expression of several tens of thousands
of genes. Promising applications for these chips include their use for improving
the diagnosis of certain diseases such as cancer and also for providing better
understanding of their etiology [6]. In these applications, the role of classification
is often crucial, and different approaches have been explored, including Bayesian
Networks, Neural Trees, Radial Basis Function Neural Networks [11], Support
Vectors Machines, k Nearest Neighbours and Diagonal Linear Discriminant.

The task of bioinformatics is therefore often to construct classifiers from genes
expression where each patient is described by numerical values corresponding to
the levels of expression of the genes represented on the microarray. The classifiers
must predict as precisely as possible a clinical parameter (such as the type of
tumour) representing the class. One of the problems in building classifiers from
microarray data is the unbalance between the number of examples (patients) and
the number of features (gene expression). Actually, the biggest dataset available
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in the literature include few patients (between 50 and a few hundred) and a
large number of genes (from a few hundred to forty thousand). It has been
demonstrated, in fact, that too large a number of dimensions favours overfitting;
this is the problem known as ”the curse of dimensionality” [1]. To overcome this
problem, dimension-reduction methods are classically used in machine learning.
The aim of this step is to identify a reduced subset of attributes which maximizes
prediction performance. These methods are widely used in the microarray data
analysis.

A characteristic of these data is known presence of possibly strong interac-
tions among gene expression (features). Handling feature interactions is difficult
because of their intrinsic combinatorial nature. For this reason, the majority of
reduction methods take little or no account of interactions between genes. De-
tection of interactions is implicitly left to the learning algorithms downstream
of the selection phase. In this paper we investigate the possible advantages of
considering gene interactions in the phase of dimension reduction itself. Previ-
ous studies have shown that pairs of genes with high discrimination power are
not usually constituted by genes which are both significantly very discriminant.
Then, a feature reduction method that does not consider interactions explicitely
is likely to miss the weakest element of ”good” pairs. To overcome the men-
tioned problem, we have developed a feature-construction approach: each newly
constructed feature synthesizes the information contained in pairs of strongly
interacting genes.

The remainder of this paper is organized as follows. Section 2 presents the
state of the art in dimension-reduction methods in the field of microarray data.
Section 3 proposes a heuristic measure for gene pairs with strong information.
Section 4 shows how to use this information in machine-learning algorithms.
Section 5 contains the results of an extensive experimentation; we show the
advantages of considering gene interaction for feature construction.

2 Related Work

There is a vast amount of work on gene selection methods to improve microarray
data classification. They can be classified into three families: a) scoring methods,
b) methods selecting subsets of genes and c) reformulation methods. The most
common approach is the scoring methods, which consider each gene individu-
ally and link its expression with the classes. For each gene a relevance score is
computed depending on how well the gene distinguishes the examples of differ-
ent classes. A good review of this kind of methods was made by Ben-Dor [2].
Subset-selection methods do not consider genes individually but groups of genes.
Whether or not a gene is selected depends on other genes. It is therefore not sur-
prising to find that this family includes many techniques that come from machine
learning, particularly genetic algorithms [15], wrapper methods [12], and SVM-
RFE (Guyon). Reformulation reduction methods project the data into a new
smaller space, which is defined by attributes which are a combination of genes.
Principal-component analysis is the best known of the methods in this family.
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Other methods of changing representations specifically developed for microarray
data also exist, including Qi’s method [16], based on the amplitude and statisti-
cal form of genes for constructing new features. The ProGene algorithm [10] is
another method belonging to this family; it creates gene prototypes to compress
the information contained in groups of genes with similar expressions.

Most of these dimension-reduction methods do not take explicitly into ac-
count the interaction between genes. Nevertheless, some research has proposed
approaches using gene interactions, based on the assumption that genes with
similar expression provide redundant information. For example Xing [18] and
Wu [17] compute a relevance score for each gene, then select a subset which
maximizes the sum of relevance scores and minimizes the redundancy between
the selected genes. All these methods explore individually the information con-
tained in each gene and then try to find a good combination. Previous methods
considering gene pairs also exist. Bo [3] evaluates a pair by computing the pro-
jected coordinates of each example on the DLD axis in the gene-pair space. The
score is the two sample t-statistic on the projected points. Geman [9] does not
use the expression value, but the expression rank of genes. The pair score is
based on the probability of observing that the rank of the first gene of the pair
is higher than the second one in each class. Their experimental results confirm
the claim that class prediction can be improved using pairs of genes.We propose
in this paper to identify highly interacting gene pairs, and systematically exploit
these synergies to improve classification accuracy.

3 Reducing Dimensions by Using Higher Order Gene
Information

3.1 Definition of Gene Information

To quantify the information that a gene subset provides in order to predict the
class, we use a general measure of information I [13], which is based on entropy
H and defined by the following formula:

I(X) = H(C)−H(C|X)

Where C is the class to be predicted and X = {G1, ..., Gp} a subset of genes.
This information measure is the decrease in the entropy of the class brought by
the gene subset. When the subset does not contain any information, the measure
is minimum i.e. (I(C) = 0). When the subset eliminates all uncertainty about
the class, the measure is maximal i.e. (I(C) = H(C))). When the information
of only one gene is evaluated, this measure is equivalent to mutual information.

I(G) = H(G) + H(C)−H(G,C)

H(G,C) = H(C|G) + H(G)

The information of a gene subset can be broken down into a sum of informa-
tion of each gene plus the interaction information contained in gene interaction
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[13]. Following Jakulin’s definition, the gene information for a pair of genes is
defined as follows :

I(G1, G2) = I(G1) + I(G2) + Interaction(G1, G2)

Interaction(G1, G2) = −H(G1, G2, C) + H(G1, C) + H(G2, C)
+H(G1, G2)−H(G1)−H(G2)−H(C)

Unlike the gene information, interaction information may be negative. When
this interaction is positive, we talk of synergy between the genes, and redundancy
otherwise.

3.2 The Search for the Most Informative Pairs of Genes

Our objective is to find the pairs of genes which provide the highest information.
To identify the optimal pairs of genes, all of the gene-pair space of size N2 must
be explored, where N is the number of genes. In the context of microarray data
where the number of genes is of the order of several thousands, this solution is
often computationally difficult to adopt. To avoid exploring all of this space, a
natural heuristic for exploring the pairs consists of first calculating the infor-
mation of each gene and then calculating the information of the N-1 gene pairs
formed by the best gene and another gene. The most informative gene pair is
selected and the both genes of this pair are removed from the list of genes. The
process of selection is then iterated to increase the number of selected genes. To
find p pairs of genes, (2N(p − 1) + p2 + 1) pairs only need to be explored. An-
other advantage of this heuristic is to generate pairs formed from distinct genes.
It is well known in machine-learning literature that redundancy in features has
a negative influence on classification [5]. Since we assume that pairs containing
the same gene are likely to be redundant, we have chosen the above mentioned
heuristic to search for the more informative pairs.

3.3 Feature Construction from Gene Pairs

The use of synergic pairs of genes does not necessarily improve prediction accu-
racy over a selection method that selects individual genes based on their mutual
information with the class. The results given later in table 3 are an example of
such a case. The reason is that the used learning algorithms were not designed to
exploit pairs of features, so that they don’t necessary use the synergy contained
in gene pairs. We therefore propose an approach based on feature construction
for synthesizing the information contained in each synergic pair. The FEATKNN
method that we have developed to construct new features is limited here to two-
class problems. Its adaptation to multi-class problems is beyond the scope of
this paper.

For each pair P of synergic genes a new feature A taking its values between
-1 and 1 is constructed. This new feature should capture as much information
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Algorithm 1. Reduction dimension and feature construction algorithm
1. Features ← �
2. Genes ← all.gene
3. for i from 1 to nb.pair.max

(a) Search of gene pair G1 G2
i. G1 ← argmaxg (I(g))
ii. G2 ← argmaxg (I(G1, g))

(b) Construction of a new attribut F
i. for j from 1 to nb.sample

A. N ←k nearest neighbours of sample j
B. n+ ←number of sample of class+ contained in N
C. F [j] ← −1 + 2n+

k

(c) Features ← Features ∪ F
(d) Genes ← Genes-{G1, G2}

4. return (Features)

as possible of the two genes and their interaction. Building a new feature A
requires defining its values based on the values of the two genes G1G2 of the
pair P . A may then be described as a function from the two dimensional space
G1 ×G2 defined by G1 and G2 to the intervale [-1,1]. Our rationale for defining
such function is that it should capture in this space the density of the respective
positive and negative examples.

The new features are constructed using the following method. Given an ex-
ample t, the value of its feature A is computed as follows: A(t) = −1+2n1

k where
n1 is the number of k nearest neighbours of t belonging to class 1. The distances
are computed in the G1 ×G2 space using the Euclidian distance. Note that t is
not counted among the k nearest neighbours, and then its class does not inter-
vene in the feature construction. The new feature A has values in [-1,1]. When
A equals 1 (resp. -1), it means that almost all k neighbours of t in the G1 ×G2

space are labelled class 1 (resp. class 2). The number k of nearest neighbours is
an important parameter, it controls the smoothing of the new attributes. If k is
too small the risk of overfitting is high, and if K is too large the new attributes
will be completely smooth and will have about the same value over the whole
pair space. This problem is similar to the classical dilemma between variance
and bias in classification problems. After the experiments, we defined k = n

5 as
a good trade-off, where n is the number of examples. Figure 1 shows an example
of feature construction with the best gene pair from the colon cancer dataset,
varying the value of k. In the down panel (k=40) the new feature depends only
on the gene Hsa.37937, the second gene information is not used. In the up panel
(k=2) we see a situation of overfitting. The centre panel (k=12) presents a good
trade-off. The whole dimension-reduction procedure that integrates both gene
selection and feature construction is described in Algorithm 1.

Another method of feature constructed was developed, called FEATHR. The
example are projected in the two dimensional space defined by the two genes of
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Fig. 1. Illustration of three alternative features using different values of k (cf. Al-
gorithm 1 line C), k=2 (up) k=12 (centre) k=40 (down) and constructed with the
best gene pair from the colon cancer dataset (Hsa.37937 and Hsa.22167). Sick patients
(crosses) and safe patients (black dots) are represented in this gene-pair space. The
grey level represents the value of the newly constructed feature (white representing
a null value and black a value of one). The feature built with k=12 offers the best
learning results. A good value of the hyper-parameter k may be empirically searched
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Fig. 2. Illustration of features constructed by FEATHR with the best gene pair from
the colon cancer dataset (Hsa.37937 and Hsa.22167). Sick patients (crosses) and safe
patients (black dots) are represented in this gene-pair space. The up panel presents
the patients projected in the two dimensional space of the gene pair. In this space 9
sectors were created. The down panel presents the value of the new feature associated
with each sector. The new feature, associated with sectors contained only examples of
class ”sick” (resp. ”safe”), takes the values ”-” (resp. ”+”). In a sector where examples
of the two classes are present the new feature takes the value ”x”
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each pair. This space is divided in sectors of equal size. The value of the new
feature is the same for all points in the same sector. The value of the new feature
depends on the presence of the examples belonging to class 1 (or -1) in the sector.
In this case, the new feature is therefore a discrete feature. Figure 2 illustrates
this method. We obtain relatively bad performances with this method, that is
the reason we did not present its results in the experimentation section 5.

4 Experimentation

The experimental study is designed to anwers the following questions:

1) Is our selection heuristic adapted to find informative pairs of genes?
2) Is our feature construction method effective to synthesize the information

contained in a pair of genes?
3) Does our dimension-reduction method improve the classification accuracy as

opposed to classical methods using mutual information and other methods
exploring gene pairs?

4.1 Data

Two different datasets are used in these experiments, where characteristics are
illustrated in table 1 . To compute information measures, expression data were
discretized. With to the biologists, we assume that the gene expression can be
in one of three states: overexpressed, non-modulated, underexpressed. We use a
histogram method to discretize the expression of each gene in the three states.
The amplitude of the gene expression is computed, then divided into three subin-
tervals of equal size.

Table 1. Description of the datasets. This table shows the data type, the number of
genes measured and the number of samples contained in each class

#genes #samples by classes
Leukemia 7129 47 ALL / 25 AML

Colon Cancer 2000 40 sick patients /22 safe patients

4.2 Analysis of the Most Informative Pairs

In order to measure the importance of the interactions between genes, we empir-
ically examined the mutual information of the best genes and pairs of the colon
cancer data set. The data contained relatively few genes (2000); it was therefore
possible to calculate the information of all the gene pairs, i.e. 1,998,000 pairs. A
rank based on information measure is thus defined for each gene and each pair
of genes. Table 2 shows the rank and information measure of the 20 best gene
pairs of the colon cancer dataset. For example, we see that the best gene pair
is formed by the best gene (Hsa.37937) and the 592nd best gene (Hsa.22167).
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Table 2. The 20 best gene pairs for colon cancer. For each gene pair (g1,g2), the infor-
mation (I) and the rank (R) of each of the two genes of the pair, the interaction (inter),
the information of the pair and the newly constructed feature I(F) were computed. The
pair are ordered by their information I(g1,g2))

g1 I(g1) r(g1) g2 I(g2) R(g2) inter I(g1,g2) I(F)
pair 1 Hsa.37937 0.47 1 Hsa.22167 0.06 592 0.26 0.79 0.35
pair 2 Hsa.8147 0.38 2 Hsa.3933 0.08 355 0.16 0.62 0.34
pair 3 Hsa.934 0.13 146 Hsa.1131 0.3 4 0.19 0.62 0.2
pair 4 Hsa.25322 0.28 5 Hsa.36696 0.2 33 0.13 0.61 0.36
pair 5 Hsa.22762 0.2 40 Hsa.7 0.26 9 0.14 0.6 0.47
pair 6 Hsa.579 0.22 23 Hsa.5392 0.13 135 0.22 0.57 0.25
pair 7 Hsa.878 0.25 11 Hsa.442 0.15 95 0.17 0.57 0.32
pair 8 Hsa.6376 0.05 750 Hsa.1832 0.34 3 0.02 0.41 0.26
pair 9 Hsa.6814 0.17 63 Hsa.2939 0.17 61 0.22 0.56 0.2

pair 10 Hsa.1517 0.01 1583 Hsa.127 0.14 109 0.4 0.55 0.22
pair 11 Hsa.812 0.14 123 Hsa.2451 0.24 13 0.17 0.55 0.35
pair 12 Hsa.3305 0.24 15 Hsa.466 0.2 34 0.1 0.54 0.26
pair 13 Hsa.42949 0.09 315 Hsa.2928 0.18 51 0.27 0.54 0.23
pair 14 Hsa.821 0.23 22 Hsa.43431 0.06 542 0.25 0.54 0.27
pair 15 Hsa.8068 0.18 59 Hsa.1317 0.18 54 0.18 0.54 0.14
pair 16 Hsa.2386 0.07 474 Hsa.692 0.27 8 0.2 0.54 0.35
pair 17 Hsa.36694 0.19 49 Hsa.1276 0.11 218 0.23 0.53 0.19
pair 18 Hsa.1682 0.13 136 Hsa.21868 0.07 434 0.33 0.53 0.19
pair 19 Hsa.692 0.27 8 Hsa.31801 0.13 138 0.12 0.52 0.21
pair 20 Hsa.41280 0.23 18 Hsa.18787 0.02 1248 0.2 0.45 0.32

Figure 3 shows the information of genes forming the best first million pairs; each
point represents a set of 10,000 pairs. The black dot corresponds to the gene
with the highest information of the pair and the white dot corresponds to the
other gene of the pair. We see that the best pairs are on average all formed by
a highly informative gene and a low informative gene. This property of highly
informative gene pairs needs to be proved experimentally. This observation al-
lows us to give a positive answers (from an empirical point of view) to the first
question regarding the ability of our heuristic to find highly informative gene
pairs. It also demonstrates the usefulness of our heuristic choice for selecting
pairs, which are formed from genes with the best rank.

4.3 Information Obtained by Feature Construction

The aim of feature construction is to synthesize the information contained in the
genes and their interactions. In order to measure the importance of feature con-
struction, we empirically compare the information of the genes with the newly
constructed feature on the colon cancer dataset. Figure 4 shows this compari-
son; dots represent the information of genes and crosses the information of gene
pairs. The solid line represents the case where the information of newly con-
structed feature of gene pair would be strictly equal to the gene (or gene pair)
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Fig. 3. Information of the two genes of the first million best pairs; each dot represents
the average value of a set of 10000 pairs. A black dot corresponds to the average of the
gene with the highest information of the pair whereas the white dot corresponds to the
average of the second one. The two thin symetric lines above each set of dots represent
the standard deviation of the information value of the 10000 genes composing each set

information. Most circles are on the left of the solid line, which means the newly
constructed features are more informative than the genes they are derived from.
Those results show that our feature construction method is effective for synthe-
sizing the information contained in a gene pair, answering our second question.
In constructing these new features the information contained in two genes is
compressed into only one feature, It is not surprising that this new feature does
not automatically capture all the information of the pair.

4.4 Classification Accuracy

We have compared our method to the classical method using mutual informa-
tion and to the gene-pair based methods of Geman and Bo. The classical method
using mutual information is a scoring method where the mutual information be-
tween each gene and the class is computed individually. Genes which have the
higher correlation with the class are selected. The complete description of the
methods of Geman and Bo can be found in the bibliography [9, 3]. In order
to measure the impact of these methods on classification, we examined classi-
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Fig. 4. Comparison of the information of newly constructed features and information
of gene (dot) or gene pair (cross). The solid line represents the case where the newly
constructed feature information of a gene pair would be strictly equal to the gene (or
gene pair) information

Table 3. Different classification results on the two public datasets. All errors are
estimated using the .632 bootstrap estimators

Algo Data All Gene Info. Mut. Gene Pairs FeatKnn Bo Geman
SVM Leukemia 12.3 4.3 4.8 2.8 3.9 6.1

colon c. 17.5 12.5 11.8 10.7 13.9 14.6
KNN Leukemia 8.4 4.8 6.2 5 4.6 6.3

colon c. 17.5 13.9 14.4 12.8 15.9 16
DLD Leukemia 11.5 4.8 4.8 3.8 4.1 5

colon c. 19.5 14.7 15.4 12.5 14.4 15

fication accuracy on two datasets. First the informative gene pairs were identi-
fied, secondly new features were constructed, then a classifier was built by the
classification algorithm and finally the generalization error of the classifier was
computed. It should be noted that the dimension-reduction step was performed
within the evaluation procedure and not before. The cross-validation estima-
tor (particularly the 10-cross validation or Leave-On-Out) is commonly used to
compute the generalization error. On the two public databases we have used,
to the best of our knowledge the best results obtained are 0% error rate on the
leukemia dataset and 10.7% on colon cancer dataset using the Leave-On-Out
estimator. However Braga-Neto showed that this estimator is not the most ap-
propriate one for a small sample context like microarrays [4]. Cross-validation
has a high variance and bootstrap estimators are preferred, in particular the .632
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estimator [8]. This is a weighted sum of the empirical error and the out-of-bag
bootstrap error (100-bootstrap iterations were performed) and is the method
we have chosen to evaluate the classification accuracy. We used three classifica-
tion algorithms: support vector machines (SVM), k-nearest neighbours (KNN)
and diagonal linear discriminant (DLD). The three are accurate in classifying
microarray data [7, 14].

Table 3 summarizes the different classification performance of the algorithms
and reduction methods. It is not surprising to see that dimension-reduction
methods considerably improve classification performance, and the methods of
selecting the best genes and best pairs give similar results. How can we explain
why these pairs do not improve classification performance? It is probable that
the information contained in the interaction between the genes of one pair is
not totally exploited by the classification algorithms, and much of the informa-
tion computed during the pair-selection phase is thus lost. The new features
constructed by FEATKNN synthesize the information contained in the genes
and their interactions and in this case the classification exploits the interac-
tion between the genes using these newly constructed features, which explains
the better results. FEATKNN outperforms the other two methods of Bo and
Geman, both of which give results that are similar to those of gene pairs. We
can suppose that Bo’s and Geman’s methods find relevant gene pairs, but the
classification method can’t exploit their information completely. The fact re-
mains nonetheless that biological interpretation becomes different from that of
the classic approach. There are no longer any maximally discriminating genes
but lists of pairs, which it might be possible to use in the study of regulation
networks.

5 Conclusion

In this paper we have presented a dimension-reduction procedure for microar-
ray data oriented toward improving classification performance. These methods
are based on the hypothesis that the information provided by the interaction
between genes cannot be ignored in the feature selection phase. We have lim-
ited this study to interactions between pairs of genes. Although it is natural
to quantify information from genes and interactions from the computation of
mutual information, this simple reduction does not necessarily improve perfor-
mance. Thus, we have developed a feature construction method, FEATKNN,
which forces learning algorithms to take into account pairs with a high level
of mutual information. The experimental usefulness of these interactions was
assessed on two datasets where performance was improved. We are currently
systematically analyzing other microarray datasets to accumulate evidence of
such an improvement. To analyze the biological interest of gene pairs we are also
working on as we have biological experts that may analyze the pairs.

Another research direction is aimed at taking into account synergies between
wider groups of genes, as well as theoretical analysis of the gains obtained by
these dimension-reduction approaches.



Combining Feature Selection and Feature Construction 273

References

1. R. Bellman. Adaptive Control Processes: A Guided Tour. Princeton University
Press, 1961.

2. A. Ben-Dor, N. Friedman, and Z. Yakhini. Scoring genes for relevance. Technical
Report AGL-2000-13, Agilent Technologies, 2000.

3. T. Bo and I. Jonassen. New feature subset selection procedures for classification
of expression profiles. Genome Biology, 2002.

4. U.M. Braga-Neto and E. Dougherty. Is cross-validation valid for small-sample
microarray classification? Bioinformatics, 20(3):374–380, 2004.

5. D. Cakmakov and Y. Bennani. Feature selection for pattern recognition. 2002.
6. Clement. Monogenic forms of obesity: From mice to human. Ann Endocrinol, 2000.
7. S. Dudoit, J. Fridlyand, and P. Speed. Comparison of discrimination methods for

classification of tumors using gene expression data. Journal of American Statistis-
tial Association, 97:77–87, 2002.

8. B. Efron. Estimating the error rate of a prediction rule: Improvement on cross-
validation. Journal of American Statistical Association, 78:316–331, 1983.

9. D. Geman, C. D’Avignon, D. Naiman, R. Winslow, and A. Zeboulon. Gene ex-
pression comparisons for class prediction in cancer studies. Proceedings 36’th Sym-
posium on the Interface: Computing Science and Statistics, 2004.

10. B. Hanczar, M. Courtine, A. Benis, C. Henegar, K. Clément, and J.D. Zucker.
Improving classification of microarray data using prototype-based feature selection.
SIGKDD Explorations, 5:23–30, 2003.

11. K.B. Hwang, D.Y. Cho, S.W. Park, S.D. Kim, and B.T. Zhang. Applying ma-
chine learning techniques to analysis of gene expression data: Cancer diagnosis. In
Methods of Microarray Data Analysis (Proceedings of CAMDA’00), pages 167–182.
Kluwer Academic Publichers, 2002.

12. I. Inza, B. Sierra, R. Blanco, and P. Larrañaga. Gene selection by sequential
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Abstract. This paper presents an abstraction of a vague and rapidly-
changing environment, an urban disaster space, and a reasoning engine
which recognizes and describes the motion of rescue agents as they tra-
verse the disaster space. More specifically, we present a qualitative ab-
straction of the Robocup Rescue1 simulation environment, and imple-
ment a commentator engine, which constructs a qualitative representa-
tion of the changes in the environment and produces descriptions of the
agents’ motion by recognizing patterns which motion can take. The pat-
terns recognized are elements of a set of formalizations that qualify each
type of motion pattern based on a qualitative representation of vague
spatiotemporal moving objects. We also present a set of performance
metrics to evaluate our qualitative representation.

1 Introduction

Qualitative spatial reasoning (QSR)[3] focuses on providing formal qualitative
abstractions and reasoning frameworks that capture essential spatial properties
as well as the relationships that hold among spatial regions. To reason about
motion and spatial changes over time, qualitative spatiotemporal representations
(QSTR) have been developed. Knowledge representations developed during the
last two decades [14] have established the foundations for QSTR. Currently,
the applications of QSTR include scene interpretation in cognitive vision [4],
natural language understanding [15] , design tasks for engineering disciplines [8],
GIS [6, 13] and robotics [7, 10].

In this paper, we examine the application of QSTR to the abstraction of an
urban environment following a natural disaster. Frequently, rescue efforts are
hampered by the lack of coordination among rescue agents. Qualitative abstrac-
tions of the dynamic changes in the disaster space provide the base for effective
automated support for rescue efforts. One of our goals is to assess the advantages
of representing disaster-world objects using a qualitative spatiotemporal theory
of vague objects. As information from the rescue agents becomes available, a
commentator agent generates qualitative description of the their motion.

1 http://robot.cmpe.boun.edu.tr/rescue2004/

J.-D. Zucker and L. Saitta (Eds.): SARA 2005, LNAI 3607, pp. 274–281, 2005.
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The commentator qualitatively describes developments in the RoboCup Res-
cue simulation environment where there are fires, road blockades, civilian injuries
and building destruction following a natural disaster. A number of independent
software agents are responsible for rescue efforts in the city after the disaster.

The RoboCup Rescue simulation represents a dynamic environment where it
is important to capture spatiotemporal changes. As the situation changes con-
tinuously, available knowledge is always vague. Using a spatiotemporal represen-
tation for vague regions, we develop qualitative abstractions of the environment.
Objects including buildings and roads are used to create a new type of objects,
disaster-space objects, which are abstractions of the real world objects. For ex-
ample, a group of adjacent burning buildings are abstracted to create a fire
burnout cluster, which is a vague region. Hence, the disaster-space objects can
be represented by our qualitative theory for spatiotemporal regions with vague
boundaries [9].

We compare the qualitative representation of the rescue environment to the
existing quantitative one using three different parameters that we define.

2 Overview of the RoboCupRescue Simulation

The RoboCup Rescue project simulates a large urban disaster which takes place
in a city where an earthquake has hit causing great damage. The city is two-
dimensional and contains mobile as well as immobile objects whose locations are
identified by their rectangular coordinates. The immobile objects include build-
ings and roads, while the mobile objects include the civilians and rescue agents.
The disaster is simulated by three sub-simulators, each responsible for generat-
ing one type of after-effects of the earthquake. They include a fire simulator, a
collapse simulator, and a blockade simulator.

When the disaster hits, the effects are reflected on the city and the agents in
it. Some of the buildings sustain damage or fall blocking the roads. Fires break
out in many buildings causing them to burn. Roads may become blocked due to
the fallen debris. Agents may get injured or buried under the debris. The sub-
simulators are responsible for deciding the extent of the damage to the world
objects depending on their locations. The simulation contains a number of res-
cue agents whose main task is to clear the effects of the disaster and minimize
the damage in the city. The rescue agents are of six types representing fire fight-
ers, police officers, ambulance teams, fire stations, police centers and ambulance
centers.

Hence, one can look at the RoboCupRescue environment as being made of
three components, the disaster space, the sub-simulators and the rescue agents.
In our work we have created a qualitative representation of the disaster space
that we used to describe the motion of the rescue agents around objects of this
representation. The agents creation, initialization and such tasks are part of
the Robocup Simulation project and do not constitute any contribution for this
work, hence they will not be discussed. Next, we review the main features of our
qualitative spatiotemporal theory used in this work.
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3 A Qualitative Theory of Vague Spatio-temporal
Objects

In [9] we presented a formalization of the notion of motion of vague spatio-
temporal objects. The aim of the theory is to identify the patterns that motion
between two vague spatiotemporal objects can take, in order to formalize the
notion of motion of regions with ill-defined boundaries and qualify its forms.

In [9], a moving object whose boundaries cannot be easily determined is the
building block of the representation. We represent such object by an EggYolk
pair [2] which is made of two concentric subregions, a white and a yolk as shown
in figure 1. The yolk represents the parts that definitely belong to the region
while the white represents the parts that may or may not belong to the region.

Fig. 1. The EggYolk Structure

Our vague moving object possesses topological properties that describe its
spatial relations with other objects during a given period and temporal proper-
ties that describe the relations among the regions’ lifetimes. The two types of
properties jointly define and give the regions spatio-temporal properties.

We define the set of motion classes MCv which represents the set of patterns
of motion that may hold between two EggYolk spatiotemporal regions.

MC v = {REACH v z x y, LEAVE v z x y, INTERNALv z x y, EXTER-
NALvz x y, P REACH v z x y, P LEAVE v z x y, P INTERNALv z x y, P EXT
ERNALv z x y}

Each mcvi z x y ∈ MC v, where 1 ≤ i ≤ 8, is read as: motion pattern mcvi
holds between vague (EggYolk) spatiotemporal regions x and y during interval
z. For example, REACH v z x y is read as: vague spatiotemporal region x has
reached vague spatiotemporal region y during interval z.

The elements of MC v are divided into two subsets. The first includes patterns
having no prefix, which represent complete occurrence of the motion class. The
second includes patterns starting with prefix P denoting partial occurrence of
the motion class. In figure 2, the horizontal axis represents the spatial extent of
the region and the vertical axis represents the temporal evolution of the region.
Hence, the beginning of interval z is located in its lowest t value and its end is
located at its highest t value. The spatial extents of regions x and y evolve as
time increases and this forms the patterns shown in the figure.

Hence, in this work, we describe the vague rapidly-changing disaster-space
objects (e.g. fire burnouts) as EggYolk spatiotemporal objects and use elements
MC v to formalize the motion of rescue agents around them.



A Qualitative Spatio-temporal Abstraction of a Disaster Space 277

Fig. 2. MCv Motion Classes

4 A Qualitative Commentator

Here we outline the structure of a commentator which produces the motion
patterns formed as the rescue agents move from one EggYolk region to another.

4.1 Ontological Primitives

We create EggYolk spatio-temporal regions out of every situation where vague-
ness may exist. This is equivalent to creating a new form of objects which span
through the real-world objects and abstract them to form vague spatio-temporal
regions.

The difference between the real-world objects and their EggYolk equivalents
is that the real-world objects have well-defined boundaries, size and location
while the disaster-space objects are regions with vague boundaries whose size
and location undergo continuous change as long as the simulation is running.

We have identified two types of EggYolk regions. The first is an abstraction
of the buildings on fire and the second is an abstraction of blocked roads.

A fire region is made of a group adjacent buildings that are on fire. A
FireCluster object fc is an EggYolk object whose yolk contains a fire region fr
and whose white contains the buildings surrounding the fire region fr.

A blockade region is made of a group adjacent roads that are blocked. A
BlockadeCluster object bc is an EggYolk object whose yolk contains a blockade
region br and whose white contains the roads surrounding the blockade region br.

Hence, fire is no longer seen in terms of burning buildings, but in terms
of EggYolk objects, where each is treated as a separate fire cluster. Although
a cluster is made of buildings, these buildings are completely invisible to our
representation and commentator logic and are treated as implementation details.
The same picture can be drawn for the blockades as the only visible objects are
the road clusters while the physical roads are invisible.
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4.2 Motion Patterns

We define a set of capabilities that implement the elements of the set MC v. More
specifically, for each mcvi ∈ MC v, we implement the function:

r = mcvi(EggYolk ey, Agent ag, int t1, int t2)

r is a boolean value that holds true if the motion pattern mcvi between ey
and ag holds during the interval [t1,t2].

4.3 The Commentator

The commentator maintains the lists FAgents, PAgents, FClusters, BClusters
representing the sets of fire brigade agents, police force agents, EggYolk fire
clusters and EggYolk blockade clusters respectively. The commentator object
is created when the simulator starts at the same time the agents are created
and simultaneously populates FAgents and PAgents from the simulation kernel.
FClusters and BClusters are also created but are initially empty because the
damage has not struck yet.

After the beginning of the simulation, the commentator performs a repetitive
task every x cycles2 which includes updating the lists FClusters and BClusters
to reflect its new view of the world, and describing the motion patterns as follow:

rf=[rfk
|∀ fa∈FAgents, mcvi ∈ MC v, fcl∈FClusters, rfk

= mcvi(fcl,fa,t-x,t)].
r b=[r bn

|∀ pa∈PAgents, mcvj∈MC v, bcl∈BClusters, r bn
= mcvj (bcl,pa,t-x,t)].

Using lists rf and r b, the commentator produces descriptions of the motion
patterns of the agents in FAgents as they traverse the FireCluster objects in list
FClusters and agents in PAgents they traverse the BlockadeCluster objects in
list BClusters.

5 Sample Run of the Commentator

Output is produced every 5 cycles. We choose as an example the output at an
arbitrary cycle (cycle 25).

Since the aim is only to show the output language of the commentator, we
chose to truncate parts of the output in order to preserve space.

Time = 25 World Description:

World Objects: 45 Buildings and 48 Roads

Agents: 7 Fire Brigades and 6 Police Force Agents

15 Buildings on Fire, 3 Fires, 40 Blocked Roads, 10 Blockades

Quantitative Description of Motion:

Fire Brigade Agent 25 in in building b:8 - putting out fire

Fire Brigade Agent 12 in in building b:19 - moving

2 The cycle is the time unit used by the simulation, which runs for 300 cycles every
time.
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Police Force Agent 91 in road r:13 - moving

Police Force Agent 23 in road r:61 - clearing

Qualitative Description of Motion:

Fire Brigade Agent(s) 25 reach cluster fc:1 - putting out fire

Fire Brigade Agent(s) 12 possible leave cluster fc:1 - moving

Police Force Agent(s) 91, 17 internal cluster bc:3 -

17 clearing, 91 moving

Police Force Agent(s) 63 possible internal to cluster bc:9 -

clearing

6 Experiments and Results

We propose three performance metrics to evaluate our qualitative representation
against the existing quantitative one. We use the commentator to perform our
experiments and collect the average results of running the simulation 20 times
on 3 different maps for both the qualitative and quantitative simulations.

6.1 Compactness

Measures the extent to which the representation minimizes redundancy in the
knowledge it captures. A compact representation contains only the objects rel-
evant to the tasks it ought to perform and events that cause a change to its
knowledge base.

We define two variables, world size which is the number of relevant regions
the representation captures and the event rate which is the number of events
that take place during interval [t-5, t ].

size qual = count(FClusters)+count(BClusters)
size quan = count(world.burningBuidings)+ count(world.blockedRoads)
event rate qual = neventfire

+neventblock

event rate quan = peventfire
+peventblock

Where neventfire
is the number of fire agents fai ∈ FAgents traversing Fire

Cluster region fcj ∈ FClusters.
peventfire

is the number of fire agents ai ∈ FAgents that change location from
bj to bk where bj , bk ∈ world.burning Buildings3.

As the results in figure 3 show, the number of relevant events and objects
generated in the qualitative experiments is less than the quantitative one.

6.2 Merit

Measures the precision at which the representation captures the world and its
ability to discard false statements from its knowledge.

We identified two situations whose existence is considered a false representa-
tion of the world and accordingly formed two metrics. The percent exclusion

3 world.burningBuildings can be directly implemented in the existing simulator and
used to extract the buildings of the world that are on fire.
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Fig. 3. Compactness of the Qualitative Representation vs. the Quantitative One. (a)
The World size (b) The Events Rate

error (PEE) measures the inability of the representation to correctly capture
all the objects assumed to be represented. The percent inclusion error (PIE)
measures the inability of the representation to correctly exclude objects from the
aspects of the world it captures.

PEE = damaged world objects not included in a cluster
total number of world objects

× 100%

PIE = safe world objects included in a cluster yolk
total number of world objects

× 100%

For our qualitative representation, PEE was 0.33% while the average PIE
was 0.19%. Hence, the two error measures are practically non-existent.

6.3 Expressiveness

Measures the extent to which the representation is able to describe actions/plans.
We have formulated a sample query to assess expressiveness. The query reads:

List all fire brigade agents currently at the border of a fire. As for the qualitative
representation, the task is to extract the fire brigade agents internal to the white
of a fire cluster. We obtain the set at border.

at border=[ag |∃fci∈FClusters,Possible INTERNALv(fci,ag,t-x,t)= true].

For the quantitative representation, the task is comprised of finding the build-
ings that are not on fire whose neighbor is on fire and subsequently checking if
a fire brigade is located at it or near it.

We have added a stopper flag that is turned on if the engine is unable to
compute a result by the end of one simulation cycle and produces -1 for the
number of agents satisfying the query if no result is produced.

The experiment results show that the qualitative representation reported 20%
more agents satisfying the query than the quantitative one.
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7 Conclusion and Future Work

By implementing a commentator that describes online developments in a dy-
namic urban disaster space, we were able to investigate the performance of a
spatiotemporal representation for vague EggYolk regions. The performance cri-
teria that we used try to measure the compactness, the faithfulness in capturing
the underlying world correctly, and expressive power of the representation.

The commentator is the first step towards implementing a qualitative lan-
guage to control the actions of the rescue agents as they perform their tasks.
Our aim is to develop a language that allows us to express qualitative strategies
like: ‘if a fire is too big and there are not enough agents to put it out then leave
it’, or ‘stay in a fire that is small until you put it out’. We believe that such an
abstract language will offer significant advantages in a dynamic environment.
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Abstract. We present The Cruncher, a simple representation frame-
work and algorithm based on minimum description length for automat-
ically forming an ontology of concepts from attribute-value data sets.
Although unsupervised, when The Cruncher is applied to an animal
data set, it produces a nearly zoologically accurate categorization. We
demonstrate The Cruncher’s utility for finding useful macro-actions in
Reinforcement Learning, and for learning models from uninterpreted sen-
sor data. We discuss advantages The Cruncher has over concept lattices
and hierarchical clustering.

1 Introduction

Concept formation is a form of abstraction that allows for knowledge transfer,
generalization, and compact representation. Concepts are useful for the creation
of a generally intelligent autonomous agent. If an autonomous agent is experi-
encing a changing world, then nearly every experience it has will be unique in
that it will have at least slight differences from other experiences. Concepts al-
low an agent to generalize experiences and other data. In some applications, the
concepts that an agent uses are explicitly provided by a human programmer. A
problem with this is that the agent encounters problems when it faces situations
that the programmer had not anticipated. For this reason, it would be useful
for the agent to automatically form concepts in an unsupervised setting. The
agent should be able to depend as little as possible on representations tailored
by humans, and therefore it should develop its own representations from raw
uninterpreted data.

One purpose of concept formation (and abstraction in general) is to concisely
characterize a set of data (Wolff[9]). With this view, one can use minimum
description length (MDL) as a guiding principle for concept formation. We have
developed an algorithm, called The Cruncher, which uses this principle to form
an ontology of concepts from a collection of attribute sets. The Cruncher is
general in the sense that no further knowledge of the attribute sets needs to be
provided.

In the past, several other methods have been proposed for concept formation.
Perhaps the most common form of unsupervised concept formation is clustering.
For an overview of some of these algorithms, see Fasulo[4]. A drawback to much
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of this work is that each item belongs in only one cluster. The Cruncher uses
multiple inheritance, which allows it to overcome obstacles faced by strictly
hierarchical classification systems such as hierarchical clustering and decision
trees. For example, in Figure 1, The Cruncher describes the Penguin (which has
attributes in common with Birds and Fish) as both a “bird” and an “aquatic”
creature. Hierarchical clustering would force the Penguin to be in only one of
these classes.

There has also been work on Ontology Formation (for example, see Gruber[6]),
but much of this work is aimed at knowledge engineering, where a human’s help is
required toassist theontology formation.TheCruncher is completelyunsupervised
in contrast. The Cruncher also allows for exceptions, which further sets it apart
from most of the work in this community. The Cruncher’s exceptions allows for
better compression, and, for the UCI Zoo Database, allows for classifications that
correspond to the human-developed classification. For example, the Platypus is
described as an egg laying mammal, even though mammals are defined as not
laying eggs.

The field of Formal Concept Analysis provides methods for producing Con-
cept Lattices, which form an ontology with multiple inheritance. The main as-
pects that set The Cruncher apart from this work are: first, due to the rigidity
of Formal Concept Analysis, exceptions are not allowed as they are for The
Cruncher, and second, MDL is not a driving factor in producing the concept
lattices. As we demonstrate in Section 3, The Cruncher provides better compres-
sion than standard Concept Lattice layout algorithms, such as that described in
Cole[3]. For an overview of the field of Formal Concept Analysis see Ganter and
Wille[5].

The idea for The Cruncher grew out of “PolicyBlocks”, an algorithm for
finding useful macro-actions in Reinforcement Learning (Pickett and Barto[7]).
The Cruncher extends PolicyBlocks by framing it in terms of ontology formation
and MDL, and by adding exceptions and the ability to create multiple levels of
concepts.

This paper is organized as follows: Section 2 provides a description of our
representation framework and The Cruncher algorithm. Section 3 reports the
results of applying The Cruncher to a variety of domains including the UCI
Zoo Database and macro-action formation in Reinforcement Learning. Section 4
discusses strengths and weaknesses of The Cruncher in light of these experiments,
and suggests future research directions to address The Cruncher’s weaknesses.

2 The Cruncher

Given a collection of sets of attribute-value pairs, where each attribute’s value
is from a finite alphabet, The Cruncher produces a concept ontology which uses
inheritance to compress the collection of attribute sets. One can “flatten” this
ontology by computing the inheritance of every node in it, and this flattened
ontology will contain the original collection of attribute sets. The Cruncher uses
a greedy approach for reducing the description length of the ontology (which is
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initially just the collection of attribute sets). The description length is defined
as the number of links in the ontology, be they “is-a” or “has-a” links, where an
“is-a” link designates that one node inherits from another, and a “has-a” link
specifies an attribute that a node has and that attribute’s value. (Whether the
number of nodes was also included in the description length did not significantly
affect our results partly because this number usually closely corresponds with
the number of links.) The Cruncher generates candidate concepts by finding the
“intersections” of subsets of the current items in the ontology. These candidates
are then evaluated by determining the reduction in description length if each
were to be adopted as concepts in the ontology. If no candidate reduces the
description length, then The Cruncher halts. If a candidate is selected, then it is
added to the ontology, and all other concepts in the ontology inherit from it if it
reduces their description length. If there is a contradiction in the value assigned
to an attribute by the nodes from which a concept inherits, that term is simply
discarded. Furthermore, if a concept has an attribute, but the node from which
it inherits has a different value for that attribute, then the concept states what
its value is for that attribute. Thus, exceptions are allowed.

The runtime of this algorithm depends on whether one generates all possi-
ble candidate concepts, which, theoretically, can be exponential in the number
of sets of original attribute pairs. In practice, one can successfully generate on-
tologies by randomly generating only a subset of these candidates, thus yielding
a polynomial time algorithm. There is also an incremental version of this algo-
rithm which works works by inserting one new concept at a time, and generating
candidates by intersecting that node with each of the other concepts in the on-
tology. The top candidate is selected (or none if no candidate yields a decrease
in description length), then this candidate is inserted into the ontology following
the same procedure.

3 Experiments

To test the general applicability of The Cruncher, we chose a diverse set of domains
to which we applied our algorithm. The UCI Zoo Database is useful for gaining
insight about The Cruncher’s ontologies. PolicyBlocks provides a non-bitvector
domain for which there is a definite performance measure (cumulative reward).
The Circles world demonstrates The Cruncher’s utility for a basic sensor time-
series domain. The Concept Lattice Comparison provides an example of a typical
concept lattice ontology and The Cruncher’s ontology on the same data set.

3.1 The UCI Zoo Database

We applied The Cruncher to the Zoo Database from the UCI Machine Learning
Repository[1]. This data has 101 animals which are represented as bit vectors
of length 16 (we changed the integer attribute “number of legs” to the binary
“has legs” for consistency). Additionally, this dataset has a classification for each
animal, which we discarded. The ontology that was created by The Cruncher
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Fig. 1. The Automatically Created Zoo Ontology. Arrows represent inheritance,
and the attributes and their values are listed in the nodes. Grey nodes are the original
concepts in the database, and black nodes were created by The Cruncher. Mammals
are grouped in the lower right, fish in the lower left, and the other three major clusters,
from left to right, are, for the most part, reptiles/amphibians, birds, and invertebrates.
Note, the multiply inheriting Penguin in the upper left. The class of birds is divided
just for the Penguin, and the Penguin shares traits with the aquatic animals (“not
airborne”, “aquatic”, “predator”)

is shown in Figure 1. An interesting outcome is that the animals are arranged
according to their classification even though this classification data was never
provided. For example, there is almost a one to one correspondence to the ani-
mals that inherit from the black node in the lower right and the class Mammal.
(The Tuatara and the Tortoise are the only exceptions.) Birds, Fish, and In-
vertebrates are likewise grouped together. The utility of allowing exceptions is
demonstrated by the Platypus, which is classified as an egg-laying mammal (even
though mammals are asserted as not laying eggs). The utility of having multiple
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inheritance is demonstrated by the case of the Penguin, which shares traits with
both aquatic life and birds.

3.2 PolicyBlocks: Creating Useful Macro-actions

In Pickett and Barto[7], it was demonstrated that for policies in a Markov
Decision Process, certain concepts, which are effectively those created in the
first level of abstraction in The Cruncher, can be used as useful macro-actions.
These macro-actions outperform hand-chosen macro-actions such as getting to
the “doorways” of the rooms in a grid-world. We started with a 20 by 20 grid-
world structure (see Figure 2), and produced full policies leading to each of 20
randomly selected goal states. These policies are represented as a collection of
400 attribute-values, where the attributes are each of the 400 states, and the
values are one of up, down, left, and right.

Fig. 2. A macro-action ontology. On the left is a macro-action generated by apply-
ing The Cruncher to a set of policies on a grid-world. The structure of the ontology is
shown on the right. Each grey node corresponds to a full policy over the grid-world.
Each black node is a sub-policy, or macro-action, that was produced by The Cruncher.
For example, the macro-action encoded by the bottommost node in this ontology is
that shown in the grid-world on the left. The arrows are “is-a” links, so every full policy
can be thought of as the composition of all the sub-policies from which it inherits (in
addition to the grey node’s own modifications). Thus, each black node can be thought
of as a “building block” for a full policy. (This is the origin of the term “PolicyBlocks”)

3.3 The Circles World

We applied The Cruncher to the Circles domain. This is a simple 2 Dimensional
physical simulation where the “particles” are circles that are “gravitationally”
attracted to each other. The circles are on a torus-shaped world (i.e., the top
and bottom “wrap around” to each other as do the left and right sides). There
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Fig. 3. The Circles World On the left is a snapshot of The Circles World, which
is represented as a set of 2,500 (50 by 50) features corresponding to each of the 50
by 50 pixels. The 12 circles shown are in the process of orbiting each other in their
gravitational dance. One the right is the circles top-level concept ontology. The grey
areas are unspecified, and the lower 3 squares show only their hasA sets (as opposed to
being flattened). The edges are “is-a” links. Thus, one can inherit from these “Circles
concepts” to help compose a full Circles snapshot, such as the one shown on the left,
just as one can use the “Policy blocks” in Figure 2 to compose full policies

are no collisions, but when the circles are sufficiently close to each other, their
attraction is nullified until they are farther apart.

We provided The Cruncher with 50 “snapshots” from this simulation, where
a snapshot is a set of 2,500 bits representing a 50 by 50 bitmap (see Figure 3).
Note that the 2,500 bits are a raw data set. That is, no organization was provided
to The Cruncher about whether, for example, Bit-1837 had anything more to do
with Bit-1836 than it did with Bit-2354. This is fundamentally the same type
of problem that Pierce and Kuipers[8] addressed using a different method based
on statistical analysis. At the level of these bits, the concept of a circle is a fairly
abstract entity. Here, The Cruncher has taken some steps toward describing the
notion of a circle in that it has found that bits that form a circular pattern (when
arranged in a bitmap) have something to do with each other. Figure 3 shows
the top level concepts in the ontology created by The Cruncher for this domain.
Noticing these correlations is the beginning of a theory of 2 Dimensional space,
that is a similar result (though by different means) to the first step produced by
Pierce and Kuipers[8].

3.4 Concept Lattice Comparison

The Cruncher yields better compression results than standard concept lattice lay-
out algorithms. For example, the ontology produced by The Cruncher (Figure 4)
for a Biological Organism domain had both fewer edges and fewer nodes (28 and
11, respectively) than that produced by Cole’s method[3] (37 edges and 18 nodes).
Additionally, formal concept lattices do not allow for exceptions, whose useful-
ness was shown in the case of the Platypus in the Zoo Database (see Figure 1).
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Fig. 4. Concept Lattices. A Biological Organism Domain adapted from Cole[3]. The
ontology on the left was produced by a concept layout algorithm from that same paper.
It has 37 edges (including the 9 “attribute” edges) and 18 nodes, which is more edges
and more nodes than the ontology produced by The Cruncher shown on the right,
which has 28 edges (including 17 “attribute” edges) and 11 nodes

4 Discussion

The strength of The Cruncher lies in its simplicity and its generality. The
Cruncher was directly applied (i.e., with minimal massaging of the input repre-
sentation) to diverse domains with positive results. Therefore, we believe that
the basic ideas underlying The Cruncher may play a pivotal role in abstraction
algorithms in general. The principle of MDL may be a part of a more general
principle of Balance of Computational Resources. Occasionally, it is useful to
cache the result of an inference, thereby trading memory for time. For example,
one needs only Euclid’s 5 postulates and an inference mechanism to produce all
of Euclidean geometry. In practice, it’s often useful to “cache” theorems rather
than rederiving them even though this results in a larger description length. This
resource balance may be viewed as finding Pareto optima in model space where
models are evaluated by their time and memory requirements, and their accu-
racy. Alternatively, a model may be given a score based on some “exchange rate”
among these resources. There have also been arguments that MDL alone might
not be sufficient to produce useful concepts (Cohen et al.[2]) since compression
tends to find frequent, but not necessarily meaningful results. However, sheer
frequency is not the only factor in The Cruncher, and it would be interesting to
apply our algorithm to the data set used by Cohen et al.[2] for which standard
compression algorithms fail to produce meaningful results.

There are several extensions that can be made to The Cruncher. Among the
most immediate of these is exploiting the heterarchy of the created ontology to
speed up further crunching. This might be especially useful in the incremental
version. There are some forms of concept formation that people do, but The
Cruncher does not handle. For example, a person can watch a bird’s eye view of
a simulation of highway traffic, and quickly point out traffic jams. The person
could tell you where the traffic jams are, how big they are, and how fast they are
moving (traffic jams tend to move in the direction opposite that of the cars in
them). A traffic jam is different from a cluster of cars because, like particles in
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a wave, individual cars enter and exit a traffic jam, but the traffic jam remains.
The circles in The Circles domain are like traffic jams in the sense that certain
pixels turn on and off, but a pattern (i.e., the circle) remains consistent. The
Cruncher also has no notion of precedence or dynamics. For example, the order
of the snapshots of the circles domain was discarded. If one adds the ability
to represent order, relationships, and dynamics as attribute-values, then The
Cruncher can be used to organize and form concepts from stories, processes, and
properties.
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Abstract. In this work we investigate a symbolic heuristic search al-
gorithm in a model checker. The symbolic search algorithm is built on
a system that manipulates binary decision diagrams (BDDs). We study
the performance of the search algorithm in terms of the number of BDD
operations, size of the BDDs, number of nodes they contain and run-
time. We study the heuristic distribution of the state space, we measure
effort by computing the mean heuristic value, and we compare single and
multiple heuristics. In the case of multiple heuristics, we consider admis-
sible and non-admissible merge strategies. We experiment on problems
from a variety of domains. We find that multiple heuristics can perform
significantly worse than single heuristics in symbolic search in at least
one domain. In general, the effect of the heuristics on the symbolic search
in the different domains varies markedly, and we conjecture that the dif-
ferent behaviour is caused by intrinsic differences in the characteristics
of the state space.

1 Introduction

Formal verification techniques such as model checking [3] have gained much at-
tention in the past decade. From the time Binary Decision Diagrams (BDDs)
were introduced [2], symbolic model checking [16] that uses BDDs have been very
successful in handling designs that have extremely large state spaces. While
BDDs can represent the state space compactly, symbolic model checking of
course still suffers the problem of “state space explosion” as it still must enu-
merate the full state space. This enumeration is typically done using a ‘blind’
breadth-first or depth-first search strategy. The blindness of the search is an
unnecessary handicap that results in many irrelevant states being visited.

Heuristic-search algorithms such as A∗ and IDA∗ have been employed in AI
research to solve many hard state-space search problems [13]. The big advantage
of using a heuristic search strategy is that only part of the state space needs to
be searched. Many verification of system design techniques, for example model
checking, involve searches for a defect in a model. Coupling symbolic model
checking with heuristic search techniques yields a more efficient technique to
detect defects.
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In [7, 9, 12, 17] traditional explicit-based heuristic search algorithms have been
modified to use BDDs to represent the state space. These methods can enhance
the “bug-hunting” capabilities of symbolic model checkers because of the action
of the heuristics in guiding the search. In [6], heuristics are classified as property-
specific, structural and abstraction heuristics. Property-specific heuristics can
usually be derived from analysing the property that is being verified. Structural
heuristics guide the search algorithm by taking into account the structure of
the state space. These two heuristics often work well in explicit state model
checking. The third class of heuristics are developed from the abstractions of
the model that is being verified. In this class of heuristics, the abstraction is a
‘relaxation’ of the system, and is generated by removing complicating detail from
the concrete model. Abstractions here are called “patterns”, and the resulting
heuristics “pattern databases”.

A pattern database [4] stores the distance of a pattern to some sub-goal state.
Pattern databases were originally developed to solve many hard combinatorial
puzzles in AI, e.g. n2−1 puzzles. In [5, 19, 6] this notion is extended and combined
with data abstraction, which is another technique to reduce the size of the state
space. In earlier work [19, 20], we have seemlessly integrated symbolic pattern
databases and symbolic model-checking algorithms.

Research in pattern databases has been well studied in AI. Holte and
Hernádvölgyi [11] studied the trade-off between time and space for memory
based heuristics. Korf and Felner [14] used so-called disjoint pattern databases,
and solved very challenging search problems like Rubick’s cube. Multiple pat-
tern databases have been comprehensively investigated in [10], as well as the
relationship between the distribution of heuristic values and the search effort.
Felner et al in [8] studied the generation of admissible heuristics by partition-
ing the problem into disjoint sub-problems. They use both static and dynamic
schemes of partitioning. All this work only considered explicit-state search algo-
rithms of course, and were only concerned with admissible heuristics, and only
experimented on classical AI problems.

In this paper, we conduct experiments in heuristic- and BDD-based symbolic
search in model checking for models from various domains. We seek to under-
stand the effect that symbolic state enumeration brings to heuristic search, par-
ticularly with respect to each of the domains. We do this for both single-heuristic
and multiple-heuristic search strategies. In the next section we briefly describe
the framework we use for generating heuristics for a model checker. In Section 3
we lay the formal groundwork for the work. In Sections 4 to 8 we describe a series
of experiments. We do an overall evaluation and draw conclusions in Section 9.

2 Abstraction-Guided Symbolic Model Checking

The technique we use is called the abstraction-guided symbolic model checking
framework. In our previous work [19, 18, 20], we have used a single abstraction to
guide the BDD-based symbolic search. In this work we extend this approach and
consider multiple abstractions. We briefly describe the general approach here and
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Fig. 1. The abstraction-guided model-checking framework

interested readers may refer to [19] or [20] for details. The abstraction-guided
framework is depicted in Figure 1.

The process starts with the design, which we refer to as the concrete model.
In the first step we generate a data abstraction of the concrete model. Note
that in this step, we can generate more than one abstraction for the concrete
model. We refer to a single abstraction as SA and multiple abstractions as MA in
Figure 1. The abstract model(s) are taken as input by a symbolic model checker.
If the model checker verifies the abstract model(s), we terminate as the data
abstraction guarantees the soundness of the properties we are interested in. If the
abstract model(s) fail the verification, we construct abstraction heuristic(s) using
the abstract model(s). The guided model-checking algorithm is then invoked to
check the concrete system using this heuristic as guide. The outcome of the
heuristic model checker is either that the concrete model is verified, or a counter-
example (CX in the figure) that will reveal the defect in the design (assuming
the algorithm terminates of course).

Note that unlike other research in model checking, we use the same abstrac-
tion to (1) reduce the size of the model and (2) to guide the heuristic search
algorithm. We have implemented this approach in a tool, called Golfer. This
tool is built on top of the well-known symbolic model checker NuSMV1.

1 http://nusmv.irst.itc.it/
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The heuristics that we construct from abstractions extend the notion of “pat-
tern databases” developed in [4]. As our representation of the problem is based
on BDDs, following [5, 6], we refer to these heuristics as symbolic abstraction
databases (SADBs).

3 Symbolic Abstraction Databases

The terminology used in heuristic search in AI and in verification is quite dif-
ferent. In this section we define the notation we use, and explain our approach.
We model AI search problems and the verification of safety properties using a
finite-state model as follows.

Definition 1 (Finite Transition System). A finite state transition system
is a 4-tuple M = (S, S0, R,G), where

– S is a finite set of states
– S0 ⊆ S is a set of initial states
– R ⊆ S × S is a transition relation (or operator) that determines a set of

successors for a given state s ∈ S
– G ⊆ S is the set of goal states

Definition 2 (Solution Path). Apath inafinite transition system (S, S0, R,G),
denoted byπ, is a sequenceof states s0, s1, . . . , sn where sn ∈ Gand for all0 ≤ i < n,
si ∈ S ∧ (si, si+1) ∈ R. If a path is a solution path then s0 ∈ S0. The length of π,
written |π|, is just the number of states in the path.

In verification, a solution path is called a counter-example as it demonstrates
why the property that is being verified is not true.

Since we are only interested in symbolic heuristic search in this work, we en-
code M using Boolean expressions. Given a transition system M = (S, S0, R,G),
we use a set of Boolean variables X = {x1, x2, . . . , xk} to model the state space
of M . A state can be represented by a truth assignment vector of X and all
possible truth assignment vectors comprise the state space S. The Boolean func-
tions S0(x1, x2, . . . , xk) and G(x1, x2, . . . , xk) are characteristic functions that
represent the states in S0 and G (resp.). To encode R we need another set of
Boolean variables X ′ = (x′

1, x
′
2, . . . , x

′
k) to represent the next state of a state

s. Likewise, R(x1, x2, . . . , xk, x
′
1, x

′
2, . . . , x

′
k) is the characteristic function for R.

In the discussion henceforth, we use M = (S,S0,R,G) to refer to the Boolean
encoding of a transition system M .

If a system is modelled using a set of Boolean variables X = {x1, x2, . . . , xk},
we call Xp ⊂ X a pattern set, and call those variables that are not in the
pattern set Xp. Given a pattern set and Boolean encoding of a transition system
M = (S,S0,R,G), we can abstract the transition system as follows.

Definition 3 (Abstraction). The abstraction of M = (S,S0,R,G) w.r.t a
pattern set Xp is also a transition system M̂ = (Ŝ, Ŝ0, R̂, Ĝ) represented by its
Boolean encodings, where
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– Ŝ is a disjunction of all minterms of variables in Xp

– Ŝ0 ≡ ∃XpS0(x1, x2, . . . , xk)
– R̂ ≡ ∃XpX

′
pR(x1, x2, . . . , xk, x

′
1, x

′
2, . . . , x

′
k)

– Ĝ ≡ ∃XpG(x1, x2, . . . , xk)

Definition 4 (Symbolic Abstraction Databases). Given a Boolean encod-
ing M̂ = (Ŝ, Ŝ0, R̂, Ĝ) of a transition system, we call a set σ = {(B0, 0), (B1, 1),
. . . , (Bn, n)} symbolic abstraction database such that:

– (Bi, i), where Bi is a Boolean characteristic function and i ≥ 0
– B0 ≡ Ĝ and Bi ≡ ∃X ′

p(Bi−1[Xp/X
′
p] ∧ R̂) for all 0 < i ≤ n

– Bn ∧ Ŝ0 �≡ False and Bi ∧ Ŝ0 ≡ False for all 0 ≤ i < n
– Bi ∧Bl = ∅ for all i �= j

The length of a symbolic abstraction database is |σ|.

It is proved in [5, 19] if there is a solution path π in a concrete system M , there
must exist a corresponding abstract solution path π̂ in the abstraction M̂ and
|π̂| ≤ |π|. Note that the existence of π̂ corresponding to π provides the theoretical
justification for using π̂ to guide the search. The lower-bound characteristic of
the abstract solution path allows the symbolic abstraction database to be used
as an admissible heuristic to estimate the actual number of transitions (distance)
between the current and goal states in the concrete system.

Definition 5 (Disjoint SADBs). Two symbolic abstraction databases σ1 and
σ2 are disjoint if their corresponding pattern sets Xp1 and Xp2 are disjoint, i.e.
Xp1 ∩Xp2 = φ.

Given a state s and characteristic function Fs in the concrete model and a
symbolic abstraction database σ = {(B0, 0), (B1, 1), . . . , (Bn, n)}, if Fs ∧ Bj �=
False for some pair (Bj , j), then we call the value j an estimator and denote it
as σ(s). Given a symbolic abstraction database, this estimator is unique as all
Bi are disjoint.

Theorem 1 (Additiveness). Let |πs| be the path length of s in M , and σ1

and σ2 be two disjoint symbolic abstraction databases. Let σ1(s) and σ2(s) be the
estimator of s in each of them. Then σ1(s) + σ2(s) ≤ |πs|.

This theorem guarantees that disjoint SADBs can be “added” together and
the result will still be an admissible heuristic. In this work we in fact also consider
pattern sets that are not disjoint. In verification, admissibility is less of an issue
as we are more interested in finding just a good path to a defect in the system, not
necessarily the shortest path. Our formal discussion about the disjoint SADBs
actually shares many aspects with the disjoint pattern database heuristics in AI
research [5, 14, 8].

We not only treat the system symbolically in this work, we also encode the
guided heuristic search symbolically. In [19, 20] we describe how SADBs are
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used by a symbolic model checker to detect safety violations. We further gen-
eralise the algorithm to use multiple SADBs. The search algorithm still works
as in [19]; the only difference being the way SADBs are queried. The essence
of the guided symbolic model checking algorithm is that each frontier BDD is
split into several smaller, so-called sub-BDDs (representing sub-frontiers), where
each of these sub-BDDs corresponds to a different heuristic value. Note that
this splitting in necessary in the A∗ algorithm as the heuristics help drive the
search. Edelkamp [7], who also studied the symbolic A∗ algorithm, used a dif-
ferent method however. In his method, the heuristic values are encoded into the
BDD directly. It is not clear whether this method has any advantages over our
method however. The heuristics in our research therefore fulfil two tasks: as a
search guide and as a mechanism to split BDDs. The splitting is carried by the
restrict operation (denoted as ↓) on BDDs [2].

Let D be a BDD representing a set of states of M and Φ = {σ1, . . . , σm} be a
set of SADBs. The algorithm below splits the BDD representing D and assigns
each sub-BDD an estimator according to the merge strategy of the SADBs.

Procedure Splitting (D, Φ,m strategy)
1 result← {(D, 0)}
2 for i in 1..m do
3 temp← result
4 result← {}
5 for each (d, h) ∈ temp do
6 for each (Bj , j) ∈ σi do
7 I ← d ↓ Bj

8 d← d ∧ I
9 if (I �= φ & m strategy = add)
10 result← result ∪ {(I, j + h)}
11 if (I �= φ & m strategy = max)
12 result← result ∪ {(I,max(j, h))}
13 if (d �= φ)
14 result← result ∪ {(d, |Φ|)}
15 return result

The input m strategy is the merge strategy used on the SADBs in the symbolic
heuristic search. The only possible values are add and max. Note that for disjoint
SADBs, both are admissible. If Φ is not disjoint, only max will be admissible.

While abstraction-based heuristics can reduce the search space in both the
AI and verification domains, the method used to derive abstractions in these
domains is very different. For example, puzzles and planning problems in the AI
domain can usually be physically modelled, so the abstraction of the problem
often involves the detection of physical patterns. In the n2−1 puzzle, for example,
we have corner and fringe patterns [4]. In verification, however, problems are
generally modelled by a large number of variables and the physical relationship
between the variables is neither physical nor obvious, often due to the high level
of concurrency of the model. Finding patterns in verification can be very difficult
indeed.
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In [20] we presented a procedure that automatically finds abstraction patterns
by using a data dependency analysis. The idea is based on the notion that
variables that are only indirectly related have a weaker influence on each other
than variables that are directly related. We build a variable dependency tree
rooted by the variables that occur in the goal state. The weakest variables,
which appear furtherest away from the root in the variable dependency graph,
are ignored. Note that this method does not always work well, particularly in
AI problems, where typically all variables are directly dependent on each other.

4 Experiment Set-Up

In explicit-state heuristic search, the number of states (or nodes) that are gen-
erated by the search algorithm can be used to evaluate the effectiveness of the
heuristic. In BDD-based heuristic search, however, we cannot use the number of
states that are generated by the algorithm as states are symbolically represented
by Boolean functions. We note that the number of nodes in a BDD is not related
to the number of states it represents. In fact, the effort that a symbolic search
algorithm must make to solve a problem is largely determined by the internal
operations of the BDD engine, not the number of states in the system.

The following attributes will be used to capture the search effort in our ex-
periments.

IM. The number of BDD image computations. These computations determine
the successor states of the search. It is called the relational product and involves
quantifier elimination, which is an expensive computation in symbolic model
checking. (IM is related to the size of the closed set in the explicit-state A∗

algorithm.)

SP. The number of splitting operations. The splitting operation involves the
‘restrict’ operation on BDDs. It is also expensive. (SP is related to the size of
the open set in explicit-state A∗ algorithm.)

ND. The total number of BDD nodes allocated. While the number of BDD
nodes is not directly related to the number of states, it still reflects the memory
usage of the algorithm and hence is the major memory measurement.

AS. The average size of all BDDs. Reducing the size of BDDs is important
because some BDD operations have exponential time complexity in terms of the
BDD size.

TM. The CPU time consumed by the search algorithm. In general the CPU
time is strongly related to the values of IM and SP.

We have used 5 models in our experiments: two of them are puzzles from the
AI heuristic search domain, and the other three are real-world design models
of concurrent systems. Note that all models have at least one goal state that is
reachable from the initial state set.
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Name Description Type

puz n2 − 1 sliding tile puzzle (N = 8) puzzle
perm N-pancake puzzle (N = 10) puzzle
dme distributed mutual exclusive ring circuit
ns Needham-Schroeder public key protocol protocol
peter Peterson’s mutual exclusion algorithm protocol

To construct SADBs we need to define the pattern set that is to be used
for the abstraction. For each puzzle model we use 4 different pattern sets that
are commonly used in AI heuristic search literature. For each of the verification
models, we use our data dependency analysis to also generate 4 pattern sets.
The pattern sets for each model are not necessarily disjoint as the optimality of
the solution path is not a primary concern in our work.

We ran the model checker for each of the (single) SADBs generated by the
pattern sets. We also used multiple SADBs that were constructed by merging 3
of the 4 SADBs for each model. We in fact constructed multiple SADBs by all
of the C3

4 combinations of SADBs and reported the best performance. As well,
both the add and max merge strategies were studied.

Caveat: At this point, we should point out that symbolic search algorithms
are not really suitable for solving the puzzle-like problems that often occur in
AI heuristic search, where good heuristics are known. The advantage of the
BDDs in manipulating sets of states in single operations is often outweighed by
the computational complexity of these BDD operations [17]. In essence, only
when the BDDs represent large sets of states does their use pay off. In gen-
eral, for these types of problems, explicit-state searches are often faster and
require less memory. We use these models in this work, however, for comparison
purposes.

5 Heuristic Distribution Experiment

The aim of this experiment was to study the distribution of the heuristic over the
state space. In Figure 2, we show the number of states in the SADB for different
heuristic values. In our symbolic approach, all states with the same heuristic
value is represented by a single BDD. To compute these results, we needed to
calculate how many (abstract) states a BDD can represent (which is of course
different to the number of nodes in the BDD). Note the logarithm scale on the
axis for the number of states. The diagram on the left is taken from randomly
chosen SADBs for the 8-puzzle model, and on the right, for the DME circuit
model.

In the figure we observe that different abstraction show similar behaviour
for each model. Comparing AI and verification, however, we observe that the
number of states increases exponentially as the heuristic value increases in the
case of the 8-puzzle, but decreases exponentially for the DME model.

We conjecture that this phenomenon is caused by fundamental differences
in the nature of the state spaces in these domains. Puzzles, for example, often
have few goal states, whereas safety properties in verification can be violated
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Fig. 2. 8-puzzle (left) and DME (right)

in many states, and hence there are many goal states. Having many goal states
means that the value of the heuristic tends to remain small. When we construct
SADBs, we use a backward breath-first traversal of the abstract model’s state
space. In the case of puzzles, the resulting search tree grows exponentially. In
verification, the size of the search tree decreases as many states share the same
predecessor. A conclusion one could draw from the behaviour we observe is that
heuristic search using SADBs has less to gain in verification models than in
AI models (in other words, the improvement over blind search will be less in
verification).

6 Mean Heuristic Value Experiment

In this experiment we wished to study whether or not the mean heuristic value
[15, 5], is a good predictor of the effort needed by the symbolic heuristic search.
In explicit-state heuristic search, it is well known to be a good predictor of
the search effort. The intuition is that it may not be in a symbolic setting
because it does not factor in the added computational overhead that BDDs
have.

The mean heuristic value (MHV) h of a SADB σ determines the overall
distribution of heuristic values and is defined as follows.

h =
|σ|∑
i=1

i× (|{s ∈ σ|σ(s) = i}|/|{s|s ∈ σ}|) (1)

Equation 1 actually computes the weighted mean heuristic value of σ. A high
value for h indicates that a larger proportion of states have large heuristic values
than have low values, and therefore the level of “informedness” is high. Ideally,
the value of h for a SADB σ should be as close as possible to |σ|, and in that
case it is said to be “well-informed”.

We chose three models, and for each model we use 4 different SADBs. The
results are shown below.
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SADBs MHV IM SP ND AS TM
puz-1 11.90 144 305 268421 361 1.050
puz-2 12.30 679 1581 547046 404 3.390
puz-3 9.03 495 1043 453495 455 2.970
puz-4 8.30 1353 2769 400189 429 6.900

dme-1 2.73 616 1121 193004 2921 74.110
dme-2 3.72 26 26 280683 3232 3.220
dme-3 3.68 26 26 289808 6268 11.090
dme-4 3.57 26 26 524103 12394 45.540

ns-1 8.13 28 106 92126 815 6.840
ns-2 5.37 421 1693 371040 964 122.420
ns-3 6.16 1110 6361 629380 1843 389.670
ns-4 5.34 475 2073 519868 1874 228.980

The statistics that concern the BDDs come from the BDD engine of the model
checker. Other statistics are generated from profilers. For each of the three mod-
els we give the results for each of the 4 SADBs. The value of MHV is calculated
using equation 1. For each model, we bold the row that has the shortest run-time
(TM).

For the puzzle model, the bolded row has the best performance in terms of
every attribute. While the MHV for puz-1 is not the highest one, the MHV is
nevertheless a good predictor of performance.

For the two verification models, the SADB with the shortest run-time has the
highest value of MHV. It is hence a very good predictor in the symbolic setting,
contrary to our intuition.

Unrelated to the MHV, we observe that dme-2, dme-3 and dme-4 use exactly
the same number of image computations and splitting operations (IM and SP).
However, in spite of the fact that dme-2 uses more BDD nodes (ND) than dme-1,
and will hence use more memory, it is still the best performer.

7 Multiple SADB Experiment

This experiment concerns the main focus of this work, and that is compare the
performance of single and multiple SADBs. Holte et al. [10] found that heuristic
search that is based on multiple SADBs out-performs search based on single
SADBs (for the same amount of memory). But Holte et al’s work is based on an
explicit-state search. So does it apply to a symbolic heuristic search as well?

We run each model with each of the 4 single SADBs. From these 4 SADBs,
we created 10 multiple SADBs (C2

4 from combinations of 2 SADBs plus C3
4 from

3 SADBs). We ran the symbolic search on each model with each of these 10
heuristics. We show the results for just two of the models in the following table.

SADB(s) IM SP ND AD TM

puz-sgl 144 305 268421 361 1.050
puz-mpl-1 133 284 353075 341 1.360
puz-mpl-2 203 440 409425 343 1.650
puz-mpl-3 160 349 299479 361 1.200

peter-sgl 40 97 109795 1332 4.414
peter-mpl-1 230 591 379365 816 14.273
peter-mpl-2 40 105 134202 822 16.442
peter-mpl-3 40 100 126754 716 16.357
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In the table, the results for the single SADB (denoted by the .sgl suffix) are the
ones that had the best performance. For the 10 multiple SADBs, we show just
the best performing 3, and these are indicated by the .mpl suffix. We used both
the add and max strategies to merge the SADBs.

Contrary to Holte et al’s findings, the results in the table above show that
multiple heuristics perform worse than single heuristics. The first two rows in
the table, puz-sgl and puz-mpl-1, are particularly interesting as they reveal that
even when the multiple SADB search uses less image computations and splitting
operations (which we noted earlier are the primary determinants of the compu-
tational complexity), it performs worse than the single SADB search. We note
the multiple SADB models use more BDDs nodes, and the average size of the
BDDs is smaller, in both models.

These results are quite surprising. Multiple pattern databases in explicit-
state heuristic search are effective because they improve the overall heuristic
distribution and hence result in smaller search trees. In symbolic heuristic search,
the heuristic is (also) used to split the frontier BDDs, and one conjectures, it is
this computation that causes the problem. Thus, much of the effort of symbolic
heuristic search is spent on splitting the BDDs, offsetting any gains that may be
had from the higher-quality, multiple heuristic.

8 Merge Strategy Experiment

In our final experiment we compared the performance of the add and max merge
strategies for multiple SADBs. We carried out this experiment by using both
strategies to merge both 3 and 4 single SADBs into a multiple SADB. We note
that the add strategy is not admissible so it can generate non-optimal paths.

Unlike our earlier experiments, this time we present tables for each of the
problem domains separately. The domains are AI puzzles, electronic circuits and
communication/security protocols. We do this because we found that the choice
of merge strategy effected the performance in a different way for each of these
domains. The only change in the table format to our earlier experiments is the
addition of the attribute LE, which indicates the solution length returned by the
search. You can see from this column when a search generated a non-optimal
path.

AI Puzzles. In the table below we see the results for the AI puzzles.

SADBs IM SP ND TM LE
puz-3-add 133 284 368552 1.450 24
puz-3-max 203 440 409425 1.650 24
puz-4-add 168 357 353075 1.360 24
puz-4-max 169 391 433784 1.880 24

perm-3-add 27 106 93224 5.720 13
perm-3-max 769 3446 1199309 294.340 11
perm-4-add 289 1833 237584 39.510 15
perm-4-max 2619 14427 859840 511.550 11
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We observe that, while the add merge strategy can result in a non-optimal path,
the resulting search is faster than that produced by the (optimal) max merge
strategy. In fact, in the case of perm, it is one or two orders of magnitude faster.
Note that there is almost the same difference between the max and add strategies
in the number of image computations and partition operations, so the result is
not surprising. There is a trade-off here: speed comes at the cost of optimality.

Electronic Circuit. This model has been constructed from a real electronic
circuit design and has been a widely used benchmark for symbolic model checking.

SADBs IM SP ND TM LE
dme-3-add 169 232 142574 10.520 37
dme-3-max 616 1122 186500 77.380 27
dme-4-add 169 232 171070 10.260 41
dme-4-max 326 546 198282 16.220 27

We observe that the add strategy clearly results in a faster model checker than
max but at the cost of a much longer path to a goal state.

Communication/Security Protocols. The two communication protocol
models generate quite different results.

SADBs IM SP ND TM LE
ns-3-add 1452 11831 218287 187.460 19
ns-3-max 32 273 113118 7.040 14
ns-4-add 1954 14800 318377 228.680 19
ns-4-max 130 1054 130216 12.580 14

peter-3-add 230 591 379365 14.273 49
peter-3-max 40 100 130955 2.970 41
peter-4-add 79 199 151200 25.890 49
peter-4-max 40 105 134202 16.442 41

Quite the opposite of the previous results, the add strategy for these models
results in a model checker that takes a lot longer to find a longer, non-optimal
path to a goal state. Clearly an unsatisfactory heuristic for this class of model.

In summary, the inadmissibility of the add merge strategy may lead to (very)
sub-optimal paths, and a substantial speed-up in the search in some models, but
a worsening in others.

9 Evaluation and Conclusion

Predicting how and when BDD-based heuristic search algorithms will perform
better than explicit-state algorithms is extremely difficult. It is well known, for
example, that finding an optimal variable ordering for BDDs is an NP-hard prob-
lem [1]. We have not considered the variable ordering in this work yet (but have in
earlier work [20]). BDDs can be ‘exponentially’ efficient in representing very large
sets of states, and because of this, can be vastly superior to explicit-state search
algorithms. However, when the sizes of the sets they represent are not large, the
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computational overhead of manipulating BDDs can result in very poor perfor-
mance indeed. The problem of predicting performance is compounded when you
add heuristics, and compounded again when you allow multiple heuristics. So
the problem we are addressing is indeed very difficult.

In AI, finding the shortest path to the goal state is paramount. In verification,
finding a ‘reasonably short’ path is often sufficient. More important is the time
it takes to find this path. The reason for this is that the model checker is being
used as a debugger, and hence we need to know quickly whether there is an
error in the specification or not. In verification therefore, we are often prepared
to sacrifice optimality for speed.

While we have tried to be comprehensive in the experiments, we do of course:

– have only a small sample of models,
– have just a few abstractions (derived automatically for the verification mod-

els)
– have just 2 merge strategies: one admissible, one non-admissible.

On the positive side, we have attempted to bridge disparate fields, AI and ver-
ification, by understanding the behaviour of a technology, symbolic heuristic
search, that is common to both. We can summarise the results of our experi-
ments in the following way:

– The distribution of the heuristic over the state space is different for AI
models than verification models. This difference could be caused by different
characteristics of the state space: for example, there are typically more goal
states in verification than in AI problems, and verification state spaces are
less tree-like.

– The MHV still makes a good predictor of effort in symbolic heuristic search.
– Contrary to Holte et al. [10], we found that multiple symbolic heuristics

performed worse than single symbolic heuristics. We conjecture that this is
caused by the overhead of splitting the BDDs. Note that in some cases split-
ting a BDD results in larger BDDs than the original. This is an unfortunate
side-effect of this method that cannot easily be avoided.

– If you have a naturally good heuristic distribution, as AI problems tend to
have, then an ‘aggressive’, non-optimal merge strategy like add will result in
multiple SADBs that perform much better than single SADBs; albeit at the
possible cost of optimality.

– Verification problems that have poorly, or narrowly distributed heuristics
should not use non-optimal merge strategies.

AI puzzles and electronic circuits typically have very dense state spaces, while
protocol models have relatively sparse state spaces. Intuitively, dense state spaces
will contain a larger number of solution paths than sparse state spaces. This could
be the cause of the behaviour we observe in the merge-strategy experiment. A
non-optimal strategy like add enables heuristic search algorithms like A∗ and
IDA∗ to guide aggressively during the search because it increases the proportion
of states that have larger heuristic values, and penetrates deeply into the state
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space. Consequently, however, the search may miss shallow solutions and fruit-
lessly pursue dead-end paths. Note that AI puzzles and circuits have relatively
fewer goal states than protocol models. We conjectured in Section 5 that this
was the cause of the behaviour that we observed in the heuristic-distribution ex-
periment. The topology of the state space is therefore potentially very important
in determining the performance of the symbolic search.

The future work we are planning is the following:

– Take the BDD variable ordering into account.
– More work needs to be done to determine how to abstract the system au-

tomatically. This is of course an open research question. Currently our ap-
proach using a data dependency analysis is simplistic.

– To restrict the sizes of BDDs, we need to consider more effective mechanisms
such as “high density” reachability analyses [21]. This is especially important
for splitting the frontier BDDs,

– We need to understand which characteristics of the state space are important
for the performance of the guided and symbolic approach. While we have
tried to do this by considering models from different domains, more focussed
experiments that shed light on this issue are needed. It would appear that
you need to know what the topology of the state space is before deciding
which search algorithm to apply.
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Abstract. Several Systems have been designed to solve the task of abstraction 
of time-stamped raw data into domain-specific meaningful concepts and pat-
terns. All approaches had to some degree severe limitations in their treatment of 
incompleteness and uncertainty that typically underlie the raw data, on which 
the temporal reasoning is performed, and have generally narrowed their interest 
to a single subject. We have designed a new probability-oriented methodology 
to overcome these conceptual limitations. The new method includes also a prac-
tical parallel computational model that is geared specifically for implementing 
our probabilistic approach. 

1   Introduction 

The commonly occurring task of Temporal Abstraction (TA) was originally defined 
as the problem of converting a series of time-oriented raw data (e.g., a time-stamped 
series of chemotherapy-administration events and various hematological laboratory 
tests) into interval-based higher-level concepts (e.g., a pattern of bone-marrow toxic-
ity grades specific to a particular chemotherapy-related context) [1]. Former solutions 
[1-4] although being evaluated as fruitful, maintained several unsolved subproblems. 
These subproblems seem common to some of other methods suggested for solving the 
TA task, such as [5-7]. Thus, considering these challenging subproblems suggests an 
additional method. 

At least three subproblems in the former methods can be pointed out, which we 
propose to solve through the method discussed in this paper. First, raw data, to which 
the temporal reasoning is being applied, are assumed as certain – that is, typically no 
mechanism is suggested for handling the inherent impreciseness of the tests taken to 
obtain the data. Second, current mechanisms used for completing missing time-
oriented data are typically not sound and are incomplete. For example, in the case of 
the KBTA method, a knowledge-based interpolation mechanism is used [8]. How-
ever, completion of missing values is supported only for bridging gaps between two 
intervals, in which the proposition (e.g., anemia level) had the same value (e.g., mod-
erate anemia). Furthermore, the value concluded by inference is too crisp, and a 
threshold is used for computing it with absolute certainty, eliminating uncertainty and 
leading to potentially unsound conclusions. Third, no special mechanism has been 
devised for multiple subject abstraction. That is, so far temporal abstraction was per-
formed on a single subject only. 



306 M. Ramati and Y. Shahar 

 

Fig. 1. A typical instance of using the PTA method: the value (vertical axis) distribution of a 
certain concept appears for different (in this case consecutive) periods along the time axis. The  
concept, which can be either raw or abstract, and the specification of the set of periods (includ-
ing the time granularity) are determined by the application using the PTA method 

The proposed method, Probabilistic Temporal Abstraction (PTA), decomposes the 
temporal abstraction task into three subtasks, that solve the case of a single subject, 
and two more subtasks that solve the case of multiple subjects. In addition to over-
coming the above mentioned subproblems, we also propose a design for a parallel 
computational model that implements the method. 

2   The Subtasks of the PTA Method 

Several basic notions in probability theory relate to time, and are important when con-
sidering a probabilistic temporal model, task or mechanism. A stochastic process 
{X(t): t in T} is a set of random variables. The index is often interpreted as time, and 
thus X(t) is referred as the state of the process at time t. The set T is called the index 
set of the process. The subtasks specified below are defined in terms of these notions. 

Single-Subject Subtasks. Temporal abstraction for a single subject requires one basic 
subtask, interpolation, and two interpolation-dependent subtasks – coarsening and 
transformation: 

Temporal Interpolation. Estimating the distribution of a stochastic process state, 
given the distributions of some of its other states (Fig. 2). For example, estimating the 
distribution of raw hematological data or derived concepts (such as bone-marrow tox-
icity grades) during a week in which raw data were not measured, using the distribu-
tion of values before and after that week. Applying the interpolation subtask does not 
increase the abstraction level of the underlying stochastic process, but rather serves 
the role of a core operation that enables the application of actual temporal abstraction. 

Temporal Coarsening. Applying an aggregation function to a stochastic subprocess 
(Fig. 3). The coarsening subtask abstracts over the time axis and is aimed at the calcu-
lation of a stochastic process at a coarser time granularity. 

Temporal Transformation. Generating a stochastic process, given stochastic proc-
esses of a lower abstraction level. For example, deriving bone-marrow toxicity grade 
distribution, given the distributions of the raw white blood cell and platelet counts. 
The transformation subtask abstracts along the (concept) abstraction-level axis. 

Multiple-Subject Subtasks. Applying the TA task to multiple subjects requires extra 
subtasks, such as the ones explicated below. However, these subtasks fit also sophisti-
cated needs of abstraction for a single subject. 
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Fig. 2. An illustration of the interpolation subtask. Given the value distribution at several time 
points, there is a need to calculate an unobserved value distribution. The solution suggested by 
the PTA considers all value distributions 

 

Fig. 3. An illustration of the coarsening subtask. Given the value distribution at several time 
points, there is a need to calculate an aggregated distribution 

Temporal Aggregation. Generating an aggregation of stochastic processes. The ag-
gregation subtask abstracts along the subject axis. This subtask is aimed at the appli-
cation of aggregation functions, such as minimum, maximum, average, etc. on sto-
chastic processes. 

Temporal Correlation. Calculating the correlation between two stochastic proc-
esses. The correlation subtask compares two temporal abstractions. This subtask is 
intended to mainly compare two populations, but should work the same when com-
paring different time periods of the same subject. 

3   The PTA Property 

The central property of the PTA method is based on the notion of temporal field, as 
defined below. Following this definition, the property states, that each unobserved 
state of some stochastic process is a linear combination of the temporal fields of the 
observed states of the process. Thus, the unobserved distribution of bone-marrow 
toxicity grades is a linear combination of all of the observed distributions, before and 
after it. A proper basis that will fit the requirements of the PTA property could be 
found in the following two known definitions. 

Let {wij}1 i m,1 j n and {μi}1 i m be constants. The random variables Xi are said to 

have multivariate normal distribution, if: 
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X i
j

wij Z j i , Z j Normal 0,1 . 
(1) 

A stochastic process {Xt: t  0} is called Gaussian process if each state Xt of the proc-

ess has a multivariate normal distribution. 
Calculating a depending variable given the independent variables as they appear in 

a multivariate distribution may imply a temporal persistence of the independent vari-
ables. However, allowing the observed states to induce a field1 over its temporal envi-
ronment could express temporal knowledge about the stochastic process in question, 
such as a periodic behavior or change of the observed states. Thus, for each stochastic 
process, a temporal field is induced by a time index, which formally means a function 
that maps time points to states of the stochastic process, as follows: 

field X t :T , X t : . (2) 

For example, suppose a stochastic process with a periodic behavior and cycle length 
c. The temporal field of an observed state of such stochastic process could be as fol-
lows: 

field X t s t i sin
c

t i t s mod c X ts
. (3) 

A specific choice for the selection of the weights of the independent variables can be 
suggested. These weights should express the notion that the closer-in-time the ob-
served state is – the more relevant it is. That is, the absolute time difference between a 
dependent state and its observed state should be inversely proportional to the weight 
of the latter when estimating the former. Therefore, there is a need to choose a mono-
tonic decreasing function of absolute time differences between a dependent state and 
its inducing observed states. The weighting function is of the following form: 

w X : T . (4) 

A natural nonlinear choice for the monotonic decreasing weighting function would be 
a normal density, where its variance ( 2) determines the temporal tolerance of ob-
served states of the stochastic process. Thus, w may hold: 

w X t f W t , W Normal 0, 2
. (5) 

Uncertain Observations. Observed states of stochastic processes are distributed as a 
function of the test taken and the data itself. Typically, where states of stochastic 
processes have a normal distribution, the mean (expectation) of the state is the value 
sampled, and the variance is determined by the reliability or the precision of the test 
taken. 

Prior Knowledge. Each stochastic process may have a prior knowledge of its typical 
state. Prior distribution is expressed by giving it the –  time index for the temporal 
field inducer argument. 

                                                           
1 In the sense of an electromagnetic field. 
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4   Mechanisms of the PTA Method 

The main computational concept in our methodology is the PTA chain. A PTA chain 
is  defined as the application of any subset of the following composition of subtasks, 
while preserving the relative order among them: 

Coarsen Correlate Aggregate Transform Interpolate data . (6) 

Temporal Interpolation. The subtask of interpolation is solved by the application of 
the PTA property. Given the temporal weighting function of a stochastic process, its 
values need to be normalized to ensure they sum to unity. The subset of sampled 
states which participate in the calculation process of each unobserved state determines 
the precision of its distribution, and could be determined given the temporal weight-
ing function. If we interpolate in ti and have all of the points that are known ts sam-

pled, then: 

X ti

1

ts

w X ti t s ts

w X t i t s field X t s t i . 
(7) 

The procedure Interpolate fills the missing states of the given PTA chain. First, it 
retrieves all relevant raw data and extracts the empty states. Then, the interpolation 
function is applied to the extracted empty states. For the case in which updates to the 
underlying data occur, we consider a hierarchical system of states, where each unob-
served state has a set of observed parent states, as depicted by Pearl [9]. In case the 
sample is updated, propagating the new piece of evidence we are viewing as the per-
turbation that propagated through a Bayesian network via message-passing between 
neighboring processors. 

The knowledge required for the application of the interpolation subtask includes 
for each type of PTA chain the definitions of temporal fields (the default is set to per-
sistence of the inducer state), temporal weighting (the default is set to normal density 
function with mean 0), prior distribution of a typical state (no default is set), and a 
function that maps each pair of test taken and datum (sampled value) to the distribu-
tion of the field inducing state (default sets sampled value to the state's mean). 

Temporal Coarsening. The procedure Coarsen averages a PTA subchain. The value 
of such application is a coarser time-granularity state, according to the following for-
mula: 

X ti , t j

1
j i 1 k i

j

X t k
. (8) 

Temporal Transformation. The procedure Transform returns the application of the 
given transformation function to the given PTA chains according to the following 
formula: 

Y t g X 1 , , X n t . (9) 
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If g has the following form, then |g| is called a rate transformation, and sgn(g) (posi-
tive, negative or zero) is called a gradient transformation: 

g X t i

X t i
X ti 1

t i ti 1
. 

(10) 

For example, a context of a Bone-Marrow Transplantation (BMT) is defined as the 
application of the following transformation function to the Boolean day-granularity 
stochastic process that represents a BMT: 

g BMT t BMT t 3 BMT t 90 . (11) 

In order to save extra computational costs, a time restriction of time-series of the ar-
guments of each transformation is needed. This is accomplished by the definition and 
application of functions of the following form: 

hY t T 1 , ,T n . (12) 

For example, in the case of a contemporaneous transformation of several arguments 
(e.g., height and weight) into a higher-level abstraction (e.g., body-mass index), the 
time-series of the arguments are the same as those of the abstraction. 

Temporal Correlation. Applied to stochastic processes of different sample spaces, 
independent subjects or same, resulting in a series of correlation factors. This measure 
is computed as a time series of correlations between corresponding states of the given 
PTA chains: 

X ti
,Y t j

Cov X ti
, Y t j

Var X t i
Var Y t j

. (13) 

An example for a single subject would be the contemporaneous correlations between 
height and weight or correlation of height during different periods for the same per-
son. 

Temporal Aggregation. Applied to stochastic processes of the same sample space 
and independent subjects, resulting in a new stochastic process. This measure is com-
puted as a new PTA chain, where each of its state is the application of some aggrega-
tive function (minimum, maximum, average, etc.) to the corresponding states of the 
given PTA chains. 

agg ti
X 1 , , X n agg X 1t i

, , X n ti
. (14) 

5   Parallel Implementation 

The computational model used to compute a PTA chain is goal-driven, bottom-up and 
knowledge-based. That is, the main algorithm is required to compute the result of a 
PTA chain (the goal), given the transformation and interpolation functions (the tem-
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poral knowledge) as well as the access to the data, beginning at the raw (lowest ab-
straction level) data. The computational model is parallelized (and hence scalable 
[10]) in three orthogonal aspects: (1) Time, during the calculation of the PTA chains’ 
states; (2) Transformation, during the calculation of the transformation arguments; 
and (3) Subject, during the calculation of the PTA chains for multiple subjects. 

The PTA architecture is in the process of being fully implemented using the C++ 
programming language, the Standard Template Library (STL), and the MPICH2 im-
plementation of the Message-Passing Interface (MPI)2, an international parallel pro-
gramming standard. The implementation is thus object-oriented and platform-
independent. The implementation is in the process of being fully integrated into the 
IDAN system [11], which satisfies the need to access knowledge and data sources. 

6   Discussion 

In this paper, we proposed a probabilistic method to solve the task of abstraction of 
time-oriented records. The new method has removed several limitations of former 
methods. First, the use of PTA chains enables the expression of uncertainty in the 
underlying data as well as their derived abstractions. Second, two mechanisms were 
described for temporal abstraction of the data of multiple subjects. Third, the interpo-
lation mechanism was shown to be sound and complete. However, observed data are 
assumed to be independently distributed. This assumption could be easily removed, 
given the necessary domain-specific conditional distribution functions. 

The Markovian property (i.e., the conditional distribution of any future state, given 
the present state and all past states, depends only on the present state) is not assumed 
by the PTA method. Specifically, the temporal interpolation mechanism considers 
past states when computing future states, thus allowing for a broader set of domain-
specific models of prediction knowledge, as well as for cases where the current state 
may be attributed a higher variance than states observed in the past. Naturally, this 
interpolation models entails a computational cost. However, the temporal interpola-
tion of the PTA model is performed at the lowest abstraction level only (as opposed to 
being repeatedly performed at every abstraction level as in the KBTA method [1]) in 
a parallel manner, thus gaining a potential efficiency [12] in computing high-level 
abstractions. Finally, the components of the PTA method are highly modular and do 
not assume, for example, a particular temporal representation. 
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Abstract. We consider classification problems in which the class labels
are organized into an abstraction hierarchy in the form of a class taxon-
omy. We define a structured label classification problem. We explore two
approaches for learning classifiers in such a setting. We also develop a
class of performance measures for evaluating the resulting classifiers. We
present preliminary results that demonstrate the promise of the proposed
approaches.

1 Introduction

Machine learning algorithms to design of pattern classifiers have been well stud-
ied in the literature. Most such algorithms operate under the assumption that
the the class labels are mutually exclusive. However, many real world problems
present more complex classification scenarios. For instance, in computer vision
application, natural scene containing multiple objects can be assigned to multiple
categories [3]; in a digital library application, a text document can be assigned
to multiple topics organized into a topic hierarchy; in bioinformatics, an ORF
may have several functions [5]. In each of these cases, the class labels are natu-
rally organized in the form of a hierarchically structured class taxonomy which
defines an abstraction over class labels. Such a classification scenario presents
two main challenges: (1) The large number of class label combinations make it
hard to reliably learn accurate classifiers from relatively sparse data sets. (2)
Standard metrics for evaluating classifiers in settings where class labels are mu-
tually exclusive are not suitable for evaluation of classifiers in settings where
the class labels are organized into a class hierarchy. Despite recent attempts to
address some of these problems, [1, 2, 3, 4, 5, 6, 7], at present, a general solution
is still lacking. Against this background, we explore approaches to learning clas-
sifiers in the presence of class taxonomies. The paper is organized as follows.
Section 2 presents a precise formulation of the single label, multi label and the
structured label classification problems; Section 3 describes two approaches to
learning classifiers from data in the presence of class taxonomies; Section 4 ex-
plores performance measures for evaluating the resulting classifiers; Section 5,
briefly describes results of experiments using the Reuters-21578 [8] data and
genotype data [5]; Section 6 concludes with a summary and discussion.
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2 Preliminaries

Many standard classifier learning algorithms normally make the basic assump-
tion of single label instances. That is, each instance that is represented by an
ordered set of attributes A = {A1, A2, ..., AN} can belong to one and only one
class from a set of classes C = {c1, c2, ....., cM}. Therefore, class labels in C are
mutually exclusive.

In multi label classification settings, class labels are not mutually exclusive.
Each instance can be labelled using a subset of labels cs ⊂ C, where C =
{c1, c2, ..., cM} is a finite set of possible classes. If instances can be labelled with
arbitrary subsets of C, the total number of possible multi label combinations
is 2M .

An even more complex classification scenario is one in which instances to
be classified are assigned labels from a hierarchically structured class taxonomy.
Here, we define class taxonomy first and then formalize the resulting structured
label classification problem.

Definition 1 (Class Taxonomy). A Class Taxonomy CT is a tree structured
regular concept hierarchy defined over a partially order set (CT ,≺), where CT

is a finite set that enumerates all class concepts in the application domain, and
relation ≺ represents the is-a relationship that is both anti-reflective and transi-
tive:

– The only one greatest element “ANY” is the root of the tree.
– ∀ci ∈ C, ci ≺ ci is false.
– ∀ci, cj , ck ∈ C, ci ≺ cj and cj ≺ ck imply ci ≺ ck.

A tree structured class taxonomy represents class memberships at different
levels of abstraction. The root of a class taxonomy is the most general label
(i.e., “ANY”) that is applicable to any instance. The leaves of class taxonomy
indicate the most specific labels. The tree structure imposes strict constraints
on these class memberships. Therefore, when an instance is assigned a label l
from a hierarchically structured class taxonomy, it is implicitly labelled with all
the ancestors of the label l in the class taxonomy.

Definition 2 (Structured label). Any structured label Cs is represented by
a subtree of CT . Cs is a partially order set (Cs,≺) that defines the same is-
a relationships as in CT . ∀ci ∈ Cs, ci is ANY or ci ≺ parent(ci), where
parent(ci) ∈ Cs is the immediate ancestor of ci in CT .

A class taxonomy imposes constraints on the integrity and validity of the
structured labels. The integrity constraint states that Cs is a subtree structure
of CT sharing the same root: Structured label is not an arbitrary fragment of the
class taxonomy. The validity constraint captures the is-a relationships among
class labels within a class taxonomy. A structured label is invalid if it contains
a label l but not the parents of l in a given class taxonomy.
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3 Methods

3.1 Binarized Structured Label Learning

One simple approach is to build a classifier consisting of a set of binary classifiers
(one for each class). However, the drawbacks of this approach are obvious: (1)
When making predictions for unlabelled instances, the classification results may
violate the integrity and validity constraints. (2) The set of binary classifiers fails
to exploit potentially useful constraints provided by the class taxonomy during
learning.

To overcome these disadvantages, we build a hierarchically organized collec-
tion of classifiers that mirrors the structure of the class taxonomy CT . The result-
ing classifiers form a partially ordered set (hCT ,≺), where hCT = {hC1 , · · · , hCM

}
is the set of classifiers, and ≺ represents partial orders among classifiers. If Cj

is a child of Ci in CT , then the respective classifiers satisfy the partial order
hCj

≺ hCi
. This partial order on classifiers guides the classification of an in-

stance. If hCj
≺ hCi

, an instance will not be classified using hCj
if it has been

classified as not belonging to Ci (i.e., output of hCj
is 0). We call our method

of building such hierarchically structured classifiers “Binarized Structured Label
Learning” (BSLL).

A B C

D E F G H

Fig. 1. Structure class taxonomy

3.2 Split-Based Structured Label Learning

A second approach to structured label learning is an adaptation of an approach
to multi-label learning. We digress briefly to outline approaches to multi-label
learning.

In real world applications it is very rare that each of the 2M multi label
combinations appear in the training data. The actual number of multi labels is
much smaller than the possible number 2M . Thus, we may set an upper limit
on the number of possible class label combinations. If the number of labels that
can occur in a multi-label is limited to 2, we will only consider the combina-
tions of 2 class labels instead of M class labels. Another option is to consider
only the multi labels that appear in the training data. In either case, we can
not apply standard learning algorithms directly to the multi-label classification
problem. This is because the multi label and the individual class labels are
not mutually exclusive and it is not uncommon for some instances to be la-
belled with a single class label and others with multi labels. Because most stan-
dard learning algorithms assume mutually exclusive class labels, we will need
to generate mutually exclusive classes. For example, consider C = {A,B,C}
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with instances set SA, SB , SC respectively. Suppose the only multi label ob-
served in the training data is {A,B}. Note that SA

⋂
SB �= ∅. So the ex-

tended class label set is C′ = {Â, B̂, Ĉ, A&B},which represents instance set
SA − SA

⋂
SB, SB − SA

⋂
SB , SC , SA

⋂
SB.

This approach to transforming class labels to obtain mutually exclusive class
labels can be applied to structured label learning problem by building split-based
classifiers. We will first define a split in a class taxonomy CT , and then for each
split we show how to learn a respective classifier by learning from instances with
extended label sets (as outlined above).

Definition 3 (Split). A split is a one level subtree within a class taxonomy,
which includes one parent node and all its children nodes, and the links between
the parent node and children nodes.

Obviously, the number of splits in the class taxonomy is smaller than the
number of nodes. We can build a set of classifiers on the splits to solve structured
label problem so to decrease the number of resulting classifiers. Within each
split, the structured label problem will be reduced to a multi label problem,
and we only need to consider the combinatorial extensions on class labels at
that particular level. Additionally, the split-based classifiers are also partially
ordered according to a given class taxonomy. Any instance to be classified will
follow this topological order of the split-based classifiers: start from the classifier
for the split at first position, continue to run a split-based classifier only when
predicted to be “1” by the parent split-based classifier.

4 Performance Measure for Structured Label
Classification

In single label classification, a loss function(like standard 0-1 loss function)
loss(cp, co) can be defined to evaluate the cost of misclassifying the instance
with observed class label co to the predictive class label cp. However, this ap-
proach is inadequate in a structured label problem in which there is a need to
take into account the relationships between labels assigned to an instance. Here
each label set corresponds to a subtree of the class taxonomy in structured label
problem. We define a misclassification cost associated with the label set pro-
duced by the classifier relative to the correct label set (the correct structured
label).

Definition 4 (Node Distance). Node distance is a value d(ci, cj) denoting
the difference of labels ci,cj. It has the following properties:

– d(ci, cj) ≥ 0
– d(ci, cj) = d(cj , ci)
– d(ci, ci) = 0
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Definition 5 (Dummy Label). Dummy label θ is an“add-on” label to the
class taxonomy which acts as a predicted value to the instance when a classifier
can not decide the class label and does nothing. Thus this is a “label by default”.
It has the following properties:

– d(θ, ci) = d(θ, cj)
– d(ci, cj) ≤ d(θ, ci)

Definition 6 (Non-Redundant Operation). A non-redundant operation
(with Φ as the operator) to a label set Ci is to keep the children labels when
both children labels and their parent labels are present, such that we eliminate
the label redundancies within a class taxonomy.

Definition 7 (Mapping). A mapping f between two label sets C1,C2 with the
same cardinality is a bijection f : C1 → C2.

We calculate the distance d(Cp,Co) between Cp and Co, the predicted and
actual label (respectively) for each classified instance as follows:

– If the cardinalities of Cp and Co are equal, find a mapping to minimize
the sum of node distances and divide by the cardinality of the label sets to
obtain the distance.

– If the cardinalities of the two label sets are not equal, add as many dummy
labels θ as needed to the label set with fewer elements to make the cardinal-
ities of the two label sets equal and then calculate the distance between the
two label sets as before.

The performance of the classifier on a test set is obtained by averaging the
distances between predicted and actual labels of instances in the test set T as

follows: d̄ =
∑

T
d(Cp,Co)

|T| . The lower the value of this measure, the better the
classifier (in terms of misclassification cost).

5 Experimental Results

Given a structured label data set, we need the pair-wise node distances between
class labels to compute the misclassification cost as described above. These dis-
tances can be specified by a domain expert. Alternatively, the distances may be
estimated from a training set based on cooccurence of class labels as follows:
For each level in the class taxonomy, we calculate the occurrence of classes in
the training set, divide it by the number of labels at that level of the class tax-
onomy. We calculate the distance between class labels as follows: We place the
”add-on” label θ in the root node of the class taxonomy tree and set the edge
distance as the level weight. For two nodes, if one is ancestor of the other, the
node distance will be the sum of the edge distances along the path that connects
them; if neither node is an ancestor of the other, the distance between them
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is defined as the average distance of the two nodes from their nearest common
ancestor. After normalization, we assign distance 1 to any two labels in the top
level together with the ”add-on” label θ, and the maximal node distance equals
to the summation of all the level weights as 1.268 in Reuters-21578 data and
1.254 in phenotype data set.

5.1 Results on Reuters-21578 Data Set

Reuters-21578 data, originally collected by Carnegie Group for text categoriza-
tion, does not have a predefined hierarchical class taxonomy. However, many
documents are labelled with multiple topic classes. We extracted 670 documents.
In this set, more than 72% of the documents have multiple class labels. We cre-
ated a two-level class taxonomy using current categories of the documents as
follows:

grain(barley,corn,wheat,oat,sorghum)
livestock(l-cattle,hog)

We used a Naive Bayes classifier as the base classifier and estimated the per-
formance of the resulting structured label classifier using 5 fold cross validation.
The results in tables 1, 2 suggest that binarized structured label learning per-
forms as well as split-based structured label learning in this case. Both have good
predictive accuracy for the classes that appear in the first level of the class taxon-
omy: grain, livestock. The overall performance of the two methods (as measured
by the estimated misclassification cost) is slightly different, while the average
recall and precision calculated over the entire class hierarchy are very close.

Table 1. Average distance: learning on Reuters-21578 data set

binarization learning split-based learning
d̄ 0.217 0.251

Table 2. Recall&precision: learning on Reuters-21578 data set

binarization learning split-based learning
recall precision recall precision

grain 0.993 0.964 0.993 0.968
livestock 0.766 0.893 0.752 0.917
barley 0.498 0.440 0.454 0.442
wheat 0.852 0.735 0.859 0.724
corn 0.839 0.721 0.818 0.726
oat 0.270 0.75 0.167 0.75

sorghum 0.408 0.560 0.324 0.591
l-cattle 0.146 0.417 0.167 0.339

hog 0.729 0.786 0.717 0.686
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5.2 Results on Phenotype Data Set

Our second experiment used the phenotype data set introduced by Clare and
King[5] whose class taxonomy is a hierarchical tree with 4 levels and 198 labels.

We choose the C4.5 decision tree as the base classifier to run the binarization
learning and split-based learning in 5-fold cross validation. Split-based structured
label learning shows better performance than binarized structured label learning
on this data set. The misclassification cost is 0.79. The split-based structured
label learning predicts 1 out of 4 class labels correctly in the 1st level branches.
Compared to the Reuters-21578 data set, the phenotype data set is much more
sparse which might explain the fact that the results are not as good as in the
case of the Reuters-21578 data set.

We also calculate accuracy, recall and precision of each class label. It turns out
that the accuracy of each class label is quite high(95%). This is due to the fact
that this data set is highly unbalanced and each classifier has a high true negative
rate.Owing to the sparseness of the data set, many class labels do not appear in
the test data set. This leads to undefined recall and precision estimates because of
division by 0. Hence, only those class labels with recall and precision estimates
available are listed in Figure 2. They show that split-based structured label
learning performs better in terms of recall and precision, which is consistent with
the relative performance of the two methods in terms of misclassification cost.

Table 3. Average distance: learning on phenotype data set

binarization learning split-based learning
d̄ 1.171 0.790

Fig. 2. Recall&precision: learning on phenotype data set

6 Summary and Discussion

In this paper, we have:

– Precisely formulated of learning from data using abstractions over class la-
bels – the structured label learning problem – as a generalization of single
label and multi label problems.
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– Described two learning methods, binarized and split-based approaches to
learning structured labels both of which can be adapted to work with any
existing learning algorithm for single label learning task (e.g., Naive Bayes,
Decision tree, Support vector machine, etc.).

– Explored a performance measure for evaluation of the resulting structured
label classifiers.

Some directions for future work include:

– Development of algorithms to incorporate techniques for exploiting CT (class
taxonomies) to handle partially specified class labels.

– Development of more sophisticated metrics for evaluation of structured label
classifiers.
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Abstract. Sets of features in Markov decision processes can play a critical role
in approximately representing value and in abstracting the state space. Selection
of features is crucial to the success of a system and is most often conducted
by a human. We study the problem of automatically selecting problem features,
and propose and evaluate a simple approach reducing the problem of selecting a
new feature to standard classification learning. We learn a classifier that predicts
the sign of the Bellman error over a training set of states. By iteratively adding
new classifiers as features with this method, training between iterations with ap-
proximate value iteration, we find a Tetris feature set that outperforms randomly
constructed features significantly, and obtains a score of about three-tenths of the
highest score obtained by using a carefully hand-constructed feature set. We also
show that features learned with this method outperform those learned with the
previous method of Patrascu et al. [4] on the same SysAdmin domain used for
evaluation there.

1 Introduction

Decision-theoretic planning and reinforcement-learning methods facing astronomically
large state spaces typically rely on approximately represented value functions (see, e.g.,
[2, 7]). Many such approximate representations rely on an appropriate set of prob-
lem features; for example, by taking a weighted combination of the feature values
as the value function [1]. Human engineering of the problem features used has re-
peatedly proven critical to the success of the resulting system. For example, in [7, 8],
TD-gammon exploits human-constructed problem-specific features to achieve a playing
strength that can compete with world-class players.

A Markov decision process (MDP) is a formal model of a single agent facing a
sequence of action choices from a pre-defined action space, and living within a pre-
defined state space. After each action choice is made, a state transition within the state
space occurs according to a pre-defined, stochastic action-transition model. The agent
receives reward after each action choice according to the state visited (and possibly
the action chosen), and has the objective of accumulating as much reward as possible
(possibly favoring reward received sooner, using discounting, or averaging over time,
or requiring that the reward be received by a finite horizon).
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MDP solution techniques often critically rely on finding a good value function; this
is a mapping from states to real numbers with the intent that desirable states receive
high values. Informally, a good value function should respect the action transitions in
that good states will either have large immediate rewards or have actions available that
lead to other good states; this property is formalized in Bellman equations that define
the optimal value function (see below). The degree to which a given value function fails
to respect action transitions in this way, formalized below, is referred to as the Bellman
error of that value function.

Unfortunately, virtually every interesting MDP problem has an extremely large state
space, preventing direct table-based representation of the value function. As a result, ab-
straction, approximation, and problem reformulation play a critical role in successfully
representing and finding good value functions. A typical approach is to find useful fea-
tures, which also map the state space to real numbers, and take the value function at
each state to be a weighted combination of the features at that state. Here, good values
for the weights can often be found using machine learning techniques involving search
and gradient descent. In this paper, we address the problem of finding good features
automatically: in most previous work the features are simply selected by the human
designer. Learning features for this purpose can be regarded as learning an abstraction
of the MDP state space: differences between states with the same feature values have
been abstracted away.

Here, we study the problem of automatically selecting problem features for use in
approximately representing value in Markov decision processes. We focus our initial
work on this problem on binary features, i.e., mappings from state to Boolean values.
We view each such feature as a set of states, those states where the feature is true.

We propose and evaluate a simple, greedy approach to finding new binary fea-
tures for a linear-combination value estimate. Our heuristic approach assumes an initial
“base” value estimate described by a linear approximation where the weights have al-
ready been tuned to minimize Bellman error. We attempt to reduce the Bellman error
magnitude of this value estimate further by learning a new feature that is true in states-
pace regions of positive statewise Bellman error and correspondingly false in regions
of negative statewise Bellman error, or vice versa. The learning problem generated is a
standard supervised classification problem, and for this work we address this problem
using the decision-tree learner C4.5 [5].

One view of this approach is that we are conducting approximate value iteration with
an added mechanism for extending the available feature set. Given an initial feature set,
imagine a sufficient period of approximate value iteration (or any similar weight adjust-
ment method) to achieve convergence of the approximation to a value function Ṽ . We
can think of the approximate value iteration process as “stuck”, in that it can represent
Ṽ but not the Bellman update of Ṽ . (Of course, this assumes that the inductive updates
being performed would find Ṽ if they could represent it, which is only heuristically
true.) We are then trying to induce features to enable representation of the Bellman
update of Ṽ , so that the approximate value iteration process can continue to reduce
Bellman error, with the larger feature space.

If the learner succeeds in capturing features that describe the statespace regions of
positive and negative Bellman error, we can guarantee that adding these features makes
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available weight assignments closer to the Bellman update of the base value estimate.
Our practical method retrains the weights including the new feature(s), using approxi-
mate value iteration (AVI), and then repeats the process of selecting a new feature.

We have found surprisingly little previous work on selecting features automatically
in MDPs. Patrascu et al. [4] give a linear programming technique for selecting new
features. In their work, the primary technique for selecting weights is approximate linear
programming (ALP). It is observed in [4] that ALP “only minimizes L1 error”; perhaps
for this reason, that work proposes to construct features aimed to minimize the L1 error
of the resulting approximation. It is stated there that there is a “hope that this leads to a
reduction in Bellman error as a side effect.”

Our technique works instead directly to reduce the Bellman error magnitude of the
resulting approximation by trying to identify regions that contribute to large statewise
Bellman error magnitude. Because the Bellman error at any given state is easily com-
putable in many domains of interest, unlike the L1 error, we are able to convert the prob-
lem of minimizing Bellman error magnitude to a supervised classification problem.

Patrascu et al. [4] do not mention any reduction to supervised-classification learn-
ing, nor is it clear how to construct such a reduction from the approach they describe,
because the computation of the L1 error for particular states requires knowledge of the
optimal value of those states. Thus, although decision trees are suggested as a possi-
ble representation for candidate features in that work, there is no suggestion that these
trees be acquired by a supervised classification method like C4.5 and no discussion of
how to overcome the need to know the optimal value if the L1 error is to be used for
supervision.

For another view of the contrast between our method and that previous method,
consider that we seek a feature, via supervised classification, that corresponds to the
region of states that have significantly positive (or alternatively, negative) Bellman error.
There is no such declarative characterization of the desired feature in the Patrascu et
al. work; rather, the region sought is that region that results in the best improvement
in L1 error after retraining via ALP (or less expensive-to-compute approximations of
this “error after retraining”). This does not represent a reduction to classification and is
a substantially different approach, using L1 error after retraining (or a less expensive
stand-in) as a scoring function.

Both approaches are reasonable, of course. We show below that our technique em-
pirically outperforms this previous work on the planning domain used in their evalua-
tion. Specifically, we require fewer new features to achieve the same Bellman error, and
can achieve a lower overall Bellman error given enough features.

There is related previous work on function approximation in which new features are
automatically added during supervised learning of real-valued functions [9]. It would
be reasonable to consider, in comparison to our work here, plugging in such a function
approximator at the learning step in approximate value iteration—this would result in
an overall method similar in spirit to what we design directly here. We have not done
an empirical comparison along these lines at this time.

We also evaluate our technique in the computer-game domain of Tetris. Starting
from a constant value function based on only the uniformly true feature, our technique
can add features automatically to produce performance that is significantly better than
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a randomly constructed feature set, and is at about three-tenths of the performance of a
carefully hand-constructed feature set.

In what follows, we first provide technical background on Markov decision pro-
cesses and value-function approximation, then describe our technique for inducing new
features to reduce approximation error, and finally present empirical results on two do-
mains showing improvement over the state of the art, before concluding.

2 Technical Background

2.1 Markov Decision Processes

We define here our terminology for Markov decision processes. For a more thorough
discussion of Markov decision processes, see [2] and [7]. A Markov decision process
(MDP) D is a tuple (S,A,R, T ) where state space S is a finite set of states, action
space A is a finite set of actions, R : S × A × S → R is the reward function, and
T : S × A→ P(S) is the transition probability function that maps (state, action) pairs
to probability distributions over S. R(s1, a, s2) represents how much immediate reward
is obtained by taking action a from state s1 and ending up in state s2. T (s1, a, s2)
represents the probability of ending up in state s2 if the action a is taken from state s1.

A policy π for an MDP is a mapping π : S → A. Given policy π, the value function
V π(s) gives the expected discounted reward obtained starting from state s and selecting
action π(s) at each state encountered. Rewards after the first time step are discounted
by a factor γ where 0 ≤ γ < 1. A Bellman equation relates V π at any state s and
successor states s′:

V π(s) =
∑
s′∈S

T (s, π(s), s′)[R(s, π(s), s′) + γV π(s′)].

There is at least one optimal policy π∗ for which V π∗
(s), abbreviated V ∗(s), is no

less than V π(s) at every state s, for any other policy π. Another Bellman equation
governs V ∗:

V ∗(s) = max
a∈A

∑
s′∈S

T (s, a, s′)[R(s, a, s′) + γV ∗(s′)].

From anyvalue functionV , wecancomputeapolicyGreedy(V ) that selects, at anystates,
the greedy look-ahead action arg maxa∈A

∑
s′∈S T (s, a, s′)[R(s, a, s′)+γV (s′)]. The

policy Greedy(V ∗) is an optimal policy. Value iteration iterates the operation V ′(s) =
maxa∈A

∑
s′∈S T (s, a, s′)[R(s, a, s′) + γV (s′)], computing V ′ from V , producing a

sequence of value functions converging to V ∗, regardless of the initial V used.
We define the statewise Bellman error B(V, s) for a value function V at a state s to

be V ′(s) − V (s). We will be inducing new features based on the sign of the statewise
Bellman error. The sup-norm distance of a value function V from the optimal value
function V ∗ can be bounded using the Bellman error magnitude, which is defined as
maxs∈S |B(V, s)| (e.g., see [11]).

Linear Approximation of Value Functions. We assume that the states of the MDP have
structure. In particular, we assume a state is a vector of basic properties with Boolean,
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integer, or real values, and that the state space is the set of all such vectors. We call
these basic properties state attributes. This factored form for states is essential to enable
compact representation of approximate value functions.

A common solution to the problem of representing value functions (e.g., value it-
eration) in very large, structured state spaces is to approximate the value V (s) with a
linear combination of features extracted from s, i.e., as Ṽ (s) =

∑p
i=0 wifi(s), where

wi is a real-valued weight for the ith feature fi(s). Our goal is to find features fi (each
mapping states to boolean values) and weights wi so that Ṽ closely approximates V ∗.

Many methods have been proposed to select weightswi for linear approximations [6,
10]. Here, we use a trajectory-based approximate value iteration (AVI) approach. Other
training methods can be substituted and this choice is orthogonal to our main purpose.

The AVI method we deploy constructs a fixed-length sequence of value functions
V 1, V 2, . . . , V T , and returns the last one. Each value function V β is defined by weight
values wβ

0 , wβ
1 , . . . , wβ

p as V β(s) =
∑p

i=0 w
β
i fi(s). Value function V β+1 is constructed

from V β by drawing a training set of trajectories1 under the policy Greedy(V β) and
updating the weights according to this training set as follows.

Let s1, s2,. . . , sn be a sequence of training states, which we generate by drawing a
set of trajectories under the current greedy policy. A training set for weight adjustment
is defined as {(sj , V

′(sj)) | 1 ≤ j ≤ n}. We adjust weights in iterations of batch
training. In the l’th batch training iteration, the weight update for the i’th weight in the
training set is wi,l+1 = wi,l + 1

n

∑
j αfi(sj)(V ′(sj)−

∑p
i=0 wi,lfi(sj)). Here, α is the

learning rate parameter. We take the initial weights wi,1 to be wβ
i . After κ iterations we

set wβ+1
i = wi,κ+1.

2.2 Decision Tree Classification

A detailed discussion of classification using decision trees can be found in [3]. A de-
cision tree is a binary tree with internal nodes labelled by state attributes (and, in our
case, learned features), and leaves labelled with classes (in our case, either zero or one).
A path through the tree from the root to a leaf with label l identifies a partial assignment
to the state attributes—each state consistent with that partial assignment is viewed as
labelled l by the tree. We learn decision trees from training sets of labelled states using
the well known C4.5 algorithm [5]. This algorithm induces a tree greedily matching
the training data from the root down. We use C4.5 to induce new features—the key to
our algorithm is how we construct suitable training sets for C4.5 so that the induced
features are useful in reducing Bellman error.

3 Feature Construction for MDPs

We propose a simple method for constructing new features given a current set of fea-
tures and an MDP for which we desire an approximation of V ∗. We first use AVI, as

1 The source of this set is a parameter of the algorithm, and it could for example be drawn by
sampling initial states from some state distribution and then simulating π to some horizon from
each initial state.
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described above, to select heuristically best weights to approximate V ∗ with Ṽ based
on the current feature set. We then use the sign of the statewise Bellman error at each
state as an indication of whether the state is undervalued or overvalued by the current
approximation. If we can identify a collection of undervalued states (ideally, all such
states) as a new feature, then assigning an appropriate positive weight to that feature
should reduce the Bellman error magnitude. The same effect should be achieved by
identifying overvalued states with a new feature and assigning a negative weight. We
note that the domains of interest are generally too large for statespace enumeration, so
we will need classification learning to generalize the notions of overvalued and under-
valued across the statespace from training sets of sample states. Also, to avoid blurring
the concepts of overvalued and undervalued with each other, we discard states with
statewise Bellman error near zero from either training set.

More formally, we draw a training set of states Σ from which we will select training
subsets Σ+ and Σ− for learning new features. The training set Σ can either be drawn
uniformly at random from the state space, or drawn by collecting all states in sample
trajectories starting at uniformly random start states under a policy of interest (typically
Greedy(Ṽ )). If using trajectories, each trajectory must be terminated at some horizon.
The horizon and the size of Σ are parameters of our algorithm.

For each state s in Σ, we compute the statewise Bellman error B(Ṽ , s). We then
discard from Σ those states s with statewise Bellman error near zero, i.e., those states
for which |B(Ṽ , s)| < δ for a non-negative real-valued parameter δ, and then divide
the remaining states into sets Σ+ and Σ− according to the sign of B(Ṽ , s). So, Σ+ is
the set {s|B(Ṽ , s) ≥ δ} and Σ− is the set {s|B(Ṽ , s) ≤ −δ}.

We note that computing statewise Bellman error exactly can involve a summation
over the entire state space, whereas our fundamental motivations require avoiding such
summations. In many MDP problems of interest, the transition matrix T is sparse in a
way that set of states reachable in one step with non-zero probability is small, for any
current state. In such problems, statewise Bellman error can be computed effectively
using an appropriate representation of T . More generally, when T is not sparse in this
manner, the expectation can be effectively approximately evaluated by sampling next
states according to the distribution represented by T .

We then use Σ+ as the positive examples and Σ− as the negative examples for a
supervised classification algorithm; in our case, C4.5 is used. The hypothesis space for
classification is built from the primitive attributes defining the state space; in our case,
we use decision trees over these attributes. We can also interchange the roles of Σ+ and
Σ−, using the latter as positive examples. In our experiments, we do this interchanging
for every other feature constructed.

The concept resulting from supervised learning is then treated as a new feature for
our linear approximation architecture, with an initial weight of zero. The process can
then be repeated, of course, resulting in larger and larger feature sets, and, hopefully,
smaller and smaller Bellman error magnitude.

To conclude our description of our algorithm, we discuss setting the parameter δ
dynamically, once in each iteration of feature construction. Rather than directly specify
δ, we specify δ in terms of the standard deviation σ of the statewise Bellman error over
the same distribution used in selecting states for the training set Σ. The value of σ is
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easily estimated by sampling the training distribution and computing the Bellman error.
We then set δ, at each iteration, to be a fixed multiple η of σ. This approach removes δ as
a parameter of the algorithm, replacing it with the parameter η. This dynamic selection
of δ allows adaptation to the decrease in Bellman error magnitude over the run of the
algorithm.

4 Experiments

In this section, we present some experimental results for our feature construction algo-
rithm. We use two domains in the experiments. The first domain is an 8 × 8 game of
Tetris (Tetris). The second domain is a computer network optimization problem called
SysAdmin, which we use primarily in order to compare to the closest previous related
work; that work [4] used SysAdmin as a testing domain. Both the state attributes and
the learned features in the experiments are binary features.

Tetris. For the Tetris domain, we start with 71 state attributes; 64 attributes which rep-
resent if the 64 squares are occupied or not, and 7 attributes which represent which of
the 7 pieces is currently being dropped. We select training sets for feature construction
by drawing trajectories from an initial state with an empty board and collecting 600,000
states on these trajectories as Σ. The training sets for AVI are selected by drawing 100
trajectories from an initial state with an empty board and allowing each trajectory to
extend to the end of the game. We draw the trajectories using the Greedy(Ṽ ) policy.
The discount factor γ is 0.9 for this experiment, and the parameter η is set to 0.3. In
addition, κ is fixed at 100 and α at 0.01. AVI is stopped (appearing to have converged)
after 1,200 training sets are drawn; at that point, a new feature is learned.

The results are shown in Figure 1. The score is determined by the average number
of lines erased during a sequence of games. The performance of the learned features are
evaluated by the 2,000-game average score for Greedy(Ṽ ) using the weights learned
by AVI. Figure 1 displays the average of such evaluations over 4 separate trials of fea-
ture learning. In addition, we also show in Figure 1 the result of using sets of randomly
generated features; such features are generated following the same procedure described
in the previous section, but label examples in the training set Σ randomly instead of
deciding the labeling by statewise Bellman error. Value functions constructed from ran-
domly generated features perform poorly, and do not show improvement as the number
of features used increases. Thus, our use of statewise Bellman error to label the train-
ing examples plays an important role in the performance of our feature construction
algorithm.

We also tested AVI on human-constructed features in this domain. The features we
used in this case were provided by Bertsekas in [2]. These features are useful features as
considered by a human, and according to [2] they were selected after some testing. We
tested the performance of the weights learned after each AVI iteration by running 2,000
games and taking the average score. The maximum 2,000-game average performance
was 92.9, which was achieved after 22,634 iterations of AVI. This performance was
substantially better than the best performance our learned feature set exhibited, which
was 27.6 (using 34 learned binary features).
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Fig. 1. Score (average number of lines erased in 2,000 games) plot for the learned features and
randomly generated features in the 8 × 8 Tetris domain. For reference, the maximum score for
the human-selected feature set from [2] was 92.9

Fig. 2. Number of minutes required to generate the n’th feature, and to train the weights after the
n’th feature is added to the feature set

We note that the human-selected features are all integer-valued, apparently giving
the human set a clear advantage over our binary features (especially per feature). Clearly
one approach for further improvement in feature learning is to design a feature-learning
approach that can produce integer-valued features.
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Fig. 3. Bellman error for SysAdmin domain (10 nodes)

We also study the the runtime behavior for our algorithm in this domain. We show in
Figure 2 the execution time for generating the features and adjusting the weights. How
long it takes a feature to be learned depends on how many training examples are collected
and how many features exist. Since the number of training examples does not grow as we
learn additional features, the time required to learn a new feature is eventually dwarfed
by growing time required to train the weights for the growing feature set.

SysAdmin. For the SysAdmin domain, two different kinds of topologies are tested: 3-
legs and cycle. There are 10 nodes in each topology. We follow the settings used in [4]
for testing this domain. The target of learning in this domain is to keep as many ma-
chines operational as possible, since the number of operating machines directly affects
the reward for each step. Since there are only 10 nodes, the on/off status of each node
is used as a basic feature, which means there are a total of 1024 states. We simply use
all states as the training set for feature construction. To enable direct comparison to the
previous work in [4], we use Bellman error magnitude to measure the performance of
the feature construction algorithm here.

For the experiments that use the whole state space as a training set, the plot of av-
erage Bellman error for 10 separate trials over the number of features learned is shown
in Figure 3. We used γ equal to 0.95, η equal to 1, α equal to 0.1, and κ equal to 100.
In this experiment there are 50 trajectories drawn in each AVI training set, each drawn
from a random initial state, and using trajectory length 2. AVI was stopped, appearing
to have converged, after 1,000 iterations.

Also included in Figure 3 are the results from [4]. We select the best result they
show (from various algorithmic approaches) from the 3-legs and cycle domains shown
in their paper (their “d-o-s” setting for the cycle domain and their “d-x-n setting” for
the 3-legs domain).
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Compared to the results in [4], also shown here, our feature construction algorithm
achieves a lower Bellman error magnitude in these domains for the same number of
features, throughout, and a lower converged Bellman error magnitude when new fea-
tures stop improving that measure. This is another encouraging result for this proposed
feature construction algorithm.

5 Conclusions and Future Work

From the experiments, the results show that our feature construction algorithm can gen-
erate features that show significantly better performance in 8× 8 Tetris than randomly
constructed features, and can produce features that outperform the features produced by
the algorithms in [4] for the SysAdmin domain. However, our algorithm cannot learn a
feature set for 8 × 8 Tetris that competes well with the human-constructed feature set
provided in [2].

Our technique depends critically on the generalization ability of the classification
learner to cope with large state spaces. The features generated by the feature-construction
algorithm are currently represented as decision trees. Although the experiments showed
that these features are useful in some problems, they are still hard to interpret. One
goal for designing a good feature-construction algorithm is to be able to produce
features that are understandable by humans. Furthermore, decision tree learning might
not be adequate to find good generalizations in complex domains. We observed that
the human-constructed features in [2] can be represented compactly using relational
languages. Some of them, e.g. the number of ”holes” in Tetris, are quite awkward to
represent using the decision tree structure in this paper. One way we are considering for
improving our algorithm is to use a relational classification or function-approximation
algorithm combined with an expressive knowledge representation instead of using C4.5
with decision trees.

We note that the performance of machine-learned feature set appears to converge,
with little added benefit per new feature, at a point where the policy corresponding to
the learned value function is far short of optimal. This suggests a lack of state-space
exploration during the feature learning stage. Another direction we are considering for
improving our algorithm is to develop new exploration strategies for generating the
training sets of states for feature learning.
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Abstract. The problem of optimizing queries in the presence of materi-
alized views and the related view-design problem have recently attracted
a lot of attention. Significant research results have been reported, and
materialized views are increasingly used in query evaluation in commer-
cial data-management systems. At the same time, most results in the lit-
erature assume set-theoretic semantics, whereas SQL queries have bag-
theoretic semantics (duplicates are not eliminated unless explicitly re-
quested). This paper presents results on selecting views to answer queries
in relational databases under set, bag, and bag-set semantics. The results
can be used under each of the three assumptions, to find sound and com-
plete algorithms for designing views and rewriting queries efficiently.

1 Introduction

A lot of work has been done recently on optimizing queries in the presence of
materialized views. In this context, problems such as definition of views, compo-
sition of views, maintenance of views have been researched. At the same time,
the majority of the research assumes set-theoretic semantics, while SQL queries
have bag-theoretic semantics, where duplicates are not eliminated unless explic-
itly requested. As SQL is the query language used in most commercial database-
management systems (DBMS), results on rewriting queries under bag or bag-set
semantics are useful in practice.
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The problem of view selection has received significant attention in the lit-
erature [3, 4, 12, 13, 14, 15, 17, 20, 21]. In this paper we consider view selection
under set, bag, and bag-set semantics. The problem is as follows: Given a
set of queries (which we call a query workload), a database, and a set of
constraints on materialized views (e.g., storage limit, which is a bound on
the amount of disk space available for storing the materialized views), return
definitions of views that, when materialized in the database, would satisfy
the constraints and reduce the evaluation costs of the queries. The original
motivation for the view-selection problem comes from data-warehouse design,
where we need to decide which views to store in the warehouse to obtain opti-
mal performance [4, 15, 20]. Another motivation is provided by recent versions
of several commercial DBMS, which support incremental updates of material-
ized views and use materialized views to speed up query evaluation. Choos-
ing an appropriate set of views to materialize in the database is crucial in
order to obtain performance benefits from these new features [3]. The view-
selection problem and its generalizations will play an even greater role in con-
texts where data needs to be placed intelligently over a wide-area network,
such as in peer-based data management [11].

Database relations are often duplicate-free. More precisely, database relations
are often sets, while views and queries are often bags, defined without using the
DISTINCT keyword (bag-set semantics). The bag-set semantics case is arguably
more practical than the bag-semantics case, as relational database-management
systems typically compute query answers using operators with bag-valued out-
puts on set-valued databases. At the same time, studying the bag-semantics case
is important not just from the theoretical but also from practical perspective,
as in view selection it is possible to design and materialize bag-valued views and
thus to obtain bag-valued databases of stored data. Computing query answers on
such databases using the rules of evaluating SQL queries on relational databases
obeys the laws of bag, rather than bag-set, semantics.

We now give examples that illustrate the high complexity of the problem of
selecting views to materialize when set semantics are assumed. In this paper we
show that under bag or bag-set semantics the complexity of the view-selection
problem is significantly lower, and thus it is more likely to find efficient view-
selection algorithms that output “more optimal” views than in the set-semantics
case. In the following, we make a distinction between views that contribute to the
construction of tuples in the query answers — we call them containment-target
views — and optional filtering views [2, 19] that may improve the efficiency of
query processing; see Example 2 for more details.

Our first example shows that the search space of potentially useful views can
be very large even for simple and common select-project-join queries.

Example 1. We exhibit a workload of select-project-join queries and a storage
limit, such that it is not possible to materialize the answers to all the workload
queries. We consider for materialization select-project-join views, such that each
view alone satisfies the storage limit and can support all workload queries. This
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example shows that for the given workload and under set semantics, at least an
exponential (in the size of the query workload) number of such views have more
subgoals than any query in the input workload.1

Consider a large retail chain with multiple stores and warehouses, where
products are ordered and shipped daily from the warehouses to replenish the
inventory in the stores. Suppose that the database has a Shipments relation,
and let warehouseID, warehouseCity, storeID, storeCity, orderNumber,
shipmentNumber, and shipmentDate be some of its attributes. Suppose the em-
ployees of the retail chain contract shipments to independent truck drivers, by
attracting them with tours connecting two or more cities. The company pre-
defines a number of tour types to offer to the truck drivers, and the company
employees need to query the database and find out whether the tour requested
by the driver exists starting at a given city. Every tour type starts and ends in
the same city. The simplest tour is the “two-city roundtrip”: The query returns
all cities warehouseCity such that there exist two scheduled deliveries: one from
warehouseCity to some storeCity on a given shipmentDate ‘date1’, and the
other from (a warehouse in) storeCity back to (some store in) warehouseCity
on a later shipmentDate ‘date2’. We now give a SQL definition of the query;
note the DISTINCT keyword that enforces set semantics.

SELECT DISTINCT S1.warehouseCity FROM Shipments S1, Shipments S2

WHERE S1.storeCity = S2.warehouseCity AND S1.warehouseCity = S2.storeCity

AND S1.shipmentDate = ‘date1’ AND S2.shipmentDate = ‘date2’;

As we show formally in the extended version of this paper, under set seman-
tics, for a given storage limit and for a query workload that has several such tour
queries for tours of different lengths, we can select and materialize a single view
such that the number of copies of the Shipments relation in the FROM clause of
the view is exponential in the combined size of the query workload. Thus, in view
selection under set semantics we potentially need to consider up to an exponen-
tial number of views in the size of the input query workload. At the same time,
as shown in this paper (see Theorems 4 and 7), in view selection under bag or
bag-set semantics we do not need to consider views whose definitions have more
subgoals than the number of subgoals of the longest input query.

Our second example shows that even if we further simplify the language
of queries of interest, there still remains a large number of views that could
significantly reduce the evaluation costs of the queries under set semantics.

Example 2. We use here the application domain of Example 1. Suppose that in
addition to the Shipments relation described in Example 1, the database also
has an Inventory relation, where the attributes of interest to us are storeID,
productID, orderNumber, and isOutstanding. We assume that the volume
of daily orders to replenish store inventories is large, and that a single order

1 This example is a variation on Example 1 in [8]; unlike that example, here we restrict
the search space of views in that we do not consider filtering views.
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is typically made for a large range of product types and potentially for several
stores in the same area. Further, suppose that different product types are stored
at different warehouses, and thus all the products ordered in a single order can be
delivered to a store via multiple shipments. Finally, we assume that on delivery,
the contents of most — but not all — shipments are put on the store shelves
and reflected in the inventory records on the same day.

Suppose that at the end of each day, the management of the retailer chain
routinely runs certain “daily report” queries on the deliveries. One of the queries
asks for the stores and product IDs such that some quantity of the product has
been ordered and was to be delivered to the store on the day in question, but the
order is still listed as “outstanding” in the store inventory. The query in SQL is:

SELECT DISTINCT I.storeID, productID FROM Shipments S, Inventory I

WHERE S.storeID = I.storeID and S.orderNumber = I.orderNumber

AND shipmentDate = ‘today’ AND isOutstanding = ‘yes’;

Note that unlike the queries in Example 1, the FROM clause of this query
has just one copy of each relation. That is, the daily-report query has no self-
joins. We show in this paper (see Sections 3.1, 4.1, and 5.1) that even under
set semantics (as well as under bag and bag-set semantics), when doing view
selection for such queries we do not need to consider views whose definitions
have more subgoals than the input queries. At the same time, we still need to
consider a significant number of views. Under the domain assumptions in this
example, even using reasonable indexes on Shipments or Inventory does not
eliminate most redundant tuples in the result of the join, and thus postprocessing
of a large temporary join result (which by definition never even has an index)
is part of any query plan that does not use materialized views. (The reason
is, under our domain assumptions a shipment where shipmentDate = ‘today’
typically corresponds to a large number of product IDs in the Inventory relation,
where the value of isOutstanding is ‘no’ for most records. Conversely, for
a large number of combinations of values of storeID and productID in the
Inventory relation where isOutstanding = ‘yes’, the value of shipmentDate
of the corresponding order is not ‘today’.)

ConsidermaterializingaviewV that isanatural joinof those tuples inShipments
andInventorywhereshipmentDate=‘today’andisOutstanding=‘yes’. Sup-
pose that in theanswer toVwehave (at least)attributesstoreIDandorderNumber.
Then we can use this view as a filter — essentially like an index or a semijoin —
to narrow down the number of tuples in the large result of joining the relations
Shipments and Inventory. The query plans that use V all join V with either
Shipments or Inventory first (an index can be maintained on V to make the join
efficient), and then join the resulting smaller-size temporary relation with the
remaining relation in the FROM clause of the query.2

2 In presence of frequent updates on the stored data, the update problem for the view
V is not much more complex than the problem of updating indexes on Shipments or
Inventory, because we have just two relations in the FROM clause of the view.
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We have seen that under set semantics, having a materialized view such as
V could improve the processing efficiency of the daily-report query, which is
important when the query is asked often and regularly on large relations.3 At
the same time, the choice of output attributes in a filtering view of this type
depends on a number of criteria, including the types of other queries in the query
mix. Thus, potentially we would have to consider all subsets of the combination
of all attributes of the stored relations Shipments and Inventory.

We show in this paper that unlike the case of set semantics, filtering views
do not need to be considered in view selection under bag or bag-set semantics.
Thus, in view selection we can further restrict the search space of views that are
useful in rewriting the given workload queries.

In this paper we present results on designing views to answer queries and on
rewriting queries in relational databases under set, bag and bag-set semantics,
which are useful in practice. The contributions are the following: (1) We give a
bound for the number of subgoals in the optimal viewsets, and (2) we study the
computational complexity of the view-selection problem. The results can be used
in finding sound and complete algorithms for designing views and for rewriting
queries under each of the three semantics.

To the best of our knowledge, limited related work has been done. [7] studies
the containment problem of conjunctive queries under bag semantics which is
proved to be

∏p
2-hard, whereas equivalence under bag semantics has the same

complexity as the graph-isomorphism problem, which is in NP. [10] presents
techniques for bag semantics, bag-specific constraints (UWDs), and for handling
bag queries over arbitrary mixes of bag and set schema elements and views. The
problem of optimizing queries with materialized views under bag semantics is
studied in [6] and under set semantics in [18]. Finally, [16] studies conjunctive
queries over generalized databases, to obtain an understanding of the behavior
of relations as multisets (cf. SQL query-evaluation semantics).

2 Preliminaries
2.1 Basic Definitions

A relational database is a collection of stored relations. Each relation R is a
collection of tuples, where each tuple is a list of values of the attributes in the
relation schema of R. A relation can be viewed either as a set or as a bag (another
term is multiset) of tuples. A bag can be thought of as a set of elements (we call
it the core-set of the bag) with multiplicities attached to each element. In a set-
valued database, all stored relations are sets; in a bag-valued database, multiset
stored relations are allowed.

In this paper we focus on select-project-join SQL queries with equality com-
parisons, a.k.a. safe conjunctive queries. A conjunctive query is a rule of the
form: Q : ans(X̄) ← e1(X̄1), . . . , en(X̄n), where e1, . . . en are database rela-
tions and X̄, X̄1, . . . , X̄n are vectors of variables. The variables in X̄ are called

3 For instance, WalMart maintains a database with billions of rows in stored relations.
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head or distinguished variables of Q, whereas the variables in X̄i are called body
variables of Q. A query has self-joins if the minimized query definition [5] has at
least two subgoals with the same relation name. A view refers to a named query.
A view is said to be materialized if its answer is stored in the database.

We say that a bag B is a subbag [7] of a bag B′ (we write B ⊆b B′) if each
element of B is contained in B′ with a greater than or equal multiplicity. The
bag union (*) [7] of two bags is obtained by adding the multiplicity factors for
each tuple in each bag.

2.2 Query Containment and Equivalence

A query Q1 is set-contained in a query Q2, denoted by Q1 �s Q2, if for any
set-valued database D the answer to Q1 on D under set semantics is a subset of
the answer to Q2 on D under set semantics. A query Q1 is bag-contained (bag-set
contained) in Q2, denoted by Q1 �b Q2 (Q1 �bs Q2, respectively), if for any bag-
valued (set-valued, respectively) database D, the answer to Q1 on D under bag
semantics (bag-set semantics, respectively) is a subbag of the answer to Q2 on
D under the same semantics. Two queries are equivalent under set/bag/bag-set
semantics (Q1 ≡s Q2, Q1 ≡b Q2, Q1 ≡bs Q2, respectively) if they are contained
in each other under that semantics.

2.3 Equivalent Rewritings and the View-Selection Problem

Let V be a set of views defined on a database schema S, and D be a database
with the schema S. Then by DV we denote the database obtained by computing
all the view relations in V on D. Let Q be a query defined on S, and V be a set
of views defined on S. A query R is a rewriting of the query Q using the views in
V if all subgoals of R are view predicates defined in V or interpreted predicates.

The expansion Rexp of a rewriting R of a query Q using views is obtained
from R by replacing all the view atoms in the body of R by their definitions in
terms of the base relations. A rewriting R of a query Q on a set of views V is
a contained rewriting of Q using V under set semantics if for every database D,
R(DV) ⊆ Q(D). A rewriting R of a query Q on a set of views V is an equivalent
rewriting under set semantics if for every database D, R(DV) = Q(D).

The definition of the notion contained rewriting for bag or bag-set semantics is
analogous. The only difference is that we now require that R(DV) is a subbag of
Q(D). The definition of the notion of equivalent rewriting for the bag and bag-set
semantics is the same as above (in this case, however, the symbol ‘=’ stands for
bag equality). A conjunctive equivalent rewriting Q′ of a conjunctive query Q
(under some semantics) is locally minimal [18] if we cannot remove any literals
from Q′ and still retain equivalence to Q (under the same semantics).

Given a set, or workload, Q of queries on stored relations and a database
instance, we want to find and precompute offline a set of intermediate results,
defined as views (we call this set of views a viewset) on these relations. The views
can be used to compute the answers to all queries in the workload Q. Our goal
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is to design minimal-cost views, that is, views whose use in the rewriting of the
queries in Q minimizes the evaluation cost of these queries. As we assume that
the view relations have been precomputed and stored in the database, we do not
assume any cost of computing the views. For query-evaluation costs, we use the
following sum-cost model [8]. The cost of a join of two relations is proportional
to the sum of the sizes of the input and output relations.4 The cost of a query
plan is proportional to the sum of costs of all the joins in the plan. (We assume
the use of left-linear query plans, where selections are pushed as far as they
go and projection is the last operation.) The cost of evaluating a query is the
minimum cost of its query plans. The total cost of evaluating a query workload
is proportional to the sum of the costs of its queries; the sum can be weighted
to reflect the relative frequency or importance of the queries.

In this paper we consider problem inputs that are 4-tuples (S,Q,D,L), where
S is a database schema, Q is a workload of queries defined on S, D is a database
with schema S, and L is a collection of constraints on sets of materialized views.
A problem input P is said to be set-oriented (bag-oriented, bag-set-oriented,
respectively) if we consider set-semantics (bag-semantics, bag-set semantics, re-
spectively) for computing query answers; P is said to be conjunctive if we con-
sider the conjunctive language for queries, views and rewritings.

Some results in this paper are given for a special type of constraints L on
materialized views: In those results, L is a singleton L = {C}, C ∈ N. The
storage limit C means that the total size size(V(D)) of the relations for the views
in V on D must not exceed C. If the storage limit is sufficiently large then we
can materialize all query answers and this is the optimal viewset. The problem
becomes interesting when the storage limit is less than that.5

Definition 1. For a given query Q, semantics (set, bag, or bag-set) for evaluat-
ing the query on the database, a viewset V, and database D: (1) R is a candidate
rewriting of Q in terms of V if R is an equivalent rewriting of Q under the given
semantics, and (2) R is an optimal rewriting of Q in terms of V on D if R is
a candidate rewriting that minimizes the cost of computing the answer to Q on
DV among all candidate rewritings of Q in terms of V.

Definition 2. Let P = (S,Q,D,L) be a problem input. A set of views V is said
to be an admissible viewset for P if: (1) V gives equivalent (candidate) rewritings
of all the queries in Q, (2) for every view V ∈ V, there exists an equivalent
rewriting of a query in Q that uses V , and (3) V satisfies the constraints L.

Definition 3. For a problem input P = (S,Q,D,L), an optimal viewset is a
set of views V defined on S, such that: (1) V is an admissible viewset for P, and
(2) V minimizes the total cost of evaluating the queries in Q on the database
DV , among all admissible viewsets for P.

4 This models faithfully hash joins and index joins.
5 If the storage limit is too small then there is no viewset that can rewrite all queries.
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Definition 4. For any problem input P, a viewset V is said to be nonredundant
for P if V is admissible for P and there is no proper subset V ′ of V such that V ′

is also admissible for P.

In some results of this paper, instead of a database D in the definition of a
problem input, we will use the notion of an oracle O. An oracle is supposed to
give, instantaneously, exact relation sizes for all views defined on the schema
S. In this case a problem input is written as (S,Q,O,L). The notion of an
optimal viewset is defined analogously to the case of problem inputs of the
form (S,Q,D,L), where D is a database. The results in the remainder of this
paper are given for problem inputs that include a fixed database, but can
be extended in a straightforward manner to problem inputs that include an
oracle.

2.4 Different Types of Views

There are two types of conjunctive views that can be used in a conjunctive
rewriting of a conjunctive query [9]: (1) containment-target views, and (2) fil-
tering views. A conjunctive view V is a containment-target view for a con-
junctive query Q if there exists a conjunctive rewriting P of Q (P uses V ),
and there is a containment mapping (for the set-semantics case, or bijective
mappings for the bag and bag-set semantics case) from Q to the expansion
P exp of P , such that V provides the image of at least one subgoal of Q under
the mapping. Intuitively, in a rewriting, a containment-target view “covers” at
least one query subgoal. Covering all query subgoals is enough to produce a
rewriting of the query. A view is a filtering view for a query if it is not a
containment-target view.

3 Queries Without Self-joins Under Set Semantics

In this section we consider the view-selection problem under set semantics. We
present the following results:

1. In Section 3.1 we show that for workloads of queries without self-joins there
exist optimal viewsets whose view definitions do not have self-joins. More-
over, the view definitions in such viewsets have no more subgoals than any
query in the workload.

2. In Section 3.2 we show that for workloads of queries without self-joins there
exist optimal viewsets, such that rewriting any workload query does not
require self-joins of containment-target views in the viewset.

3. In Section 3.3 we show that the decision version of the view-selection problem
is in NP for workloads of queries without self-joins, provided that filtering
views are not used in query rewritings.

These results are very useful in designing an algorithm that constructs opti-
mal viewsets, as they provide a bound on the number of atoms in each view in an
optimal viewset and ensure that these views do not contain self-joins, provided
the workload queries do not contain self-joins.
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3.1 View Definitions Without Self-joins

The following theorem holds for queries without self-joins under set semantics.

Theorem 1. Given a conjunctive set-oriented problem input P = (S,Q,D,L),
where L represents a single storage limit and all queries in Q are conjunctive
queries without self-joins, if there exists an optimal viewset V for P under the
storage limit constraint L, then there exists an optimal viewset V ′ under L such
that each view in V ′ can be defined as a conjunctive query without self-joins.

The statement of Theorem 1 is that whenever workload queries have no
self-joins then there exist optimal viewsets whose view definitions do not have
self-joins. The following Corollary 1 goes one step further, by showing that each
view in the optimal viewset has no more subgoals than the workload queries.

Corollary 1. Given a conjunctive set-oriented problem input P = (S,Q,D,L)
where L represents a single storage-limit constraint and assuming that (1) all
queries in Q are without self-joins, and (2) the number of (relational) subgoals
in any query does not exceed an integer n, then if there exists an optimal viewset
for P under L, then there exists an optimal viewset V of P under L, such that
for every view V in V, the number of subgoals of V is bounded from above by n.

The optimal viewset stipulated in Corollary 1 may include filtering views
alongside containment-target views. Moreover, even an exponential number of
filtering views may be necessary under set semantics; see [8]. Note that we cannot
strengthen the Corollary 1 to state that under the premises of the corollary there
exists an optimal viewset V, such that each view in V is a subexpression of some
query in the input query workload. As a counterexample, consider Example 3.

Example 3. Consider a query workload Q = { Q1, Q2 }, where:

Q1(X,Y,Z) :- p(X,X), s(X,Y), t(Y,Z).
Q2(X,Y,Z) :- p(X,Y), s(Y,Y), t(Y,Z).

Suppose that we are given a database D= { p(a,a), p(a,b), p(c,c), s(a,a),
s(b,b), s(c,b), t(a,d), t(a,f), t(b,g), t(b,h)} and a set of constraints
L = { L }, where the value of the storage limit L = 6 is an upper bound on
the sizes of materialized views on D. Consider a view V :

V: v(Z,T,W,U) :- p(Z,T),s(T,W),t(W,U).

Note that the view V is not a subexpression of either query in the workloadQ.
However, V = { V } is an optimal viewset for the problem input ({ P (A,B),
S(C,D), T (E,F ) }, { Q1, Q2 }, D, { L }), and both input queries can be
rewritten using the view V :

Q1’(X,Y,Z):- v(X,X,Y,Z).
Q2’(X,Y,Z):- v(X,Y,Y,Z).

Finally, when queries have self-joins, the number of subgoals of views can be
up to a product of the number of subgoals of the queries; see Example 1 in [8].
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3.2 Rewritings Without Self-joins

While the results in Section 3.1 refer to the stucture of the views in an optimal
viewset, in this section we are interested in the structure of the query rewritings
provided that the queries in the workload Q do not have self-joins. We show that
there exists an optimal viewset V, such that rewriting any query in Q does not
require self-joins of containment-target views in V.

Theorem 2. Given a conjunctive set-oriented problem input P = (S,Q,D,L)
and assuming that the queries in Q do not have self-joins, if there exists an
optimal viewset V for P under the storage limit L, then it is possible to rewrite
each query in Q using V, without self-joins of containment-target views.

The lack of self-joins in queries is an essential condition in Theorem 2, as we
can show that otherwise nontrivial self-joins of containment-target views may
be required. An analogous result holds for filtering views (cf. Example 1 in [8]).

3.3 Complexity

We now consider the decision version of the view-selection problem, that is,
given a set-oriented problem input P and a positive integer K, the problem is
to determine whether there exists an admissible viewset V for P, such that the
cost of evaluating the queries Q in P using V does not exceed K. We show
that this problem is in NP for workloads of queries without self-joins, provided
that filtering views are not used in query rewritings. We prove the result for
the oracle version of problem inputs, that is, we show that the size of a witness
is polynomial in the size of the following components of the problem input:
database schema, query workload, and constraints on the materialized views.
This result is stronger than proving that the size of a witness is polynomial in
the size of the above components plus the size of an input database, because
database schemas, query workloads, and constraints on the materialized views
are typically small in size compared to the size of possible databases conforming
to the schemas. To prove the main result, we first establish an upper bound on
the number of containment-target views in query rewritings.

Lemma 1. [18] Let Q be a conjunctive query and V be a set of views, both Q
and V without built-in predicates. If the body of Q has p relational subgoals and
Q′ is a locally minimal equivalent conjunctive rewriting of Q using V, then Q′

has at most p relational subgoals.

Proposition 1. For any conjunctive query Q with p relational subgoals and for
any locally minimal conjunctive rewriting Q′ of Q in terms of views such that
Q′ ≡s Q, the number of containment-target views in Q′ does not exceed p.

This result follows from the observation that any locally minimal rewriting
does not contain filtering views. From Proposition 1 we obtain Theorem 3:

Theorem 3. Given an oracle version of a conjunctive set-oriented problem in-
put P whose queries are without self-joins, the decision version of the view-
selection problem is in NP, provided that rewritings do not include filtering views.
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Note that if filtering views are allowed in query rewritings, then the view-
selection problem under set semantics has an exponential-time lower bound even
when none of the workload queries have self-joins; see [8].

4 Queries Under Bag Semantics

In this section we consider the view-selection problem under bag semantics.
Before proceeding to the main results of this section, we note that under bag
semantics any candidate query rewriting lacks any filtering views, as well as any
redundant containment-target views [7]. We now summarize the main results:

1. In Section 4.1 we show that for workloads of queries with or without self-
joins, each view definition in any admissible viewset (and thus in any optimal
viewset) has no more subgoals than any query in the input workload. As a
consequence, for workloads of queries without self-joins each view definition
in an admissible viewset can be defined without self-joins.

2. In Section 4.2 we show that for workloads of queries without self-joins and
for any admissible viewset, rewriting any query in the workload does not
require self-joins of view atoms.

3. In Section 4.3 we show that the decision version of the view-selection problem
is in NP for workloads of queries with or without self-joins and for a single
storage-limit constraint on materialized views (see also [1]).

Comparing these results with those in Section 3, we conclude that both con-
structing admissible/optimal viewsets and rewriting queries using views are eas-
ier problems under bag semantics than under set semantics.

4.1 Bounded Number of Subgoals

The following lemma holds for workloads of queries without or with self-joins
under bag semantics and for arbitrary sets of constraints on materialized views.

Lemma 2. Let P = (S,Q,D,L) be a conjunctive bag-oriented problem input,
where L is a set of any constraints. Let V be any admissible viewset for P, and
let Q be any query in Q. Suppose V ′ ⊆ V is the set of all views in the equivalent
rewriting R of Q in terms of V. Then the definitions of views V ′ in the expansion
of R form a partition of the definition of Q.

The remaining results in Section 4.1 follow trivially from Lemma 2.

Proposition 2. Given a conjunctive bag-oriented problem input P, let V be any
admissible viewset for P. Then each view in V has at most n subgoals, where n
is the number of subgoals in the longest query in the input workload Q.

The following theorem sets an upper bound on the number of subgoals in the
body of any view definition in any admissible viewset.

Theorem 4. Let P be a conjunctive bag-oriented problem input and n be the
number of subgoals in the longest query in Q. Then, for any admissible viewset
V for P, each view in V can be defined using at most n subgoals.
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We can make a more precise statement about the number of subgoals in view
definitions for views in admissible viewsets: Let P be a conjunctive bag-oriented
problem input and let V be any view in any admissible viewset V for P. Suppose
V is used in rewriting queries Qi1 , . . . ,Qik

in Q; let m be the number of subgoals
in the shortest definition among Qi1 , . . . ,Qik

. Then V can be defined using at
most m subgoals. In addition, we observe the following. For any conjunctive
bag-oriented problem input P and for an admissible viewset V for P: If queries
in Q do not have self-joins, then every view in V can be defined as a conjunctive
query without self-joins.

4.2 Rewritings Without Self-joins of Views

Analogously to the case of set semantics, in the case of bag semantics we can
show that for problem inputs P whose query workloads Q do not have self-joins,
and for any admissible viewset V for P, rewriting any query inQ does not require
self-joins of views in V. The following theorem follows directly from Lemma 2.

Theorem 5. Let P be a conjunctive bag-oriented problem input and V an ad-
missible viewset for P. Assuming that queries in Q do not have self-joins, then
it is possible to rewrite each query in Q without using self-joins of views in V.

4.3 Complexity

In this section we show that the decision version of the view-selection problem
is in NP for a single storage-limit constraint on materialized views (see also [1]).
We define the decision version of the problem and state the result for the oracle
version of problem inputs, analogously to the respective formulations in Sec-
tion 3.3. At the same time, unlike the results in Section 3.3, the NP results for
bag semantics hold for workloads of queries without or with self-joins.

We first establish an analog of Proposition 1 in Section 3.3:

Proposition 3. For any conjunctive query Q with p relational subgoals and for
any conjunctive rewriting Q′ of Q in terms of views, such that Q′ ≡b Q, the
number of views in Q′ does not exceed p.

This result follows immediately from the fact that for any equivalent (under
bag semantics) rewriting to a query, the rewriting does not contain filtering views
or “unnecessary” containment-target views, and is thus locally minimal.

We now establish Theorem 6, which is a direct consequence of the following
observation: Under bag semantics, for any problem input P = (S,Q,D,L) with
any set of constraints L, and for any admissible viewset V for P, the number of
views in V does not exceed p, where p is the total number of relational subgoals
in all the queries in the query workload Q in P.

Theorem 6. Given an oracle version of a conjunctive, bag-oriented problem
input P and assuming that the input set of constraints L represents a single
storage limit, the decision version of the view-selection problem is in NP.
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5 Queries Under Bag-Set Semantics

In this section we consider the view-selection problem under bag-set semantics.
Note that all queries mentioned in the results below may have self-joins. In the
extended version of the paper we show that filtering views are not needed under
bag-set semantics. The main results of this section are:

1. The results in Section 5.1 are similar to those in Section 4.1, which con-
cerns bag semantics. That is, we show that for workloads of queries with or
without self-joins, each view definition in any admissible viewset (and thus
in any optimal viewset) has no more subgoals than any query in the input
workload. As a consequence, for workloads of queries without self-joins, each
view definition in an admissible viewset can be defined without self-joins.
Moreover, we can show that for workloads of queries without self-joins and
for any admissible viewsets, rewriting any query in the workload does not
require self-joins of view atoms.

2. In Section 5.2 we show that the decision version of the view-selection problem
is in NP for workloads of queries with or without self-joins and for a single
storage-limit constraint on materialized views.

5.1 Bounded Number of Subgoals

Our first result holds for workloads of queries without or with self-joins under
bag-set semantics and for arbitrary sets of constraints on materialized views.

Lemma 3. Let P be a conjunctive, bag-set-oriented problem input, and let V
be any admissible viewset for P. Then each view in V has at most n subgoals,
where n is the number of subgoals in the longest query in the input workload Q.

All remaining results in this subsection follow directly from Lemma 3.

Theorem 7. Let P be a conjunctive bag-set-oriented problem input, and n be the
number of subgoals in the longest query in Q. Then, for all admissible viewsets
V for P, each view in each V can be defined using at most n subgoals.

We can make a more precise statement about the number of subgoals in view
definitions for views in admissible viewsets:

Corollary 2. Let P be a conjunctive bag-set-oriented problem input, and let V
be any view in any admissible viewset V for P. Suppose V is used in rewriting
queries Qi1 , . . . ,Qik

in Q; let m be the number of subgoals in the shortest defini-
tion among the definitions of Qi1 , . . . ,Qik

. Then V can be defined using at most
m subgoals.

We also make the following observation: Let P be a conjunctive bag-set-
oriented problem input, and V an admissible viewset for P. If queries in Q do
not have self-joins, then each view in V can be defined as a conjunctive query
without self-joins. In addition, we can show that for problem inputs P whose
query workloads Q do not have self-joins and for any admissible viewset V for
P, rewriting any query in Q does not require self-joins of views in V.
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5.2 Complexity

We now show that the decision version of the view-selection problem is in NP for
a single storage-limit constraint on materialized views. We formulate the decision
version of the problem and state the result for the oracle version of problem
inputs, similarly to the previous sections. The NP results hold for workloads of
queries without or with self-joins.

Proposition 4. For any conjunctive query Q with p relational subgoals and for
any conjunctive locally minimal rewriting Q′ of Q in terms of views, such that
Q′ ≡bs Q, the number of views in Q′ does not exceed p.

This result follows from the definition of a locally minimal rewriting that is
equivalent to a query under bag-set semantics. By definition, the rewriting does
not contain filtering views or “unnecessary” containment-target views.

We now establish that the decision version of the view-selection problem is
in NP. This result is a consequence of the following observation: Under bag-set
semantics, for any problem input P = (S,Q,D,L) with any set of constraints L,
and for any nonredundant viewset V for P, the number of views in V does not
exceed p, where p is the total number of relational subgoals in all the queries in
the query workload Q in P.

Theorem 8. Given an oracle version of a conjunctive bag-set-oriented problem
input P and assuming that the input set of constraints L represents a single
storage limit, the decision version of the view-selection problem is in NP.

6 Conclusions and Future Work

This paper presents results on designing views to answer queries in relational
databases under set, bag and bag-set semantics. The results can be used in
finding sound and complete algorithms for designing views and rewriting queries
under each of the three assumptions. We are currently working on designing
such algorithms. In our future work we also plan to study the complexity of
the optimization problem and to extend this method to include, in a systematic
way, queries with arithmetic comparisons. Applying these results to XQuery is
another direction of our future research.
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The Multi-Depot Periodic Vehicle Routing Problem (MDPVRP) is the problem
of designing, for an homogeneous fleet of vehicles of capacity Q, a set of routes
for each day of a given p-day period. The routes of day k must be executed by
mk vehicles based at the depot assigned to day k. Each vehicle performs only one
route per day and each vehicle route must start and finish at the same depot.
Each customer i may require to be visited on fi (say) different days during the
period and these visits may only occur in one of a given number of allowable day-
combinations. For example, a customer may require to be visited twice during a
5-day period imposing that these visits should take place on Monday-Thursday
or Monday-Friday or Tuesday-Friday. The MDPVRP consists of simultaneously
assigning a day-combination to each customer and designing the vehicle routes
for each day of the planning period so that each customer is visited the required
number of times, the number of routes on each day does not exceed the number
of vehicles available at the depot assigned to that day and the total cost of the
routes is minimized.

The MDPVRP considered in this paper generalizes three well known rout-
ing problems: the Periodic Vehicle Routing Problem (PVRP), the Multi-Depot
Vehicle Routing Problem (MDVRP) and the single depot Capacitated Vehicle
Routing Problem (CVRP):

The PVRP and the MDVRP are special cases of the MDPVRP.
The MDPVRP becomes the PVRP when all vehicles are located at one depot

(i.e. nd=1) but only mk of these vehicles can be used on day k.
The MDVRP is a special case of the MDPVRP as it is defined on a single day

(i.e. p=1) but vehicles are located on several depots and each vehicle route must
start and finish at the same depot. Moreover, each customer must be visited ex-
actly once by one of the vehicles located at the depots specified by the customer.

The MDPVRP becomes the single depot CVRP when the planning period
is of one day only (i.e. p=1) and every customer must be visited only once (i.e.
fi=1, for every customer i) from a single depot (i.e. nd=1) where all vehicles
are located.

It is quite obvious that the CVRP is also a special case of both the PVRP
and the MDVRP.

At our knowledge the MDPVRP has not be considered in the literature.
Despite their practical interest, only few papers are reported for the PVRP and
the MDVRP.

J.-D. Zucker and L. Saitta (Eds.): SARA 2005, LNAI 3607, pp. 347–350, 2005.
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The PVRP has many practical applications in the grocery industry [5], the
soft drink industry (vending machines), the automotive industry (parts distrib-
ution), industrial gases distribution and refuse collection ([4, 21]).

All papers on the PVRP reported in the literature present heuristic meth-
ods whose quality is unknown since no optimal solutions or lower bounds are
provided.

Early heuristics were proposed by [4, 21]. More sophisticated heuristic algo-
rithms were presented by [8, 22, 20, 7, 11, 9]. The tabu search proposed by [9] is
capable of solving the PVRP as well as the Periodic Travelling Salesman Problem
(PTSP) and the MDVRP. The computational results indicate that this method
outperforms all existing heuristics for all three problems. To our knowledge no
exact method was proposed in the literature for the PVRP.

At our knowledge the only exact methods published for the MDVRP are due
to [14, 15]. Heuristic algorithms for the MDVRP were proposed by [24, 23, 27, 12,
6, 19].

The CVRP has been extensively investigated in the literature (see the surveys
of [26, 17]). Recently, new effective exact algorithms for the CVRP have been
proposed by [1, 16, 3, 10, 2]. This latter method was developed for solving Time
constrained Vehicle Routing Problem on a directed MultiGraph (TVRP-MG)
and is based on the methods for the CVRP proposed by Mingozzi, Christofides
and Hadjicostantinou (1994) and by [13].

The procedures of [10] and of [2] are both based on the Set Partitioning
(SP) formulation of the CVRP and solved problem E-n76-k10, the most famous
CVRP instance that until recently was unsolved.

The methods of [1, 16, 3] are branch and cut algorithms capable of solving to
optimality the largest instance of the symmetric CVRP (135 customers) reported
in the literature but cannot solve problem E-n76-k10.

In this paper, we describe an integer programming formulation (F) of the
MDPVRP that is an extension of Set Partitioning formulation of the CVRP.
Problem F cannot be solved directly, even for moderate size instances, as the
number of variables is as large as the total number of routes that is typically
exponential.

We describe an exact method for solving problem F that uses variable pricing
in order to reduce the set of variables to solvable proportions. The pricing method
is based on a bounding procedure for finding near optimal solutions of the dual
problem of the LP relaxation of problem F, called problem D.

The bounding method is an additive procedure that computes a lower bound
on the MDPVRP as the sum of the dual solution costs obtained by a sequence
of five different heuristics for solving D, where each heuristic explores a different
structure of the MDPVRP. Three of these procedures are based on relaxations
that do not require the generation of the route set. The other two procedures
combine subgradient optimization with column generation to produce a lower
bound of the same quality of the value of the LP relaxation of formulation
F without being affected by the typical degeneration of the classical column
generation methods based on simplex LP solvers.
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The exact procedure uses the dual solution to generate a limited set of feasi-
ble routes so that the resulting reduced problem F can be solved by an integer
programming solver. If optimality is not achieved, then the procedure is itera-
tively repeated with a larger subset of routes until either optimality is proved or
the distance from optimality is below an a priori defined threshold level.

Computational results on test problems derived from the literature are re-
ported for the PVRP, the MDVRP and the CVRP.
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This paper brings together two strands of my research: an interest in abstraction
in AI computing systems (see for example [1]) and an interest in the study of
paintings as a key to understanding perception and cognition (see, for example,
[2]). Our senses of the world are informed by the art we make and by the art
we inherit and value, works that in them selves encode others’ worldviews. This
two-way effect is deeply rooted and art encodes and affects both a culture’s
ways of perceiving the world and its ways of remaking the world it perceives.
The purpose of this paper is to indicate ways in which a study of abstraction in
art can be used to discover insights into our perception of the world and how
these insights may be employed, in turn, to develop computing systems that can
take advantage of some of these forms of abstraction both in their own processing
and in the way they present themselves to users.
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Our research takes place in a bioinformatics team embedded in a biological unit 
where the biologists are using pangenomics cDNA chips to measure expression level 
of thousands of genes at a time. The goal of our research is to systematically catego-
rize of relations between genes expression levels (1) and biomedical values to support 
finding of candidate genes allowing a better diagnostic of obesities and related dis-
eases (2). A key issue in the analysis of cDNA chips is that the number of expression 
levels per chip is very high compared to the number of chips. We are working with 40 
cDNA chips with ±40000 spots each one and with 2 biomedical parameters. One way 
used by biologists to discover relationships between these types of data consists in 
computing correlations for a small number of them based on their biological knowl-
edge. To go beyond such a biased and manual selection, we propose to explore auto-
matically combinations between all available bioclinical parameters with all gene 
expressions. These new data need to be classify to identify significant Linear Correla-
tion Discoveries (3). Our method, DISCOCLINI, consists in using abstraction opera-
tors to remove outliers, approximation to define correlations and reformulation to 
describe and to cluster correlations by variations patterns. 

Biomedical data are subject to high variability due to manipulation errors, interin-
dividual variability, etc. This induces the presence of noise and particularly of outliers 
in data. These ones are isolated values of a given gene expression or a clinical pa-
rameter. A first step consists in discovering significantly correlated genes with bio-
clinical parameters. One computational problem consists in detecting and filtering (4) 
the outliers. We define two ways to detect the outliers. The first one, OUTTRIM, is 
based on the trimming of points which consists in cutting down x% of the extreme 
values in the sets. As this approach is very stringent, we explored, another method 
based on PAM (Partitioning Around Medoids) (5), OUTPAM. This one consists in 
grouping data points in a predefined number of clusters. In this context an outlier is 
define as a cluster reduced to a single point. Thanks to PAM, we could detect more 
relevant outliers than with the first approach. Once outliers are removed from the 
data, global and local Spearman correlation rank between gene expression data and 
bioclinical parameters may be computed. This step generates results which need to be 
explored and to be compared for a given support (in number of individuals). 

To visualize the previous results we propose a colored language of symbols. This 
language, noted L1, allows to represent 2D plot in a gradient colored 1D plot. This 
allows easily visualization and comparison found relations (see fig.1). As we are only 
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interested in the variation profiles and not in the variation intensities is reformulated 
in a language, L2  based on six symbols: “ ” for a positive relation, “ ” for a nega-
tive one, “ ” for a null, “ ” for an outlier, “ ” and “ ” for breaking intervals. All the 
relations are redefined in L2 and then classified in a Galois lattice to associate a varia-
tion pattern to a biset distribution. Each node of this space corresponds to a cluster of 
specific relations detected. In a final step, the most relevant clusters are studied in a 
biomedical point of view. This phase allows the user to evaluate and to validate L2, 
the lattice and it description of patterns. 

Preliminary results of DISCOCLINI processing have supported the discoveries of a 
set of genes regulated by Epinephrine in human muscle (6) and of Cathepsin S, as 
novel biomaker of adiposity (7). 

 

Fig. 1. Example of reformulation languages 

We acknowledge the Benjamin Delessert Institute for its financial support. 
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1 Introduction

In practice, most scheduling problems are an abstraction of the real problem
being solved. For example, when you plan your day, you schedule the activities
which are critical; that is you schedule the activities which are essential to the
success of your day. So you may plan what time to leave the house to get to
work, when to have meetings, how you share your vehicle with your spouse and
so on. On the other hand, you probably do not consider the activities that are
easy to arrange like brushing your teeth, going to the shops, making photocopies
and other such tasks that can usually be accomplished whenever you have the
time available. Often, if a schedule goes wrong, it is because a missed or under-
estimated activity had a significant impact on the schedule. We typically learn
which activities are critical by experience and create an abstract scheduling prob-
lem including only these critical activities. Instead of scheduling the non-critical
activities we estimate their effects in the abstract scheduling problem.

Most industrial scheduling problems are also an abstraction of the real prob-
lem. It is common to only schedule activities on bottleneck resources and let the
other activities fall into place once these are scheduled. Deciding which resources
are bottlenecks is currently done by experienced human experts who determine
what needs to be considered to create an accurate and high quality schedule.
Unfortunately this process is both time consuming and error prone. We want to
automate the process of creating a good quality abstract scheduling model.

2 Learning Abstract Scheduling Models

We consider the following system. A series of scheduling problems are presented
to a system, one after another, perhaps on a weekly or daily basis. The objective
of the system is to produce a high quality schedule within a limited amount of
processing time. The system chooses an abstract model and searches for good
solutions. Once a good solution has been found it is extended to create a solution
to the full problem.

� This work has received support from Science Foundation Ireland under Grant
00/PI.1/C075, Irish Research Council for Science, Engineering, and Technology un-
der Grant SC/2003/82, and ILOG, SA.
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For example, say we choose to schedule only the activities on the 10 busiest
machines in the factory. We create a high quality schedule for these activities.
Then we extend this abstract solution into a full schedule for all of the activities
by inserting the remaining activities into the schedule.

Once the system has produced a schedule a human user can examine the
solution. If they are satisfied with the result, they can release the schedule for
execution in the factory. However, if they are not happy with the solution, they
can modify the abstract model by changing the critical activities. They might
want to make changes because important jobs are not completed soon enough
or an expensive machine is not being utilised as efficiently as they would like.

While the system has to produce schedules quickly for each problem instance,
it is allowed a longer time between instances to analyse how it could have per-
formed better. During this time, it will explore different approaches. Upon re-
ceiving the next problem instance it can then draw on its previous experience,
including the human feedback on its abstract models, to choose a better abstract
scheduling model.

3 Research Aims

There are several challenging research questions which must be explored to build
a scheduling system that learns a good abstract scheduling model:
– We need to determine how to learn a good abstract model for a particular

factory. A good abstract model will produce solutions which have a strong
correlation to good solutions to the full problem. Initially, we can use heuris-
tics to analyse the problem instance and determine which activities are most
likely to compete for a resource. However, as the system gains experience in
scheduling the problem, we can learn by exploring different abstract models
and evaluate them by extending them to a full solution. Our goal is to learn
a good abstract model that will consistently produce good quality schedules
to the full problem.

– How do we approximate the missing parts of an abstract model? In partic-
ular, when we choose to schedule only the critical activities, what do we do
with the non-critical activities. We do not wish to ignore them as if they do
not exist, as ultimately they must be considered in the full solution. One
approach is to approximate their effects using precedence constraints with a
minimum delay in the abstract model. These precedence constraints reserve
gaps in the schedule and do not require any search effort. Determining the
size of these gaps is an interesting research question.

– When we extend an abstract solution into a full solution there are several
approaches. We can fix the sequence of activities in the abstract solution and
schedule the remaining activities subject to this sequence. Another approach
is to use the abstract solution to guide a heuristic to construct a full schedule
or we can use the abstract solution as a starting point for the full solution
and allow decisions to be changed while searching for a full solution, eg.
using local search.
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Abstract. At present, numerical simulation has become the norm to mimic 
coastal flow and water quality problems. Yet, results from algorithmic procedure 
sometimes appear unreasonable, in particular when a model is initially set up. 
The incorporation of existing heuristic knowledge on model manipulation into 
the modeling system is able to provide great assistance to novice users who may 
lack the requisite knowledge to establish the model properly. Knowledge 
comprising the correct manipulation direction and the means to enhance 
manipulation effectiveness is encapsulated. Through an appropriate knowledge 
acquisition facility, recent artificial intelligence technology is coupled into 
numerical modeling system for simulating the manipulation process. It is able to 
assist the user to formulate a suitable strategy for striking a balance between 
accuracy and effectiveness and to tune the model to accomplish satisfactory 
modeling of real phenomena. It can bridge the existing gap between numerical 
modelers and practitioners in this domain. 

Research Summary 

Modeling can be considered as a process that transforms knowledge regarding real 
phenomena into numerical formats, simulates for the behaviors, and translates the 
numerical results back to comprehensible formats. It is an interaction between 
knowledge and information in the form of knowledge to information and then back to 
knowledge again. Over these years, a myriad of numerical models has become 
available for engineering problems. They are increasingly comprehensive and include a 
diversity of coastal processes. Since the emphasis has been traditionally concentrated 
on algorithmic procedures, models are often not user-friendly and lack knowledge 
transfers in model interpretation. This produces substantial constraints on model uses 
and considerable gaps between model developers and practitioners.  

Selection and manipulation of an appropriate numerical model to solve a practical 
problem is a specialized task, entailing detailed knowledge of the applications and 
limitations of the model. Many model users do not possess the requisite knowledge to 
glean their input data, build algorithmic models and evaluate their results. This may 
produce inferior design and cause under-utilization, or even total failure, of these 
models. Model manipulation is often an inevitable process, in particular during the 
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initial model establishment. The process is iterated for several cycles until the results 
meet the threshold of mathematical and physical correctness preset by the user. It can 
be regarded completed when satisfactory simulation of real phenomena is attained. In 
general, the process on model manipulation is time-consuming and depends highly on 
the experience of the modeler. Expertise knowledge is required for selecting a suitable 
model to apply in a specific situation. A well-experienced modeler may use the 
heuristic knowledge unconsciously to undertake model manipulation. It is considered 
that the incorporation of existing heuristic knowledge on model manipulation into the 
modeling system is able to provide great assistance to novice users. 

Some previous efforts have been made to support a wider scope of model users, 
through a variety of means including menu of parameter specification, automatic grid 
formation, pre-processing and post-processing facilities. These tools act as intelligent 
front-ends in handling models for specific flow or water quality problems. 
Nevertheless, they do not address the core problem of knowledge elicitation and 
transfer. Successful applications of expert system technology have also been reported 
in the selection of numerical model in coastal engineering [1-9]. However, they are 
limited to one-dimensional modeling systems, and represent only a minute portion of 
knowledge in this field. Moreover, their knowledge bases include heuristic rules for 
model selection but not manipulation. Literature on the incorporation of expert system 
technology into model manipulation is still scarce to date. 

Hence, the principal objective of this work is to integrate recent artificial intelligence 
technology for model manipulation for flow and water quality. Through establishing a 
befitting knowledge acquisition facility, the system has immense potential in 
facilitating non-experienced user in both model selection and manipulation. 
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Except for pure reactive robots, that do not work with any explicit representation
of their world [1], an intelligent robot must possess some symbolic representation
of its environment in order to reason, plan (prediction), and perform efficiently
(due to the intractable amount of subsymbolic information acquired from the
real world). We have been working on that area during the last decade, in par-
ticular exploring the advantages of using abstraction and multiple abstraction
for modeling the environment of a mobile robot. In this sense we have addressed
the following main issues:

1. Automatic construction of the model. Assistive approaches (involving human
operators) are possible [4] but limit the autonomy of the robot.

2. Automatic optimization (adaptation) of the model, for coping with the dif-
ferent situations that the robot may face during its operation without con-
structing an entirely new model each time from scratch.

3. Coherence between the symbols in the model and the real world. This must be
addressed as a dynamic procedure since the real world changes continuously.

4. Efficiency in using the model. We believe that the best model for a given
robot is the one that improves the most the robot’s planning of operations.

Up to now, we have been working on obtaining a comprehensive solution with
abstraction as a basis for coping with all these issues at once. In the next we
describe in more detail our solutions to each one1.

For coping with point 4), we use a symbolic model of the environment
that represents explicitly relational information (for example: places to navigate
related by navigational paths), and also abstraction, based on mathematical
graphs. We have two ”flavors” for that model: one that adds simple or conven-
tional abstraction to the graphs and another one that enriches it with multiple
abstraction. Simple abstraction of detail consists of stacking several graphs that
represent the same information with different levels of detail, which has demon-
strated important improvements in computational efficiency for a number of

1 We follow the chronological order in which we addressed the points above.
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operations [2],[5],[6],[7]. We call this model an AH-graph (Annotated, Hierar-
chical Graph). Multiple abstraction, on the other hand, consists of interwaving
several AH-graphs together, enabling the possibility of abstracting in different
ways the same ground information. Our multiple abstraction model is called a
Multi-AH-graph and it has shown even higher computational efficiency in some
situations [2],[3],[4].

We also have developed a heuristic optimization framework concerning points
1) and 2) [7],[2]. It is based on an evolutionary algorithm that produces at each
time the best model of the environment, given the robot’s operating experience.
We have achieved several important results: first, the cost of constructing the
model is spread along the working life of the robot, tending to be negligible over
time (in contrast with more classical approaches that construct models through
costly processes concentrated in a few moments); second, it acquires an impor-
tant capacity of adaptation to environmental and robot operation variations (in
contrast with approaches that pursue to optimize some static goal predefined by
humans); and third, it is optimized not only with new acquired information, but
also by taking the maximum advantage from past knowledge. Our framework ob-
tains important improvements in the computational cost of planning tasks, even
when the world or the tasks vary, and under any amplitude of those variations.

Finally, point 3) is the most recently problem we have dealt with in our re-
search. We are using for that purpose techniques of anchoring [8], which maintain
dynamic links between real objects or features of space and ground symbols of
the model.
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My main research centers around sequential decision making under uncertainty.
In a complex dynamical system useful abstractions of knowledge can be essential
to an autonomous agent for efficient decision making. Predictive State Represen-
tation, PSR, has been developed to provide a maintainable, self-verifiable and
learnable representation of the knowledge of the world. I was very much intrigued
by the PSR work, and started working on incorporating PSRs into POMDP con-
trol algorithms. Since the representational power of PSRs is equivalent to the
belief state representation in POMDPs, one can imagine PSR planning algo-
rithms, working in the context of controlling dynamical systems. In prior work
[1] I developed an exact planning algorithm based on known PSR parameters.
However, like all other exact algorithms, this approach has exponential com-
plexity in the worst case. In preliminary experiments on a variety of standard
domains, the empirical performance seems similar to belief-based planning.

I have also investigated ways of taking advantage of the PSR structure to im-
prove the efficiency of the previously existed exact and approximation algorithms
for POMDPs. My recent work on using core belief state in PBVI, Point-Based
Value Iteration, [4] shows promising results in terms of value improvement[2].
Using the belief points lying in the intrinsic dimensions of reachable belief sim-
plex allows us to abstract away redundancy in the problem definition where
possible. Moreover the basis for the reachable simplex guides the beleif point
selection of the algorithm to cover the reachable points rapidly.

Working along PSR research, I am currently studying structure exploration
in problem domains using mathematical properties of predictive representation.
PSR groups together states which behave similarly and it holds the promise of
a more compact representation than POMDPs. We point out special cases in
which strict reduction in the number of states is obtained by linear PSRs [3].

Another aspect of PSR study is learning the structure of the model. The
learning algorithms developed for PSRs so far are based on a suitable choice of
core tests. However, knowing the model dimensions (i.e. the core tests) is a big
assumption and not always possible. Finding the core tests incrementally from
interactions with an unknown system seems to be computationally as difficult
as POMDP model leaning in general. One interesting line of thought could be
considering extensions of tests from sufficiently large number of given histories
and discovering the maximum possible core tests .

In summary, the objective of my research is using probabilistic approaches
to assist intelligent agents in knowledge representation, reasoning and decision
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making, specifically to create learning and planning algorithms for predictive
state representations.
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Abstract. Real-time video games are a unique domain for pathfinding and search.
Traditional approaches to search have usually assumed static worlds with a single
agent. But, in real-time video games there are multiple cooperative and adversarial
agents. While the search space in most games is relatively small, algorithms are
expected to plan in mere milliseconds. Thus, techniques such as abstraction are
needed to effectively reason and act in these worlds. We provide an overview of
the research we have completed in this area, as well as areas of current and future
work.

1 Introduction

The worlds of popular real-time video games, such as Warcraft III or Command and
Conquer are much richer than many traditional domains used as test-beds for Artifi-
cial Intelligence research. The most basic task in these games is to get one or more
units from their current location to some destination. These games are not designed to
showcase algorithms from AI, but to be interesting for people to play. This means that
standard approaches from AI and search are usually too slow or memory-intensive to
be effective in practice. We believe that abstraction is the key technique for meeting the
real-time and other constraints posed by these domains.

2 Previous Work

We first provide an overview of completed work on applying abstraction to search.
First, we have developed a simple method for automatically building abstractions from
an underlying octile map. For the purposes of this discussion, we consider any map to
be a graph, where a node is a tile in the underlying map, and an edge means an agent
can pass directly between two tiles without going through another tile first.

Given a graph representation of a map, we build an abstract version of the map
by reducing connected components into abstract nodes. Instead of using the approach
of [1] where nodes are abstracted along with their neighbors, we only abstract groups
of nodes that are fully connected cliques. In practice, this means that at most four
nodes are abstracted in any one step. When building an abstraction offline, we pro-
cess the space in a uniform manner so that the abstract space more closely represents
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the space it abstracts. This process can also be applied in an online fashion by as-
suming unknown portions of the map are empty and applying local repair as an agent
explores the map.

Given an abstract representation of a search space, there are many methods that
leverage this abstraction for quick pathfinding. The approach of Botea et. al. [2] is to
abstract large sectors in the original space. When doing refinement, local smoothing
is applied to account for error introduced by large sector sizes. Smoothing, however, is
only applied to complete paths. Because we are interested in dynamic worlds, we do not
always want to compute complete paths. Instead, we build partial paths at each level of
abstraction refining them locally as needed. This allows us to spread the computational
cost of path following evenly across path execution. So, if we are interrupted, we reduce
lost computation efforts. These methods are described in detail in [3].

Abstraction necessarily introduces error, so we would like to learn about errors
and correct them over repeated pathfinding experiences. Thus, we have taken the
abstract search that is applied at each level of our abstraction and replaced the A*
search with a learning search [4]. This allows us to learn much better heuristics in
abstract space.

3 Current and Future Work

We are currently working towards four goals with regard to abstraction and search. First,
a variety of ideas have been suggested for building abstractions of search spaces, includ-
ing reductions based on cliques, local neighborhoods, large sectors, and triangulation.
We are attempting to incorporate a more flexible abstraction module into our simula-
tion framework so that we can more precisely quantify the advantages and trade-offs of
different methods.

Second, we would like to generalize existing work to a single algorithm that can
parameterize methods for search, so we can better evaluate which parameters for search
work best on which problems and abstraction methods.

Third, general work on learning better heuristics is computationally expensive, be-
cause we must keep a large table of heuristic information between every pair of nodes
in our search space. Storing heuristics in abstract space reduces this cost somewhat, but
we are also looking into ways to reduce this cost further by selectively storing learned
heuristic information at each level of abstraction. To this end we are actively developing
high-performance learning methods for real-time heuristic search [5].

Finally, we are building stochastic and dynamic environments in which there are
multiple cooperative and competitive units that must interact, so that we can measure
how existing techniques scale to environments typical of real-time video games.
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Abstract. I am interested in heuristic search and optimization, partic-
ularly algorithms that explicitly construct a model of the search space
and attempt rational action with respect to this abstract model.

My main research interest is in heuristic search and optimization. In such prob-
lems, one explores a search tree (or graph) using various sources of information to
find a good solution quickly. I am particularly interested in the setting when in-
sufficient time is available to find and prove a solution optimal. I try to approach
this problem from the perspective of rational action on the basis of statistical
evidence. As a search algorithm expands nodes and consults its information
sources, it can be seen as an agent exploring an unknown environment and gath-
ering information on which to base further action. Therefore, the design of search
algorithms can take inspiration from machine learning and decision theory.

I have designed four algorithms which could be said to exemplify these
concerns to varying degrees. Two apply to any bounded-depth tree, requir-
ing only a measure of solution quality at each leaf, one applies only to finite-
domain constraint satisfaction problems, and the last applies to shortest-path
problems.

Adaptive Probing [1]. This is an incomplete algorithm for combinatorial opti-
mization problems. It conducts repeated probes into a search tree, always start-
ing at the root and descending until it finds a leaf. The algorithm builds a model
during search of the expected effect on the final solution cost of selecting each
choice at each level of the tree (d × b parameters for a b-ary tree of depth d).
At a decision point, the algorithm selects each choice with the probability that
it leads to lower cost solutions. The sampling of the algorithm thus adapts over
time according to the observed leaf costs.

Best-Leaf-First Search (BLFS) [2]. This is a complete version of adaptive
problem. Again, a model of the expected cost of each choice is learned from
observed data such as the solution costs at the leaves. The algorithm uses the
model to visit leaves in an efficient approximation of increasing predicted cost.
This generalizes depth-first search and the discrepancy search algorithms [3]
and allows the use of search orders that would be difficult to program by hand.
Experiments with several types of models are available in [4].
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Complete Local Search (CLS) [5]. This is a complete algorithm for CSPs,
and SAT in particular. It uses learning to avoid local minima during search. At
each local minimum, a new clause is learned which has the effect of smoothing
the search space. We prove that the learning converges and no local minima will
be left. Interestingly, the search is entirely based on following the local gradient,
yet it is guaranteed to be complete. The algorithm always responds immediately
to the learned information, yet this eventually results in the globally optimal
solution. Unfortunately, the learning component can consume exponential space
in the worst case. However, the algorithm shows good performance on large
benchmark problems in practice.

Bugsy [6]. This algorithm is a variant of best-first search which explicitly bal-
ances solution cost and search time according to the user’s specified utility func-
tion. Rather than requiring the user to separately train a termination policy, as
one must when using an anytime algorithm, Bugsy requires no training data and
terminates when it judges that further search is not worthwhile. This rational
behavior depends on a learning component which transforms a given heuristic
lower-bound function into an estimator of the cost-to-go.
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Abstract. We present a method for automatically creating a set of use-
ful temporally-extended actions, or skills, in reinforcement learning. Our
method identifies states that allow the agent to transition to a different
region of the state space—for example, a doorway between two rooms—
and generates temporally-extended actions that efficiently take the agent
to these states. In identifying such states we use the concept of rela-
tive novelty, a measure of how much short-term novelty a state intro-
duces to the agent. The resulting algorithm is simple, has low computa-
tional complexity, and is shown to improve performance in a number of
problems.

1 Introduction

Recent methods in Reinforcement Learning (RL) allow an agent to plan, act,
and learn with high-level actions, or skills, that are closed-loop policies over
lower-level actions [13, 16, 15, 2]. An example of a skill that people use is driving.
People usually choose among a small set of high-level skills. For example, once
people learn how to drive, they typically do not think in terms of the lower-
level behaviors that are involved in driving. They simply choose between, for
instance, driving and walking to work. This simplifies their lives dramatically.
Furthermore, people continuously learn new skills and face each new problem
armed with a set of skills they have learned in the past.

As it is with humans, the ability to automatically develop useful skills is an
invaluable asset in an autonomous agent. Agents with such a capability have the
potential to solve difficult problems that currently represent a challenge to the
field of artificial intelligence. More importantly, such agents would be able to de-
velop what White [18] has called competency over their environment—achieving
a mastery over their domain that allows them to efficiently solve new problems
as they arise using the knowledge and skills they acquired in the past [1].

A number of methods have been proposed for autonomous development of
skills in RL. One approach is to search for commonly occurring subpolicies in
solutions to a set of tasks and to define skills with corresponding policies [17, 14].
A second approach is to identify subgoals—states that are useful to reach—and
generate skills that take the agent efficiently to these subgoals. Subgoals proposed
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in the literature include states that are visited frequently or that have a high
reward gradient [3], states that are visited frequently on successful trajectories
but not on unsuccessful ones [9], and states that lie between densely-connected
regions of the state space [10, 8, 12]. In addition, Hengst [5] has used the no-
tion of a subgoal in performing temporal and spatial abstraction simultaneously,
defining subgoals to be those states that lead to transitions that the agent can
not correctly represent or predict at the current level of state abstraction. In this
paper, we describe the relative novelty algorithm (RN), a subgoal-based method
for creating a set of useful skills. We provide only a brief overview here; a more
detailed description can be found in Şimşek & Barto [11].

The subgoals RN seeks to identify are states that allow the agent to transition
to a part of the state space that is otherwise unavailable or difficult to reach from
its current region. They are called access states and are closely related to the
subgoals in [9, 10, 8, 12]. A simple navigational example is a doorway between
two rooms. Easy access to these states allows more efficient exploration of the
state space by providing direct access to those regions that are difficult to reach.
Furthermore, access states are useful not only in solving a single, isolated task,
but also in solving a variety of problems in the same domain—getting to the
doorway is useful regardless of what the agent needs to do in the other room.

While navigational domains are rich sources of access states—and are useful
in conveying their intuitive appeal—access states capture a certain type of con-
nectivity structure of the state-transition graph that exists in a broader class of
problems. For example, completion of a subtask in a sequential task is an access
state; so is building a tool that makes possible a new set of activities for the
agent.

2 The Relative Novelty Algorithm

RN is based on our intuition that access states will be more likely than other
states to introduce short-term novelty, i.e., to mediate a transition to a region
that the agent has not visited recently. Below we first define relative novelty
and explain how RN identifies subgoals and generates skills that take the agent
efficiently to these subgoals. Throughout our discussion, we refer to access states
as targets, and to other states as non-targets.

2.1 Relative Novelty

We relate novelty to how frequently a state is visited since a designated start
time. We define the novelty of a discrete state s to be equal to 1√

ns
, where

ns is the number of times it has been visited. The novelty of a set S of states
is 1√

n̄S
, where n̄S is the mean number of times states in S have been visited.

With this definition, the novelty of a state equals 1 when it is first visited,
decays with each succeeding visit, and approaches 0 in the limit. Visitation
frequencies are reset periodically because we are interested in a short-term
measure of novelty.
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Fig. 1. (a) Two-Room gridworld environment, (b) Distribution of relative novelty
scores for target and non-target states, (c) Subgoals identified, (d) Mean steps to goal

We define the relative novelty of a state in a transition sequence to be the
ratio of the novelty of states that followed it (including itself) to the novelty of
the states that preceded it. The number of forward and backward transitions
to take into account in computing this score is a parameter called the novelty
lag (ln). A state will typically have a different relative novelty score each time it
is visited.

Our intuition suggests that the distribution of relative novelty scores of tar-
gets will be different than that of non-targets. More specifically, we expect targets
to have higher scores more frequently. We tested this hypothesis in a simple do-
main, the two-room gridworld shown in figure 1a. The actions were the usual
north, south, east, west. We ignored the goal state and had the agent perform
a 1000-step random walk 1000 times, starting each at a random grid location.

This domain has a single target state that fits our definition of a subgoal—
the doorway between the two rooms. Figure 1b shows the distribution of relative
novelty scores for the doorway and for other states, using a novelty lag of 7. The
figure reveals that the distributions are indeed different for this domain. Both
distributions peak around a relative novelty score of 1, indicating approximately
equal novelty scores preceding and following a state, but the target distribution
has a heavier tail. Repeated experiments with different novelty lags and room
sizes showed a similar discrepancy in relative novelty scores of the doorway and
other states. This discrepancy is the basis of our subgoal discovery method,
which we discuss in the next section.
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2.2 Subgoal Discovery

We formulate the subgoal discovery task for an on-line RL agent as a classifi-
cation problem. With each transition, the agent observes a new relative novelty
score for some state s and wishes to classify s as target (T) or non-target (N),
based on not only the current score, but all scores observed so far for s. If
class-conditional relative novelty distributions are known, this classification task
is straightforward using Bayesian decision theory [4]. Assigning an appropriate
cost to two possible types of error—classifying a target as non-target (miss) or
a non-target as target (false alarm)—and minimizing total cost gives rise to the
following decision rule:

Label state as target if

P{(s1, .., sn)|T}
P{(s1, .., sn)|N} >

λfa

λmiss
· P{N}
P{T} (1)

where (s1, .., sn) are the relative novelty scores observed for the state, P{i} is
the prior probability of a state of type i, λfa is the cost assigned to a false alarm,
and λmiss is the cost assigned to a miss.

We further simplify this rule by converting the continuous relative novelty
score to a binary feature x, where x equals 1 if score is greater than a threshold
(which we call the relative novelty threshold and denote by tRN ) and 0 other-
wise. This is motivated by our observation that the distributions differ mainly in
their tail, which suggests that the appropriate choice of a threshold would cap-
ture enough information to construct a good classifier. Assuming independent
observations of relative novelty, we obtain the following decision rule:

Label state as target if

n1

n
>

ln 1−q
1−p

lnp(1−q)
q(1−p)

+
1
n

ln( λfa

λmiss
· p(N)

p(T ) )

lnp(1−q)
q(1−p)

(2)

where p = P{x = 1|T}, q = P{x = 1|N}, n1 is the number of observations with
x = 1, and n is the total number of observations.

The procedure for identifying subgoals is as follows:

1. (Off-line). Estimate the class-conditional relative novelty distributions us-
ing agent’s experience, if possible, in a small part of the actual task, and
otherwise in a corpus of environments. Determine the value of tRN using
a receiver operating characteristic (ROC) curve analysis [4]. Compute p, q
given the class-conditional relative novelty distributions and tRN . Determine

λfa

λmiss
· P{N}

P{T} .
2. (On-line). Evaluate decision rule 2 periodically, possibly with each new state

transition, considering all of the relative novelty scores observed for a given
state.

The subgoal discovery method of RN has a time complexity of O(1)—RN
examines only the most recent experiences of the agent, so the computational
cost does not grow with the number of states.
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2.3 Generating Skills

We represent skills using the options framework [15, 16]. When a new subgoal
is identified, RN generates an option whose policy efficiently takes the agent
to this subgoal. The option’s initiation set consists of those states that were
visited shortly before the subgoal state registered a relative novelty score higher
than tRN . The number of past transitions to include in this set is determined
by a parameter, the option lag (lo). The option’s policy is specified through
an RL process employing action replay [7] using a pseudo reward function [2].
The policy learned takes the agent to the subgoal state in as few time steps as
possible while remaining in the option’s initiation set. The option terminates
with probability 1 if the agent reaches the subgoal, or if the agent leaves the
initiation set; otherwise, it terminates with probability 0.

3 Experimental Results

Below we present experimental results in a number of domains. The off-line part
of the algorithm was conducted only once, using the data obtained from the
random walk in the two-room gridworld discussed earlier in Section 2.1. Using
an ROC curve analysis, tRN was set to 2, which lead to a p value of 0.0712
and a q value of 0.0056. Other parameter settings were as follows: λfa

λmiss
= 100,

p(N)
p(T ) = 100, ln = 7, lo = 10. No limit was set on the number of options that
could be generated; and no filter was employed to exclude certain states from
being identified as subgoals. In all of our experiments, the agent used Q-learning
with ε-greedy exploration with ε = 0.1. The learning rate (α) was kept constant
at 0.05; initial Q-values were 0.

3.1 Rooms

Our first example is the two-room gridworld in figure 1a, the domain that was
used to estimate the class-conditional relative novelty distributions. Performance
on this task shows how well the algorithm can do given almost perfect estimates
of the class-conditional relative novelty distributions.

The agent started each episode on a random square in the west room; the
goal was the grid square on the Southeast corner of the grid. The four primitive
actions—north, south, east, west—moved the agent in the intended direction
with probability 0.9, and in a uniform random direction with probability 0.1. If
the direction of movement was blocked, the agent remained in the same location.
The agent received a reward of 1 at the goal state, and a reward of 0 at all other
states. The discount factor was 0.9.

Figure 1c shows a visual representation of the location and frequency of the
subgoals identified in 30 runs. The color of a square in this figure corresponds to
the number of times it was identified as a subgoal, with lighter colors indicating
larger numbers. The state that was identified as a subgoal most frequently was
the doorway—in 25 of the 30 runs. Mean number of subgoals identified per run
was 1.6; 96% of the subgoals were within two steps of the doorway. Figure 1d
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Fig. 2. (a) Six-Room gridworld, (b) Subgoals identified, (c) Mean steps to goal

shows the mean number of steps taken to reach the goal state, with and without
RN. The figure reveals that RN identified useful subgoals and showed a marked
improvement in performance within 10 episodes.

Our second example is the larger gridworld environment shown in Figure 2a.
Figures 2b and 2c show the results of 30 runs. Mean number of subgoals identified
per run was 15.3; of the subgoals identified, 30% were target states and 24%
were states one transition away from the targets. As in the previous example,
the options generated drastically improved the agent’s performance.

3.2 Taxi Task

Our next example is the taxi domain [2] depicted in Figure 3a. The task is to
pick-up and deliver a passenger to her destination on a 5×5 grid. The source and
destination are randomly and independently chosen in each episode, from among
the set of squares marked by R, G, B, Y. The primitive actions are north, east,
south, west, pick-up, put-down. The navigation actions succeed in moving the
taxi in the intended direction with probability 0.80; with probability 0.20, the
action takes the taxi to the right or left of the intended direction. The action
pick-up places the passenger in the taxi if the taxi is at the same grid location
as the passenger; otherwise it has no effect. Similarly, put-down delivers the
passenger if the passenger is inside the taxi and the taxi is at the destination;
otherwise it has no effect. Reward is −1 for each action, an additional +20
for passenger delivery, and an additional −10 for an unsuccessful pick-up or
put-down action.

We evaluated the performance of RN in 100 runs. Figure 3b shows a visual
representation of the grid location of the subgoals, ignoring the other two state
variables. Mean number of subgoals identified per run was 25.8. Of these, 78%
were subgoals that correspond to getting to the passenger location and picking
up the passenger. Another 14% were states that are one transition away from
these. Navigational bottlenecks—grid squares (2,3) and (3,3)—accounted for 4%
of the subgoals. Altogether, these add up to 96% of the subgoals identified. Mean
number of steps to complete the task is shown in Figure 3c.
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Fig. 3. (a) The taxi domain, (b) Subgoals identified (showing only the grid location
variable), (c) Mean steps to goal

4 Discussion

The algorithm introduced here is a simple implementation of the general idea
of using a measure of short-term novelty to identify states that may form useful
target states for a collection of skills. The intuition is that if the ease of reaching
such states is improved, the agent’s access to unexplored regions of the state
space will improve, thus leading to more efficient exploration. A key aspect of
the algorithm is that the process of identifying subgoals is not dependent on the
reward function of the overall task. Indeed, there may be no such reward function.
This implies that the method can facilitate transfer among multiple tasks with
disparate reward functions and that it can provide potentially useful abstract
actions before any particular task has been solved (in cases where “solving a
task” has a well-defined meaning). This property is essential if an automatic
abstraction method is to be useful in extending the utility of RL to complex
real-world tasks.

Finally, we comment that various concepts of novelty are closely linked to
motivation and reward in animals (e.g., Kakade & Dayan, 2001). The use of
novelty measures to drive the automatic creation of hierarchical behavior ar-
chitectures may provide useful computational interpretations of novelty-related
animal behavior.
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