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Abstract. System family engineering seeks to exploit the commonali-
ties among systems from a given problem domain while managing the
variabilities among them in a systematic way. In system family engineer-
ing, new system variants can be rapidly created based on a set of reusable
assets (such as a common architecture, components, models, etc.). Gen-
erative software development aims at modeling and implementing system
families in such a way that a given system can be automatically generated
from a specification written in one or more textual or graphical domain-
specific languages. This paper gives an overview of the basic concepts and
ideas of generative software development including DSLs, domain and ap-
plication engineering, generative domain models, networks of domains,
and technology projections. The paper also discusses the relationship of
generative software development to other emerging areas such as Model
Driven Development and Aspect-Oriented Software Development.

1 Introduction

Object-orientation is recognized as an important advance in software technol-
ogy, particularly in modeling complex phenomena more easily than its prede-
cessors [1]. But the progress in reusability, maintainability, reliability, and even
expressiveness has fallen short of expectations. As units of reuse, classes have
proven too small. Frameworks are hard to compose, and their development re-
mains an art. Components—as independently-deployable units of composition
with contractually specified interfaces [2]—offer reuse, but the more functional
the component, the larger and less reusable it becomes. And patterns, while
intrinsically reusable, are not an implementation medium.

Current research and practical experience suggest that achieving signifi-
cant progress with respect to software reuse requires a paradigm shift towards
modeling and developing software system families rather than individual sys-
tems. System-family engineering (also known as product-line engineering)
seeks to exploit the commonalities among systems from a given problem
domain while managing the variabilities among them in a systematic way [3,
4,5]. In system-family engineering, new system variants can be rapidly created
based on a set of reusable assets (such as a common architecture, components,
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models, etc.).1 Frameworks and components are still useful as implementation
technologies, but the scope and shape of reusable abstractions is determined
and managed through a system-family approach.

Generative software development is a system-family approach, which focuses
on automating the creation of system-family members: a given system can be
automatically generated from a specification written in one or more textual or
graphical domain-specific languages [6, 7, 3, 8, 9, 10,11].

This paper gives an overview of the basic concepts and ideas of generative
software development including DSLs, domain and application engineering, gen-
erative domain models, networks of domains, and technology projections. The
paper closes by discussing the relationship of generative software development to
other emerging areas such as Model Driven Development and Aspect-Oriented
Software Development.

2 Domain-Specific Languages

A domain-specific language (DSL) is a language offering expressive power fo-
cused on a particular problem domain, such as a specific class of applications
or application aspect. Whereas general-purpose programming languages such as
Java or C++ were designed to be appropriate for virtually any kind of applica-
tions, DSLs simplify the development of applications in specialized domains at
the cost of their generality.

DSLs are certainly not a new idea. In fact, before common programming
abstractions were identified and packaged into general-purpose programming
languages, many of the early computer languages were application-specific. For
example, in his landmark paper “The Next 700 Hundred Programming Lan-
guages”, Landin [12] cites a 1965 Prospectus of the American Mathematical
Association: “... today... 1,700 special programming languages used to ’commu-
nicate’ in over 700 application areas.” Although many DSLs have been developed
over the years, the systematic study of DSLs is more recent, e.g., [6, 13,14,15].

The domain specificity of a language is a matter of degree. While any language
has a certain scope of applicability, some languages are more focused than others.
Programming languages such as Fortran or Cobol, although designed with some
application focus in mind, are still fairly general. For example, Fortran was
designed to target mathematical applications, but it can be used to program
anything from databases to user interfaces. When referring to DSLs, we consider
much more focused languages, such as HTML or SQL. In fact, a great share of
existing DSLs are not even programming languages [16].

Narrowing the application scope of a language allows us to provide better sup-
port for solving problems within the scope compared to what a general purpose

1 System-family engineering is mainly concerned with building systems from com-
mon assets, whereas product-line engineering additionally considers scoping and
managing common product characteristics from the market perspective. In order
to be more general, this paper adheres to system-family terminology.
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programming language could offer. A DSL can offer several important advan-
tages over a general-purpose language:

– Domain-specific abstractions: a DSL provides pre-defined abstractions to
directly represent concepts from the application domain.

– Domain-specific concrete syntax : a DSL offers a natural notation for a given
domain and avoids syntactic clutter that often results when using a general-
purpose language.

– Domain-specific error checking : a DSL enables building static analyzers that
can find more errors than similar analyzers for a general-purpose language
and that can report the errors in a language familiar to the domain expert.

– Domain-specific optimizations: a DSL creates opportunities for generating
optimized code based on domain-specific knowledge, which is usually not
available to a compiler for a general-purpose language.

– Domain-specific tool support : a DSL creates opportunities to improve any
tooling aspect of a development environment, including, editors, debuggers,
version control, etc.; the domain-specific knowledge that is explicitly cap-
tured by a DSL can be used to provide more intelligent tool support for
developers.

The traditional approach to providing domain-specific abstractions in pro-
gramming languages is through libraries of user-defined functions, classes, and
data structures. We consider the application programming interfaces (APIs) ex-
posed by such libraries as a possible implementation form for DSLs. User-defined
abstractions is a way to extend a language with domain-specific vocabulary, and
library and API design is a form of language design. Of course, open-ended
language design is more challenging than API design, which is constrained and
guided by the host language. At the same time, while satisfying the first benefit
in the list above, traditional libraries and APIs usually come short on the other
items, such as domain-specific notation (beyond operator overloading, which may
be available in the host language), error checking, and optimizations. Achieving
the latter goals usually requires some form of metaprogramming.

DSLs come in a wide variety of forms, e.g., textual languages (stand-alone
or embedded in a general-purpose programming language), diagrammatic lan-
guages, form-based languages, grid-based languages, etc. Section 6 lists different
DSLs implementation technologies.

3 Domain Engineering and Application Engineering

System family engineering distinguishes between at least two kinds of develop-
ment processes: domain engineering and application engineering (see Figure 1).
Typically, there is also a third process, management, but this paper focuses on
the two development processes (for more information on process issues see [4,3]).
Generative software development, as a system-family approach, subscribes to the
process model in Figure 1, too.

Domain engineering (also known as product-line development or core asset
development) is “development for reuse”. It is concerned with the development
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Fig. 1. Main processes in system-family engineering

of reusable assets such as components, generators, DSLs, analysis and design
models, user documentation, etc. Similar to single-system engineering, domain
engineering also includes analysis, design, and implementation activities. How-
ever, these are focused on a class of systems rather than just a single system.2

Domain analysis involves determining the scope of the family to be built, identi-
fying the common and variable features among the family members, and creating
structural and behavioral specifications of the family. Domain design covers the
development of a common architecture for all the members of the system family
and a plan of how individual systems will be created based on the reusable as-
sets. Finally, domain implementation involves implementing reusable assets such
as components, generators, and DSLs.

Application engineering (also referred to as product development) is “devel-
opment with reuse”, where concrete applications are built using the reusable
assets. Just as traditional system engineering, it starts with requirements elic-
itation, analysis, and specification; however, the requirements are specified as
a delta from or configuration of some generic system requirements produced in
domain engineering. The requirements specification is the main input for system
derivation, which is the manual or automated construction of the system from
the reusable assets.

Both processes feed on each other: domain-engineering supplies application
engineering with the reusable assets, whereas application engineering feeds back
new requirements to domain engineering. This is so because application engineers
identify the requirements for each given system to be built and may be faced
with requirements that are not covered by the existing reusable assets. Therefore,
some amount of application-specific development or tailoring is often required in
order to quickly respond to the customer’s needs. However, the new requirements

2 Both terms “system family” and “domain” imply a class of systems; however,
whereas the former denotes the actual set of systems, the latter refers more to the
related area of knowledge. The use of the one or the other in compounds such as
“domain engineering” is mostly historical.
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Fig. 2. Mapping between problem space and solution space

should be fed back into domain engineering in order to keep the reusable assets
in sync with the product needs. Different models for setting up these processes
in an organization, e.g., separate or joint product-development and domain-
engineering teams, are discussed in [17].

Domain engineering can be applied at different levels of maturity. At mini-
mum, domain analysis activities can be used to establish a common terminology
among different product-development teams. The next level is to introduce a
common architecture for a set of systems. Further advancement is to provide
a set of components covering parts or all of the systems in the system family.
Finally, the assembly of these components can be partially or fully automated
using generators and/or configurators. The last level represents the focus of gen-
erative software development. In general, the generated products may also con-
tain non-software artifacts, such as test plans, manuals, tutorials, maintenance
guidelines, etc.

4 Mapping Between Problem Space and Solution Space

A key concept in generative software development is that of a mapping between
problem space and solution space (see Figure 2), which is also referred to as a
generative domain model. Problem space is a set of domain-specific abstractions
that can be used to specify the desired system-family member. By “domain-
specific” we mean that these abstractions are specialized to allow application
engineers to express their needs in a way that is natural for their domain. For
example, we might want to be able to specify payment methods for an electronic
commerce system or matrix shapes in matrix calculations. The solution space,
on the other hand, consists of implementation-oriented abstractions, which can
be instantiated to create implementations of the specifications expressed using
the domain-specific abstractions from the problem space. For example, payment
methods can be implemented as calls to appropriate web services, and differ-
ent matrix shapes may be realized using different data structures. The mapping
between the spaces takes a specification and returns the corresponding imple-
mentation.
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Fig. 3. Configuration view on the mapping between problem space and solution space

4.1 Configuration and Transformation

There are at least two different views at the mapping between problem space
and solution space in generative software development: configuration view and
transformational view.

In the configuration view, the problem space consists of domain-specific con-
cepts and their features (see Figure 3). The specification of a given system re-
quires the selection of features that the desired system should have. The problem
space also defines illegal feature combinations, default settings, and default de-
pendencies (some defaults may be computed based on some other features).
The solution space consists of a set of implementation components, which can
be composed to create system implementations. A system-family architecture
sets out the rules how the components can be composed. In the configuration
view, an application programmer creates a configuration of features by select-
ing the desired ones, which then is mapped to a configuration of components.
The mapping between both spaces is defined by construction rules (certain con-
figurations of features translate into certain configurations of implementation
components) and optimizations (some component configurations may have bet-
ter non-functional properties then others). The mapping plus the illegal feature
combinations, default settings, and default dependencies collectively constitute
configuration knowledge. Observe that the separation between problem and solu-
tion space affords us the freedom to structure abstractions in both spaces differ-
ently. In particular, we can focus on optimally supporting application program-
mers in the problem space, while achieving reuse and flexibility in the solution
space.

In the transformational view, a problem space is represented by a domain-
specific language, whereas the solution space is represented by an implementation
language (see Figure 4). The mapping between the spaces is a transformation
that takes a program in a domain-specific language and yields its implemen-
tation in the implementation language. A domain-specific language is a lan-
guage specialized for a given class of problems. Of course, the implementation
language may be a domain-specific language exposed by another domain. The
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Fig. 4. Transformational view on the mapping between problem space and solution
space

transformational view directly corresponds to the Draco model of domains and
software generation [6].

Despite the superficial differences, there is a close correspondence between
both views. The problem space with its common and variable features and
constraints in the configuration view defines a domain-specific language, and
the components in the solution space can also be viewed as an implementa-
tion language. For example, in the case of generic components, we can specify
this target language as a GenVoca grammar with additional well-formedness
constraints [18, 8]. Thus, the configuration view can also be interpreted as a
mapping between languages.

The two views relate and integrate several powerful concepts from software
engineering, such as domain-specific languages, system families, feature model-
ing, generators, components, and software architecture. Furthermore, the trans-
lation view provides a theoretical foundation for generative software development
by connecting it to a large body of existing knowledge on language theory and
language translation.

4.2 Network of Domains

Observe that Figure 2 can be viewed recursively, i.e., someone’s problem space
may be someone else’s solution space. Thus, we can have chaining of mappings
(see Figure 5 a). Furthermore, a mapping could take two or more specifications
and map them to one (or more) solution space (see Figure 5 b). This is com-
mon when different aspects of a system are represented using different DSLs. A
mapping can also implement a problem space in terms of two or more solution
spaces (see Figure 5 c). Finally, different alternative DSLs (e.g., one for begin-
ners and one for expert users) can be mapped to the same solution space (see
Figure 5 d), and the same DSL can have alternative implementations by map-
pings to different solution spaces (e.g., alternative implementation platforms; see
Figure 5e).

In general, spaces and mappings may form a hypergraph, which can even
contain cycles. This graph corresponds to the idea of a network of domains
by Jim Neighbors [6], where each implementation of a domain exposes a DSL,
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a. Chaining of mappings

b. Multiple problem spaces c. Multiple solution spaces

d. Alternative problem spaces e. Alternative solution spaces

Fig. 5. Different arrangements of mappings between problem and solution spaces

which may be implemented by transformations to DSLs exposed by other domain
implementations.

5 Feature Modeling and Feature-Oriented Approach

Feature modeling is a method and notation to elicit and represent common
and variable features of the systems in a system family. Feature modeling was
first proposed by Kang et al in [19] and since then has been extended with
several concepts, e.g., feature and group cardinalities, attributes, and diagram
references [20].

An example of a feature model is shown in Figure 6. The model expresses that
an electronic commerce system supports one or more different payment methods;
it provides tax calculation taking into account either the street-level address, or

taxCalculation shipping

addressResolution

streetAddresscountry

e−shop

electronicCheque

debitCard

postalCode

creditCard

payment

Fig. 6. Example of a feature diagram
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postal code, or just the country; and it may or may not support shipment of
physical goods. A feature diagram such as in Figure 6 may be supplemented
with additional information including constraints (selecting a certain feature
may require or exclude the selection of another feature), binding times (features
may be intended to be selected at certain points in time), default attribute values
and default features, stakeholders interested in a given feature, priorities, and
more. Features may or may not correspond to concrete software modules. In
general, we distinguish the following four cases:

– Concrete features such as data storage or sorting may be realized as indi-
vidual components.

– Aspectual features such as logging, synchronization, or persistency may affect
a number of components and can be modularized using aspect technologies.

– Abstract features such as performance requirements usually map to some
configuration of components and/or aspects.

– Grouping features may represent a variation point and map to a common
interface of plug-compatible components, or they may have a purely organi-
zational purpose with no requirements implied.

Feature modeling gives rise to a feature-oriented approach to generative soft-
ware developement [8]. In the early stages of software family development, fea-
ture models provide the basis for scoping a system family by recording and as-
sessing information such as which features are important to enter a new market
or remain in an existing market, which features incur a technological risk, what is
the projected development cost of each feature, and so forth [21]. Subsequently,
feature models created in domain analysis are the starting point in the develop-
ment of both system-family architecture and DSLs (see Figure 7). Architecture
development takes a solution-space perspective at the feature models: it concen-
trates on the concrete and aspectual features that need to be implemented as
components and aspects. Familiar architectural patterns, such as in [22,23], can
be applied, but with the special consideration that the variation points expressed
in the feature models need to be realized in the architecture. During subsequent
DSL development, a problem-space perspective concentrating on features that
should be exposed to application developers determines the required DSL scope,
possibly requiring additional abstract features.

Domain analysis

Feature models

perspectiveperspective

Architecture and components DSLs

Solution−space Problem−space

Stakeholders & other information sources

Fig. 7. Feature-oriented approach
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6 Technology Projections and Structure of DSLs

Each of the elements of a generative domain model can be implemented using
different technologies, which gives rise to different technology projections:

– DSLs can be implemented as new textual languages (using traditional com-
piler building tools), embedded in a programming language (e.g., template
metaprogramming in C++ or Template Haskell [24], OpenC++ [25], Open-
Java [26], Metaborg [27]), graphical languages (e.g., UML profiles [28], GME
[29], MetaEdit+ [30], or Microsoft’s DSL Technology in VisualStudio), wiz-
ards and interactive GUIs (e.g., feature-based configurators such as Feature-
ModelingPlugin [31], Pure::Consul [32], or CaptainFeature [33]), or some
combination of the previous. The appropriate structure of a DSL and the
implementation technology depend on the range of variation that needs to
be supported (see Figure 8). The spectrum ranges from routine configu-
ration using wizards to programming using graphical or textual graph-like
languages.

– Mappings can be realized using product configurators (e.g., Pure::Consul) or
generators. The latter can be implemented using template and frame proces-
sors (e.g., TL [9], XVCL [34], or ANGIE [35]), transformation systems (e.g.,
DMS [36], StrategoXT [37], or TXL [38]), multi-staged programming [39],
program specialization [40, 41, 42], or built-in metaprogramming capabili-
ties of a language (e.g., template metaprogramming in C++ or Template
Haskell).

– Components can be implemented using simply functions or classes, generic
components (such as in the C++ Standard Template Library), component
models (e.g., JavaBeans, ActiveX, or CORBA), or aspect-oriented program-
ming approaches (e.g., AspectJ [43], HyperJ [44], or Caesar [45]).

While some technologies cover all elements of a generative domain model
in one piece (e.g., OpenJava or template metaprogramming in C++), a more
flexible approach is to use an intermediate program representation to allow using
different DSL renderings (e.g., textual or graphical) with different generator
back-ends (e.g., TL or StrategoXT).

The choice of a specific technology depends on its technical suitability for
a given problem domain and target users. For example, in the case of DSLs,
concise textual languages may be best appropriate for expert users, but wizards
may be better suited for novices and infrequent users. In the case of generator
technologies, the need for complex, algebraic transformations may require using a
transformation system instead of a template processor. Furthermore, there may
be non-technical selection criteria such as mandated programming languages,
existing infrastructure, familiarity of the developers with the technology, political
and other considerations.
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Fig. 8. Spectrum of DSL structures

7 Model Driven Development

Perhaps the closest related area to generative software development is model-
driven development (MDD), which aims at capturing every important aspect of
a software system through appropriate models. A model is an abstract represen-
tation of a system and the portion of the world that interacts with it. Models
allow answering questions about the software system and its world portion that
are of interest to the stakeholders. They are better than the implementing code
for answering these questions because they capture the intentions of the stake-
holders more directly, are freer from accidental implementation details, and are
more amenable to analysis. In MDD, models are not just auxiliary documenta-
tion artifacts; rather, models can be compiled directly into executable code that
can be deployed at the customer’s site.

There has been a trend in MDD towards representing models using appro-
priate DSLs, which makes MDD and generative software development closely
related. Perhaps the main difference between MDD and generative software
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development is the focus of the latter on system families. While system families
can be of interest to MDD, they are not regarded as a necessity.

Model-Driven Architecture (MDA) is a framework for MDD proposed by the
Object Management Group (OMG) [46]. While still being defined, the main goal
of MDA is to allow developers to express applications independently of specific
implementation platforms (such as a given programming language or middle-
ware). In MDA, an application is represented as a Platform Independent Model
(PIM) that later gets successively transformed into series of Platform Specific
Models (PSMs), finally arriving at the executable code for a given platform. The
models are expressed using UML and the framework uses other related OMG
standards such as MOF, CWM, XMI, etc. A standard for model transforma-
tions is work in progress in response to the Request for Proposals “MOF 2.0
Query/Views/Transformations” issued by OMG.

MDA concepts can be mapped directly onto concepts from generative soft-
ware development: a mapping from PIM to PSM corresponds to a mapping from
problem space to solution space. Beyond the similarities, there are interesting
synergies. On the one hand, benefits of MDA include a set of standards for defin-
ing and manipulating modeling languages and the popularization of generative
concepts in practice. Thanks to MDA, current UML modeling tools are likely to
evolve towards low-cost DSL construction tools. On the other hand, the MDA
efforts until now have been focusing on achieving platform independence, i.e.,
system families with respect to technology variation. However, generative soft-
ware development addresses both technical and application-domain variability,
and it may provide valuable contributions to MDA in this respect (see Figure 9).
Often asked questions in the MDA context are (1) what UML profiles or DSLs
should be used to represent PIMs and (2) what is a platform in a given context.
Domain analysis and domain scoping can help us to address these questions.
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8 Other Related Fields

Figure 10 classifies a number of related fields by casting them against the el-
ements of a generative domain model. Components, architectures, and generic
programming are primarily related to the solution space. Aspect-oriented pro-
gramming provides more powerful localization and encapsulation mechanisms
than traditional component technologies. In particular, it allows us to replace
many “little, scattered components” (such as those needed for logging or synchro-
nization) and the configuration knowledge related to these components by well
encapsulated aspectual modules. However, we still need to configure aspects and
other components to implement abstract features such as performance proper-
ties. Therefore, aspect-oriented programming technologies such as AspectJ cover
the solution space and only a part of the configuration knowledge. But aspects
can also be found in the problem space, esp. in the context of DSLs used to
described different aspects of a single system. Areas such as DSLs, feature mod-
eling, and feature interactions address the problem space and the front part of
the configuration knowledge. Finally, system-family and product-line engineer-
ing span across the entire generative domain model because they provide the
overall structure of the development process (including domain and application
engineering).

9 Concluding Remarks

Generative software development builds upon and exploits the synergies among
several key concepts:

1. Software system families are the key to achieving systematic software reuse.
2. Domain-specific languages are about providing optimal support for applica-

tion developers.
3. Mappings enable design knowledge capture.
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4. Aspect-oriented development provides better separation of concerns and
composition mechanisms.

5. Feature modeling aids family scoping, and DSL and architecture develop-
ment.
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