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Abstract. The dynamic nature of biological systems’ structure, and
the continuous evolution of their components require new modelling ap-
proaches. In this paper it will be investigated how these systems com-
posed of many dynamic components can be formally modelled as well as
how their configurations can be altered, thus affecting the communica-
tion between parts. We use two different formal methods, communicating
X-machines and population P systems, both with dynamic structures. It
will be shown that new modelling approaches are required in order to
capture the complex and dynamic nature of these systems.

1 Introduction

Biological systems are modelled in different ways depending on the aim of the
model. There are models trying to exhibit the general behaviour of the system
based mainly on continuous approaches. In this way a generic description of the
system’s behaviour is defined in terms of mathematical functions evolving in
time. Another perspective is based on individual components interacting toward
achieving certain goals. In this latter case an emergent property of the system,
not obvious from the components’ behaviour, is mostly envisaged. For example
the behaviours of the social insects are directed towards the benefit of the colony
as a whole, and this is done through self-organisation and specialisation. Local
interactions with other insects, and with the environment produce solutions to
problems that colonies face. No one insect in the colony can give a picture of the
whole environment, but information can be learnt through interaction. Bees, for
example, can determine how busy a colony is when they bring nectar to hive.
Instead of passing all this onto one bee (who will distribute it), small portions
of nectar will be passed onto many bees. The bee can determine how busy
the hive is by calculating how long it has to wait to pass nectar onto another
bee [11].

This perspective on modelling biological systems is investigated in this pa-
per and mainly relies on describing components as agents. An agent is a fairly
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complex computer system that is situated in some environment and is capable
of flexible, autonomous actions in order to meet its design objectives [16]. The
extreme complexity of agent systems is due to substantial differences between
the attributes of their components, high computational power required by the
processes running within these components, huge volume of data manipulated by
these processes and finally possibly extensive amount of communication in order
to achieve coordination and collaboration. The use of a computational frame-
work that is capable of modelling both the dynamic aspects (i.e. the continuous
change of agents states together with their communication) and the static as-
pects (i.e. the amount of knowledge and information available), will facilitate
modelling and simulation of such complex systems.

Many biological processes seem to behave like multi-agent systems, as for
example a colony of ants or bees, a flock of birds, cell tissues etc. [6]. The vast
majority of computational biological models based on an assumed, fixed system
structure is not realistic. The concept of growth, division and differentiation of
individual components (agents) and the communication between them should
be addressed in order to create a complete biological system which is based on
rules that are linked to the underlying biological mechanisms allowing a dynamic
evolution.

For example, consider the case of an ant colony. Each ant has its own evolution
rules that allow it to grow, reproduce and die over time or under other specific
circumstances; other rules define the movement behaviour of the ants. The ants
are arranged in some two- or three-dimensional space, and this layout implies
the way ants interact with others in the local neighbourhood. The structure of
the colony, changes over time, thus imposing a change in their interactions.

In the last years attempts have been made to devise biology inspired com-
putational models in the form of generative devices [25], [26], unconventional
programming paradigms [2], bio-engines solving NP hard problems [1], adequate
mechanisms to specify complex systems [13]. In this paper we have selected
two formal methods, X-machines and population P systems, in order to model
biological systems with dynamic organisation as multi-agent systems. Each of
these methods possesses different characteristics which will be examined through
the modelling process. These modelling paradigms take their inspiration from
biology and are used to specify problems occurring in nature.

The structure of this paper is as follows: Section 2 describes the biological
system modelled in this paper. Sections 3 and 4 present the theory regarding
communicating X-machines and population P systems, respectively. Section 5
presents the actual models developed for an ant colony behaviour. Section 6
discusses some issues concerning the experiments conducted. Finally, Section 7
concludes the paper.

2 Pharaoh’s Ants

Monomorium pharaonis, the Pharaoh’s ants, are species of small ants that orig-
inated from North Africa. They measure up to two millimetres in length. The
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small size of the ants make them ideal for studying in a laboratory as their liv-
ing environment requires little room. Colonies have a rapid reproductive cycle,
around five and half weeks from egg to an adult, which is another useful trait
for a study colony.

Typically a Pharaoh’s ant colony will contain anywhere between 100 and
5000 ants. The smallest natural colonies of around 100 ants usually contain: one
queen, 35 workers, 12 pupae and some brood. The largest colonies tend to have
over 100 queens. 200 ants are usually used for experimental purposes to keep the
colony manageable.

The ants spend much of their time doing nothing; this redundancy in the
colony allows them to respond rapidly to large food finds. This allows them to
efficiently transport the food to the nest before their competitors. Ants doing
nothing can be referred as inactive. An ant can become active in many different
ways: spontaneously by hunger, being recruited to forage by another ant, another
ant soliciting food or another ant offering food. These interactions tend to happen
within the nest.

The problem that will be modelled further on in this study presents the be-
haviour of a simple colony of ants in a nest. The Pharaoh’s ants behaviour takes
into account a very simplified situation where the colony is sitting in an rectan-
gular environment and consists only of workers. The ants are either inactive or
move around looking for food and when this is not found then they go outside
the hive to forage for food. When two ants come across they might exchange
food if one is hungry and the other one is not - it was in an inactive state. The
ants go out to forage when they are hungry, no source food is identified (i.e. no
other ant that might provide some food) and a trail pheromone leading to an
exit point from the hive is discovered.

This simple problem is of interest for a number of reasons:

– it is a simple and realistic enough case study
– it shows a combination of both independent behaviour of ants inside of the

environment as well as synchronised behaviour, e.g. when two ants come
across to exchange food

– it has an important degree of repetitiveness using the same type of ant in a
number of instances but also slightly small variations between them through
the food distribution across the ant colony and their different position in the
environment

– it uses different activities that requires distinct execution time periods.

There are a number of thresholds associated to the level of food that is
exchanged between two ants, the level of food defining the hungry state, the
time to forage for food.

This case study will be modelled by using two approaches, the communicating
X machine paradigm and the population P system approach. The two methods
have complementary appealing characteristics. X-machines being a state-based
formalism appear to be more suitable for representing their internal data and
knowledge of each of the participating entities (ants), and how the stimuli re-
ceived from the environment can change their internal state. They have also been
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extended so as to facilitate communication among components and this allows
the modelling of a collection of units in an incremental manner that distin-
guishes between the individual components definitions and the communicating
issues. Though work is being done towards this direction, the way X-machines
are defined does not accommodate a straightforward way of dealing with systems
dynamically reconfigured. In an attempt to find alternative ways towards this
end, in the form of other computing devices that may exhibit this characteristic,
effort is being dedicated to exploring the modelling prospects of Population P
Systems, which naturally (by definition) employ the quality of reconstructing
themselves. Finally, work has also been done on finding a formal relationship
among the two formalisms [20] whereby simple rules are established for the
transformation of P systems into X-machines.

3 Communicating X-Machines

The X-machines formal method [7], [12] forms the basis for a specification lan-
guage with a great potential to software engineers. It is rather intuitive while at
the same time formal descriptions of data types and functions can be written in
any known mathematical notation.

For modelling systems containing more than one agent, the X-machine com-
ponents need to be extended with new features, such as hierarchical decomposi-
tion and communication. A communicating X-machine model consists of several
X-machines that are able to exchange messages. This involves the modelling of
the participating agents and the definition of the rules of their communication.

The complete model is a communicating X-machine system Z defined as a
tuple:

Z = ((Ci)i=1,...,n, CR)

where:

– Ci is the i-th communicating X-machine component, and
– CR is a relation defining the communication among the components, CR ⊆

C × C and C = {C1, . . . , Cn}. A tuple (Ci, Ck) ∈ CR denotes that the
X-machine component Ci can output a message to a corresponding input
stream of the X-machine component Ck for any i, k ∈ {1, . . . , n}, i �= k.

A communicating X-machine component Ci is defined as a tuple [22]:

Ci = (Σi,Γi, Qi,Mi,ΦCi, Fi, q0i
,m0i

)

where:

– Σi and Γi are the input and output alphabets respectively.
– Qi is the finite set of states.
– Mi is the (possibly) infinite set called memory.
– ΦCi is a set of partial functions ϕi that map an input and a memory value

to an output and a possibly different memory value, ϕi : Σi×Mi → Γi×Mi.
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There are four different types of functions in ΦCi (in all of the following it is
σ ∈ Σi, γ ∈ Γi, m, m′ ∈ Mi; (σ)j means that input is provided by machine
Cj whereas (γ)k denotes an outgoing message to machine Ck):
• the functions that read input from the standard input stream and write

their output to the standard output stream:
ϕi (σ,m) = (γ,m′)

• the functions that read input from a communication input stream and
write their output to the standard output stream:

ϕi ((σ)j ,m) = (γ,m′)
• the functions that read input from the standard input stream and write

their output to a communication output stream:
ϕi (σ,m) = ((γ)k,m′)

• the functions that read input from a communication input stream and
write their output to a communication output stream:

ϕi ((σ)j ,m) = ((γ)k,m′)
– Fi is the next state partial function, Fi : Qi×ΦCi → Qi, which given a state

and a function from the type ΦCi determines the next state. Fi is often
described as a state transition diagram.

– q0i
and m0i

the initial state and initial memory respectively.

Graphically on the state transition diagram we denote the acceptance of input
by a stream other than the standard by a solid circle along with the name
Cj of the communicating X-machine component that sends it. Similarly, a solid
diamond with the name Ck denotes that output is sent to the Ck communicating
X-machine component. An abstract example of a Communicating X-machine
component is depicted in Fig. 1.

The above allows the definition of systems of a static configuration. How-
ever, most multi-agent systems are highly dynamic and this requires that their
structure and the communication among the agents is constantly changing. For
this to happen in a communicating X-machine model, control has to be taken
over by another system acting on a higher level. This controlling device can be
modelled as a set of meta-rules that refer to the configuration of the system or
as a meta-X-machine that will be able to apply a number of operators which will
be affecting the structure of the communicating system [21]. These operators are
defined below.

Fig. 1. An example of communication between two X-machine functions
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Attachment Operator. This operator is responsible for establishing commu-
nication between an existing communicating X-machine component and a set of
other existing components. Its definition is:

ATT : C × Z → Z
where C is the set of communicating X-machine components, and Z is the set
of communicating X-machine systems. For an existing component C ∈ C and
a communicating X-machine system Z (to which C belongs to) a new commu-
nicating X-machine system Z ′ will be built that has different communication
channels. The components remain the same except that for each function ϕ of
the component machine C the streams of the other components, if any, it receives
inputs from or sends outputs to are specified. Similarly, the communicating func-
tions of the other components, with which C establishes communication, become
related to the streams of the component C so that input can be received or out-
put can be sent to it. It is this kind of relationships between the component C
and the other components that define how the whole system is to communicate
as a collection of units cooperating through streams of data.

Detachment Operator. This operator is used in order to remove communi-
cation channels between an existing communicating X-machine component and
a set of other existing components with which it currently communicates. Its
definition is:

DET : C × Z → Z
where C, Z are defined as previously. In this case all the relationships between
the component C and its streams and the other components and their streams
are broken down.

Generation Operator. A new communicating X-machine component is cre-
ated and introduced into the system. If communication is required, according
to the underlying communication rules, between the new and existing compo-
nent(s), then communication channels are established. The definition of the op-
erator is:

GEN : C × Z → Z
where C, Z are defined as previously.

Destruction Operator. This operator removes the component from the system
along with all the communication channels that relate it to other components.
This means that the corresponding streams that were used so that other com-
ponents could send/receive messages to/from the removed component are also
removed. The operator is defined as follows:

DES : C × Z → Z
where C, Z are defined as previously.
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Conceptually, the meta-system could be considered to play the role of the envi-
ronment to the actual communicating system. Because the meta-machine should
be able to control the reconfiguration of the communicating system through the
application of the above operators, it should possess the following information
at all times:

– The communicating system Z = ((C1, . . . , Ci, . . . , Cn), CR),
– The current system state SZ of Z. SZ is defined as a set of tuples SZ =

{sz | ∃Ci, 1 ≤ i ≤ n, sz = (qc, Mc, ϕc)i, where qc is the current state in
which Ci is in, Mc is the current memory of Ci and ϕc is the last function
that was applied in Ci},

– Definitions of all components that exist or may be added to the system.
These definitions act as genetic codes (GC) for the system. GC is a set of
tuples, GC = {. . . (Σ ,Γ , Q,M,Φ, F,ΦR,ΦW)j , . . .} where the first six ele-
ments are as in the definition of the X-machine given in the previous section
and the last two the set of functions that may be involved in communication
with other components (i.e. ΦR includes the functions that may read from
communicating streams and ΦW the ones that may write to communicating
streams). In other words, only the types of components that may appear in
the system at any point are a priori fixed.

Using the above information, the control device can generate a new component
and attach it to the communicating machine Z, through the operator GEN ,
destruct an existing component of Z and rearrange the communication of the
other components appropriately, through the operator DES, and add or remove
channels of communication between a component and a communicating machine
due to some system reconfigurations, through the operators ATT and DET .

The communicating X-machine system provides a modelling tool, where a
complex system can be decomposed in small components that can be modelled as
simple X-machine models. The communication side of all these components can
be specified separately in order to form the complete system as a communicating
X-machine model. This implies a modular bottom-up approach and supports
an iterative gradual development. It also facilitates the reusability of existing
components, making the management of the whole project more flexible and
efficient, achieving its completion with lower cost and less development time.

The communicating X-machine method supports a disciplined modular de-
velopment, allowing the developers to decompose the system under develop-
ment and model large scale systems. Since the communicating X-machine model
is viewed as the composition of X-machine type components with their initial
memory and initial state as well as with a set of input/output streams and asso-
ciations of these streams to functions, the development of a general model of a
complex system can be mapped into the following distinct actions: (a) Develop
X-machine type components independently of the target system, or use existing
models as they are. (b) Code the X-machine model into XMDL. With the use
of tools that are built around the XMDL language it is possible to syntactically
check the model and then automatically animate it [23]. Through this simulation
it is possible for the developers to informally verify that the model corresponds
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to the actual system under development, and then also to demonstrate the model
to the end-users aiding them to identify any misconceptions regarding the user
requirements. (c) Use the formal verification technique (model checking) for X-
machine models in order to increase the confidence that the proposed model
has the desired characteristics. This technique enables the designer to verify the
developed model against temporal logic formulas that express the properties
that the system should have. (d) Test the implementation against the model.
X-machines support not only static but also dynamic analysis. It is possible to
use the formal testing strategy to test the implementation and prove its cor-
rectness with respect to the X-machine model. (e) Create X-machine instances
of the original types and determine the way in which the independent instance
models communicate. (f) Extend the model to a communicating system in order
to provide additional functionality by defining the interaction between compo-
nents. (g) Define appropriate meta-rules that describe the reconfiguration of the
system.

With the continuous verification and testing from the early stages risks are
reduced and the developer is confident of the correctness of the system under
development throughout the whole process. It is worth noticing that components
that have been verified and tested can be reused without any other quality check.

X-machine modelling is based on a mathematical notation, which, however,
implies a certain degree of freedom, especially as far as the definition of functions
are concerned. In order to make the approach practical and suitable for the
development of tools around X-machines, a standard notation is devised and
its semantics fully defined [19]. The aim is to use this notation, namely X-
Machine Description Language (XMDL), as an interchange language between
developers who could share models written in XMDL for different purposes.
To avoid complex mathematical notation, the language symbols are completely
defined in ASCII.

Briefly, an XMDL model is a list of definitions corresponding to the construct
tuple of the X-machine definition. The language also provides syntax for (a) use
of built-in types such as integers, Booleans, sets, sequences, bags, etc., (b) use
of operations on these types, such as arithmetic, Boolean, set operations etc.,
(c) definition of new types, and (d) definition of functions and the conditions
under which they are applicable. In Table 1 basic keywords used in XMDL to
describe a stream X-machine are presented and briefly explained. In XMDL, the
functions take two parameter tuples, i.e. an input symbol and a memory value,
and return two new parameter tuples, i.e. an output and a new memory value. A
function may be applicable under conditions (if-then) or unconditionally. Vari-
ables are denoted by a preceding ?. The informative where in combination with
the operator <- is used to describe operations on memory values. A function has
the following general syntax:

#fun <function name> ( <input tuple> , <memory tuple> ) =
if <condition expression> then

( <output tuple>, <memory tuple> )
where <informative expression>.
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Table 1. XMDL keywords

X-machine
element XMDL syntax Informal semantics

M #model < modelname > Assigns a name to a model

Σ #input < setofinputs > Describes the input set

Γ #output < setofoutputs > Describes the output set

Q #states < setofstates > Defines the set of states

M #memory < memorytuple > Defines the memory tuple

q0 #init state < state > Sets the initial state

m0 #init memory < memory > Sets the initial memory

F #transition (q, φ) = q Defines each transition in F

Φ #fun < functiondefinition > Defines a function in Φ

XMDL has also been extended (XMDL-c) in order to code communicating com-
ponents. XMDL-c is used to define instances of models by providing a new initial
state and a new initial memory instance:

#model <model_instance> instance_of <model_type>
with:
#init_state <initial_state>;
#init_memory <initial_memory>.

In addition, XMDL-c provides syntax that facilitates the definition of the
communicating functions. The general syntax is the following:

#communication of function <function_name>:
#reads from <model instance>;
#writes <message tuple> to <model_instance>

using <variable> from output <output tuple> and
using <variable> from input <input tuple> and
using <variable> from memory <memory tuple>

where <informative expression>.

A function can either read or write or both from other components (model
instances). It is not necessary to specify the incoming message because it is of
the same type as the input defined in the original component. However, it is
necessary to specify the outgoing message as a tuple which may contain values
that exist in either output or input tuples of the function or even in the memory
tuple of the component. The informative expression is used to perform various
operations on these values before they become part of the outgoing message
tuple.

Based on XMDL and XMDL-c, various tools have been developed [18] such as
translators to other notations or executable code (e.g. Z, Prolog), an animator
that simulates the computation occurring in an X-machine or communicating
X-machine system, a model checker for X-machines etc. It should be worthwhile
to investigate towards expanding model-checking and testing techniques for the
Communicating X-machine formalism though this should be attempted after
formally establishing the theoretical framework.
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4 Population P System Model

Membrane computing represents a new and rapidly growing research area which
is part of the natural computing paradigm. Already a monograph has been dedi-
cated to this subject [26] and some fairly recent results can be found in [27], [24].
Membrane computing has been introduced with the aim of defining a computing
device, called P system, which abstracts from the structure and the functioning
of living cells [25]. Membranes are among the main elements of the living cells
which separate the cell from its environment and split the content of the cell into
small compartments by means of internal membranes. Each compartment con-
tains its own enzymes and their specialized molecules. Therefore, a membrane
structure has been identified as the main characteristic of every P system that
is defined as a hierarchical arrangement of different membranes embedded in a
unique main membrane that identify several distinct regions inside the system.
Each region contains a finite multiset of objects and a finite set of rules either
modifying the objects or moving them from a place to another one. Formally we
have the following:

Definition 1. A P system is a construct

Π = (V, µ,w1, w2, . . . , wn, R1, R2, . . . , Rm, iO),

where:

1. V is a finite set of symbols called objects;
2. µ is a membrane structure consisting of m membranes, with the membranes

(and hence the regions) injectively labeled by 1, 2, ..,m;
3. for each 1 ≤ i ≤ n, Ri is a finite set of evolution and communication rules;

the evolution rules rewrite different objects with others and the objects of the
result may stay in the same region or may go into another one; pure com-
munication rules, called also symport/antiport rules exchange objects between
two regions (for details see [26]);

4. iO ∈ {1, 2, ..,m} is the label of an elementary membrane that identifies the
output membrane.

The basic feature of a P system is the membrane structure µ that consists
of a hierarchical arrangement of m distinct membranes embedded in a unique
main membrane called the skin membrane. This membrane structure is usually
represented as a string of pairs of matching square brackets, which are labeled
in an one-to-one manner by 1, 2, ..,m. Each pair of square brackets represents
a membrane (membrane i) with its corresponding region (the region delimited
by membrane i, or region i). Moreover, this representation makes possible to
point out the relationships of inclusions among membranes and regions: we say
a region i contains a membrane j if and only if, the pair of square brackets
labeled by i embraces the pair of square brackets labeled by j.

Then, each region i contains a finite multiset of objects wi, which defines the
initial content of the region i, and a finite set of rules Ri.
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As usual, by starting from the initial configuration, a computation is obtained
by applying to the objects contained in the various regions the corresponding
set of rules in a maximal parallel manner. A computation is said to be successful
if it reaches a configuration where no more rules can be applied to the objects
in the system.

A natural generalisation of the P system model can be obtained by consid-
ering P systems where its structure is defined as an arbitrary graph. Each node
in the graph represents a membrane and contains a multiset of objects and a set
of rules modifying these objects and communicating them between membrane
components. The communication between two components is possible if they are
connected by an edge of the graph [26]. These networks of communicating mem-
branes are also known as tissue P systems because, from a biological point of
view, they can be interpreted as an abstract model of multicellular organisms. If
the components are regarded not only as simple cells surrounded by membranes
but as more general bio-entities then this model may be considered for more
complex organisms, or colonies of simple or more complex components.

These populations of individuals are usually far from being stable; mecha-
nisms enabling new components to be added or removed, links between them to
be dynamically updated, play a fundamental role in the evolution of a biological
system as a population of interacting/cooperating elements.

We introduce here a notion of population P systems as a finite collection
of different componets that are free of forming/removing bonds according to a
finite set of bond making rules in a given environment.

Definition 2. A population P system is a construct [3]

P = (V, γ, α,wE , C1, C2, . . . , Cn, cO)

where:

1. V is a finite alphabet of symbols called objects;
2. γ = ({1, 2, . . . n}, E), with En ⊆ {{i, j} | 1 ≤ i �= j ≤ n }, is a finite undi-

rected graph;
3. α is a finite set of bond making rules (i, x1;x2, j), with x1, x2 ∈ V ∗, and

1 ≤ i �= j ≤ n;
4. wE ∈ V ∗ is a finite multiset of objects initially assigned to the environment;
5. Ci = (wi, Si, Ri), for each 1 ≤ i ≤ n, is a component of the system with:

(a) wi ∈ V ∗ a finite multiset of objects,
(b) Si is a finite set of communication rules;
(c) Ri is a finite set of transformation rules;

6. cO is the output component.

A population P system P is defined as a collection of n components where each
component Ci corresponds in an one-to-one manner to a node i in a finite undi-
rected graph γ, which defines the initial structure of the system. Components are
allowed to communicate alongside the edges of the graph γ, which are unordered
pairs of the form {i, j}, with 1 ≤ i �= j ≤ n. The components Ci, 1 ≤ i ≤ n, are
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associated in an one-to-one manner with the set of nodes {1, 2, . . . n}. For this
reason, each component Ci will be subsequently identified by its label i from the
aforementioned set.

Each component Ci contains a finite multiset of objects wi, a finite set of
communication rules Si, and a finite set of transformation rules Ri.

Component capability of moving objects alongside the edges of the graph is
then influenced by particular bond making rules in α that allow these compo-
nents to form new bonds. In fact, a bond making rule (i, x1;x2, j) specifies that,
in the presence of a multiset x1 in i and a multiset x2 inside j, a new bond can
be created between these two components. This means a new edge {i, j} can be
added to the graph that currently defines the structure of the system.

The model introduced will be further enriched with a concept of type which
enables us to instantiate components. Each type component apart from objects
and rules may also contain variables. The model enriched with these new features
will be used from now on using a notation that is closer to a programming
paradigm. An example of a component type is defined as follows:

component type a;
element x, y, z; mult = 3;
var t = 5, u = 10 : int;
rule x y --> x x z; -- (r1)
rule z --> z z; -- (r2)
rule t --> t+u; -- (r3)
end;

In this example a component type a is defined with object elements x, y, z,
two variables t, u and three rewriting rules r1, r2, r3.

The objects x, y have one instance each, whereas z occurs in three copies. The
integer variables t, u are introduced with initial values 5 and 10, respectively. The
rules r1 and r2 rewrite xy and z, respectively, whereas r3 rewrites variable t with
the sum of the values contained in t and u.

The rules may also be preceded by some Boolean conditions which allow
the corresponding rules to be applied when these guards are true. Apart from
rewriting rules, communication rules, division rules, and death rules are also
provided. All the rules have an execution time associated with. By default this
is 1, but may be greater than 1 as well and this means the rule needs more than
1 evolution steps in order to be performed.

From each component type various instances may be created. During the
instantiation process the implicit values associated with various objects may be
changed.

instance a1, a2: a;
element x; mult 100;

instance a3: a;

In the example above two components a1, a2 are instantiated from a with
100 occurrences of x; y, z occur with the values mentioned in the definition of a.
The component a3 has the same objects as a defined.
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Apart from component types it is also possible to define the environment with
objects of different types, but also bond making rules that create links between
various components of the system.

5 Case Study: An Ant Colony

The first modelling approach will use an X-machine method. The ant is modelled
so that it accepts a tuple (pos, stimuli) as input to its functions. The first element
of the input tuple is a tuple representing the coordinates in which stimuli is
perceived whereas the second element is the description of the stimuli. The latter
can be pheromone or space describing the space denoted by the coordinates, a
hungry or a non-hungry ant describing whether an ant that is perceived in the
given coordinates carries food or not or, finally, a number greater than zero
representing the quantity of food that is received by another ant that carries
food. The memory of the ant holds (a) its current position, (b) the amount of
food it carries, (c) a number denoting the food quantity threshold beneath which
the ant becomes hungry, (d) the food decay rate, a number denoting the quantity
of food that is consumed by the ant in each time unit and (e) the food portion
that is to be given by an ant that is carrying food to another which is hungry.
The behaviour of the systems is given by different functions processing input
stimuli.

All these types are defined using XMDL declarations.
The becomeHungry function reduces the amount of food that the ant carries

according to the food decay rate but is only applied when the updated value of
the food quantity becomes less or equal to the hunger threshold ?ft in order to
bring the ant to the hungry state.

#fun becomeHungry ((?p, ?in), (?pos, ?f, ?ft, ?fdr, ?mfp)) =
if ?nf =< ?ft then
((gotHungry), (?pos, ?nf, ?ft, ?fdr, ?mfp))
where ?nf <- ?f - ?fdr.

The giveFood function is applied when an ant gives ?mfp amount of food to the
hungry ant it met. The updated food quantity that the ant will carry afterwards
is reduced by the donated food portion ?mfp as well as by the food decay rate
?fdr. All possible input is ignored by the ant which returns to the inactive state.

#fun giveFood ((?p, ?in), (?pos, ?f, ?ft, ?fdr, ?mfp)) =
((givingFood), (?pos, ?nf, ?ft, ?fdr, ?mfp))
where ?food_reduction <- ?fdr + ?mfp
and ?nf <- ?f - ?food_reduction.

The die function ignores all possible input and is only applied when the
quantity of food in an ant’s memory (the amount of food it is carrying) is equal
to zero. It outputs a “dying” message and leaves the memory structure unaltered.
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#fun die ((?p, ?in), (?pos, ?f, ?ft, ?fdr, ?mfp)) =
if ?what_is_left =< 0 then
((dying), (?pos, 0, ?ft, ?fdr, ?mfp)).
where ?what_is_left <- ?f - ?fdr.

To demonstrate how the reconfiguration operators are used we consider the
case that after a food transaction, communication between the two ants needs
to halt. The corresponding rule that will apply the detachment operator which
will remove the communication channels between the two ant instances is:

(qc, Mc, takeEnoughFood)i ∈ SZ
∨(qc, Mc, takeNotEnoughFood)i ∈ SZ

→ DET (i, Z)

Using the P system approach we may describe some of the rules applied to
simulate the behaviour of the ant colony.

Each ant has a specific amount of found which will decrease as the time goes
by. This is captured by the rule

foodL --> foodL-FoodDecayRate

where foodL is a variable pointing to the current level of food; after applying
this rule the updated value of this is obtained. When the level of food is under
a threshold the ant will become hungry; this is shown by a rule

inactive and foodL < HungryLevel: inactive --> hungry

which will change inactive to hungry when the Boolean condition preceding the
rule is true.

When an ant is hungry it is moving around looking for food. This is simulated
by a communication rule which will put in the environment the current position
and is getting a new position nearby.

Neighbour(pos,pos’): (out pos; in pos’)

This rule will be read as ”if the two positions pos and pos′ are next to each
other - predicate Neighbour(pos, pos′) is true, then the current position pos is
sent out in the environment and a new position pos′ from the environment enters
the component”.

When two ants are next to each other a bond making rule will create a link.

Neighbour(ant.pos, ant.pos’): <ant,ant>

In this case a bond will be created between the two ants if their positions are
close enough.

A food transfer may take place between two ants that are linked.

transfer and foodL > HungryLevel:
(out FoodTransfer from foodL; outComponent ant) time=10
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The ant that is not hungry and is in state transfer will provide FoodTransfer
units from its current amount of food. Correspondingly the ant that is at the
other end of the link will receive the same FoodTransfer that will be added to
its amount of food. The transfer will take 10 units of simulation time.

When an ant cannot find food and its amount of food becomes 0 then it will
die.

foodL <= 0: (component_death)

6 Experiments

A variety of experiments were performed to examine how the Pharao’s ant mod-
els behave [5]. Each worker ant logged a history of all food related actions it
performed. These log files can then be analysed once the simulation has com-
pleted. The environment consisted of a nest with four entrances or exits, each
of which was situated on a compass point (north, south, east, west). The colony
consisted of 100 workers in a nest of 3cm by 3cm. The experiments show that
the colony manages to distribute the food among the colony members before a
mass forage occurs; the process has a cyclic nature and a smooth gradient.

In nature worker specialisation occurs. This is shown by a low proportion of
worker ants focusing on feeding other colony members or foraging. The first case
might be illustrated by some ants missing the forage cycle although no specific
constraints were imposed in this respect and consequently a sort of emergent
specialisation may be noticed. Although in our experiments in almost all the
steps of the simulation there were ants missing the forage process is too early to
identify a specialisation due to the reduced scale of the simulation time consid-
ered. It is likely that a more specific analysis of parameters involved in a long
run simulation may lead to some conclusions regarding this phenomenon.

7 Conclusions

This work has been an attempt to model a simple biological system by us-
ing two different methods, namely population P systems and communicating
X-machines. This simple case study shows the need to approach the dynamic
structure and organisation of biological systems with models exhibiting such
properties. Bond making rules in the context of P systems and operators ATT,
DET, GEN, and DES in the case of communicating X-machines represent the
key elements introduced in order to cope with the systems’ dynamicity.

There are advantages to both methods, though at different modelling levels.
The X-machine approach appears to be a natural model to express the internal
behaviour of the components because they can naturally describe the inter-
nal states, transitions between them caused by stimuli and represent the data
structures. However a communicating X-machine model cannot by itself manage
the required reconfiguration, which is a prominent property of these biological
systems. As a result, an external device, in the form of a meta-X-machine, is
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necessary; this device possesses global control over the structure of the over-
all system. Control is achieved through meta-operations which change the way
that components interact or function. Population P systems, on the other hand,
possess a natural trait for capturing the behaviour of a community of entities
and how the structure of such a community may change over time. The new
characteristics introduced in this paper, guards to rules, variables, arithmetic
operations, improve the potential of this model to specify the internal behaviour
of the componets.

Both methods have sound theoretical foundations and act as formal specifica-
tion languages. Towards this end, the X-machine Description Language (XMDL)
[19] has been defined offering the ability of formally describing X-machine mod-
els and acting as an interchange tool for software engineers. XMDL also serves
as a common basis for the development of tools, such as the X-System [23], that
allow the syntactical check and automatic animation of the models. In this paper
the elements (component type, environment definition, component instantiation
etc) of a specification language based on P systems were introduced for the first
time.

In addition to this practical aspect, X-machines have further techniques sup-
porting the modelling activity such as formal verification of desired system prop-
erties [8] and complete testing [14]. Towards practical modelling, appropriate
XML notation in order to define population P systems is currently under de-
velopment and soon expected to be made available. Formal properties of some
classes of population P systems are also under investigation. Effort has been put
into modelling a P system as a communicating X-machine [20]. Further investi-
gations regarding possible transformations between communicating X-machine
models and population P system models would be useful in order to support
both a formal theoretical comparison as well as the modelling activity.

This case study shows not only the benefits of approaching systems with a
dynamic structure by models exhibiting naturally these properties and the need
to further develop these models, but it also suggests that this way of modelling
may be reused in other contexts where multi-agent paradigm has to be con-
sidered. Communities of bacteria, cells in tissues, or more complex organisms
composed of simpler components may be modelled in a similar way. In the next
future we aim to use this approach in certain biological systems where to identify
their emergent behaviour as well as potentially new computational paradigms
inspired by these systems.
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