

Lecture Notes in Computer Science 3566
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Jean-Pierre Banâtre Pascal Fradet
Jean-Louis Giavitto Olivier Michel (Eds.)

Unconventional
Programming Paradigms

International Workshop UPP 2004
Le Mont Saint Michel, France, September 15-17, 2004
Revised Selected and Invited Papers

13

Volume Editors

Jean-Pierre Banâtre
Université de Rennes I and INRIA/IRISA
Campus de Beaulieu, 35042 Rennes Cedex, France
E-mail: jpbanatre@inria.fr

Pascal Fradet
INRIA Rhône-Alpes
655 av. de l’Europe, 38330 Montbonnot, France
E-mail: Pascal.Fradet@inria.fr

Jean-Louis Giavitto
LaMI/Université d’Évry Val d’Essonne
Tour Evry 2, GENOPOLE, 523 Place des terrasses de l’agora, 91000 Évry, France
E-mail: giavitto@lami.univ-evry.fr

Olivier Michel
LaMI/Université d’Évry Val d’Essonne
Cours Monseigneur Romero, 91025 Evry Cedex, France
E-mail: michel@lami.univ-evry.fr

Library of Congress Control Number: 2005928846

CR Subject Classification (1998): F.1, D.1, D.3, F.3, F.4

ISSN 0302-9743
ISBN-10 3-540-27884-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-27884-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11527800 06/3142 5 4 3 2 1 0

Preface

Nowadays, developers have to face the proliferation of hardware and software
environments, the increasing demands of the users, the growing number of pro-
grams and the sharing of information, competences and services thanks to the
generalization of data bases and communication networks. A program is no more
a monolithic entity conceived, produced and finalized before being used. A pro-
gram is now seen as an open and adaptive frame, which, for example, can dy-
namically incorporate services not foreseen by the initial designer. These new
needs call for new control structures and program interactions.

Unconventional approaches to programming have long been developed in var-
ious niches and constitute a reservoir of alternative ways to face the programming
languages crisis. New models of programming (e.g., bio-inspired computing, ar-
tificial chemistry, amorphous computing, . . .) are also currently experiencing a
renewed period of growth as they face specific needs and new application do-
mains. These approaches provide new abstractions and notations or develop
new ways of interacting with programs. They are implemented by embedding
new sophisticated data structures in a classical programming model (API), by
extending an existing language with new constructs (to handle concurrency, ex-
ceptions, open environments, . . .), by conceiving new software life cycles and
program executions (aspect weaving, run-time compilation) or by relying on an
entire new paradigm to specify a computation. They are inspired by theoretical
considerations (e.g., topological, algebraic or logical foundations), driven by the
domain at hand (domain-specific languages like PostScript, musical notation,
animation, signal processing, etc.) or by metaphors taken from various areas
(quantum computing, computing with molecules, information processing in bi-
ological tissues, problem solving from nature, ethological and social modeling).
The practical applications of these new programming paradigms and languages
prompt research into the expressivity, semantics and implementation of pro-
gramming languages and systems architectures, as well as into the algorithmic
complexity and optimization of programs.

The purpose of the workshop was to bring together researchers from the
various communities working on wild and crazy ideas in programming languages
to present their results, to foster fertilization between theory and practice, and
to favor the dissemination and growth of new programming paradigms.

The contributions were split up into five tracks:

– Chemical Computing
– Amorphous Computing
– Bio-inspired Computing
– Autonomic Computing
– Generative Programming

VI Preface

This workshop kept the same informal style of a previous successful meeting
held in 1991 in Le Mont Saint Michel under the title New Directions in High-
Level Parallel Programming Languages. Each track was handled by a well-known
researcher in the concerned area. Each track leader was in charge of inviting
other researchers on his topic and organizing his session. These track leaders
plus the four promoters of this initiative constituted the Program Committee of
the workshop (see below). This volume gathers extended and revised versions of
most of the papers presented at the workshop, including the invited presentation
given by Philippe Jorrand on quantum computing.

On the practical side, several persons contributed to the success of the work-
shop. We offer our sincere thanks to all of them. We are particularly grateful to
Edith Corre and Elisabeth Lebret of IRISA and to Rémi Ronchaud from ERCIM
who were very efficient and professional in the organization. Finally, we address
our sincere acknowledgments to all the participants who, beside the high quality
of their scientific contribution, made the workshop a friendly and unique event.

April 2005 Jean-Pierre Banâtre
Pascal Fradet

Jean-Louis Giavitto
Olivier Michel

Organization

The workshop was jointly supported by the European Commission’s Information
Society Technologies Programme, Future and Emerging Technologies Activity,
and the US National Science Foundation, Directorate for Computer and Infor-
mation Science and Engineering. This workshop is part of a series of strategic
workshops that identify key research challenges and opportunities in informa-
tion technology. It was organized by ERCIM (European Research Consortium
for Informatics and Mathematics) and received additional support from INRIA,
Université d’Evry Val d’Essonne, Université de Rennes 1, and Microsoft Research.

Program Committee

Organizing Committee

Jean-Pierre Banâtre Université de Rennes 1, and INRIA/IRISA, France
Pascal Fradet INRIA Rhône-Alpes, France
Jean-Louis Giavitto LaMI/Université d’Evry Val d’Essonne, France
Olivier Michel LaMI/Université d’Evry Val d’Essonne, France

Track Leaders
Pierre Cointe Ecole des Mines de Nantes, France

Generative Programming

Daniel Coore University of West Indies, Jamaica
Amorphous Computing

Peter Dittrich Friedrich Schiller University Jena, Germany
Chemical Computing

Manish Parashar Rutgers, The State University of New Jersey, USA
Autonomic Computing

Gheorghe Păun Institute of Mathematics of the Romanian Academy,
Romania
Bio-inspired Computing

Table of Contents

Invited Talk

From Quantum Physics to Programming Languages: A Process
Algebraic Approach

Philippe Jorrand, Marie Lalire . 1

Chemical Computing

Chemical Computing
Peter Dittrich . 19

Programming Reaction-Diffusion Processors
Andrew Adamatzky . 33

From Prescriptive Programming of Solid-State Devices to Orchestrated
Self-organization of Informed Matter

Klaus-Peter Zauner . 47

Relational Growth Grammars – A Graph Rewriting Approach to
Dynamical Systems with a Dynamical Structure

Winfried Kurth, Ole Kniemeyer, Gerhard Buck-Sorlin 56

A New Programming Paradigm Inspired by
Artificial Chemistries

Wolfgang Banzhaf, Christian Lasarczyk . 73

Higher-Order Chemical Programming Style
Jean-Pierre Banâtre, Pascal Fradet, Yann Radenac 84

Amorphous Computing

Introduction to Amorphous Computing
Daniel Coore . 99

Abstractions for Directing Self-organising Patterns
Daniel Coore . 110

Programming an Amorphous Computational Medium
Jacob Beal . 121

X Table of Contents

Computations in Space and Space in Computations
Jean-Louis Giavitto, Olivier Michel, Julien Cohen,
Antoine Spicher . 137

Bio-inspired Computing

Bio-inspired Computing Paradigms (Natural Computing)
Gheorghe Păun . 155

Inverse Design of Cellular Automata by Genetic Algorithms:
An Unconventional Programming Paradigm

Thomas Bäck, Ron Breukelaar, Lars Willmes . 161

Design, Simulation, and Experimental Demonstration of Self-assembled
DNA Nanostructures and Motors

John H. Reif, Thomas H. LaBean, Sudheer Sahu, Hao Yan,
Peng Yin . 173

Membrane Systems: A Quick Introduction
Gheorghe Păun . 188

Cellular Meta-programming over Membranes
Gabriel Ciobanu, Dorel Lucanu . 196

Modelling Dynamically Organised Colonies of Bio-entities
Marian Gheorghe, Ioanna Stamatopoulou, Mike Holcombe,
Petros Kefalas . 207

P Systems: Some Recent Results and Research Problems
Oscar H. Ibarra . 225

Outlining an Unconventional, Adaptive, and Particle-Based
Reconfigurable Computer Architecture

Christof Teuscher . 238

Autonomic Computing

Autonomic Computing: An Overview
Manish Parashar, Salim Hariri . 257

Enabling Autonomic Grid Applications: Dynamic Composition,
Coordination and Interaction

Zhen Li, Manish Parashar . 270

Table of Contents XI

Grassroots Approach to Self-management in Large-Scale Distributed
Systems

Ozalp Babaoglu, Márk Jelasity, Alberto Montresor 286

Autonomic Runtime System for Large Scale Parallel and Distributed
Applications

Jingmei Yang, Huoping Chen, Byoung uk Kim, Salim Hariri,
Manish Parashar . 297

Generative Programming

Towards Generative Programming
Pierre Cointe . 315

Overview of Generative Software Development
Krzysztof Czarnecki . 326

A Comparison of Program Generation with Aspect-Oriented
Programming

Mira Mezini, Klaus Ostermann . 342

Generative Programming from a Post Object-Oriented Programming
Viewpoint

Shigeru Chiba . 355

Author Index . 367

Invited Talk

J.-P. Banâtre et al. (Eds.): UPP 2004, LNCS 3566, pp. 1 – 16, 2005.
© Springer-Verlag Berlin Heidelberg 2005

From Quantum Physics to Programming Languages:
A Process Algebraic Approach

Philippe Jorrand and Marie Lalire

Leibniz Laboratory, 46 avenue Felix Viallet,
38000 Grenoble, France

{Philippe.Jorrand, Marie.Lalire}@imag.fr

Abstract. Research in quantum computation is looking for the consequences of
having information encoding, processing and communication exploit the laws
of quantum physics, i.e. the laws of the ultimate knowledge that we have, today,
of the foreign world of elementary particles, as described by quantum mechan-
ics. After an introduction to the principles of quantum information processing
and a brief survey of the major breakthroughs brought by the first ten years of
research in this domain, this paper concentrates on a typically “computer sci-
ence” way to reach a deeper understanding of what it means to compute with
quantum resources, namely on the design of programming languages for quan-
tum algorithms and protocols, and on the questions raised by the semantics of
such languages. Special attention is devoted to the process algebraic approach
to such languages, through a presentation of QPAlg, the Quantum Process Al-
gebra which is being designed by the authors.

1 From Quantum Physics to Computation

Information is physical: the laws which govern its encoding, processing and commu-
nication are bound by those of its unavoidably physical incarnation. In today’s infor-
matics, information obeys the laws of Newton’s and Maxwell’s classical physics: this
statement holds all the way from commercial computers down to (up to?) Turing
machines and lambda-calculus. Today’s computation is classical.

Quantum information processing and communication was born some ten years ago,
as a child of two major scientific achievements of the 20th century, namely quantum
physics and information sciences. The driving force of research in quantum computa-
tion is that of looking for the consequences of having information encoding, process-
ing and communication based upon the laws of quantum physics, i.e. the ultimate
knowledge that we have, today, of the foreign world of elementary particles, as de-
scribed by quantum mechanics. The principles of quantum information processing are
very briefly introduced in this section. For a more detailed, but still concise and gentle
introduction, see [24]. A pedagogical and rather thorough textbook on quantum com-
puting is [21]. For a dense and theoretically profound presentation, the reader is re-
ferred to [16].

2 P. Jorrand and M. Lalire

1.1 Four Postulates for Computing

Quantum mechanics, which is the mathematical formulation of the laws of quantum
physics, relies on four postulates: (i) the state of a quantum system (i.e. a particle, or a
collection of particles) is a unit element of a Hilbert space, that is a vector of norm 1
in a d-dimensional complex vector space; (ii) the evolution of the state of a closed
quantum system (i.e. not interacting with its -classical- environment) is deterministic,
linear, reversible and characterized by a unitary operator, that is by a dxd unitary
matrix applied to the state vector; (iii) the measurement of a quantum system (i.e. the
observation of a quantum system by its -classical- environment) irreversibly modifies
the state of the system by performing a projection of the state vector onto a probabilis-
tically chosen subspace of the Hilbert space, with renormalization of the resulting
vector, and returns a value (e.g. an integer) to the classical world, which just tells
which subspace was chosen; and (iv) the state space of a quantum system composed
of several quantum subsystems is the tensor product of the state spaces of its compo-
nents (given two vector spaces P and Q of dimensions p and q respectively, their
tensor product is a vector space of dimension pxq).

The question is then: how to take advantage of these postulates to the benefits of
computation? The most widely developed approach to quantum computation exploits
all four postulates in a rather straightforward manner. The elementary physical carrier
of information is a qubit (quantum bit), i.e. a quantum system (electron, photon,
ion, ...) with a 2-dimensional state space (postulate i); the state of a n-qubit register
lives in a 2n-dimensional Hilbert space, the tensor product of n 2-dimensional Hilbert
spaces (postulate iv). Then, by imitating in the quantum world the most traditional
organization of classical computation, quantum computations are considered as com-
prising three steps in sequence: first, preparation of the initial state of a quantum reg-
ister (postulate iii can be used for that, possibly with postulate ii); second, computa-
tion, by means of deterministic unitary transformations of the register state (postulate
ii); and third, output of a result by probabilistic measurement of all or part of the reg-
ister (postulate iii).

1.2 Quantum Ingredients for Information Processing

These postulates and their consequences can be interpreted from a more informational
and computational point of view, thus providing the elementary quantum ingredients
which are at the basis of quantum algorithm design:

Superposition. At any given moment, the state of quantum register of n qubits is a
vector in a 2n-dimensional complex vector space, i.e. a vector with at most 2n non zero
complex components, one for each of the 2n different values on n bits: the basis of this
vector space comprises the 2n vectors |i>, for i in {0,1}n (|i> is Dirac’s notation for
vectors denoting quantum states). This fact is exploited computationally by consider-
ing that this register can actually contain a superposition of all the 2n different values
on n bits, whereas a classical register of n bits may contain only one of these values at
any given moment.

 From Quantum Physics to Programming Languages 3

Quantum Parallelism and Deterministic Computation. Let f be a function from
{0,1}n to {0,1}m and x be a quantum register of n qubits initialized in a superposition
of all values in {0,1}n (this initialization can be done by one very simple step). Then,
computing f(x) is achieved by a deterministic, linear and unitary operation on the state
of x: because of linearity, a single application of this operation produces all 2n values
of f in a single computation step. Performing this operation for any, possibly non
linear f while obeying the linearity and unitarity laws of the quantum world, requires a
register of n+m qubits formed of the register x, augmented with a register y of m
qubits. Initialy, y is in any arbitray state |s> on m qubits: before the computation of f,
the larger register of n+m qubits contains a superposition of all pairs |i,s> for i in
{0,1}n. After the computation of f, it contains a superposition of all pairs |i, s⊕f(i)> for
i in {0,1}n, where ⊕ is bitwise addition modulo 2. It is easy to verify that, for any f,
this operation on a register of n+m qubits is unitary (it is its own inverse). In many
cases, it will be applied with s=0, which results in a superposition of all simpler pairs
|i, f(i)> for i in {0,1}n.

Probabilistic Measurement and Output of a Result. After f has been computed, all
its values f(i), for i in {0,1}n, are superposed in the y part (m qubits) of the register of
n+m qubits, each of these values facing (in the pair |i,f(i)>) their corresponding i
which is still stored in the unchanged superposition contained in the x part (n qubits)
of that register. Observing the contents of y will return only one value, j, among the
possible values of f. This value is chosen with a probability which depends on f since,
e.g. if f(i)=j for more than one values of i, the probability of obtaining j as a result will
be higher than that of obtaining k if f(i)=k for only one value of I (and the probability
of obtaining l if there is no i such that f(i)=l will of course be 0). This measurement
also causes the superposition in y to be projected onto the 1-dimensional subspace
corresponding to the basis state |j>, i.e. the state of the y part collapses to |j>, which
implies that all other values of f which were previously superposed in y are irreversi-
bly lost.

Interference. Using appropriate unitary operations, the results of the 2n parallel com-
putations of f over its domain of definition can be made to interfere with each other.
Substractive interference will lower the probability of observing some of these value
in y, whereas additive interference will increase the probability of observing other
values and bring it closer to 1. Because of probabilistic measurement, a major aim of
the organization and principles of quantum algorithms will be to assemble the unitary
operations for a given computation in such a way that, when a final measurement is
applied, a relevant result has a high probability to be obtained.

Entangled States. Measuring y after the computation of f is in fact measuring only m
qubits (the y part) among the n+m qubits of a register. The state of this larger register
is a superposition of all pairs |i,f(i)> for i in {0,1}n (e.g., in this superposition, there is
no pair like |2,f(3)>): this superposition is not a free cross-product of the domain
{0,1}n of f by its image in {0,1}m, i.e. there is a strong correlation between the con-
tents of the x and y parts of the register. As a consequence, if measuring the y part
returns a value j, with the state of that part collapsing to the basis state |j>, the state of
the larger register will itself collapse to a superposition of all remaining pairs |i,j>

4 P. Jorrand and M. Lalire

such that f(i)=j. This means that, in addition to producing a value j, the measurement
of the y part also causes the state of the x part to collapse to a superposition of all
elements of the f -1(j) subset of the domain of f. This correlation between the x and y
parts of the register is called entanglement: in quantum physics, the state of a system
composed of n sub-systems is not, in general, simply reducible to an n-tuple of the
states of the components of that system. Entanglement has no equivalent in classical
physics and it constitutes the most powerful resource for quantum information proc-
essing and communication.

No-Cloning. A direct consequence of the linearity of all operations that can be ap-
plied to quantum states (a two line trivial proof shows it) is that the state of a qubit a
(this state is in general an arbitrary superposition, i.e. a vector made of a linear com-
bination of the two basis state vectors |0> and |1>), cannot be duplicated and made the
state of another qubit b, unless the state of a is simply either |0> or |1> (i.e. not an
arbitrary superposition). This is true of the state of all quantum systems, including of
course registers of n qubits used during a quantum computation. In programming
terms, this means that the “value” (the state) of a quantum variable cannot be copied
into another quantum variable.

These basic quantum ingredients and their peculiarities will of course have far
reaching consequences, as soon as algorithm, programming languages and semantic
frameworks incorporate and make use of quantum resources.

2 Quantum Algorithms

Richard Feynman launched in 1982 [10] the idea that computation based upon quan-
tum physics would be exponentially more efficient than based upon classical physics.
Then, after the pioneering insight of David Deutsch in the mid eighties [8], who
showed, by means of a quantum Turing machine, that quantum computing could
indeed not, in general, be simulated in polynomial time by classical computing, it was
ten years before the potential power of quantum computing was demonstrated on
actual computational problems.

2.1 Major Breakthroughs: Quantum Speedups and Teleportation

The first major breakthrough was by Peter Shor [27]: in 1994, he published a quantum
algorithm operating in polynomial time (O(log3N)) for factoring an integer N, whereas
the best classical algorithm is exponential. Two years later, Lov Grover [13] pub-
lished a quantum algorithm for searching an unordered database of size N, which
achieves a quadratic acceleration (it operates in O(N1/2)) when compared with classi-
cal algorithms for the same problem (in O(N)). Shor’s algorithm relies on a known
reduction of the problem of factoring to that of finding the order of a group, or the
period of a function: then, since order finding can be achieved by a Fourier Trans-
form, the key of Shor’s algorithm is a Quantum Fourier Transform, which is indeed
exponentially more efficient than FFT, thanks to quantum parallelism, entanglement
and tensor product. Grover’s algorithm relies upon a very subtle use of interference,

 From Quantum Physics to Programming Languages 5

now known as amplitude amplification, which performs a stepwise increase of the
probability of measuring a relevant item in the database, and which brings this prob-
ability very close to one after N1/2 steps.

Another major result, by Charles Bennet and others in 1993 [3], was the design of
theoretical principles leading to a quantum teleportation protocol, which takes advan-
tage of entanglement and of probabilistic measurement: the state of a quantum system
a (e.g. a qubit) localized at A’s place can be assigned, after having been measured,
thus destroyed, to another quantum system b (e.g. another qubit), localized at B’s
place, without the state of a being known neither by A nor by B, and without neither
a, b nor any other quantum system being moved along a trajectory between A and B.
It is important to notice that this is not in contradiction with no-cloning: there is still
only one instance of the teleported state, whereas cloning would mean that there coex-
ist one original and one copy.

Since then, these results have been generalized and extended to related classes of
problems. Shor’s algorithm solves an instance of the hidden subgroup problem [19]
for abelian groups and a few extensions to non-abelian cases have been designed. In
addition to Fourier Transform, order finding and amplitude amplification, other can-
didates to the status of higher level building blocks for quantum algorithmics have
emerged, such as quantum random walks on graphs [15]. Principles for distributed
quantum computing have also been studied and successfully applied to a few classes
of problems. Very recently, on the basis of amplitude amplification, quadratic and
other quantum speedups have been found for several problems on graphs, such as
connectivity, minimum spanning tree and single source shortest paths [9].

Teleportation also has been generalized. The measurement used in its original for-
mulation was such that the state eventually obtained for b was the same as the state
initially held by a (up to a correcting operation which still had to be applied, depend-
ing on the probabilistic outcome of that measurement). By changing the way the
measurement is done (in fact, by appropriately rotating the basis upon which the
measurement of a will project the state of a), it has been found that the state tele-
ported to b could be not the state initially held by a, but that state to which a rotation,
i.e. a unitary operation has been applied. In other words, entanglement and measure-
ment, i.e. the resources needed by teleportation, can be used to simulate computations
by unitary tranformations. This has given rise to a whole new direction of research in
quantum computation, namely measurement-based quantum computation [14,18,23].

2.2 No Quantum Computation Without Classical Control

There is an implicit, but obvious and ever present invariant in all these different ways
of organizing quantum computations and quantum algorithms. Quantum computations
operate in the quantum world, which is a foreign and unknowable world. No one in
the classical world will ever know what the superposition state of an arbitrary qubit is,
the only information one can get is 0 or 1, through measurement, i.e. the classical
outcome of a probabilistic projection of the qubit state vector onto |0> or |1>: if one
gets |0>, the only actual information which is provided about the state before meas-
urement is that it was not |1>, because |0> and |1> are orthogonal vectors. Then, for

6 P. Jorrand and M. Lalire

the results of quantum computations to be useful in any way, there is an intrinsic
necessity of cooperation and communication controlled by the classical world. All
quantum algorithms, either based upon unitary transformations or upon measure-
ments, if they are of any relevance, eventually end up in a final quantum state which
hides, among its superposed basic states, a desired result. Such a result is asked for
upon request by the classical world, which decides at that point to perform a meas-
urement on part or all of the quantum register used by the computation. But measure-
ment is probabilistic: its outcome may be a desired result, but it may well be some-
thing else. For example, Grover’s algorithm ends up in a state where desired results
have a probability close to 1 to be obtained, but other, unwanted results may also
come out from the final measurement, although with a much lower probability.

The whole game of quantum algorithmics is thus to massage the state of the quan-
tum register so that, in the end, desired results have a high probability to be obtained,
while doing that at the minimum possible cost, i.e. minimal number of operations
applied (time) and of qubits used (space). This is achieved through interferences (by
means of appropriate unitary operations), through the establishment of entangled
states and through measurements in appropriate bases. But this is not the end: once a
measurement outcome is obtained by the classical world, it must be checked, by the
classical world, for its validity. If the result satisfies the required conditions to be
correct, termination is decided by the classical world. If it does not, the classical
world decides to start the quantum part of the computation all over. For example, in
the case of Grover’s algorithm, if the element of the database produced by the meas-
urement is not correct, the whole quantum search by amplitude amplification is
started again by the classical world.

In general, algorithms will not contain one, but several quantum parts embedded
within classical control structures like conditions, iterations, recursions. Measure-
ment is not the only channel through which the classical and quantum worlds inter-
act, there is also the initialization of quantum registers to a state chosen by the clas-
sical world (notice that such initializations can only be to one among the basis
states, since they are the only quantum states which correspond, one to one, to val-
ues expressible by the classical world). A quantum part of an algorithm may also,
under the control of the classical world, send one of its qubits to another quantum
part. Notice that the physical carrier of the qubit must be sent, not its state, because
of no-cloning. This quantum to quantum communication is especially useful for
quantum secure communication protocols, a family of distributed quantum algo-
rithms of high relevance, in a not too far future, among the practical applications of
quantum information processing.

This means that not only the peculiarities of the basic quantum ingredients for
computing have to be taken into account in the design of languages for the formal
description of quantum algorithms and quantum protocols, but also the necessity
of embedding quantum computations within classical computations, of having
both worlds communicate and cooperate, of having classical and quantum parts be
arbitrarily intermixed, under the control of the classical side, within the same
program.

 From Quantum Physics to Programming Languages 7

3 Quantum Programming

While quantum computing is in its infancy, quantum programming is still in embry-
onic state. Quantum computing is on its way to becoming an established discipline
within computer science, much like, in a symmetric and very promising manner,
quantum information theory is becoming a part of quantum physics. Since the recent
birth of quantum computing, the most important efforts have been invested in the
search for new quantum algorithms that would show evidence of significant drops in
complexity compared with classical algorithms. Obtaining new and convincing results
in this area is clearly a crucial issue for making progress in quantum computing. This
research has been, as could be expected, largely focusing on complexity related ques-
tions, and relying on approaches and techniques provided by complexity theory.

However, the much longer experience from classical computer science tells that the
study of complexity issues is not the only source of inspiration toward the creation,
design and analysis of new algorithms. There are other roads, which run across the
lands of language design and semantics. A few projects in this area have recently
started, following these roads. Three quantum programming language styles are under
study: imperative, parallel and distributed, and functional. This naturally opens new
and challenging research issues in the domain of semantic frameworks (operational,
denotational, axiomatic), where the peculiarities of quantum resources have to be
dealt with in a formal, mathematical and consistent fashion. This research, in turn, is
expected to provide fresh insights into the properties of the quantum world itself.

The sequential and imperative programming paradigm, upon which all major quan-
tum algorithmic breakthroughs have relied, is still widely accepted as “the” way in
which quantum + classical computations are organized and should be designed. How-
ever, before any language following that style was designed, and even today, the
quantum parts of algorithms are mostly described by drawing quantum gate arrays,
which are to quantum computing what logical gate circuits are to classical computing.
This is of course very cumbersome and far from useful for understanding and proving
properties of programs. This is why some imperative languages for
quantum + classical programming have been design first.

The most representative quantum imperative programming language is QCL
(Quantum Computing Language), a C flavoured language designed by B. Ömer at the
University of Vienna [22]. Another one, qGCL (Quantum Guarded Command Lan-
guage) was due to P. Zuliani at Oxford University [30], with the interesting design
guideline of allowing the construction by refinement of proved correct programs.

Functional programming offers a higher level of abstraction than most other classi-
cal programming paradigms, especially than the imperative paradigm. Furthermore, it
is certainly one of the most fruitful means of expression for inventing and studying
algorithms, which is of prime importance in the case of quantum computing. A natu-
ral way to try and understand precisely how this programming style can be transposed
to quantum computing is to study a quantum version of lambda-calculus.

This is done by A. Van Tonder at Brown University [28]. His approach puts for-
ward the fact that there is a need for new semantic bases in order to accommodate
disturbing peculiarities of the quantum world. A striking example are the conse-

8 P. Jorrand and M. Lalire

quences of no-cloning. In quantum programs, there are quantum variables, i.e. vari-
ables storing quantum states. However, since it is impossible to duplicate the state of
a qubit, it is impossible to copy the value of a quantum variable. This has far reaching
consequences, e.g., in lambda-calculus, an impossibility to stay with classical beta-
reduction. Van Tonder [29] and J.Y. Girard [12] are suggesting that linear logic may
be the way out of this specifically quantum issue.

On the functional side, there is also QPL (a Quantum Programming Language), de-
signed by P. Selinger at the University of Ottawa [26]. QPL is a simple quantum pro-
gramming language with high-level features such as loops, recursive procedures, and
structured data types. The language is functional in nature, statically typed, and it has
an interesting denotational semantics in terms of complete partial orders of superop-
erators (superoperators are a generalization of quantum operations). All of them are
still fighting toward a satisfactory consistent integration of all quantum peculiarities,
i.e. not only no-cloning, which naturally comes as their first major concern, but also
probabilistic measurement, the necessary presence of both quantum and classical data
and operations, etc.

The third style, process calculi, are an abstraction of communicating and cooperat-
ing computations which take place during the execution of parallel and distributed
programs. They form a natural basis for rigorous and high level expression of several
key aspects of quantum information processing: measurement, cooperation between
quantum and classical parts of a computation, multi-party quantum computation,
description and use of teleportation and of its generalization, description and analysis
of quantum communication and cryptographic protocols.

CQP (Communicating Quantum Processes) is being designed by S. Gay and
R. Nagarayan at the University of Warwick [11]. It combines the communication
primitives of the pi-calculus with primitives for measurement and transformation of
quantum states. A strong point of CQP is its static type system which classifies chan-
nels, distinguishes between quantum and classical data, and controls the use of quan-
tum states: this type system guarantees that each qubit is owned by a unique process
within a system.

QPAlg (Quantum Process Algebra) is being designed by M. Lalire and Ph. Jorrand
at the University of Grenoble [17]. It does not have yet any elaborate typing system
like that of CQP. But, in addition to modelling systems which combine quantum and
classical communication and computation, the distinctive features of QPAlg are the
explicit representation of qubit initialization through classical to quantum communi-
cation, and of measurement through quantum to classical communication, which are
systematic and faithful abstractions of physical reality. Similarly, quantum to quan-
tum communication actually models the sending of qubits (not of qubit states) and
guarantees that the no-cloning law is enforced.

Both CQP and QPAlg have formally defined operational semantics, in the Plot-
kin’s inference rules style, which include a treatment of probabilistic transitions due
to the measurement postulate of quantum mechanics. The next section is devoted to a
summary of the main quantum features of QPAlg.

 From Quantum Physics to Programming Languages 9

4 Quantum Aspects of QPAlg, a Quantum Process Algebra

Since quantum computations operate in the unknowable quantum world, there is an
intrinsic necessity of cooperation and communication controlled by the classical
world, without which these computations would be purposeless. As a consequence,
full formal and executable descriptions of algorithms and protocols making use of
quantum resources must take into account both quantum and classical computing
components and assemble them so that they communicate and cooperate. Moreover,
to model concurrent and distributed quantum computations, as well as quantum com-
munication protocols, quantum to quantum communications which move qubits
physically from one place to another must also be taken into account. Inspired by
classical process algebras [20], which provide a framework for modelling cooperating
computations, a process algebraic notation is defined, named QPAlg for Quantum
Process Algebra, which provides a homogeneous style to formal descriptions of con-
current and distributed computations comprising both quantum and classical parts.

"Quantumizing" a CCS-like process algebra means introducing quantum variables,
operations on quantum variables (unitary operators and measurement observables), as
well as new forms of communications in addition to the classical to classical commu-
nication of CCS, while making sure in the semantics that these quantum objects, op-
erations and communications behave according to the postulates of quantum mechan-
ics. The syntax of process terms in QPAlg is straightforward:

P ::= nil a.P P || Q P;Q {c → P}[] {v : t}. P [] end id

a ::= U[{v}] M[{v}] g ? v g!e g!M[{v}]

where P and Q are process terms, a an action, c a condition (on classical variables
only), v a variable name, t a type (either a classical type, e.g. Nat, or a quantum type,
e.g. Qubit), id is a declared process name, U is a unitary operator, M a measurement
observable (both U and M are internal actions, i.e. instances of the traditional silent τ
of process algebras, and they may be applied to quantum variables only), g is a com-
munication gate used for input (?) or for output (!) and e is either an expression using
classical variables only, or a quantum variable. The notation {x} stands for one or
more instances of x separated by commas. The idle process is nil and the successfully
terminated process is end (necessary for the semantics of sequential composition).
Variables are typed and are declared local to the scope of a process term.

A detailed presentation of the operational semantics of QPAlg, given in Plotkin’s
SOS style, can be found in [17]. The rest of this section is devoted to a survey of
some of the interesting features, from a quantum point of view, of that semantics.

4.1 Entanglement and the Management of Variables

At declaration time, variables names are appended to a current context and remain
there until exit of their scope of definition. This implies that the operational semantics
take care not only of process terms, like in classical process algebras, but also of con-
texts, i.e. live variables names with their current bindings to (classical) values or to
(quantum) states. The SOS rules thus deal with process states P/C where P is a proc-

10 P. Jorrand and M. Lalire

ess term and C a context of the form <s, l=ρ, f>: s is a stack containing the live vari-
able names, l is the list of currently bound quantum variables with ρ their current
state, and f maps classical variable names to their current values. For the purpose of
generality and simplicity of the SOS rules, the state of quantum variables is not repre-
sented by a vector |ψ> (a “pure state”, in quantum mechanics), but by a more general
“mixed state” ρ, i.e. a distribution of probabilities over pure states. In quantum me-
chanics (see the introduction to quantum mechanics in [21]), this is done by means of
density matrices. In short, the density matrix corresponding to the pure state of a reg-
ister of n qubits is the projector (a 2n 2n matrix) onto the vector representing this
pure state, whereas the density matrix corresponding to a distribution of probabilities
over several states is the weighted sum (by the respective probabilities) of the projec-
tors onto these states.

At scope exit time, all local variable names are simply removed from the top of
stack s in the current context <s, l=ρ, f>, while the domain of f is restricted accord-
ingly to the remaining classical variables. The names of local quantum variables are
also removed from the list l and the dimension of ρ must be reduced accordingly in
order to represent the states of the remaining variables. But it may be the case that
some remaining variables have had their states entangled with the states of local vari-
ables about to be removed from the context. This implies that the state of the reman-
ing quantum variables is indeed a mixed state, i.e. a distribution of probabilities over
the states of these variables (the reason is that an hypothetical measurement of the
removed variables would indeed result, because of entanglement, into such a distribu-
tion of probabilities over the states of the remaining variables). The reduction of the
dimension of ρ together with the appropriate update of the probabilities is achieved in
linear algebra by the “trace out” operation on matrices, and is denoted by Trr(ρ),
where r denotes the removed subsystem (for more details on the linear algebra bases
of quantum mechanics, see [21]). The corresponding rule in the semantics is the fol-
lowing, where δ is the event produced upon successful termination of a process:

P /C δ⎯ → ⎯ end / < r.s, l = ρ, f >
P[] /C δ⎯ → ⎯ nil / < s, l \ r = Trr∩l ρ(), f \ r >

4.2 Unitary Operations

According to the postulates of quantum mechanics, quantum states can obey two
forms of evolutions: deterministic unitary evolution, and probabilistic measurement.
A unitary evolution is determined by a unitary operator: if the state is represented by a
density matrix ρ and the operator by a unitary matrix U, the state after applying this
operator is UρU*, where U* is the adjoint of U (the adjoint U* of U is the conjugate
of the transpose of U: when U is unitary, U*=U-1, i.e. unitary matrices are always
invertible). In QPAlg, applying U to a collection of disctinct quantum variables
x1, x2, …, xn, is denoted by U[x1, x2, …, xn]. This is an internal action τ, and the corre-
sponding rule in the semantics is:

U x1 ,..., xn[].P / < s, l = ρ, f > τ⎯ → ⎯ P / < s, l = ρ' , f >

×

 From Quantum Physics to Programming Languages 11

where ρ’=TU(ρ). The operator TU describes the evolution of ρ due to the application
of U to the quantum variables x1, x2, …, xn. In general, TA it is defined as follows, with
A any 2n×2n matrix:

TA : ρ Π* . A ⊗ I ⊗ k().Π.ρ.Π* . A* ⊗ I ⊗k().Π
where

� Π is the permutation matrix which places the xi’s at the head of l
� k = (number of variable names in l) – n
� I⊗k = the k-fold tensor product of I, the 2×2 identity matrix

Since the unitary operation U may be applied to qubits which are anywhere within
the list l, a permutation must be applied first, which moves the xi’s at the head of l in
the order specified by x1, x2, …, xn. Then U can be applied to the first n elements and I
to the remainder. Finally, the inverse of Π is applied, so that the elements in l and in ρ
are placed back in the same order.

4.3 Measurement and Probabilistic Processes

A quantum measurement is determined by an observable, which is usually repre-
sented by a Hermitian matrix M, i.e. such that M=M*. This requires some explanation.
As briefly presented in section 1, quantum measurement performs a probabilistic
projection of the quantum state onto one of the vectors of an orthonormal basis (in
order to regain a valid quantum state, this projection is followed by renormalization).
This can be done with respect to the standard basis {|i>}i=1..n, but it can also be done
with respect to any other orthonormal basis. This is why quantum measurement, in
general, can be characterized by a Hermitian matrix: if M is Hermitian, its eigenvec-
tors constitute indeed an orthonormal basis. A measurement specified by an observ-
able M thus results in a probabilistic projection onto one of the eigenspaces of M
(followed by renormalization). By convention, the classical value sent back to the
classical world is the eigenvalue of M associated with the chosen eigenspace.

A measurement M can be performed either for the sole purpose of modifying the
quantum state, or for getting a classical value out of the current quantum state, while of
course also modifying that state. In the first case, the outcoming classical value is sim-
ply discarded: this is denoted by M[x1, x2, …, xn] in the syntax of QPAlg, where
x1, x2, …, xn are n distinct quantum variables. In the second case, this is denoted by g!
M[x1, x2, …, xn], where g is a gate through which the classical outcome will be sent out
to the classical world, i.e. to a process able to receive such a value and to perform some
classical processing with it. The semantics of each case is reflected by a specific rule.

In the case of measurement without communication of a classical result, only the
quantum state is modified probabilistically by the measurement, so the distribution of
probabilities over the possibly resulting states can be reflected in a new density ma-
trix. The semantic rule is:

M x1 ,..., xn[].P / < s, l = ρ, f > τ⎯ → ⎯ P / < s, l = ρ' , f >

with ρ ' = T Pi ρ ()
i
 , where Pi is the projector onto the ith eigenspace of M.

12 P. Jorrand and M. Lalire

In the case of measurement with communication of a classical result, several such
results are possible, each with some probability. This requires the introduction of a
probabilistic composition operator on contexts, denoted ⊕p: the state P/C1 ⊕p P/C2 is
P/C1 with probability p, or P/C2 with probability 1 - p. Thus, in general, a context is
either of the form <s, l=ρ, f>, or of the form ⊕pi<si, li=ρi, fi>, where the pi’s are prob-
abilities adding to 1.

Earlier studies of probabilistic and nondeterministic processes [6] have shown that,
if a process can perform a probabilistic choice and a nondeterministic choice, the
probabilistic choice must always be made first. In QPAlg, nondeterminism appears
with the semantics of parallel composition and with conditional choice. So as to guar-
antee that the probabilistic choice is always made first, a notion of probabilistic sta-
bilty is introduced: a context C is probabilistically stable if it is of the form
<s, l=ρ, f>. Whenever the context of a process state is not stable, a probabilistic transi-
tion must be performed first:

P /⊕ pi
Ci ⎯ → ⎯ pi P /Ci

 with p j
j

= 1

where S1 ⎯ → ⎯ p S2 means that state S1 becomes S2 with probability p.
Finally, when the value coming out of the measurement is sent out, the rule is:

g!M x1,..., xn[].P /C τ⎯ → ⎯ g!y.end[]; P /⊕ pi
Ci

where M is an observable with spectral decomposition M = λ ii
Pi , and:

• C =< s, l = ρ, f > , which implies that C is probabilistically stable

• y is a fresh variable name, implicitly declared as y:Nat

• Ci =< y,Nat(){ }.s, l = ρi , f ∪ y λ i{ }>

•
 p i = Tr T Pi

ρ()()
•

ρ i = 1
p i

T Pi ρ()

In both cases (i.e. with or without sending out a classical value), the computation
of the new quantum state stems directly from the measurement postulate of quantum
mechanics.

4.4 Communication and Physical Transportation of Qubits

Communication can take place from process P to process Q if these processes are
together in a parallel composition P||Q, if P is ready to perform an output action (!)
and if Q is ready to perform an input action (?), both through the same gate name g.
Classical to classical communication is no problem (i.e. g!e by P where e is a classical
expression, and g?v by Q where v is a classical variable). In the three other cases, the
quantum world is involved.

 From Quantum Physics to Programming Languages 13

Classical to Quantum. Actions performed by processes P and Q: g!e by P where e is
a classical expression, and g?v by Q where v is a quantum variable. This is initial state
preparation of a quantum variable. If v is a qubit, and assuming a preparation in the
standard basis {|0>,|1>}, e may only evaluate to 0 or to 1, preparing v accordingly in
state |0> or |1>. Once prepared, a quantum variable enters the binding list l=ρ of
quantum variables in the context.

Quantum to Classical. Actions performed by processes P and Q: g!M[{v}] by P
where M is an observable and {v} is a list of quantum variables, and g?w by Q where
w is a classical variable. This is measurement of the quantum state of the variables
listed in {v}, with the classical outcome received by w. This situation has been de-
scribed in the previous paragraph.

Quantum to Quantum. Actions performed by processes P and Q: g!v by P and g?w
by Q, where v and w are quantum variables. In this case, v must have been bound
previously, i.e. there is a quantum state attached to it in the context by l=ρ, and w
must not have been bound, i.e. w is a mere name with no quantum contents attached
to it yet. As viewed by P, the semantics removes v (its name from s and its binding
from l=ρ) while, as viewed by Q, w is bound in l=ρ to the quantum state previously
accessed through v by P. This semantics actually mimics the physical transfer of
qubits from one place to another place (from P to Q), while making sure that no quan-
tum state is ever cloned.

This view of the relations among the classaical and quantum parts of a computa-
tion, where communications among processes play a key unifying role, is a distinctive
feature of QPAlg. This also shows that the communicating process algebra approach
is indeed adequate for the description of quantum algorithms and protocols, together
with their unavoidable classical control environment. Examples of various quantum
algorithms, teleportation and secure quantum communication protocols described
with QPAlg can be found in [17].

5 Quantum Semantics: Open Issues

All the language designs for quantum programming are still at the stage of promising
work in progress. The core issues clearly remain at the semantics level, because of the
many non-classical properties of the quantum world. No-cloning, entanglement, prob-
abilistic measurement, mixed states (a more abstract view of quantum states, for rep-
resenting probabilistic distributions over pure states), together with the necessary
presence of both worlds, classical and quantum, within a same program, call for fur-
ther in depth studies toward new bases for adequate semantic frameworks.

Operational semantics (i.e. a formal description of how a quantum + classical pro-
gram operates) is the easiest part, although probabilities, no-cloning and entanglement
already require a definitely quantumized treatment. The above brief presentation og
QPAlg has shown, for example, that leaving the scope of a quantum variable is not as
easy as leaving the scope of a classical variable, since the state of the former may be
entangled with the state of more global variables. Both CQP [11] and QPAlg [17]
have their semantics defined in the operational style. But, even in this rather naïve

14 P. Jorrand and M. Lalire

approach to semantics, much remains to be done like, for example, the definition of
an equivalence among processes. This would not only provide a more satisfying and
abstract semantics, but also allow a rigorous and formal approach to a number chal-
lenging questions in quantum computing. For example, it is known that quantum
computations described by unitary transformations can be simulated by using meas-
urements only [14,18,23], and that quantum computation by measurements is a way to
get around decoherence, which is the major obstacle on the way to the physical im-
plementation of a quantum computer. Then, it would be very useful to make sure,
upon well founded formal bases, that a computation specified by means of unitary
transformations is indeed correctly implemented by means of measurements.

Axiomatic semantics (what does a program do? How to reason about it? How to
analyze its properties, its behaviour?) is a very tricky part. Defining quantum versions
of Hoare’s logic or Dijkstra’s weakest precondition would indeed provide logical
means for reasoning on quantum + classical programs and protocols and constitute
formal bases for developing and analyzing such systems. Some attempts toward a
dynamic quantum logic, based on the logical study of quantum mechanics initiated in
the thirties by Birkhoff and von Neumann [4] have already been made, for example
by Brunet and Jorrand [5], but such approaches rely upon the use of orthomodular
logic, which is extremely uneasy to manipulate. Of much relevance, and in the same
direction, is the recent work of D’Hondt and Panangaden on quantum weakest
preconditions [7], which establishes a semantic universe where programs written in
QPL [26] can be interpreted in a very elegant manner.

Another long-term goal is the definition of a compositional denotational semantics
which would accommodate quantum as well as classical data and operations, and
provide an answer to the question: what is a quantum + classical program, which
mathematical object does it stand for? Working toward this objective has been rather
successfully attempted by P. Selinger with QPL. Recent results on categorical seman-
tics for quantum information processing by Abramsky and Coecke [1,2], and other
different approaches like the the work of van Tonder [29] and the interesting manu-
script of J. Y. Girard [12] on the relations between quantum computing and linear
logic, are also worth considering for further research in those directions.

In fact, there are still a great number of wide open issues in the domain of lan-
guages for quantum programming and of their semantics. Two seemingly elementary
examples show that there still is a lot to accomplish. First example: classical variables
take classical values, quantum variables take quantum states. What would a type sys-
tem look like for languages allowing both, and which quantum specific properties can
be taken care of by such a type system? Second example: it would be very useful to
know in advance whether the states of quantum variables will or will not be entangled
during execution. Abstract interpretation would be the natural approach to answer
such a question, but is there an adequate abstraction of quantum states for represent-
ing entanglement structures? At the current stage of research in quantum information
processing and communication, these and many other similarly stimulating questions
remain to be solved.

For a compilation of recent results and an overview of significant ongoing research
on all these topics, the interested reader is referred to [25].

 From Quantum Physics to Programming Languages 15

References

1. Abramsky, S., Coecke, B.: Physical traces: Quantum vs. Classical Information Processing.
In: Blute, R., Selinger, P. (eds.): Category Therory and Computer Science (CTCS’02).
Electronic Notes in Theoretical Computer Science 69, Elsevier (2003)

2. Abramsky, S., Coecke, B.: A Categorical Semantics of Quantum Protocols. In: Ganzinger,
H. (ed.): Logic in Computer Science (LICS 2004). IEEE Proceedings 415-425 (2004)

3. Bennet, C., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters: Teleporting an Un-
known Quantum State via Dual Classical and EPR Channels. Physical Review Letters,
70:1895-1899 (1993)

4. Birkhoff, G., von Neumann, J.: Annals of Mathematics 37, 823 (1936)
5. Brunet, O., Jorrand, P.: Dynamic Logic for Quantum Programs. International Journal of

Quantum Information (IJQI). World Scientific, 2(1):45-54 (2004)
6. Carloza, D., Cuartero, F., Valero, V., Pelayo, F.L., Pardo, J.: Algebraic Theory of Prob-

abilistic and Nondeterministic Processes. The Journal of Logic and Algebraic Program-
ming 55(1-2):57-103 (2003)

7. D’Hondt, E., Panangaden, P.:Quantum Weakest Preconditions. In [25]
8. Deutsch, D.: Quantum Theory, the Church-Turing Principle and the Universal Quantum

Computer. In: Proceedings Royal Society London A, 400:97 (1985)
9. Durr, C., Heiligman, M., Hoyer, P., Mhalla, M.: Quantum Query Complexity of some

Graph Problems. In: Diaz, J. (ed): International Colloquium on Automata, Languages and
Programming (ICALP’04), Lecture Notes in Computer Science, Vol. 3142, Springer-
Verlag, 481-493 (2004)

10. Feynmann, R.P.: Simulating Physics with Computers. International Journal of Theoretical
Physics 21:467 (1982)

11. Gay, S.J., Nagarajan, R.: Communicating Quantum Processes. In [25]
12. Girard, J.Y.: Between Logic and Quantic: a Tract. Unpublished manuscript (2004)
13. Grover, L.K.: A Fast Quantum Mechanical Algorithm for Database Search. In: Proceed-

ings 28th ACM Symposium on Theory of Computing (STOC’96) 212-219 (1996)
14. Jorrand, P., Perdrix, S.: Unifying Quantum Computation with Projective Measurements

only and One-Way Quantum Computation. Los Alamos e-print arXiv,
http://arxiv.org/abs/quant-ph/0404125 (2004)

15. Kempe, J.: Quantum Random Walks - An Introductory Overview. Los Alamos e-print
arXiv, http://arxiv.org/abs/quant-ph/0303081 (2003)

16. Kitaev, A.Y., Shen, A.H., Vyalyi, M.N.: Classical and Quantum Computation. American
Mathematical Society, Graduate Studies in Mathematics, 47 (2002)

17. Lalire, M., Jorrand, P.: A Process Algebraic Approach to Concurrent and Distributed
Quantum Computation: Operational Semantics. In [25]

18. Leung, D.W.: Quantum Computation by Measurements. Los Alamos e-print arXiv,
http://arxiv.org/abs/quant-ph/0310189 (2003)

19. Lomont, C.: The Hidden Subgroup Problem – Review and Open Problems. Los Alamos e-
print arXiv, http://arxiv.org/abs/quant-ph/0411037 (2004)

20. Milner, R.: Communication and Concurrency. Prentice-Hall (1999)
21. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cam-

bridge University Press (2000)
22. Ömer, B.: Quantum Programming in QCL. Master’s Thesis, Institute of Information Sys-

tems, Technical University of Vienna (2000)

16 P. Jorrand and M. Lalire

23. Raussendorf, R., Browne, D.E., Briegel, H.J.: Measurement-based Quantum Computation
with Cluster States. Los Alamos e-print arXiv, http://arxiv.org/abs/quant-ph/0301052
(2003)

24. Rieffel, E.G., Polak, W.: An Introduction to Quantum Computing for Non-Physicists. Los
Alamos e-print arXiv, http://arxiv.org/abs/quant-ph/9809016 (1998)

25. Selinger, P. (ed.): Proceedings of 2nd International Workshop on Quantum Program-
ming Languages. http://quasar.mathstat.uottawa.ca/~selinger/qpl2004/proceedings.html
(2004)

26. Selinger, P.: Towards a Quantum Programming Language. Mathematical Structures in
Computer Science. Cambridge University Press, 14(4):525-586 (2004)

27. Shor, P.W.: Algorithms for Quantum Computation: Discrete Logarithms and Factoring. In:
Proceedings 35th Annual Symposium on Foundations of Computer Science, IEEE Proceed-
ings (1994)

28. Van Tonder, A.: A Lambda Calculus for Quantum Computation. Los Alamos e-print
arXiv, http://arxiv.org/abs/quant-ph/0307150 (2003)

29. Van Tonder, A.: Quantum Computation, Categorical Semantics and Linear Logic. Los
Alamos e-print arXiv, http://arxiv.org/abs/quant-ph/0312174 (2003)

30. Zuliani, P.: Quantum Programming. PhD Thesis, St. Cross College, Oxford University
(2001)

Chemical Computing

Chemical Computing

Peter Dittrich

Bio Systems Analysis Group,
Jena Centre for Bioinformatics (JCB) and

Department of Mathematics and Computer Science,
Friedrich-Schiller-University Jena,

D-07743 Jena, Germany
http://www.minet.uni-jena.de/csb/

Abstract. All information processing systems found in living organ-
isms are based on chemical processes. Harnessing the power of chemistry
for computing might lead to a new unifying paradigm coping with the
rapidly increasing complexity and autonomy of computational systems.
Chemical computing refers to computing with real molecules as well as
to programming electronic devices using principles taken from chem-
istry. The paper focuses on the latter, called artificial chemical comput-
ing, and discusses several aspects of how the metaphor of chemistry can
be employed to build technical information processing systems. In these
systems, computation emerges out of an interplay of many decentral-
ized relatively simple components analogized to molecules. Chemical pro-
gramming encompassed then the definition of molecules, reaction rules,
and the topology and dynamics of the reaction space. Due to the self-
organizing nature of chemical dynamics, new programming methods are
required. Potential approaches for chemical programming are discussed
and a road map for developing chemical computing into a unifying and
well grounded approach is sketched.

1 Introduction

All known life forms process information on a molecular level. Examples are:
signal processing in bacteria (e.g., chemotaxis), gene expression and morpho-
genesis, defense coordination and adaptation in the immune system, and infor-
mation broadcasting by the endocrine system. Chemical processes play also an
important role, when an ant colony seeks a suitable route to a food source. This
kind of chemical information processing is known to be robust, self-organizing,
adaptive, decentralized, asynchronous, fault-tolerant, and evolvable. Computa-
tion emerges out of an orchestrated interplay of many decentralized relatively
simple components (molecules).

How can chemistry be employed for computing? First, it should be noted
that chemistry is used for the fabrication of electronic devices. However, here
we are interested in approaches where chemistry stimulates the development of
new computational paradigms. These approaches can be distinguished accord-
ing to the following two dimensions: First, real chemical computing where real

J.-P. Banâtre et al. (Eds.): UPP 2004, LNCS 3566, pp. 19–32, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

20 P. Dittrich

molecules and real chemical processes are employed to compute. Second, artifi-
cial chemical computing where the chemical metaphor is utilized to program or
to build computational systems. The former aims at harnessing new substrates
for computation. The latter takes the chemical metaphor as a design principle
for new software or hardware architectures built on conventional silicon devices.
So, artificial chemical computing includes constructing chemical-like formal sys-
tem in order to model and master concurrent processes, e.g., Gamma [1], CHAM
[2]; using the chemical metaphor as a new way to program conventional com-
puters including distributed systems, e.g., smart dust; and taking the chemical
metaphor as an inspiration for new architectures, e.g., reaction-diffusion proces-
sors [3].

1.1 The Chemical Metaphor

Chemistry is a science of experiment and observation, which provides a partic-
ular view on our world. Like physics, chemistry deals with matter and energy,
but focuses on substances composed of molecules and how the composition of
these substances is changed by “chemical” reactions. Compared with chemistry,
physics is more concerned with energy, forces, and motion, ie. the physical change
of a system.

Chemistry looks at the macro and micro level: On the macro level emergent
properties and the emergent behavior of substances are studied, e.g., color or
smell. On the microscopic level, molecular structures and reaction mechanisms
are postulated, which are taken to explain macroscopic observations. Ideally,
microscopic models allow to formally derive macroscopic observations. However,
this is possible only in limited cases, e.g., no algorithm that computes the melting
temperature of a molecule given its structure is known. In general, chemistry
explains a chemical observation using a mixture of microscopic and macroscopic
explanations.

The difficulty to predict the macroscopic behavior from microscopic details
has its root in the nature of emergence. The time-evolution of a chemical sys-
tem is a highly parallel self-organization process where many relatively simple
components interact in a nonlinear fashion. And it is a central aim of chemical
computing to harness the power inherent in these self-organization processes.

From a computer science perspective it would be quite appealing to achieve
computation as an emergent process, where only microscopic rules have to be
specified and information processing appears as global behavior. From knowing
the biological archetype, we can expect a series of interesting properties, such
as, fine grained parallelism without central control, fault tolerance, and evolv-
ability. There is a wide application range, especially where the characteristics
of chemical processes fit naturally to the desired task, as for example in highly
distributed and dynamic “organic” processor networks or within one comput-
ing node to implement particular systems like artificial emotional [4], endocrine
[5], or immune systems more naturally. It should be mentioned that chemical
processes themselves can be seen as a natural media for information processing
either in vitro or in vivo [6, 7, 8]; for a recent discussion of molecular computing

Chemical Computing 21

see ref. [9]. Here we concentrate on how technical electronic systems can utilize
the chemical metaphor.

1.2 The Organization of Chemical Explanations

When we study chemistry [10], first we learn how substances look like. We de-
scribe macroscopic properties of the substances, such as color, and how sub-
stances are composed from elementary objects, the atoms. Second, we learn how
substances interact, in particular, we describe the outcome that results from
their union. Reactive interactions among molecules require that these molecules
come into contact, which can be the result of a collision. Third, we learn the
detailed dynamical process of a chemical transformation of substances. All these
steps of description can be done on a microscopic and macroscopic level. The
steps are also not independent: The properties of substances are often described
in terms of how a substance reacts with other substances, e.g., when we say “flu-
orine is not healthy in large quantities” we describe the property of fluorine by
how it interacts with molecules in an organism. In fact, in times when nothing
was known about the molecule’s structure substances where classified according
to their macroscopic appearance and reactive behavior.

Today, classification of substance usually refers to the structure of the mole-
cules, e.g., alcohols are characterized by a functional OH-group. Sometimes only
the composition of atoms is taken for classification, e.g., hydrocarbons. Inter-
estingly and importantly for the success of the discipline Chemistry is the fact
that structural classification coincide with classifications based on behavior and
appearance. This phenomenon is not sufficiently explained by the fact that the
function (ie. physical and reactive properties) of a molecule depends on its struc-
ture, which is a form of causality. Moreover, similarity in structure tends to co-
incide with similarity in function, which is a form of strong causality between
structure and function.

Another important observation should be noted: When we combine some
substance in a reaction vessel and wait while these substances react; as a result
only a small subset of molecular species will appear, which is usually much
smaller than the set of molecular species that could be build from the atoms
present in the reaction vessel. So there is also a certain (strong) causality in
the dynamics and a dependency on initial conditions. Not everything that is
possible does appear, though there is also nondeterminism. So, we can say that
a chemical system evolves over time in a contingent way that depends on its
history.

1.3 Information Processing and Computing in Natural System

When we intend to take inspiration from chemistry, we have first to investigate
where chemical information processing appears in natural systems. Obviously,
living systems are prime candidates, since information processing is identified as
a fundamental property of life [11].

Information processing in living systems can be observed on at least two
different levels: the chemical and the neural level. Where the neural level is re-

22 P. Dittrich

sponsible for cognitive tasks and fast coherent control, such as vision, planing,
and muscle control; chemical information processing is used for regulating and
controlling fundamental processes like growth, ontogeny, gene expression, and
immune system response. Neurons themselves are based on (electro-)chemical
processes, and more often than not, chemical processes are combined with neu-
ronal processes resulting in a large-scale computational result.

Real chemical computing utilizes a series of “chemical principles”, which are
also relevant for artificial chemical computing, such as: pattern recognition[12],
change of conformation[13], chemical kinetics [14], formation of (spatial) struc-
tures, energy minimization, and optical activity [15]. Pattern recognition is a
central mechanism for explaining reactions among complex biomolecules (e.g.,
transcription factors binding to DNA). It is also used in real as well as artifi-
cial chemical computing approaches, such as DNA computing [12] and rewriting
systems [1, 16, 17], respectively.

1.4 Application of the Chemical Metaphor in Computing

There are already a series of approaches in computer science that have been in-
spired by chemistry: An early example are the artificial molecular machines sug-
gested by Laing [18]. These machines consists of molecules (strings of symbols).
Each molecule can appear in two forms: data or machine. During a reaction, two
molecules come into contact at a particular position. One of the molecules is
considered as the active machine, which is able to manipulate the passive data
molecule. The primary motivation for developing these molecular machines was
to construct artificial organisms in order to develop a general theory for living
systems (cf. [19] for a comparing discussion of more recent approaches in that
direction).

A fundamentally different motivation has been the starting point for the de-
velopment of Gamma by Banâtre and Le Métayer, namely to introduce a new
programming formalism that allows to automatize reasoning about programs,
such as automatic semantic analysis [20, 1]. Gamma is defined by rewriting op-
erations on multisets, which mimics chemical reactions in a well-stirred reaction
vessel. Gamma inspired a series of other chemical rewriting systems: Berry and
Boudol [2] introduced the chemical abstract machine (CHAM) as a tool to model
concurrent processes. Pǎun’s P-Systems [16] stress the importance of membranes.
Suzuki and Tanaka [21] introduced a rewriting system on multisets in order to
study chemical systems, e.g., to investigate the properties of chemical cycles [22],
and to model chemical-like systems including economic processes.

Within biological organisms, the endocrine system is a control system, which
transmits information by chemical messengers called hormones via a broadcast
strategy. The humanoid robot torso COG [5] is an example where the endocrine
system has inspired engineering. Artificial hormones are used to achieve a co-
herent behavior among COG’s large number of independent processing elements
[5]. In general, chemical-like systems can control the behavior and particularly
emotions in artificial agents, e.g., the computer game Creatures [23] and the
psychological model PSI by Dörner [4]. Further application areas of chemical

Chemical Computing 23

computing are: the control of morpho-genetic systems, i.e. the control of mor-
phogenesis by artificial gene expression; in particular, the control of growth of an
artificial neural networks (cf. Astor and Adami [24]); and the control of amor-
phous computers [25]. Finally, Husbands et al. [26] introduced diffusing chemical
substances in artificial neural networks (cf. GasNet).

2 Facets of Chemical Computing

As exemplified by the previous section, the world of chemical computing enjoys
already a wide spectrum of approaches. This section discusses a set of important
aspects, which allow to characterize chemical computing in more detail.

2.1 Microscopic vs. Macroscopic Computing

Chemical information processing can be characterized according to the level on
which it appears: In approaches like chemical boolean circuits [27], the chemical
neuron [14], or the hypercyclic memory (Sec. 4), information is represented by
the concentration of substances and computation is carried out by an increase
and decrease of concentration levels, which can be regarded as a form of macro-
scopic chemical computing. Alternatively, in microscopic chemical computing,
the intermediately stored information and computational results are represented
by single molecules. Examples are DNA computing [12] and the prime number
chemistry (Sec. 4). The dynamics is usually stochastic, in contrast to macro-
scopic computation, which can be more readily described with ordinary differ-
ential equations. Nevertheless, microscopic computing also can deliver results
virtually deterministically, as shown by the prime number chemistry example in
Sec. 4.

2.2 Deterministic vs. Stochastic Processes

On the molecular level, chemical processes are stochastic in nature. However, in
technical applications deterministic behavior is often required. There are various
ways how this can be achieved:

(1) The problem can be stated such that the order of the sequence of collisions
does not play a role1. An example is the prime number chemistry where we start
with a population that contains all numbers between 2 and n. The outcome will
be a reactor containing all and only prime numbers less or equal n, independently
of the sequence of updates.

(2) Increasing the reactor size would reduce the effect of randomness. If the
reactor size and together with it the number of molecules of each molecular type
tends to infinity, the molecules’ concentrations tend to a deterministic dynam-
ics. In this case, the dynamics of the concentrations can be represented by a
differential equation and simulated by numerical integration of this equation.

1 For a theory that considers the effect of the order of update see “sequential dynamical
systems” [28, 29].

24 P. Dittrich

(3) A well-defined deterministic update scheme can be used. For example we
can check one reaction rule after another in a fixed predefined sequence, e.g.,
early ARMS [21] and MGS [17]2 Doing this, we gain determinism and might
gain efficiency, but we loose aspects of the chemical metaphor and may introduce
artifacts by the update scheme, e.g., when the rule order plays a significant role.
This might be reasonable from a computing point of view, but is unnatural from
a chemical point of view.

2.3 Closed vs. Open Systems

In thermodynamics, a system that can exchange mass and energy with its envi-
ronment is called open.When mass is not exchanged the system is called closed
If the system cannot exchange anything, it is called isolated. In chemical com-
puting we also encounter closed and open systems, whose characteristics are
quite different. In a closed system, molecules do not leave the reaction vessel.
There is no dilution flow. Reaction rules must be balanced, which means that
the mass on the left hand side must be equal to the mass on the right hand side.
So, a molecule can only disappear by transforming it via a reaction into other
molecules. In an isolated system, stable dissipative structures can not appear;
they can only appear as transient phenomena locally. The prime number chem-
istry is an example for a closed and isolated system. There is no dilution flow
and molecules are transformed by the mass-conserving rule: a + b → a + b/a for
b being a multiple of a.

The hypercyclic memory is an example for an open system. Molecules con-
stantly vanish and are regenerated from an implicitly assumed substrate, which
is available at a constant concentration from the environment. Before the query,
the system is in a quasi-stationary state, which is a dissipative structure that
requires a constant regeneration of all of its components.

The hypercyclic memory is also an example where there is a so called non-
selective dilution flow, where the rate of decay is proportional to the concen-
tration of a molecule, or more precisely, the concentration of molecules in the
dilution flow is the same as in the reaction vessel. Systems with selective dilu-
tion flows are not discussed here, but it should be noted that by introducing a
selective dilution flow, we can move gradually from an open to a closed system
and can capture aspects from both.

Does it make sense to consider open systems with a non-selective dilution
flow, where we have to regenerate constantly molecules we wish to have in the
reactor? From a formal point of view, both might be equivalent: In an open
system, a stable solution is a self-regenerating set of molecules; while in a closed
system, a stable solution is just a set of molecules, which do not react further
to form other molecules (nevertheless there might be a reversible dynamics). So
from this point of view, taking a closed systems approach appears more reason-
able, because the solution is more stable. We do not have to fear that informa-

2 Note that both mentioned systems (ARMS, MGS) allow also a randomized “natural”
update scheme.

Chemical Computing 25

tion gets lost by the dilution flow and we do not have to care for regenerating
molecules.

However, when using an open system approach we arrive at more robust and
flexible organic systems. Open reaction systems are especially suitable, where
the substrate is unreliable and highly dynamic. Consider for example a compu-
tational substrate that is under constant change, where nodes are added and
removed at a relatively high rate, e.g., the network of activated cellular phones.
In such a system, there is no place that exists for long. When a cellular phone
is switched off, the molecules residing in that places vanish, too, which causes
from a chemical point of view a general, non-selective dilution flow. Thus sta-
ble structures must consists of molecules that constantly reproduce themselves
as a whole; according to the theory of chemical organization [30], they must
encompass a self-maintaining set of molecules.

2.4 Computing with Invisible Networks

What is the difference between chemical computing and an artificial neural net-
work (ANN)? In both approaches, a network is specified by a set of components
(molecules/neurons), a set of interactions (reactions/connections), and a descrip-
tion of the behavior (dynamics/firing rule). In contrast to chemical computing,
an ANN is usually accompanied by a learning procedure. However, learning can
be added to chemical computing by means of evolutionary computation [31, 32]
or by transferring learning techniques from computational intelligence, e.g., Heb-
bian learning. In particular, this should be straight forward for explicitly defined
chemical systems operating macroscopically, which are quite similar to dynami-
cal neural networks (see Sec. 4 or ref. [14]).

But there are some remarkable differences: When we consider a reaction
system with implicitly defined molecules and rules like the prime number
chemistry in Sec. 4, we can easily obtain giant networks that are “invisible”.
When we look inside a reaction vessel, no component that represents a con-
nection can be seen. Even the nodes of the chemical network cannot be easily
identified because they are not spatially differentiated from each other, since
a chemical node may be represented by a collection of molecules that are in-
stances of one molecular species. The prime number chemistry is an example
where a couple of simple rules imply a giant network, much larger than a
human brain, e.g., for n = 1030.

Another important difference to ANNs should be mentioned: When execut-
ing a chemical computation, only a subnetwork is active at a certain point in
time, which is illustrated by Fig. 1. Since the size of a reaction vessel is lim-
ited, it can only contain a fraction of molecules from the set of all possible
molecules. These present molecules together with all reactions that can occur
among them can be regarded as the active reaction network. Due to internal
or external dynamics, the set of molecular species in the reaction vessel can
change, and thus the active network evolves over time, too (Fig. 1). This phe-
nomenon is captured theoretically by a movement through the set of chemical
organizations [33, 30].

26 P. Dittrich

d
e

f

g

b

a

e

g

a

a
a

b

b

c
c

c
f d

f

f

cc

c

b

ca c

d

f

time

Fig. 1. Illustration of the invisible network, whose active part changes over time. A
bold character denotes a molecular species that is present in the reactor. These species
imply the currently active network highlighted by solid arrows. Note that a character
in the reaction network denotes a molecular species, whereas the same character in the
sketched reaction vessel denotes a concrete molecule (or instance) of that species

3 Chemical Programming

Programming a chemical computer means to define a chemical system, which is
often also referred to as a reaction system or an artificial chemistry [34]. There are
two fundamentally different approaches to chemical programming: (1) automatic
programming by optimization, e.g. by means of evolutionary computation [31,
32], and (2) engineering by a human programmer, e.g. [1, 25]. Both approaches
require specifying the following three aspects of the target chemistry:

(1) Molecules: In the first step, we have to specify how the molecules should
look like. Should they be symbols or should they posses a structure, e.g., a
sequence of characters [35], a hierarchical expression [36], or a graph like struc-
ture [37]. If molecules posses a structure, the definition of the reaction rules and
the dynamics can refer to this structure, which allows to define large (even infi-
nite) reaction systems, as exemplified by the prime number chemistry in Sec. 4. If
the molecules are symbols, we have to specify the set of possible molecules explic-
itly by enumeration of all possible molecules, e.g., M = {a, b, c, d}. If molecules
posses a structure, we can define the set of all possible molecules implicitly, e.g.,
M = {1, 2, . . . , 10000}.

(2) Reactions: In the next step, we have to specify what happens when
molecules collide. Real molecules can collide elastically or they can collide
causing a reaction, which transforms the molecules. In a simple abstraction, a
reaction rule is just a pair of two multisets of molecules, which specifies what

Chemical Computing 27

kind of molecules can be transformed and replaced by what kind of molecules,
e.g., a well known reaction rules is ({H2,H2, O2}, {H2O,H2O}), which is writ-
ten in chemical notation equivalently as 2H2 + O2 → 2H2O. In general, reac-
tion rules can become more complicated and can carry further information,
such as parameters specifying kinetic constants or environmental conditions
under which this reaction can occur. Analogously to molecules, reaction rules
can be specified explicitly like 2H2+O2 → 2H2O, or implicitly, as in the prime
number chemistry.

(3) Dynamics: Finally, we have to specify the dynamics, which includes the
geometry of reaction vessel. Do we assume a well-stirred vessel or vessel with
a spatial structure? How do molecules collide? How are the reaction rules ap-
plied, e.g., deterministically or stochastically? Well-stirred deterministic reac-
tion systems are usually simulated by integrating ordinary differential equations.
Stochastic systems can be simulated by explicit stochastic collisions of individual
molecules or by more advanced discrete event based methods like the Gillespie
algorithm [38]. Spatial structures are usually introduced by some sort of cel-
lular automata (e.g., lattice molecular automata [39]) or by compartments like
in amorphous computing [25], membranes in P-systems [16] or mobile process
calculi [40], or topology in MGS [17].

3.1 Strategies for Chemical Programming

We distinguish different strategies of chemical programming according to the
components a programmer can manipulate:

(1) Define molecules and reactions explicitly: The programmer has to spec-
ify the set of molecules as a set of symbols and the reaction rules as a set of
explicit transformation rules. An example for this approach is the hypercyclic
memory (Sec. 4), the metabolic robot [41], and evolved chemical systems like
those reported by Ziegler and Banzhaf [31].

(2) Define molecules and reactions implicitly: The programmer specifies mole-
cules and reaction rules implicitly like demonstrated by the prime number chem-
istry in Sec. 4. For defining reaction rules implicitly, the molecules can not be
just a list of symbols, rather they must posses a structure to which the definition
of the reaction rules can refer to (see Sec. 3(1)). This approach is quite general,
but because of its generality additional principle for guiding the programmer are
required.

(3) Change-molecules-only principle: Again, the reaction rules are implicitly
defined but fixed (predefined) and cannot be changed by the programmer. The
programmer or an evolutionary process has “just” to select the right molecules
and the dynamics, including the topology of the reaction space. This resembles
the way real chemical computers are programmed, e.g., selecting appropriate
DNA strands for solving a Hamiltonian path problem as in the famous example
by Adleman [12]. Although the programmer has limited choices (compared to
the previous setting), the expressive power is the same, if a universal chemistry
is used. A universal chemistry is defined as a chemistry that includes every
possible (let’s say, finite) reaction network topology. Such chemistry can, for

28 P. Dittrich

example, easily be defined based on lambda-calculus [36] or combinators [42].
However, these abstract formalisms stemming from theoretical computer science
can not be easily and intuitively handled by programmers, other approaches are
more feasible for practical application (see Banâtre, Fradet, and Radenac in this
volume).

(4) Multi-level chemical programming: As before, the programmer selects ap-
propriate molecules and dynamics. At the same time, the “physics” can be ma-
nipulated, too, but at a slower rate. For example, the calculus specifying implic-
itly the set of possible molecules and the set of possible reactions can be altered
and extended. By this, the function (meaning) of molecules can become more
transparent (syntactic sugar). On a higher level of abstraction, molecules may be
assembled to higher clusters resembling macro molecules or modules, which can
again serve as building blocks for implicit definitions of other molecules, reaction
rules, and dynamics. Therefore, a programmer operates on different levels, such
as: Level 0: manipulation of the physics, e.g., combinator rules. Level 1: selecting
(defining) the right molecules and reaction rules, and dynamics in the context
of the chosen physics, e.g., selecting appropriate combinators. Level 2: Speci-
fying higher level clusters, modules, macro-molecular complexes, e.g., based on
membrane computing concepts.

4 Conclusion and Challenges

This essay discussed several aspects of artificial chemical computing. It has
been shown that chemical-like systems possess a number of interesting prop-
erties, which appear especially feasible in domains like distributed computing,
ambient computing, or organic computing. Furthermore, a couple of applica-
tion scenarios have been described, including a first successful commercial ap-
plication [23]. Taking heed of these facts, the chemical metaphor appears as a
paradigm, which will qualitatively enrich our repertoire of programming tech-
niques.

The road map of chemical computing includes a series of challenges: (1) Effi-
ciency: How to obtain runtime and memory efficient chemical programs and their
execution on electronic hardware? (2) Scalability: How do chemical computing
paradigms scale up? (3) Programmability: How to program a chemical com-
puter? (4) Adaptability and robustness: How to achieve self-adapting, learning,
and reliable chemical computing systems? (5) Theory: How to describe chemical
computing processes theoretically? Here, chemical organization theory [30] ap-
pears as a promising approach, especially when dealing with constructive chemi-
cal systems. Other sources for a theoretical base are classical dynamical systems
theory and approaches from computer science like rewriting calculi [1, 2, 16, 40]
and temporal logic. Furthermore we may investigate fundamental question con-
cerning the power and limits of chemical computing by questions like: Can the
chemical metaphor lead to new computational systems with abilities superior to
conventional approaches, or even to systems that can not be realized by conven-
tional approaches?

Chemical Computing 29

It is evident that the future will witness further integration of concepts from
the natural sciences and computer science, which will reduce the differences be-
tween the living and the technological world. Like living systems, computing
systems in the future will consist of decentralized and highly distributed com-
ponents that interact with increasing autonomy and flexibility. For harnessing
their potential it will be crucial to obtain new, organic methods for their con-
struction and control. Chemical computing, which has been employed by nature
with great success, offers a promising paradigm.

Acknowledgment. I am grateful to F. Centler, N. Matsumaru, and K.-P. Za-
uner for helpful comments. This work was supported by the Federal Ministry of
Education and Research (BMBF) Grant 0312704A to Friedrich Schiller Univer-
sity Jena.

References

1. Banâtre, J.P., Métayer, D.L.: The GAMMA model and its discipline of program-
ming. Sci. Comput. Program. 15 (1990) 55–77

2. Berry, G., Boudol, G.: The chemical abstract machine. Theor. Comput. Sci. 96
(1992) 217–248

3. Adamatzky, A.: Universal dynamical computation in multidimensional excitable
lattices. Int. J. Theor. Phys. 37 (1998) 3069–3108

4. Dörner, D.: Bauplan einer Seele. Rowohlt, Reinbeck (1999)
5. Brooks, R.A.: Coherent behavior from many adaptive processes. In Cliff, D.,

Husbands, P., Meyer, J.A., Wilson, S., eds.: From animals to animats 3, Cambridge,
MA, MIT Press (1994) 22–29

6. Conrad, M.: Information processing in molecular systems. Currents in Modern
Biology 5 (1972) 1–14

7. Liberman, E.A.: Cell as a molecular computer (MCC). Biofizika 17 (1972) 932–43
8. Liberman, E.A.: Analog-digital molecular cell. BioSytems 11 (1979) 111–24
9. Zauner, K.P.: Molecular information technology. Cr. Rev. Sol. State 30 (2005)

33–69
10. Tilden, W.A.: Introduction to the Study of Chemical Philosophy. 6 edn. Longmans,

Green and Co., London (1888)
11. Küppers, B.O.: Information and the Origin of Life. MIT Press, Cambridge, MA

(1990)
12. Adleman, L.M.: Molecular computation of solutions to combinatorical problems.

Science 266 (1994) 1021
13. Conrad, M., Zauner, K.P.: Conformation-driven computing: A comparison of de-

signs based on DNA, RNA, and protein. Supramol. Sci. 5 (1998) 787–790
14. Hjelmfelt, A., Weinberger, E.D., Ross, J.: Chemical implementation of neural

networks and turing machines. Proc. Natl. Acad. Sci. USA 88 (1991) 10983–10987
15. Bazhenov, V.Y., Soskin, M.S., Taranenko, V.B., Vasnetsov, M.V.: Biopolymers

for real-time optical processing. In Arsenault, H.H., ed.: Optical Processing and
Computing, San Diego, Academic Press (1989) 103–44

16. Pǎun, G.: Computing with membranes. J. Comput. Syst. Sci. 61 (2000) 108–143
17. Giavitto, J.L., Michel, O.: MGS: a rule-based programming language for complex

objects and collections. In van den Brand, M., Verma, R., eds.: Electronic Notes
in Theoretical Computer Science. Volume 59., Elsevier Science Publishers (2001)

30 P. Dittrich

18. Laing, R.: Artificial organisms and autonomous cell rules. J. Cybernetics 2 (1972)
38–49

19. Suzuki, H., Ono, N., Yuta, K.: Several necessary conditions for the evolution of
complex forms of life in an artificial environment. Artif. Life 9 (2003) 153–174

20. Banâtre, J.P., Métayer, D.L.: A new computational model and its discipline of
programming. technical report RR-0566, INRIA (1986)

21. Suzuki, Y., Tanaka, H.: Symbolic chemical system based on abstract rewriting and
its behavior pattern. Artif. Life and Robotics 1 (1997) 211–219

22. Suzuki, Y., Tsumoto, S., Tanaka, H.: Analysis of cycles in symbolic chemical system
based on abstract rewriting system on multisets. In Langton, C.G., Shimohara,
K., eds.: Artificial Life V, Cambridge, MA, MIT Press (1996) 521–528

23. Cliff, D., Grand, S.: The creatures global digital ecosystem. Artif. Life 5 (1999)
77–94

24. Astor, J.C., Adami, C.: A developmental model for the evolution of artificial neural
networks. Artif. Life 6 (2000) 189–218

25. Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Knight, T.F., Nagpal, R.,
Rauch, E., Sussman, G.J., Weiss, R., Homsy, G.: Amorphous computing. Commun.
ACM 43 (2000) 74–82

26. Husbands, P., Smith, T., Jakobi, N., O’Shea, M.: Better living through chemistry:
Evolving gasnets for robot control. Connect. Sci. 10 (1998) 185–210

27. Seelig, L.A., Rössler, O.E.: A chemical reaction flip-flop with one unique switching
input. Zeitschrift für Naturforschung 27b (1972) 1441–1444

28. Barrett, C.L., Mortveit, H.S., Reidys, C.M.: Elements of a theory of simulation II:
sequential dynamical systems. Appl. Math. Comput. 107 (2000) 121–136

29. Reidys, C.M.: On acyclic orientations and sequential dynamical systems. Adv.
Appl. Math. 27 (2001) 790–804

30. Dittrich, P., di Fenizio, P.S.: Chemical organization theory: Towards a theory of
constructive dynamical systems. (submitted), preprint arXiv:q-bio.MN/0501016 x
(2005) 1–7

31. Ziegler, J., Banzhaf, W.: Evolving control metabolisms for a robot. Artif. Life 7
(2001) 171 – 190

32. Bedau, M.A., Buchanan, A., Gazzola, G., Hanczyc, M., Maeke, T., McCaskill, J.,
Poli, I., Packard, N.H.: Evolutionary design of a DDPD model of ligation. In: 7th
Int. Conf. on Artificial Evolution. LNCS, Springer, Berlin (2005) (in press)

33. Speroni Di Fenizio, P., Dittrich, P.: Artificial chemistry’s global dynamics. move-
ment in the lattice of organisation. The Journal of Three Dimensional Images 16
(2002) 160–163

34. Dittrich, P., Ziegler, J., Banzhaf, W.: Artificial chemistries - a review. Artif. Life
7 (2001) 225–275

35. Banzhaf, W.: Self-replicating sequences of binary numbers – foundations I and II:
General and strings of length n = 4. Biol. Cybern. 69 (1993) 269–281

36. Fontana, W., Buss, L.W.: ’The arrival of the fittest’: Toward a theory of biological
organization. Bull. Math. Biol. 56 (1994) 1–64

37. Benkö, G., Flamm, C., Stadler, P.F.: A graph-based toy model of chemistry. J.
Chem. Inf. Comput. Sci. 43 (2003) 2759–2767

38. Gillespie, D.T.: Exact stochastic simulation of coupled chemical-reactions. J. Phys.
Chem. 81 (1977) 2340–2361

39. Mayer, B., Rasmussen, S.: Dynamics and simulation of micellar self-reproduction.
Int. J. Mod. Phys. C 11 (2000) 809–826

Chemical Computing 31

40. Cardelli, L.: Brane calculi. In Danos, V., Schachter, V., eds.: Computational Meth-
ods in Systems Biology (CMSB 2004). Volume 3082 of LNCS., Berlin, Springer
(2005) 257–278

41. Dittrich, P.: Selbstorganisation in einem System von Binärstrings mit algorithmis-
chen Sekundärstrukturen. Diploma thesis, Dept. of Computer Science, University
of Dortmund (1995)

42. Speroni di Fenizio, P.: A less abstract artficial chemistry. In Bedau, M.A., Mc-
Caskill, J.S., Packard, N.H., Rasmussen, S., eds.: Artificial Life VII, Cambridge,
MA, MIT Press (2000) 49–53

43. Banzhaf, W., Dittrich, P., Rauhe, H.: Emergent computation by catalytic reactions.
Nanotechnology 7 (1996) 307–314

44. Eigen, M., Schuster, P.: The hypercycle: a principle of natural self-organisation,
part A. Naturwissenschaften 64 (1977) 541–565

45. Fontana, W., Wagner, G., Buss, L.W.: Beyond digital naturalism. Artif. Life 1/2
(1994) 211–227

46. Dittrich, P., Banzhaf, W.: Self-evolution in a constructive binary string system.
Artif. Life 4 (1998) 203–220

A Appendix: Examples

A.1 Prime Number Chemistry

Banâtre and Le Metayer [1] suggested the numerical devision operator as an im-
plicit reaction mechanism, which results in a prime number generating chemistry
defined as follows (see ref. [41, 43] for details): the set of all possible molecules
are all integers greater one and smaller n+1: M = {2, 3, 4, . . . , n}. The reaction
rules are defined by a devision operation: R = {a + b → a + c | a, b, c ∈ M,
c = a/b, a mod b = 0} = {4 + 2 → 2 + 2, 6 + 2 → 3 + 2, 6 + 3 → 2 + 3, . . . }.
So, two molecules a and b can react, if a is a multiple of b. For the dynamics, we
assume a well-stirred reaction vessel. The state of the reaction vessel of size M
is represented by a vector (or equivalently by a multi-set) P = (p1, p2, . . . , pM)
where pi ∈ M. The dynamics is simulated by the following stochastic algorithm:
(1) chose two integers i, j ∈ {1, . . . , M}, i �= j randomly. (2) if there is a rule in
R where pi + pj matches the left hand side, replace pi and pj by the right hand
side. (3) goto 1.

Assume that we initialize the reaction vessel P such that every molecule from
M is contained in P , then we will surely reach a stationary state where all
molecules from P are prime numbers and every prime number greater one and
less or equal n is contained in P . The outcome (prime numbers present in P) is
deterministic and in particular independent from the sequence of reactions, where
the actual concentration of each prime number can vary and depends on the se-
quence of reactions. Now assume that P is smaller than M, e.g., M = 100 and
n = 10000. The outcome (molecular species present in P) is not deterministic. It
depends on the sequence of updates, e.g., P = (20, 24, 600) can result in the sta-
ble solutions P = (20, 24, 30) or P = (20, 24, 25). Note that the behavior (ability
to produce prime numbers) depends critically on the reactor size M [41, 43].

32 P. Dittrich

A.2 Hypercyclic Associative Memory

Assume that we have an unreliable media, where all molecules decay sooner or
later. In order to store data over a longer period, molecules have to be repro-
duced. Simple self-replicating molecules are not sufficient, since, as discussed by
Eigen and Schuster [44], in a limited volume, self-replicating molecules compete
for resources and can not coexist stably (exponential growth and no interaction
assumed).

In the following example [41], three “units” of data {d1, d2, d3} are stored in
three different molecules {w1, w2, w3}. In order to query the memory, there are
three input molecules {q1, q2, q3}. Our demanded specifications are: the chemical
system should store the data for a long period of time, under constant dilution
of the molecules. The system should produce di provided qi as input. We assume
the following reactions: R = {w1 + w2 → w1 + w2 + w2, w2 + w3 → w2 + w3 +
w3, w3 + w1 → w1 + w2 + w1, w1 + q1 → w1 + q1 + d1, w2 + q2 → w1 + q2 +
d2, w3 + q3 → w1 + q3 +d3}. For the dynamics, we assume a well-stirred reaction
vessel that contains a constant number of M molecules. The state of the vessel
is represented by a vector (or equivalently by a multi-set) P = (p1, p2, . . . , pM)
where pi ∈ M. The dynamics is simulated by the following stochastic algorithm:
(1) chose three integers i, j, k ∈ {1, . . . , M}, i �= j randomly. (2) if there is a rule
pi + pj → pi + pj + x in R, replace molecule pk by x. (3) goto 1. This kind of
stochastic algorithm is equivalent to the deterministic replicator equation and
catalytic network equation. It is also used in several other works [45, 35, 46].

Figure 2 shows an example of a simulation where 400 molecules of type q1

are inserted into a reactor that contains approximately the same amount of
each information molecule {w1, w2, w3}. Interaction of q1 with w1 results in the
production of d1. Since all molecules are subject to a dilution flow and q1 is not
produced, q1 and d1 are washed out while the concentrations of {w1, w2, w3}
stabilize again.

Fig. 2. Hypercyclic associative memory. Left: Illustration of the reaction network.
An arrow represents a catalytic interaction where both reactants act as catalysts and
are not used up. Only the active network is shown. Right: Example of a stochastic
simulation of a query. 400 molecules of type q1 are inserted. Reactor size M = 1000

Programming Reaction-Diffusion Processors

Andrew Adamatzky

Faculty of Computing, Engineering and Mathematics,
University of the West of England, UK

andrew.adamatzky@uwe.ac.uk

http://www.cems.uwe.ac.uk/~aadamatz

Abstract. In reaction-diffusion (RD) processors, both the data and the
results of the computation are encoded as concentration profiles of the
reagents. The computation is performed via the spreading and interac-
tion of wave fronts. Most prototypes of RD computers are specialized to
solve certain problems, they can not be, in general, re-programmed. In
the paper, we try to show possible means of overcoming this drawback.
We envisage an architecture and interface of programmable RD media
capable of solving a wide range of problems.

1 Reaction-Diffusion Computers

Reaction-diffusion (RD) chemical systems are well known for their unique ability
to efficiently solve combinatorial problems with natural parallelism [2].

In RD processors, both the data and the results of the computation are
encoded as concentration profiles of the reagents. The computation per se is
performed via the spreading and interaction of wave fronts.

The RD computers are parallel because the chemical medium’s micro-volumes
update their states simultaneously, and molecules diffuse and react in parallel
(see overviews in [1, 2, 8]). RD information processing in chemical media became
a hot topic of not simply theoretical but also experimental investigations since
implementation of basic operations of image processing using the light-sensitive
Belousov-Zhabotinsky (BZ) reaction [28]. During the last decade a wide range
of experimental and simulated prototypes of RD computing devices have been
fabricated and applied to solve various problems of computer science, including

– image processing [35, 3],
– path planning [43, 12, 34, 6],
– robot navigation [7, 10],
– computational geometry [5],
– logical gates [45, 39, 4],
– counting [24],
– memory units [30].

Despite promising preliminary results in RD computing, the field still remains
art rather then science, most RD processors are produced on an ad hoc ba-
sis without structured top-down approaches, mathematical verification, rigorous

J.-P. Banâtre et al. (Eds.): UPP 2004, LNCS 3566, pp. 33–46, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

34 A. Adamatzky

methodology, relevance to other domains of advanced computing. There is a
need to develop a coherent theoretical foundation of RD computing in chemical
media. Particular attention should be paid to issues of programmability, because
by making RD processors programmable we will transform them from marginal
outcasts and curious freaks to enabled competitors of conventional architectures
and devices.

2 How to Program Reaction-Diffusion Computers?

Controllability is inherent constituent of programmability. How do real chemical
media respond to changes in physical conditions? Are they controllable? If yes
then what properties of the media can be used most effectively to program these
chemical systems? Despite the fact that the problem of controlling RD media
did not receive proper attention until recently some preliminary although rather
mosaic results have become accessible in the last decade. There is no coherent
view on the subject and this will be a major future task to build a theoretical and
experimental framework of chemical medium controllability. Below we provide
an overview of the findings related to the external control of chemical media.
They demonstrate viability of our ideas and show that the present state-of-the-
art laboratory methods allow for the precise tuning of these chemical systems,
and thus offer an opportunity to program RD processors.

2.1 Electric Field

The majority of the literature, related to theoretical and experimental studies
concerning the controllability of RD medium, deals with application of an electric
field. In a thin-layer BZ reactor stimulated by an electric field the following
phenomena are observed:

– the velocity of excitation waves is increased by a negative and decreased by
a positive electric field;

– a wave is split into two waves that move in opposite directions if a very high
electric field is applied across the evolving medium [40];

– crescent waves are formed not commonly observed in the field absent evolu-
tion of the BZ reaction [23];

– stabilisation and destabilisation of wave fronts [26];
– an alternating electric field generates a spiral wave core that travels within

the medium; the trajectory of the core depends on the field frequency and
amplitude [38].

Computer simulations with the BZ medium confirm that

– waves do not exist in a field-free medium but emerge when a negative field
is applied [33];

– an electric field causes the formation of waves that change their sign with a
change in concentration, andapplied constantfield induces drift of vortices [32];

– externally applied currents cause the drift of spiral excitation patterns [42].

Programming Reaction-Diffusion Processors 35

It is also demonstrated that by applying stationary two-dimensional fields to a
RD system one can obtain induced heterogeneity in a RD system and thus in-
crease the morphological diversity of the generated patterns (see e.g. [18]). These
findings seem to be universal and valid for all RD systems: applying a negative
field accelerates wave fronts; increasing the applied positive field causes wave de-
celeration, wave front retardation, and eventually wave front annihilation. Also
a recurrent application of an electric field leads to formation of complex spa-
tial patterns [41]. A system of methylene blue, sulfide, sulfite and oxygen in a
polyacrylamide gel matrix gives us a brilliant example of electric-field controlled
medium. Typically hexagon and strip patterns are observed in the medium. Ap-
plication of an electric field makes striped patterns dominate in the medium, even
orientation of the stripes is determined by the intensity of the electric field [31].

2.2 Temperature

Temperature is a key factor in the parameterisation of the space-time dynamics
of RD media. It is shown that temperature is a bifurcation parameter in a closed
non-stirred BZ reactor [29]. By increasing the temperature of the reactor one can
drive the space-time dynamic of the reactor from periodic oscillations (0− 3oC)
to quasi-periodic oscillations (4− 6oC) to chaotic oscillations (7− 8oC). Similar
findings are reported in simulation experiments on discrete media [2], where a
lattice node’s sensitivity can be considered as an analogue of temperature.

2.3 Substrate’s Structure

Modifications of reagent concentrations and structure of physical substrate may
indeed contribute to shaping space-time dynamics of RD media. Thus, by varying
the concentration of malonic acid in a BZ medium one can achieve

– the formation of target waves;
– the annihilation of wave fronts;
– the generation of stable propagating reduction fronts [26].

By changing substrate we can achieve transitions between various types of pat-
terns formed, see e.g. [22] on transitions between hexagons and stripes. This
however could not be accomplished ‘on-line’, during the execution of a compu-
tational process, or even between two tasks, the whole computing device should
be ‘re-fabricated’, so we do not consider this option prospective. Convection is
yet another useful factor governing space-time dynamics of RD media. Thus,
e.g., convection 2nd order waves, generated in collisions of excitation waves in
BZ medium, may travel across the medium and affect, e.g. annihilate, existing
sources of the wave generation [36].

2.4 Illumination

Light was the first [27] and still remains the best, see overview in [35], way of
controlling spatio-temporal dynamics of RD media (this clearly applies mostly
to light-sensitive species as BZ reaction). Thus, applying light of varying in-
tensity we can control medium’s excitability [19] and excitation dynamic in

36 A. Adamatzky

BZ-medium [17, 25], wave velocity [37], and patter formation [46]. Of particular
interest to implementation of programmable logical circuits are experimental ev-
idences of light-induced back propagating waves, wave-front splitting and phase
shifting [47].

3 Three Examples of Programming RD Processors

In this section we briefly demonstrate a concept of control-based programmabil-
ity in models of RD processors. Firstly, we show how to adjust reaction rates in
RD medium to make it perform computation of Voronoi diagram over a set of
given points. Secondly, we provide a toy model of tunable three-valued logical
gates, and show how to re-program a simple excitable gate to implement several
logical operations by simply changing excitability of the medium’s sites. Thirdly,
we indicate how to implement logical circuits in architecture-less RD excitable
medium.

3.1 Programming with Reaction Rates

Consider a cellular automaton model of an abstract RD excitable medium. Let a
cell x of two-dimensional lattice takes four states: resting ◦, excited (+), refrac-
tory (−) and precipitated �, and update their states in discrete time t depending
on a number σt(x) of excited neighbors in its eight-cell neighborhood as follows
(Fig. 1):

Fig. 1. Cell state transition graph for cellular-automaton model of precipitating RD
medium

– Resting cell x becomes excited if 0 < σt(x) ≤ θ2 and precipitated if θ2 <
σt(x).

– Excited cell ‘precipitates’ if θ1 < σt(x) and becomes refractory otherwise.
– Refractory cell recovers to resting state unconditionally, and precipitate cell

does not change its state.

Initially we perturb the medium, excite it in several sites, thus inputting
data. Waves of excitation are generated, they grow, collide with each other and

Programming Reaction-Diffusion Processors 37

[t] θ2=1 θ2=2 θ2=3 θ2=4 θ2=5 θ2=6 θ2=7 θ2=8

θ1=1

θ1=2

θ1=3

θ1=4

θ1=5

θ1=6

θ1=7

θ1=8

Fig. 2. Final configurations of RD medium for 1 ≤ θ1 ≤ θ2 ≤ 2. Resting sites are black,
precipitate is white

annihilate in result of the collision. They may form a stationary inactive con-
centration profile of a precipitate, which represents result of the computation.
Thus, we can only be concerned with reactions of precipitation:

+ →k1 �

and
◦ � + →k2 �,

where k1 and k2 are inversely proportional to θ1 and θ2, respectively. Varying
θ1 and θ2 from 1 to 8, and thus changing precipitation rates from maximum
possible to a minimum one, we obtain various kinds of precipitate patterns, as
shown in Fig. 2.

Most of the patterns produced, see enlarged examples at Fig. 3abc, are rel-
atively useless (at least there no sensible interpretations of them) Precipitate
patterns developed for relatively high ranges of reactions rates: 3 ≤ θ1, θ2 ≤ 4

38 A. Adamatzky

(a) (b) (c)

(d) (e)

Fig. 3. Exemplar configurations of RD medium for (a) θ1 = 2 and θ2 = 3, (b) θ1 = 4
and θ2 = 2, (c) θ1 = 7 and θ2 = 3, (d) θ1 = 3 and θ2 = 3, (e) θ1 = 4 and θ2 = 3.
Resting sites are black, precipitate is white

represent discrete Voronoi diagrams (given ‘planar’ set, represented by sites of
initial excitation, is visible in pattern θ1 = θ2 = 3 as white dots inside Voronoi
cells) derived from the set of initially excited sites, see Fig. 3de. This example
demonstrates that externally controlling precipitation rates we can force RD
medium to compute Voronoi diagram.

3.2 Programming with Excitability

When dealing with excitable media excitability, as one can infer from the name,
is the key parameter to tune spatio-temporal dynamics. In [2] we demonstrated
that by varying excitability we can force the medium to exhibit almost all pos-
sible types of excitation dynamics. Let each cell of 2D automaton takes three
states: resting (·), exciting (+) and refractory (−), and updates its state depend-
ing on number σ+ of excited neighbors in its 8-cell neighborhood (Fig. 4a). A
cell goes from excited to refractory and from refractory to resting states uncon-
ditionally, and resting cell excites if σ+ ∈ [θ1, θ2], 1 ≤ θ1 ≤ θ2 ≤ 8. By changing
θ1 and θ2 we can move the medium dynamics in a domain of ‘conventional’ ex-
citation waves, useful for image processing and robot navigation [7], as well as

Programming Reaction-Diffusion Processors 39

(a)

(b) (c)

Fig. 4. Cell-state transition graph of excitable medium (a) and snapshots of space-time
excitation dynamics for excitability σ+ ∈ [1, 8] (b) and σ+ ∈ [2, 2] (c)

to make it exhibits mobile localized excitations (quasi-particles, discrete analogs
of dissipative solitons), employed in collision-based computing [2] (Fig. 4bc).

Let us discuss now a more advanced example on how we can program logical
gates using excitability. Consider a T-shaped excitable RD medium built of three
one-dimensional cellular arrays joined at one point (details are explained in [11]);
two channels are considered as inputs, and third channel as an output. Every cell
of this structure has two neighbors apart of end cells, which have one neighbor
each, and a junction cell, which has three neighbors. Each cell takes three states:
resting (◦), excited (+) and refractory (−). A cell switches from excited state
to refractory state, and from refractory to resting unconditionally. If resting cell
excites when certain amount of its neighbors is excited then waves of excitation,
in the form +−, travel along the channels of the gate. Waves generated in input
channels, meet at a junction, and may pass or not pass to the output channel. We
represent logical values as follows: no waves is False, one wave +− is Nonsense
and two waves + − · + − represent Truth. Assume that sites of the excitable
gate are highly excitable: every cell excites if at least one neighbor is excited.
One or two waves generated at one of the inputs pass onto output channel; two
single waves are merged in one single wave when collide at the junction; and, a
single wave is ‘absorbed’ by train of two waves. Therefore, the gate with highly
excitable sites implements �Lukasiewicz disjunction (Fig. 5a).

40 A. Adamatzky

∨�L T F �

T T T T
F T F �
� T � �

(a)

∧�L T F �

T T F �
F F F F
� � F �

(b)

� T F �

T F T �
F T F �
� � � F

(c)

Fig. 5. Operations of �Lukasiewics three-valued logic implemented in models of T-
shaped excitable gate: (a) disjunction, σ+ ∈ {� k

2
�, � k

2
	} (b) conjunction, σ+ = � k

2
	,

(c) NOT-Equivalence, σ+ = � k
2
�

Let us decrease sites sensitivity and make it depend on number k of cell
neighbors: a cell excites if at least σ+ = �k

2 � neighbors are excited. Then junction
site can excite only when exactly two of its neighbors are excited, therefore,
excitation spreads to output channels only when two waves meet at the junction.
Therefore, when a single wave collide to a train of two waves the only single
wave passes onto output channel. In such conditions of low excitability the gate
implements �Lukasiewicz conjunction (Fig. 5b). By further narrowing excitation
interval: a cell is excited if exactly one neighbor is excited, we achieve situation
when two colliding wave fronts annihilate, and thus output channel is excited
only if either of input channels is excited, or if the input channels got different
number of waves. Thus, we implement combination of �Lukasiewicz NOT and
Equivalence gates (Fig. 5c).

3.3 Dynamical Circuits

Logical circuits can be also fabricated in uniform, architecture-less, where not
wires or channels are physically implemented, excitable RD medium, (e.g. sub-
excitable BZ medium as numerically demonstrated in [9]) by generation, reflec-
tion and collision of traveling wave fragments. To study the medium we integrate
two-variable Oregonator equation, adapted to a light-sensitive BZ reaction with
applied illumination [17]

∂u

∂t
=

1
ε
(u − u2 − (fv + φ)

u − q

u + q
) + Du∇2u

∂v

∂t
= u − v

where variables u and v represent local concentrations of bromous acid and ox-
idized catalyst ruthenium, ε is a ratio of time scale of variables u and v, q is a
scaling parameter depending on reaction rates, f is a stoichiometric coefficient, φ
is a light-induced bromide production rate proportional to intensity of illumina-
tion. The system supports propagation of sustained wave fragments, which may
be used as representations of logical variables (e.g. absence is False, presence
is Truth). To program the medium we should design initial configuration of
perturbations, that will cause excitation waves, and configurations of deflectors
and prisms, to route these quasi-particle wave-fragments. While implementation

Programming Reaction-Diffusion Processors 41

(a) (b) (c) (d)

(e)

Fig. 6. Operating wave fragments. Overlay of images taken every 0.5 time units. Ex-
citing domains of impurities are shown in black, inhibiting domains are gray. (a) Signal
branching with impurity: wave fragment traveling west is split by impurity (b) into two
waves traveling north-west and south-west. (c) Signal routing (U-turn) with impurities:
wave fragment traveling east is routed north and then west by two impurities (d). A
simple logical gate is shown in (e)

of Boolean operations per se is relatively straightforward [9], control of signal
propagation, routing and multimplication of signals is of most importance when
considering circuits not simply singe gates. To multiply a signal or to change
wave-fragment trajectory we can temporarily apply illumination impurities to
change local properties of the medium on a way the wave. Thus we can cause
the wave-fragment to split (Fig. 6ab) or deflect (Fig. 6cd). A control impurity
(Fig. 6bd), or deflector, consists of a few segments of sites which illumination
level is slightly above or below overall illumination level of the medium. Com-
bining these excitatory and inhibitory segments we can precisely control wave’s
trajectory, e.g. realize U-turn of a signal (Fig. 6cd). A simple logical gates im-
plemented in collision of two wave-fragments is shown in Fig. 6e.

4 Multi-layered RD Processors: Co-programming

Ideally, it would be reasonable to have two excitable chemical systems physi-
cally co-existing in one reactor, so space-time dynamics of one chemical medium
‘programs’ (influences) space-time dynamics of another chemical medium. We
did not have yet experimental implementations of such medium-medium pro-
gramming, however our computational experiments on guiding a virtual robots
indicate that the idea is feasible. Namely, to guide a robot we assume that the

42 A. Adamatzky

robot is attracted by wave-fronts of one system — which represents a target —
and repelled by wave-fronts of the other system — which represents obstacles.

In [10] we navigated a virtual robot using two separate and isolated from each
other chemical reactors containing the BZ medium. Obstacles are mapped onto
one reactor and targets onto another. We assume the robot detects concentration
of the chemical species using optical sensors from spatial snapshots of the BZ
medium activity. We constructed a software model of ‘pixbot’ [10] — a pixel
size robot which moves in discrete steps on images (attractive medium A and
repelling medium R) of the spatial excitation dynamics of the BZ medium.

The pixbot behaves as follows. Let aij and rij be blue color values of pixel
(i, j) in images A and R, and (x, y)t be the pixbot’s coordinates at time step t.
At each step of discrete time the pixbot can move to one of eight pixels closest
to (x, y)t. The pixbot coordinates are calculated as follows, pt = (x, y)t:

pt+1 = pt + ϑ(t, t − m)[f(pt, g,A,R)χ(f(pt, g,A,R))+

(1 − χ(f(pt, g,A,R)))(
(pt,R))]+

(1 − ϑ(t, t − m)(
(pt,R))

where χ(z) = 1 if z �= 0 and χ(z) = 0 otherwise; ϑ(t, t−m) = 0 if |pt−pt−m| < k
and ϑ(t, t − m) = 1 otherwise;

f(pt, g,A,R) = |V|−1
∑

(ui,uj)∈V

(ui, uj)

V = {(vi, vj) ∈ {−1, 0, 1} : |apt − apt+(vi,vj)| > g, rpt+(vi,vj) < c}
and

(pt,R,m) = random{(vi, vj) ∈ {−1, 0, 1} : rpt+(vi,vj) < c}
g and c are constant depending on initial concentration of reactants, in most
experiments, 2 ≤ c ≤ 5, 15 ≤ g ≤ 30, 10 ≤ m ≤ 20. The function ϑ plays a role
of a ‘kinetic energy accumulator’: if the pixbot spends too much time wandering
in the same local domain it is forced to jump randomly, this will allow pixbot to
mount wave-fronts. The function f() selects a site neighboring to pt along the
preferable descent of A and minimum values of B. If such a site does not exist
then a site with no obstacle wave is selected at random.

An example of the pixbot’s collision-free movement towards a target is shown
in Fig. 7, where attracting wave-fronts represent a target and repelling wave-
fronts represent obstacles.

5 Discussion

Sluggishness, narrow range of computational tasks solved, and seeming unsus-
ceptibility to a control are usually seen as main disadvantages of existing proto-
types of RD computers. In the paper we briefly outlined several ways of external

Programming Reaction-Diffusion Processors 43

(a) (b)

Fig. 7. Trajectories of pixbot moving towards the target through space with obstacles:
(a) trajectory of pixbot projected onto pattern of attracting wave-fronts, (b) trajectory
of pixbot projected onto pattern of repelling wave-fronts [10]

controlling, tuning, and ultimately programming, of spatially extended chemi-
cal devices. We have also indicated how to ‘switch’ a RD computer, with fixed
set of reactions but variable reaction rates, between several domains of prob-
lems, and thus make it more ‘omnivorous’. Thus we made grounds for partial
dismissal of specialization and uncontrollability statements. As to the speed,
real-life RD processors are slow indeed, due to limitations on speed of diffusion
and phase waves traveling in a liquid layer or a gel. We can argue, however, that
future applications of the chemical processors lie in the field of micro-scale com-
puting devices and soft robotic architectures, e.g. gel-made robots, where RD
medium forms an integral part of robot body [44]. A silicon fabrication is an-
other way, however possibly a step back from material implementation point of
view, to improve speed of RD computers. This route seems to be well developed,
particularly in designing RD media in non-linear circuits and cellular neural
networks [20, 21, 10]. CMOS design and analog emulation of RD systems, BZ
medium in particular, have already demonstrated feasibility of mapping chem-
ical dynamics onto silicon architectures [13, 14, 15, 16]. Semiconductor devices
based on minor carrier transport [16], like arrays of p-n-p-n diod based reaction
devices, give us a hope for forthcoming designs of nano-scale RD processors.

Acknowledgement

I thank Ben De Lacy Costello for numerous discussions on laboratory prototypes
of reaction-diffusion computers, Tetsuya Asai for enlightening me in electronic
reaction-diffusion devices, and participants of “Non-Linear Media Based Com-

44 A. Adamatzky

puters” (Bristol, September, 2003) and “Unconventional Programming
Paradigms” (Mont St Michel, 2004) workshops for help in shaping my ideas.
I also thank Peter Dittrich for encouraging me to think about more computer-
science related issues of reaction-diffusion computing.

References

1. Adamatzky, A.: Reaction-diffusion and excitable processors: a sense of the uncon-
ventional. Parallel and Distributed Computing 3 (2000) 113–132.

2. Adamatzky, A.: Computing in Nonlinear Media and Automata Collectives (Insti-
tute of Physics Publishing, 2001).

3. Adamatzky, A., De Lacy Costello, B. and Ratcliffe, N.M.: Experimental reaction-
diffusion pre-processor for shape recognition. Physics Letters A 297 (2002) 344–
352.

4. Adamatzky, A. and De Lacy Costello, B.P.J.: Experimental logical gates in a
reaction-diffusion medium: The XOR gate and beyond. Phys. Rev. E 66 (2002)
046112.

5. Adamatzky, A. and De Lacy Costello, B.P.J.: On some limitations of reaction-
diffusion computers in relation to Voronoi diagram and its inversion. Physics Let-
ters A 309 (2003) 397–406.

6. Adamatzky, A. and De Lacy Costello, B.P.J.: Reaction-diffusion path planning in
a hybrid chemical and cellular-automaton processor. Chaos, Solitons & Fractals
16 (2003) 727–736.

7. Adamatzky, A., De Lacy Costello, B., Melhuish, C. and Ratcliffe, N.: Experimental
reaction-diffusion chemical processors for robot path planning. J. Intelligent &
Robotic Systems 37 (2003) 233–249.

8. Adamatzky, A.: Computing with waves in chemical media: massively parallel
reaction-diffusion processors. IEICE Trans. (2004), in press.

9. Adamatzky, A.: Collision-based computing in BelousovZhabotinsky medium.
Chaos, Solitons & Fractals 21 (2004) 1259–1264.

10. Adamatzky, A., Arena, P., Basile, A., Carmona-Galan, R., De Lacy Costello,
B., Fortuna, L., Frasca, M., Rodriguez-Vazquez, A.: Reaction-diffusion navigation
robot control: from chemical to VLSI analogic processors. IEEE Trans. Circuits
and Systems I, 51 (2004) 926–938.

11. Adamatzky, A. and Motoike, I.: Three-valued logic gates in excitable media, in
preparation (2004).

12. Agladze, K., Magome, N., Aliev, R., Yamaguchi, T. and Yoshikawa, K.: Finding
the optimal path with the aid of chemical wave. Physica D 106 (1997) 247–254.

13. Asai, T., Kato, H., and Amemiya, Y.: Analog CMOS implementation of diffusive
Lotka-Volterra neural networks, INNS-IEEE Int. Joint Conf. on Neural Networks,
P-90, Washington DC, USA, July 15–19, 2001.

14. Asai, T., Nishimiya, Y. and Amemiya, Y.: A CMOS reaction-diffusion circuit based
on cellular-automaton processing emulating the Belousov-Zhabotinsky reaction.
IEICE Trans. on Fundamentals of Electronics, Communications and Computer,
E85-A (2002) 2093–2096.

15. Asai, T. and Amemiya, Y.: Biomorphic analog circuits based on reaction-diffusion
systems. Proc. 33rd Int. Symp. on Multiple-Valued Logic (Tokyo, Japan, May 16-
19, 2003) 197–204.

Programming Reaction-Diffusion Processors 45

16. Asai, T., Adamatzky, A., Amemiya, Y.: Towards reaction-diffusion semiconductor
computing devices based on minority-carrier transport. Chaos, Solitons & Fractals
20 (2004) 863–876.

17. Beato, V., Engel, H.: Pulse propagation in a model for the photosensitive Belousov-
Zhabotinsky reaction with external noise. In: Noise in Complex Systems and
Stochastic Dynamics, Edited by Schimansky-Geier, L., Abbott, D., Neiman, A.,
Van den Broeck, C. Proc. SPIE 5114 (2003) 353–62.

18. Bouzat, S. and Wio, H.S.: Pattern dynamics in inhomogeneous active media. Phys-
ica A 293 (2001) 405–420.

19. Brandtstädter, H., Braune, M., Schebesch, I. and Engel, H.: Experimental study
of the dynamics of spiral pairs in light-sensitive BelousovZhabotinskii media using
an open-gel reactor. Chem. Phys. Lett. 323 (2000) 145–154.

20. Chua, L.O.: CNN: A Paradigm for Complexity (World Scientific Publishing, 1998).
21. Chua, L.O. and Roska, T.: Cellular Neural Networks and Visual Computing: Foun-

dations and Applications (Cambridge University Press, 2003).
22. De Kepper, P., Dulos, E., Boissonade, J., De Wit, A., Dewel, G. and Borckmans,

P.: Reaction-diffusion patterns in confined chemical systems. J. Stat. Phys. 101
(2000) 495–508.

23. Feeney, R., Schmidt, S.L. and Ortoleva, P.: Experiments of electric field-BZ chem-
ical wave interactions: annihilation and the crescent wave. Physica D 2 (1981)
536–544.

24. Gorecki, J., Yoshikawa, K., Igarashi, Y.: On chemical reactors that can count. J.
Phys. Chem. A 107 (2003) 1664–1669.

25. Grill, S., Zykov, V. S., Müller, S. C.: Spiral wave dynamics under pulsatory mod-
ulation of excitability. J. Phys. Chem. 100 (1996) 19082–19088.

26. Kastánek P., Kosek, J., Snita,D., Schreiber, I. and Marek, M.: Reduction waves in
the BZ reaction: Circles, spirals and effects of electric field, Physica D 84 (1995)
79–94.

27. Kuhnert, L.: Photochemische Manipulation von chemischen Wellen. Naturwis-
senschaften 76 (1986) 96–97.

28. Kuhnert, L., Agladze, K.L. and Krinsky, V.I.: Image processing using light–
sensitive chemical waves. Nature 337 (1989) 244–247.

29. Masia, M., Marchettini, N., Zambranoa, V. and Rustici, M.: Effect of temperature
in a closed unstirred Belousov-Zhabotinsky system. Chem. Phys. Lett. 341 (2001)
285–291.

30. Motoike, I.N. and Yoshikawa, K.: Information operations with multiple pulses on
an excitable field. Chaos, Solitons & Fractals 17 (2003) 455–461.

31. Muenster, A.F, Watzl, M. and Schneider, F.W.: Two-dimensional Turing-like pat-
terns in the PA-MBO-system and effects of an electric field. Physica Scripta T67
(1996) 58–62.

32. Muñuzuri, A.P., Davydov, V.A., Pérez-Muñuzuri, V., Gómez-Gesteira, M. and
Pérez-Villar, V.: General properties of the electric-field-induced vortex drift in
excitable media. Chaos, Solitons, & Fractals 7 (1996) 585–595.

33. Ortoleva, P.: Chemical wave-electrical field interaction phenomena. Physica D 26
(1987) 67–84.

34. Rambidi, N.G. and Yakovenchuck, D.: Finding path in a labyrinth based on
reaction–diffusion media. Adv. Materials for Optics and Electron. 7 (1999) 67–
72.

35. Rambidi, N.: Chemical-based computing and problems of high computational com-
plexity: The reaction-diffusion paradigm, In: Seinko, T., Adamatzky, A., Rambidi,
N., Conrad, M., Editors, Molecular Computing (The MIT Press, 2003).

46 A. Adamatzky

36. Sakurai, T., Miike, H., Yokoyama, E. and Muller, S.C.: Initiation front and an-
nihilation center of convection waves developing in spiral structures of Belousov-
Zhabotinsky reaction. J. Phys. Soc. Japan 66 (1997) 518–521.

37. Schebesch, I., Engel, H.: Wave propagation in heterogeneous excitable media. Phys.
Rev. E 57 (1998) 3905-3910.

38. Seipel, M., Schneider, F.W. and Mnster, A.F.: Control and coupling of spiral waves
in excitable media. Faraday Discussions 120 (2001) 395–405.

39. Sielewiesiuka, J. and Górecki, J.: On the response of simple reactors to regular
trains of pulses. Phys. Chem. Chem. Phys. 4 (2002) 1326-1333.

40. Sevćikova, H. and Marek, M.: Chemical waves in electric field. Physica D 9 (1983)
140–156.

41. Sevćikova, H. and Marek, M.: Chemical front waves in an electric field. Physica D
13 (1984) 379–386.

42. Steinbock O., Schutze J., Muller, S.C.: Electric-field-induced drift and deformation
of spiral waves in an excitable medium. Phys. Rev. Lett. 68 (1992) 248–251.

43. Steinbock, O., Tóth, A. and Showalter, K.: Navigating complex labyrinths: optimal
paths from chemical waves. Science 267 (1995) 868–871.

44. Tabata, O., Hirasawa, H., Aoki, S., Yoshida, R. and Kokufuta, E.: Ciliary motion
actuator using selfoscillating gel. Sensors and Actuators A 95 (2002) 234–238.

45. Tóth, A. and Showalter, K.: Logic gates in excitable media. J. Chem. Phys. 103
(1995) 2058–2066.

46. Wang, J.: Light-induced pattern formation in the excitable Belousov-Zhabotinsky
medium. Chem. Phys. Lett. 339 (2001) 357–361.

47. Yoneyama, M.: Optical modification of wave dynamics in a surface layer of the
Mn-catalyzed Belousov-Zhabotinsky reaction. Chem. Phys. Lett. 254 (1996) 191–
196.

From Prescriptive Programming of Solid-State
Devices to Orchestrated Self-organisation of

Informed Matter

Klaus-Peter Zauner

School of Electronics and Computer Science,
University of Southampton, SO17 1BJ, United Kingdom

kpz@ecs.soton.ac.uk

www.ecs.soton.ac.uk/people/kpz/

Abstract. Achieving real-time response to complex, ambiguous, high-
bandwidth data is impractical with conventional programming. Only
the narrow class of compressible input-output maps can be specified
with feasibly sized programs. Present computing concepts enforce for-
malisms that are arbitrary from the perspective of the physics underly-
ing their implementation. Efficient physical realizations are embarrassed
by the need to implement the rigidly specified instructions requisite for
programmable systems. The conventional paradigm of erecting strong
constraints and potential barriers that narrowly prescribe structure and
precisely control system state needs to be complemented with a new ap-
proach that relinquishes detailed control and reckons with autonomous
building blocks. Brittle prescriptive control will need to be replaced with
resilient self-organisation to approach the robustness and efficiency af-
forded by natural systems. Structure-function self-consistency will be key
to the spontaneous generation of functional architectures that can har-
ness novel molecular and nano materials in an effective way for increased
computational power.

1 Commanding the Quasi-universal Machine

The common conventional computer is an approximation of a hypothetical uni-
versal machine [1] limited by memory and speed constraints. Universal machines
are generally believed to be in principle able to compute any computable function
and are commonly used to define what can effectively be computed [2]. Corre-
spondingly it is assumed that if processing speed and memory space of computers
would indefinitely continue to increase, any computable information processing
problem would eventually come within reach of practical devices. Accordingly
time and space complexity of computation has been studied in detail [3] and
technological advances have focused on memory capacity and switching speed
[4]. But along with this there is another factor that limits realizable computing
devices: the length of the program required to communicate a desired behaviour
to the device [5]. The length of this program is limited by the state space of the

J.-P. Banâtre et al. (Eds.): UPP 2004, LNCS 3566, pp. 47–55, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

48 K.-P. Zauner

O

I

I O

... ...

A

000000
000001
000010
000011
000100

0
1
0
0
1

f
p

a
O=f(I)

O

I
B

Fig. 1. Communicating a desired input-output map to a machine. The input-output
map can in principle be thought of as a potentially very large lookup table that asso-
ciates an output response with every input that can be discerned by the machine (A).
For n bit input patterns (I) and a m bit output response (O) the, number of possi-
ble maps is 2m2n

. To implement an arbitrary one of these maps on a quasi-universal
machine, the mapping f has to be specified by the program p with respect of ma-
chine architecture a (B). Selecting an arbitrary map from the set of possible maps may
require a specification of length: log2

[
2m2n]

= m2n. Even for moderate pattern recog-
nition problems (e.g., classifying low resolution images) the program length required
for most mappings is impractical [6]

device and the capacity of the programmers. Even small problems can exhaust
these practical limitations (cf. figure 1). As a consequence conventional com-
puting architectures are restricted to the implementation of highly compressible
input-output transforms [7]. The set of compressible maps is a small subset of
the potential input-output functions—most behaviours cannot be programmed.
Whether the inaccessible mappings would be useful for practical applications
awaits further investigation. For complex ambiguous pattern recognition prob-
lems, a domain where organisms cope much better than existing technology,
mappings of limited compressibility may be valuable.

The picture painted in figure 1 is optimistic with regard to the number of
maps that can be implemented by a program of given size. It assumes that the
machine architecture is not degenerate, i.e., any two programs that differ by at
least one bit will give rise to distinct input-output maps. In practice, computing
architectures often map many programs to the same input-output transforma-
tion. The transformation is usually implemented as a programmed sequence of
elementary operations. The essence of each operation is to selectively discard
information [8, 9]. As the number of elementary operations grows it becomes in-
creasingly likely that all information regarding the input signals is dissipated and
as a consequence the output of the computation is constant [10, 11]. Accordingly,
the degeneracy of the mapping from program to input-output transform raises
with increased program length in conventional architectures and the number
input-output transforms accessible through programming is further reduced.

For a machine to be programmable, additional restrictions come into play.
Programming is here equated with an engineering approach in which mental

From Prescriptive Programming of Solid-State Devices 49

conception precedes physical creation (cf. [12]). It necessitates the possibility
for the programmer to anticipate the actions of the available elementary opera-
tions. Only if the function of the elementary operations can be foreseen by the
programmer can a desired input-output map be implemented by incrementally
composing a program. Accordingly, the machine’s architecture has to adhere to
a fixed, finite user manual to facilitate programming. To achieve this, numerous
potential interactions among the components of the machine need to be sup-
pressed [13]. Programmability is achieved by using relatively large networks of
components with fixed behaviour. This however does not allow for the efficiency
afforded by networks of context sensitive components [14].

As outlined above, conventional programming is not always the most suitable
way of implementing an input-output map. Some maps cannot be compressed
into programs of practical length, and the need for programmability precludes
hardware designs that elicit functionality from a minimum of material.

2 Learning, Adaptation, Self-organisation

Programmability is not a strict requirement for information processing systems.
The enviable computing capabilities of cells and organisms are not implemented
by programs. Non-programmed information processing is not limited to nature.
Artificial neural networks provide a technological example of a system where pro-
grammability has been given up for the benefit of parallel operation [15]. Freeing
the computing architecture from the need for predictable function of elementary
components opens up new design degrees of freedom. Firstly, the fan-in for an
elementary component could be increased by orders of magnitude. It may be
interesting to note that neurons in the cortex of the mouse have on average 8000
input lines [16]. Secondly, there is no need for all components to operate ac-
cording to identical specifications. This opens a path to broadening the material
basis of computation by allowing for computational substrates the structure of
which cannot be controlled in detail. And likewise, thirdly, the operation of the
elementary components can depend on their context in the architecture, thus
greatly increasing the number of interactions among the components that can
be recruited for signal fusion.

Utilising these design degrees of freedom requires the development of new
training algorithms for the resulting networks. Evolutionary methods that take
the performance of a network as prediction for the performance of a randomly
modified network are particularly suitable. They can cope with the complexity
and inhomogeneity of architectures based on context sensitive components and
benefit from the increased dimensionality in such networks [17, 18, 19]. Clearly,
giving up programmability will not by itself increase the number of input-output
transforms that can be implemented on a given system. The feasible length of
training for the system draws the limit. However, the complexity of the input-
output transformations is not restricted by the need for compact specification.

50 K.-P. Zauner

3 Orchestrating Informed Matter

Techniques for producing biomaterials and manufacturing nano-materials are
rapidly developing. We already see materials with unprecedented characteristics
arriving at an increasing rate. But so far computer science is not on a path to
harnessing these new materials for increased computational power. Training the
materials to act as logic gates is unlikely to be fruitful.

Present computing concepts enforce formalisms that are arbitrary from the
perspective of the physics underlying their implementation. Nature’s gadgets
process information in starkly different ways than do conventionally programmed
machines [20]. They exploit the physics of the materials directly and arrive at
problem solutions driven by free energy minimisation while current computer
systems are coerced by high potential barriers to follow a narrowly prescribed,
contrived course of computation [21]. The latter is only possible in a macro-
physical device and comes at the cost of using a large fraction of the material of
the processing device for enforcing adherence to the formalism rather than ac-
tual information processing. As devices shrink to micro-physical scale it becomes
increasingly difficult to isolate the operation of the device from the physics of
their implementation. However, as outlined in the preceeding two sections, infor-
mation processing can be implemented without a formalism that abstracts away
from the underlying computing substrate.

Nature provides a large collection of implementations that employ compu-
tation driven directly by physics for sophisticated information processing tasks.
This mode of computation is most clearly demonstrated by single-cell systems.
A seed weighs time series of multiple ambiguous sensory signals to make the de-
cision to grow, a vital decision from which it cannot retract [22]. Bacteria assess
their chemical surroundings to adjust their motions in accordance with a com-
plex trade-off among attractive and repulsive factors [23, 24]. Being too small to
afford isolation from the micro-physics of their material components the infor-
mation processing operations in these systems necessarily have to follow a course
of computation inherent in molecular interactions.

In physics-driven information processing architectures the structure of an
architecture and its processing function are inseparable. Accordingly physics-
driven information processing is closely related to self-organisation. Self-orga-
nisation is taken here as a process that forms an organised functional struc-
ture and is essentially supported by the components of the structure themselves
rather than a process conducted by an external infrastructure. The possibilities
of self-organisation are exemplified by biological growth and development. Self-
assembly of molecular structures is a relatively simple self-organisation process
in the aforementioned sense. The formation of viruses [25] is the prototypic ex-
ample of molecular self-assembly, but numerous functional structures in the cell,
e.g., ribosomes [26] form in a similar fashion. Artificial self-assembly systems
have been designed with inorganic [27], organic [28], and bio-molecules [29, 30]
and provide a potential route to realizing artificial molecular information pro-
cessors [31].

From Prescriptive Programming of Solid-State Devices 51

orchestrated
self−organisation

detailed
prescriptive

control

selection
from random
variation

✘

Fig. 2. Implementation paradigms for a computational device. Present conventional
computer technology is indicated near the lower left corner. Random variation en-
ters unintentionally in the production process. With increasing miniaturisation control
will become increasingly more difficult (dashed arrow). Resilient architectures that can
cope with wide component variation and the deliberate use of self-organisation pro-
cesses provide the most likely path to complexification of computing architectures (bent
arrow)

The practical implementation of an input-output map can adhere in varying
degrees to different paradigms as illustrated in figure 2.

As engineering extends to base-components at nano meter scale, the fine-
grained prescriptive control familiar from the macro-physical world becomes in-
creasingly difficult to achieve. Accordingly the proportion of products conforming
to specification is falling. To some extend it is possible to compensate for the
loss of control during production in a subsequent selection procedure, as is com-
mon practice. Selecting functional structures from a pool of randomly created
structures provides a first approach to nano-materials where detailed control is
not feasible or not economical. If the process of structure formation is repeat-
able then the selection from random variation can be iterated for evolutionary
progress.

A key driver for miniaturisation, however, is its potential for highly complex
systems within a small volume. A production process relying on selection alone
will not deliver such systems for two reasons. Firstly, the falling proportion
of functional components will make the selection approach (indicated by the
dashed arrow in figure 2) increasingly inefficient, particularly if systems with
high component count are desired. Secondly, for selecting the products that
exhibit correct functionality it is necessary to identify them. Doing so by testing
incurs a high cost and exhaustive testing becomes prohibitive with rising system
complexity.

To arrive at economic nano-scale systems of high complexity it is necessary
to leave the implementation approach indicated by the baseline of the triangle
in figure 2. One possible solution lies in the self-assembly properties of suitably
formed base components. The challenge is to design base components in such
a way that they will spontaneously form a desired architecture. This course of
engineering (indicated by the bend arrow in figure 2) will require the considera-

52 K.-P. Zauner

A

Energy Matter

Information

B

Self−improvement

Self−reproduction

Self−repair

Self−organisation

Self−assembly

Fig. 3. To engineer self-organised systems, the traditional design considerations of
energy and matter need to be augmented to include information (A). The potential gain
of adding the information paradigm to our engineering toolkit can best be estimated
by a view at nature. The biological world exhibits a hierarchy of self-processes that
lead to increasingly more complex organisations of matter (B)

tion of information in addition to the traditional considerations of materials and
energy (Figure 3A).

The concept of informed matter [32], i.e., molecules deliberately designed
to carry information that enables them to interact individually, autonomously
with other molecules, provides a basis for heterogeneous three-dimensional fab-
rication. Combining the abstract concepts of artifical chemistry [33] with the
physics of supramolecular chemistry [28, 34] conceivably will enable the orches-
tration of self-organisation to arrive in practical time scales at physics-driven
architectures.

This path to organising matter requires an information paradigm that does
take physics into account. Molecules cannot be instructed in the way conven-
tional computers are programmed, because their interactions and behaviour can-
not be limited to simple abstractions. A methodology more akin to mechanical
engineering than to software engineering, conceptually depicted in figure 4, is
required.

4 Perspectives

Potential application domains for the principles outlined in the previous sec-
tion are architectures in which the amount of matter necessary to implement
a required function is important. Examples are pervasive computing and space
exploration devices. A likely early application niche is the area of autonomous
micro-robotic devices. With the quest for robots at a scale of a cubic millime-
tre and below molecular controllers become increasingly attractive [35, 36], and
initial steps towards implementation are underway [37]. Coherent perception-
action under real-time constraints with severely limited computational resources
does not allow for the inefficiency of a virtual machine that abstracts physics
away. For satisfactory performance the robot’s control needs to adapt directly
to the reality of its own body [38]. In fact the body structure can be an integral
part of the computational infrastructure [39]. A second application domain is

From Prescriptive Programming of Solid-State Devices 53

Physical simulation

Experimentation

Rational
orchestration Directed evolution

Physical
Information
Paradigm

Fig. 4. Orchestration of informed matter. The interplay of experimental data, physi-
cal simulation of component behaviour in a systems context and adaptation methods
such as directed evolution will play an important role in the process of engineering
informed matter building-blocks that self-organise to spontaneously form architectures
with desired functionality

bioimmersive computing. Components of a computational architecture could be
encoded in the genome of a host cell and upon expression the computational ma-
chinery would autonomously form within the cell [40, 41, 42]. Any computational
device small enough to fit within a cell will be severely limited in the amount of
matter that can be used to implement it. It will need to employ the physics of
its material directly for realizing its operations.

The 18 million organic compounds we known today comprise a negligible part
of the space of possible organic molecules, estimated to 1063 substances [43]. Na-
ture offers a glimpse at what is available in this space of possibilities with organ-
ised, adaptive, living, thinking, conscious matter. Following Lehn’s trail-blazing
call to “ultimately acquire the ability to create new forms of complex matter”
[32] will require information processing concepts tailored to the microphysics of
the underlying computational substrate.

Acknowledgements. Comments by Stefan Artmann, Srinandan Dasmahapa-
tra, and Denis Nicole are gratefully acknowledged.

References

1. Turing, A.M.: On computable numbers with an application to the Entschei-
dungsproblem. In: Proceedings of the London Mathematical Society. Volume 42.
(1937) 230–265 Corrections, Ibid vol. 43 (1937), pp. 544–546. Reprinted in The
Undecideable, M. Davis, ed., Raven Press, New York, 1965.

2. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, Engle-
wood Cliffs, N.J. (1967)

3. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)

4. Compañó, R.: Trends in nanoelectronics. Nanotechnology 12 (2001) 85–88

5. Chaitin, G.J.: On the length of programs for computing finite binary sequences.
J. Assoc. Comput. Mach. 13 (1966) 547–569

54 K.-P. Zauner

6. Conrad, M., Zauner, K.P.: Conformation-based computing: a rational and a recipe.
In Sienko, T., Adamatzky, A., Rambidi, N., Conrad, M., eds.: Molecular Comput-
ing. MIT Press, Cambridge, MA (2003) 1–31

7. Zauner, K.P., Conrad, M.: Molecular approach to informal computing. Soft Com-
puting 5 (2001) 39–44

8. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
Journal 5 (1961) 183–191

9. Landauer, R.: Fundamental limitations in the computational process. Berichte der
Bunsen-Gesellschaft 80 (1976) 1048–1059

10. Langdon, W.B.: How many good programs are there? How long are they? In
Rowe, J., et al., eds.: Foundations of Genetic Algorithms FOGA-7, Torremolinos,
4-6 September, Morgan Kaufmann (2002)

11. Langdon, W.B.: The distribution of reversible functions is normal. In Riolo, R., ed.:
Genetic Programming Theory and Practice, Ann Arbor, 15–17 May, Proceedings,
Dordrecht, Kluwer Academic Publishers (2003)

12. Pfaffmann, J.O., Zauner, K.P.: Scouting context-sensitive components. In
Keymeulen, D., Stoica, A., Lohn, J., Zebulum, R.S., eds.: The Third NASA/DoD
Workshop on Evolvable Hardware—EH-2001, Long Beach, 12–14 July 2001, IEEE
Computer Society, Los Alamitos (2001) 14–20

13. Conrad, M.: Scaling of efficiency in programmable and non-programmable systems.
BioSystems 35 (1995) 161–166

14. Conrad, M.: The price of programmability. In Herken, R., ed.: The Universal
Turing Machine: A Fifty Year Survey. Oxford University Press, New York (1988)
285–307

15. Partridge, D.: Non-programmed computation. Communications of the ACM 43
(2000) 293–302

16. Schüz, A.: Neuroanatomy in a computational perspective. In Arbib, M.A., ed.:
The Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge,
MA (1995) 622–626

17. Cariani, P.: To evolve an ear: epistemological implications of Gordon Pask’s elec-
trochemical devices. Systems Research 10 (1993) 19–33

18. Thompson, A., Layzell, P., Zebulum, R.S.: Explorations in design space: Uncon-
ventional electronics design through artificial evolution. IEEE Trans. Evol. Comp.
3 (1999) 167–196

19. Miller, J.F., Downing, K.: Evolution in materio: Looking beyond the silicon box.
In: 2002 NASA/DoD Conference on Evolvable Hardware (EH’02), July 15 - 18,
2002, Alexandria, Virginia, IEEE (2002) 167–176

20. Conrad, M.: Information processing in molecular systems. Currents in Modern
Biology (now BioSystems) 5 (1972) 1–14

21. Zauner, K.P., Conrad, M.: Parallel computing with DNA: toward the anti-universal
machine. In Voigt, H.M., Ebeling, W., Rechenberg, I., Schwefel, H.P., eds.: Par-
allel Problem Solving from Nature: PPSN IV. Volume 1141 of Lecture Notes in
Computer Science., Berlin, Springer-Verlag, Berlin (1996) 696–705

22. Conrad, M.: The seed germination model of enzyme catalysis. BioSystems 27
(1992) 223–233

23. Adler, J., Tso, W.W.: “Decision”-making in bacteria: Chemotactic response of
Escherichia coli to conflicting stimuli. Science 184 (1974) 1292–1294

24. Scharf, B.E., Fahrner, K.A., Turner, L., Berg, H.C.: Control of direction of flagellar
rotation in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 95 (1998) 201–206

25. Wikoff, W.R., Johnson, J.E.: Virus assembly: Imaging a molecular machine. Cur-
rent Biology 9 (1999) R296–R300

From Prescriptive Programming of Solid-State Devices 55

26. Ban, N., Nissen, P., Hansen, J., Moore, P.B., Steitz, T.A.: The complete atomic
structure of the large ribosomal subunit at 2.4 å resolution. Science 289 (2000)
905–920

27. Müller, A., Beckmann, E., Bogge, H., Schmidtmann, M., Dress, A.: Inorganic
chemistry goes protein size: a mo368 nano-hedgehog initiating nanochemistry by
symmetry breaking. Angew. Chem. Int. Ed. Engl. 41 (2002) 1162–1167

28. Lehn, J.M.: Supramolecular chemistry—scope and perspectives: Molecules, super-
molecules and molecular devices. Angewandte Chemie, Int. Ed. Engl. 27 (1988)
90–112

29. Seeman, N.C.: DNA in a material world. Nature (2003) 427–431
30. Zhang, S.: Fabrication of novel biomaterials through molecular self-assembly. Na-

ture Biotechnology 21 (2003) 1171–1178
31. Conrad, M.: Quantum mechanics and cellular information processing: The self-

assembly paradigm. Biomedica Biochimica Acta 49 (1990) 743–755
32. Lehn, J.M.: Supramolecular chemistry: from molecular information towards self-

organization and complex matter. Reports on Progress in Physics 67 (2004) 249–
265

33. Dittrich, P., Ziegler, J., Banzhaf, W.: Artificial chemistries—a review. Artificial
Life 7 (2001) 225–275

34. Whiteside, G.M., Mathias, J.P., Seto, C.T.: Molecular self-assembly and
nanochemistry: A chemical strategy for the synthesis of nanostructures. Science
254 (1991) 1312–1319

35. Ziegler, J., Dittrich, P., Banzhaf, W.: Towards a metabolic robot control system.
In Holcombe, M., Paton, R., eds.: Information Processing in Cells and Tissues.
Plenum Press, New York (1998) 305–317

36. Adamatzky, A., Melhuish, C.: Parallel controllers for decentralized robots: towards
nano design. Kybernetes 29 (2000) 733–745

37. Adamatzky, A., de Lacy Costello, B., Melluish, C., Ratcliffe, N.: Experimental
implementation of mobile robot taxis with onboard Belousov-Zhabotinsky chemical
medium. Materials Science & Engineering C 24 (2004) 541–548

38. Elliott, T., Shadbolt, N.R.: Developmental robotics: manifesto and application.
Phil. Trans. R. Soc. Lond. A 361 (2003) 2187–2206

39. Hasslacher, B., Tilden, M.W.: Living machines. Robotics and Autonomous Systems
(1995) 143–169

40. Atkinson, M.R., Savageau, M.A., Myers, J.T., Ninfa, A.J.: Development of genetic
circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli. Cell
113 (2003) 597–607

41. Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., Shapiro, E.: An autonomous molec-
ular computer for logical control of gene expression. Nature 429 (2004) 423–429

42. Blake, W.J., Isaacs, F.J.: Synthetic biology evolves. Trends in Biotechnology 22
(2004) 321–324

43. Scheidtmann, J., Weiß, P.A., Maier, W.F.: Hunting for better catalysts and
materials—combinatorial chemistry and high throughput technology. Applied
Catalysis A: General 222 (2001) 79–89

J.-P. Banâtre et al. (Eds.): UPP 2004, LNCS 3566, pp. 56 – 72, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Relational Growth Grammars – A Graph Rewriting
Approach to Dynamical Systems with a Dynamical

Structure

Winfried Kurth1, Ole Kniemeyer1, and Gerhard Buck-Sorlin1,2

1 Brandenburgische Technische Universität Cottbus, Department of Computer Science,
Chair for Practical Computer Science / Graphics Systems,

P.O.Box 101344, 03013 Cottbus, Germany
{wk, okn}@informatik.tu-cottbus.de

2 Institute of Plant Genetics and Crop Plant Research (IPK), Dept. Cytogenetics,
Corrensstr. 3, 06466 Gatersleben, Germany
Buck-Sorlin@ipk-gatersleben.de

Abstract. Relational growth grammars (RGG) are a graph rewriting formalism
which extends the notations and semantics of Lindenmayer systems and which
allows the specification of dynamical processes on dynamical structures, parti-
cularly in biological and chemical applications. RGG were embedded in the
language XL, combining rule-based and conventional object-oriented con-
structions. Key features of RGG and of the software GroIMP (Growth grammar
related Interactive Modelling Platform) are listed. Five simple examples are
shown which demonstrate the essential ideas and possibilities of RGG: signal
propagation in a network, cellular automata, globally-sensitive growth of a
plant, a "chemical" prime number generator, and a polymerisation model using
a simple mass-spring kinetics.

1 Introduction

Rule-based programming is one of the traditionally acknowledged paradigms of pro-
gramming [5], but its application has in most cases been restricted to logical inference
or to spaces with restricted forms of topology: grids in the case of cellular auto-
mata [20], locally 1-dimensional branched structures in the case of classical L-
systems [14]. Recently, there has been growing interest in rule-based simulation of
dynamical systems with a dynamical structure, using diverse types of data structures
and topologies, motivated by biological and chemical applications [7].

In this paper we propose a rewriting formalism, "relational growth grammars"
(RGG), acting on relational structures, i.e. graphs with attributed edges, which
generalizes L-systems and allows the specification of dynamical processes on
changing structures in a wide field of applications. By associating the nodes of the
graphs with classes in the sense of the object-oriented paradigm, we obtain a further
degree of flexibility. Here we will explain the fundamental concepts and show simple
examples with the aim to demonstrate the essential ideas and possibilities of this
approach.

 RGG – A Graph Rewriting Approach to Dynamical Systems 57

Our work was motivated by the demand for a uniform modelling framework cap-
able of representing genomes and macroscopic structures of higher organisms
(plants), all in the same formalism [11]. Within the frame of a "Virtual Crops" project,
we thus created the language XL, an extension of Java allowing a direct specification
of RGG, and the software GroIMP (Growth-Grammar related Interactive Modelling
Platform) enabling interpretation of XL code and easy user interaction during
simulations [10].

2 Relational Growth Grammars

An RGG rule is a quintuple (L, C, E, R, P) with L ∪ C ≠ ∅. L, the left-hand side
proper of the rule, is a set of graphs with node labels and edge labels. A derivation
step of an RGG involves the removal of a copy ("match") of one rule's L from a
(usually) larger graph and the insertion of the corresponding R, the right-hand side
proper of the rule, which is also a set of graphs (with the underlying node sets not
necessarily disjunct from those of L). C is again a set of labelled graphs (with the
node set possibly but not necessarily overlapping with that of L) and is called the
context of the rule. For a rule, in order to be applicable the set C must match with a set
of subgraphs of the given graph in a way which is consistent with the match of L, but
in the derivation step the context is not removed (except for the parts that are also in
L). This notion of context generalizes the "left" and "right contexts" of context-
sensitive L-systems [14] and enables a flexible control of subgraph replacement by
specifying a local situation which must be given before a rule can be applied. E is a
set of logical expressions in some syntax which we are not going to define in detail
here. These expressions usually contain some parameters referring to node labels
from L ∪ C and are interpreted as conditions which must be met before the rule can
be applied. Conditions may also contain some function calls evoking a random
number generator: if this is the case the rule is called stochastic. Finally, P is a
(possibly empty) list of commands which are also not specified syntactically here,
possibly involving parameters referring to node labels from L ∪ C ∪ R and
parameters from E. P specifies a procedural piece of code which is executed after rule
application. We write RGG rules in the form

(* C *), L, (E) ==> R { P };

the order of the C, L and E parts being indeterminate.
Figure 1 illustrates a simple example of an RGG rule with C = E = P = ∅ (upper

part) and its application to a graph (lower part). A possible text notation for this rule
in our XL syntax would be i –b–> j, j –a–> k, k –a–> i ==> j .

In our applications, we found it useful to have a short notation for rules with L = R
= ∅. In this case, only parameters from the context C (and possibly from E) appear in
the procedural part, and we write

C ,(E) ::> P .

58 W. Kurth, O. Kniemeyer, and G. Buck-Sorlin

Fig. 1. An RGG rule in graphical notation (upper part) and its application to a given graph
(lower part). The shaded nodes are matched by the left-hand side of the rule From ([11])

An RGG is a set of RGG rules. In the language XL, RGG rules can be put together in
blocks, thus enabling an additional hierarchy of rules and an explicit control of their
order of application, like in table L-systems [16]. An RGG-based derivation is a
sequence of discrete, successive derivation steps, starting from a given initial graph
(axiom). In each step, one or all matching rules are applied, depending on the chosen
mode of rule application (see below).

RGG were partly inspired by the PROGRES graph grammar system [18]. Further-
more, features from parametric L-systems were incorporated into the RGG formalism.
Particularly, commands from turtle geometry (cf. [14]) are allowed as nodes and can
serve to interpret the derived graphs geometrically.

Pure rule-based programming does not in all situations allow an intuitive access.
The notion of "programmed graph replacement systems" [17] was introduced to over-
come this limitation: additional programming structures, following a different para-
digm, are supported. In the RGG approach, the inclusion of P in our definition allows
the execution of code from a conventional object-oriented language. Additionally, in
XL such a language (Java) serves as a framework for the whole RGG and allows the
user to define constants, variables, classes and methods. Furthermore, graph nodes in
XL are Java objects and can carry arbitrary additional information and functionalities,
e.g., concerning geometry, visual appearance or animated behaviour.

3 Key Features of RGG

Two issues require special consideration in graph grammars: the mode of rule
application and the embedding of the right-hand side into the graph immediately after
rule application. Sequential and parallel mode of application are well known from
Chomsky grammars and L-systems, respectively. In most physical, chemical and
biological applications, the parallel mode turns out to be more appropriate. However,
the parallel application of rules requires the specification of a conflict resolution

 RGG – A Graph Rewriting Approach to Dynamical Systems 59

strategy for overlapping matches of left-hand sides. Future extensions of the RGG
formalism will contain explicit support for the most common conflict resolution
schemes. So far, we have considered only a special case: the multiple matching of L
with one and the same copy of L in the graph. This always occurs where L allows
some automorphism and where C and E do not enforce a selection between the
matches. The standard mode of rule application realized in XL, which is basically the
single-pushout approach (also known as the algebraic or Berliner approach) [3], tries
to apply the rule to every match. In many applications it is more meaningful to apply
a rule only once to an underlying node set of a match. The selection among the iso-
morphic matches has then to be done either nondeterministically or following a
specified strategy. This option will be implemented in a later XL version; currently it
must be emulated by additional conditions in part E of the rule.

Our standard mechanism of embedding simply transfers incoming (resp. outgoing)
edges of the textually leftmost (resp. rightmost) nodes of L to the textually leftmost
(resp. rightmost) nodes of R. Future versions of XL will allow other embedding
strategies.

We have shown in another paper [11] that it is straightforward to represent typical
standard data structures like sets, multisets, lists or multiple-scaled trees as labelled
graphs. The RGG formalism provides standard types of edges (i.e., special edge
labels) to represent common relations occurring in these data structures, like the
successor relation in lists or the membership relation in sets. Because the successor
relation is used so frequently, it is denoted by a blank in our notation, i.e., a b is
equivalent to a –successor–> b. Additionally, the user can define new relations,
using e.g. algebraic operators like the transitive hull, which can be employed in RGG
rules in the same way as edges.

Several graph transformation software systems are already available, e.g., AGG [4]
and PROGRES [18]. However, these systems—like most of the graph-grammar
approaches from the Seventies and Eighties, see, e.g., [13, 8]—do not support the
parallel mode of rule application which is essential for many biological applications.
Neither do they allow a syntax which directly extends some well-established notations
from L-system-based plant modelling [14]. Since our target group mainly consists of
researchers from the plant sciences, there was sufficient motivation to create our own
tool.

Nevertheless, advanced tools like PROGRES can serve as a model for further
development of the RGG formalism. The PROGRES language, for example, provides
built-in semantics for consistency verification of the graph structure; it supports user-
definable derived attributes, post-conditions which are checked after application of
graph productions, and a more versatile graph query language. At least some of these
features will be included in future specifications of our RGG formalism.

4 GroIMP

The realisation of RGG-based models – by means of the language XL – is one of the
aims of the software GroIMP (Growth-Grammar related Interactive Modelling

60 W. Kurth, O. Kniemeyer, and G. Buck-Sorlin

Platform). A sheer XL compiler would not be sufficient; at least an immediate
visualisation of the outcome and basic user interaction has to be possible. These
features are well-known in present modelling platforms, cf. [15] for a platform which
is widely used in the field of L-system-based plant modelling. The software GroIMP
includes these features; they are built on top of a general platform infrastucture which
provides, among others,

• 3D visualisation and manipulation,
• property editors for objects of the scene,
• an integrated XL compiler,
• integrated text editors for XL source code,
• a file import/export to VRML, POV-Ray, cpfg [15],
• an HTML viewer for model documentation.

The platform is implemented in Java. Figure 2 shows a screenshot.
Compared to other integrated graph grammar systems, GroIMP focuses on a

seamless integration of graph grammars into a 3D modelling platform. Hence, tools
like graphical rule editors or topological graph viewers, which are present in
PROGRES or AGG, are missing at the moment; on the other hand, GroIMP contains
a rich set of node classes representing 3D geometry (geometric primitives, parametric
surfaces, lights) which can be visualized and interactively modified within GroIMP.

Fig. 2. Screenshot of GroIMP, showing the initial situation of the "Game of Life" example (see
Example 2 below)

 RGG – A Graph Rewriting Approach to Dynamical Systems 61

Though our RGG implementation XL is tightly integrated in GroIMP, both XL and

GroIMP can be used separately; the coupling is established by XL's graph model
interface. This interface can be implemented by other applications which contain
graph-like structures and want XL's graph grammar capabilities to operate on these
structures. This has been done for the commercial 3D modelling platform CINEMA
4D as part of a student's thesis [9].

GroIMP is an open-source project; it is distributed under the terms of the General
Public License at http://www.grogra.de.

5 Examples

5.1 Example 1: Spreading of a Signal in a Network

We assume that a signal in each time step jumps from a given cell to all adjacent cells
of a network and changes the state of each cell it reaches from "inactive" (0) to
"active" (1). In our implementation in XL we make use of the possibility to use
objects as nodes which can carry arbitrary additional data, in this case the state of the
cell. "Cell" is a predefined class which contains a variable called "state", but such a
class could also be defined by the user. The signal propagation requires only one
RGG rule:

(* c1: Cell *) c2: Cell, (c1.state == 1) ==> c2(1).

Here, the blank between *) and c2 denotes the successor relation in the network
where the rule is to be applied. "Cell" is the node type (class), "c1" and "c2" are
labels of nodes serving to distinguish them and to refer to them on the right-hand side,
and "state" is a variable of "Cell" which can likewise be seen as a parameter of
the nodes and which is forced to 1 at node c2 on the right-hand side. The way in
which the context is specified in this rule is a shorthand notation for the definition-
conforming rule

(* c1: Cell c2: Cell *), c2, (c1.state == 1) ==> c2(1).

The result of two steps of rule application is illustrated in Figure 3.

Fig. 3. Application of the signal propagation rule to a network. Dark nodes have state 1, light-
grey nodes 0

62 W. Kurth, O. Kniemeyer, and G. Buck-Sorlin

This example simulates the dynamics of some state variable, but there is no
dynamical structure; the topology of the network remains unchanged. Hence this is a
simple case, however, using the same basic rule structure it is possible to simulate the
dynamics of complex metabolic and gene regulation networks, using real-valued con-
centrations and Michaelis-Menten kinetics in the state-changing rules (see [2, 11] for
examples).

5.2 Example 2: "Game of Life"

Cellular automata (CA) can easily be expressed as RGG. This is demonstrated at the
example of the "Game of Life", a well-known 2-dimensional CA with nontrivial
longterm behaviour [6]. We use again the class "Cell", with state values of 1, for
"living", and 0, for "dead". The following snippet of XL code contains the complete
specification of the CA in the form of one declaration of a function and three rules.

boolean neighbour(Cell c1, Cell c2)
 { return (c1 != c2) && (c1.distanceLinf(c2) < 1.1); }

public void init()
 [
 Axiom ==> XTranslation(-4) YTranslation(2) ZTranslation(-5)
 for(i=0..9) for(j=0..9)
 ([Cell(i, j, (i>=2)&&(i<8)&&(j>=2)&&(j<8)
 &&((i<5)^(j<5)))]);
]

public void run()
 [
 x:Cell(1),
 (!(sum((* x -neighbour-> #Cell *).state) in {2..3}))
 ==> x(0);
 x:Cell(0),
 (sum((* x -neighbour-> #Cell *).state) == 3)
 ==> x(1);
]

The declaration in the first two lines defines the Moore neighbourhood as a new
edge type between "Cell" nodes, based upon a geometric relation (checkerboard
distance, denoted distanceLinf, lower than 1.1). The block "init" contains only
the start rule: The start symbol, Axiom, is transformed into a square (10×10) pattern
of cells. The "for" construction generalizes the repetition operator used in L-systems
[12]. It simply iterates the subsequent graph specification; the number of repetitions
is given by the range of the variable in its argument. The state of the newly created
cells (living/dead) is specified by a boolean expression, which is arbitrarily chosen
here. The only purpose of the three translation commands is to provide a better initial
view on the plane where the cells are arranged. This initialisation rule could also be
replaced by a rule which enables interactive choice of living cell positions.

The block "run" contains the transition function of the CA in the form of two
RGG rules. These rules cover only the cases where the state switches from 0 to 1 or
vice versa; no rule is necessary to force a cell not to change its state. The conditions in

 RGG – A Graph Rewriting Approach to Dynamical Systems 63

both rules make use of an arithmetical-structural operator, sum, which was first
introduced in the context of L-systems [12]. Its argument is iteratively evaluated for
all nodes matching with the node marked by # in the context specification (* ... *)
and added up. Figure 4 demonstrates the possibility of user interaction during RGG
execution, which is provided by the GroIMP software. (a) and (b) show successive
steps in the undisturbed development of a "Game of Life" configuration (living cells
are black and enlarged). After every step, the user can stop the RGG derivation pro-
cess and interfere manually; e.g., he may change the state of a cell. In (c), a cell was
even removed from its position and placed at an irregular location on the grid. Rule
application can nevertheless be resumed, leading to a "disturbed" dynamics (d).

(a)

(b)

(c)

(d)

Fig. 4. A symmetric configuration in the Game of Life (a) and its successor configuration (b).
In (c), one "living" cell from configuration (b) was moved upwards by the user. The disturbed
configuration develops asymmetrically, as shown in (d) after several steps

In this example, structural change can only be obtained by user intervention. The
next example shows the growth of a geometrical structure.

5.3 Example 3: A Distance-Sensitive Plant

The following rules simulate the growth of a plant which consists of a main axis, ending in
an apical meristem m, and short lateral branches (emanating from invisible nodes of type
"s") with the capacity of (terminal) flowering. The apical bud of such a branch is
transformed into a visible flower only if there is no other bud or flower closer to the bud
than a given threshold distance. This makes biological sense as it simulates the avoidance
of overcrowding in branched structures, an important mechanism which prevents, e.g.,

64 W. Kurth, O. Kniemeyer, and G. Buck-Sorlin

mutual mechanical damage by friction, mutual shading, or the transfer of diseases. The
corresponding RGG is similar to a classical L-system, but the global character of the
sensitivity involved in the distance criterion excludes a realisation as a "context-sensitive"
L-system ("context" being interpreted in this case with respect to strings).

module m(int x) extends Sphere(3); /* apical meristem */
module s; /* lateral shoot */
module inflor; /* inflorescence */
module bud extends inflor; /* flowering bud */

public void init()
 [Axiom ==> [m(10)] XTranslation(30) [m(10)]
 XTranslation(30) [m(10)];
]

public void run()
 [
 m(x) ==> F(12) if (x>0) (RH(180) [s] m(x-1));
 s ==> RU(irandom(50, 70)) F(irandom(15, 18)) bud;
 b:bud ==> inflor
 if (forall(distance(b,(* #x:inflor,(b!=x)*)) > 13)
 (RL(70) [F(4) RH(50)
 for (1..5) (RH(72)
 [RL(80) F(3)])]);
]

Fig. 5. Growth of a "sensitive" plant with flowering restricted to conditions where a distance
threshold to the nearest competing object must be surpassed

The rule under "init" creates "seeds" (m(10)) for three plants, equidistantly
spaced in x direction, using a translation command. In the "run" part, designed for
modelling the growth process, the system uses the turtle commands F (creation of a
cylinder) and RH, RL, RU (spatial rotations), cf. [14, 12]. The second rule of "run" is

 RGG – A Graph Rewriting Approach to Dynamical Systems 65

stochastic and introduces some randomness in the branching angles and branch
lengths. The third rule makes again use of arithmetical-structural operators (forall,
distance) and iterative evaluation of a set defined by a context definition. Note that
the class hierarchy specified in the module declarations is used to count not only
inflorescences, but also buds as potentially flower-inhibiting objects (bud extends
inflor). Furthermore, conditional and loop structures (if, for) are used to organize
the right-hand side. Figure 5 shows two stages of a derivation which started with three
"m" nodes (meristems). Flowering turns out to be partially inhibited for the central
plant, due to over-crowding.

5.4 Example 4: A Prime Number Generator

RGG can also be used for "chemical computing". The underlying paradigm is here that
there is an unstructured "soup" of objects (molecules) which collide with each other at
random and can undergo certain specified "reactions" when they collide. A very simple
example, taken from [19], demonstrates this principle at a "soup of numbers". The
objects are simply integers here. The first RGG rule generates therefore a large number
(1000) of random integers, taken from a certain range (here, between 2 and 100):

Axiom ==> for (i=1..1000) (irandom(2, 100),);

In contrast to the previous example, there is no graph structure and no geometrical
information associated with these integer "molecules". In fact, our graph is
degenerated to a set of "naked" nodes, carrying integers as attributes. To this set,
which can be interpreted as a multiset of integers and which was generated by one
application of the above rule, the following rule is now applied iteratively and in a
sequential manner (in the case of parallel application, the same object could react
twice, and this is not intended here):

(* a:int *), b:int, (a < b && b % a == 0) ==> `b / a`;

Only the integer object b is the left-hand side proper of this rule, and it is going to
be replaced by an integer object carrying the value b/a. However, this happens only
if another integer a can be found in the multiset (this is certainly the case in our large
soup!), and if this integer is a proper divisor of b. The presence of a is demanded by
the context (* ... *), the divisibility condition (together with a ≠ b) by the logical ex-
pression forming the condition of the rule. The iterated application of this rule,
modelling an abstract form of repeated "collisions" and "reactions", will in the long
run lead to an increasing proportion of prime numbers in the soup, finally
approaching 100 per cent. There is no graphical output of this model (integers have no
"shape"), but we could include an output command printing the numbers on a text
screen. We emphasize the purely declarative nature of this algorithm. For each rule
application, the integers b and a are taken from the "soup" at random. Hence the
convergence to a "prime number soup" can only be stated statistically.

5.5 Example 5: A Polymerisation Model with Mass-Spring Kinetics

Our last example will combine structural changes with dynamic, physically-based
simulation of state variables. Furthermore, it shows again the applicability of RGG in

66 W. Kurth, O. Kniemeyer, and G. Buck-Sorlin

the field of chemistry. We have once more a chemical "soup" here, but a simple
geometrical—or mechanical—structure is now imposed on it: Each object has a
position and a velocity.

Spherical "monomers" are enclosed in a rectangular "cubicle" and move in random
initial directions with constant velocity. The cubicle's boundaries are reflecting. Each
time two monomers have a close encounter, a chemical bond is formed between them
which is modelled in analogy to a spring. Impulse is conserved in the resulting dimer.
Reactions resulting in a bond can also take place between still unsaturated ends of a
polymer. It is assumed that each monomer has only two binding sites. Thus the
resulting polymers have either a chain or a ring topology (see Fig. 6).

The RGG specifying this behaviour essentially consists of not more than 2 module
definitions ("Mon", i.e. monomer, and "Spring") and 4 rules: one for initialisation,
one for constant movement with reflection at the walls, one for spring mechanics and
one for chemical binding. (We have added line numbers in the listing for con-
venience.)

 1 module Mon (float radius, float vx, float vy,
 2 float mass, int valence)
 3 extends Sphere (radius);
 4 module Spring (float rate, float friction,
 5 float dx, float dy)
 6 extends Cylinder (0.01);
 7 const float D_T = 0.03;
 8 static Mon newmon (float mass, float x, float y,
 9 float vx, float vy, int val)
10 { Mon a = new Mon (0.1*Math.pow(mass, 0.333),
11 vx, vy, mass, val);
12 a.basis.set(x, y, 0);
13 return a;
14 }
15
16 public void init()
17 [Axiom ==> for(i=1..15)
18 (newmon(1, random(-1,1), random(-1,1),
19 random(-0.1,0.1), random(-0.1,0.1), 0) ,)
20 Line(-1,-1,0,2,0,0) Line(1,-1,0,0,2,0)
21 Line(1,1,0,-2,0,0) Line(-1,1,0,0,-2,0);
22]
23
24 public void run()
25 { apply("mechanics", 10); chemistry(); }
26
27 private void mechanics()
28 [l:Mon s:Spring(rate, fr, dx, dy) r:Mon ::>
29 { float fx = rate * (r.basis.x – l.basis.x – dx)
30 + fr * (r.vx – l.vx),
31 fy = rate * (r.basis.y – l.basis.y – dy)
32 + fr * (r.vy – l.vy);
33 l.vx :+= D_T*fx/l.mass; l.vy :+= D_T*fy/l.mass;
34 r.vx :-= D_T*fx/r.mass; r.vy :-= D_T*fy/r.mass;
35 s.basis.set(l.basis);

 RGG – A Graph Rewriting Approach to Dynamical Systems 67

36 s.axis.set(r.basis.x - l.basis.x,
37 r.basis.y - l.basis.y, 0);
38 }
39 a:Mon ::>
40 { a.basis.x += D_T*a.vx; a.basis.y += D_T*a.vy;
41 if (((a.basis.x > 1) && (a.vx > 0)) ||
42 ((a.basis.x < -1) && (a.vx < 0)))
43 { a.vx = -a.vx; } /* reflection */
44 if (((a.basis.y > 1) && (a.vy > 0)) ||
45 ((a.basis.y < -1) && (a.uy < 0)))
46 { a.vy = -a.vy; } /* reflection */
47 }
48]
49
50 private void chemistry()
51 [a:Mon, b:Mon, ((a.getId() < b.getId())
52 && (a.valence <= 1) && (b.valence <= 1)
53 && (a.basis.distance(b.basis)
54 < 1.2 * (a.radius + b.radius))
55 && !(b in (* a Spring #? *)))
56 ==> a Spring(1, 0.2, b.basis.x - a.basis.x,
57 b.basis.y - a.basis.y) b
58 { a.valence++; b.valence++; };
59]

The first three lines declare that a "Mon(omer)" object inherits all properties of a
sphere, but has additionally the parameters vx, vy (velocity in x and y direction),
mass and valence. Similarly, "Spring" (lines 4–6) is a subclass of Cylinder,
carrying the additional parameters rate, friction (both used for calculating the
effect of the spring on the movement of the monomers which it connects, lines 29–38)
and dx, dy (extension of the spring in its stable state). Lines 7–14 declare the basic
time interval for all dynamical calculations (D_T) and a constructor function for new
monomers, initialising the parameters of the newly created monomer with the values
given in the function call (this call appears only in line 18 when the scenery is
initialised) and calculating the radius of the spherical monomer from its mass by the
formula

31.0 mr ∗= .

The initialisation rule (lines 17–21) creates 15 monomers, each with mass 1, placed
at random positions inside a square extending from –1 to 1 in x and y direction, and
with random velocities between –0.1 and 0.1 in each direction. The "valence",
denoting the number of already saturated chemical binding sites, of these new
monomers is 0, because they have not yet formed any bonds. Additionally, four lines
delimiting the borders of the allowed space for the monomers are created in lines
20–21. The lines are given by the x, y, z coordinates of their start positions and
direction vectors.

The block in lines 24–25 is some sort of "meta-rule" or table controlling the order
of application of rules from different blocks. In our model, 10 steps of purely
mechanical movements ("mechanics") alternate with 1 step of "chemistry" where the

68 W. Kurth, O. Kniemeyer, and G. Buck-Sorlin

possibility to create new bonds is checked and such bonds are formed. The reason for
this arrangement is that the "chemistry" rule (lines 50–59) with all its conditions takes
more computation time, and so it would be unefficient to check it again after each
minor movement.

The "mechanics" block consists of two "update" rules both consisting only of a
context and a procedural part, therefore using a "::>" transformation arrow which
ensures that only certain parameters specified on the left-hand side are modifed in the
procedural part on the right-hand side, leaving the graph structure unchanged
otherwise. The first rule (lines 28–38) calculates the impact of the spring force on the
velocities of two monomers which are already connected by a spring. It also updates
the spring parameters. The second rule (lines 39–47) calculates the new position of a
monomer in the time interval D_T, based on its current velocity. It takes also care of
the special situation that arises when the center of the monomer breaches one of the
four borders: In this case, an "ideal" reflection law (without energy loss) is applied.
(No deformation of the monomers or of the walls is considered in this simple model.
Furthermore, a monomer can slightly overlap with the exterior because it is only its
midpoint which is checked for collision.) As both rules consist largely of conventional
imperative code, we do not comment on the details here. However, we draw attention
to the use of the special colon-prefixed incrementation/decrementation operators :+=
and :–= in lines 33–34: They enforce a quasi-parallel execution of the intended
modification of values of variables, in contrast to the ordinary incrementation
operators in line 40 where this parallel treatment is not necessary (the rule
manipulates only one monomer anyway). The necessity for a quasi-parallel mode of
incrementation in lines 33–34 arises from the possibility that a monomer is connected
with several springs; in this case, the increments coming from all rule applications are
internally summed up and applied to vx and vy only at the end.

The "chemistry" rule (lines 50–59) looks for two unsaturated monomers a and b.
"Unsaturated" means that the valence has not yet reached its maximal value, i.e. two.
The rule must be applicable to each pair only once; this is ensured by a "trick",
namely to compare the unique identifiers of each of the two objects (line 51) and to
impose the condition that they are in ascending order. (As already mentioned in
section 3, later versions of XL will provide a more intuitive way of guaranteeing this
application "to each subset only once".) A further condition for the formation of a
new bond is that both monomers are close enough to each other (lines 53–54).
Finally, it has to be checked whether they are already connected by a spring (line 55).
This is done by testing if b belongs to a certain, locally defined context (* a
Spring #? *). On the right-hand side of the rule, a new spring is created and
initialized between a and b (lines 56–57), and the valence of both monomers is
increased by 1 (line 58). Because of the valence condition, the resulting "polymers"
can only have linear or ring structure (Fig. 6). An animated display of the resulting
movements would show that the velocity of the larger spring-connected chains is
normally slower than that of the single monomers.

The XL code given above can easily be modified into a 3D model with monomers
and polymers moving in the interior of a box; see Fig. 7 for a snapshot of the
corresponding output.

 RGG – A Graph Rewriting Approach to Dynamical Systems 69

(a) (b) (c)

Fig. 6. Development simulated by the polymerisation model. (a) initial situation: 15 separate
monomers, (b) after several collisions, two chains and one ring (of three monomers, one of
them being hidden in the picture) have formed, (c) finally one large chain and the small ring
remain

Fig. 7. Snapshot of the 3D version of the polymerisation model after several collisions

6 Conclusions

Relational growth grammars permit the writing of short and comprehensible model
specifications for a wide field of scientific applications, ranging from physical and
chemical simulations (Example 5) to the growth of plants (Example 3), genetic
processes and metabolic networks [2, 11]. In particular at the example of a multi-
scaled ecophysiological model of barley (Hordeum vulgare L.) [2], we have shown
that both the new formalism (RGG) and the modelling language we have
implemented it into (XL) are flexible and versatile enough to yield validable results
that can compete with standard methods for the modelling of genetic model and crop
plants (instead of simplified "toy models"); yet with the advantage that sometimes
cumbersome interfaces between different modules can now be disposed of, as various

70 W. Kurth, O. Kniemeyer, and G. Buck-Sorlin

biological phenomena such as metabolic and genetic regulatory networks, signal and
nutrient transport processes and morphogenesis which take place at a single or several
different scales of observation synchronously can now be represented in one and the
same formalism.

RGG are essentially rule-based, but because they operate on unordered sets of
graphs, they share also some characteristics with chemical computing. However, they
do not (yet) have the full complexity of advanced forms of chemical computing where
rules can also be dealt with as parts of the chemical solution ("active molecules"), cf.
[1]. Instead, in the language XL the "unconventionality" of rule-based and chemical
computing is moderated by an implementation of RGG that enables straightforward
combination with procedural and object-oriented constructions, i.e., with
"conventional" programming. This hybrid approach enhances the accessibility of
RGG-based modelling for scientists who are accustomed to classical imperative
languages. Hence we see an important potential for future applications.

The current state of the implementation of the language XL is far from complete. Not
all features of the Java language have been integrated, and especially the graph query
language has to be extended by more powerful node patterns and path expressions. In
addition, more conditions on rule application, more specific embedding prescriptions and
strategies for conflict resolution of overlapping matches have to be developed and
implemented. Another topic for improvement is the implementation of efficient graph
matching algorithms, since these play the key role in runtime efficiency of grammar-based
systems. However, even in its current state, XL by far exceeds the modelling capabilities
of traditional, widely-used L-system-based approaches.

Particularly, the potential of RGG for the representation of processes in the fields
of genetics and genomics has only just begun to be explored by us [2, 11]: In the
future, more complicated biological examples involving multiple interactions between
DNA, RNA and proteins (e.g., posttranscriptional and posttranslational control)
would be within reach, given further consequent implementation of RGG principles
into the XL language and the corresponding software environment, GroIMP [10].

Acknowledgements

This research was funded by the DFG under grant Ku 847/5-1 in the framework of the
research group "Virtual Crops". The third author thanks the IPK, in particular Dr.
Patrick Schweizer, for providing office facilities while being a guest researcher. All
support is gratefully acknowledged.

References

1. Banâtre, J.-P., Fradet, P., Radenac, Y.: Chemical specification of autonomic systems. In:
Proceedings of the 13th International Conference on Intelligent and Adaptive Systems and
Software Engineering (IASSE'04), July 2004,

 http://www.irisa.fr/paris/Biblio/Papers/Banatre/BanFraRad04IASSE.pdf.

 RGG – A Graph Rewriting Approach to Dynamical Systems 71

2. Buck-Sorlin, G. H., Kniemeyer, O., Kurth, W.: Barley morphology, genetics and hormonal
regulation of internode elongation modelled by a Relational Growth Grammar. New
Phytologist 166 (2005), in press.

3. Ehrig, H., Korff, M., Löwe, M., Ribeiro, L., Wagner, A., Corradini, A.: Algebraic
approaches to graph transformation—part II: Single pushout approach and comparison
with double pushout approach. In: G. Rozenberg (ed.): Handbook of Graph Grammars and
Computing by Graph Transformation, Vol. 1, Foundations. World Scientific, Singapore
(1997) 247–312.

4. Ermel, C., Rudolf, M., Taentzer, G.: The AGG-approach: Language and tool environment.
In: G. Rozenberg (ed.): Handbook of Graph Grammars and Computing by Graph Trans-
formation, Vol. 2, Applications, Languages and Tools. World Scientific, Singapore (1999)
551–604.

5. Floyd, R.: The paradigms of programming. Communications of the ACM 22 (1979) 455–
460.

6. Gardner, M.: Wheels, Life, and Other Mathematical Amusements. W.H. Freeman, New
York (1983).

7. Giavitto, J.-L., Michel, O.: MGS: A rule-based programming language for complex objects
and collections. Electronic Notes in Theoretical Computer Science 59 (4) (2001).

8. Göttler, H.: Graph grammars, a new paradigm for implementing visual languages. In: N.
Dershowitz (ed.): Rewriting Techniques and Applications. Springer, Berlin (1989) 152–
166.

9. Herzog, R.: Ausbau eines bereits implementierten Graphtransformationstools zu einem
Plugin für Cinema 4D. Bachelor Thesis, BTU Cottbus, 2004.

10. Kniemeyer, O.: Rule-based modelling with the XL/GroIMP software. In: H. Schaub, F.
Detje, U. Brüggemann (eds.): The Logic of Artificial Life. Proceedings of 6th GWAL,
April 14–16, 2004, Bamberg, Germany. AKA, Berlin (2004) 56–65.

11. Kniemeyer, O., Buck-Sorlin, G., Kurth, W.: A graph grammar approach to Artificial Life.
Artificial Life 10 (4) (2004) 413–431.

12. Kurth, W.: Some new formalisms for modelling the interactions between plant
architecture, competition and carbon allocation. Bayreuther Forum Ökologie 52 (1998)
53–98.

13. Nagl, M.: A tutorial and bibliographical survey on graph-grammars. In: V. Claus, H.
Ehrig, G. Rozenberg (eds.): Graph-Grammars and Their Application to Computer Science
and Biology. Springer, Berlin (1979) 70–126.

14. Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer, New
York (1990).

15. Prusinkiewicz, P.: Art and science for life: Designing and growing virtual plants with L-
systems. In: C. Davidson, T. Fernandez (eds.): Nursery Crops: Development, Evaluation,
Production and Use: Proceedings of the XXVI International Horticultural Congress. Acta
Horticulturae 630 (2004) 15–28.

16. Rozenberg, G.: T0L systems and languages. Information and Control 23 (1973) 357–381.
17. Schürr, A.: Programmed graph replacement systems. In: G. Rozenberg (ed.): Handbook of

Graph Grammars and Computing by Graph Transformation, Vol. 1, Foundations. World
Scientific, Singapore (1997) 479–546.

18. Schürr, A., Winter, A.J., Zündorf, A.: The PROGRES approach: Language and environ-
ment. In: G. Rozenberg (ed.): Handbook of Graph Grammars and Computing by Graph
Transformation, Vol. 2, Applications, Languages and Tools. World Scientific, Singapore
(1999) 487–550.

72 W. Kurth, O. Kniemeyer, and G. Buck-Sorlin

19. Skusa, A., Banzhaf, W., Busch, J., Dittrich, P., Ziegler, J.: Künstliche Chemie. Künstliche
Intelligenz 1/00 (2000) 12–19.

20. Wolfram, S.: Cellular Automata and Complexity. Collected papers. Addison-Wesley,
Reading (1994).

A New Programming Paradigm Inspired
by Artificial Chemistries

W. Banzhaf1 and C. Lasarczyk2

1 Department of Computer Science, Memorial University of Newfoundland,
St. John’s NL A1B 3X5, Canada

2 Department of Computer Science, University of Dortmund,
D-44221 Dortmund, Germany

Abstract. In this contribution we shall introduce a new method of pro-
gram execution, based on notions of Artificial Chemistries. Instead of
executing instructions in a predefined sequential order, execution will
be in random order in analogy to chemical reactions happening between
substances. It turns out that such a model of program execution is able to
achieve desirable goals if augmented by an automatic program searching
method like Genetic Programming. We demonstrate the principle of this
approach and discuss prospects and consequences for parallel execution
of such programs.

1 Introduction

Is it possible to achieve reliable results by running a machine with unreliable
elements? This was a question that already John von Neumann was pondering
when thinking about the brain and its performance[14]. Computers had, for
many years, a problem of the same type. Elements of computing machinery
would break, sometimes without being noticed by the programmer or operator,
and only the results of a computation would have indicated that something
strange had happened.

Computer engineers have, through various draconic measures, succeeded in
clamping down on indeterminism in computing machinery, for instance through
binary coding of all information held in physical devices, or through introduc-
tion of error-correcting codes for transmission of information. These and other
measures, however, come at a cost in efficiency. In order to make sure that a
deterministic order of programs is followed, for example, a program counter re-
quests execution of one instruction at a time. Time is clocked, and movement
of data is heavily constricted. Sometimes two or more cycles are needed just to
move information around, energy needs to be spent to readjust electrical volt-
ages to binary levels, and more data need to be transmitted in order to secure
error correction.

In recent years, however, the specter of unreliability has come back: Neural
networks have demonstrated that non-binary (if nonlinear) elements are useful in
computing for certain functions like, e.g. pattern recognition. Quantum comput-
ing devices have been invented that work with probability bits, called qu-bits,

J.-P. Banâtre et al. (Eds.): UPP 2004, LNCS 3566, pp. 73–83, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

74 W. Banzhaf and C. Lasarczyk

instead of deterministic bits as traditional. Parallel computers have achieved
such processor density that unreliability in elements becomes a major concern
again. IBM’s BlueGene project, for instance, has so many processors that at
least once a day, a cosmic radiation event will succeed in flipping a bit. Where
and when this happens is unknown, that it happens is a statistical exercise to
calculate.

Notably the community in parallel and distributed computing has gone to
great length in securing that parallel and distributed computers provide some
sort of synchronicity between processes.

Here we argue that a particular sort of radical indeterminism can be injected
into a computing machine without prohibiting it from computing useful quan-
tities. We speak of the enforced deterministic sequentiality of computer code
that might be dissolved this way. When von Neumann et al. put forward their
proposal for a stored program computer, the invention contained actually two
important pieces, one being to store programs as data. This development opened
the way for a much more efficient method of programming than was used before,
and - at the same time - allowed for self-modifying code. The second aspect of the
invention, however, frequently underestimated in its impact, was the program
counter which would control execution of code residing in memory by providing
the address of the next instruction in memory.

It is the behavior of the program counter that we shall change in this con-
tribution, bringing it more in line in its behavior with execution of processes
in the natural world. There, synchronicity is the effect of a highly intricate and
complex construction, whereas at the lowest level of processes, things happen
asynchronously. We shall ask the question whether it is possible to have a system
without deterministic execution control. We shall put this question in the frame-
work of artificial chemistries, an area recently sprung up to study algorithms that
model and simulate chemical reaction systems for various purposes.

We shall introduce a program counter that is randomly selecting from a
set of instructions, or multi–set of instructions, rather, where a repetition of
instructions is allowed to appear in memory locations. Thus, computing un-
derstood as the transformation from input to output is different from a pre-
scribed sequence of computational steps. Instead, instructions from a multi–set
I = {I1, I2, I3, I2, I3, I1, ...} are drawn in a random order to produce a transfor-
mation result. In this way we dissolve the sequential order usually associated
with the notion of an algorithm. It will turn out, that such an arrangement is
still able to produce useful results, though only under the reign of a program-
ming method that banks on its stochastic character. This method will be Genetic
Programming.

A program in this sense is thus not a sequence of instructions but rather
an assemblage of instructions that can be executed in arbitrary order. By ran-
domly choosing one instruction at a time, the program proceeds through its
transformations until a predetermined number of instructions has been exe-
cuted. In the present work we set the number of instructions to be executed
at 3.5 times the size of the multi–set, this way giving ample chance to each

A New Programming Paradigm Inspired by Artificial Chemistries 75

instruction to be executed at least once and to exert its proper influence on
the result.

Different multi-sets can be considered different programs, whereas different
passes through a multi–set can be considered different behavioral variants of a
single program. Programs of this type can be seen as artificial chemistries, where
instructions interact with each other (by taking the transformation results from
one instruction and feeding it into another). As it will turn out, many interactions
of this type are, what in an Artificial Chemistry is called ”elastic”, in that nothing
happens as a result, for instance because the earlier instruction did not feed into
the arguments of the later.1

Because instructions are drawn randomly in the execution of the program, it
is really the concentration of instructions that matters most. It is thus expected
that “programming” of such a system requires the proper choice of concentra-
tions of instructions, similar to what is required from the functioning of living
cells, where at each given time many reactions happen simultaneously but with-
out a need to synchronicity.

2 ACs and Law of Large Numbers

Algorithmic Chemistries were considered earlier in the work of Fontana [10]. Here
we use the term for those kinds of artificial chemistries [8] that aim at algorithms.
As opposed to terms like randomized or probabilistic algorithms, in which a
certain degree of stochasticity is introduced explicitly, our algorithms have an
implicit type of stochasticity. Executing the sequence of instructions every time
in a different order has the potential of producing highly unpredictable results.

Its behaviour can be likened to that of a random program. Methods which
can deal with random programs, and develop them into programs with proper
behaviour, have been introduced in the past decade with considerable success [11,
5]. The trick is to evolve these programs by changing and combining them until
the behaviour is of satisfying quality. This evolution is orchestrated by setting
up a system which systematically explores the space of programs using random
operations like mutation and recombination, and by subsequently selecting fitter
programs over less fit ones.

Whereas in this way, random programs can be evolved into well behaved
programs, these studies were all done under the premises of a deterministic
program counter. Thus, each time the programs were executed under the same
input, and starting from the same state, they would produce the same result.
This gave evolution a guide as to which programs to prefer over which other.

In the present system, however, we do not only start from random programs
as determined by the multiset of instructions, we stay random due to the program
counter acting as a random number generator with each program being executed
in a different order. How can we think of such a system as being able to profit
under selection rules at all?

1 Elastic interactions have some bearings on neutral code, but they are not identical.

76 W. Banzhaf and C. Lasarczyk

There is a certain systematics even to programs with random execution order,
which is revealed by looking at the data flow of such a program. Certain registers
or memory locations will be used as input or output arguments of instructions.
If it happens that an output register is also acting as an input register, the two
instructions involved are connected, and a data flow is established between the
input registers of the first and the output register of the second instruction.
Irrespective of the order in which the instructions are executed (remember we
allow repetition of execution), there will be a definite outcome through this
contiguity.

It is this data-flow ”logic” that is under the control of evolution, and which
will be developed and optimized to the point that the entire multiset of instruc-
tions performs a certain function.

Suppose we want to compute the following function:

r1 =
r2 − r3

r4
(1)

where r1, r2, r3, r4 are register addresses. This would entail the reuse of results
from one instruction (subtracting together two numbers) and their subsequent
division by another number. By setting up a number of training cases for the
wished–for behavior, we could generate a fitness measure which would allow
enforcement, under evolution, of such an algorithm.

It clearly becomes a matter of statistics, and thus of large numbers to evolve
the proper algorithm. First we have to allow a sufficient chance for each instruc-
tion in the program (multiset) to be executed. If size of the multiset is n, a
program should be executed m times. Next we have to execute a program suffi-
ciently often (l times) to be able to capture its ”typical” behavior on each fitness
case. Then we have to rotate through the training data and compute all k or at
least some k′ < k fitness cases. Finally we have to do this for a population of p
individuals to be able to select. Our total effort is therefore e = n ∗ m ∗ l ∗ k ∗ p
instructions to be executed. For reasonable numbers n = 100, m = 4, l = 20,
k = 10 and p = 100, we’d end up with 8 million instructions per generation.
This could be executed in 4 ms on a 2 Ghz machine. We shall come back to this
example in a later chapter.

Following previous work on Artificial Chemistries (see, for example [2, 6, 7,
15]) we introduced in [3] a very general analogy between chemical reaction and
algorithmic computation, arguing that concentrations of results would be im-
portant. [4] was the first step in this new direction. In [12] tried to deepen our
understanding of the resulting system by studying a well–known benchmark task
from the GP area: even-parity. Here we continue our investigation by trying out
variants on program counter behaviour.

3 The Method

Genetic Programming (GP) [11, 5] belongs to the family of Evolutionary Al-
gorithms (EA). These heuristic algorithms try to improve originally random

A New Programming Paradigm Inspired by Artificial Chemistries 77

R1=R2+R4

R7=R3*R1

R2=R2/R6

R4=R0+R1

R1=R2−R4

R3=R1−R1

R1=R2+R4

R7=R3*R1

R2=R2/R6

R4=R0+R1

R1=R2−R4

R3=R1−R1

sequencer
linear

next()

next()

next()

next()

next()

start()

Execution OrderMemory Order

Fig. 1. Execution of an individual in linear GP. Memory order and execution order
correspond to each other. Arrows indicate returned values of calls to the sequence
generator

solutions to a problem via the mechanisms of recombination, mutation and se-
lection. Many applications of GP can be described as evolution of models [9].
The elements of models are usually arithmetic expressions, logical expressions
or executable programs.

Here, we shall use evolution of approximation and classification problems
to demonstrate the feasibility of the approach. We represent a program as a
set of instructions only stored as a linear sequence in memory due to technical
limitations. These instructions are 2 and 3 address instructions which work on
a set of registers.

3.1 Linear GP with Sequence Generators

Here we shall use 3-address machine instructions. The genotype of an individual
is a list of those instructions. Each instruction consists of an operation, a desti-
nation register, and two source registers2. Initially, individuals are produced by
randomly choosing instructions. As is usual, we employ a set of fitness cases in
order to evaluate (and subsequently select) individuals.

Figure 1 shows the execution of an individual in linear GP. A sequence gen-
erator is used to determine the sequence of instructions. Each instruction is exe-
cuted, with resulting data stored in its destination register. Usually, the sequence
generator moves through the program sequence instruction by instruction. Thus,
the location in memory space determines the particular sequence of instructions.
Classically, this is realized by the program counter.3

1–Point–Crossover can be described using two sequence generators. The first
generator is acting on the first parent and returns instructions at its beginning.
These instructions form the first part of the offspring. The second sequence

2 Operations which require only one source register simply ignore the second register.
3 (Conditional) jumps are a deviation from this behavior.

78 W. Banzhaf and C. Lasarczyk

R1=R2+R4

R7=R3*R1

R2=R2/R6

R4=R0+R1

R1=R2−R4

R3=R1−R1 R2=R2/R6

R1=R2−R4

R1=R2+R4

R1=R2+R4

R4=R0+R1

R1=R2−R4

Execution OrderMemory Order

start()

sequencer
random

next()
next()

next()

next()

next()

Fig. 2. Execution in the AC system. The sequence generator returns a random order
for execution

generator operates on the other parent. We ignore the first instructions this
generator returns4. The others form the tail of the offsprings instruction list.

Mutation changes single instructions by changing either operation, or des-
tination register or the source registers according to a prescribed probability
distribution.

3.2 A Register Machine as an Algorithmic Chemistry

There is a simple way to realize an chemistry by a register machine. By sub-
stituting the systematic incremental stepping of the sequence generator by a
random sequence we arrive at our system. That is to say, the instructions are
drawn randomly from the set of all instructions in the program5. Still, we have
to provide the number of registers, starting conditions and determine a target
register from which output is to be drawn.

As shown in Figure 2 the chemistry works by executing the instructions of
an individual analogous to what would happen in a linear GP–System (cf. 1),
except that the sequence order is different.

It should be noted that there are registers with different features: Some reg-
isters are read-only. They can only be used as source registers. These registers
contain constant values and are initialized for each fitness case at the start of
program execution. All other registers can be read from and written into. These
are the connection registers among which information flows in the course of the
computation. Initially they are set to zero.

How a program behaves during execution will differ from instance to instance.
There is no guarantee that an instruction is executed, nor is it guaranteed that
this happens in a definite order or frequency. If, however, an instruction is more

4 Should crossover generate two offspring, the instructions not copied will be used for
a second offspring.

5 For technical reasons instructions are ordered in memory space, but access to an
instruction (and subsequent execution) are done in random order.

A New Programming Paradigm Inspired by Artificial Chemistries 79

sequencer
random

R3=R1−R1

R1=R2−R4

R4=R0+R1

R2=R2/R6

R7=R3*R1

R1=R2+R4

Parent 1 Offspring Parent 2

R2=R1+R7

R0=R4−R2

R5=R1*R1

R3=R1*R4

R6=R2+R3

R0=R5*R1

sequencer
random

start()

next()

next()

next()

next()

next()

next()

next()

R1=R2−R4

R7=R3*R1

R5=R1*R1

R0=R4−R2

R3=R1*R4

R3=R1*R4

start()

Fig. 3. Crossover in an Artificial Chemistry

frequent in the multi-set, then its execution will be more probable. Similarly, if
it should be advantageous to keep independence between data paths, the cor-
responding registers should be different in such a way that the instructions are
not connecting to each other. Both features would be expected to be subject to
evolutionary forces.

3.3 Evolution of an Algorithmic Chemistry

Genetic programming of this algorithmic chemistry (ACGP) is similar to other
GP variants. The use of a sequence generator should help understand this similar-
ity. We have seen already in Section 3.2 how an individual in ACGP is evaluated.

Initialization and Mutation. Initialization and mutation of an individual are
the same for both the ACGP and usual linear GP.

Mutation will change operator and register numbers according to a probabil-
ity distribution. In the present implementation register values are changed using
a Gaussian with mean at present value and standard deviation 1.

Crossover. Crossover makes use of the randomized sequences produced by the
sequence generator. As shown in Figure 3 a random sequence of instructions
is copied from the parents to the offspring. Though the instructions inherited
from each of the parents are located in contiguous memory locations, the actual
sequence of the execution is not dependent on that order. The probability that
a particular instruction is copied into an offspring depends on the frequency of
that instruction in the parent. Inheritance therefore is inheritance of frequencies
of instructions, rather than of particular sequences of instructions.

Constant register values will be copied with equal probability from each par-
ent, as is done for choice of the result register.

80 W. Banzhaf and C. Lasarczyk

4 Results

Figure 4 shows data flow graphs of the best individual in generation 0, 25 and
50. Each line shows a single time step. Result register is read after t = n. Within

Fig. 4. Best individuals data flow graphs at different time steps during evolution. These
individuals try to describe data point generated by Eq. (1)

(a) Gerenation 0

(b) Gerenation 25 (c) Gerenation 50

t=n-8
30 0

SUB(1)

0

SU

36 7

SUB(1)

21 46

ADD(1)

21 44

SUB(1)

2 24

ADD(1)

37 24

SUB(1)

38 9

ADD(1)

38 35

SUB(1)

34 10

ADD(1)

10 31

SUB(1)

15 20

SUB(1)

25 17

ADD(1)

20 2

ADD(1)

9 25

SUB(1)

t=n-7
30 0

SUB(1)

0

SU

36 7

SUB(1)

46 9

ADD(1)

21 46

ADD(1)

21 44

SUB(1)

2 24

ADD(1)

37 24

SUB(1)

38 9

ADD(1)

38 35

SUB(1)

34 10

ADD(1)

10 31

SUB(1)

15 20

SUB(1)

25 17

ADD(1)

20 2

ADD(1)

46 43

SUB(1)

9 25

SUB(1)

t=n-6
30 0

SUB(1)

0

SU

36 7

SUB(1)

46 9

ADD(1)

21 46

ADD(1)

21 44

SUB(1)

2 24

ADD(1)

37 24

SUB(1)

38 9

ADD(1)

38 35

SUB(1)

34 10

ADD(1)

10 31

SUB(1)

15 20

SUB(1)

25 17

ADD(1)

20 2

ADD(1)

46 43

SUB(1)

9 25

SUB(1)

t=n-5
30 0

SUB(1)

0

SU

36 7

SUB(1)

46 9

ADD(1)

21 46

ADD(1)

21 44

SUB(1)

2 24

ADD(1)

37 24

SUB(1)

38 9

ADD(1)

38 35

SUB(1)

34 10

ADD(1)

10 31

SUB(1)

15 20

SUB(1)

25 17

ADD(1)

20 2

ADD(1)

46 43

SUB(1)

9 25

SUB(1)

t=n-4
30 0

SUB(1)

0

SU

36 7

SUB(1)

46 9

ADD(1)

21 46

ADD(1)

21 44

SUB(1)

2 24

ADD(1)

37 24

SUB(1)

38 9

ADD(1)

38 35

SUB(1)

34 10

ADD(1)

10 31

SUB(1)

15 20

SUB(1)

25 17

ADD(1)

20 2

ADD(1)

46 43

SUB(1)

9 25

SUB(1)

t=n-3
30 0

SUB(1)

0

SU

36 7

SUB(1)

46 9

ADD(1)

21 46

ADD(1)

21 44

SUB(1)

2 24

ADD(1)

37 24

SUB(1)

38 9

ADD(1)

38 35

SUB(1)

34 10

ADD(1)

10 31

SUB(1)

15 20

SUB(1)

25 17

ADD(1)

20 2

ADD(1)

46 43

SUB(1)

9 25

SUB(1)

t=n-2
30 0

SUB(1)

0

SU

36 7

SUB(1)

46 9

ADD(1)

21 46

ADD(1)

21 44

SUB(1)

2 24

ADD(1)

37 24

SUB(1)

38 9

ADD(1)

38 35

SUB(1)

34 10

ADD(1)

10 31

SUB(1)

15 20

SUB(1)

25 17

ADD(1)

20 2

ADD(1)

46 43

SUB(1)

9 25

SUB(1)

t=n-1
30 0

SUB(1)

0

SU

36 7

SUB(1)

46 9

ADD(1)

21 46

ADD(1)

21 44

SUB(1)

2 24

ADD(1)

37 24

SUB(1)

38 9

ADD(1)

38 35

SUB(1)

34 10

ADD(1)

10 31

SUB(1)

15 20

SUB(1)

25 17

ADD(1)

20 2

ADD(1)

46 43

SUB(1)

9 25

SUB(1)

t=n
30 0

SUB(1)

0

SU

36 7

SUB(1)

46 9

ADD(1)

21 46

ADD(1)

21 44

SUB(1)

2 24

ADD(1)

37 24

SUB(1)

38 9

ADD(1)

38 35

SUB(1)

34 10

ADD(1)

10 31

SUB(1)

15 20

SUB(1)

25 17

ADD(1)

20 2

ADD(1)

46 43

SUB(1)

9 25

SUB(1)

46 9

ADD(1)

46 43

SUB(1)

t=n-3

t=n-2

0 41

SUB(4)

31 42

DIV(2)

31 42

DIV(2)

19 42

DIV(1)

t=n-1

0 41

SUB(4)

31 42

DIV(2)

19 42

DIV(1)

t=n

0 41

SUB(4)

31 42

DIV(2)

19 42

DIV(1)

0 41

SUB(4)

19 42

DIV(1)

t=n-3

t=n-2

31 42

DIV(6)

20 11

MULT(3)

40 41

SUB(4)

31 42

DIV(6)

20 11

MULT(3)

13 23

ADD(2)

2

A

13 23

ADD(2)

2

A

t=n-1
20 11

MULT(3)

40 41

SUB(4)

31 42

DIV(6)

13 23

ADD(2)

2

A

t=n
20 11

MULT(3)

40 41

SUB(4)

31 42

DIV(6)

13 23

ADD(2)

2

A

40 41

SUB(4)

A New Programming Paradigm Inspired by Artificial Chemistries 81

a line each node represents an unequal instructions participating in any data
flow. Instructions, just reading registers, that no other instruction use as target
register, and write to register not read by any other instruction and unequal to
result register, do not participate in data flow considered here and are therefore
ignored. Nodes show the instructions’ operation name, addresses of source reg-
isters and frequency of this instruction within chemistry in brackets. Each line
shows the same set of instructions, because each instruction could be executed in
each time step. Additionally we mark those nodes gray, that possibly influence
the value of the result register. In the last time steps (bottom line) these are just
those instructions, that use result register as their target register. In the previous
time step instructions writing to source of those instructions could modify the
results, and so on.

Figure 4 shows a part of the possible data flow of an initial individual during
last 9 time steps. As we can see there are two instructions writing to the result
register and nearly all instructions executed 5 time steps before evaluation could
influence the result. All instruction show single concentration.

Things changed after 25 generations (cf. Fig. 4). Just a small number of in-
structions participate in data flows as considered here(see above). Two instruc-
tion write to the individuals result register (gray nodes on bottom line). They
look very similar, so we can assume that one is a mutated variant of the other.
While the right instructions divides an empty(=0) connection register thru r4

((r2, r3, r4) → (R[40], R[41], R[42])), the left instruction divides the difference of
an other empty(=0) register and r3 thru r4.

After 50 generations the desired solution is already found. Figure 4 shows the
important part of the best individual, which is similar to the individual in ances-
tor generation 25. Just one kind of instruction uses the result register as its target
register and also the remaining data flow toward result register is unambiguous.
An other important point here is, that frequency of instructions correlates with
their position/important in data flow. While we can not generalize this state-
ment yet, the observed behavior matches our expectations. After a good solution
is found, individuals could increase probability of execution in required order by
adjusting the instructions concentration appropriately. While it is important to
execute all instructions part of the data flow to get the correct results, instruc-
tion next to the result register need a higher probability of execution, because
their timeframe for successful execution is much smaller. The timeframe for suc-
cessful execution is limited by the point of time their source registers contain
the required values and the time required to execute the remaining part of the
data flow.

5 Results and Outlook

Using examples from regression and classification we show that goal-oriented be-
haviour is possible with a seemingly uncoordinated structure of program elements.

The similarity of this approach to dataflow architectures [1] is obvious. Tradi-
tional restrictions of that architecture, however, can be loosened with the present

82 W. Banzhaf and C. Lasarczyk

model of non-deterministic computation, ”programmed” by evolution. Recent
work in the dataflow community [13] might therefore find support in such an
approach.

The strength of this approach will only appear if distributedness is taken
into account. The reasoning would be the following: Systems of this kind should
consist of a large number of processing elements which would share program
storage and register content. Elements would asynchroneously access storage and
register. The program’s genome wouldn’t specify an order for the execution of
instructions. Instead, each element would randomly pick instructions and execute
them. Communication with the external world would be performed via a simple
control unit.

It goes without saying that such a system would be well suited for parallel
processing. Each additional processing element would accelerate the evaluation of
programs. There would be no need for massive communication and for synchro-
nization between processing elements. The system would be scalable at run-time:
New elements could be added or removed without administrative overhead. The
system as a whole would be fault-tolerant, failure of processing elements would
appear merely as a slowed-down execution. Loss of information would not be a
problem, and new processes need not be started instead of lost ones. Reducing
the number of processors (and thus slowing down computation) could be allowed
even for power management.

Explicit scheduling of tasks would not be necessary. Two algorithmic chemist-
ries executing different tasks could be unified into one even, provided they used
different connection registers. Would it be necessary that one task should be pri-
oritized a higher concentration of instructions would be sufficient to achieve that.

Acknowledgement

The authors gratefully acknowledge support from a grant of the Deutsche Forsch-
ungsgemeinschaft DFG to W.B. under Ba 1042/7–3 and from an NSERC dis-
covery grant to W.B. under RGPIN 283304-04.

References

1. Arwind, and Kathail, V. A multiple processor data flow machine that supports
generalized procedures. In International Conference on Computer Architecture
(Minneapolis 1981) (Los Alamitos, CA, 1981), IEEE Computer Society.

2. Banzhaf, W. Self-replicating sequences of binary numbers. Comput. Math. Appl.
26 (1993), 1–8.

3. Banzhaf, W. Self-organizing Algorithms Derived from RNA Interactions. In
Evolution and Biocomputing, W. Banzhaf and F. Eeckman, Eds., vol. 899 of LNCS.
Springer, Berlin, 1995, pp. 69–103.

4. Banzhaf, W., and Lasarczyk, C. W. G. Genetic programming of an algorithmic
chemistry. In Genetic Programming Theory and Practice II, U.-M. O’Reilly, T. Yu,
R. Riolo, and B. Worzel, Eds., vol. 8 of Genetic Programming. Kluwer/Springer,
Boston MA, 2005, pp. 175–190.

A New Programming Paradigm Inspired by Artificial Chemistries 83

5. Banzhaf, W., Nordin, P., Keller, R., and Francone, F. Genetic Program-
ming - An Introduction. Morgan Kaufmann, San Francisco, CA, 1998.

6. di Fenizio, P. S., Dittrich, P., Banzhaf, W., and Ziegler, J. Towards a
Theory of Organizations. In Proceedings of the German 5th Workshop on Arti-
ficial Life (Bayreuth, Germany, 2000), M. Hauhs and H. Lange, Eds., Bayreuth
University Press.

7. Dittrich, P., and Banzhaf, W. Self-Evolution in a Constructive Binary String
System. Artificial Life 4, 2 (1998), 203–220.

8. Dittrich, P., Ziegler, J., and Banzhaf, W. Artificial Chemistries - A Review.
Artificial Life 7 (2001), 225–275.

9. Eiben, G., and Smith, J. Introduction to Evolutionary Computing. Springer,
Berlin, Germany, 2003.

10. Fontana, W. Algorithmic chemistry. In Artificial Life II (Redwood City, CA,
1992), C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, Eds., Addison-
Wesley, pp. 159–210.

11. Koza, J. Genetic Programming. MIT Press, Cambridge, MA, 1992.
12. Lasarczyk, C. W. G., and Banzhaf, W. An algorithmic chemistry for genetic

programming. In EuroGP 2005 (2005). (submitted).
13. Swanson, S., Michelson, K., and Oskin, M. Wavescalar. Tech. Rep. UW-CSE-

03-01-01, University of Washington, Dept. of Computer Science and Engineering,
2003.

14. von Neumann, J. Probabilistic logics and the synthesis of reliable organisms from
unreliable components. In Automata Studies (Princeton, NJ, 1956), C. Shannon
and J. McCarthy, Eds., Princeton Univ.Press.

15. Ziegler, J., and Banzhaf, W. Evolving Control Metabolisms for a Robot.
Artificial Life 7 (2001), 171–190.

Higher-Order Chemical Programming Style

J.-P. Banâtre1, P. Fradet2, and Y. Radenac1

1 IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France
{jbanatre, yradenac}@irisa.fr

2 INRIA Rhône-Alpes, 655 avenue de l’Europe, 38330 Montbonnot, France
Pascal.Fradet@inria.fr

Abstract. The chemical reaction metaphor describes computation in
terms of a chemical solution in which molecules interact freely according
to reaction rules. Chemical solutions are represented by multisets of el-
ements and reactions by rewrite rules which consume and produce new
elements according to conditions. The chemical programming style allows
to write many programs in a very elegant way. We go one step further
by extending the model so that rewrite rules are themselves molecules.
This higher-order extension leads to a programming style where the im-
plementation of new features amounts to adding new active molecules in
the solution representing the system. We illustrate this style by specify-
ing an autonomic mail system with several self-managing properties.

1 Introduction

The chemical reaction metaphor has been discussed in various occasions in the
literature. This metaphor describes computation in terms of a chemical solu-
tion in which molecules (representing data) interact freely according to reaction
rules. Chemical solutions are represented by multisets. Computation proceeds by
rewritings of the multiset which consume and produce new elements according
to reaction conditions and transformation rules.

To the best of our knowledge, the Gamma formalism was the first “chemical
model of computation” proposed as early as in 1986 [4] and later extended
in [5]. A Gamma program is a collection of reaction rules acting on a multiset of
basic elements. A reaction rule is made of a condition and an action. Execution
proceeds by replacing elements satisfying the reaction condition by the elements
specified by the action. The result of a Gamma program is obtained when a
stable state is reached, that is to say, when no reaction can take place anymore
(the solution is said to be inert).

Figure 1 gives three small examples illustrating the style of programming of
Gamma. The reaction max computes the maximum element of a non empty set.
The reaction replaces any couple of elements x and y such that the reaction
condition (x ≥ y) holds by x. This process goes on till a stable state is reached,
that is to say, when only the maximum element remains. The reaction primes
computes the prime numbers lower or equal to a given number N when applied
to the multiset of all numbers between 2 and N (multiple(x, y) is true if and

J.-P. Banâtre et al. (Eds.): UPP 2004, LNCS 3566, pp. 84–95, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Higher-Order Chemical Programming Style 85

max = replace x, y by x if x ≥ y
primes = replace x, y by y if multiple(x, y)

maj = replace x, y by {} if x �= y

Fig. 1. Examples of Gamma programs

only if x is a multiple of y). The majority element of a multiset is an element
which occurs more than card(M)/2 times in the multiset. Assuming that such
an element exists, the reaction maj yields a multiset which only contains in-
stances of the majority element just by removing pairs of distinct elements. Let
us emphasize the conciseness and elegance of these programs. Nothing had to
be said about the order of evaluation of the reactions. If several disjoint pairs of
elements satisfy the condition, the reactions can be performed in parallel.

Gamma makes it possible to express programs without artificial sequentiality.
By artificial, we mean sequentiality only imposed by the computation model and
unrelated to the logic of the program. This allows the programmer to describe
programs in a very abstract way. In some sense, one can say that Gamma pro-
grams express the very idea of an algorithm without any unnecessary linguistic
idiosyncrasies. The interested reader may find in [5] a long series of examples
(string processing problems, graph problems, geometry problems, etc.) illustrat-
ing the Gamma style of programming and in [1] a review of contributions related
to the chemical reaction model. Gamma has inspired many other models like the
Chemical Abstract Machine [7], membrane computing [11], etc.

This article presents a higher-order extension of the Gamma model where all
the computing units are considered as molecules reacting in a solution. In par-
ticular, reaction rules are molecules which can react or be manipulated as any
other molecules. In Section 2, we exhibit a minimal higher-order chemical calcu-
lus, called the γ-calculus, which expresses the very essence of chemical models.
This calculus is then enriched with conditional reactions and the possibility of
rewriting atomically several molecules. The resulting higher-order chemical lan-
guage suggests a programming style where the implementation of new features
amounts to adding new active molecules in the solution representing the system.
Section 3 illustrates the characteristics of our language through the example of an
autonomic mail system with several self-managing features. Section 4 concludes
and suggests several research directions.

2 A Minimal Chemical Calculus

In this section, we introduce a higher-order calculus, the γ-calculus [3], that can
be seen as a formal and minimal basis for the chemical paradigm in much the
same way as the λ-calculus is the formal basis of the functional paradigm.

2.1 Syntax and Semantics

The fundamental data structure of the γ-calculus is the multiset. Computa-
tion can be seen either intuitively, as chemical reactions of elements agitated

86 J.-P. Banâtre, P. Fradet, and Y. Radenac

M ::= x ; variable
| γ〈x〉.M ; γ-abstraction
| M1, M2 ; multiset
| 〈M〉 ; solution

Fig. 2. Syntax of γ-molecules

(γ〈x〉.M), 〈N〉 −→γ M [x := N] if Inert(N) ∨ Hidden(x, M) ; γ-reduction

γ〈x〉.M ≡ γ〈y〉.M [x := y] with y fresh ; α-conversion
M1, M2 ≡ M2, M1 ; commutativity
M1, (M2, M3) ≡ (M1, M2), M3 ; associativity

Fig. 3. Rules of the γ-calculus

by Brownian motion, or formally, as higher-order, associative and commutative
(AC), multiset rewritings. The syntax of γ-terms (also called molecules) is given
in Figure 2. A γ-abstraction is a reactive molecule which consumes a molecule
(its argument) and produces a new one (its body). Molecules are composed using
the AC multiset constructor “,”. A solution encapsulates molecules and keeps
them separate. It serves to control and isolate reactions.

The γ-calculus bears clear similarities with the λ-calculus. They both rely
on the notions of (free and bound) variable, abstraction and application. A
λ-abstraction and a γ-abstraction both specify a higher-order rewrite rule. How-
ever, λ-terms are tree-like whereas the AC nature of the application operator “,”
makes γ-terms multiset-like. Associativity and commutativity formalize Brow-
nian motion and make the notion of solution necessary, if only to distinguish
between a function and its argument.

The conversion rules and the reduction rule of the γ-calculus are gathered
in Figure 3. Chemical reactions are represented by a single rewrite rule, the γ-
reduction, which applies a γ-abstraction to a solution. A molecule (γ〈x〉.M), 〈N〉
can be reduced only if:

Inert(N): the content N of the solution argument is a closed term made ex-
clusively of γ-abstractions or exclusively of solutions (which may be active),

or Hidden(x,M): the variable x occurs in M only as 〈x〉. Therefore 〈N〉 can be
active since no access is done to its contents.

So, a molecule can be extracted from its enclosing solution only when it has
reached an inert state. This is an important restriction that permits the order-
ing of rewritings. Without this restriction, the contents of a solution could be
extracted in any state and the solution construct would lose its purpose. Reac-
tions can occur in parallel as long as they apply to disjoint sub-terms. A molecule
is in normal form if all its molecules are inert.

In order to illustrate γ-reduction, consider the following molecules:

Δ ≡ γ〈x〉.x, 〈x〉 Ω ≡ Δ, 〈Δ〉 I ≡ γ〈x〉.〈x〉

Higher-Order Chemical Programming Style 87

Clearly, Ω is an always active (non terminating) molecule and I an inert molecule
(the identity function in normal form). The molecule 〈Ω〉, 〈I〉, γ〈x〉.γ〈y〉.x re-
duces as follows:

〈Ω〉, 〈I〉, γ〈x〉.γ〈y〉.x −→ 〈Ω〉, γ〈y〉.I −→ I

The first reduction is the only one possible: the γ-abstraction extracts x from its
solution and 〈I〉 is the only inert molecule (Inert(I)∧¬Hidden(x, γ〈y〉.x)). The
second reduction is possible only because the active solution 〈Ω〉 is not extracted
but removed (¬Inert(Ω) ∧ Hidden(y, I)).

Like in the λ-calculus, constants can be defined using basic constructs. For
example, booleans and conditionals can be encoded as follows:

true ≡ γ〈x〉.γ〈y〉.x
false ≡ γ〈x〉.γ〈y〉.y

if C thenM1 elseM2 ≡ 〈〈C〉, γ〈x〉.x, 〈M1〉〉, γ〈y〉.y, 〈M2〉

In the encoding of the conditional, when the molecule C reduces to true (resp.
false) the whole expression reduces to M1 (resp. M2). Other standard construc-
tions (pairs, tuples, integers, recursion, etc.) can be encoded as well. Actually, the
λ-calculus can easily be encoded within the γ-calculus (see [3] for more details).

In fact, the γ-calculus is more expressive than the λ-calculus since it can
also express non-deterministic programs. For example, let A and B two distinct
normal forms, then:

(γ〈x〉.γ〈y〉.x), 〈A〉, 〈B〉 ≡ (γ〈x〉.γ〈y〉.x), 〈B〉, 〈A〉
↓γ ↓γ

(γ〈y〉.A), 〈B〉 (γ〈y〉.B), 〈A〉
↓γ ↓γ

A �≡ B

The γ-calculus is not confluent.

2.2 Extensions

The γ-calculus is a quite expressive higher-order calculus. However, compared
to the original Gamma [5] and other chemical models [10, 11], it lacks two fun-
damental features:

– Reaction condition. In Gamma, reactions are guarded by a condition that
must be fulfilled in order to apply them. Compared to γ where inertia and
termination are described syntactically, conditional reactions give these no-
tions a semantic nature.

– Atomic capture. In Gamma, any fixed number of elements can take part in
a reaction. Compared to a γ-abstraction which reacts with one element at a
time, a n-ary reaction takes atomically n elements which cannot take part
in any other reaction at the same time.

88 J.-P. Banâtre, P. Fradet, and Y. Radenac

These two extensions are orthogonal and enhance greatly the expressivity of
chemical calculi. So from now, γ-abstractions (also called active molecules) can
react according to a condition and can extract elements using pattern-matching.
Furthermore, we consider the γ-calculus extended with booleans, integers, arith-
metic and booleans operators, tuples (written x1: . . . :xn) and the possibility of
naming molecules (ident = M). The syntax of γ-abstractions is extended to:

γP �C�.M
where M is the action, C is the reaction condition and P a pattern extracting
the elements participating in the reaction. If the condition C is true, we omit it
in the definition of the γ-abstraction.

Patterns have the following syntax:

P ::= x | ω | ident = P | P, P | 〈P 〉
where

– x stands for variables which match basic elements (integers, booleans, tu-
ples, etc.),

– ω is a named wild card that matches any molecule (even the empty one),
– ident = P matches any molecule m named ident matched by P ,
– P1, P2 matches any molecule (m1,m2) such that P1 matches m1 and P2

matches m2,
– 〈P 〉 matches any solution 〈m〉 such that P matches m.

For example, the pattern Sol = 〈x, y, ω〉 matches any solution named “Sol”
containing at least two basic elements. The rest of the solution (that may be
empty) is matched by ω.

γ-abstractions are one-shot: they are consumed by the reaction. However,
many programs are naturally expressed by applying the same reaction an arbi-
trary number of times. We introduce recursive (or n-shot) γ-abstractions which
are not consumed by the reaction. We denote them by the following syntax:

replace P by M if C

Such a molecule reacts exactly as γP �C�.M except than it remains after the
reaction and can be used as many times as necessary. If needed, a reactive
molecule can be removed by another molecule, thanks to the higher-order nature
of the language.

A higher-order Gamma program is an unstable solution of molecules. The
execution of that program consists in performing the reactions (modulo A/C)
until a stable state is reached (i.e., no more reaction can occur). A standard
Gamma program can be represented in our extended calculus by encoding its
reaction rules by n-shot abstractions placed in the multiset.

For example, the Gamma program computing the maximum element of a
multiset of integers is represented by a reaction rule (max in Figure 1) to be
applied to the multiset. In our higher-order model, that rule is considered as a

Higher-Order Chemical Programming Style 89

max

2 5
11

10

max

2
11

10

max

11

10

max

11

Fig. 4. A possible execution of the program computing the maximum

molecule in the solution of integer molecules. Figure 4 illustrates such a solution
and its reduction. Like in the original Gamma, the program terminates when no
more reactions can occur. In our example, the solution becomes inert when only
one integer (the maximum) remains.

The following solution computes the greatest common divisor (gcd) of its two
integers:

〈init, gcd, clean, 15, 21〉
where

init = γ(x, y)�x ≥ y�.x:y
gcd = replacex:y by y:(x mod y) if y �= 0

clean = γ(x:y, gcd)�y = 0�.x
First, only the abstraction “init” can react. It places the two integers in a pair
and disappears (one-shot abstraction). Then, the molecule “gcd” transforms
sequentially the pair until the second place is null (x mod y yields the rest
of the division of x by y). Finally, the one-shot abstraction “clean” reacts: it
extracts the result (x) from the pair and removes the gcd molecule.

Names can be used to tag any molecule: abstractions, solutions, etc. For
example, if we name “Gcd” the following solution computing the gcd of two
integers:

Gcd = 〈init, gcd, clean〉
then the abstraction computing the gcd of two parameters can be written:

γ(Gcd = 〈ω〉, x, y).〈ω, x, y〉
It builds a solution made of the molecules init, gcd, clean (i.e., Gcd) and the two
parameters x and y (assumed to be integers). When the solution becomes inert,
only the gcd of x and y remains.

N -shot abstractions are well fitted to express self-management properties.
For example, computing the prime numbers up to 5 can be expressed as:

〈primes, 2, 3, 4, 5〉 −→γ 〈primes, 2, 3, 5〉
where primes is the reaction of Figure 1. The molecule “primes” is part of the
result (stable state). If new integers are added (perturbation), reactions may
start again until a new inert solution is reached (new stable state). For example,
if we need the prime numbers up to 10, we may just add integers to the previous
inert solution:

〈primes, 2, 3, 4, 5〉, γ〈x〉.〈x, 6, 7, 8, 9, 10〉

90 J.-P. Banâtre, P. Fradet, and Y. Radenac

and the solution will re-stabilize to 〈primes, 2, 3, 5, 7〉. The molecule “primes”
can be seen as an invariant: it describes the valid inert states (here, set of prime
numbers). In the next section, we make use of this property to add several self-
management features to a mail system.

3 Towards an Autonomic Mail System

In this section, we describe an autonomic mail system within our higher-order
chemical framework. This example illustrates the adequacy of the chemical
paradigm to the description of autonomic systems.

3.1 General Description: Self-organization

The mail system consists in servers, each one dealing with a particular ad-
dress domain, and clients sending their messages to their domain server. Servers
forward messages addressed to other domains to the network. They also get
messages addressed to their domain from the network and direct them to the
appropriate clients. The mail system (see Figure 5) is described using several
molecules:

– Messages exchanged between clients are represented by basic molecules whose
structure is left unspecified. We just assume that relevant information (such
as sender’s address, recipient’s address, etc.) can be extracted using appro-
priate functions (such as sender, recipient, senderDomain, etc.).

– Solutions named ToSenddi
contain the messages to be sent by the client i of

domain d.
– Solutions named Mboxdi

contain the messages received by the client i of
domain d.

– Solutions named Poold contain the messages that the server of domain d
must take care of.

– The solution named Network represents the global network interconnecting
domains.

– A client i in domain d is represented by two active molecules senddi
and

recvdi
.

– A server of a domain d is represented by two active molecules putd and getd.

Clients send messages by adding them to the pool of messages of their domain.
They receive messages from the pool of their domain and store them in their
mailbox. The senddi

molecule sends messages of the client i (i.e., messages in
the ToSenddi

solution) to the client’s domain pool (i.e., the Poold solution).
The recvdi

molecule places the messages addressed to client i (i.e., messages in
the Poold solution whose recipient is i) in the client’s mailbox (i.e., the Mboxdi

solution).
Servers forward messages from their pool to the network. They receive mes-

sages from the network and store them in their pool. The putd molecule forwards

Higher-Order Chemical Programming Style 91

A1
ToSend

A1send

A1recv

A1Mbox

A2
ToSend A2send

A2recv
A2Mbox

A3send

A3recv

APool

A3ToSend

A3Mbox

1B

1B

2B

2B

send
1B

1B

2B

2B

A

A

B

get

put Network

get

B

B

put

Pool

ToSend

Mbox

ToSend

Mbox

send

recv

recv

Fig. 5. Mail system

senddi = replace ToSenddi = 〈msg, ωt〉, Poold = 〈ωp〉
by ToSenddi = 〈ωt〉, Poold = 〈msg, ωp〉

recvdi = replace Poold = 〈msg, ωp〉, Mboxdi = 〈ωb〉
by Poold = 〈ωp〉, Mboxdi = 〈msg, ωb〉
if recipient(msg) = i

putd = replace Poold = 〈msg, ωp〉, Network = 〈ωn〉
by Poold = 〈ωp〉, Network = 〈msg, ωn〉
if recipientDomain(msg) �= d

getd = replace Network = 〈msg, ωn〉, Poold = 〈ωp〉
by Network = 〈ωn〉, Poold = 〈msg, ωp〉
if recipientDomain(msg) = d

MailSystem = 〈 sendA1 , recvA1 , ToSendA1 = 〈. . .〉, MboxA1 = 〈. . .〉,
sendA2 , recvA2 , ToSendA2 = 〈. . .〉, MboxA2 = 〈. . .〉,
sendA3 , recvA3 , ToSendA3 = 〈. . .〉, MboxA3 = 〈. . .〉,
putA, getA, PoolA, Network, putB, getB, PoolB,
sendB1 , recvB1 , ToSendB1 = 〈. . .〉, MboxB1 = 〈. . .〉,
sendB2 , recvB2 , ToSendB2 = 〈. . .〉, MboxB2 = 〈. . .〉
〉

Fig. 6. Self-organization molecules

only messages addressed to other domains than d. The molecule getd extracts
messages addressed to d from the network and places them in the pool of do-
main d. The system is a solution, named MailSystem, containing molecules rep-
resenting clients, messages, pools, servers, mailboxes and the network. Figure 5
represents graphically the solution with five clients grouped into two domains A
and B and Figure 6 provides the definition of the molecules.

92 J.-P. Banâtre, P. Fradet, and Y. Radenac

A1
ToSend

A1send

A1recv

A1Mbox

A2
ToSend A2send

A2recv
A2Mbox

A3send

A3recv

APool

A3ToSend

A3Mbox

1B

1B

2B

2B

send
1B

1B

2B

2B

A

A

put Network
BPool

ToSend

Mbox

ToSend

Mbox

send

recv

recv

PoolB’PoolA’

get

UpA

put

get

DownIn

DownOut
B’

B’

B’

B’

Fig. 7. Highly-available mail system

crashServerd = replace putd, getd, Upd

by putd′ , getd′ , DownInd, DownOutd

if failure(d)

repairServerd = replace putd′ , getd′ , DownInd, DownOutd

by putd, getd, Upd

if recover(d)

DownOutd = replace Poold = 〈msg, ωp〉, Poold′ = 〈ωn〉
by Poold = 〈ωp〉, Poold′ = 〈msg, ωn〉
if domain(msg) �= d

DownInd = replace Poold = 〈ωp〉, Poold′ = 〈msg, ωn〉
by Poold = 〈msg, ωp〉, Poold′ = 〈ωn〉
if domain(msg) = d

Upd = replace Poold′ = 〈msg, ωp〉, Poold = 〈ωn〉
by Poold′ = 〈ωp〉, Poold = 〈msg, ωn〉

MailSystem = 〈. . . , UpA, UpB, PoolA′ , PoolB′ , crashServerA, repairServerA,
crashServerB, repairServerB〉

Fig. 8. Self-healing molecules

3.2 Self-healing

We now assume that a server may crash. To prevent the mail service from being
discontinued, we add an emergency server for each domain (see Figure 7). The
emergency servers work with their own pool as usual but are active only when
the corresponding main server has crashed. The modeling of a server crash can be
done using the reactive molecules described in Figure 8. When a failure occurs,
the active molecules representing a main server are replaced by molecules repre-
senting the corresponding emergency server. The boolean failure denotes a (po-

Higher-Order Chemical Programming Style 93

tentially complex) failure detection mechanism. The inverse reaction repairServer
represents the recovery of the server.

The two molecules Upd and (DownInd,DownOutd) represent the state of
the main server d in the solution, but they are also active molecules in charge of
transferring pending messages from Poold to Poold′ ; then, they may be forwarded
by the emergency server.

The molecule DownOutd transfers all messages bound to another domain
than d from the main pool Poold to the emergency pool Poold′ . The molecule
DownInd transfers all messages bound to the domain d from the emergency pool
Poold′ to the main pool Poold.

After a transition from the Down state to the Up state, there may remain
some messages in the emergency pools. So, the molecule Upd brings back all
the messages of the emergency pool Poold′ into the main pool Poold to be then
treated by the repaired main server. In our example, self-healing can be im-
plemented by two emergency servers A′ and B′ and boils down to adding the
molecules of Figure 8 into the main solution.

3.3 Self-protection

Self-protection can be decomposed in two phases: a detection phase and a re-
action phase. Detection consists in filtering data and reactions in preventing
offensive data to spread (and sometimes also in counter-attacking). It can easily
be expressed with the condition-reaction scheme of the chemical paradigm. In
our mail system, self-protection is simply implemented with active molecules of
the following form:

self-protect = replace x, ω by ω if filter(x)

If a molecule x is recognized as offensive data by a filter function then it is
suppressed. Variants of self-protect would consist in generating molecules to
counter-attack or to send warnings.

Offensive data can take various forms such as spam, virus, etc. A protection
against spam can be represented by the molecule:

rmSpam = replace msg, ω by ω if isSpam(msg)

which is placed in a Poold solution. The contents of the pool can only be accessed
when it is inert, that is when all spam messages have been suppressed by the
active molecule rmSpam.

Two other self-management features for the mail system have been developed
in [2]: self-optimization (by enabling the emergency server and load-balancing
messages between it and the main server) and self-configuration (managing mo-
bile clients).

Our description should be regarded as a high-level parallel and modular spec-
ification. It allows to design and reason about autonomic systems at an appropri-
ate level of abstraction. Let us emphasize the elegance of the resulting programs
which rely essentially on the higher-order and chemical nature of Gamma. A di-
rect implementation of our chemical specifications is likely to be quite inefficient

94 J.-P. Banâtre, P. Fradet, and Y. Radenac

and further refinements are needed; this is another exciting research direction,
not tackled here.

4 Conclusion

We have presented a higher-order multiset transformation language which can
be described using the chemical reaction metaphor. The higher-order property
of our model makes it much more powerful and expressive than the original
Gamma [5] or than the Linda language as described in [8]. In this article, we
have shown the fundamental features of the chemical programming paradigm.
The γ-calculus embodies the essential characteristics (AC multiset rewritings)
in only four syntax rules. This minimal calculus has been shown to be expressive
enough to express the λ-calculus and a large class of non-deterministic pro-
grams [3]. However, in order to come close to a real chemical language, two fun-
damental extensions must be considered: reaction conditions and atomic cap-
ture. Along with appropriate syntactic sugar (recursion, constants, operators,
pattern-matching, etc.), the extended calculus can easily express most of the
existing chemical languages.

In this higher-order model, reactive molecules (γ-abstractions) can be seen
as catalysts that perform computations and implement new features. This pro-
gramming style has been illustrated by the specification of an autonomic mail
system in terms of solutions of molecules. Some molecules react as soon as a
predefined condition holds without external intervention. In other words, the
system configures and manages itself to face predefined situations. Our chemical
mail system shows that our approach is well-suited to the high-level description
of autonomic systems. Reaction rules exhibit the essence of “autonomy” without
going into useless details too early in the development process. A distinctive and
valuable property of our description is its modularity. Properties are described
by independent collections of molecules and rules that are simply added to the
system without requiring other changes.

An interesting research direction is to take advantage of these high-level de-
scriptions to carry out proofs of properties of autonomic systems (in the same
spirit as [6]). For example, “not losing any messages” would be an important
property to prove for our mail system. Another research direction would be to
pursue the extension of our language to prevent clumsy encodings (e.g., using
advanced data structures and others high-level facilities).

Other models use a kind of “higher-order” chemical metaphor like [9]: it con-
siders multisets of reacting λ-terms, and it studies the self-organization property.

References

1. Jean-Pierre Banâtre, Pascal Fradet, and Daniel Le Métayer. Gamma and the
chemical reaction model: Fifteen years after. In Multiset Processing, volume 2235
of LNCS, pages 17–44. Springer-Verlag, 2001.

Higher-Order Chemical Programming Style 95

2. Jean-Pierre Banâtre, Pascal Fradet, and Yann Radenac. Chemical specification
of autonomic systems. In Walter Dosch and Narayan Debnath, editors, Proc. of
the 13th Int. Conf. on Intelligent and Adaptive Systems and Software Engineering
(IASSE’04). ISCA, 2004.

3. Jean-Pierre Banâtre, Pascal Fradet, and Yann Radenac. Principles of chemical
programming. In S. Abdennadher and C. Ringeissen, editors, Proceedings of the
5th International Workshop on Rule-Based Programming (RULE 2004), volume
124 of ENTCS, pages 133–147. Elsevier, June 2004.

4. Jean-Pierre Banâtre and Daniel Le Métayer. A new computational model and its
discipline of programming. Technical Report RR0566, INRIA, September 1986.

5. Jean-Pierre Banâtre and Daniel Le Métayer. Programming by multiset transfor-
mation. Communications of the ACM (CACM), 36(1):98–111, January 1993.

6. Hector Barradas. Systematic derivation of an operating system kernel in Gamma.
Phd thesis (in french), University of Rennes, France, July 1993.

7. Gérard Berry and Gérard Boudol. The chemical abstract machine. Theoretical
Computer Science, 96:217–248, 1992.

8. Nicholas Carriero and David Gelernter. Linda in Context. Communications of the
ACM, 32(4):444–458, 1989.

9. Walter Fontana and Leo Buss. Algorithmic chemistry. In J. Farmer C. Langton,
C. Taylor and S. Rasmussen, editors, Artificial Life II, volume X, pages 159–209.
Addison-Wesley, 1992.

10. Daniel Le Métayer. Higher-order multiset programming. In American Mathemat-
ical Society, editor, Proc. of the DIMACS workshop on specifications of parallel
algorithms, volume 18 of Dimacs Series in Discrete Mathematics, 1994.

11. Gheorghe Păun. Computing with membranes. Journal of Computer and System
Sciences, 61(1):108–143, 2000.

Amorphous Computing

Introduction to Amorphous Computing

Daniel Coore

The University of the West Indies, Mona. Jamaica, WI

Abstract. The study of amorphous computing aims to identify useful
programming methodologies that will enable us to engineer the emergent
behaviour of a myriad, locally interacting computing elements (agents).
We anticipate that in order to keep such massively distributed systems
cheap, the elements must be bulk manufactured. Therefore, we use a
conservative model in which the agents run asynchronously, are intercon-
nected in unknown and possibly time-varying ways, communicate only
locally, and are identically programmed. We present a description of this
model, and some of the results that have been obtained with it, par-
ticularly in the areas of pattern formation and the development of pro-
gramming languages that are specifically suited to our model. Finally,
we briefly describe some of the ongoing efforts in amorphous computing,
and we present some of the interesting and important problems that still
remain open in amorphous computing.

1 Introduction

The collection of cells in an embryo self-organize, under the control of a common
genetic program, to form a single organism. When we consider this phenomenon
in computing terms, it is indeed remarkable that organisms reproduce so reli-
ably and consistently. If we suppose that each cell is a computing element whose
program is encoded in DNA, then an embryo would be a massively distributed
system that runs a single program on all its elements and produces a globally
coherent result. The study of amorphous computing seeks to identify and ap-
ply the engineering principles behind the coordination of such a multitudinous
distributed system.

An amorphous computing system is a large collection of irregularly placed, lo-
cally interacting, identically-programmed, asynchronous computing elements [1].
We assume that these elements (agents) communicate within a fixed radius,
which is large relative to the size of an element, but small relative to the diame-
ter of the system. We also assume that most agents do not initially have any in-
formation to distinguish themselves from other agents; this includes information
such as position, identity and connectivity. The challenge of amorphous comput-
ing is to develop computing paradigms that enable us to write programs that
when executed on each agent produce some pre-specified emergent behaviour.

We are motivated by recent advances in microfabrication and in cellular en-
gineering [10, 4, 18, 19] – technologies that will enable us to build systems with
several orders of magnitude more computing elements than we currently can. If

J.-P. Banâtre et al. (Eds.): UPP 2004, LNCS 3566, pp. 99–109, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

100 D. Coore

such systems could be controlled with the reliability and precision with which
we control present day computers, then these systems could be used in a vari-
ety of applications including: molecular-scale circuit factories, smart drugs, and
smart building materials. The challenge, in anticipation of realising these sys-
tems in the near future, is to find programming techniques for controlling these
systems.

1.1 The Amorphous Computing Model

The amorphous computing model is not explicit about the assumed capabilities
of a single agent – only that it has limited memory to work with because of
its size. It has become commonplace to assume that each agent, operating in
isolation, can:

– maintain and update state (read and write to memory)
– access a timer (a piece of state that changes uniformly with time, but not

necessarily at the same rate as happens on other agents)
– access a source of random bits
– perform simple arithmetic and logic operations.

In addition, the ensemble of agents are assumed to:

– run asynchronously: each agent has a clock whose period is uniformly dis-
tributed between 1 and some fixed upper bound b, which limits the maximal
permitted ratio between any two agents.

– be irregularly located: each agent is fixed at a location that is unknown
to itself and to its neighbours. Neither is any a priori knowledge about the
number or placement of the agent’s neighbours available.

– communicate via short-range broadcast only: each agent communi-
cates by broadcasting a short range signal that is felt by only those agents
within some fixed distance from the agent, which we call the communication
radius. The communication radius is generally large relative to the size of a
single agent, but small compared to the diameter of the system. This way,
each neighbourhood contains several agents, yet there are several neighbour-
hoods within the system.

– have limited computational resources at hand: each agent is presumed
to have limited storage capacity. This sometimes places limitations on the
types of information that an agent can be expected to compute.

– run a common program: there is a single program that is uploaded to
every agent. Any differences in behaviours of individual agents must arise
from differentiation of state variables, which is generally coordinated through
local communication, and ultimately must arise from the initial conditions
set on the system.

– be initialised uniformly with only a few special cases: the number
of agents that need special attention for setting the initial conditions should
be kept small, since each one must be initiated from the user.

Introduction to Amorphous Computing 101

1.2 Execution

Executing a program on an amorphous computer involves loading the common
program onto each agent (the program could be an intrinsic part of the agent’s
definition – e.g. stored in ROM), and setting up the initial conditions of the
system. The initial conditions of the system are comprised of all initial states of
the agents in the system. The initial state of an agent determines its entry point
into the common program. By this mechanism, the user has the opportunity to
supply “initial conditions” after the system has booted and its program has been
loaded.

More precisely, when an amorphous system boots, all of the agents are in
the same initial state, and therefore the collection of states of all agents is the
same immediately after each boot. This initial state is essentially a quiescent
state in which agents are listening for messages to respond to, but never sending
any. The user sets an initial state on an agent by producing a stimulus at one
of its sensors, which is treated as a message that causes it to begin executing a
different part of the program. Observe that this is potentially different from the
typical notion of “initial conditions” in a mathematical system, where the initial
conditions are regarded as the state of the system as it was captured at some
designated reference time. In particular, delays between user-supplied stimuli
and differing clock speeds on each agent will cause the collection of all initial
state transitions to not be perfectly simultaneous. Any undesirable side-effects
of this must be addressed by the user, e.g. through judicious selection of loci for
initial conditions, or by using synchronizers where necessary.

2 Progress to Date

Most of the problems that were tackled at first (1997–2000) were related to
pattern formation: suppose that each agent may take on one of several pre-
defined states each of which has been associated with a single colour. If we are
given a pattern comprised of these colours, is it possible to write a program that
directs the adoption of state at an agent, and to find suitable initial conditions
for that program, that together cause the given pattern to emerge? For example,
the pattern shown in Figure 1 is the result of a program that was designed to
form the letters “M I T” above a line. It used initial conditions that required
special states to be defined for only four agents.

Out of these initial efforts at pattern formation have emerged a number of
useful routines, as well as a few programming languages that allow the user to
think more about the global objectives rather than the local interactions. More
recent work, such as Beal’s work on persistent nodes [2], has focused on producing
robust logical structures that can cooperatively perform a simple task.

2.1 The Coordinate System Problem

In the early days of the project, we believed that a coordinate system would
be important for describing and generating patterns. Since then, we have found

102 D. Coore

Fig. 1. Self-organizing text. The initial conditions include two neighbouring points to
generate the reference line (in yellow), and two others that establish the left-to-right
direction and initiates the first letter. The program producing this pattern encodes
instructions for generating each letter, and for sequencing them along the reference
line. It was implemented as a GPL program

that while it can be useful, the computation involved in setting up a coordinate
system implies that it is probably not the most ideal method for generating
patterns. Nevertheless, having a coordinate system still seems like a useful tool
that will probably find many applications in problems that are highly dependent
on the geometric properties of the amorphous ensemble.

One idea for generating a coordinate system was to use triangulation: dis-
tances, represented by hop counts, were obtained from three distinguished agents
to each agent. Using trigonometric relations, the three distances were translated
into a coordinate. This approach was fairly straightforward to implement, but
suffered from large errors in regions near the reference points. These results are
summarised by Nagpal in [12].

Another approach uses a single distinguished agent to establish the origin of
the coordinate system. That agent then establishes an approximately circular
boundary around itself, along which each agent computes its coordinates from
an approximation to the angle around the boundary. These coordinates are then
used as boundary values for an iterative solution of Laplace’s equations within
the circular boundary. When convergence is achieved, each agent within the
boundary has been assigned a coordinate that is consistent with the boundary.
This approach requires more effort to implement, and takes longer to generate
coordinates, but produces smaller errors than the triangulation method. A brief
account of the method is given in [8].

Introduction to Amorphous Computing 103

2.2 Languages for Describing Patterns

As it is in so many other kinds of complex systems (e.g. Cellular Automata), we
are interested in the emergence of global patterns from local interactions [17, 3],
but from a different perspective. In typical studies of pattern formation, re-
searchers investigate variations of models of local interaction and try to classify
the emergent global patterns (e.g. [20, 14]). In contrast, we are more interested
in exercising this knowledge in ways that give a designer the ability to generate
emergent patterns, without necessarily thinking about the local interactions in-

Fig. 2. Snapshots from the self-organization of the CMOS layout of an inverter. The
first image, labeled 0 shows the locations of the five points that make up the initial
conditions. Each dot represents an agent, the thickness of one of the lines represents the
diameter of a typical neighbourhood. Each colour reflects a computational state taken
on by the agent at that point. The colours used were deliberately chosen to correspond
to those of a real CMOS design

104 D. Coore

volved. In general, our approaches to this problem have been to design languages
that specify global patterns in terms of points in space that are computation-
ally active. These global descriptions are then systematically compiled to the
appropriate local interactions.

The Growing Point Language (GPL) [7] is a language for describing patterns
of topological relations (i.e. patterns of the form “point A is connected to point
B, which is connected to points C and D . . . ”). Perhaps the most useful example
of this kind of pattern is an electrical circuit. Figure 2 shows the execution of
a GPL coded CMOS inverter as an example. GPL is also capable of describing
a number of other types of patterns, for example the self-organising text shown
in Figure 1 was generated by a GPL program. The invention of GPL led us to
recognise that it was viable to abstract the lower level local processes in ways
that related to the global arrangements that we were trying to achieve.

Another language for specifying patterns is the Origami Shape Language
(OSL) [13], which allows the user to specify patterns as sequences of Origami-
like folds. In this situation, we imagine that the agents are equipped with ac-
tuators that can allow them to effect folds in the surface on which they have
been distributed. A sequence of folds encoded in OSL is automatically compiled
into agent level instructions, which when executed by the ensemble, yields an
appropriately folded surface. Figure 3 shows the sequence of Origami folds that
make a paper cup. Figure 4 shows the behaviour of the agents when executing
the OSL encoding of those folds.

Other work has focused on producing patterns in a variation of the amorphous
computing model [11]. In this work, Kondacs described a method for produc-
ing system-level patterns on a system in which agents reproduce and multiply
to occupy space. The pattern produced at the end of execution was the shape
of the space that was occupied by the agents. Kondacs used small overlapping
coordinate patches to generate patterns. To code a pattern, first it was analysed
in terms of overlapping circular regions, each of which could be grown by pro-

Fig. 3. An Origami cup, defined as a sequence of folds on a square piece of paper

Introduction to Amorphous Computing 105

Fig. 4. The result of executing the OSL instructions for folding the Origami cup

liferation of the agents. Geometric relations for these circular regions were then
used to guide their construction.

Currently, the most recent efforts at tackling the pattern formation problem
has been to develop a language that attempts to unify the ideas presented in GPL
and OSL [6]. This work is still on-going and we hope that it will yield powerful
languages that can be used to express highly complex global behaviours, yet
remain compilable to simple agent-level interactions.

2.3 Other Progress

Not all of the work on amorphous computing systems has been solely about
describing patterns. Agents are expected to fail frequently. So we are keen to
find ways to engineer robust systems, but without putting undue burden on the
designer (that is, we would like the designer to worry about the unreliability
of the agents as little as possible). Clement and Nagpal showed in [5] how the
pattern of a line segment could be robustly maintained between its end points. In
this implementation, state assignments were transient and had to be continuously
reasserted. If an agent, anywhere along the line (except for the end points),
failed completely then nearby agents would be recruited into the line to take
the place of the failed one(s) and circumvent the break. The mechanism used
was implemented directly in terms of low-level interactions. It remains to be
extended and generalised so that robust lines can become an available feature
in high level amorphous programming languages.

Beal describes how to create a persistent logical blob of agents who share
some information. The logical blob is called a persistent node, and it has the
remarkable property that even when large swathes of agents are oblated from
it, it can migrate to another part of the amorphous substrate, to regenerate
itself. Throughout all that, it retains enough coherence to maintain some shared
information that was provided to it upon its creation.

106 D. Coore

In all of our work so far, we have relied upon simulations for testing our
ideas for amorphous computing. This has led to the development of an agent-
level programming language, called ecoli, that encourages the programmer to
focus on the messages exchanged between agents, rather than on the sequential
processing occurring on each agent.

In ecoli agents are expected to communicate, so programs are organised into
groups of related message handlers, called dictionaries, which in turn are grouped
together to form behaviours. At any one time, within a behaviour, only one dic-
tionary is active, and it determines which handlers may be activated by incom-
ing messages on the agent. In this way, we can implement modal responses from
agents, which can be used to achieve behavioural differentiation and specialisation
by agents. If biological systems are any indication, this is an evidently important
ability to have in order to build complex hierarchical (logical) structures. The sim-
plifying ideas of ecoli were key to the first implementation of a self-organizing
inverter, which was then generalised into what is today called GPL.

Although the initial ideas for ecoli were developed so long ago, we believe
that there are still more benefits to be reaped from it, and so there are still
ongoing efforts to enhance and improve it. There are also some efforts currently
underway at adapting communications protocols for the amorphous computing
environment. In yet another project, we are investigating the use of redundant
paths through an amorphous system between distant agents to improve the
reliability of message delivery.

The amorphous computing environment has also been used as a simulation
platform, often to investigate what rules of interaction are the amorphous equiv-
alents of those in other complex systems in which there is more regularity either
in space or time. For example reaction-diffusion systems are usually simulated
on regular grids using finite difference rules for simulating the differential op-
erator in diffusion. In [9] we showed that there are approximating rules for the
amorphous environment that are at least capable of producing qualitatively sim-
ilar patterns as those generated on regular grids [14]. Rauch [15] has also shown
that some differential operators can be simulated amorphously quite effectively;
in particular, wave motion can be simulated amorphously. This is particularly
interesting because one would intuitively expect that the underlying irregular
network would introduce errors that would ultimately disrupt the osciallating
patterns.

3 Summary and Future Directions

Pattern formation [17, 14, 16] inspired the earliest results from amorphous com-
puting. The work that was generated in trying to generate global patterns from
local interactions has led to a number of programming languages (e.g. GPL and
OSL) being developed. These languages are system-level languages that demon-
strate that one effective approach to the amorphous computing challenge is to
capture system-level concepts in programming constructs that are readily com-
pilable to an agent-level language, such as ecoli.

Introduction to Amorphous Computing 107

There is still much work to be done, however. Both GPL and OSL have
relatively narrow scopes of application, and there is room for generalisation,
which we are actively pursuing. Even when we achieve a more general pattern
description language, it remains to be seen whether that language is Turing-
complete, or whether some other ingredients are needed in it to capture all
amorphously computable functions.

Several avenues for research remain wide open in this area. For example,
little work has been done on mobile agents. It is quite natural to expect that
in many amorphous systems agents will not be stationary as they are in most
of our current simulations. None of the current languages are fully capable of
dealing with this phenomenon. It remains to be seen whether the motion of
agents can actually be exploited to compute some functions more efficiently than
when the agents are stationary. Such an outcome would be counter-intuitive, but
not implausible as we recognise that agents that are constantly bumping into
each other can exchange information about a wider region than agents that are
stationarily positioned.

Another area for pursuing in amorphous computing is the development of lan-
guages for self-organizing functionality, as opposed to pattern formation which
is self-organizing form. In other words, when we form logical patterns now, they
are just assignments of local state; but can we create programs that ascribe
functionality and behaviour to agents based on their positions relative to others.
Following on from this idea, we would also like to create powerful mechanisms for
specifying automatic cooperative distributed computing. For example, given a
large set of records, all of which are too numerous to be stored at a single agent,
is there a way to have the amorphous system partition itself into specialised
functional groups that cooperate to sort the set?

There are also open questions about forming dynamic patterns, which would
involve getting patterns that are constructed using the methods we have already
discovered to become animated to explore configurations other than the one in
which they were created. One application of this could be to the circuit diagrams
that we already produce. In reality, the CMOS masks that would be generated
from the circuits that we can produce today would often be in violation of some
of the design rules. If we could get patterns to re-organize as coherent structures,
then we could potentially produce circuits that used space optimally, with little
more effort than it took to draw them in the first instance. However, we still do
not have a good idea how to engineer coherence for arbitrarily shaped structures
that can migrate across agents in the system.

In conclusion, amorphous computing is still an active area of research. Cur-
rently, much of the research effort is being spent on developing special purpose
programming languages for solving particular classes of amorphous computing
problems. There still remain many challenging open problems that are likely
to be most adequately addressed by a broad, cross-disciplinary approach to
them.

108 D. Coore

References

1. Abelson, H., D. Allen, D. Coore, C. Hanson, G. Homsy, T. Knight, R. Nagpal,
E. Rauch, G. Sussman, and R. Weiss. Amorphous Computing. Communications of
the ACM, 43(5), May 2000.

2. Beal, Jacob, “Persistent Nodes for Reliable Memory in Geographically Local Net-
works”, AI Memo 2003-011, Massachusetts Institute of Technology, Artificial In-
telligence Laboratory, Apr. 2003.

3. Berlekamp, E., J. Conway, R. K. Guy, Winning Ways for your Mathematical
Plays, Vol 2: Games in Particular., Academic Press. London. 1982.

4. Benenson, Yaakov., Rivka Adar,Tamar Paz-Elizur, Zvi Livneh, and Ehud Shapiro,
“DNA molecule provides a computing machine with both data and fuel.” in Pro-
ceedings National Academy of Science, USA 100, 2191-2196. 2003.

5. Clement, Lauren, and Radhika Nagpal, “ Self-Assembly and Self-Repairing
Topologies”, in Workshop on Adaptability in Multi-Agent Systems, RoboCup Aus-
tralian Open, Jan. 2003.

6. Coore, Daniel, “Towards a Universal Language for Amorphous Computing”, in
International Conference on Complex Systems (ICCS2004), May 2004.

7. Coore, Daniel, Botanical Computing: A Developmental Approach to Generating
Interconnect Topologies on an Amorphous Computer. PhD thesis, MIT, Dept. of
Electrical Engineering and Computer Science, Feb. 1999.

8. Coore, Daniel. “Establishing a Coordinate System on an Amorphous Computer”.
In Proceedings of 1998 MIT Student Workshop on High-Performance Computing
in Science and Engineering. Technical Report 737, MIT Laboratory for Computer
Science. 1998.

9. Coore, Daniel, Radhika Nagpal, “Implementing Reaction-Diffusion on an Amor-
phous Computer”. In Proceedings of 1998 MIT Student Workshop on High-
Performance Computing in Science and Engineering. Technical Report 737, MIT
Laboratory for Computer Science. 1998.

10. Knight, Tom, Gerald J. Sussman, “Cellular Gate Technologies”, in First Interna-
tional Conference on Unconventional Models of Computation (UMC98), 1998.

11. Kondacs, Attila, “Biologically-Inspired Self-Assembly of Two-Dimensional Shapes
Using Global-to-Local Compilation”, in International Joint Conference on Artifi-
cial Intelligence (IJCAI), Aug. 2003.

12. Nagpal, Shrobe, Bachrach, “Organizing a Global Coordinate System from Lo-
cal Information on an Ad Hoc Sensor Network”, 2nd International Workshop on
Information Processing in Sensor Networks (IPSN ’03), Palo Alto, April 2003.

13. Nagpal, Radhika, Programmable Self-Assembly: Constructing Global Shape using
Biologically-inspired Local Interactions and Origami Mathematics. PhD thesis,
MIT, Dept. of Electrical Engineering and Computer Science, June 2001.

14. Pearson, J. E., “Complex Patterns in a Simple System”, Science 261, 189–192,
July 1993.

15. Rauch, E., Discrete, Amorphous Physical Models. MS thesis, MIT, Dept. Electri-
cal Engineering and Computer Science, 1999.

16. Slack, J. M. W., From Egg to Embryo: Regional Specification in Early Develop-
ment (2nd ed). Cambridge University Press. Cambridge, UK. 1991.

17. Turing, A., “The Chemical Basis of Morphogenesis”, Phil. Trans. Royal Society,
B 237, 37–72. 1952.

18. Weiss, Ron, Cellular Computation and Communications using Engineered Ge-
netic Regulatory Networks. PhD thesis, MIT, Dept. of Electrical Engineering and
Computer Science, Sep. 2001.

Introduction to Amorphous Computing 109

19. Weiss, R., T. F. Knight, “Engineered Communications for Microbial Robotics”,
Sixth International Meeting on DNA-based computers (DNA6), June 2000.

20. Wolfram, S., “Computation Theory of Cellular Automata”, Communications in
Mathematical Physics 96, 15–57, 1984.

Abstractions for
Directing Self-organising Patterns

Daniel Coore

The University of the West Indies,
Mona, Jamaica, WI

Abstract. We present an abstraction for pattern formation, called pat-
tern networks, which are suitable for constructing complex patterns from
simpler ones in the amorphous computing environment. This work builds
upon previous efforts that focused on creating suitable system-level ab-
stractions for engineering the emergence of agent-level interactions. Our
pattern networks are built up from combinations of these system-level
abstractions, and may be combined to form bigger pattern networks. We
demonstrate the power of this abstraction by illustrating how a few com-
plex patterns could be generated by a combination of appropriately de-
fined pattern networks. We conclude with a discussion of the challenges
involved in parameterising these abstractions, and in defining higher-
order versions of them.

1 Introduction

An amorphous computing system is a collection of irregularly placed, locally
interacting, identically-programmed, asynchronous computing elements [1]. We
assume that these elements (agents) communicate within a fixed radius, which is
large relative to the size of an element, but small relative to the diameter of the
system. We also assume that most agents do not initially have any information
to distinguish themselves from other agents; this includes information such as
position, identity and connectivity. The challenge of amorphous computing is to
systematically produce a program that when executed by each agent (in parallel)
produces some pre-specified system-wide behaviour.

So far, one of the most important results of Amorphous Computing is that
despite the constraints of the computing model, in which so little positional in-
formation is available, it is still possible to engineer the emergence of certain
types of globally defined patterns [6, 9, 4, 8, 2]. In each of these works, the princi-
pal mechanism used to control emergence was to define a system-level language
that could describe an interesting class of patterns, but that could also be sys-
tematically transformed to agent-level computations.

1.1 A Unifying Pattern Description Language

Recently, we proposed a unifying language [5] that is capable of describing
the same patterns as those produced by the programming languages defined

J.-P. Banâtre et al. (Eds.): UPP 2004, LNCS 3566, pp. 110–120, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Abstractions for Directing Self-organising Patterns 111

in [6, 9, 4, 8]. The language aims to capture system-level programming mo-
tifs by providing primitive operations that implement them by transparently
initiating and managing the necessary agent-level processes. The motifs sup-
ported are those that were found to be common among the programming
languages cited. In [5], we argued that, these primitves could be combined
in simple ways to describe more interesting higher (system) level behaviour,
such as self-organizing lines and regions. These primitively supported motifs
include:

– diffusing values to form gradients,
– querying neighbourhoods for the value of a variable,
– selecting a neighbouring agent on which to invoke a computation,
– using majority among neighbourhoods to smooth their boundaries,
– competing for leadership among a connected set of agents (they need not

belong to a single neighbourhood),
– monitoring conditions local to a neighbourhood

In this language, the system is regarded as a collection of points. Each point
has a neighbourhood which is the set of points that lie within some fixed distance
of the original point. Points can be named and some operations may yield points
as results, which may be used in any context in which a point is expected. We
can execute blocks of commands at any point. Computations that are specified
to occur at multiple points are performed in parallel, but generally computa-
tions specified at a single point are carried out sequentially (although threaded
computations are permitted at a point).

All computations are either entirely internal to an agent or may be derived
from local communication between neighbouring agents. All primitive opera-
tions, whether they can be computed by an agent in isolation or only through
neighbourhoods, have a mechanism for indicating to the originating point when
the computation is considered completed. This means that any operations per-
formed at a point may be sequenced together, even if the operation involves
computations at many points.

An Example. By way of example, we shall briefly review some of the fea-
tures of this language to give the reader a feel for it. This should help to
establish a basis for the network abstraction presented in the remainder of
the paper.

One way to draw a line segment is to diffuse a signal from one end, far
enough that it encounters the other end of the line. The other end then la-
bels itself a part of the line, performs a neighbourhood query, and exam-
ines each neighbour’s concentration of the diffused signal. The neighbour with
the strongest signal towards the source is selected to repeat the process. The
combined computations yield a gradient-descent (or hill-climbing) process that
will label a sequence of points from one end point to the other as being a
part of the line. Notice that in this discussion, the two end points are pro-
vided as inputs to the line drawing process. In the context of the amorphous

112 D. Coore

environment, this means that they would be provided as initial conditions to
the agent-level program. Below is the code listing that implements this idea,
it was excerpted from [5].

1 Diffusable B-stuff

2 PointSet ABLine

3 at B: diffuse (B-stuff, linear-unbounded)

4 at A:do SearchForB {
5 addTo(ABLine)

6 nbrConcs := filter(queryNbhd(B-stuff),

7 lt(B-stuff))

8 at select(nbrConcs, min):

9 do SearchForB

10 }

The two end points have been named A and B respectively. The at command
initiates computation at a point. The primitive function diffuse initiates a diffu-
sion process that is centred at the point at which it is invoked. Its first argument
is the name of the substance being diffused, the second is a function that de-
termines the shape of the gradient of the diffusion. In this example, the builtin
function linear-unbounded specifies a gradient that increases from the centre and
propagates as far as possible in all directions. So, line 3 causes a gradient to be
established that is centred at the point named B. Its extent is the entire con-
nected component within which B lies. The gradient’s values increase with the
distance from the centre, so a “stronger” signal in this context means a smaller
value of diffused substance.

In parallel with the process initiated at B, a named block of code (called
SearchForB) is evaluated at point A. The addTo command adds the point (at
which it is evaluated) to the set given as the argument to addTo. The form
queryNbhd is a special form that takes the name of a substance whose concentra-
tion is to be queried on each neighbour. The predicate lt(B-stuff) is a curried
version of the usual less than comparator. The interpreter first evaluates the
name B-stuff to yield the concentration of B-stuff at that point (in this case
A); it then generates a predicate of one argument that returns true whenever
that argument is less than the supplied currying value of B-stuff at the time
the predicate was constructed. The filter operation is an ordinary list filter.
So lines 6 and 7 together produce a list of neighbourhood concentrations that
are smaller than that at the centre of the neighbourhood, which based on the
gradient laid down by B must all be closer to the point labeled B than the centre
of the neighbourhood (currently labeled A) is. Lines 8 and 9 selects the neighbour
with the smallest concentration and invokes the entire SearchForB block on it,
thereby propagating the computation to a neighbour of the point A. When the
computation reaches the point B, the filter procedure will produce an empty set
of neighbours (since the concentration at the source of a diffusion that is shaped
by the linear-unbounded function is smaller than all other concentrations in its

Abstractions for Directing Self-organising Patterns 113

neighbourhood). This then terminates the process, since the at command in
line 8 will have no points on which to execute.

One of the most interesting aspects to this type of programming is that when
we think of this program as if it were running on a single machine (the abstraction
we would like to present), the SearchForB block appears as a recursive process.
However, when it is actually evaluated, it is in fact a computation that executes
at a separate point in space. In this way, the at command gives us the ability
to distribute recursive computation over space – a notion that hints at elegant
expressions of interesting geometric patterns1.

2 Pattern Networks

The recently proposed pattern description language [5] is not rich in abstrac-
tions. It provides primitives that abstract over the agent-level interactions, but
it does not provide any abstractions over the patterns that may be described.
For example, it is possible to describe four lines that form a square, but it is not
possible to name that pattern of four lines and invoke it whenever we need a
square. Instead we must describe the four constituent lines, each time a square
is desired.

We propose a plausible abstraction for patterns, called a pattern network,
that is compatible with this language. This abstraction is similar to the net-
work abstractions for GPL described in [6]. The implementation of this ab-
straction in our pattern description language is in progress, so any sample
outputs illustrating the idea have been taken from the GPL version of the
abstraction.

Pattern networks describe patterns in terms of a set of given points in
the domain (the input points). Special points that arise from the generation
of these patterns (the output points) may be named and used as inputs to
other pattern networks. The network construct defines a pattern network. Its
syntax is:

network 〈 name 〉 [〈 inputs 〉] [〈 outputs 〉] {
〈 pattern-defn 〉

}

2.1 An Example

As an illustration of how this abstraction can be used, let us reuse the code,
presented in [5], that draws a line segment between two given points. We present
below, the original code surrounded by a box to highlight the minimal syntax of
the pattern network abstraction.

1 The constraints are actually topological, but in the amorphous environment, be-
cause neighbourhoods are determined by points being within a specified proximity,
topological constraints are concomitant with geometric constraints.

114 D. Coore

network segment[A, B] [] {
Diffusable B-stuff

PointSet ABLine

at B: diffuse (B-stuff, linear-unbounded)

at A:do SearchForB {
addTo(ABLine)

nbrConcs := filter(queryNbhd(B-stuff),

lt(B-stuff))

at select(nbrConcs, min):

do SearchForB

}
}

In this example, the network is called segment and has two input points (A,
B) and zero output points. Whenever the segment network is invoked, a logical
substance named B-stuff is diffused from the point supplied as B. Simultaneously
from A, a process is started that locally seeks the source of the B-stuff diffusion,
and propagates from point to point until it is found. This process labels each
visited point with the ABLine label to identify the line segment that would have
formed from A to B after the process is completed. In this example, both the
logical substance B-stuff and the set label ABLine are local to the network, so
they are actually renamed on each invocation of the network so that the actual
labels exchanged at the agent level are unique to the invocation of the network.
This avoids unwanted interference between separate invocations of the same
network. As an example, to define a triangle between three points, we might
implement the following network:

network triangle [A, B, C] [] {
segment[A,B]

segment[B,C]

segment[C,A]

}

2.2 Combining Patterns

Pattern networks can be defined in terms of combinations of smaller pattern
networks. We have already seen an example of this in the triangle network
defined above, however that was simply the simultaneous invocation of three
instances of the segment network. We can go further by using the output of
one network to feed into another. A special operation has to be introduced for
associating output points of one network with inputs of another. We introduced
the cascade operation to conveniently implement the simple chaining of networks
together. Its syntax is:

cascade(〈 points 〉, 〈 net1 〉, ..., 〈 netn 〉, [points])

To illustrate the operation of cascade, let us assume that we already have
three pattern networks, each with one input and one output, named up, right

Abstractions for Directing Self-organising Patterns 115

up right down

Fig. 1. Three networks, each having one input and one output have been defined, and
named up, right and down. Each one draws a short line in the indicated direction relative
to a reference line (produced by some other pattern). In each case, a dot indicates the
location of the input point and an ‘x’ indicates the output point

and down. Each one draws a short line relative to some reference line (constructed
by some other pattern) in the indicated direction. The termination point of each
line is the output point of its network. These networks are illustrated in Figure 1.
We could now define a new network, called rising with one input and one output
that is the result of cascading up with right. A similar network, called falling,
could be composed from cascading down with right. To get one period of a square
wave, we could cascade rising and falling together. The effect of the cascade

operation in these definitions is illustrated in Figure 2.

network rising [A][B] {
cascade([A], up, right, [B])

}

network falling [A][B] {
cascade([A], down, right, [B])

}

network sq-period [A][B] {
cascade([A], rising, falling, [B])

}

Fig. 2. The composition of networks with the cascade operation. Pattern networks
can be composed and abstracted to build compound patterns that would otherwise be
tedious to construct

We could now further build upon this network by constructing a square wave
of several periods, by cascading many instances of sq-period together. It should

116 D. Coore

be clear that the cascade operation has provided considerable expressive power
by enabling the composition of a large pattern from sub-patterns.

When there are multiple inputs and outputs, the cascade operation associates
outputs with inputs according to the order in which they appear. In some in-
stances, the user may want the association between outputs of one network and
inputs of another to be some permutation other than the identity permutation.
This re-ordering of points can be achieved with the use of a binding construct
that permits intermediate points to be named and used in any context in which
a point expression may legally appear. The let-points construct facilitates this;
its syntax is defined as:

let-points [〈 id1 〉, ..., 〈 idn 〉]
{〈 point-defns 〉}

in {〈 pattern-defn 〉}

The point-defns expression may be any expression that is capable of yield-
ing points as outputs. These points are bound to the names id1, id2 for
use in evaluating the pattern-defn expression, which itself is also any expres-
sion that may have legally appeared in the body of a pattern network. The
let-points construct allows outputs to be permuted when cascaded with other
networks.

For example, suppose that net1 and net2 are two pattern networks each with
two inputs and two outputs. Now, suppose we want to cascade the outputs of
net1 to the inputs of net2 but with the orderings exchanged (i.e. first output to
second input and vice-versa). In addition, we shall make the connected structure
a new pattern network. The following network definition uses the let-points

construct to accomplish this.

network crossed [A, B][C, D] {
let-points[out1, out2]

{cascade([A, B], net1, [out1, out2])}
in {cascade([out2, out1], net2, [C, D])}

}

The let-points command not only provides a generic means for supporting
arbitrary permutations of output points, but it also provides a means for con-
necting the outputs of two pattern networks to the inputs of a single network.
The following example shows how the outputs from the right and up networks
(previously mentioned) can be connected to the inputs of net1. It creates a pat-
tern network that has two inputs and two outputs. Each input point acts as the
input to the single-input networks, their outputs are connected to the inputs of
net1 and its outputs are the outputs of the overall network.

Abstractions for Directing Self-organising Patterns 117

network two-to-one [A, B][C, D] {
let-points[out1, out2]

{
cascade([A], right, [out1])

cascade([B], up, [out2])

}
in {cascade([out1, out2], net1, [C, D])}
}

3 Examples

Pattern networks provide a convenient high-level abstraction for describing pat-
terns in a system-level language. In this section, we illustrate their versatility by
showing how they were used in GPL to describe self-organising text and CMOS
circuit layouts.

3.1 Text

As an example, let us use pattern networks to define patterns of self-organising
text. The idea is that each letter of the alphabet is defined as a pattern network.
Each letter is defined relative to a line, which will be generated along with
the characters themselves. Each network has two input points and two output
points. One input point defines the starting point for the letter, and the other the
starting point for the segment of the reference line, upon which the letter sits.
The letters are drawn from left to right, so the outputs represent the locations
that a letter placed to the right of the current one would use as its inputs.

Fig. 3. The result of cascading the pattern networks for the letters ‘M’, ‘I’ and ‘T’
together. Observe that the reference line is subject to the variability in the distribution
of the agents. A badly drawn reference line can often cause the desired letters to fail
to form in a recognizable way

118 D. Coore

Fig. 4. The NAND+rails network has 4 inputs and 3 outputs, and both of via+rails
and Inverter+rails have 3 inputs and 3 outputs. The arrows depict the connections
between the outputs and inputs of the three networks. Each bordering rectangle depicts
a network. Observe that the result of the cascade of the three networks is itself another
network with 4 inputs (the number of inputs of the first network in the cascade) and
3 outputs (the number of outputs of the last network in the cascade)

Fig. 5. The result of executing the and+rails network. Its nand+rails and
inverter+rails components are readily identified. The pattern was drawn from left
to right, in the order specified by the cascade command, so the starting points for the
inverter+rails network were determined by the termination points of the nand+rails
network. While the result is geometrically quite crude, it is nevertheless topologically
correct

In this way, a word can be defined as a cascade of pattern networks each of
which produces a single letter. Furthermore, each word is also now a network
with exactly two inputs and two outputs that can be cascaded with other words
and letters to form bigger networks. Figure 3 illustrates the result of using this
technique in GPL with three letters, each separately defined as a network and
then cascaded together.

Abstractions for Directing Self-organising Patterns 119

3.2 CMOS Circuits

Another fruitful family of patterns to which pattern networks could be applied
with great effect is that of circuit diagrams. Indeed, input and output points
for a circuit’s pattern network often directly correspond to the input and out-
put terminals of the circuit. For example, the pattern representing the CMOS
layout of an AND gate can be composed from the patterns for a NAND gate,
a via (a connector across layers in the CMOS process), and an inverter. Sup-
pose that we have already defined pattern networks called nand+rails, via+rails
and inverter+rails to represent their corresponding CMOS circuit layouts (in-
cluding the power rails). We would be able to define and+rails in a completely
natural way as follows:

network and+rails [vdd-in, vss-in, a, b][vdd-out, vss-out, output] {
cascade([vdd-in, vss-in, a, b],

nand+rails,

via+rails,

inverter+rails,

[vdd-out, vss-out, output])

}

Figure 4 illustrates how the various constituent networks of the AND circuit
are combined, and Figure 5 shows a result of an actual execution of the GPL
implementation of the and+rails network.

4 Challenges for Extensions

Since the input points involved in the definition of a pattern network, are not
necessarily local to each other, the invocation of a network’s computation is ac-
tually the parallel invocation of all computations specified at the input points.
In particular, the output points that result from this parallel execution may also
be non-local to each other. This poses some problems for attempting to create
parameterised or higher-order abstractions of networks. For example, if pattern
networks could accept parameters, their values would have to be available to all
points participating in the invocation of these networks. This could probably be
accomplished by passing around an environment specific to the pattern network,
but in the context of cascaded networks, one challenge would be to propagate
information from one output of a network to all inputs of its following network.
Another problem is that any information available within the scope of the net-
work must become available to all points that may participate in evaluating the
network. Doing either of these represents a significant departure from the current
macro-style implementation of pattern networks, in which all global knowledge
is statically known, and therefore can be transmitted through the common agent
level program.

One long-term challenge is that in the most general cases, amorphous systems
will consist of mobile agents. This means that neighbourhoods will be dynamic

120 D. Coore

and many of the techniques applied in the pattern description language will need
to be adapted to that new situation. Currently none of our pattern formation
processes actively maintain their forms, so even with slowly moving agents, our
patterns would eventually dissolve away. To prevent this we will need to come
up with new primitives that are capable of maintaining patterns, and that are
accessible to higher level abstractions, such as the network abstraction described
here.

5 Conclusions

Pattern networks provide a powerful means of expressing patterns that can be
self-organised. They can capture simple patterns that are directly expressed in
terms of local interactions, and they can be combined to form more complex
pattern networks. In addition, the expression of these combinations are quite
natural, yet they remain transformable to collections of local interactions that,
under the appropriate conditions, cause the desired patterns to emerge. Pattern
networks are currently not generalisable to higher order patterns nor can they
even accept parameters to allow more general specifications. However, these
limitations are currently self-imposed as a simplification exercise, and we expect
some of them, at least, will be overcome in the near future.

References

1. Abelson, H., D. Allen, D. Coore, C. Hanson, G. Homsy, T. Knight, R. Nagpal, E.
Rauch, G. Sussman, and R. Weiss. Amorphous Computing. Communications of the
ACM, 43(5), May 2000.

2. Beal, Jacob, “Persistent Nodes for Reliable Memory in Geographically Local Net-
works”, AI Memo 2003-011, Massachusetts Institute of Technology, Artificial Intel-
ligence Laboratory. Apr. 2003.

3. Benenson, Yaakov., Rivka Adar,Tamar Paz-Elizur, Zvi Livneh, and Ehud Shapiro,
“DNA molecule provides a computing machine with both data and fuel.” in Pro-
ceedings National Academy of Science, USA 100, 2191-2196. (2003).

4. Clement, Lauren, and Radhika Nagpal, “ Self-Assembly and Self-Repairing Topolo-
gies”, in Workshop on Adaptability in Multi-Agent Systems, RoboCup Australian
Open, Jan. 2003.

5. Coore, Daniel, “Towards a Universal Language for Amorphous Computing”, in
International Conference on Complex Systems (ICCS2004), May 2004.

6. Coore, Daniel, Botanical Computing: A Developmental Approach to Generating
Interconnect Topologies on an Amorphous Computer. PhD thesis, MIT, Dept. of
Electrical Engineering and Computer Science, Feb. 1999.

7. Knight, Tom, Gerald J. Sussman, “Cellular Gate Technologies”, in First Interna-
tional Conference on Unconventional Models of Computation (UMC98), 1998.

8. Kondacs, Attila, “Biologically-Inspired Self-Assembly of Two-Dimensional Shapes
Using Global-to-Local Compilation”, in International Joint Conference on Artificial
Intelligence (IJCAI), Aug. 2003.

9. Nagpal, Radhika, Programmable Self-Assembly: Constructing Global Shape us-
ing Biologically-inspired Local Interactions and Origami Mathematics. PhD thesis,
MIT, Dept. of Electrical Engineering and Computer Science, (June 2001).

Programming an Amorphous
Computational Medium

Jacob Beal

Massachusetts Institute of Technology, Cambridge MA 02139, USA

Abstract. Amorphous computing considers the problem of controlling
millions of spatially distributed unreliable devices which communicate
only with nearby neighbors. To program such a system, we need a high-
level description language for desired global behaviors, and a system to
compile such descriptions into locally executing code which robustly cre-
ates and maintains the desired global behavior. I survey existing amor-
phous computing primitives and give desiderata for a language describing
computation on an amorphous computer. I then bring these together in
Amorphous Medium Language, which computes on an amorphous com-
puter as though it were a space-filling computational medium.

1 Introduction

Increasingly, we are faced with the prospect of programming spatially embedded
mesh networks composed of huge numbers of unreliable parts. Projects in such
diverse fields as sensor networks (e.g. NEST [12]), peer-to-peer wireless (e.g.
RoofNet [2]), smart materials (e.g. smart dusts [17, 26]), and biological com-
putation [18, 29, 30] all envision deployed networks of large size (ranging from
thousands to trillions of nodes) where only nodes nearby in space can commu-
nicate directly, and the network as a whole approximates the physical space
through which it is deployed.

Any such large spatially embedded mesh network may be considered an amor-
phous computer. Amorphous computing studies the problem of controlling these
networks from a perspective of group behavior, taking inspiration from biologi-
cal processes such as morphogenesis and regeneration, in which unreliable simple
processing units (cells) communicating locally (e.g. with chemical gradients) ex-
ecute a shared program (DNA) and cooperate to reliably produce an organism’s
anatomy.

Controlling an amorphous computer presents serious challenges. Spatially
local communication means networks may have a high diameter, and large num-
bers of nodes place tight constraints on sustainable communication complexity.
Moreover, large numbers also mean that node failures and replacements are a
continuous process rather than isolated events, threatening the stability of the
network. If we are to program in this environment, we need high-level program-
ming abstractions to separate the behaviors being programmed from the net-
working and robustness issues involved in executing that program on a spatially
embedded mesh network.

J.-P. Banâtre et al. (Eds.): UPP 2004, LNCS 3566, pp. 121–136, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

122 J. Beal

Let us define an amorphous medium to be a hypothetical continuous com-
putational medium filling the space approximated by an amorphous computer.
I propose that this is an appropriate basis for abstraction: high-level behavior
can then be described in terms of geometric regions of the amorphous medium,
then executed approximately by the amorphous computer.

In support of this hypothesis, I first detail the amorphous computing scenario,
then survey existing amorphous computing primitives and describe how they
can be viewed as approximating the behavior of an amorphous medium. I then
present the Amorphous Medium Language, which describes program behavior in
terms of nested processes occupying migrating regions of the space in which the
network is embedded, describe AML’s key design elements — spatial processes,
active process maintenance, and homeostasis — and illustrate the language by
means of examples.

2 The Amorphous Computing Scenario

The amorphous computing engineering domain presents a set of challenging re-
quirements and prohibitions to the system designer, forcing confrontation of
issues of robustness, distribution, and scalability. These constraints derive much
of their inspiration from biological systems engaged in morphogenesis and regen-
eration, which must be accomplished by coordinating extremely large numbers
of unreliable devices (cells).

The first and foremost requirement is scalability: the number of devices
may be large, anywhere from thousands to millions or even billions. Biological
systems, in fact, may comprise trillions of cells. Practically, this means that an
algorithm is reasonable only if its per-device asymptotic complexity (e.g. space
or bandwidth per device) are polynomial in log n (where n is the number of
devices) — and any bound significantly greater than O(lg n) should be treated
with considerable suspicion. Further, unlike ad-hoc networking and sensor net-
works scenarios, amorphous computing generally assumes cheap energy, local
processing, and storage — in other words, as long as they do not have a high
per-device asymptotic complexity, minimizing them is not of particular interest.

The network graph is determined by the spatial distribution of the devices
in some Euclidean space, which collaborate via local communication. Devices
are generally immobile unless the space in which they are embedded is moved
(e.g. cutting and pasting ”smart paper”)1. A unit disc model is often used to
create the network, in which a bidirectional link exists between two devices if
and only if they are less than distance r apart. Local communication implies that
the network is expected to have a high diameter, and, assuming a packet-based
communication model, this means that the time for information to propagate
through the network depends primarily on the number of hops it needs to travel.
Local communication also means that communication complexity is best mea-

1 Note that mobile devices might be programmed as immobile virtual devices [13,14].

Programming an Amorphous Computational Medium 123

sured by maximum communication density — the maximum bandwidth
required by a device — rather than by number of messages.

Due to the number of devices potentially involved, the system must not de-
pend on much care and feeding of the individual devices. In general, it is assumed
that every device is identically programmed, but that there can be a small
amount of differentiation via initial conditions. Once the system is running,
however, there is no per-device administration allowed.

There are strict limitations on the assumed network infrastructure. The sys-
tem executes with partial synchrony — each device may be assumed to have
a clock which ticks regularly, but the clocks may show different times, run at
(boundedly) different rates, and have different phases. In addition, the system
may not assume complex services not presently extended to the amorphous do-
main — this is applied particularly to mean no global naming, routing, or
coordinate service may be assumed.

Finally, in a large, spatially distributed network of devices, failures are not
isolated events. Due to the sheer number of devices, point failures are best mea-
sured by an expected rate of device failure. This suggests also that methods
of analysis like half-life analysis [21] will be more useful than standard f -failure
analysis. In addition, because the network is spatially embedded, outside events
may cause failure of arbitrary spatial regions — larger region failures are
assumed to occur less frequently. Generally stopping failures have been used, in
which the failing device or link simply ceases operating. Finally, maintenance
requires recovery or replacement of failed devices: in either case, the effect is
that new devices join the network either individually or as a region.

3 Amorphous Computing Mechanisms

Several existing amorphous computing algorithms will serve as useful primitives
for constructing a language. Each mechanism summarized here has been im-
plemented as a code module and demonstrated in simulation. Together they
are a powerful toolkit from which primitives for high-level languages can be
constructed.

3.1 Shared Neighborhood Data

This simple mechanism allows neighboring devices to communicate by means
of a shared-memory region, similar to the systems described in [7, 32]. Each
device maintains a table of key-value pairs which it wishes to share (for example,
the keys might be variable names and the values their bindings). Periodically
each device transmits its table to its neighbors, informing them that it is still a
neighbor and refreshing their view of its shared memory. Conversely, a neighbor
is removed from the table if more than a certain time has elapsed since its last
refresh. The module can then be queried for the set of neighbors, and the values
its neighbors most recently held for any key in its table.

Shared neighborhood data can also be viewed as a sample of the amorphous
medium within a unit neighborhood. Aggregate functions of the neighborhood

124 J. Beal

data (e.g. average or maximum) are then approximations of the same functions
on a neighborhood of the amorphous medium.

Maintaining shared neighborhood data requires storage and communication
density proportional to the number of values being stored, size of the values, and
number of neighbors.

3.2 Regions

The region module maintains labels for contiguous sets of devices, approximat-
ing connected regions of the amorphous medium, using a mechanism similar to
that in [31]. A Region is defined by a name and a boolean membership function.
When seeded in one or more devices, a Region spreads via shared neighborhood
data to all adjoining devices that satisfy the membership test. When a Region is
deallocated, a garbage collection mechanism spreads the deallocation through-
out the participating devices, attempting to ensure that the defunct Region is
removed totally.

Note that failures or evolving system state may separate a Region into dis-
connected components. While these are still logically the same Region, and
may rejoin into a single connected component in the future, information will
not generally pass between disconnected components. As a result, the state of
disconnected components of a Region may evolve separately, and in particular
garbage collection is only guaranteed to be effective in a connected component
of a Region.

Regions are organized into a tree, with every device belonging to the root
Region. In order for a device to be a member of a Region, it must also be
a member of that Region’s parent in the tree. This implicit compounding of
membership tests allows Regions to exhibit stack-like behavior which will be
useful for establishing execution scope in a high-level language.

Maintaining Regions requires storage and communication density propor-
tional to the number of Regions being maintained, due to the maintenance of
shared neighborhood data. Garbage collecting a Region requires time propor-
tional to the diameter of the Region.

3.3 Gossip

The gossip communication module [6] propagates information throughout a Re-
gion via shared neighborhood data, after the fashion of flooding algorithms [22].
Gossip is all-to-all communication: each item of gossip has a merge function
that combines local state with neighbor information to produce a merged whole.
When an item of gossip is garbage-collected, the deallocation propagates slowly
to prevent regrowth into areas which have already been garbage-collected.

Gossip requires storage and communication density proportional to the num-
ber and size of gossip items being maintained in each Region of which a device
is a member, due to the maintenance of shared neighborhood data. Garbage col-
lecting an item of gossip takes time proportional to the diameter of the region.

Programming an Amorphous Computational Medium 125

3.4 Consensus and Reduction

Non-failing devices participating in a strong consensus process must all choose
the same value if any of them choose a value, and the chosen value must be held
by at least one of the participants. Reduction is a generalization of consensus in
which the chosen value is an aggregate function of values held by the participants
(e.g. sum or average) — as before, all non-failing devices complete the operation
holding the same value.

The Paxos consensus algorithm [20] has been demonstrated in an amorphous
computing context [6], but scales badly. A gossip-based algorithm currently un-
der development promises much better results: it appears that running a robust
reduction process on a Region may require only storage and communication den-
sity logarithmic in the diameter of the Region and time linear in the diameter
of the Region.

3.5 Read/Write Atomic Objects

Atomic consistency means that all transactions with an object can be viewed as
happening in some order, even if they overlap in time. If we designate a Region
of an amorphous medium as a read/write atomic object, then reading or writing
values at any point in the Region produces a consistent view of the value held
by the Region over time.

Using consensus and reduction, quorum-based atomic transactions can be
supported by a reconfigurable set of devices [23,15]. This has been demonstrated
in simulation for amorphous computing [6], and scales as the underlying consen-
sus and reduction algorithms do.

3.6 Active Gradient

An active gradient [9, 11, 8] maintains a hop-count upwards from its source or
sources — a set of devices which declare themselves to have count value zero —
giving an approximation of radial distance in the amorphous medium, useful for
establishing Regions. Points in the gradient converge to the minimum hop-count
and repairs their values when they become invalid. The gradient runs within a
Region, and may be further bounded (e.g. with a maximum number of hops).
When the supporting sources disappear, the gradient is garbage-collected; as
in the case of gossip items, the garbage collection propagates slowly to prevent
unwanted regrowth into previously garbage collected areas. A gradient may also
carry version information, allowing its source to change more smoothly. Figure 1
shows an active gradient being used to maintain a line.

Maintaining a gradient requires a constant amount of storage and communi-
cation density for every device in range of the gradient, and garbage collecting
a gradient takes time linear in the diameter of its extent.

3.7 Persistent Node

A Persistent Node [4] is a robust mobile virtual object that occupies a ball
in the amorphous medium (See Figure 2). A Persistent Node is a read/write

126 J. Beal

(a) Before Failure (b) After Repair

Fig. 1. A line being maintained by active gradients, from [8]. A line (black) is con-
structed between two anchor regions (dark grey) based on the active gradient emitted
by the right anchor region (light grays). The line is able to rapidly repair itself following
failures because the gradient actively maintains itself

object supporting conditionally atomic transactions. A variant guaranteeing
atomic transactions has been developed [6], which trades off liveness in favor
of consistency and costs more due to underlying consensus and reduction algo-
rithms.

A Persistent Node is implemented around an active gradient flowing outward
from its center. All devices within r hops (the Persistent Node’s core) are identi-
fied as members of the Persistent Node, while a heuristic calculation flows inward
from all devices within 2r hops (the reflector) to determine which direction the
center should be moving. The gradient is bounded to kr hops (the umbra), so
every device in this region is aware of the existence and location of the Persistent
Node. If any device in the core survives a failure, the Persistent Node will rebuild
itself, although if the failure separates the core into disconnected components,
the Persistent Node may be cloned. If the umbras of two clones come in contact,
however, they will resolve back into a single Persistent Node via the destruction
of one clone.

Persistent Nodes are useful as primitives for establishing regions, much like
active gradients. A Persistent Node, however, can change its position within a
larger region in response to changing conditions.

Maintaining a Persistent Node requires storage and communication density
linear in the size of the data stored by it. A Persistent Node moves and repairs
itself in time linear in its diameter.

3.8 Hierarchical Partitioning

A Region can be partitioned through the use of Persistent Nodes: [5] nodes of
a characteristic radius are generated and allowed to drift, repelling one another,

Programming an Amorphous Computational Medium 127

Reflector

Umbra

Core

Fig. 2. Anatomy of a Persistent Node. The innermost circle is the core (black), which
arts as a virtual node. Every device within middle circle is in the reflector (light grey),
which calculates which direction the Persistent Node will move. The outermost circle
(dark grey) is the umbra (k=3 in this example), which knows the identity of the
Persistent Node, but nothing else

until every device in the Region is near some Persistent Node, and devices choose
a node with which to associate, with some hysteresis. A set of partitions with
exponentially increasing diameter can generate clustering relations which form a
hierarchical partition of the Region. Although the partitions are not nested, the
clusters which they generate are, and the resulting structure is highly resilient
against failures — unlike other clustering algorithms, partitioning on the basis
of persistent nodes bounds the extent of address changes caused by a failure
linearly in the size of a circumscription of the failure. Figures 3 and 4 show an
example of partitioning.

Maintaining a hierarchical partition takes storage and communication loga-
rithmic in the diameter of the Region being partitioned, and creating the parti-
tion takes time log-linear in the diameter.

128 J. Beal

(a) Level 1 (b) Level 2 (c) Level 3

Fig. 3. Hierarchical partitioning via Persistent Nodes for a simulation with 2000 de-
vices. There are five levels in the resulting hierarchy. The top and bottom levels of
the hierarchy are uninteresting, as the top has every particle in the same group and
the bottom has every particle in a different group; these images show the middle three
levels of the hierarchy, with each ith level node a different color, and thick black lines
showing the approximate boundaries. The logical tree is shown in Figure 4

.127 .733.458

.992

.054 .697 .183.493 .699 .429 .939 .945 .521 .893 .814 .808 .885

Fig. 4. A hierarchy tree produced by the hierarchical partitioning shown in Figure 3.
The numbers are the names of Persistent Nodes in the top three levels; the level 1
nodes are shown as black dots and the 2000 leaf nodes are not explicitly enumerated

4 Amorphous Medium Language

I want to be able to program an amorphous computer as though it is a space
filled with a continuous medium of computational material: the actual executing
program should produce an approximation of this behavior on a set of discrete
points. This means that there should be no explicit statements about individual
devices or communication between them. Instead, the language should describe
behavior in terms of spatial regions of the amorphous medium, which I will take
to be the manifold induced by neighborhoods in the amorphous computer’s mesh
network.

The program should be able to be specified without knowledge of the partic-
ular amorphous medium on which it will be run. Moreover, the geometry and

Programming an Amorphous Computational Medium 129

topology of the medium should be able to change as the program is executing,
through failure and addition of devices, and the running program adjust to its
new environment gracefully.

Finally, since failures and additions may disconnect and reconnect the
medium, a program which is separated into two different executions must be
able to reintegrate when the components of the medium rejoin.

Amorphous Medium Language combines mechanisms from the previous sec-
tion to fulfill these goals via three key design components: spatial processes,
aggregate state, active process maintenance, and homeostasis.

4.1 Spatial Processes

In AML each active process is associated with a region of space. The programs
that direct a process are written to be executed at a generic place in their region.
Every device in the region is running the process, continually sharing process
variables with those neighbors (in the region) that are running the same process.

A process may designate (perhaps overlapping) subregions of its region to
execute subprocesses. These subregions may be delineated by an active gradi-
ent, a Persistent Node, or some characteristic function. Thus, the collection of
processes forms a tree, whose root operates on a region that covers the entire
network.

The set of devices constituting a region that is participating in a processes
may migrate, expand, or contract in response to changing conditions in the
network or in its state, subject to the constraint that it remains in the region
owned by its parent process (This constraint yields subroutine compositional
semantics). Since regions assigned to processes may overlap, the devices in the
overlap will be running all of the processes associated with that part of space,
and all of the parent processes that cover that region.

Many copies of the same process may run at the same device, as long as they
have different parameters or different parent processes. So if process Foo calls
(Fibonacci 5) and (Fibonacci 10), it creates two different processes, and if
Foo and Bar both call (Fibonacci 5) it creates two different processes, but if
Foo calls (Fibonacci 5) twice it creates only a single process.

4.2 Aggregate State

Processes have state, described as the values of program variables. The values
of these variables are determined by aggregation across the set of participating
devices. Depending on the requirements of the computation, a variable may be
implemented by gossip, by reduction, or as a distributed atomic object. Gossip
is the cheapest mechanism, but it provides no consistency guarantees and can be
used only for certain aggregation functions (e.g. maximum or union). Reduction
is similar, but somewhat more costly and allows non-idempotent aggregation
functions (e.g. average or sum). An atomic object gives guaranteed consistency,
but it is expensive and may not be able to progress in the face of partition or
high failure rates.

130 J. Beal

If a process is partitioned by a failure into two parts that cannot communicate
then each part is an independent process, which evolves separately. Differences
between the parts must be resolved if the parts later merge.

4.3 Active Process Maintenance

To remain active a process must be actively supported by its parent process. If
a process is not supported it will die. The root process is eternally supported.
Support is implemented by an active gradient mechanism. When a process loses
support and dies the resources held by that process in each device are recycled
by a garbage collector.2

4.4 Homeostasis and Repair

In AML processes are specified by procedures that describe conditions to be
maintained and actions to be taken if those conditions are not satisfied. If a
failure is small enough the actions are designed by the programmer to repair the
damage and restore the desired conditions.

As a result, incomplete computation and disruption caused by failures can be
handled uniformly. Failures produce deviations in the path towards homeostasis,
and if the system state converges toward homeostasis faster than failures push
it away, then eventually the process will complete its computation.

4.5 Examples

I will illustrate how AML programs operate by means of examples. These exam-
ples use the CommonLISP formatting processed by my AML compiler. These
examples are meant to illustrate how ideas are expressed in AML.

Maximum Density. Calculating maximum density is the AML equivalent of
a “hello world” program. To run this, we will need only one simple process (See
Figure 5).

The AML process root is the entry point for a program, similar to a main
function in C or Java. When an AML program runs, the root process runs
across the entire space, and is automatically supported everywhere so it will
never be garbage collected.

Processes are defined with the command (defprocess name (arguments)
statement ...). In this case, the name is root and there are no arguments, since
there are no initial conditions. The statements of a process are variable defini-
tions and homeostasis conditions; while the process is active, it runs cyclically,
clocked by the shared neighbor data refreshes. Each cycle the process first up-
dates variable aggregate values, then maintains its homeostasis conditions in the
order they are defined.

The first statement creates a variable, x, which we will use to aggregate the
density. Variables are defined with the command (defvariable name

2 This is much the same problem as addressed in [3].

Programming an Amorphous Computational Medium 131

(defprocess root ()

(defvariable x #’max :base 0)

(maintain

(eq (local x) (density))

(set! x (density)))

(always

(actuate ’color (regional x))))

Fig. 5. Code to calculate maximum density (number of neighbors). The density at each
point is written to variable x, which aggregates them using the function max. Each
point then colors itself using the aggregate value for x

aggregation-function arguments). In this case, since we want to calculate maxi-
mum density, the aggregation function will be max.

Aggregation in AML is executed by taking a base aggregate value and up-
dating it by merging it with other values or aggregates — this also means that
if there are no values to aggregate, the variable equals the base value. Since the
default base value, NIL, is not a reasonable value for density, we use the optional
base argument to set it to zero instead.

Now we have a variable which will calculate its maximum value over the
process region, but haven’t specified how it gets any values to start with. First,
though, a word about the different ways in which we can talk about the value
of variable x. Every variable has three values: a local value, a neighborhood
aggregate value, and a regional aggregate value. Setting a variable sets only its
local value, though the aggregates may change as a result. Reading any value
from a variable is instantaneous, based on the current best estimate, but the
neighborhood aggregate may be one cycle stale, and the regional aggregate may
be indefinitely out of date.

The second statement is a homeostasis condition that deals only with the
local value of x. The function (density) is a built-in function that returns the
estimated density of the device’s neighborhood,3 so the maintain condition may
be read as: if the local value for x isn’t equal to the density, set it equal to the
density.

These local values for density are then aggregated by the variable, and the
current best estimate can be read using (regional x), as is done in the third
statement. The third statement is an always homeostasis condition, which is
syntactic sugar for (maintain nil ...), so that it is never satisfied and runs its
action every cycle. The action, in this case, reads the regional value of x and
sends it to the device’s color in a display — (actuate actuator value) is a
built-in function to allow AML programs to write to an external interface (its
converse (read-sensor sensor) reads from the external interface).

When this program is run, all the devices in the network start with the color
for zero, then turn all different colors as each writes its density to x locally. The

3 Density is most simply calculated as number of neighbors, but might be smoothed
for more consistent estimates.

132 J. Beal

highest value colors then spread outward through their neighbors until each con-
nected component on the network is colored uniformly according to the highest
density it contains.

Blob Detection. With only slightly more complexity, we can write a program
to detect blobs in a binary image (See Figure 6). In this scenario, an image is
mapped onto a space and devices distributed to cover the image. The image is
input to the network via a sensor named image, which reads black for devices
located at black points of the image and white for devices located at white
points of the image. The goal of the program is to find all of the contiguous
regions of black, and measure their areas.

Unlike the maximum density program, the root process for blob detection
takes an argument — fuzziness — which specifies how far apart two black
regions can be and still be considered contiguous.

The first statement in the root process declares its one variable, blobs,
which uses union to aggregate the the blobs detected throughout the network
into a global list.

(defprocess root (fuzziness)

(defvariable blobs #’union)

(always

(when (eq (read-sensor ’image) ’black)

(subprocess (measure-blob) :gradient fuzziness)

(setf blobs

(list (get-from-sub (measure-blob) blob)))))

(avoid

(read-sensor ’query)

(let ((q (first (read-sensor ’query))))

(cond

((eq q ’blobs)

(actuate ’response (regional blobs)))

((eq q ’area)

(actuate ’response

(fold #’+ (mapcar #’second

(regional blobs)))))))))

(defprocess measure-blob ()

(defvariable uid #’max :atomic :base 0 :init (random 1))

(defvariable area #’sum :reduction :base 0 :init 1)

(defvariable blob :local)

(always

(setf blob (list uid area))))

Fig. 6. Code to find a set of fuzzy blobs and their areas in a binary image. Each
contiguous black area of the image runs a connected measure-blob process that names
it and calculates its area. The set of blobs is collected by the root process and made
accessible to the user on the response actuator in response to requests on the query
sensor

Programming an Amorphous Computational Medium 133

The second statement is an always condition which runs a blob measuring
process anywhere that there is black. The measure-blob process takes no ar-
guments, and its extent is defined by an active gradient going out fuzziness
hops from each device where the image sensor reads black.

This elegantly segments the image into blobs: from each black device a gra-
dient spreads the process out for fuzziness hops in all directions, so any two
black devices separated by at most twice-fuzziness hops of white devices will
be in a connected component of the measure-blob process. Where there are
more than twice-fuzziness hops of white devices separating two black points,
however, the measure-blob process is not connected and each component cal-
culates independently — effectively as a separate blob!

The measure-blob process has two responsibilities: give itself a unique
name, and calculate its area. The uid variable, whose aggregate will be the name
of the blob, uses two arguments which we haven’t seen before. The atomic ar-
gument means that the regional aggregate value of uid will be consistent across
the process and as a side effect will be more stable in its value. We use the init
argument, on the other hand, to start uid with a random value at each point.
As a result, uid will eventually have a random number as its regional aggregate
value which is unlikely to be the same as that of another blob.

The area variable also uses an init argument, which sets everything to be 1.
This serves as the point mass of a device, which we integrate across the process
to find its area using sum as an aggregator. We must ensure that no point is
counted more than once, however, so we use the reduction argument to specify
that the aggregation must be done that way rather than defaulting to gossip.

Finally, we declare the blob variable and add an always statement to make
it a list of uid and area, packaging a result for the measure-blob process to
be read by the root process. The root process can read variables in with child
processes with the command (get-from-sub (name parameters) variable), and
uses this to set the local value of blobs.

The final statement of the root process sets up a user interface in terms
of an avoid homeostasis condition. When there is a request queued up on the
query sensor, it upsets homeostasis, which the repair action attempts to rectify
by placing an answer, calculated from the regional aggregate value of blobs, on
the response actuator. The user would then remove the serviced request from
the queue, restoring homeostasis.

Thus, given a binary image, each contiguous region of black will run a
measure-blob process which names it and calculates its area. The root pro-
cess then records this information, which propagates throughout the network
until there is a consistent list of blobs everywhere.

4.6 Related Languages

In sensor networks research, a number of other high-level programming abstrac-
tions have been proposed to enable programming of large mesh networks. For
example, GHT [28] provides a hash table abstraction for storing data in the net-
work, and TinyDB [24] focuses on gathering information via query processing.

134 J. Beal

Both of these approaches, however, are data-centric rather than computation-
centric, and do not provide guidance on how to do distributed manipulation of
data, once gathered.

More similar is the Regiment [27] language, which uses a stream-processing
abstraction to distribute computation across the network. Regiment is, in fact,
complementary to AML: its top-down design allows it to use the well-established
formal semantics of stream-processing, while AML’s programming model is still
evolving. Regiment’s robustness against failure, however, has not yet clearly
been established, and there are significant challenges remaining in adapting its
programming model to the sensor-network environment.

Previous work on languages in amorphous computing, on the other hand, has
worked with much the same failure model, but has been directed more towards
problems of morphogenesis and pattern formation than general computation. For
example, Coore’s work on topological patterns [10], and the work by Nagpal [25]
and Kondacs [19] on geometric shape formation. A notable exception is Butera’s
work on paintable computing [7], which allows general computation, but operates
at a lower level of abstraction than AML.

5 Conclusion

Considering the space occupied by an amorphous computer as an amorphous
medium provides a useful programming abstraction. The amorphous medium
abstraction can be programmed in terms of the behavior of spaces defined using
geometric primitives, and the amorphous computer can approximate execution
on the actual network.

Amorphous Medium Language is an example of how one can program using
the amorphous medium abstraction. Processes are distributed through space,
and run while there is demand from their parent processes. Within a connected
process region, data is shared via variables aggregated over the region, and com-
putation executes in response to violated homeostasis conditions.

An AML compiler in progress is being used as a workbench for further lan-
guage development, concurrent with investigation of more lightweight implemen-
tations of robust primitives and of analysis techniques capable to dealing with
the challenges of an amorphous environment. All of the mechanisms described
above have been implemented, but only gossip, regions, and shared data are
fully integrated with the compiler, which is run on a few test programs whose
behavior is demonstrated in simulation on 500 nodes.

AML does not solve all of the problems in its domain, but it has exposed a
clear set of problems, some of which appear to be challenges inherent to program-
ming space. These outstanding challenges are the basis of current investigation.

– It is not clear at this time how large a range of behaviors can be specified
as homeostatic conditions. It does seem adequate to allow the construction
and maintenance of arbitrary graphs and some geometric constructions. The
code that is executed when a condition is violated is intended to remedy

Programming an Amorphous Computational Medium 135

the situation, but there is no guarantee that the repair behavior is actually
making progress.

– AML programs can be composed with subroutine semantics, but it is less
clear how to implement functional composition, particularly when the two
programs may occupy different regions of space.

– Moving information between processes logically separated in the process tree
is awkward, since information must be routed through a common parent.

– Integration of other programming ideas, such as streaming, may help to ad-
dress some of these problems. We may also need to develop robust primitives
better suited for our environment.

– At a more fundamental level, the tradeoff between consistency and liveness
needs continued exploration, as does the problem of how to merge state when
separated regions of a process rejoin.

– Failures which involve unpredictable behavior of a device are not currently
dealt with, and may cause widespread disruption in the network.

Indeed, even analyzing the behavior of an aggregate in which devices are con-
tinually failing and being replaced is not a well understood problem.

References

1. H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. Knight, R. Nagpal, E.
Rauch, G. Sussman and R. Weiss. Amorphous computing. AI Memo 1665, MIT,
1999.

2. Daniel Aguayo, John Bicket, Sanjit Biswas, Douglas S. J. De Couto, and Robert
Morris, “MIT roofnet implementation,” 2003.

3. H. Baker and C. Hewitt, “The incremental garbage collection of processes.,” in
ACM Conference on AI and Programming Languages, 1977, pp. 55–59.

4. J. Beal. “Persistent nodes for reliable memory in geographically local networks.”
Tech Report AIM-2003-11, MIT, 2003.

5. J. Beal. A robust amorphous hierarchy from persistent nodes. In CSN, 2003.
6. Jacob Beal and Seth Gilbert, “RamboNodes for the metropolitan ad hoc network,”

in Workshop on Dependability in Wireless Ad Hoc Networks and Sensor Networks,
part of the International Conference on Dependable Systems and Networks, June
2003.

7. William Butera, Programming a Paintable Computer, Ph.D. thesis, MIT, 2002.
8. L. Clement and R. Nagpal, “Self-assembly and self-repairing topologies,” in Work-

shop on Adaptability in Multi-Agent Systems, RoboCup Australian Open, Jan. 2003.
9. Daniel Coore. “Establishing a Coordinate System on an Amorphous Computer.”

MIT Student Workshop on High Performance Computing, 1998.
10. Daniel Coore, “Botanical Computing: A Developmental Approach to Generating

Interconnect Topologies on an Amorphous Computer.” Ph.D. thesis, MIT, 1999.
11. Daniel Coore, Radhika Nagpal and Ron Weiss. “Paradigms for structure in an

amorphous computer.” MIT AI Memo 1614.
12. DARPA IXO, “Networked embedded systems technology program overview,” .
13. S. Dolev, S. Gilbert, N. Lynch, A. Shvartsman, and J. Welch., “Geoquorums:

Implementing atomic memory in mobile ad hoc networks,” in Proceedings of the
17th International Symposium on Distributed Computing (DISC 2003), 2003.

136 J. Beal

14. Shlomi Dolev, Seth Gilbert, Nancy A. Lynch, Elad Schiller, Alex A. Shvartsman,
and Jennifer L. Welch, “Virtual mobile nodes for mobile ad hoc networks,” in
DISC04, Oct. 2004.

15. Seth Gilbert, Nancy Lynch, and Alex Shvartsman, “RAMBO II:: Rapidly recon-
figurable atomic memory for dynamic networks,” in DSN, June 2003, pp. 259–269.

16. Frederic Gruau, Philippe Malbos. “The Blob: A Basic Topological Concept for
”Hardware-Free” Distributed Computation.” in Unconventional Models of Com-
putation (UMC 2002). Springer, 2002.

17. V. Hsu, J. M. Kahn, and K. S. J. Pister, “Wireless communications for smart
dust,” Tech. Rep. Electronics Research Laboratory Technical Memorandum Num-
ber M98/2, Feb. 1998.

18. Thomas F. Knight Jr. and Gerald Jay Sussman. “Cellular gate technology.” In
Unconventional Models of Computation, pages 257-272, 1997.

19. Attila Kondacs, “Biologically-inspired self-assembly of 2d shapes, using global-
to-local compilation,” in International Joint Conference on Artificial Intelligence
(IJCAI), 2003.

20. Leslie Lamport, “The part-time parliament,” ACM Transactions on Computer
Systems, vol. 16, no. 2, pp. 133–169, 1998.

21. D. Liben-Nowell, H. Balakrishnan, D. Karger. Analysis of the evolution of peer-
to-peer systems. In PODC, 2002.

22. Nancy Lynch, Distributed Algorithms, Morgan Kaufman, 1996.
23. Nancy Lynch and Alex Shvartsman., “RAMBO: A reconfigurable atomic memory

service for dynamic networks,” in DISC, 2002, pp. 173–190.
24. Samuel R. Madden, Robert Szewczyk, Michael J. Franklin, and David Culler, “Sup-

porting aggregate queries over ad-hoc wireless sensor networks,” in Workshop on
Mobile Computing and Systems Applications, 2002.

25. Radhika Nagpal, Programmable Self-Assembly: Constructing Global Shape using
Biologically-inspired Local Interactions and Origami Mathematics, Ph.D. Thesis,
MIT, 2001.

26. “NMRC scientific report 2003,” Tech. Rep., National Microelectronics Research
Centre, 2003.

27. Ryan Newton and Matt Welsh, “Region streams: Functional macroprogramming
for sensor networks,” in First International Workshop on Data Management for
Sensor Networks (DMSN), Aug. 2004.

28. Sylvia Ratnasamy, Brad Karp, Li Yin, Fang Yu, Deborah Estrin, Ramesh Govin-
dan, and Scott Shenker, “GHT: a geographic hash table for data-centric storage,”
in Proceedings of the 1st ACM international workshop on Wireless sensor networks
and applications. 2002, pp. 78–87, ACM Press.

29. Ron Weiss and Tom Knight “Engineered Communications for Microbial Robotics”
in Proceedings of the Sixth International Meeting on DNA Based Computers
(DNA6), June 2000

30. Ron Weiss and Subhyu Basu. “The device physics of cellular logic gates.” In
NSC-1: The First Workshop on NonSilicon Computing, pages 54–61, 2002.

31. Matt Welsh and Geoff Mainland, “Programming sensor networks using abstract
regions,” in Proceedings of the First USENIX/ACM Symposium on Networked
Systems Design and Implementation (NSDI ’04), Mar. 2004.

32. Kamin Whitehouse, Cory Sharp, Eric Brewer, and David Culler, “Hood: a neigh-
borhood abstraction for sensor networks,” in Proceedings of the 2nd international
conference on Mobile systems, applications, and services. 2004, ACM Press.

Computations in Space and Space
in Computations

Jean-Louis Giavitto, Olivier Michel, Julien Cohen,
and Antoine Spicher

LaMI, umr 8042 du CNRS, Université d’Évry – Genopole
Tour Évry-2, 523 Place des Terrasses de l’Agora

91000 Évry, France
{giavitto, michel}@lami.univ-evry.fr

The Analytical Engine weaves algebraic
patterns just as the Jacquard loom weaves
flowers and leaves.

Ada Lovelace

1 Goals and Motivations

The emergence of terms like natural computing, mimetic computing, parallel prob-
lem solving from nature, bio-inspired computing, neurocomputing, evolutionary
computing, etc., shows the never ending interest of the computer scientists for
the use of “natural phenomena” as “problem solving devices” or more generally,
as a fruitful source of inspiration to develop new programming paradigms. It is
the latter topic which interests us here. The idea of numerical experiment can
be reversed and, instead of using computers to simulate a fragment of the real
world, the idea is to use (a digital simulation of) the real world to compute. In
this perspective, the processes that take place in the real world are the objects
of a new calculus:

description of the world’s laws = program
state of the world = data of the program

parameters of the description = inputs of the program
simulation = the computation

This approach can be summarized by the following slogan: “programming in the
language of nature” and was present since the very beginning of computer science
with names like W. Pitts and W. S. McCulloch (formal neurons, 1943), S. C.
Kleene (inspired by the previous for the notion of finite state automata, 1951),
J. H. Holland (connectionist model, 1956), J. Von Neumann (cellular automata,
1958), F. Rosenblatt (the perceptron, 1958), etc.

This approach offers many advantages from the teaching, heuristic and techni-
cal points of view: it is easier to explain concepts referring to real world processes
that are actual examples; the analogy with the nature acts as a powerful source

J.-P. Banâtre et al. (Eds.): UPP 2004, LNCS 3566, pp. 137–152, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

138 J.-L. Giavitto et al.

of inspirations; and the studies of natural phenomena by the various scientific
disciplines (physics, biology, chemistry...) have elaborated a large body of con-
cepts and tools that can be used to study computations (some concrete examples
of this cross fertilization relying on the concept of dynamical system are given
in references [6, 5, 34, 12]).

There is a possible fallacy in this perspective: the description of the nature
is not unique and diverse concurent approaches have been developed to account
for the same objects. Therefore, there is not a unique “language of nature”
prescribing a unique and definitive programming paradigm. However, there is a
common concern shared by the various descriptions of nature provided by the
scientific disciplines: natural phenomena take place in time and space.

In this paper, we propose the use of spatial notions as structuring relation-
ships in a programming language. Considering space in a computation is hardly
new: the use of spatial (and temporal) notions is at the basis of computational
complexity of a program; spatial and temporal relationships are also used in the
implementation of parallel languages (if two computations occur at the same
time, then the two computations must be located at two different places, which
is the basic constraint that drives the scheduling and the data distribution prob-
lems in parallel programming); the methods for building domains in denotational
semantics have also clearly topological roots, but they involve the topology of the
set of values, not the topology of a value. In summary, spatial notions have been
so far mainly used to describe the running of a program and not as means to
design new programs.

We want to stress this last point of view: we are not concerned by the orga-
nization of the resources used by a program run. What we want is to develop a
spatial point of view on the entities built by the programmer when he designs
his programs. From this perspective, a program must be seen as a space where
computation occurs and a computation can be structured by spatial relation-
ships. We hope to provide some evidences in the rest of this paper that the
concept of space can be as fertile as mathematical logic for the development of
programming languages. More specifically, we advocate that the concepts and
tools developed for the algebraic construction and characterization of shapes1

provide interesting teaching, heuristic and technical alternatives to develop new
data structures and new control structures for programming.

The rest of this paper is organized as follows. Section 2 and section 3 provide
an informal discussion to convince the reader of the interest of introducing a
topological point of view in programming. This approach is illustrated through
the experimental programming language MGS used as a vehicle to investigate
and validate the topological approach.

1 G. Gaston-Granger in [23] considers three avenues in the formalization of the concept
of space: shape (the algebraic construction and the transformation of space and
spatial configurations), texture (the continuum) and measure (the process of counting
and coordinatization [39]). In this work, we rely on elementary concepts developed
in the field of combinatorial algebraic topology for the construction of spaces [24].

Computations in Space and Space in Computations 139

Section 2 introduces the idea of seeing a data structure as a space where the
computation and the values move. Section 3 follows the spatial metaphor and
presents control structures as path specifications. The previous ideas underlie
MGS. Section 4 sketches this language. The presentation is restricted to the
notions needed to follow the examples in the next section. Section 5 gives some
examples and introduces the (DS)2 class of dynamical systems which exhibit
a dynamical structure. Such kind of systems are hard to model and simulate
because the state space must be computed jointly with the running state of the
system. To conclude in section 6 we indicate some of the related work and we
mention briefly some perspectives on the use of spatial notions.

2 Data Structures as Spaces2

The relative accessibility from one element to another is a key point considered
in a data structure definition:

– In a simply linked list, the elements are accessed linearly (the second after
the first, the third after the second, etc.).

– In a circular buffer, or in a double-linked list, the computation goes from
one element to the following or to the previous one.

– From a node in a tree, we can access the sons.
– The neighbors of a vertex V in a graph are visited after V when traveling

through the graph.
– In a record, the various fields are locally related and this localization can be

named by an identifier.
– Neighborhood relationships between array elements are left implicit in the

array data-structure. Implementing neighborhood on arrays relies on an in-
dex algebra: index computations are used to code the access to a neighbor.
The standard example of index algebra is integer tuples with linear map-
pings λx.x ± 1 along each dimension (called “Von Neumann” or “Moore”
neighborhoods).

This accessibility relation defines a logical neighborhood. The concept of logical
neighborhood in a data structure is not only an abstraction perceived by the
programmer and vanishing at the execution, but it does have an actual meaning
for the computation. Very often the computation indeed complies with the logical
neighborhood of the data elements and it is folk’s knowledge that most of the
algorithms are structured either following the structure of the input data or the
structure of the output data. Let us give some examples.

The recursive definition of the fold function on lists propagates an action to
be performed along the traversal of a list. More generally, recursive computations
on data structures respect so often the logical neighborhood, that standard high-
order functions (e.g. primitive recursion) can be automatically defined from the

2 The ideas exposed in this section are developed in [19, 14].

140 J.-L. Giavitto et al.

data structure organization (think about catamorphisms and other polytypic
functions on inductive types [29, 26]).

The list of examples can be continued to convince ourselves that a notion of
logical neighborhood is fundamental in the definition of a data structure. So to
define a data organization, we adopt a topological point of view: a data structure
can be seen as a space, the set of positions between which the computation moves.
Each position possibly holds a value3. The set of positions is called the container
and the values labeling the positions constitute the content.

This topological approach is constructive: one can define a data type by the
set of moves allowed in the data structure. An example is given by the notion
of “Group Based Fields” or GBF in short [21, 16]. In a uniform data structure,
i.e. in a data structure where any elementary move can be used against any
position, the set of moves possesses the structure of a mathematical group G.
The neighborhood relationship of the container corresponds to the Cayley graph
of G. In this paper, we will use only two very simple groups G corresponding to
the moves |north> and |east> allowed in the usual two-dimensional grid and
to the moves allowed in the hexagonal lattice figured at the right of Fig. 3.

3 Control Structures as Paths

In the previous section, we suggested looking at data structure as spaces in
which computation moves. Then, when the computation proceeds, a path in the
data structure is traversed. This path is driven by the control structures of the
program. So, a control structure can be seen as a path specification in the space
of a data structure. We elaborate on this idea into two directions: concurrent
processes and multi-agent systems.

3.1 Homotopy of a Program Run

Consider two sequential processes A and B that share a semaphore s. The current
state of the parallel execution P = A || B can be figured as a point in the plane
A × B where A (resp. B) is the sequence of instructions of A (resp. B). Thus,
the running of P corresponds to a path in the plane A × B. However, there are
two constraints on paths that represent the execution of P. Such a path must be
“increasing” because we suppose that at least one of the two subprocesses A or
B must progress. The second constraint is that the two subprocesses cannot be
simultaneously in the region protected by the semaphore s. This constraint has a
clear geometrical interpretation: the increasing paths must avoid an “obstruction
region”, see Fig. 1. Such representation is known at least from the 1970’s as
“progress graph” [7] and is used to study the possible deadlocks of a set of
concurrent processes.

Homotopy (the continuous deformation of a path) can be adapted to take
into account the constraint of increasing paths and provides effective tools to

3 A point in space is a placeholder awaiting for an argument, L. Wittgenstein, (Trac-
tatus Logico Philosophicus, 2.0131).

Computations in Space and Space in Computations 141

V(r)

P(r)

P(s)

V(s)

P(r) V(r)
V(s)P(s)

A

B

α

β

P(s)

V(s)

P(s) V(s) A

B

Fig. 1. Left: The possible path taken by the process A || B is constrained by the ob-
struction resulting of a semaphore shared between the processes A and B. Right: The
sharing of two semaphores between two processes may lead to deadlock (corresponding
to the domain α) or to the existence of a “garden of Eden” (the domain β cannot be
accessed from outside β and can only be leaved.)

detect deadlocks or to classify the behavior of a parallel program (for instance
in the previous example, there are two classes of paths corresponding to execu-
tions where the process A or B enters the semaphore first). Refer to [22] for an
introduction to this domain.

3.2 The Topological Structure of Interactions4

In a multi-agent system (or an object based or an actor system), the control
structures are less explicit and the emphasis is put on the local interaction be-
tween two (sometimes more) agents. In this section, we want to show that the
interactions between the elements of a system exhibit a natural topology.

The starting point is the decomposition of a system into subsystems defined
by the requirement that the elements into the subsystems interact together and
are truly independent from all other subsystems parallel evolution.

In this view, the decomposition of a system S into subsystems S1, S2, . . . , Sn

is functional : state si(t + 1) of the subsystem Si depends solely of the previous
state si(t). However, the decomposition of S into the Si can depend on the time
steps. So we write St = {St

1, S
t
2, . . . , S

t
nt
} for the decomposition of the system

S at time t and we have: si(t + 1) = ht
i(si(t)) where the ht

i are the “local”
evolution functions of the St

i . The “global” state s(t) of the system S can be
recovered from the “local” states of the subsystems: there is a function ϕt such
that s(t) = ϕt(s1(t), . . . , snt

(t)) which induces a relation between the “global”
evolution function h and the local evolution functions: s(t + 1) = h(s(t)) =
ϕt(ht

1(s1(t)), . . . , ht
nt

(snt
(t))).

The successive decomposition St
1, S

t
2, . . . , S

t
nt

can be used to capture the el-
ementary parts and the interaction structure between these elementary parts
of S. Cf. Figure 2. Two subsystems S′ and S′′ of S interact if there are some
t such that S′, S′′ ∈ St. Two subsystems S′ and S′′ are separable if there are
some t such that S′ ∈ St and S′′ �∈ St or vice-versa. This leads to consider the
set S, called the interaction structure of S, defined by the smaller set closed by
intersection that contains the St

j .

4 This section is adapted from [36].

142 J.-L. Giavitto et al.

...

S

s(0)

S1
1

s(1)

S0
1

S1
i

s(t)

S ′ ∈ V (S)

Fig. 2. The interaction structure of a system S resulting from the subsystems of ele-
ments in interaction at a given time step

Set S has a topological structure: S corresponds to an abstract simplicial
complex. An abstract simplicial complex [24] is a collection S of finite non-
empty set such that if A is an element of S, so is every nonempty subset of
A. The element A of S is called a simplex of S; its dimension is one less that
the number of its elements. The dimension of S is the largest dimension of one
of its simplices. Each nonempty subset of A is called a face and the vertex set
V (S), defined by the union of the one point elements of S, corresponds to the
elementary functional parts of the system S. The abstract simplicial complex
notion generalizes the idea of graph: a simplex of dimension 1 is an edge that
links two vertices, a simplex f of dimension 2 can be thought of as a surface
whose boundaries are the simplices of dimension 1 included in f , etc.

4 MGS Principles

The two previous sections give several examples to convince the reader that
a topological approach of the data and control structures of a program present
some interesting perspectives for language design: a data structure can be defined
as a space (and there are many ways to build spaces) and a control structure is
a path specification (and there are many ways to specify a path).

Such a topological approach is at the core of the MGS project. Starting from
the analysis of the interaction structure in the previous section, our idea is to
define directly the set S with its topological structure and to specify the evolution
function h by specifying the set St

i and the functions ht
i:

– the interaction structure S is defined as a new kind of data structures called
topological collections;

– a set of functions ht
i together with the specification of the St

i for a given t
are called a transformation.

We will show that this abstract approach enables an homogeneous and uniform
handling of several computational models including cellular automata (CA),
lattice gas automata, abstract chemistry, Lindenmayer systems, Paun systems
and several other abstract reduction systems.

Computations in Space and Space in Computations 143

These ideas are validated by the development of a language also called MGS.
This language embeds a complete, strict, impure, dynamically or statically typed
functional language.

4.1 Topological Collections

The distinctive feature of the MGS language is its handling of entities structured
by abstract topologies using transformations [20]. A set of entities organized by an
abstract topology is called a topological collection. Here, topological means that
each collection type defines a neighborhood relation inducing a notion of subcol-
lection. A subcollection S′ of a collection S is a subset of connected elements of S
and inheriting its organization from S. Beware that by “neighborhood relation”
we simply mean a relationship that specify if two elements are neighbors. From
this relation, a cellular complex can be built and the classical “neighborhood
structure” in terms of open and closed sets can be recovered [35].

A topological collection can be thought as a function with a finite support
from a set of positions (the elements of V (S)) to a set of values (the support
of a function is the set of elements on which the function takes a well defined
value). Such a data structure is called a data field [13]. This point of view is
only an abstraction: the data structure is not really implemented as a function.
This approach makes a distinction between the content and the container. The
notions of shape [25] and shape type [11] also separate the set of positions of a
data structure from the values it contains. Often there is no need to distinguish
between the positions and their associated values. In this case, we use the term
“element of the collection”.

Collection Types. Different predefined and user-defined collection types are avail-
able in MGS, including sets, bags (or multisets), sequences, Cayley graphs of
Abelian groups (which include several unbounded, circular and twisted grids),
Delaunay triangulations, arbitrary graphs, quasi-manifolds [36] and some other
arbitrary topologies specified by the programmer.

Building Topological Collections. For any collection type T, the corresponding
empty collection is written ():T. The join of two collections C1 and C2 (writ-
ten by a comma: C1,C2) is the main operation on collections. The comma
operator is overloaded in MGS and can be used to build any collection (the
type of the arguments disambiguates the collection built). So, the expression
1, 1+2, 2+1, ():set builds the set with the two elements 1 and 3, while the
expression 1, 1+2, 2+1, ():bag computes a bag (a set that allows multiple oc-
currences of the same value) with the three elements 1, 3 and 3. A set or a bag
is provided with the following topology: in a set or a bag, any two elements are
neighbors. To spare the notations, the empty sequence can be omitted in the
definition of a sequence: 1, 2, 3 is equivalent to 1, 2, 3,():seq.

4.2 Transformations

The MGS experimental programming language implements the idea of transfor-
mations of topological collections into the framework of a functional language:

144 J.-L. Giavitto et al.

collections are just new kinds of values and transformations are functions acting
on collections and defined by a specific syntax using rules. Transformations (like
functions) are first-class values and can be passed as arguments or returned as
the result of an application.

The global transformation of a topological collection s consists in the parallel
application of a set of local transformations. A local transformation is specified
by a rule r that specifies the replacement of a subcollection by another one. The
application of a rewriting rule σ ⇒ f(σ, ...) to a collection s:

1. selects a subcollection si of s whose elements match the pattern σ,
2. computes a new collection s′i as a function f of si and its neighbors,
3. and specifies the insertion of s′i in place of si into s.

One should pay attention to the fact that, due to the parallel application
strategy of rules, all distinct instances si of the subcollections matched by the σ
pattern are “simultaneously replaced” by the f(si).

Path Pattern. A pattern σ in the left hand side of a rule specifies a subcollec-
tion where an interaction occurs. A subcollection of interacting elements can
have an arbitrary shape, making it very difficult to specify. Thus, it is more
convenient (and not so restrictive) to enumerate sequentially the elements of the
subcollection. Such enumeration will be called a path.

A path pattern Pat is a sequence or a repetition Rep of basic filters. A basic
filter BF matches one element. The following fragment of the grammar of path
patterns reflects this decomposition:

Pat ::= Rep | Rep , Pat Rep ::= BF | BF /exp BF ::= cte | id | <undef>
where cte is a literal value, id ranges over the pattern variables and exp is a
boolean expression. The following explanations give an interpretation for these
patterns:

literal: a literal value cte matches an element with the same value.
empty element the symbol <undef> matches an element whose position does

not have an associated value.
variable: a pattern variable a matches exactly one element with a well defined

value. The variable a can then occur elsewhere in the rest of pattern or in
the r.h.s. of the rule and denotes the value of the matched element.

neighbor: b, p is a pattern that matches a path which begins by an element
matched by b and continues by a path matched by p, the first element of p
being a neighbor of b.

guard: p/exp matches a path matched by p when the boolean expression exp
evaluates to true.

Elements matched by basic filters in a rule are distinct. So a matched path is
without self-intersection. The identifier of a pattern variable can be used only
once as a basic filter. That is, the path pattern x,x is forbidden. However, this
pattern can be rewritten for instance as: x,y / y = x.

Computations in Space and Space in Computations 145

Right Hand Side of a Rule. The right hand side of a rule specifies a collection
that replaces the subcollection matched by the pattern in the left hand side.
There is an alternative point of view: because the pattern defines a sequence of
elements, the right hand side may be an expression that evaluates to a sequence of
elements. Then, the substitution is done element-wise: element i in the matched
path is replaced by the element i in the r.h.s. This point of view enables a very
concise writing of the rules.

A Very Simple Transformation. The map function which applies a function to
each element of a collection is an example of a simple transformation:

trans map[f=\z.z] = { x => f(x) }
This transformation is made of only one rule. The syntax must be obvious (the
default value of the optional parameter f is the identity written using a lambda-
notation). This transformation implements a map since each element e of the
collection is matched by the pattern x and will be replaced by f(e) in a parallel
application strategy of the rule.

5 Examples

5.1 The Modeling of Dynamical Systems

In this section, we show through one example the ability of MGS to concisely and
easily express the state of a dynamical system and its evolution function. More
examples can be found on the MGS web page and include: cellular automata-like
examples (game of life, snowflake formation, lattice gas automata...), various res-
olutions of partial differential equations (like the diffusion-reaction à la Turing),
Lindenmayer systems (e.g. the modeling of the heterocysts differentiation during
Anabaena growth), the modeling of a spatially distributed signaling pathway, the
flocking of birds, the modeling of a tumor growth, the growth of a meristem, the
simulation of colonies of ants foraging for food, etc.

The example given below is an example of a discrete “classical dynamical
system”. We term it “classical” because it exhibits a static structure: the state
of the system is statically described and does not change with the time. This
situation is simple and arises often in elementary physics. For example, a falling
stone is statically described by a position and a velocity and this set of variables
does not change (even if the value of the position and the value of the velocity
change in the course of time). However, in some systems, it is not only the
values of state variables, but also the set of state variables and/or the evolution
function, that changes over time. We call these systems dynamical systems with
a dynamic structure following [17], or (DS)2 in short. As pointed out by [15],
many biological systems are of this kind. The rationale and the use of MGS in
the simulation of (DS)2 is presented in [14, 15].

Diffusion Limited Aggreation (DLA). DLA, is a fractal growth model studied
by T.A. Witten and L.M. Sander, in the eighties. The principle of the model is

146 J.-L. Giavitto et al.

Fig. 3. From left to right: the final state of a DLA process on a torus, a chess pawn, a
Klein’s bottle and an hexagonal meshes. The chess pawn is homeomorphic to a sphere
and the Klein’s bottle does not admit a concretization in Euclidean space. These two
topological collections are values of the quasi-manifold type. Such collection are build
using G-map, a data-structure widely used in geometric modeling [27]. The torus and
the hexagonal mesh are GBFs

simple: a set of particles diffuses randomly on a given spatial domain. Initially
one particle, the seed, is fixed. When a mobile particle collides a fixed one,
they stick together and stay fixed. For the sake of simplicity, we suppose that
they stick together forever and that there is no aggregate formation between
two mobile particles. This process leads to a simple CA with an asynchronous
update function or a lattice gas automata with a slightly more elaborate rule set.
This section shows that the MGS approach enables the specification of a simple
generic transformation that can act on arbitrary complex topologies.

The transformation describing the DLA behavior is really simple. We use two
symbolic values ‘free and ‘fixed to represent respectively a mobile and a fixed
particle. There are two rules in the transformation:

1. the first rule specifies that if a diffusing particle is the neighbor of a fixed
seed, then it becomes fixed (at the current position);

2. the second one specifies the random diffusion process: if a mobile particle is
neighbor of an empty place (position), then it may leave its current position
to occupy the empty neighbor (and its current position is made empty).

Note that the order of the rules is important because the first has priority over
the second one. Thus, we have :

trans dla = {
‘free, ‘fixed => ‘fixed, ‘fixed
‘free, <undef> => <undef>, ‘free

}
This transformation is polytypic and can be applied to any kind of collection,
see Fig. 3 for a few results.

5.2 Programming in the Small: Algorithmic Examples

The previous section advocates the adequation of the MGS programming style
to model and simulate various dynamical systems. However, it appears that the
MGS programming style is also well fitted for the implementation of algorithmic

Computations in Space and Space in Computations 147

tasks. In this section, we show some examples that support this assertion. More
examples can be found on the MGS web page and include: the analysis of the
Needham-Schroeder public-key protocol [30], the Eratosthene’s sieve, the nor-
malization of boolean formulas, the computation of various algorithms on graphs
like the computation of the shortest distance between two nodes or the maximal
flow, etc.

Gamma and the Chemical Computing Metaphor. In MGS, the topology
of a multiset is the topology of a complete connected graph: each element is the
neighbor of any other element. With this topology, transformations can be used
to easily emulate a Gamma transformations [2, 3]. The Gamma transformation:

M = do
rp x1, . . . , xn

if P (x1, . . . , xn)
by f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)

is simply translated into the following MGS transformation:

trans M = {
x1, . . . , xn

/ P (x1, . . . , xn)
=> f1(x1, . . . , xn), . . . , fm(x1, . . . , xn) }

and the application M(b) of a Gamma transformation M to a multiset b is replaced
in MGS by the computation of the fixpoint iteration M[iter=‘fixpoint](b).
The optional parameter iter is a system parameter that allows the programmer
to choose amongst several predefined application strategies:

f [iter=‘fixpoint](x0)

computes x1 = f(x0), x2 = f(x1), ..., xn = f(xn−1) and returns xn such that
xn = xn−1.

As a consequence, the concise and elegant programming style of Gamma is
enabled in MGS: refer to the Gamma literature for numerous examples of algo-
rithms, from knapsack to the maximal convex hull of a set of points, through the
computation of prime numbers. See also the numerous applications of multiset
rewriting developped in the projects Elan [38] and Maude [37].

One can see MGS as “Gamma with more structure”. However, one can note
that the topology of a multiset is “universal” in the following sense: it embeds
any other neighborhood relationship. So, it is always possible to code (at the
price of explicit coding the topological relation into some value inspected at
run-time) any specific topology on top of the multiset topology. We interpret
the development of “structured Gamma” [10] from this perspective. In addition,
transformations are functions and functions are first citizen values in MGS. So
the higher-order features of the higher-order chemical programming style (see
the article by Banâtre et al. in this volume) can be easely achieved in MGS.

148 J.-L. Giavitto et al.

3 421

41 2 3

y,x

x,y / x>y

3

4

1

2

1

2

3

4

=>
32

Fig. 4. Left: Bubble sort. Right: Bead sort [1]

Two Sorting Algorithms. A kind of bubble-sort is straightforward in MGS;
it is sufficient to specify the exchange of two non-ordered adjacent elements in
a sequence, see Fig. 4. The corresponding transformation is defined as:

trans BubbleSort = { x,y / x > y ⇒ y,x }
The transformation BubbleSort must be iterated until a fixpoint is reached. This
is not a real a bubble sort algorithm because swapping of elements happen at
arbitrary places; hence an out-of-order element does not necessarily bubble to
the top in the characteristic way.

Bead sort is a new sorting algorithm [1]. The idea is to represent positive
integers by a set of beads, like those used in an abacus. Beads are attached to
vertical rods and appear to be suspended in the air just before sliding down (a
number is read horizontally, as a row). After their falls, the rows of numbers
have been rearranged such as the smaller numbers appears on top of greater
numbers, see Fig. 4. The corresponding one-line MGS program is given by the
transformation:

trans BeadSort = { ’empty |north> ’bead ⇒ ’bead, ’empty }
This transformation is applied on the usual grid. The constant ’empty is used
to give a value to an empty place and the constant ’bead is used to represent an
occupied cell. The l.h.s. of the only rule of the transformation BeadSort selects
the paths of length two, composed by an occupied cell at north of an empty cell.
Such a path is replaced by a path computed in the r.h.s. of the rule. The r.h.s.
in this example computes a path of length two with the occupied and the empty
cell swapped.

Hamiltonian Path. A graph is a MGS topological collection. It is very easy to
list all the Hamiltonian paths in a graph using the transformation:

trans H = {
x* / size(x) = size(self) / Print(x) / false => !(false)

}
This transformation uses an iterated pattern x* that matches a path (a sequence
of elements neighbor two by two). The keyword self refers to the collection on
which the transformation is applied, that is, the entire graph. The size of a
graph returns the number of its vertices. So, if the length of the path x is the

Computations in Space and Space in Computations 149

same as the number of vertices in the graph, then the path x is an Hamiltonian
path because matched paths are simple (no repetition of an element). The second
guard prints the Hamiltonian path as a side effect and returns its argument which
is not a false value. Then the third guard is checked and returns false, thus, the
r.h.s. of the rule is never triggered (the ! operator introduces an assertion and
!(false) raises an exception that stops the evaluation process if it is evaluated).
The matching strategy ensures a maximal rule application. In other words, if a
rule is not triggered, then there is no instance of a possible path that fulfills
the pattern. This property implies that the previous rule must be checked on
all possible Hamiltonian paths and H(g) prints all the Hamiltonian path in g
before returning g unchanged.

6 Current Status and Related Work

The topological approach we have sketched here is part of a long term research
effort [21] developed for instance in [13] where the focus is on the substructure,
or in [16] where a general tool for uniform neighborhood definition is developed.
Within this long term research project, MGS is an experimental language used
to investigate the idea of associating computations to paths through rules. The
application of such rules can be seen as a kind of rewriting process on a collection
of objects organized by a topological relationship (the neighborhood). A privi-
leged application domain for MGS is the modeling and simulation of dynamical
systems that exhibit a dynamic structure.

Multiset transformation is reminiscent of multiset-rewriting (or rewriting of
terms modulo AC). This is the main computational device of Gamma [2], a lan-
guage based on a chemical metaphor; the data are considered as a multiset M of
molecules and the computation is a succession of chemical reactions according to
a particular rule. The CHemical Abstract Machine (CHAM) extends these ideas
with a focus on the expression of semantic of non deterministic processes [4].
The CHAM introduces a mechanism to isolate some parts of the chemical solu-
tion. This idea has been seriously taken into account in the notion of P systems.
P systems [31] are a recent distributed parallel computing model based on the
notion of a membrane structure. A membrane structure is a nesting of cells
represented, e.g, by a Venn diagram without intersection and with a unique su-
perset: the skin. Objects are placed in the regions defined by the membranes
and evolve following various transformations: an object can evolve into another
object, can pass trough a membrane or dissolve its enclosing membrane. As for
Gamma, the computation is finished when no object can further evolve. By using
nested multisets, MGS is able to emulate more or less the notion of P systems.
In addition, patterns like the iteration + go beyond what is possible to specify
in the l.h.s. of a Gamma rule.

Lindenmayer systems [28] have long been used in the modeling of (DS)2 (es-
pecially in the modeling of plant growing). They loosely correspond to transfor-
mations on sequences or string rewriting (they also correspond to tree rewriting,
because some standard features make particularly simple to code arbitrary trees,

150 J.-L. Giavitto et al.

Cf. the work of P. Prusinkiewicz [32]). Obviously, L systems are dedicated to the
handling of linear and tree-like structures.

There are strong links between GBF and cellular automata (CA), especially
considering the work of Z. Róka which has studied CA on Cayley graphs [33].
However, our own work focuses on the construction of Cayley graphs as the
shape of a data structure and we develop an operator algebra and rewriting
notions on this new data type. This is not in the line of Z. Róka which focuses
on synchronization problems and establishes complexity results in the framework
of CA.

A unifying theoretical framework can be developed [18, 20], based on the no-
tion of chain complex developed in algebraic combinatorial topology. However,
we do not claim that we have achieved a useful theoretical framework encom-
passing the previous paradigms. We advocate that few topological notions and a
single syntax can be consistently used to allow the merging of these formalisms
for programming purposes.

The current MGS interpreter is freely available at the MGS home page:
mgs.lami.univ-evry.fr. A compiler is under development where a static type
discipline can be enforced [8, 9]). There are two versions of the type inference
systems for MGS: the first one is a classical extension of the Hindley-Milner type
inference system that handles homogeneous collections. The second one is a soft
type system able to handle heterogeneous collection (e.g. a sequence containing
both integers and booleans is heterogeneous).

Acknowledgments

The authors would like to thanks Franck Delaplace at LaMI, Frédéric Gruau at
University of Paris-Sud, Florent Jacquemard at INRIA/LSV-Cachan, C. Godin
and P. Barbier de Reuille at CIRAD-Montpellier, Pierre-Etienne Moreau at
Loria-Nancy, Éric Goubault at CEA-Saclay, P. Prusinkiewicz at the University of
Calgary (who coined the term ”computation in space”) and the members of the
Epigenomic group at GENOPOLE-Évry, for stimulating discussions, thoughtful
remarks and warm support. We gratefully acknowledge the financial support of
the CNRS, the GDR ALP, IMPBIO, the University of Évry and GENOPOLE.

References

1. J. Arulanandham, C. Calude, and M. Dinneen. Bead-sort: A natural sorting al-
gorithm. Bulletin of the European Association for Theoretical Computer Science,
76:153–162, Feb. 2002. Technical Contributions.

2. J.-P. Banatre, A. Coutant, and D. L. Metayer. A parallel machine for multiset
transformation and its programming style. Future Generation Computer Systems,
4:133–144, 1988.

3. J.-P. Banâtre, P. Fradet, and D. L. Métayer. Gamma and the chemical reaction
model: Fifteen years after. Lecture Notes in Computer Science, 2235:17–44, 2001.

Computations in Space and Space in Computations 151

4. G. Berry and G. Boudol. The chemical abstract machine. In Conf. Record 17th
ACM Symp. on Principles of Programmming Languages, POPL’90, San Francisco,
CA, USA, 17–19 Jan. 1990, pages 81–94. ACM Press, New York, 1990.

5. R. W. Brockett. Dynamical systems that sort lists, diagonalize matrices, and solve
linear programming problems. Linear Algebra and its Applications, 146:79–91,
1991.

6. K. M. Chandy. Reasoning about continuous systems. Science of Computer Pro-
gramming, 14(2–3):117–132, Oct. 1990.

7. E. G. Coffman, M. J. Elphick, and A. Shoshani. System deadlocks. Computing
Surveys, 3(2):67–78, 1971.

8. J. Cohen. Typing rule-based transformations over topological collections. In J.-L.
Giavitto and P.-E. Moreau, editors, 4th International Workshop on Rule-Based
Programming (RULE’03), pages 50–66, 2003.

9. J. Cohen. Typage fort et typage souple des collections topologiques et des trans-
formations. In V. Ménissier-Morain, editor, Journées Francophones des Langages
Applicatifs (JFLA 2004), pages 37–54. INRIA, 2004.

10. P. Fradet and D. L. Métayer. Structured Gamma. Science of Computer Program-
ming, 31(2–3):263–289, July 1998.

11. P. Fradet and D. L. Mtayer. Shape types. In Proc. of Principles of Programming
Languages, Paris, France, Jan. 1997. ACM Press.

12. F. Geurts. Hierarchy of discrete-time dynamical systems, a survey. Bulletin of the
European Association for Theoretical Computer Science, 57:230–251, Oct. 1995.
Surveys and Tutorials.

13. J.-L. Giavitto. A framework for the recursive definition of data structures. In ACM-
Sigplan 2nd International Conference on Principles and Practice of Declarative
Programming (PPDP’00), pages 45–55, Montral, Sept. 2000. ACM-press.

14. J.-L. Giavitto. Invited talk: Topological collections, transformations and their
application to the modeling and the simulation of dynamical systems. In Rewriting
Technics and Applications (RTA’03), volume LNCS 2706 of LNCS, pages 208 – 233,
Valencia, June 2003. Springer.

15. J.-L. Giavitto, C. Godin, O. Michel, and P. Prusinkiewicz. Modelling and Simu-
lation of biological processes in the context of genomics, chapter “Computational
Models for Integrative and Developmental Biology”. Hermes, July 2002. Also re-
published as an high-level course in the proceedings of the Dieppe spring school
on “Modelling and simulation of biological processes in the context of genomics”,
12-17 may 2003, Dieppes, France.

16. J.-L. Giavitto and O. Michel. Declarative definition of group indexed data struc-
tures and approximation of their domains. In Proceedings of the 3nd International
ACM SIGPLAN Conference on Principles and Practice of Declarative Program-
ming (PPDP-01). ACM Press, Sept. 2001.

17. J.-L. Giavitto and O. Michel. Mgs: a rule-based programming language for complex
objects and collections. In M. van den Brand and R. Verma, editors, Electronic
Notes in Theoretical Computer Science, volume 59. Elsevier Science, 2001.

18. J.-L. Giavitto and O. Michel. MGS: a programming language for the transformations
of topological collections. Technical Report 61-2001, LaMI – Université d’Évry Val
d’Essonne, May 2001.

19. J.-L. Giavitto and O. Michel. Data structure as topological spaces. In Proceedings
of the 3nd International Conference on Unconventional Models of Computation
UMC02, volume 2509, pages 137–150, Himeji, Japan, Oct. 2002. Lecture Notes in
Computer Science.

152 J.-L. Giavitto et al.

20. J.-L. Giavitto and O. Michel. The topological structures of membrane computing.
Fundamenta Informaticae, 49:107–129, 2002.

21. J.-L. Giavitto, O. Michel, and J.-P. Sansonnet. Group based fields. In I. Takayasu,
R. H. J. Halstead, and C. Queinnec, editors, Parallel Symbolic Languages and
Systems (International Workshop PSLS’95), volume 1068 of LNCS, pages 209–
215, Beaune (France), 2–4 Oct. 1995. Springer-Verlag.

22. E. Goubault. Geometry and concurrency: A user’s guide. Mathematical Structures
in Computer Science, 10:411–425, 2000.

23. G.-G. Granger. La pense de l’espace. Odile Jacob, 1999.
24. M. Henle. A combinatorial introduction to topology. Dover publications, 1994.
25. C. B. Jay. A semantics for shape. Science of Computer Programming, 25(2–3):251–

283, 1995.
26. J. Jeuring and P. Jansson. Polytypic programming. Lecture Notes in Computer

Science, 1129:68–114, 1996.
27. P. Lienhardt. Topological models for boundary representation : a comparison with

n-dimensional generalized maps. Computer-Aided Design, 23(1):59–82, 1991.
28. A. Lindenmayer. Mathematical models for cellular interaction in development,

Parts I and II. Journal of Theoretical Biology, 18:280–315, 1968.
29. E. Meijer, M. Fokkinga, and R. Paterson. Functional Programming with Bananas,

Lenses, Envelopes and Barbed Wire. In 5th ACM Conference on Functional Pro-
gramming Languages and Computer Architecture, volume 523 of Lecture Notes in
Computer Science, pages 124–144, Cambridge, MA, August 26–30, 1991. Springer.

30. O. Michel and F. Jacquemard. An Analysis of a Public-Key Protocol with Mem-
branes, pages 281–300. Natural Computing Series. Springer Verlag, 2005.

31. G. Paun. From cells to computers: Computing with membranes (P systems).
Biosystems, 59(3):139–158, March 2001.

32. P. Prusinkiewicz and J. Hanan. L systems: from formalism to programming lan-
guages. In G. Ronzenberg and A. Salomaa, editors, Lindenmayer Systems, Impacts
on Theoretical Computer Science, Computer Graphics and Developmental Biology,
pages 193–211. Springer Verlag, Feb. 1992.

33. Z. Róka. One-way cellular automata on Cayley graphs. Theoretical Computer
Science, 132(1–2):259–290, 26 Sept. 1994.

34. M. Sintzoff. Invariance and contraction by infinite iterations of relations. In Re-
search directions in high-level programming languages, LNCS, volume 574, pages
349–373, Mont Saint-Michel, France, june 1991. Springer-Verlag.

35. R. D. Sorkin. A finitary substitute for continuous topology. Int. J. Theor. Phys.,
30:923–948, 1991.

36. A. Spicher, O. Michel, and J.-L. Giavitto. A topological framework for the speci-
fication and the simulation of discrete dynamical systems. In Sixth International
conference on Cellular Automata for Research and Industry (ACRI’04), volume
3305 of LNCS, Amsterdam, October 2004. Springer.

37. The MAUDE project. Maude home page, 2002. http://maude.csl.sri.com/.
38. The PROTHEO project. Elan home page, 2002.

http://www.loria.fr/equipes/protheo/SOFTWARES/ELAN/.
39. H. Weyl. The Classical Groups (their invariants and representations). Princeton

University Press, 1939. Reprint edition (October 13, 1997). ISBN 0691057567.

Bio-inspired Computing

Bio-inspired Computing Paradigms
(Natural Computing)

Gheorghe Păun

Institute of Mathematics of the Romanian Academy,
PO Box 1-764, 014700 Bucureşti, Romania and

Research Group on Natural Computing,
Department of Computer Science and Artificial Intelligence,

University of Sevilla,
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

george.paun@imar.ro, gpaun@us.es

Abstract. This is just a glimpse to the fruitful and continuous preoc-
cupation of computer science to try to get inspired by biology, at various
levels. Besides briefly discussing the main areas of natural computing (ge-
netic algorithms–evolutionary computing, neural computing, DNA com-
puting, and membrane computing), we mention some of the hopes and
the difficulties/limits of this enterprise.

1 From Turing to Present Days

In some sense, the whole history of computer science is the history of a series of
continuous attempts to discover, study, and, if possible, implement computing
ideas, models, paradigms from the way nature – the humans included – com-
putes. We do not enter here into the debate whether or not the processes taking
place in nature are by themselves “computations”, or we, homo sapiens, inter-
pret them as computations, but we just recall the fact that when defining the
computing model which is currently known as Turing machine and which pro-
vides the standard definition of what is computable, A. Turing (in 1935–1936)
explicitly wanted to abstract and model what a clerk in a bank is doing when
computing with numbers. One decade later, McCullock, Pitts, Kleene founded
the finite automata theory starting from modelling the neuron and the neural
nets; still later, this led to the area called now neural computing – whose roots
can be found in unpublished papers of the same A. Turing (see also Section 3 be-
low). Genetic algorithms and evolutionary computing/programming are already
well established (and much applied practically) areas of computer science. One
decade ago, the history making Adleman’s experiment of computing with DNA
molecules was reported, proving that one can not only get inspired from biology
for designing computers and algorithms for electronic computers, but one can
also use a biological support (a bio–ware) for computing. In the last years, the

J.-P. Banâtre et al. (Eds.): UPP 2004, LNCS 3566, pp. 155–160, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

156 G. Păun

search of computing ideas/models/paradigms in biology, in general in nature,
became explicit and systematic under the general name of natural computing1.

This trend of computer science is not singular, many other areas of science
and technology are scrutinizing biology in the hope (confirmed in many cases)
that life has polished for billions of years numerous wonderful processes, tools,
and machineries which can be imitated in domains apparently far from biology,
such as materials and sensor technology, robotics, bionics, nanotechnology.

2 A Typical Case: Evolutionary Computing

In order to see the (sometimes unexpected) benefits we can have in this frame-
work, it is instructive to examine the case of genetic algorithms. Roughly speak-
ing, they try to imitate the bio–evolution in solving optimization problems: the
candidate solutions to a problem are encoded as “chromosomes” (strings of ab-
stract symbols), which are evolved by means of crossover and point mutation
operations, and selected from a generation to the next one by means of a fittness
mapping; the trials to improve the fitness mapping continue until either no es-
sential improvement is done for a number of steps, or until a given number of
iterations are performed. The biological metaphors are numerous and obvious.
What is not obvious (from a mathematical point of view) is why such a brute
force approach – searching randomly the space of candidate solutions, with the
search guided by random crossover and point mutations – is as successful as it
happens to be (with a high probability, in many cases, the genetic algorithms
provide a good enough solution in a large number of applications). The most
convincing “explanation” is probably “because nature has used the same strat-
egy in improving species”. This kind of bio–mystical “explanation” provides a
rather optimistic motivation for related researche.

3 Neural Computing

A special mentioning deserves another “classic” area included nowadays in nat-
ural computing, namely neural computing. In short, the challenge is now to
learn something useful from the brain organization, from the way the neurons
are linked; the standard model consists of neuron–like computing agents (finite
state machines, of very reduced capabilities), placed in the vertices of a net, with
numerical weights on edges, aiming to compute a function; in a first phase, the
net is “trained” for the task to carry out, and the weights are adjusted, then the
net is used for solving a real problem. Pattern recognition problems are typical to

1 As a proof of the popularity of this syntagm, it is of interest to point out that there
are conferences with this topic explicitly included in their scope, a new journal with
this name is published by Kluwer, a new series of the Elsevier Theoretical Computer
Science journal is devoted to natural computing, a new series of books published
by Springer–Verlag and a column in the Bulletin of the European Association for
Theoretical Computer Science also have this name.

Bio-inspired Computing Paradigms 157

be addressed via neural nets. The successes (and the promises) are comparable
with those of genetic algorithms, without having a similarly wide range of ap-
plications. However, the brain remains such a misterious and efficient machinery
that nobody can underestimate the progresses in any area trying to imitate the
brain. (It also deserves to mention the rather interesting detail that Alan Tur-
ing himself, some years after introducing Turing machines, had a paper where
he proposed a computing device in the form of a net of very simple computing
units, able to learn, and then to solve an optimization problem – nothing else
than neural computing avant la lettre. Unfortunately, his paper remained un-
published and was only recently reevaluated; see http://www.AlanTuring.net
and [12] for details.)

4 DNA Computing

Coming back to the history making Adleman’s experiment mentioned above [1],
it has the merit of opening (actually, confirming, because speculations about us-
ing DNA as a support for computations were made since several decades, while
theoretical computing models inspired from the DNA structure and operations
were already proposed in eighties, see, e.g., [7]) a completely new research vista,
not looking for better algorithms for existing computers, but for a new type of
hardware, based on bio–molecules. Specifically, Adleman has solved in a lab, just
handling DNA by techniques already standard in bio–chemistry, a computation-
ally hard problem, the well–known Hamiltonian Path problem. The problem is
NP–complete, among those considered intractable for the usual computers, but
Aldeman has solved it in linear time (the number of lab operations carried out
was linear in terms of the number of nodes). The graph used in the experiment
had only 7 nodes, a toy–problem by all means, while the actual working time was
of seven days, but the demo (in terms of [6]) was convincing: we can compute
using DNA!

It is worth emphasizing the fundamental novelty of this event: the dream is
to find an essentially new type of computers – sometimes called “wet computer”.
The great promise is to solve hard problems in a feasible time, by making use
of the massive parallelism made possible by the very compact way of storing
information on DNA molecules (bits at the molecular level, with some orders of
efficiency over silicon supports). In this way, billions of “computing chips” can
be accommodated in a tiny test tube, much more than on electronic supports.
The possible (not yet very probable for the near future. . .) “DNA computer”
also has other attractive features: energetical efficiency, reversibility, evolvability.

5 The Marvelous DNA Molecule

For the practical computer science, DNA computing fuels several hopes, mainly
related to the massive parallelism mentioned above; on this basis, we can simulate
non-determinism (which is anyway present in biochemistry), so that one can
address in this framework computationally hard problems, with the possibility

158 G. Păun

to push with some steps forward the feasibility barriers – at least for certain
problems.

There are mentioned also other good features of DNA as a support for com-
putations (energy efficiency, stability, reversibility of certain processes), but we
switch here to a purely theoretical observation, which is simply spectacular from
a general computability point of view: in certain sense, all Turing computable
languages are “hidden” in the DNA molecules, and any particular language can
be “read off” from this blue print of computability by the simplest transducer, the
finite state one!.

This newspaper–style statement has a precise mathematical counterpart, first
mentioned in [11]. Everything starts with an old characterization of recursively
enumerable (RE) languages, as the projection of the intersection of a twin–shuffle
language with a regular language. However, both the projection and the inter-
section with a regular language, and the decoding of the symbols of an arbitrary
alphabet from codes over a binary alphabet can be computed by a sequential
transducer. Therefore, every RE language is the image through a sequential
transducer of the twin–shuffle language over the alphabet with two symbols.
Now, a clever observation from [11] relates the twin–shuffle language over two
symbols with “readings” of DNA molecules (one goes along the two strands of
a molecule, step by step but with non-deterministically varying speed, and pro-
ducing a single string, by interleaving the visited nucleotides; this reading can be
done either starting from the same end of a double stranded molecule, or from
opposite ends, for instance, according to the directionality of the two strands).
Thus: every RE language can be obtained through a finite state transducer from
the pool of readings of DNA molecules! The double stranded data structure,
with the corresponding nucleotides related by the Watson–Crick complementar-
ity relation, is intrinsically universal from a computational point of view!

This observation (a presentation and variants of the mathematical details
can also be found in [10]) should bring to theoretical DNA computing a similar
degree of optimism as genetic algorithms bring to practical natural computing.

6 Recent Attempts

Another component of this general intellectual enterprise is membrane comput-
ing, which starts from the observation that the cell is the smallest living thing,
and at the same time it is a marvellous tiny machinery, with a complex structure,
an intricate inner activity, and an exquisite relationship with its environment –
the neighboring cells included. Then, the challenge is to find in the structure and
the functioning of the cell those elements useful for computing. Distribution, par-
allelism, non-determinism, decentralization, (non)synchronization, coordination,
communication, robustness, scalability, are only a few keywords related to this
challenge. For instance, a problem which cannot be easily solved in terms of
silicon engineering, but which was misteriously and very efficiently solved by
nature at the level of the cell is related to the coordination of processes, the con-
trol pathways which keep the cell alive, without a high cost of coordination (in

Bio-inspired Computing Paradigms 159

parallel computing the communication complexity is sometimes higher than the
time and space complexity). Then, interesting questions appear in connection
with the organization of cells into tissues, and this is also related to the way the
neurons cooperate in the brain.

Similar issues are addressed by several other recent research directions
belonging to natural computing, for instance, trying to learn computing
ideas/models/paradigms from the way certain colonies of insects are organized
and work together, the way bacteria populations develop in a given environ-
ment, the way flocks of birds maintain their “organization”, the (amazing) way
ciliates unscramble their chromosomes after reproduction [5], and so on. Most
of these areas still wait for producing a demo, many of them are still in the
stage of “craftsmanship”, with ad-hoc ideas involved in ad-hoc models/tools han-
dling ad-hoc problems, but the whole approach is both intellectually appealing
and practically promising (sometimes through “by–products”, useful for biology,
medicine, robotics, etc).

7 Hopes and Limits

As mentioned above, there are many convincing achievements of natural comput-
ing, many bio–inspired areas of computer science have important practical appli-
cations, or/and they are appealing from a theoretical point of view. Sometimes,
the usefulness of the bio–inspired models and tools has a somewhat misterious
source/explanation, in other cases the matter is simpler and more transparent.
Anyway, we try here to compose a list of attractive features of this attempt,
of learning from the living nature to the benefit of computer science (most of
these features can be called “hopes”, as not being confirmed by current natural
computing): in many cases, we look for ideas for improving the use of the ex-
isting computers, for new types of algorithms; in other cases, a new hardware
is sought for; as new ideas to be found in nature, we can learn new data struc-
tures (such as the double strand with complementary pairs of symbols), or new
operations (crossover and point mutations, splicing, annealing, and so on and
so forth); bio–computing can make available a massive parallelism, reversible
computations, non-determinism, energy efficiency, maybe also evolvable hard-
ware/software, self–healing, robust; new ideas learnt from biology can lead to
a complete reconstruction of computability theory, on non-standard bases (e.g.,
using the splicing operation, quite different from the rewriting operation, which
is standard in computability); nature can suggest new computer architectures,
ways to cope with such difficulties of parallel computing as communication,
(de)centralization, synchronization, controlling distributed processes, etc.

The list might be probably continued, but we want to make here a point
which we find important: when discussing about new computing paradigms in-
spired from biology, most authors are enthusiastic or even over–enthusiastic. For
promoting a young research area, this is understandable – but natural computing
is no longer an young area. A more lucid position is similarly helpful as a blindly
optimistic one, so that we balance here the previous list with another one, of

160 G. Păun

difficulties of implementing bio–ideas in computer science: nature has (in a cer-
tain sense, unlimited) time and resources, nature is cruel, kills what is not fit (all
these are difficult to incorporate in computers, let them be based on electronic
hardware or on a hypothetic bio–ware); nature has other goals than computing;
many bio–chemical processes have a degree of non-determinism which we cannot
afford in our computations; the life processes are complex, with a high degree of
redundancy; biology seems to deal with non-crisp mathematics, with probabil-
ities, with fuzzy estimations, which are not fully manageable in computations.
And, last but not least, maybe we dream too much even from a theoretical point
of view. First, the space–time trade–off specific to molecular computing, can-
not redefine complexity classes, and it is sometimes too costly in space (in the
size of used bio–ware). Then, M. Conrad [4] warned us that programmability
(universality), efficiency, and evolvability are three contradictory features of any
computing model. . . Both these observations indicate that there is no free lunch
in computer science, even in the bio–inspired one.

References

1. L.M. Adleman, Molecular Computation of Solutions to Combinatorial Problems.
Science, 226 (November 1994), 1021–1024.

2. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology
of the Cell, 4th ed. Garland Science, New York, 2002.

3. J.A. Anderson, An Introduction to Neural Networks. The MIT Press, Cambridge,
MA, 1996.

4. M. Conrad, The Price of Programmability. In The Universal Turing Machine: A
Half–Century Survey (R. Herken, ed.), Kammerer and Unverzagt, Hamburg, 1988,
285–307.

5. A. Ehrenfeucht, T. Harju, I. Petre, D.M. Prescott, G. Rozenberg, Computations
in Living Cells. Springer–Verlag, Berlin, 2004.

6. J. Hartmanis, About the Nature of Computer Science. Bulletin of the EATCS, 53
(June 1994), 170–190.

7. T. Head, Formal Language Theory and DNA: An Analysis of the Generative Ca-
pacity of Specific Recombinant Behaviors. Bulletin of Mathematical Biology, 49
(1987), 737–759.

8. J.H. Koza, J.P. Rice, Genetic Algorithms: The Movie. MIT Press, Cambridge,
Mass., 1992.

9. Gh. Păun, Computing with Membranes: An Introduction. Springer–Verlag, Berlin,
2002.

10. Gh. Păun, G. Rozenberg, A. Salomaa, DNA Computing. New Computing
Paradigms. Springer–Verlag, Berlin, 1998.

11. G. Rozenberg, A. Salomaa, Watson–Crick Complementarity, Universal Computa-
tions, and Genetic Engineering. Techn. Report 96–28, Department of Computer
Science, Leiden Univ., Oct. 1996.

12. C. Teuscher, Alan Turing. Life and Legacy of a Great Thinker. Springer–Verlag,
Berlin, 2003.

Inverse Design of Cellular Automata by Genetic
Algorithms: An Unconventional Programming

Paradigm

Thomas Bäck1,2, Ron Breukelaar1,�, and Lars Willmes2

1 Universiteit Leiden, LIACS, P.O. Box 9512, 2300 RA Leiden, The Netherlands
{baeck, rbreukel}@liacs.nl

2 NuTech Solutions GmbH, Martin Schmeißer Weg 15,
44227 Dortmund, Germany

{baeck, willmes}@nutechsolutions.de

Abstract. Evolving solutions rather than computing them certainly
represents an unconventional programming approach. The general
methodology of evolutionary computation has already been known in
computer science since more than 40 years, but their utilization to pro-
gram other algorithms is a more recent invention. In this paper, we out-
line the approach by giving an example where evolutionary algorithms
serve to program cellular automata by designing rules for their iteration.
Three different goals of the cellular automata designed by the evolu-
tionary algorithm are outlined, and the evolutionary algorithm indeed
discovers rules for the CA which solve these problems efficiently.

1 Evolutionary Algorithms

Evolutionary Computation is the term for a subfield of Natural Computing that
has emerged already in the 1960s from the idea to use principles of natural
evolution as a paradigm for solving search and optimization problem in high-
dimensional combinatorial or continuous search spaces. The algorithms within
this field are commonly called evolutionary algorithms, the most widely known
instances being genetic algorithms [6, 4, 5], genetic programming [8, 9], evolution
strategies [12, 13, 14, 15], and evolutionary programming [3, 2]. A detailed intro-
duction to all these algorithms can be found e.g. in the Handbook of Evolutionary
Computation [1].

Evolutionary Computation today is a very active field involving fundamental
research as well as a variety of applications in areas ranging from data analysis
and machine learning to business processes, logistics and scheduling, technical
engineering, and others. Across all these fields, evolutionary algorithms have

� Part of the research was funded by the Foundation for Fundamental Research on
Matter (FOM), Utrecht, The Netherlands, project: “An evolutionary approach to
many-parameter physics”.

J.-P. Banâtre et al. (Eds.): UPP 2004, LNCS 3566, pp. 161–172, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

162 T. Bäck, R. Breukelaar, and L. Willmes

convinced practitioners by the results obtained on hard problems that they are
very powerful algorithms for such applications. The general working principle of
all instances of evolutionary algorithms today is based on a program loop that
involves simplified implementations of the operators mutation, recombination,
selection, and fitness evaluation on a set of candidate solutions (often called a
population of individuals) for a given problem. In this general setting, mutation
corresponds to a modification of a single candidate solution, typically with a
preference for small variations over large variations. Recombination corresponds
to an exchange of components between two or more candidate solutions. Selection
drives the evolutionary process towards populations of increasing average fitness
by preferring better candidate solutions to proliferate with higher probability
to the next generation than worse candidate solutions. By fitness evaluation,
the calculation of a measure of goodness associated with candidate solutions
is meant, i.e., the fitness function corresponds to the objective function of the
optimization problem at hand.

This short paper does not intend to give a complete introduction to evo-
lutionary algorithms, as there are many good introductory books on the topic
available and evolutionary algorithms are, meanwhile, quite well known in the
scientific community. Rather, we would like to briefly outline the general idea to
use evolutionary algorithms to solve highly complex problems of parameterizing
other algorithms, where the evolutionary algorithm is being used to find optimal
parameters for another algorithm to perform its given task at hand as good as
possible. One could also view this as an inverse design problem, i.e., a prob-
lem where the target design (behavior of the algorithm to be parameterized) is
known, but the way to achieve this is unknown. The example we are choosing
in this paper is the design of a rule for a 2 dimensional cellular automaton (CA)
such that the cellular automaton solves a task at hand in an optimal way. We
are dealing with 2 dimensional CA where the cells have just binary states, i.e.,
can have a value of one or zero. The behavior of such a CA is fully characterized
by a rule which, for each possible pattern of bit values in the local neighborhood
of a cell (von Neumann neighborhood: the cell plus its four vertical and hori-
zontal direct nearest neighbors; Moore neighborhood: the cell plus its 8 nearest
neighbors, also including the diagonal cells), defines the state of this cell in the
next iteration of the CA evolution process. In the next section, we will explain
the concept of a CA in some more detail. Section 5 reports experimental results
of our approach with a 5 by 5 CA where the goal is to find rules which evolve
from a standardized initial state of the CA to a target bit pattern, such that the
rule rediscovers (i.e., inversely designs) this bit pattern. Finally, we give some
conclusions from this work.

2 Cellular Automata

According to [16] Cellular Automata (CA) are mathematical idealizations of
physical systems in which space and time are discrete, and physical quantities
take on a finite set of discrete values. The simplest CA is one dimensional and

Inverse Design of Cellular Automata by Genetic Algorithms 163

looks a bit like an array of ones and zeros of width N , where the first position of
the array is linked to the last position. In other words, defining a row of positions
C = {a1, a2, ..., aN} where C is a CA of width N and aN is adjacent to a1.

The neighborhood sn of an is defined as the local set of positions with a
distance to an along the connected chain which is no more than a certain radius
(r). This for instance means that s2 = {a148, a149, a1, a2, a3, a4, a5} for r = 3 and
N = 149. Please note that for one dimensional CA the size of the neighborhood
is always equal to 2r + 1.

The values in a CA can be altered all at the same time (synchronous) or
at different times (asynchronous). Only synchronous CA are considered in this
paper. In the synchronous approach at every timestep (t) every cell state in the
CA is recalculated according to the states of the neighborhood using a certain
transition rule Θ : {0, 1}2r+1 → {0, 1}, si → Θ(si). This rule basically is a one-to-
one mapping that defines an output value for every possible set of input values,
the input values being the ‘state’ of a neighborhood. The state of an at time t
is written as at

n, the state of sn at time t as st
n and the state of the entire CA C

at time t as Ct so that C0 is the initial state and ∀n = 1, . . . , N at+1
n = Θ(st

n).
Given Ct = {at

1, ..., a
t
N}, Ct+1 can be defined as {Θ(st

1), ..., Θ(st
N)}.

Because an ∈ {0, 1} the number of possible states of sn equals 22r+1. Because
all possible binary representations of m where 0 ≤ m < 22r+1 can be mapped to
a unique state of the neighborhood, Θ can be written as a row of ones and zeros
R = {b1, b2, ..., b22r+1} where bm is the output value of the rule for the input
state that maps to the binary representation of m − 1. A rule therefore has a
length that equals 22r+1 and so there are 222r+1

possible rules for a binary one
dimensional CA. This is a huge number of possible rules (if r = 3 this sums up
to about 3, 4 × 1028) each with a different behavior.

One of the interesting things about these and other CA is that certain rules
tend to exhibit organizational behavior, independently of the initial state of the
CA. This behavior also demonstrates there is some form of communication go-
ing on in the CA over longer distances than the neighborhood allows directly. In
[10] the authors examine if these simple CA are able to perform tasks that need
positions in a CA to work together and use some form of communication. One
problem where such a communication seems required in order to give a good an-
swer is the Majority Problem (as described in section 4.1). A genetic algorithm is
used to evolve rules for one dimensional CA that do a rather good job of solving
the Majority Problem [10] and it is shown how these rules seem to send “par-
ticles” and communicate by using these particles [11]. These results imply that
even very simple cells in one dimensional cellular automata can communicate
and work together to form more complex and powerful behavior.

It is not unthinkable that the capabilities of these one dimensional CA are
restricted by the number of directions in which information can “travel” through
a CA and that using multiple dimensions might remove these restriction and
therefore improve performance. Evolving these rules for the Majority Problem
for two dimensional CA using a Moore neighborhood (explained in section 4) is
reported in [7] showing that the GA did not clearly outperform random search.

164 T. Bäck, R. Breukelaar, and L. Willmes

The goal of the research is to find a generalization and report phenomena
observed on a higher level, with the future goal to use this research for iden-
tification and calibration of higher-dimensional CA applications to real world
systems like parallel computing and modeling social and biological processes.
The approach is described and results are reported on simple problems such
as the Majority Problem, AND, XOR, extending into how it can be applied to
pattern generation processes.

3 The Genetic Algorithm

As mentioned before, this research was inspired by earlier work [10, 11] in which
transition rules for one dimensional CA were evolved to solve the Majority Prob-
lem (as defined in section 4.1). The GA is a fairly simple algorithm using bi-
nary representation of the rules, mutation by bit inversion, truncation selection,
and single-point crossover. The algorithm determined the fitness by testing the
evolved rules on 100 random initial states. Every iteration the best 20% of the
rules (the ‘elite’ rules) were copied to the next generation and the other 80% of
the rules were generated using single-point crossover with two randomly chosen
‘elite’ rules and then mutated by flipping exactly 2 bits in the rule.

To be able to compare two dimensional CA with one dimensional CA the GA
used in section 4.1 is a copy of the the GA used in [10, 11]. The GA’s in section
4.2 and 5 on the other hand are modified to fit the different problem demands,
as will be explained in these sections.

4 Experimental Results for Two Dimensional CA

The two dimensional CA in this document are similar to the one dimensional
CA discussed so far. Instead of a row of positions, C now consists of a grid of
positions. The values are still only binary (0 or 1) and there still is only one
transition rule for all the cells. The number of cells is still finite and therefore
CA discussed here have a width, a height and borders.

The big difference between one dimensional and two dimensional CA is the
rule definition. The neighborhood of these rules is two dimensional, because there
are not only neighbors left and right of a cell, but also up and down. That means
that if r = 1, sn would consist of 5 positions, being the four directly adjacent
plus an. This neighborhood is often called “the von Neumann neighborhood”
after its inventor. The other well known neighborhood expands the Neumann
neighborhood with the four positions diagonally adjacent to an and is called
“the Moore neighborhood” also after its inventor.

Rules are defined with the same rows of bits (R) as defined in the one dimen-
sional case. For a von Neumann neighborhood a rule can be defined with 25 = 32
bits and a rule for a Moore neighborhood needs 29 = 512 bits. This makes the
Moore rule more powerful, for it has a bigger search space. Yet, a bigger search
space also implies a longer search time and finding anything usefull might be a

Inverse Design of Cellular Automata by Genetic Algorithms 165

lot more difficult. In [7] the authors discourage the use of the Moore neighbor-
hood, yet in section 4.2 and section 5 results clearly show successes using the
Moore neighborhood, regardless of the larger search space.

In a one dimensional CA the leftmost cell is connected to the rightmost
cell. In the two dimensional CA this is also common such that it forms a torus
structure.

4.1 Majority Problem

The Majority Problem can be defined as follows: Given a set A = {a1, ..., an}
with n odd and am ∈ {0, 1} for all 1 ≤ m ≤ n, answer the question: ‘Are there
more ones than zeros in A?’.

The Majority Problem first does not seem to be a very difficult problem to
solve. It seems only a matter of counting the ones in the set and then comparing
them to the number of zeros. Yet, when this problem is assigned to a CA it
becomes a lot more difficult. This is because the rule in a CA does not let a
position look past its neighborhood and that is why the cells all have to work
together and use some form of communication.

Given that the relative number of ones in C0 is written as λ, in a simple
binary CA the Majority Problem can be defined as: Find a rule that, given an
initial state of a CA with N odd and a finite number I of iterations to run, will
result in an ‘all zero’ state if λ < 0.5 and an ‘all one’ state otherwise.

The fitness (f) of a rule is therefore defined as the relative number of correct
answers to 100 randomly chosen initial states, where a ‘correct answer’ corre-
sponds to an ‘all zero’ state if λ < 0.5 and an ‘all one’ state otherwise. In [10]
the authors found that using a uniform distribution over λ for the initial states
enhanced performance greatly; this is used here as well. The best runs will be
tested using randomly chosen initial states with a normal distribution over the
number of ones. The relative number of correct classifications on these states is
written as Fn,m where n is the width of the CA and m is the number of tests
conducted.

Preliminary experiments showed that it took much more time to evolve rules
for the Moore neighborhood than for the von Neumann neighborhood. The tests
that were done with the Moore neighborhood also did not result in any en-
couraging results, this being in line with [7]. That is why the von Neumann
neighborhood was chosen for this experiment. Because this neighborhood con-
sists of five positions, the search space for CA rules is a lot smaller than in the
one dimensional experiment. Instead of the 27 = 128 bits in the rule, R now
consists of 25 = 32 bits, thus drastically decreasing the search space. This means
that the search space decreased from 2128 to 232 and is now 2(128−32) = 296 times
smaller!

For this experiment we used a CA with width = 13 and height = 13. This
means that these CA have 13 × 13 = 169 cells (N) and are 169 − 149 = 20 cells
larger than the one dimensional CA used in the original experiment.

This algorithm was run 300 times and each winning rule was tested by calcu-
lating FN,M using F169,103 . These results are plotted against results of our own

166 T. Bäck, R. Breukelaar, and L. Willmes

0

5

10

15

20

25

30

35

40

45

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r

of
 r

ul
es

 in
 fi

tn
es

s
bi

n

Fitness of the rules (using bins with a width of 0.01)

one dimensional CA
two dimensional CA

Fig. 1. This figure displays the number of rules that have a certain fitness value in
the two dimensional experiment and compares this to the one dimensional experiment.
The fitness bins are 0.01 in width and for both algorithm F169,103 is calculated for 300
rules

Fig. 2. This figure shows a correct classification of the Majority Problem by a two
dimensional CA with both width and height equal to 13 and λ = 84/169. The transition
rule was one of the best tested in the experiment and scored F169,103 = 0.715

one dimensional experiment (not reported here, analogue to [10, 11]) in Figure 1.
The striking difference between this distribution of fitness and the distribution
of fitness in the one dimensional experiment is the absence of the peak around
FN,M ≈ 0.5 in the two dimensional results. In those results almost all the evolved
rules have a fitness above 0.58. A fitness around 0.66 seems to be average and
the best rules have a fitness above 0.7. That is all very surprising taking into
account that the von Neumann neighborhood only consists of 5 cells.

The Majority Problem is a good example of a problem that forces cells in
a CA to ‘communicate’ with each other. The communication ‘particles’ can be
seen in the one dimensional experiment, but are not easily spotted in the two
dimensional experiment. That does not mean there are no ‘particles’ traveling
in the two dimensional CA, because it might be very hard to identify these
particles. In a two dimensional CA ‘particles’ are no longer restricted to traveling
in only one direction, but can travel to multiple directions at the same time.
Traveling particles in two dimensional CA can therefore look like expanding

Inverse Design of Cellular Automata by Genetic Algorithms 167

Fig. 3. This figure displays the iterations of a CA solving the AND problem. Every
row shows the iteration of the rule using a different initial state. Note that in the first
column (t = 0) the initial states are clearly visible and in the last column the coloring
matches the output of an AND port

areas with a distinct border. But there might be multiple particles traveling at
the same time, meeting each other and thereby creating new particles. This is
why communication between cells in a two dimensional CA is not very visible in
the Majority Problem, although results show that this communication is present.

4.2 AND and XOR Problem

To show the communication between cells in a two dimensional CA a different
experiment was conducted. A genetic algorithm was used to evolve rules for two
dimensional CA that could solve the simple binary operators AND and XOR.
These operators both have two input values and one output value which can only
be determined if both input values are known. This is unlike the OR operator for
example where the output value is always one if one or more of the input values
is one, so if only one input value is known to be one then the value of the other
input value is not needed. This may look very trivial, but it is very important
in order to force the CA to combine the two values and thereby communicate.

The AND Problem. To show the communications in a CA the information
that needs to be combined must be initialized as far apart as possible. The
following problem definition takes this into account: Given a square CA with
two ‘input cells’, one top left and one bottom right: find a rule that iterates the
CA so that after I iterations the CA is in an ‘all one’ state if both the ‘input
cells’ were one in the initial state and in an ‘all zero’ state otherwise.

Small two dimensional CA were used with a width and a height of 5 cells
and I was set to 10. The borders of the CA were unconnected to allow a larger
virtual distance between the two corner cells. This means that the leftmost cell
in a row was not connected to the rightmost cell in the same row and the topmost
cell was not connected to the bottommost cell as was done with the Majority
Problem experiment. Instead every cell on the border of the CA was connected
to so called ‘zero-cells’. These ‘zero-cells’ stay zero whatever happens.

168 T. Bäck, R. Breukelaar, and L. Willmes

When using two input cells, there are four different initial states. These states
are written as S(v1,v2) where v1 and v2 are the two input values. All cells other
than the two input cells are initialized with zero.

The fitness of a rule is defined as the total number of cells that have the
correct values after I iterations. The number of ones in iteration t is written as
Ot

(v1,v2)
. The total fitness of the AND problem is defined as f = (N − OI

(0,0)) +
(N − OI

(0,1)) + (N − OI
(1,0)) + OI

(1,1). This makes the maximum fitness equal to
4 × 5 × 5 = 100.

In this experiment another variation of the simple genetic algorithm was used.
A generation step starts by sorting the rules according to their fitness. Then it
selects the top ten% of the rules as ‘elite’ rules and copies them without changes
to the next generation. Every ‘elite’ rule is then copied nine times or is used in
single-point crossover to make the other 90% of the population. Both methods
were tested and compared. The generated rules are mutated and also moved to
the next generation. Mutation is done by flipping every bit in the rule with a
probability pm. The algorithm stops if it finds a rule with f = 100 or it reaches
1000 generations. In preliminary experiments a number of different values of pm

were tested. Setting pm to a rather high value of 0.05 turned out to be the most
effective choice, confirming our insight that with increasing selection strength
higher mutation rates than the usual 1

l (l being the the length of the binary
string) are performing better [1].

The algorithm was run 100 runs with and without single-point crossover and
using both the von Neumann and the Moore neighborhoods. The results are
shown in Table 1.

Although rules evolved with the von Neumann neighborhood are not able to
solve the problem perfectly, it is already surprising that it finds rules which work
for 93%, for such a rule only misplaces 7 cells in the final state. All the other 93
cells have the right value. This suggests that the information was combined, but
the rule could not fill or empty the whole square using the same logic.

The Moore neighborhood is clearly more powerful and was able to solve
the problem perfectly. The rules that are able to do this clearly show commu-
nicational behavior in the form of “traveling” information and processing this
information at points where information “particles” meet.

Table 1. Fitness values found in the AND problem

Number of runs
Neumann Moore

Fitness with crossover without crossover with crossover without crossover

100 0 0 31 21

98-99 0 0 41 54

95-97 0 0 14 25

90-94 77 93 14 0

80-89 23 7 0 0

70-79 0 0 0 0

< 70 0 0 0 0

Inverse Design of Cellular Automata by Genetic Algorithms 169

It is also surprising that using crossover in combination with a Neumann
neighborhood does not outperform the same algorithm without the crossover.
This may be due to the order of the bits in the transition rule and their meaning.
This is worth exploring in future work. Maybe using other forms of crossover
might give better results in combination with multi dimensional CA.

The XOR Problem. The XOR Problem is not much different from the AND
problem. We used the same genetic algorithm and the same CA setup. The only
difference is the fitness function. We defined the XOR problem as follows: Given
a square CA with two ‘input cells’, one top left and one bottom right: find a rule
that iterates the CA so that after I iterations the CA is in an ‘all one’ state if
only one of the ‘input cells’ was one in the initial state and in an ‘all zero’ state
otherwise. This means that the total fitness of the XOR problem is defined as
f = (N − OI

(0,0)) + OI
(0,1) + OI

(1,0) + (N − OI
(1,1)).

The algorithm was run with pm = 0.05 for a maximum of 1000 generations
for 100 runs with both Neumann and Moore neighborhoods with and without
single point crossover. The results are shown in Table 2.

Table 2. Fitness values found in the XOR problem

Number of runs
Neumann Moore

Fitness with crossover without crossover with crossover without crossover

100 0 0 0 1

98-99 0 0 4 4

95-97 0 0 7 6

90-94 2 1 19 21

80-89 76 96 69 66

70-79 18 3 1 2

< 70 4 0 0 0

Fig. 4. This figure displays the iterations of a CA solving the XOR problem. Every
row shows the iteration of the rule using a different initial state. Note that in the first
column (t = 0) the initial states are clearly visible and in the last column the coloring
matches the output of an XOR port

170 T. Bäck, R. Breukelaar, and L. Willmes

These results support earlier finding in suggesting that single-point crossover
doesn’t really improve the performance when used in a two dimensional CA. The
results show that the algorithm using only mutation has found ways to solve this
rather difficult communicational problem. The Neumann neighborhood seemed
unable to perform for 100%, yet it came rather close with one rule classifying
the problem for 92%. The algorithm found one transition rule using the Moore
neighborhood that is able to solve the problem for the full 100%. This rule
depicted in Figure 4 shows clear signs of “traveling particles” and is another
example of how a local rule can trigger global behavior.

5 Evolving Bitmaps

Now that it is shown that two dimensional CA can communicate, it is time to
increase the challenge for the CA a bit. The aim of this experiment is to evolve
rules for two dimensional CA that generate patterns (or bitmaps).

The Bitmap Problem is defined as follows: Given an initial state and a specific
desired end state: find a rule that iterates from the initial state to the desired state
in less than I iterations. Note that this does not require the number of iterations
between the initial and the desired state to be fixed.

The CA used in this experiment is not very different from the one used in
the AND/XOR experiment (section 4.2). In preliminary experiments we tried
different sizes of CA, but decided to concentrate on small square bitmaps with a
width and a height of 5 cells (as done in section 4.2). To make the problem harder
and to stay in line with earlier experiments the CA have unconnected borders
like in section 4.2. The von Neumann neighborhood was chosen instead of the
Moore neighborhood and therefore sn consist of 5 cells (r = 1) and a rule can
be described with 25 = 32 bits. The search space therefore is 232 = 4294967296.

After testing different initial states, the ‘single seed’ state was chosen and
defined as the state in which all the positions in the CA are zero except the
position (�width/2�, �height/2�) which is one. For the GA we used the same al-
gorithm as we used in the AND and XOR experiments. Because this experiment
uses a Neumann neighborhood and the AND and XOR experiments suggested
that the combination between the von Neumann neighborhood and single point
crossover was not a good idea, this experiment used only mutation. Like in sec-
tion 4.2 mutation is performed by flipping every bit in the rule with a probability
pm. In this experiment pm = 1/32 = 0.03125.

In trying to be as diverse as possible five totally different bitmaps were chosen,
they are shown in Figure 5. The algorithm was run 100 times for every bitmap
for a maximum of 5000 generations. The algorithm was able to find a rule for all
the bitmaps, but some bitmaps seemed a bit more difficult than others. Table 3

Fig. 5. The bitmaps used in the pattern generation experiment

Inverse Design of Cellular Automata by Genetic Algorithms 171

Table 3. Number of successful rules found per bitmap

Successful rules
Bitmap (out of a 100)

“square” 80

“hourglass” 77

“heart” 35

“smiley” 7

“letter” 9

Fig. 6. This figure shows some iteration paths of successful transition rules

shows the number of successful rules for every bitmap. Note that symmetrical
bitmaps seem to be easier to generate then asymmetric ones.

Although this experiment is fairly simple, it does show that a GA can be used
to evolve transition rules in two dimensional CA that are able to generate pat-
terns even with a simple von Neumann neighborhood. Ongoing experiments with
bigger CA suggest that they don’t differ much from these small ones, although
the restrictions on what can be generated from a single-seed state using only a
von Neumann neighborhood seem to be bigger when size of the CA increases.

6 Conclusions

The aim of the experiment reported in this paper was to demonstrate the ca-
pability of evolutionary algorithms, here a fairly standard genetic algorithm, to
parameterize other methods such as, specifically, cellular automata. From the ex-
perimental results reported, one can conclude that this kind of inverse design of
CA is possible by means of evolutionary computation in a clear, straightforward,
and very powerful way. The results clearly indicate that real world applications
of CA could also be tackled by this approach, and the unconventional program-
ming of CA by means of EA’s is not only a possibility, but a useful and efficient
method to parameterize this kind of algorithm.

172 T. Bäck, R. Breukelaar, and L. Willmes

References

1. Th. Bäck, D. B. Fogel, and editors Michalewicz, Z., editors. Handbook of Evolu-
tionary Computation. Oxford University Press and Institute of Physics Publishing,
Bristol/New York, 1997.

2. D. B. Fogel. Evolutionary Computation: Toward a New Philosophy of Machine
Intelligence. IEEE Press, Piscataway, New York, 1995.

3. L. Fogel, A. Owens, and M. Walsh. Artificial Intelligence through Simulated Evo-
lution. John Wiley and Sons, 1966.

4. D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley, 1989.

5. D. E. Goldberg. The Design of Invocation:Lessons from and for Competent Genetic
Algorithms. Kluwer Academic Publishers, 2002.

6. J. H. Holland. Adaptation in Natural and Artificial Systems. The University of
Michigan Press, Ann Arbor, 1975.

7. S. Inverso, D. Kunkle, and C. Merrigan. Evolutionary methods for 2-d cellular
automata computation. www.cs.rit.edu/˜drk4633/mypapers/gacaProj.pdf, 2002.

8. J. R. Koza. Genetic Programming: On the Programming of Computers by Natural
Selection. MIT Press, Cambridge, MA, 1992.

9. J. R. Koza, M. A. Keane, M. J. Streeter, W. Mydlowec, J. Yu, and G. Lanza. Ge-
netic Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer
Academic Publishers, 2003.

10. M. Mitchell and J.P. Crutchfield. The evolution of emergent computation. Techni-
cal report, Proceedings of the National Academy of Sciences, SFI Technical Report
94-03-012, 1994.

11. M. Mitchell, J.P. Crutchfield, and P.T. Hraber. Evolving cellular automata to
perform computations: Mechanisms and impediments. Physica D, 75:361–391,
1994.

12. I. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach Prinzip-
ien der biologischen Evolution. Fromman-Holzboog Verlag, Stuttgart, 1973.

13. I. Rechenberg. Evolutionsstrategie ’94. Fromman-Holzboog Verlag, Stuttgart, 1994.
14. H. P. Schwefel. Numerische optimierung von computer-modellen mittels der evo-

lutionsstrategie. Interdisciplinary Systems Research, 26, 1977.
15. H. P. Schwefel. Evolution and Optimum Seeking. Wiley, New York, 1995.
16. S. Wolfram. Statistical mechanics of cellular automata. Reviews of Modern Physics,

55, 1983.

Design, Simulation, and Experimental Demonstration
of Self-assembled DNA Nanostructures and Motors

John H. Reif, Thomas H. LaBean, Sudheer Sahu,
Hao Yan, and Peng Yin

Department of Computer Science, Duke University,
Box 90129, Durham, NC 27708-0129, USA

{reif, thl, sudheer, hy1, py}@cs.duke.edu

Abstract. Self-assembly is the spontaneous self-ordering of substructures into
superstructures, driven by the selective affinity of the substructures. Comple-
mentarity of DNA bases renders DNA an ideal material for programmable self-
assembly of nanostructures. DNA self-assembly is the most advanced and ver-
satile system that has been experimentally demonstrated for programmable con-
struction of patterned systems on the molecular scale. The methodology of DNA
self-assembly begins with the synthesis of single strand DNA molecules that
self-assemble into macromolecular building blocks called DNA tiles. These tiles
have single strand “sticky ends” that complement the sticky ends of other DNA
tiles, facilitating further assembly into larger structures known as DNA tiling
lattices. In principle, DNA tiling assemblies can form any computable two or
three-dimensional pattern, however complex, with the appropriate choice of the
tiles’ component DNA. Two-dimensional DNA tiling lattices composed of hun-
dreds of thousands of tiles have been demonstrated experimentally. These assem-
blies can be used as programmable scaffolding to position molecular electronics
and robotics components with precision and specificity, facilitating fabrication of
complex nanoscale devices. We overview the evolution of DNA self-assembly
techniques from pure theory, through simulation and design, and then to exper-
imental practice. In particular, we begin with an overview of theoretical models
and algorithms for DNA lattice self-assembly. Then we describe our software for
the simulation and design of DNA tiling assemblies and DNA nano-mechanical
devices. As an example, we discuss models, algorithms, and computer simula-
tions for the key problem of error control in DNA lattice self-assembly. We then
briefly discuss our laboratory demonstrations of DNA lattices and motors, includ-
ing those using the designs aided by our software. These experimental demon-
strations of DNA self-assemblies include the assembly of patterned objects at the
molecular scale, the execution of molecular computations, and the autonomous
DNA walking and computing devices.

1 Introduction

Self-assembly is the spontaneous self-ordering of substructures into superstructures
driven by the selective affinity of the substructures. This paper focuses on a method
for self-assembly known as DNA self-assembly, where DNA provides a molecular scale
material for effecting this programmable self-assembly, using the selective affinity of

J.-P. Banâtre et al. (Eds.): UPP 2004, LNCS 3566, pp. 173–187, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

174 J.H. Reif et al.

pairs of DNA strands to form DNA nanostructures. Self-assembling nanostructures
composed of DNA molecules offer great potential for bottom-up nanofabrication of ma-
terials and objects with smaller features than ever previously possible [13, 30, 37]. The
methodology of DNA self-assembly begins with the synthesis of single-strand DNA
molecules that self-assemble into macromolecular building blocks called DNA tiles.
These tiles have sticky ends that match the sticky ends of other DNA tiles, facilitat-
ing further assembly into larger structures known as DNA tiling lattices. In principle,
DNA tiling assemblies can be made to form any computable two- or three-dimensional
pattern, however complex, with the appropriate choice of the tiles’ component DNA.

DNA self-assembly is an emerging subfield of nanoscience with the development of
its theoretical basis and a number of moderate to large-scale experimental demonstra-
tions. Recent experimental results indicate that this technique is scalable. Periodic 2D
DNA lattices have been successfully constructed with a variety of DNA tiles [15, 23,
52, 56]. These lattices are composed of up to hundreds of thousands of tiles. Molecu-
lar imaging devices such as atomic force microscopes and transmission electron micro-
scopes allow visualization of these self-assembled two-dimensional DNA tiling lattices.
These assemblies can be used as scaffolding on which to position molecular electron-
ics and other components such as molecular sensors with precision and specificity. The
programmability lets this scaffolding have the patterning required for fabricating com-
plex devices made of these components. Potential applications of DNA self-assembly
and scaffolding include nanoelectronics, biosensors, and programmable/autonomous
molecular machines.

In addition to manufacturing DNA lattices, DNA has also been demonstrated to be
a useful material for molecular computing systems [1, 3, 6, 21, 22] and mechanical de-
vices [19, 24, 57, 63]. In particular, the self-assembly of DNA tiles can also be used as
a powerful computational mechanism [16, 27, 47, 49], which in theory holds universal
computing power [53]. See [32] for a more detailed survey of current experimental work
in self-assembled DNA nanostructures. Also, see [26] and [30] for comprehensive sur-
veys of the larger field of DNA computation (also known as biomolecular computation).

In this paper, we overview the evolution of DNA self-assembly techniques from
pure theory, through simulation and design, and then to experimental practice. The rest
of the paper is organized as follows. In Section 2, we overview the theoretical work
in self-assembly. In Section 3, we describe software for the simulation and design of
DNA nanostructures and motors. As a concrete example, in Section 4 we discuss error
control, which we feel is a major theoretical and practical challenge remaining in the
area of DNA self-assembly. Finally, in Section 5 we give a discussion of experimental
practice in DNA nanostructures.

2 The Theory of Self-assembly

This section overviews the emerging theory of self-assembly.

Domino Tiling Problems. The theoretical basis for self-assembly has its roots in
Domino Tiling Problems (also known as Wang tilings) as defined by Wang [45]. For
comprehensive text, see [10]. The input is a finite set of unit size square tiles. The sides
of each square are labeled with symbols over a finite alphabet. Additional restrictions

Design, Simulation, and Experimental Demonstration 175

may include the initial placement of a subset of the these tiles, and the dimensions of the
region where tiles must be placed. Assuming an arbitrarily large supply of each tile, the
problem is to place the tiles, without rotation (a criterion that cannot apply to physical
tiles), to completely fill the given region so that each pair of abutting tiles have identical
symbols on their contacting sides.

Turing-universal and NP-Complete Self-assemblies. Domino tiling problems over
an infinite domain with only a constant number of tiles were first proved by Berger
to be undecidable [7]. This and subsequent proofs [7, 33] rely on constructions where
tiling patterns simulate single-tape Turing machines or cellular arrays [53]. Winfree
later showed that computation by self-assembly is Turing-universal [53] and so tiling
self-assemblies can theoretically provide arbitrarily complex assemblies even with a
constant number of distinct tile types. Winfree also demonstrated various families of
assemblies which can be viewed as computing languages from families of the Chomsky
hierarchy [47]. It has been proved that Domino tiling problems over polynomial-size
regions are NP-complete [17]. Subsequently, [47], [11, 12], and [16] proposed the use
of self-assembly processes (in the context of DNA tiling and nanostructures) to solve
NP-complete combinatorial search problems such as SAT and graph coloring.

Program-size Complexity of Tiling Self-assemblies. The programming of tiling as-
semblies is determined simply by the set of tiles, their pads, and sometimes the choice
of the initial seed tile (a special tile from which the growth of the assembly starts).
A basic issue is the number of distinct tile types required to produce a specified tile
assembly. The program size complexity of a specified tiling is the number of distinct
tiles (with replacement) to produce it. Rothemund and Winfree showed that the assem-
bly of an n × n size square can be done using Θ(log n/ log log n) distinct tiles and
that the largest square uniquely produced by a tiling of a given number of distinct tiles
grows faster than any computable function [34]. Adleman recently gave program size
complexity bounds for tree shaped assemblies [3].

Massively Parallel Computation by Tiling. Parallelism reveals itself in many ways
in computation by self-assembly. Each superstructure may contain information repre-
senting a different calculation (global parallelism). Due to the extremely small size of
DNA strands, as many as 1018 DNA tiling assemblies may be made simultaneously
in a small test tube. Growth on each individual superstructure may also occur at many
locations simultaneously via local parallelism. The depth of a tiling superstructure is
the maximum number of self-assembly reactions experienced by any substructure (the
depth of the graph of reaction events), and the size of a superstructure is the number
of tiles it contains. Likewise we can define the number of layers for a superstructure.
For example, a superstructure consisting of an array of n × m tiles, where n > m
has m layers. Tiling systems with low depth, small size, and few layers are considered
desirable, motivating the search for efficient computations performed by such systems.
Reif was the first to consider the parallel depth complexity of tiling assemblies and
gave DNA self-assemblies of linear size and logarithmic depth for a number of funda-
mental problems (e.g., prefix computation, finite state automata simulation, and string
fingerprinting, etc.) that form the basis for the design of many parallel algorithms [27].
Furthermore, [27] showed that these elementary operations can be combined to perform

176 J.H. Reif et al.

more complex computations, such as bitonic sorting and general circuit evaluation with
polylog depth assemblies.

Linear Self-assemblies. Tiling systems that produce only superstructures with k layers,
for some constant k, are said to use linear self-assembly. [27] gave some simple linear
tiling self-assemblies for integer addition as well as related operations (e.g., prefix XOR
summing of n Boolean bits). Seeman’s group demonstrated the first example of DNA
computation using DNA tiling self-assembly [22], as described in Section 5. These
linear tilings were refined in [51] to a class of String tilings that have been the basis for
further DNA tiling experiments in [54] described in Section 5.

Kinetic Models of Tiling Self-assembly Processes. Domino tiling problems do not
presume or require a specific process for tiling. Winfree first observed that self-assembly
processes can be used for computation via the construction of DNA tiling lattices [46].
The sides of the tiles are assumed to have some methodology for selective affinity,
which we call pads. Pads function as programmable binding domains, which hold to-
gether the tiles. Each pair of pads have specified binding strengths. The self-assembly
process is initiated by a singleton tile (the seed tile) and proceeds by tiles binding to-
gether at their pads to form aggregates known as tiling assemblies. The preferential
matching of tile pads facilitates the further assembly into tiling assemblies. Using the
kinetic modeling techniques of physical chemistry, Winfree developed a kinetic model
for the self-assembly of DNA tiles [48]. Following the classical literature of models
for crystal assembly processes, Winfree considers assembly processes where the tiling
assembly is only augmented by single tiles (known in crystallography as monomers)
which bind to the assembly at their tile pads [46]. The likelihood of a particular tile
binding at (or dissociating from) a particular site of the assembly is assumed to be a
fixed probability dependent on that tile’s concentration, the respective pad’s binding
affinity, and a temperature parameter. In addition, Adleman developed stochastic differ-
ential equation models for self-assembly of tiles and determined equilibrium probability
distributions and convergence rates for some 1-dimensional self-assemblies [2, 4]. His
model allowed for binding between subassemblies and assumed a fixed probability for
tile binding events independent of the size of tile assemblies. Since the movement of
tile assemblies may depend on their size (and thus mass), this model might in the future
be refined to make the probability for tile binding events dependent on the size of tile
assemblies.

Optimization of Tiling Assembly Processes. There are various techniques that may
promote assembly processes in practice. One important technique is the tuning of the
parameters (tile concentration, temperature, etc.) governing the kinetics of the process.
Adleman considers the problem of determining tile concentrations for given assemblies
and conjectures this problem is �P-complete [3]. Various other techniques may improve
convergence rates to the intended assembly. A blockage of tiling assembly process can
occur if an incorrect tile binds in an unintended location of the assembly. While such a
tile may be dislodged by the kinetics of subsequent time steps, it still may slow down
the convergence rate of the tiling assembly process to the intended final assembly. To
reduce the possibility of blockages of tiling assembly processes, Reif proposed the use of
distinct tile pads for distinct time steps during the assembly [27]. [27] also described the
use of self-assembled tiling nano-frames to constrain the region of the tiling assemblies.

Design, Simulation, and Experimental Demonstration 177

3 Simulation and Design Software

Software for Kinetic Simulation of Tiling Assembly Processes. Winfree developed
software for discrete time simulation of the tiling assembly processes, using approxi-
mate probabilities for the insertion or removal of individual tiles from the assembly [48].
These simulations gave an approximation to the kinetics of self-assembly chemistry and
provided some validation of the feasibility of tiling self-assembly processes. Using this
software as a basis, our group developed an improved simulation software package
(sped up by use of an improved method for computing on/off likelihood suggested by
Winfree) with a Java interface for a number of example tilings, such as string tilings for
integer addition and XOR computations. In spite of an extensive literature on the kinet-
ics of the assembly of regular crystalline lattices, the fundamental thermodynamic and
kinetic aspects of self-assembly of tiling assemblies are still not yet well understood.
For example, the effect of distinct tile concentrations and different relative numbers of
tiles is not yet known; probably it will require an application of Le Chatelier’s principle.

Software for Kinetic Simulation of Nanomechanical Devices. We have developed a
software to simulate autonomous nanomechanical DNA devices driven by ligase and
restriction enzymes in a solution system. This software does discrete time simulation of
the ligation and restriction events on the DNA duplex fragments of the nanomechanical
device. The approximate probabilities of ligation is calculated based on the concentra-
tions of individual DNA fragments present in the solution system. These simulations
can provide insight to the kinetics of such nanomechanical systems. We have used this
software to simulate a DNA walker and a universal DNA Turing machine.

Software for Design of DNA Lattices and Nanomechanical Devices. A major com-
putational challenge in constructing DNA objects is to optimize the selection of DNA
sequences so that the DNA strands can correctly assemble into desired DNA secondary
structures. A commonly used software package, Sequin, was developed by Seeman,
which uses the symmetry minimization algorithm [35]. Sequin, though very useful,
only provides a text-line interface and generally requires the user to step through the
entire sequence selection process. Our lab recently developed a software package, Tile-
Soft, which exploits an evolution algorithm and fully automates the sequence selection
process [58]. TileSoft also provides the user with a graphical user interface, on which
DNA secondary structure and accompanying design constraints can be directly spec-
ified and the optimized sequence information can be pictorially displayed. TileSoft is
initially designed to solve optimization problem for a set of multiple tiles, but can also
be used to design individual DNA objects, such as DNA nanomechanical devices.

4 Error Control in DNA Tiling Assemblies

A chief challenge in DNA tiling self-assemblies is the control of assembly errors. This is
particularly relevant to computational self-assemblies, which, with complex patterning
at the molecular scale, are prone to a quite high rate of error, ranging from approxi-
mately between 0.5% to 5%, and the key barrier to large-scale experimental implemen-
tation of 2D computational DNA tilings exhibiting patterning is this significant error

178 J.H. Reif et al.

rate in the self-assembly process. The limitation and/or elimination of these errors in
self-assembly is perhaps the single most important major challenge to nanostructure
self-assembly.

There are a number of possible methods to decrease errors in DNA tilings:

(a) Annealing Temperature Optimization. This is a well known technique used in
hybridization and also crystallization experiments. It can be used to decrease the defect
rates at the expense of increased overall annealing time duration. In the context of DNA
tiling lattices, the parameters for the temperature variation that minimize defects have
not yet been determined.

(b) Error Control by Step-wise Assembly. Reif suggested the use of serial self-
assembly to decrease errors in self-assembly [26].

(c) Error Control by Redundancy. There are a number of ways to introduce redun-
dancy into a computational tiling assembly. In [31] we describe a simple method that
can be developed for linear tiling assemblies: we replace each tile with a stack of three
tiles executing the same function, and then add additional tiles that essentially ‘vote’ on
the pad associations associated with these redundant tiles. This results in a tiling of in-
creased complexity but still linear size. This error resistant design can easily be applied
to the integer addition linear tiling described above, and similar redundancy methods
may be applied to higher dimension tilings.

Work in 2003 by Winfree provided a method to decrease tiling self-assembly errors
without decreasing the intrinsic error rate of assembling a single tile, however, his tech-
nique resulted in a final assembled structure that is four times the size of the original
one [50].

Recently we have developed improved methods for compact error-resilient self-
assembly of DNA tiling assemblies and analyzed them by probabilistic analysis, ki-
netic analysis, and computer simulation [29]; and plan to demonstrate these error-
resilient self-assembly methods by a series of laboratory experiments. Our compact
error-resilient tiling methods do not increase the size of the tiling assembly. They use
2-way overlay redundancy such that a single pad mismatch between a tile and its imme-
diate neighbor forces at least one further pad mismatch between a pair of adjacent tiles
in the neighborhood of this tile. Theoretical probabilistic analysis and empirical studies
of the computer simulation of Sierpinsky Triangle tilings have been used to validate
these error-resilient 2-way overlay redundancy tiling results; the analysis shows that the
error rate is considerably reduced.

5 Experimental Progress

DNA Hybridization. Single strand DNA is a polymer that consists of a sequence of
four types of bases grouped into two disjoint pairs known as Watson-Crick complemen-
tary pairs that can bind together through hydrogen bonding in an operation known as
hybridization. DNA enjoys a unique advantage for a nanostructure construction material
because two single strands of DNA can be designed and constructed by the experimen-
tal scientist to be selectively sticky and bind together to form doubly stranded DNA.
Hybridization is much more likely to occur if the DNA base sequences are comple-

Design, Simulation, and Experimental Demonstration 179

mentarythat is, if the component bases are Watson-Crick pairs and the temperature and
ionic composition of the solution are set appropriately. The resulting doubly stranded
DNA is relatively rigid and forms the well-known double-helix geometry. If the sticky
single-strand segments that hybridize abut doubly stranded segments of DNA, one can
use an enzymic reaction known as ligation to concatenate these segments.

DNA Nanostructures. Seeman first pioneered DNA structure nanofabrication in the
1980s by assembling a multitude of DNA nanostructures (such as rings, cubes, and
octahedrons) using DNA branched junctions and remains a leader in this area [38, 36,
39]. However, these early DNA nanostructures were not very rigid. To increase the
rigidity of DNA nanostructures, Seeman made use of a DNA nanostructure known as
a DNA crossover (also known as a branched Holiday junction), which consists of two
doubly stranded DNA, each having a single strand that crosses over to the other. Pairs
of crossovers, known as double crossovers, provide a significant increase in rigidity of
a DNA nanostructure. Also, certain crossovers (known as antiparallel crossovers) cause
a reversal in the direction of strand propagation following the exchange of the strand to
a new helix.

DNA Tiles. These are quite rigid and stable DNA nanostructures that are formed from
multiple DNA antiparallel crossovers. DNA tiles typically have a roughly rectangular
geometry. These tiles come in multiple varieties that differ from one another in the ge-
ometry of strand exchange and the topology of the strand paths through the tile. The
first DNA tiles developed were known as double-crossover(DX) tiles and composed of
two DNA double helices with two crossovers [52]. LaBean, Reif, and Seeman have de-
veloped some novel DNA tiles known as triple-crossover (TX) tiles that are composed
of three DNA double helices with four crossovers [15]. These TX tiles have properties
that can facilitate one and two dimensional tiling assemblies and computations. Each
DNA tile is designed to match the ends of certain other DNA tiles, a process that facil-
itates the assembly into tiling lattices. In particular, DNA tiles are designed to contain
several short sections of unpaired, single-strand DNA (ssDNA) extending from the ends
of selected helices (often called “sticky ends”) that function as programmable binding
domains, which are the tile pads. Both double- and triple-crossover tiles are useful for
doing tiling assemblies. The DX tiles provide up to four pads for encoding associations
with neighboring tiles, whereas the TX tiles provide up to six pads that are designed
to function as binding domains with other DNA tiles. Use of pads with complementary
base sequences provides control for the neighbor relations of tiles in the final assembly.
In particular, the tile pads hybridize to the pads of other chosen DNA tiles. Individual
tiles interact by binding with other specific tiles through hybridization of their pads to
self-assemble into desired superstructures.

DNA Tiling Lattices. These are superstructures built up from smaller component struc-
tures (DNA tiles). Individual DNA tiles interact by annealing with other specific tiles
via their ssDNA pads to self-assemble into desired superstructures. These lattices can
be either: (a) non-computational, containing a fairly small number of distinct tile types
in a repetitive, periodic pattern; or (b) computational, containing a larger number of
tile types with more complicated association rules which perform a computation during
lattice assembly. The direct assembly of DNA lattices from component single strand

180 J.H. Reif et al.

DNA has been demonstrated for non-computational DNA lattices described below.
Winfree and Seeman demonstrated the self-assembly of two-dimensional periodic lat-
tices consisting of at hundreds of thousands of double-crossover tiles, which is strong
evidence of this approach’s scalability [52]. In addition, LaBean, Reif, and Seeman
have constructed DNA TX molecules which produced tiling lattices of even larger num-
bers of tiles [15]. Both classes of self-assembled DNA lattices were observed through
atomic force microscopy (AFM), a mechanical scanning process that provides images
of molecular structures on a two-dimensional plate, as well as by use of transmission
electron microscopy (TEM). Distinguishing surface features can be designed into indi-
vidual tiles by slightly modifying the DNA strands comprising the tiles. These modified
DNA strands form short loops that protrude above the tile. To enhance definition, we
have also affixed metallic balls to these DNA loops using known methods for affix-
ing gold balls to DNA. Surface features, such as two-dimensional banding patterns,
have been programmed into these DNA lattices using DNA tiles that assemble into
regular repetitive patterns. These topographical features were observed on the DNA
tiling lattices with atomic force and transmission electron microscopy imaging de-
vices [23, 20, 52]. These tiling assemblies had no fixed limit on their size. Recall that
Reif introduced the concept of a nano-frame, which is a self-assembled nanostructure
that constrains the subsequent timing assembly (e.g., to a fixed size rectangle) [26]. A
tiling assembly might be designed to be self-delineating (growing to only a fixed size)
by the choice of tile pads that essentially “count” to their intended boundaries in the di-
mensions to be delineated. In addition, our lab recently developed a “waffle”-like DNA
lattice composed of a novel type of DNA tiles (4 x 4 tile) [56]. We further used the 4
x 4 tiling lattices as templates for organizing nanoscale ligands, e.g. proteins and gold
nano-particles [18, 25]. In addition, we have recently developed a new method for the
assembly of aperiodic patterns [55].

Directed Nucleation Assembly Techniques. We have recently developed another
method for assembly of complex patterns, where an input DNA strand is synthesized
that encodes the required pattern, and then specified tiles assemble around blocks of
this input DNA strand, forming the required 1D or 2D pattern of tiles [55]. This method
uses artificially synthesized DNA strands that specify the pattern and around which 2D
DNA tiles assemble into the specified pattern; in this method, the permanent features of
the 2D pattern are generated uniquely for each case.

Computation by DNA Self-assembly. We now focus on another approach: compu-
tation by self-assembly. Adleman made use of a simple form of computation by self-
assembly in his original experiment [1]: instead of blindly generating all possible se-
quences of vertices; instead, the oligonucleotide sequences and the logic of Watson-
Crick complementarity guide the self-assembly processes so that only valid paths are
generated.

Programming Self-assembly of DNA Tilings. Programming DNA self-assembly of
tilings amounts to the design of the pads of the DNA tiles (recall these are sticky ends
of single strand DNA that function as programmable binding domains, and that indi-
vidual tiles interact by annealing with other specific tiles via their single strand DNA
pads to self-assemble into desired superstructures). The use of pads with complemen-

Design, Simulation, and Experimental Demonstration 181

tary base sequences allows the neighbor relations of tiles in the final assembly to be
intimately controlled; thus the only large-scale superstructures formed during assembly
are those that encode valid mappings of input to output. The self-assembly approach
for computation only uses four laboratory steps:(i) mixing the input oligonucleotides to
form the DNA tiles, (ii) allowing the tiles to self-assemble into superstructures, (iii) lig-
ating strands that have been co-localized, and (iv) then performing a single separation
to identify the correct output.

The Speed of Computing via DNA Tiling Assemblies (Compared with Silicon-
based Computing). The speed of DNA tiling assemblies is limited by the annealing
time, which can be many minutes, and can be 1010 slower than a conventional com-
puter. A DNA computation via self-assembly must take into account the fact that the
time to execute an assembly can range from a few minutes up to hours. Therefore, a rea-
sonable assessment of the power of DNA computation must take into account both the
speed of operation as well as the degree of massive parallelism. Nevertheless, the mas-
sive parallelism (both within assemblies and also via the parallel construction of distinct
assemblies) possibly ranging up to 1018 provides a potential that may be advantageous
for classes of computational problems that can be parallelized.

String-Tiles: A Mechanism for Small-Depth Tiling. An approach for small-depth
computations is to compress several tile layers into single tiles, so that the simplest
form of linear self-assembly suffices. Linear self-assembly schemes for integer addi-
tion were first described by [26]; in this scheme each tile performed essentially the
operation of a single carry-bit logic step. This linear self-assembly approach works par-
ticularly well when the topology and routing of the strands in the DNA tiles is carefully
considered, leading to the notion of string tiles. The concept of string tile assemblies
derives from the observation that allowing neighboring tiles in an assembly to associate
by two sticky ends on each side, one could increase the computational complexity of
languages generated by linear self-assembly [51] showed that by allowing contiguous
strings of DNA to trace through individual tiles and the entire assembly multiple times,
surprisingly sophisticated calculations can be performed with one-layer linear assem-
blies of string tiles. The TAE tiles recently developed by LaBean [15] are particularly
useful as string tiles. An experimental demonstration of the string tiles was achieved in
our lab [54].

Input/Output to Tiling Assemblies Using Scaffold and Reporter Strands. Recall
that the TX tiles are constructed of three double-helices linked by strand exchange. The
TX tiles have an interesting property, namely that certain distinguished single stranded
DNA (to be called scaffold and reporter strands, respectively) wind through all the tiles
of a tiling assembly. This property provides a more sophisticated method for input and
output of DNA computations in string tiling assemblies. In particular, there are two
types. The TAE tile contains an Even (and the TAO tiles contains an Odd) number of
helical half-turns between crossover points. Even spacing of crossovers of the TAE tile
allows reporter strands to stretch straight through each helix from one side of the tile to
the other. These reporter segments are used for building up a long strand which records
inputs and outputs for the entire assembly computations.

182 J.H. Reif et al.

(a) Input via Scaffold Strands: We take as input the scaffold strands and which en-
code the data input to the assembly computation. They are long DNA strands capable
of serving as nucleation points for assembly. Preformed, multimetric scaffold strands
are added to the hybridization/annealing mixture in place of the monomeric oligo corre-
sponding to the tile’s reporter segment. The remaining portion of the component ssDNA
comprising the tiles are also added. In the resulting annealing process, tiles assemble
around the scaffold strand, automatically forming a chain of connected tiles which can
subsequently be used as the input layer in a computational assembly.

(b) Output via Reporter Strands: After ligation of the tiling assembly (this joins
together each tile’s segments of the reporter strands), the reporter strand provides an
encoding of the output of the tiling assembly computation (and typically also the in-
puts). Note this input/output can occur in parallel for multiple distinct tiling assemblies.
Finally, the tiling assembly is disassembled by denaturing (e.g., via heating) and the
resulting ssDNA Reporter Strands provide the result (these may be used as scaffold
strands for later cycles of assembly computation, or the readout may be by PCR, re-
striction cutting, sequencing, or DNA expression chips).

One Dimensional DNA Tiling Computations for Parallel Arithmetic. We now out-
line procedures for using the string tiles described above that self-assemble into linear
tiling assemblies to perform massively parallel arithmetic. LaBean et. al. describes tile
systems that compute binary number addition (where the binary numbers are encoded
by strands of DNA) by using two distinct sets of sticky-ends between adjacent tiles
in the assembly to effectively communicate the values of the carry-bits [14]. (They can
also be used for computation of bit-wise XOR of Boolean vectors encoded by strands of
DNA.) The assemblies result in the appending of these strands to the addition sums. For
computations on specific inputs, these procedures make use of the scaffold strands men-
tioned above. The inputs are self-assembled strands of DNA composed of sequences
DNA words encoding the pairs of binary numbers to be summed. Otherwise, the input
tiles can be (using known techniques uses for the assembly of combinatorial libraries of
DNA strands) randomly assembled and thereby generate a molecular look-up table in
which each reporter strand encodes the random inputs and resultant outputs of a single
calculation. After denaturing the assemblies back to individual strands, one may sample
the resulting reporter strands to verify the outputs are correctly computed. A sufficient
number of DNA tile molecules provide full coverage of all possible n-bit input strings.
Such look-up tables may be useful as input for further computations as they represent a
unique library of sequences with a complex structural theme. An experimental demon-
stration of an XOR tiling computation based on TAO tiles is reported in [22].

Two Dimensional DNA Tiling Computations. In the immediate future, it may be pos-
sible to extend the one dimensional DNA tiling assembly methods to two dimensional
tilings, and to demonstrate these methods experimentally. One interesting goal is integer
multiplication. The most direct and relatively straightforward way is to multiply via re-
peated additions and bit shifts, applying known VLSI systolic array architecture designs
for integer multiplication. This would require a two dimensional n × n tiling assem-
bly, with some increased complexity over the linear assembly for integer addition. On
the other hand, it will provide the first demonstration of computation of a two dimen-

Design, Simulation, and Experimental Demonstration 183

sional DNA self-assembly. Two dimensional computational tilings may also be used
to do logical processing. Lagoudakis and LaBean proposed a 2D DNA self-assembly
for Boolean variable satisfiability, which uses parallel construction of multiple self-
assembling 2D DNA lattices to solve the problem [16]. Such methods for solving com-
binatorial search problems do not scale well with the input size (the number of parallel
tiling assemblies grows exponentially with the number of Boolean variables of the for-
mula). However, similar constructions may be used for evaluating Boolean queries and
circuits in massively parallel fashion, for multiple input settings of the input Boolean
variable, and in this context it may be appropriate to consider the Boolean formula to
be of fixed size.

Three Dimensional DNA Tiling Computations. There is a number of possible meth-
ods for executing computations experimentally on 3D DNA lattices, providing compu-
tations with (implicit) data movement in three dimensions. Matrix inner product might
be executed by a three dimensional computational tiling by applying known VLSI sys-
tolic array architecture designs for matrix inner product. Another possible three dimen-
sional computational tiling is that of the time-evolution (time is the third dimension of
the tiling) of a 2D cellular automata, e.g., 2D cellular automata simulation of fluid flow.

DNA Robotics. Existing DNA nanomechanical devices can exhibit motions such as
open/close [42, 43, 63], extension/contraction [5, 9, 19], and rotation [24, 57]. These
motions are mediated by external environmental changes such as the addition and re-
moval of DNA fuel strands [5, 9, 19, 42, 43, 57, 63] or the change of ionic strength of
the solution [24]. Our lab has recently constructed a robust sequence-dependent DNA
nanomechanical actuator and have incorporated it into a 2D parallelogram DNA lat-
tice [23]. The actuator can be switched reversibly between two states, mediated by the
addition and removal of fuel DNA strands.

An improvement of the above devices is the construction of DNA nanomechani-
cal devices that achieve autonomous and non-localized motions, e.g. walking motion.
Turberfield and colleagues have designed a free running DNA machine [44] using DNA
as fuels. Mao’s group recently constructed autonomous DNA tweezers powered by a
DNA enzyme [8]. Seeman’s group and Pierce’s group respectively constructed a non-
autonomous DNA walking device powered by the addition and removal of DNA fuel
strands [40, 41]. In our group, Reif designed an autonomous DNA walking device and
an autonomous DNA rolling device that move in a random bidirectional fashion along
DNA tracks [28]. Building on Reif’s original designs, we designed a suite of unidi-
rectional autonomous DNA walking devices [60] and experimentally implemented one
walking device in which a DNA fragment makes a 3-stop unidirectional motion along a
self-assembled linear DNA track autonomously [62]. Based on this device, we further
designed an autonomous universal DNA Turing machine [61] and autonomous universal
DNA cellular automata [59]; their operations were verified with computer simulation.

6 Conclusion

The self-assembly of DNA is a promising emerging method for molecular scale con-
structions and computations. We have overviewed the area of DNA tiling self-

184 J.H. Reif et al.

assemblies and noted a number of open problems. We have discussed the potential
approaches for error-control in self-assembly techniques for DNA computation; partic-
ularly the use of error-resilient modified tiling methods. We have identified some tech-
nological impacts of DNA assemblies, such as using them as platform for constructing
molecular electronic and robotic devices. Important future work includes further in-
vestigating potential broader technological impacts of DNA lattices. Many applications
of DNA lattices rely on the development of appropriate attachment methods between
DNA lattice and other nanoparticles, which itself is a key challenge in DNA based
nanoscience.

Acknowledgement

This work was supported by DARPA/AFSOR Contract F30602-01-2-0561, NSF ITR
Grant EIA-0086015, DARPA/NSF Grant CCR-9725021, NSF QuBIC Grant
EIA-0218376, and NSF QuBIC Grant EIA-0218359.

References

1. L. Adleman. Molecular computation of solutions to combinatorial problems. Science,
266:1021–1024, 1994.

2. L. Adleman. Towards a mathematical theory of self-assembly. Technical Report 00-722,
University of Southern California, 2000.

3. L. Adleman, Q. Cheng, A. Goel, M.D. Huang, D. Kempe, P.M. de Espans, and P.W.K. Rothe-
mund. Combinatorial optimization problems in self-assembly. In Proceedings of the thirty-
fourth annual ACM symposium on Theory of computing, pages 23–32. ACM Press, 2002.

4. L. Adleman, Q. Cheng, A. Goel, M.D. Huang, and H. Wasserman. Linear self-assemblies:
Equilibria, entropy, and convergence rate. In Sixth International Conference on Difference
Equations and Applications, 2001.

5. P. Alberti and J.L. Mergny. DNA duplex-quadruplex exchange as the basis for a nanomolec-
ular machine. Proc. Natl. Acad. Sci. USA, 100:1569–1573, 2003.

6. Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan, Z. Livneh, and E. Shapiro. Programmable
and autonomous computing machine made of biomolecules. Nature, 414:430–434, 2001.

7. R. Berger. The undecidability of the domino problem. Memoirs of the American Mathemat-
ical Society, 66, 1966.

8. Y. Chen, M. Wang, and C. Mao. An autonomous DNA nanomotor powered by a DNA
enzyme. Angew. Chem. Int. Ed., 43:3554–3557, 2004.

9. L. Feng, S.H. Park, J.H. Reif, and H. Yan. A two-state DNA lattice switched by DNA
nanoactuator. Angew. Chem. Int. Ed., 42:4342–4346, 2003.

10. B. Grunbaum and G.C. Shepard. Tilings and Patterns, chapter 11. H Freeman and Company,
1986.

11. N. Jonoska and S. Karl. Ligation experiments in computing with dna. In Proceedings of
1997 IEEE International Conference on Evolutionary Computation (ICEC’97), pages 261–
265, 1997.

12. N. Jonoska, S.A. Karl, and M. Saito. Graph structures in dna computing. Computing with
Bio-Molecules, theory and experiments, pages 93–110, 1998.

Design, Simulation, and Experimental Demonstration 185

13. T.H. LaBean. Introduction to self-assembling DNA nanostructures for computation and
nanofabrication. In Computational Biology and Genome Informatics eds. J.T.L. Wang and
C.H. Wu and and P. P. Wang ISBN 981-238-257-7 World Scientific Publishing Singapore,
2003.

14. T.H. LaBean, E. Winfree, and J.H. Reif. Experimental progress in computation with DNA
molecules. In Proc. DNA Based Computers V, 1999.

15. T.H. LaBean, H. Yan, J. Kopatsch, F. Liu, E. Winfree, J.H. Reif, and N.C. Seeman. The
construction, analysis, ligation and self-assembly of DNA triple crossover complexes. J.
Am. Chem. Soc., 122:1848–1860, 2000.

16. M.G. Lagoudakis and T.H. LaBean. 2-D DNA self-assembly for satisfiability. In DNA
Based Computers V, volume 54 of DIMACS, pages 141–154. American Mathematical Soci-
ety, 2000.

17. H.R. Lewis and C.H. Papadimitriou. Elements of the Theory of Computation. Prentice-Hall,
1981.

18. H. Li, S.H. Park, J.H. Reif, T.H. LaBean, and H. Yan. DNA templated self-assembly of
protein and nanoparticle linear arrays. Journal of American Chemistry Society, 126(2):418–
419, 2004.

19. J. Li and W. Tan. A single DNA molecule nanomotor. Nano Lett., 2:315–318, 2002.
20. D. Liu, S.H. Park, J.H. Reif, and T.H. LaBean. DNA nanotubes self-assembled from triple-

crossover tiles as templates for conductive nanowires. Proceedings of the National Academy
of Science, 101:717–722, 2004.

21. Q. Liu, L. Wang, A.G. Frutos, A.E. Condon, R.M. Corn, and L.M. Smith. DNA computing
on surfaces. Nature, 403:175–179, 2000.

22. C. Mao, T.H. LaBean, J.H. Reif, and N.C. Seeman. Logical computation using algorithmic
self-assembly of DNA triple-crossover molecules. Nature, 407:493–496, 2000.

23. C. Mao, W. Sun, and N.C. Seeman. Designed two-dimensional DNA holliday junction arrays
visualized by atomic force microscopy. J. Am. Chem. Soc., 121:5437–5443, 1999.

24. C. Mao, W. Sun, Z. Shen, and N.C. Seeman. A DNA nanomechanical device based on the
B-Z transition. Nature, 397:144–146, 1999.

25. S.H. Park, P. Yin, Y. Liu, J.H. Reif, T.H. LaBean, and H. Yan. Programmable DNA self-
assemblies for nanoscale organization of ligands and proteins. 2004. Submitted for publica-
tion.

26. J.H. Reif. Paradigms for biomolecular computation. In C. S. Calude, J. Casti, and M. J.
Dinneen, editors, First International Conference on Unconventional Models of Computation,
Auckland, New Zealand, pages 72–93. Springer Verlag, 1998.

27. J.H. Reif. Local parallel biomolecular computation. In H. Rubin and D. H. Wood, editors,
DNA-Based Computers 3, volume 48 of DIMACS, pages 217–254. American Mathematical
Society, 1999.

28. J.H. Reif. The design of autonomous DNA nanomechanical devices: Walking and rolling
DNA. Lecture Notes in Computer Science, 2568:22–37, 2003. Published in Natural Com-
puting, DNA8 special issue, Vol. 2, p 439-461, (2003).

29. J.H. Reif, S. Sahu, and P. Yin. Compact error-resilient computational DNA tiling assemblies.
Tenth International Meeting on DNA Based Computers (DNA10), 2004.

30. J.H. Reif. The emergence of the discipline of biomolecular computation. Biomolecular
Computing, New Generation Computing, 20(3):217–236, 2002.

31. J.H. Reif. Molecular assembly and computation: From theory to experimental demon-
strations. In 29-th International Colloquium on Automata, Languages, and Program-
ming(ICALP), Mlaga, Spain, pages 1–21, 2002.

32. J.H. Reif, T.H. LaBean, and N.C. Seeman. Challenges and applications for self-assembled
dna nanostructures. In Lecture Notes in Computer Science, volume 2054, pages 173–198.
Springer-Verlag, Berlin Heidelberg, 2001.

186 J.H. Reif et al.

33. R.M. Robinson. Undecidability and non periodicity of tilings of the plane. Inventiones Math,
12:177–209, 1971.

34. P.W.K. Rothemund and E. Winfree. The program-size complexity of self-assembled squares
(extended abstract). In Proceedings of the thirty-second annual ACM symposium on Theory
of computing, pages 459–468. ACM Press, 2000.

35. N.C. Seeman. De novo design of sequences for nucleic acid structural engineering. J. Biomol.
Struct. Dyn., 8:573–581, 1990.

36. N.C. Seeman. Nucleic acid nanostructures and topology. Angew. Chem. Int. Ed., 37:3220–
3238, 1998.

37. N.C. Seeman. DNA in a material world. Nature, 421:427–431, 2003.
38. N.C. Seeman, Y. Zhang, and J. Chen. DNA nanoconstructions. J. Vac. Sci. Technol.,

12:4:1895–1903, 1994.
39. R. Sha, F. Liu, M.F. Bruist, and N.C. Seeman. Parallel helical domains in DNA branched

junctions containing 5’, 5’ and 3’, 3’ linkages. Biochemistry, 38:2832–2841, 1999.
40. W.B. Sherman and N.C. Seeman. A precisely controlled DNA biped walking device. Nano

Lett., 4:1203–1207, 2004.
41. J.S. Shin and N.A. Pierce. A synthetic DNA walker for molecular transport. J. Am. Chem.

Soc., 126:10834–10835.
42. F.C. Simmel and B. Yurke. Using DNA to construct and power a nanoactuator. Phys. Rev.

E, 63:041913, 2001.
43. F.C. Simmel and B. Yurke. A DNA-based molecular device switchable between three distinct

mechanical states. Appl. Phys. Lett., 80:883–885, 2002.
44. A.J. Turberfield, J.C. Mitchell, B. Yurke, Jr. A.P. Mills, M.I. Blakey, and F.C. Simmel. DNA

fuel for free-running nanomachines. Phys. Rev. Lett., 90:118102, 2003.
45. H. Wang. Proving theorems by pattern recognition ii. Bell Systems Technical Journal, 40:1–

41, 1961.
46. E. Winfree. Complexity of restricted and unrestricted models of molecular computation. In

R. J. Lipton and E. B. Baum, editors, DNA Based Computers, volume 27 of DIMACS, pages
187–198. American Mathematical Society, 1995.

47. E. Winfree. On the computational power of DNA annealing and ligation. In R. J. Lipton
and E. B. Baum, editors, DNA Based Computers 1, volume 27 of DIMACS, pages 199–221.
American Mathematical Society, 1996.

48. E. Winfree. Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of Technol-
ogy, 1998.

49. E. Winfree. Simulation of computing by self-assembly. Technical Report 1998.22, Caltech,
1998.

50. E. Winfree and R. Bekbolatov. Proofreading tile sets: logical error correction for algorithmic
self-assembly. In DNA Based Computers 9, volume 2943 of LNCS, pages 126–144, 2004.

51. E. Winfree, T. Eng, and G. Rozenberg. String tile models for DNA computing by self-
assembly. In DNA Based Computers 6, pages 63–88, 2000.

52. E. Winfree, F. Liu, L.A. Wenzler, and N.C. Seeman. Design and self-assembly of two-
dimensional DNA crystals. Nature, 394(6693):539–544, 1998.

53. E. Winfree, X. Yang, and N.C. Seeman. Universal computation via self-assembly of DNA:
Some theory and experiments. In L. F. Landweber and E. B. Baum, editors, DNA Based Com-
puters II, volume 44 of DIMACS, pages 191–213. American Mathematical Society, 1996.

54. H. Yan, L. Feng, T.H. LaBean, and J.H. Reif. Parallel molecular computation of pair-wise
xor using DNA string tile. J. Am. Chem. Soc., 125(47), 2003.

55. H. Yan, T.H. LaBean, L. Feng, and J.H. Reif. Directed nucleation assembly of DNA tile
complexes for barcode patterned DNA lattices. Proc. Natl. Acad. Sci. USA, 100(14):8103–
8108, 2003.

Design, Simulation, and Experimental Demonstration 187

56. H. Yan, S.H. Park, G. Finkelstein, J.H. Reif, and T.H. LaBean. DNA-templated self-assembly
of protein arrays and highly conductive nanowires. Science, 301(5641):1882–1884, 2003.

57. H. Yan, X. Zhang, Z. Shen, and N.C. Seeman. A robust DNA mechanical device controlled
by hybridization topology. Nature, 415:62–65, 2002.

58. P. Yin, B. Guo, C. Belmore, W. Palmeri, E. Winfree, T.H. LaBean, and J.H. Reif. TileSoft:
Sequence optimization software for designing DNA secondary structures. Technical Report
CS-2004-09, Duke University, Computer Science Department, 2004.

59. P. Yin, S. Sahu, A.J. Turberfield, and J.H. Reif. Design of autonomous DNA cellular au-
tomata. 2004. In preparation.

60. P. Yin, A.J. Turberfield, and J.H. Reif. Designs of autonomous unidirectional walking DNA
devices. In DNA Based Computers 10, 2004.

61. P. Yin, A.J. Turberfield, S. Sahu, and J.H. Reif. Design of an autonomous DNA nanome-
chanical device capable of universal computation and universal translational motion. In
DNA Based Computers 10, 2004.

62. P. Yin, H. Yan, X.G. Daniell, A.J. Turberfield, and J.H. Reif. A unidirectional DNA walker
moving autonomously along a linear track. Angew. Chem. Int. Ed., 43:4906–4911, 2004.

63. B. Yurke, A.J. Turberfield, Jr. A.P. Mills, F.C. Simmel, and J.L. Neumann. A DNA-fuelled
molecular machine made of DNA. Nature, 406:605–608, 2000.

Membrane Systems: A Quick Introduction

Gheorghe Păun

Institute of Mathematics of the Romanian Academy,
PO Box 1-764, 014700 Bucureşti, Romania and

Research Group on Natural Computing,
Department of Computer Science and Artificial Intelligence,

University of Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
george.paun@imar.ro, gpaun@us.es

Abstract. Membrane Computing (MC) is part of the powerful trend in
computer science known under the name of Natural Computing. Its goal
is to abstract computing models from the structure and the functioning
of the living cell. The present paper is a short and informal introduction
to MC, presenting the basic ideas, the central (types of) results, and the
main directions of research.

1 Membrane Computing – Starting from Cells

In the last decade, the continuous and mutually beneficial collaboration of infor-
matics with biology became simply spectacular. Two landmark examples are the
completion of the genome project, a great success of bio–informatics, of using
computer science in biology, and the successful Adleman’s experiment (1994)
of using DNA molecules as a support for computing. The latter example is il-
lustrative for the direction of research opposite to the traditional one, of using
computers in biology: in Adleman’s experiment, biological materials and tech-
niques were used in order to solve a computational problem. This was the “official
birth certificate” of what is now called DNA Computing, and this gave a decisive
impulse to Natural Computing.

Membrane Computing is the youngest branch of Natural Computing. It starts
from the observation that one of the most marvellous machineries evolved by na-
ture are the cells. The cell is the smallest living unit, a microscopic “enterprise”,
with a complex structure, an intricate inner activity, and an exquisite relation-
ship with its environment. Both substances, from ions to large macromolecules,
and information are processed in a cell, according to involved reactions, orga-
nized in a robust and at the same time sensitive manner, having as the goal the
processes themselves, the life itself of the cell and of the structures where the
cells are included – organs, organisms, populations.

Thus, a double challenge emerged: to check whether or not the often made
statements about the “computations” taking place in a cell (see, e.g., [2] and
[3]) are mere metaphoras or they correspond to computations in the standard
(mathematical) understanding of this term, and, more ambitiously, having in
mind the encouraging experience of other branches of Natural Computing, to get

J.-P. Banâtre et al. (Eds.): UPP 2004, LNCS 3566, pp. 188–195, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Membrane Systems: A Quick Introduction 189

inspired from the structure and the functioning of the living cell and define new
computing models, possibly of interest for computer science, for computability
in general.

Membrane computing emerged as an answer to this double challenge, propos-
ing a series of models (actually, a general framework for devising models) in-
spired from the cell structure and functioning, as well as from the cell organi-
zation in tissues. These models, called P systems, were investigated as mathe-
matical objects, with the main goals being of a (theoretical) computer science
type: computation power (in comparison with Turing machines and their re-
strictions), and usefulness in solving computationally hard problems. The field
(founded in 1998; the paper [4] was first circulated on web) simply flourished
at this level. Comprehensive information can be found in the web page at
http://psystems.disco.unimib.it; see also [5].

In this paper we discuss only the cell–like P systems, whose study is much
more developed than that of tissue–like P systems or of neural–like P systems,
which were only recently investigated in more details.

In short, such a system consists of a hierarchical arrangement of membranes
(understood as three–dimensional vesicles), which delimits compartments (also
called regions), where abstract objects are placed. These objects correspond to
the chemicals from the compartments of a cell, and they can be either unstruc-
tured, a case when they can be represented by symbols from a given alphabet,
or structured. In the latter case, a possible representation of objects is by strings
over a given alphabet. Here we discuss only the case of symbol–objects. Cor-
responding to the situation from reality, where the number of molecules from
a given compartment matters, also in the case of objects from the regions of
a P system we have to take into consideration their multiplicity, that is why
we consider multisets of objects assigned to the regions of P systems. These
objects evolve according to rules, which are also associated with the regions.
The intuition is that these rules correspond to the chemical reactions from cell
compartments and the reaction conditions are specific to each compartment,
hence the evolution rules are localized. The rules say both how the objects are
changed and how they can be moved (we say communicated) across membranes.
By using these rules, we can change the configuration of a system (the multisets
from its compartments); we say that we get a transition among system configu-
rations. The way the rules are applied imitates again the biochemistry (but goes
one further step towards computability): the reactions are done in parallel, and
the objects to evolve and the rules by which they evolve are chosen in a non-
deterministic manner, in such a way that the application of rules is maximal. A
sequence of transitions forms a computation, and with computations which halt
(reach a configuration where no rule is applicable) we associate a result, for in-
stance, in the form of the multiset of objects present in the halting configuration
in a specified membrane.

All these basic ingredients of a membrane computing system (a P system) will
be discussed further below. This brief description is meant, on the one hand, to
show the passage from the “real cell” to the “mathematical cell”, as considered

190 G. Păun

in MC, and, on the other hand, to give a preliminary idea about the computing
model we are investigating.

It is important to note at this stage the generality of the approach. We start
from the cell, but the abstract model deals with very general notions: membranes
interpreted as separators of regions, objects and rules assigned to regions; the
basic data structure is the multiset; the rules are used in the non-deterministic
maximally parallel manner, and in this way we get sequences of transitions,
hence computations. In such terms, MC can be interpreted as a bio–inspired
framework for distributed parallel processing of multisets.

We close this introductory discussion by stressing the basic similarities and
differences between MC and the other areas of Natural Computing. All these ar-
eas start from biological facts and abstract computing models. Neural and Evo-
lutionary Computing are already implemented (rather successfuly, especially in
the case of Evolutionary Computing) on the usual computer. DNA Computing
has a bigger ambition, that of providing a new hardware, leading to bio–chips,
to “wet computers”. For MC it seems that the most realistic attempt for imple-
mentation is in silico (this started already to be a trend and some successes are
already reported) rather than in vitro (no attempt was made yet).

2 The Basic Classes of P Systems

We introduce now the fundamental ideas of MC in a more precise way. What we
look for is a computing device, and to this aim we need data structures, opera-
tions with these data structures, an architecture of our “computer”, a systematic
manner to define computations and results of computations.

Inspired from the cell structure and functioning, the basic elements of a mem-
brane system (P system) are (1) the membrane structure and the sets of (2) evo-
lution rules which process (3) multisets of (4) objects placed in the compartments
of the membrane structure.

A membrane structure is a hierarchically arranged set of membranes. A sug-
gestive representation is as in the figure from the next page. We distinguish the
external membrane (corresponding to the plasma membrane and usually called
the skin membrane) and several internal membranes (corresponding to the mem-
branes present in a cell, around the nucleus, in Golgi apparatus, vesicles, etc);
a membrane without any other membrane inside is said to be elementary. Each
membrane uniquely determines a compartment, also called region, the space
delimited from above by it and from below by the membranes placed directly
inside, if any exists.

In the basic class of P systems, each region contains a multiset of symbol–
objects, which correspond to the chemicals swimming in a water solution in a
cell compartment; these chemicals are considered here as unstructured, that is
why we describe them by symbols from a given alphabet.

The objects evolve by means of evolution rules, which are also localized,
associated with the regions of the membrane structure. The rules correspond to
the chemical reactions possible in the compartments of a cell. The typical form

Membrane Systems: A Quick Introduction 191

of such a rule is aab → (c, here)(d, out)(d, in)(d, in), with the following meaning:
two copies of object a and one copy of object b react and the reaction produces
one copy of c and three copies of d; the new copy of c remains in the same
region (indication here), one of the copies of d exits the compartment, going to
the surrounding region (indication out) and the others two enter one or two of
the directly inner membranes (indication in). We say that the objects c, d, d, d
are communicated as indicated by the commands associated with them in the
right hand member of the rule. When an object exits a membrane, it will go
to the surrounding compartment; in the case of the skin membrane this is the
environment, hence the object is “lost”, it never comes back into the system.
If no inner membrane exists (that is, the rule is associated with an elementary
membrane), then the indication in cannot be followed, and the rule cannot be
applied.

�

�

�

�

�

�

�

�

�

�

�

	�
�

�
	

�

�

�

�

�
�

�
�

�

�

�

�

�
�

���

�
���

�
�

���

membrane

��	

skin elementary membranemembrane

region

environment environment

�
�������

�
�

���

1 2

3

4
5

6

7

8

9

The communication of objects through membranes reminds the fact that
the biological membranes contain various (protein) channels through which the
molecules can pass (in a passive way, due to concentration difference, or in an
active way, with a consumption of energy), in a rather selective manner. The
fact that the communication of objects from a compartment to a neighboring
compartment is controlled by the “reaction rules” is attractive mathematically,
but not quite realistic from a biological point of view, that is why there also
were considered variants where the two processes are separated: the evolution is
controlled by rules as above, without target indications, and the communication
is controlled by specific rules (by symport/antiport rules – see below).

A rule as above, with several objects in its left hand member, is said to be
cooperative; a particular case is that of catalytic rules, of the form ca → cx, where
a is an object and c is a catalyst, appearing only in such rules, never changing.
A rule of the form a → x, where a is an object, is called non-cooperative.

The rules associated with a compartment are applied to the objects from
that compartment, in a maximally parallel way: all objects which can evolve by

192 G. Păun

means of local rules should do it (we assign objects to rules, until no further
assignment is possible). The used objects are “consumed”, the newly produced
objects are placed in the compartments of the membrane structure according
to the communication commands assigned to them. The rules to be used and
the objects to evolve are chosen in a non-deterministic manner. In turn, all
compartments of the system evolve at the same time, synchronously (a common
clock is assumed for all membranes). Thus, we have two layers of parallelism,
one at the level of compartments and one at the level of the whole “cell”.

A membrane structure and the multisets of objects from its compartments
identify a configuration of a P system. By a non-deterministic maximally parallel
use of rules as suggested above we pass to another configuration; such a step is
called a transition. A sequence of transitions constitutes a computation. A com-
putation is successful if it halts, it reaches a configuration where no rule can be
applied to the existing objects. With a halting computation we can associate a re-
sult in various ways. The simplest possibility is to count the objects present in the
halting configuration in a specified elementary membrane; this is called internal
output. We can also count the objects which leave the system during the compu-
tation, and this is called external output. In both cases the result is a number. If
we distinguish among different objects, then we can have as the result a vector
of natural numbers. The objects which leave the system can also be arranged in
a sequence according to the moments when they exit the skin membrane, and in
this case the result is a string. This last possibility is worth emphasizing, because
of the qualitative difference between the data structure used inside the system
(multisets of objects, hence numbers) and the data structure of the result, which
is a string, it contains a positional information, a syntax.

Because of the non-determinism of the application of rules, starting from an
initial configuration, we can get several successful computations, hence several
results. Thus, a P system computes (one also uses to say generates) a set of
numbers, or a set of vectors of numbers, or a language.

Of course, the previous way of using the rules from the regions of a P system
reminds the non-determinism and the (partial) parallelism from cell compart-
ments, with the mentioning that the maximality of parallelism is mathematically
oriented (rather useful in proofs); when using P systems as biological models,
this feature should be replaced with more realistic features (e.g., reaction rates,
probabilities, partial parallelism).

An important way to use a P system is the automata–like one: an input
is introduced in a given region and this input is accepted if and only if the
computation halts. This is the way for using P systems, for instance, in solving
decidability problems.

We do not give here a formal definition of a P system. The reader interested
in mathematical and bibliographical details can consult the mentioned mono-
graph [5], as well as the relevant papers from the web bibliography mentioned
above. Of course, when presenting a P system we have to specify: the alphabet
of objects, the membrane structure (usually represented by a string of labelled
matching parentheses), the multisets of objects present in each region of the sys-

Membrane Systems: A Quick Introduction 193

tem (represented by strings of symbol–objects, with the number of occurrences
of a symbol in a string being the multiplicity of the object identified by that
symbol in the multiset represented by the considered string), the sets of evolu-
tion rules associated with each region, as well as the indication about the way
the output is defined.

Many modifications/extensions of the very basic model sketched above are
discussed in the literature, but we do not mention them here. Instead, we only
briefly discuss the interesting case of computing by communication.

In the systems described above, the symbol–objects were processed by multi-
set rewriting–like rules (some objects are transformed into other objects, which
have associated communication targets). Coming closer to the trans–membrane
transfer of molecules, we can consider purely communicative systems, based on
the three classes of such transfer known in the biology of membranes: uniport,
symport, and antiport (see [1] for details). Symport refers to the transport where
two (or more) molecules pass together through a membrane in the same direc-
tion, antiport refers to the transport where two (or more) molecules pass through
a membrane simultaneously, but in opposite directions, while the case when a
molecule does not need a “partner” for a passage is referred to as uniport.

In terms of P systems, we can consider object processing rules of the following
forms: a symport rule (associated with a membrane i) is of the form (ab, in)
or (ab, out), stating that the objects a and b enter/exit together membrane i,
while an antiport rule is of the form (a, out; b, in), stating that, simultaneously,
a exits and b enters membrane i. A natural generalization is to move more than
two objects simultaneously, for instance, considering antiport rules of the form
(x, out; y, in), where x, y are arbitrary multisets of objects.

A P system with symport/antiport rules has the same architecture as a sys-
tem with multiset rewriting rules: alphabet of objects, membrane structure, ini-
tial multisets in the regions of the membrane structure, sets of rules associated
with the membranes, possibly an output membrane – with one additional compo-
nent, the set of objects present in the environment. This is an important detail:
because by communication we do not create new objects, we need a supply of
objects, in the environment, otherwise we are only able to handle a finite popu-
lation of objects, those provided in the initial multiset. Also the functioning of a
P system with symport/antiport rules is the same as for systems with multiset
rewriting rules: the transition from a configuration to another configuration is
done by applying the rules in a non-deterministic maximally parallel manner,
to the objects available in the regions of the system and in the environment, as
requested by the used rules. When a halting configuration is reached, we get a
result, in a specified output membrane.

3 Computational Completeness; Universality

As we have already mentioned, many classes of P systems, combining various
ingredients as those described above, are able to simulate Turing machines, hence
they are computationally complete. Always, the proofs of results of this type are

194 G. Păun

constructive, and this have an important consequence from the computability
point of view: there are universal (hence programmable) P systems. In short,
starting from a universal Turing machine (or an equivalent universal device),
we get an equivalent universal P system. Among others, this implies that in the
case of Turing complete classes of P systems, the hierarchy on the number of
membranes always collapses (at most at the level of the universal P systems).
Actually, the number of membranes sufficient in order to characterize the power
of Turing machines by means of P systems is always rather small.

We only mention here two of the most interesting universality results:

1. P systems with symbol–objects with catalytic rules, using only two catalysts
and two membranes, are universal.

2. P systems with symport/antiport rules of a rather restricted size (example:
three membranes, symport rules with two objects each and no antiport rules,
or only minimal symport and antiport rules) are universal.

We can conclude that the compartmental computation in a cell–like mem-
brane structure (using various ways of communicating among compartments) is
rather powerful. The “computing cell” is a powerful “computer”.

4 Computational Efficiency

The computational power is only one of the important questions to be dealt
with when defining a new computing model. The other fundamental question
concerns the computing efficiency. Because P systems are parallel computing
devices, it is expected that they can solve hard problems in an efficient manner –
and this expectation is confirmed for systems provided with ways for producing
an exponential workspace in a linear way. Three main such possibilities have
been considered so far in the literature, and all of them were proven to lead to
polynomial solutions to NP–complete problems: membrane division, membrane
creation, and string replication. Using them, polynomial solutions to SAT, the
Hamiltonian Path problem, the Node Covering problem, the problem of inverting
one–way functions, the Subset–sum, and the Knapsack problems were reported
(note that the last two are numerical problems, where the answer is not of the
yes/no type, as in decidability problems). Details can be found in [5], [6], as well
as in the web page of the domain.

Roughly speaking, the framework for dealing with complexity matters is that
of accepting P systems with input: a family of P systems of a given type is con-
structed starting from a given problem, and an instance of the problem is in-
troduced as an input in such systems; working in a deterministic mode (or a
confluent mode: some non-determinism is allowed, provided that the branching
converges after a while to a unique configuration), in a given time one of the an-
swers yes/no is obtained, in the form of specific objects sent to the environment.
The family of systems should be constructed in a uniform mode (starting from
the size of instances) by a Turing machine, working a polynomial time.

This direction of research is very active at the present moment. More and
more problems are considered, the membrane computing complexity classes are

Membrane Systems: A Quick Introduction 195

refined, characterizations of the P�=NP conjecture were obtained in this frame-
work, improvements are looked for. An important recent result concerns the fact
that PSPACE was shown to be included in PMCD, the family of problems
which can be solved in polynomial time by P systems with the possibility of
dividing both elementary and non-elementary membranes [7].

5 Concluding Remarks

This paper was intended as a quick and general introduction to Membrane Com-
puting, an invitation to this recent branch of Natural Computing.

The starting motivation of the area was to learn from the cell biology new
ideas, models, paradigms useful for informatics – and we have informally pre-
sented a series of details of this type. The mathematical development was quite
rapid, mainly with two types of results as the purpose: computational universal-
ity and computational efficiency. Recently, the domain started to be used as a
framework for modelling processes from biology (but also from linguistics, man-
agement, computer graphics, etc.), and this is rather important in view of the
fact that P systems are (reductionistic, but flexible, easily scallable, algorithmic,
intuitive) models of the whole cell; modelling the whole cell was often mentioned
as an important challenge for the bio–computing in the near future – see, e.g., [8].

We have recalled only a few classes of P systems and only a few (types of)
results. A detailed presentation of the domain is not only beyond the scope of this
text, but also beyond the dimensions of a monograph; furthermore, the domain
is fastly emerging, so that, the reader interested in any research direction, a more
theoretical or a more practical one, is advised to follow the developments, for
instance, through the web page mentioned in Section 2.

References

1. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology
of the Cell, 4th ed., Garland Science, New York, 2002.

2. D. Bray, Protein Molecules as Computational Elements in Living Cells. Nature, 376
(July 1995), 307–312.

3. S. Ji, The Cell as the Smallest DNA–Based Molecular Computer, BioSystems, 52
(1999), 123–133.

4. Gh. Păun, Computing with Membranes, Journal of Computer and System Sciences,
61, 1 (2000), 108–143 (and Turku Center for Computer Science–TUCS Report 208,
November 1998, www.tucs.fi).

5. Gh. Păun, Computing with Membranes: An Introduction, Springer, Berlin, 2002.
6. M. Pérez–Jiménez, A. Romero–Jiménez, F. Sancho–Caparrini, Teoŕıa de la Com-

plejidad en Modelos de Computatión Celular con Membranas, Kronos, Sevilla, 2002.
7. P. Sosik, The Computational Power of Cell Division in P Systems: Beating Down

Parallel Computers? Natural Computing, 2, 3 (2003), 287–298.
8. M. Tomita, Whole–Cell Simulation: A Grand Challenge of the 21st Century, Trends

in Biotechnology, 19 (2001), 205–210.

Cellular Meta-programming over Membranes

Gabriel Ciobanu1 and Dorel Lucanu2

1 Romanian Academy, Institute of Computer Science, Iaşi
gabriel@iit.tuiasi.ro

2 “A.I.Cuza” University of Iaşi, Faculty of Computer Science
dlucanu@info.uaic.ro

Abstract. Adaptable executions inspired by the cell behaviour can be
described by a cellular meta-programming paradigm. The cell adaptabil-
ity and meta-programming are related to the notions of behavioural re-
flection, which allows a program to modify, even at run-time, its own code
as well as the semantics of its own programming language. We present
the cellular meta-programming considering the membrane systems and a
specification language based on rewriting and allowing meta-level strate-
gies and use of reflection.

1 Introduction

In this paper we present cellular meta-programming, a computing paradigm in-
spired by the dynamic nature of the cell behaviour, described with the help of
membrane systems representing abstract models inspired by the compartments
of a cell. The root of this approach is given by the high adaptability and flexi-
bility of the cell behaviour. Identifying the principles that govern the design and
function of this adaptability is a central goal of our research. The adaptation
of cells to the changing environment requires sophisticated processing mediated
by interacting genes and proteins. In computing terms, we say that a cell is
able to adapt its execution according to various developmental and environmen-
tal stimuli, causing corresponding changes in its behaviour. We refer mainly to
adaptability at the software level.

Adaptable executions are generated in computer science by meta-
programming, as well as by just-in-time compilation, aspect-oriented program-
ming, generative programming, dynamic linking, partial evaluation. Meta-
programming is the act of writing meta-programs, and a meta-program is a
program that manipulates itself and possibly other programs as its data, al-
lowing execution modification. Meta-programming is related to the notions of
reflection [12]. In the programming languages, reflection is defined as the ability
of a program to manipulate the encoding of the state of the program during
its own execution. The mechanism for encoding execution states (as data) is
called reification. The reflective mechanisms are both structural and behavioural.
Structural reflection is the ability to work with the structures and processes of
a programming system within the programming system itself. This form of re-
flection is easier to implement, and languages as Lisp, Smalltalk, and Java have

J.-P. Banâtre et al. (Eds.): UPP 2004, LNCS 3566, pp. 196–206, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Cellular Meta-programming over Membranes 197

structural reflection mechanisms. However, the cell adaptability is close to the
behavioural reflection which allows a program to modify, even at run-time, its
own code as well as the semantics and the implementation of its own program-
ming language. Our main interest is in behaviour reflection.

The cell is able to modify its activity according to its foregoing processes,
to observe and change its behaviour at run-time. This aspect is more than the
reification process by which a program is used as a representation (data struc-
tures, procedures) expressed in the language itself, and made available at run-
time as ordinary data. The cells programming languages allow to step into the
meta-level, where implementation of the language is explicitly available. This ca-
pability enables various customizations including new structures, changing the
behaviour, going up and down in a tower of meta-levels by using a reflection
mechanism.

We use a rather mathematical language (called Maude) which is able to pro-
vide executable specification, and an abstract model of membranes inspired by
the compartments of a cell (called P systems). In order to present the cellular
meta-programming paradigm, we provide the executable specifications of P sys-
tems in Maude, a software system supporting reflection. Despite the theoretical
limits, Meseguer and Clavel have defined a general theory of reflection for Maude
in [9]. They propose meta-logical axioms for reflection, as well as general axioms
for computational strategies in rewriting logic.

2 Membrane Systems

Membrane systems represent a new abstract model of parallel and distributed
computing inspired by cell compartments and molecular membranes [10, 11]. A
cell is divided in various compartments, each compartment with a different task,
and all of them working simultaneously to accomplish a more general task of the
whole system. The membranes of a P system determine regions where objects
and evolution rules can be placed. The objects evolve according to the rules
associated with each region, and the regions cooperate in order to maintain the
proper behaviour of the whole system. P systems provide a nice abstraction
for parallel systems, and a suitable framework for distributed and parallel algo-
rithms [2]. It is desirable to find more connections with various fields of computer
science, including implementations and executable specifications. From the pro-
gramming point of view, a sequential software simulator of membrane systems is
presented in [4], and a parallel simulator implemented on a cluster of computers
is presented in [3]. It does not exist yet a programming language based on, or
inspired of, the membrane systems.

A detailed description of the P systems can be found in [11]. A P system
consists of several membranes that do not intersect, and a skin membrane, sur-
rounding them all. The membranes delimit regions, and contain multisets of
objects, as well as evolution rules. Only rules in a region delimited by a mem-
brane act on the objects in that region. Moreover, the rules can contain target
indications, specifying the membrane where objects are sent after applying the

198 G. Ciobanu and D. Lucanu

rule. The objects can pass through membranes, in two directions: they can be
sent out of the membrane which delimits a region from outside, or can be sent
in one of the membranes which delimit a region from inside, precisely identified
by its label. The membranes can be dissolved; this action is important when
discussing about adaptive executions. When such an action takes place, all the
objects of the dissolved membrane remain free in the membrane placed immedi-
ately outside, but the evolution rules of the dissolved membranes are lost. The
skin membrane is never dissolved. The application of evolution rules is done in
parallel, and it is eventually regulated by priority relationships between rules.

A P system has a certain structure represented by a tree (with the skin as
its root), or by a string of correctly matching parentheses, placed in a unique
pair of matching parentheses; each pair of matching parentheses corresponds
to a membrane. Graphically, a membrane structure is represented by a Venn
diagram in which two sets can be either disjoint, or one the subset of the other.
The membranes are labelled in a one-to-one manner. A membrane without any
other membrane inside is said to be elementary. The space outside the skin
membrane is called the outer region.

Formally, a P system Π = (O,μ,w1, . . . , wm, R1, . . . , Rm, io) is a structure
where:

(i) O is an alphabet of objects;
(ii) μ is a membrane structure consisting of labelled membranes;
(iii) wi are multisets over O associated with the regions defined by μ;
(iv) Ri are finite sets of evolution rules over O associated with the membranes, of

typical forms u → v, with v containing paired symbols of the form (c, here),
(c, inj), (c, out), with (c, here) usually written simply c;

(v) io is either a number between 1 and m specifying the output membrane of
Π, or it is equal to 0 indicating the environment as the output region.

The membrane structure and the multisets in Π determine the initial config-
uration of the system. We can pass from a configuration to another one by using
the evolution rules. This is done in parallel: all objects, from all membranes,
which can be the subject of local evolution rules, as prescribed by the priority
relation, should evolve simultaneously. However, an object introduced by a rule
cannot evolve at the same step by means of another rule. The use of a rule
u → v in a region with a multiset w means to subtract the multiset identified by
u from w, and then adding the objects of v according to the form of the rule. If
an object appears in v in the form (c, here), then it remains in the same region;
if we have (c, inj), then a copy of c is introduced in the membrane with the label
j, providing that it is adjacent to the region of the rule u → v, otherwise the rule
cannot be applied; if we have (c, out), then a copy of the object c is introduced
in the membrane placed immediately outside the region of the rule u → v; if
the special symbol δ appears in v, then the membrane which delimits the region
is dissolved; in this way, all the objects in this region become elements of the
region placed immediately outside, while the rules of the dissolved membrane
are removed.

Cellular Meta-programming over Membranes 199

Example: We consider a P system generating symbols b and c with the proper-
ties that the number of c’s is double of the number of b’s, and the total number
of b’s and c’s is a multiple of 6.

Π1= (O,μ,w1, w2, R1, R2, io),
O = {a, b, c},
μ = [1[2]2]1,

w1 = a2,

w2 = λ,

R1 = {a → a(b, in2)(c, in2)2, a2 → (a, out)2},
R2 = ∅,
io = 2.

The initial configuration is:

�

�

�

�

�
�

�
�

1

2a2

a → a(b, in2)(c, in2)
2

a2 → (a, out)2

3 Evaluation Strategies and Reflection

We discuss in this section about meta-programming and reflection aspects, pre-
senting in the same time some distinctive features of the membrane computing.

We express the evolution rules of a membrane system as rewriting rules. We
consider the following maximal parallel application of rules: in a transition step,
the rules of each membrane are used against its resources such that no more
rules can be applied. Considering an elementary membrane M = (RM , wM),
where RM is the finite set of evolution rules and wM is the initial multiset, a
computation step transition is defined as a rewriting rule by

x1 → y1, . . . , xn → yn ∈ RM , z is RM -irreducible
x1 . . . xnz ⇒ y1 . . . ynz

(1)

z is RM -irreducible whenever there does not exist rules in RM applicable to z.
A composite membrane, that is a membrane with other membranes M1, . . . , Mk

inside it, is denoted by (RM , init,M1, . . . , Mk), where each Mi (1 ≤ i ≤ k) is an
elementary or a composite membrane. RM represents the finite set of evolution
rules of M , and init is its initial configuration of form (w, (w1, . . . , wk)), where

200 G. Ciobanu and D. Lucanu

wi is the multiset associated with the membrane Mi. A computational step of a
composite membrane is defined as a rewriting rule by

w ⇒ w′, w1 ⇒ w′
1, . . . , wn ⇒ w′

n

(w, (w1, . . . , wk)) ⇒ (w′, (w′
1, . . . , w

′
k))

(2)

In this way, the objects of the membranes are the subject of local evolution
rules that evolve simultaneously. A sequence of computation steps represents
a computation. A computation is successful if this sequence is finite, namely
there is no rule applicable to the objects present in the last configuration. In a
final configuration, the result of a successful computation is the total number
of objects present in the membrane considered as the output membrane. In
this paper we simplify this procedure; no internal membrane is specified as an
output membrane, and so the result is given by the number of objects in the
skin membrane.

Maude and Rewriting Logic

Maude is essentially a mathematical language. The OBJ theory and languages
[7] have influenced the Maude design and philosophy. A Maude program is a
logical theory, and a Maude computation is a logical deduction using the axioms
specified in the program. The foundations of Maude is given by membership
equational logic and rewriting logic. A rewriting specification R is a 4-tuple
R=(Σ,E,L,R) where (Σ,E) is a rewriting logic signature, L is a set whose
elements are called labels, and R is a set of labelled rewriting rules (sentences)
written as r : [t(x)]E → [t′(x)]E . The inference rules of rewriting logic allow to
deduce general (concurrent) transitions which are possible in a system satisfying
R. We say that R entails the sentence [t] → [t′] and write R � [t] → [t′]
iff [t] → [t′] can be obtained by finite application of its inference rules. The
general theory of the rewriting logic allows conditional sentences and conditional
rewriting rules. The interested reader is invited to read [5].

The basic programming statements of Maude are equations, membership as-
sertions, and rules. A Maude program containing only equations and member-
ship assertions is called a functional module. The equations are used as rules
(equational rewriting), and the replacement of equals for equals is performed
only from left to right. A Maude program containing both equations and rules is
called a system module. Rules are not equations, they are local transition rules in
a possibly concurrent system. Unlike for equations, there is no assumption that
all rewriting sequences will lead to the same final result, and for some systems
there may not be any final states.

The rewriting performed for membranes is a multiset rewriting. In Maude
this is specified by declaring that the multiset union operator satisfies the as-
sociativity and commutativity equations, and has also an identity. This is done
simply by using attributes, and this information is used to generate a multi-
set matching algorithm. Further expressiveness is gained by various features as
equational pattern matching, user-definable syntax and data, generic types and
modules, and reflection.

Cellular Meta-programming over Membranes 201

We emphasize the evaluation strategies and reflection property. Evaluation
strategies control the positions in which equations can be applied, giving the
user the possibility of indicating which arguments to evaluate before simplify-
ing a given operator with the equations. Reflection allows a complete control
of the rewriting (execution) using the rewriting rules in the theory. Reflective
computations allow the link between meta-level and the object level, whenever
possible.

Rewriting logic is reflective [9], i.e., there is a finitely presented universal
rewriting specification U such that for any finitely presented rewriting specifica-
tion R (including U itself), we have the following equivalence:

R � [t] → [t′] iff U � 〈R, t〉 → 〈R, t′〉,

where R and t are terms representing R and t as data elements of U . Since U
is representable in itself, it is possible to achieve a “reflective tower” with an
arbitrary number of reflection levels:

R � [t] → [t′] iff U � 〈R, t〉 → 〈R, t′〉 iff U � 〈U , 〈R, t〉〉 → 〈U , 〈R, t′〉〉 . . .

This interesting and powerful concept is supported by Maude through a built-in
module called META-LEVEL. This module has sorts Term and Module such that the
representation t of a term t is of sort Term and the representation SP of a spec-
ification SP is of sort Module. There are also functions like metaReduce(SP , t)
which returns the representation of the reduced form of a term t using the equa-
tions in the module SP .

META-LEVEL module can be extended by the user to specify strategies of
controlling the rewriting process. We use META-LEVEL in order to define the
“maximal parallel rewriting” strategy. In fact the meta-level is needed for two
main reasons: to locate the set of rules corresponding to a certain membrane in
the structured Maude specification of a composite P system, and to describe the
maximal parallel application of the located rules as a rewriting strategy.

The META-LEVEL module is used to provide a clear algorithmic description
given by maxParRew of the “nondeterministic and maximal parallel” applications
of evolution rules in the P systems. Using maxParRew as a transition step between
meta-level configurations, we then provide an operational semantics of the P
systems. Using the power given by the tower of reflection levels in Maude, we
define operations over modules and strategies to guide the deduction process.
Finally we can use a meta-metalevel to analyze and verify the properties of the
P systems [1].

This conceptual description of the P systems based on meta-programming
capabilities given by reflection is called cellular meta-programming, and it could
become a useful paradigm for further investigations in programming systems,
and in a new holistic view of molecular biology called systems biology [8]. Adding
new abstractions, discrete models and methods able to help our understanding
of the biological phenomena, systems biology may provide predictive power,
useful classifications, new paradigms in computing and new perspectives on the
dynamics of various biological systems.

202 G. Ciobanu and D. Lucanu

4 Membrane Systems Specification in Maude

This section presents executable specifications for membrane systems. Each P
system Π is naturally represented as a collection of Maude system modules such
that each membrane is represented by a corresponding Maude system module.
The sort Obj is for object names, and its subsort Output is for results. We add
a sort Soup for the multisets of objects, and a sort Config for the states of a
P system. An expression of the form 〈M | S〉 represents a configuration corre-
sponding to an elementary membrane M with its multiset S, and an expression
of the form 〈M | S;C1, . . . , Cn〉 represents a configuration corresponding to a
composite membrane M in state S and with the component i having the con-
figuration Ci. The Maude semantics of the module M is not the same with the
P system semantics. Therefore we must associate with M the right semantics
based on the maximal parallel rewrite relation. We use the facilities provided by
reflection in Maude, defining this semantics at the meta-level.

For the elementary membranes, a computation step between configurations
is defined as:

S ⇒ S′

〈M | S〉 ⇒ 〈M | S′〉 (3)

where S ⇒ S′ is defined in (1). S ⇒ S′ is not the ordinary rewriting defined by
M ; however they are strongly related:

S ⇒ S′ iff S
+−→RM

S′ s.t. maxParCons(RM , S, S′) (4)

Here +−→RM
is the ordinary rewriting defined by RM , and maxParCons

(RM , S, S′) represents the constraints defining the maximal parallel rewriting
strategy over RM . More precisely, we have:

1. if S = S′, then maxParCons(RM , S, S) holds iff S is RM -irreducible;
2. if S �= S′, then maxParCons(RM , S, S′) holds iff there exists S1, S

′
1, � → r ∈

RM such that S = � S1, S′ = r S′
1, and maxParCons(RM , S1, S

′
1).

Since maxParCons has the set of rules of the module M as parameter, it follows
that it can be decided only at meta-level.

We must say that we have an interleaving implementation of the maximal
parallel rewriting over multisets. However, using the rewriting logic axioms, we
can prove that two interleaving implementations of S ⇒ S′ are considered to
be in fact the same. In this way, the class of interleaving implementations can
express the parallel rewriting over multisets.

The transition between configurations for a composite membrane is defined
as:

S ⇒ S′, C1 ⇒ C ′
1, . . . , Ck ⇒ C ′

k

〈M | S;C1, . . . , Ck〉 ⇒ 〈M | S′;C ′
1, . . . , C

′
k〉

(5)

Again we have an interleaving implementation of (5). The interleaving imple-
mentation is more complex now. For instance, at a time t we may have an
elementary evolution step of the component Ci, and at time t + 1 we may have

Cellular Meta-programming over Membranes 203

an elementary evolution step of the component Cj , where j �= i. Rewriting logic
does not distinguish between two interleaving implementations of the same evo-
lution step of a composite membrane. This implies that our simulation of the
parallel evolution of the P systems is faithful.

A computation is a sequence of transitions steps C0 ⇒ C1 ⇒ C2 ⇒ . . . ⇒
Cn ⇒ . . ., where C0 is the initial configuration. The result of a successful com-
putation is extracted from the final configuration, and the result is given by the
total number of objects present in the skin membrane.

Example: We consider the simple example of a membrane system presented
in Section 2, describing and then executing its Maude specification. We present
here only some important steps of the specification; more details can be found
in [1]. Each membrane is specified in Maude by an independent system module.
Actually, we ignore the membrane labelled by 2, change the rules accordingly,
and specify Π1 as follows:

(mod SKIN is

inc CONFIG(OBJ-TO-ABC) .

op init : -> Soup .

eq init = a a .

rl [’SKIN] : a => a b c c .

rl [’SKIN] : a a => empty .

endm)

The Maude specification of a P system is a system module importing the mod-
ules corresponding to its component membranes. The structure of the system is
specified in the initial configuration. The module describing Π1 is:

(mod PSYS is

inc SKIN .

op initConf : -> Config .

eq initConf = < ’SKIN | init > .

endm)

The rewriting rules defining the computation of P systems are included in a
Maude system module called COMPS. For instance, the rewriting rules imple-
menting (4) are described in Maude at the meta-level as:

crl maxParRewS(RS, T) =>

(if (MP :: MatchPair)

then maxParRewS(RS, (rl X => Y [label(Q)] .), MP, T)

else maxParRewS(RS1 RS2, T)

fi)

if RS1 (rl X => Y [label(Q)] .) RS2 := RS /\

MP := metaXmatch(m, X, T, nil, 0, unbounded, 0) .

crl maxParRewS(RS, R, MP, T) =>

’__[Y, maxParRewS(RS, toTerm(getContext(MP)))]

if (rl X => Y [label(Q)] .) := R .

rl maxParRewS(none, T) => T .

204 G. Ciobanu and D. Lucanu

The function maxParRewS(RS, T) is used to separate the processed part from
the unprocessed part of a multiset. For instance, an intermediate form of (4)
is written as u maxParRewS(RS, T), where u represents the processed part, and
T is a meta-level representation of the unprocessed part which follows to be
rewritten using the rules from RS. The first rewriting rule nondeterministically
choses an evolution rule from the set RS, and the second rewriting rule simulates
the execution of this evolution rule. Next evolution rule is chosen only after
the execution of the previous one is completed. The rules implementing (5) are
similar to the above ones.

We can use various Maude commands in order to make experiments with the
P system specification. For instance, we use the command rew to see the result
of maximal parallel rewritings:

Maude> select COMPS .

Maude> (down PSYS : rew maxParReduce(up(PSYS),

up(PSYS, initConf)))) .)

rewrites: 4784 in 130ms cpu (140ms real) (36800 rewrites/second)

result Config :

< ’SKIN | a a b b b b b b c c c c c c c c c c c c >

Maude>

The function maxParReduce applies the maximal parallel rewriting strategy over
the Maude description of a particular P system. The command down and the
function up are used to move between two successive levels of the reflection
tower. For instance, down COMPS interprets the result returned by rew in the
module COMPS. The function call up(PSYS, initConf) returns the meta-level
representation of the term initConf defined in PSYS.

The rew command with a limited number of steps is not useful to restrict the
computation, because the number of rewriting steps in Maude is not the same
with the number of computation steps of a P system. Therefore, the rewriting
process is restricted by the configuration size:

crl rwf(X) => rwf(maxParRew(X)) if (X :: Term) /\ (#(X) < 20) .

crl rwf(X) => X if #(X) >= 20 .

The function maxParRew is similar to maxParRewS, but it separates the processed
part from the unprocessed part of a configuration. The functions rwf controls
the application of the maximal parallel rewriting strategy over configurations:
the simulation of a next parallel evolution step start only after the simulation of
the previous one is completed.

We consider a module METACOMPS defining a function out which removes the
non-output objects, and a function #() which counts the occurrences of an object
into a configuration. In our example, the function out simulates the membrane
labelled by 2. Since these functions are applied to configurations obtained with
metaRewrite command, module METACOMPS is defined at the meta-metalevel.
Here we exemplify how the metaRewrite command is used:

Cellular Meta-programming over Membranes 205

Maude> (down PSYS : down COMPS : red getTerm(metaRewrite(up(COMPS),

up(COMPS, maxParReduce(up(PSYS),

up(PSYS, initConf))), 100)) .)

rewrites: 26614 in 150ms cpu (140ms real) (177426 rewrites/second)

result Config :

< ’SKIN | a a b b b b b b c c c c c c c c c c c c >

If we wish to investigate the properties of the result of a successful computation,
we first compute the representation of this result at the meta-metalevel:
(mod PROOF is

inc METACOMPS .

op ql : -> QidList .

eq ql = *** the representation at the meta-metalevel of

*** metaRewrite(...,

*** maxParReduce(up(PSYS), up(PSYS, initConf)), 100)

endm)

We can check now that the number of objects c is double of the number of
objects b, and the total number of b’s and c’s is a multiple of 6:

Maude> (red #(ql, ’’c) == 2 * #(ql, ’’b) .)

rewrites: 322 in 230ms cpu (230ms real) (1400 rewrites/second)

reduce in PROOF :

#(ql,’’c)== 2 * #(ql,’’b)

result Bool :

true

Maude> (red (#(ql, ’’c) + #(ql, ’’b)) rem 6 .)

rewrites: 326 in 10ms cpu (10ms real) (32600 rewrites/second)

reduce in PROOF :

(#(ql,’’c)+ #(ql,’’b))rem 6

result Zero :

0

Therefore we can check certain properties of a specific configuration or result.
If we wish to check certain properties of a computation, or some properties for
all the configurations, we may use the temporal formulas and a model checker
implemented in Maude. Maude has a collection of formal tools supporting dif-
ferent forms of logical reasoning to verify program properties, including a model
checker to verify temporal properties of finite-state system modules [6]. This
model checker provides a useful tool to detect subtle errors, and to verify some
desired temporal properties of a computation.

5 Conclusion

Starting from the cells ability to react and change their behaviour at run-time,
we translate this adaptability in a meta-programming feature of a P systems im-
plementation based on executable specifications. We view the cell as a complex

Maude> (select METACOMPS .)

206 G. Ciobanu and D. Lucanu

system coordinating various membrane working in parallel. Adaptable executions
inspired by the cell behaviour can be described by a cellular meta-programming
paradigm. The cell adaptability and meta-programming are related to the no-
tions of behavioural reflection. We present the cellular meta-programming with
the help of membrane systems and a reflective specification language based on
rewriting. The approach exploits the reflection property of the rewriting logic,
property which provides a meta-programming abstraction. In this way, the ab-
stract mechanism of reflection could describe the biological entities ability to
react and change their behaviour according to various developmental and en-
vironmental stimuli. This paper focuses on the use of the meta-programming
abilities and reflection power of Maude to implement a generic and adaptable P
system interpreter; in this way we suggest a natural computing formalism with
cellular meta-programming features.

Further research will investigate how to integrate these aspects with the the
parallel executions of an implementation of the membrane systems on a cluster
of computers [3]. Other research lines will use the cellular meta-programming,
trying to harmonize theory and practice, fostering fertilization between biological
principles and programming paradigms.

References

1. O. Andrei, G. Ciobanu, D. Lucanu. Executable Specifications of the P Systems. In
Membrane Computing. International Workshop WMC5, Milano, June 2004, Lec-
ture Notes in Computer Science vol.3365, Springer, 127-146, 2005.

2. G. Ciobanu. Distributed Algorithms over Communicating Membrane Systems.
BioSystems vol.70(2), 123-133, 2003.

3. G. Ciobanu, W. Guo. P Systems Running on a Cluster of Computers. In Membrane
Computing. International Workshop WMC4, Tarragona, June 2003, Lecture Notes
in Computer Science vol.2933, Springer, 123-139, 2004.

4. G. Ciobanu, D. Paraschiv. P System Software Simulator. Fundamenta Informaticae
vol.49, 61-66, 2002.

5. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, J.F. Que-
sada. Maude: Specification and Programming in Rewriting Logic. Theoretical
Computer Science vol.285(2), 187-243, 2002.

6. S. Eker, J. Meseguer, A. Sridharanarayanan. The Maude LTL Model Checker and
Its Implementation. In Model Checking Software: 10th SPIN Workshop, Lecture
Notes in Computer Science vol.2648, Springer, 230-234, 2003.

7. J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, J.P. Jouannaud. Introducing
OBJ. In Software Engineering with OBJ, Kluwer, 3-167, 2000.

8. H. Kitano. Computational Systems Biology. Nature vol.420, 206-210, 2002.
9. J. Meseguer, M. Clavel. Axiomatizing Reflective Logics and Languages. In

G.Kiczales (Ed.): Reflection’96, Xerox PARC, 263-288, 1996.
10. Gh. Păun. Computing with membranes. Journal of Computer and System Sciences

vol.61, 108-143, 2000.
11. Gh. Păun. Computing with Membranes: An Introduction, Springer, 2002.
12. J.M. Sobel, D.P. Friedman. An Introduction to Reflection-Oriented Programming.

In G.Kiczales (Ed.): Reflection’96, Xerox PARC, 263-288, 1996.

Modelling Dynamically Organised Colonies
of Bio-entities

Marian Gheorghe1, Ioanna Stamatopoulou2,
Mike Holcombe1, and Petros Kefalas3

1 Department of Computer Science, University of Sheffield, UK
{M.Gheorghe, M.Holcombe}@dcs.shef.ac.uk

2 South-East European Research Center, Thessaloniki, Greece
istamatopoulou@seerc.info

3 Department of Computer Science, CITY College, Thessaloniki, Greece
kefalas@city.academic.gr

Abstract. The dynamic nature of biological systems’ structure, and
the continuous evolution of their components require new modelling ap-
proaches. In this paper it will be investigated how these systems com-
posed of many dynamic components can be formally modelled as well as
how their configurations can be altered, thus affecting the communica-
tion between parts. We use two different formal methods, communicating
X-machines and population P systems, both with dynamic structures. It
will be shown that new modelling approaches are required in order to
capture the complex and dynamic nature of these systems.

1 Introduction

Biological systems are modelled in different ways depending on the aim of the
model. There are models trying to exhibit the general behaviour of the system
based mainly on continuous approaches. In this way a generic description of the
system’s behaviour is defined in terms of mathematical functions evolving in
time. Another perspective is based on individual components interacting toward
achieving certain goals. In this latter case an emergent property of the system,
not obvious from the components’ behaviour, is mostly envisaged. For example
the behaviours of the social insects are directed towards the benefit of the colony
as a whole, and this is done through self-organisation and specialisation. Local
interactions with other insects, and with the environment produce solutions to
problems that colonies face. No one insect in the colony can give a picture of the
whole environment, but information can be learnt through interaction. Bees, for
example, can determine how busy a colony is when they bring nectar to hive.
Instead of passing all this onto one bee (who will distribute it), small portions
of nectar will be passed onto many bees. The bee can determine how busy
the hive is by calculating how long it has to wait to pass nectar onto another
bee [11].

This perspective on modelling biological systems is investigated in this pa-
per and mainly relies on describing components as agents. An agent is a fairly

J.-P. Banâtre et al. (Eds.): UPP 2004, LNCS 3566, pp. 207–224, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

208 M. Gheorghe et al.

complex computer system that is situated in some environment and is capable
of flexible, autonomous actions in order to meet its design objectives [16]. The
extreme complexity of agent systems is due to substantial differences between
the attributes of their components, high computational power required by the
processes running within these components, huge volume of data manipulated by
these processes and finally possibly extensive amount of communication in order
to achieve coordination and collaboration. The use of a computational frame-
work that is capable of modelling both the dynamic aspects (i.e. the continuous
change of agents states together with their communication) and the static as-
pects (i.e. the amount of knowledge and information available), will facilitate
modelling and simulation of such complex systems.

Many biological processes seem to behave like multi-agent systems, as for
example a colony of ants or bees, a flock of birds, cell tissues etc. [6]. The vast
majority of computational biological models based on an assumed, fixed system
structure is not realistic. The concept of growth, division and differentiation of
individual components (agents) and the communication between them should
be addressed in order to create a complete biological system which is based on
rules that are linked to the underlying biological mechanisms allowing a dynamic
evolution.

For example, consider the case of an ant colony. Each ant has its own evolution
rules that allow it to grow, reproduce and die over time or under other specific
circumstances; other rules define the movement behaviour of the ants. The ants
are arranged in some two- or three-dimensional space, and this layout implies
the way ants interact with others in the local neighbourhood. The structure of
the colony, changes over time, thus imposing a change in their interactions.

In the last years attempts have been made to devise biology inspired com-
putational models in the form of generative devices [25], [26], unconventional
programming paradigms [2], bio-engines solving NP hard problems [1], adequate
mechanisms to specify complex systems [13]. In this paper we have selected
two formal methods, X-machines and population P systems, in order to model
biological systems with dynamic organisation as multi-agent systems. Each of
these methods possesses different characteristics which will be examined through
the modelling process. These modelling paradigms take their inspiration from
biology and are used to specify problems occurring in nature.

The structure of this paper is as follows: Section 2 describes the biological
system modelled in this paper. Sections 3 and 4 present the theory regarding
communicating X-machines and population P systems, respectively. Section 5
presents the actual models developed for an ant colony behaviour. Section 6
discusses some issues concerning the experiments conducted. Finally, Section 7
concludes the paper.

2 Pharaoh’s Ants

Monomorium pharaonis, the Pharaoh’s ants, are species of small ants that orig-
inated from North Africa. They measure up to two millimetres in length. The

Modelling Dynamically Organised Colonies of Bio-entities 209

small size of the ants make them ideal for studying in a laboratory as their liv-
ing environment requires little room. Colonies have a rapid reproductive cycle,
around five and half weeks from egg to an adult, which is another useful trait
for a study colony.

Typically a Pharaoh’s ant colony will contain anywhere between 100 and
5000 ants. The smallest natural colonies of around 100 ants usually contain: one
queen, 35 workers, 12 pupae and some brood. The largest colonies tend to have
over 100 queens. 200 ants are usually used for experimental purposes to keep the
colony manageable.

The ants spend much of their time doing nothing; this redundancy in the
colony allows them to respond rapidly to large food finds. This allows them to
efficiently transport the food to the nest before their competitors. Ants doing
nothing can be referred as inactive. An ant can become active in many different
ways: spontaneously by hunger, being recruited to forage by another ant, another
ant soliciting food or another ant offering food. These interactions tend to happen
within the nest.

The problem that will be modelled further on in this study presents the be-
haviour of a simple colony of ants in a nest. The Pharaoh’s ants behaviour takes
into account a very simplified situation where the colony is sitting in an rectan-
gular environment and consists only of workers. The ants are either inactive or
move around looking for food and when this is not found then they go outside
the hive to forage for food. When two ants come across they might exchange
food if one is hungry and the other one is not - it was in an inactive state. The
ants go out to forage when they are hungry, no source food is identified (i.e. no
other ant that might provide some food) and a trail pheromone leading to an
exit point from the hive is discovered.

This simple problem is of interest for a number of reasons:

– it is a simple and realistic enough case study
– it shows a combination of both independent behaviour of ants inside of the

environment as well as synchronised behaviour, e.g. when two ants come
across to exchange food

– it has an important degree of repetitiveness using the same type of ant in a
number of instances but also slightly small variations between them through
the food distribution across the ant colony and their different position in the
environment

– it uses different activities that requires distinct execution time periods.

There are a number of thresholds associated to the level of food that is
exchanged between two ants, the level of food defining the hungry state, the
time to forage for food.

This case study will be modelled by using two approaches, the communicating
X machine paradigm and the population P system approach. The two methods
have complementary appealing characteristics. X-machines being a state-based
formalism appear to be more suitable for representing their internal data and
knowledge of each of the participating entities (ants), and how the stimuli re-
ceived from the environment can change their internal state. They have also been

210 M. Gheorghe et al.

extended so as to facilitate communication among components and this allows
the modelling of a collection of units in an incremental manner that distin-
guishes between the individual components definitions and the communicating
issues. Though work is being done towards this direction, the way X-machines
are defined does not accommodate a straightforward way of dealing with systems
dynamically reconfigured. In an attempt to find alternative ways towards this
end, in the form of other computing devices that may exhibit this characteristic,
effort is being dedicated to exploring the modelling prospects of Population P
Systems, which naturally (by definition) employ the quality of reconstructing
themselves. Finally, work has also been done on finding a formal relationship
among the two formalisms [20] whereby simple rules are established for the
transformation of P systems into X-machines.

3 Communicating X-Machines

The X-machines formal method [7], [12] forms the basis for a specification lan-
guage with a great potential to software engineers. It is rather intuitive while at
the same time formal descriptions of data types and functions can be written in
any known mathematical notation.

For modelling systems containing more than one agent, the X-machine com-
ponents need to be extended with new features, such as hierarchical decomposi-
tion and communication. A communicating X-machine model consists of several
X-machines that are able to exchange messages. This involves the modelling of
the participating agents and the definition of the rules of their communication.

The complete model is a communicating X-machine system Z defined as a
tuple:

Z = ((Ci)i=1,...,n, CR)

where:

– Ci is the i-th communicating X-machine component, and
– CR is a relation defining the communication among the components, CR ⊆

C × C and C = {C1, . . . , Cn}. A tuple (Ci, Ck) ∈ CR denotes that the
X-machine component Ci can output a message to a corresponding input
stream of the X-machine component Ck for any i, k ∈ {1, . . . , n}, i �= k.

A communicating X-machine component Ci is defined as a tuple [22]:

Ci = (Σi,Γi, Qi,Mi,ΦCi, Fi, q0i
,m0i

)

where:

– Σi and Γi are the input and output alphabets respectively.
– Qi is the finite set of states.
– Mi is the (possibly) infinite set called memory.
– ΦCi is a set of partial functions ϕi that map an input and a memory value

to an output and a possibly different memory value, ϕi : Σi×Mi → Γi×Mi.

Modelling Dynamically Organised Colonies of Bio-entities 211

There are four different types of functions in ΦCi (in all of the following it is
σ ∈ Σi, γ ∈ Γi, m, m′ ∈ Mi; (σ)j means that input is provided by machine
Cj whereas (γ)k denotes an outgoing message to machine Ck):
• the functions that read input from the standard input stream and write

their output to the standard output stream:
ϕi (σ,m) = (γ,m′)

• the functions that read input from a communication input stream and
write their output to the standard output stream:

ϕi ((σ)j ,m) = (γ,m′)
• the functions that read input from the standard input stream and write

their output to a communication output stream:
ϕi (σ,m) = ((γ)k,m′)

• the functions that read input from a communication input stream and
write their output to a communication output stream:

ϕi ((σ)j ,m) = ((γ)k,m′)
– Fi is the next state partial function, Fi : Qi×ΦCi → Qi, which given a state

and a function from the type ΦCi determines the next state. Fi is often
described as a state transition diagram.

– q0i
and m0i

the initial state and initial memory respectively.

Graphically on the state transition diagram we denote the acceptance of input
by a stream other than the standard by a solid circle along with the name
Cj of the communicating X-machine component that sends it. Similarly, a solid
diamond with the name Ck denotes that output is sent to the Ck communicating
X-machine component. An abstract example of a Communicating X-machine
component is depicted in Fig. 1.

The above allows the definition of systems of a static configuration. How-
ever, most multi-agent systems are highly dynamic and this requires that their
structure and the communication among the agents is constantly changing. For
this to happen in a communicating X-machine model, control has to be taken
over by another system acting on a higher level. This controlling device can be
modelled as a set of meta-rules that refer to the configuration of the system or
as a meta-X-machine that will be able to apply a number of operators which will
be affecting the structure of the communicating system [21]. These operators are
defined below.

Fig. 1. An example of communication between two X-machine functions

212 M. Gheorghe et al.

Attachment Operator. This operator is responsible for establishing commu-
nication between an existing communicating X-machine component and a set of
other existing components. Its definition is:

ATT : C × Z → Z
where C is the set of communicating X-machine components, and Z is the set
of communicating X-machine systems. For an existing component C ∈ C and
a communicating X-machine system Z (to which C belongs to) a new commu-
nicating X-machine system Z ′ will be built that has different communication
channels. The components remain the same except that for each function ϕ of
the component machine C the streams of the other components, if any, it receives
inputs from or sends outputs to are specified. Similarly, the communicating func-
tions of the other components, with which C establishes communication, become
related to the streams of the component C so that input can be received or out-
put can be sent to it. It is this kind of relationships between the component C
and the other components that define how the whole system is to communicate
as a collection of units cooperating through streams of data.

Detachment Operator. This operator is used in order to remove communi-
cation channels between an existing communicating X-machine component and
a set of other existing components with which it currently communicates. Its
definition is:

DET : C × Z → Z
where C, Z are defined as previously. In this case all the relationships between
the component C and its streams and the other components and their streams
are broken down.

Generation Operator. A new communicating X-machine component is cre-
ated and introduced into the system. If communication is required, according
to the underlying communication rules, between the new and existing compo-
nent(s), then communication channels are established. The definition of the op-
erator is:

GEN : C × Z → Z
where C, Z are defined as previously.

Destruction Operator. This operator removes the component from the system
along with all the communication channels that relate it to other components.
This means that the corresponding streams that were used so that other com-
ponents could send/receive messages to/from the removed component are also
removed. The operator is defined as follows:

DES : C × Z → Z
where C, Z are defined as previously.

Modelling Dynamically Organised Colonies of Bio-entities 213

Conceptually, the meta-system could be considered to play the role of the envi-
ronment to the actual communicating system. Because the meta-machine should
be able to control the reconfiguration of the communicating system through the
application of the above operators, it should possess the following information
at all times:

– The communicating system Z = ((C1, . . . , Ci, . . . , Cn), CR),
– The current system state SZ of Z. SZ is defined as a set of tuples SZ =

{sz | ∃Ci, 1 ≤ i ≤ n, sz = (qc, Mc, ϕc)i, where qc is the current state in
which Ci is in, Mc is the current memory of Ci and ϕc is the last function
that was applied in Ci},

– Definitions of all components that exist or may be added to the system.
These definitions act as genetic codes (GC) for the system. GC is a set of
tuples, GC = {. . . (Σ ,Γ , Q,M,Φ, F,ΦR,ΦW)j , . . .} where the first six ele-
ments are as in the definition of the X-machine given in the previous section
and the last two the set of functions that may be involved in communication
with other components (i.e. ΦR includes the functions that may read from
communicating streams and ΦW the ones that may write to communicating
streams). In other words, only the types of components that may appear in
the system at any point are a priori fixed.

Using the above information, the control device can generate a new component
and attach it to the communicating machine Z, through the operator GEN ,
destruct an existing component of Z and rearrange the communication of the
other components appropriately, through the operator DES, and add or remove
channels of communication between a component and a communicating machine
due to some system reconfigurations, through the operators ATT and DET .

The communicating X-machine system provides a modelling tool, where a
complex system can be decomposed in small components that can be modelled as
simple X-machine models. The communication side of all these components can
be specified separately in order to form the complete system as a communicating
X-machine model. This implies a modular bottom-up approach and supports
an iterative gradual development. It also facilitates the reusability of existing
components, making the management of the whole project more flexible and
efficient, achieving its completion with lower cost and less development time.

The communicating X-machine method supports a disciplined modular de-
velopment, allowing the developers to decompose the system under develop-
ment and model large scale systems. Since the communicating X-machine model
is viewed as the composition of X-machine type components with their initial
memory and initial state as well as with a set of input/output streams and asso-
ciations of these streams to functions, the development of a general model of a
complex system can be mapped into the following distinct actions: (a) Develop
X-machine type components independently of the target system, or use existing
models as they are. (b) Code the X-machine model into XMDL. With the use
of tools that are built around the XMDL language it is possible to syntactically
check the model and then automatically animate it [23]. Through this simulation
it is possible for the developers to informally verify that the model corresponds

214 M. Gheorghe et al.

to the actual system under development, and then also to demonstrate the model
to the end-users aiding them to identify any misconceptions regarding the user
requirements. (c) Use the formal verification technique (model checking) for X-
machine models in order to increase the confidence that the proposed model
has the desired characteristics. This technique enables the designer to verify the
developed model against temporal logic formulas that express the properties
that the system should have. (d) Test the implementation against the model.
X-machines support not only static but also dynamic analysis. It is possible to
use the formal testing strategy to test the implementation and prove its cor-
rectness with respect to the X-machine model. (e) Create X-machine instances
of the original types and determine the way in which the independent instance
models communicate. (f) Extend the model to a communicating system in order
to provide additional functionality by defining the interaction between compo-
nents. (g) Define appropriate meta-rules that describe the reconfiguration of the
system.

With the continuous verification and testing from the early stages risks are
reduced and the developer is confident of the correctness of the system under
development throughout the whole process. It is worth noticing that components
that have been verified and tested can be reused without any other quality check.

X-machine modelling is based on a mathematical notation, which, however,
implies a certain degree of freedom, especially as far as the definition of functions
are concerned. In order to make the approach practical and suitable for the
development of tools around X-machines, a standard notation is devised and
its semantics fully defined [19]. The aim is to use this notation, namely X-
Machine Description Language (XMDL), as an interchange language between
developers who could share models written in XMDL for different purposes.
To avoid complex mathematical notation, the language symbols are completely
defined in ASCII.

Briefly, an XMDL model is a list of definitions corresponding to the construct
tuple of the X-machine definition. The language also provides syntax for (a) use
of built-in types such as integers, Booleans, sets, sequences, bags, etc., (b) use
of operations on these types, such as arithmetic, Boolean, set operations etc.,
(c) definition of new types, and (d) definition of functions and the conditions
under which they are applicable. In Table 1 basic keywords used in XMDL to
describe a stream X-machine are presented and briefly explained. In XMDL, the
functions take two parameter tuples, i.e. an input symbol and a memory value,
and return two new parameter tuples, i.e. an output and a new memory value. A
function may be applicable under conditions (if-then) or unconditionally. Vari-
ables are denoted by a preceding ?. The informative where in combination with
the operator <- is used to describe operations on memory values. A function has
the following general syntax:

#fun <function name> (<input tuple> , <memory tuple>) =
if <condition expression> then

(<output tuple>, <memory tuple>)
where <informative expression>.

Modelling Dynamically Organised Colonies of Bio-entities 215

Table 1. XMDL keywords

X-machine
element XMDL syntax Informal semantics

M #model < modelname > Assigns a name to a model

Σ #input < setofinputs > Describes the input set

Γ #output < setofoutputs > Describes the output set

Q #states < setofstates > Defines the set of states

M #memory < memorytuple > Defines the memory tuple

q0 #init state < state > Sets the initial state

m0 #init memory < memory > Sets the initial memory

F #transition (q, φ) = q Defines each transition in F

Φ #fun < functiondefinition > Defines a function in Φ

XMDL has also been extended (XMDL-c) in order to code communicating com-
ponents. XMDL-c is used to define instances of models by providing a new initial
state and a new initial memory instance:

#model <model_instance> instance_of <model_type>
with:
#init_state <initial_state>;
#init_memory <initial_memory>.

In addition, XMDL-c provides syntax that facilitates the definition of the
communicating functions. The general syntax is the following:

#communication of function <function_name>:
#reads from <model instance>;
#writes <message tuple> to <model_instance>

using <variable> from output <output tuple> and
using <variable> from input <input tuple> and
using <variable> from memory <memory tuple>

where <informative expression>.

A function can either read or write or both from other components (model
instances). It is not necessary to specify the incoming message because it is of
the same type as the input defined in the original component. However, it is
necessary to specify the outgoing message as a tuple which may contain values
that exist in either output or input tuples of the function or even in the memory
tuple of the component. The informative expression is used to perform various
operations on these values before they become part of the outgoing message
tuple.

Based on XMDL and XMDL-c, various tools have been developed [18] such as
translators to other notations or executable code (e.g. Z, Prolog), an animator
that simulates the computation occurring in an X-machine or communicating
X-machine system, a model checker for X-machines etc. It should be worthwhile
to investigate towards expanding model-checking and testing techniques for the
Communicating X-machine formalism though this should be attempted after
formally establishing the theoretical framework.

216 M. Gheorghe et al.

4 Population P System Model

Membrane computing represents a new and rapidly growing research area which
is part of the natural computing paradigm. Already a monograph has been dedi-
cated to this subject [26] and some fairly recent results can be found in [27], [24].
Membrane computing has been introduced with the aim of defining a computing
device, called P system, which abstracts from the structure and the functioning
of living cells [25]. Membranes are among the main elements of the living cells
which separate the cell from its environment and split the content of the cell into
small compartments by means of internal membranes. Each compartment con-
tains its own enzymes and their specialized molecules. Therefore, a membrane
structure has been identified as the main characteristic of every P system that
is defined as a hierarchical arrangement of different membranes embedded in a
unique main membrane that identify several distinct regions inside the system.
Each region contains a finite multiset of objects and a finite set of rules either
modifying the objects or moving them from a place to another one. Formally we
have the following:

Definition 1. A P system is a construct

Π = (V, μ,w1, w2, . . . , wn, R1, R2, . . . , Rm, iO),

where:

1. V is a finite set of symbols called objects;
2. μ is a membrane structure consisting of m membranes, with the membranes

(and hence the regions) injectively labeled by 1, 2, ..,m;
3. for each 1 ≤ i ≤ n, Ri is a finite set of evolution and communication rules;

the evolution rules rewrite different objects with others and the objects of the
result may stay in the same region or may go into another one; pure com-
munication rules, called also symport/antiport rules exchange objects between
two regions (for details see [26]);

4. iO ∈ {1, 2, ..,m} is the label of an elementary membrane that identifies the
output membrane.

The basic feature of a P system is the membrane structure μ that consists
of a hierarchical arrangement of m distinct membranes embedded in a unique
main membrane called the skin membrane. This membrane structure is usually
represented as a string of pairs of matching square brackets, which are labeled
in an one-to-one manner by 1, 2, ..,m. Each pair of square brackets represents
a membrane (membrane i) with its corresponding region (the region delimited
by membrane i, or region i). Moreover, this representation makes possible to
point out the relationships of inclusions among membranes and regions: we say
a region i contains a membrane j if and only if, the pair of square brackets
labeled by i embraces the pair of square brackets labeled by j.

Then, each region i contains a finite multiset of objects wi, which defines the
initial content of the region i, and a finite set of rules Ri.

Modelling Dynamically Organised Colonies of Bio-entities 217

As usual, by starting from the initial configuration, a computation is obtained
by applying to the objects contained in the various regions the corresponding
set of rules in a maximal parallel manner. A computation is said to be successful
if it reaches a configuration where no more rules can be applied to the objects
in the system.

A natural generalisation of the P system model can be obtained by consid-
ering P systems where its structure is defined as an arbitrary graph. Each node
in the graph represents a membrane and contains a multiset of objects and a set
of rules modifying these objects and communicating them between membrane
components. The communication between two components is possible if they are
connected by an edge of the graph [26]. These networks of communicating mem-
branes are also known as tissue P systems because, from a biological point of
view, they can be interpreted as an abstract model of multicellular organisms. If
the components are regarded not only as simple cells surrounded by membranes
but as more general bio-entities then this model may be considered for more
complex organisms, or colonies of simple or more complex components.

These populations of individuals are usually far from being stable; mecha-
nisms enabling new components to be added or removed, links between them to
be dynamically updated, play a fundamental role in the evolution of a biological
system as a population of interacting/cooperating elements.

We introduce here a notion of population P systems as a finite collection
of different componets that are free of forming/removing bonds according to a
finite set of bond making rules in a given environment.

Definition 2. A population P system is a construct [3]

P = (V, γ, α,wE , C1, C2, . . . , Cn, cO)

where:

1. V is a finite alphabet of symbols called objects;
2. γ = ({1, 2, . . . n}, E), with En ⊆ {{i, j} | 1 ≤ i �= j ≤ n }, is a finite undi-

rected graph;
3. α is a finite set of bond making rules (i, x1;x2, j), with x1, x2 ∈ V ∗, and

1 ≤ i �= j ≤ n;
4. wE ∈ V ∗ is a finite multiset of objects initially assigned to the environment;
5. Ci = (wi, Si, Ri), for each 1 ≤ i ≤ n, is a component of the system with:

(a) wi ∈ V ∗ a finite multiset of objects,
(b) Si is a finite set of communication rules;
(c) Ri is a finite set of transformation rules;

6. cO is the output component.

A population P system P is defined as a collection of n components where each
component Ci corresponds in an one-to-one manner to a node i in a finite undi-
rected graph γ, which defines the initial structure of the system. Components are
allowed to communicate alongside the edges of the graph γ, which are unordered
pairs of the form {i, j}, with 1 ≤ i �= j ≤ n. The components Ci, 1 ≤ i ≤ n, are

218 M. Gheorghe et al.

associated in an one-to-one manner with the set of nodes {1, 2, . . . n}. For this
reason, each component Ci will be subsequently identified by its label i from the
aforementioned set.

Each component Ci contains a finite multiset of objects wi, a finite set of
communication rules Si, and a finite set of transformation rules Ri.

Component capability of moving objects alongside the edges of the graph is
then influenced by particular bond making rules in α that allow these compo-
nents to form new bonds. In fact, a bond making rule (i, x1;x2, j) specifies that,
in the presence of a multiset x1 in i and a multiset x2 inside j, a new bond can
be created between these two components. This means a new edge {i, j} can be
added to the graph that currently defines the structure of the system.

The model introduced will be further enriched with a concept of type which
enables us to instantiate components. Each type component apart from objects
and rules may also contain variables. The model enriched with these new features
will be used from now on using a notation that is closer to a programming
paradigm. An example of a component type is defined as follows:

component type a;
element x, y, z; mult = 3;
var t = 5, u = 10 : int;
rule x y --> x x z; -- (r1)
rule z --> z z; -- (r2)
rule t --> t+u; -- (r3)
end;

In this example a component type a is defined with object elements x, y, z,
two variables t, u and three rewriting rules r1, r2, r3.

The objects x, y have one instance each, whereas z occurs in three copies. The
integer variables t, u are introduced with initial values 5 and 10, respectively. The
rules r1 and r2 rewrite xy and z, respectively, whereas r3 rewrites variable t with
the sum of the values contained in t and u.

The rules may also be preceded by some Boolean conditions which allow
the corresponding rules to be applied when these guards are true. Apart from
rewriting rules, communication rules, division rules, and death rules are also
provided. All the rules have an execution time associated with. By default this
is 1, but may be greater than 1 as well and this means the rule needs more than
1 evolution steps in order to be performed.

From each component type various instances may be created. During the
instantiation process the implicit values associated with various objects may be
changed.

instance a1, a2: a;
element x; mult 100;

instance a3: a;

In the example above two components a1, a2 are instantiated from a with
100 occurrences of x; y, z occur with the values mentioned in the definition of a.
The component a3 has the same objects as a defined.

Modelling Dynamically Organised Colonies of Bio-entities 219

Apart from component types it is also possible to define the environment with
objects of different types, but also bond making rules that create links between
various components of the system.

5 Case Study: An Ant Colony

The first modelling approach will use an X-machine method. The ant is modelled
so that it accepts a tuple (pos, stimuli) as input to its functions. The first element
of the input tuple is a tuple representing the coordinates in which stimuli is
perceived whereas the second element is the description of the stimuli. The latter
can be pheromone or space describing the space denoted by the coordinates, a
hungry or a non-hungry ant describing whether an ant that is perceived in the
given coordinates carries food or not or, finally, a number greater than zero
representing the quantity of food that is received by another ant that carries
food. The memory of the ant holds (a) its current position, (b) the amount of
food it carries, (c) a number denoting the food quantity threshold beneath which
the ant becomes hungry, (d) the food decay rate, a number denoting the quantity
of food that is consumed by the ant in each time unit and (e) the food portion
that is to be given by an ant that is carrying food to another which is hungry.
The behaviour of the systems is given by different functions processing input
stimuli.

All these types are defined using XMDL declarations.
The becomeHungry function reduces the amount of food that the ant carries

according to the food decay rate but is only applied when the updated value of
the food quantity becomes less or equal to the hunger threshold ?ft in order to
bring the ant to the hungry state.

#fun becomeHungry ((?p, ?in), (?pos, ?f, ?ft, ?fdr, ?mfp)) =
if ?nf =< ?ft then
((gotHungry), (?pos, ?nf, ?ft, ?fdr, ?mfp))
where ?nf <- ?f - ?fdr.

The giveFood function is applied when an ant gives ?mfp amount of food to the
hungry ant it met. The updated food quantity that the ant will carry afterwards
is reduced by the donated food portion ?mfp as well as by the food decay rate
?fdr. All possible input is ignored by the ant which returns to the inactive state.

#fun giveFood ((?p, ?in), (?pos, ?f, ?ft, ?fdr, ?mfp)) =
((givingFood), (?pos, ?nf, ?ft, ?fdr, ?mfp))
where ?food_reduction <- ?fdr + ?mfp
and ?nf <- ?f - ?food_reduction.

The die function ignores all possible input and is only applied when the
quantity of food in an ant’s memory (the amount of food it is carrying) is equal
to zero. It outputs a “dying” message and leaves the memory structure unaltered.

220 M. Gheorghe et al.

#fun die ((?p, ?in), (?pos, ?f, ?ft, ?fdr, ?mfp)) =
if ?what_is_left =< 0 then
((dying), (?pos, 0, ?ft, ?fdr, ?mfp)).
where ?what_is_left <- ?f - ?fdr.

To demonstrate how the reconfiguration operators are used we consider the
case that after a food transaction, communication between the two ants needs
to halt. The corresponding rule that will apply the detachment operator which
will remove the communication channels between the two ant instances is:

(qc, Mc, takeEnoughFood)i ∈ SZ
∨(qc, Mc, takeNotEnoughFood)i ∈ SZ

→ DET (i, Z)

Using the P system approach we may describe some of the rules applied to
simulate the behaviour of the ant colony.

Each ant has a specific amount of found which will decrease as the time goes
by. This is captured by the rule

foodL --> foodL-FoodDecayRate

where foodL is a variable pointing to the current level of food; after applying
this rule the updated value of this is obtained. When the level of food is under
a threshold the ant will become hungry; this is shown by a rule

inactive and foodL < HungryLevel: inactive --> hungry

which will change inactive to hungry when the Boolean condition preceding the
rule is true.

When an ant is hungry it is moving around looking for food. This is simulated
by a communication rule which will put in the environment the current position
and is getting a new position nearby.

Neighbour(pos,pos’): (out pos; in pos’)

This rule will be read as ”if the two positions pos and pos′ are next to each
other - predicate Neighbour(pos, pos′) is true, then the current position pos is
sent out in the environment and a new position pos′ from the environment enters
the component”.

When two ants are next to each other a bond making rule will create a link.

Neighbour(ant.pos, ant.pos’): <ant,ant>

In this case a bond will be created between the two ants if their positions are
close enough.

A food transfer may take place between two ants that are linked.

transfer and foodL > HungryLevel:
(out FoodTransfer from foodL; outComponent ant) time=10

Modelling Dynamically Organised Colonies of Bio-entities 221

The ant that is not hungry and is in state transfer will provide FoodTransfer
units from its current amount of food. Correspondingly the ant that is at the
other end of the link will receive the same FoodTransfer that will be added to
its amount of food. The transfer will take 10 units of simulation time.

When an ant cannot find food and its amount of food becomes 0 then it will
die.

foodL <= 0: (component_death)

6 Experiments

A variety of experiments were performed to examine how the Pharao’s ant mod-
els behave [5]. Each worker ant logged a history of all food related actions it
performed. These log files can then be analysed once the simulation has com-
pleted. The environment consisted of a nest with four entrances or exits, each
of which was situated on a compass point (north, south, east, west). The colony
consisted of 100 workers in a nest of 3cm by 3cm. The experiments show that
the colony manages to distribute the food among the colony members before a
mass forage occurs; the process has a cyclic nature and a smooth gradient.

In nature worker specialisation occurs. This is shown by a low proportion of
worker ants focusing on feeding other colony members or foraging. The first case
might be illustrated by some ants missing the forage cycle although no specific
constraints were imposed in this respect and consequently a sort of emergent
specialisation may be noticed. Although in our experiments in almost all the
steps of the simulation there were ants missing the forage process is too early to
identify a specialisation due to the reduced scale of the simulation time consid-
ered. It is likely that a more specific analysis of parameters involved in a long
run simulation may lead to some conclusions regarding this phenomenon.

7 Conclusions

This work has been an attempt to model a simple biological system by us-
ing two different methods, namely population P systems and communicating
X-machines. This simple case study shows the need to approach the dynamic
structure and organisation of biological systems with models exhibiting such
properties. Bond making rules in the context of P systems and operators ATT,
DET, GEN, and DES in the case of communicating X-machines represent the
key elements introduced in order to cope with the systems’ dynamicity.

There are advantages to both methods, though at different modelling levels.
The X-machine approach appears to be a natural model to express the internal
behaviour of the components because they can naturally describe the inter-
nal states, transitions between them caused by stimuli and represent the data
structures. However a communicating X-machine model cannot by itself manage
the required reconfiguration, which is a prominent property of these biological
systems. As a result, an external device, in the form of a meta-X-machine, is

222 M. Gheorghe et al.

necessary; this device possesses global control over the structure of the over-
all system. Control is achieved through meta-operations which change the way
that components interact or function. Population P systems, on the other hand,
possess a natural trait for capturing the behaviour of a community of entities
and how the structure of such a community may change over time. The new
characteristics introduced in this paper, guards to rules, variables, arithmetic
operations, improve the potential of this model to specify the internal behaviour
of the componets.

Both methods have sound theoretical foundations and act as formal specifica-
tion languages. Towards this end, the X-machine Description Language (XMDL)
[19] has been defined offering the ability of formally describing X-machine mod-
els and acting as an interchange tool for software engineers. XMDL also serves
as a common basis for the development of tools, such as the X-System [23], that
allow the syntactical check and automatic animation of the models. In this paper
the elements (component type, environment definition, component instantiation
etc) of a specification language based on P systems were introduced for the first
time.

In addition to this practical aspect, X-machines have further techniques sup-
porting the modelling activity such as formal verification of desired system prop-
erties [8] and complete testing [14]. Towards practical modelling, appropriate
XML notation in order to define population P systems is currently under de-
velopment and soon expected to be made available. Formal properties of some
classes of population P systems are also under investigation. Effort has been put
into modelling a P system as a communicating X-machine [20]. Further investi-
gations regarding possible transformations between communicating X-machine
models and population P system models would be useful in order to support
both a formal theoretical comparison as well as the modelling activity.

This case study shows not only the benefits of approaching systems with a
dynamic structure by models exhibiting naturally these properties and the need
to further develop these models, but it also suggests that this way of modelling
may be reused in other contexts where multi-agent paradigm has to be con-
sidered. Communities of bacteria, cells in tissues, or more complex organisms
composed of simpler components may be modelled in a similar way. In the next
future we aim to use this approach in certain biological systems where to identify
their emergent behaviour as well as potentially new computational paradigms
inspired by these systems.

Acknowledgement. We are grateful to dr. George Eleftherakis who has helped
us in developing the communicating X-machine methodology and to our students
that have built various tools and experimented different case studies. We espe-
cially would like to thank James Clarke, Peter Langton, Liancheng Lu, Taihong
Wu, Yang Yang who have built a tool helping experimenting with the X-machine
model and Fei Lu and Ming-Hsin An who have worked on building a tool allow-
ing to simulate P system specifications. The research of Marian Gheorghe was
supported by the Engineering and Physical Science Research Council (EPSRC)
of United Kingdom, Grant GR/R84221/01.

Modelling Dynamically Organised Colonies of Bio-entities 223

Bibliography

[1] Adleman, L.M. 1994. Molecular computation of solutions to combinatorial prob-
lems, Science, 226, 1021-1024.

[2] Banatre, J.P., Le Metayer, D. 1990. The gamma model and its discipline of pro-
gramming, Science of Computer Programming, 15, 55-77.

[3] Bernardini, F., Gheorghe, M. 2004. Population P Systems, Journal of Universal
Computer Science, 10, 509-539.

[4] Bianco, L., Fontana, F., Franco, G., Manca, V. 2004. P systems in Bio Systems.
In Păun, Gh., ed. 2004. Application of P systems, submitted.

[5] Clarke, J., Langton, P., Lu, L., Wu, T., Yang, Y. 2002. Computational models of
Pharao’s ants using X-machines. Department of Computer Science, University of
Sheffield, MSc final report.

[6] Dorigo, M., Maniezzo, V., Colorni, A. 1996. The Ant System: Optimisation by a
colony of co-operating agents, IEEE Transactions on Systems, Man and Cyber-
netics, 26, 1-13.

[7] Eilenberg, S. 1974. Automata, Languages and Machines, Academic Press.

[8] Eleftherakis, G. 2003. Formal Verification of X-Machine Models: Towards Formal
Development of Computer-based Systems, PhD Thesis, Department of Computer
Science, University of Sheffield.

[9] Eleftherakis, G., Kefalas, P. 2000. Model Checking Safety Critical Systems speci-
fied as X-Machines, Analele Universitatii Bucharest, Matematica-Informatica se-
ries, 49, 59-70.

[10] Eleftherakis, G., Kefalas, P., Sotiriadou, A. 2003. Formal Modelling and Veri-
fication of Reactive Agents for Intelligent Control. In Proceedings of the 12th
Intelligent System Applications to Power Systems Conference (ISAP).

[11] Gregson, A. M., Hart, A. G., Holcombe, M., Ratnieks, F. L. W. 2003. Partial nec-
tar loads as a cause of multiple nectar transfer in the honey bee (Apis mellifera):
a simulation model. Journal of Theoretical Biology, 222, 1-8.

[12] Holcombe, M. 1988. X-machines as a Basis for Dynamic System Configuration,
Software Engineering Journal, 3, 69-76.

[13] Holcombe, M. 2001. Computational models of cells and tissues: Machines, agents
and fungal infection, Briefings in Bioinformatics, 2, 271-278.

[14] Holcombe, M., Ipate, F. 1998. Correct Systems: Building a Business Process So-
lution, Springer-Verlag, London, 1998.

[15] Ipate, F., Holcombe, M. 1997. An Integration Testing Method that is proved to
find all faults, International Journal of Computer Mathematics, 63, 159-178.

[16] Jennings, N.R. 2000. On agent-based software engineering, Artificial Intelligence,
117, 277-296.

[17] Kapeti, E., Kefalas, P. 2000. A Design Language and Tool for X-Machines Speci-
fication, In Fotiadis, D.I., Spyropoulos, S.D., eds. 2000. Advances in Informatics,
World Scientific Publishing Company, 134-145.

[18] Kefalas P. 2000. Automatic translation from X-machines to Prolog. TR-CS01/00,
Dept. of Computer Science, CITY Liberal Studies.

[19] Kefalas, P. 2000. XMDL user manual: version 1.6. TR-CS07/00, Dept. of Com-
puter Science, CITY Liberal Studies.

[20] Kefalas, P., Eleftherakis, G., Holcombe, M., Gheorghe, M. 2003. Simulation and
Verification of P Systems through Communicating X-Machines, BioSystems, 70,
135-148.

224 M. Gheorghe et al.

[21] Kefalas, P., Eleftherakis, G., Holcombe, M., Stamatopoulou, I. 2004. Formal Mod-
elling of the Dynamic Behaviour of Biology-Inspired Agent-based Systems, In
Gheorghe, M. ed. 2004. Molecular Computational Models: Unconventional Ap-
proaches, Idea Publishing, Inc, accepted.

[22] Kefalas, P., Eleftherakis, G., Kehris, E. 2003. Communicating X-Machines: A
Practical Approach for Formal and Modular Specification of Large Systems, Jour-
nal of Information and Software Technology, 45, 269-280.

[23] Kefalas, P., Eleftherakis, G., Sotiriadou, A. 2003. Developing Tools for Formal
Methods. Proceedings of the 9th Panhellenic Conference in Informatics. 625-639.

[24] Martin-Vide, C., Mauri, G., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) 2004.
Membrane Computing. International Workshop, WMC 2003, Tarragona. Revised
Papers in Lecture Notes in Computer Science 2933, Springer-Verlag, Berlin /
Heidelberg / New York.

[25] Păun, G. 2000. Computing with membranes, Journal of Computer and System
Sciences, 61, 1, 108-143.

[26] Păun, Gh. 2002. Membrane Computing: An Introduction, Springer-Verlag, Berlin.

[27] Păun, Gh., Rozenberg, G., Salomaa, A., Zandron, C.(eds.) 2002. Membrane Com-

puting. International Workshop, WMC-CdeA 02, Curtea de Arges, Romania.

Revised Papers in Lecture Notes in Computer Science 2597, Springer-Verlag,

Berlin / Heidelberg / New York.

P Systems: Some Recent Results
and Research Problems�

Oscar H. Ibarra

Department of Computer Science, University of California,
Santa Barbara, CA 93106, USA
ibarra@cs.ucsb.edu

Abstract. Let R = {r1, ..., rk} be the set of labeled rules in a P system. We
look at the computing power of the system under three semantics of parallelism.
For a positive integer n ≤ k, define:

n-Max-Parallel: At each step, nondeterministically select a maximal subset
of at most n rules in R to apply.

≤ n-Parallel: At each step, nondeterministically select any subset of at most
n rules in R to apply.

n-Parallel: At each step, nondeterministically select any subset of exactly n
rules in R to apply.

Note that in all three cases, at most one instance of any rule can be included in
the selected subset. Moreover, if any rule in the subset selected is not applicable,
then the whole subset is not applicable. When n = 1, the three semantics reduce
to the Sequential mode.

For two models of P systems that have been studied in the literature, cat-
alytic systems and communicating P systems, we show that n-Max-Parallel
mode is strictly more powerful than any of the following three modes: Sequen-
tial, ≤ n-Parallel, or n-Parallel. For example, it follows from a previous result
that a 3-Max Parallel communicating P system is universal. However, under the
three limited modes of parallelism, the system is equivalent to a vector addition
system, which is known to only define a recursive set. This shows that “max-
imal parallelism” (in the sense of n-Max-Parallel) is key for the model to be
universal.

We also summarize our recent results concerning membrane hierarchy, de-
terminism versus nondeterminism, and computational complexity of P systems.
Finally, we propose some problems for future research.

Some of the results presented here were obtained in collaboration with Zhe
Dang and Hsu-Chun Yen.

Keywords: P system, maximally parallel, sequential, limited parallelism, vector
addition system, semilinear set, membrane hierarchy, determinism versus nonde-
terminism, computational complexity.

� This research was supported in part by NSF Grants IIS-0101134, CCR-0208595, and
CCF-0430945.

J.-P. Banâtre et al. (Eds.): UPP 2004, LNCS 3566, pp. 225–237, 2005.
© Springer-Verlag Berlin Heidelberg 2005

226 O.H. Ibarra

1 Introduction

There has been a flurry of research activities in the area of membrane computing (a
branch of molecular computing) initiated five years ago by Gheorghe Paun [20]. Mem-
brane computing identifies an unconventional computing model, namely a P system,
from natural phenomena of cell evolutions and chemical reactions. Due to the built-in
nature of maximal parallelism inherent in the model, P systems have a great potential for
implementing massively concurrent systems in an efficient way that would allow us to
solve currently intractable problems (in much the same way as the promise of quantum
and DNA computing) once future bio-technology (or silicon-technology) gives way to
a practical bio-realization (or chip-realization).

The Institute for Scientific Information (ISI) has recently selected membrane com-
puting as a fast “Emerging Research Front” in Computer Science. A P system is a
computing model, which abstracts from the way the living cells process chemical com-
pounds in their compartmental structure. Thus, regions defined by a membrane structure
contain objects that evolve according to given rules. The objects can be described by
symbols or by strings of symbols, in such a way that multisets of objects are placed in
regions of the membrane structure. The membranes themselves are organized as a Venn
diagram or a tree structure where one membrane may contain other membranes. By us-
ing the rules in a nondeterministic, maximally parallel manner, transitions between the
system configurations can be obtained. A sequence of transitions shows how the system
is evolving. Various ways of controlling the transfer of objects from a region to another
and applying the rules, as well as possibilities to dissolve, divide or create membranes
have been studied. P systems were introduced with the goal to abstract a new computing
model from the structure and the functioning of the living cell (as a branch of the general
effort of Natural Computing – to explore new models, ideas, paradigms from the way
nature computes). Membrane computing has been quite successful: many models have
been introduced, most of them Turing complete and/or able to solve computationally in-
tractable problems (NP-complete, PSPACE-complete) in a feasible time (polynomial),
by trading space for time. (See the P system website at http://psystems.disco.unimb/it
for a large collection of papers in the area, and in particular the monograph [21].)

In the standard semantics of P systems [20, 21, 23], each evolution step of a system
G is a result of applying all the rules in G in a maximally parallel manner. More pre-
cisely, starting from the initial configuration, w, the system goes through a sequence of
configurations, where each configuration is derived from the directly preceding config-
uration in one step by the application of a multi-set of rules, which are chosen nonde-
terministically. For example, a catalytic rule Ca → Cv in membrane q is applicable if
there is a catalyst C and an object (symbol) a in the preceding configuration in mem-
brane q. The result of applying this rule is the evolution of v from a. If there is another
occurrence of C and another occurrence of a, then the same rule or another rule with
Ca on the left hand side can be applied. Thus, in general, the number of times a partic-
ular rule is applied at anyone step can be unbounded. We require that the application of
the rules is maximal: all objects, from all membranes, which can be the subject of local
evolution rules have to evolve simultaneously. Configuration z is reachable (from the
starting configuration) if it appears in some execution sequence; z is halting if no rule
is applicable on z.

P Systems: Some Recent Results and Research Problems 227

In this paper, we study a different definition of maximal parallelism. Let R =
{r1, ..., rk} be the set of labeled rules in a P system. (Note that ri uniquely specifies the
membrane the rule belongs to.) At each step of the computation, a maximal subset of R
is applied, and at most one instance of any rule is used at every step (thus at most k rules
are applicable at any step). For example, if ri is a catalytic rule Ca → Cv in membrane
q and the current configuration has two C’s and three a’s in membrane q, then only
one a can evolve into v using rule ri. Of course, if there is another rule rj (i �= j),
Ca → Cv′, in membrane q, then the other a also evolves into v′. It is not necessary that
v′ be different from v. Thus, two different labels ri and rj (i �= j) can specify the same
evolution rule, e.g., rules r1, r2, r3 can all be Ca → Cv. Our definition is equivalent
to one which requires that at every step, a maximal multiset of rules (i.e., a rule can be
used more than once) that is applied is of size at most k. This is because we can give
each evolution rule k distinct labels.

We investigate the computational power of two models of P systems – catalytic sys-
tems [20] and and communicating P systems [26] – under the following three semantics
of parallelism: n-Max-Parallel, ≤ n-Parallel, and n-Parallel. When n = 1, the three
semantics reduce to the Sequential mode (i.e., zero parallelism).

We also summarize our recent results (that resolved some open problems in the
field) concerning the existence of an infinite hierarchy with respect to the number of
membranes in a natural (nonuniversal) model of P systems [13], determinism versus
nondeterminism in P systems [15], and computational complexity of P systems [14].
Finally, we propose some problems for future research.

Some of the results presented in Sections 2 and 3 were obtained in collaboration
with Zhe Dang and Hsu-Chun Yen in [4, 16]. No proofs are given in this paper. They
can be found in the cited references.

2 Catalytic System (CS)

We recall the definition of a multi-membrane catalytic system (CS) as defined in [20].
The membranes (regions) are organized in a hierarchical (tree) structure and are labeled
1, 2, .., m for some m, with the outermost membrane (the skin membrane) labeled 1.
At the start of the computation, there is a distribution of catalysts and noncatalysts in
the membranes (the distribution represents the initial configuration of the system). Each
membrane may contain a finite set of catalytic rules of the form Ca → Cv, where C is
a catalyst, a is a noncatalyst, and v is a (possibly null) string of noncatalysts. When this
rule is applied, the catalyst remains in the membrane the rule is in, symbol a is deleted
from the membrane, and the symbols comprising v (if nonnull) are transported to other
membranes in the following manner. Each symbol b in v has a designation or target, i.e.,
it is written bx, where x can be here, out, or inj . The designation here means that the
object b remains in the membrane containing it (we usually omit this target, when it is
understood). The designation out means that the object is transported to the membrane
directly enclosing the membrane that contains the object; however, we do not allow any
object to be transported out of the skin membrane. The designation inj means that the
object is moved into a membrane, labeled j, that is directly enclosed by the membrane
that contains the object.

228 O.H. Ibarra

It is important to note that our definition of catalytic system is different from what
is usually called catalytic system in the literature. Here, we do not allow rules without
catalysts, i.e., rules of the form a → v. Thus our systems use only purely catalytic rules.

Suppose S is a CS with m membranes. Let {a1, ..., an} be the set of noncatalyst
symbols (objects) that can occur in the configurations of S. Let w = (w1, ..., wm) be
the initial configuration, where wi represents the catalysts and noncatalysts in mem-
brane i. (Note that wi can be null.) Each reachable configuration of S is an nm-
tuple (v1, ..., vm), where vi is an n-tuple representing the multiplicities of the symbols
a1, ..., an in membrane i. Note that we do not include the catalysts in considering the
configuration as they are not changed (i.e., they remain in the membranes containing
them, and their numbers remain the same during the computation). Hence the set of
all reachable configurations of S, denoted by R(S) is a subset of Nmn. The set of all
halting reachable configurations is denoted by Rh(S).

It is known that for any set Q ⊆ Nn that can be accepted by a Turing machine, we
can construct a 1-membrane CS G with only purely catalytic rules such that Rh(G) =
Q [26, 27]. Actually, the constructions in [26, 27] use non-catalytic of the form a → v,
but these rules can be simulated by purely catalytic rules. A recent result in [7] shows
that for a purely catalytic system, three distinct catalysts (where each catalyst appears
exactly once in the initial configuration) are already sufficient for universality. (The
three catalysts can be reduced to two if rules of the form a → v are allowed.) Thus, in
general, a 3-Max-Parallel 1-membrane CS can define a nonrecursive reachability set.

2.1 Sequential CS (Zero Parallelism)

In a sequential CS, each step of the computation consists of an application of a single
nondeterministically chosen rule, i.e., the membrane and rule within the membrane to
apply are chosen nondeterministically. Thus, the computation of the CS has no paral-
lelism at all. It turns out that sequential CS’s are much weaker. They define exactly the
semilinear sets.

We need the definition of a vector addition system. An n-dimensional vector addi-
tion system (VAS) is a pair G = 〈x,W 〉, where x ∈ Nn is called the start point (or start
vector) and W is a finite set of vectors in Zn, where Z is the set of all integers (positive,
negative, zero). The reachability set of the VAS 〈x,W 〉 is the set R(G) = {z | for some
j, z = x+v1+ ...+vj , where for all 1 ≤ i ≤ j, each vi ∈ W and x+v1+ ...+vi ≥ 0}.
The halting reachability set Rh(G) = {z | z ∈ R(G), z + v �≥ 0 for every v in W}.

A VAS G = 〈x,W 〉, where each vector in W is in Nn (i.e., has nonnegative com-
ponents) generates a linear set. Any finite union of linear sets is called a semilinear
set.

An n-dimensional vector addition system with states (VASS) is a VAS 〈x,W 〉 to-
gether with a finite set T of transitions of the form p → (q, v), where q and p are states
and v is in W . The meaning is that such a transition can be applied at point y in state p
and yields the point y + v in state q, provided that y + v ≥ 0. The VASS is specified
by G = 〈x, T, p0〉, where p0 is the starting state. The reachability set is R(G) = {z |
for some j, z = x + v1 + ... + vj , where for all 1 ≤ i ≤ j, pi−1 → (pi, vi) ∈ T ,
and x + v1 + ... + vi ≥ 0}. The reachability problem for a VASS (respectively, VAS)
G is to determine, given a vector y, whether y is in R(G). The equivalence problem is

P Systems: Some Recent Results and Research Problems 229

to determine given two VASS (respectively, VAS) G and G′, whether R(G) = R(G′).
Similarly, one can define the reachability problem and equivalence problem for halting
configurations.

The following summarizes the known results concerning VAS and VASS [29, 10, 1,
11, 18]:

Theorem 1. 1. Let G be an n-dimensional VASS. We can effectively construct an (n+
3)-dimensional VAS G′ that simulates G.

2. If G is a 2-dimensional VASS G, then R(G) is an effectively computable semilinear
set.

3. There is a 3-dimensional VASS G such that R(G) is not semilinear.
4. If G is a 5-dimensional VAS G, then R(G) is an effectively computable semilinear

set.
5. There is a 6-dimensional VAS G such that R(G) is not semilinear.
6. The reachability problem for VASS (and hence also for VAS) is decidable.
7. The equivalence problem for VAS (and hence also for VASS) is undecidable.

Clearly, it follows from part 6 of the theorem above that the halting reachability
problem for VASS (respectively, VAS) is decidable.

A communication-free VAS is a VAS where in every transition, at most one compo-
nent is negative, and if negative, its value is -1. They are equivalent to communication-
free Petri nets, which are also equivalent to commutative context-free grammars [5, 12].
It is known that they have effectively computable semilinear reachability sets [5].

Our first result shows that a sequential CS is weaker than a maximally parallel CS.

Theorem 2. The following are equivalent: communication-free VAS, sequential multi-
membrane CS, sequential 1-membrane CS.

Corollary 1. 1. If S is a sequential multi-membrane CS, then R(S) and Rh(S) are
effectively computable semilinear sets.

2. The reachability problem (whether a given configuration is reachable) for sequen-
tial multi-membrane CS is NP-complete.

2.2 CS Under Limited Parallelism

Here we look at the computing power of the CS under three semantics of parallelism.
Let R = {r1, ..., rk} be the set of rules of the CS. For a positive integer n ≤ k, define:

1. n-Max-Parallel: At each step, nonderministically select a maximal subset of at
most n rules in R to apply.

2. ≤ n-Parallel: At each step, nondeterministically select any subset of at most n
rules in R to apply.

3. n-Parallel: At each step, nondeterministically select any subset of exactly n rules
in R to apply.

In all three cases above, if any rule in the set selected is not applicable, then the whole
set is not applicable. Note that when n = 1, the three semantics reduce to the Sequential
mode.

230 O.H. Ibarra

Theorem 3. For n = 3, a 1-membrane CS operating under the n-Max-Parallel mode
can define any recursively enumerable set. For any n, a multi-membrane CS operating
under ≤ n-Parallel mode or n-Parallel mode can be simulated by a VASS (= VAS).

2.3 Simple Cooperative 1-Membrane System

Now consider the case when the 1-membrane CS has only one catalyst C with initial
configuration Ckx for some k and string x of noncatalysts. Thus, there are k copies of
the same catalyst in the initial configuration. The rules allowed are of the form Ca → v
or of the form Caa → Cv, i.e., C catalyzes one or two copies of an object. This system
is equivalent to a special form of cooperative P system [20, 21]. A simple cooperative
system (SCS) is a P system where the rules allowed are of the form a → v or of the
form aa → v. Moreover, there is some fixed integer k such that the system operates
in maximally parallel mode, but uses no more that k rules in any step. Clearly, the two
systems are equivalent.

Theorem 4. A 1-membrane SCS operating in k-maximally parallel mode can simulate
a Turing machine when k is at least 9.

3 Communicating P System (CPS)

A communication P System (CPS) has rules of the form (see [26]):

1. a → ax

2. ab → axby

3. ab → axbyccome

where x, y can be here, out, or inj . As before, here means that the object remains in
the membrane containing it, out means that the object is transported to the membrane
directly enclosing the membrane that contains the object (or to the environment if the
object is in the skin membrane), and come can only occur within the outermost region
(i.e., skin membrane), and it means import the object from the environment. The desig-
nation inj means that the object is moved into a membrane, labeled j, that is directly
enclosed by the membrane that contains the object.

3.1 Sequential 1-Membrane CPS

First we consider the case when there is only one membrane (the skin membrane). The
computation is sequential in that at each step there is only one application of a rule
(to one instance). So, e.g., if nondeterministically a rule like ab → ahereboutccome is
chosen, then there must be at least one a and one b in the membrane. After the step,
a remains in the membrane, b is thrown out of the membrane, and c comes into the
membrane. There may be several a’s and b’s, but only one application of the rule is
applied. Thus, there is no parallelism involved. The computation halts when there is no
applicable rule. Again, we are only interested in the multiplicities of the objects when
the system halts.

P Systems: Some Recent Results and Research Problems 231

We shall see below that a 1-membrane CPS can be simulated by a VASS (= VAS).
However, the converse is not true:

Theorem 5. The set of (halting) reachable configurations of a sequential 1-membrane
CPS is a semilinear set.

3.2 Sequential 1-Membrane Extended CPS (ECPS)

Interestingly, if we generalize the rules of a 1-membrane CPS slightly, the extended
system becomes equivalent to a VASS. Define an extended CPS (ECPS) by allowing
rules of the form:

1. a → ax

2. ab → axby

3. ab → axbyccome

4. ab → axbyccomedcome

(i.e., by adding rules of type 4).

Theorem 6. Sequential 1-membrane ECPS and VASS are equivalent.

We can generalize rules of an ECPS further as follows:

1. ai1 ...aih
→ ai1x1 ...aihxh

2. ai1 ...aih
→ ai1x1 ...aihxh

cj1come
...cjlcome

where h, l ≥1, and xm ∈ {here, out} for 1 ≤ m ≤ h, and the a’s and c’s are symbols.
Call this system ECPS+. ECPS+ is still equivalent to a VASS. Thus, we have:

Corollary 2. The following systems are equivalent: Sequential 1-membrane ECPS, se-
quential 1-membrane ECPS+, and VASS.

3.3 Sequential 2-Membrane CPS

In Section 3.1, we saw that a sequential 1-membrane CPS can only define a semilinear
set. However, if the system has two membranes, we can show:

Theorem 7. Sequential 2-membrane CPS and VASS are equivalent.

3.4 Sequential Multi-membrane ECPS

In Theorem 6, we saw that a sequential 1-membrane ECPS can be simulated by a VASS.
This result generalizes to:

Theorem 8. The following are equivalent: VASS, sequential 2-membrane CPS, se-
quential 1-membrane ECPS, sequential multi-membrane ECPS, and sequential multi-
membrane ECPS+.

We can also prove:

Theorem 9. For any n, a multi-membrane ECPS+ operating under ≤ n-Parallel mode
or n-Parallel mode is equivalent to a VASS.

232 O.H. Ibarra

4 Membrane Hierarchy

The question of whether there exists a model of P systems where the number of mem-
branes induces an infinite hierarchy in its computational power had been open since
the beginning of membrane computing five years ago. Our recent paper [13] provided a
positive answer to this problem.

Consider a restricted model of a communicating P system, called RCPS, whose
environment does not contain any object initially. The system can expel objects into the
environment but only expelled objects can be retrieved from the environment. Such a
system is initially given an input ai1

1 ...ain
n (with each ij representing the multiplicity of

distinguished object ai, 1 ≤ i ≤ n) and is used as an acceptor. We showed the following
results in [13]:

Theorem 10. 1. RCPS’s are equivalent to two-way multihead finite automata over
bounded languages (i.e., subsets of a∗

1...a
∗
n, for some distinct symbols a1, ..., an).

2. For every r, there is an s > r and a unary language L accepted by an RCPS with
s membranes that cannot be accepted by an RCPS with r membranes.

We note that the proof of the infinite hierarchy above reduces the problem (in an
intricate way) to the known hierarchy of nondeterministic two-way multihead finite
automata over a unary input alphabet. An interesting problem for further investigation
is whether the hierarchy can be made tighter, i.e., whether the result holds for s = r+1.

We also considered in [13] variants/generalizations of RCPS’s, e.g, acceptors of
languages; models that allow a “polynomial bounded” supply of objects in the envi-
ronment initially; models with tentacles, etc. We showed that they also form an infinite
hierarchy with respect to the number of membranes (or tentacles). The proof techniques
can be used to obtain similar results for other restricted models of P systems, like sym-
port/antiport systems [19]. These systems, which are similar to communicating P sys-
tems, use rules of the form (u, out), (u, in), and (u, out; v, in) where u, v are (possibly
null) strings of symbols (representing multisets of objects). A rule of the form (u, out)
in membrane i sends the elements of u from membrane i out to the membrane (directly)
containing i. A rule of the form (u, in) in membrane i transports the elements of u into
membrane i from the membrane enclosing i. Hence this rule can only be used when the
elements of u exist in the outer membrane. A rule of the form (u, out; v, in) simultane-
ously sends u out of the membrane i while transporting v into membrane i. Hence this
rule cannot be applied unless membrane i contains the elements in u and the membrane
surrounding i contains the elements in v.

5 Determinism Versus Nondeterminism

An interesting class of P systems with symport/antiport rules was studied in [9] – each
system is deterministic in the sense that the computation path of the system is unique,
i.e., at each step of the computation, the maximal multiset of rules that is applicable is
unique. It was shown in [9] that any recursively enumerable unary language L ⊆ o∗ can
be accepted by a deterministic 1-membrane symport/antiport system. Thus, for sym-
port/antiport systems, the deterministic and nondeterministic versions are equivalent. It

P Systems: Some Recent Results and Research Problems 233

also follows from the construction in [26] that for communicating P systems, the de-
terministic and nondeterministic versions are equivalent as both can accept any unary
recursively enumerable language. The deterministic-versus-nondeterministic question
was left open in [9] for the class of catalytic systems, where the proofs of universality
involve a high degree of parallelism [26, 7]. In particular, it was an open problem [2]
whether there is a class of (universal or nonuniversal) P systems where the nondeter-
ministic (maximally parallel) version is strictly more powerful than the deterministic
version.

In a recent paper [15], we looked at two classes of nonuniversal models of P sys-
tems. For one class, we showed that the deterministic and nondeterministic versions are
equivalent if and only if deterministic and nondeterministic linear bounded automata
(LBA) are equivalent. The latter problem is a long-standing open question in com-
plexity theory. While it is known that a nondeterministic LBA (which is equivalent to a
nondeterministic n space-bounded Turing machine) can be simulated by a deterministic
n2 space-bounded Turing machine [24], it is open whether this result is optimal. Thus,
for this class of P systems, the question of whether or not the deterministic version is
strictly weaker than the nondeterministic version reduces to an unresolved fundamental
problem in computational complexity. For another class of P systems, we can actually
showed that the deterministic version is strictly weaker than the nondeterministic ver-
sion. We describe the models below.

The First Model. The first model is the RCPS defined in the previous section. A non-
deterministic (respectively, deterministic) RCPS is one in which there may be more than
one (respectively, at most one) maximally parallel multiset of rules that is applicable at
each step. Thus, in the deterministic version, the maximally parallel multiset of rules
applicable at each step of the computation is unique.

We showed in [15] that a unary language L is accepted by a deterministic (respec-
tively, nondeterministic) RCPS if and only if it can be accepted by a deterministic
(respectively, nondeterministic) two-way multihead finite automaton. Combining this
with a result in [25] that nondeterministic and deterministic two-way multihead finite
automata over a unary input alphabet are equivalent if and only if nondeterministic and
deterministic linear bounded automata (over an arbitrary input alphabet) are equivalent,
we get the following:

Theorem 11. Every unary language accepted by a nondeterministic RCPS can be ac-
cepted by a deterministic RCPS if and only if every language (over an arbitrary input
alphabet) accepted by a nondeterministic linear bounded automaton can be accepted
by a deterministic linear bounded automaton.

The Second Model. We define another restricted model of a CPS, called SCPA. An
SCPA is a language acceptor over an input alphabet Σ containing a distinguished sym-
bol $ (the right end marker for the input). The system uses other (noninput) symbols.
An input to the SCPA is a string a1...an, where a1, ..., an−1 are in Σ−{$} and an = $.
We impose the following conditions on the system:

1. No symbol in Σ appears in the initial configuration.
2. No symbols are expelled into the environment.

234 O.H. Ibarra

3. The rules (similar to those of a CPS) are of the form:
(a) a → ax

(b) ab → axby

(c) ab → axbyccome

The restrictions are the following:
As before, a rule of type (c) (called a read-rule) can only appear in membrane
1. This brings in c if the next symbol in the input string w = a1...an that has
not yet been processed (read) is c ; otherwise, the rule is not applicable. Also,
there are no rules in membrane 1 with cout on the right-hand side of the rule
for any symbol c (i.e., no symbol can be expelled from membrane 1 into the
environment). It follows that the at any time after reading the j-th symbol of
the input string but before reading the j + 1-st symbol, the system will have
exactly j symbols from Σ.

(d) Maximal parallelism in the application of the rules is assumed as usual. In par-
ticular, if in one step, j ≥ 1 symbols are imported from the skin membrane,
then the j symbols must be consistent with the next j symbols of the input
string that have not yet been processed (by the semantics of the read-rule de-
scribed in the preceding paragraph).

(e) The input string w = a1...an (note that an is the right end marker $) is accepted
if, after reading all the input symbols, the SCPA eventually halts.

The language accepted by G is L(G) = {a1...an−1 | a1...an is accepted by G} (we do
not include the end marker).

We have two versions of the system described above: deterministic SCPA and non-
deterministic SCPA. Again, in the deterministic case, the maximally parallel multiset
of rules applicable at each step of the computation is unique. We showed the following
result in [15]:

Theorem 12. There is a language that can be accepted by a nondeterministic SCPA
that cannot be accepted by any deterministic SCPA.

6 Computational Complexity of P Systems

In [14], we showed how techniques in machine-based complexity can be used to ana-
lyze the complexity of membrane computing systems. The focus was on catalytic sys-
tems, communicating P systems, and systems with only symport/antiport rules, but the
techniques are applicable to other P systems that are universal. We defined space and
time complexity measures and showed hierarchies of complexity classes similar to well
known results concerning Turing machines and counter machines. We also showed that
the deterministic communicating P system simulating a deterministic counter machine
in [26, 28] can be constructed to have a fixed number of membranes, answering posi-
tively an open question in [26, 28]. We proved that reachability of extended configura-
tions for symport/antiport systems (as well as for catalytic systems and communicating
P systems) can be decided in nondeterministic log n space and, hence, in determin-
istic log2n space or in polynomial time, improving the main result in [22]. We also

P Systems: Some Recent Results and Research Problems 235

proposed two equivalent systems that define languages (instead of multisets of objects):
the first is a catalytic system language generator and the other is a communicating P sys-
tem acceptor (or a symport/antiport system acceptor). These devices are universal and
therefore can also be analyzed with respect to space and time complexity. Finally, we
gave a characterization of semilinear languages in terms of a restricted form of catalytic
system language generator.

7 Some Problems for Future Research

Limited parallelism in other P systems: We believe the results in Sections 2 and 3 can
be shown to hold for other more general P systems (including those where membranes
can be dissolved), provided the rules are not prioritized. For example, the results should
apply to systems with symport/antiport rules. We plan to look at this problem.

Characterizations: We propose to investigate various classes of nonuniversal P sys-
tems and characterize their computing power in terms of well-known models of se-
quential and parallel computation. We plan to investigate language-theoretic properties
of families of languages defined by P systems that are not universal (e.g., closure and
decidable properties), find P system models that correspond to the Chomsky hierarchy,
and in particular, characterize the “parallel” computing power of P systems in terms of
well-known models like alternating Turing machines, circuit models, cellular automata,
parallel random access machines. We will also study models of P systems that are not
universal for which we can develop useful and efficient algorithms for their decision
problems.

Reachability problem in cell simulation: Another important research area that has
great potential applications in biology is the use of P systems for the modeling and
simulation of cells. While previous work on modeling and simulation use continuous
mathematics (differential equations), P systems will allow us to use discrete mathemat-
ics and algorithms. As a P system models the computation that occurs in a living cell,
an important problem is to develop tools for determining reachability between configu-
rations, i.e., how the system evolves over time. Specifically, given a P system and two
configurations α and β (a configuration is the number and distribution of the different
types of objects in the various membranes in the system), is β reachable from α? Un-
fortunately, unrestricted P systems are universal (i.e., can simulate a Turing machine),
hence all nontrivial decision problems (including reachability) are undecidable. There-
fore, it is important to identify special P systems that are decidable for reachability.

8 Conclusion

We showed in this paper that P systems that operate under limited parallelism are
strictly weaker than systems that operate in “maximal parallelism” for two classes
of systems: multi-membrane catalytic systems and multi-membrane communicating P
systems. Our results on multi-membrane communicating P systems should also hold
for symport/antiport systems [8, 17, 19]. We also summarized our recent results con-

236 O.H. Ibarra

cerning membrane hierarchy, determinism versus nondeterminism, and computational
complexity of P systems. Finally, we proposed some problems for future research.

There has been some related work on P systems operating in sequential mode. For
example, sequential variants of P systems have been studied, in a different framework,
in [6]. There, generalized P systems (GP-systems) were considered and were shown to
be able to simulate graph controlled grammars. A comparison between parallel and se-
quential modes of computation in a restricted model of a P automaton was also recently
investigated in [3], where it was shown that the parallel version is equivalent to a linear
space-bounded nondeterministic Turing machine (NTM) and the sequential version is
equivalent to a simple type of a one-way log n space-bounded NTM.

References

1. H. G. Baker. Rabin’s proof of the undecidability of the reachability set inclusion problem
for vector addition systems. In C.S.C. Memo 79, Project MAC, MIT, 1973.

2. C. S. Calude and Gh. Paun. Computing with cells and atoms: after five years. (New text
added to Russian edition of the book with the same title first published by Taylor and Francis
Publishers, London, 2001). To be published by Pushchino Publishing House, 2004.

3. E. Csuhaj-Varju, O. H. Ibarra, and G. Vaszil. On the computational complexity of P au-
tomata. In Proc. DNA 10 (C. Ferretti, G. Mauri, C. Zandron, eds.), Univ. Milano-Bicocca,
97–106,2004.

4. Z. Dang and O. H. Ibarra. On P systems operating in sequential mode. In Pre-Proc. 6th
Workshop on Descriptional Complexity of Formal Systems, 2004.

5. J. Esparza. Petri nets, commutative context-free grammars, and basic parallel processes. In
Proc. Fundamentals of Computer Theory, volume 965 of Lecture Notes in Computer Science,
pages 221–232. Springer, 1995.

6. R. Freund. Sequential P-systems. Available at http://psystems.disco.unimib.it, 2000.
7. R. Freund, L. Kari, M. Oswald, and P. Sosik. Computationally universal P systems without

priorities: two catalysts are sufficient. Theoretical Computer Science, 330(2): 251–266, 2005.
8. R. Freund and A. Paun. Membrane systems with symport/antiport rules: universality results.

In Proc. WMC-CdeA2002, volume 2597 of Lecture Notes in Computer Science, pages 270–
287. Springer, 2003.

9. R. Freund and Gh. Paun. On deterministic P systems. See http://psystems.disco.unimib.it,
2003.

10. M. H. Hack. The equality problem for vector addition systems is undecidable. In C.S.C.
Memo 121, Project MAC, MIT, 1975.

11. J. Hopcroft and J.-J. Pansiot. On the reachability problem for 5-dimensional vector addition
systems. Theoretical Computer Science, 8(2):135–159, 1979.

12. D.T. Huynh. Commutative grammars: The complexity of uniform word problems. Informa-
tion and Control, 57:21–39, 1983.

13. O. H. Ibarra. The number of membranes matters. In Proc. 4th Workshop on Membrane
Computing, Lecture Notes in Computer Science 2933, Springer-Verlag, 218-231, 2004.

14. O. H. Ibarra. On the computational complexity of membrane systems. Theoretical Computer
Science, pages 89–109, 2004

15. O. H. Ibarra. On determinism versus nondeterminism in P systems. To appear in Theoretical
Computer Science, 2005.

16. O. H. Ibarra, H. Yen, and Z. Dang. The power of maximal parallelism in P systems. In Proc.
8th Int. Conf. on Developments in Language Theory, pages 212-224, 2004.

P Systems: Some Recent Results and Research Problems 237

17. C. Martin-Vide, A. Paun, and Gh. Paun. On the power of P systems with symport rules.
Journal of Universal Computer Science, pages 317–331, 2002.

18. E. Mayr. Persistence of vector replacement systems is decidable. Acta Informatica, 15:309–
318, 1981.

19. A. Paun and Gh. Paun. The power of communication: P systems with symport/antiport. New
Generation Computing, pages 295–306, 2002.

20. Gh. Paun. Computing with membranes. Journal of Computer and System Sciences,
61(1):108–143, 2000.

21. Gh. Paun. Membrane Computing: An Introduction. Springer-Verlag, 2002.
22. Gh. Paun, M. Perez-Jimenez, and F. Sancho-Caparrini. On the reachability problem for P

systems with symport/antiport. Submitted, 2002.
23. Gh. Paun and G. Rozenberg. A guide to membrane computing. Theoretical Computer

Science, 287(1):73–100, 2002.
24. W. Savitch. Relationships between nondeterministic and deterministic tape complexities. J.

Comput. Syst. Sci., pages 177–192, 1970.
25. W. Savitch. A note on multihead automata and context-sensitive languages. Acta Informat-

ica, pages 249–252, 1973.
26. P. Sosik. P systems versus register machines: two universality proofs. In Pre-Proceedings of

Workshop on Membrane Computing (WMC-CdeA2002), Curtea de Arges, Romania, pages
371–382, 2002.

27. P. Sosik and R. Freund. P systems without priorities are computationally universal. In
Proceedings of Workshop on Membrane Computing (WMC-CdeA2002), Lecture Notes in
Computer Science, pages 400–409, 2003.

28. P. Sosik and J. Matysek. Membrane computing: when communication is enough. Uncon-
ventional Models of Computation 2002, Lecture Notes in Computer Science, pages 264–275,
2002.

29. J. van Leeuwen. A partial solution to the reachability problem for vector addition systems.
In Proceedings of STOC’74, pages 303–309.

Outlining an Unconventional, Adaptive,
and Particle-Based Reconfigurable Computer

Architecture

Christof Teuscher

University of California, San Diego (UCSD), Department of Cognitive Science,
9500 Gilman Drive, La Jolla, CA 92093-0515, USA

christof@teuscher.ch

www.teuscher.ch/christof

Abstract. The quest for novel and unconventional computing machines
is mainly motivated by the man-machine dichotomy and by the belief
that dealing with new physical computing substrates, new environments,
and new applications will require new paradigms to organize, train, pro-
gram, and to interact with them. The goal of this contribution is to delin-
eate a possible way to address the general scientific challenge of seeking
for further progress and new metaphors in computer science by means
of unconventional approaches. Here we outline an amalgamation of (1)
a particle-based, randomly interconnected, and reconfigurable substrate,
(2) membrane systems, and (3) artificial chemistries in combination with
(4) an unconventional adaptation paradigm.

1 Introduction and Motivation

Biologically-inspired computing (see for example [28, 18] for a general introduc-
tion), also commonly called natural computing, is an interdisciplinary area of
research which is heavily relied on the fields of biology, computer science, and
mathematics. It is the study of computational systems that use ideas and draw
inspiration from natural organisms to build large, adaptive, complex, and dy-
namical systems. The principal goal of biologically-inspired computing is to make
machines more lifelike and to endow them with properties that traditional ma-
chines typically do not posses, such as for example adaptation, learning, evolu-
tion, growth, development, and fault-tolerance.

It is evident that biological organisms operate on completely different princi-
ples from those of computer science (i.e., the man-machine dichotomy). Whereas
life itself might be defined as a chemical system capable of self-reproduction and
of evolution, computers constitute a fundamentally different environment where
such processes are not naturally occurring. This and our still poor understanding
of nature in many aspects makes it particularly difficult to copy it. Further dif-
ficulty often resides in the way how information in computers is represented and
processed. Mimicking biological information processing on computing devices,
for example, which usually process information serially, is highly inefficient be-
cause of the massively parallel character of biological systems. Also, whereas

J.-P. Banâtre et al. (Eds.): UPP 2004, LNCS 3566, pp. 238–253, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Outlining Particle-Based Reconfigurable Computer Architecture 239

the concepts of computability and universal computation are undoubtedly cen-
tral to theoretical computer science, their importance might be questioned with
regards to biological organisms and biologically-inspired computing machines.
The well known concept of computation (as defined for example by a Turing
machine) can in most cases not straightforwardly be applied to biological com-
ponents or entire organisms and there is no evidence that such a system can
compute universally, on the contrary, nature usually prefers highly specialized
units. For example, it is much debated among neuroscientists, cognitive scien-
tists, computer scientists, and philosophers whether the metaphor of the brain
or mind as a digital computer is reasonable. However, although we have experi-
enced in the past that biological organisms are generally difficult to describe by
algorithmic processes, there is little reason to believe that they compute beyond
the algorithmic horizon [33], since, at the bottom, one might reason, it is all
just physical stuff doing what it “must.” Yet another debate is focused on what
cognitive paradigms should be used in order to obtain “intelligent” agents. This
seems to somehow become an eternal and useless discussion since—as in many
other fields—there is no best model. Different models are better for different
things in different contexts.

The quest for novel computing machines and concepts is mainly motivated by
the observation that fundamental progress in machine intelligence and artificial
life seem to stagnate [3]. For example, one of the keys to machine intelligence
is computers that learn in an open and unrestricted way, and we are still just
scratching the surface of this problem. Connectionist models have been unable to
faithfully model the nervous systems of even the simplest living things and par-
allel programming has failed to produce general methods for programming mas-
sively parallel systems. Our abilities to program complex systems are simply not
keeping up with the desire to solve complex problems. But is “programming”—
by means of a high-level language for example—really the best solution for this
kind of challenge? I do have more hope in self-organization and learning when
it comes to the creation of highly complex and massively parallel systems. But
this opens numerous additional problems, such as the general lack of systematic
and formal approaches which would allow to gradually create hierarchical and
complex systems that scale-up well, for example.

Tomorrow’s grand challenges for computer science are not likely to be bound
to any specific real-world application, but one would rather like to have general
mechanisms—at least in a first step—that would allow to gradually and auto-
matically create complex systems. Typical issues often mentioned are robustness
towards failures, scalability, adaptation towards an ever-changing environment,
and more complex machines in general. Also, tomorrow’s computers are likely
to be ubiquitous and invisible, which requires a paradigm shift in how we orga-
nize, train, program, and interact with them. We believe that these challenges
are best approached by unconventional paradigms instead of “straying” around
the well-known concepts, changing the model’s parameters, and putting hope
in increasing computing power. Using Brooks’ words, we rather believe in “[. . .]
something fundamental and currently unimagined in our models” [3] than in all

240 C. Teuscher

other possibilities, although they might play a role as well. We need new tools and
new concepts that move seamlessly between brain, cognition, and computation—
a finding that has also been made in a 2002 NSF/DOC-sponsored report [27].

The general goal of this contribution—presented in the form of a outline—is
to illustrate one possible way to address the general scientific challenge of seeking
for further progress and new metaphors in computer science by means of uncon-
ventional methods. The presented ideas should be seen as a fully integrative
approach for an unconventional computing machine, which includes everything
from the underlying hardware to its organizational principles. The work is on-
going and further develops some of the ideas first presented in [32]. Please also
note that the goal of this contribution is to give an overview and it is therefore
not self-contained and does not address all the details.

The remainder of the paper is as following: Section 2 gives an overview on the
architecture and mentions some relevant related work. Section 3 illustrates the
programmable reactor multitude and its communication structure. The imple-
mentation of cells and hierarchical structures is outlined in Section 4 and Section
5 explains the basics of chemical blending. Finally, Section 6 concludes the paper
and delineates future work.

2 Architectural Overview

Different areas in computer science on different levels are facing the same funda-
mental problems. For example, an ideal mobile phone communication network
is self-organized, robust, self-healing, and scalable, which might simply be trans-
lated into the capacity to adapt to a complex, uncertain, and ever-changing
environment. The same generally applies to distributed sensor networks, mesh
networks, the internet, collective robotics, amorphous computers, molecular elec-
tronics, and many other fields. All these applications are typically characterized
by decentralized control, asynchronous operation, and by the fact that failures
may occur at any time. However, they differ significantly in several aspects,
such as for example power consumption, resources available, agent density, and
communication infrastructure.

The specific goal of this work was to propose a novel reconfigurable com-
puter architecture that is based on an amalgamation of (1) a particle-based
and randomly interconnected substrate, (2) membrane systems, and (3) artifi-
cial chemistries in combination with (4) an unconventional adaptation paradigm.
An overview of the architecture is given in Figure 1.

In order to obtain a fault-tolerant system, the proposed architecture relies on
a simple, irregular, inhomogeneous, locally interconnected, asynchronously oper-
ating, and imperfect particle-based substrate (see Section 3), not unlike an amor-
phous computer. Currently, the only possibility to build a perfect machine out of
imperfect components is to make use of redundancy at some level, such as spare
components, which clearly favors a particle-based implementation. Scalability
is assured by avoiding central control and by using local interactions only. We
will also make extensive use of artificial chemistries, which represent—if appro-

Outlining Particle-Based Reconfigurable Computer Architecture 241

a

ab

b
b

v
v

d

d

(Hardware substrate)

Chemical Blending

amorphon particle

Programmable Reactor Multitude

Membrane Systems

a

d
a

d
a b

d

v
f

a

(Adaptation)

Fig. 1. Overview of the different levels of the proposed reconfigurable computer archi-
tecture: (1) particle substrate, (2) membrane systems used to build hierarchical levels,
and (3) an unconventional method to search for “good” membrane systems. Artificial
chemistries are used on all levels

priately used—an ideal means to compute in uncertain environments. Further,
they have also been identified as potentially very promising for the perpetual
creation of novelty [11], a feature that shall be later used to support adaptation.
In order to be able to create hierarchical organizations, we will make use of cells
and membranes throughout the system (see Section 4). Thereby, membrane sys-
tems will serve as a main source of inspiration. Finally, adaptation is achieved by
a method inspired by conceptual blending [7,6], a framework of cognitive science
that tries to explain how we think and deal with mental concepts. However, in-
stead of dealing with concepts, we will use artificial chemistries in combination
with membrane systems (see Section 5).

A number of completed and ongoing projects in the computer science research
community are dealing with alternative computer architectures. We shall briefly
focus on some relevant representatives. One of the most prominent projects in
the field is certainly MIT’s amorphous computing project1 [1, 19]. Amorphous
computing is the development of organizational principles and programming
languages for obtaining coherent global behavior from the local cooperation of
myriads of unreliable parts that all contain the same program and that are
interconnected in unknown, irregular, and time-varying ways. In biology, this
question has been recognized as fundamental in the context of animals (such
as ants, bees, etc.) that cooperate and form organizations. Amorphous comput-
ing brings the question “down” to computing science and engineering. Using the
metaphor of biology, the cells cooperate to form a multicellular organism (also
called programmable multitude) under the direction of a genetic program shared
by the members of the colony.

Blob Computing2 [15, 14] is an ongoing project that is based on a coupled
language-machine approach. The goal is to present an alternative to the well-
established von Neumann paradigm in order to tackle the major limitations of
current computer architectures. The model is designed to exploit “space” and
is based on a massively parallel and asynchronous computational architecture

1 Website:http://www.swiss.ai.mit.edu/projects/amorphous
2 Website: http://blob.lri.fr

242 C. Teuscher

that offers a good scalability combined with a language that allows to fully ex-
ploit the underlying hardware. The programming language relies on a virtual
machine called graph machine, which is a self-modifying and self-developing net
of automaton. This basics of the language date back to Gruau’s work on cellular
encoding (see for example [12, 13]). Each node (i.e., automaton) of the graph
can locally modify the graph and can apply cell division instructions in order to
develop the graph. A cell can for example simulate a simplified artificial neuron,
thus a cellular code can develop and simulate an artificial neural network. Map-
ping, a central challenge of parallel programming, is the problem of determining
which processor will simulate which cell of the graph. Naturally, a good place-
ment reduces the distance between the nodes that communicate. Gruau et al.
use physical forces for optimizing the shape and the location of a blob and thus
solve the mapping problem in an elegant way. As a proof of concept, they illus-
trate several interesting examples and experiments in [14], such as QuickSort,
building neural networks, and matrix multiplication.

Both, the amorphous computing and the Blob computing project are based
on an irregular, randomly arranged, and locally interconnected underlying hard-
ware structure. Examples of unconventional reconfigurable hardware architec-
tures based on a regular arrangement of the basic components are the Embryon-
ics [17], the POEtic project [31,35], and the CellMatrix architecture [16], which
all resemble traditional Field Programmable Gate Arrays (FPGAs) [34]. Finally,
on a totally different level, but with very similar goals (i.e., robustness, self-
healing and repair, adaptation), IBM has launched the autonomic computing3

initiative some time ago.

3 The Programmable Reactor Multitude

At the bottom of our reconfigurable architecture (see Figure 1) lies the Pro-
grammable Reactor Multitude (PRM), which shall be briefly described in the
next two sections. The programmable reactor multitude (i.e., the hardware) is
made up of a set of interconnected particles, each of which contains as a main
element a chemical reactor.

3.1 Communication Structure

MIT’s amorphous computer communication model assumes that all processors
have a circular broadcast of approximately the same fixed radius (large compared
to the size of the processor) and share a single communication channel. Since our
goal was to propose a new reconfigurable computer architecture, we have chosen
wire-based communication instead of wireless broadcast. The communication
model is illustrated in Figure 2. Each processor i receives inputs from an average
of Kavg randomly chosen neighbors that lie within a maximum radius of ci. Self-
connections are not allowed, but multiple connections are allowed. Further, all

3 Website: http://www.research.ibm.com/autonomic

Outlining Particle-Based Reconfigurable Computer Architecture 243

yi

xi

c i

i

y

x

(0,0)

Fig. 2. Illustration of the inter-processor’s communication model. Each randomly ar-
ranged processing element i (i.e., particle) receives inputs from an average of Kavg of
its neighbors that lie within an maximum radius of ci. Multiple connections to the
same neighbors are allowed, self-connections are not allowed

communication channels are single and bidirectional. We also assume that the
processors are randomly and densely distributed on a two-dimensional surface
and that their physical position as well as their wiring are fixed, but that they
might be unreliable. For applications such as reconfigurable silicon-based circuits,
printable digital circuits, etc., this seems to be a reasonable constraint. The
processors do not possess any information about their physical location and can
only communicate with their immediate neighbors.

The main reason for choosing this alternative communication model was to
facilitate circuit-based real-world implementations, where long-distance connec-
tions are generally costly in terms of resources used and where radio-broadcast is
inadequate and unnecessary. It was further inspired by small-world graphs [30],
which have short average interconnection lengths but high clustering coefficients.
Although our connection graph does not exactly have small-world properties nor
is it scale-free, it is a reasonably good approximation and easy to create. Obvi-
ously, a necessary condition for a correct operation is a connection graph without
disconnected regions, as this would prevent communication among all particles.
In order to provide a fault-tolerant communication structure, however, redun-
dant links, i.e., multiple paths between two locations are necessary since it must
be possible in such a case to re-route traffic via alternative routes.

The message routing protocol is very simple and is based on chemical gradi-
ents only. This makes the message handling easy in case of faulty connections
and processors, in which case the messages simply choose an alternative route
in the direction of the gradient. However, at the same time, the expected time
to deliver a message is hard to estimate since its exact route is unknown. There
are basically three types of communication primitives: (1) broadcast a message
to all neighboring processors, (2) deliver a message to the source of a certain
gradient, and (3) search for a processor that satisfies a specific condition. For
more information, the interested reader is also referred to [32].

244 C. Teuscher

3.2 The Particle’s Functionality

Several processor architectures have been proposed within the amorphous com-
puting project at MIT. Here, we will focus on yet another version, which is
mainly based on a chemical reactor paradigm, which helps to keep the over-
all design simple, uniform, and universal. The main part of the processor, also
called particle or amorphon is essentially composed of a stochastic chemical reac-
tor, which can host a limited number of molecules and reactions of an artificial
chemistry. An artificial chemistry [5] is a man-made system defined by a set
of reactions, a set of molecules, and by reaction dynamics which describe how
the elements interact. Here, we use a rewriting-based chemistry with molecules
such as for example w = {a, b, c} and reactions such as r = {a → c, b → a}
(see also Section 4). In our case, the reaction dynamics are as following: the
algorithm randomly draws a reaction and then checks whether it can be applied
with the molecules currently present in the reactor. If yes, the rewriting takes
place, otherwise a new reaction will be drawn.

Figure 3 shows a simplified view of a particle with its stochastic chemical
reactor. All incoming messages containing molecules or reactions are fed into
the reactor. Once in there, each chemical has a probability pleave to leave the
reactor and to be distributed to their interconnected neighbors according to
the protocol they specify with their special symbols, which shall be described
in the next section. We will see in Section 4 how the membranes will restrict
the chemicals to float around on the entire substrate. The resulting system is a
distributed reactor network with similar chemical concentrations in all reactors.
The system is entirely reconfigurable since the contents of the reactors is not
restricted.

p

amorphon reactor

leave

particle

particleparticle

...

...

(enlarged)

Fig. 3. Simplified view of a particle and its stochastic chemical reactor. Each chemical
(i.e., molecule or reaction) has a probability of pleave to leave the reactor. The particle
is interconnected with its local neighbors as explained in the previous section

Outlining Particle-Based Reconfigurable Computer Architecture 245

Note that this only gives a partial overview on the system. Each particle
contains further components that deal for example with gradient information,
that locally store their values, and that route messages. We shall not go into
further details here as the chemical reactor represents the central element. Also,
the issue on how the reactors are initialized is not addressed here and we simply
assume a certain initial state of the entire programmable reactor multitude for
the sake of simplicity.

In the next section we shall see how membrane systems can be built on top
of a programmable reactor multitude.

4 Implementing Hierarchical Organizations with
Membrane Systems

The biological cell is undoubtedly the structural and functional unit of all liv-
ing organisms. Because of its importance, countless computational models with
to goal to mimic or copy cells in nature have been proposed. In this section,
we will draw inspiration from a particular cellular model in order to implement
hierarchical membrane structures on top of a programmable reactor multitude.
The main goal of this approach is to create hierarchical organizations, which
will later be used by chemical blending (see Figure 1 and Section 5). Also, hi-
erarchical composition is ubiquitous in any physical and biological system and
offers many benefits. For example, it is a means to divide and “hide” complexity,
to save resources since the building-blocks might be shared and re-used, and
to create higher levels of abstraction. The formation of groups and hierarchies
was also extensively addressed in the amorphous computing project. For more
information, see for example [4, 20].

4.1 Membrane Systems

In 1998, Paun initiated P systems (or membrane computing) [22,24] as a highly
parallel, though theoretical computational model afar inspired by biochemistry
and by some of the basic features of biological membranes. A typical P system
(note that many variations exist) consists of cell-like membranes placed inside a
unique “skin” membrane. Multisets of symbol objects and a set of evolution rules
are then placed inside the regions delimited by the membranes. This artificial
chemistry, which evolves over time, can then be used to compute. Figure 4 shows
an example of a P system that generates n2, n ≥ 1. For more details see [22].
The fact that all rules have to be applied in parallel in all membranes adds
resources and difficulties for hardware implementations because of the global
control signals needed for the synchronization. However, it makes the system
easier to create and to analyze. Despite this, Petreska and Teuscher [26] have
recently proposed a first P system implementation on traditional reconfigurable
circuits, which greatly speeds up their simulation. An additional problem is the
fact that membrane systems are usually engineered by hand as no methodology
exists so far on how to set up an artificial chemistry for a given task. Specifying

246 C. Teuscher

b d

af

a

a

ab

b

(ff

f ff

skin

region

membrane

δ

d

f) > (f δ)
priority relation

3

2
1

e eout

de

Fig. 4. A P system that generates n2, n ≥ 1, where n is the number of steps before the
first application of the rule a → bδ. Redrawn from [23]

a non-trivial task algorithmically might of course by very hard, but if the prob-
lem is solvable by a machine, we know it can be done. Nevertheless, P systems
are particularly interesting for our purposes since they allow to easily create
hierarchies, which we consider a key issue for the creation of complex systems.
Also, this will allow us to create compartments for constraining the unlimited
spreading of the chemicals in the programmable reactor multitude network.

4.2 Membrane Systems on a Programmable Rector Multitude

In order to be able to efficiently and elegantly implement membrane systems on a
programmable reactor multitude, we have modified classical P systems in several
points. The following list provides an incomplete overview of the main points:

– The rules are no longer applied in parallel in each membrane, instead they are
applied stochastically and asynchronously and there are no priority relations
between the rules.

– Compared to classical P systems, where the rules do not usually change, our
rules can be rewritten and created by rules as well. For instance, the rule
a(b → c) → d requires a molecule a and a rule b → c to be applied. The two
elements would then be removed from the chemistry and replaced by d. This
possibility allows to (self-) modify the reactor’s “program,” i.e., its rules, and
offers more flexibility than a fixed set of rules.

– A set of special symbols defines additional actions for each rule: r = (u, s, v) =
(u → sv), where u, v are multisets over the symbols of an alphabet V and
the set R∗ of all reactions r, and where s is a special operator symbol from
a set S. The special symbols allow to send objects to different neighboring
membranes, to dissolve and create membranes, and will later allow us to
implement chemical blending, but overall, they offer simply a mechanism to
attach a certain additional action of any kind to each rule. The implemen-
tation of the special symbols (i.e., the microsteps) is generally done outside
the reactor.

Outlining Particle-Based Reconfigurable Computer Architecture 247

– The inter-membrane communication is modified such that a membrane can
not only send objects to its outer compartment, but also to a specific mem-
brane in that compartment.

These modifications are less guided by theoretical than by practical consid-
erations. Whether they make our membrane systems computationally more or
less powerful than their classical counterparts remains to be investigated, but
was not the focus on this work.

From an implementational point of view, every cell in a membrane system will
be represented by a set of neighboring particles from the programmable reactor
multitude. Chemicals of that cell can only leave this set of processors by means
of special commands, otherwise they will move inside the cell only. Remember
also that each reactor has a limited capacity, i.e., the more chemicals have to
be stored, the more reactors are required to make up the cell. Also, the goal
is to have a larger number of reactors available for each cell than it would be
strictly necessary in order to obtain a fault-tolerant system. Ideally, there should
be redundancy that allows to “lose” at least one particle out of one cell. In such
a case, it is for instance possible to hold a concentration of chemicals (e.g, a)
above a certain threshold by means of simple rules, even if the concentration
is disturbed by removing or adding reactors. Figure 5 illustrates this with the
following rules: r1 = a → a2 and r2 = am → an, where n < m . Rule r1 lets the
concentration grow constantly but slowly, whereas rule r2 reduces the number
of molecules once it has reached a certain upper threshold m instantly by m−n

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14

16

18

20

Time steps

C
on

ce
nt

ra
tio

n
(n

um
be

r
of

 c
he

m
ic

al
s)

Evolution of the chemical concentrations

a

Fig. 5. Holding a concentration of chemicals a constant. The disturbances at time steps
300 and 600 do only briefly alter the concentration

248 C. Teuscher

1
2 3

(1) (2)

1

2

3
3

2

1

particle

Fig. 6. Two possibilities of implementing hierarchical membrane systems on a pro-
grammable reactor multitude. See text for description

molecules. As one can see, the concentration shows a sawtooth-like behavior for
m = 10 and n = 8, but proves to be very robust against unexpectedly external
influences.

Let us now see how we can implement a membrane system, as shown in
Figure 4, on a programmable reactor multitude. There are two principal ways: (1)
respect the membrane’s hierarchical organization or (2) lay the individual cells
flat out. The two possibilities are illustrated in Figure 6. Possibility (1) seems
more natural, but there is a major drawback when a new cell has to be added.
In that case, existing cells would have to be enlarged in order to create room for
the new cells, which represents a time-consuming and non trivial task—especially
in the case of many hierarchical levels—given our simple processing elements.
Possibility (2) avoids this drawback, but in that case the communication between
the cells is more complicated. However, in most cases, this possibility seems to
be more appropriate, since adding and removing cells is greatly simplified.

5 Chemical Blending

Conceptual blending (or conceptual integration) [7, 6] is a theory developed by
Fauconnier and Turner about conceptual spaces and how they develop and pro-
liferate as we talk and think. Conceptual spaces consist of elements and relations
among them and are of course not directly instantiated in the brain, instead, they
should be seen as a formalism invented by researchers to address and certain is-
sues of their investigation. When two conceptual spaces are blended together,
the new space contains parts of the original spaces, but it usually also contains
emergent structure. Very simple examples are “houseboat” or “computer virus,”
a more complex blend would be “digging one own’s grave.” For most real-world
situations that are more complex that a simple metaphor, blends develop in
larger conceptual integration networks, which are networks of conceptual spaces

Outlining Particle-Based Reconfigurable Computer Architecture 249

and conceptual mappings. The blend’s “quality” and “usefulness” is guided by a
set of optimality principles (see [7] for more details), most of which use human
judgment, which makes them hard to implement in computational frameworks.
Since the entire blending framework lacks a formal approach, different people
have worked on explicit computational approaches in recent years [36,8,9,25,10].
Also, conceptual spaces and blending are just a good tool to study meaning in
natural language, metaphors, and concepts, but they are not generally suitable
to talk about the structure of things [9]. Hence, Goguen and Harrell recently
proposed a blending algorithm called structural blending [9,10], which also takes
into account structure.

While all current computational approaches deal with concepts, we are in-
terested in a very different approach here: we are looking for an unconventional
adaptation paradigm in the context of artificial chemistries and membrane sys-
tems. Drawing inspiration from the constructing and optimality principles of
blending seemed promising since blending creates emergent structure, i.e., nov-
elty, and could therefore in principle be useful to discover new solutions. Also, as
mentioned earlier, artificial chemistries have been identified as potentially very
promising for the perpetual creation of novelty, which, together with a blending-
inspired method, could lead to interesting properties. Finally, please note that
the chemical blending approach is not intended to faithfully model blending, but
only draws inspiration from it instead.

The following analogies were basically used: a mental space is replaced by
a membrane system whereas objects and rules became molecules and reactions.
Also, the three constructing principles of blending [7], namely (1) composition,
(2) completion, and (3) elaboration can straightforwardly be replaced by com-
posing, completing, and applying the rules of the membrane system. As the
blending’s optimality principles do basically only make sense for conceptual in-
tegration, we have completely replaced them in a first step by an alternative
fitness-based measure as commonly used in evolutionary algorithms. The devel-
opment of specialized optimality principles for artificial chemistries is envisaged
for future work.

Figure 7 provides an overview on how a new cell is blended from two single-
membrane input cells. We have implemented one possible method which shall
now briefly be described. Let us assume two single-membrane systems (as shown
in Figure 7) that contain a certain number of molecules and reactions. The goal
is to create a new single-membrane system that contains “emergent content”
from the two original cells. For the sake of simplicity and because the reactions
represent the cell’s “program,” we will only focus on the chemical reactions and
not on the molecules here. One of the first steps of blending consists in estab-
lishing a cross-space mapping between related elements. In order to do this, we
introduce an activity and a similarity measure. The similarity measure considers
the rule’s symbols and structure and measures how related they are whereas
the activity measure compares how often the rules are used. The idea is that
rules with similar or opposite structure and activities should be more likely to
be combined to form new rules than any other combination. The mapping is

250 C. Teuscher

a|b − Lg

k − Lk

b − Lh

cell 1

cell 2

0.875

0

0.5

0.5

activity activity

0

0.75

0.5

rule similarity

0.88

0.89

0.9

b − Lb
a|a − L b

k − Lk

blend

i − Hd|h

a − Hb

c − Hc|c

a|a − Hb

c − Hd|c

Fig. 7. Blending a new cell from two single-membrane input cells. See text for more
details

established by merging the rules of the two cells together in one membrane and
by letting them“float”around freely in the reactor network while they“look out”
for suitable partners according to the similarity and the activity measure. Not
all reactions need to be paired together with another reaction. After some time,
the reaction pairs will be blended by randomly taking elements from one of the
two reactions in order to form similar, yet new reactions. The resulting cell will
therefore contain a mix of new reactions created on the basis of the old ones, but
will also contain original elements as well. From an implementational point of
view, all these steps are realized by means of special symbols in the reactions as
described in Section 4.2. Note that the activity and similarity measure as well as
the way the new rules are constructed depends on the application and on what
information the objects and rules represent and work on. The above example
should thus only be considered as a case study.

So far, we have have only seen how to blend a new cell from two input cells,
but how can this mechanism be used for creating good new cells that would solve
a certain problem? The basic idea is similar to the principles of evolutionary algo-
rithms (EAs). Instead of using optimality principles, each cell becomes a fitness
value assigned that expresses how good a given task is solved. As with EAs, one
would then maintain a population of cells where the worst cells die out and the
good ones survive. Instead of applying crossover and mutation operators, we sim-
ply apply the blending mechanism to create a daughter cell from to parent cells.

In [32], we have illustrated in a simple toy application that the above de-
scribed blending method works for a simple pattern classification tasks. Ex-

Outlining Particle-Based Reconfigurable Computer Architecture 251

tending the method in order to apply it to a robot’s maze navigation task, for
example, would be pretty straightforward. Also, we have so far only focused on
a blending mechanism for single membrane systems. Blending multi-membrane
systems and testing the gradual creation of more hierarchical levels will be ad-
dressed in future work.

6 Conclusion

We have outlined an unconventional reconfigurable computer architecture en-
hanced with an unconventional adaptation paradigm. The resulting architecture
is completely decentralized, particle based, supports the creation of hierarchical
membrane systems, and represents a support for chemical blending, which on
its turn can be used to create new membrane systems. In combination with a
population of membrane systems and a fitness-based optimality measure, this
allowed us to implement an algorithm not unlike an evolutionary algorithm in
order to create membrane systems able to solve a given task.

Most of the proposed concepts have been implemented and simulated in Mat-
lab, but so far only on their individual level (as shown in Figure 1). Simulat-
ing the entire architecture, i.e., running chemical blending on the particles, was
impractical and computationally too intensive in a first step. The simulations
should be considered as a proof of concept only and we are certainly far away
from solving any real world problems. Clearly, many questions remain open and
further research will be necessary to investigate the properties, drawbacks, and
strengths of that unconventional computing architecture.

Future work will be focused in particular on further developing and investi-
gating variants of chemical blending in order to improve the performance and
to be able to solve real-world problems, such as for example a robot navigation
task. A further goal is to investigate the properties of chemical reactor networks
as a function of their various parameters, such as their interconnection topology,
their internal storage capacity, and the parameter pleave. We also plan to pro-
pose a hardware implementation of the basic particle by means of a hardware
description language such as VHDL.

Acknowledgments. The author was supported by the Swiss National Science
Foundation under grant PBEL2-104420.

References

1. H. Abelson, D. Allen, D. Coore, C. Hanson, E. Rauch, G. J. Sussman, and R. Weiss.
Amorphous computing. Communications of the ACM, 43(5):74–82, May 2000.

2. E. Bilotta, D. Gross, T. Smith, T. Lenaerts, S. Bullock, H. H. Lund, J. Bird,
R. Watson, P. Pantano, L. Pagliarini, H. Abbass, R. Standish, and M. A. Be-
dau, editors. Alife VIII-Workshops. Workshop Proceedings of the 8th International
Conference on the Simulation and Synthesis of Living Systems. University of New
South Wales, Australia, December 2002.

252 C. Teuscher

3. R. Brooks. The relationship between matter and life. Nature, 409:409–411, January
18 2001.

4. D. Coore, R. Nagpal, and R. Weiss. Paradigms for structure in an amorphous
computer. Technical Report AI Memo 1614, MIT Artificial Intelligence Laboratory,
October 6 1997.

5. P. Dittrich, J. Ziegler, and W. Banzhaf. Artificial chemistries–a review. Artificial
Life, 7(3):225–275, 2001.

6. G. Fauconnier and M. Turner. Conceptual integration networks. Cognitive Science,
22(2):133–187, April–June 1998.

7. G. Fauconnier and M. Turner. The Way We Think: Conceptual Blending and the
Mind’s Hidden Complexities. Basic Books, 2002.

8. J. Goguen. An introduction to algebraic semiotics, with applications to user inter-
face design. In Nehaniv [21], pages 242–291.

9. J. Goguen and F. Harrell. Foundations for active multimedia narrative: Semiotic
spaces and structural blending. Interaction Studies: Social Behaviour and Com-
munication in Biological and Artificial Systems, 2004. (To appear).

10. J. Goguen and F. Harrell. Style as choice of blending principles. In Proceedings of
the Symposium on Style and Meaning in Language, Art, Music and Design, 2004
AAAI Fall Symposium, Washington DC, Oct 21–24 2004.

11. D. Gross and McMullin B. The creation of novelty in artificial chemistries. In
Standish et al. [29], pages 400–408.

12. F. Gruau. Cellular encoding of genetic neural networks. Technical Report 92-21,
Ecole Normale Supérieure de Lyon, Institut IMAG, 1992.

13. F. Gruau. Neural Network Synthesis Using Cellular Encoding and the Genetic
Algorithm. PhD thesis, Ecole Normale Supérieure de Lyon, 1994.

14. F. Gruau, Y. Lhuillier, P. Reitz, and O. Temam. BLOB computing. In S. Vassil-
iadis, J.-L. Gaudiot, and V. Piuri, editors, Proceedings of the First Conference on
Computing Frontiers, pages 125–139, New York, NY, USA, 2004. ACM Press.

15. F. Gruau and P. Malbos. The Blob: A basic topological concept for hardware-
free distributed computation. In C. Calude, M. J. Dinneen, and F. Peper, editors,
Unconventional Models of Computation, volume 2509 of Lecture Notes in Computer
Science, pages 151–163, Berlin, Heidelberg, 2002. Springer-Verlag.

16. N. J. Macias and L. J. K. Durbeck. Adaptive methods for growing electronic
circuits on an imperfect synthetic matrix. Biosystems, 73(3):172–204, March 2004.

17. D. Mange, M. Sipper, A. Stauffer, and G. Tempesti. Toward robust integrated
circuits: The embryonics approach. Proceedings of the IEEE, 88(4):516–540, April
2000.

18. D. Mange and M. Tomassini, editors. Bio-Inspired Computing Machines: Towards
Novel Computational Architectures. Presses Polytechniques et Universitaires Ro-
mandes, Lausanne, Switzerland, 1998.

19. R. Nagpal. Programmable Self-Assembly: Constructing Global Shape using
Biologically-Inspired Local Interactions and Origami Mathematics. PhD thesis,
Massachusetts Institute of Technology, Department of Electrical Engineering and
Computer Science, June 2001.

20. R. Nagpal and D. Coore. An algorithm for group formation in an amorphous
computer. Technical Report AI Memo 1626, MIT Artificial Intelligence Laboratory,
February 16 1998.

21. C. L. Nehaniv, editor. Computation for Metaphor, Analogy and Agents, volume
1562 of Lecture Notes in Artificial Intelligence. Springer-Verlag, Berlin, Heidelberg,
1999.

Outlining Particle-Based Reconfigurable Computer Architecture 253

22. G. Paun. Computing with membranes. Journal of Computer and System Sci-
ences, 61(1):108–143, 2000. First published in a TUCS Research Report, No 208,
November 1998, http://www.tucs.fi.

23. G. Paun. Membrane Computing. Springer-Verlag, Berlin, Heidelberg, Germany,
2002.

24. G. Paun and G. Rozenberg. A guide to membrane computing. Journal of Theo-
retical Computer Science, 287(1):73–100, 2002.

25. F. C. Pereira and A. Cardoso. The horse-bird creature generation experiment. The
Interdisciplinary Journal of Artificial Intelligence and the Simulation of Behaviour,
1(3):257–280, July 2003.

26. B. Petreska and C. Teuscher. A reconfigurable hardware membrane system. In
C. Martin-Vide, G. Mauri, G. Paun, G. Rozenberg, and A. Salomaa, editors, Mem-
brane Computing, volume 2933 of Lecture Notes in Computer Science, pages 269–
285, Berlin, Heidelberg, 2004. Springer-Verlag.

27. M. C. Roco and W. S. Bainbridge, editors. Converging Technologies for Improv-
ing Human Performance: Nanotechnology, Biotechnology, Information Technology
and Cognitive Science. World Technology Evaluation Center (WTEC), Arlington,
Virginia, June 2002. NSF/DOC-sponsored report.

28. M. Sipper. Machine Nature: The Coming Age of Bio-Inspired Computing. McGraw-
Hill, New York, 2002.

29. R. K. Standish, M. A. Bedau, and H. A. Abbass, editors. Artificial Life VIII. Pro-
ceedings of the Eight International Conference on Artificial Life. Complex Adaptive
Systems Series. A Bradford Book, MIT Press, Cambridge, MA, 2003.

30. S. H. Strogatz. Exploring complex networks. Nature, 410:268–276, March 8 2001.
31. G. Tempesti, D. Roggen, E. Sanchez, Y. Thoma, R. Canham, A. Tyrrell, and J.-M.

Moreno. A POEtic architecture for bio-inspired hardware. In Standish et al. [29].
32. C. Teuscher. Amorphous Membrane Blending: From Regular to Irregular Cellular

Computing Machines. PhD thesis, Swiss Federal Institute of Technology (EPFL),
Lausanne, Switzerland, 2004. Thesis No 2925.

33. C. Teuscher and M. Sipper. Hypercomputation: Hype or computation? Commu-
nications of the ACM, 45(8):23–24, August 2002.

34. S. M. Trimberger. Field-Programmable Gate Array Technology. Kluwer Academic
Publishers, Boston, 1994.

35. A. Tyrrell, E. Sanchez, D. Floreano, G. Tempesti, D. Mange, J.-M. Moreno,
J. Rosenberg, and Alessandro E. P. Villa. Poetic tissue: An integrated architecture
for bio-inspired hardware. In A. M. Tyrrell, P. C. Haddow, and J. Torresen, editors,
Evolvable Systems: From Biology to Hardware. Proceedings of the 5th International
Conference (ICES2003), volume 2606 of Lecture Notes in Computer Science, pages
129–140. Springer-Verlag, Berlin, Heidelberg, 2003.

36. T. Veale and D. O’Donoghue. Computation and blending. Cognitive Linguistics,
11(3–4):253–281, 2000.

Autonomic Computing

Autonomic Computing: An Overview�

Manish Parashar1 and Salim Hariri2

1 The Applied Software Systems Laboratory,
Rutgers University, Piscataway NJ, USA

2 High Performance Distributed Computing Laboratory,
University of Arizona, Tucson AZ, USA

parashar@caip.rutgers.edu, hariri@ece.arizona.edu

Abstract. The increasing scale complexity, heterogeneity and dynamism of net-
works, systems and applications have made our computational and information
infrastructure brittle, unmanageable and insecure. This has necessitated the in-
vestigation of an alternate paradigm for system and application design, which is
based on strategies used by biological systems to deal with similar challenges –
a vision that has been referred to as autonomic computing. The overarching goal
of autonomic computing is to realize computer and software systems and ap-
plications that can manage themselves in accordance with high-level guidance
from humans. Meeting the grand challenges of autonomic computing requires
scientific and technological advances in a wide variety of fields, as well as new
software and system architectures that support the effective integration of the
constituent technologies. This paper presents an introduction to autonomic com-
puting, its challenges, and opportunities.

1 Introduction

Advances in networking and computing technology and software tools have resulted in
an explosive growth in networked applications and information services that cover all
aspects of our life. These sophisticated applications and services are extremely com-
plex, heterogeneous and dynamic. Further, the underlying information infrastructure
(e.g., the Internet) globally aggregates large numbers of independent computing and
communication resources, data stores and sensor networks, and is itself similarly large,
heterogeneous, dynamic and complex. The combination has resulted in application de-
velopment, configuration and management complexities that break current computing
paradigms based on static requirements, behaviors, interactions and compositions. As
a result, applications, programming environments and information infrastructures are
rapidly becoming brittle, unmanageable and insecure. This has necessitated the inves-
tigation of an alternate paradigm for system and application design, which is based on
strategies used by biological systems to deal with similar challenges of scale, complex-

� The research presented in this paper is supported in part by the National Science Foundation
via grants numbers ACI 9984357, EIA 0103674, EIA 0120934, ANI 0335244, CNS 0305495,
CNS 0426354 and IIS 0430826.

J.-P. Banâtre et al. (Eds.): UPP 2004, LNCS 3566, pp. 257–269, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

258 M. Parashar and S. Hariri

ity, heterogeneity, and uncertainty – a vision that has been referred to as autonomic
computing [5].

The Autonomic Computing Paradigm has been inspired by the human autonomic
nervous system. Its overarching goal is to realize computer and software systems and
applications that can manage themselves in accordance with high-level guidance from
humans. Meeting the grand challenges of autonomic computing requires scientific and
technological advances in a wide variety of fields, as well as new programming
paradigm and software and system architectures that support the effective integration
of the constituent technologies. This paper presents an introduction to autonomic com-
puting, its challenges, and opportunities. In this paper, we first give an overview of
the architecture of the nervous system and use it to motivate the autonomic computing
paradigm. We then outline the key challenges of autonomic computing and present an
overview of existing autonomic computing systems and applications.

2 The Autonomic Nervous System

The human nervous system is, to the best of our knowledge, the most sophisticated
example of autonomic behavior existing in nature today. It is the body’s master con-
troller that monitors changes inside and outside the body, integrates sensory inputs,
and effects appropriate response. In conjunction with the endocrine system, the nervous
system is able to constantly regulate and maintain homeostasis. A homeostatic system
(e.g., a large organization, an industrial firm, a cell) is an open system that maintains
its structure and functions by means of a multiplicity of dynamic equilibriums that are
rigorously controlled by interdependent regulation mechanisms. Such a system reacts
to every change in the environment, or to every random disturbance, through a series of
modifications that are equal in size and opposite in direction to those that created the
disturbance. The goal of these modifications is to maintain internal balances.

The manifestation of the phenomenon of homeostasis is widespread in the human
system. As an example, consider the mechanisms that maintain the concentration of
glucose in the blood within limits - if the concentration should fall below about 0.06
percent, the tissues will be starved of their chief source of energy; if the concentra-
tion should rise above about 0.18 percent, other undesirable effects will occur. If the
blood-glucose concentration falls below about 0.07 percent, the adrenal glands secrete
adrenaline, which causes the liver to turn its stores of glycogen into glucose. This passes
into the blood and the blood-glucose concentration drop is opposed. Further, a falling
blood-glucose also stimulates appetite causing food intake, which after digestion pro-
vides glucose. On the other hand, if the blood-glucose concentration rises excessively,
the secretion of insulin by the pancreas is increased, causing the liver to remove the
excess glucose from the blood. Excess glucose is also removed by muscles and skin,
and if the blood-glucose concentration exceeds 0.18 percent, the kidneys excrete excess
glucose into the urine. Thus, there are five activities that counter harmful fluctuations in
blood-glucose concentration [2].

The above example focuses on the maintenance of the blood-glucose concentration
within safe or operational limits that have been ‘predetermined’ for the species. Similar
control systems exist for other parameters such as systolic blood pressure, structural

Autonomic Computing: An Overview 259

integrity of the medulla oblongata, severe pressure of heat on the skin, and so on. All
these parameters have a bearing on the survivability of the organism, which in this case
is the human body. However, all parameters are not uniform in their urgency or their
relations to lethality. Parameters that are closely linked to survival and are closely linked
to each other so that marked changes in one leads sooner or later to marked changes in
the others, have been termed as essential variables by Ashby in his study of the design
for a brain [2]. This is discussed below.

2.1 Ashby’s Ultrastable System

Every real machine embodies no less than an infinite number of variables, and for our
discussion we can safely think of the human system as represented by a similar sets
of variables, of which we will consider a few. In order for an organism to survive,
its essential variables must be kept within viable limits (see Figure 1). Otherwise the
organism faces the possibility of disintegration and/or loss of identity (i.e., dissolution
or death) [14].

The body’s internal mechanisms continuously work together to maintain its essential
variables within their limits. Ashby’s definition of adaptive behavior as demonstrated
by the human body follows from this observation. He states that a form of behavior is
adaptive if it maintains the essential variables within physiological limits [2] that define
the viability zone. Two important observations can be made:

1. The goal of the adaptive behavior is directly linked with the survivability of the
system.

2. If the external or internal environment pushes the system outside its physiological
equilibrium state the system will always work towards returning to the original
equilibrium state.

Ashby observed that many organisms undergo two forms of disturbances: (1) fre-
quent small impulses to the main variables and (2) occasional step changes to its param-
eters. Based on this observation, he devised the architecture of the Ultra-Stable system
that consists of two closed loops (see Figure 2): one that controls small disturbances
and a second that is responsible for longer disturbances.

Fig. 1. Essential variables

260 M. Parashar and S. Hariri

Reacting Part R

Environment

Step Mechanisms/Input Parameter S

Essential Variables

Motor
channels

Sensor
channels

Fig. 2. The Ultra-Stable system architecture [2]

As shown in Figure 2, the ultrastable system consists of two sub-systems, the en-
vironment and the reacting part R. R represents a subsystem of the organism that is
responsible for overt behavior or perception. It uses the sensor channels as part of its
perception capability and motor channels to respond to the changes impacted by the
environment. These set of sensors and motor channels constitute the primary feedback
between R and the environment. We can think of R as a set of behaviors of the organ-
ism that gets triggered based on the changes affected by the environment. S represents
the set of parameters that triggers changes in relevant features of this behavior set. Note
that in Figure 2, S triggers changes only when the environment affects the essential vari-
ables in a way that causes them to go outside their physiological limits. As mentioned
above, these variables need to be maintained within physiological limits for any adap-
tive system/organism to survive. Thus we can view this secondary feedback between
the environment and R as responsible for triggering the adaptive behavior of the organ-
ism. When the changes impacted by the environment on the organism are large enough
to throw the essential variables out of their physiological limits, the secondary feedback
becomes active and changes the existing behavior sets of the organism to adapt to these
new changes. Notice that any changes in the environment tend to push an otherwise
stable system to an unstable state. The objective of the whole system is to maintain the
subsystems (the environment and R) in a state of stable equilibrium. The primary feed-
back handles finer changes in the environment with the existing behavior sets to bring
the whole system to stable equilibrium. The secondary feedback handles coarser and
long-term changes in the environment by changing its existing behavior sets and even-
tually brings back the whole system to stable equilibrium state. Hence, in a nutshell,
the environment and the organism always exist in a state of stable equilibrium and any
activity of the organism is triggered to maintain this equilibrium.

2.2 The Nervous System as a Subsystem of Ashby’s Ultrastable System

The human nervous system is adaptive in nature. In this section we apply the concepts
underlying the Ashby’s ultrastable system to the human nervous system. The nervous
system is divided into the Peripheral Nervous System (PNS) and the Central Nervous
System (CNS). The PNS consists of sensory neurons running from stimulus receptors
that inform the CNS of the stimuli and motor neurons running from the CNS to the
muscles and glands, called effectors, which take action. CNS is further divided into two
parts: sensory-somatic nervous system and the autonomic nervous system. Figure 3
shows the architecture of the autonomic nervous system as an Ashby utrastable system.

Autonomic Computing: An Overview 261

S = f (change in EV)

Internal
environment

External
environmentReacting Part R

Sensory Neurons

Motor Neurons

Sensor Channels

Motor Channels

Environment

Essential Variables

Step Mechanisms/Input Parameter S

(EV)

Fig. 3. Nervous system as part of an ultrastable system

As shown in Figure 3, the Sensory and Motor neurons constitute the Sensor and Mo-
tor channels of the ultrastable system. The triggering of essential variables, selection of
the input parameter S and translation of these parameters to the reacting part R consti-
tute the workings of the Nervous System. Revisiting the management of blood-glucose
concentration within physiological limits discussed earlier, the five mechanisms that get
triggered when the essential variable (i.e., concentration of glucose in blood) goes out of
the physiological limits change the normal behavior of the system such that the reacting
part R works to bring the essential variable back within limits. It uses its motor chan-
nels to effect changes so that the internal environment and the system (organism) come
into the state of stable equilibrium. It should be noted that the environment here is di-
vided into the internal environment and external environment. The internal environment
represents changes impacted internally within the human system and the external envi-
ronment represents changes impacted by the external world. However, the goal of the
organism is to maintain the equilibrium of the entire system where all the sub-systems
(the organism or system itself, and the internal and external environments) are in stable
equilibrium.

3 The Autonomic Computing Paradigm

An autonomic computing paradigm, modeled after the autonomic nervous system, must
have a mechanism whereby changes in its essential variables can trigger changes in the
behavior of the computing system such that the system is brought back into equilibrium
with respect to the environment. This state of stable equilibrium is a necessary condition
for the survivability of the organism. In the case of an autonomic computing system, we
can think of survivability as the system’s ability to protect itself, recover from faults,
reconfigure as required by changes in the environment, and always maintain its oper-
ations at a near optimal performance. Its equilibrium is impacted by both the internal
environment (e.g., excessive memory/CPU utilization) and the external environment
(e.g., protection from an external attack).

An autonomic computing system requires: (a) sensor channels to sense the changes
in the internal and external environment, and (b) motor channels to react to and counter
the effects of the changes in the environment by changing the system and maintaining

262 M. Parashar and S. Hariri

equilibrium. The changes sensed by the sensor channels have to be analyzed to deter-
mine if any of the essential variables has gone out of their viability limits. If so, it has
to trigger some kind of planning to determine what changes to inject into the current
behavior of the system such that it returns to the equilibrium state within the new en-
vironment. This planning would require knowledge to select the right behavior from a
large set of possible behaviors to counter the change. Finally, the motor neurons execute
the selected change. ‘Sensing’, ‘Analyzing’, ‘Planning’, ‘Knowledge’ and ‘Execution’
are in fact the keywords used to identify an autonomic system [7, 3]. We use these con-
cepts to present the architecture of an autonomic element and autonomic applications
and systems.

3.1 Autonomic Computing – A Holistic View

As motivated above, the emerging complexity in computing systems, services and ap-
plications requires the system/software architectures to be adaptive in all its attributes
and functionality (performance, security, fault tolerance, configurability, maintainabil-
ity, etc.).

We have been successful in designing and implementing specialized computing
systems and applications. However, the design of general purpose dynamically pro-
grammable computing systems and applications that can address the emerging needs
and requirements remains a challenge. For example, distributed (and parallel) comput-
ing has evolved and matured to provide specialized solutions to satisfy very stringent
requirements in isolation, such as security, dependability, reliability, availability, perfor-
mance, throughput, efficiency, pervasive/amorphous, automation, reasoning, etc. How-
ever, in the case of emerging systems and applications, the specific requirements, objec-
tives and choice of specific solutions (algorithms, behaviors, interactions, etc.) depend
on runtime state, context, and content, and are not known a priori. The goal of auto-
nomic computing is to use appropriate solutions based on current state/context/content
and on specified policies.

The computer evolution have gone through many generations starting from single
process single computer system to multiple processes running on multiple geographi-
cally dispersed heterogeneous computers that could span several continents (e.g., Grid).
The approaches for designing the corresponding computing systems and applications
have been evolutionary and ad hoc. Initially, the designers of such systems were mainly
concerned about performance, and focused intensive research on parallel processing
and high performance computer architectures and applications to address this require-
ment. As the scale and distribution of computer systems and applications evolved, the
reliability and availability of the systems and applications became the major concern.
This, in turn has led to separate research in fault tolerance and reliability, and to system
and applications that were ultra reliable and resilient, but not high performance. In a
similar way, ultra secure computing systems and applications have been developed to
meet security requirement in isolation.

This ad hoc approach has resulted in the successful design and development of spe-
cialized computing systems and applications that can optimize a few of the attributes
or functionalities of computing systems and applications. However, as we highlighted
before, the emerging systems and applications and their contexts are dynamic. Con-

Autonomic Computing: An Overview 263

sequently, their requirements will change during their lifetimes and may include high
performance, fault tolerance, security, availability, configurability, etc. Consequently,
what is needed is a new computing architecture and programming paradigm that takes
a holistic approach to the design and development of computing systems and appli-
cations. Autonomic computing provides such an approach by enabling the design and
development of systems/applications that can adapt themselves to meet requirements
of performance, fault tolerance, reliability, security, etc., without manual intervention.
Every element in an autonomic system or application consists of two main modules:
the functional unit that performs the required services and functionality, and the man-
agement/control unit that monitors the state and context of the element, analyze its cur-
rent requirements (performance, fault-tolerance, security, etc.) and adapts to satisfy the
requirement(s).

3.2 Architecture of an Autonomic Element

An autonomic element (see Figure 4) is the smallest unit of an autonomic application
or system. It is a self-contained software or system module with specified input/output
interfaces and explicit context dependencies. It also has embedded mechanisms for self-
management, which are responsible for implementing its functionalities, exporting con-
straints, managing its behavior in accordance with context and policies, and interacting
with other elements. Autonomic systems and applications are constructed from auto-
nomic elements as dynamic, opportunistic and/or ephemeral compositions. These com-
positions may be defined by policies and context, and may be negotiated. The key parts
of an autonomic element are described below.

– Managed Element: This is the smallest functional unit of the application and con-
tains the executable code (program, data structures) (e.g., numerical model of a
physical process). It also exports its functional interfaces, its functional and behav-

E

Internal External

Environment

A

KE
programmed

behavior

PE

M&A
S

E

KE
autonomic
behavior

cardinal

M & A Cardinals

PE

M&A

L G

Managed Element
S

E

Control

Input ports Output ports

Fig. 4. An autonomic element

264 M. Parashar and S. Hariri

ioral attributes and constraints, and its control mechanisms. At runtime, the man-
aged element can be affected in different ways, for example, it can encounter a
failure, run out of resources, be externally attacked, or may hit a bottleneck impact-
ing performance.

– Environment: The environment represents all the factors that can impact the man-
aged element. The environment and the managed element can be viewed as two
subsystems forming a stable system. Any change in the environment causes the
whole system to go from a stable state to an unstable state. This change is then offset
by reactive changes in the managed element causing the system to move back from
the unstable state to a different stable state. Notice that the environment consists
of two parts - internal and external. The internal environment consists of changes
internal to the managed element, which reflects the state of the application/system.
The external environment reflects the state of the execution environment.

– Control: Each autonomic element has its own manager that (1) accepts user-
specified requirements (performance, fault tolerance, security, etc.), (2) interro-
gates the element and characterizes its state, (3) senses the state of the overall
system/application, (4) determines state of the environment, and (5) uses this in-
formation to control the operation of the managed element in order to effectively
achieve the specified behaviors. This control process repeats continuously through-
out the lifetime of the autonomic element. As shown in Figure 4, the control part
consists of two control loops - the local loop and the global loop.

The local loop can only handle known environment states and is based on knowl-
edge that is embedded in the element. Its knowledge engine contains the mapping
of environment states to behaviors. For example, when the load on the local system
goes above the threshold value, the local control loop will work towards balancing
the load by either controlling the local resources available to the managed element
or by reducing the size of the problem handled by this element. This will work only
if the local resources can handle the computational requirements. However, the lo-
cal loop is blind to the overall behavior of the entire application or system and thus
can not achieve the desired global objectives. In a scenario where the entire sys-
tem is affected, the local loop will continue repeating local optimization that may
lead to degradation in performance and result in sub-optimal or chaotic behavior.
At some point, one of the essential variables of the system (in this case, a perfor-
mance cardinal) may overshoot their limits. This is when the global loop comes
into action.

The global loop can handle unknown environment states and may involve ma-
chine learning, artificial intelligence and/or human intervention. It uses four cardi-
nals for the monitoring and analysis of the managed elements. These are perfor-
mance, configuration, protection and security. These cardinals are like the essential
variables described in Ashby’s ultrastable system. This control loop results in new
knowledge being introduced into the managed element to enable it to adapt its ex-
isting behaviors to respond to the changes in the environment. For example, the
desired load-balancing behavior of the managed element (as directed by the lo-
cal loop) requires its local load to be within prescribed limits. However, the local
loop might not be able to maintain the local load within these acceptable limits,
which in turn might degrade the performance of the overall system. Consequently,

Autonomic Computing: An Overview 265

this change in the overall performance cardinal triggers the global loop, which
then selects an alternate behavior pattern that can address the new load conditions.
The new plan is then introduced into the managed element and used to adapt its
behavior.

3.3 Autonomic Computing Systems and Applications

Autonomic applications and systems are composed from autonomic elements, and are
capable of managing their behaviors and their relationships with other systems/
applications in accordance with high-level policies. Autonomic systems/applications
exhibit eight defining characteristics [7]:

– Self Awareness: An autonomic application/system “knows itself” and is aware of
its state and its behaviors.

– Self Configuring: An autonomic application/system should be able configure and
reconfigure itself under varying and unpredictable conditions.

– Self Optimizing: An autonomic application/system should be able to detect sub-
optimal behaviors and optimize itself to improve its execution.

– Self-Healing: An autonomic application/system should be able to detect and re-
cover from potential problems and continue to function smoothly.

– Self Protecting: An autonomic application/system should be capable of detecting
and protecting its resources from both internal and external attack and maintaining
overall system security and integrity.

– Context Aware: An autonomic application/system should be aware of its execution
environment and be able to react to changes in the environment.

– Open: An autonomic application/system must function in an heterogeneous world
and should be portable across multiple hardware and software architectures. Con-
sequently it must be built on standard and open protocols and interfaces.

– Anticipatory: An autonomic application/system should be able to anticipate to the
extent possible, its needs and behaviors and those of its context, and be able to
manage itself proactively.

Sample self-managing system/application behaviors include installing software
when it is detected that the software is missing (self-configuration), restarting a failed
element (self-healing), adjusting current workload when an increase in capacity is ob-
served (self-optimization) and taking resources offline if an intrusion attempt is detected
(self-protecting). Each of the characteristics listed above represents an active research
area. Generally, self-management is addressed in four primary system/application as-
pects, i.e., configuration, optimization, protection, and healing. Further, self-
management solutions typically consists of the steps outlined above: (1) the application
and underlying information infrastructure provide information to enable context and
self awareness; (2) system/application events trigger analysis, deduction and planning
using system knowledge; and (3) plans are executed using the adaptive capabilities of
the application/system. An autonomic application or system implements self-managing
attributes using the control loops described above to collect information, make deci-
sions, and adapt, as necessary.

266 M. Parashar and S. Hariri

4 Autonomic Computing Research Issues and Challenges

Meeting the grand challenges of autonomic computing presents fundamental and sig-
nificant research challenges that span all levels, from the conceptual level to architec-
ture, middleware, and applications. Key research issues and challenges are presented
below.

Conceptual Challenges: Conceptual research issues and challenges include (1) defin-
ing appropriate abstractions and models for specifying, understanding, controlling, and
implementing autonomic behaviors; (2) adapting classical models and theories for ma-
chine learning, optimization and control to dynamic and multi agent system; (3) pro-
viding effective models for negotiation that autonomic elements can use to establish
multilateral relationships among themselves; and (4) designing statistical models of
large networked systems that will let autonomic elements or systems detect or predict
overall problems from a stream of sensor data from individual devices.

Architecture Challenges: Autonomic applications and systems will be constructed
from autonomic elements that manage their internal behavior and their relationships
with other autonomic elements in accordance with policies that humans or other el-
ements have established. As a result, system/application level self-managing behav-
iors will arise from the self-managing behaviors of constituent autonomic elements and
their interactions. System and software architectures in which local as well as global
autonomic behaviors can be specified, implemented and controlled in a robust and pre-
dictable manner remains a key research challenge.

Middleware Challenges: The primary middleware level research challenge is provid-
ing the core services required to realize autonomic behaviors in a robust, reliable and
scalable manner, in spite of the dynamism and uncertainty of the system and the ap-
plication. These include discovery, messaging, security, privacy, trust, etc. Autonomic
systems/applications will require autonomic elements to identify themselves, discover
and verify the identities of other entities of interest, dynamically establish relationships
with these entities, and to interact in a secure manner. Further the middleware itself
should be secure, reliable and robust against new and insidious forms of attack that use
self-management based on high-level policies to their own advantage.

Application Challenges: The key challenges at the application level is the formula-
tion and development of systems and applications that are capable of managing (i.e.,
configuring, adapting, optimizing, protecting, healing) themselves. This includes pro-
gramming models, frameworks and middleware services that support the definition of
autonomic elements, the development of autonomic applications as the dynamic and
opportunistic composition of these autonomic elements, and the policy, content and
context driven definition, execution and management of these applications.

5 The Autonomic Computing Landscape

There have been a number of research efforts in both academia and industry addressing
autonomic computing concepts and investigating the issues outlined above. Existing

Autonomic Computing: An Overview 267

Table 1. Systems incorporating autonomic properties

System Application area Key autonomic issues addressed
OceanStore [4, 9] Global, consistent,

highly-available persis-
tent data storage.

Self-healing, self-optimization, self-
configuration, self-protection. Policy-
based caching, routing substrate
adaptation, autonomic replication,
continuous monitoring, testing, and
repairing.

Storage Tank [11] Multi-platform, univer-
sally accessible storage
management.

Self-optimization, self-healing. Policy-
based storage and data management,
server redirection and log-based recov-
ery.

Oceano [20] Cost effective scalable
management of com-
puting resources for
software farms.

Self-optimization, self-awareness. Au-
tonomic demands distribution, constant
component monitoring.

SMART DB2 [10] Reduction of human in-
tervention & cost for
DB2.

Self-optimization, self-configuration
Autonomic index determination, disas-
ter recovery, continuous monitoring of
DB2’s health and alerting the DBA.

AutoAdmin [13] Reducing Total Cost of
Ownership (TCO)

Self-tuning, self-administration. Usage
tracking, index tuning and recommend-
ing based on workload.

Sabio [17] Autonomically Classi-
fies Large Number of
documents

Self-organization, self-awareness.
Group documents according to the
word and phrase usage.

Q-Fabric [16] System Support for
Continuous Online
Management.

Self-organization. Continuous online
quality management through ”cus-
tomizability” of each application’s
QoS.

projects and products can be broadly classified as (1) systems that incorporate auto-
nomic mechanisms for problem determination, monitoring, analysis, management, etc.,
into systems, and (2) systems that investigate models, programming paradigms and de-
velopment environments to support the development of autonomic systems and applica-
tions. A sampling of systems belonging to these categories are summarized in Tables 1
and Table 2 respectively.

6 Summary and Conclusion

In this paper, we introduced the autonomic computing paradigm, which is inspired
by biological systems such as the autonomic human nervous system, and enables the
development of self-managing computing systems and applications. The
systems/applications use autonomic strategies and algorithms to handle complexity
and uncertainties with minimum human intervention. An autonomic application/system
is a collection of autonomic elements, which implement intelligent control loops to

268 M. Parashar and S. Hariri

Table 2. Systems supporting development of autonomic applications and systems

System Focus Autonomic issues ad-
dressed

KX (Kinesthetics eXtreme) [8] Retrofitting automicity. Enabling autonomic
properties in legacy
systems.

Anthill [12] P2P systems based on
Ant colonies.

Complex adaptive be-
havior of P2P systems.

Astrolabe [18] Distributed information
management.

Self-configuration,
monitoring and to
control adaptation.

Gryphon [19] Publish/subscribe mid-
dleware.

Large communication.

Smart Grid [21] Autonomic principles
applied to solve Grid
problems.

Autonomic Grid com-
puting.

Autonomia [6] Model and infrastruc-
ture for enabling auto-
nomic applications.

Autonomic applica-
tions.

AutoMate [1, 15] Execution environment
for autonomic applica-
tions.

Autonomic applica-
tions.

monitor, analyze, plan and execute using knowledge of the environment. Several re-
search efforts focused on enabling the autonomic properties address four main ar-
eas: self-healing, self-protection, self-configuration, and self-optimization. Projects in
both industry and academia, have addressed autonomic behaviors at all levels, from
the hardware level to software systems and applications. At the hardware level, sys-
tems may be dynamically upgradable, while at the operating system level, active op-
erating system code may be replaced dynamically. Efforts have also focused on auto-
nomic middleware, programming systems and runtime. At the application level, self-
optimizing databases and web servers dynamically reconfigure to adapt service per-
formance. These efforts have demonstrated both the feasibility and promise of auto-
nomic computing. However, achieving overall autonomic behaviors remains an open
and significant challenge, which will be accomplished through a combination of pro-
cess changes, skills evolution, new technologies and architecture, and open industry
standards.

References

1. M. Agarwal, V. Bhat, Z. Li, H. Liu, V. Matossian, V. Putty, C. Schmidt, G. Zhang,
M. Parashar, B. Khargharia, and S. Hariri. AutoMate: Enabling Autonomic Applications
on the Grid. In Proceedings of Autonomic Computing Workshop The Fifth Annual Interna-
tional Workshop on Active Middleware Services(AMS 2003) IEEE Computer Society Press,
pages 48–57, Seattle, WA, June 25 2003.

2. W. R. Ashby. Design for a Brain. Chapman & Hall Ltd, 1960.

Autonomic Computing: An Overview 269

3. IBM Corporation. An architectural blueprint for autonomic computing. April 2003.
4. UC Berkeley Computer Science Division. The OceanStore Project, Project Overview.

http://oceanstore.cs.berkeley.edu/info/overview.html, July 8 2002. Project Page.
5. S. Hariri and M. Parashar. Handbook of Bioinspired Algorithms and Applications, chapter

The Foundations of Autonomic Computing. CRC Press LLC, 2005.
6. S. Hariri, L. Xue, H. Chen, M. Zhang, S. Pavuluri, and S. Rao. Autonomia: an autonomic

computing environment. In Performance, Computing, and Communications Conference,
2003. Conference Proceedings of the 2003 IEEE International, April 9-11 2003.

7. P. Horn. Autonomic Computing:IBM’s perspective on the State of Information Technology.
http://www.research.ibm.com/autonomic/, Oct 2001. IBM Corp.

8. G. Kaiser, P. Gross, G. Kc, J. Parekh, and G. Valetto. An Approach to Autonomizing Legacy
Systems. In Workshop on Self-Healing, Adaptive and Self-MANaged Systems, SHAMAN,
New York City, NY, June 23 2002.

9. J. Kubiatowicz. OceanStore: Global-Scale Persistent Storage. http://oceanstore.cs. berke-
ley.edu/publications/talks/StanfordOceanStore.pdf, Spring 2001. Stanford Seminar Series,
Stanford University,.

10. G. M. Lohman and S. S. Lightstone. SMART: Making DB2 (More) Autonomic. In VLDB
2002 28th International Conference on Very Large Data Bases , Kowloon Shangri-La Hotel,
Hong Kong, China, August 20-23 2002.

11. J. Menon, D. A. Pease, R. Rees, L. Duyanovich, and B. Hillsberg. IBM Storage Tank–A
Heterogeneous Scalable SAN file system. IBM Systems Journal, 42(2):250–267, 2003.

12. A. Montresor. The Anthill Project Part II: The Anthill Framework. http://www.cs.unibo.
it/projects/anthill/papers/anthill-4p.pdf, 2001. The Anthill Project Documentation.

13. V. Narasayya. AutoAdmin: Towards Self-Tuning Databases, November 13 2002. Guest
Lecture at Stanford University.

14. University of Sussex. Adaptive system lectures. http://www.cogs.susx.ac.uk/users/ezequiel/
AS/lectures/AdaptiveSystems3.ppt, 2003.

15. M. Parashar, Z. Li, H. Liu V. Matossian, and C. Schmidt. Self-Star Properties in Complex
Information Systems, volume 3460 of Lecture Notes in Computer Science, chapter Enabling
Autonomic Grid Applications: Requirements, Models and Infrastructures. Springer Verlag,
2005.

16. C. Poellabauer. Q-Fabric. http://www.cc.gatech.edu/systems/projects/ELinux/qfabric.html,
2002. Q-Fabric - System Support for Continuous Online Quality Management.

17. R. Pool. Natural selection. http://domino.watson.ibm.com/comm/wwwr thinkresearch.nsf/-
pages/selection200.html, 2002. A New Computer Program Classifies Documents Automati-
cally.

18. R.V. Renesse, K.P. Birman, and W. Vogels. Astrolabe: A robust and scalable technology
for distributed systems monitoring, management, and data mining. ACM Transaction on
Computer Systems, 21(2):164–206, 2003.

19. IBM Research. The Gryphon Project. http://www.research.ibm.com/gryphon/gryphon.html.
IBM Corp.

20. IBM Research. The Océano Project. http://www.research.ibm.com/oceanoproject/. IBM
Corp.

21. Columbia University Smart Grid. Smart Grid Test Bed.
http://www.ldeo.columbia.edu/res/pi/4d4/testbeds/.

Enabling Autonomic Grid Applications: Dynamic
Composition, Coordination and Interaction�

Zhen Li and Manish Parashar

The Applied Software Systems Laboratory,
Rutgers University, Piscataway NJ 08904, USA

{zhljenny, parashar}@caip.rutgers.edu

Abstract. The increasing complexity, heterogeneity and dynamism of networks,
systems and applications have made our computational and information infras-
tructure brittle, unmanageable and insecure. This has necessitated the investiga-
tion of an alternate paradigm for system and application design, which is based on
strategies used by biological systems to deal with similar challenges of complex-
ity, heterogeneity, and uncertainty, i.e. autonomic computing. Project AutoMate
investigates conceptual models and implementation architectures to enable the
development and execution of self-managing applications. It supports the defi-
nition of autonomic elements, the development of autonomic applications as the
dynamic and opportunistic composition of these autonomic elements, and the pol-
icy, content and context driven execution and management of these applications.
This paper introduces AutoMate architecture and describes the Rudder coordina-
tion framework and its use in enabling autonomic behaviors.

1 Introduction

The emergence of wide-area distributed and decentralized “Grid” environments, such
as pervasive information systems, peer-to-peer systems, and distributed computational
infrastructures, has enabled a new generation of applications that are based on seam-
less access, aggregation and interactions. Examples include pervasive applications that
leverage the pervasive information Grid to continuously manage, adapt, and optimize
our living context, crisis management applications that use pervasive conventional and
unconventional information for crisis prevention and response, medical applications
that use in-vivo and in-vitro sensors and actuators for patient management, scientific
and engineering simulations of complex physical phenomena that symbiotically and
opportunistically combine computations, experiments, observations, and real-time data
to provide important insights into complex systems, and business applications that use
anytime-anywhere information access to optimize profits.

However, these emerging Grid computing environments are inherently large, het-
erogeneous and dynamic, globally aggregating large numbers of independent comput-
ing and communication resources, data stores and sensor networks. Further, emerging

� The research presented in this paper is supported in part by the National Science Foundation
via grants numbers ACI 9984357, EIA 0103674, EIA 0120934, ANI 0335244, CNS 0305495,
CNS 0426354 and IIS 0430826.

J.-P. Banâtre et al. (Eds.): UPP 2004, LNCS 3566, pp. 270–285, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Enabling Autonomic Grid Applications 271

Grid applications are similarly large and highly dynamic in their behaviors and inter-
actions. Together, these characteristics result in application development, configuration
and management complexities and uncertainties that break current paradigms based
on passive elements and static compositions and interactions. This has led researchers
to consider alternative programming paradigms and management techniques that are
based on strategies used by biological systems to deal with complexity, dynamism, het-
erogeneity and uncertainty. The approach, referred to as autonomic computing [8], aims
at realizing computing systems and applications capable of managing themselves with
minimal human intervention.

Enabling autonomic systems and applications presents many conceptual and im-
plementation challenges, primarily due to the highly dynamic, context and content-
dependent behaviors. A key challenge is supporting coordination in a robust and scal-
able manner. Coordination is the management of runtime dependencies and interactions
among the elements in the system. In case of autonomic systems/applications, these de-
pendencies and interactions can be complex and various (e.g. peer-to-peer, client-server,
producer-consumer, collaborative, at-most/at-least/exactly, etc.), and both, the coordi-
nated entities and the nature of the relationships and interactions between them can be
ad hoc and opportunistic.

Project AutoMate investigates autonomic solutions to deal with the challenges of
complexity, dynamism, heterogeneity and uncertainty in Grid environments. The over-
all goal of Project AutoMate is to develop conceptual models and implementation ar-
chitectures that can enable the development and execution of such self-managing Grid
applications. These include programming models, frameworks and middleware services
that support definition of autonomic elements, the development of autonomic applica-
tions as the dynamic and opportunistic composition of these autonomic elements, and
the policy, content and context driven execution and management of these applications.
This paper introduces AutoMate and its key components. Specifically, this paper fo-
cuses on the design and implementation of the Rudder coordination framework. Rud-
der provides software agents that enable application/system self-managing behaviors,
and a fully decentralized coordination middleware that enables flexible and scalable
interaction and coordination among agents and autonomic elements. The operation of
AutoMate and Rudder is illustrated using an autonomic oil reservoir optimization ap-
plication that is enabled by the framework.

The rest of this paper is organized as follows. Section 2 outlines the challenges and
requirements of pervasive Grid systems and applications. Section 3 introduces Project
AutoMate, presents its overall architecture and describes its key components. Section
4 presents the describes the design, implementation and evaluation of the Rudder coor-
dination framework, including the Rudder agent framework and the COMET coordina-
tion middleware. Section 5 presents the autonomic oil reservoir application enabled by
AutoMate and Rudder. Section 6 presents a conclusion.

2 Enabling Grid Applications – Challenges and Requirements

The goal of the Grid concept is to enable a new generation of applications combin-
ing intellectual and physical resources that span many disciplines and organizations,

272 Z. Li and M. Parashar

providing vastly more effective solutions to important scientific, engineering, business
and government problems. These new applications must be built on seamless and se-
cure discovery, access to, and interactions among resources, services, and applications
owned by many different organizations.

Attaining these goals requires implementation and conceptual models. Implementa-
tion models address the virtualization of organizations which leads to Grids, the creation
and management of virtual organizations as goal-driven compositions of organizations,
and the instantiation of virtual machines as the execution environment for an applica-
tion. Conceptual models define abstract machines that support programming models
and systems to enable application development. Grid software systems typically pro-
vide capabilities for: (i) creating a transient “virtual organization” or virtual resource
configuration, (ii) creating virtual machines composed from the resource configuration
of the virtual organization (iii) creating application programs to execute on the vir-
tual machines, and (iv) executing and managing application execution. Most Grid soft-
ware systems implicitly or explicitly incorporate a programming model, which in turn
assumes an underlying abstract machine with specific execution behaviors including
assumptions about reliability, failure modes, etc. As a result, failure to realize these as-
sumptions by the implementation models will result in brittle applications. The stronger
the assumptions made, the greater the requirements for the Grid infrastructure to real-
ize these assumptions and consequently its resulting complexity. In this section we first
highlight the characteristics and challenges of Grid environments, and outline key re-
quirements for programming Grid applications. We then introduce self-managing Grid
applications that can address these challenges and requirements.

2.1 Characteristics of Grid Execution Environments and Applications

Key characteristics of Grid execution environments and applications include:

Heterogeneity: Grid environments aggregate large numbers of independent and geo-
graphically distributed computational and information resources, including supercom-
puters, workstation-clusters, network elements, data-storages, sensors, services, and In-
ternet networks. Similarly, applications typically combine multiple independent and
distributed software elements such as components, services, real-time data, experiments
and data sources.

Dynamism: The Grid computation, communication and information environment is
continuously changing during the lifetime of an application. This includes the avail-
ability and state of resources, services and data. Applications similarly have dynamic
runtime behaviors in that the organization and interactions of the components/services
can change.

Uncertainty: Uncertainty in Grid environment is caused by multiple factors, including
(1) dynamism, which introduces unpredictable and changing behaviors that can only be
detected and resolved at runtime, (2) failures, which have an increasing probability of
occurrence and frequencies as system/application scales increase; and (3) incomplete
knowledge of global system state, which is intrinsic to large decentralized and asyn-
chronous distributed environments.

Enabling Autonomic Grid Applications 273

Security: A key attribute of Grids is flexible and secure hardware/software resource
sharing across organization boundaries, which makes security (authentication, autho-
rization and access control) and trust critical challenges in these environments.

2.2 Requirements for Programming Systems and Middleware Services

The characteristics outlined above require that Grid programming systems and mid-
dleware services must be able to specify and support applications that can detect and
dynamically respond to the changes in the runtime environment and application states.
This requirement suggests that (1) Grid applications should be formulated from dis-
crete composable elements, which incorporate separate specifications for all of func-
tional, non-functional, and interaction and coordination behaviors; (2) The interface
definitions of these elements should be separated from their implementations to enable
heterogeneous elements to interact and to enable dynamic selection of elements; (3)
Specifications of composition, coordination and interaction should be separated from
computation behaviors, and may be dynamically specified and implemented.

Given these requirements, a Grid application requiring a given set of computational
behaviors may be integrated with different interaction and coordination models or lan-
guages (and vice versa) and different specifications for non-functional behaviors such
as fault recovery and QoS to address the dynamism and heterogeneity of the application
and the underlying environments.

2.3 Self-managing Applications on the Grid

As outlined above, the inherent scale, complexity, heterogeneity, and dynamism of
emerging Grid environments and applications result in significant programming and
runtime management challenges, which break current approaches. This is primarily be-
cause the programming models and the abstract machine underlying these models make
strong assumptions about common knowledge, static behaviors and system guarantees
that cannot be realized by Grid virtual machines and, which are not true for Grid ap-
plications. Addressing these challenges requires redefining Grid programming frame-
works and middleware services to address the separations outlined above. Specifically,
it requires (1) static (defined at the time of instantiation) application requirements and
system and application behaviors to be relaxed, (2) the behaviors of elements and appli-
cations to be sensitive to the dynamic state of the system and the changing requirements
of the application and be able to adapt to these changes at runtime, (3) required common
knowledge be expressed semantically (ontology and taxonomy) rather than in terms of
names, addresses and identifiers, and (4) the core enabling middleware services (e.g.,
discovery, messaging) be driven by such a semantic knowledge. In the rest of this paper
we describe Project AutoMate, which attempts to address these challenges by enabling
autonomic self-managing Grid applications.

3 Project AutoMate: Enabling Self-managing Grid Applications

Project AutoMate [17, 16] investigates autonomic computing approaches to realize sys-
tems and applications that are capable of managing (i.e., configuring, adapting, optimiz-

274 Z. Li and M. Parashar

Fig. 1. A schematic overview of AutoMate

ing, protecting, healing) themselves. The overall goal is to investigate the conceptual
models and implementation architectures that can enable the development and execu-
tion of such self-managing Grid applications. Specifically, it investigates programming
frameworks and middleware services that support the development of autonomic appli-
cations as the dynamic and opportunistic composition of autonomic elements, and the
execution and management of these applications.

A schematic overview of AutoMate is presented in Figure 1. Components of Au-
toMate include the Accord [10, 11] programming system, the Rudder [9] decentralized
coordination framework and agent-based deductive engine, which is the focus of this
paper, and the Meteor [7, 6] content-based middleware providing support for content-
based routing, discovery and associative messaging. Project AutoMate additionally
includes the Sesame [21] context-based access control infrastructure, the DAIS [20]
cooperative-protection services and the Discover collaboratory [4, 12, 13] services for
collaborative monitoring, interaction and control, which are not described here.

The Accord programming system [10, 11] extends existing programming systems to
enable autonomic element definitions, self-managing Grid application formulation and
development. Specifically it extends the entities and composition rules defined by the
underlying programming model to enable computational and composition/interaction
behaviors to be defined at runtime using high-level rules. Autonomic Elements in Ac-
cord extend programming elements (i.e., objects, components, services) to define a self-
contained modular software unit with specified interfaces and explicit context depen-
dencies. Additionally, an autonomic element encapsulates rules, constraints and mech-
anisms for self-management, and can dynamically interact with other elements and the
system.

Each autonomic element is associated with an element manager (possibly embed-
ded) that is delegated to manage its execution. The element manager monitors the state

Enabling Autonomic Grid Applications 275

of the element and its context, and controls the execution of rules. Rules incorporate
high-level guidance and practical human knowledge. Behavioral rules control the run-
time functional behaviors of an autonomic element (e.g., the dynamic selection of al-
gorithms, data representation, input/output format used by the element), while Interac-
tion rules control the interactions between elements, between elements and their envi-
ronment, and the coordination within an autonomic application (e.g., communication
mechanism, composition and coordination of the elements).

Meteor [7, 6] is a scalable content-based middleware infrastructure that provides
services for content routing, discovery, and associative interactions. The Meteor stack
consists of 3 key components: (1) a self-organizing overlay, (2) a content-based routing
engine and discovery service (Squid), and (3) the Associative Rendezvous Messaging
Substrate (ARMS). The Meteor overlay is composed of Rendezvous Peer (RP) nodes,
which may be any node on the Grid (e.g., gateways, access points, message relay nodes,
servers or end-user computers). RP nodes can join or leave the overlay network at any
time. The overlay topology is based on standard structured overlays. The content over-
lay provides a single operation, lookup(identifier), which requires an exact identifier
(e.g., name). Given an identifier, this operation locates the peer node where the content
should be stored. Squid [18] is the Meteor content-based routing engine and decen-
tralized information discovery service. It supports flexible content-based routing and
complex queries containing partial keywords, wildcards, and ranges, and guarantees
that all existing data elements that match a query will be found.

The ARMS layer [7] implements the Associative Rendezvous (AR) interaction
paradigm. AR is a paradigm for content-based decoupled interactions with
programmable reactive behaviors, and extends the conventional name/identifier-based
rendezvous in two ways. First, it uses flexible combinations of keywords (i.e, keyword,
partial keyword, wildcards and ranges) from a semantic information space, instead of
opaque identifiers (names, addresses) that have to be globally known. Interactions are
based on content described by these keywords. Second, it enables the reactive behav-
iors at the rendezvous points to be encapsulated within messages increasing flexibility
and enabling multiple interaction semantics (e.g., broadcast multicast, notification, pub-
lisher/subscriber, mobility, etc.).

Rudder [9] is an agent-based decentralized coordination framework for enabling
self-managing Grid applications, and provides the core capabilities for supporting au-
tonomic compositions, adaptations, optimizations, and fault-tolerance. It enables com-
position, coordination and interaction behaviors to be separated from computational
behaviors, and allows them to be semantically separately expressed and efficiently im-
plemented. Rudder and its components are described in more detail in the following
sections.

4 Rudder Coordination Framework

Rudder consists of two key components: an agent framework and the COMET coordi-
nation middleware. The agent framework provides protocols for coordination and co-
operation to enable peer agents to individually and collectively achieve self-managing
behaviors. COMET implements the coordination abstractions and mechanisms and pro-
vides a decentralized and associative shared coordination-space.

276 Z. Li and M. Parashar

4.1 The Rudder Agent Framework

The Rudder agent framework is composed of a dynamic network of software agents
existing at different levels, ranging from individual system/application elements to the
overall system/application. These agents monitor the element states, manage the ele-
ment behaviors and dependencies, coordinate element interactions, and cooperate to
manage overall system application behaviors.

Agent Classification: The Rudder agent framework consists of three types of peer
agents: Component Agent (CA), System Agent (SA), and Composition Agent (CSA).
CAs and SAs are part of the system/application elements, while CSAs are transient and
are generated to satisfy specific application requirements. CAs manage the computa-
tions performed locally within application elements and their interaction and commu-
nication behaviors and mechanisms. They are integrated with the Accord element man-
agers. SAs are embedded within Grid resource units (e.g., compute resources, instru-
ment, data store). CSAs enable dynamic composition of autonomic elements by defin-
ing and executing workflow-selection and element-selection rules. Workflow-selection
rules are used to select appropriate composition plans to enact. Element-selection rules
are used to semantically discover and select registered elements. CSAs negotiate to
select interaction patterns for a specific application workflow, and coordinate with as-
sociated element agents to define and execute associated interaction rules at runtime.
This enables autonomic applications to dynamically change flows, elements and ele-
ment interactions to address application and system dynamics and uncertainty.

Agent Coordination Protocols: Rudder provides a set of common discovery and con-
trol protocols to all agents. Discovery protocols support the registering, unregistering,
and discovery of system/application elements. Control protocols allow the agents to
query element states, control their behaviors and orchestrate their interactions. These
protocols include negotiation, notification, and mutual exclusion. The agent coordina-
tion protocols are scalably and robustly implemented in logically decentralized, physi-
cally distributed Grid environments using the abstractions provided by COMET, which
are described below.

4.2 COMET Coordination Middleware

The overall goal of COMET is to enable scalable peer-to-peer content-based coordi-
nation in large-scale decentralized distributed environments. The COMET implements
a global Linda-like shared-space [5], which is constructed from a globally known se-
mantic multi-dimensional information space. The information space is defined by the
ontology used by the coordinated entities, and is deterministically mapped, using a lo-
cality preserving mapping, to a dynamic set of peer nodes in the system. The resulting
peer-to-peer information lookup system maintains content locality and guarantees that
content-based information queries, using flexible content descriptors in the form of key-
words, partial keywords and wildcards, are delivered with bounded costs.

The COMET Model. The COMET model consists of layered abstractions prompted
by a fundamental separation of communication and coordination concerns.

Enabling Autonomic Grid Applications 277

The communication abstraction provides an associative communication service and
guarantees that content-based information queries, specified using flexible content de-
scriptors, are served with bounded costs. It supports content-based discovery, routing
and messaging. This layer essentially maps the virtual information space in a deter-
ministic way on to the dynamic set of currently available peer nodes in the system,
while maintaining content locality. It thus manages system scale, heterogeneity and dy-
namism. The communication abstraction provides a single operator: deliver (M). The
message M consists of (1) a semantic selector that is flexibly defined using keywords
from the information space, and specifies a region in this space, and (2) a payload con-
sisting of the data and operation to be performed at the destination.

The coordination abstraction extends the traditional data-driven model with event-
based reactivity to changes in system state and to data access operations. It defines a
reactive tuple, which consists of 2 additional components: a condition that associates re-
action to events, and a guard that specifies how and when the reaction will be executed
(e.g., immediately, once). This abstraction provides the basic Out, In, and Rd prim-
itives. These basic operations operate on regular as well as reactive tuples and retain
the Linda semantics. The operations are directly implemented on the deliver operator
provided by the communication abstraction.

Transient Spaces in COMET. Coordination middlewares based on the model outlined
above are naturally suitable for context-transparent applications that are developed and
executed without explicit knowledge of the system context. Furthermore, since the un-
derlying implementation maintains content locality in the information space, it is both
scalable and flexible. However, certain applications, e.g., mobile applications, require
context locality to be maintained in addition to content locality, i.e., they impose re-
quirements for context-awareness. The uniform operators provided by COMET do not
distinguish between local and remote components of a space. While this is a convenient
abstraction, it does not maintain context locality and may have a detrimental effect on
system efficiency for these applications. To address this issue, COMET defines transient
spaces that have a specific scope definition (e.g., within the same geographical region
or the same physical subnet). The transient spaces have exactly the same structure and
semantics as the original space, and can be dynamically created. An application can
switch between spaces at runtime and can simultaneously use multiple spaces.

The COMET Design and Implementation. A schematic overview of the COMET
system architecture is shown in Figure 2. The current prototype has been implemented
on Project JXTA [2], a general-purpose peer-to-peer framework. The coordination space
is provided as a JXTA peergroup service that can be concurrently exploited by multiple
applications. The design and implementation of the COMET coordination and commu-
nication layers are described below.

Communication Layer: The communication layer of COMET is built on the Meteor
messaging substrate[7], which provides scalable content-based routing and data deliv-
ery operations. Meteor consists of a structured self-organizing overlay and the Squid
content-based routing engine.

Squid [18] provides a decentralized information discovery and associative messag-
ing service. It uses a locality preserving and dimension reducing indexing scheme,

278 Z. Li and M. Parashar

Fig. 2. A schematic overview of the COMET system architecture

H
um

id
ity

Temperature
(a)

0

13

32
40

51

(c)

H
um

id
ity

(b) Temperature2

1

Keyword tuple

7
0 63

7

Fig. 3. Routing using a simple keyword tuple in Squid: (a) the simple keyword tuple (2, 1) is
viewed as a point in a multi-dimensional space; (b) the keyword tuple is mapped to the index 7,
using Hilbert SFC; (c) the data will be routed in the overlay (an overlay with 5 RP nodes and an
identifier space from 0 to 26-1) at RP node 13, the successor of the index 7

based on the Hilbert Space Filling Curve (SFC), to effectively map a multi-dimensional
information space to the peer identifier space and to the current peer nodes in the sys-
tem. The peer nodes form a structured overlay. The resulting peer-to-peer information
system supports flexible content-based routing and complex queries containing partial
keywords, wildcards, and ranges, and guarantees that all existing data elements that
match a query will be found. Keywords can be common words or values of globally
defined attributes, and are defined by applications. In the case of COMET, these key-
words are part of the common ontology used by the coordinating entities. The keywords
form the multi-dimensional information space, i.e., keyword tuples represent points or
regions in this space and the keywords are the coordinates. A keyword tuple in Squid
is defined as a list of d keywords, wildcards and/or ranges, where d is the dimension-
ality of the keyword space. A keyword tuple only containing complete keywords is
called simple, and a tuple containing partial keywords, wildcards and/or ranges is called
complex.

Content-based routing in Squid is achieved as follows. SFCs are used to generate
a 1-dimensional index space from the multi-dimensional keyword space. Further, us-
ing the SFC, a query consisting of a simple keyword tuple can be mapped to a point
on the SFC. Similarly, any complex keyword tuple can be mapped to regions in the
keyword space and to corresponding clusters (segments of the curve) in the SFC. The
1-dimensional index space generated from the entire information space is mapped onto
the 1-dimensional identifier space used by the overlay network formed by the peer

Enabling Autonomic Grid Applications 279

nodes. As a result, using the SFC mapping any simple or complex keyword tuple can
be located. Squid provides a simple abstraction to the layer above consisting of a sin-
gle operation: post(keyword tuple, data), where data is the message payload provided
by the messaging layer above. The routing for simple and complex keyword tuples is
illustrated in Figures 3 and 4 respectively.

Complex
keyword
tuple

0

13

32

40

51H
um

id
ity

Temperature2 3

1

5
Destination
nodes

(a) (b)

6

11

28
31

Fig. 4. Routing using a complex keyword tuple (2-3, 1-5): (a) the keyword tuple defines a rectan-
gular region in the 2-dimensional keyword space consisting of 2 clusters (2 segments on the SFC
curve); (b) the clusters (the solid part of the circle) correspond to destination RP nodes 13 and
32, which are routed to

0

5

8
10

11

1 <= i <= m

finger = the successor of (this node
identifier + 2i - 1) mod 2m,

5 + 1 8

5 + 2

5 + 4

5 + 8

8

10

0

Finger table
at node 5

Fig. 5. Example of the Chord overlay network. Each node stores the keys that map to the segment
of the curve between itself and the predecessor node

The Meteor content overlay is composed of peer nodes, which may be any node in
the system (e.g., gateways, access points, message relay nodes, servers or end-user com-
puters). The peer nodes can join or leave the network at any time. The overlay topology
is based on standard structured overlays. The current implementation of Meteor uses
the Chord [19] overlay network where peer nodes form a ring topology. Advantages of
Chord include its guaranteed performance and logarithmic in number of messages. Ev-
ery node in Chord is assigned a unique identifier and maintains a finger table for routing.
The lookup algorithm in Chord enables the efficient data routing with O(log N) cost,
where N is the number of nodes in the system. An example of a Chord overlay network
with 5 nodes is shown in Figure 5. The Meteor overlay network layer provides a sim-
ple abstraction to the layers above, consisting of a single operation: lookup(identifier).
Given an identifier, this operation locates the node that is responsible for it, i.e, the
node with an identifier that is the closest identifier greater than or equal to the queried
identifier.

280 Z. Li and M. Parashar

0 200 400 600 800 1000
20

25

30

35

40

45

50

55

60

65

70

Inter-arrival mean (ms)

 16 nodes 48 nodes

M
ea

n
 r

u
n

 t
im

e
(m

s)

Fig. 6. Average round trip time for the Out operation for different mean inter-arrival time

Coordination Layer: The coordination layer implements the coordination abstraction
and primitives. Its main components include a data repository for storing, pending re-
quests, and retrieving tuples, a flexible matching engine, and a message dispatcher that
interfaces with the communication layer to convert the coordination primitives to mes-
saging operations and vice versa. Tuples and templates are represented as simple XML
strings, as they provide small-sized flexible formats that are suitable for efficient infor-
mation exchange in distributed heterogeneous environments.

The COMET Out, Rd and In operations are implemented using Squid routing.
Using the tag and fields of a tuple, each tuple/template is associated with a sequence of
keywords, which are then used to generate the keyword tuple required by the Squid post
operator. It is assumed that all peer nodes agree on the structure and dimension of the
information space used to define the keyword tuples.

Tuple distribution consists of the following steps: (1) Keywords are extracted from
the tuple and used to create the keys for the Squid post operation. The payload of the
message consists of the tuple and the coordination operation. (2) Squid uses the SFC
mapping to identify the indices corresponding to the keyword tuple and the correspond-
ing peer id(s). (3) The overlay lookup operator is used to route to the appropriate peer
nodes. This operator maps the logical peer identifer to a JxtaId and sends the tuple using
the JXTA Resolver Protocol. The Out operator only returns after receiving the Resolver
Query Response from the destination to guarantee tuple delivery. In the case of In and
Rd operations, the templates are routed in a similar manner. These two operations block
until a matched tuple is returned by the destination in a peer-to-peer manner.

Experimental Evaluation of COMET. COMET has been deployed in a distributed
network of 64 Linux-based computers in Rutgers University. Each node has an Intel(R)
Pentium-4 1.70GHz CPU with 512MB RAM and is running Linux 2.4.20-8 (kernel
version). Each machine serves as a peer node in COMET overlay. The experiments in-
clude measuring the average run time for each of the coordination primitives provided
by COMET. For an Out operation, the measured time corresponds to the time interval
between when the tuple is posted into the space and when the response from the desti-
nation is received. For a In/Rd operation, the measured time is the time interval between
when the template is posted into the space and when the matched tuple is returned to
the application assuming that a matched tuple exists in the space. This time includes the
duration of template routing, repository matching and returning the matched tuple. The
measurements use the native clocks of the peer nodes.

Enabling Autonomic Grid Applications 281

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

M
e

a
n

 r
u

n
 t

im
e

 (
m

s)

Number of nodes

 100 In operations
 25 Rd operations

(a) Average time for 100 In and 25 Rd
operations for increasing system sizes.

2000 4000 6000 8000 10000 12000
60

70

80

90

100

110

120

130

140

150

Number of tuples (average 110 bytes each)

 In a tuple
 Rd a tuple

M
ea

n
 r

u
n

 t
im

e
(m

s)

(b) Average time for In and Rd oper-
ations with increasing number of tu-
ples. System size fixed at 4 nodes.

Fig. 7. Scalability and performance of In and Rd operations

Evaluation of the Out Operation. To evaluate the Out operation, regular XML tuples
were used, which consist of randomly generated strings with fixed length. The average
size of a tuple was 110 bytes. Furthermore, network traffic was modelled as poisson
arrival Out operations with different inter-arrival mean time. Figure 6 shows the per-
formance of the Out operations with inter-arrival mean time of 10ms, 100ms, 500ms,
and 1000ms, and a system size of 16 and 48 peer nodes. The Y axis is the average
run time. The figure shows that the Out operation is fairly independent of the traffic
inter-arrival time and scales with system size at the order of O(logN) where N is the
number of nodes in the system. The maximum average time of the 48 peer node system
is approximately 47ms, which we believe is acceptable.

Evaluation of the In/Rd Operation. To study the behavior of the In/Rd operation, two
experiments were conducted. The first experiment evaluated the average time required
for data retrieval and extraction using In and Rd operations with different system sizes.
The operation latency was measured for 25 Rd operations and 100 In operations. In this
experiment we assumed that the tuples were previously stored into the space by Out
operations. In the second experiment, the average time required for each single opera-
tion was measured for different numbers of tuples, with a fixed system size of 4 nodes.
The lengths of the tuples are fixed at 110 bytes. The tuples were generated with random
strings. The results are shown in Figure 7. The plots show that the In/Rd operations scale
well with the number of nodes and their performance is largely independent of the num-
ber of tuples in the system. The average latency for Rd/In operations is approximately
105ms for experiments with numbers of tuples ranging from 2000 to 12000.

5 An Illustrative Example: Autonomic Oil Reservoir
Optimization

One of the fundamental problems in oil reservoir production is determining the opti-
mal locations of the oil production and injection wells. However, the selection of ap-
propriate optimization algorithms, the runtime configuration and invocation of these

282 Z. Li and M. Parashar

Fig. 8. Autonomic Oil Reservoir Optimization

algorithms and the dynamic optimization of the reservoir remain challenging problems.
In this example we use AutoMate to support the autonomic compositions, interactions
and adaptations to enable an autonomic self-optimizing reservoir application. The ap-
plication consists of the following elements: (1) sophisticated reservoir simulation com-
ponents (e.g. IPARS [1] factory) that encapsulate complex mathematical models of the
physical interactions in the subsurface; (2) distributed data archives that store histori-
cal, experimental, and observed data; (3) sensors embedded in the instrumented oilfield
providing real-time data about the current state of the oil field; (4) optimization services
based on the Very Fast Simulated Annealing (VFSA) [14] and Simultaneous Perturba-
tion Stochastic Approximation (SPSA) [15]; (5) the economic modeling service.

These elements need to dynamically discover one another and interact as peers to
achieve the overall application objectives. First, the simulation components should dy-
namically obtain necessary resources, detect current resource state, and negotiate re-
quired qualities of service. Next, the simulation components must interact with one
another, and with archived history and real-time sensor data, to enable a better char-
acterization of the reservoir. Further, the reservoir simulation components interact with
optimization services and with the data to optimize well configuration and operation,
with weather services to control production, and with economic modelling service to
detect current and predicted future oil prices so as to maximize the revenue from the
production.

The operation of this application using AutoMate, and specially Rudder, is illus-
trated in Figure 8. The overall process is achieved by (1) generating composition agents
based on application workflows, (2) agents discovering and composing the involved
components to enable the oil reservoir management process, which includes monitor-
ing oil production behaviors and detecting needs for optimization, and (3) agents using
high-level policies to orchestrate interactions to optimize well operation and oil produc-
tion.

First, the AutoMate composition engine (ACE) [3] generates the following work-
flows to satisfy the application objectives: (i) the optimization service provides the

Enabling Autonomic Grid Applications 283

IPARS reservoir simulator with an initial guess of well parameters based on the config-
uration of the oil field; (ii) IPARS uses the well parameters along with current market
parameters to periodically compute the current revenue using an Economic Model (EM)
service; and (iii) IPARS iteratively interacts with the optimization service to optimize
well parameters for maximum profit. Based on above workflows, three CSAs are instan-
tiated for the EM, Optimizer, and IPARS respectively. The CSAs dynamically discover
the appropriate autonomic elements with desired functionality and cost/performance
characteristics using the discovery protocol, and configure the workflows using interac-
tion rules. The CAs use the interaction rules to dynamically establish interaction rela-
tionships among the elements and using appropriate communication mechanisms. The
CSAs then coordinate with the CAs using the decentralized tuple-space.

Application self-management and self-optimization behaviors are achieved via the
police-based autonomic behaviors of the agents. Each CA monitors and manages the
execution of its element, while the CSAs discover and compose elements and resources
to satisfy current application objectives. For example, the choice of optimization algo-
rithm depends on the size and nature of the reservoir. In case of reservoirs with many
randomly distributed maxima and minima, the VFSA algorithm can be employed during
the initial optimization phase. Once convergence slows down, VFSA can be replaced by
SPSA, which is suited for larger reservoirs with relatively smooth characteristics. Us-
ing these policies, the Optimizer CSA selects the appropriate optimization service, and
configures it to optimize the application according to the current objectives of the appli-
cation. Similarly, the SAs monitor and manage the runtime utilization of the resource
and dynamically balance workload.

6 Conclusion

In this paper, we introduced Project AutoMate and described Rudder, its coordination
framework. Project AutoMate investigates solutions that are based on the strategies used
by biological systems to deal with challenges of complexity, dynamism, heterogeneity
and uncertainty. This approach, referred to as autonomic computing, aims at realiz-
ing systems and applications that are capable of managing (i.e., configuring, adapting,
optimizing, protecting, healing) themselves. The overall goal of Project AutoMate is
to investigate conceptual models and implementation architectures that can enable the
development and execution of such self-managing Grid applications. Specifically, it
investigates programming models, frameworks and middleware services that support
the definition of autonomic elements, the development of autonomic applications. The
Rudder coordination framework consists of an agent framework and the COMET coor-
dination middleware and enables dynamic discovery, composition and the policy, con-
tent and context driven definition, execution and management of these applications. The
design, implementation and evaluation of Rudder was presented. The operation of Au-
toMate and Rudder was illustrated using an autonomic self-optimization oil reservoir
application.

284 Z. Li and M. Parashar

References

1. IPARS: Integrated Parallel Reservoir Simulator, The University of Texas at Austin,
http://www.ices.utexas.edu/CSM.

2. “Project JXTA”, http://www.jxta.org.
3. M. Agarwal and M. Parashar, “Enabling Autonomic Compositions in Grid Environments,” in

Proceedings of 4th International Workshop on Grid Computing (Grid 2003), IEEE Computer
Society Press 2003, 34 - 41.

4. V. Bhat and M. Parashar, “Discover Middleware Substrate for Integrating Services on the
Grid,” in Proceedings of 10th International Conference on High Performance Computing
(HiPC 2003), Springer-Verlag, December 2003, 373-382.

5. D. Gelernter, “Generative communication in Linda”, ACM Trans. Program. Lang. System,
ACM Press, 7(1) 1985, 80–112.

6. N. Jiang and M. Parashar, “Enabling Applications in Sensor-Based Pervasive Environments,”
in Proceedings of BROADNETS 2004: Workshop on Broadband Advanced Sensor Networks
(BaseNets 2004), San Jose, CA, USA October 25, 2004.

7. N. Jiang, C. Schmidt, V. Matossian and M. Parashar, “Content-based Middleware for De-
coupled Interactions in Pervasive Environments”, Rutgers University, Wireless Information
Network Laboratory (WINLAB), Piscataway, NJ, USA, 2004.

8. J. Kephart, M. Parashar, V. Sunderam and R. Das, eds., Proceedings of the First International
Conference on Autonomic Computing, IEEE Computer Society Press, 2004.

9. Z. Li and M. Parashar, “Rudder: A Rule-based Multi-agent Infrastructure for Supporting
Autonomic Grid Applications,” in Proceedings of 1st IEEE International Conference on
Autonomic Computing (ICAC-04), May 2004, 10 -17.

10. H. Liu and M. Parashar, “Accord: A Programming Framework for Autonomic Applications,”
IEEE Transactions on Systems, Man and Cybernetics, Special Issue on Engineering Auto-
nomic Systems, Editors: R. Sterritt and T. Bapty, IEEE Press, to appear.

11. H. Liu, M. Parashar and S. Hariri, “A Component-based Programming Framework for Au-
tonomic Applications,” in Proceedings of 1st IEEE International Conference on Autonomic
Computing (ICAC-04), IEEE Computer Society Press 2004, 278 - 279.

12. V. Mann, V. Matossian, R. Muralidhar and M. Parashar, “DISCOVER: An Environment for
Web-based Interaction and Steering of High-Performance Scientific Applications”, Concur-
rency and Computation: Practice and Experience, 13(8-9), 2001, 737-754.

13. V. Mann and M. Parashar, “Engineering an Interoperable Computational Collaboratory on
the Grid”, Concurrency and Computation: Practice and Experience, Special Issue on Grid
Computing Environments, 14(13-15), 2002, 1569-1593.

14. V. Matossian, V. Bhat, M. Parashar, M. Peszynska, M. Sen, P. Stoffa and M. F. Wheeler, “Au-
tonomic Oil Reservoir Optimization on the Grid”, Concurrency and Computation: Practice
and Experience, John Wiley and Sons, John Wiley and Sons, Vol. 17, Issue 1, pp. 1 - 26,
2005.

15. V. Matossian, M. Parashar, W. Bangerth, H. Klie and M. F. Wheeler, “An Autonomic Reser-
voir Framework for the Stochastic Optimization of Well Placement”, Cluster Computing:
The Journal of Networks, Software Tools, and Applications, Special Issue on Autonomic
Computing, Kluwer Academic Press, March 2004.

16. M. Parashar, Z. Li, H. Liu, C. Schmidt, V. Matossian and N. Jiang, “Enabling Autonomic
Applications: Models and Infrastructure,” in Proceedings of European Commission - US Na-
tional Science Foundation Strategic Research Workshop on Unconventional Programming
Paradigms: Challenges, Visions and Research Issues for New Programming Paradigms,
Spring Verlag 2004.

Enabling Autonomic Grid Applications 285

17. M. Parashar, H. Liu, Z. Li, V. Matossian, C. Schmidt, G. Zhang and S. Hariri, “AutoMate:
Enabling Autonomic Grid Applications,” Cluster Computing: The Journal of Networks, Soft-
ware Tools, and Applications, Special Issue on Autonomic Computing, Kluwer Academic
Publishers, November 2003.

18. C. Schmidt and M. Parashar, “Enabling Flexible Queries with Guarantees in P2P Systems”,
IEEE Internet Computing, 8(3), May-June 2004, 19 - 26.

19. I. Stoica, R. Morris, D. Karger, F. Kaashoek and H. Balakrishnan, “Chord: A Scalable Peer-
to-Peer Lookup Service for Internet Applications,” in Proceedings of ACM SIGCOMM, Au-
gust 2001.

20. G. Zhang and M. Parashar, “Cooperative Defense against Network Attacks,”, in Proceedings
of the 3rd International Workshop on Security In Information Systems (WOSIS 2005), 7th In-
ternational Conference on Enterprise Information Systems (ICEIS 2005), Miami, FL, USA,
May 2005.

21. G. Zhang and M. Parashar, “Dynamic Context-aware Access Control for Grid Applications,”
in Proceedings of 4th International Workshop on Grid Computing (Grid 2003), IEEE Com-
puter Society Press 2003, 101 - 108.

Grassroots Approach to Self-management
in Large-Scale Distributed Systems�

Ozalp Babaoglu, Márk Jelasity��, and Alberto Montresor

Department of Computer Science, University of Bologna, Italy
{babaoglu, jelasity, montreso}@cs.unibo.it

Abstract. Traditionally, autonomic computing is envisioned as replac-
ing the human factor in the deployment, administration and mainte-
nance of computer systems that are ever more complex. Partly to ensure
a smooth transition, the design philosophy of autonomic computing sys-
tems remains essentially the same as traditional ones, only autonomic
components are added to implement functions such as monitoring, error
detection, repair, etc. In this position paper we outline an alternative
approach which we call “grassroots self-management”. While this ap-
proach is by no means a solution to all problems, we argue that recent
results from fields such as agent-based computing, the theory of complex
systems and complex networks can be efficiently applied to achieve im-
portant autonomic computing goals, especially in very large and dynamic
environments. Unlike traditional compositional design, in the grassroots
approach, desired properties like self-healing and self-organization are
not programmed explicitly but rather “emerge” from the local interac-
tions among the system components. Such solutions are potentially more
robust to failures, are more scalable and are extremely simple to imple-
ment. We discuss the practicality of grassroots autonomic computing
through the examples of data aggregation, topology management and
load balancing in large dynamic networks.

1 Introduction

The desire to build fault-tolerant computer systems with an intuitive and simple
user interface has always been part of the computer science research agenda.
Yet, the current scale and complexity of computer systems is becoming alarm-
ing, especially because our everyday life has come to depend on such systems
to an increasing degree. There is a general feeling in the research community
that coping with this new situation—which emerged as a result of Moore’s Law,
the widespread adoption of the Internet and computing becoming pervasive in

� This work was partially supported by the Future & Emerging Technologies unit of
the European Commission through Projects BISON (IST-2001-38923) and DELIS
(IST-001907).

�� Also with RGAI, MTA SZTE, Szeged, Hungary.

J.-P. Banâtre et al. (Eds.): UPP 2004, LNCS 3566, pp. 286–296, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Grassroots Approach to Self-management 287

general—calls for radically new approaches to achieve seamless and efficient func-
tioning of computer systems.

Accordingly, significant effort is being devoted to tackle the problem of self-
management. One of the most influential and widely publicized approaches is
IBM’s autonomic computing initiative, launched in 2001 [11]. The term “auto-
nomic” is a biological analogy referring to the autonomic nervous system. The
function of this system in our body is to control “routine” tasks such as blood
pressure, hormone levels, heart rate, breathing rate, etc. allowing our conscious
mind to focus on higher level tasks like planning and problem solving. The idea
is that autonomic computing is just that: computer systems should take care of
routine tasks themselves while system administrators and users can focus on the
actual task instead of spending most of their time troubleshooting and tweaking
their systems.

Since the original initiative, the term has been adopted by the wider research
community [3, 1] although it is still strongly associated with IBM and, more
importantly, IBM’s specific approach to autonomic computing. This is somewhat
unfortunate because the term autonomic would allow for a much deeper and
more far-reaching interpretation, as we explain soon. In short, we should not
only consider what the autonomic nervous system does but also how it does it.
We believe that the remarkably successful self-management of the autonomic
nervous system, and biological organisms in general, lies exactly in the way they
achieve this functionality. Ignoring the exact mechanisms and stopping at the
shallow analogy at the level of functional description misses some important
possibilities and lessons that can be learned by computer science.

1.1 The Meaning of “Self”

The traditional approach to autonomic computing is to replace human system
administrators with software or hardware components that continuously moni-
tor some subsystem assigned to them, forming so-called control loops [11] which
involve monitoring, knowledge based planning and execution (see Figure 1).
Biological systems, however, achieve self-management and control through en-
tirely different, often fully distributed and emergent ways of processing infor-
mation. In other words, the usual biological interpretation of self-management
involves no managing and managed entities. There is often no subsystem respon-
sible for self-healing or self-optimization; instead, these properties simply arise
from some simple local behavior of the components typically in a highly non-
trivial way. The term “self” is meant truly in a grassroots sense, and we believe
that this fact might well be the reason for many desirable properties such as
extreme robustness and adaptivity, despite very simple implementations.

1.2 Trust

There are a few practical obstacles in the deployment of grassroots self-
management. One of them is due to the entirely different and somewhat un-
natural thinking that self-organization and emergence require and the relative
lack of our understanding of the principles behind them [14]. Accordingly, trust

288 O. Babaoglu, M. Jelasity, and A. Montresor

Decide

Resource

c
o
n
t
r
o
l

m
e
a
s
u
r
e

Resource

Grassroots Conceptual

Fig. 1. Models of self-management

delegation represents a problem: psychologically it is more comforting to have a
single point of control, an explicit controlling entity. In the case of the autonomic
nervous system we cannot do anything else but trust it, although probably many
people would prefer to have more control, especially when things go wrong. In-
deed, the tendency in engineering is to try to isolate and create central units
that are responsible for a function. A good example is the car industry that uses
computers in increasing numbers in our cars to explictly control the different
functions, thereby replacing old-and-proven mechanisms that were often based
on self-optimizing mechanism (like the carburetor). To some extent, this results
in sacrificing the self-healing and robustness features for these functions.

1.3 Modularity

To exploit the power and simplicity of emergent behavior and yet ensure that
these mechanisms can be trusted and be incorporated in systems in an informed
manner, we believe that a modular paradigm is required. The idea is to identify
a collection of simple and predictable services as building blocks and combine
them in arbitrarily complex functions and protocols. Such a modular approach
presents several attractive features. Developers will be allowed to plug different
components implementing a desired function into existing or new applications,
being certain that the function will be performed in a predictable and depend-
able manner. Research may be focused on the development of simple and well-
understood building blocks, with a particular emphasis on important properties
like robustness, scalability, self-organization and self-management.

The goal of this position paper is to promote this idea by describing some
of our preliminary experiences. Our recent work has resulted in a collection of
simple and robust building blocks, which include data aggregation [9, 13], mem-
bership management [8], topology construction [6,12] and load balancing [10]. Our
building blocks are typically no more complicated than a cellular automaton or

Grassroots Approach to Self-management 289

do forever
wait(T time units)
p ← getPeer()
send s to p
sp ← receive(p)
s ← update(s, sp)

(a) active thread

do forever
sp ← receive(*)
send s to sender(sp)
s ← update(s, sp)

(b) passive thread

Fig. 2. The skeleton of a gossip-based protocol. Notation: s is the local state, sp is the
state of the peer p

a swarm model which makes them ideal objects for research. Practical applica-
tions based on them can also benefit from a potentially more stable foundation
and predictability, a key concern in fully distributed systems. Most importantly,
they are naturally self-managing, without dedicated system components. In the
rest of the paper, we briefly describe these components.

2 A Collection of Building Blocks

In the context of the BISON project [2], our recent activity has focused on
the identification and development of protocols for several simple basic func-
tions. The components produced so far can be informally subdivided into two
broad categories: overlay protocols and functional protocols. An overlay protocol
is aimed at maintaining application-layer, connected communication topologies
over a set of distributed nodes. These topologies may constitute the basis for
functional protocols, whose task is to compute specific functions over the data
maintained at nodes.

Our current bag of protocols includes: (i) protocols for organizing and man-
aging structured topologies such as super-peer based networks (SG-1 [12], grids
and tori (T-Man [6]); (ii) protocols for building unstructured networks based
on the random topology (newscast [8]); (iii) protocols for the computation of
a large set of aggregate functions, including maximum and minimum, average,
sum, product, geometric mean, variance, etc [13, 9]; and (iv) protocols for load
balancing [10].

The relationships between overlay and functional protocols may assume sev-
eral different forms. Topologies may be explicitly designed to optimize the per-
formance of a specific functional protocol (this is the case of newscast [8] used to
maintain a random topology for aggregation protocols). Or, a functional protocol
may be needed to implement a specific overlay protocol (in superpeer networks,
aggregation can be used to identify the set of superpeers).

All the protocols we have developed so far are based on the gossip-based
paradigm [4, 5]. Gossip-style protocols are attractive since they are extremely
robust to both computation and communication failures. They are also extremely
responsive and can adapt rapidly to changes in the underlying communication
structure without any additional measures.

290 O. Babaoglu, M. Jelasity, and A. Montresor

structured topology

T−Man, SG−1
data aggregation

load balancing
unstructured topology

newscast

monitoring

control

clustering

sortingsearch

Fig. 3. Dependence relations between components

The skeleton of a generic gossip-based protocol is shown in Figure 2. Each
node possesses a local state and executes two different threads. The active one
periodically initiates an information exchange with a peer node selected ran-
domly, by sending a message containing the local state and waits for a response
from the selected node. The passive thread waits for messages sent by an initiator
and replies with its local state.

Method update builds a new local state based on the previous local state
and the state received during the information exchange. The output of update

depends on the specific function implemented by the protocol. The local states at
the two peers after an information exchange are not necessarily the same, since
update may be non-deterministic or may produce different outputs depending
on which node is the initiator.

Even though our system is not synchronous, it is convenient to talk about
cycles of the protocol, which are simply consecutive wall clock intervals during
which every node has its chance of performing an actively initiated information
exchange.

In the following we describe the components. Figure 3 illustrates the depen-
dence relations between them as will be described.

2.1 Newscast

In newscast [8], the state of a node is given by a partial view, which is a set
of peer descriptors with a fixed size c. A peer descriptor contains the address of
the peer, along with a timestamp corresponding to the time when the descriptor
was created.

Method getPeer returns an address selected randomly among those in the
current partial view. Method update merges the partial views of the two nodes

Grassroots Approach to Self-management 291

involved in an exchange and keeps the c freshest descriptors, thereby creating
a new partial view. New information enters the system when a node sends its
partial view to a peer. In this step, the node always inserts its own, newly created
descriptor into the partial view. Old information is gradually and automatically
removed from the system and gets replaced by newer information. This feature
allows the protocol to “repair” the overlay topology by forgetting dead links,
which by definition do not get updated because their owner is no longer active.

In newscast, the overlay topology is defined by the content of partial views.
We have shown in [8] that the resulting topology has a very low diameter and
is very close to a random graph with out-degree c. According to our experi-
mental results, choosing c = 20 is already sufficient for very stable and robust
connectivity. We have also shown that, within a single cycle, the number of
exchanges per node can be modeled through a random variable with the distri-
bution 1 + Poisson(1). The implication of this property is that no node is more
important (or overloaded) than others.

2.2 T-Man

Another component of our collection is T-Man [6], a protocol for creating a
large class of topologies. The idea behind the protocol is very similar to that of
newscast. The difference is that instead of using the creation date (freshness)
of descriptors, T-Man applies a ranking function that ranks any set of nodes
according to increasing distance from a base node. Method getPeer returns
neighbors with a bias towards closer ones, and, similarly, update keeps peers
that are closer, according to the ranking.

Figure 4 illustrates the protocol, as it constructs a torus topology. In [6] it
was shown that the protocol converges in logarithmic time even for networks of
106 nodes and for other topologies including rings and binary trees. With the
appropriate ranking function, T-Man can also be used to sort a set of numbers.

T-Man relies on another component for generating an initial random topology
which is later evolved into the desired one. In our case this service is provided
by newscast.

2.3 SG-1

SG-1 [12] is yet another component based on newscast, whose task is to self-
organize a superpeer-based network. This special kind of topology is organized
through a two-level hierarchy, as illustrated in Figure 5: nodes that are faster
and/or more reliable than “normal” nodes take on server-like responsibilities and
provide services to a set of clients. The superpeer paradigm allows decentralized
networks to run more efficiently by exploiting heterogeneity and distributing
load to machines that can handle them. On the other hand, it avoids the flaws
of the client-server model since no bottleneck or single point of failure exist.

In our model, each node is characterized by a capacity parameter, that defines
the maximum number of clients that can be served by the node. The task of SG-

1 is to form a network where the role of superpeers is played by the nodes with
highest capacity. All other nodes become clients of one or more superpeers. The

292 O. Babaoglu, M. Jelasity, and A. Montresor

after 3 cycles after 5 cycles

after 8 cycles after 15 cycles

Fig. 4. Illustrative example of T-Man constructing a torus over 50×50 = 2500 nodes,
starting from a uniform random topology with c = 20. For clarity, only the nearest 4
neighbors (out of 20) of each node are displayed

Fig. 5. A superpeer topology. Superpeers (thick circles) are connected together through
a random network, while clients (thin circles) are associated to a single superpeer

goal is to identify the minimal set of superpeers that are able to provide the
desired quality of service, based on their capacity.

Grassroots Approach to Self-management 293

In SG-1, newscast is used in two ways. First, it provides a robust underly-
ing topology that guarantees connectivity of the network in spite of superpeer
failures. Second, newscast is used to maintain, at each node, a partial view
containing a random sample of superpeers that are currently underloaded with
respect to their capacity. At each cycle, each superpeer s tries to identify a su-
perpeer t that (i) has more capacity than s, and (ii) is underloaded. If such
superpeer exist and can be contacted, s transfers the responsibility of parts of
its clients to t. If the set of clients of s becomes empty, s becomes a client of t.

Experimental results show that this protocol converges to the target super-
peer topology in logarithmic time for network sizes as large as 106 nodes, pro-
ducing very good approximations of the target topology in a constant number
of cycles.

2.4 Gossip-Based Aggregation

In the case of gossip-based aggregation [9, 13], the state of a node is a numeric
value. In a practical setting, this value can be any attribute of the environment,
such as the load or the storage capacity. The task of the protocol is to calculate
an aggregate value over the set of all numbers stored at nodes. Although several
aggregate functions may be computed by our protocol, in this paper we provide
only the details for the average function.

In order to work, this protocol needs an overlay protocol that provides an im-
plementation of method getPeer. Here, we assume that this service is provided
by newscast, but any other overlay could be used.

To compute the average, method update(a, b) must return (a + b)/2. After
one state exchange, the sum of the values maintained by the two nodes does
not change, since they have just balanced their values. So the operation does
not change the global average either; it only decreases the variance over all the
estimates in the system.

In [9] it was shown that if the communication topology is not only connected
but also sufficiently random, at each cycle the empirical variance computed over
the set of values maintained by nodes is reduced by a factor whose expected
value is 2

√
e. Most importantly, this result is independent of the network size,

confirming the extreme scalability of the protocol.
In addition to being fast, our aggregation protocol is also very robust. Node

failures may perturb the final result, as the values stored in crashed nodes are
lost; but both analytical and empirical studies have shown that this effect is
generally marginal [13]. As long as the overlay network remains connected, link
failures do not modify the final value, they only slow down the aggregation
process.

2.5 A Load-Balancing Protocol

To a certain extent, the problem of load balancing is similar to the problem of
aggregation. Each node has a certain amount of load and the nodes are allowed
to transfer portions of their load between themselves. The goal is to reach a
state where each node has the same amount of load. To this end, nodes can make

294 O. Babaoglu, M. Jelasity, and A. Montresor

decisions for sending or receiving load based only on locally available information.
Unlike aggregation, however, the amount of load that can be transfered in a given
cycle is bounded: the transfer of a unit of load may be an expensive operation.
In our present discussion, we use the term quota to identify this bound and we
denote it by Q. Furthermore, we assume that the quota is the same at each node.

A simple, yet far from optimal idea for a completely decentralized algorithm
could be based on the aggregation mechanism illustrated above. Periodically,
each node contacts a random node among its neighbors. The loads of the two
nodes are compared; if they differ, a quantity q of load units is transfered from
the node with more load to the node with less load. q is clearly bounded by the
quota Q and the amount of load units needed to balance the nodes.

If the network is connected, this mechanism will eventually balance the load
among all nodes. In fact, in a connected network a path exist between any pair of
overloaded and underloaded nodes, allowing a flow of load between them. Never-
theless, it fails to be optimal with respect to load transfers. The reason is simple:
if the loads of two nodes are both higher than the average load, transferring load
units from one to the other is useless. Instead, they should contact nodes whose
load is smaller than the average, and perform the transfer with them.

Our load-balancing algorithm is based exactly on this intuition. The nodes
obtain an estimate of the current average load through the aggregation pro-
tocol described above. This estimate is the target load; based on its value, a
node may decide if it is overloaded, underloaded, or balanced. Overloaded nodes
contact their underloaded neighbors in order to transfer their excess load and
underloaded nodes contact their overloaded neighbors to perform the opposite
operation. Nodes that have reached the target load stop participating in the
protocol. Although this was a simplified description, it is easy to see that this
protocol is optimal with respect to load transfer, because each node transfers
exactly the amount of load needed to reach its target load. As we show in [10],
the protocol is also optimal with respect to speed under some conditions on the
initial load distribution.

3 Notes on Combining the Building Blocks

The combination of the building blocks is done in the traditional way: a building
block has a local interface (within one node) towards the other components, and
it has a protocol and an implementation associated with it. The implementation
can differ over different nodes, just like the local interface. For this reason, we
have focused on protocols in the above discussion. Nodes using the same pro-
tocol (for example, aggregation) form a “layer” in the system. This, however,
is not a layer in the usual sense: we allow for arbitrary dependency relations
between the building blocks. In general, the directed graph that describes the
dependencies (such as the example shown in Figure 3) will not contain cycles,
however, this is not strictly required. Two “layers” can mutually depend on each
other’s services; for instance, in a bootstrapping phase when they can catalyze
each other’s performance.

Grassroots Approach to Self-management 295

Having said that, we need to mention one exception. There is a “lowest
layer” in our framework, which in a sense represents the group abstraction:
the set of nodes that form the domain of the other components. This layer
is the random network component, which provides the peer sampling service
(see Section 2.1 and [7]). The main requirement for this service is that it must
return all nodes with equal probability, in particular, no nodes are to be excluded
forever. The peer sampling service is used to support and bootstrap other services
like aggregation or structured topologies.

Finally, the aspect of time-scale should also be noted. While all of the pro-
tocols are based on the scheme given in Figure 2, the waiting time T can be
different for different building blocks. This degree of freedom allows for certain
architectures that otherwise would not be possible. For example, if an up-to-date
aggregate value is needed “instantly” according to the timescale of a relatively
slow layer, like load balancing, then we can simply apply aggregation at a rela-
tively faster timescale.

4 Conclusions

We have presented examples of simple protocols that exhibit self-managing prop-
erties without any explicit management component or control loops; in other
words, without increased complexity. We argued that a modular approach might
be the way towards efficient deployment of such protocols in large distributed
systems. To validate our ideas, we have briefly presented gossip-based protocols
as possible building blocks: topology and membership management (T-Man,
SG-1 and newscast), aggregation, and load balancing.

References

1. M. Agarwal, V. Bhat, Z. Li, H. Liu, B. Khargharia, V. Matossian, V. Putty,
C. Schmidt, G. Zhang, S. Hariri, and M. Parashar. AutoMate: Enabling Autonomic
Applications on the Grid. In Proceedings of the Autonomic Computing Workshop,
5th Annual International Active Middleware Services Workshop (AMS2003), pages
48–57, Seattle, WA, USA, June 2003.

2. The Bison Project. http://www.cs.unibo.it/bison.

3. A. Brown and D. Patterson. Embracing Failure: A Case for Recovery-Oriented
Computing (ROC). In 2001 High Performance Transaction Processing Symposium,
Asilomar, CA, USA, October 2001.

4. Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker,
Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic algorithms for repli-
cated database management. In Proceedings of the 6th Annual ACM Symposium on
Principles of Distributed Computing (PODC’87), pages 1–12, Vancouver, August
1987. ACM.

5. Patrick Th. Eugster, Rachid Guerraoui, Anne-Marie Kermarrec, and Laurent Mas-
soulié. Epidemic information dissemination in distributed systems. IEEE Com-
puter, 37(5):60–67, May 2004.

296 O. Babaoglu, M. Jelasity, and A. Montresor

6. Márk Jelasity and Ozalp Babaoglu. T-Man: Fast gossip-based construction
of large-scale overlay topologies. Technical Report UBLCS-2004-7, Univer-
sity of Bologna, Department of Computer Science, Bologna, Italy, May 2004.
http://www.cs.unibo.it/techreports/2004/2004-07.pdf.

7. Márk Jelasity, Rachid Guerraoui, Anne-Marie Kermarrec, and Maarten van Steen.
The peer sampling service: Experimental evaluation of unstructured gossip-based
implementations. In Hans-Arno Jacobsen, editor, Middleware 2004, volume 3231
of Lecture Notes in Computer Science. Springer-Verlag, 2004.

8. Márk Jelasity, Wojtek Kowalczyk, and Maarten van Steen. Newscast comput-
ing. Technical Report IR-CS-006, Vrije Universiteit Amsterdam, Department of
Computer Science, Amsterdam, The Netherlands, November 2003.

9. Márk Jelasity and Alberto Montresor. Epidemic-style proactive aggregation in
large overlay networks. In Proceedings of The 24th International Conference on
Distributed Computing Systems (ICDCS 2004), pages 102–109, Tokyo, Japan, 2004.
IEEE Computer Society.

10. Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu. A modular paradigm for
building self-organizing peer-to-peer applications. In Giovanna Di Marzo Seru-
gendo, Anthony Karageorgos, Omer F. Rana, and Franco Zambonelli, editors,
Engineering Self-Organising Systems, volume 2977 of Lecture Notes in Artificial
Intelligence, pages 265–282. Springer, 2004. invited paper.

11. Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing.
IEEE Computer, 36(1):41–50, January 2003.

12. Alberto Montresor. A robust protocol for building superpeer overlay topologies.
In Proceedings of the 4th IEEE International Conference on Peer-to-Peer Comput-
ing (P2P’04), pages 202–209, Zurich, Switzerland, August 2004. IEEE Computer
Society.

13. Alberto Montresor, Márk Jelasity, and Ozalp Babaoglu. Robust aggregation pro-
tocols for large-scale overlay networks. In Proceedings of The 2004 International
Conference on Dependable Systems and Networks (DSN), pages 19–28, Florence,
Italy, 2004. IEEE Computer Society.

14. Julio M. Ottino. Engineering complex systems. Nature, 427:399, January 2004.

J.-P. Banâtre et al. (Eds.): UPP 2004, LNCS 3566, pp. 297 – 311, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Autonomic Runtime System for Large Scale Parallel
and Distributed Applications

Jingmei Yang1, Huoping Chen1, Byoung uk Kim1, Salim Hariri1,
 and Manish Parashar2

1 University of Arizona
{jm_yang, hpchen, hariri}@ece.arizona.edu

2 Rutgers, The State University of New Jersey
parashar@caip.rutgers.edu

Abstract. The development of efficient parallel algorithms for large scale
wildfire simulations is a challenging research problem because the factors that
determine wildfire behavior are complex; they include fuel characteristics and
configurations, chemical reactions, balances between different modes of heat
transfer, topography, and fire/atmosphere interactions. These factors make static
parallel algorithms inefficient, especially when large number of processors are
used because we cannot predict accurately the propagation of the fire and its
computational requirements at runtime. In this paper, we present an Autonomic
Runtime Manager (ARM) to dynamically exploit the physics properties of the
fire simulation and use them as the basis of our self-optimization algorithm. At
each step of the wildfire simulation, the ARM decomposes the computational
domain into several natural regions (e.g., burning, unburned, burned) where
each region has the same temporal and special characteristics. The number of
burning, unburned and burned cells determines the current state of the fire
simulation and can then be used to accurately predict the computational power
required for each region. By regularly monitoring the state of the simulation and
analyzing it, and use that to drive the runtime optimization, we can achieve
significant performance gains because we can efficiently balance the
computational load on each processor. Our experimental results show that the
performance of the fire simulation has been improved by 45% when compared
with a static portioning algorithm that does not take into considerations the state
of the computations.

1 Introduction

For over fifty years, attempts have been made to understand and predict the behavior
(intensity, propagation speed and direction, and modes of spread) of wildfires.
However, the factors that determine wildfire behavior are complex; as a result, the
computational loads associated with regions in the domain vary greatly, both in time
and space. Furthermore, partitioning, load balancing and efficient parallel execution
of these simulations on large numbers of processors present significant challenges.
Clearly, there is a need for a fundamental change in how these applications are
programmed, developed and managed. This has led researchers to consider

298 J. Yang et al.

alternative programming paradigms and management techniques that are based on the
strategies used by biological systems to deal with complexity, dynamism,
heterogeneity and uncertainty. The approach, referred to as autonomic computing
aims at realizing computing systems and applications capable of managing
themselves with minimum human intervention [27]. This approach has been inspired
by the human autonomic nervous system that has the ability to self-configure, self-
tune and even repair itself without any conscious human involvement.

An autonomic computing system can be viewed as a collection of autonomic
components, which can manage their internal behaviors and relationships with others
in accordance to high-level policies. The principles that govern all such systems have
been summarized as following [27]:

• Self-Configuring: an autonomic system must have the ability to dynamically
adjust its resources based on its state and the state of its execution
environment.

• Self-Optimizing: an autonomic system should be able to detect sub-optimal
behaviors and able to intelligently perform self-optimization functions.

• Self-Protecting: an autonomic system is equally prone to attacks and hence it
should be capable of detecting and protecting its resources from both internal
and external attack and maintaining overall system security and integrity.

• Self-Healing: an autonomic system must be aware of potential problems and
should have the ability to reconfigure itself to continue to function smoothly.

Optimizing the performance of parallel applications though load balancing is well
studied and it can be classified as either static or dynamic. The compile-time static
approaches [8], [9], [10], [11] assign work to processors before the computation starts
and can be efficient if we know how the computations will progress a priori. On the
other hand, if the workload cannot be estimated beforehand, dynamic load balancing
strategies have to be used [13][14][15]. For example, the diffusion-based methods
[14][15] divide the processor pool into small and overlapping neighborhoods. Some
global schemes [16][17][18] predict future performance based on past information or
based on some prediction tools, such as Network Weather Service (NWS)[19]. In
[18], the authors use the predicted CPU information provided by NWS to guide
scheduling decisions. Dome [17] remaps the computation based on the time each
processor spends on computing during the last computational phase. Other
optimization techniques are based on application-level scheduling [20][21][22].
AppLeS in [20][21] assumes the application performance model is static and provided
by users and GHS system [22] assumes the total computation load of applications is a
constant.

There are few techniques that assume adaptive applications [23][24][25]. The wild
fire simulation is a continuously changing application and requires adaptive and
efficient runtime optimization techniques. In this paper, we present an Autonomic
Runtime Manager (ARM) that is continuously monitoring the computing
requirements of the application, analyzing the current state of the application as well
as the computing and networking resources and then making the appropriate planning
and scheduling actions at runtime. The ARM control and management activities are

 ARS for Large Scale Parallel and Distributed Applications 299

overlapped with the application execution to minimize the overhead incurred using
the ARM self-optimization algorithm.

The reminder of this paper is organized as follows: Section 2 presents our
Autonomic Computing Framework, Autonomia that is used to implement the fire
autonomic runtime manager (ARM). Section 3 gives a brief overview of the ARM
system and a detailed analysis of the wild fire simulation. Results from the
experimental evaluation of the ARM self-optimization algorithm are presented in
Section 4. We also compare the performance of the wild fire simulation with and
without the self-optimization algorithm. A conclusion and outline of future research
directions are presented in Section 5.

2 Autonomia – An Autonomic Computing Framework

We have proposed and implemented an Autonomic Computing Framework,
Autonomia [6], which includes the following main modules (see Figure 1):
Application Management Editor (AME), Autonomic Runtime System (ARS) and
Distributed Computing Environment (DCE).

2.1 Application Management Editor (AME)

User and/or application developer can specify the characteristics and requirements of
their applications using an Application Management Editor (AME). It consists of
policy console and policy translation.

Policy console allows creating an application as a set of components expressed in a
workflow model. The attributes associated with each node in the workflow graph
specify the policies needed to maintain the self-healing, self-protecting and self-
optimizing behaviors.

Policy translation maps high level policies into low level policies and stores them
into the Application Information Knowledge (AIK) repository.

2.2 Autonomic Runtime System (ARS)

The ARS can be viewed as an application-based operating system that provides
applications with all the services and tools required to achieve the desired autonomic
behaviors (self-configuring, self-healing, self-optimizing, and self-protection). The
primary modules of ARS are the following:

Application Information and Knowledge (AIK) Repository: The AIK repository
stores the application requirements, user specified self-management policies, the
application information status, and knowledge about configuration strategies for both
applications and system resources that have proven to be successful and effective. In
addition, AIK contains the Component Repository (CR) that stores the components
that are currently available for the users to compose their applications.

300 J. Yang et al.

Fig. 1. Autonomia Architecture

Event Server: The Event server receives events from the component runtime
managers (CRMs) that monitor components and systems and then notifies the
corresponding engines subscribed to these events.

Autonomic Runtime Services (Self-Configuring, Self-Optimizing, Self-healing, and
Self-Protecting): These runtime services maintain the autonomic properties of
applications and system resources at runtime. To simplify the control and
management tasks, we dedicate one runtime service for each desired attribute or
functionality such as self-healing, self-optimizing, self-protection, etc. The event
server notifies the appropriate runtime service whenever the events it subscribed
become true.

Monitoring Service: There are two kinds of monitoring services: Resource
Monitoring Service and Component Monitoring Service. Resource Monitoring Service
(RMS) monitors the workload information and performance metrics associated with
resources such as: CPU/memory information, disk I/O information, and network
information. Component Monitoring Service (CMS) defines a general interface for
autonomic components such that each component can expose its status data associated
with execution time and current operating state.

Application Runtime Manager (ARM): The ARM performs online monitoring to
collect the status and state information using the component sensors. It analyzes
component behaviors and when detecting any anomalies or drastic state changes (for
example, degradation in performance, component failure), the ARM takes the
appropriate control and management actions as specified in its control policy.

 ARS for Large Scale Parallel and Distributed Applications 301

Coordinator: It coordinates and allocates the scheduled tasks to the appropriate
resources.

Autonomic Middleware Services (AMS) provides four important services: Self-
configuring, Self-optimizing; Self-protecting; and Self-healing. The overall self-
management algorithm used to implement all these services is shown in Figure 2. The
state of each active component is monitored by the Component Runtime Manager
(CRM) to determine if there is any severe deviation from the desired state (steps 1-3).
When an unacceptable change occurs in the component behavior, the CRM generates
an event into the Event Server, which notifies the ARM (step 4-6). Furthermore, the
CRM analyzes the event and determines the appropriate plan to handle that event
(step 7 and step 8) and then executes the appropriate self-management routines (steps
9-10). However, if the problem cannot be handled by the CRM, the ARM is invoked
to take the appropriate management functions (steps 12-13) at a higher granularity
(e.g., migrate the components to another machine due to failure or degradation in
performance).

1 While (Component ACAi is running) do
2 State = CRMi Monitoring (ACAi)
3 State_Deviation = State_Compare(State, DESIRED_STATE)
4 If (state_deviation == TRUE)
5 CRMi Send_Event(State)
6 Event Server Notify ARM
7 Event_Type = CRM_Analysis (State)
8 If (CRMi ABLE) Then
9 Actions = CRM_Planning(State, Event_Type)
10 Autonomic_Service ASj ∈ {ASconfig,ASheal,ASoptimization,ASsecurity}
11 Execute ASj (Actions)
12 Else
13 Actions = ARM_Analysis (State, Event_Type)
14 Execute Asj (Actions)
15 EndIf
16 EndIf
17 EndWhile

Fig. 2. Self-Management Algorithm

2.3 High Performance Computing Environment (HPCE)

In our environment, we define HPCE as the environment that controls and runs a
collection of autonomic distributed applications, where each application is expressed
as a workflow graph of autonomous components. The autonomous components are
developed based on an Autonomic Component Architecture (ACA) [7, 26]. In effect,
each ACA component is a standalone entity that can manage itself locally.

ACA Component
An autonomic component is the fundamental building block for autonomic
applications in our Autonomic Computing Framework (see Figure 1). An autonomic

302 J. Yang et al.

Fig. 3. Autonomic Computing Architecture (ACA)

component is a simple computational component with encapsulated rules, constraints
and mechanisms for self-management and dynamic interactions with other
components. It extends traditional component architecture to support autonomic
operations. The structure of an autonomic component is shown in Figure 3.

The ACA implements three different ports (functional, control and operational
ports) for importing/exporting the functionalities of the component, sensing and
changing the runtime state of component and for managing the performance of the
component.

Functional port () defines a set of functionalities provided and used by the
autonomic component. ∈ × , where is the set of inputs and is the set of
outputs of the components, and defines a valid input-output set.

Control port () is the set of tuples (,), where is a set of sensors and actuators
exported by the component, and is the constraint set that controls access to the
sensors/actuators. Sensors are interfaces that provide information about the
component while actuators are interfaces for modifying the state of the component.
Constraints are based on state, context and/or high-level access polices, and can
control who invokes the interface, when and how they are invoked.

Operational port () defines the interfaces to formulate, inject and manage rules,
and encapsulates a set of rules that are used to manage the runtime behaviors of the
autonomic component. Rules incorporate high-level guidance and practical human
knowledge in the form of conditional if-then expressions.

Behavior rules control the runtime functional behaviors of autonomic components
and applications.

Interaction rules control the interactions between components, between
components and their environments, and the coordination within an autonomic
application.

Component Runtime Manager (CRM)
Each autonomic component has its own manager that is delegated to manage its
execution. It is the local control subsystem that also consists of online monitoring,
online analyzing, online planning and online executing functionality.

 ARS for Large Scale Parallel and Distributed Applications 303

3 Autonomic Runtime Manager (ARM) Architecture for Fire
Simulation

The Autonomic Runtime Manager (ARM) is responsible for controlling and
managing the execution environment for large-scale applications at runtime. Once the
application is running, ARM will optimize the application execution to improve
performance dynamically. The ARM main modules include (see Figure 4): 1) Online
Monitoring and Analysis and 2) Autonomic Planning and Scheduling. In this paper,
we will use the wildfire simulation as a running example to explain the main
operations of the ARM modules.

1) Online Monitoring and Analysis Module
The ARM uses online monitoring and analysis module interfaces with different
sensors for collecting the states of applications and underlying resources and
partitions the application domain into Natural Regions (NRs), where each region has
the same temporal and spatial characteristics (e.g., burned region (NR1), burning
(NR2), and unburned regions (NR3)).

2) Autonomic Planning and Scheduling
Planning engine uses the resource capability models as well as performance models
associated with the computations, and the knowledge repository to select the
appropriate models and partitions for each region (empirical-based, physics-based)
and then decompose the computational workloads for each natural region into
schedulable Virtual Computational Units (VCUs).

Fig. 4. Autonomic Runtime Manager (ARM) architecture

NW

E

NEN

SESSW

W

Fig. 5. Fire direc-
tion after ignition

304 J. Yang et al.

3.1 An Illustrative Example – Wild Fire Simulation

In the wildfire simulation model, the entire area is represented as a 2-D cell-space
composed of cells of dimensions l x b (l: length, b: breadth). For each cell, there are
eight major wind directions N, NE, NW, S, SE, SW, E, W as shown in Figure 5. A
cell interacts with its neighbors along all the eight directions.

When a cell is ignited, its state will change from “unburned” to “burning”. During
its “burning” phase, the fire will propagate to its eight neighbors. The direction and
the value of the maximum fire spread rate within the burning cell can be computed
using Rothermel’s fire spread model [3]. When the simulation time advances to the
ignition times of neighbors, the neighbor cells will ignite and their states will change
from “unburned” to “burning”. In a similar way, the fire would propagate to the
neighbors of these cells. With different terrain, vegetation and weather conditions, the
fire propagation could form very different spread patterns within the entire region.

Our wild fire simulation model is based on fireLib [1], which is a C function
library for predicting the spread rate and intensity of free-burning wildfires. We
parallelized the sequential version of the fire simulation using MPI [5]. This
parallelized fire simulation divides the entire cell space among multiple processors
such that each processor works on its own portion and exchanges the necessary data
with each other after each simulation time step. The parallel wild fire simulation is a
loosely synchronous iterative application. Each processor performs the computation
on part of the whole space, maintains the ignition map which is the ignition times of
all cells, and proceeds to next ignition cell as the simulation advances. At each time
step,

• each processor computes the ignition times of the 8 neighbors of the current
ignited cell, and updates the ignition time of the neighbors in the ignition map if
the new ignition time is less than the current ignition time.

• at the end of each time step, the ignition map changes are exchanged between
processors to enable them to have a whole view of ignition times for the next
time step.

In our current implementation, a cell coordinator processor gathers the changes in
the ignition map from each working processor and then broadcasts all the changes to
all processors. Since there are only a few cells whose ignition times are changed at
each time step, we believe the communication overhead with the coordinator is low.
Based on this implementation, the estimated execution time for processor Pi can be
defined as follows:

),(),()(tPTtPTtT icommicompi += (1)

where),(tPT icomp is the computation time at time step t on processor Pi,),(tPT icomm is

the communication time at time step t on processor Pi , where i = 0, P-1 (P denotes the
total number of processors). The computing time of burning cells is much larger than
that of unburned cells and that contributes significantly to the imbalance conditions at
runtime. Hence, the application computational workload (ACW) of the simulation is
heavily dependent on the number of burning cells in each region, that is

 ARS for Large Scale Parallel and Distributed Applications 305

() () ()B B U UACW t N t T N t T= + (2)

where NB(t) is the number of burning cells at time t, NU(t) is the number of unburned

cells at time t. Let iα be the fraction of the workload assigned to processor Pi, it will

be given an)(tACWi ×α of the total workload, where 0iα > and
1

0
1

P

i i
α−

=
= . Therefore,

the expected execution time for processor Pi can be defined as follows:

(,) (() ())

(,) (,)
co m p i i B B U U

B i B U i U

T P t N t T N t T

N P t T N P t T

α= +

= + (3)

where NB(Pi, t) and NU(Pi, t) are number of burning cells and unburned cells assigned
to processor Pi at time step t, TB and TU are the estimated computation times of each
burning cell and unburned cell, respectively. B UT T> because burning cells are more
compute intensive than unburned cells. We use a burning-to-unburned factor fB-U to
quantify the computational load difference between burning cells and unburned cells:

B
B U

U

T
f

T− =
 (4)

The communication cost Tcomm(Pi,t) includes the time required for data gathering,
synchronization and broadcasting, which can be defined as follows:

(,) (,) (,) ()comm i gather i sync i bcastT P t T P t T P t T t= + +
 (5)

Data gathering operation can be started once the computation is finished and it
depends on the number of bytes that needed to send to the coordinate processor. The
data gathering time of processor Pi at time step t is given by:

(,) (,)gather i Byte c iT P t mT N P t=
 (6)

where m is the message size in bytes sent by one cell, (,)C iN P t is the number of
cells assigned to processor Pi whose ignition times are changed during the time step t,
TByte is the data transmission time per byte. It is important to notice that, broadcast
operation can only start after the coordinator processor receives the data from all
processors. Consequently, the data broadcasting time can be defined as:

1

0
() (,)

P

bcast Byte c ii
T t mT N P t

−

=
=

 (7)

Then, the estimated execution time of the wild fire simulation can be computed as:

1
()tN

t o t a l s t e pt
T T t

=
=

 (8)

Where Nt is the number of time steps performed by the wild fire simulation.

In the next subsections, we show how these estimates can be used by the ARM
modules to significantly reduce the imbalance conditions and thus dynamically
improve the overall application performance.

306 J. Yang et al.

3.2 Online Monitoring and Analysis

The online monitoring module collects the information about the wild fire simulation
state, such as the number and the location of burning cells and unburned cells, and the
actual computation time for the last time step. Based on the fire simulation state,
online module partitions the whole wildfire simulation domain into two Natural
Regions (NRs): burning region and unburned regions. At the same time, this module
monitors the states of the resources involved in the execution of the fire simulation,
such as the CPU load, available memory, network load etc. The runtime state
information is stored in the backend database. The online analysis module analyzes
the imbalance conditions of the wild fire simulation and then determines whether or
not the current allocation of workload needs to be changed.

T s te p (t)

P 0

P 3

P 2

P 1

C o m p u ta tio n T im e T c o m p(t)

D a ta G a th e r in g T im e T g a th e r(t)

S y n c h ro n iz a tio n T im e T s y n c (t)

B ro a d c a s tin g T im e T b c a s t(t)

Fig. 6. The breakdown of the processor execution time at time step t

For example, Figure 6 shows the breakdown of the execution time and type of
activities performed by four processors. Processor P0 and P1 do not need to broadcast
any information because their part of ignition map has not been changed. Processor P0
has the longest computation time because it is handling a large number of burning
cells. Consequently, all the other three processors have to wait until processor P0
finishes its computation and then the data broadcasting can be started. Recall that
during each time step there are only a few cells whose ignition times are changed.
Thus the broadcasting time is negligible compared to the computation time. To
balance at runtime the simulation workload, the online analysis module should
quickly detect large imbalance conditions and invoke the repartitioning operation.

To quantify the imbalance conditions, we introduce a metric, Imbalance Ratio (IR)
that can be computed as:

1 1
0 0

1
0

((,)) ((,))
() 100%

((,))

P P
i comp i i comp i

P
i comp i

M ax T P t Min T P t
IR t

M in T P t

− −
= =

−
=

−
= ×

 (9)

We use a predefined threshold IRthreshold to measure how severe the imbalance
condition is. If () th r e sh o ldIR t IR> , the imbalance conditions are considered severe
and repartitioning is required. Then the automatic planning and scheduling module
will be invoked to carry the appropriate actions to repartition the simulation workload.

The selection of the threshold IRthreshold can significantly impact the effectiveness of
the self-optimization approach. If the threshold chosen is too low, too many load

 ARS for Large Scale Parallel and Distributed Applications 307

repartitioning will be triggered and the high overhead produced outweighs the
expected performance gains. On the other hand, when the threshold is high, the
imbalance conditions cannot be detected quickly such that the performance
improvement will be reduced. In the experimental results subsection, we show how
we can experimentally choose this threshold value.

3.3 Autonomic Planning and Scheduling

The autonomic planning and scheduling module partitions the whole fire simulation
domain into several natural regions based on its current state and then assigns them to
processors by taking into consideration the states of the processors involved in the fire
simulation execution. To reduce the rescheduling overhead, we use a dedicated
processor to run the ARM self-optimizing algorithm and overlap that with the worker
processors that compute their assigned workloads. Once the new partition
assignments are finalized, a message is sent to all the worker processors to read the
new assignments once they are done with the current computations. Consequently, the
ARM self-optimization activities are completely overlapped with the application
computation and the overhead is very minimum less than 4% as will be discussed
later.

4 Experimental Results

In this section, we evaluate the performance of our approach on the Beowulf clusters
at the University of Arizona and Rutgers University. In our experiments, all
processors are dedicated to the fire simulation. The experiments were performed on
two problem sizes for the fire simulation. The first problem size is a 256*256 cell
space with 65536 cells. The other one is a 512*512 cell domain with 262144 cells. To
introduce a heterogeneous fire patterns, the fire is started in the southwest region of
the domain and then propagates northeast along the wind direction until it reaches the
edge of the domain. In order to make the evaluation for different problem sizes
accurate, we maintain the same ratio of burning cells to 17%; the total number of
burning cells when the simulation terminates is about 17% of the total cells for both
problem sizes.

4.1 Sensitivity Analysis of the Threshold Value

To better understand how IRthreshold affects the performance of the fire simulation, we
ran the fire simulation with a problem size of 262144 on 16 processors and varied the
IRthreshold values to determine the best value that minimizes the execution time. The
results of this experiment are shown in Figure 7. The execution times are taken as the
average for three runs. We observed that the best execution time, 700 seconds, was
achieved when the IRthreshold is equal to 30%.

Figure 8 shows how the imbalance ratios increase linearly as the simulation
progresses using static partitioning algorithm and compare that with our self-

308 J. Yang et al.

Fig. 7. The sensitivity of the fire simulation
to the IRthreshold value

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000
Time Step

Im
ba

la
nc

e
R
at

io
 (

%
)

Without Self-

Optimization
With Self-

Optimization

Fig. 8. Imbalance ratios for 2000 time steps of
the fire simulation, problem size = 65536,
number of processors = 16, IRthreshold = 50%

optimization algorithm. For example, at 2000 time steps of the simulation, the
imbalance ratio in the static parallel algorithm is about 450% while it is around 25%
in our approach. In fact, using our approach, the imbalance ratio is kept bound within
a small range. This occurs because the self-optimization algorithm uses heuristic
techniques to estimate the computation times on each processor.

4.2 Performance Results

Figure 9 shows the computation time for each processor at time steps 1, 300 and 600
with and without the ARM self-optimization. For example, at time step 1, the
computation load is well balanced among most processors for both static partitioning
and self-optimization. However, as shown in Figure 9(a), at time step 300, processor
P0 and P1 experience longer computation times while other processors keep the same
computation time as before. This is caused by having many burning cells assigned to
these two processors P0 and P1. At time step 600, more and more cells on processor
P0 and P1 are burning and the maximum computation time of 0.24 seconds is
observed for P1. However, if we apply the ARM self-optimization algorithm, all
processors finish their computations around the same time for all the simulation time
steps (see Figure 9 (b)). For example, the maximum execution time of 0.1 seconds is
observed for processor P2 at time step 600, which is 58% reduction in execution time
when compared to the 0.24 seconds observed for the static portioning algorithm.

Tables 1 and 2 summarize the comparison of the execution time of the fire
simulation with and without our self-optimization algorithm.

Our experimental results show that the self-optimization approach improves the
performance by up to 45% for a problem size of 262144 cells on 16 processors. We
expect to get even better performance as the problem size increases because it will
need more simulation time and will have more burning cells than smaller problem
sizes.

 ARS for Large Scale Parallel and Distributed Applications 309

0

0.05

0.1

0.15

0.2

0.25

P0 P1 P2 P3 P4 P5 P6 P7
Processor Number

C
om

pu
ta

ti
on

 T
im

e(
se

c)

Time Step 1
Time Step 300
Time Step 600

 (a)

0

0.05

0.1

0.15

0.2

0.25

P0 P1 P2 P3 P4 P5 P6 P7
Processor Number

C
om

pu
ta

tio
n

T
im

e(
se

c) T ime Step 1
Time Setp 300
Time Step 600

(b)

Fig. 9. Computation times of different time steps on 8 processors. Each group of adjacent bars
shows the computation time of time step 1, 300 and 600, respectively. (a) Without self-
optimization (b) With self-optimization

Table 1. Performance comparison for the fire simulation with and without self-optimization for
different number of processors, problem size = 65536, and IRthreshold = 30%

Number of
Processors

Execution Time
without Self-

Optimization (sec)

Execution Time with
Self-Optimization (sec)

Performance
Improvement

8 2232.11 1265.94 43.29%
16 1238.87 713.17 42.43%

Table 2. Performance comparison for the fire simulation with and without self-optimization for
different number of processors, problem Size = 262144, and IRthreshold = 30%

Number of
Processors

Execution Time
without Self-

Optimization (sec)

Execution Time with
Self-Optimization

(sec)

Performance
Improvement

16 17276.02 9486.3 45.09%
32 9370.96 5558.55 40.68%

4.3 Overhead Analysis

In our implementation approach, one processor is dedicated to the autonomic
planning and scheduling operations while all the worker processors are running the
simulation loads assigned to them. Consequently, our self-optimization algorithm
will not have high overhead impact on the performance of the fire simulation. The
only overhead incurred in our approach is the time spent by the fire simulation to
write its current state information to ARM sensors and the time spent in reading the
new assigned simulation loads to the worker processors. To quantify the overhead on
the whole system, we conducted experiments to measure the overhead introduced by

310 J. Yang et al.

our algorithm. Based on our experiments, we observed that the overhead cost is less
than 4% of the total execution time for both problem sizes of the fire simulation and it
is negligible compared to the 45% of performance gain.

5 Conclusions and Future Work

In this paper, we described a novel architecture for an autonomic runtime manager
that can self-optimize the parallel execution of large scale applications at runtime by
continuously monitoring and analyzing the state of the computations and the
underlying resources, and efficiently exploit the physics of the problem being
optimized. In our approach, the physics of the problem and its current state are the
main criterion used to in our self-optimization algorithm. The Autonomic Runtime
Manager (ARM) main modules include online monitoring and analysis and
autonomic planning and scheduling modules. The activities of the ARM modules are
overlapped with the algorithm being self-optimized to reduce the overhead. We show
that the overhead of our self-optimization algorithm is less than 4%. We have also
evaluated the ARM performance on a large wildfire simulation for different problem
sizes and different number of processors. The experimental results show that using the
ARM self-optimization, the performance of the wild fire simulation can be improved
by up to 45% when compared to the static parallel partitioning algorithm.

References

[1] <http://www.fire.org>
[2] P. L. Andrews, “BEHAVE: Fire Behavior Prediction and Fuel Modeling System - BURN

Subsystem”, Part 1. General Technical Report INT-194. Ogden, UT: U.S. Department of
Agriculture, Forest Service, Intermountain Research Station; 1986. 130 p.

[3] R. C. Rothermel, “A Mathematical Model for Predicting Fire Spread in Wildland Fuels”,
Research Paper INT-115. Ogden, UT: U.S. Department of Agriculture, Forest Service,
Intermountain Forest and Range Experiment Station; 1972. 40 p.

[4] H. E. Anderson, “Predicting Wind-Driven Wildland Fire Size and Shape”, Research
Paper INT-305. Ogden, UT: U.S. Department of Agriculture, Forest Service,
Intermountain Forest and Range Experiment Station; 1983. 26 p.

[5] M. Snir, S. Otto, S. Huss-Lederman, and D. Walker, “MPI the Complete Reference”, MIT
Press, 1996

[6] Hariri, S., Lizhi Xue, Huoping Chen etc., "AUTONOMIA: an autonomic computing
environment", Conference Proc. of the 2003 IEEE IPCCC

[7] Salim Hariri, Bithika Khargharia, Huoping Chen, Yeliang Zhang, Byoung Kim, Hua Liu
and Manish Parashar; "The Autonomic Programming Paradigm", Submitted to IEEE
computer 2004.

[8] P.E. Crandall, and M. J. Quinn, “Block Data Decomposition for Data-parallel
Programming on a Heterogeneous Workstation Network”, 2nd IEEE HPDC, pp. 42-49,
1993

[9] Y. F. Hu, and R. J. Blake, “Load Balancing for Unstructured Mesh Applications”, Parallel
and Distributed Computing Practices, vol. 2, no. 3, 1999

 ARS for Large Scale Parallel and Distributed Applications 311

[10] S. Ichikawa, and S. Yamashita, “Static Load Balancing of Parallel PDE Solver for
Distributed Computing Environment”, Proc. 13th Int’l Conf. Parallel and Distributed
Computing Systems, pp. 399-405, 2000

[11] M. Cierniak, M. J. Zaki, and W. Li, “Compile-Time Scheduling Algorithms for
Heterogeneous Network of Workstations”, Computer J., vol. 40, no. 6, pp. 256-372, 1997

[12] M. Willebeek-LeMair, and A.P. Reeves, “Strategies for Dynamic Load Balancing on
Highly Parallel Computers”, IEEE Trans. Parallel and Distributed Systems, vol.4, no. 9,
pp. 979-993, Sept. 1993.

[13] F. C. H. Lin, and R. M. Keller, “The Gradient Model Load Balancing Method”, IEEE
Trans. on Software Engineering, vol. 13, no. 1, pp. 32-38, Jan. 1987

[14] G. Cybenko, “Dynamic Load Balancing for Distributed Memory Multiprocessors”, J.
Parallel and Distributed Computing, vol. 7, no.2, pp. 279-301, 1989

[15] G. Horton, “A Multi-Level Diffusion Method for Dynamic Load Balancing”, Parallel
Computing, vol.19, pp. 209-229, 1993

[16] N. Nedeljkovic, and M. J. Quinn, “Data-Parallel Programming on a Network of
Heterogeneous Workstations”, 1st IEEE HPDC, pp. 152-160, Sep. 1992

[17] J. Arabe, A. Beguelin, B. Lowekamp, E. Seligman, M. Starkey, and P. Stephan, “ Dome:
Parallel Programming in a Heterogeneous Multi-User Environment,” Proc. 10th Int’l
Parallel Processing Symp., pp. 218-224, 1996.

[18] C. Liu, L. Yang, I. Foster, and D. Angulo, “Design and Evaluation of a Resource
Selection Framework for Grid Applications”, 11th IEEE HPDC. Edinburgh. Scotland,
2002

[19] R. Wolski, N. Spring, and J. Hayes, “The Network Weather Service: A Distributed
Resource Performance Forecasting Service for Metacomputing”, Journal of Future
Generation Computing Systems (1998), pp. 757-768

[20] F. Berman, R. Wolski, S. Figueria, J. Schopf, and G. Shao, “Application-Level
Scheduling on Distributed Heterogeneous Networks”, Supercomputing’96, 1996

[21] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman, S. Figueira, J.
Hayes, G. Obertelli, J. Schopf, G. Shao, S. Smallen, N. Spring, A. Su, and D.
Zagorodnov, “Adaptive Computing on the Grid Using AppLeS”, IEEE Trans. on Parallel
and Distributed Systems, Volume 14, Number 4, pp 369--382, April, 2003

[22] X.-H. Sun and M. Wu, "Grid Harvest Service: A System for Long-Term, Application-
Level Task Scheduling," Proc. of 2003 IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2003), Nice, France, April, 2003.

[23] L. Oliker, and R. Biswas, “Plum: Parallel Load Balancing for Adaptive Unstructured
Meshes”, J. Parallel and Distributed Computing, vol. 52, no. 2, pp. 150-177, 1998

[24] C. Walshaw, M. Cross, and M. Everett, “Parallel Dynamic Graph Partitioning for
Adaptive Unstructured Meshes”, J. Parallel and Distributed Computing, vol. 47, pp. 102-
108, 1997

[25] Y. Zhang, J. Yang, S. Chandra, S. Hariri and M. Parashar, “Autonomic Proactive
Runtime Partitioning Strategies for SAMR Applications”, Proceedings of the NSF Next
Generation Systems Program Workshop, IEEE/ACM 18th International Parallel and
Distributed Processing Symposium, Santa Fe, NM, USA, 8 pages. April 2004

[26] H. Liu, M. Parashar and S. Hariri, “A Component-based Programming Framework for
Autonomic Applications,” Proceedings of the 1st IEEE International Conference on
Autonomic Computing (ICAC-04), IEEE Computer Society Press, New York, NY, USA,
pp. 278 - 279, May 2004.

[27] J. O. Kephart and D.M. Chess. “The Vision of Autonomic Computing”. IEEE Computer,
36(1), pages 41-50, January 2003.

Generative Programming

Towards Generative Programming

Pierre Cointe

OBASCO group, EMN-INRIA, LINA (CNRS FRE 2729),
École des Mines de Nantes, 4 rue Alfred Kastler, La Chantrerie,

44307 Nantes Cedex 3, France
cointe@emn.fr

Abstract. Generative Programming (GP) is an attempt to manufac-
ture software components in an automated way by developing programs
that synthesize other programs. Our purpose is to introduce the what
and the how of the GP approach from a programming language point of
view. For the what we discuss the lessons learned from object-oriented
languages seen as general purpose languages to develop software facto-
ries. For the how we compare a variety of approaches and techniques
based on program transformation and generation. On the one hand, we
present the evolution of open-ended languages from metalevel program-
ming to aspect-oriented programming. On the other hand, we introduce
domain-specific languages as a way to bridge the gap between conceptual
models and programming languages.

1 Automating Software Components

“The transition to automated manufacturing in software requires two steps. First,
we need to move our focus from engineering single systems to engineering fam-
ilies of systems - this will allow us to come up with the “right” implementation
components. Second, we need to automate the assembly of the implementation
components using generators” [15].

Generative Programming (GP) is an attempt to provide a variety of ap-
proaches and techniques to manufacture software components in an automated
way by developing programs that synthesize other programs [GPCE]. According
to Czarnecki & Eisenecker’s book, the two main steps to industrialize software
manufacturing are i) the modeling and the engineering of a program family and
ii) the use of generators to automate the assembly of components. From a soft-
ware engineering perspective one challenge is to bridge the gap between modeling
and programming languages. On the one hand, we need to improve the level of
abstraction by hiding the implementation concerns and make them independent
from the target platform. On the other hand, we have to design new program-
ming languages (and associated tools) well suited to deal with software ubiquity
and adaptability. These languages must support the incremental introduction of
non anticipated concerns [24].

J.-P. Banâtre et al. (Eds.): UPP 2004, LNCS 3566, pp. 315–325, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

316 P. Cointe

1.1 Lessons from Object-Oriented Languages

More than twenty years of industrial practices have clearly enlightened the con-
tributions but also the limitations of object-oriented technologies when dealing
with software complexity [24]. Obviously, OO languages have contributed to sig-
nificant improvements in the field of software engineering and open middleware
[39]. Today every general purpose language provides an object model either ex
nihilo either as a library. Nevertheless, programming the network as advocated
by Java, made clear that the object model1, even extended with the design of
reusable micro-architectures such as patterns or frameworks, is not well suited
to deal with critical issues such as scalability, reusability, adaptability and com-
posability of software components [7, 24, 20].

When programming in the large, a major source of problems is the lack
of mechanisms to modularize crosscutting concerns and then to minimize code
tangling and code scattering [40]. Another source of problems is the difficulty of
representing micro-architectures based only upon classes and their methods. A
last source of problems is the need of mechanisms to incrementally modify the
structure or the behavior of a program. Considering object-oriented program-
ming as the sole technology to solve these issues has some well known drawbacks
[12, 24] :

1. Classes schizophrenia : as already quoted by Borning in 1986, classes play
too many roles and there is some confusion around the concerns of a class
as an object generator, a class as a method dispatcher and an (abstract)
class as a part of the inheritance graph [28]. One source of the complexity
surrounding classes in Smalltalk is the interaction of message lookup with
the role of classes as the generators of new objects, which gives rise to the
need for metaclasses [10].

2. Granularity of behavioral factoring : when expressing behavioral concerns
there is no intermediate level of granularity between a method and a class.
For instance, there is no way in Java to factorize and then manipulate a set
of methods as a whole. Similarly, a Java package - seen as a group of related
classes - has not direct tangible representation at the code level. Then, there
is a real need for stateless groups of methods à la trait to implement and
compose reusable modules [35].

3. Class inheritance and transversal concerns : inheritance is not the solution for
reusing crosscutting non-functional behaviors such as security or display that
are by essence non hierarchical. For instance in Java, even very elementary
state-less concerns such as being colorable, traceable, memoizable, movable,
paintable, clonable, runnable, serializable, . . . must be expressed by interfaces
to be reused. Unfortunately, these interfaces do not provide any method
implementations but only method specifications, limiting drastically code
reusability.

1 As defined by its related concepts of encapsulation, message sending, and class in-
heritance [42].

Towards Generative Programming 317

4. Design patterns traceability : patterns provide reusable micro-architectures
based on explicit collaborations between a group of classes [23]. Unfortu-
nately they have no direct representation (reification) at the programming
language level raising traceability and understandability issues [38, 22].

5. Framework extensibility : frameworks are also micro-architectures but adapt-
able and built to organize libraries dedicated to a specif application domain.
Unfortunately the adaptation process is closely related to the understanding
of the inheritance and instantiation relationships used to organize the classes
involved in the framework [1].

6. Bridging the gap between programming and modeling languages : some UML
concepts such as aggregation, association and composition are rather am-
biguously defined at the modeling level without the corresponding mecha-
nisms at the programming level [26]. Obviously, this lack of correspondence
complicates the transformation process advocated by the Model Driven ap-
proach [MDA].

Nevertheless, these “cons” put together with the simplicity and the generality
of the object model have challenged new open research ideas in the field of con-
ventional programming languages design and contributed to the (re)emergence of
paradigms such as feature modeling [15], domain specific languages [14, 25], and
aspect-oriented programming [20, 40, 18]. A common objective of these paradigms
is to provide new protocols, new translators and new generators to modularize
crosscutting concerns (items 1,2,3), to automate design patterns and frameworks
applications (items 4,5), and to make executable modeling languages (item 6).

1.2 Reflective Architectures and Meta-object Protocols

“Reflection: An entity’s integral ability to represent, operate on, and otherwise
deal with itself in the same way that it represents, operates or and deals with its
primary subject matter”[36].

Metalevel architectures have clearly illustrated the potential of reflection to
deal with self description and adaptative behavior [30, 43]. They are good can-
didates to solve some of the self* issues discussed in the field of autonomic com-
puting [5] or to develop self-organizing functionality as required by amorphous
computing [2].

The reflective approach makes the assumption that it is possible to sepa-
rate in a given application, its why expressed at the base level, from its how
expressed at the metalevel. In the case of a reflective object-oriented language à
la Smalltalk and à la CLOS, the principle is to reify at the metalevel its struc-
tural representation, e.g., its classes, their methods and the error-messages but
also its computational behavior, e.g., the message sending, the object allocation
and the class inheritance. Depending on which part of the representation is ac-
cessed, reflection is said to be structural or behavioral. Meta-objects protocols
(MOPs) are specific protocols describing at the meta-level the behavior of the
reified entities. Specializing a given MOP by inheritance, is the standard way
[11, 19] to extend and to open the base language with new mechanisms such

318 P. Cointe

as explicit metaclasses [28], multiple-inheritance [8], concurrency & distribution
[31, 32] and aspects [9].

The design of metaobject protocols such as ObjVlisp/ClassTalk and CLOS
contributed to the development of techniques to introspect and intercess with
program structures and behaviors [10, 7, 34, 8]. They also influenced the Meta-
Object Facility (MOF) developped for UML by the OMG [UML]. The minimal
ObjVlisp model was built upon two classes : Object the root of inheritance
tree, Class the first metaclass and as such the root of the instantiation link,
plus MethodDescription, the reification of objet methods. Then object cre-
ation (structural reflection) and message sending (behavioral reflection) can be
expressed as two compositions of primitive operations defined in one of these
three classes2 :

– Class.allocate 0 Object.initialize
– Class.lookup 0 MethodDescription.apply

As developed in [28], modifying one of this primitive was the way to model and
implement alternative class model. The Java model looks very similar to the
ObjVlisp one, the main difference being that Class - its sole metaclass - is final
making Class and then the associated Java class model non extensible [10].
Resulting from a compromise between an open-ended and a secure architecture,
the Java reflective API (as defined by its java.lang.reflect package) provides
a MOP principally dedicated to self-description and introspection [13].

In the case of an open middleware [29], the main usage of behavioral re-
flection is to control message sending by interposing a metaobject in charge
of adding extra behaviors/services (such as transaction, caching, distribution)
to its base object. Nevertheless, the introduction of such interceptors/wrappers
metaobjects requires to instrument the base level with some hooks in charge
of causally connecting the base object with its metaobject. Those metaobjects
prefigured the introduction of AspectJ crosscuts, e.g., the specification of execu-
tion points where extra actions or advice should be woven in the base program
[21, 17].

1.3 Aspect-Oriented Languages

Aspect-oriented programming as well as aspect-oriented modeling go beyond the
(meta)object model by providing mechanisms to express crosscutting concerns.
These new units of independent behaviors called aspects, support the identifica-
tion, the encapsulation and then the manipulation of a set of (non functional)
properties describing a specific concern such as graphic user interfaces (GUI),
transaction policies, errors handling These aspects must allow adaptation
of program units across module boundaries [40]. While beeing added to a legacy
application and in accordance with the modularity principle, they should not

2 The dot notation Class.allocate meaning the allocate method defined in the
Class class.

Towards Generative Programming 319

pollute the base application. Consequently, aspects have to be specified as in-
dependent units and then woven with the associated base program in a non
invasive way.

Technically, the main intuition behind AOP is to introduce join points rais-
ing events every time an interesting point is reached during the execution of a
program. The idea is to propose a pointcut language to select specific join points
and an advice language to express the extra code to be woven at those pointcuts.
Today AOP is a very dynamic field of research where some groups prototype new
languages focusing on the pointcut and advice models while other groups develop
formal techniques based on program transformation and analysis [AOSD].

AspectJ: An Archetype of AOL. “A characteristic of aspect-oriented pro-
gramming, as embodied in AspectJ, is the use of advice to incrementally modify
the behavior of a program. An advice declaration specifies an action to be taken
whenever some condition arises during the execution of the program. The con-
dition is specified by a formula called a pointcut designator. The events during
execution at which advice may be triggered are called joint points. In this model
of aspect-oriented programming, join points are dynamic in that they refer to
events during the execution of the program [41].”

AspectJ is a general purpose language built as a super set of Java. For a first
introduction see [AspectJ, 27] and chapter 6 of [18]. The idea is to introduce a
new unit called an aspect in charge of modularizing crosscutted concerns. This
unit looks like a class definition but supports the declarations of pointcuts and
advice. These pointcuts are used by a specific compiler to weave the advice with
regular Java code. From an industrial perspective, AspectJ is the first largely
spread language used to develop or reengineer relevant applications according to
aspect-oriented design [18, AOSD]. From an academic point ov view, AspectJ
is the aspect-oriented pioneer and as such the natural candidate to expose the
relationships between objects, metaobjects and aspects and then to answer some
issues raised by post-object-oriented programming.

The Pointcut and Advice Models. In the case of AspectJ both the pointcut
language and the advice language are extensions of Java. Revisiting [20] we
propose the following definitions :

– Join point : a well defined point in the execution of a program. As an ex-
tension of Java, AspectJ proposes about ten different kinds of those points
related to object-oriented execution; method call, method execution, field
reference (get and set), constructor call, (static) initializer execution, con-
structor execution, object (pre) initialization, exception handler execution
[27].

– Pointcut (when) : an expression designating a set of join points that option-
ally expose some of the values in the associated execution context. These
pointcuts can be either user-defined or primitives. These pointcuts can be
composed (like predicates) according to three logical operators : logical and
(&& operator), logical or (|| operator) and logical negation (! operator).

320 P. Cointe

– Advice (how/what) : a declaration of what an aspect computes at intercepted
join points. In fact a method like mechanism used to declare that certain code
should execute when a given pointcut matched. The associated code can be
told to run before the actual method starts runing, after the actual method
body has run, and instead/around the actual method body.

– Inter-type declaration (introductions) : declarations of members that cut
across multiple classes or declarations of change in the inheritance relation-
ship between classes. In a reflective way, those declarations are used to open
a class by statically introducing new members or by changing its super class
or super interfaces.

– Aspect : a unit of modular crosscutting implementation, composed of point-
cuts and advice, plus ordinary Java member declarations. An AspectJ aspect
declaration has a form similar to that of a Java class declaration.

A Flavor of AspectJ. [13] develops a guided tour of AspectJ demonstrating
by examples how to define aspects tracing or memoizing methods. In this same
volume, [1] introduces a Logging and a RepaintProtocol aspect crosscutting
a Clock class. To go a step forward in the adaptation of the AWT framework as
discussed by S. Chiba, we introduce the RunnableAspect.

The idea is to address the recurrent question of how to make objects active?
Java idioms suggest to use a Runnable interface in charge of adapting a class to
the Java concurrency model. The AspectJ alternative is to replace the standard
execution of a method by the launching of a new private Thread dedicated to
its execution :

public aspect RunnableAspect {

// a pointcut declaration

pointcut executeMain() : execution(static void Clock.main(String[])) {

// an advice definition

void around() : executeMain() {

new Thread(){

public void run() {

System.out.println("Started in another thread");

proceed();

}

}.start();

}

}

The executionMain pointcut is associated to the execution of the static
Clock.main method3. The associated around advice starts the execution of this
method in a new Thread. The proceed construction allows to execute the regular
Clock.main body.

3 The wild card operator “*” authorizes to capture all the defined main methods :
pointcut executionAllMain : execution(static void *.main(String[]))

Towards Generative Programming 321

1.4 Renewal of Domain Specific Languages

A DSL is a high-level language providing constructs appropriate to a particular
family of problems. Contrarily to a general purpose language (GPL), a DSL is
readable for domain experts and usually declarative [14]. The use of such a lan-
guage simplifies programming, because solutions can be expressed in a way that
is close to the domain and because low-level optimizations and domain expertise
are captured in the language implementation rather than being coded explicitly
by the programmer. The avoidance of low-level source code in itself improves
program robustness. More importantly, the use of domain-specific constructs fa-
cilitates precise, domain-specific verifications, that would be costly or impossible
to apply to comparable code written in a general-purpose language [33].

The advantages of DSLs have drawn the attention of rapidly evolving markets
where there is a need for building families of similar software, by introducing
product lines [DSL, 25, 3, 4]. DSL are also good candidates for markets where
reactivity or software certification are critical : Internet, cellular phones, smart
cards, electronic commerce, bank ATM, telephony services . . .

Coupling Domain Specific Languages and Aspects

DSL languages as MDA models offer high-level constructs dedicated to a do-
main. They require high-level compilers able to target a general purpose lan-
guage (GPL) by providing the ad hoc mapping between the DSL and the GPL
constructs. A real challenge is to improve DSL compilers to optimize the gen-
eration and/or compilation of executable programs [16]. In that perspective the
AOP techniques of pointcuts and advice could provide a better modularization
of DSL compilers themselves. AOD can be also used as a separation of con-
cern methodology to reengineer legacy software by instrumenting an application
with pointcut statements generation and then by inferfacing the associated set
of events with a DSL [6]. Finally, mirroring Architecture, a DSL could be used as
an ASL to provide the good level of abstraction when defining a specific aspect.
Obviously, building a weaver able to compose a GPL application with aspects
expressed via specific languages seems a very long term challenge!

2 Open and Challenging Issues

This section is a short summary of the workshop discussion related to generative
programming. The guest speakers have a strong background in (meta)object,
aspect and component oriented programming and they were asked to discuss
the what and the how of the GP approach.

1. When opening the track, Pierre Cointe pointed out that GP is really an
attempt to solve industrial problems such as adaptability, scalability and
reusability by improving current modeling and programming technologies.
When considering the automation (generation, composition and transfor-
mation) of software components, he suggested going behind object-oriented
languages by still looking at the physical world as a source of inspiration. A

322 P. Cointe

promising step in the direction of unconventional programming paradigms
is the aspect-oriented programming approach seen as a way to provide un-
planned and none invasive adaptability by incrementally modifying the be-
havior of a program. As for reflection, metalevel architectures and open sys-
tems, the challenge is to have a precise description and control of compu-
tation either at the structural or at the behavioral levels. Considering Ar-
chitecture as a second source of inspiration, another challenge is to consider
DSLs as a formalism to express complex aspects such as security, concur-
rency, GUI, . . . , and then to define weavers to superimpose aspect-specific
languages with legacy applications.

2. Krzysztof Czarnecki gave an overview of generative software development fo-
cusing on software reuse and development processes. He suggested a paradigm
shift towards modeling and programming system families by first discussing
the issues around the mapping between the problem space (the what) and
the solution space (the why). Then, he related in detail the feature-oriented
approach and emphasized the use of DSLs at the modeling level [3].

3. Shigeru Chiba introduced generative programming from a post object-oriented
programming view point by sketching an application for automating the use
of the AWT framework. This talk was the opportunity to introduce Javassist,
a Java byte code translator, and to discuss how to use it as a programmable
program translator. It was also the occasion to present Javassist first as
a load-time metaobject protocol, then as a basic kernel to implement AOP
languages à la AspectJ [1].

4. Mira Mezini developed a comparison of program generation with aspect-
oriented programming. She argued that general purpose programming lan-
guages should be augmented with abstraction mechanisms to encode and
superimpose different crosscutting models instead of using program genera-
tion techniques to encode domain-specific knowledge. She introduced Caesar
- her general purpose language - to demonstrate how to encode such domain
specific models by developing the notion of pointcuts and advice languages.
In these proceedings, she also sketches the ALPHA prototype designed to pro-
vide more expressive pointcuts at the levels of the control flows graph, the
abstract syntax tree, the object graph, . . . [4].

5. Charles Consel presented generative programming from a DSL viewpoint and
discussed how to compile DSL programs into GPL programs. He mentionned
how to drive generative tools by using declarations and annotations and
pointed out how to benefit from metaprogramming technology.

Acknowledgments

This work is part of the new AOSD network of excellence and its language
laboratory (see http://www.aosd-europe.net).

Towards Generative Programming 323

References

[AspectJ] AspectJ site. : See http://eclipse.org/aspectj.

[AOSD] AOSD conference site. : See http://aosd.net.

[DSL] See http://lab.msdn.microsoft.com/teamsystem/Workshop/DSLTools/.

[GPCE] Batory, D., Czarnecki, K., Eisenecker, U., Smaragdakis., Y., Szti-
panivits J.: Generative Programming and Component Engineering. See
http://www.cs.rice.edu/~taha/gpce/.

[MDA] Model Driven Architecture (MDA) site. : See http://www.omg.org.

[UML] See http://www.uml.org.

1. Chiba, Shigeru.: Generative Programming from a Post Object-Oriented Program-
ming ViewPoint. Same volume.

2. Coore, D.: Introduction to Amorphous Computing. Same volume.

3. Czarnecki, K.: Overview of Generative Software Development. Same volume.

4. Mezini, M., Ostermann, K.: A Comparison of Programm Generation with Aspect-
Oriented Programming. Same volume.

5. Parashar, M., Hairi, S.: Autonomic Computing: An Overview. Same volume.

6. Aberg, R. A., Lawall, J., Sudholt, M., Muller, G., Lemeur, A.-F.: On the automatic
evolution of an OS kernel using temporal logic and AOP. 18th IEEE International
Conference on Automated Software Engineering, ASE 2003, Montreal, Canada,
October 2003.

7. Aksit, M., Black, A., Cardelli, L., Cointe. P., Guerraoui, R. (editor), and al.: Strate-
gic Research Directions in Object Oriented Programming, ACM Computing Sur-
veys, volume 8, number 4, page 691-700, 1996.

8. Bouraqadi-Sadani, M.N. , Ledoux, T., Rivard F.: Safe Metaclass Programming.
Proceedings of OOPSLA 1998. Editor Craig Chambers,ACM-Sigplan, pages 84-
96, volume 33, number 10, Vancouver, British Columbia, Canada, October 1998.

9. Bouraqadi-Sadani, M.N. , Ledoux, T.: Supporting AOP Using Reflection. Chapter
12 of [18], pages 261-282, 2005.

10. Cointe, P.: Metaclasses are First Class: The ObjVlisp Model. Proceedings of the
second ACM SIGPLAN conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA 1987). Editor Jerry L. Archibald, ACM
SIGPLAN Notices, pages 156-167, volume 22, number 12, Orlando, Florida, USA,
October 1987.

11. Cointe, P.: CLOS and Smalltalk : a Comparison. Chapter 9, pages 215-250 of [34].
The MIT Press, 1993.

12. Cointe, P., Noyé, J., Douence, R., Ledoux, T., Menaud, J.M., Muller, G., Südholt,
M.: Programmation post-objets. Des langages d’aspect aux langages de com-
posants. RSTI série L’objet. volume 10, number 4, pages 119-143, 2004. See also
http://www.lip6.fr/colloque-JFP.

13. Cointe, P., Albin Amiot, Denier, S.: From (meta) objects to aspects : from Java
to AspectJ. Third International Symposium on Formal Methods for Components
and Objects, FCMO 04, Leiden, The Netherlands, November 2004. To appear as
a LNCS volume. 2005.

14. Consel, C.: From A Program Family To a Domain-Specific Language. Pages 19-29
of LNCS 3016, Springer Verlag. State-of-theArt Survey in Domain-Specific Pro-
gram Generation. International Seminar, Dagstuhl Castle, 2004.

15. Czarnecki, K., Eisenecker, U.W.: Generative Programming. Methods, Tools, and
Applications. Addison-Wesley, 2000.

324 P. Cointe

16. Dmitriev, S.: Language Oriented Programming : The Next Programming
Paradigm. onBoard, wwww.onboard.jetbrains.com, November 2004.

17. Douence, R., Motelet, O., Sudholt, M.: A formal definition of crosscuts. Proceed-
ings of the 3rd International Conference on Reflection 2001, LNCS volume 2192,
pages 170-186, 2001.

18. Filman, E. R., Elrad, T., Clarke, S., Aksit, M.: Aspect-Oriented Software Devel-
opment. Addison-Wesley, 2005.

19. Kiczales, G., Ashley, J., Rodriguez, L., Vahdat, A., Bobrow, D.: Metaobject Proto-
cols Why We Want Them and What Else They Can Do. Chapter 4, pages 101-118
of [34]. The MIT Press, 1993.

20. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C, Loingtier, J.-M.,
Irwin, J.: Aspect-Oriented Programming. 11th European Conference on Object-
Oriented Programming, ECOOP 1997, LNCS volume 1241, pages 220-242, 1997.

21. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.: An
Overview of AspectJ 15th European Conference on Object-Oriented Programming,
ECOOP 2001, LNCS volume 2072, pages 327-354, 2001.

22. Hannemann, J., Kiczales, G.: Design Pattern Implementation in Java and AspectJ.
Pages 161-173 of the proceedings of OOPLSA 2002. Editor Ron Crocker and Guy
L. Steele, Jr. 2002.

23. Gamma, E., Helm, R., Johnson. R., Vlissides, J.: Design Patterns. Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional Computing Se-
ries. 1995

24. Gabriel, R.: Objects Have Failed. See http://www/dreamsongs/com/Essays.html.
25. Greenfield, J., Short, K., Cook, S., Stuart, K.: Software Factories : Assembling

Applications with Patterns, Models, Frameworks & Tools. John Wiley & Sons. See
also wwww.softwarefactories.com, September 2004.

26. Guéhéneuc, Y., Albin Amiot, H.: Recovering Binary Class relationships: Putting
Icing on the UML Cake. Pages 301-314 of the OOPSLA 2004 proceedings, ACM
Sigplan, Vancouver, October 2004.

27. Kiselev, I.: Aspect-Oriented Progamming with AspectJ. Sams Publishing, 2003.
28. Ledoux, T., Cointe, P.: Explicit Metaclasses As a Tool for Improving the Design

of Class Libraries. Pages 38-55 of the JSSST-JAIST ISOTAS 1996 proceedings,
Springer Verlag, LNCS Volume 1049. Kanazawa, Japan, 1996.

29. Ledoux, T.: OpenCorba: A Reflective Open Broker. Pages 197-214 of the pro-
ceedings of the second international conference on Meta-Level Architectures and
Reflection (Cointe, P. editor). Springer Verlag, LNCS Volume 1616, Saint-Malo,
France, 1999.

30. Maes, P., Nardi, D. editors.: Meta-Level Architectures and Reflection. Selection of
papers presented at the workshop on Meta-Level Architectures and Reflection held
in Alghero during october 1986. North-Holland 1988.

31. McAffer, J.: Meta-level Programming with CodA. Proceedings of ECOOP 1995.
Page 190-214, Springer LNCS Volume 952, Aarhus, Danemark, 1995

32. McAffer, J.: Engineering the Meta-Level. Proceedings of Reflection 96, pages 39-61,
Edited by G. Kiczales. San Francisco, April 1996.

33. Muller, G., Consel, C., Marlet, R., Barreto, L.P., Mérillon, F., Réveillère, L.: To-
wards Robust OSes for Appliances: A New Approach Based on Domain-Specific
Languages. Pages 19-24 of the Proceedings of the ACM SIGOPS European Work-
shop 2000 (EW2000), Kolding, Denmark, 2000

34. Pæpcke, A.: Object-Oriented Programming : The CLOS perspective. The MIT
Press, 1993.

Towards Generative Programming 325

35. Scharli, N., Ducasse, S., Nierstrasz, O., Black, P.: Traits: Composable Units of
Behaviour. 17th European Conference on Object-Oriented Programming, ECOOP
2003. Editor L. Cardelli. LNCS volume 2743, pages 248-274. 2003.

36. Smith, B.: What do you mean, meta? Proceedings of the First Workshop on Re-
flection and Metalevel Architectures in Object-Oriented Programming. OOPSLA-
ECOOP’90, Ottawa, 1990.

37. Tanter, E., Noyé, J., Caromel, D., Cointe, P.: Partial Behavioral Reflection: Spatial
and Temporal Selection of Reification. Proceedings of the 18th ACM SIGPLAN
conference on Object-Oriented Programing, Systems, Languages, and Applications,
OOPSLA 2003. Editor Ron Crocker and Guy L. Steele, Jr. ACM SIGPLAN No-
tices, volume 38, number 11, pages 27-46, 2003.

38. Tatsubori, M., Chiba, S.: Programming Support of Design Pattern with Compile-
time Reflection. Proceedings of the OOPSLA 1998 workshop on Reflective Pro-
gramming in C++ and Java. Availabla as at technical report of the Center for Com-
putational Physics, Univcersity of Tsukuba. Vancouver, Canada, October 1998.

39. Thomas, D.: Reflective Software Engineering - From MOPS to AOSD. Journal Of
Object Technology, volume 1, number 4, pages 17-26. October 2002.

40. Wand, M.: Understanding Aspects. Invited talk at the International
Conference on Functional Programming, ICFP 2003. Available at
www.ccs.neu.edu/home/wand/ICFP, 2003.

41. Wand, M., Kiczales, G., Dutchyn, C.: A semantics for Advice and Dynamic Joint
Points in AOP. ACM Toplas Volume 26 Issue 5, 2004.

42. Wegner, P.: Dimensions of Object-Based Language Design. Proceedings of the
second ACM SIGPLAN conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA 1987). Editor Jerry L. Archibald. ACM
SIGPLAN Notices, pages 168-182, volume 22, number 12, Orlando, Florida, USA,
October 1987.

43. Yonezawa, A., Smith, Brian, C., editors.: Reflection and Meta-Level Architectures.
Proceedings of the IMSA workshop held in Tokyo during November 4-7 1992.

Overview of Generative Software Development

Krzysztof Czarnecki

University of Waterloo, Canada
czarnecki@acm.org

Abstract. System family engineering seeks to exploit the commonali-
ties among systems from a given problem domain while managing the
variabilities among them in a systematic way. In system family engineer-
ing, new system variants can be rapidly created based on a set of reusable
assets (such as a common architecture, components, models, etc.). Gen-
erative software development aims at modeling and implementing system
families in such a way that a given system can be automatically generated
from a specification written in one or more textual or graphical domain-
specific languages. This paper gives an overview of the basic concepts and
ideas of generative software development including DSLs, domain and ap-
plication engineering, generative domain models, networks of domains,
and technology projections. The paper also discusses the relationship of
generative software development to other emerging areas such as Model
Driven Development and Aspect-Oriented Software Development.

1 Introduction

Object-orientation is recognized as an important advance in software technol-
ogy, particularly in modeling complex phenomena more easily than its prede-
cessors [1]. But the progress in reusability, maintainability, reliability, and even
expressiveness has fallen short of expectations. As units of reuse, classes have
proven too small. Frameworks are hard to compose, and their development re-
mains an art. Components—as independently-deployable units of composition
with contractually specified interfaces [2]—offer reuse, but the more functional
the component, the larger and less reusable it becomes. And patterns, while
intrinsically reusable, are not an implementation medium.

Current research and practical experience suggest that achieving signifi-
cant progress with respect to software reuse requires a paradigm shift towards
modeling and developing software system families rather than individual sys-
tems. System-family engineering (also known as product-line engineering)
seeks to exploit the commonalities among systems from a given problem
domain while managing the variabilities among them in a systematic way [3,
4,5]. In system-family engineering, new system variants can be rapidly created
based on a set of reusable assets (such as a common architecture, components,

J.-P. Banâtre et al. (Eds.): UPP 2004, LNCS 3566, pp. 326–341, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Overview of Generative Software Development 327

models, etc.).1 Frameworks and components are still useful as implementation
technologies, but the scope and shape of reusable abstractions is determined
and managed through a system-family approach.

Generative software development is a system-family approach, which focuses
on automating the creation of system-family members: a given system can be
automatically generated from a specification written in one or more textual or
graphical domain-specific languages [6, 7, 3, 8, 9, 10,11].

This paper gives an overview of the basic concepts and ideas of generative
software development including DSLs, domain and application engineering, gen-
erative domain models, networks of domains, and technology projections. The
paper closes by discussing the relationship of generative software development to
other emerging areas such as Model Driven Development and Aspect-Oriented
Software Development.

2 Domain-Specific Languages

A domain-specific language (DSL) is a language offering expressive power fo-
cused on a particular problem domain, such as a specific class of applications
or application aspect. Whereas general-purpose programming languages such as
Java or C++ were designed to be appropriate for virtually any kind of applica-
tions, DSLs simplify the development of applications in specialized domains at
the cost of their generality.

DSLs are certainly not a new idea. In fact, before common programming
abstractions were identified and packaged into general-purpose programming
languages, many of the early computer languages were application-specific. For
example, in his landmark paper “The Next 700 Hundred Programming Lan-
guages”, Landin [12] cites a 1965 Prospectus of the American Mathematical
Association: “... today... 1,700 special programming languages used to ’commu-
nicate’ in over 700 application areas.” Although many DSLs have been developed
over the years, the systematic study of DSLs is more recent, e.g., [6, 13,14,15].

The domain specificity of a language is a matter of degree. While any language
has a certain scope of applicability, some languages are more focused than others.
Programming languages such as Fortran or Cobol, although designed with some
application focus in mind, are still fairly general. For example, Fortran was
designed to target mathematical applications, but it can be used to program
anything from databases to user interfaces. When referring to DSLs, we consider
much more focused languages, such as HTML or SQL. In fact, a great share of
existing DSLs are not even programming languages [16].

Narrowing the application scope of a language allows us to provide better sup-
port for solving problems within the scope compared to what a general purpose

1 System-family engineering is mainly concerned with building systems from com-
mon assets, whereas product-line engineering additionally considers scoping and
managing common product characteristics from the market perspective. In order
to be more general, this paper adheres to system-family terminology.

328 K. Czarnecki

programming language could offer. A DSL can offer several important advan-
tages over a general-purpose language:

– Domain-specific abstractions: a DSL provides pre-defined abstractions to
directly represent concepts from the application domain.

– Domain-specific concrete syntax : a DSL offers a natural notation for a given
domain and avoids syntactic clutter that often results when using a general-
purpose language.

– Domain-specific error checking : a DSL enables building static analyzers that
can find more errors than similar analyzers for a general-purpose language
and that can report the errors in a language familiar to the domain expert.

– Domain-specific optimizations: a DSL creates opportunities for generating
optimized code based on domain-specific knowledge, which is usually not
available to a compiler for a general-purpose language.

– Domain-specific tool support : a DSL creates opportunities to improve any
tooling aspect of a development environment, including, editors, debuggers,
version control, etc.; the domain-specific knowledge that is explicitly cap-
tured by a DSL can be used to provide more intelligent tool support for
developers.

The traditional approach to providing domain-specific abstractions in pro-
gramming languages is through libraries of user-defined functions, classes, and
data structures. We consider the application programming interfaces (APIs) ex-
posed by such libraries as a possible implementation form for DSLs. User-defined
abstractions is a way to extend a language with domain-specific vocabulary, and
library and API design is a form of language design. Of course, open-ended
language design is more challenging than API design, which is constrained and
guided by the host language. At the same time, while satisfying the first benefit
in the list above, traditional libraries and APIs usually come short on the other
items, such as domain-specific notation (beyond operator overloading, which may
be available in the host language), error checking, and optimizations. Achieving
the latter goals usually requires some form of metaprogramming.

DSLs come in a wide variety of forms, e.g., textual languages (stand-alone
or embedded in a general-purpose programming language), diagrammatic lan-
guages, form-based languages, grid-based languages, etc. Section 6 lists different
DSLs implementation technologies.

3 Domain Engineering and Application Engineering

System family engineering distinguishes between at least two kinds of develop-
ment processes: domain engineering and application engineering (see Figure 1).
Typically, there is also a third process, management, but this paper focuses on
the two development processes (for more information on process issues see [4,3]).
Generative software development, as a system-family approach, subscribes to the
process model in Figure 1, too.

Domain engineering (also known as product-line development or core asset
development) is “development for reuse”. It is concerned with the development

Overview of Generative Software Development 329

Domain engineering

Domain implementation

Reusable assets

New requirements

Application engineering

Domain analysis

Domain design

System requirements

System derivation

Management

System tailoring

Fig. 1. Main processes in system-family engineering

of reusable assets such as components, generators, DSLs, analysis and design
models, user documentation, etc. Similar to single-system engineering, domain
engineering also includes analysis, design, and implementation activities. How-
ever, these are focused on a class of systems rather than just a single system.2

Domain analysis involves determining the scope of the family to be built, identi-
fying the common and variable features among the family members, and creating
structural and behavioral specifications of the family. Domain design covers the
development of a common architecture for all the members of the system family
and a plan of how individual systems will be created based on the reusable as-
sets. Finally, domain implementation involves implementing reusable assets such
as components, generators, and DSLs.

Application engineering (also referred to as product development) is “devel-
opment with reuse”, where concrete applications are built using the reusable
assets. Just as traditional system engineering, it starts with requirements elic-
itation, analysis, and specification; however, the requirements are specified as
a delta from or configuration of some generic system requirements produced in
domain engineering. The requirements specification is the main input for system
derivation, which is the manual or automated construction of the system from
the reusable assets.

Both processes feed on each other: domain-engineering supplies application
engineering with the reusable assets, whereas application engineering feeds back
new requirements to domain engineering. This is so because application engineers
identify the requirements for each given system to be built and may be faced
with requirements that are not covered by the existing reusable assets. Therefore,
some amount of application-specific development or tailoring is often required in
order to quickly respond to the customer’s needs. However, the new requirements

2 Both terms “system family” and “domain” imply a class of systems; however,
whereas the former denotes the actual set of systems, the latter refers more to the
related area of knowledge. The use of the one or the other in compounds such as
“domain engineering” is mostly historical.

330 K. Czarnecki

implementation−
Mapping

Problem space

domain−specific
abstractions

Solution space

abstractions
oriented

Fig. 2. Mapping between problem space and solution space

should be fed back into domain engineering in order to keep the reusable assets
in sync with the product needs. Different models for setting up these processes
in an organization, e.g., separate or joint product-development and domain-
engineering teams, are discussed in [17].

Domain engineering can be applied at different levels of maturity. At mini-
mum, domain analysis activities can be used to establish a common terminology
among different product-development teams. The next level is to introduce a
common architecture for a set of systems. Further advancement is to provide
a set of components covering parts or all of the systems in the system family.
Finally, the assembly of these components can be partially or fully automated
using generators and/or configurators. The last level represents the focus of gen-
erative software development. In general, the generated products may also con-
tain non-software artifacts, such as test plans, manuals, tutorials, maintenance
guidelines, etc.

4 Mapping Between Problem Space and Solution Space

A key concept in generative software development is that of a mapping between
problem space and solution space (see Figure 2), which is also referred to as a
generative domain model. Problem space is a set of domain-specific abstractions
that can be used to specify the desired system-family member. By “domain-
specific” we mean that these abstractions are specialized to allow application
engineers to express their needs in a way that is natural for their domain. For
example, we might want to be able to specify payment methods for an electronic
commerce system or matrix shapes in matrix calculations. The solution space,
on the other hand, consists of implementation-oriented abstractions, which can
be instantiated to create implementations of the specifications expressed using
the domain-specific abstractions from the problem space. For example, payment
methods can be implemented as calls to appropriate web services, and differ-
ent matrix shapes may be realized using different data structures. The mapping
between the spaces takes a specification and returns the corresponding imple-
mentation.

Overview of Generative Software Development 331

Problem space

and
(minimum redundancy

maximum combinability)

elementary components

Solution space

Mappingconcepts and features
domain−specific

illegal feature combinations construction rules
default settings

default dependencies

Configuration knowledge

optimizations

Fig. 3. Configuration view on the mapping between problem space and solution space

4.1 Configuration and Transformation

There are at least two different views at the mapping between problem space
and solution space in generative software development: configuration view and
transformational view.

In the configuration view, the problem space consists of domain-specific con-
cepts and their features (see Figure 3). The specification of a given system re-
quires the selection of features that the desired system should have. The problem
space also defines illegal feature combinations, default settings, and default de-
pendencies (some defaults may be computed based on some other features).
The solution space consists of a set of implementation components, which can
be composed to create system implementations. A system-family architecture
sets out the rules how the components can be composed. In the configuration
view, an application programmer creates a configuration of features by select-
ing the desired ones, which then is mapped to a configuration of components.
The mapping between both spaces is defined by construction rules (certain con-
figurations of features translate into certain configurations of implementation
components) and optimizations (some component configurations may have bet-
ter non-functional properties then others). The mapping plus the illegal feature
combinations, default settings, and default dependencies collectively constitute
configuration knowledge. Observe that the separation between problem and solu-
tion space affords us the freedom to structure abstractions in both spaces differ-
ently. In particular, we can focus on optimally supporting application program-
mers in the problem space, while achieving reuse and flexibility in the solution
space.

In the transformational view, a problem space is represented by a domain-
specific language, whereas the solution space is represented by an implementation
language (see Figure 4). The mapping between the spaces is a transformation
that takes a program in a domain-specific language and yields its implemen-
tation in the implementation language. A domain-specific language is a lan-
guage specialized for a given class of problems. Of course, the implementation
language may be a domain-specific language exposed by another domain. The

332 K. Czarnecki

language

Problem space

domain−specific
language

Transformation implementation

Solution space

Fig. 4. Transformational view on the mapping between problem space and solution
space

transformational view directly corresponds to the Draco model of domains and
software generation [6].

Despite the superficial differences, there is a close correspondence between
both views. The problem space with its common and variable features and
constraints in the configuration view defines a domain-specific language, and
the components in the solution space can also be viewed as an implementa-
tion language. For example, in the case of generic components, we can specify
this target language as a GenVoca grammar with additional well-formedness
constraints [18, 8]. Thus, the configuration view can also be interpreted as a
mapping between languages.

The two views relate and integrate several powerful concepts from software
engineering, such as domain-specific languages, system families, feature model-
ing, generators, components, and software architecture. Furthermore, the trans-
lation view provides a theoretical foundation for generative software development
by connecting it to a large body of existing knowledge on language theory and
language translation.

4.2 Network of Domains

Observe that Figure 2 can be viewed recursively, i.e., someone’s problem space
may be someone else’s solution space. Thus, we can have chaining of mappings
(see Figure 5 a). Furthermore, a mapping could take two or more specifications
and map them to one (or more) solution space (see Figure 5 b). This is com-
mon when different aspects of a system are represented using different DSLs. A
mapping can also implement a problem space in terms of two or more solution
spaces (see Figure 5 c). Finally, different alternative DSLs (e.g., one for begin-
ners and one for expert users) can be mapped to the same solution space (see
Figure 5 d), and the same DSL can have alternative implementations by map-
pings to different solution spaces (e.g., alternative implementation platforms; see
Figure 5e).

In general, spaces and mappings may form a hypergraph, which can even
contain cycles. This graph corresponds to the idea of a network of domains
by Jim Neighbors [6], where each implementation of a domain exposes a DSL,

Overview of Generative Software Development 333

a. Chaining of mappings

b. Multiple problem spaces c. Multiple solution spaces

d. Alternative problem spaces e. Alternative solution spaces

Fig. 5. Different arrangements of mappings between problem and solution spaces

which may be implemented by transformations to DSLs exposed by other domain
implementations.

5 Feature Modeling and Feature-Oriented Approach

Feature modeling is a method and notation to elicit and represent common
and variable features of the systems in a system family. Feature modeling was
first proposed by Kang et al in [19] and since then has been extended with
several concepts, e.g., feature and group cardinalities, attributes, and diagram
references [20].

An example of a feature model is shown in Figure 6. The model expresses that
an electronic commerce system supports one or more different payment methods;
it provides tax calculation taking into account either the street-level address, or

taxCalculation shipping

addressResolution

streetAddresscountry

e−shop

electronicCheque

debitCard

postalCode

creditCard

payment

Fig. 6. Example of a feature diagram

334 K. Czarnecki

postal code, or just the country; and it may or may not support shipment of
physical goods. A feature diagram such as in Figure 6 may be supplemented
with additional information including constraints (selecting a certain feature
may require or exclude the selection of another feature), binding times (features
may be intended to be selected at certain points in time), default attribute values
and default features, stakeholders interested in a given feature, priorities, and
more. Features may or may not correspond to concrete software modules. In
general, we distinguish the following four cases:

– Concrete features such as data storage or sorting may be realized as indi-
vidual components.

– Aspectual features such as logging, synchronization, or persistency may affect
a number of components and can be modularized using aspect technologies.

– Abstract features such as performance requirements usually map to some
configuration of components and/or aspects.

– Grouping features may represent a variation point and map to a common
interface of plug-compatible components, or they may have a purely organi-
zational purpose with no requirements implied.

Feature modeling gives rise to a feature-oriented approach to generative soft-
ware developement [8]. In the early stages of software family development, fea-
ture models provide the basis for scoping a system family by recording and as-
sessing information such as which features are important to enter a new market
or remain in an existing market, which features incur a technological risk, what is
the projected development cost of each feature, and so forth [21]. Subsequently,
feature models created in domain analysis are the starting point in the develop-
ment of both system-family architecture and DSLs (see Figure 7). Architecture
development takes a solution-space perspective at the feature models: it concen-
trates on the concrete and aspectual features that need to be implemented as
components and aspects. Familiar architectural patterns, such as in [22,23], can
be applied, but with the special consideration that the variation points expressed
in the feature models need to be realized in the architecture. During subsequent
DSL development, a problem-space perspective concentrating on features that
should be exposed to application developers determines the required DSL scope,
possibly requiring additional abstract features.

Domain analysis

Feature models

perspectiveperspective

Architecture and components DSLs

Solution−space Problem−space

Stakeholders & other information sources

Fig. 7. Feature-oriented approach

Overview of Generative Software Development 335

6 Technology Projections and Structure of DSLs

Each of the elements of a generative domain model can be implemented using
different technologies, which gives rise to different technology projections:

– DSLs can be implemented as new textual languages (using traditional com-
piler building tools), embedded in a programming language (e.g., template
metaprogramming in C++ or Template Haskell [24], OpenC++ [25], Open-
Java [26], Metaborg [27]), graphical languages (e.g., UML profiles [28], GME
[29], MetaEdit+ [30], or Microsoft’s DSL Technology in VisualStudio), wiz-
ards and interactive GUIs (e.g., feature-based configurators such as Feature-
ModelingPlugin [31], Pure::Consul [32], or CaptainFeature [33]), or some
combination of the previous. The appropriate structure of a DSL and the
implementation technology depend on the range of variation that needs to
be supported (see Figure 8). The spectrum ranges from routine configu-
ration using wizards to programming using graphical or textual graph-like
languages.

– Mappings can be realized using product configurators (e.g., Pure::Consul) or
generators. The latter can be implemented using template and frame proces-
sors (e.g., TL [9], XVCL [34], or ANGIE [35]), transformation systems (e.g.,
DMS [36], StrategoXT [37], or TXL [38]), multi-staged programming [39],
program specialization [40, 41, 42], or built-in metaprogramming capabili-
ties of a language (e.g., template metaprogramming in C++ or Template
Haskell).

– Components can be implemented using simply functions or classes, generic
components (such as in the C++ Standard Template Library), component
models (e.g., JavaBeans, ActiveX, or CORBA), or aspect-oriented program-
ming approaches (e.g., AspectJ [43], HyperJ [44], or Caesar [45]).

While some technologies cover all elements of a generative domain model
in one piece (e.g., OpenJava or template metaprogramming in C++), a more
flexible approach is to use an intermediate program representation to allow using
different DSL renderings (e.g., textual or graphical) with different generator
back-ends (e.g., TL or StrategoXT).

The choice of a specific technology depends on its technical suitability for
a given problem domain and target users. For example, in the case of DSLs,
concise textual languages may be best appropriate for expert users, but wizards
may be better suited for novices and infrequent users. In the case of generator
technologies, the need for complex, algebraic transformations may require using a
transformation system instead of a template processor. Furthermore, there may
be non-technical selection criteria such as mandated programming languages,
existing infrastructure, familiarity of the developers with the technology, political
and other considerations.

336 K. Czarnecki

Routine configuration Creative construction

Wizard Feature-based configuration Graph-like language

src1

scr4

scr9 scr11 scr12

scr3

scr7scr6

scr10

scr5

scr2

src8

shipping

addressResolution

streetAddresscountry

e−shop

electronicCheque

debitCard

postalCode

creditCard

payment taxCalculation

Path through decision tree Subtree of feature model Subgraph of (infinite) graph

Fig. 8. Spectrum of DSL structures

7 Model Driven Development

Perhaps the closest related area to generative software development is model-
driven development (MDD), which aims at capturing every important aspect of
a software system through appropriate models. A model is an abstract represen-
tation of a system and the portion of the world that interacts with it. Models
allow answering questions about the software system and its world portion that
are of interest to the stakeholders. They are better than the implementing code
for answering these questions because they capture the intentions of the stake-
holders more directly, are freer from accidental implementation details, and are
more amenable to analysis. In MDD, models are not just auxiliary documenta-
tion artifacts; rather, models can be compiled directly into executable code that
can be deployed at the customer’s site.

There has been a trend in MDD towards representing models using appro-
priate DSLs, which makes MDD and generative software development closely
related. Perhaps the main difference between MDD and generative software

Overview of Generative Software Development 337

(distribution, data−base connection, GUI, etc.)

Generative Software Development

Model Driven Architecture
Main focus of

A
pp

lic
at

io
n

do
m

ai
n

va
ri

ab
ili

ty

Technical variability

Fig. 9. Relationship between generative software development and MDA

development is the focus of the latter on system families. While system families
can be of interest to MDD, they are not regarded as a necessity.

Model-Driven Architecture (MDA) is a framework for MDD proposed by the
Object Management Group (OMG) [46]. While still being defined, the main goal
of MDA is to allow developers to express applications independently of specific
implementation platforms (such as a given programming language or middle-
ware). In MDA, an application is represented as a Platform Independent Model
(PIM) that later gets successively transformed into series of Platform Specific
Models (PSMs), finally arriving at the executable code for a given platform. The
models are expressed using UML and the framework uses other related OMG
standards such as MOF, CWM, XMI, etc. A standard for model transforma-
tions is work in progress in response to the Request for Proposals “MOF 2.0
Query/Views/Transformations” issued by OMG.

MDA concepts can be mapped directly onto concepts from generative soft-
ware development: a mapping from PIM to PSM corresponds to a mapping from
problem space to solution space. Beyond the similarities, there are interesting
synergies. On the one hand, benefits of MDA include a set of standards for defin-
ing and manipulating modeling languages and the popularization of generative
concepts in practice. Thanks to MDA, current UML modeling tools are likely to
evolve towards low-cost DSL construction tools. On the other hand, the MDA
efforts until now have been focusing on achieving platform independence, i.e.,
system families with respect to technology variation. However, generative soft-
ware development addresses both technical and application-domain variability,
and it may provide valuable contributions to MDA in this respect (see Figure 9).
Often asked questions in the MDA context are (1) what UML profiles or DSLs
should be used to represent PIMs and (2) what is a platform in a given context.
Domain analysis and domain scoping can help us to address these questions.

338 K. Czarnecki

Aspect−oriented programming

Generators

Components

Software architectures

Generic programming

Domain−specific languages

Feature modeling and interactions

Aspect−oriented DSLs

System−Family / Product−Line Engineering

Fig. 10. Relationship between generative software development and other fields (from
[47])

8 Other Related Fields

Figure 10 classifies a number of related fields by casting them against the el-
ements of a generative domain model. Components, architectures, and generic
programming are primarily related to the solution space. Aspect-oriented pro-
gramming provides more powerful localization and encapsulation mechanisms
than traditional component technologies. In particular, it allows us to replace
many “little, scattered components” (such as those needed for logging or synchro-
nization) and the configuration knowledge related to these components by well
encapsulated aspectual modules. However, we still need to configure aspects and
other components to implement abstract features such as performance proper-
ties. Therefore, aspect-oriented programming technologies such as AspectJ cover
the solution space and only a part of the configuration knowledge. But aspects
can also be found in the problem space, esp. in the context of DSLs used to
described different aspects of a single system. Areas such as DSLs, feature mod-
eling, and feature interactions address the problem space and the front part of
the configuration knowledge. Finally, system-family and product-line engineer-
ing span across the entire generative domain model because they provide the
overall structure of the development process (including domain and application
engineering).

9 Concluding Remarks

Generative software development builds upon and exploits the synergies among
several key concepts:

1. Software system families are the key to achieving systematic software reuse.
2. Domain-specific languages are about providing optimal support for applica-

tion developers.
3. Mappings enable design knowledge capture.

Overview of Generative Software Development 339

4. Aspect-oriented development provides better separation of concerns and
composition mechanisms.

5. Feature modeling aids family scoping, and DSL and architecture develop-
ment.

References

1. Meyer, B.: Object-Oriented Software Construction. Second edn. Prentice Hall,
Upper Saddle River, NJ (1997)

2. Szyperski, C.: Component Software—Beyond Object-Oriented Programming. Sec-
ond edn. Addison-Wesley / ACM Press, Boston, MA (2002)

3. Weiss, D.M., Lai, C.T.R.: Software Product-Line Engineering: A Family-Based
Software Development Process. Addison-Wesley (1999)

4. Clements, P., Northrop, L., eds.: Software Product Lines: Practices and Patterns.
International Series in Computer Science. Addison-Wesley (2001)

5. Parnas, D.: On the design and development of program families. IEEE Transactions
on Software Engineering SE-2 (1976) 1–9

6. Neighbors, J.M.: Software Construction using Components. PhD the-
sis, Department of Information and Computer Science, University of Cal-
ifornia, Irvine (1980) Technical Report UCI-ICS-TR160. Available from
http://www.bayfronttechnologies.com/thesis.pdf.

7. Cleaveland, J.C.: Building application generators. IEEE Software 9 (1988) 25–33
8. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and

Applications. Addison-Wesley (2000)
9. Cleaveland, C.: Program Generators with XML and Java. Prentice-Hall (2001)

10. Batory, D., Johnson, C., MacDonald, B., von Heeder, D.: Achieving extensibility
through product-lines and domain-specific languages: A case study. ACM Trans-
actions on Software Engineering and Methodology (TOSEM) 11 (2002) 191–214

11. Greenfield, J., Short, K.: Software Factories: Assembling Applications with Pat-
terns, Models, Frameworks, and Tools. Wiley, Indianapolis, IN (2004)

12. Landin, P.J.: The next 700 programming languages. Commun. ACM 9 (1966)
157–166

13. Bentley, J.L.: Little languages. Communications og the ACM 29 (1986) 711–721
14. van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: an annotated

bibliography. SIGPLAN Not. 35 (2000) 26–36
15. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific

languages. Technical Report SEN-E0309, CWI, Amsterdam (2003) Available from
http://www.cwi.nl/ftp/CWIreports/SEN/SEN-E0309.pdf.

16. Wile, D.S.: Supporting the dsl spectrum. CIT Journal of Computing and Infor-
mation Technology 9 (2001) 263–287

17. Bosch, J.: Software product lines: Organizational alternatives. In: Proceedings of
the 23rd International Conference on Software Engineering (ICSE). (2001)

18. Batory, D., O’Malley, S.: The design and implementation of hierarchical software
systems with reusable components. ACM Transactions on Software Engineering
and Methodology 1 (1992) 355–398

19. Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-oriented domain
analysis (FODA) feasibility study. Technical Report CMU/SEI-90TR -21, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA (1990)

340 K. Czarnecki

20. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged configuration using feature mod-
els. In Nord, R.L., ed.: Software Product Lines: Third International Conference,
SPLC 2004, Boston, MA, USA, August 30-September 2, 2004. Proceedings. Volume
3154 of Lecture Notes in Computer Science., Springer-Verlag (2004) 266–283

21. DeBaud, J.M., Schmid, K.: A systematic approach to derive the scope of software
product lines. In: Proceedings of the 21st International Conference on Software
Engineering (ICSE), IEEE Computer Society Press (1999) 34–43

22. Buschmann, F., Jkel, C., Meunier, R., Rohnert, H., Stahl, M., eds.: Pattern-
Oriented Software Architecture – A System of Patterns. International Series in
Computer Science. John Wiley & Sons (1996)

23. Bosch, J.: Design and Use of Software Architecture: Adopting and evolving a
product-line approach. Addison-Wesley (2000)

24. Czarnecki, K., O’Donnel, J., Striegnitz, J., Taha, W.: Dsl implementation in metao-
caml, template haskell, and c++. [48] 50–71

25. Sigeru Chiba: OpenC++ (2004) Available at
http://opencxx.sourceforge.net/index.shtml.

26. M. Tatsubori: OpenJava: An extensible Java (2004) Available at
http://sourceforge.net/projects/openjava/.

27. Bravenboer, M., Visser, E.: Concrete syntax for objects. domain-specific language
embedding and assimilation without restrictions. In C.Schmidt, D., ed.: Proceed-
ings of the 19th ACM SIGPLAN conference on Object-Oriented Programing, Sys-
tems, Languages, and Applications (OOPSLA’04). Vancouver, Canada. October
2004, ACM SIGPLAN (2004)

28. Jeff Grey et al.: OOPSLA’02 Workshop on Domain-Specific Visual Languages
(2002) Online proceedings at http://www.cis.uab.edu/info/OOPSLA-DSVL2/.

29. Lédeczi, Á., Árpád Bakay, Maróti, M., Völgyesi, P., Nordstrom, G., Sprinkle, J.,
Karsai, G.: Composing domain-specific design environments. IEEE Computer 34
(2001) 44–51

30. MetaCase, Jyväskylä, Finland: MetaEdit+ User Manual. (2004) Available from
http://www.metacase.com.

31. Antkiewicz, M., Czarnecki, K.: FeaturePlugin: Feature modeling plug-in for
Eclipse. In: OOPSLA’04 Eclipse Technology eXchange (ETX) Workshop. (2004)
Paper available from http://www.swen.uwaterloo.ca/∼kczarnec/etx04.pdf.
Software available from gp.uwaterloo.ca/fmp.

32. pure-systems GmbH: Variant management with pure::consul. Technical White
Paper. Available from http://web.pure-systems.com (2003)

33. Bednasch, T., Endler, C., Lang, M.: CaptainFeature (2002-2004) Tool available on
SourceForge at https://sourceforge.net/projects/captainfeature/.

34. Wong, T., Jarzabek, S., Swe, S.M., Shen, R., Zhang, H.: Xml implemen-
tation of frame processor. In: Proceedings of the ACM Symposium on
Software Reusability (SSR’01), Toronto, Canada, May 2001. (2001) 164–172
http://fxvcl.sourceforge.net/.

35. Delta Software Technology GmbH: ANGIE - A New Generator Engine (2004)
Available at http://www.delta-software-technology.com/GP/gptop.htm.

36. Baxter, I., Pidgeon, P., Mehlich, M.: Dms: Program transformations for practical
scalable software evolution. In: Proceedings of the International Conference on
Software Engineering (ICSE’04), IEEE Press (2004)

37. Visser, E.: Program transformation with stratego/xt: Rules, strategies, tools, and
systems. [48]

Overview of Generative Software Development 341

38. Cordy, J., Dean, T., Malton, A., Schneider, K.: Source transformation in soft-
ware engineering using the txl transformation system. Information and Software
Technology 44 (2002)

39. Taha, W.: A gentle introduction to multi-stage programming. [48]
40. Jones, N., Gomard, C., , Sestoft, P., eds.: Partial Evaluation and Automatic Pro-

gram Generation. International Series in Computer Science. Prentice-Hall (1993)
41. Consel, C., Danvy, O.: Tutorial notes on partial evaluation. In: Conference Record

of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles Of
Programming Languages, Charleston, SC, USA, ACM Press (1993) 493–501

42. Consel, C.: From a program family to a domain-specific language. [48] 19–29
43. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An

overview of aspectj. In: Proceedings of ECOOP’01. Lecture Notes in Computer
Science, Springer-Verlag (2001)

44. Tarr, P., Ossher, H., Harrison, W., , Sutton, S.M.: N degrees of separation: Multi-
dimensional separation of concerns. In: Proceedings International Conference on
Software Engineering (ICSE) ’99, ACM Press (1999) 107–119

45. Mezini, M., Ostermann, K.: Variability management with feature-oriented pro-
gramming and aspects. In: Foundations of Software Engineering (FSE-12), ACM
SIGSOFT (2004)

46. Object Management Group: Model-Driven Architecture (2004) www.omg.com/mda.
47. Barth, B., Butler, G., Czarnecki, K., Eisenecker, U.: Report on the ecoop’2001

workshop on generative programming. In: ECOOP 2001 Workshops, Panels and
Posters (Budapest, Hungary, June 18-22, 2001). Volume 2323 of Lecture Notes in
Computer Science., Springer-Verlag (2001)

48. Christian Lengauer, D.B., Consel, C., Odersky, M., eds.: Domain-Specific Program
Generation, International Seminar, Dagstuhl Castle, Germany, March 23-28, 2003,
Revised Papers. Volume 3016 of Lecture Notes in Computer Science. Springer-
Verlag (2004)

A Comparison of Program Generation
with Aspect-Oriented Programming

Mira Mezini and Klaus Ostermann

Darmstadt University of Technology, Germany
{mezini, ostermann}@informatik.tu-darmstadt.de

Abstract. Program generation and transformation techniques have
gained considerable attention in the context of domain-specific languages
(DSLs) and model-driven architecture (MDA). In this paper we com-
pare domain-specific program generators with general-purpose aspect-
oriented languages. We argue that program generation techniques have
severe disadvantages with respect to composability, scalability, under-
standability, and other important software engineering issues. Finally,
we advocate general-purpose aspect-oriented languages as an alternative
for the implementation of domain-specific languages.

1 Introduction

Today’s software has become very complex – besides the part of the program
responsible for the so-called business logic many other concerns such as network-
ing, security, platform, user interface etc. have to be considered as well. If all
these concerns have to be kept in mind while programming, programming ob-
viously becomes painful, with well-known disadvantages for understandability,
reusability, etc.

This is the reason why recent trends in software engineering and programming
languages try to provide technology with which these concerns can be treated
more or less isolated from other concerns. For example, the business domain
expert should be able to concentrate on programming the business logic of the
application without worrying about persistence management or security.

In this paper, we compare two of these technologies. One of these technolo-
gies, program generation, is frequently proposed in the context of model-driven
architecture1 and domain-specific languages. The idea behind program genera-
tion is that the business logic of the application is expressed in a domain-specific
language. The code for other concerns is latter added by a program generator
or program transformator, which translates the domain-specific program into a
program in a general-purpose language, whereby the generated program contains
the code for all concerns.

Aspect-oriented languages [8], on the other hand, are general-purpose lan-
guages that try to address the same problem by providing mechanisms to lo-

1 www.omg.org/mda

J.-P. Banâtre et al. (Eds.): UPP 2004, LNCS 3566, pp. 342–354, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Comparison of Program Generation with Aspect-Oriented Programming 343

calize and modularize crosscutting concerns, e.g., pointcuts and advice and in-
troductions in AspectJ [1]. In contrast to program generation, however, these
mechanisms are inside the language itself.

Technically, there is no real difference between the notions of program gen-
eration, program transformation, and compilation. Whether a program in some
language is interpreted on-the-fly, compiled to some intermediate language, pre-
or post-compiled by some tool, or directly translated to machine code, does not
make a big difference from a software engineering perspective. The main differ-
ence between these two technologies is that the generation- or compilation step
is specific to a particular DSL in the first case, whereas this step is a general-
purpose translation in the AOP case.

The reminder of this paper is organized as follows. In Sec. 2 we state our
perspective why conventional programming languages are insufficient to deal
with the problems addresed by domain-specific program generation and AOP.
In Sec. 3 we investigate the usage of program generation to deal with this problem
and argue that this approach is very powerful and expressive but also implies
a number of principal disadvantages of this technology. In Sec. 4 we position
aspect-oriented languages as an alternative to domain-specific program genera-
tion techniques. In Sec. 5 we discuss the result of the comparison and conclude.

2 Conventional Languages and the Problem of
Non-hierarchical Modularity

Let us at first discuss, why conventional languages like Java or C# are insufficient
to build domain-specific languages. Each of these languages has mechanisms to
define new names (procedures, classes, etc.) and give meaning to them. Hence,
programming languages do not have a fixed vocabulary but are inherently ex-
tensible because we can define new names (e.g., a procedure) in terms of the
vocabulary defined so far (e.g., implementation of a procedure).

Since a procedure definition also acts as an abstraction boundary (we can use
a procedure as black-box), the conventional notion of a domain-specific libarary
of functions, data structures, etc., seems to be an ideal solution to our problem
outlined in the introduction: Procedure- and data-type implementations hide the
concerns that are not interesting from the perspective of the respective domain;
the programmer can just use the domain-specific abstractions defined in the
library.

However, this approach does not work if the concerns encapsulated in the li-
brary do not fit to the modular structure of the respective domain: Conventional
abstraction mechanisms (like functional, procedural, or class-based abstraction)
are very good at creating a hierarchy of abstraction layers. At every layer bound-
ary, we can hide the details of a particular concern to the users of the layer. The
problem with this approach is that some concerns cannot be modularized in
terms of the modular structure provided by a lower-level abstraction layer: A
concern has to fit into the modular structure of the lower-level abstraction [9].

344 M. Mezini and K. Ostermann

We can also view the problem from the following perspective: It is well-known
that the criteria which we choose to decompose software systems into modules
has significant impact on the software engineering properties of the software.
In [13] Parnas observed that a data-centric decomposition eases changes in the
representation of data structures and algorithms operating on them. Following
on Parnas work, Garlan et al. [5] argue that function-centric decomposition on
the other side better supports adding new features to the system, a change which
they show to be difficult with the data-centric decomposition.

Conventional software decomposition techniques, including object-oriented
decomposition, are weak at supporting multi-view decomposition, i.e., the abil-
ity to simultaneously breakdown the system into inter-related units, whereby
each breakdown is guided by independent criteria. What current decomposition
technology enables is to view a system at different abstraction levels, resulting
in several hierarchical models of it, with each model be a refined version of its
predecessor in the abstraction levels.

By multi-view decomposition, we mean support for simultaneous crosscutting
rather than hierarchical models. Our perception of the world depends heavily
on the perspective from which we look at it: Every software system can be
conceived from multiple different perspectives, resulting in different decomposi-
tions of it into different “domain-specific” types and notations. In general, these
view-specific decompositions are equally reasonable, none of them being a sub-
ordinate of the others, and the overall definition of the system results from a
superimposition of them.

Models resulting from simultaneous decomposition of the system according
to different criteria are in general “crosscutting” with respect to the execution
of the system resulting from their composition. With the conceptual framework
used so far, crosscutting can be defined as a relation between two models with
respect to the execution of the software described by the models. This relation
if defined via projections of models (hierarchies).

A projection of a model M on the execution space of a program is a par-
tition of the execution space into subsets o1, . . . , on such that each subset oi

corresponds to a leaf in the model. Now, two models, M and M ′, are said to be
crosscutting, if there exist at least two sets o and o′ from their respective projec-
tions, such that, o∩ o′, and neither o ⊆ o′, nor o′ ⊆ o1. On the contrary, a model
M is a hierarchical refinement of a model M ′ if their projections o1, . . . , on and
o′1, . . . , o

′
m are in a subset relation to each other as follows: there is a mapping

p : {1, . . . , n} → {1, . . . , m} such that ∀i ∈ {1, . . . , n} : oi ⊆ o′p(i).
The motivating observation for both the aspect-oriented paradigm and for

program generation techniques is that a programming technique that does not
support simultaneous decomposition of systems along different criteria suffers
from what we call arbitrariness of the decomposition hierarchy problem, which
manifests itself as tangling and scattering of code in the resulting software, with
known impacts on maintainability and extendibility. With a “single-minded”
decomposition technique that supports only hierarchical models, we have to
choose one fixed classification sequence. However, the problem is that with a

A Comparison of Program Generation with Aspect-Oriented Programming 345

fixed classification sequence, only one concern is expressed concisely in terms
of its inherent concepts whereas all other concerns are tangled in the result-
ing hierarchical structure. Crosscutting models are themselves not the problem,
since they are inherent in the domains we model. The problem is that our lan-
guages and decomposition techniques do not (properly) support crosscutting
modularity.

In the case of program generation, domain-specific languages are not real-
ized by means of libraries but by means of specifying a generator that trans-
forms a program written in a DSL to some general-purpose language. The code
for crosscutting models is added at the appropriate places in the generation or
transformation step.

In the case of AOP, domain-specific languages are realized by domain-specific
libraries defined and used in a general-purpose language. The code for crosscut-
ting models is combined with the code of the library and its client by means of
crosscutting mechanisms. The term domain-specific embedded language (DSEL)
is sometimes used to describe this approach to domain-specific languages [6].

3 Program Generation (Pros and Cons)

Let us now consider the usage of program generation techniques to cope with the
identified problem. The most comon program generation techniques for domain-
specific languages are as follows [15]:

– In API-based approaches, programs are generated in a classic meta-
programming fashion: The programs to be generated have a first-class rep-
resentation in the generator language (e.g., a first-class representation of the
AST or the byte-code) that can be manipulated arbitrarily.

– In template-based approaches, code is generated by instantiating some kind
of code template with some parameters (the domain-specific program). The
advantage of template-based approaches over conventional procedural ab-
straction is that it is more flexible with respect to the kinds of parameters
– with procedural abstraction, we can only abstract over first-class values,
whereas with template parameters, we can abstract over all kinds of entities
(e.g., procedure names, types, etc.)

– In meta-model-based approaches, the generation process is structured by
mapping the entities in the domain-specific program to entities defined in
a meta-model. For example, the domain-specific concept “Person” may be
mapped to the meta-model concept “persistent object”. The advantage over
the template-based approach lies in the separation of the code generation
logic and the implementation of the meta-model concepts, which can varied
independently (to some degree).

– In attribute-based approaches, the domain-specific parts of the language are
encoded in the form of attributes – arbitrary information that can be asso-
ciated with procedures, methods, or classes. The remainder of the code is
written in a general-purpose language. For example, a class can be marked as

346 M. Mezini and K. Ostermann

“session bean” in an attribute of the class. This enables the code generator
to transform program entities based on their attributes.

These techniques differ in the expressiveness of the transformation and in
the degree of structure provided for programming transformation. API-based
approaches are the most general, in a sense, because any transformation se-
mantics whatsoever can be exressed. On the other hand, this approach does
not imply any structure for the transformation, hence it is hard to write and
understand such transformers. Template-based approaches can be understood
more easily, because they are based on the intuitive metaphor of instantiating
a template. On the other hand, the expressiveness is limited because not every
transformation can be expressed in terms of template instantiation. Meta-model
based approaches are closely associated to the notion of overlapping crosscutting
models, because the domain model is mapped to a (crosscutting) meta-model.
Attribute-based approaches are special in that languages like Java or C# have
special support for attributes (called annotations in Java) - a language extension
is thus not needed to introduce a new kind of attribute. From a pragmatic point
of view, this approach has several advantages because existing tools for the base
language (e.g., IDEs and parsers) can be reused. From a conceptual point of
view, attribute-based DSLs are equivalent to having dedicated DSLs separate
from the base language. They can be implemented by using any of the first four
approaches.

Hence, any transformation semantics whatsoever can easily be encoded using
one of these approaches. Another advantage is that it is easy to incorporate arte-
facts from several different programming language or non-programming artefacts
such as documentation.

However, domain-specific code generation also has some severe disadvantages,
which we want to outline in the following:

– Understandability of the programming model: Program generation is
hard to understand: Instead of encoding the intention of the programmer
directly, one has to think about the semantics of a program in terms of the
program it generates. This additional “indirection” is a tremendous burden
for both the DSL programmer and the programmer of the code generator.
The situation becomes worse if the concerns to be added by the generator
cannot be mapped directly to locations in the source code (dynamic crosscut-
ting). For example, the applicability of a generated statement may depend
on dynamic conditions like the control flow or the history of the execution.
In this case, complicated conditional logic further obfuscates both the code
of the generator and the generated code.

– Scalability: Today’s programs range tremendously in their size. This is the
reason why any abstraction mechanism that works only on one abstraction
level and cannot be re-applied recursively does not scale – there are too
many orders of magnitude w.r.t. the size of applications in order to have
different abstraction mechanisms for different program sizes. In the context
of program generation, recursive application of this abstraction mechanism

A Comparison of Program Generation with Aspect-Oriented Programming 347

would mean that program generators would generate code that is the input to
a lower-level code generator. However, each of these layers would introduce
an additional layer of “meta”-indirection: In order to understand code in
the base language, one has to think about every transformation step. Such a
hierarchy of code generators would be very hard to understand and maintain,
which is probably the reason why it is hardly used in practice (to the best
knowledge of the authors).

– Composability: In general, the features added by code generators can-
not be organized hierarchically. Hence, in order to make code generators
reusable, a separation of concerns for code generators would be desirable as
well, meaning that every code generator concentrates only on one concern.
However, for this mechanism to work, code generators would have to be com-
posable. However, in general it is unclear how two domain-specific languages
and their generators can be composed, hence the semantics of a composition
cannot be computed automatically but has to be implemented by hand for
every single case of composition.

– Traceability of errors: If the program contains errors, traceability of errors
becomes an important issue: What is the location and cause of the error?
This is frequently a problem in the context of program generation because
errors frequently show up only in the context of the target language and need
to be mapped to their meaning in the source language. For example, the
static type system of the target language may indicate an error in generated
code. Tools like debuggers typically work only for general-purpose languages
- if dynamic errors should be investigated, the programmer suddenly has to
deal with generated code and has to map the generated code back to his
original code.

– Preplanning and insufficiency: Basically all features that are added by
the program generator have to be known in advance, before writing the
program generator. Writing a highly-configurable program generator makes
the required effort even bigger. Hence, one either has the problem that one
needs either perfect preplanning, or that the DSL and its generator may be
insufficient for some purposes.

– Redundancy: To support a new domain-specific model requires to write a
new program generator. A scalable domain-specific language needs features
similar to those already available in conventional languages (e.g., functional
abstraction, control structures, type-checking). This means that these fea-
tures have to be re-invented and re-implemented or are simply missing in
DSLs.

4 Aspect-Oriented Languages

Let us now consider aspect-oriented languages as an alternative to domain-
specific program generation techniques. It is our conviction that we should strive
for new general-purpose abstraction mechanisms for domain-specific models that

348 M. Mezini and K. Ostermann

render the need for isolated DSLs and domain-specific program generators su-
perfluous. Our position is that general-purpose languages (GPLs) with built-in
support for expressing the interaction (superimposition) of independent partial
models in accordance with the principles of abstraction and information hiding
are needed.

In a model of software construction as a superimposition of different partial
crosscutting models, the key questions are how to express this superimposition
in a modular way and what abstractions are needed for the interface between
crosscutting models. Fig. 1 is an attempt to illustrate the issue schematically.
The figure illustrates the case when there are two overlapping models of the same
system. The tricky part is to describe how these two models interact with each
other in the execution space without exposing too much of the implementation
details of the models. This is illustrated by the black box with lollipops on top of
the lower model: We need a kind of interface to a crosscutting model that hides
its implementation details equivalent to the well-known black-box abstraction.

We distinguish between mechanisms for structural (concept) mapping be-
tween partial models and mechanisms for behavioral (control/data flow) map-
ping. These two mechanisms are illustrated in Fig. 2, by a mapping of two
object-oriented crosscutting models. In order to express how these two indepen-
dent models interact in creating a whole, we need both to express how their
concepts map to each other, illustrated by the arrows in the upper part of the
figure, as well as how there control flows interact, illustrated by the lower part
of Fig. 2.

We view aspect-oriented languages, especially AspectJ [7], as an excellent
starting point for the new generation of GPLs that we envisage. However, we
observe that more powerful abstraction mechanisms are needed than currently
supported by these languages. In [10, 11] we outline the deficiencies of AspectJ

Fig. 1. Information hiding and crosscutting models

A Comparison of Program Generation with Aspect-Oriented Programming 349

Fig. 2. Superimposing crosscutting models

with respect to the first facet of expressing model superimposition. In [11], we
argue that AspectJ is lacking a layer module concept as powerful as the one
supported in feature-oriented approaches and discuss how the aspect-oriented
language Caesar [10] solves these problems. In the following, we will briefly sum-
marize how Caesar [10] advances AspectJ with respect to structural mapping.
Subsequently, we outline the problems with current mechanisms for behavioral
mapping as well as ideas about how to solve these problems.

4.1 Combining Domain-Specific Models

Caesar enables to encode domain specific models in their own model and ontol-
ogy and provides language constructs to express combinations of these different
models. A central concept is the notion of bidirectional interfaces (BI for short).
A BI serves to specify the abstractions that together make up a feature/aspect
independent of the context in which the feature/aspect will be deployed.

BIs differ from standard interfaces in two ways. First, BIs exploit interface
nesting in order to express the abstractions of an aspect and their interplay.
Second, BIs divide methods into provided and expected contracts. Provided
methods describe what every component that is described in terms of this model
(i.e., implements the BI), must implement. Expected methods represent variation
points of the model that are used to integrate features into a concrete system.

For illustration, the BI Pricing that bundles the definition of the generic
pricing functionality is shown in Fig. 3. As an example for the reification of pro-
vided and expected contracts, consider Customer.charge and Product.basicPrice
in Fig. 3. The ability to charge a customer for a product is at the core of pric-
ing; hence, Customer.charge is marked as provided. The calculation of the basic
price of a product, on the other hand, is specific to the context of usage which
determines what will be the products to charge for; hence, Product.basicPrice
is marked as expected.

350 M. Mezini and K. Ostermann

Fig. 3. Overview of Caesar concepts

Different components can be implemented in terms of this domain model.
Later on, such a model can be superimposed on an existing system by means of
a so-called binding, which defines both a structural and a behavioral mapping
in order to coordinate both worlds. The categorization of the operations into
expected and provided comes with a new model of what it means to implement
a BI: We explicitly distinguish between implementing a BI’s provided contract
and binding the same BI’s expected contract. Two different keywords are used
for this purpose, implements, respectively binds. In the following, we refer to
classes that are declared with the keyword implements, respectively binds, as
aspect implementations, respectively aspect bindings.

An implementation must (a) implement all provided methods of the BI and
(b) provide an implementation class for each of the BI’s nested interfaces. In
doing so, it is free to use respective expected methods. Furthermore, an im-
plementation may or may not add methods and state to the BI’s abstractions
it implements. In Fig. 3, two possible implementations of the Pricing BI are
shown, implementing two different pricing strategies, a regular pricing schema
in RegularPricing and a discount pricing in DiscountPricing.

An aspect binding must provide zero or more nested binding classes (declared
via binds clauses) for each of the BI’s nested interfaces (we may have multiple
bindings of the same interface). In these binding classes, all expected methods
have to be implemented. Just as implementation classes can use their respective
expected facets, the implementation of the expected methods of a BI and its
nested interfaces can call methods declared in the respective provided facets. In
Fig. 3, two possible bindings of the Pricing BI are shown, implementing two dif-
ferent pricing modes, one in which we charge per request (PerRequestBinding)
and another one in which we charge per database resources used (PerDBAccess-
Binding).

Implementation and binding classes are in their own not operational, i.e.,
cannot be instantiated; the respective contracts implemented by them are only

A Comparison of Program Generation with Aspect-Oriented Programming 351

parts of a whole and make sense only within a whole. Operational classes that
completely implement an interface are created by composing an implementation
and a binding class, syntactically denoted as aBI<anImpl,aBinding>. In the
example in Fig. 3, we could compose any implementation with any binding.

To summarize, in Caesar every feature can be implemented with respect to
its own model and ontology as described by the corresponding BI. This model
can then be composed with other crosscutting models by creating an appro-
priate binding that describes how the two models interact which each other.
The bindings describe how the abstractions of the models relate to each other
structurally by creating adapters. This structural mapping is then used in the be-
havioral mapping (pointcuts and advice) that describe how the models interact
in the dynamic control flow.

4.2 Towards Expressive Pointcuts Languages

In [11], we argue that AspectJ is superior to feature-oriented approaches (FOAs
for short) [14, 3, 2] for its sophisticated and powerful pointcut model that allows
to express the behavioral mapping in a more precise and abstract way as it is
possible with FOA. In contrast to the FOA solution, no shadowing is necessary
in order to trigger the functionality of a feature in the base application.

Pointcuts enable us to abstract over control flows. With more advanced mech-
anisms such as wildcards, field get/set, cflow, etc., a pointcut definition also
becomes more stable with respect to changes in the base structure than the cor-
responding set of overridden methods in FOA. The use of pointcuts instead of
shadowing parts of an inherited base structure avoids the scalability problem
mentioned in the FOA discussion.

The key point is that with pointcuts we can abstract over details in the
control flow that are irrelevant to the feature integration. Equivalent abstraction
mechanisms are missing in FOAs. In its current instantiation, Caesar has adopted
the pointcut language of AspectJ. However, this language has its limitations
both with regard to the abstraction mechanisms as well as the richness of the
underlying model of program execution.

AspectJ-like languages come with a set of predefined pointcut designators,
e.g., call or get, and the standard set operations for combining them. What
is, however, missing is an abstraction mechanism equivalent to the well-known
functional abstraction that would allow to pass the result of a pointcut as a
parameter to another pointcut. Furthermore, the underlying model of program
execution is not reach enough.

To convey an intuition of what we mean, let us consider identifying all setter
join points were the value of a variable is changed that is read in the control
flow of a certain method, m, the goal being that we would like to recall m, at
any such point. Assuming a hypothetical AspectJ compiler that employs some
static analysis techniques to predict control flows, one can write a pointcut p1
that selects all getters in the predicted control flow of m. However, it is not
possible to combine p1 with another pointcut p2 which takes the result of p1 as
a parameter, retrieves the names of the variables read in the join points selected

352 M. Mezini and K. Ostermann

Fig. 4. Crosscutting models of program semantics

by p1, and than selects the set of setter join points where one of these variables
is changed. What we need is the ability to reason about p1 and p2.

Furthermore, various models of program semantics are needed to enable rea-
soning about program execution. For example, the abstract syntax tree (AST)
alone is not a very good basis for quantifying over dynamics of program execution
because it is a very indirect representation of the program execution semantics
that makes it intractable to specify dynamic properties.

Our vision is that it should be possible to reason about a pointcut, and espe-
cially to define new pointcuts by reasoning about other pointcuts. We envision
an AOP model in which pointcuts are sets of nodes in some representation of
the program’s semantics. Such sets are selected by queries on node attributes
written in a query language and can be passed around to other query func-
tions as parameters. These semantic models can be as diverse as abstract syntax
trees, control flow graphs, data flow graphs, object graphs or profiling models;
Fig. 4) schematically illustrates pointcuts as queries over multiple rich models
of program semantics.

We have some initial very encouraging results with a prototype implementa-
tion of the sketched approach in the interpreter for the aspect-oriented language
ALPHA [12]. ALPHA’s interpreter supports 4 models of programs: The AST, the
type assignment of the static type checker, the dynamic execution trace, and the
dynamic object graph. These models are represented as logic facts; pointcuts in
ALPHA are logic queries over the logic databases produced by the interpreter. In
[12], we also discuss a technique for an efficient implementation of the approach
that uses abstract interpretation of pointcuts to calculate join point shadows
off-line prior to program execution. Facts are produced at runtime and queries
are evaluated only at these points.

A Comparison of Program Generation with Aspect-Oriented Programming 353

5 Concluding Remarks

Since aspect-oriented languages are general-purpose languages, they do not suffer
from the problems of program generation outlined in Sec. 3: Concerning under-
standability, there is no indirection - code can be understood by reasoning only
about the program and not something that is generated. Crosscutting that de-
pends on dynamic conditions can be (based on the expressiveness of the pointcut
language) encoded inside of declarative pointcuts instead of complicated condi-
tional logic. Concerning scalability and composability, aspects can usually refer
and reason about other aspects, and the combination of aspects has a defined
meaning (although it may not necessarily be the intended meaning). Errors
can be traced more directly, because the intermediate step of translating into a
general-purpose language is missing. Preplanning and insufficiency are not such
a big problem because crosscutting models can be added or extended by writing
new aspects in the language itself. Since there is only one compiler/generator,
redundancy is also not a problem.

However, aspect-oriented languages are also not without problems. Conven-
tional aspect-oriented languages do not provide any structure to combine inde-
pendently developed crosscutting models (addressed by meta-model approaches
in the case of program generation). This is where we hope that the model binding
mechanism of Caesar will prove useful. Also, the pointcut languages of today’s
AOP languages are limited in their expressiveness; a problem that we try to
address in our ALPHA language [12]. With program generation techniques, it
is easy to combine multiple different artefacts such as source files from different
languages, descriptors, etc. This is not possible with current AOP languages. In
[4] we describe a pointcut language that can be used to combine information
from different artefacts by providing a common representation of all artefacts
in XML and using the query language XQuery as pointcut language. Finally,
program generation techniques make it easy to generate source files in a specific
format, e.g., in order to interoperate with some legacy or 3rd party application.
This is a technical problem that cannot be solved offhand with a general-purpose
aspect-oriented language.

To summarize: Both program generation and aspect-oriented programming
are powerful techniques to reduce the complexity of software. We have argued
that aspect-oriented programming is an interesting alternative to using domain-
specific program generators. Although AOP has still some limitations, we are
confident that future AOP languages can subsume most applications of program
generation today.

References

1. AspectJ homepage, 2005. http://aspectj.org.
2. D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling step-wise refinement. In-

ternational Conference on Software Engineering (ICSE ’03), 2003.
3. D. Batory, V. Singhal, J. Thomas, S. Dasari, B. Geraci, and M. Sirkin. The genvoca

model of software-system generators. IEEE Software, 11(5), 1994.

354 M. Mezini and K. Ostermann

4. M. Eichberg, M. Mezini, K. Ostermann, and T. Schäfer. Xirc: A kernel for
cross-artifact information engineering in software development environments. In
B. Werner, editor, Eleventh Working Conference on Reverse Engineering, pages
182–191, Delft, Netherlands, November 2004. IEEE Computer Society.

5. D. Garlan, G. E. Kaiser, and D. Notkin. Using tool abstraction to compose systems.
Computer, 25(6):30–38, 1992.

6. P. Hudak. Building domain-specific embedded languages. ACM Comput. Surv.,
28(4es):196, 1996.

7. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.
An overview of AspectJ. In Proceedings of ECOOP ’01, 2001.

8. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-oriented programming. In M. Aksit and S. Matsuoka, editors,
Proceedings ECOOP’97, LNCS 1241, pages 220–242, Jyvaskyla, Finland, 1997.
Springer-Verlag.

9. M. Mezini and K. Ostermann. Integrating independent components with on-
demand remodularization. In Proceedings of OOPSLA ’02, Seattle, USA, 2002.

10. M. Mezini and K. Ostermann. Conquering aspects with Caesar. In Proc. Interna-
tional Conference on Aspect-Oriented Software Development (AOSD ’03), Boston,
USA, 2003.

11. M. Mezini and K. Ostermann. Variability management with feature-oriented pro-
gramming and aspects. In Proceedings of FSE ’04 (to appear), 2004.

12. K. Ostermann, M. Mezini, and C. Bockisch. Expressive pointcuts for increased
modularity. European Conference on Object-Oriented Programming (ECOOP’05),
to appear, 2005.

13. D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12):1053–1058, 1972.

14. Y. Smaragdakis and D. Batory. Implementing layered designs with mixin-layers.
In Proceedings of ECOOP ’98, pages 550–570, 1998.

15. M. Völter. A collection of patterns for program generation. In Proceedings Euro-
PLoP ’03, 2003.

Generative Programming from a Post
Object-Oriented Programming Viewpoint

Shigeru Chiba

Dept. of Mathematical and Computing Sciences,
Tokyo Institute of Technology

chiba@is.titech.ac.jp

Abstract. This paper presents an application of generative program-
ming to reduce the complications of the protocol for using an applica-
tion framework written in an object-oriented language. It proposes that a
programmable program translator could allow framework users to write
a simple program, which is automatically translated by the translator
into a program that fits the framework protocol. Then it mentions the
author’s experience with Javassist, which is a translator toolkit for Java,
and discusses a research issue for applying this idea to real-world software
development.

1 Introduction

Object-oriented programming languages have enabled us to develop component
libraries that are often called application frameworks. They are sets of related
classes that can be specialized or instantiated to implement a new application. A
well-known simple example of such libraries is a graphical user interface (GUI)
library. Since application frameworks provide a large portion of the functionality
that application software has to implement, they can significantly reduce the
development costs of application software.

However, application frameworks involve hidden costs. The developers who
want to build their own application software with an application framework must
first learn how to use the framework. Then they must write their programs to
follow the complex protocol provided by the framework. The complexity of the
protocol often originates from the use of design patterns [6] in the framework.
Design patterns are recurring solutions to design problems frequently found in
object-oriented programming, such as how software should be decomposed into
objects and how objects should interact with each other. Although the design
patterns themselves are useful, the use of them in the implementation of the
framework often makes it difficult for the framework users to understand the
framework protocol since the use of the design patterns is usually invisible from
the framework users.

The costs due to following the framework protocol are considerably large if the
framework provides relatively complex functionality. For example, to implement
GUI with a typical GUI library (i.e. framework), the developers must learn the

J.-P. Banâtre et al. (Eds.): UPP 2004, LNCS 3566, pp. 355–366, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

356 S. Chiba

basic GUI architecture and a few concepts such as a callback and a listener. Then
they must carefully write their programs to implement such a callback method
and listener. To implement a web application on top of the J2EE framework,
the developers must first take a tutorial course about J2EE programming and
then write a program to follow the complicated J2EE protocol. For example,
they must define two interfaces whenever they define one component class.

In this paper, we present an idea for reducing the hidden costs involved in
application frameworks written in object-oriented languages. Our idea is to use a
programmable program translator/generator, which automatically generates glue
code for making the program written by a developer match the protocol supplied
by an application framework. Thus the developer do not have to learn or follow
the protocol given by the framework. Note that the program translator is not a
fully-automated system. It is driven by a control program that is written by the
framework developer. This is why the program translator used in our proposal
is called programmable. In our idea, the framework must be supplied with the
control program for customizing a program translator for that framework.

A research issue on this idea is how to design a language used to write a
control program of the program translators/generator. We have developed a
Java bytecode translator toolkit, named Javassist [3], and built several systems
on top of that toolkit. Our experience in this study revealed that a programmable
translator such as Javassist can be used to implement our idea. However, control
programs for Javassist are still somewhat complicated and thus writing such
a control program is not a simple task for framework developers. Studying a
language for writing control programs is one of the future work.

2 Object-Oriented Application Framework

Object-oriented programming languages enable a number of programming tech-
niques, some of which are known as the design patterns [6]. These techniques play
a crucial role in constructing a modern application framework. In some sense,
they are always required to construct an application framework that provides
complex functionality, in particular, non-functional concerns such as persistence,
distribution, and user interface. The application framework that provides such
functionality would be difficult to have simple API (Application Programming
Interface) if object-oriented programming techniques are not used.

On the other hand, the users of such an application framework written in an
object-oriented language must learn the protocol for using that framework. They
must understand how design patterns have been applied to the framework, or
they must know at least which methods should be overridden to obtain desirable
effects and so on. These efforts are often major obstacles to use the application
framework. A larger application framework tends to require a longer training
period to the users of that framework.

The complications of such a framework protocol mainly come from the use of
object-oriented programming techniques. For example, we below show a (pseudo)
Java program written with the standard GUI framework (Java AWT/Swing

Generative Programming from a Post OOP Viewpoint 357

framework). It is a program for showing a clock. If this program does not have
GUI, then it would be something like the following simple and straightforward
one:

class Clock {
static void main(String[] args) {
while (true) {

System.out.println(new Date());
Thread.sleep(60000L /* milliseconds */);

}
}

}

This program only prints the current time on the console every one minute. “new
Date()” constructs an object representing the current time.

We can use the standard GUI library (Java AWT/Swing framework) to ex-
tend this program to have better look. To do that, we must read some tutorial
book of the Java AWT/Swing framework and edit the program above to fit the
protocol that the book tells us. First, we would find that the Clock class must
extend Panel. Also, the Clock class must prepare a paint method for drawing
a picture of clock on the screen. Thus you would define the paint method and
modify the main method. The main method must call not the paint method but
the auxiliary repaint method, which the tutorial book tells us to call when the
picture is updated. The following is the resulting program (again, it is pseudo
code. it cannot run without further modification to fit the real protocol of the
framework):

class Clock extends Panel {
void paint(Graphics g) {
// draw a clock on the screen.

}
static void main(String[] args) {
Clock c = new Clock();
while (true) {

c.repaint();
Thread.sleep(60000L /* milliseconds */);

}
}

}

Note that the structure of the program is far different from that of the original
program. It is never simple or straightforward. For example, why do we have to
define the paint method, which dedicates only to drawing a picture? Why does
the main method have to call not the paint method but the repaint method,
which indirectly calls the paint method? To answer these questions, we have to
understand the underlying architecture of the framework provided by the GUI
library. Since this architecture is built with a number of programming techniques,
such as inheritance, callback handlers, and multi threading, and most of tutorial
books do not describe such details, understanding the underlying architecture is
often difficult for “average” developers who do not have the background of GUI
programming.

358 S. Chiba

Despite this problem, a number of application frameworks have been devel-
oped and design patterns are really popular in software industry. An obviously
better approach would be to develop a domain-specific language instead of an
application framework for that domain. Domain-specific languages provide spe-
cialized syntax and semantics for a particular application domain. In the research
community, even domain-specific languages for helping to program with the de-
sign patterns in [6] have been developed [13, 1].

However, industrial developers prefer to using a standard general-purpose
language that comes with comprehensive tool supports. They are often reluc-
tant to learn and use a new language, for which only poor tool supports would
be available. In fact, a domain-specific language with poor tool supports would
not improve the productivity of developers compared to a general-purpose lan-
guage with powerful tool supports. On the other hand, developing a domain-
specific language with powerful tool supports is considerably expensive. There-
fore, a number of application frameworks have been developed instead of domain-
specific languages. They can be regarded as domain-specific programming sys-
tems that are less powerful but less expensive to develop than domain-specific
languages. Also, they allow developers to use their preferred standard language
and poweful development tools.

3 Protocol-Less Framework and Programmable Program
Translator

To overcome the problem mentioned in the previous section, we propose an
idea of using a programmable program translator. The users of an application
framework should not be concerned about “the protocol” of a framework when
writing their application programs. They should be able to write simple and
intuitively understandable programs, which should be automatically translated
into programs that fit the protocol for using the framework. I think that reducing
the awareness about a framework protocol due to object-orientation is a key
feature of post object-oriented programming.

Ideally, the transformation from the original Clock class into the GUI-based
Clock class shown in the previous section should be performed automatically by a
program translator instead of a human being. At least, the following modification
for making the original program fit the protocol of the framework should be
performed by a program translator:

– The Clock class must extend the Panel class. User classes of an application
framework must often extend a class provided by the framework or imple-
ment an interface provided by the framework. Such class hierarchy should
be automatically maintained by a program translator.

– The Clock class must declare the paint method. User classes of an application
framework must often override some specific methods. Such overriding should
be implicit. If necessary, the method drawing a picture should be able to
have some other name than paint. If paint is not declared in user classes,

Generative Programming from a Post OOP Viewpoint 359

User program

Application framework

Product

Control program

Translator

Fig. 1. Programmable program translator

the default method declaration of paint should be automatically added by a
program translator.

For example, the program manually written by a human being should look like
the following:

@GUI class Clock {
@drawer void drawClock(Graphics g) {
// draw a clock on the screen.

}
static void main(String[] args) {
Clock c = new Clock();
while (true) {

c.drawClock();
Thread.sleep(60000L /* milliseconds */);

}
}

}

Here, @GUI and @drawer are annotations (meta tags) for describing the devel-
oper’s intention. The program translator should recognize these annotations and
automatically translate the program above into one that really fits the framework
protocol.

Executing the automatic program transformation presented above is not re-
alistic if any hints are not given. In our idea, this transformation is executed by
a program translator controlled by a control program written by the developer
of the application framework (Figure 1). Thus the program translator must be
programmable. Since the framework developer knows the underlying architecture
of that framework, writing such a control program should be fairly easy for her.
Application frameworks should be distributed together with program translators
and control programs of them.

The programmable program translator proposed here can be regarded as a
compiler toolkit for domain-specific languages. Here, a domain means the tar-
get domain of an application framework. Although the programmable program
translator does not provide new syntax designed for a particular application
domain, it provides programming supports specialized for that domain within
confines of the original syntax of the base language. Specialized syntax for a
particular domain often makes programming easier but it is not an all-around
solution. Thus it would not be a serious problem that the programmable pro-
gram translator cannot provide new syntax. Furthermore, designing appropriate

360 S. Chiba

syntax for a given domain is not a simple task and badly designed syntax rather
decreases productivity of developers.

4 Javassist

A challenge is to develop a good language for describing a control program given
to the program translator in Figure 1. Toward this goal, we have been developing
a Java bytecode translator toolkit named Javassist [3]. It is a Java class library
for transforming a compiled Java program at the bytecode level (the bytecode
is assembly code in Java).

A unique feature of Javassist is that it provides source-level abstraction for the
developers who want to write a program for transforming Java bytecode. There
are several similar Java libraries that allow editing a class file (a compiled Java
binary file). These libraries help the users read a class file, parse it, and produce
objects that directly represent the internal data structures included in the class
file. The users can modify the contents of the class file through these objects.
However, since these objects directly correspond to the data structures in a class
file, the users must learn the specifications of such internal data structures so that
they can use these objects for modifying the contents of a class file. For example,
they have to learn what the constant pool is and what the code attribute is. The
former is a symbol table and the latter is a code block representing a method
body.

Since Javassist provides source-level abstraction, the users of Javassist do
not have to learn the specifications of the Java class file. Javassist translates the
internal data structures in a class file into objects that represent the concepts
familiar to Java developers (Figure 2), such as a class and a method. The users
of Javassist can parse a class file and obtain objects representing a class, fields,
methods, and constructors derived from the original class file. If the users change
attributes of those objects, then the changes are reflected on the class file. For
example, if the setName method is called on an object representing a class,
Javassist changes the name of the class that the original class file represents. If
the users give Javassist a String object representing the source code of a method,
Javassist compiles it and adds that new method to an existing class file.

translation
by Javassist

Constant pool, class_info,

code_attribute, etc.

Original

class file
Edited

class file

Class, field, method,

constructor, etc.

Translator program

manipulate

Fig. 2. Javassist translates bytecode-level concepts into source-level concepts

Generative Programming from a Post OOP Viewpoint 361

4.1 Metaobject Protocol (MOP)

The design of Javassist is based on the idea of metaobject protocol [7], also known
as reflection [11, 10]. The objects into which Javassist translates the internal data
structure of a class file are similar to the objects provided by the Java reflection
API. They represent a class, field, or method. However, unlike the objects of the
Java reflection API, which provide only limited ability for reflection, the objects
of Javassist are modifiable; the state of these objects can be changed and the
changes are reflected onto the original class file. In other words, Javassist enables
advanced macro processing through a metaobject protocol instead of abstract
syntax trees reproduced from a class file.

The original idea of metaobject protocols and reflection is to produce ob-
jects representing the meta entities of a program. These objects are often called
metaobjects for distinction from normal objects. Examples of the meta entities
are classes, source programs, runtime environments, compilers, virtual machines,
and so on. They are entities used for program execution but not the data directly
processed by that program. The data processed by a program, or the values com-
puted in a program, are base-level entities while the structures for processing
data are meta-level entities.

Metaobject protocols have two significant operations, reify and reflect, al-
though these operations are often implicit. The reify operation is to produce a
metaobject representing some meta entity in a program. The reflect operation
is to apply the changes of the state of the metaobject back to the original meta
entity. Suppose that a Clock class is a meta entity. The reify operation produces
a class metaobject representing Clock. If the program calls the setSuperclass
method on that metaobject, the internal state of the metaobject will be changed
but the original definition of the Clock class will not be changed until the reflect
operation is applied to the metaobject.

Early metaobject protocols (and ones currently called runtime metaobjects)
allow a program to perform the reify and reflect operations on that running
program itself. This means that the program can modify itself during the run
time. Implementing this meta circularity with reasonable efficiency has been a
significant research topic in this research area. Note that metaobjects are not
identical to the meta entities represented by those metaobjects. The metaob-
jects are objects that can be dealt with as other normal objects while they are
associated with the corresponding meta entities by the runtime system, that is
to say, they are causally connected to the meta entities.

The metaobjects of Javassist does not represent the meta entities of a running
program itself; it represents the meta entities of a class file, which is a program
that has not been loaded yet. Hence the metaobject protocol of Javassist is
categorized into compile-time metaobject protocols [2] (or load-time metaobject
protocol). The compile-time metaobject protocols allow the reify and reflect
operations only at compile time while it keeps the well-designed abstraction
of the programming interface of runtime metaobject protocols. However, that
limitation of compile-time metaobject protocols is paid off since the runtime

362 S. Chiba

overheads due to metaobject protocols are zero (or negligible). Furthermore,
that limitation is not a serious problem in most of practical scenarios.

4.2 Aspect-Oriented Programming (AOP)

The design of Javassist also borrowed ideas from aspect-oriented programming
[8]. Aspect-oriented programming allows developers to modularize a crosscutting
concern, which is a concern that cannot be implemented as a separate indepen-
dent module or component with normal programming paradigms, in particular,
object-oriented programming. Although the implementation of a crosscutting
concern in object-oriented programming is spread over (or cuts across) classes
of other concerns, aspect-oriented programming provides a mechanism for sep-
arating the implementation of such a crosscutting concern from other unrelated
modules such as classes.

Example: A typical example of crosscutting concerns is a logging or tracing
concern. The main body of the implementation of logging concern can be mod-
ularized into a single class, for example, in Java:

class Logging {
PrintStream output = System.out;
static void setStream(PrintStream out) {
output = out;

}
static void print(String m) {
output.println(m);

}
}

However, method calls to the print method in Logging class must be embedded
in other classes that want to print a logging message. Suppose that we want to
print a logging message when the paint method in the Clock class in Section 2 is
executed. We must edit the paint method as following:

class Clock extends Panel {
void paint(Graphics g) {
Logging.print("** call paint method"); // change!
// draw a clock on the screen.

}
static void main(String[] args) { .. }

}

Although this is a very typical Java program, the logging concern is a cross-
cutting concern since it cuts across Clock class. The logging concern invades the
definition of the Clock class. Thus, it is impossible to reuse the Clock class with-
out the Logging class unless the definition of Clock is edited to remove a method
call expression to paint. The Clock class and the Logging class are not separated
from each other but they are tangled with each other.

AspectJ: Aspect-oriented programming solves this problem. For example, in
AspectJ, the Logging concern can be implemented as a single independent mod-
ule called an aspect. AspectJ is an aspect-oriented extension to Java [9]. See the
following program:

Generative Programming from a Post OOP Viewpoint 363

aspect Logging {
PrintStream output = System.out;
static void setStream(PrintStream out) {
output = out;

}
static void print(String m) {
output.println(m);

}

// before advice
before(): call(void Clock.paint(Graphics)) {
print("** call paint method");

}
}

The original definition of the Clock class does not have to be edited to call the
paint method. Thus, the Logging concern is not a crosscutting one in AspectJ.

The advice declaration in the Logging aspect:

before(): call(void Clock.paint(Graphics)) {
print("** call paint method");

}

means that the print method must be called just before the paint method in
Clock is called. The compiler automatically modifies the definition of the Clock
class to implement this behavior.

The key concepts of aspect-oriented programming is joinpoints, pointcuts,
and advice. In this programming paradigm, program execution is modeled as
a sequence of fine-grained events, such as method calls, field accesses, object
creation, and so on. These events are called joinpoints. pointcuts are filters of
joinpoints. They select interesting joinpoints during program execution. Then,
if a joinpoint selected by some pointcut occurs, the advice associated to that
pointcut is executed. In the case of the example above,

call(void Clock.paint(Graphics))

is a pointcut. The advice is the declaration beginning with before and ending
with a block {..}.

A crosscutting concern is implemented as a set of advice in an aspect. The
connection between the aspect and other classes is described by pointcuts. Join-
points can be regarded as execution points at which an aspect and a class are
connected to each other.

Separating the Repaint Protocol: AspectJ allows us to separately imple-
ment the repaint protocol shown in the Clock example of Section 3. The re-
paint protocol can be implemented as a separate module, that is, an aspect.
Although the module implementing the repaint protocol must be manually writ-
ten in AspectJ, this separation of concern is a significant step toward enabling
the protocol-less application framework. As we have seen above, Java does not
enable clear separation of the repaint protocol; since the repaint protocol was

364 S. Chiba

a crosscutting concern, it was embedded in the application framework and the
Clock class and thus the definition of the Clock class was difficult to understand.

If AspectJ is used, the definition of the Clock class can be quite straightfor-
ward and ideal:

public class Clock {
public void drawClock(Graphics g) {
// draw a clock on the screen.

}
public static void main(String[] args) {
Clock c = new Clock();
while (true) {

c.drawClock(null);
Thread.sleep(60000L /* milliseconds */);

}
}

}

The repaint protocol can be implemented as the following aspect:

aspect RepaintProtocol {
declare parents: Clock extends Panel;
public void Clock.paint(Graphics g) {
drawClock(g);

}

// around advice
void around(Clock c, Graphics g):

call(void Clock.drawClock(Graphics)) && target(c)
&& args(g) && if(g == null) {

c.repaint();
}

}

This aspect uses AspectJ’s mechanism called intertype declaration. It first de-
clares that the Clock class extends the Panel class. Then it declares the paint
method in the Clock class. paint is a method that only calls the drawClock
method. Note that drawClock is a method for drawing a clock although the
repaint protocol requires that the name of that method is paint. The Repaint-
Protocol aspect fills this gap. Finally, this aspect defines an around advice, which
substitutes the call to the repaint method in Panel for the call to the drawClock
method. Note that the repaint protocol requires that the repaint method is called
for redrawing a clock. This around advice is executed instead of the drawClock
method when the drawClock method is called with the null argument. If the
around advice is executed, the repaint method in Panel is called.

Javassist and AOP: One of the reasons of the complicated protocols of ap-
plication frameworks is that application frameworks include a number of cross-
cutting concerns and hence they must complicate protocols to deal with those
concerns. Such crosscutting concerns include repainting, concurrency, mobility,
and security. Since the code implementing a crosscutting concern is tangled
with the code implementing other concerns, the interface between them cannot

Generative Programming from a Post OOP Viewpoint 365

be simple or easy to understand and thus the protocol related to that interface
is made complicated. Aspect-oriented programming can untangle crosscutting
concerns so that the protocol can be simple and easy to understand.

Javassist provides a basic mechanism for aspect-oriented programming. Al-
though Javassist is not a programming language but a class library, the users
of Javassist can emulate aspect-oriented programming in Java through the pro-
gramming interface of Javassist. They can use this mechanism to untangle the
implementations of application frameworks so that the interface among the com-
ponents of the frameworks will be simple and clean. This enables the frameworks
to provide simpler protocols for the framework users. Javassist (and other sys-
tems based on compile/load-time metaobject protocols) can be also used as a
platform for implementing an aspect-oriented language [4, 12].

5 Concluding Remarks

Our experiences with Javassist for several years revealed that developing a pro-
grammable program translator mentioned in Section 3 is a realistic idea. How-
ever, to actually use this idea for real-world software development, we need
further study.

One of the open issues is a programming language for describing program
transformation, that is, describing a control program in Figure 1. The source-
level abstraction by Javassist has made it easier to write such a control program
but making such a program sufficiently generic still needs further study. At
least, one control program must be able to translate a number of user programs
to fit the protocol of the application framework that the control program was
written for. To do that, however, a control program must be able to recognize
differences among user programs and find which parts of the code must be edited.
For example, in the case of the Clock example shown above, the control program
must find which class must extend the Panel class and which method is for
drawing a picture on the screen.

As we showed in Section 3, the users might have to give some hints to the
control program. Since Java has recently supported annotations (meta data),
this approach is now widely being investigated. With annotations, developers
can annotate for a class, a method, and a field to describe their roles. However,
if they must specify a large amount of annotations, the resulting application
framework would be as difficult to use as today’s frameworks coming with a
complicated protocol.

Another approach is the model driven architecture (MDA) [5]. This allows
developers to first draw a platform-independent model of the software in UML.
This model is automatically transformed by a model compiler into a model de-
pending on a specific platform and then, if needed, it is further transformed
into a (skeleton of) source program written in some concrete language like Java.
Since MDA is not a magic architecture, the algorithm of the transformation from
a platform-independent model to a specific platform-dependent model must be
given to the model compiler in the form of program written by MDA experts.

366 S. Chiba

The language describing this transformation algorithm would be applicable to
the program translator proposed in this paper. MDA and the program translator
is similar to each other except that MDA is a top-down architecture (from the
modeling phase to the implementation phase) whereas the program translator
proposed in this paper is a bottom-up, source-code centric architecture. How-
ever, today’s MDA compilers still require developers to annotate in a platform-
independent model so that the MDA compilers can recognize the roles of entities
in that platform-independent model. They cannot execute transformation with-
out such annotations. For this reason, MDA has a similar problem mentioned
above for Java annotations.

References

1. Bryant, A., Catton, A., Volder, K.D., Murphy, G.: Explicit programming. In: Proc.
of 1st Int’l Conf. on Aspect-Oriented Software Development (AOSD 2002), ACM
Press (2002) 10–18

2. Chiba, S.: A metaobject protocol for C++. In: Proc. of ACM Conf. on Object-
Oriented Programming Systems, Languages, and Applications. Number 10 in SIG-
PLAN Notices vol. 30, ACM (1995) 285–299

3. Chiba, S.: Load-time structural reflection in Java. In: ECOOP 2000. LNCS 1850,
Springer-Verlag (2000) 313–336

4. Chiba, S., Nakagawa, K.: Josh: an open AspectJ-like language. In: Int’l Conf. on
Aspect Oriented Software Development (AOSD’04). (2004) 102–111

5. Frankel, D.S.: Model Driven Architecture: Applying MDA to Enterprise Comput-
ing. John Wiley & Sons Inc. (2003)

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley
(1994)

7. Kiczales, G., des Rivières, J., Bobrow, D.G.: The Art of the Metaobject Protocol.
The MIT Press (1991)

8. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.,
Irwin, J.: Aspect-oriented programming. In: ECOOP’97 – Object-Oriented Pro-
gramming. LNCS 1241, Springer (1997) 220–242

9. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. In: ECOOP 2001 – Object-Oriented Programming. LNCS
2072, Springer (2001) 327–353

10. Maes, P.: Concepts and experiments in computational reflection. In: Proc. of ACM
Conf. on Object-Oriented Programming Systems, Languages, and Applications.
(1987) 147–155

11. Smith, B.C.: Reflection and semantics in Lisp. In: Proc. of ACM Symp. on Prin-
ciples of Programming Languages. (1984) 23–35

12. Tanter, E.: From Metaobject Protocols to Versatile Kernels for Aspect-Oriented
Programming. PhD thesis, Université de Nantes, France and Universidad de Chile,
Chile (2004)

13. Tatsubori, M., Chiba, S.: Programming support of design patterns with compile-
time reflection. In: Proc. of OOPSLA’98 Workshop on Reflective Programming in
C++ and Java. (1998) 56–60

Author Index

Adamatzky, Andrew 33

Babaoglu, Ozalp 286
Bäck, Thomas 161
Banâtre, Jean-Pierre 84
Banzhaf, Wolfgang 73
Beal, Jacob 121
Breukelaar, Ron 161
Buck-Sorlin, Gerhard 56

Chen, Huoping 297
Chiba, Shigeru 355
Ciobanu, Gabriel 196
Cohen, Julien 137
Cointe, Pierre 315
Coore, Daniel 99, 110
Czarnecki, Krzysztof 326

Dittrich, Peter 19

Fradet, Pascal 84

Gheorghe, Marian 207
Giavitto, Jean-Louis 137

Hariri, Salim 257, 297
Holcombe, Mike 207

Ibarra, Oscar H. 225

Jelasity, Márk 286
Jorrand, Philippe 1

Kefalas, Petros 207
Kim, Byoung uk 297

Kniemeyer, Ole 56
Kurth, Winfried 56

LaBean, Thomas H. 173
Lalire, Marie 1
Lasarczyk, Christian 73
Li, Zhen 270
Lucanu, Dorel 196

Mezini, Mira 342
Michel, Olivier 137
Montresor, Alberto 286

Ostermann, Klaus 342

Parashar, Manish 257, 270, 297
Păun, Gheorghe 155, 188

Radenac, Yann 84
Reif, John H. 173

Sahu, Sudheer 173
Spicher, Antoine 137
Stamatopoulou, Ioanna 207

Teuscher, Christof 238

Willmes, Lars 161

Yan, Hao 173
Yang, Jingmei 297
Yin, Peng 173

Zauner, Klaus-Peter 47

	Frontmatter
	Invited Talk
	From Quantum Physics to Programming Languages: A Process Algebraic Approach

	Chemical Computing
	Chemical Computing
	Programming Reaction-Diffusion Processors
	From Prescriptive Programming of Solid-State Devices to Orchestrated Self-organisation of Informed Matter
	Relational Growth Grammars -- A Graph Rewriting Approach to Dynamical Systems with a Dynamical Structure
	A New Programming Paradigm Inspired by Artificial Chemistries
	Higher-Order Chemical Programming Style

	Amorphous Computing
	Introduction to Amorphous Computing
	Abstractions for Directing Self-organising Patterns
	Programming an Amorphous Computational Medium
	Computations in Space and Space in Computations

	Bio-inspired Computing
	Bio-inspired Computing Paradigms (Natural Computing)
	Inverse Design of Cellular Automata by Genetic Algorithms: An Unconventional Programming Paradigm
	Design, Simulation, and Experimental Demonstration of Self-assembled DNA Nanostructures and Motors
	Membrane Systems: A Quick Introduction
	Cellular Meta-programming over Membranes
	Modelling Dynamically Organised Colonies of Bio-entities
	P Systems: Some Recent Results and Research Problems
	Outlining an Unconventional, Adaptive, and Particle-Based Reconfigurable Computer Architecture

	Autonomic Computing
	Autonomic Computing: An Overview
	Enabling Autonomic Grid Applications: Dynamic Composition, Coordination and Interaction
	Grassroots Approach to Self-management in Large-Scale Distributed Systems
	Autonomic Runtime System for Large Scale Parallel and Distributed Applications

	Generative Programming
	Towards Generative Programming
	Overview of Generative Software Development
	A Comparison of Program Generation with Aspect-Oriented Programming
	Generative Programming from a Post Object-Oriented Programming Viewpoint

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

