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Abstract. Several systems have been designed to reason about longitudinal pa-
tient data in terms of abstract, clinically meaningful concepts derived from raw 
time-stamped clinical data. However, current approaches are limited by their 
treatment of missing data and of the inherent uncertainty that typically underlie 
clinical raw data. Furthermore, most approaches have generally focused on a 
single patient. We have designed a new probability-oriented methodology to 
overcome these conceptual and computational limitations. The new method in-
cludes also a practical parallel computational model that is geared specifically 
for implementing our probabilistic approach in the case of abstraction of a large 
number of electronic medical records. 

1   Introduction 

The commonly occurring task of Temporal Abstraction (TA) was originally defined 
as the problem of converting a series of time-oriented raw data (e.g., a time-stamped 
series of chemotherapy-administration events and various hematological laboratory 
tests) into interval-based higher-level concepts (e.g., a pattern of bone-marrow toxic-
ity grades specific to a particular chemotherapy-related context) [1]. Former solutions 
[1-4], although being evaluated as fruitful, maintained several unsolved subproblems. 
These subproblems seem common to some of other methods suggested for solving the 
TA task as well as closely related systems applied in the clinical domain (e.g., [5-7]). 
Thus, Considering these challenging subproblems suggests an additional method. 

At least three subproblems in the former methods can be pointed out, which we 
propose to solve through the method discussed in this paper. First, raw clinical data, 
to which the temporal reasoning is being applied, are assumed as certain – that is, 
typically no mechanism is suggested for handling the inherent impreciseness of the 
laboratory tests taken to obtain the clinical data. Second, current mechanisms used for 
completing missing data in an electronic medical record are typically not sound and 
are incomplete. For example, in the case of the KBTA method, a knowledge-based 
interpolation mechanism is used [8]. However, completion of missing values is sup-
ported only for bridging gaps between two intervals, in which the proposition (e.g., 
anemia level) had the same value (e.g., moderate anemia). Furthermore, the value 
concluded by inference is too crisp, and a threshold is used for computing it with ab-
solute certainty, eliminating uncertainty and leading to potentially unsound conclu-
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sions. Third, no special mechanism has been devised for multiple patient abstraction. 
That is, so far temporal abstraction was performed on a single patient only. 

The proposed method, Probabilistic Temporal Abstraction (PTA), decomposes the 
temporal abstraction task into three subtasks, that solve the case of a single patient, 
and two more subtasks that solve the case of multiple patients. 

 
 
 
 
 
 
 
 
 

Fig. 1. A typical instance of using the PTA method: the value (vertical axis) distribution of a 
certain medical concept appears for different (in this case consecutive) periods along the time 
axis. The medical concept, which can be either raw or abstract, and the specification of the set 
of periods (including the time granularity) are determined by the application using the PTA 
method 

2   The PTA Method 

The main computational concept in our methodology is the PTA chain. A PTA chain 
is  defined as the application of any subset of the following composition of subtasks, 
while preserving the relative order among them: 

Coarsen Correlate Aggregate Transform Interpolate data . (1) 

These subtasks are introduced below using the following known notions in probability 
theory. A stochastic process {X(t): t in T} is a set of random variables, and may rep-
resent a clinical observation, a medical intervention, or an interpretation context of 
some clinical protocol. The index is often interpreted as time, and thus X(t) is referred 
as the state of the process at time t. The set T is called the index set of the process. 

2.1   The PTA Property and Temporal Interpolation 

The central property of the PTA method is based on the notion of temporal field, as 
explicated below. Following this definition, the property states, that each unobserved 
state of some stochastic process is a linear combination of the temporal fields of the 
observed states of the process. Thus, the unobserved distribution of bone-marrow 
toxicity grades is a linear combination of all of the observed distributions, before and 
after it. An observed state is distributed as a function of the reliability or precision of 
the clinical test taken (variance) and the value sampled (mean), and induces a field1 
over its temporal environment, expressing the temporal knowledge about the stochas-
tic process in question, such as a periodic behavior, monotonic change, or persistence. 
                                                           
1 In the sense of an electromagnetic field. 
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For example, suppose a stochastic process with a periodic behavior and cycle length 
c. The temporal field of an observed state of such stochastic process could be as fol-
lows: 

field X t s t i sin
c

t i t s mod c X ts
. (2) 

Having multiple fields induced over an unobserved state necessitates the use of 
weights, to express the notion that the closer-in-time the observed state is – the more 
relevant it is. Therefore, there is a need to choose a monotonic decreasing function of 
absolute time differences between a dependent state and its inducing observed states. 
A natural choice for the monotonic decreasing weighting function would be a normal 
density, where its variance (σ2) determines the temporal tolerance of observed states 
of the stochastic process. Thus, w may hold: 

w X t f W t , W Normal 0, 2
. (3) 

The Temporal Interpolation subtask is aimed at estimating the distribution of a sto-
chastic process state, given the distributions of some of its other states. For example, 
estimating the distribution of raw hematological data or derived concepts (such as 
bone-marrow toxicity grades) during a week in which raw data were not measured, 
using the distribution of values before and after that week. Applying the interpolation 
subtask does not increase the abstraction level of the underlying stochastic process, 
but rather serves the role of a core operation that enables the application of actual 
temporal abstraction. The subtask of interpolation is solved by the application of the 
PTA property. Thus, the subset of sampled states which participate in the calculation 
of each unobserved state determines the precision of its distribution, and could be 
determined given the temporal weighting function. If we interpolate in ti and know all 

sampled values ts (where s=-∞ stands for prior distribution), then: 

X ti

1

ts

w X ti t s ts

w X t i t s field X t s t i . (4) 

For the case in which updates to the underlying clinical data occur, we consider a 
hierarchical system of states, where each unobserved state has a set of observed par-
ent states, as depicted by Pearl [9]. In case the sample is updated, propagating the new 
piece of evidence we are viewing as the perturbation that propagated through a Bayes-
ian network via message-passing between neighboring processors. 

2.2   Other Subtasks and Their Mechanisms 

Temporal abstraction for a single patient requires one basic subtask, temporal interpo-
lation, and the two interpolation-dependent subtasks explicated below. The Temporal 
Coarsening subtask is aimed at the calculation of a stochastic process at a coarser 
time granularity, according to the following formula: 
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X ti , t j

1
j i 1 k i

j

X t k
. (5) 

The Temporal Transformation subtask is aimed at the generation of a stochastic proc-
ess, given stochastic processes of a lower abstraction level, according to the following 
formula: 

Y t g X 1 , , X n t . (6) 

For example, deriving bone-marrow toxicity grade distribution, given the distributions 
of the raw white blood cell and platelet counts. A special transformation function is: 

change X t i X t i
X ti 1 . (7) 

Applying the TA task to multiple patients requires extra subtasks, such as the ones 
explicated below. However, these subtasks fit also sophisticated needs of abstraction 
for a single patient. The Temporal Aggregation subtask is aimed at the application of 
an aggregation function (such as minimum, maximum, average, etc.) to temporally 
corresponding states of stochastic processes of the same sample space and independ-
ent patients. In the case of a single patient, the aggregated states are taken from the 
same process. The Temporal Correlation subtask is intended to mainly compare two 
patient populations, but should work the same when comparing different time periods 
of the same patient, resulting in a series of correlation factors between corresponding 
states of the given stochastic processes. An example for a single patient would be the 
contemporaneous correlations between height and weight or correlation of height dur-
ing different periods for the same person. 

3   Parallel Implementation 

The computational model used to compute a PTA chain is goal-driven, bottom-up and 
knowledge-based. That is, the main algorithm is required to compute the result of a 
PTA chain (the goal), given the transformation and interpolation functions (the tem-
poral knowledge) as well as the access to the clinical data, beginning at the raw (low-
est abstraction level) clinical data. The computational model is parallelized (and 
hence scalable [10]) in three orthogonal aspects: (1) Time, during the calculation of 
the PTA chains’ states; (2) Transformation, during the calculation of the transforma-
tion arguments; and (3) Patient, during the calculation of the PTA chains for multiple 
patients. 

The PTA architecture is in the process of being fully implemented using is the C++ 
programming language, the Standard Template Library (STL), and the MPICH2 im-
plementation of the Message-Passing Interface (MPI)2, an international parallel pro-
gramming standard. The implementation is thus object-oriented and platform-
independent. The implementation is in the process being integrated into the IDAN 
system [11], which satisfies the need to access medical knowledge and clinical data 
sources. 

                                                           
2 http://www.mpi-forum.org/ 
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4   Discussion 

The new probabilistic method has removed several limitations of former methods. 
First, the use of PTA chains enables the expression of uncertainty in the underlying 
clinical data. Second, two mechanisms were developed for temporal abstraction of the 
clinical data of multiple patients. Third, the interpolation mechanism was shown to be 
sound and complete. However, observed clinical data are assumed to be independ-
ently distributed. This assumption could be easily removed, given the necessary do-
main-specific conditional distribution functions. 

The Markovian property (i.e., the conditional distribution of any future state, given 
the present state and all past states, depends only on the present state) is not assumed 
by the PTA method, where past states may be relevant in computing future states. The 
interpolation in the PTA model is performed at the lowest abstraction level only, as 
opposed to being repeatedly performed at every abstraction level as in the KBTA 
method [1]. Finally, the components of the PTA method are highly modular and do 
not assume, for example, a particular temporal representation. 
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