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Abstract. This paper presents a novel algorithm for extracting rules expressing 
complex patterns from temporal data. Typically, a temporal rule describes a 
temporal relationship between the antecedent and the consequent, which are 
often time-stamped events. In this paper we introduce a new method to learn 
rules with complex temporal patterns in both the antecedent and the consequent, 
which can be applied in a variety of biomedical domains. Within the proposed 
approach, the user defines a set of complex interesting patterns that will 
constitute the basis for the construction of the temporal rules. Such complex 
patterns are represented with a Temporal Abstraction formalism. An APRIORI-
like algorithm then extracts precedence temporal relationships between the 
complex patterns. The paper presents the results obtained by the rule extraction 
algorithm in two different biomedical applications. The first domain is the 
analysis of time series coming from the monitoring of hemodialysis sessions, 
while the other deals with the biological problem of inferring regulatory 
networks from gene expression data.   

1   Introduction 

The application of data mining techniques to the medical and biological domain has 
gained great interest in the last few years, also thanks to the encouraging results that 
have been achieved in many fields [1,2]. One issue of particular interest in this area is 
represented by the analysis of temporal data, usually referred to as Temporal Data 
Mining (TDM) [3,4,5]. Within TDM, research usually focuses on the analysis of time 
series, collected measuring clinical or biological variables at different points in time. 
The explicit handling of time in the data mining process is extremely attractive, as it 
gives the possibility of deepening the insight into the temporal behavior of complex 
processes, and may help to forecast the future evolution of a variable or to extract 
causal relationships between the variables at hand.  

An increasing number of TDM approaches is currently applied to the analysis of 
biomedical time series; in functional genomics, for example, clustering techniques 
have been largely exploited to analyze gene expression time series, in order to assess 
the function of unknown genes, relying on the assumption that genes with similar 
profiles may share similar function [6,7,8]. TDM has also been successfully used to 



24 L. Sacchi et al. 

 

study gene expression time series of particular cell lines which are crucial for 
understanding key molecular processes of clinical interest, such as the insulin actions 
in muscles [9] and the cell cycle in normal and tumor cells [10]. Several works have 
been proposed also for what concerns the representation and processing of time series 
coming from the monitoring of clinical parameters, collected for example during an 
ICU staying [11,12]. 

In this paper, we are interested into one of the most attractive applications of AI-
based TDM: the extraction of temporal rules from data. Unlike association rules, 
temporal rules are characterized by the fact that the consequent is related to the 
antecedent of the rule by some kind of temporal relationship [13]; moreover, a 
temporal rule typically suggests a cause-effect association between the antecedent and 
the consequent of the rule itself. When applied to the biomedical domain, this could 
be of particular interest, for example in reconstructing gene regulatory networks or in 
discovering knowledge about the causes of a target event [4]. 

An interesting approach to the problem of extracting temporal rules has been 
presented in [14,15] where the authors, exploiting the ideas of Hoppner [13] and the 
well-known APRIORI algorithm [16], have defined a method for the discovery of 
both association and temporal rules to get an insight into the possible causes of non-
adherence to therapeutic protocols in hemodialysis, through the analysis of a set of 
monitoring variables. The TDM approach relied basically on two phases, the first one 
concerning the time series representation while the second dealing with rule 
extraction. In particular, the time series are first summarized through qualitative 
patterns extracted with the technique of Temporal Abstractions; then, possible 
associations between those patterns and the non-adherence events are searched with 
an APRIORI-like procedure. The mentioned method, however, only treats rules with 
antecedents composed by the conjunction of simple patterns (i.e. patterns of the kind 
“increasing”, “decreasing”, …), where the conjunction is interpreted as a co-
occurrence relationship (i.e. “variable A increasing” occurs at the same time of 
“variable B decreasing”). If this conjunction temporally precedes another simple 
pattern, say “variable C increasing”, sufficiently often, a rule of the kind “variable A 
increasing and variable B decreasing precedes variable C increasing” is generated.  

In this paper, we propose an extension of the method described in [14,15] in order 
to extract rules with arbitrarily complex patterns as members of both the rule 
antecedents and consequents. The data miner can define in advance such patterns, or 
they might be automatically generated by a complex pattern extractor. This extension 
is able to deal with the search of relationships between complex behaviors, which can 
be particularly interesting in biomedical applications. For example, a drug is first 
absorbed and then utilized, so that its plasma distribution precedes its effect in the 
target tissue. In this case, it would be important to look for complex episodes of “up 
and down” type in the drug plasma concentration, to automatically extract temporal 
knowledge in the data. Therefore, the method that we propose in this paper enables 
the user to define episodes of interest, thus synthesizing the domain knowledge about 
a specific process, and to efficiently look for the specific temporal interactions 
between such complex episodes. 

The paper is structured as follows: we first describe the new method for the 
extraction of complex temporal patterns from data; then, we introduce two different 
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biomedical applications where the method is to provide interesting results on real data 
sets. Finally we discuss pros e cons of the proposed approach. 

2   The Complex Temporal Rules Extraction Method 

As shown in Figure 1, the method proposed in this paper develops following different 
steps that, starting from the raw time series and passing through different stages of 
representation, leads to the construction of a set of temporal rules, where both the 
antecedent and the consequent are made up of complex patterns. 

2.1   A Formalism for Time Series Representation: The Technique of Temporal 
Abstractions 

To be able to extract temporal rules from the data, we need first of all a suitable 
representation of the time series [13]. A convenient technique to extract a compact 
and meaningful representation of temporal data is to resort to Temporal Abstractions 
(TAs) [17]. 

TAs are an AI methodology characterized by the move from a time-stamped 
(quantitative) representation of temporal data to an interval-based qualitative one. In 
each interval, a specific pattern is verified in the data; such patterns represent a 
meaningful summary of the original data, and can be used to derive features that 
characterize the dynamics of the system under observation. Algorithms that, taking as 
input a time series, generate an interval series, with intervals corresponding to the 
time periods in which a specific pattern is present in the input, are referred to as TA 
mechanisms. TA mechanisms represent the fundamental step of TA-based analysis. 

Within TAs, we can distinguish between two main categories: basic and complex 
abstractions. Basic TAs are used to detect simple patterns in numerical or symbolic 
time series. More precisely, we can extract Trend Temporal Abstractions, to capture 
increasing, decreasing or stationary courses in a numerical time series, and State TAs, 
to detect qualitative patterns corresponding to low, high or normal values in a 
numerical or symbolic time series. Complex TAs, on the other hand, correspond to 
intervals in which specific temporal relationships between basic or other complex 
TAs hold. These relationships are typically identified by the temporal operators 
defined in Allen algebra [18]. 

In our approach, we aim at representing the time series through a set of complex 
TAs, that will be denoted as complex temporal events; to obtain such representation, 
data are processed following two consecutive steps. 

1. Raw time series are initially processed with a suitable TA mechanism [14] to 
describe the time course of a variable as a set of consecutive Basic trend TAs. The 
resulting representation is a label made up of simple qualitative elements of the kind 
[Increasing], [Decreasing], [Steady] (Figure 1 a) and b) ). 

2. The Basic TA description represents the basis for the creation of the final 
complex TA representation, that will be then used in the rule extraction algorithm. 
This representation is based on the definition of complex temporal events, that are 
complex abstractions defined as the time intervals in which specific interesting  
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Fig. 1. The steps of the algorithm for temporal rules extraction 

patterns occur in the input data. One of the core aspects of this phase is the definition 
of a set of significant patterns P = {p1,…pn}, where each pi is made up by the 
composition of simple labels like [Increasing], [Decreasing], [Steady]. In general, the 
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set P may be both user-defined or automatically suggested to the researcher after a 
pre-processing of the initial qualitative representation of the variables performed with 
an appropriate strategy, such as the one presented in [19]. Moreover, the definition of 
P clearly relies on the clinical/biological knowledge on the kind of relationships that 
may be useful to explore with respect to the analysis purposes. As an example, let us 
consider a situation in which there is interest to investigate if a particular peak in the 
dynamics of a variable V1 is often related to an opposite peak of another variable V2. 
We can formalize this problem by defining P as P={[Increasing Decreasing], 
[Decreasing Increasing]}. The rule extraction will then be performed only on those 
series that present the first pattern in V1 and the second pattern in V2; such rules will 
look for a temporal significant relationship between those two patterns. 

The steps that lead from the raw data to the representation through complex 
temporal events are depicted in Figure 1 a), b) and c). The example reveals also that, 
in general, it is possible to find more than one example of the same pattern within a 
single time series and that the intervals that correspond to different patterns may 
overlap when dealing with the same profile. 

2.2   Temporal Rules Extraction 

Once we have derived a representation of the temporal profiles based on the definition 
of a set of complex TAs, the method for temporal rules extraction develops through a 
strategy which looks for both the antecedent and the consequent of the rule coming 
from the set of complex TAs that represent the time series. The rules extraction 
strategy will then look for rules in which a set of contemporaneous TAs (the 
antecedent) has a precedence temporal relationship with another TA (the consequent). 
Notice that, since temporal rules are derived through the combination of complex 
temporal abstractions on the basis of a temporal relationship, they can be considered 
themselves as complex TAs. 

More formally, we consider temporal relationships expressed by the temporal 
operator PRECEDES, defined as follows: given two episodes, A and C, with time 
intervals [a1, a2] and [c1, c2], we say that A PRECEDES C if a1 ≤ c1 and a2 ≤ c2. Note 
that PRECEDES includes the Allen’s temporal operators OVERLAPS, FINISHED-
BY, MEETS, BEFORE, EQUALS and STARTS. Moreover, the PRECEDES 
relationship may be constrained by some parameters, that set some restrictions on the 
mutual position of the intervals involved [15]. These parameters are: the right shift 
(RS), defined as the maximum allowed distance between c2 and a2, the left shift (LS), 
defined as the maximum allowed distance between c1 and a1 and the gap, defined as 
the maximum distance between a2 and c1, when c1>a2. 

The search procedure is then aimed at defining rules of the kind A p Ci, where A 
is a conjunction of complex TAs and constitutes the antecedent, while Ci is the 
consequent of the rule. The notation p defines the PRECEDES temporal 
relationship between A and Ci. 

The search procedure develops following the ideas of [14,15], after having 
properly modified the definitions of the set from which to extract the antecedent and 
the consequent episodes. In more detail, in order to define confidence and support, we 
need first to introduce some quantities: 
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− TS: the time span, i.e. the total duration of the observation period in which the rule 
is derived; 

− RTS: the rule time span, i.e. the time span corresponding to the union of the 
episodes in which both the antecedent and the consequent of the rule occur; 

− NAT: the number of times (episodes) in which the antecedent occurs during the 
TS; 

− NARTS : the number of times (episodes) in which the antecedent occurs during the 
RTS. 

We can therefore define: 

− Support (Sup) = RTS / TS1; 
− Confidence (Conf ) = NARTS /  NAT. 

The strategy to extract temporal rules develops then as follows: 

1. Put all the complex temporal events that represent the time series in the set A0; 
2. Fix the consequent as an episode ci∈A0; 
3. Apply the PRECEDES operator between each ai and ci, where ai is such that ai∈A0-

{ci} and ai doesn’t refer to the same time series as ci. Put the results in the new set 
A1 and set the counter k to 1. In general A1 is formed by those rules that show a 
support greater then a fixed threshold; 

4. Repeat: 
− Set k=k+1; 
− Generate the set Ak from Ak-1 such that each rule in Ak has cardinality k 

(conjunction of k TAs in the antecedent) and verifies the PRECEDES 
relationship. Even in this case, it is possible to state a restriction for Ak based on 
a threshold on the support; 

Until: Ak is empty; 
5. Put A= Ak-1 and repeat from step 2 for another consequent cj∈A0. 

3   Results 

In this section we show the results obtained by applying the method to two different 
problems, the first in the clinical domain, while the other one concerning the 
biological problem of inferring gene regulatory networks from data. These examples 
allow to understand the wide spectrum of applicability of the proposed solutions. 

3.1   Analysis of Time Series Coming from Haemodialysis Sessions Monitoring 

The first application we introduce is about the use of the rule extraction algorithm to 
analyze time series coming from the monitoring of several variables during different 
dialysis sessions2. In particular, we have considered a single patient undergoing to 86 

                                                           
1 Several definitions of support can be considered; in our case, we chose to consider the real 

time span of the episodes, in order to take into account low frequency episodes with long TS. 
2 The data have been made available by courtesy of the Dialysis Unit of the A.O. of Vigevano, 

Italy. 
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dialysis cycles, looking for the relationships occurring between arterial pressure and 
heart rate. In our study, we have considered systolic pressure (SP), diastolic pressure 
(DP) and heart frequency (HR). From a clinical point of view, it is interesting to look 
for temporal relationships that highlight a negative correlation between the pressure 
variables on one hand and the heart frequency on the other. Such relationships may be 
related to hypertension or hypotension episodes. Relying on this assumption, we have 
identified the set P as P = {[Increasing Steady Decreasing], [Decreasing Steady 
Increasing]}. The rule extraction algorithm searches for rules that satisfy the 
PRECEDES operator between opposite complex temporal events in the antecedents 
with respect to the consequents (e.g. [Increasing Steady Decreasing] vs [Decreasing 
Steady Increasing]). Table 1 shows the results we obtained fixing a threshold for the 
confidence, Conf ≥ 0.7, and for the support, Sup ≥ 0.1.We have been able to derive 
rules with complex patterns involving one or more variables. The first rule extracts a 
contemporaneous pattern for Systolic and Diastolic pressure, in which an up and 
down pattern is followed by a down and up pattern of the Heart Rate; the rule has 
confidence 0.7 and is verified in 10 dialysis over 86. Other two similar rules, which 
relate Heart Rate with Systolic and Diastolic pressures are also found. In both cases 
the number of dialysis in which the rule is verified is 24. These episodes are clinically 
relevant, since they correspond to the patient response to hypertension, probably due 
to vasoconstriction. 

Table 1. The rules derived from the analysis of the haemodialysis data ([ISD]= [Increasing 
Steady Decreasing], [DSI] = [Decreasing Steady Increasing]) 

RULE (OPERATOR: PRECEDES) 
P={[Increasing Steady Decreasing], [Decreasing Steady Increasing]} 
Antecedent Consequent 

Variable Pattern Variable Pattern 
Confidence Support 

SP 
DP 

[ISD] 
[ISD] HR [DSI] 0.706 0.156 

HR [DSI] DP [ISD] 0.755 0.398 
HR [DSI] SP [ISD] 0.8 0.407 

 

3.2   Analysis of Gene Regulatory Networks Through Gene Expression Data 

The second study regards the attractive biological problem of inferring genetic 
regulatory networks starting from gene expression data. In this domain, our algorithm 
could be particularly suited since it allows to describe patterns of synchronization and 
precedence in gene expressions; such patterns might be the evidence of a close 
relationships between genes. Moreover, by highlighting the relationships between 
synchronized gene sets, we can gain insight into the temporal sequence of macro-
processes, potentially suggesting cause-effect relationships between the involved 
genes. 

In this paper we have analysed the data coming from DNA microarray experiments 
on human cell cycle, presented in [10] and available at http://genome-
www.stanford.edu/Human-CellCycle/Hela/. From the whole dataset, we extracted 5 
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time series of 47 samples that correspond to some of the human genes which are 
known to regulate cell cycle [20]. We have considered the rules characterized by 
pattern P={[Increasing Decreasing], [Decreasing Increasing]}. This pattern is useful 
to highlight the synchronization and phase shifts between genes during the cell cycle. 
The rules have been derived with confidence Conf =1 and support Sup  ≥ 0.7. Rather 
interestingly, the most important known relationships between genes are 
automatically derived by the algorithm. Table 2 and Figure 2 show some examples 
related to the gene for Cyclin E, the protein which regulates the transition from the 
phase G1 to S. Protein P27, a Cyclin E repressor, is always in opposition to Cyclin E; 
this is expressed by a precedence relationship, where a peak of one gene always 
precedes the peak of the other. Moreover, Cyclin A and B regulate transition from 
phase S to G2 and M, and CDC25 is a protein which favors the transition from G2 to 
M. Such genes are always find to be synchronized, and their complex pattern 
periodically precedes Cyclin E. 

Table 2. Examples of the Rules extracted from the analysis of gene expression data of human 
cell cycle ([ID] = [Increasing Decreasing], [DI] = [Decreasing Increasing]) 

RULE (OPERATOR: PRECEDES) 
P = {[Increasing Decreasing] [Decreasing Increasing]} 

Antecedent Consequent 
Gene Pattern Gene Pattern 

Confidence Support 

P27 [ID] Cyclin E [DI] 1 0.915 
Cyclin A 
Cyclin B 

[ID] 
[ID] Cyclin E [ID] 1 0.745 

CDC25C 
Cyclin A 

[ID] 
[ID] Cyclin E [ID] 1 0.745 

 

 
 
 
 
 

 
 

 
 
 
 

 

Fig. 2. The time series corresponding to the temporal rules reported in Table 2. Protein P27 is 
always in opposition to Cyclin E (a); Cyclin A, Cyclin B and CDC25 are synchronized; their 
complex pattern periodically precedes Cyclin E (b,c) 

a) c)b)
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4   Discussion 

In this paper we have presented a new method for the automated generation of 
temporal rules which involve complex patterns in both the antecedent and the 
consequent. This algorithm is particularly suited for exploring the temporal 
relationships between the variables collected in different kind of biomedical data 
bases. It is important to note that the method performs a knowledge-based search in 
the data set. Knowledge is required to the domain expert to specify the parameters of 
the temporal abstraction mechanisms, such as the minimum slope of the trends used 
to define the simple patterns; moreover, additional knowledge is needed to select the 
interesting temporal complex patterns and to completely specify the precede temporal 
relationship. Finally, the rules are extracted after the choice of support and 
confidence. Such a knowledge-intensive procedure can be considered both a strength 
and a weakness of the approach. It is a strength, since it allows the extraction of 
results which are driven by background knowledge in an explicit way. This facilitates 
explanation and user control on the output. It is a weakness, since the degrees of 
freedom of the users are high, so that the results may be difficult to reproduce if all 
the parameters are not clearly reported in the data analysis process; moreover it 
requires a workload to the user in knowledge elicitation. In our opinion, it can be used 
as a useful instrument to complement data-driven approaches to gain insight in 
complex temporal behaviours, which are common in biomedical domains.  

Given the great flexibility that characterizes the algorithm, immediate extensions 
may lead to consider both Trend and State TAs for the representation of the temporal 
profiles; moreover also different relationships between the events may be taken into 
account. As a future development we are including in the algorithm a strategy to 
automatically propose to the user the most relevant complex patterns in the data; 
moreover, we are working on a technique for result visualization through a semantic 
network of temporal relationships.  
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