
Zchaff2004: An Efficient SAT Solver

Yogesh S. Mahajan, Zhaohui Fu, and Sharad Malik

Princeton University, Princeton, NJ 08544, USA
{yogism, zfu, malik}@Princeton.EDU

Abstract. The Boolean Satisfiability Problem (SAT) is a well known
NP-Complete problem. While its complexity remains a source of many
interesting questions for theoretical computer scientists, the problem has
found many practical applications in recent years. The emergence of
efficient SAT solvers which can handle large structured SAT instances
has enabled the use of SAT solvers in diverse domains such as electronic
design automation and artificial intelligence. These applications continue
to motivate the development of faster and more robust SAT solvers. In
this paper, we describe the popular SAT solver zchaff with a focus on
recent developments.

1 Introduction

Given a propositional logic formula, determining whether there exists a variable
assignment that makes the formula evaluate to true is called the Boolean Satisfi-
ability Problem (SAT). SAT was the first problem proven to be NP-Complete[1]
and has seen much theoretical interest on this account. Most people believe
that it is unlikely that a polynomial time algorithm exists for SAT. However,
many large instances of SAT generated from real life problems can be success-
fully solved by heuristic SAT solvers. For example, SAT solvers find applica-
tion in AI planning[2], circuit testing[3], software verification[4], microprocessor
verification[5], model checking[6], etc. This has motivated research in efficient
heuristic SAT solvers.

Consequently, there are many practical algorithms based on various principles
such as Resolution[7], Systematic Search[8], Stochastic Local Search[9], Binary
Decision Diagrams[10], St̊almarck’s[11] algorithm, and others. Gu et al.[12] pro-
vide a review of many of the algorithms.

Given a SAT instance, SAT algorithms which are complete either find a
satisfying variable assignment, or prove that no such solution exists. Stochastic
methods, on the other hand, are geared toward finding a satisfiable solution
quickly but do not prove unsatisfiability. Stochastic methods are likely to be
adopted in AI planning[2] and FPGA routing[13], where instances are likely to
be satisfiable and proving unsatisfiability is not required. However, for many
other domains, particularly some verification problems[4, 6], the primary task
is to prove unsatisfiability of the instances. Hence, complete SAT solvers are
required in these cases. The zchaff SAT solver is a complete solver.

H.H. Hoos and D.G. Mitchell (Eds.): SAT 2004, LNCS 3542, pp. 360–375, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Zchaff2004: An Efficient SAT Solver 361

The well known Davis-Logemann-Loveland (DLL)[8] algorithm forms the
framework for many successful complete SAT solvers. DLL is sometimes referred
to as DPLL for historical reasons. Researchers have been working on DPLL-
based SAT solvers since the 1960s. The last ten years have seen tremendous
growth and success in DPLL-based SAT solver research. In the mid 1990’s, tech-
niques like conflict driven clause learning and non-chronological backtracking
were integrated into the DPLL framework[14, 15]. These techniques have greatly
improved the efficiency of the DPLL algorithm for structured (as opposed to
random) SAT instances. Improvements to the memory efficiency of the Boolean
constraint propagation procedure[16, 17] [17] have helped modern SAT solvers
cope with large problem sizes. A lot of research has gone into developing new
decision strategies. Chaff[17] introduced an innovative conflict clause driven deci-
sion strategy and BerkMin[18] introduced yet another decision strategy making
use of recent conflict clauses. Today, the latest generation of SAT solvers like
zchaff, BerkMin, siege[19], and others[20, 21] are able to handle structured in-
stances with tens of thousands of variables and hundreds of thousands of clauses.

The performance of SAT solvers varies significantly according to the do-
main from which the problem instance is drawn. The SAT 2004 competition[21]
broadly categorizes the instances into instances derived from industrial problems,
handmade instances, and randomly generated instances. Solvers that perform
well in one category rarely perform well in another category as the techniques
that are successful differ from category to category.

Zchaff is a solver that targets the industrial category and hopes to be reason-
ably successful in the handmade category. It implements the well known Chaff
algorithm[17] which includes the innovative VSIDS decision strategy and the very
efficient two literal watching scheme for Boolean constraint propagation. Zchaff
is a popular solver whose source code is available to the public. It is possible to
compile zchaff into a linkable library for easy integration with other applications.
Successful integration examples include the BlackBox AI planner[22], NuSMV
model checker[23], GrAnDe theorem prover[24], and others. Zchaff compares well
with other SAT solvers based on solving runtime performance – versions of zchaff
have emerged as the Best Complete Solver in the ‘industrial’ and ‘handmade’
instances categories in the SAT 2002 Competition[25] and as the Best Complete
Solver in the ‘industrial’ category in the 2004 SAT Competition[21].

This paper provides an overview of the zchaff solver with a focus on recent
developments. Section 2 gives an overview of the DPLL framework on which
zchaff is based. Section 3 gives an overview of the main features of the 2003
version of the zchaff solver. Section 4 presents the new features in the SAT 2004
versions of zchaff. Section 5 lists some additional features recently integrated
with zchaff after SAT 2004. Section 6 gives some experimental results. Section 7
concludes the paper.

2 The DPLL Algorithm with Learning

In 1960, Davis and Putnam[7] proposed an algorithm for solving SAT which was
based on resolution. Their method used resolution for the existential abstrac-



362 Y.S. Mahajan, Z. Fu, and S. Malik

tion of variables from the original instance and produced a series of equivalent
SAT decision problems with fewer variables. However, their proposed algorithm
had impractically large memory requirements. Davis, Logemann and Loveland[8]
proposed an algorithm that used search instead of resolution. This algorithm is
often referred to as the DPLL algorithm. It can be argued that these two algo-
rithms are closely related because the DPLL search tree can be used to derive a
corresponding resolution proof, but we note that the types of proofs of unsatis-
fiability that the two methods discover can be different.

In most implementations, the propositional formula is usually presented in a
Product of Sums form, which is usually called Conjunctive Normal Form (CNF).
There exist polynomial algorithms[26] to transform any propositional formula into
a CNF formula that has the same satisfiability as the original one. Henceforth,
we will assume that the problem is presented in CNF. A formula in CNF is a
conjunction of one or more clauses, where each clause is a constraint formed as
the disjunction of one or more literals. A literal, in turn, is a Boolean variable or
its negation. A propositional formula in CNF has some nice properties that can
help prune the search space and speed up the search process. To satisfy a CNF
formula, each clause must be satisfied individually. If a variable assignment causes
any clause in the formula to have all its literals evaluate to 0 (false), then that
current variable assignment or any extension of it will never satisfy the formula.
A clause that has all its literals assigned to value 0 is called a conflicting clause
and directly indicates to the solver that some of the currently assigned variables
must be unassigned first before continuing the search for a satisfying assignment.

DPLL is a depth-first backtracking framework. At each step, the algorithm
picks a variable v and assigns a value to v. The formula is simplified by removing
the satisfied clauses and eliminating the false literals. An inference rule may then
be applied to assign values to some more variables which are implied by the
current assignments. If an empty clause results after simplification, the procedure
backtracks and tries the other value for v. Modern DPLL algorithms have an
additional feature – they can learn and remember new clause constraints via
a procedure called conflict analysis. The worst case time complexity remains
exponential in terms of the total number of variables. However, in the case of
some classes of real-life applications, a good implementation shows a manageable
time complexity when combined with appropriate heuristics.

An outline of ‘DPLL with learning’ as it is used in zchaff is given in Fig. 1.
Initially, none of the variables of the CNF are assigned a value. The unassigned
variable are called free variables. The function decideNextBranch() uses some
heuristics to choose a free variable v to branch upon and assigns it a value. The
assignment operation is said to be a decision made on variable v. The heuristics
used here constitute the Decision Strategy of the solver. Each assigned v also has
a decision level associated with it which equals the solver decision level at the
time the decision was made. The decision level starts at 1 for the first decision
and is incremented by 1 for subsequent decisions until a backtrack occurs. Af-
ter each decision, the function deduce() determines some variable assignments
which are implied by the current set of decisions. This inference is referred to as



Zchaff2004: An Efficient SAT Solver 363

while(there exists a free variable)

decideNextBranch(); // pick & assign free variable

status = deduce(); // propagate assigned values

if(status == CONFLICT)

blevel = analyzeConflict(); // & learn conflict clause

if(blevel > 0)

backTrack(blevel); // resolve the conflict

else if(blevel == 0)

return UNSATISFIABLE; // conflict cannot be resolved

runPeriodicFunctions();

}

return SATISFIABLE

Fig. 1. Algorithm DPLL with Learning

Boolean Constraint Propagation (BCP). Variables that are assigned during BCP
will assume the same decision level as the current decision variable. If deduce()
detects a conflicting clause during BCP, then the current partial variable assign-
ment cannot be extended to a satisfying assignment, and the solver will have to
backtrack. The solver calls the conflict analysis procedure analyzeConflict()
which finds a reason for the discovered conflict and returns the decision level
to backtrack to. The reason for the conflict is obtained as a set of variable as-
signments which imply the current conflict and gets recorded by the solver as a
clause.1 The solver decision level is updated appropriately after the backtrack.
The reader is referred to [27, 28] for details of conflict analysis. The solver enters
decision level 0 only when making an assignment that is implied by the CNF
formula and a backtrack to level 0 indicates that some variable is implied by the
CNF formula to be both true and false i.e. the instance is unsatisfiable. (The
function runPeriodicFunctions() in the main loop is used to schedule some
periodic jobs like clause deletion, restarts, etc.)

The outline in Fig. 1 can be extended to include some simplification proce-
dures - like applying the Pure Literal Rule or identifying equivalence classes[29].
Since these can be expensive to implement dynamically during the search, they
may be used in a separate preprocessing phase.

3 Overview of the Zchaff Solver Till 2003

In this section, we will present a quick overview of the main features of the zchaff
solver. The overall structure of zchaff is as in Fig. 1.

3.1 Decision Strategy - VSIDS
During the search, making a good choice for which free variable is to be assigned
and to what value is very important because even for the same basic algorithm

1 It is well known that the DPLL algorithm without clause recording can discover
tree-like resolution proofs. With the ability to record clauses resulting from conflict
analysis, the solver can discover more general proofs of unsatisfiability.



364 Y.S. Mahajan, Z. Fu, and S. Malik

framework, different choices may produce search trees with drastically different
sizes. Early branching heuristics like Maximum Occurrences in Minimum Sized
clauses (MOMS)[30] used some statistics of the clause database to estimate the
effect of branching on a particular variable. In [31], the author proposed literal
count heuristics which count the number of unsatisfied clauses in which a given
variable appears (in either phase). These counts are state-dependent because
different variable assignments will give different counts and need to be updated
every time a variable is assigned or unassigned.

The Chaff[17] solver proposed the use of a heuristic called Variable State
Independent Decaying Sum (VSIDS). VSIDS keeps a score for each literal of a
variable. Initially, the literal scores equal the number of occurrences of the literal
in the input CNF. The literal counts are updated every time the conflict analysis
procedure learns a conflict clause by incrementing the scores of each literal in
the learned clause by 1. Periodically, after a fixed large number of decisions, all
literal scores are divided by 2. The VSIDS literal scores are effectively weighted
occurrence counts with higher weights given to occurrences in recently learned
clauses. The score of a variable is considered to be the larger of the two associated
literal scores. An ordering of the variables is induced by these scores and when
a decision is to be made, VSIDS chooses the free variable highest in the variable
order and assigns the variable to true if the score of the positive literal exceeds
the score of the negative literal and false otherwise. VSIDS provides a quasi-
static variable ordering which focuses the search on the recently derived conflict
clause. The statistics required for VSIDS are relatively inexpensive to maintain
and this makes it a low overhead decision strategy.

3.2 Boolean Constraint Propagation - Two Literal Watching

During the search for a satisfying assignment, the application of an inference
rule can detect some variables whose values are implied by the current set of
assignments and simplify the problem remaining to be solved. The Unit Clause
Rule is a commonly used inference rule. A Unit Clause is a clause which has
exactly one unassigned literal and all other literals assigned to false. The unit
clause rule says that the unassigned literal in a unit clause must be assigned to
true. This implied assignment is called an implication and the unit clause causing
the implication is referred to as the antecedent for that variable assignment.

BCP needs to operate on very large clause databases and the pattern of ac-
cesses to the clause database often lacks locality. This leads to a large number
of cache misses. BCP often contributes as much as 50-90% to the total run-
time of modern solvers[32] and it is imperative to optimize the cache/memory
usage of the BCP procedure. Early implementations for BCP like [33] main-
tained counts for the number of assigned literals in each clause in order to
identify unit/conflicting clauses. This was costly to implement. The authors of
SATO[16] proposed a mechanism for BCP using head/tail lists[34] which signif-
icantly improved the efficiency of BCP. In both the counting-based schemes and
the head/tail lists methods, unassigning a variable is a costly operation and its
complexity may be comparable to that of assigning a variable.



Zchaff2004: An Efficient SAT Solver 365

Zchaff uses the Two Literal Watching scheme[17] for BCP. Initially, two of
the non-false literals in each clause are marked as watched literals. Each literal
maintains a list of the clauses in which it is watched. Whenever a clause becomes
a unit/conflicting clause, at least one of the watched literals in that clause must
be assigned to false. Hence, when a literal gets assigned to false, it is sufficient to
check for unit/conflicting clauses only among those clauses in which that literal
is watched . The details of the mechanism for identifying unit/conflicting clauses
can be found in [17]. A key benefit of the two literal watching scheme is that
at the time of backtracking, there is no need to modify the watched literals in
the clause database. Unassigning a variable can be done very simply by doing
nothing more than just setting the variable value to “unknown”.

3.3 Conflict Driven Clause Learning and Non-chronological
Backtracking - Learning the FirstUIP Conflict Clause

Conflict driven clause learning along with non-chronological backtracking were
first incorporated into a SAT solver in GRASP[27] and relsat[15]. These tech-
niques are essential for efficient solving of structured problems.

Conflict Driven Clause Learning: When the BCP procedure detects a con-
flicting clause that results from the current variable assignments, the solver needs
to backtrack. The function analyzeConflict() finds a subset of the current vari-
able assignments which is also sufficient to make the analyzed clause a conflicting
clause. The solver records this information as a clause which evaluates to true
exactly when this subset of variable assignments occurs. This prevents the same
conflict from occurring again. New clauses are learned using an operation called
resolution.2 The clauses derived using resolution are implied by the resolvents
and thus such clauses are logically redundant and adding these clauses does not
affect any of the satisfying assignments. However, these added clauses directly
help the BCP procedure to prune some of the search space.

The question of which clauses should be selected for resolution can have many
answers. In conflict driven clause learning, the solver’s search process discovers
sequences of clauses which are suitable to be resolved. As mentioned earlier, each
assigned non-decision variable, i.e. implied variable, has an antecedent clause as-
sociated with it. The antecedent clause for setting the variable v to 1 will contain
the positive literal v and all other literals will be assigned false. The conflicting
clause Cf comprises of only false literals. Thus, Cf can be resolved with the
antecedent of any of its variables to derive a clause Cl which will also have all
false literals. The process can be continued to derive other clauses treating Cl

as the conflicting clause. A lot of flexibility remains, e.g. in choosing which vari-
able’s antecedent is to be used for resolution, which of the learned clauses are
to be actually added to the clause database, and when to stop learning. Zchaff

2 Conflict driven conflict clause learning can be looked at in two equivalent ways as
resulting from successive resolutions and as a cut in the implication graph. We refer
the reader to the description in [28].



366 Y.S. Mahajan, Z. Fu, and S. Malik

answers these questions with the FirstUIP[28] clause learning scheme. A single
variable assignment at the conflict decision level, which along with all the vari-
able assignments at previous decision levels is sufficient to cause the conflict is
a Unique Implication Point (UIP) at the conflict decision level. This provides
a single reason at the conflict decision level for the current conflict. The most
recent UIP variable assignment at the conflict decision level is called the Firs-
tUIP and can always be found since the decision at the conflict decision level
is itself an UIP. In the FirstUIP scheme, all the antecedent clauses that appear
in the sequence of resolved clauses are antecedents of variables at the conflict
decision level and the FirstUIP clause is found when the only literal remaining
at the conflict decision level corresponds to the FirstUIP assignment. Details of
the procedure may be found in [27] and [28]. Such a conflict clause is called an
asserting clause and it will become a unit clause after backtracking.

Non-chronological Backtracking: In order to resolve a conflict, the solver
must backtrack to a prior state which does not directly entail the identified
conflict i.e. none of the clauses in the database must be conflicting clauses after
the backtrack. To do this, the solver finds the second highest decision level
involved in the derived conflict clause (decision level 0 if a single literal clause)
and unassigns all the variables assigned at decision levels greater than this level.
The solver decision level is reset to be the backtrack level. The newly added
conflict clause becomes a unit clause because it was a FirstUIP conflict clause
and causes an implication via the BCP procedure. The original conflicting clause
that was identified (and analyzed) before the backtrack will certainly be non-
conflicting after the backtrack as this clause became a conflicting clause only at
the very last decision level prior to backtracking.

4 The SAT 2004 Versions of Zchaff

Two new versions of the zchaff solver participated in the SAT 2004 Compe-
tition. These two versions are zchaff.2004.5.13 (submitted as zchaff) and
zchaff rand. Both zchaff.2004.5.13 and zchaff rand can be downloaded
from http://www.princeton.edu/∼chaff/SAT2004 versions.html. The two
versions are closely related and we will use the term zchaff2004 to refer to both
of them. During its development, many features from zchaff rand were in-
tegrated into zchaff.2004.5.13. Some features like the “shrinking” decision
heuristic are implemented differently in zchaff.2004.5.13 and zchaff rand.
While there are many differences between them, the solvers are comparable in
performance. In the SAT 2004 competition, zchaff.2004.5.13 was more suc-
cessful on satisfiable instances while zchaff rand appeared to be more success-
ful on unsatisfiable instances. We have found that the performance of zchaff2004
compared to the 2003 version is slightly worse for bounded model checking, but
better for microprocessor verification problems.

Many of the new features have a common theme of increased search locality
and the derivation of short conflict clauses. Other researchers, e.g. the author of

http://www.princeton.edu/~chaff/SAT2004_versions.html


Zchaff2004: An Efficient SAT Solver 367

Siege[19], have noted the interaction between the search heuristic and the length
of the learned clauses. Like BerkMin, zchaff2004 also uses frequent restarts and
an aggressive clause deletion policy. Zchaff2004 also features some heuristics
whose parameters are dynamically adjusted during the search. Techniques like
the VSIDS decision strategy, Two Literal Watching based BCP, FirstUIP based
conflict clause learning and non-chronological backtracking which have proved
to be useful in earlier versions of zchaff are retained in zchaff2004.

4.1 Increased Search Locality

When VSIDS was first proposed, it turned out to be very successful in increasing
the locality of the search by focusing on the recent conflicts. This was observed
to lead to faster solving times. Though VSIDS scores are biased toward recent
regions of the search by the decaying of the scores, the decisions made are still
global in nature, due to the slow decay of variable scores[18]. However, recent
experiments show that branching within greater locality helps dramatically to
prune the search space. SAT solvers BerkMin and siege have both exhibited great
speedups from such decision heuristics. Zchaff2004 has three decision heuristics.
The first one to be tried is a “shrinking” heuristic. If this is not currently active
and does not make a decision, then a modified BerkMin like decision heuristic
is tried. The more global VSIDS decision strategy is used last.

Variable Ordering Scheme for VSIDS: This is the default decision heuristic
for zchaff2004. One way of trying to make VSIDS more local is to increase the
frequency of score decay. The variable ordering scheme also differs from the
previous version by incrementing the scores of the literals which get resolved
out during conflict analysis. Zchaff2004 increments the scores of involved literals
by 10000 instead of by 1. As a result, the decaying scores remain non-zero for
longer. Due to the details of the implementation of variable ordering in zchaff,
incrementing scores by 10000 also has the side effect that the variable order is
no longer the same as given by the variable scores, and the active variables move
closer to the top of the variable order. In zchaff rand, the VSIDS scores are
reset to new initial values determined by the literal occurrence statistics in the
current clause database after every clause deletion phase.

BerkMin Type Decision Heuristic: The use of the most recent unsatisfied
conflict clauses as is done by BerkMin also turns out to be a good cost-effective
approach to estimate the locality. The main ideas of this approach are described
by the authors of BerkMin in [18]. In zchaff2004, we maintain a chronological list
of derived conflict clauses. An unassigned variable with the highest VSIDS score
in a recent unsatisfied conflict clause is chosen to be branched upon. As in VSIDS,
the variable is assigned to true if the score of the positive literal exceeds the score
of the negative literal and false otherwise. In zchaff.2004.5.13, the most recent
unsatisfied clause is identified exactly. In zchaff rand, after searching through a
certain threshold number (set to 10000 or randomly) of as yet unexamined con-
flict clauses, the solver defaults to the VSIDS decision heuristic in case it fails to
find an unsatisfied clause. Also, zchaff rand skips conflict clauses which have
all unassigned literals during the search for a recent unsatisfied conflict clause.



368 Y.S. Mahajan, Z. Fu, and S. Malik

Conflict Clause Based Assignment Stack Shrinking: This is related to
one of the techniques used by the Jerusat solver[35]. We use our modification of
the general idea as presented in [35]. When the newly learned FirstUIP clause
exceeds a certain length L, we use it to drive the decision strategy as follows. We
sort the decision levels of the literals of the FirstUIP clause and then examine
the sorted sequence of decision levels to find the lowest decision level that is
less than the next higher decision level by at least 2. (If no such decision level is
found, then shrinking is not performed.) We then backtrack to this decision level,
and the decision strategy starts re-assigning to false the unassigned literals of
the conflict clause till a conflict is encountered again. We found that reassigning
the variables in the reverse order, i.e. in descending order of decision levels (used
in zchaff rand), performed slightly better than reassigning the variables in the
same order as they were assigned in previously (used in zchaff.2004.5.13).
Since some of the variables that were unassigned during the backtrack may not
get reassigned, the size of the assignment stack is likely to reduce after this
operation. As the variables on the assignment stack are precisely those that
can appear in derived conflict clauses, new conflict clauses are expected to be
shorter and more likely to share common literals. In our experiments, no fixed
value for L performed well for the range of benchmarks we tested. Instead, we set
L dynamically using some measured statistics. Zchaff2004 has two such metrics.
The first metric, used in zchaff.2004.5.13, is the averaged difference between
lengths of the clause being used for shrinking and the immediate new clause we
get after the shrinking. If this average is less than some threshold, L is increased
to reduce the amount of shrinking and if L exceeds some threshold, L is decreased
to encourage more shrinking. zchaff rand measures the mean and the standard
deviation of the lengths of the recent learned conflict clauses and tries to adjust
L to keep it at a value greater than the mean. This dynamic decision heuristic
of conflict clause based assignment stack shrinking is observed to often reduce
the average length of learned conflict clauses and leads to faster solving times,
especially for the microprocessor verification benchmarks.

4.2 Learning Shorter Clauses

Short clauses potentially prune large spaces from the search. They lead to faster
BCP and quicker conflict detection. Conflict driven learning derives new (con-
flict) clauses by successively resolving the clauses involved in the current conflict.
The newly derived clause is small in size when the number of resolvents is small,
when the resolvents are short clauses themselves, or when the resolvents share
many literals in common. Zchaff2004 has the following strategies to try to derive
short conflict clauses.

Short Antecedent Clauses Are Preferred: When the clauses do not share
many common literals, the sum of the lengths of all the involved clauses will
determine the length of the learned conflict clause. We can directly influence
the choice of clauses for the resolution by preferring shorter antecedent clauses.
One way to do this is to update a variable’s antecedent clause with a shorter



Zchaff2004: An Efficient SAT Solver 369

one whenever possible. As implemented in zchaff2004, BCP queues the implied
variable values along with their antecedents but does not perform the assignment
immediately. The assignment occurs only when the implied value is dequeued
and propagated. Thus, it sometimes happens that the same variable is enqueued
multiple times with the same value but different antecedent clauses. When BCP
encounters a new antecedent clause for an already assigned variable, the previous
antecedent can be replaced with the new one if the new antecedent is shorter.
zchaff rand maintains a separate database for binary clauses [36] and processes
the binary clauses before the non-binary clauses during BCP.

Multiple Conflict Analysis: This is a more costly technique than replacing
antecedents. It is observed that BCP often discovers more than one conflicting
clauses (most of which are derived from some common resolvents). For each con-
flicting clause, zchaff2004 finds the length of the FirstUIP clause to be learned,
and only records the one with the shortest length. Variables that are assigned
at decision level zero are excluded from all the learned conflict clauses.

Interaction with Decision Strategy: When the clauses being resolved during
conflict analysis share many common literals, the resulting conflict clause is likely
to be short. There is a strong interaction between the learned clauses and a
“locality centric” decision strategy. For example, the shrinking strategy reduces
the size of the set of literals that can appear in new conflict clauses. This in
turn increases the likelihood that the new clauses that are learned during the
search are shorter and share more literals. Decision strategies like VSIDS and
BerkMin which focus on recent conflict clauses can then discover which of these
new clauses are suitable for resolution, and the resulting clause is again likely to
be short. The observation that the decision strategy influences the length of the
derived conflict clauses has been made by the author of siege [19] who considers
conflict driven clause learning to be primarily a resolution strategy.

Learning Intermediate Resolvents: While performing conflict analysis, the
solver remembers the result of the first 5 resolutions. If this intermediate resolu-
tion result is shorter than the recorded FirstUIP clause, then the intermediate
resolvent is also recorded after the FirstUIP clause is recorded. This is imple-
mented in zchaff rand.

4.3 Aggressive Clause Deletion

Learned conflict clauses slow down the BCP procedure and use up memory.
Clauses which are not useful must be deleted periodically in the interest of keep-
ing the clause database small. Clauses satisfied at decision level 0 can be deleted
as they no longer prune any search space. As in BerkMin, some learned conflict
clauses can be deleted periodically without affecting the correctness of the solver.
Zchaff2004 periodically deletes learned clauses using usage statistics and clause
lengths to estimate the usefulness of a clause. Each clause has an activity counter
which is incremented every time the clause is involved in the derivation of a new
learned clause. This counter is used by Zchaff2004 to calculate an approximation



370 Y.S. Mahajan, Z. Fu, and S. Malik

to the clause’s activity to age ratio. Any clause with this ratio less than a cer-
tain threshold is considered for deletion. The final decision to delete the clause
is then made based on the irrelevance of the clause which is estimated by the
number of unassigned literals in the clause. The clause is deleted only if its irrel-
evance exceeds a certain irrelevance threshold. The irrelevance threshold may be
a constant or may be set dynamically based on the measurements of observed
clause length statistics. zchaff rand uses max{L,45} for the irrelevance param-
eter where L is the length parameter used by the dynamic shrinking decision
strategy. In zchaff rand, the clause activities are also decremented periodically
by a very small amount.

4.4 Frequent Restarts

Luck plays an important role in determining the solving time of a SAT solver even
for the case of unsatisfiable instances. The order in which the BCP procedure
queues implications and the order in which variables get watched are determined
more or less arbitrarily via the order in the CNF input file. Consequently, the
same CNF formula can take widely different run times after shuffling the clauses
and variables. When a VSIDS decision is made with all unassigned variables
having score 0, zchaff arbitrarily picks the first variable in the list. The wide
distribution of run times for slightly different algorithms running on the same
instance has been noted in [37] and the authors point out that a rapid restart
policy of a randomized solver can help reduce the variance of run times and
thereby contribute to increasing the robustness of the solver. Zchaff2004 also
uses a rapid fixed interval restart policy. The frequent restarts are observed to
make the solver more robust. With restarts disabled, zchaff rand with a timeout
of 300 seconds and random seed 0 takes 688 seconds on the beijing benchmark
suite (16 instances) and leaves two instances unsolved. With restarts enabled,
all the 16 instances get solved within 65 seconds.

5 Recent Developments

In this section, we briefly mention some of the new features have been added
to zchaff2004 after it was submitted to the SAT 2004 competition. One of the
motivations was to make BCP more efficient.

5.1 Early Conflict Detection

Early conflict detection is a technique used by solvers like Limmat[38]. During
BCP, the variable assignment is completed at the same time that the implied
value is queued. This has the advantage that conflicting values in the implications
queue can be identified early - as soon as they occur. Another advantage of this
is that the implied values still in the queue are already known to the Boolean
constraint propagation procedure and this could help BCP by not watching
literals which are set false according to the implication queue. This technique
has mixed effects on the solver run times. It may be noted that replacing the



Zchaff2004: An Efficient SAT Solver 371

antecedent clauses becomes more complicated when early conflict detection is
enabled, since extra checks have to be performed to ensure that no cycle is
introduced into the current implication graph. In particular, we check that all
the false literals were assigned before the single true literal got assigned.

5.2 Reorganized Variable Data Structure

During the addition of the new features, the variable object had grown in size to
about a hundred bytes. All the variable objects are stored in a STL::vector<>
as a result of which the actual variable values were widely separated in memory.
Since BCP mainly needs just the values, all the variable values were put into a
vector<char> by themselves. Other fields like the watched literal lists, variable
scores, implication related data, etc. were put into vector<>’s of their own. This
reorganized variable data structure brings small but consistent speedups.

5.3 Miscellaneous Features

The features listed here are considered to be experimental in status. The first one
is a modification to the BerkMin heuristic which uses short satisfied clauses on
the conflict clause stack which have less than 4 true literals and length less than
10 to make decisions. An unassigned literal from such a clause is selected and
set to false. The motivation is to recreate the assignments at the time the short
clause was derived. With this strategy, the performance on satisfiable bench-
marks improved for the tested benchmarks and no serious disadvantages were
noticed for unsatisfiable instances. The second modification is to increment the
literal scores by the number of conflicting clauses analyzed for the current con-
flict. When multiple clauses are analyzed, they share many common resolvents
and have similar literals. Hence, incrementing the score by the number of discov-
ered conflicting clauses gives more importance to literals which are frequently
involved in deriving conflict clauses. Secondly, incrementing by more than 1 will
also move such literals to the top of the variable ordering.

6 Impact of New Features

In this section, we try to evaluate the impact of the various modifications made to
the zchaff solver. To do this, we have created a series of versions of zchaff starting
with a version similar to the 2003 version and then adding features eventually
ending with a recent development version of zchaff2004. While we do not explore
all the possible combinations of the the features, we hope these comparisons will
yield some insight into the usefulness of the features. All experiments were run
on identical machines having Pentium 4 2.80 GHz processors with 1 MB L2
cache and 1 GB RAM using a random seed equal to 0.

6.1 Experimental Results

First, we present some details about the various versions that appear in the com-
parisons in Tables 1 and 2. The version ‘base’ is similar to the 2003 version of



372 Y.S. Mahajan, Z. Fu, and S. Malik

Table 1. Comparisons of various configurations of zchaff

Benchmark base s sMR sMRB SMRBK SMrBKEV

01 rule(20) 11477(11) 8817(7) 6970(6) 8810(9) 9641(9) 9467(7)
07 rule(20) 11755(12) 7656(8) 14481(11) 200(0) 103(0) 99(0)
barrel(8) 99(0) 89(0) 84(0) 227(0) 235(0) 256(0)
beijing(16) 2042(2) 2813(2) 1934(2) 79(0) 56(0) 57(0)
ferry(10) 17(0) 10(0) 8(0) 4(0) 3(0) 7(0)
fifo(4) 1978(1) 1269(1) 1229(1) 1586(1) 2367(2) 2378(2)
fpga routing(32) 1091(1) 993(1) 967(1) 254(0) 1228(1) 1315(1)
fvp-sat.3.0(20) 9216(7) 7109(4) 8500(6) 9988(9) 10149(7) 8770(1)
fvp-unsat.2.0(24) 3253(2) 3017(2) 3859(3) 1179(0) 456(0) 402(0)
hanoi(5) 1678(1) 1037(1) 1088(1) 75(0) 215(0) 143(0)
hard eq check(16) 12958(14) 12855(14) 12833(13) 11307(10) 9813(9) 9798(9)
ip(4) 2087(2) 1818(0) 601(0) 236(0) 279(0) 730(0)

total(179) 57653(53) 47485(40) 52554(44) 33945(29) 35066(28) 33422(20)

zchaff. The version ‘s’ is obtained by modifying ‘base’ to also score the literals
which get resolved out during conflict analysis. This scoring is similar to what is
done in the BerkMin solver. Literals which are involved in the recorded conflict
clause and which get resolved out during conflict analysis have their score incre-
mented by 1. The version ‘sMR’ adds multiple conflict analysis (Sect. 4.2) to ‘s’
and replaces antecedent clauses (Sect. 4.2). The version ‘sMRB’ adds BerkMin
like heuristics like the decision strategy (Sect. 4.1), aggressive clause deletion
(Sect. 4.3) and frequent restarts (Sect. 4.4). In this version, scores are decayed
every 20 backtracks. The solver maintains activities for the clauses (Sect. 4.3)
and clauses which survive deletion for many iterations have their activities in-
creased by a small amount. This version also includes an experimental decision
strategy modification (Sect. 5.3). The version ‘SMRBK’ adds the dynamic shrink-
ing decision strategy as in zchaff rand (Sect. 4.1) and clause deletion using the
shrinking length parameter L to estimate irrelevance (Sect. 4.3). SMRBK also in-
crements the scores by the number of conflicting clauses analyzed (Sect. 5.3) and
resets the VSIDS scores after each restart based on the current literal occurrence
counts. The version ‘SMrBKEV’ adds early conflict detection (Sect. 5.1) to SMRBK
and has a cleaned up variable data structure (Sect. 5.2). Due to the overhead of
the extra checks required before replacing antecedents when using early conflict
detection, only the antecedents of binary clauses are replaced when early conflict
detection is used. The version SBKEV is derived from SMrBKEV by disabling multi-
ple conflict analysis and antecedent-replacement. The version SMrBEV is derived
by disabling dynamic shrinking from SMrBKEV.

Table 1 reports the total solving time in seconds for the various versions
on benchmarks spanning microprocessor verification, bounded model checking,
fpga routing, etc. The random seed was 0 for all runs and the timeout was 900
seconds per instance. The numbers in parentheses give the number of instances
in the benchmark suite and also the number that remained unsolved. We see that



Zchaff2004: An Efficient SAT Solver 373

Table 2. More comparisons on the same benchmarks

Benchmark SMrBKEV SBKEV SMrBEV zchaff.2004.5.13 zchaff rand

01 rule(20) 9467(7) 8776(8) 9448(8) 8759(9) 9915(9)
07 rule(20) 99(0) 99(0) 174(0) 111(0) 121(0)
barrel(8) 256(0) 303(0) 349(0) 162(0) 68(0)
beijing(16) 57(0) 63(0) 61(0) 52(0) 65(0)
ferry(10) 7(0) 3(0) 3(0) 7(0) 2(0)
fifo(4) 2378(2) 2184(2) 2069(2) 1669(1) 1765(1)
fpga routing(32) 1315(1) 1356(1) 765(0) 1102(1) 516(0)
fvp-sat.3.0(20) 8770(1) 9361(5) 9737(10) 6432(4) 7171(1)
fvp-unsat.2.0(24) 402(0) 365(0) 1753(0) 853(0) 702(0)
hanoi(5) 143(0) 516(0) 174(0) 1180(1) 764(0)
hard eq check(16) 9798(9) 10302(10) 12218(12) 12095(12) 9877(9)
ip(4) 730(0) 606(0) 588(0) 1146(0) 214(0)

total(179) 33422(20) 33935(26) 37340(32) 33568(28) 31180(20)

Table 3. Effect of dynamic shrinking on microprocessor verification benchmarks

Benchmark SMrBEV SMrBKEV

fvp-unsat.1.0(4) 65(0) 29(0)
fvp-unsat.2.0(24) 1753(0) 402(0)
engine-unsat.1.0(10) 8182(4) 8087(4)
pipe-unsat.1.1(14) 17854(12) 10168(4)
fvp-sat.3.0(20) 17550(7) 9010(0)

total(68) 45404(23) 27696(8)

multiple conflict analysis and replacing the antecedents do not have a significant
effect on the solver run times by themselves. The BerkMin like decision heuristics
produce a definite improvement. Adding dynamic shrinking has a mixed effect for
these benchmarks. Adding early conflict detection and reorganizing the variable
data structure gives a small improvement.

Table 2 shows the effect of disabling multiple conflict analysis and the effect
of disabling shrinking from the final version. Performance is degraded in both
cases. Table 2 also compares zchaff.2004.5.13 with zchaff rand.

As remarked earlier, the dynamic shrinking strategy has the most signifi-
cant effect for the microprocessor verification benchmarks. We present the re-
sults without and with dynamic shrinking for some microprocessor verification
benchmarks in Table 3. The timeout for these experiments was 1800 seconds.

7 Summary

We have presented some details of the 2004 versions of zchaff including the ver-
sions that participated in the SAT 2004 Competition. The new features include



374 Y.S. Mahajan, Z. Fu, and S. Malik

decision strategies that increase the “locality” of the search and focus more on
recent conflicts, strategies that directly focus on deriving short conflict clauses,
an aggressive clause deletion heuristic that keeps only the clauses most likely to
be useful, a rapid restart policy that adds robustness and some techniques that
are intended to improve the efficiency of the Boolean constraint propagation
procedure. We have also presented some data that might help in evaluating the
usefulness of the various features.

References

1. Cook, S.A.: The complexity of theorem-proving procedures. In: Third Annual
ACM Symposium on Theory of Computing. (1971)

2. Kautz, H., Selman, B.: Planning as Satisfiability. In: European Conference on
Artificial Intelligence. (1992)

3. Stephan, P., Brayton, R., Sangiovanni-Vencentelli, A.: Combinational test gener-
ation using satisfiability. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems 15 (1996) 1167–1176

4. Jackson, D., Vaziri, M.: Finding bugs with a constraint solver. In: International
Symposium on Software Testing and Analysis, Portland, OR. (2000)

5. Velev, M.N., Bryant, R.E.: Effective use of boolean satisfiability procedures in the
formal verification of superscalar and VLIW. In: 38th DAC, New York, NY, USA,
ACM Press (2001) 226–231

6. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic Model Checking without
BDDs. In: Proc. of TACAS. (1999)

7. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal
of ACM 7 (1960) 201–215

8. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving.
Communications of the ACM 5 (1962) 394–397

9. Selman, B., Kautz, H., Cohen, B.: Local search strategies for satisfiability test-
ing. In: Proceedings of the Second DIMACS Challange on Cliques, Coloring, and
Satisfiability. (1993)

10. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers C-35 (1962) 394–397

11. Gunnar St̊almarck: System for Determining Propositional Logic Theorems by
Applying Values and Rules to Triplets that are Generated from Boolean Formula
(1994) United States Patent. Patent Number 5,276,897.

12. Gu, J., Purdom, P.W., Franco, J., Wah, B.W.: Algorithms for the Satisfiability
(SAT) Problem: A Survey. DIMACS Series in Discrete Mathematics and Theoret-
ical Computer Science (1997)

13. Nam, G.J., Sakallah, K.A., Rutenbar, R.A.: Satisfiability-Based Layout Revis-
ited: Detailed Routing of Complex FPGAs Via Search-Based Boolean SAT. In:
ACM/SIGDA International Symposium on FPGAs. (1999)

14. Marques-Silva, J.P., Sakallah, K.A.: Conflict Analysis in Search Algorithms for
Propositional Satisfiability. In: IEEE International Conference on Tools with Ar-
tificial Intelligence. (1996)

15. Bayardo, R., Schrag, R.: Using CSP look-back techniques to solve real-world SAT
instances. In: National Conference on Artificial Intelligence (AAAI). (1997)

16. Zhang, H.: SATO: An efficient propositional prover. In: International Conference
on Automated Deduction. (1997)



Zchaff2004: An Efficient SAT Solver 375

17. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-
neering an Efficient SAT Solver. In: 38th DAC. (2001)

18. Goldberg, E., Novikov, Y.: BerkMin: A Fast and Robust SAT Solver. In: DATE.
(2002)

19. Siege Satisfiability Solver, http://www.cs.sfu.ca/∼loryan/personal/ (2004).
20. SAT Competition 2003, http://www.satlive.org/SATCompetition/2003/ (2004).
21. SAT Competition 2004, http://www.satlive.org/SATCompetition/2004/ (2004).
22. http://www.cs.washington.edu/homes/kautz/satplan/blackbox/ (2004).
23. NuSMW Home Page, http://nusmv.irst.itc.it/ (2004).
24. GrAnDe, http://www.cs.miami.edu/∼tptp/ATPSystems/GrAnDe/ (2004).
25. SAT Competition 2002, http://www.satlive.org/SATCompetition/2002/ (2004).
26. Plaisted, D.A., Greenbaum, S.: A stucture-preserving clause form translation.

Journal of Symbolic Computation 2 (1986) 293–304
27. Marques-Silva, J.P., Sakallah, K.A.: GRASP - A New Search Algorithm for Satis-

fiability. In: IEEE International Conf. on Tools with Artificial Intelligence. (1996)
28. Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven

learning in boolean satisfiability solver. In: ICCAD. (2001) 279–285
29. Li, C.M.: Integrating Equivalency reasoning into Davis-Putnam procedure. In:

AAAI. (2000)
30. Freeman, J.W.: Improvements to propositional satisfiability search algorithms.

PhD thesis, University of Pennsylvania (1995)
31. Marques-Silva, J.P.: The impact of branching heuristics in propositional satisfia-

bility algorithms. In: 9th Portuguese Conf. on Artificial Intelligence. (1999)
32. Zhang, L.: Searching for Truth: Techniques for Satisfiability of Boolean Formulas.

PhD thesis, Princeton University (2003)
33. Crawford, J., Auton, L.: Experimental results on the cross-over point in satisfia-

bility problems. In: National Conf. on Artificial Intelligence (AAAI). (1993)
34. Zhang, H., Stickel, M.: An efficient algorithm for unit-propagation. In: Fourth In-

ternational Symposium on Artificial Intelligence and Mathematics, Florida. (1996)
35. Nadel, A.: The Jerusat SAT Solver. Master’s thesis, Hebrew University of

Jerusalem (2002)
36. Pilarski, S., Hu, G.: Speeding up SAT for EDA. In: DATE. (2002)
37. Kautz, H., Horvitz, E., Ruan, Y., Gomes, C., Selman, B.: Dynamic restart policies.

In: The 18th National Conf. on Artificial Intelligence. (2002)
38. http://www2.inf.ethz.ch/personal/biere/projects/limmat/ (2004).

http://www.cs.sfu.ca/~loryan/personal/
http://www.satlive.org/SATCompetition/2003/
http://www.satlive.org/SATCompetition/2004/
http://www.cs.washington.edu/homes/kautz/satplan/blackbox/
http://nusmv.irst.itc.it/
http://www.cs.miami.edu/~tptp/ATPSystems/GrAnDe/
http://www.satlive.org/SATCompetition/2002/
http://www2.inf.ethz.ch/personal/biere/projects/limmat/

	Introduction
	The DPLL Algorithm with Learning
	Overview of the Zchaff Solver Till 2003
	Decision Strategy - VSIDS
	Boolean Constraint Propagation - Two Literal Watching
	Conflict Driven Clause Learning and Non-chronological Backtracking - Learning the FirstUIP Conflict Clause

	The SAT 2004 Versions of Zchaff
	Increased Search Locality
	Learning Shorter Clauses
	Aggressive Clause Deletion
	Frequent Restarts

	Recent Developments 
	Early Conflict Detection
	Reorganized Variable Data Structure
	Miscellaneous Features

	Impact of New Features
	Experimental Results

	Summary



